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Abstract. Leveraging the information-rich and large volume of Elec-
tronic Health Records (EHR), deep learning systems have shown great
promise in assisting medical diagnosis and regulatory decisions. Although
deep learning models have advantages over the traditional machine learn-
ing approaches in the medical domain, the discovery of adversarial exam-
ples has exposed great threats to the state-of-art deep learning med-
ical systems. While most of the existing studies are focused on the
impact of adversarial perturbation on medical images, few works have
studied adversarial examples and potential defenses on temporal EHR
data. In this work, we propose RADAR, a Recurrent Autoencoder based
Detector for Adversarial examples on temporal EHR data, which is the
first effort to defend adversarial examples on temporal EHR data. We
evaluate RADAR on a mortality classifier using the MIMIC-III dataset.
Experiments show that RADAR can filter out more than 90% of adver-
sarial examples and improve the target model accuracy by more than
90% and F1 score by 60%. Besides, we also propose an enhanced attack
by introducing the distribution divergence into the loss function such
that the adversarial examples are more realistic and difficult to detect.

Keywords: Adversarial example detection · Recurrent autoencoder ·
Temporal Electronic Health Records (EHR)

1 Introduction

Electronic Health Record (EHR) is the digital version of a patient’s medical his-
tory including diagnoses, medications, physician summary and medical image.
The automated and routine collection of EHR data not only improves the health
care quality but also places great potential in clinical informatics research [26].
Leveraging the information-rich and large volume EHR data, deep learning sys-
tems have been applied for assisting medical diagnosis, predicting health trajec-
tories and readmission rates, as well as supporting disease phenotyping [33]. Deep
learning models have crucial advantages over the traditional machine learning
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approaches including the capability of modeling complicated high-dimensional
inter-feature relationship within data and capturing the time-series pattern and
long-term dependency [30]. Taking advantage of a sufficient amount of training
dataset, in some cases, complex neural networks can even exceed capabilities of
experienced physicians in head-to-head comparisons [6].

However, recent studies show that the statistical boundary of deep learning
model is vulnerable, allowing the creation of adversarial examples by adding
imperceptible perturbations on input to mislead the classifier [10]. These adver-
sarial threats are more severe in the medical domain. First, the sparse, noisy
and high-dimensional nature of EHR data exposes more vulnerability to poten-
tial attackers. Second, some modalities of EHR data such as genetic panels and
clinical summary may be generated by a third-party company that has a higher
risk being attacked. Finally, medical machine learning systems may be uniquely
susceptible to adversarial examples [8] due to high financial interests such as
insurance claims.

Most research on adversarial examples in medical domain has been focused
on medical images, such as X-ray and MRI image [20,32] which can be easily
adapted from traditional image domain. The attack algorithms in the image
domain aim to minimize the perturbation scale while mislead model predictions.
This optimization problem can be either directly solved such as in C&W attack
[4] or approximated with gradient method such as Fast Gradient Sign Method
[10]. A few recent works have studied adversarial examples on temporal EHR
data. Sun et al. [30] proposed a Recurrent Neural Network (RNN)-based time-
preferential minimum attack strategy to identify susceptible locations on EHR
data. An et al. [1] proposed LAVA, a saliency score based adversarial example
generation approach that aims to minimize the number of perturbations. How-
ever, it only works for binary-coded features and is not applicable for general
temporal EHR with continuous or categorical features.

Despite these two attempts on the attack algorithms for temporal EHR data,
there is no study on potential defense techniques. The existing defense mecha-
nisms in image domain can be categorized into adversarial training [27], image
denoising [7] and detection mechanisms [21,22]. One of the most promising and
state-of-the-art detection methods is MagNet [21], which is based on autoencoder
and rejects examples with large autoencoder reconstruction errors. As MagNet
can work with any pre-trained classifier, only requires clean data for training,
and does not depend on specific image features, it has the potential to be adapted
for temporal EHR data. However, there are several critical challenges due to the
characteristics of temporal EHR data:

– Multivariate temporal dependency. The intuition of autoencoder based defense
is to learn the representation from clean data. However learning the represen-
tation and capturing the pattern of time-series EHR data is more challenging
than images due to the temporal dependency between time points in addition
to the correlations between attributes. Besides, the significance of each times-
tamp on the prediction outcomes differ as more recent features may have a
stronger influence.
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– Sparsity and high-dimensionality. Sequential EHR data is extremely sparse,
discrete and high-dimensional compared to image data. Therefore, the tradi-
tional distance metrics may not be effective for measuring the autoencoder
reconstruction error which cannot capture the real similarity or validity of
temporal EHR data.

In this work, we propose RADAR, a Recurrent Autoencoder based Detector
for Adversarial examples on temporal EHR data, which is the first effort to
defend adversarial examples on temporal EHR data. Similar to MagNet, the
intuition is that an autoencoder can learn the manifold of the clean examples.
At the test phase, given an input, the autoencoder will reconstruct the input and
push the reconstructed output closer to the manifold. As a result, clean examples
will have lower reconstruction error since they are closer to the manifold while
adversarial examples may have larger error because they have been strategically
perturbed. Thus the reconstruction error and additional criteria can be used to
detect adversarial examples.

Different from existing methods, RADAR has two main technical contribu-
tions addressing the challenges that are specific to temporal EHR data. First,
in order to more effectively model the multivariate time series data, we build an
autoencoder by integrating attention mechanism [2] with bi-directional LSTM
cell to capture both past and future of the current time frame and their inter-
dependence. By increasing the amount of input information available to the
network, RADAR has a higher reconstruction ability which guarantees a higher
detectability. Second, to address the sparsity and high dimensionality, besides
lp-norm reconstruction error and prediction divergence of the target classifier
between the input and reconstructed output which are used in MagNet, our
method introduces prediction uncertainty of the constructed output as an addi-
tional detection criteria. Our hypothesis is that autoencoder reconstructed out-
put of adversarial examples can result in more uncertainty on the prediction
due to its goal of flipping the original class label. This metric focuses on the
downstream prediction rather than the data itself thus can overcome the spar-
sity challenge of EHR data, and provide a critical and complementary criteria
for detecting adversarial examples.

Besides RADAR, we also propose an enhanced attack by introducing distri-
bution divergence into the loss function, making the adversarial examples more
realistic and difficult to detect. To our knowledge, RADAR is the first effort to
propose defense techniques on temporal EHR data. We evaluate RADAR on a
mortality classifier using the MIMIC-III [14] dataset against both existing and
our enhanced attacks. Experiments show that RADAR can effectively filter out
adversarial examples and significantly improve the target model performance.

2 Preliminaries and Related Work

Neural Networks for Sequential Data. Deep neural networks (DNN) have
been increasingly applied to solve difficult real-world tasks. For time-sequence
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data, Recurrent Neural Network (RNN) is designed for capturing the tempo-
ral information among features. A variant of RNN, Long Short-Term Memory
(LSTM) network [12] is proposed to capture not only the short-term dependency
but also the long term dependency among temporal features. In order to model
both forward (past to current) and backward (current to past) temporal cor-
relation, Schuster et al. [25] proposed a bi-directional structure by feeding the
reversed input into RNN model as well.

Autoencoder is a type of neural network architecture that learns the data
representation in an unsupervised manner through dimension reduction [11].
Recurrent autoencoder refers to a type of autoencoder whose layers are RNN
cells [29], which has been widely applied to sequence to sequence (seq2seq) tasks
such as machine translation [5,31]. To solve the long-term dependency problem
of recurrent autoencoder, Bahdanau et al. [2] proposed an attention mechanism
that calculates the weights of states among all the time steps as the attention
scores and computes an element-wise weighted sum of all the states as the context
vector. Recurrent autoencoder without attention mechanisms has been applied
for EHR data imputation and synthesization [35]. In this paper, we adopt a
recurrent autoencoder with attention mechanism for the temporal EHR data
and use it for adversarial example detection for the first time.

The applications of RNN on sequential EHR data range from mortality pre-
diction, readmission prediction, to trajectory prediction [24,34,36]. Most works
use different datasets with different pre-processing methods, and cannot be
directly applied to our data. In this work, since our focus is not on the clas-
sification model, we adopt a single layer LSTM model as our target classifier
to demonstrate the effectiveness of the proposed adversarial example detection
method.

Adversarial Examples. Generating adversarial examples can be formulated
as a constrained optimization problem. Given a clean input x, its label y and a
classifier F , if Lp(x, xadv) < C, such that F (xadv) �= y, xadv is an adversarial
example, where Lp represents the Lp-norm of the perturbation and C represents
the perturbation constraint. This optimization problem can be either directly
solved such as in C&W attack [4] or approximated with gradient method such
as Fast Gradient Sign Method (FGSM) [10] and iterative FGSM [15].

Very recently, it has been pointed out that medical machine learning systems
may be uniquely susceptible to adversarial examples [8]. Several works studied
adversarial examples in medical image models [9,17,20,32]. A few works explored
the adversarial examples on temporal sequential EHR data. Sun et al. [30] pro-
posed an RNN-based time-preferential minimum attack strategy. Their attack
algorithm is similar to the C&W attack in image domain. An et.al [1] proposed
a saliency score based adversarial attack on longitudinal EHR data that requires
a minimal number of perturbations and minimizes the likelihood of detection.
The limitation of this work is that their medical features are binary coded so it
is not applicable to continuous features. We propose an enhanced attack in this
paper and compare it with the attack algorithm in Sun et al. [30]
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Defenses Against Adversarial Examples. The existing defense methods
against adversarial examples (mainly focused on the image domain) can be char-
acterized into three categories:

– Image preprocessing and denoising such as image compression [7,13] which
are image specific and autoencoder based denoiser (HGD) [19]. The drawback
of HGD is that it requires a large number of adversarial samples to train the
denoiser.

– Detection based defense mechanism. The traditional detection method is usu-
ally a binary classifier which is trained on both adversarial samples and
clean samples [22]. However, these detectors failed to generalize across vari-
ous attack schemes. More recently, Mend et al. [21] proposed an autoencoder
based detector called MagNet, which rejects samples (as adversarial examples)
with large reconstruction errors. One major advantage of MagNet is that it
only requires clean examples for training the autoencoder, which significantly
increases its generalization ability.

– Adversarial training. Adversarial training [27] utilizes adversarial examples
and integrate them in model training. It can be also used in combination
with gradient masking [3,23] which makes gradient-based attacks infeasible
or difficult. The drawback of adversarial training is that it lacks the general-
ization ability to unseen adversarial examples and may compromise the model
performance on clean examples. In addition, it requires a larger number of
adversarial examples in the training stage.

Until now, there is no defense algorithms proposed for adversarial examples on
sequential EHR data. The existing defense strategies for image data are either
specific to the image domain, or require large volume of clean and adversarial
training data, which is not suitable. MagNet has a strong generalization ability
and does not depend on image characteristics. Besides, it does not require adver-
sarial examples in training phase and is independent of the target classifier. In
this work, we adapt this autoencoder based detection method and propose the
first defense mechanism against adversarial examples on temporal EHR data.

Fig. 1. RADAR pipeline
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3 Methodology

In this section, we first give an overview of the RADAR framework. We then
present the details of the recurrent autoencoder architecture, followed by the
adversarial example detection criteria. Finally, we present our enhanced attack
algorithm.

RADAR is an autoencoder based detector as shown in Fig. 1. A recurrent
autoencoder consisting of encoder and decoder is trained on natural temporal
examples and learns the manifold of the natural examples. At the test phase,
given an input x, the autoencoder will push the reconstructed output x′ closer
to the manifold. Adversarially designed examples can be interpreted as out-of-
manifold examples that are far away from natural example manifold. Therefore,
when an adversarial example x is fed into a well trained autoencoder, the recon-
struction distance between x and x′ would be high. The stronger the adversarial
perturbation, the larger the reconstruction distance. By contrast, as clean exam-
ple itself is close to the manifold, the reconstruction distance would be small.
Based on a set of carefully designed detection criteria including the reconstruc-
tion error, RADAR can detect adversarial examples. As autoencoder can push
the reconstructed output closer to the manifold, it can play the role of a reformer.
In other words, if an adversarial example is detected, its reconstructed output
x′ will be treated as reformed output and fed into the classifier.

3.1 Recurrent Autoencoder Architecture

Temporal EHR data is multivariate time series data. As our goal is to benefit
from the autoencoder’s reconstruction ability to distinguish adversarial examples
and clean examples, it is crucial to build a recurrent autoencoder structure that
is capable of learning both temporal correlations and feature correlations. In this
work, we adopt the bidirectional-RNN with attention mechanism for temporal
EHR. While the architecture is commonly used, the attention mechanism is first
used for EHR data.

Fig. 2. BRNN-AE Architecture.
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Our model is a bidirectional-RNN autoencoder which is shown in Fig. 2. For
the RNN cell, we adopt a stacked LSTM cell designed to capture the long-
term dependency and remember information for long periods of time. We feed
into the bidirectional-RNN autoencoder with input x1, x2, ..., xt and reversed
input xt, xt − 1, ..., x1. The forward stacked LSTM of the encoder steps through
forward input and encodes the input into hidden states h1f for the first stack
and h2f for the second stack. Similarly, the backward stacked LSTM works on
the reversed input and generates hidden states h1b and h2b. These hidden states
are concatenated and a fully-connected layer is applied to form two fixed-length
vectors z1 and z2. These two vectors are treated as the initial states of stacked
LSTM cells in the decoder, feeding z1 to the first stacked LSTM cell and z2 to the
second stacked LSTM cell, which enables the decoder to generate reconstructed
output.

One limitation of this encoder and decoder structure is that when the input
sequence is long, the fixed-length vector may fail to compress all the information.
This issue is significant in temporal EHR data, as the duration of a patient’s
stay may vary and can be extremely long. To address this, we add the atten-
tion mechanism between the encoder and the decoder. Rather than encoding
the input sequence into a fixed-length vector, attention forms a weighted sum
of each hidden state, referred to as context vectors, allowing the decoder to
focus on certain parts of the input when generating its output. In this work, we
adopt Bahdanau attention [2] which uses weighted sum of attention weights and
encoder hidden states to calculate context vectors and compute the final output
of decoder.

We train the autoencoder on clean temporal EHR examples. The loss function
is the reconstruction error between the input sequence and the generated output
sequence, which is defined as:

L(x, x′) = ‖x, x′‖2 + Lreg(θ) (1)

where Lreg denotes the L1 regularization on parameters.

3.2 RADAR Detection Criteria

Given an input sequence and the reconstructed sequence, RADAR uses a set
of detection criteria to distinguish between a clean example and an adversarial
example. Considering the sparsity and high-dimensionality nature of EHR data,
our detection criteria includes not only the reconstruction error and prediction
divergence that are employed in MagNet, but also the prediction uncertainty of
the target classifier.

Reconstruction Error. The reconstruction error between the original and
reconstructed sequence is measured by the Lp-norm Lp(x, x′). Most commonly
used Lp-norm is L1 norm and L∞ norm.

Prediction Divergence. In addition to the distance between x and x′ in the
data space, the prediction divergence between x and x′ in their prediction output
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on the target classifier is also considered. The intuition is that clean examples
should have a low divergence. Jensen Shannon Divergence (JSD), a symmetric
measurement of the distribution similarity is applied to the target classifier’s
prediction logits, which is defined as:

JSD(lx||lx′) =
1
2
KL(lx||1

2
(lx + lx′)) +

1
2
KL(lx′ ||1

2
(lx + lx′)) (2)

where lx and lx′ are the classifier’s prediction logits of input x and reconstructed
output x′. KL denotes the Kullback-Leibler divergence which is a non-symmetric
measurement of the difference between two probability distributions. The lower
value of JSD, the more similar two distributions are.

Prediction Uncertainty. In addition to the above two measures, we introduce
a new criteria based on the prediction uncertainty of the reconstructed output
on the target classifier. Our hypothesis is that the reconstructed output of an
adversarial examples can result in more uncertainty on the prediction due to
its goal of flipping the original class label. Prediction uncertainty focuses on the
downstream prediction rather than the data itself thus can overcome the sparsity
challenge of EHR data, and provide a critical and complementary criteria for
detecting adversarial examples. Some existing works have proposed methods to
measure neural network prediction uncertainty, such as entropy of predictive
distribution [18], mutual information and differential entropy [28]. In this work,
we use entropy of predictive distribution to reflect uncertainty, which is defined
as:

Entropy(lx′) = −
n∑

i=1

silog(si), where si =
el

i
x′

∑n
j=1 el

j

x′
(3)

Here, n is the number of prediction classes, si is the softmax value of the ith
class and lix′ is the logits value of the ith class of x′.

Given an input x, RADAR detects it as an adversarial example if any one
of the above three measurements is greater than a threshold: M(x, x′) > δM

where M represents reconstruction error, prediction divergence, and prediction
uncertainty; and δM is the corresponding threshold. In practice, we can choose
δM to allow a certain percentage of clean examples (e.g. 95%) to pass each
criteria. We will study its tradeoff in the experiments section.

3.3 Enhanced Attack

In this paper, we also propose an enhanced attack algorithm that addresses
the sparsity and high-dimensionality of sequential EHR data to generate more
powerful adversarial examples.

Adversarial examples are designed by adding small perturbations to clean
examples. For temporal EHR data, a clean example can be represented as x ∈
R

t×f = {x1, x2, ..., xt}, where xi ∈ R
f denotes the f -dimension feature space at

the time step i. Given a classifier F , if xadv satisfies that F (xadv) �= F (x) and
Lp(x, xadv) < C, we say xadv is the corresponding adversarial example of x. The
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attack algorithm that we applied to evaluate our proposed defense mechanism
is similar to the method proposed in Sun et al. [30]. The purpose of the attack
is to maximize the prediction logits on the position of targeted label (which
equals to minimizing the logits on the position of true label) while minimizing
the perturbation magnitude, which is formulated as:

arg min
xadv

Ly + αLx, with (4)

Ly = max{l(xadv)ytrue
− l(xadv)yfalse

,−k} and Lx = ||xadv − x||p (5)

where l(·)ytrue
and l(·)yfalse

denotes the logits on the position of true label
and false label, as mortality prediction is a binary prediction. A positive value
of k ensures a gap between true and adversarial label, which is commonly set to
0. α is a coefficient for the perturbation magnitude.

The Lp-norm is aimed to minimize the EHR location-wise similarity, which
does not take into consideration the sparsity and high-dimensionality of sequen-
tial EHR data. Therefore, the adversarial examples generated by the attack algo-
rithm can be easily detected by an autoencoder based detection. To craft more
powerful adversarial examples, we introduce Gaussian observation [16] into the
loss function to force the generated adversarial example to follow the same distri-
bution as clean examples and less detectable by an autoencoder based detection.
Gaussian observation is defined as the probability of clean example following
the Gaussian distribution with mean as the corresponding adversarial examples
and covariance as an identity matrix. Adding the objective of maximizing the
Gaussian observation N(x|xadv, I), the attack algorithm can be formulated as a
minimization problem:

arg min
xadv

Ly + αLx − βN(x|xadv, I) (6)

where α and β are the coefficients of the two parts of perturbation constraint.
For the perturbation magnitude Lx, the L1 norm induces sparsity on the pertur-
bation and encourages the attack to be more focused on some specific location.
By contrast, L∞ norm encourages the perturbation to be more uniformly dis-
tributed with smaller magnitude on each location. In the experiments, we will
compare the attack performance of L1 norm and L∞ norm with and without
Gaussian observation.

4 Experimental Evaluation

In this section, we will first compare adversarial examples generated by our
enhanced attack compared to existing works. Then, we will evaluate the detection
performance of RADAR.

Dataset and Model Architecture. MIMIC-III (The Multiparameter Intel-
ligent Monitoring in Intensive Care) dataset [14] is a publicly available clinic
dataset containing thousands of de-identified intensive care unit patients’ health
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care records. For mortality prediction, we directly adopt the processed MIMIC-
III data from Sun et al. [30] The data contains 3177 positive samples and 30344
negative samples. Each sample consists of 48 timestamps and 19 features at
each time step. These 19 variables include vital signs measurements such as
heart rate, systolic blood pressure, temperature, and respiratory rate, as well
as lab events such as carbon dioxide, calcium, and glucose. Missing features are
imputed using average value across all timestamps and outliers are removed and
imputed according to interquartile range (IQR) criteria. Then, each sequence is
truncated or padded to the same length (48 h). After imputation and padding,
each feature is normalized using min-max normalization.

The BRNN-AE architecture consists of an encoder with bi-directional two-
stacked LSTM cells of units 32 and 64 respectively for both forward and back-
ward LSTM, followed by two fully-connected layers of size 16 and 32 to form two
fixed-length vectors as the input to decoder. The decoder consists of an attention
layer of size 64 and two-stacked LSTM cells of size 16 and 32.

Pretrained Model Performance. Our target model is a mortality classifier.
The network architecture is a simple LSTM of 128 units followed by a fully-
connected layer of 32 units and a softmax layer. The 5-fold mean and standard
deviation of the model performance is shown in Table 1.

Table 1. 5-fold cross validation performance of target classifier

Metric Accuracy AUC F1 Precision Recall

Avg ± STD 0.894 ± 0.0124 0.812 ± 0.0187 0.603 ± 0.0279 0.536 ± 0.0548 0.702 ± 0.0564

4.1 Attack Performance

We use different distance metric to measure the similarity between adversarial
examples and clean examples, including Lp-norm and KL divergence. Lp-norm
aims to measure EHR location-wise similarity and KL divergence measures the
distribution similarity over the whole set of adversarial examples and clean exam-
ples. A lower distance means a less detectable attack. In this experiment, the
stop criteria for generating each adversarial example is when the prediction label
is flipped. Only the successfully attacked examples will be used to calculate the
Lp-norm and KL divergence.

Table 2 shows the distance metrics of the successfully flipped examples by
different attacks. For the baseline attack with no distance optimization, the α
and β in Eq. 6 are set to 0. For the L1-norm attack (Sun et al.[30]) and L∞-
norm attack, α is set to 1 and β is set to 0. The last two columns correspond
to our enhanced attacks with Gaussian observation. We observe that the no dist
attack (that only aims to flip the label) has the highest distance as expected.
Our enhanced attacks based on L1 and L∞ have the lowest L1 and L∞ distances
respectively, and significantly outperform the existing L1 and L∞ based attacks.
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Table 2. Attack performance comparison

Metric Loss Func

No dist L1-norm L∞-norm L1-norm enhanced L∞-norm enhanced

L1 3.672 0.815 0.920 0.524 0.792

L∞ 0.427 0.138 0.131 0.129 0.119

KL 6.521 0.736 0.817 0.811 0.735

This verifies the benefit of Gaussian observation in our enhanced attacks. By
forcing the generated adversarial example to follow the same distribution as
clean examples, it not only helps to decrease the KL divergence (in the case of
L∞ based attacks) but more importantly significantly decrease the Lp-norm. The
comparison between L1-norm and L∞-norm enhanced attacks demonstrates that
the L∞-norm enhanced attack achieves smaller KL divergence, as it encourages
the perturbation to be more uniformly distributed with smaller magnitude on
each location.

The above results show the comparison of different attack methods for suc-
cessfully flipped examples. To give a more comprehensive comparison, we also
use varying perturbation magnitude as stopping criteria and compare the attack
success rate and detection rate (by our detection approach) of different attack
methods, which is shown in Fig. 3. In all cases, our enhanced attacks achieve a
higher attack success rate and lower detection rate than the baseline attacks,
which confirms the effectiveness of adding Gaussian observation as part of the
minimization in the attack.

(a) Attack Success Rate (b) Detection Success Rate

Fig. 3. Comparison between baseline attack and enhanced attack

To illustrate the perturbation introduced by the adversarial examples, we also
show the mean perturbation for each of the feature-time points by our enhanced
L∞ attack added to the positive and negative clean examples respectively in
Fig. 4. We observe that most of the perturbation is imposed on the recent time
stamps. In addition, interestingly, it requires more perturbation to flip a posi-
tive example to negative than vice versa. The reason is that, for an imbalanced
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dataset, the confidence level is high when classifier predicts an example as posi-
tive, which means it requires more perturbation to flip its label.

(a) Positive examples (b) Negative examples

Fig. 4. Mean perturbation distribution

4.2 Detection Performance

In this section, we will first show the impact of varying detection threshold on
the clean example pass rate and adversarial example detection rate, and then
evaluate the detectability of RADAR in terms of detection rate and the accuracy
of the classification model with the detection. We use L∞-norm enhanced attack
and apply varying perturbation bounds of 0.5, 0.75, 1.0, 1.25 and 1.5, which
means that the stop criteria for generating each adversarial example is when the
perturbation is larger than the perturbation bound.

Selection of Detection Threshold. The threshold of each detection criteria
is crucial in the trade-off between the adversarial detection rate and the sacrifice
of clean examples, i.e., the true positive and false positive rate. If the threshold
is low, it can successfully detect adversarial examples but can also mistakenly
filter out clean examples. If the threshold is high, the effectiveness of RADAR
will be compromised. Figure 5 demonstrates this trade-off by showing the corre-
sponding adversarial detection rate and the clean example pass rate for different
thresholds under different perturbation bound. As shown in the figure, a higher
perturbation bound results in higher detection rate as expected. When allowing
more clean examples to pass, fewer adversarial examples can be detected. The
optimal threshold would allow a majority of clean examples to pass while still
remaining effective in detecting adversarial examples. In the following experi-
ments, we select the threshold that allows 95% clean example pass rate.

Detection Success Rate. Figure 6 shows how much contribution each detec-
tion criterion makes to filter adversarial examples. It also compares RADAR
(with all three criteria) and the existing MagNet approach (which uses the L-
norm and JS Divergence only). With the increase of attack magnitude, the attack
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Fig. 5. The trade-off between adversarial detection rate and clean pass rate

(a) RADAR performance under L1 en-
hanced attack

(b) RADAR performance under L∞
enhanced attack

Fig. 6. Contribution of each criterion and comparison of RADAR with MagNet

detection rate for all criteria/approaches increase as expected. Among the three
criteria, our newly introduced prediction uncertainty makes the most and dom-
inating contribution in detecting adversarial examples. As a result, RADAR
dramatically outperforms MagNet.

Model Performance. We also evaluate the performance of RADAR in terms of
the improvement of the target model’s prediction accuracy and F1 score. Since
any detection mechanism should not sacrifice the accuracy of clean examples,
we report the accuracy of clean examples without RADAR (clean) and with
RADAR (clean + RADAR). For the purpose of abalation study, we report the
accuracy of adversarial examples under different scenarios: 1) when there is no
defense (adv), 2) with detector only (adv + detector), 3) with reformer only (adv
+ reformer), and 4) with both detector and reformer (adv + RADAR). When
the RADAR detector is used, if an example is detected as adversarial, we will
flip its classification label and softmax output as the final prediction because
our task is a binary classification. When only reformer is used, the autoencoder
reconstructed output will be used for classification.

Figure 7 shows the target model accuracy and F1 score vs. varying perturba-
tion magnitude for different methods under different attacks. For clean examples,
employment of RADAR as a defense mechanism does not affect the prediction
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(a) Acc of L1 Enhanced Attack (b) F1 for L1 Enhanced Attack

(c) Acc of L∞ Enhanced Attack (d) F1 for L∞ Enhanced Attack

Fig. 7. Performance improvement

performance and can even improve the accuracy. We speculate the reason is
that the clean examples that are originally misclassified are usually close to the
classification boundary or are outliers, hence may have a high prediction uncer-
tainty or reconstruction error and be detected as adversarial examples. Once
they are detected, their prediction will be automatically flipped, which will be
correctly classified. Comparing the adversarial examples, only applying RADAR
as a reformer can effectively reform the adversarial examples and improve the
accuracy and F1 score by more than 10%. When RADAR works as both detec-
tor and reformer, it can additionally improve prediction accuracy by more than
60% and even exceeds the accuracy of clean examples. The F1 scores can also
be improved by 40% when the perturbation magnitudes are larger than 1.0. The
benefit of reformer on top of detector can be noticed in Fig. 7d. With increasing
perturbation magnitude, the model accuracy and F1 score of adversarial exam-
ples with no defense and reformer drop dramatically due to the increasing attack
power. However, interestingly, the model performance with the detection mecha-
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nism increases thanks to the increased detection rate as we have observed earlier.
These experiments verify the significant improvement of the model performance
and the effectiveness of the RADAR mechanism.

5 Conclusion

This paper is the first attempt to study potential defense methods for adver-
sarial examples on temporal EHR data. We proposed a recurrent autoencoder
based detection method called RADAR to detect adversarial examples accord-
ing to autoencoder reconstruction error, prediction divergence, and prediction
uncertainty. According to the evaluation on a mortality classifier, RADAR can
effectively detect more than 90% of adversarial examples and improve the target
model accuracy and F1 score by almost 90% and 60% respectively. Besides, we
also introduced an enhanced adversarial attack by incorporating the distribution
divergence into the loss function of the attack algorithm.

In the future, we plan to evaluate the performance of RADAR on other clin-
ical deep learning systems such as readmission prediction models. In addition,
the architecture of RADAR also has great potential to be improved by incorpo-
rating other deep learning models that are more powerful to model structural
EHR data such as Graph Convolutional Networks (GCN).
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