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Abstract. The vehicle damage assessment includes classifying damage
and estimating its repair cost and is an essential process in vehicle leas-
ing and insurance industries. It contributes heavily to the actual cost the
customer has to pay. The standard practices follow manual identification
of damages and cost estimation of repairs, resulting in noisy images of
the damaged parts, inconsistent categorization of damage types, and high
variance in repair costs estimation between two appraisers.

We employ explainable machine learning to highlight how the stan-
dard ML models and their training protocols fail when dealing with a
dataset acquired without a standard procedure. In this paper, we present
a multi-task image regression model for the leasing vehicle return assess-
ment that leverages the car configuration to reduce the cost of repair
assessment. Our solution achieves a 50% error reduction in the repair
cost estimates. Furthermore, we present remedies base on hierarchical
taxonomy and cost-sensitive loss to improve the damage classification
accuracy.

Keywords: Image classification · Computer vision · Cost-sensitive ·
Deep learning · Explainable machine learning

1 Introduction

Leasing vehicles such as luxury cars, cooperate vehicle fleets etc., is an attractive
option for many customers as it provides a cost-effective alternative to buying
those vehicles. It is estimated that the market share of the leasing vehicle indus-
try will grow more than USD 300 billion by 2021 [1]. The vehicle is used by
the customer for a contracted period of time. At the end of the contract, an
appraiser inspects the vehicle for damages and generates a report using the pic-
tures of damages and their associated repair cost. Traditional methods rely on
manual identification of damage and cost estimation of repairs, which results
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in noisy images of the damaged parts, inconsistent categorization of damage
types, and high variance in repair costs estimation between two appraisers. The
high variance in the cost of repair means that either the customer or the leasing
company were overburdened by the disproportionate estimates.

In recent years, the enhancement in the modeling capacity of deep learning
models for image analysis have made the automation efforts feasible in many
fields such as medical image diagnostics, roadside sign recognition, autonomous
driving, predictive maintenance, etc. Damage assessment of leased vehicles
presents another challenging application with huge potential to reap benefits of
advancement in the area deep learning and computer vision. The damage assess-
ment comprises two main components, 1) identification and classification of the
damage type and 2) predicting the cost of repair for that particular damage.
The two components are related, as the accurate classification leads to accurate
cost estimates. Although, there are many off-the-shelf deep learning solutions for
object detection and classification, however, tuning them to an industrial setting
brings its own challenges.

(a) Dent (b) Scratch (c) Stone chip

Fig. 1. In each sub figure, the image on the left is the original and on the right is
GradCAM generated overlay. The region of the images used by the model for decision
making are highlighted using GradCAM. The magenta color region surrounded by
violet is the focus region used for decision making. (Color figure online)

In this paper, we used the data collected by one of the leading vehicle leas-
ing company in Europe. The data collected by the traditional approach was
highly noisy, unstructured and labels were inconsistently categorized as in con-
trast to benchmark datasets available for the research purposes. To showcase the
problem, we trained an Inception v3 model using transfer learning techniques
and fine-tuned it on the label images from the company data. The classification
model was able to predict the correct damage labels with a nominal 50% accu-
racy. The strength of these models comes from extracting useful representations
from images, these representations are then used for decision making in a classi-
fication setting. To further investigate the reason for low accuracy, we employed
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GradCAM [10] to explain the decision made by the model, which is presented
in Fig. 1. Although there are some instances for which the model was able to
base its decision on the correct damage representation, however, due to the high
level of noise and incorrect images, a large majority of the decisions are based on
incorrect representations such as classifying a ‘Scratch’ based on the floor of the
workshop. Another main issue was the incorrect categorization of the damages,
for example, damages with similar visual representation were given two different
labels. Lastly, the cost of repair estimates has a high variance between different
observations for similar damage types.

In this paper, we tackle these problems using a combination of well-
established pre-processing techniques and explainable machine learning to iden-
tify and rectify the problems in the automation process. Firstly, we properly
annotated the images using bounding boxes that help in capturing a proper
representation of the damage types and remove noisy images. The problem of
inconsistent damage labels was tackled by defining the hierarchical class tax-
onomy. Secondly, to better utilize the cost of repair information in the damage
classification, we defined a cost-sensitive classification loss. And Lastly, we define
a cost regression model that uses both images and vehicle meta-features to pre-
dict the cost of repair.

To recap, our contributions are:

• We used a data-driven pre-processing procedure for adapting an industrial
dataset to a machine learning problem and used explainable machine learning
to define better damage categorization.

• We define a cost-sensitive classification loss as the classification error has an
associated penalty in terms of cost estimation.

• We present a cost regression model that leverages both car information as
well as damage images to reduce the variance in cost estimation.

2 Related Work

The detection and classification of damage from the picture and assessing the cost
is the main task of the leasing vehicle return assessment process. The assessment
of damage is not unique to the leasing vehicle return assessment process. It is
a core component of the insurance claim process such as vehicle and housing
damage claims. However, there are limited research studies conducted in this
particular area. In this direction, Patil et al. [8] created a small dataset of damage
cars through web crawling. They used some standard CNN models to extract
image features and feed it to an SVM classifier for predictions. The dataset is
limited to only dent and broken glass/light damage types and did not include
any cost estimations. Li et al. [5] conducted a study on detecting the fraud in a
car insurance claim and generated a damage dataset by crawling the Internet for
the damage images. They used an object detector to identify damage parts and
build a system to check for fraudulent claims. Although both the studies target
detection of the damages but they still fall short of providing or discussing a
complete solution for damage assessment. Previous studies were limited in their
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scope of exploring other types of damages that are frequent in the real world
dataset. On the contrary they focused on dent and scratch, which are easily
distinguishable due to distant features. In our case study, we worked with 14
different damage types, which occur frequently in real-world applications.

There are some literature available on related applications on damage detec-
tion. Maeda et al. [6] conducted a study on detection of road damage such as
cracks. The data was collected using mobile device, which consists of 8 differ-
ent types of damages, and used variety of object detection models to build an
automated solution. Similarly, the assessment of damages to a building after dis-
aster was studied by [7]. There is a commercial interest in the automation of the
damage insurance claim, which is evident from the fact that there are number
of startups working in this area such as Ant Financial and Tractable.ai to name
a few.

3 Methodology

In this section, we will formulate the leasing vehicle assessment process as a
multi-task machine learning problem and present the cost-sensitive loss for dam-
age classification.

3.1 Problem Formulation

The leasing vehicle return assessment process consists of two main tasks, i.e
classify a damage type and estimate its cost of repair. Generally, a multi-task
learning [11] setup best suits this type of problem. Let X = {X v,X p} define a set
of input space, where X v ∈ R

V is a set of vehicle features such as model, make,
color, body part, etc., and X p ∈ R

H×W is a set of associated pictures/images
to a capture visual representation of specific damage. The task-specific output
space Y = {Yd,Yc}, where Yd ∈ R

D represents a set of damages and Yc ∈ R

represents the cost of repair. The dataset set D = {xi, y
d
i , yc

i }N
i=1 consists of N

observations. To learn a joint model for two tasks, we have two sets of model
parameters, a set of model parameters θs that is shared between tasks and task
specific model parameters θd and θc. We want to learn a mapping function for
each task, which can be defined as,

ŷd(x, θs, θd) : X → Yd (1)
ŷc(x, θs, θc) : X → Yc (2)

We also have a specific loss for each task i.e. a cross-entropy loss L̂d(·, ·) for
damage classification and squared loss L̂c(·, ·) for cost of repair assessment. The
multi-task objective function thus becomes:

arg min
θs,θd,θc

αcL̂c (yc, ŷc(x, θs, θc)) + αdL̂d

(
yd, ŷd(x, θs, θd)

)
(3)
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where L̂j(yj , ŷj(x, θs, θj)) = 1
N

∑
(x,yj)∈D Lj(yj , ŷj(x, θs, θj)), j = {d, c}. The

task-specific weights αc ∈ R
+ and αd ∈ R

+ are hyperparameters, which are used
to control the weight of a specific task in the overall loss. However since we are
dealing with an industrial dataset, the images are noisy and collected without
a machine learning application in mind. Therefore, directly using a machine
learning model on this dataset does not yield the desired results. With this in
mind, we propose to solve the classification and regression problem separately.

Image Feature 
Extractor

Vehicle Feature 
Extractor

Damage 
Classification

loss

Cost 
Estimation

loss

MBV
Color
Part
….

FC 
LayersImage

Features

Fig. 2. The cost regression model for vehicle leasing return assessment process. The
upper part of the diagram corresponds to the image classification model and lower part
corresponds to a cost regression model.

3.2 Damage Classification

Damage classification is an important part of cost of repair estimation since
the type of damage directly impacts the cost. We have used Inception v3 and
Resnet20 as image feature extractors and since they are complex models we
have used transfer learning to initialize their weights pre-trained on ImageNet.
Transfer learning has shown to be an effective method to retrain a model with
limited data. For training the models, we propose to use two variations of the
multi-class classification loss function Ld(·, ·), the standard cross entropy loss
and cost-sensitive classification loss.

Cross Entropy Loss: The cross entropy loss is used as a proxy loss for a
misclassification rate, defined in Eq. (4).

Ld

(
yd, ŷd(x, θs, θd)

)
=

{
1, if yd �= ŷd(x, θs, θd).
0, otherwise.

(4)

In this loss function, if a model prediction does not match the target label, it
incurs an error. The error is always one, irrespective of the incorrect label selected
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by the model. This loss is widely used and best suited for situations in which the
penalty for all misclassifications is equal. The cost matrix for misclassification is
given in Table 1. For example, if the model misclassifies a scratch as a dent or
stone-chip, the penalty of the mistake is the same.

Table 1. (left) Cost matrix for misclassification, and (right) Cost matrix based on
average cost difference between pairs of damages

Damage Scratch Dent Stone Wear Burnt

Class -chip -Hole

Scratch 0 1 1 1 1

Dent 1 0 1 1 1

Stone 1 1 0 1 1

-chip

Wear 1 1 1 0 1

Burnt 1 1 1 1 0

-Hole

Damage Scratch Dent Stone Wear Burnt

Class -chip -Hole

Scratch 0 49 327 28 34

Dent 49 0 377 78 84

Stone 327 377 0 298 292

-chip

Wear 28 78 298 0 5

Burnt 34 84 292 5 0

-Hole

Cost-Sensitive Classification: In many applications, the cost for misclassi-
fication is not the same for all types of mistakes, for example, customer churn
prediction. In our problem, we are given the cost of repair for each instance of
the damage. The cost of repair of two different damage types could vary signif-
icantly. For this purpose we created a cost matrix by recording for each pair of
damage the difference between their average cost of repair, a subset of the cost
matrix is shown in Table 1. Again taking the same example as before, now if a
scratch is misclassified as a dent, it will incur a penalty of 49. On the other-hand,
misclassifying a scratch as a stone-chip will result in a penalty of 327. Therefore,
we used this information in the loss function and define a cost-sensitive loss given
in Eq. (5).

Ld

(
yd, ŷd(x, θs, θd)

)
=

{
cyd,ŷd(x,θs,θd), if yd �= ŷd(x, θs, θd).
0, otherwise.

(5)

where c·,· is an element of the cost matrix C ∈ R
D×D.

3.3 Cost Regression

The task of predicting the cost of repair can be categorized as a regression prob-
lem, which is defined in Eq. (2). There are many state-of-the-art machine learning
models, such as Gradient Boosted Decision Trees (XGB) [3] and Random Forest
(RF) [2], which have shown to perform exceptionally good on the regression task
for vector data. However, in our problem, we were given a mix of vector data
and images, more specifically, damage labels are encoded in images. To include
both, the vector data such as car information and pictures of damage, we use a
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deep neural network. We used a CNN based feature extractor i.e. Inception v3
and Resnet, to learn the latent representation of the images. The latent repre-
sentations of images are concatenated with car features and become the input
to the fully connected feed-forward neural network, as shown in Fig. 2. We used
mean squared error (MSE) loss Lc(yc, ŷc(x, θs, θc) = (yc − ŷc(x, θs, θc)2 to train
the model.

L̂c (yc, ŷc(x, θs, θc)) =
1
N

∑

(x,yc)∈D
(yc − ŷc(x, θs, θc)2 (6)

4 Experiments

This section talks about the dataset, the steps taken to make is compatible with
a machine learning setting and lays out the results for our classification and cost
regression.

Table 2. Statistics of leasing vehicle return dataset

Name Reports Images Damage Models Colors Parts repair

with Cost Types (mbv) actions

Count 39,000 342,029 35 51 165 166 21

Table 3. Statistics of dataset after annotation phase

Name Damage classes Sampled Images Annotated Images Total Crops

Count 14 + 1 48,000 17,083 25,228

4.1 Dataset

The dataset used in this paper was collected by one of the leading vehicle leasing
company in Europe. It is made up of 40, 000 reports that have been generated
manually by appraisers at the end of a leasing contract. The appraiser inspects
the car for damages, identify the damages, photograph them, and provides an
estimate for the cost of those repairs. There are 342, 029 photograph images
of damages and each image has a corresponding body part, damage type and
the estimate for the cost of repair. Overall, there are 166 meta-level body parts
and 35 damage types available in the collected dataset. Apart from the damage
specific information, we also have detailed meta-features about the vehicle out of
which the more relevant features are model, make and color. The information of
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the car model was available at a very fine grain level i.e. interior configurations,
and variation in the trim levels. We combined these models in high-level groups
represented by MBV, which are based on the model rather than the variants of
the same model, for example, the same car model with different trim levels is
treated as one model. The color of the car also plays an important role in the
repair cost estimation, as metallic or exotic colors cost more than the standard
colors. Table 2 provides an overview of the number of reports in the dataset and
the final number of these features.

Fig. 3. The frequency of samples for top-14 damage types, represented as a cumulative
frequency plot. It shows that first 9 classes listed from left to right covers around 50%
of the data, whereas, top 14 classes covers 83% data. This shows only 14 classes out of
35 total classes constitute majority of the data.

The dataset consists of 35 damage types, however, there are two main prob-
lems with these damage types. Firstly, the damage types can be categorized
into optical and non-optical damages. Optical damage has a visual appearance
and can be captured through pictures, for example, ‘dent’, ‘scratch’ and ‘stone-
chips’ etc. Whereas, non-optical damage cannot be captured or defined using
visual features, for example ‘smell of a bad odor’, ‘missing item’ or ‘play in a
component’. Therefore, the non-optical damage types cannot be included in the
classification task. Secondly, the damage types suffer from a typical long-tail dis-
tribution, some of the damage types did not have enough samples. To overcome
these two problems, we picked 14 most frequent optical damage classes, which
are shown in Fig. 3 as a cumulative frequency bar plot. We can see that ≈84%
of the dataset can be covered using only the top 14 classes.
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4.2 Exploratory Data Analysis

In this section, we perform an exploratory data analysis to understand the useful
relationship between different features. We used Kernel Density estimate of cost
and different features and plotted them in Fig. 41. To presents more meaningful
information in these plots, we used a single car model (mbv) to represent the
relationship between the color, damage, part, and the cost. In Fig. 4(a) shows
the cost of repair of a particular body part is higher than other, which verifies
that different body parts require a different type of repairs. Figure 4(b) shows the
cost relationship with color and again some colors have a higher cost of repair.
It is also to be noted that it might also depend on the extent of the damage i.e.
a small scratch might cost less to repair than a bigger scratch. Lastly, Fig. 4(c)
shows the relationship between the cost and damage, which is similar to the
color relationship. This can be caused by the extent of that damage but it is
highlighted that the final cost for damage is also impacted by the variance in
the opinion of an appraiser. We also wanted to see how the different parts and
colors were related to the damages, to see if particular damage is always related
to a certain part/color. Figure 5(a) shows that damage and color do not hold
a strong correlation as is expected. Conversely, we can see in Fig. 5(b) that the
damage and part appear to have a strong correlation. A ‘stone chip’ frequently
appears at the curved lining, where the paint is weakest. From this analysis, we
are able to infer that the model, color, part and damage under consideration
have an impact on the final cost and therefore need to be included in the model
as auxiliary information.

(a) cost vs parts (b) cost vs color (c) cost vs damage

Fig. 4. The plots represents Kernel Density estimate between cost and different car
features present in the dataset.

4.3 Data Cleaning and Annotation

The task of image classification relies heavily on the quality of the images being
trained on. The damage images in the reports are taken without a standard
1 The values of the cost of repair is always greater than 0, however, because of the

kernel density function some contours appear to be below zero values.
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(a) damage vs color (b) damage vs parts

Fig. 5. The plots represents Kernel Density estimate between damage and other car
features present in the dataset.

acquisition procedure and therefore vary significantly. Variance in lighting con-
ditions, distance from the damage, noisy backgrounds, and even dirty car parts
make the task of learning useful representations more challenging. In order to
learn a useful classifier for the damages, we annotated the dataset using bound-
ing boxes. We annotated the images with bounding boxes and marked those
images as ‘dirty’, which have a noisy background, dirty car, poor lighting, high
reflections, and blurrey images. We randomly sampled 3500 images from each
damage class to be annotated but because of the high level of noise, only 17, 083
were annotated, while the rest were marked as ‘dirty’. Furthermore, we created
crops of images using the bounding boxes, which resulted in 25, 000 crops of
damages. These crops are useful to learn a damage classifier, as crops capture
the visual representation of damages while reducing the background noise. The
summary of the statistics for the bounding box annotations are presented in
Table 3 and Fig. 7. Examples of the crops generated by the annotation phase
are presented in Fig. 6. An extra class was included, which we called a ‘negative
damage class’ to provide negative examples for training.

Fig. 6. Crops of damages
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Fig. 7. The number of samples for annotation vs actual clean images annotated.

4.4 Damage Classification

In this section, we perform the experiments for the classification task. For this
purpose, we used 25, 228 crop images dataset, which consists of color images,
sized 225×225, with 14 damage classes and a ‘negative damage class’. The data
was split into 90% train-set and 10% test-set, such that test-set contains equal
samples from each damage class. We perform 10 experiment runs, and for each
run creating a new train/test split. We used Inception v3 [12] and Resnet20 [4]
pretrained on the ImageNet dataset [9]. The training of these models was done
using SGD with momentum μ = 0.99 and the learning rate η was searched in
the grid η = {0.001, 0.01, 0.05, 0.1}.

Cross Entropy Loss. In the first set of experiments, we trained the classi-
fier using standard cross entropy loss given in Eq. (4). The results presented in
Fig. 10(a) show the classification accuracy on varying the number of damage
classes. It is evident from the results, as we increase the number of classes, the
complexity of the problem increases and the accuracy drops. The first column
for 3 damage classes consists of ‘Scratch’, ‘Dent’ and ‘Chip-Stone’, which have
very distinctive damage patterns, therefore, both the models were able to achieve
very good results. However, once we start to increase the number of classes, the
accuracy starts to degrade. The most significant drop in accuracy was observed
at 10 classes and more.

In order to investigate the performance degradation, we used an explainable
machine learning approach called GradCAM [10], which provides a method to
visualize the gradients of the image per pixel and gain insight on the regions
in an image used by the model for its decision to assign a particular class. The
GradCAM analysis on a few similar classes is shown in Fig. 8. At a cursory
glance, it becomes evident that the images for ‘Scratch’ and ‘Scratched’ classes,
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(a) Scratch (b) Scratched (c) Dent (d) Dent Paint

Fig. 8. Analysis of the damage crops using GradCAM. It highlights that some damage
types are visually similar.

and ‘Dent’ and ‘Dent Paint’ appear to be causing very similar activations in the
model. This is caused by the similar manifestation of the damages on the car
i.e ‘Dent’ and ‘Dent Paint’ are both visually similar. This will lead to confusion
between these classes and lead to poor classification accuracy.

Optical Damage12. corrosion

13. broken or
torn

14. paint
defect

8. dirty9. worn10. scratched
or stained

3. Stone-Chip2. Dent1. Scratch

7. deformed

6. marten
damage

5. burnt hole

4. wear

11. dent
paint 

(a) Fine Grain

Optical
Damage

14. paint
defect

8. dirty

Merged  Stone-
Chip

Merged  Dent

Merged
Scratch

Merged
deformed

6. marten
damage

5. burnt hole

4. wear

10. scratched
or stained

1. Scratch

11. dent
paint 

2. Dent

3. Stone-Chip

13. broken or
torn 7. deformed

9. worn

12. corrosion

(b) Coarse Grain

Fig. 9. Damage class taxonomy, a) original taxonomy and b) proposed taxonomy

In addition to GradCAM, we analyzed the confusion matrix on our test set to
identify the confusing cases. A certain pair of classes are being confused with each
other, which was evident from the confusion matrix, for example ‘Dent Paint’
and ‘Dent’, and ‘Corrosion’ and ‘Stone chip’ are frequently confused. This prob-
lem highlights that the degradation in the performance of a machine learning
model is not necessarily caused by the training or model choice, but it stems from
the non-standard categorization of the damage labels. To rectify the problem of
non-standard categorization of the damage labels, we proposed to group similar
classes based on their visual representations. We defined a hierarchy taxonomy
of the damage labels, which we referred to as ‘Coarse Grain’ (CG) taxonomy
Fig. 9(b), whereas, the original class taxonomy is referred as ‘Fine Grain’ (FG)
taxonomy Fig. 9(a). The classification accuracy for the CG taxonomy is pre-
sented in Fig. 10(b). It is observed that both Inception v3 and Resnet20 model
perform at par with each other. To compare the results of FG and CG tax-
onomy, we have to compare 9 classes results in Fig. 10(a) with Fig. 10(b), and



Leasing Vehicle Return Assessment 271

it becomes clear that despite increasing the confusing samples by keeping the
number of classes same, there is no degradation in the accuracy.

(a) Fine Grain (b) Coarse Grain

Fig. 10. The classification accuracy on the test-set was presented a) for Fine Grain
taxonomy and b) for Coarse Grain taxonomy. The numbers in the () on the x-axis
represents the case of the number of classes and ‘+’ sign represents that these classes
are added to the classes already present in the left bar.

Cost Sensitive Classification: In the second set of experiments, we trained
the damage classifier using cost sensitive loss given in Eq. (5). We used the same
training protocol as in the previous section, the only change was the evaluation
metric, which is changed from accuracy to cost-sensitive cost define similar to
Eq. (5). The results are presented in Fig. 11(a) and Fig. 11(b) for FG and CG
taxonomies respectively. The models trained on cost-sensitive loss had a lower
misclassification error as compared to the one which was trained on the misclas-
sification rate. It is also evident from the results if the problem is well defined,
for example in the case of classification of 3 damage types, the misclassification
error is very low, therefore, the performance of both the methods is equal.

4.5 Cost Regression

In this section, we perform the experiments for the prediction of the cost of repair.
We used the same dataset as explained in the damage classification section,
however, now the target is to predict the cost of repair. We used the car features
given in Table 2 with 14 damage classes to predict the cost of repair. The data
was split using a three-fold validation strategy, where two folds are used for
training and one for testing. The state-of-the-art models such as RF and XGB
were trained on this data excluding the images and using the appraiser assigned
damage type. We also build a custom Feed Forward neural network (FNN),
which consists of two fully connected layers with Relu activation function and
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(a) Fine Grain (b) Coarse Grain

Fig. 11. The average cost of misclassification (lower the better) on the test-set was
presented a) for Fine Grain taxonomy and b) for Coarse Grain taxonomy. The num-
bers in the () on the x-axis represents the case of the number of classes and ‘+’ sign
represents that these classes are added to the classes already present in the left bar.

Table 4. The results of cost regression task.

Model Features RMSE

Average model ∅ 237.43 ± 0.73

Linear regression Parts, mbv, color, damage, action 106.41 ± 3.81

Random Forest (RF) [2] Parts, mbv, color, damage, action 85.84 ± 3.99

XGboost (XGB) [3] Parts, mbv, color, damage, action 84.77 ± 1.78

FNN (our) Parts, mbv, color, damage, action 82.3 ± 2.8

FNN + Image (our) Image, parts, mbv, color, action 83.6 ± 0.73

dropouts. We performed extensive grid search to find the optimal number of
nodes {32, 64, 128, 256}, dropout rates {0.1, 0.3, 0.5, 0.7, 0.9} and learning rate
{0.01, 0.05, 0.1, 0.5}. Lastly, we combined inputs to FNN with the image latent
features learned in classification task, this helps to remove the dependence on
the true damage labels provided by an appraiser at inference. The RMSE scores
of different models are summarized in Table 4. The regression models were able
to achieve comparable RMSE score. However, it can be seen that FNN with
image feature does not require information about the true damage labels, which
it infers from the image feature. Lastly, Fig. 12 shows a comparison between the
natural variance in the dataset as compared to the error made by the models.
The mean cost variance of the dataset is higher than the model prediction errors,
which means if a customer goes for a repair, the estimate of the appraiser has
a variance of approximately ±172. Whereas, the model was able to significantly
reduce the variance to approximately ±80.
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Fig. 12. The comparison of natural variance in the dataset with the prediction made
by the model.

5 Conclusion

In this paper, we have presented the challenges encountered when translating
the gains made in the field of machine learning to a real-world application and
the necessary steps to overcome those challenges. Translating the gain to a pro-
priety dataset requires a data-driven approach to transform the dataset into one
that lends itself to machine learning problems. We show how explainable machine
learning can be employed to understand the factors causing the machine learning
models to under-perform and design a strategy to be applied to similar datasets.
This work has also shown a novel application of cost-sensitive loss functions to a
new use-case, where widely used cross entropy loss does not capture the impor-
tant aspects of the task at hand. We experimentally show the gains made by
leveraging cross domain knowledge i.e. using bounding boxes to improve classifi-
cation accuracy. Lastly, we developed a cost regression solution, which leverages
latent features from both images and vehicle feature to improve the regression
task. We were able to significantly reduce variance in the cost estimation as
compare to the manual estimations by appraisers.
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