
Estimating Precisions for Multiple Binary
Classifiers Under Limited Samples

Rahul Tripathi(B), Srinivasan Jagannathan, and Balaji Dhamodharaswamy

Amazon, Seattle, USA
{rahtripa,sjaganna,dhbalaji}@amazon.com

Abstract. Machine learning classifiers often require regular tracking of
performance measures such as precision, recall, F1-score, etc., for model
improvement and diagnostics. The population over which accuracy met-
rics are evaluated can be too large for a full ground-truth assessment and
so only small random samples are chosen for estimation. Ground-truthing
often requires human review, which is expensive. Moreover, in some busi-
ness applications, it may be preferable to minimize human contact with
the data in order to improve privacy safeguards. Thus, sampling meth-
ods that can provide estimates with low margin of error, high confidence,
and small sample size are highly desirable. With an ensemble of multiple
binary classifiers, choosing the right sampling method with these desired
properties and small size for the collective sample becomes even more
important. We propose a sampling method to estimate the precisions of
multiple binary classifiers that exploits the overlaps between their pre-
diction sets. We provide theoretical guarantees that our estimators are
unbiased and empirically demonstrate that the precision metrics esti-
mated from our sampling technique are as good (in terms of variance
and confidence interval) as those obtained from a uniform random sam-
ple.

We applied our sampling technique to performance evaluation of an
ensemble of binary classifiers. The reduction in sample size depends on
the extent of overlap between the predicted positive set of the ensem-
ble and that of the individual classifiers. Since we do not have a closed
form solution for quantifying the impact of the overlap, we relied on
simulations to investigate how the overlap between an ensemble (par-
ent) and component (child) classifier affects the overall sample size. We
found that for every combination of parent and child intersection ratio we
tested on, there were significant savings in sample size. Moreover, across
all these simulations, we found a mean reduction of 33% in the sample
size needed from a child. Our simulations also confirm that the preci-
sion metrics estimated from the samples generated using our sampling
technique have accuracy comparable to those estimated from uniform
random sampling.

Keywords: Model precision · Crowd-sourcing · Sampling

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 240–256, 2021.
https://doi.org/10.1007/978-3-030-67667-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-67667-4_15

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 241

1 Introduction

Machine learning (ML) models rely on the assumption that the target data
distribution is close (in statistical sense) to the training data distribution. While
the latter is static when the models are being developed and trained, in many
applications, the target data distribution may vary over time due to the dynamic
nature of production workloads that are classified by the models. In order to
continuously evaluate ML models, accuracy metrics such as precision and recall
need to be measured on a regular basis. For a binary classifier that classifies
any instance into either P (positives) or N (negatives), precision is defined as
the fraction of instances predicted as positive that are in fact positive whereas
recall is defined as the fraction of positive instances that are correctly predicted
as positive. More precisely, if TP, FP, FN denotes True-Positive, False-Positive,
and False-Negative instances respectively based on the classification decisions
by the model, then precision = TP/(TP + FP) and recall = TP/(TP + FN).

One of the main bottlenecks in tracking these model performance metrics
is the need for labeling of the target data used in the evaluation. The label
assignment process, called annotation or ground-truthing, in ML applications is
often done manually, which is not scalable. In particular, the cost of annotating
a dataset increases significantly with the size of the dataset. Additionally, in
some applications, it is preferable to minimize the exposure of data to manual
reviewers, for example, to improve privacy safeguards and increase security.

Quite often, an ML application is composed of an ensemble of multiple clas-
sifiers. As a result, for model performance diagnostics and tracking, it becomes
important to evaluate accuracy metrics of not only the ensemble but also each
individual ML classifiers. Therefore, a challenging problem is how to estimate
the performance metrics (e.g., precision) of multiple (binary) classifiers with low
error, high confidence, and minimal ground truth cost. In this paper, we focus
only on the precision performance metric, however, our techniques can be gen-
eralized to other measures.

There are two main approaches to estimating the precision of a classifier:
simple random sampling and stratified sampling. These sampling approaches
select a small, but statistically relevant, number of instances, called a sample
from the underlying population (i.e., the predicted positive set of a classifier).
Based on the ground-truth assignment of labels to instances in the sample, the
precision is estimated using the formula, discussed earlier, but applied to the
sample instead of the population.

In simple random sampling, one chooses a uniformly random sample from
the population. The main parameter here is the sample size, which as explained
in Sect. 3.2, depends on the desired level of accuracy and confidence. Simple
random sampling is quite effective in that it yields an unbiased estimator for
the precision. However, it can result in a larger sample size than possible with a
stratified sampling.

242 R. Tripathi et al.

Stratified sampling divides the population into k disjoint strata or bins, for
some fixed k. It requires two important considerations: (a) stratification method -
how the bins/strata are constructed and (b) allocation method - how the sample
size is split across all the bins. It is expected that stratification results in near
homogenous bins, i.e., bins containing high concentration of instances with same
ground-truth labels, and therefore it lowers the variance of the precision within
each bin. By giving different weights to bins and taking a weighted average of
the precision estimation from each bin, we can get an unbiased estimator for the
precision of the classifier. Also, if the variance in each bin is low, the resulting
estimator will also have low variance over the population.

In this work, we use the observation that if a random sample for one classifier
overlaps with the prediction set of another, then we can reuse the common
instances so that only a smaller sample size is needed for the other classifier.
Large-scale production systems often consist of multiple binary classifiers whose
individual predictions contribute to the final decision of an ensemble composed
of individual classifiers. This observation is particularly useful in such systems
since the classifiers are expected to have overlaps in their prediction sets. We
give theoretical justification and share experimental findings to show that the
new sampling scheme, based on this observation, reaches the same accuracy at
a significantly reduced sample size.

We describe our algorithms for estimating the precisions of multiple binary
classifiers in Sect. 4. We address the case of an ensemble model and its con-
stituent binary classifiers (Sect. 4.1). We present both theoretical and experi-
mental results to demonstrate that our solution achieves the desired objectives:
low error, high confidence, and low ground truth sample size compared to the
baseline (Sects. 4.1 and 5). Generalization of our method to other accuracy met-
rics (e.g., recall) is explained in Sect. 6. Finally, we conclude with a summary of
the main results (Sect. 7).

2 Related Work

Bennett et al. [1] adapts stratified sampling techniques to present an online
sampling algorithm to evaluate the precision of a classifier. They experimentally
demonstrate that their algorithm achieves an average reduction of 20% in sample
size compared to simple random sampling and other types of stratified sampling
to get the same level of accuracy and confidence. Similarly, Kumar [6] proposes
strategies based on stratified sampling to estimate the accuracy of a classifier.
They also experimentally show that their methods are more precise compared to
simple random sampling for accuracy estimation under constrained annotation
resources. In Kataria et al. [4], an iterative stratified sampling strategy is pre-
sented that continuously learns a stratification strategy and provides improved
accuracy estimates as more labeled data is available. However, for more thanone

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 243

classifier, it is unclear whether these stratified sampling based methods applied
individually to the constituent classifiers would give a similar saving on the size
of the collective sample set. Our proposed sampling algorithm relies on uniform
random sampling and achieves significant saving (e.g., on average ≈33% and
≈85% average reduction in sample size for any individual classifier in two differ-
ent experimental settings) compared to the baseline of simple random sampling
when applied individually on multiple classifiers for estimating their precisions.

For multiple classifiers, unsupervised methods for estimating classifier accu-
racies, ranking them, and constructing a more accurate ensemble classifier
based solely on classifier outputs over a large unlabeled test data are presented
in [3,7,8]. However, these methods rely on assumptions such as conditional inde-
pendence of classifiers or certain constraints on classifier errors, which limits
their practical applicability in many situations. Our work makes no assumption
regarding the classifiers.

3 Preliminaries

3.1 Notation

We consider binary classifiers that map instances from some universe Ω to either
positives (P) or negatives (N) label. The predicted positive set (predicted negative
set) of a classifier is the set of all instances that it maps to P (resp., N). Let
sequence S ⊆ Ω be an ordered multi-set in Ω and denote its length by |S|,
which includes duplicity. A subsequence of a sequence S contains a subset of
elements and preserves their ordering in S. The notation A − B denotes the
set difference between any two sets A and B in Ω. For any sequence S and set
A, we denote S ∩ A to denote the subsequence of S that contains all and only
those elements that are in A. If S and T are sequences, then S + T denotes the
sequence obtained by appending T to S to the right of S. If a is any instance
and S is a sequence, then count(a, S) denotes the number of occurrences of a in
S.

3.2 Sample Size to Estimate Precision

The precision of a classifier C for positives P can be estimated by uniformly
sampling instances from the predicted positive set of C. Given a sample with
sufficient number of such instances, we can label each instance to determine the
number of True-Positives (TPs) and False-Positives (FPs) in the collection. A
point estimate p̂ for the precision p is: p̂ = TP/(TP + FP).

To determine a (1 − δ)-confidence-interval with ±ε additive margin of error,
the sample size needed is given by ε ≥ z1−δ × s/

√
n, where s is the standard

deviation of each random instance, n is the number of samples, and for any
0 < α < 1, zα is the α’th quantile1 of the standard normal distribution. Since a
1 zα is a factor such that a normal r.v. N(μ, σ) lies inside the interval μ ± zασ with

probability α.

244 R. Tripathi et al.

sample instance being in P is a Bernoulli trial with success probability equal to
precision p, its variance is s2 = p(1− p). Plugging into the earlier equation gives

ε ≥ z1−δ ×
√

p(1 − p)
n

. (1)

Thus, for ε = 0.03, δ = 0.05, and the maximum variance assumption (p = 1/2),
the sample size estimate is 1068. If one is willing to make stronger assumptions,
e.g. precision is guaranteed to be at least some threshold p0, then the sample
size estimate can be considerably reduced (e.g., 385 if p0 ≥ 90% and 278 if
p0 ≥ 93%). We denote the sample size needed to estimate precision within ±ε
additive error and 1 − δ confidence by nε,δ.

4 Optimized Precision Estimation by Recycling Samples

Given a collection of binary classifiers, estimating the precision for each one
requires generating samples and assigning a label to each instance. The label
assignment (annotation), is typically a manual, laborious process whose cost is
proportional to the size of a sample. The baseline approach to estimate the pre-
cisions of a collection of k binary classifiers requires labeling individual sample
sets for each of the classifiers. Anchoring on one of the classifiers (called parent
in the follow up discussion), we consider the remaining classifiers as its children.
Any classifier whose predicted positive set is presumed to have significant over-
lap with those of the remaining classifiers is a good choice for the parent. For
example, an ML system may be composed of multiple binary classifiers with an
ensemble of them as the authoritative classifier. In this setting, the ensemble
could be considered a parent classifier because we expect the predicted posi-
tive set of the ensemble to overlap with that of each individual classifier. In
this section, we explain how samples from a parent classifier can be recycled to
generate subsamples of each child classifier, and thereby reduce the combined
sample size.

4.1 Classifiers with Overlapping Predicted Positive Sets

Suppose we have a parent classifier P with predicted positive set, denoted AP ,
and a sample SP generated from AP . Given a child classifier C with predicted
positive set, denoted AC , we exploit the overlap between AP and AC to generate
a sample SC using SP . We show the sample SC retains the statistical property
needed for an unbiased estimator of the precision of C, provided SP possessed
the same. Thus, it results in a smaller sample size to estimate the precisions of
both C and P compared to the baseline. We demonstrate empirically that our
estimates are within the desired margin of error and acceptable confidence.

Algorithm 1, called RecycleSamplesForPrecision, takes the input (a) the pre-
dicted positive sets AP and AC , (b) the size nC of the sample needed to esti-
mate the precision of C, (c) the sample SP , and (d) an option UniformSample

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 245

or UniformShuffle. It generates a sample SC and estimates precision p̂C for C.
In Line 1, S+ equals the subsequence (with repetitions) of all elements in SP

that belong to AC . In Line 2, a call to a function UniformSample is made, which
generates a uniform sample with replacement from a population. The function
takes three arguments (a) the population to sample from, (b) the size of the
sample, (c) and whether (or not) to sample with replacement. The subsequence
S− is a uniformly generated from AC − AP and its size is required to satisfy:
|S−|/|S+| = |AC −AP |/|AP ∩AC |. This is needed because any uniformly gener-
ated sample S from AC of size |S−|+ |S+| is expected to contain instances from
the disjoint sets AP ∩ AC and AC − AP in proportion to their sizes. Sremain in
Line 3 includes uniformly generated instances from AC to backfill any shortage
from just S+ and S− combined.

Any single instance in S+ + S− is not uniformly distributed over AC . To see
this, if e1 is the first instance and el is the last instance in this subsequence,
then e1 is likely to come from S+ and el from S−. Therefore, in such a case, e1’s
distribution is over AP ∩ AC whereas el’s over AC − AP , and so they are not
uniform over AC . The function MixSequence, defined in Algorithm 2, ensures
that S+ + S− is a uniformly random sample from AC , and so the estimator p̂C

in Line 8 is an unbiased estimator of the precision of C.

Algorithm 1: RecycleSamplesForPrecision
Data: Classifiers C and P with predicted positives sets AC and AP ,

respectively; sample size nC for C; a sequence SP of uniformly random
instances from AP ; and a parameter
option ∈ [UniformSample, UniformShuffle].

Result: Estimated precision p̂C of C and a sequence SC of uniformly random
instances from AC of size nC .

1 S+ ← SP ∩ AC .
2 S− ← UniformSample(AC − AP , |AC − AP | × |S+|/|AP ∩ AC |, replace=True)

3 Sremain ← UniformSample(AC , max(0, nC − (|S+| + |S−|), replace=True)

4 SC ← MixSequence(S+ + S−, option) + Sremain

5 if |SC | > nC then
6 SC ← SC [0 : nC]
7 end
8 p̂C ← fraction of positives instances in SC

9 return p̂C , SC

Figure 1 shows the child-parent relationship and the sets involved in gener-
ating the final sample SC . We transform the sequence S+ + S− into a sequence
S of uniformly random instances in Algorithm 2. Two possible ways are con-
sidered: (a) uniform sampling and (b) uniform shuffling. The former is nothing
but sampling with replacement and the latter is without replacement. In both
options, we show that the new sequence consists of uniformly random instances
from AC , and so the average p̂C is unbiased. We distinguish between these two

246 R. Tripathi et al.

Fig. 1. A parent classifier P overlapping with a child classifier C on their predicted
positive sets AP and AC , respectively. The right circle represents AP and the left AC .
A random sample SP , shown as a closed curve, intersects with AC as shown in the
shaded region. This shaded region represents S+, the shaded closed curve in AC − AP

represents S−, and the sprinkled tick-marks represent Sremain in the description of
Algorithm 1.

Algorithm 2: MixSequence
Data: A sequence S and a parameter

option ∈ [UniformSample, UniformShuffle].
Result: Rearranged sequence S, where option determines the rearrangement

method.
1 if option equals UniformSample then
2 S ← UniformSample(S, |S|, replace=True)
3 else if option equals UniformShuffle then
4 S ← UniformShuffle(S, |S|)
5 return S

options because only uniform sampling would result in total independence of
instances. This observation is useful in situations where C itself is an ensemble
of other classifiers. In such a situation, we may want to start with a uniformly
independent sample SC of C (i.e., sample with replacement), then recursively
apply Algorithm 2 by treating C as a parent classifier and its constituent clas-
sifiers as children of C.

In Lemma 1, we show that with uniform sampling as the option in the func-
tion MixSequence, the original sequence S+ +S− is transformed into a sequence
composed of independent and uniformly distributed instances from AC .

Lemma 1. Let S =df MixSequence(S+ + S−, option = UniformSample) in
Algorithm 1. Then S is a sequence of i.i.d. uniformly random instances from
AC .

Proof. Let si denote the i’th random instance in S. Since each si is chosen
uniformly from S+ + S− with replacement, si’s are independent and identically
distributed. We now show that, for any a ∈ AC and any i, it holds that Pr[si =
a] = 1/|AC |. Fix some a ∈ AP ∩ AC . Let S+ + S− =df Y1, Y2, . . ., Y|S|. Then

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 247

Pr[si = a] =
∑
�>0

Pr[si = a | |S+| = �] × Pr[|S+| = �]

=
∑
�>0

|S|∑
k=1

1
|S|Pr[Yk = a | |S+| = �] × Pr[|S+| = �]

=
∑
�>0

|AP ∩ AC |
|AC |�

|S+|∑
k=1

Pr[Yk = a | |S+| = �] × Pr[|S+| = �]

=
|AP ∩ AC |

|AC |
∑
�>0

1
�

×
�∑

k=1

1
|AP ∩ AC | × Pr[|S+| = �] =

1
|AC | .

Here, the second equality uses the fact that si equals Yk (for any k) with
probability 1/|S|. The third equality uses |S| = |S+| + |S−| = |AC |×|S+|

|AP ∩AC | , |S+| =
�, and the fact that since a ∈ AP ∩AC , the terms are zero for k ∈ [|S+|+1, |S|].
The fourth equality uses the fact that each element of AP ∩ AC is equally likely
to be the k’th element of S+, therefore Pr[Yk = a | |S+| = �] is equal to 1

|AP ∩AC | .

Additionally,
∑�

k=1 Pr[|S+| = �] equals l × Pr[|S+| = �].
For the case where a ∈ AC − AP , the analysis is analogous, with minor

differences. Instead of k varying over [1, |S+|] in the third and the fourth equality,
we now have k vary over [|S+| + 1, |S|], and the term 1

|AP ∩AC | is replaced by
1

|AC−AP | inside the second summation in the fourth equality. �	

In Lemma 2, we show that with uniform shuffling as the option in the function
MixSequence, the original sequence S+ + S− is transformed into a sequence
composed of uniformly distributed instances from AC , but the instances are not
independent.

Both Lemmas 1 and 2 appear identical in that they generate a uniform ran-
dom sample. However, the main distinction is in the independence of the resulting
sequence: uniform sampling results in an independent sequence whereas uniform
shuffle in Lemma 2 does not imply independence. Nevertheless, we explain below
that Lemma 2 gives rise to a stratified sampling procedure. We empirically show
that the mean, the std dev., and the 95% confidence interval of precision errors
are comparable to that of the simple random sample (see Table 1 and Fig. 2(b)
and 2(c)).

Lemma 2. Let S =df MixSequence(S++S−, option = UniformShuffle) in Algo-
rithm 1. Then S is a sequence of identically and uniformly distributed instances
from AC .

Proof. Let si denote the i’th random instance in S. Fix an element a of AP ∩ AC .
(A similar argument will apply if a ∈ AC − AP .) We will show that, for any
1 ≤ i ≤ |S|, Pr[si = a] = 1/|AC |, and so the lemma would follow. By the law of
total probability,

248 R. Tripathi et al.

Pr[si = a] =
∑

S+,S−
Pr[si = a | S+, S−] × Pr[S+, S−]

=
∑

S+,S−

count(a, S+ + S−)
|S| × Pr[S+, S−]

=
∑

S+,S−

|AP ∩ AC |
|AC | × count(a, S+)

|S+| × Pr[S+, S−]

=
|AP ∩ AC |

|AC |
∑
S+

count(a, S+)
|S+| ×

∑
S−

Pr[S+, S−]

=
|AP ∩ AC |

|AC |
∑
S+

count(a, S+)
|S+| × Pr[S+]

=
|AP ∩ AC |

|AC | E[Xa], (2)

where Xk, for any k ∈ AP ∩AC , is a random variable that equals the fraction of
times k occurs in S+ when each element in S (and so S+) is chosen uniformly at
random. Here, the second equality follows since S is a uniformly random shuffle
of S+ + S−. In the third equality, we use the fact that a ∈ AP ∩ AC implies
a ∈ S+, and so count(a, S+ + S−) = count(a, S+). We also use |S| = |AC |×|S+|

|AP ∩AC |
there. Note that

∑
k∈AP ∩AC

Xk = 1 and, by symmetry, E[Xk] = E[Xk′] for any
k, k′ ∈ AP ∩ AC . Hence, by the linearity of expectation, E[Xa] = 1/|AP ∩ AC |.
It follows from Eq. (2) that Pr[si = a] = 1/|AC |. �	

Lemma 2 shows that the resulting sequence is composed of uniformly dis-
tributed instances over AC . This shows that the estimator p̂C in Algorithm 1
with option = UniformShuffle is unbiased. Note that Algorithm 1 with option =
UniformShuffle is just a special case of stratified sampling with proportional allo-
cation [2] involving the two strata AC − AP and AC ∩ AP . This is true because
we maintained the ratio of |S+| to |S−| as that of |AC ∩ AP | to |AC − AP |.
Since AC ∩ AP is expected to be more homogeneous than AC and likewise for
AC − AP , the stratification should reduce the variance of p̂C .

Lemma 3 expresses the amount of saving in sample size in terms of various
probability events. As evident from Lemma 3, the saving in the sample size
depends on the extent of the overlap of AP ∩ AC relative to AP and to AC .
We refer to the ratios |AP ∩ AC |/|AP | as PIR (parent intersection ratio) and
|AP ∩ AC |/|AC | as CIR (child intersection ratio).

Lemma 3. Let S =df MixSequence(S+ + S−, option), nP =df |SP |, and X =df

|S+| in Algorithm 1. Let Savings denotes the number of sample instances saved
by Algorithm 1 relative to the baseline (simple random sampling) of sample size
nC . Then the following statements hold:

(a) X | nP ∼ B(nP , |AP ∩AC |
|AP |).

(b) Savings = X when X
nC

≤ |AP ∩AC |
|AC | .

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 249

(c) Savings = |S[0 : nC] ∩ S+| when X
nC

> |AP ∩AC |
|AC | .

Here, B(n, p) denotes the binomial distribution with parameters n and p.

Proof. Part (a) follows because each instance in S+ arises because of the suc-
cessful Bernoulli trial of choosing an element in AP ∩ AC uniformly and inde-
pendently from AP . Hence, the distribution of X = |S+| given nP is binomial
with number of trials nP and success probability |AP ∩AC |

|AP | . For Part (b), we note

that if X
nC

≤ |AP ∩AC |
|AC | , then |S| = |S+| + |S−| ≤ nC . Hence, in this case, we can

reuse all of S+ and so Savings equals X. The condition in Part (c) implies that
|S| > nC and so Sremain would equal the empty set. Therefore, any saving we
get would be due to only those instances in S+ that also occur in the first nC

instances in S. �	
Using Lemma 3, we can describe the distribution of savings as a function of PIR,
CIR, nP , and nC .

5 Experiments and Results

5.1 Metrics for Comparison

We consider the below metrics for comparing Algorithm 1 against simple random
sampling. Our simulations involve multiple trials in which each trial requires a
distinct seed for randomly selecting parameters of the simulation. For trial i,

– %Savings: this is the percentage savings in the sample size achieved by our
algorithm against a simple random sample. Formally, if si,a denotes the sam-
ple size required by our algorithm and si,r denotes the sample size required
by a simple random sample in trial i, then this equals si,r−si,a

si,r
× 100.

– %PrecisionError: this is the percentage absolute deviation of the point
estimate from actual precision. Formally, if p̂i and pi denote the estimated
and the actual precisions in trial i, respectively, then this equals |p̂i−pi|

pi
×100.

– %MaxCIError: this is percentage width of the 95% confidence interval
relative to the actual precision. Formally, if [li, ui] denotes the 95% con-
fidence interval and pi is the actual precision in trial i, then this equals
max{|li−pi|,|ui−pi|}

pi
× 100.

5.2 Simulations

We compare the sample sizes required by Algorithm 1 against that of simple
random samples for an ensemble of three classifiers whose properties and per-
formance are randomly chosen. We consider a majority vote ensemble model
(denoted MVE) as parent of three models (denoted ML1, ML2, ML3), which
are its children. We compare three different sampling algorithms for preci-
sions: (1) Simple Random Sample (SRS): each of MVE, ML1, ML2,

250 R. Tripathi et al.

and ML3 requires a separate sample of size 1100. As noted in Sect. 3.2,
1100 samples are sufficient to estimate precision within ±0.03 additive error
and 95% confidence. The collective sample size in this case is at most 4400
and can be lower if sample instances repeat across the collective samples.
(2) RecycleSampleForPrecision(RSFP)-Shuffle This is Algorithm 1 with
option=UniformShuffle. Here, MVE requires 1100 samples, but ML1, ML2,
and ML3 have reduced sampling requirements because of overlap between pre-
dicted positive sets of MVE and ML1, MVE and ML2, and MVE and ML3.
(3) RecycleSampleForPrecision(RSFP)-Sample: This is Algorithm 1 with
option=UniformSample.

We choose the parameters of our simulation as follows: (1) population size of
positives: set to one million; (2) number of trials: 200 (a separate random seed is
used in each trial); (3) class ratio of positives to the size of the entire population:
randomly chosen from [0.01, 0.5] range; (4) precision of model ML1 : randomly
chosen from [0.70, 1.0] range; (5) recall of model ML1 : randomly chosen from
[0.1, 1.0] range; and (6) precisions of models ML2 and ML3 : for each, randomly
chosen between 0.5 and that of ML1.

These random choices range over almost all permissible values of these param-
eters. Thus, our simulations were designed to cover arbitrary model performance
characteristics, and empirically illustrate the validity of our algorithms. The data
within each trial is generated independently as follows. First, the models ML1,
ML2, and ML3 are simulated by independently assigning each one scores between
0 and 1 using a truncated exponential distribution with shape parameter 0.5. In
order to de-correlate the scores across models, we divide the scores into blocks
of size 0.03 and randomly shuffle the scores of ML2 and ML3 within each block.
Next, for any fixed choice of (a) the class ratio of positives to the population
size, (b) precisions of the models, and (c) their recalls, we determine the right
decision threshold for each of the models so that their predicted positive sets
satisfy the precision and recall constraints. Next, fixing one of the models, say
ML1, we uniformly assign true-positive labels over the predicted positive set
and randomly assign the remaining false-negative labels over the predicted neg-
ative set of ML1. Here, we considered different variations of random assignment
of false-negative labels: uniform selection and exponentially decaying selection.
Once the scores and the thresholds of ML1, ML2, and ML3 are determined,
MVE is also uniquely defined. Together with the label assignments, we use the
data within each trial to estimate precisions using these sampling algorithms.

Figure 2 reports the metrics for comparison between our algorithms (RFSP-
Sample and RFSP-Shuffle) and the SRS (baseline) algorithm in the simula-
tion. In all trials and for each model, we compare %Savings in sample size,
%PrecisionError of the point estimate from actual precision, and %MaxCIError
of the 95% confidence interval relative to the actual precision. All three algo-
rithms use a simple random sample of size 1100 for MVE. Thereafter, the baseline
algorithm draws independent random samples of size 1100 for each of three ML
models whereas RFSP-Sample and RFSP-Shuffle require the same sample size
but different option setting. Since sampling for MVE is done similarly in all three
algorithms, we report comparison results only for ML1, ML2, and ML3.

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 251

(a) %Saving in sample size is compared
against simple random sampling for all
three models. High Savings correspond
to reduced sample size required to esti-
mate precision.

(b) %PrecisionError of the point esti-
mate from the actual is compared be-
tween Baseline and our algorithms. A
low precision error corresponds to a
tight point estimate.

(c) %MaxCIError in the width of the
confidence interval relative to the actual
is compared between Baseline and our
algorithms. A low width corresponds to
narrow confidence interval around the
actual.

Fig. 2. The boxplots are based on 200 trials with random selection of parameters of
the experiment. (a) Both RSFP-Sample and RSFP-Shuffle show significant savings
in sample size compared to simple random sampling for all the models. The median
%Savings reach above 85% in all cases because of high overlap between predictive
positives sets. Notice also that %Savings is low (<40%) in certain trials in which this
overlap is small. (b) The %PrecisionError of all three algorithms are low (e.g., the third
quartile is around 3% or less), which suggests that the point estimates from RSFP-
Sample and RSFP-Shuffle are tight. The outliers correspond to those trials where the
estimate deviates too far from actual, which is possible in up to 5% of trials. (c) The
%MaxCIError of RSFP-Sample and RSFP-Shuffle are also close to the Baseline for
all three models, which suggests that the samples generated from RSFP-Sample and
RSFP-Shuffle produce as narrow confidence interval as the simple random sampling.
The outliers correspond to the trials in which one of the (upper or lower) limits of the
generated confidence interval deviates too far from the actual, which is possible in a
small % of trials.

252 R. Tripathi et al.

Figure 2(a) shows that both RSFP-Sample and RSFP-Shuffle can lead to
significant %Savings in sample size compared to SRS. The savings is >85% in
at least half of the trials. The higher savings occur because of large overlap in
the predicted positives sets of the majority ensemble with each of ML1, ML2,
and ML3 in various trials. The overlap is possibly because the model scores
were somewhat positively correlated with each other during the simulation. The
simple random sample for any one model, say ML1, may also save on sample
size because of possible overlap with the random sample for MVE. However, if
the size of predicted positive sets of both ensemble and ML1 are extremely large
compared to the sample size (1100), the overlap is generally low.

In Fig. 2(b), we can see that %PrecisionError of all the algorithms are all
close to each other for each of the models (ML1, ML2, and ML3) and that RSFP-
Shuffle and baseline show slightly lower error than RSFP-Sample. For example,
the median, quartliles, and the inter-quartlile ranges for all three models are
lower for both RSFP-Shuffle and baseline than for RSFP-Sample. This shows
that both RSFP-Shuffle and SRS allow to produce an equally tight point estimate
of the precision with RSFP-Sample a little behind these two in accuracy. The
extreme outlier instance for Model 2 corresponds to a trial run in which the
actual precision was 0.539 and the estimated precision was 0.472, and so the
%PrecisionError turned out to be 12.43%.

In Fig. 2(c), we notice that %MaxCIError of each of the algorithms are again
close to each other. This shows that the confidence intervals produced from
RSFP-Sample and RSFP-Shuffle are almost as narrow as those from the simple
random sampling. The extreme outlier for ML2 is for the case when the actual
precision was 0.539 and the estimated confidence interval from RSFP-Sample
was [0.442, 0.501], and so %MaxCIError turned out to be 17.92%.

5.3 Savings in Sample Size as a Function of PIR and CIR

We ran a simulation of Algorithm 1 to evaluate the amount of savings for dif-
ferent PIR and CIR values. Here, we present results for option=UniformShuffle
because, as reported in Fig. 2 (see Sect. 5.2), the random shuffle provides more
accurate precision estimates. Specifically, we ran 200 trials each for 361 combi-
nations of PIR and CIR (values in the range [0.05, 0.95] in increments of 0.05).
In each trial of the simulations we randomly chose |AP ∩AC | in the range [10K,
100K] and performed a random selection of samples in SP . In Table 1, we report
the percentage saving in sample sizes (mean as well as 95% confidence interval)
for a representative subset of PIR and CIR values we used in the simulations.
We found a mean savings of 33.68%, and that in 95% of the simulation runs, the
savings varied between 4.43% and 82.98%. In Fig. 3, we present a surface plot
of the mean savings in the simulation runs as a function of PIR and CIR. Our
simulations confirm that significant amount of savings is achieved as the amount
of overlap between parent and child classifiers increases. Furthermore, the error
in precision due to our sampling method is extremely low (both mean and std.
dev. of %PrecisionError ≤1.51%) across all choices considered.

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 253

5.4 Practical Application of Algorithm 1

We applied our sampling algorithm to evaluate precision of binary classifiers for
the offensive content detection problem, studied in [5]. We start with the labeled
dataset considered in that work, take random subsets of it to create a train set
with 4.5M texts and a distinct test set with 2M texts. The ratio of positives and
negatives is kept 1:1 in both train and test sets. We implemented three binary
classifiers, namely Bi-LSTM, CNN, and LogReg, described in [9], and trained

Table 1. Percentage saving in sample size as a function of Parent-Intersection-Ratio
and Child-Intersection-Ratio is shown. For each combination of PIR and CIR below, we
report over 200 trials the mean and the 95% confidence interval of %Saving in sample
size and the mean and the std. dev. of %PrecisionError when applying Algorithm 1. As
seen below, the savings increase with increasing values for PIR and CIR, i.e., with the
amount of overlap between parent and child classifiers. Also, the mean, the std. dev,
and the 95% confidence interval of %precision errors from our algorithm are 1.367%,
1.269%, and [0.0379, 4.697]%, resp., which match closely with those from simple random
sampling that are 1.368%, 1.267%, and [0.0385, 4.678]%, resp.

PIR CIR Mean % 2.5th% 97.5th% mean% std. dev%

Saving Saving Saving Precision error Precision error

0.05 0.05 4.72 3.64 5.38 1.50 1.46

0.05 0.25 4.91 3.39 6.42 1.39 1.27

0.05 0.45 4.95 3.23 6.54 1.36 1.31

0.05 0.65 4.92 3.06 6.58 1.43 1.31

0.05 0.85 4.91 2.79 6.70 1.30 1.16

0.25 0.05 4.93 3.65 6.11 1.51 1.33

0.25 0.25 24.21 20.60 25.57 1.45 1.32

0.25 0.45 24.73 19.73 27.79 1.20 1.12

0.25 0.65 24.61 18.70 27.73 1.44 1.36

0.25 0.85 24.61 18.70 27.75 1.26 1.28

0.45 0.05 4.89 3.55 6.29 1.37 1.31

0.45 0.25 24.58 20.63 26.72 1.45 1.28

0.45 0.45 43.85 36.15 46.03 1.31 1.17

0.45 0.65 44.45 33.75 48.56 1.46 1.28

0.45 0.85 44.47 32.82 48.74 1.37 1.42

0.65 0.05 4.83 3.28 6.20 1.29 1.11

0.65 0.25 24.34 18.44 26.88 1.34 1.19

0.65 0.45 44.17 33.15 47.19 1.50 1.50

0.65 0.65 63.68 48.02 67.07 1.37 1.16

0.65 0.85 64.39 49.58 69.21 1.41 1.39

0.85 0.05 4.82 3.19 6.20 1.50 1.43

0.85 0.25 24.29 18.98 26.95 1.43 1.40

0.85 0.45 44.00 32.28 47.36 1.39 1.34

0.85 0.65 64.14 48.59 67.95 1.33 1.24

0.85 0.85 84.04 55.49 88.83 1.30 1.32

254 R. Tripathi et al.

them on our train dataset. We also created a majority vote ensemble (MVE) of
them. As in Sect. 5.3, we present results for option=UniformShuffle only.

We fed the Reddit test dataset as input to the classifiers discussed above, and
applied Algorithm 1 on the predicted positive sets to sample for precision. We ran
1000 trials to generate samples and calculated %PrecisionError and %Savings
from the samples in each trial. In Table 2, we observe that our algorithm can save
>88% in the number of samples needed to estimate precision, while obtaining
very low errors in the precision estimates derived from the smaller sample sizes.
Note that there is no saving for MVE since in this case our algorithm defaults
to a simple random sample. Moreover, the percentage precision errors of our
algorithm closely matches that of simple random sample for each model.

6 Generalizing to Other Performance Measures

The focus of this paper has been on the precision metric. However, as previously
stated, our approach can be generalized to other metrics such as recall. In this
section, we illustrate how we can generalize to recall calculations.

Fig. 3. A surface plot of %Savings as a function of parent intersection ratio (PIR) and
child intersection ratio (CIR). Notice that %Savings increase as both PIR and CIR
increase with %Savings can reach as high as 90%.

Table 2. The sizes of predicted positive sets, and the min/max of %PrecisionError
and %Savings over 1000 trials for each of the component models in MVE (majority
vote ensemble) are reported here. Note that there are no metrics for MVE alone, as we
would use simple random sample for MVE—the parent classifier.

Model Predicted
positive
set size

min/max %
precision error
(Algorithm 1)

min/max %
precision error
(simple random sample)

min/max %
savings

BiLSTM 776653 0.03/0.25% 0.03/0.34% 88.96/94.73%

CNN 848576 0.04/0.50% 0.04/0.41% 97.52/97.90%

LogReg 884272 0.01/0.56% 0.01/0.65% 90.22/91.72%

Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 255

Suppose C1 and C2 are classifiers with their precisions p1 and p2, recalls r1
and r2, predicted positive sets A1 and A2, and predicted negative sets B1 and B2,
respectively. Then the number of true-positives for C1 and C2 are given by p1|A1|
and p2|A2|, respectively. Since the total size of positives in the population (say N)
is fixed and independent of the classifiers, it follows that r1

r2
= p1|A1|/N

p2|A2|/N = p1|A1|
p2|A2| .

Generally, sizes of A1, A2, B1, and B2 are known. Therefore, if tight estimates
p̂1 on p1, p̂2 on p2, and r̂1 on r1 are known, then we can obtain a tight estimate
r̂2 on r2. Also, since recall equals TP/(TP + FN) and false omission rate (FOR)
equals FN/(TN + FN), we get recall r1 = p1|A1|

p1|A1|+f1|B1| where f1 is the FOR
of C1. It follows that the recall estimation problem for multiple classifiers is
reducible to obtaining tight estimates on their precisions and a tight estimate
on the FOR of a single classifier, say C1.

Sampling for estimating the FOR and for estimating the precision of a classi-
fier C1 are over disjoint populations B1 and A1, respectively. So, applying Algo-
rithm 1 to estimate FOR (by treating B1 and A1 as child-parent relationship)
will not result in reduced sample size. The overlap between B1 (predicted neg-
ative set of C1) and predicted positive sets of other classifiers are also expected
to be weak. Therefore, it is unlikely that Algorithm 1 will help. In this case,
estimating FOR for classifier C1 under limited annotations should ideally be
done using stratified sampling approaches suggested in [1,4,6]. In other words,
a combination of Algorithm 1 for estimating the precisions of multiple classi-
fiers and stratified sampling method for estimating the FOR of a single classifier
would suffice to estimate the recalls of multiple classifiers to achieve an overall
reduction in number of samples.

7 Conclusion

We presented a sampling algorithm RecycleSamplesForPrecision to estimate pre-
cisions of multiple binary classifiers with minimal sample size. Our algorithm
makes use of two properties: (a) the predicted positive sets of classifiers quite
often have significant overlaps and (b) if a random sample for estimating pre-
cision of one classifier overlaps with the predicted positive set of another clas-
sifier, then we can reuse the common instances to reduce the sample size. We
showed that our algorithm results in uniformly distributed random samples. We
ran experiments with an ensemble of three classifiers (with randomly assigned
accuracy metrics) and observed (in Fig. 2) that, for each individual classifier
in the ensemble, (a) the mean %savings is >80% and (b) the distribution of
%PrecisionError and %MaxCIError are all close to the baseline (simple ran-
dom sample). In particular, our algorithm with option=UniformShuffle gives
a slightly tighter estimate compared to option=UniformSample. Next, focusing
only on RecycleSamplesForPrecision with option=UniformShuffle, we ran exper-
iments over a wide range of possible ratios of intersections for parent and child
classifiers, and observed consistent savings in samples sizes across all these sce-
narios, where the amount of savings increases with the amount of intersection
ratios. Over all the runs of this experiment (see Table 1), we observe (a) a mean

256 R. Tripathi et al.

%savings of ≈33% and (b) the mean, the std. dev., and the 95% confidence inter-
val of %PrecisionError are 1.367%, 1.269%, and [0.0379, 4.697]%, respectively,
which are comparable to those of simple random sampling.

References

1. Bennett, P.N., Carvalho, V.R.: Online stratified sampling: evaluating classifiers at
web-scale. In: Proceedings of the 19th ACM CIKM, pp. 1581–1584. ACM (2010)

2. Cochran, W.G.: Sampling Techniques. Wiley, Hoboken (2007)
3. Jaffe, A., Nadler, B., Kluger, Y.: Estimating the accuracies of multiple classifiers

without labeled data. In: Artificial Intelligence and Statistics, pp. 407–415 (2015)
4. Katariya, N., Iyer, A., Sarawagi, S.: Active evaluation of classifiers on large datasets.

In: IEEE 12th International Conference on Data Mining, pp. 329–338. IEEE (2012)
5. Khatri, C., Hedayatnia, B., Goel, R., Venkatesh, A., Gabriel, R., Mandal, A.: Detect-

ing offensive content in open-domain conversations using two stage semi-supervision.
CoRR abs/1811.12900 (2018)

6. Kumar, A., Raj, B.: Classifier risk estimation under limited labeling resources. In:
Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD
2018. LNCS (LNAI), vol. 10937, pp. 3–15. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93034-3 1

7. Parisi, F., Strino, F., Nadler, B., Kluger, Y.: Ranking and combining multiple pre-
dictors without labeled data. Proc. Natl. Acad. Sci. 111(4), 1253–1258 (2014)

8. Platanios, E.A., Blum, A., Mitchell, T.: Estimating accuracy from unlabeled data.
In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 682–691 (2015)

9. Tripathi, R., Dhamodharaswamy, B., Jagannathan, S., Nandi, A.: Detecting sen-
sitive content in spoken languages. In: Proceedings of the 6th IEEE International
Conference on Data Science and Advanced Analytics (DSAA) (2019)

https://doi.org/10.1007/978-3-319-93034-3_1
https://doi.org/10.1007/978-3-319-93034-3_1

	Estimating Precisions for Multiple Binary Classifiers Under Limited Samples
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Sample Size to Estimate Precision

	4 Optimized Precision Estimation by Recycling Samples
	4.1 Classifiers with Overlapping Predicted Positive Sets

	5 Experiments and Results
	5.1 Metrics for Comparison
	5.2 Simulations
	5.3 Savings in Sample Size as a Function of PIR and CIR
	5.4 Practical Application of Algorithm 1

	6 Generalizing to Other Performance Measures
	7 Conclusion
	References

