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Abstract. Australian water infrastructure is more than a hundred years
old, thus has begun to show its age through water main failures. Our
work concerns approximately half a million pipelines across major Aus-
tralian cities that deliver water to houses and businesses, serving over
five million customers. Failures on these buried assets cause damage to
properties and water supply disruptions. We applied Machine Learning
techniques to find a cost-effective solution to the pipe failure problem
in these Australian cities, where on average 1500 of water main failures
occur each year. To achieve this objective, we construct a detailed pic-
ture and understanding of the behaviour of the water pipe network by
developing a Machine Learning model to assess and predict the failure
likelihood of water main breaking using historical failure records, descrip-
tors of pipes and other environmental factors. Our results indicate that
our system incorporating a nonparametric survival analysis technique
called ‘Random Survival Forest’ outperforms several popular algorithms
and expert heuristics in long-term prediction. In addition, we construct
a statistical inference technique to quantify the uncertainty associated
with the long-term predictions.

Keywords: Advanced assets management · Machine learning · Data
mining · Nonparametric · Survival analysis · Random survival forest

1 Introduction

The degradation of urban water mains causes a major problem in urban engineer-
ing in Australia. The most common measures of pipeline breakage are the fre-
quency of the water pipe breaks (breaks per 100 km per year) and the criticality
factor of the breakage. Pipeline failure rate varies widely, as it depends on various
factors, such as pipe material, pipe diameter and various other environmental and
operational conditions. The maintenance and renewal of water mains demand
high financial investments. Moreover, direct inspection of all water mains in
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Fig. 1. Water pipeline failure statistics in three major regions of Australia, using three
metrics; (a) pipeline failure rate (number of failures per year per 100 km), (b) failure
count on the water pipeline network, (c) risk factor (failure likelihood × consequence
of the failure) across the network.

a distribution system is extremely expensive. Therefore, a cost-effective break
mitigation technique such as a prediction model that allows one to predict the
water mains failure, would reduce the negative customer impact and the cost to
serve. Consequently, this proactive maintenance model elaborates an optimized
strategy for water mains maintenance and rehabilitation.

1.1 The Water Pipeline Failure Problem

This study concerns the failure analysis of the water pipeline network of three
major cities located in three different states in Australia, namely: New South
Wales (NSW), Victoria (VIC), and Queensland (QLD). The water network
includes a total of 500,000 pipelines. The oldest pipes were laid in 1890 in Rom-
sey, VIC and surrounding suburbs. The total length of this pipeline network is
over 30,000 km. As depicted in Fig. 2 (a), a water main comprises of several pipes
and each pipe comprises several pipe nodes buried in various ground levels.

Water pipe failures are mainly studied using three different metrics, namely:
failure rate, failure count and the risk factor associated with the failure.
Figure 1(a) shows the pipeline failure rates in major cities of NSW, Australia.
The failure rate is the number of asset failures per 100 km per year. Higher failure
rates are illustrated in darker red spots, and it clearly shows higher failure rates
are not localized to one area, they are spread across the state. Breakages in the
water main network in the region west of VIC is shown in Fig. 1(b). Figure 1(c)
illustrates the risk distribution of pipeline network in south-east QLD. Across the
entire region under our study, an average number of 1500 pipe failures occur each
year, causing water supply disruptions and myriads of property and environmen-
tal damages. Figure 2 (b) shows the increasing trend in breakage of critical pipes
(each water utility has its own method to identify the criticality of a water pipe
depending on the risk associated with its breakage) in NSW from 2000 to 2017.
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Fig. 2. (a) 3D schematic of a water pipeline which comprises of various individual
pipes. X axis, Y axis, and Z axis denote latitude, longitude and the ground level of
the water main, respectively. Vertical blue lines represent the breaks occurred in this
water main since 2000, (b) Increment in number of critical pipe breaks over the recent
years in Sydney, Australia.

1.2 Related Work

There has been a lot of work in recent years on pipe failure prediction in water
infrastructure, ranging from physical models [1,7] to machine learning models
[13,15,27], [12] and the combination of both [22].

Machine learning based pipe failure forecasting dates back to 1979 [21], where
authors developed a forecasting technique to study how the number of breaks
would change with time if the pipes were not replaced. In that study, authors
used a Poisson model based on the age of the pipes. However, research carried out
afterwards shows that the age is not the only factor that causes the pipeline fail-
ure. In fact, some of the very old pipes function more robust than their newly laid
counterparts. Furthermore, the prediction of water main breaks has been studied
widely using statistical based approaches, such as Poisson regression and Weibull
models [2,23]. Most recently, tree-based Machine Learning techniques have been
used to analyse water pipe breakages in Syracuse, USA [12], and QLD, Aus-
tralia [14]. The former study shows that Gradient Boosting (GB) outperforms
other methods when predicting high risk city blocks. The work reported in [25]
uses a combination of Random Forest (RF) and linear regression to predict the
long-term pipe failure likelihood for water and sewer pipes in QLD, Australia.

Although numerous research have been conducted on forecasting water
pipeline failures, open questions still exist regarding the intricate relationship
among the major factors causing pipe failure and their long-term effects on the
life-time of a pipe. This may vary depending on the environment (weather, soil,
ground level, pressure, etc.) that the pipe is laid in and the pipe maintenance app-
roach of each water utility. Thus, prediction of the water main breaks becomes a
complicated task due to their low failure rate and high cost of inspection, which
have led to a sparse historical data.

Most of the research found in the literature predict short-term failure fore-
casting, which spans 1–3 years into the future [12]. However, water utilities
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require long-term estimations for the structural deterioration of water mains to
effectively plan the renewal of water distribution systems and to develop a risk
based investment decisions for capital interventions [24]. Therefore, the main
objective of this work is to investigate pipe failure factors and develop a long-
term prediction model.

1.3 Our Contribution

There are approximately 22850 km, 5900 km, and 2000 km of water mains in the
city of Sydney, South-east QLD and the region West of Melbourne, respectively.
These pipeline networks comprise approximately 500,000 water pipes serving
major residential and industrial cities in Australia. We implement a machine
learning based prediction model using the Random Survival Forest (RSF) to
identify future pipe failure likelihoods for water main asset in these Australian
cities. Firstly, we generate failure likelihood of each pipe using RSF, as it is fully
nonparametric and does not impose a restrictive structure on data distribution
or how the variables should be combined [26]. If the relationship between the
independent variables and the dependent variable is complex with non linear
interactions, then the RSF algorithm is capable of capturing these intricate rela-
tionships [9,19]. In our model, the predictions were validated by separating the
data into training and testing samples. Afterwards, a derived list is generated
and evaluated on the testing data. We further compare the results from RSF
with a variety of other approaches, such as GB, RF and Weibull. Water authori-
ties are often interested in obtaining a confidence interval for the predictions we
produce. This is due to the fact that, pipe failure predictions suffer from various
sources of error, such as the variations in weather conditions, new infrastructure
developments, root clogs caused by near by trees, and many other sources, which
are caused by the inherent stochastic and nonlinear characteristics of water pipe
failures. In order to quantify the uncertainty in failure forecasting effectively, we
have generated the uncertainty interval for the long-term prediction by treating
RSF as quantile regression forests. As a result, for each point that is predicted
with a RSF, we provide the perceived uncertainty of that prediction.

In the past, RSF has been employed in various medical related research
[5,17]. However, to the best of our knowledge, this is the first model applied
on pipe failure problem embracing the quantile regression forests [16] for uncer-
tainty estimation, and proven on real-world datasets collected from multiple
water authorities.

Our data analytical model provides a projection of the likelihood of future
pipe failures. These likelihoods, along with the consequence of failures, are cur-
rently being used in current investment planning of each of these Australian
water utilities, to make risk based investment decisions for capital interventions.
Thus, our contributions help the water asset renewal programs to reduce the
catastrophic consequence of water main failures and the cost to customers.
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1.4 Preliminary

Survival and Hazard Functions. The survival function, S(t) is a non-
increasing function, which provides the probability that a subject will survive
past time t [4,11].

S(t) = Pr(T > t) =
∫ ∞

t

f(u)du

(1)

Here, T is a continuous random variable with the probability density function:
f(u), or more generally, T represents the waiting time until the occurrence of
an event. In our scenario, the survival function illustrates the probability that
a particular pipe survives past a given time. The hazard function describes the
event rate,

λ(t) = lim
δt→0

Pr(t < T ≤ t + δt|T > t)
δt

(2)

S(t) = exp−λ(t) (3)

The Cumulative Hazard Function (CHF) provides the accumulated risk up to
time t,

μ(t) =
∫ t

0

λ(u)du

(4)

μ(t) can be seen as the sum of the risks accumulating from duration 0 to t. Thus,
these functions are of intrinsically pivotal in forecasting about the condition of
a pipe which has survived a certain time period.

Random Survival Forest. An extension of RF to the domain of survival
analysis enhances its value greatly. In survival analysis, many different regres-
sion modeling strategies, such as Cox regression and Poisson regression, can be
applied to predict the survival likelihoods. Extending the RF approach [3] to
survival analysis provides an alternative way to build a robust asset failure pre-
diction model. This technique safely omits the need to impose parametric or
semi-parametric constraints on the underlying distributions and allows for an
accurate prediction [9,17].

RSF consists of arbitrarily grown survival trees. Using independent bootstrap
samples, each tree is grown by randomly selecting a subset of variables at each
node and then splitting the node using the candidate variable that maximizes
survival difference between daughter nodes. The tree is grown until saturation is



144 D. Weeraddana et al.

reached due to the condition of each terminal node having no fewer than d0 > 0
unique deaths (in our case, this referred to the number of pipe breakages). The
output of each tree may be estimated as the CHF for each case, the estimator
for which is the Nelson–Aalen estimator for the terminal node in which the case
ends up [9],

μ(t) =
∑
tj≤t

dj

Yj
,

(5)

where tj are the ordered pipe failure times for the terminal node. dj and Yj are
the number of pipe failures and pipes at risk (number of pipes in the terminal
node that are functioning) at time tj in the terminal nodes. However, in our
model, instead of the CHF, we derive an estimate of the survival probability for
each terminal node using the Kaplan-Meier estimator [10] given by,

S(t) =
∏
tj≤t

(
1 − dj

Yj

)
.

(6)

Given the CHF or survival estimate from a tree, an ensemble average is
performed over the entire forest to produce the final prediction.

2 Data Analytic Model for Pipeline Failure Prediction

2.1 Data Extraction and Pre-processing

There are three main data sources used as the inputs to the analytical model:

– Network data: describes water main information such as asset number, instal-
lation date, material, size.

– Work order data: describes water main failure information such as asset num-
ber, failure date, location, and failure type (burst, fitting, leak).

– External data: includes information in addition to assets, such as weather
data from the Bureau of Meteorology and census data from the Australian
Bureau of Statistics, soil data, pressure data, pipe ground level data, etc.

The above data should be sufficiently accurate for the intended use, so a data
quality review has been undertaken based on three key characteristics:

– Completeness: this is a statistical analysis that does not allow empty values.
– Validity: this is a statistical analysis that removes invalid values.
– Consistency: make sure that the data obtained from all the sources are con-

sistent with each other.
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The quality review demonstrates that the data is sufficient and accurate for
further analysis. Accordingly, this process allows to establish a comprehensive
data file with complete information for each asset that can be used as an impor-
tant input for further analysis. Moreover, when information is gathered from
multiple sources, prior to the adoption of advanced analytic techniques, it is
essential to match the failure records with the network data and identify gaps
in the datasets. In addition, environmental and demographic factors need to be
matched with the network data. Specifically, failure records and information are
assigned to the corresponding assets based on the work order number.

2.2 Factor Analysis

Once the data is pre-processed, the next step is to identify the factors that cause
pipeline breakage and compare their relative impact on the network based on
the water network information. Factor analysis measures the correlation between
asset performance based on the comprehensive data and a large range of factors
(including environmental, demographic and asset specific factors) [7,20]. While
a significant amount of literature exists on the pipeline failure causes, this step is
critical to discerning which of these causes would be the most important for each
water utility. The asset performance is based on failure rate, which is the number
of asset failures per 100 km per year. Both single factor analysis and multi-factor
analysis have been performed to identify the possible driving factors. The asset
performance is not usually related to only one factor, so it is essential to measure
the correlation based on multiple factors.

For example, within operational factors, AC water mains were found to break
more often than others in the regions of QLD as shown in Fig. 3 (b). It was also
found that water mains with diameters less than 100 mm exhibit higher failure
rates, compared to larger pipes (see Fig. 3 (a)). Moreover, a quantitative study
on the ground level of water main and its impact on the pipe breakage is shown
in Fig. 3 (c). It can be observed that the failure rate of pipes laid in the bottom
25% of ground level is twice higher than the pipes laid in the top 25% of ground
level (above 75% of quantile).

To quantify the amount of pipe failure information stored in each of the fea-
tures in isolation, we calculate the mutual information between the ‘Pipe Failure’
parameter and each feature (we have selected a basic set of asset specific features
which are common to all three states). The data from all three states display
a very similar dependence of the failures on the predictor variables. Therefore,
the resulting information scores for the VIC dataset are presented in Fig. 3 (d).
Pipe size (or diameter) shares the highest amount of mutual information with
failures while pipe type has the least effect on failures. In general, all predictors
by themselves display very low levels of mutual information indicating that by
themselves, they do not predict failures sufficiently well. However, as we shall
show later, the six features in unison will provide us with an excellent prediction
model of pipe failures.

To this end, we also identified the potential advantages of analysing the fac-
tors causing pipe failures in different datasets across various Australian regions.
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We have been working with a few water utilities and identifying the differences
and the commonalities among these various datasets allow us to improve our
knowledge in developing the prediction framework.
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Fig. 3. Factor analysis examples: (a) Failure rate of water mains based on pipe size in
pipelines located region west of Melbourne, (b) AC materials are more prone to break
in QLD, (c) Factor analysis of the ground level of a water main and how it affects the
pipe breakage in pipelines located region west of Sydney. (d) Feature importance scores
for the VIC dataset, computed using the mutual entropy gain method.

2.3 Long-Term Failure Prediction

This phase involves predicting future water pipe failure probabilities. We framed
this scenario as determining the likelihood of failure on each given pipe. The
failure prediction is generated by training the RSF model on historical failure
records and other factors, such as pipe material, pipe laid year, pipe diameter,
etc. This trained model produces a survival probability score for each water main
asset for each years into the future.

The RSF model utilized in this work uses data on the history of water pipeline
network across major Australian cities. It specifically uses the failure history
of pipes (the response) and their characteristics (the predictor variables). The
response variable includes the minimum of the survival time: Ti, the right cen-
soring time Ci and Δi = �{Ti ≤ Ci} which is the censoring value indicating a
pipe has failed (Δi = 1) or was right-censored (Δi = 0). The predictor variables
Xi = (X1

i , ...,XN
i ) for respective pipe, i consists of both continuous variables,
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such as age, previous failures, as well as qualitative variables, such as pipe mate-
rial and pipe size.

Prediction Uncertainty. We construct a simple, yet effective, statistical infer-
ence technique to quantify the uncertainty associated with the predictions gen-
erated by supervised learning ensembles. Here, we employ quantile regression
forests in survival trees generated by the RSF model. The concept behind the
Random survival quantile regression forests is, instead of recording the mean
value of response variables in each tree leaf in the forest, record all observed
responses in the leaf. The prediction can then be calculated as the mean of the
response variables, as well as the full conditional distribution of response values
for every x. Using the distribution, the prediction intervals for new instances can
be generated by employing the appropriate percentiles of the distribution.

Following [8], the high-level description of the algorithm used in this work,
along with the procedure for determining uncertainty, an be given as follows:

1. Ascertain the training year range and the prediction year range of pipe failure
observations. A training data file is created on average for eight observation
years of pipeline data. Each observation year contains information of all the
pipes in the network, with an indication of whether a particular pipe has
failed in that observation year or not. The observation year range for the
training data is selected and restricted(e.g. 2005–2010).

2. N number of bootstrap samples are pulled from the training dataset by
excluding on average 37% of the data, which is referred to as out-of-bag
(OOB) data.

3. A survival tree is developed for each bootstrap sample. At each node of the
tree, a p number of candidate variables are randomly selected. The node is
split using the candidate variable that maximizes survival difference between
daughter nodes.

4. Grow the tree to full size under the constraint that a terminal node should
have no less than d0 > 0 unique deaths.

5. Using OOB data, the prediction error for the ensemble survival is calculated.
6. Calculate survival probability for the predicting data range of observation

years (e.g. 2011–2025) by recording all observed responses in the leaf, and
obtaining conditional probability distribution of the response variable for
every given set of predictor variables (x) of each pipe. Using the distribu-
tion, create prediction intervals for new instances by using the appropriate
percentiles of the distribution to calculate the lower and upper bounds of the
prediction uncertainty.

3 Case Study

We study the pipeline failure data from three major Australian states: VIC,
NSW and QLD. Each of these three datasets were generated based on the results
of observations made on pipelines in each observation year. As an example, the
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data statistics for selected laid year groups for VIC are presented in Table 1. This
highlights the different dynamics associated in training and testing datasets for
each laid year. For VIC and NSW, data spanning observations from 2000 to 2017
were available while for QLD, only data for observations from 2013 to 2017 were
available. The key information recorded at these observations is represented as
a boolean variable recording whether a failure was detected at the time. We also
use auxiliary data regarding each of the observed pipes as input parameters to
predict failures into the future. The full list of features used in our modelling is
reported in the Fig. 3. We use the age of the pipe observed, the year in which
it was laid in, the material that the pipe is made of, the number of previous
failures and the size (diameter) of the pipe as predictor variables.

Table 1. Data statistics for selected set of laid year groups
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Fig. 4. ROC curves generated based on the predictions made by each technique for
the state of VIC for the year 2017. Observation data collected in and before year 2010
was used for the training task. Therefore, the predictions illustrated here are made 7
years in advance. (a) depicts the ROC curves based on the total pipe length and (b)
the number of pipes, respectively.
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Fig. 5. Complete collection of bar plots depicting the AUC values generated for all
prediction scenarios. (a) and (b) bar plots show the AUC values obtained for the VIC
dataset for the (a) length based and (b) pipe number based ROC curves, respectively.
Similarly, (c) and (d) plots correspond to the NSW dataset and (e) and (f) plots
correspond to the QLD dataset. Inspection of the top 1% and 5% of ranked pipe
length in (a) NSW - 2015, (h) VIC - 2016 and (i) QLD - 2017. In each case, the
failures correctly identified using the predictions made by RSF (blue), GB (orange)
and RF (yellow) techniques are shown therein. The two red vertical lines across each
plot identifies the inspection points at 1% and 5% of total pipe length. The numerical
failure count is indicated in the top left hand corner of each figure for convenience.
(Color figure online)

3.1 Model Setting

Using this information, we perform a comprehensive comparison of performance
between the Random Survival Forest technique and other widely used machine
learning and statistical algorithms along with a baseline predictor. For VIC and
NSW, we use the observations from 2000–2010 to train our machine learning
models and only the data from the year 2013 for QLD. The probabilities of failure
for pipes observed in the years 2015–2017 are then calculated and compared
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to the actual recorded observation. This provides all our methods a common
benchmark to be compared against.

The algorithms we choose to measure RSF against are, GB technique [6],
RF regression [3] and Weibull model [23]. GB is a machine learning technique
that iteratively improves modelling using weak predictors [18]. In RF, indepen-
dently drawn random sub-samples of the complete dataset are used to build an
ensemble of regression trees. For all three algorithms (RSF, GB, RF), we use 100
trees when training the model. Additionally, we predicted failure rates for each
dataset using a 2-parameter Weibull model. We fitted the Weibull model to the
age at first failure distribution of all pipes in each dataset, and the computed
parameters were used to estimate the probability of pipe failure by aging all
pipes according to the prediction year. Further to this, the baseline predictor
we use is the number of previous failures of a given pipe. We assign a higher
probability of failure to the pipes with a history of a higher number of failures.

0 10 20 30 40
Suburbs inspected

0

20

40

60

80

100
Detected pipe failures (%)

2015
2016
2017

Number of Suburbs

R
ec

al
l %

Pr
ec

is
io

n 
%

20

60

100

10 20 30 40

RSF
GB
RF

5% line

0

50

100

(a) (b)

Fig. 6. (a) Suburb level model verification for the VIC pipe dataset. (b) Critical suburb
prediction recall (blue) and precision (red) percentages for VIC suburbs in the year
2017. At 5% (out of a total of 42 suburbs), the recall percentage is at 18.18% and the
precision is at 96.67% for all three techniques considered. The RSF is plotted as a solid
line with the RF as a dashed line and the GB method response as a dotted line. This
pattern of similar recall and precision curves across all three techniques and all years
is evident especially at lower population levels. (Color figure online)

To easily compare the predictions, we plot the Receiver Operator Charac-
teristic (ROC) curves of the predictions made by each predictor and compare
them through the Area Under the Curve (AUC). Firstly, the prediction model
was trained using the pipeline features and the failure data. Then the calibrated
model was applied to predict the survival probability for each pipe from year
2015 to 2017. Then the pipes were ranked according to the survival probability
of each pipe. Using the ranked list, actual failures from the lowest to the high-
est probability are accumulated (cumulative sum of failures). The percentage
of detected failures is plotted against the percentage of inspected pipe lengths,
and the percentage of inspected number of pipes. Predictors that reach higher
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true positive rates while maintaining low false positive rates are preferred for
predicting purposes and correspondingly. We also note that we use two separate
methods for generating the ROC. One method defines true positive and false
positive rates based on the number of pipes predicted to fail correctly or falsely,
while the other defines false positive rate as the total length of pipes incorrectly
predicted to fail while retaining the usual definition of true positive rate. We
term these pipe based ROC and length based ROC, respectively. While the pipe
based ROC is the more natural definition of the two, Water Management author-
ities consider failures per unit length as an important parameter and the length
based ROC accounts for this explicitly.

3.2 Experimental Results and Discussion

In order to quantify their prediction performance, we extensively studied the
ROC curves generated by each machine learning technique under various sce-
narios. One such instance is shown in Fig. 4, where the complete set of ROC
curves generated by each technique are plotted together. These curves are based
on the predictions made for the year 2017 for the VIC pipe dataset. Pipe obser-
vations made in and before the year 2010 were used for training purposes and
the predictions are made for a time period that is 7 years into the future (year
2017). The length based ROC curve for RSF clearly demonstrates a ≈5% pre-
diction enhancement over the other two techniques, whereas the pipe number
based ROC curve demonstrates a ≈10% prediction enhancement.

The bar plots in Fig. 5 further demonstrate the superior prediction capabil-
ities of the RSF technique compared to GB, RF and Weibull techniques. For
the VIC pipe dataset, all predictions made using the RSF technique show bet-
ter prediction results when compared with the GB and RF and Weibull. RSF
outperforms both RF and GB by a considerable margin in the 2017 prediction.
A similar observation can be made for both NSW and QLD pipe datasets; pre-
dictions made for a year further away from the last year in the training dataset
(2010 for VIC and NSW, 2013 for QLD) tend to show better accuracy when
predicted using the RSF technique. Furthermore, it is noted that there are some
rare instances where the GB and RF techniques marginally outperform the pre-
dictions made by the RSF technique. This behavior is particularly observed for
the NSW pipe dataset. This is because some divergent trends with respect to
age are observed in the NSW records (failure rate for cast iron pipes decreases
with the age for a subset of pipes).

To establish the effectiveness of the proposed techniques, it is important to
know how many failures can be detected by inspecting the first few pipes within a
group in the ranking order. In order to establish this, we studied the prediction
data for the highest ranked 1% and 5% of pipe lengths in each year for each
state. A sample of these observations is shown in Fig. 5(g)–(i). It is observed
that using the RSF method has an advantage over using other methods in terms
of detecting the most number of failures with a least amount of inspection effort.

We performed further analysis of predicted results using the RSF technique
on the suburb level. For this study, the suburbs within a state are first sorted,
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based on the cumulative probability of all the pipes within the suburb for a given
prediction year. This forms a suburb based dataset and the general procedure is
then followed to obtain the suburb based ROC curve. Results for the VIC pipe
dataset for the years 2015, 2016 and 2017 are shown in Fig. 6 (a). Based on the
results, it is evident that by inspecting the pipes in the top 10 suburbs, it is
possible to detect more than 60% of the total failures. Additionally, inspecting
the pipes in only half of the total suburbs in the ranked order will result in
detecting more than 80% of the total pipe failures for all years.

Extending our analysis of the prediction of pipe failures in suburbs, we turn
our attention towards predicting critical suburbs within each of the three states
analysed. It is extremely valuable for water management authorities to be able
to restrict attention in specific years to monitoring only a select number of pipe
systems located in specific suburbs. This comes with the benefits of reduced
manpower and labour costs. We define critical suburbs within a specific year in
our model to be suburbs that host a number pipe failures greater than the average
for that year. Using this definition, we use our trained models to generate with
aggregate failure probabilities for each suburb. Using these aggregate probability
values and the actual number of failures occurring in each suburb in that year, we
calculate the precision and the recall rates for the detection of critical suburbs.
As shown in Fig. 6 (b), all three techniques we used as candidates demonstrated
satisfactory recall (18.18%) and precision (96.67%) levels for suburbs in VIC
for 2017. We also note that such similar behaviours were observed in the three
techniques across years and geographic locations.

Our experimental results indicate that for most of the studied scenarios, the
RSF technique outperforms other machine learning techniques, clearly highlight-
ing its superior prediction capabilities in long-term predicting pipe failures. We
also note that all three techniques perform better than the baseline as predicted
by the historical number of previous failures in pipes. In general, the RSF tech-
nique tends to improve in its prediction accuracy or at least maintain the same
accuracy as predictions are made further into the future. In contrast, we observe
that the accuracy of the predictions made through GB and RF methods tend to
deteriorate over time.

We finally observe that all the techniques used saturate at a maximum AUC
level of around 0.65 to 0.75. While pipe failures may be extremely unpredictable,
this to also due to the fact that our predictions are made further away into the
future (5–7 years), and also due to the fewer number of features we use for
predictions as compared to other similar studies [12].

In the suburb based analysis, we notice that by the aggregation of pipe
failure probabilities predicted by RSF across suburbs, we were able to predict a
significant proportion of pipe failures. In Fig. 6 (a), we clearly see that at 20%,
more than 40% of the pipe failures were recovered. We also note that the curve
for 2017 dominates that portion of the graph, again signalling the efficiency of
the RSF technique for predicting failures further into the future. Our analysis
of critical suburbs also reveals quite interesting facts regarding pipe failures and
their distribution across suburbs. As Fig. 6 (b) clearly demonstrates, all three
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methods perform well in precisely recalling suburbs with greater-than-average
numbers of failures in a year. This coupled with the results of Fig. 6 (a) also
suggest that in a given year, the pipe failures are clustered in a few vulnerable
suburbs within each state.

Prediction uncertainty for the long-term failure prediction also has been cal-
culated. These long-term prediction curves show that actual failure rates align
with the results generated by RSF and within the uncertainty interval. The
mean failure prediction is ideal for modelling future behaviour of pipeline net-
work benchmarking performance indices such as unplanned water interruption
and water main breaks. In addition to the mean prediction, all the water utilities
require uncertainty interval in order to evaluate the impact and cost of more tar-
geted water network levels of service inform both short and long-term renewals
budgets.

4 Discussion on RSF for Long-Term Pipe Failure
Prediction

The empirical study we conducted here shows that, the longer we predict into the
future, more degradation in the accuracy can be observed in RF and GB, whereas
RSF remains quite consistent in the accuracy when we predict further into the
future. This is because RSF explicitly takes, the time until the occurrence of a
failure (Eq. 6), into account when calculating the CHF, making RSF to provide
a robust prediction over a longer period of time. Secondly, RSF seeks a model
that best explains the data and thus represents a suitable tool for exploratory
analysis where prior information of the survival data is limited (consider the
experimental results for QLD dataset, where we have only one year worth data
for training and also the failure data is highly sparse). Thirdly, in case of multi-
dimensional data, limitations of univariate regression approaches (i.e. Weibull
method) such as unreliable estimation of regression coefficients or convergence
problems do not apply to RSF. To the best of our knowledge, this is the first
research conducted to explore the potential advantages of using RSF in pipe
failure predictions along with the uncertainty estimation.

Currently, our predictive data analytic models are deployed in the city of
Sydney, the region west of Melbourne and south-east QLD mainly for short-term
prediction purposes. Each of these Australian water utilities are monitoring the
number and the location of water main failures to validate our model. They also
use our model in their internal financial modelling, risk distribution assessment
planning and also to assist in the development of condition assessment programs.
In addition to our previous work which have been deployed already, the study
presents in this paper focuses on the development of a nonparametric survival
analysis technique to determine which water main assets and suburbs are most
likely to have water main failures in the next 5–7 years. Our results indicate that
RSF opens up a new avenue for robust pipe failure prediction
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5 Conclusions

The reliability of the water distribution network in any city is critical to deliv-
ering clean water supply to customers. Tailoring data science techniques to
model the pipeline failure prediction provides accurate insights into water main
networks. This will essentially assist water authorities to carry-out proactive
pipeline maintenance. Therefore, we have presented a thorough survey of the
landscape of nonparametric survival analysis as it pertains to predictions of
survival rates and correspondingly decease rates of assets. We have used data
from the water management authorities of three major Australian states to val-
idate the survival analysis technique we propose, Random Survival Forest, to
compare against other state-of-art machine learning techniques that have been
proven effective the in similar applications. We perform a thorough analysis of
the performance of the techniques in making predictions over multiple years. The
results show that the Random Survival Forest (RSF) has consistently shown to
outperform the other techniques, in long-term forecasting. To the best of our
knowledge, this is the first research conducted to explore the potential advan-
tages of using RSF in pipe failure predictions along with the uncertainty estima-
tion. Ultimately, we believe this work, at the intersection of Machine Learning
and Asset Management, will lead to more effective and proactive infrastructure
maintenance in the water industry across the world.
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