Chapter 3

The Right (Provenance) Hammer for the e
Job: A Comparison of Data Provenance
Instrumentation

Adriane Chapman (), Abhirami Sasikant, Giulia Simonelli, Paolo Missier (),
and Riccardo Torlone

3.1 Introduction

The W3C Provenance Working Group defines provenance as the “information
about entities, activities and people involved in producing a piece of data or
thing, which can be used to form assessments about its quality, reliability or
trustworthiness” (Mor 2013b,a). This statement by design gives no indication of
how much information is needed to perform these assessments. Past examples have
included as little as an original source (see ISO 19115-1:2014)" and as much as
a full chain of processing for an individual data item (Brauer et al. 2014). While
the collection and processing of provenance is important: to assess quality (Huynh
et al. 2018), enable reproducibility (Thavasimani et al. 2019), reinforce trust in the
end product (Batlajery et al. 2018), or to aid in problem diagnosis and process
debugging (Herschel et al. 2017), what provenance is enough, and is it worth the
cost of instrumentation?

Thttps://www.iso.org/obp/ui/#iso:std:is0:19115:-1:ed-1:v1:en

A. Chapman (P<) - A. Sasikant
University of Southampton, Southampton, UK
e-mail: adriane.chapman @soton.ac.uk; asIn16@soton.ac.uk

G. Simonelli - R. Torlone
Universita Roma Tre, Rome, Italy
e-mail: giullia.simonelli @uniroma3.it; riccardo.torlone @uniroma3.it

P. Missier
Newcastle University, Newcastle upon Tyne, UK
e-mail: paolo.missier@ncl.ac.uk

© Springer Nature Switzerland AG 2021 25
L. E. Sikos et al. (eds.), Provenance in Data Science, Advanced Information
and Knowledge Processing, https://doi.org/10.1007/978-3-030-67681-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67681-0_3&domain=pdf
http://orcid.org/0000-0002-3814-2587
http://orcid.org/0000-0002-0978-2446
http://orcid.org/0000-0003-1484-3693
https://www.iso.org/obp/ui/#iso:std:iso:19115:-1:ed-1:v1:en
mailto:adriane.chapman@soton.ac.uk
mailto:as1n16@soton.ac.uk
mailto:giullia.simonelli@uniroma3.it
mailto:riccardo.torlone@uniroma3.it
mailto:paolo.missier@ncl.ac.uk
https://doi.org/10.1007/978-3-030-67681-0_3

26 A. Chapman et al.

specific high
O 1
£ Workflow =
] provenance <
=4 [T
] E
& : =
g Information system E
2 provenance c
o
—~ [=]
@ o
b} Provenance metadata H
=] e |
b
[~

general low

Fig. 3.1 Reproduction of Provenance Hierarchy from Herschel et al. (2017) and expanded to
highlight the methods to instrument data provenance in the Orange3 framework in this work

Initial work and definitions of provenance (Buneman et al. 2001) evolved into
many different types of provenance, including how, why, where (Cheney et al.
2009), and why not (Chapman and Jagadish 2009). Many surveys exist that create
categorizations of different types of provenance, including provenance found in
e-Science platforms (Simmbhan et al. 2005), for computational processing (Freire
et al. 2008), data provenance (Glavic and Dittrich 2007), and scripts (Pimentel et al.
2019). Based on a recent survey focused on looking at provenance and instrumen-
tation needs (Herschel et al. 2017), provenance can be broadly classified into the
following types: metadata, information system, workflow, and data provenance. In
this context, Herschel et al. identified that with more specific information, such as
data provenance, the level of instrumentation increases (Herschel et al. 2017).

Even within the “data provenance” category, there is a huge range in terms
of instrumentation options available which can change the granularity of the
provenance available for use. Within the hierarchy presented in Herschel et al.
(2017), we investigate differences in instrumentation and supported queries of data
provenance (Fig. 3.1).

In this work, we focus on a very specific set of tasks: collecting provenance
of machine learning pipelines. There is a large amount of work involved in
gathering and preparing data for use within a machine learning pipeline. Which
data transformations are chosen can have a large impact on the resulting model
(Feldman et al. 2015; Zelaya et al. 2019; Zelaya 2019). Provenance can help a
user debug the pipeline or reason about final model results. In order to investigate
granularity of data provenance and instrumentation costs, we use the application
Oi"ange2 (Demsar et al. 2013) and show how provenance instrumentation choices
can greatly affect the types of queries that can be posed over the data provenance
captured. Our contributions include:

Zhttps://orange.biolab.si

https://orange.biolab.si

3 The Right (Provenance) Hammer for the Job 27

e We identified a tool, Orange3, that assists in organizing Python scripts into
machine learning workflows, and use it to:

— Identify a set of use cases that require provenance;
— Constrain the environment so that a set of provenance instrumentation tech-
niques can be compared.

* Implemented provenance instrumentation using a GUI-based insertion, embed-
ded within scripts, and via expert hand-encoding in a machine learning pipeline.

e Compared the use of the resulting data provenance for each of these instrumen-
tation approaches, in order to address issues the real-world use cases found in
Orange3.

We begin in Sect. 3.2 with an overview of the Orange3 tool, and the provenance
needs expressed by end users. In Sect. 3.3, we provide a brief overview of
instrumentation options; Sects. 3.3.1, 3.3.2, and 3.3.3 discuss an instrumentation
of ML pipeline scripts by instrumenting either hand-coded scripts (Sect. 3.3.1); the
Orange3 GUI (Sect. 3.3.2); or by embedding directly in the scripts (Sect. 3.3.3). In
Sect. 3.4, we compare these approaches with respect to solving the set of real-world
problems identified in Sect. 3.2. We conclude in Sect. 3.5.

3.2 Case Study: Machine Learning Pipelines and Orange3

Machine learning is more than just the algorithms. It encompasses all of the data
discovery, cleaning, and wrangling required to prepare a dataset for modeling and
relies upon a person constructing a pipeline of transformations to ready the data for
use in a model (Shang et al. 2019). In 1997, the development of Orange began at the
University of Ljubljana. The goal was to address difficulties in illustrating aspects
of machine learning pipelines with a standalone command-line utility. Since then,
Orange has been in continuous development (Demsar et al. 2013), with the most
recent release being Orange3.

Orange is an open-source data visualization, machine learning, and data mining
toolkit. It provides an interactive visual programming interface for creating data
analysis and machine learning workflows. It helps modelers gain insights from
complex data sources. Orange can be utilized as a Python library, where Python
scripts can be executed on the command line. The Orange package enables users to
perform data manipulation, widget alterations, and add-on modeling. This platform
caters to users of different levels and backgrounds, allowing machine learning to
become a toolkit for any developer, as opposed to a specialized skill.

Orange features a canvas, a visual programming environment shown in Fig. 3.2,
in which users create machine learning workflows by adding pipeline components
called widgets. Widgets provide basic self-contained functionalities for all key
stages of a machine learning pipeline. Each of these widgets is classified into
categories based on their functionality and assigned priority, and is listed in the
Orange toolbox. In addition, each widget has a description, and input/output

28 A. Chapman et al.

Data preprocessing steps

Preprocessed data for sampling/
segregating into trainflest set
Data Sampla — Data

Linear Regression

Naormakzing Features
Processed data

Continuize
% =]
© E, .
g) g
g % g
D : 1
g %
File &
Housing dataset | &
in csv format &
— Visualise dataset i .
E] in a tabular format A aamer i

Data Table i it / Test & Score

Compare evaluation
results of both ML models

Fig. 3.2 Orange3 Canvas to support construction of machine learning pipelines. The pipeline
shown is the “Housing” pipeline whose provenance is later shown in Figs. 3.3 and 3.7

channels associated with it. These widgets communicate and pass data objects,
by means of communication channels. A data analysis workflow in Orange can be
defined as a collection of widgets and communication channels.

The Orange library is a “hierarchically-organized toolbox of data mining com-
ponents” (Demsar et al. 2013). The lower-level procedures are placed at the bottom
of the hierarchy such as data processing and feature scoring, and higher-level
procedures such as classification algorithms are placed at the top of hierarchy. The
main branches of component hierarchy include data management and preprocess-
ing, classification, regression, association, ensembles, clustering, evaluation, and
projections. This library simplifies the creation of workflows and the generation
of data mining approaches by enabling combinations of existing components. The
key strength of Orange lies in connecting widgets in numerous ways by adopting
various methodologies, resulting in new schemata (DemSar et al. 2013).

Ultimately, Orange allows users to organize and execute scripts that when placed
together create machine learning pipelines.

3.2.1 Provenance Needs in Orange3

In general, provenance can be used to assess quality (Huynh et al. 2018), reproduce
scientific endeavors (Thavasimani et al. 2019), facilitate trust (Batlajery et al. 2018),

3 The Right (Provenance) Hammer for the Job 29

and help with debugging (Herschel et al. 2017). In this work, we focus on the
debugging aspect. In order to gather real-world use cases of provenance in this
domain, we reviewed a total of 370 use cases from the following forums: Data
Science Stack Exchange (DSSE), Stack Overflow (SO), and the FAQ section on
the Orange website (FAQ). From these 370 use cases, 12 use cases were considered
relevant to the workflow debugging processes, and are listed in Table 3.1.

3.3 Overview of Instrumentation Possibilities

The Orange tool was created to facilitate creation of machine learning pipelines.
While not implemented in Orange, there are some previous works on provenance
in machine learning pipelines. Vamsa captures provenance of the APIs called and
libraries used within a particular ML pipeline in order to help the user debug the
pipeline (Namaki et al. 2020). However, the provenance captured does not focus
on the data and what happened to it, instead on how the pipeline is constructed
and the organization of scripts within it. Smaller than a pipeline, Lamp gathers
provenance using a graph-based machine learning algorithm (GML) to reason
over the importance of data items within the model (Ma et al. 2017). Finally,
Jentzsch and N. Hochgeschwender recommend using provenance when designing
ML models to improve transparency and explainability for end users (Jentzsch and
Hochgeschwender 2019).

Because this work focuses on data provenance, we do not specifically review
instrumentation options for script management (Pimentel et al. 2019), social
interactions (Packer et al. 2019), or provenance from relational systems (Green
et al. 2007, 2010). Provenance of scripts has recently been surveyed (Pimentel et al.
2019), with a classification of annotations, definition, deployment, and execution.
In this work, the focus is effectively on execution provenance, “the origin of data
and its derivation process during execution” of scripts.

Scientific workflows have been the earliest adopters of provenance in scripts, and
we look to this community for inspiration in a machine learning pipeline creation
setting. According to Sarikhani and Wendelborn (2018), provenance collection
mechanisms have the ability to access distinct types of information in scientific
workflow systems at the workflow level, activity level, and operating system level.

* Workflow-level provenance is captured at the level of scientific workflow
systems. Here, the provenance capture mechanism is either attached to or is
integrated within the scientific workflow system itself. A key advantage of this
approach is that, the mechanism is closely coupled with the workflow system,
and thus enables a direct capture process through the systems API. Within our
machine learning pipeline creation context, this would be similar to capturing
the design and configuration of the pipeline. We investigate this in Sect. 3.3.2.

* Activity(process)-level provenance captures provenance at the level of processes
or activities of the scientific workflow. Here, the provenance mechanism is

A. Chapman et al.

30

(syyed)

suorjeuIquIod Jo3pim drqrssod Funso33ns/Funorpard
ul pre p[nom Jey) [opoul I dwes)

Sursn smopspIom o[dnnu Jo 9ouruaA0Id 9ATIOA[0D)

paxmbar sa3ueyo

BJEp [ENJOR {UOIINOIXA A} JO BIep pue sassadoxd ayJ,
‘paxrnbar sa3ueyd ejep [ENIOR ‘UONRZI[IN

393pIm Jo Surpuejsiopun [eo130[UT pre 0) SunIom
aurpadid pajrejop Suimoys aoueudaold paurei3-our

“MOPIOM) JO
2INONINS AY) SUONNIAXA Y] JO BIBP puk sassadold ay],

‘paxmbar so3ueyo
BJEp [ENJOR {UOINOIXA AU} JO BIEp pue sassadoid ayJ,

‘paxmbar so3ueyo
BJEp [ENJOE SUOIINOIXA A} JO BJep pue sassadoxd ayJ,

"UONNIAX
oy} ur SuLIApIo 119y} pue s9ss9001d Jo 19s oy,

"UONNIAX
oY) ur JuLIApIO 1Y) pue sIssaood Jo Jas Y],

POpISU JOUBUIAOI]

[epow uoIssaI3aI reaul] € Fursn Sur[jopowt
eiep wiograd o3 wojrerd a3ueiQ Yy ojuo (sndiod ay)
dn Sumpes) o[y ejep € Jurpeoy ur Anoyip/Amsiquiy

MOpIOM

93ueIQ UE UI S[opOU JJA UOISSAITAI Jeaul] pue NN-J
Sursn o[qeLeA 19318) Jo uonoIpaid oy} ur AovInooruy
(Aoeinooe

UOIBOYISSL]O AJeINOdEUr) SUI[[OpOW pue SISA[eUE ejep
Suruogred 193Je sjoqe] jo uonedo[e jeuontodoidsiq
MOPIOM U UI S1OSPIM JOUIBYT IS, PUB Uy,
oy Sursn uaym ‘ojepdn 03 S[TEJ S)NSAI UOTJENEAD
Surredwos 10y SI9YISSe[d JO [njpuey € 0) paj ele
(Surured| 19ysuen,, suiogrod mogyiom

U} JOYIOYM UTRIIOSE “(S19SPIM UO-PPE) UOIIBOYISSE[D
9Zew Suisn MOPYIOM PIJONISUOD B WO

sagewr

159) U0 Jue)suod are sanifiqeqoid uonoipaid ‘opowr
TN ue Sursn uoneoyissed ofew Suruioyiad 191y
Smo1I e J0J pajorpard

QI sonjeA dwes ‘jasejep Isd)/urer) uo Jurssaoordord
Sunmp ja3pim onduy,, oy SurAjdde uoypp

JUQIHIP oI

(sa100s AIqeqoad 9°1) synsal oy ‘Joseep Juuren
qures ay) uo J3pIm , suonorpaid,, ayi Suikjdde uoypy

uondiossq

uononnsuo)) duradig

uonoIpald

uoneIynoNY

UOTEN[EAH/UONOIPAI

UOIIBOYTIOA

uonorpaid/uoneoyisser)

uonoIpald

uonoIpaId
adAy,

ENNE

d4Ssd

H4Ssd

(O

ERNE

SN

NN

d4Ssd
90IN0S

80N

L2N

90N

S$onN

Yon

€20

N

10N
daio

(4SSQ) 28uryoxH orIS 20US Bl ‘(OS) MOPIIAQ OrIS Ul paynuapt doueudaold 10J sasn) T°€ dqeL

31

3 The Right (Provenance) Hammer for the Job

paxmbar saSueyo
BJEP [ENJOR {UOTINOIXA A} JO BIep pue sassadoid ayJ,

paxnbar os[e are soSueyod ejep [enoe
{MOPSJIOM 9Y) JO S9s$9001d pue SUONOAUU0d JOSPIAL

paxmbar sa3ueyo
BIEp [ENIOE ‘UONNIAXA 9Y) JO BIep pue sassaooid ay,

paxmbar saSueyo
BJEP [ENJOR {UOTINOIXA A} JO BIep pue sassad0id oy,

UIBA[-II0S pue agueIQ

uo (yOd) sisAreuy jusuodwo)) redioutld 1o $jasejep
aures oy jo syusuodwod Tedrourid oy jo yoes Aq

J0J paIunoooe saSejuasrad ooueLIeA AU} UI SUOTIBIAI(T
193pIM [opow TN , SUBW-Y,,

oy Sursn uoym ¢(sdoys Surssaoordord Surpnyour)
1ose1Ep Passa00Id ouwes) J0J SAI0JS JANOY[IS
Surpuodsar1oo pue ‘S19)Sn[d ‘s)NSaI UL
UIBd[-)I0S pue AFueI() UO [9pOWT

UOISSaIZaI Teaul] 9y} J0J OLNAW 7Y 1Y-JO-SSaUPO0T
Surpuodsar100 pue suonorpaid 9y} Ul SOOUAIJI
sj[nsal JuLIayjIp seonpoid {fopour A Suwies

oy Surzimn ejep swes ay) uo JSpIM SUONIIPal],
pue _2100G pue s3], 9y} jo uoneorddy

uonenyeag oS

sjnsal
Jo Ayiqronpoxdey oS

uonapald | 4SSd

uonen[eAg/uonoIpAld | 4SSA

10N

110N

0120

6001

32 A. Chapman et al.

independent from the scientific workflow system. In this approach, the mech-
anism requires relevant documentation, relating to information derived from
autonomous processes, for each step of the workflow. In our context, this would
be similar to capturing the information about the exact script that ran and what
occurred to the data during that execution. This will be discussed in Sect. 3.3.3.

e Operating system-level provenance is captured in the operating system. This
approach relies on the availability of a specific functionality at the OS level, and
thus requires no modifications to existing scripts or applications. In comparison
to workflow level, this mechanism captures provenance at a finer granularity. We
omit this level here because the provenance at this level is unlikely to answer
immediate user queries.

Looking beyond workflow systems, we highlight some of the classic architectural
options (Allen et al. 2010) that could be used within the machine learning context
and Orange.

Log Scraping

Log files contain much information that can be utilized as provenance. Collecting
provenance information from these log files involves a log file parsing program. An
example of this technique can be seen in Roper et al. (2020) in which the log files
(change sets and version history files) are used to construct provenance information.
Using log files means that developers keen on instrumenting provenance capture do
not need to work within possibly proprietary or closed systems. On the other hand,
there is little control as to the type and depth of information that can be obtained
from log information. This approach could be used to gather either workflow-level
or activity-level provenance from Sarikhani and Wendelborn (2018) depending on
the set of logs available.

Human Supplied

The humans who are performing the work can sometimes be tasked to provide
provenance information. Users of RTracker (Lerner et al. 2018) demonstrated that
they were invested enough to carefully define and model the provenance needed
in their domain. YesWorkflow (McPhillips et al. 2015; Zhang et al. 2017) allows
users to embed notations within the comments of a code that can be interpreted by
YesWorkflow to generate the provenance of scripts. These approaches effectively
capture workflow-level provenance from Sarikhani and Wendelborn (2018). See
Sect. 3.3.1 for human-supplied provenance in the Orange framework.

Application Instrumentation

A straightforward method for instrumenting provenance capture in any application
is to modify the application directly. The major benefit of this approach is that the
developer can be very precise regarding the information captured. The drawback
is that the application must be open for developers to modify, and all subsequent
development and maintenance must also take provenance into account. Applications
that are provenance-aware cover the range from single applications, such as

3 The Right (Provenance) Hammer for the Job 33

provenance for visualization builder (Psallidas and Wu 2018), to larger workflow
systems (Koop et al. 2008; Missier and Goble 2011; Santos et al. 2009; Souza
et al. 2017). Other examples include provenance capture within MapReduce (Ikeda
et al. 2012), Pig Latin (Amsterdamer et al. 2011), or Spark (Guedes et al. 2018;
Interlandi et al. 2015; Psallidas and Wu 2018; Tang et al. 2019). This approach could
be used to gather either workflow-level or activity-level provenance (Sarikhani and
Wendelborn 2018). See Sect. 3.3.2 for application-based provenance capture in the
Orange framework.

Script Embedding

Several approaches exist to embed directly into scripts. For example, NoWorkflow
(Murta et al. 2015; Pimentel et al. 2017, 2016a) embeds directly into Python
scripts and automatically logs provenance by program slicing. Other approaches use
function-level information in Java to capture provenance information (Frew et al.
2008). In Sarikhani and Wendelborn (2018), this would be most appropriate for
activity-level provenance capture. See Sect. 3.3.3 for script-embedding provenance
capture in the Orange framework.

Recent work looks at different instrumentation vs. provenance-content choices
available in systems that help scientists collect provenance of scripts (Pimentel et al.
2016a). NoWorkflow (Pimentel et al. 2017, 2016b) captures script execution by
program slicing, while YesWorkflow (McPhillips et al. 2015; Zhang et al. 2017)
asks users to hand-create capture at the desired places. The two systems are brought
together in Pimentel et al. (2016a), and the types of provenance information have
been compared. In the following sections, we look more closely at human supplied,
application instrumentation and script embedding to gather provenance within the
Orange toolkit.

3.3.1 Human-Supplied Capture

In order to understand what a human with basic provenance instrumentation tools
at their disposal would do, we asked an expert provenance modeler to create a
machine learning pipeline to predict median house values using linear regression
and random forest on a housing dataset, and to instrument the code for provenance.
A diagrammatic view of this workflow is shown in the Orange3 canvas in Fig. 3.2.
This in effect reflects the baseline of what is currently obtainable by an invested
human who has provenance modeling skills and is willing to take the time to
insert calls to a provenance capture API, with carefully chosen information about
processes, data, and agents. In this work, the expert used the standard Prov Python3
libraries. Figure 3.3 shows the provenance generated by the expert for this pipeline.

3https://prov.readthedocs.io

https://prov.readthedocs.io

34 A. Chapman et al.

exbesiDataScientis]

s T 201903257 11 019, 540000200 00
Pl evtype_come

[exhousing nonalls

T exiiBaseModel performance 0 (excmodelTesDataset) (_ exliBaseModel ity g

wad A A

o M

s promde exmokelTescr

Fig. 3.3 Example of provenance captured via an expert provenance modeler for the machine
learning pipeline

3.3.2 GUI-Based Capture

The provenance capture mechanism described in this section is built for Orange
3.16, released in October 2018. In order to capture provenance of the set of
operations performed in Orange, while minimizing developer input in the creation
and maintenance of provenance capture, we utilize the inherent class structure of
the widgets used in the GUI.

3 The Right (Provenance) Hammer for the Job

35

Table 3.2 A subset of operations offered by Orange3 to build machine learning pipelines. The
hook used by both the GUI and embedded approaches is noted

Orange3 GUI Embedded
Type Operator Widget class Transformation type
Data File OWFile -
SQL Table OWSql
Select columns OWSelectAttributes Dimensionality reduction
Select rows OWSelectRows
Select relevant features OWPreprocess
Select random features OWPreprocess
Select data by index OWSelectByDatalndex
Purge domain OWPurgeDomain
Discretize OWDiscretize Feature transformation
Continuize OWContinuize
Randomize OWRandomize
Impute OWImpute Imputation
Edit domain OWEditDomain Value transformation
Feature constructor OWFeatureConstructor | Space transformation
Create class OWCreateClass
Model SVM -
Linear regression
kNN
Tree OWBaseLearner
Stochastic gradient descent
Random forest
22 Other models
Visualize | Box plot OWBoxPlot -
Scatter plot OWScatterPlot

OWWidget, the parent widget class, is extended by all widget classes. This class

provides all basic functionality of widgets regarding inputs, outputs, and methods
that are fundamental to widget functioning. After analyzing the code associated
with different widget categories, it was observed that this idea could be applied only
to groups of widgets, with similar functionality such as model and visualization
widgets; the parent classes extend OWWidget class for such widget groups. For
example, as shown in Table 3.3, OWBaseLearner extends OWWidget and is the
parent to all model widgets. Instrumenting OWBaseLearner for provenance capture
provides provenance functionality to all modeling widgets.

For other categories of widgets, it is necessary to capture provenance in
each respective widget class. Because each of these widgets contains different
input/output signal types and contents, the capture of this information is not
standardized. Table 3.2 contains the set of Widget classes that are utilized to gather
information for each operation. A diagrammatic representation of provenance cap-

36

A. Chapman et al.

Table 3.3 Parameters and provenance captured for each function type. (A) activities recorded;
(E) entities recorded; (R) relationships recorded

Function type
Dimensionality
reduction
Feature
transformation

Space
transformation

Instance

generation

Imputation
(Dependent)

Imputation
(Independent)

Value
transformation

Parameters
out_dataframe
description
out_dataframe
columnsName
description

out_dataframe
columnsName

description

out_dataframe
description

out_dataframe
isIndependent=F
description

out_dataframe
isIndependent=T
description

out_dataframe
value
description

Provenance contains

A: a single activity, f, is created.

R: the original entities are invalidatedBy f.

A: a single activity, f, is created.

E: a new entity is created for each modified item.

R: the new entity wasGeneratedBy f; the new entity
wasDerivedFrom the original entity; f used the set of
feature items; the original entity waslnvalidatedBy f.

A: a single activity, f, is created.
E: a new entity is created for every new attribute.

R: f uses the set of entities that belong to the features
used for the transformation; the new entities are
generatedBy f and derivedFrom the entities of the
related record and the features used for the
transformation.

A: a single activity, f, is created.
E: a new entity is created for every new instance.

R: each new entity wasGeneratedBy f; f uses the
existing entities that belong to the related feature.

A: a new activity for each feature is created.
E: a new entity is created for every replaced value.

R: each activity uses the entity for the related non-null
feature; null entities are invalidated.

A: a new activity for each feature is created.
E: a new entity is created for every replaced value.

R: each activity uses the entity for the related non-null
feature; null entities are invalidated.

A: a single activity, f, is created.

E: a new entity is created for every replaced value.

R: f uses the set of entities that belong to the features
used for the transformation; the new entities are
generatedBy f and derivedFrom the entities of the
related record and the features used for the
transformation.

ture involving OWWidget base class and code example of widget-based provenance
capture are shown in Fig. 3.4. For more implementation details, please refer to
Sasikant (2019).

In this section, we identify a capture point within the Orange3 architecture that
allows provenance to be automatically captured as code instantiated by widgets gets
executed. While this instrumentation is a “light touch” and can weather additional
widgets that belong to predefined classes, it has no real insight as to what is
happening to the data itself. By capturing at the GUI level, as the user drags and

3 The Right (Provenance) Hammer for the Job 37

entity = provitils (self tion(})

In DWWidget class:
In the abstract commit methedd, proviitils {entity. identifier, Inputs.data. type)
proviitils jes(entity. identifier, self.Inputs.preprocessor. type)
proviutils. t {entity. identifier, Outputs. Learner. type)
proviitils. t (entity. identifier, Outputs.model. type)

call self. commit

elf.data 1

f.valid_data F

f.learner = None
In the commit methed: . learner_name None:

f. learner_name self. nane

: 4 f.model = A

write. praventity{ “input is:") f.preprocessars = N
write.proventity{ “Output is:*) elf.outdated_settings

write edges(x2) el f. s
Then, execute self QTimer.

write.proventity("Name of the widget”)

0

o, ttriself, . f.applyl)

Fig. 3.4 Provenance capture instrumentation via the Orange3 GUI. (a) Diagrammatic overview of
GUI-based capture. (b) Example code required to add provenance capture to Orange widgets

drops operators, the provenance generated can be both retrospective and prospective
(Lim et al. 2010).

3.3.3 Embedded-Script Capture

While the approach identified in Sect. 3.3.2 is a “light touch,” it is not resilient with
respect to Orange3 code changes and additions. It also does not provide the ability to
introspect on changes to the data itself. In this approach, we instrument the Python
scrips that execute the data preprocessing called upon execution of the pipeline.

Abstracting the functionality of the scripts that are executed by the Orange3
framework and represented by the Widgets in Orange3, there are several categories
of functionality based on how the data itself is impacted or changed. These include
dimensionality reduction, feature transformation, space transformation, instance
generation, imputation, and value transformation, as shown in Table 3.2. Because
script-embedded instrumentation is required to capture what happens with the data,
and each type of operation does a different type of transform over the data, there
are different provenance instrumentation calls for each type. However, the same
type of instrumentation can then be reused for other scripts of the same category as
shown in Table 3.3. Unfortunately, despite the abstract reuse of type of capture,
every script must be individually provenance-instrumented. The architecture is
shown in Fig. 3.5, and details of this implementation can be found in Simonelli
(2019). Figure 3.6 contains a sample provenance record for a value transformation
operation.

38 A. Chapman et al.

Ne

Pre-processing 1 JSON
Function " relations
I| JSON)
‘| activities MongoDB
.| JSON
1.l entities
L7

Fig. 3.5 The architecture for capture instrumentation for fine-grained provenance. Information in
the machine learning pipeline is shown in black. Provenance artifacts are white

entity-a9il0c a-dddd beda-abb0-d794 | 453267 entity: BTO6T 3d6-T99T 4b6-b | od- 98454096

S i G

l activity: 206 T 8044 | {-Batd-c MatA00MTT |
), L b

entity:d® 1c52h2- 890 4d 3 -b | 38- (RO M272(endity: 211 46bde (54 4d | h-Bh3f-9ebb | Tacd(72

Fig. 3.6 Example of provenance captured for just one operation, value transformation, with a
deeper instrumentation

3.4 Comparison of Instrumentation Approaches

We compare the data provenance and instrumentation requirements of our three
approaches looking at provenance content (Sect.3.4.1), the ability to answer
real-world questions (Sect.3.4.2), and the pros and cons of the instrumentation
approach (Sect. 3.4.3).

3.4.1 Provenance Collected

We begin by comparing the three approaches with respect to the content of the
provenance. The same machine learning pipeline that the expert provenance enabled

3 The Right (Provenance) Hammer for the Job 39

e e

Fig. 3.7 Example of provenance captured via the GUI-based capture for the same machine
learning pipeline that produced Fig. 3.3

was instantiated in Orange3, as shown in Fig. 3.2. The GUI-based provenance
capture was applied, and produced the provenance shown in Fig. 3.7. On comparing
the expert provided provenance graph (EP) in Fig. 3.3 with the GUI-generated
provenance graph (GP) shown in Fig. 3.7 and the Script generated provenance (SP),
the following can be seen:

* Agents: EP captured the presence of two agents. GP and SP do not have agents,
as the Orange toolkit only involves one user at a time, who would be responsible
for constructing the workflow.

* Granularity of processes: EP captured provenance at fine levels of granularity,
providing minute details regarding processes involved and transformations of the
specific dataset. For instance, the process of reading data from a file has been
separated into three sub-stages: Entity [Input file] — Activity [Read file] —
Entity [Input dataset]. Hence, provenance has been intricately captured in this
scenario. On the other hand, GP and SP capture provenance at coarser granularity,
providing key information of processes at a higher level. For the same process
of reading data from file, provenance is captured widgetwise in GP, as widgets
are building blocks of Orange workflows: Entity [File widget] — Activity
[Data Table widget]. Hence, provenance of communication between widgets
provides vital information (input/output signal components, widget details).
However, GP does not capture provenance regarding data content changes, due
to inaccessibility to the controller of Orange, and since provenance is captured at
an abstract level, while SP captures large amounts of provenance about specific
data changes.

» Entity vs. activity: Modeling decisions for entities and activities are different in
EP, GP, and SP because of the organization imposed by the environment in which
the capture calls were implemented.

In all approaches, provenance of all fundamental stages of the machine learning
pipeline are captured: loading dataset, preprocessing/cleaning data, training models,

40 A. Chapman et al.

Table 3.4 Comparison of D Human | GUI | Embedded
abilities to answer queries
uct | v v

based on the information

captured by a particular ucz

technique uc3 |- -
uc4 |- -
ucs | v v
uce |- -
uc7? | - -
ucs | v v
uco | - -
ucl1o |- -
ucCl1 |- -
ucl12 |- -

NN N N N ENENENENENENEN

testing models on test data, and analysis of model predictions. There are some
differences relating to detail in the provenance model, but for the most part, the
three approaches capture the same type of information, with variations in detail and
modeling.

3.4.2 Answering Provenance Queries

Returning to the Real-World use of provenance for machine learning pipeline
development and debugging as described in Sect. 3.2.1, we now review which of
these use cases can actually be resolved by the provenance captured via the three
methods discussed in this work. Table 3.4 shows the Orange3 user queries that can
be answered with each technique.

In essence, UC1, UC2, UCS, and UCS contain questions that can be answered
by understanding the overall pipeline design. They can be answered by under-
standing which data preprocessing functions were utilized, and the order in which
preprocessing steps were made. The remainder of the use cases requires an analysis
over the data itself, particularly spread and changes of spread in the data based on
preprocessing.

3.4.3 The Cost of Provenance Instrumentation

Table 3.5 provides a high-level overview of the discussion within this section. There
are two distinct roles that should be considered when contemplating data provenance
instrumentation and usage: provenance modeler and provenance user. While in
many cases, these are the same individual, the two roles require very different skills.
A provenance modeler must:

3 The Right (Provenance) Hammer for the Job 41

Table 3.5 Comparison of costs for each method

Human-placed GUI-based Embedded script
Developer/end user Same Can be different Can be different
Num. files processed Num. scripts written | < Num. operators | Num. operators
Fragility of instrumentation | | 4 J
Requires tool openness ¥ 4 N
Constrains user to tool N 4 N
Size/detail of provenance N 3 0

* Understand how to model provenance. This includes the following:

— Understand provenance, why it is used, and the important information
required for capturing provenance including objects and relationships.

— Understand the standards that are available.

— Understand the application to be provenance enabled, and how the concepts
in that application relate to provenance objects and relationships.

e Write the code to instrument the application.
¢ Maintain the provenance instrumentation throughout application updates.

The provenance user must:

* Interpret the provenance that is returned by the system to understand how it
answers a given problem.

In many cases, particularly scientific exploration systems, these two roles are
held by the same person. However, in large systems obtained through a formal
acquisition process, e.g., for governments and large organizations, these two roles
are filled by different people who may never interact with each other. In the context
of machine learning pipelines and provenance instrumentation discussed in this
work, human-supplied provenance requires that the roles of provenance modeler
and provenance user are indeed held by the same person. Both the GUI-based and
the Script-embedded allow the roles to be held by different individuals. This allows
the end user of the provenance to be essentially provenance-unaware if they choose
to be: they can merely be a consumer of data and not a developer.

However, there is a difference between GUI-based and script-based implementa-
tions. The GUI-based implementations, while providing less information about the
data to the end user, are abstract enough that the provenance modeler comes up with
fewer insertion points for capture calls within the 3rd-party code. In the worst case,
GUI-based will insert as many capture calls as the number of operations, just as in
the script-based implementations.

However, because we can utilize good code design, and occasionally embed the
call in a parent class, it is sometimes possible for the GUIbased to have fewer calls
than the script-based. This was done for OWBaseLearner, in which 1 file must be
provenance enabled in the GUI-based method in order to capture provenance in
28 different learning models (see Table 3.2). Unless there is an upgrade to the GUI

42 A. Chapman et al.

itself, any number of scripts and processing functions can be added to the underlying
Orange3 tool, and the provenance modeler does not need to be aware of them. The
GUI-based design is more fragile with respect to Orange3 refactoring and code
updates. Unlike the script-embedding approach in which the fundamental machine
learning Python scripts are provenance enabled, and suffer very little churn, the
front end has experienced many code refreshes. Indeed, during the writing of this,
the Orange Framework was undergoing yet another refactoring that likely changes
the GUI-based provenance capture completely.

More generally and not constrained within Orange, the three approaches differ
based on whether a tool is open or not. A human can embed provenance capture
within their own scripts, and most underlying scripts are open. However, aiming
for an application capture, like the Orange3, GUI-based approach requires that tool
to be open. In the case of Orange3, this is true, but it may not be for many other
applications. In a similar analysis, both human-based and script embedding allow a
user to choose their tools of choice, while application-embedded implementations
require the user to work within that single tool. Finally, the size of the provenance is
similar between human-generated (e.g., Fig. 3.3 and GUI-based Fig. 3.7) implemen-
tations. Where the human is limited by time and inclination, the application is often
limited by available hooks to information. In contrast, script-embedded capture can
see and record all of the details, resulting in a larger provenance record (e.g., a small
subset in Fig. 3.5).

3.5 Conclusions

In this work, we focused on an analysis of the types of data provenance that
can be captured via very different instrumentation approaches within the same
“task.” In such a task, a user builds a machine learning pipeline and attempts to
debug it. We identified many real-world scenarios of this process, documented in
software development forums. We restricted ourselves to a set of Python scripts for
processing data for machine learning, and a GUI-based tool, Orange, for organizing
them. We showed how choices of provenance capture can greatly affect the types
of queries that can be posed over the data provenance captured. We implemented
provenance instrumentation using a GUI-based insertion, embedded within Python
scripts, and via careful hand-encoding, applied to building a machine learning
pipeline. We highlighted the instrumentation approaches possible by analyzing
those used in scientific workflows, and described the different implementation
approaches used within our narrowed domain. We then compared the utility of
the resulting data provenance for each of these instrumentation approaches, to
answer the real-world use cases found in Orange3. The results of this work
provide a comparative analysis for future developers to identify and choose an apt
instrumentation approach for future efforts.

Acknowledgments This work was partially supported by EPSRC (EP/S028366/1).

3 The Right (Provenance) Hammer for the Job 43

References

Allen MD, Seligman L, Blaustein B, Chapman A (2010) Provenance capture and use: a
practical guide. the MITRE Corporation. https://www.mitre.org/sites/default/files/publications/
practical-provenance-guide-MP100128.pdf

Amsterdamer Y, Davidson SB, Deutch D, Milo T, Stoyanovich J, Tannen V (2011) Putting
lipstick on Pig: enabling database-style workflow provenance. In: Proceedings of the VLDB
endowment, pp 346-357. https://doi.org/10.14778/2095686.2095693

Batlajery BV, Weal M, Chapman A, Moreau L (2018) Belief propagation through provenance
graphs. In: Belhajjame K, Gehani A, Alper P (eds) Provenance and annotation of data and
processes. Springer, Cham, pp 145-157. https://doi.org/10.1007/978-3-319-98379-0_11

Brauer PC, Czerniak A, Hasselbring W (2014) Start smart and finish wise: the Kiel Marine Science
provenance-aware data management approach. In: 6th USENIX Workshop on the Theory
and Practice of Provenance. https://www.usenix.org/system/files/conference/tapp2014/tapp14_
paper_brauer.pdf

Buneman P, Khanna S, Tan WC (2001) Why and where: a characterization of data provenance. In:
den Bussche JV, Vianu V (eds) Database theory — ICDT 2001. Springer, Heidelberg, pp 316—
330. https://doi.org/10.1007/3-540-44503-X_20

Chapman AP, Jagadish HV (2009) Why not? In: Proceedings of the 2009 ACM SIGMOD
international conference on management of data. ACM, New York, pp 523-534. https://doi.
org/10.1145/1559845.1559901

Cheney J, Chiticariu L, Tan WC (2009) Provenance in databases: why, how, and where. Found
Trends Databases 1(4):379—474. https://doi.org/10.1561/1900000006

Demsar J, Curk T, Erjavec A, Crt Gorup, Hocevar T, Milutinovi¢ M, Mozina M, Polajnar M,
Toplak M, Stari¢ A, gtajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013)
Orange: data mining toolbox in Python. J Mach Learn Res 14(35):2349-2353. http://jmlr.org/
papers/v14/demsar]3a.html

Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying
and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, New York, pp 259-268. https://
doi.org/10.1145/2783258.2783311

Freire J, Koop D, Santos E, Silva CT (2008) Provenance for computational tasks: a survey. Comput
Sci Eng 10(3):11-21. https://doi.org/10.1109/MCSE.2008.79

Frew J, Metzger D, Slaughter P (2008) Automatic capture and reconstruction of computational
provenance. Concurr Comput: Pract Exp 20(5):485-496. https://doi.org/10.1002/cpe.1247

Glavic B, Dittrich KR (2007) Data provenance: a categorization of existing approaches. In:
12. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme”, University of
Zurich, Zurich, pp 227-241. https://doi.org/10.5167/uzh-24450

Green TJ, Karvounarakis G, Tannen V (2007) Provenance semirings. In: Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems.
ACM, New York, pp 31-40. https://doi.org/10.1145/1265530.1265535

Green TJ, Karvounarakis G, Ives ZG, Tannen V (2010) Provenance in ORCHESTRA. IEEE Data
Eng Bull 33(3):9-16. http://sites.computer.org/debull/A10sept/green.pdf

Guedes T, Silva V, Mattoso M, Bedo MVN, de Oliveira D (2018) A practical roadmap for
provenance capture and data analysis in Spark-based scientific workflows. In: 2018 IEEE/ACM
Workflows in Support of Large-Scale Science, IEEE, pp 31-41. https://doi.org/10.1109/
WORKS.2018.00009

Herschel M, Diestelkdmper R, Lahmar HB (2017) A survey on provenance: what for? what form?
what from? VLDB J 26:881-906. https://doi.org/10.1007/s00778-017-0486- 1

Huynh TD, Ebden M, Fischer J, Roberts S, Moreau L (2018) Provenance network analytics: an
approach to data analytics using data provenance. Data Mining Knowl Discov 32:708-735.
https://doi.org/10.1007/s10618-017-0549-3

https://www.mitre.org/sites/default/files/publications/practical-provenance-guide-MP100128.pdf
https://www.mitre.org/sites/default/files/publications/practical-provenance-guide-MP100128.pdf
https://doi.org/10.14778/2095686.2095693
https://doi.org/10.1007/978-3-319-98379-0_11
https://www.usenix.org/system/files/conference/tapp2014/tapp14_paper_brauer.pdf
https://www.usenix.org/system/files/conference/tapp2014/tapp14_paper_brauer.pdf
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1145/1559845.1559901
https://doi.org/10.1145/1559845.1559901
https://doi.org/10.1561/1900000006
http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1109/MCSE.2008.79
https://doi.org/10.1002/cpe.1247
https://doi.org/10.5167/uzh-24450
https://doi.org/10.1145/1265530.1265535
http://sites.computer.org/debull/A10sept/green.pdf
https://doi.org/10.1109/WORKS.2018.00009
https://doi.org/10.1109/WORKS.2018.00009
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1007/s10618-017-0549-3

44 A. Chapman et al.

Ikeda R, Cho J, Fang C, Salihoglu S, Torikai S, Widom J (2012) Provenance-based debugging and
drill-down in data-oriented workflows. In: 28th international conference on data engineering,
IEEE, Los Alamitos, CA, USA, pp 1-2. https://doi.org/10.1109/ICDE.2012.118

Interlandi M, Shah K, Tetali SD, Gulzar MA, Yoo S, Kim M, Millstein T, Condie T (2015) Titian:
data provenance support in Spark. In: Proceedings of the 42nd international conference on very
large data bases, pp 216-227. http://www.vldb.org/pvldb/vol9/p216-interlandi.pdf

Jentzsch SF, Hochgeschwender N (2019) Don’t forget your roots! Using provenance data for
transparent and explainable development of machine learning models. In: 34th IEEE/ACM
international conference on automated software engineering workshop, IEEE, Los Alamitos,
CA, USA, pp 37-40. https://doi.org/10.1109/ASEW.2019.00025

Koop D, Scheidegger CE, Callahan SP, Freire J, Silva CT (2008) VisComplete: automating
suggestions for visualization pipelines. IEEE Trans Visual Comput Graph 14(6):1691-1698.
https://doi.org/10.1109/TVCG.2008.174

Lerner BS, Boose E, Perez L (2018) Using introspection to collect provenance in R. Informatics
5(1). https://doi.org/10.3390/informatics5010012

Lim C, Lu S, Chebotko A, Fotouhi F (2010) Prospective and retrospective provenance collection
in scientific workflow environments. In: 2010 IEEE international conference on services
computing, IEEE, Los Alamitos, CA, USA, pp 449-456. https://doi.org/10.1109/SCC.2010.
18

Ma S, Aafer Y, Xu Z, Lee WC, Zhai J, Liu Y, Zhang X (2017) LAMP: data provenance for graph-
based machine learning algorithms through derivative computation. In: Proceedings of the 11th
joint meeting on foundations of software engineering. ACM, New York, pp 786—797. https://
doi.org/10.1145/3106237.3106291

McPhillips T, Song T, Kolisnik T, Aulenbach S, Belhajjame K, Bocinsky K, Cao Y, Chirigati F,
Dey S, Freire J, Huntzinger D, Jones C, Koop D, Missier P, Schildhauer M, Schwalm C, Wei Y,
Cheney J, Bieda M, Ludéscher B (2015) YesWorkflow: a user-oriented, language-independent
tool for recovering workflow information from scripts. https://arxiv.org/pdf/1502.02403.pdf

Missier P, Goble C (2011) Workflows to open provenance graphs, round-trip. Fut Gener Comput
Syst 27(6):812-819. https://doi.org/10.1016/j.future.2010.10.012

Mor (2013a) Constraints of the PROV data model. http://www.w3.0org/TR/2013/REC-prov-
constraints-20130430/

Mor (2013b) PROV-DM: the PROV data model. https://www.w3.org/TR/prov-dm/

Murta L, Braganholo V, Chirigati F, Koop D, Freire J (2015) noWorkflow: capturing and analyzing
provenance of scripts. In: Ludidscher B, Plale B (eds) Provenance and annotation of data and
processes. Springer, Cham, pp 71-83. https://doi.org/10.1007/978-3-319-16462-5_6

Namaki MH, Floratou A, Psallidas F, Krishnan S, Agrawal A, Wu Y (2020) Vamsa: tracking
provenance in data science scripts. https://arxiv.org/pdf/2001.01861.pdf

Packer HS, Chapman A, Carr L (2019) GitHub2PROV: provenance for supporting software project
management. In: 11th international workshop on theory and practice of provenance. https://
www.usenix.org/system/files/tapp2019-paper-packer.pdf

Pimentel JF, Dey S, McPhillips T, Belhajjame K, Koop D, Murta L, Braganholo V, Ludischer
B (2016a) Yin & Yang: demonstrating complementary provenance from noWorkflow &
YesWorkflow. In: Mattoso M, Glavic B (eds) Provenance and annotation of data and processes.
Springer, Cham, pp 161-165. https://doi.org/10.1007/978-3-319-40593-3_13

Pimentel JF, Freire J, Murta L, Braganholo V (2016b) Fine-grained provenance collection over
scripts through program slicing. In: Mattoso M, Glavic B (eds) Provenance and annotation of
data and processes. Springer, Cham, pp 199-203. https://doi.org/10.1007/978-3-319-40593-3_
21

Pimentel JF, Murta L, Braganholo V, Freire J (2017) noWorkflow: a tool for collecting, analyzing,
and managing provenance from Python scripts. Proc VLDB Endowm 10(12):1841-1844.
https://doi.org/10.14778/3137765.3137789

Pimentel JF, Freire J, Murta L, Braganholo V (2019) A survey on collecting, managing, and
analyzing provenance from scripts. ACM Comput Surv 52(3). https://doi.org/10.1145/3311955

https://doi.org/10.1109/ICDE.2012.118
http://www.vldb.org/pvldb/vol9/p216-interlandi.pdf
https://doi.org/10.1109/ASEW.2019.00025
https://doi.org/10.1109/TVCG.2008.174
https://doi.org/10.3390/informatics5010012
https://doi.org/10.1109/SCC.2010.18
https://doi.org/10.1109/SCC.2010.18
https://doi.org/10.1145/3106237.3106291
https://doi.org/10.1145/3106237.3106291
https://arxiv.org/pdf/1502.02403.pdf
https://doi.org/10.1016/j.future.2010.10.012
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
https://www.w3.org/TR/prov-dm/
https://doi.org/10.1007/978-3-319-16462-5_6
https://arxiv.org/pdf/2001.01861.pdf
https://www.usenix.org/system/files/tapp2019-paper-packer.pdf
https://www.usenix.org/system/files/tapp2019-paper-packer.pdf
https://doi.org/10.1007/978-3-319-40593-3_13
https://doi.org/10.1007/978-3-319-40593-3_21
https://doi.org/10.1007/978-3-319-40593-3_21
https://doi.org/10.14778/3137765.3137789
https://doi.org/10.1145/3311955

3 The Right (Provenance) Hammer for the Job 45

Psallidas F, Wu E (2018) Provenance for interactive visualizations. In: Proceedings of the
workshop on human-in-the-loop data analytics. ACM, New York. https://doi.org/10.1145/
3209900.3209904

Roper B, Chapman A, Martin D, Cavazzi S (2020) Mapping trusted paths to VGI. ProvenanceWeek
2020, virtual event, poster

Santos E, Koop D, Vo HT, Anderson EW, Freire J, Silva C (2009) Using workflow medleys to
streamline exploratory tasks. In: Winslett M (ed) Scientific and statistical database manage-
ment. Springer, Heidelberg, pp 292-301. https://doi.org/10.1007/978-3-642-02279-1_23

Sarikhani M, Wendelborn A (2018) Mechanisms for provenance collection in scientific workflow
systems. Computing 100:439-472. https://doi.org/10.1007/s00607-017-0578-1

Sasikant A (2019) Provenance capture mechanism for Orange, a data mining and machine learning
toolkit, to evaluate the effectiveness of provenance capture in machine learning. Thesis,
University of Southampton, Southampton

Shang Z, Zgraggen E, Buratti B, Kossmann F, Eichmann P, Chung Y, Binnig C, Upfal E,
Kraska T (2019) Democratizing data science through interactive curation of ML pipelines. In:
Proceedings of the 2019 international conference on management of data. ACM, New York,
pp 1171-1188. https://doi.org/10.1145/3299869.3319863

Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance in e-Science. ACM
SIGMOD Record 34(3):31-36. https://doi.org/10.1145/1084805.1084812

Simonelli G (2019) Capturing and querying fine-grained provenance of preprocessing pipelines in
data science. Thesis, Universita Roma Tre, Rome

Souza R, Silva V, Coutinho ALGA, Valduriez P, Mattoso M (2017) Data reduction in scientific
workflows using provenance monitoring and user steering. Fut Gener Comput Syst 110:481—
501. https://doi.org/10.1016/j.future.2017.11.028

Tang M, Shao S, Yang W, Liang Y, Yu Y, Saha B, Hyun D (2019) SAC: a system for Big Data
lineage tracking. In: 35th international conference on data engineering, IEEE, pp 1-2. https://
doi.org/10.1109/ICDE.2019.00215

Thavasimani P, Caa J, Missier P (2019) Why-diff: exploiting provenance to understand outcome
differences from non-identical reproduced workflows. IEEE Access 7:34973-34990. https://
doi.org/10.1109/ACCESS.2019.2903727

Zelaya CVG (2019) Towards explaining the effects of data preprocessing on machine learning.
In: 35th international conference on data engineering, IEEE, pp 2086-2090. https://doi.org/10.
1109/ICDE.2019.00245

Zelaya VG, Missier P, Prangle D (2019) Parametrised data sampling for fairness optimisation.
Explainable Al for fairness, accountability & transparency workshop, Anchorage, AK

Zhang Q, Morris PJ, McPhillips T, Hanken J, Lowery DB, Ludischer B, Macklin JA, Morris RA,
Wieczorek J (2017) Using YesWorkflow hybrid queries to reveal data lineage from data curation
activities. Biodivers Inf Sci Stand 1:¢20380. https://doi.org/10.3897/tdwgproceedings.1.20380

https://doi.org/10.1145/3209900.3209904
https://doi.org/10.1145/3209900.3209904
https://doi.org/10.1007/978-3-642-02279-1_23
https://doi.org/10.1007/s00607-017-0578-1
https://doi.org/10.1145/3299869.3319863
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1016/j.future.2017.11.028
https://doi.org/10.1109/ICDE.2019.00215
https://doi.org/10.1109/ICDE.2019.00215
https://doi.org/10.1109/ACCESS.2019.2903727
https://doi.org/10.1109/ACCESS.2019.2903727
https://doi.org/10.1109/ICDE.2019.00245
https://doi.org/10.1109/ICDE.2019.00245
https://doi.org/10.3897/tdwgproceedings.1.20380

	3 The Right (Provenance) Hammer for the Job: A Comparison of Data Provenance Instrumentation
	3.1 Introduction
	3.2 Case Study: Machine Learning Pipelines and Orange3
	3.2.1 Provenance Needs in Orange3

	3.3 Overview of Instrumentation Possibilities
	3.3.1 Human-Supplied Capture
	3.3.2 GUI-Based Capture
	3.3.3 Embedded-Script Capture

	3.4 Comparison of Instrumentation Approaches
	3.4.1 Provenance Collected
	3.4.2 Answering Provenance Queries
	3.4.3 The Cost of Provenance Instrumentation

	3.5 Conclusions
	References

