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Preface

This edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2020) is one that we
will not easily forget. Due to the emergence of a global pandemic, our lives changed,
including many aspects of the conference. Because of this, we are perhaps more proud
and happy than ever to present these proceedings to you.

ECML PKDD is an annual conference that provides an international forum for the
latest research in all areas related to machine learning and knowledge discovery in
databases, including innovative applications. It is the leading European machine
learning and data mining conference and builds upon a very successful series of
ECML PKDD conferences.

Scheduled to take place in Ghent, Belgium, due to the SARS-CoV-2 pandemic,
ECML PKDD 2020 was the first edition to be held fully virtually, from the 14th to the
18th of September 2020. The conference attracted over 1000 participants from all over
the world. New this year was a joint event with local industry on Thursday afternoon,
the AI4Growth industry track. More generally, the conference received substantial
attention from industry through sponsorship, participation, and the revived industry
track at the conference.

The main conference programme consisted of presentations of 220 accepted papers
and five keynote talks (in order of appearance): Max Welling (University of
Amsterdam), Been Kim (Google Brain), Gemma Galdon-Clavell (Eticas Research &
Consulting), Stephan Günnemann (Technical University of Munich), and Doina Precup
(McGill University & DeepMind Montreal).

In addition, there were 23 workshops, nine tutorials, two combined
workshop-tutorials, the PhD Forum, and a discovery challenge.

Papers presented during the three main conference days were organized in four
different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining;

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging
the gap between practice and current theory;

– Journal Track: papers that were published in special issues of the journals Machine
Learning and Data Mining and Knowledge Discovery;

– Demo Track: short papers that introduce a new system that goes beyond the state
of the art, accompanied with a video of the demo.

We received a record number of 687 and 235 submissions for the Research and
Applied Data Science Tracks respectively. We accepted 130 (19%) and 65 (28%)
of these. In addition, there were 25 papers from the Journal Track, and 10 demo papers



(out of 25 submissions). All in all, the high-quality submissions allowed us to put
together an exceptionally rich and exciting program.

The Awards Committee selected research papers that were considered to be of
exceptional quality and worthy of special recognition:

– Data Mining best paper award: “Revisiting Wedge Sampling for Budgeted Maxi-
mum Inner Product Search”, by Stephan S. Lorenzen and Ninh Pham.

– Data Mining best student paper award: “SpecGreedy: Unified Dense Subgraph
Detection”, by Wenjie Feng, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi
Cheng.

– Machine Learning best (student) paper award: “Robust Domain Adaptation: Rep-
resentations, Weights and Inductive Bias”, by Victor Bouvier, Philippe Very,
Clément Chastagnol, Myriam Tami, and Céline Hudelot.

– Machine Learning best (student) paper runner-up award: “A Principle of Least
Action for the Training of Neural Networks”, by Skander Karkar, Ibrahim Ayed,
Emmanuel de Bézenac, and Patrick Gallinari.

– Best Applied Data Science Track paper: “Learning to Simulate on Sparse Trajectory
Data”, by Hua Wei, Chacha Chen, Chang Liu, Guanjie Zheng, and Zhenhui Li.

– Best Applied Data Science Track paper runner-up: “Learning a Contextual and
Topological Representation of Areas-of-Interest for On-Demand Delivery Appli-
cation”, by Mingxuan Yue, Tianshu Sun, Fan Wu, Lixia Wu, Yinghui Xu, and
Cyrus Shahabi.

– Test of Time Award for highest-impact paper from ECML PKDD 2010: “Three
Naive Bayes Approaches for Discrimination-Free Classification”, by Toon Calders
and Sicco Verwer.

We would like to wholeheartedly thank all participants, authors, PC members, area
chairs, session chairs, volunteers, co-organizers, and organizers of workshops and
tutorials for their contributions that helped make ECML PKDD 2020 a great success.
Special thanks go to Vicky, Inge, and Eneko, and the volunteer and virtual conference
platform chairs from the UGent AIDA group, who did an amazing job to make the
online event feasible. We would also like to thank the ECML PKDD Steering Com-
mittee and all sponsors.
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Abstract. With the thriving of online social networks, there emerges
a new recommendation scenario in many social apps, called Friend-
Enhanced Recommendation (FER) in this paper. In FER, a user is rec-
ommended with items liked/shared by his/her friends (called a friend
referral circle). These friend referrals are explicitly shown to users. Differ-
ent from conventional social recommendation, the unique friend referral
circle in FER may significantly change the recommendation paradigm,
making users to pay more attention to enhanced social factors. In this
paper, we first formulate the FER problem, and propose a novel Social
Influence Attentive Neural network (SIAN) solution. In order to fuse rich
heterogeneous information, the attentive feature aggregator in SIAN is
designed to learn user and item representations at both node- and type-
levels. More importantly, a social influence coupler is put forward to
capture the influence of the friend referral circle in an attentive manner.
Experimental results demonstrate that SIAN outperforms several state-
of-the-art baselines on three real-world datasets. (Code and dataset are
available at https://github.com/rootlu/SIAN).

Keywords: Heterogeneous graph · Friend-enhanced recommendation ·
Social influence

1 Introduction

Nowadays, with the thriving of online social networks, people are more willing
to actively express their opinions and share information with friends on social
platforms. Friends become essential information sources and high-quality infor-
mation filters. Items that friends have interacted with (shared, liked, etc.) have
great impacts on users, which are likely to become users’ future interests. There
are lots of recommender systems that concentrate on social influences of friends
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-67667-4_1
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Fig. 1. A typical illustration of the friend-enhanced recommendation. The left shows
the scenario that Jerry is recommended two articles, with friends (e.g., Tom) who
have interacted with (shared, liked, etc.) them explicitly shown underneath. The right
shows the formalization of the FER problem, where only friend referral items will be
recommended and friends who interacted with the item are explicitly displayed to user.

(e.g., following feed in YouTube and Top Stories in WeChat). Some social rec-
ommendation algorithms also consider social factors for personalization [4,16].

Impressed by the great successes of social influence in recommendation,
we propose a novel scenario named Friend-Enhanced Recommendation
(FER), which multiplies the influence of friends in social recommendation. FER
has two major differences from the classical social recommendation: (1) FER only
recommends to the user what his/her friends have interacted with, regarding
friends as high-quality information filters to provide more high-quality items. (2)
All friends who have interacted with the item are explicitly displayed to the
user attached to the recommended item, which highlights the critical importance
of explicit social factors and improves the interpretability for user behaviors.

In recent years, FER systems are blooming and have been widely-used by
hundreds of millions of users. Figure 1 gives a typical illustration of a real-world
FER. For each user-item pair, FER explicitly shows the friend set having inter-
acted with the item, which is defined as the Friend Referral Circle (FRC)
of the user to the item. For instance, the FRC of Jerry to the article about Air-
Pods is {Tom, Lily, Jack}. Such a FRC drastically highlights the social influence
of friends and their roles, which makes FER more complicated and relevant. It
has even changed the recommendation paradigm compared to classical social
recommendation. Taking Fig. 1 as an example, in classical social recommenda-
tion, Jerry would have no idea about the FRC (which is not displayed to him),
hence he may read an article based on his own interest. However, in our FER, in
addition to the attractiveness of the item itself, the influence of friends may be
the main reason for the click. Here the FRC is explicitly displayed to Jerry, so
the more likely reason why he clicks the article about AirPods is because Tom
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(a tech-expert friend) has read it. It is also entirely possible that Jerry reads
the article about Disneyland because his spouse Lily has read it. Furthermore,
when the article is related to technology, the coupling between the expert and
technology may have a greater impact on Jerry than that between his spouse
and technology, whereas the opposite scenario may happen w.r.t. entertainment.
Hence, in FER, multiple factors contribute to user clicks. The reasons for a user
clicking an article may come from (1) his interests in item contents (item), (2)
the recommendation of an expert (item-friend combination), or even (3) the
concerns on his friends themselves (friend). In FER, users have the tendency to
see what their friends have read, rather than to merely see what themselves are
interested in. It could even say that social recommendation focuses on bringing
social information to better recommend items, while FER aims to recommend
the combination of both items and friend referrals.

As the critical characteristic of FER, the explicit FRC brings in two chal-
lenges: (1) How to extract key information from multifaceted heterogeneous fac-
tors? FER involves multiple heterogeneous factors such as item contents, friend
referrals and their interactions. The impacts of these factors vary in different
scenarios with different combinations of users, items and friend referrals. FER is
much more challenging since it is required not only to learn user preferences on
items, but also to predict users’ concerns towards different factors. (2) How to
exploit explicit friend referral information? The explicit friend referrals greatly
emphasize the importance of social information in recommendation, which are
crucial in FER. However, there is few work that has explored the performances
and characteristics of FRCs in real-world recommendation. A deliberate strategy
is desired to make full use of the explicit friend referral information in FER.

To solve these issues, we propose a novel Social Influence Attentive Neural
network (SIAN). Specifically, we define the FER as a user-item interaction
prediction task on a heterogeneous social graph, which flexibly integrates rich
information in heterogeneous objects and their interactions. First, we design an
attentive feature aggregator with both node- and type-level aggregations to learn
user and item representations, without being restricted to pre-defined meta-paths
in some previous efforts [3,19]. Next, we implement a social influence coupler to
model the coupled influence diffusing through the explicit friend referral circles,
which combines the influences of multiple factors (e.g., friends and items) with
an attentive mechanism. Overall, SIAN captures valuable multifaceted factors
in FER, which successfully distills the most essential preferences of users from
a heterogeneous graph and friend referral circles. In experiments, SIAN signifi-
cantly outperforms all competitive baselines in multiple metrics on three large,
real-world datasets. Further quantitative analyses on attentive aggregation and
social influence also reveal impressive sociological discoveries. We summarize the
contributions as follows:

– We are the first to study the widely-adopted recommendation scenario named
friend-enhanced recommendation (FER), where friend referrals are attached
to items and explicitly exposed to users.
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– We propose a novel Social Influence Attentive Neural network (SIAN) for
FER. It uses a novel attentive feature aggregator to extract useful multi-
faceted information, and leverages a social influence coupler to judge the
significance of different friend referrals.

– Experiments on three real-world datasets verify the effectiveness and robust-
ness of SIAN. Further quantitative analyses also reveal valuable sociological
patterns, reflecting the changes and interpretability of user behaviors when
social influence becomes more significant.

2 Preliminaries

Definition 1. Heterogeneous Social Graph (HSG). A heterogeneous social
graph is denoted as G = (V, E), where V = VU ∪ VI and E = EF ∪ ER are the
sets of nodes and edges. Here VU and VI are the sets of users and items. For
u, v ∈ VU , 〈u, v〉 ∈ EF represents the friendship between users. For u ∈ VU and
i ∈ VI , 〈u, i〉 ∈ ER is the interaction relation between u and i.

It not difficult to extend the HSG by adding attribute features or link rela-
tions as a Heterogeneous Information Network (HIN) [14]. Figure 1 shows an
HSG containing three types of nodes, i.e., {User, Article, Media}, and multiple
relations, e.g., {User-User, User-Article, User-Media, Article-Media}.

Definition 2. Friend Referral Circle (FRC). Given an HSG G = (V, E),
we define the friend referral circle of a user u w.r.t. a non-interacting item i
(i.e., 〈u, i〉 /∈ ER) as Cu(i) = {v|〈u, v〉 ∈ EF ∩ 〈v, i〉 ∈ ER}. Here v is called an
influential friend of user u.

Taking Fig. 1 as an example, the friend referral circle of Jerry w.r.t. the non-
interacting article about AirPods is {Tom, Lily, Jack}, while the FRC in terms
of the article about Disneyland is CJerry(Disneyland) = {Will, Tom, Lily}.

Definition 3. Friend-Enhanced Recommendation (FER). Given an HSG
G = (V, E) and the FRC Cu(i) of a user u w.r.t. a non-interacting item i, the
FER aims to predict whether user u has a potential preference to item i. That
is, a prediction function ŷui = F(G, Cu(i);Θ) is to be learned, where ŷui is the
probability that user u will interact with item i, and Θ is the model parameters.

3 The Proposed Model

3.1 Model Overview

As illustrated in Fig. 2, SIAN models the FER with an HSG. In addition to
the user and item representations (e.g., hu for Jerry and hi for the Disneyland
article), SIAN learns a social influence representation (e.g., hui) by coupling
each influential friend (e.g., Tom) with the item. They are jointly responsible
for predicting the probability ŷui of interaction between user u and item i.
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Fig. 2. The overall architecture of SIAN. The attentive feature aggregator hierarchi-
cally aggregates heterogeneous neighbour features with node- and type-level attention,
and outputs the representations of users and items (i.e., hu and hi). The social influ-
ence coupler couples the influence of each influential friends and the item, to encode
the explicit social influence into the representation (i.e., hui).

First, each user or item node is equipped with an attentive feature aggrega-
tor with node- and type-level aggregations, which is designed to exploit multi-
faceted information. At the node level, the features from the neighbours of the
same type (e.g., articles that Jerry liked) will be aggregated in the current type
space; at the type level, the representations from different type spaces will be fur-
ther aggregated to encode multifaceted information. At each level, an attention
mechanism is employed to differentiate and capture the latent relevance of the
neighbors and types, respectively. Such a hierarchical attentive design enables
SIAN to encode the fine-grained relevance of multifaceted information, and the
dual attention mechanism allows it to delicately capture the effect of different
factors. Unlike some previous works [3,19], SIAN does not require any manual
selection of meta-paths, so that it is expected to yield a better performance.

Second, the influence from an influential friend (e.g., Tom) and an item
(e.g., the Disneyland article) is jointly captured with a social influence coupler,
which quantifies the degree of their coupled influence. Multiple coupled influences
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from the FRC are then combined through attentive propagation to derive the
representation of the overall influence (i.e., hc). With the learned user, item and
influence representations, SIAN predicts the probability ŷui that user u (e.g.,
Jerry) will interact with item i (e.g., the Disneyland article).

3.2 Attentive Feature Aggregator

Given an HSG G = {V, E}, attentive feature aggregator aims to learn user
and item representations (i.e., hu and hi, u, i ∈ V). Considering that differ-
ent neighbours of the same type might not equally contribute to the feature
aggregation, and different types entail multifaceted information, we design a
hierarchical node- and type-level attentive aggregation. Node-level aggregation
separately models user/item features in a fine-grained manner, while type-level
aggregations capture heterogeneous information.

Node-Level Attentive Aggregation. Formally, given a user u, let Nu = N t1
u ∪

N t2
u ∪ · · · ∪ N t|T |

u denotes his/her neighbours, which is a union of |T | types
of neighbour sets. For neighbours of type t ∈ T (i.e., N t

u), we represent the
aggregation in the t type space as the following function:

pt
u = ReLU(Wp(

∑
k∈N t

u

αkuxk) + bp), (1)

where pt
u ∈ R

d is the aggregated embeddings of user u in t type space. xk ∈ R
d

is the initial embedding of the neighbour k, which is randomly initialized. Here
Wp ∈ R

d×d and bp ∈ R
d are the weight and bias of a neural network. αku is the

attentive contribution of neighbour k to the feature aggregation of u,

αku =
exp(f([xk ⊕ xu]))∑

k′∈N t
u

exp(f([xk′ ⊕ xu]))
, (2)

where f(·) is a two-layer neural network activated with ReLu function and ⊕
denotes the concatenation operation. Obviously, the larger αku, the greater con-
tribution of neighbour k to the feature aggregation of user u.

Given multiple types of neighbours, we can get multiple embeddings for u in
various type spaces, denoted as {pt1

u , · · · ,p
t|T |
u }.

Type-Level Attentive Aggregation. Intuitively, different types of neighbours
indicate various aspects of information and a node is likely to have different
preferences for multiple aspects. Given a user u and his/her node-level aggregated
embeddings in different type spaces, we aggregate them as follows:

hu = ReLU(Wh

∑
t∈T

βtupt
u + bh), (3)

where hu ∈ R
d is the latent representation of user u. {Wh ∈ R

d×d,bh ∈ R
d}

are parameters of a neural network. βtu is the attentive preferences of type t
w.r.t. the feature aggregation of user u, as various types of neighbours contain
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multifaceted information and are expected to collaborate with each other. For
user u, we concatenate the aggregated representations of all neighbour types,
and define the following weight:

βtu =
exp(a�

t [pt1
u ⊕ pt2

u ⊕ · · · ⊕ p
t|T |
u ])

∑
t′∈T exp(a�

t′ [pt1
u ⊕ pt2

u ⊕ · · · ⊕ p
t|T |
u ])

, (4)

where at ∈ R
|T |d is a type-aware attention vector shared by all users. With

Eq. (4), the concatenation of various neighbour types captures multifaceted infor-
mation for a user, and at encodes the global preference of each type.

Similarly, for each item i, the attentive feature aggregator takes the neigh-
bours of i as input, and outputs the latent representation of i, denoted as hi.

3.3 Social Influence Coupler

To exploit the FRCs and capture the effects of influential friends, we propose
a social influence coupler. The differential impact of the influential friends and
the item on social behaviors is first coupled together, and then we attentively
represent the overall influence in the FRC.

Coupled Influence Representation. Following [7], human behaviors are
affected by various factors. In FER, whether u interacts with i is not simply
driven by only the item itself or only the friends. More likely, the co-occurrence
of friends and the item have a significant impact. As in the previous example
(Fig. 1), when it is technology-related, the coupling between the expert (e.g.
Tom) and the item (e.g. AirPods) has a greater impact than the coupling
between the spouse and a tech-item, but the opposite scenario may happen
for entertainment-related items. Hence, given user u, item i, and the FRC Cu(i),
we couple the influence of each friend v ∈ Cu(i) and item i as following:

c〈v,i〉 = σ(Wcφ(hv,hi) + bc), (5)

where hv and hi are aggregated representations of user v and item i. φ(·, ·) serves
as a fusion function, which can be element-wise product or concatenation (here
we adopt concatenation). σ is the ReLU function. Obviously, Eq. (5) couples the
features of item i and the influential friend v, capturing the influence of both.

Attentive Influence Degree. With the coupled influence representation c〈v,i〉,
our next goal is to obtain the influence degree of c〈v,i〉 on the user u. Since the
influence score depends on user u, we incorporate the representation of user u
(i.e., hu) into the influence score calculation with a two-layer neural network
parameterized by {W1,W2,b1, b2}:

d′
u←〈v,i〉 = σ(W2(σ(W1φ(cv,i,hu) + b1)) + b2). (6)

Then, the attentive influence degree is obtained by normalizing d′
u←〈v,i〉, which

can be interpreted as the impact of the influential friend v on the user behavior:

du←〈v,i〉 =
exp(d′

u←〈v,i〉)∑
v′∈Cu(i) exp(d′

u←〈v′,i〉)
. (7)
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Since the influences of friends propagate from the FRC, we attentively sum
the coupled influences of the influential friends and item v on user u:

hui =
∑

v∈Cu(i)
du←〈v,i〉c〈v,i〉. (8)

As the coupled influence representation c〈v,i〉 incorporates the latent factors of
the influential friend and the item, Eq. (8) guarantees that the social influence
propagating among them can be encoded into the latent representation hui.

3.4 Behavior Prediction and Model Learning

With the representations of user, item and the coupled influence (i.e., hu, hi and
hui), we concatenate them and then feed it into a two-layer neural network:

ho = σ(Wo2(σ(Wo1([hu ⊕ hui ⊕ hi]) + bo1) + bo2). (9)

Then, the predicted probability of a user-item pair is obtained via a regression
layer with a weight vector wy and bias by:

ŷui = sigmoid(w�
y ho + by). (10)

Finally, to estimate model parameters Θ of SIAN, we optimize the following
cross-entropy loss, where yui is the ground truth and λ is the L2-regularization
parameter for reducing overfitting:

−
∑

〈u,i〉∈ER

(yui log ŷui + (1 − yui) log (1 − ŷui)) + λ||Θ||22. (11)

4 Experiments

We conduct comprehensive experiments on three real-world datasets, demon-
strating superior performance and revealing interesting sociological patterns.

4.1 Datasets

Yelp and Douban are classical open datasets widely used in recommendation,
for which we build FRCs for each user-item pair to simulate the FER scenarios.
FWD is extracted from a deployed live FER system with real FRCs displayed
to users. The detailed statistics of datasets are shown in Table 1.

– Yelp1 is a business review dataset containing both interactions and social
relations. We first sample a set of users. For each user u, we construct a set
of FRCs based on the given user-user relations and user-item interactions.
Interactions with an empty FRC are filtered from the data. To get the initial
feature vector of a node, we learn the word embeddings with word2vec using
the review texts, and average the learned vectors for each user or item.

1 https://www.yelp.com/dataset/challenge.

https://www.yelp.com/dataset/challenge
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Table 1. Statistics of datasets.

Datasets Nodes #Nodes Relations #Relations

Yelp User (U) 8,163 User-User 92,248

Item (I) 7,900 User-Item 36,571

Douban User (U) 12,748 User-User 169,150

Book (B) 13,342 User-Book 224,175

FWD User (U) 72,371 User-User 8,639,884

Article (A) 22,218 User-Article 2,465,675

Media (M) 218,887 User-Media 1,368,868

Article-Media 22,218

– Douban2 is a social network related to sharing books, which including friend-
ships between users and interaction records between users and items. As pre-
processes done for Yelp, we construct a set of FRCs based on the given user-
user relations and user-item interactions. We take book descriptions and user
reviews as input of word2vec, and then output the feature vectors of books
and users. We predict the interaction probability between users and books.

– Friends Watching Data (FWD) is extracted from a real-world live FER
system named WeChat Top Stories after data masking, where FRCs are
explicitly displayed. Based on FWD, we construct a HSG containing nearly
313 thousand nodes and 12 million edges. Each user or item is associated with
some given features (e.g., age or content vectors). We predict the interaction
probability between users and articles.

4.2 Experimental Settings

Baselines. We compare the proposed SIAN against four types of methods,
including feature/structure-based methods (i.e., MLP, DeepWalk, node2vec and
metapath2vec), fusion of feature/structure-based methods (i.e., DeepWalk+fea,
node2vec+fea and metapath2vec+fea), graph neural network methods (i.e.,
GCN, GAT and HAN) and social recommendation methods (i.e., TrustMF and
DiffNet).

– MLP [10] is the most simple baselines, which is implemented with the same
architecture as the prediction layer in SIAN. It takes the concatenation of fea-
ture vectors of users and items as input, and output the prediction probability
of the interaction. Here we vary the size of feature vector with {32, 64}.

– DeepWalk, node2vec and metapath2vec. DeepWalk [12] and node2vec
[5] are two homogeneous network embedding methods. metapath2vec [3] is
a heterogeneous network embedding method based on meta-paths [15]. Here
we adopt meta-paths shorter than 4 and report the best performance. We

2 https://book.douban.com.

https://book.douban.com
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feed the embeddings of users and items into a logistic regression classifier to
predict the probability of interaction. The MLP as in SIAN is also be applied
here, but the performance is worse. Thus, we use the logistic regression here.

– DeepWalk+fea, node2vec+fea and metapath2vec+fea. With the
learned embeddings , we further respectively concatenate them with the fea-
tures of users and items, and use the logistic regression to evaluate perfor-
mances, which derives DeepWalk+fea, node2vec+fea and metapath2vec+fea.

– GCN, GAT and HAN. GCN [9] and GAT [17] are graph convolutional
networks designed for homogeneous graphs, while HAN [19] is designed for
heterogeneous graphs. These methods take node features as input and output
the node embeddings. We learn embeddings for users and items and then
predict the probability of interactions as the above method. We test the same
meta-paths used in metapath2vec for HAN and report the best performance.

– TrustMF and DiffNet. TrustMF [22] factorizes social trust networks and
maps users into two spaces. Here we use it to learn embeddings for users and
items. Then, we employ the aforementioned method to predict the interac-
tion probability. DiffNet [20] is a social recommendation method, which takes
social relations as input to enhance user embeddings. We learn the probability
of the user-item interaction by modifying the output layer with the sigmoid
function.

Parameters Settings. For each dataset, the ratio of training, validation and
test set is 7:1:2. We adopt Adam optimizer [8] with the PyTorch implementation.
The learning rate, batch size, and regularization parameter are set to 0.001, 1, 024
and 0.0005 using grid search [1], determined by optimizing AUC on the validation
set. For random walk based baselines, we set the walk number, walk length
and window size as 10, 50, and 5, respectively. For graph neural network based
methods, the number of layers is set to 2. For DiffNet, we set the regularization
parameter as 0.001. The depth parameter is set to 2 as recommended in [20]. For
other parameters of baselines, we optimize them empirically under the guidance
of literature. Finally, for all methods except MLP, we set the size of feature vector
as 64 and report performances under different embedding dimensions {32, 64}.

4.3 Experimental Results

We adopt three widely used metrics AUC, F1 and Accuracy to evaluate perfor-
mance. The results w.r.t. the dimension of latent representation are reported in
Tables 2, from which we have the following findings.

(1) SIAN outperforms all baselines in all metrics on three datasets with sta-
tistical significance (p < 0.01) under paired t-test. It indicates that SIAN
can well capture user core concerns from multifaceted factors in FER. The
improvements derive from both high-quality node representations generated
from node- and type-level attentive aggregations, and the social influence
coupler that digs out what users are socially inclined to. Besides, the consis-
tent improvements on different dimensions verify that SIAN is robust to the
dimension.



Social Influence Attentive Neural Network for FER 13

Table 2. Results on three datasets. The best method is bolded, and the second best
is underlined. * indicate the significance level of 0.01.

Dataset Model AUC F1 Accuracy

d=32 d=64 d=32 d=64 d=32 d=64

Yelp MLP 0.6704 0.6876 0.6001 0.6209 0.6589 0.6795

DeepWalk 0.7693 0.7964 0.6024 0.6393 0.7001 0.7264

node2vec 0.7903 0.8026 0.6287 0.6531 0.7102 0.7342

metapath2vec 0.8194 0.8346 0.6309 0.6539 0.7076 0.7399

DeepWalk+fea 0.7899 0.8067 0.6096 0.6391 0.7493 0.7629

node2vec+fea 0.8011 0.8116 0.6634 0.6871 0.7215 0.7442

metapath2vec+fea 0.8301 0.8427 0.6621 0.6804 0.7611 0.7856

GCN 0.8022 0.8251 0.6779 0.6922 0.7602 0.7882

GAT 0.8076 0.8456 0.6735 0.6945 0.7783 0.7934

HAN 0.8218 0.8476 0.7003 0.7312 0.7893 0.8102

TrustMF 0.8183 0.8301 0.6823 0.7093 0.7931 0.8027

DiffNet 0.8793 0.8929 0.8724 0.8923 0.8698 0.8905

SIAN 0.9486* 0.9571* 0.8976* 0.9128* 0.9096* 0.9295*

Douban MLP 0.7689 0.7945 0.7567 0.7732 0.7641 0.7894

DeepWalk 0.8084 0.8301 0.7995 0.8054 0.8295 0.8464

node2vec 0.8545 0.8623 0.8304 0.8416 0.8578 0.8594

metapath2vec 0.8709 0.8901 0.8593 0.8648 0.8609 0.8783

DeepWalk+fea 0.8535 0.8795 0.8347 0.8578 0.8548 0.8693

node2vec+fea 0.8994 0.9045 0.8732 0.8958 0.8896 0.8935

metapath2vec+fea 0.9248 0.9309 0.8998 0.9134 0.8975 0.9104

GCN 0.9032 0.9098 0.8934 0.9123 0.9032 0.9112

GAT 0.9214 0.9385 0.8987 0.9103 0.8998 0.9145

HAN 0.9321 0.9523 0.9096 0.9221 0.9098 0.9205

TrustMF 0.9034 0.9342 0.8798 0.9054 0.9002 0.9145

DiffNet 0.9509 0.9634 0.9005 0.9259 0.9024 0.9301

SIAN 0.9742* 0.9873* 0.9139* 0.9429* 0.9171* 0.9457*

FWD MLP 0.5094 0.5182 0.1883 0.1932 0.2205 0.2302

DeepWalk 0.5587 0.5636 0.2673 0.2781 0.1997 0.2056

node2vec 0.5632 0.5712 0.2674 0.2715 0.2699 0.2767

metapath2vec 0.5744 0.5834 0.2651 0.2724 0.4152 0.4244

DeepWalk+fea 0.5301 0.5433 0.2689 0.2799 0.2377 0.2495

node2vec+fea 0.5672 0.5715 0.2691 0.2744 0.3547 0.3603

metapath2vec+fea 0.5685 0.5871 0.2511 0.2635 0.4698 0.4935

GCN 0.5875 0.5986 0.2607 0.2789 0.4782 0.4853

GAT 0.5944 0.6006 0.2867 0.2912 0.4812 0.4936

HAN 0.5913 0.6025 0.2932 0.3011 0.4807 0.4937

TrustMF 0.6001 0.6023 0.3013 0.3154 0.5298 0.5404

DiffNet 0.6418 0.6594 0.3228 0.3379 0.6493 0.6576

SIAN 0.6845* 0.6928* 0.3517* 0.3651* 0.6933* 0.7018*

(2) Compared with the graph neural network methods, the impressive improve-
ments of SIAN proves the effectiveness of the node- and type-level atten-
tive aggregations. Especially, SIAN achieves better performances than HAN
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Fig. 3. Attentive aggregator analysis of User.

which is also designed for heterogeneous graphs with a two-level aggrega-
tion. It is because that the type-level attentive aggregation in SIAN captures
heterogeneous information in multiple aspects, without being limited by the
predefined meta-paths used in HAN. Moreover, the improvements also indi-
cate the significance of our social influence coupler in FER.

(3) Social recommendation baselines also achieve promising performances, which
further substantiates the importance of social influence in FER. Compared
with baselines which only treat social relations as side information, the
improvements imply that the friend referral factor may take the dominat-
ing position in FER, which should be carefully modeled. In particular, our
SIAN achieves the best performance, reconfirming the capability of our social
influence coupler in encoding diverse social factors for FER.

4.4 Impacts of Multifaceted Information

In attentive feature aggregator, each node embedding is aggregated from its
neighbours of various types with different weights. We investigate the contribu-
tion of heterogeneous factors (e.g., friend, item, media), by finding the average
type-level attention values (i.e., β in Eq. (4)) among all instances.

As shown in Fig. 3, the average attention value of the Friend type is signifi-
cantly larger than that of other types. It is perhaps astonishing that the model
pays more attention to users’ social relationships, a notable departure from con-
ventional recommendation where user-item interactions have thought to be more
critical. This also justifies the proposed social influence coupler in SIAN, which
plays an important role in extracting preferences from FRCs.

4.5 Analysis on Social Influence in FER

We have verified that FRC is the most essential factor in FER. However, a friend
could impact user from different aspects (e.g., authority or similarity). Next, we
show how different user attributes affect user behaviors in FER. Since we have
detailed user attributes in FWD, here we conduct analysis on it.

Evaluation Protocol. The attention in social influence coupler reflects the
importance of different friends. We assume that the friend v having the highest
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bution while the right is the background distribution. In each bar, the height of each
different-colored segment means the proportion of an attribute value in the influence
or background distribution. Best read in color.

attention value (i.e., du←〈v,i〉 in Eq. (6)) is the most influential friend w.r.t. item
i for user u, and all of v’s attribute values are equally regarded as contributing to
the influence. Given a user attribute and a user group, we define the background
distribution by counting the attribute values of all friends in FRCs of users in
this group, and also define the influence distribution by counting the attribute
values of the most influential friends of users in the group. Thus, the background
distribution represents the characteristics of general friends of this user group,
while the influence distribution represents the characteristics of the most influ-
ential friends of this user group. If the two distributions perfectly agree with
each other, this attribute is not a key social factor in influencing this user group.
In contrast, the differences between the two distributions imply how much this
attribute is a key social factor, and how its different values affect user behaviors.
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Results and Analysis. As shown in Fig. 4, we find out the following:

(1) In Fig. 4(a), we observe that user behaviors are more influenced by their
friends who are more authoritative, regardless of what authority the user
him/herself has. In all three user groups of varying authority, the proportion
of high-authority in the influence distribution is larger than that in the back-
ground distribution. For instance, in the mid-authority user group, the top
red block (high-authority influence) is larger than the top blue one (high-
authority background), which implies that high-authority friends are more
influential for mid-authority users. The result is not surprising as users are
usually more susceptible and easy to be affected by authoritative persons,
which is consistent with common sense. It also reveals an interesting phe-
nomenon in FER that sometimes users pay more attention to what their
bosses or community authorities like, rather than what they actually like.

(2) We also conduct several analyses on influences w.r.t. other user attributes.
We find that users are easy to be influenced by their friends which are simi-
lar to themselves. Specifically, Fig. 4(b) shows that people like items recom-
mended by their peers, especially for the youth and the elderly; meanwhile,
Fig. 4(c) and (d) show that users tend to watch articles recommended by
their friends with the same gender or location. Recommendation with user
similarity, which has been widely assumed in collaborative filtering, is still
classical even in FER.

In conclusion, while different social factors have various influences on the target
user, none of them is dominating, which further establishes the complexity of
FER. In this case, the promising improvements by SIAN demonstrate that it
could well capture multifaceted social factors in FER, which could potentially
contribute to the understanding of interpretable recommendation.

4.6 Parameters Analysis

Our SIAN involves two parameters, i.e., the embedding dimension d ∈ {32, 64}
and the L2-regularization parameter λ in Eq. (11). As we have reported model
performance w.r.t. d in Sect. 4.3, here we vary λ in the set of {0, 0.0001, 0.0005,
0.001, 0.005} to analyze its impact on model performance. As shown in Fig. 5,
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the optimal performance is obtained near λ = 0.0005, indicating that λ cannot
be set too small or too large to prevent overfitting and underfitting.

5 Related Work

Social Recommendation. With the booming of social media, rich social infor-
mation can be utilized for enhancing recommendation performance [2,6,11,13,
21], which motivates the advent of social recommendation. Specifically, SoRec
[11] integrates collaborative filtering with social information by proposing a prob-
abilistic matrix factorization model. [6] incorporates the trust influence on top
of SVD++, which takes the social neighbours’ preferences as the side informa-
tion. TrustMF [22] factorizes social trust networks and maps users into two low-
dimensional spaces: truster space and trustee space. Distinct from these methods
merely treating social neighbours as side information, SIAN models the social
information as first-class citizens based on the unique FRC formulation.

GNN-Based Social Recommendation. Recent advances in graph neural net-
works (GNN) have been crucial to modeling graph data [23]. Related to our work,
HAN [19] embeds heterogeneous graphs with node- and semantic-level atten-
tions, which heavily relies on the choice of predefined meta-paths. Besides, some
works attempt to utilize GNNs to model user-item bipartite graphs or/and social
networks. [18] integrates the knowledge graph into recommender systems, and [4]
incorporates the social network into the learning of user and item latent factors.
The recent DiffNet [20] models social influence with GCN. Although our SIAN
also employs a GNN-based framework, it is tailored to capture multifaceted
information diffusing from the FRCs through the novel node- and type-level
attentive feature aggregator and social influence coupler.

6 Conclusion

In this paper, we first formulated a novel friend-enhanced recommendation prob-
lem, which is widely applicable to many social apps, and presented a social
influence attentive neural network (SIAN). SIAN learns user and item repre-
sentations with a two-level attentive aggregator and distills preferences from the
unique friend referral circles with a social influence coupler. Experimental results
demonstrate that SIAN significantly outperforms state-of-the-art baselines on
three real-world datasets, and reveal interesting sociological patterns.
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Abstract. Representation learning on graphs, as alternatives to tra-
ditional feature engineering, has been exploited in many application
domains, ranging from e-commerce to computational biology. However,
generating satisfactory video embeddings and putting them into practi-
cal use to improve the performance of recommendation tasks remains a
challenge. In this paper, we present a video embedding approach named
Equuleus, which learns video embeddings from user interaction behav-
iors. In Equuleus, we carefully incorporate user behavior characteristics
into the construction of the video graph and the generation of node
sequences. To accurately quantify the contributions of different attributes
to embeddings, we propose a particular attributed encoder network,
which employs an attention mechanism to aggregate different attributes
in a distinguishable way. Moreover, we also leverage the user feedback
as a guide to correct the generation of embeddings. Video embeddings
generated by Equuleus have been used for relevant recommendation of
videos in MX Player. Based on real data from MX Player, extensive
offline experiments and online A/B test are conducted. Both experi-
mental results and online CTRs illustrate that Equuleus can generate
high-quality video embeddings and it can work effectively in a real-world
production environment.

Keywords: Recommender system · Representation learning · Graph
embedding · User behavior mining

1 Introduction

In recent years, with the rapid advancements in representation learning on graphs
[10,19,22], node embeddings have been applied to multiple downstream tasks
such as node classification, link prediction, visualization and pattern discovery,
and thus adopted by many applications. For recommender systems, the key
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elements, i.e., users, items and their relationships, can be modeled as a graph,
therefore, graph embeddings have recently come into use with the expectation
of mining the complicated relations between numerous users and massive items.

MX Player is one of India’s largest streaming platforms and reaches more
than 100 million daily active users from around the world. In the MX Player
App, there are four major types of videos: movie, music video, short video and
show, and video distribution and impression are heavily dependent on its internal
recommender system. For example, based on the video that a user is currently
watching, the recommender system in MX Player will recommend the related
videos to the user immediately. In order to enhance user experiences, we try to
apply the representation learning on graphs to MX Player for recommending
various videos.

Specifically, we have observed that there exists some inherent characteristics
in user behaviors of watching videos on the streaming App. First of all, while
watching videos continuously, users have some specific behaviors, e.g., they are
inclined to view the videos of the same type (e.g., movies). Secondly, users are
apt to choose the videos from one or several aspects of video characterics, in
other words, while users select what they will watch, some attributes of videos
play more important roles in user decisions and some attributes show no sense
of existence. Finally, compared with the other recommendation scenarios, in our
scenario, we can get the numbers of user clicking the videos and real duration
of watching videos, which indicate the user preferences. The above user behav-
ior features should be fused into the video embeddings. However unfortunately,
existing approaches cannot meet these requirements.

Therefore, for the video recommendation, we present a graph embedding app-
roach named Equuleus. Equuleus constructs the video graph from the user-video
interaction data, incorporates with the behavior features of users, and learns the
video embeddings. Further, backed by the video embeddings, we implement the
relevant video recommendation.

The main contributions of our work are summarized as follows.

• We give a detailed description for constructing a video graph, in which user’s
long-term preference and short-term preference are implied; we design a
behavior-driven random walk, in which user behavior patterns are embed-
ded intentionally.

• We design a node attributed encoder network, which employs an attention
mechanism to aggregate different attributes in a distinguishable way; we also
optimize the objective function by adding the user feedback as supervision
information.

• We conduct extensive offline experiments on real datasets. Experimental
results show that Equuleus can generate high-quality video embeddings, and
behaves better than several state-of-the-art methods for relevant recommen-
dation in terms of recall, NDCG (Normalized Discounted Cumulative Gain)
and MRR (Mean Reciprocal Rank). We also conduct online A/B test in MX
Player, the improvement of CTRs (Click Through Rates) shows that Equuleus
is effective in the live production environment.
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The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 gives the formulation of graph embedding to be solved. Section 4
describes our Equuleus approach in detail. Section 5 gives the experimental eval-
uation, including the results of online A/B test. Finally, the paper is concluded
in Sect. 6.

2 Related Work

Existing methods of representation learning on graphs can be roughly classi-
fied into two categories. The first class, including DeepWalk [13], LINE [15],
node2vec [8], GraRep [2], struc2vec [14], etc., generates the node embeddings
by capturing the structure similarity of nodes. The second class of methods
obtains node embeddings by mining both the graph structure and node fea-
tures. GCNs (Graph Convolution Networks) such as spectral convolution meth-
ods [5,11], GraphSAGE [9], and GATs [16] fall into this category.

DeepWalk [13] is a representative method of representation learning on
graphs, which borrows the idea from word2vec [12] in natural language pro-
cessing. By the depth-first random walk, DeepWalk can effectively capture the
spatial location similarity of nodes. Differing from DeepWalk, LINE [15] and
GraRep [2] employ the breadth-first-like random walks. They calculate the n-
order proximity of the nodes and obtain the spatial location similarity of the
nodes. Further, node2vec [8] designs a biased random walk strategy, combining
the depth-first and breadth-first walks. We note that these methods mainly con-
sider the neighbors of nodes when generating node embeddings, that is, the more
similar the neighbors of two nodes are, the more similar the node embeddings will
be. However, struc2vec [14] gives the solution from another point of view, that
is, it pays more attention to the topological structure similarity of nodes instead
of the distance between two nodes. Thus, as long as the topological structures
of nodes are similar in the graph, the final node embeddings will be similar.

Obviously, only depending on the graph structure to generate node embed-
dings is not good enough. For effectively learning from both the graph struc-
ture and node features, some spectral convolution methods and spatial convo-
lution methods are presented. In general, spectral convolution methods apply
the Fourier transform to the original graph, and then carry out the convolution
operation in the spectral space [5,11]. By contrast, spatial convolution methods
directly aggregate the features of the neighborhood nodes by different aggrega-
tion functions which can be Mean, MLP, LSTM, or Pooling, etc. Taking Graph-
SAGE [9] as an example, it samples a fixed number of neighborhood nodes for
each node, and then aggregates the feature of neighborhood nodes through the
aggregation functions to learn the embedding of nodes. In particular, Graph-
SAGE does not directly learn the node embeddings but a set of aggregation
functions, so it can adapt to the dynamic changes of graph structures, which
makes it an inductive learning method. Based on GraphSAGE, GATs [16] intro-
duce a self-attention mechanism, which can dynamically calculate the intensities
between the node and its neighbors, and then use the intensities as the weights
of the aggregation functions for further weighted aggregation.
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More recently, some work has successfully applied the representation learn-
ing on graphs to recommender systems [3,7,17,18,21]. For example, Alibaba
develops EGES [17] which integrates the auxiliary information of the items into
the node embeddings. By EGES, Alibaba learns the embeddings of billions of
products, and then use the learned embeddings for similar product recommen-
dation. Moreover, Pinterest [21] proposes a graph convolutional neural network
named PinSage to simultaneously integrate the structure information of graphs
and feature information of nodes. The generated embeddings of nodes have been
used to recommend items (pins) of billions of scales.

For video recommendation, existing work largely exploits the rich contents
of the videos. CER [6] incorporates content features with user-video interactions
to make effective video recommendation. The limitation is that they rely heavily
on the high-quality but expensive manual tagging content, which is probably
too coarse-grained to discover non-linear user-item relationships. Youtube [4]
proposes the deep learning based video recommendation method to explore the
non-linear user-item relationships, but it is unable to explicitly mine the multi-
order connectivity of user-item relationships.

Although there are successful cases, we note there is a gap between the goal of
representation learning on a graph and the goal of a real-world recommendation.
Previous representation learning methods often lack user feedback to guide the
learning process. Moreover, previous representation learning methods are often
incapable of learning the user behavior patterns in recommendation scenarios.

Comparing with the previous work, in the paper, we give a video-oriented
graph embedding approach Equuleus. Equuleus employs an attributed encoder
network and fuses the content description features of videos, watching-behavior
patterns and user feedback to learn the embeddings of videos.

3 Problem Formulation

Our task is to generate high-quality video embeddings and apply them to rec-
ommender systems, e.g., taking them as input of embedding-based similarity
search to form recall results or serving as complementary features to empower
the downstream ranking tasks. This paper will mainly describe how to generate
high-quality video embeddings to improve the user satisfaction in the relevant
video recommendation scenario, where the target video and its related videos
are similar videos of the same type (e.g., movie).

Video Graph. The video graph is a graph G = (V, E, E ,F), where V = {vi} is
the node set containing all types of the videos, E = {(vi, vj); vi, vj ∈ V} is the
edge set, E = {eij ; vi, vj ∈ V} is the weight set of edges, and F = {f1, ..., fF }
is the attribute (i.e., feature) set of nodes. Besides, for each node vi, we define
two node feature mapping functions. That is, φf (vi),∀f ∈ F , which maps the
attribute f of the node vi into the set of values (i.e., a node may have multiple
values for each attribute); ψ(vi), which maps the node vi into a behavior scalar,
and indicates a typical user behavior pattern in a specific recommendation sce-
nario.
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Problem (Graph Embedding). Given the graph G = (V, E, E ,F) and feature
mapping functions φf (·) and ψ(·), the problem to be solved is to get the node
embeddings {zi} by zi = Φ(vi) where vi ∈ V, Φ(·) : vi → R

k, k � |V|. Φ(·)
maps the node vi in the original graph to zi in the low dimensional embedding
space.

Note that a node attributed encoder network is acted as Φ(·) in our approach.

4 Equuleus Approach

In this section, we present the Equuleus approach. For learning the video embed-
dings, we carefully construct a video graph from the log and design a novel node
attributed encoder network. Further, we leverage user feedback as a guide to
correct the generation of embeddings. Finally, we design the watching-behavior
driven random walk to produce the node sequences which act as training data
to obtain video embeddings.

4.1 Construction of Graph

We construct the graph G with videos as nodes based on the user-video click log.
Note that we build the video graph for all types of videos, it is because besides
same types of videos, different types of videos also exist strong collaborative
information. For example, a movie is related to some music videos that have the
themes of the movie. Thus, taking the movie as a bridge, these music videos can
be related to each other.

For constructing the graph, we filter out invalid user-video click records whose
watching duration is less than 3 s, and split the log by day. We denote the log of
the current date as �0, the τ -day log before the current date as �τ , and the log
within n days from the current date as Ln = {�0, �1, ..., �n−1}.

Then we give the definition of basic similarity between two videos.

simLog(vi, vj) =
∑

a∈Ui∩Uj

∑

b∈Ui∩Uj

exp (−(da,b,i + da,b,j)/β)
α + |Ia ∩ Ib| (1)

In Eq. (1), Ui, Uj denote the set of users who have clicked vi and vj , respec-
tively. Ia, Ib represent the set of videos clicked by users a and b, respectively.
da,b,i and da,b,j represent the date span between user a and b clicking video vi

and vj , respectively. Specifically, α is a smoothing factor of the click number,
and β is a decay factor of the date span.

Intuitively, if the interest of user a quite differs from user b (i.e., 1/|Ia ∩ Ib| is
very large), then, in general, videos clicked by user a or b also quite differ from
each other. Coincidentally, if a and b both clicked some common videos, e.g., vi

and vj , there is obviously some potential relationship between vi and vj , where
the relationship can be indirectly reflected by the degree of interest difference
between a and b. This is the rationality for the 1/(α + |Ia ∩ Ib|) in Eq. (1). For
example, a likes sports and b likes entertainment. Accidentally, both a and b
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have watched some videos about the gossip of sports stars, which indicates that
there is a strong potential correlation between these videos. This strong potential
correlation may originate from the inherent content relevance and can be easily
reflected by the interest difference of users, i.e., 1/(α + |Ia ∩ Ib|).

Besides, the shorter the interection date span of a and b on vi and vj is, the
greater the impact of interest difference on the similarity of the videos vi and
vj should be. Therefore, in Eq. (1), we apply the exponential decay to the date
span by exp (−(da,b,i + da,b,j)/β).

Based on Eq. (1), we compute the following similarity of each pair (vi, vj),
where the long-term similarity and short-term similarity of each video pair
(vi, vj) capture the long-standing and short-lived impacts of the interactions
between users and videos, respectively, and the compound similarity is the com-
bination of long-term similarity and short-term similarity. Then, we treat the
value of compound similarity of the video pair (vi, vj) as the weight eij of edge
(vi, vj):

• Long-term similarity between the video pair (vi, vj) , i.e., lsim(vi, vj) :=
simLn

(vi, vj).
• Short-term similarity between the video pair (vi, vj), i.e., ssim(vi, vj) :=∑r−1

τ=0 exp(−τ/γ)sim�τ
(vi, vj), where r is the number of the recent days.

• Compound similarity, i.e., sim(vi, vj) := ssim(vi, vj) + lsim(vi, vj).

From the above process, we obtain the video graph G = (V, E, E ,F). The
building process of the video graph coarsely exploits the low-order connectivity of
videos within the interaction data. We will discover the multi-order connectivity
of videos by the following work.

4.2 Node Attributed Encoder Network

The goal of the encoder network is to encode the nodes from the high dimensional
space (O(|V|)) to the low dimensional space (O(k), k � |V|), and maximally pre-
serve the original graph structure. We propose a novel node attributed encoder
network that employs an attention mechanism to aggregate attributes of nodes
into the node embeddings.

Feature Embedding. Let P ∈ R
|V|×k denote the base (i.e., id) embedding

matrix of nodes. Thus, the base embedding of node vi is pi. Besides, for each
sparse feature f ∈ F , we set the embedding matrix for them, respectively, i.e.,
W 1 ∈ R

S1×k, ...,W f ∈ R
Sf ×k, ...,W F ∈ R

SF ×k, where W f denotes the embed-
ding matrix of feature f and Sf is the number of the distinct values of f . P and
{W f ,∀f ∈ F} are the randomly initialized model parameters that need to be
learned.

A node may have multiple values for each sparse feature. For the node vi and
the sparse feature f , we obtain the value set by Xf

i = φf (vi). We conduct the
mean pooling operation to map the feature f of node vi into the k-dimension
embedding. i.e.,
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qf
i = Sparse-Embedding(φf (vi),W f ) =

1

|Xf
i |

∑

x∈Xf
i

wf
x (2)

where wf
x is the row vector corresponding to the value x of feature f in W f .

Attributed Encoder Network. Intuitively, the base embedding of each node
inherently reflects rich information of the graph structure. Besides, the attributes
of nodes contain rich semantic information, which need to be incorporated into
the node embeddings to capture the potential content connection between nodes.

In video recommendation scenarios, the information rooted in each sparse
feature of a node is completely different. For example, the values of the “genre”
attribute are fine-grained enough to better characterize the richness of informa-
tion, while the “release year” attribute is coarse-grained one which lacks useful
information.

It requires us to identify which attributes are more important and contribute
more to the semantic representation of nodes. To meet the above requirements,
we design an attributed encoder network Φ(·) with an attention mechanism that
is capable of quantifying the contributions of different attributes. As a result,
Φ(·) aggregates the base embedding and sparse feature embeddings of the nodes
into the unified node embedding. The detailed architecture is shown in Fig. 1.

As shown in Fig. 1, this encoder network consists of an input layer, an embed-
ding layer, a pooling layer, an attention based attribute aggregator and a layer
normalization. Specifically, each sparse feature f of node vi is fed into the
mapping function in Eq. (2) to obtain {qf

i ,∀f ∈ F}. Besides, each node vi

is fed into the embedding layer to obtain the base embedding pi. After that,
pi, {qf

i ,∀f ∈ F} will be regarded as the input to the attention based attribute
aggregator to obtain the embedding gi, which is the addition of the base embed-
ding and the aggregated feature embedding. Finally, the layer normalization is
applied to gi to output the unified node embedding zi = Φ(vi). Formally,

zi = Φ(vi) = Encoder(vi) = LayerNorm(gi)

= LayerNorm(Aggregator(pi, {qf
i ,∀f ∈ F}))

= LayerNorm(pi +
F∑

f=1

aA(pi, q
f
i ) · qf

i ) (3)

For each node, the base embedding pi serves as the connection across different
attributes. Specifically, the aggregator aggregates the feature embeddings into
the unified node embeddings based on the quantified contribution of different
attributes to node base embeddings, where the contribution is measured by the
delicately designed attention network aA(pi, q

f
i ) with A ∈ R

F×k×k as network
parameters. Formally,

aA(pi, q
f
i ) = softmax(

qf
i

T
Afpi√
k

) =
exp(qf

i

T
Afpi/

√
k)

∑
f ′ exp(qf ′

i

T
Af ′

pi/
√

k)
,∀f = 1, ..., F

(4)
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Fig. 1. The architecture of the attributed node encoder network

where 1/
√

k is the scaling factor, and Af ∈ R
k×k is f -specific network parame-

ters originated from the slice of A. As such, the base embedding pi essentially
bridges the gap between feature-specific representations, and propagates infor-
mation across features during the gradient back-propagation process.

The layer normalization, referring to [1,20], is used here to stabilize training.

4.3 Feedback-Guided Learning

In the actual recommendation scenario, we can collect some implicit or explicit
user feedback data from the user-video click log, which could be regarded as the
special scenario-related attributes of nodes and are probably able to improve the
quality of embeddings if being incorporated into the learning objective. In our
relevant recommendation scenario, for each video pair, i.e., a target video and
the recommended related video, we collect the aggregated co-click feedback data
to construct the feedback-guided learning objective.

Specifically, for each target node, the learning objective consists of three
parts: a) the positively correlated objective of the implicit positive samples based
on the behavior-driven random walk introduced in Sect. 4.4. b) the positively
correlated objective of the explicit positive samples which are the top-M co-
click feedback samples related to the target node. c) the negatively correlated
objective of the negative samples.
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Formally, the final objective for each pair (vi, uj) is as follows.

J(Φ) = − λ1 log
(
σ(Φ′(uj)T Φ(vi))

) − λ2

M∑

m=1

Eym∼pi(y) log
(
σ(Φ′(ym)T Φ(vi))

)

−
T∑

t=1

Est∼p(s) log
(
σ(−Φ′(st)T Φ(vi))

)

(5)
In Eq. (5), vi is the target node and uj is the context node of node vi, which

are constructed from the node sequences of the behavior-driven random walk
with a h-size window in Sect. 4.4. Φ(·) is the target node encoder introduced
in Sect. 4.2 and Φ′(·) is the context node encoder with the same architecture
but different parameters to Φ(·). λ1 measures the importance of implicit posi-
tive samples and λ2 measures the importance of explicit positive samples from
feedback data. pi(y) is the distribution of the explicit positive samples of vi.
Given vi and top-H samples {y1, y2, ..., ym, ..., yH} ranked by the co-click num-
ber, pi(ym|vi) = eH−m/

∑H
m′=1 eH−m′

. M(< H) is the sampled number of the
explicit positive data. p(s) is the distribution of negative samples. We randomly
sample T nodes on the entire graph based on the uniform distribution as negative
samples of vi.

4.4 Behavior-Driven Random Walk

In real-world scenarios, user behaviors often show some regularities. For example,
in the relevant recommendation scenario, there is usually a strong correlation
between the next recommended related video and the last clicked video from
the video attribute perspective (e.g., of the same types or languages). Therefore,
we design a behavior-driven random walk to generate node sequences from the
video graph. In detail, for the target node vi, we design two meta-path schemes
to obtain the node sequences starting from vi.

• P1 : vi → u1 → u2 → ... → uj ... → ul, where l is the walk length. Each node
uj in the path is independent of the previous node, i.e., ψ(uj) ∈ R. In this
situation, it is equivalent to performing the random walk on the full graph
according to the probability distribution calculated by the edge weights. The
transition probability of each node is as follows,

p(uj+1|uj ,P1) =

⎧
⎨

⎩

ej,j+1∑
o∈N (uj)

ej,o
(uj , uj+1) ∈ E

0 (uj , uj+1) /∈ E

(6)

where u0 = vi, N (uj) is the neighborhoods of uj .

• P2 : vi
ψ(vi)−−−→ u1

ψ(u1)−−−−→ u2
ψ(u2)−−−−→ ...

ψ(uj−1)−−−−−→ uj
ψ(uj)−−−→ ...

ψ(ul−1)−−−−−→ ul, where
we let ψ(ui) = ui.c. That is, the video types of the nodes (ui.c) will be used to
characterize the behavior that a user continuously watches videos of the same
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type at the related recommendation pages. In this situation, we conduct the
random walk along the nodes of same type to vi, i.e., uj .c = uj−1.c = vi.c.
The detailed transition probability of each node is as follows,

p(uj+1|uj ,P2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ej,j+1∑
o∈N (uj)∩Vuj.c

ej,o
(uj , uj+1) ∈ E, uj+1.c = uj .c

0 (uj , uj+1) ∈ E, uj+1.c �= uj .c

0 (uj , uj+1) /∈ E

(7)

where Vuj .c is the set of nodes with video type uj .c, and N (uj) ∩ Vuj .c is the
set of nodes with video type uj .c among the neighbors of node uj .

We construct the target-context node pairs with a h-size window over the
node sequences of the behavior-driven random walk and feed them into the
feedback-guided learning process in Sect. 4.3 to learn embeddings.

If needed to mimic the other behave patterns, we can customize ψ to be other
functions.

5 Evaluation

To evaluate the effectiveness of Equuleus, we conduct extensive experiments.
First, we conduct an ablation study to observe the contributions of different
core components in Equuleus, including the behavior-driven random walk, the
attributed encoder network and the feedback-guided learning. Then, in order to
evaluate the quality of node embeddings obtained by Equuleus, we perform the
dimension reduction and visualization of embeddings to observe whether videos
of similar attributes are close to each other in the embedding space. Then, by
the embedding-based similarity search for top-K recommendation, we compare
Equuleus with some state-of-the-art methods. Finally, we conduct the A/B test
to observe the performance of the embedding-boosting ranking for relevant video
recommendations in a live production environment.

5.1 Experimental Setting

Dataset. We collect nearly 1 billion valid records occurred between Oct. 14,
2019 and Nov. 14, 2019 from MX Player. For experiments, we randomly choose
the starting date g between Oct. 14, 2019 and Nov. 14, 2019 and use the data
between [g, g + 14) to form the training dataset and the data on the g + 14 day
to form the testing dataset. In total, we form five groups of data, each with a
training dataset and a testing dataset.

Next, we set the hyperparameters used in the process of constructing the
graph. By default, α = 10, β = 7, γ = 7, n = 14 and r = 3. The constructed
graph serves as the same input to all experimental methods.

We construct the video graphs from training datasets, and the resulting five
video graphs reach 181,628 nodes and 31,416,170 edges on average. Note that
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the following experimental results are the average over the results of five groups
of data.

Embedding-Based Similarity Search for Top-K Recommendation.
With the embeddings in hand, we calculate the cosine similarity between two
embeddings and search the top-K related videos as the recommendation results.
In experiments, we focus on four relevant video recommendation scenarios, i.e.,
recommending relevant movies to videos of movie type, recommending relevant
shows to videos of show type, recommending relevant music videos to videos
of music video type and recommending relevant short videos to videos of short
video type. They are denoted as Movie, Show, Music Video and Short Video,
respectively.

Evaluation Metric. We adopt three typical ranking metrics in top-K rec-
ommendation, i.e., Recall@K, NDCG@K (Normalized Discounted Cumulative
Gain) and MRR@K (Mean Reciprocal Rank) where K is set to 50 by default.
For each video, we use the embedding-based similarity search to generate the
predicted top K recommendation results based on the learned embeddings from
the training dataset. Then, we regard the real user feedback in the testing dataset
as the ground truth. Specifically, for each video in the testing dataset, we rank
the relevant videos by the total numbers of user clicks on the videos to form
the ground truth ranking list. Similarly, the ground truth score for each recom-
mended video in NDCG@K is measured by the number of clicks.

5.2 Ablation Study

In this section, we conduct an ablation study to observe the effectiveness and
contribution of each core components in Equuleus, including the behavior-driven
random walk (denoted as C1), the feedback-guided learning (denoted as C2) and
the attributed encoder network (denoted as C3). We take the original DeepWalk
method as the Baseline (denoted as BL), and successively replace the part in the
Baseline with the proposed components to form BL+C1,BL+C2, BL+C3 and
BL+C1+C2. BL+C1+C2+C3 forms Equuleus. Table 1 lists their performance
in terms of Recall@50, NDCG@50 and MRR@50. The percentage in parenthe-
ses after each result in Table 1 is the ratio of the improvement relative to the
Baseline.

From Table 1, individually replacing the part in the Baseline with each com-
ponent proposed in this paper would contribute to the recommendation per-
formance in terms of Recall@50, NDCG@50 and MRR@50. Specifically, the
feedback-guided learning leads to the significant improvement in movie recom-
mendation scenarios, i.e., increasing 44.95% in Recall@50, 45.67% in NDCG@50,
and 15.81% in MRR@50. Moreover, the attributed encoder network improves
significantly on Music Video and Short Video, which shows that the fusion of
attributes can greatly deepen the exploration of related videos. Taking the music
video recommendation as an example, the attributed encoder network improves
the recall@50 by 58.54% and NDCG@50 by 54.53%. Above all, Equuleus shows
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Table 1. Ablation study over core components in Equuleus

Videos Metrics BL BL+C1 BL+C2 BL+C3 BL+C1+C2 Equuleus

Movie Recall@50 0.1942 0.2455 (26.42%) 0.2815 (44.95%) 0.2422 (24.72%) 0.2900(49.33%) 0.3058 (57.47%)

NDCG@50 0.3063 0.3565 (16.39%) 0.4462 (45.67%) 0.3606 (17.73%) 0.4524(47.70%) 0.4211 (37.48%)

MRR@50 0.1733 0.1894 (9.29%) 0.2007 (15.81%) 0.1799 (3.81%) 0.1994(15.06%) 0.1964 (13.33%)

Show Recall@50 0.5047 0.5559 (10.14%) 0.5458 (8.14%) 0.5481 (8.60%) 0.5768 (14.29%) 0.6058 (20.03%)

NDCG@50 0.4624 0.4912 (6.23%) 0.5309 (14.81%) 0.5117 (10.66%) 0.5458 (18.04%) 0.5465 (18.19%)

MRR@50 0.2786 0.2843 (2.05%) 0.2866 (2.87%) 0.2792 (0.22%) 0.2889 (3.70%) 0.2880 (3.37%)

Music Video Recall@50 0.2243 0.2984 (33.04%) 0.3108 (38.56%) 0.3556 (58.54%) 0.3811(69.91%) 0.4347 (93.80%)

NDCG@50 0.2208 0.2820 (27.72%) 0.3417 (54.76%) 0.3412 (54.53%) 0.3584(62.32%) 0.3828 (73.37%)

MRR@50 0.2074 0.2264 (9.16%) 0.2037 (-1.78%) 0.2242 (8.10%) 0.2122(2.31%) 0.2306 (11.19%)

Short Video Recall@50 0.1812 0.2443 (34.82%) 0.3298 (82.01%) 0.3342 (84.44%) 0.3666 (102.32%) 0.3924 (116.56%)

NDCG@50 0.1669 0.2099 (25.76%) 0.3034 (81.79%) 0.2708 (62.25%) 0.3168 (89.81%) 0.3182 (90.65%)

MRR@50 0.2032 0.2189 (7.73%) 0.1962 (-3.44%) 0.2224 (9.45%) 0.2022 (-0.49 %) 0.2352 (15.75%)

the excellent results, which illustrates the effectiveness of the combination of
three components.

5.3 Visualization

With the help of the t-SNE (t-distributed Stochastic Neighbor Embedding)
method, we conduct the dimension reduction and visualization of embeddings
obtained by Equuleus. Through the visualization, we are able to observe whether
the content-related videos (e.g., the videos with the same genre or language) are
clustered closely.

Figure 2 shows the language distribution of movies in a two-dimension form.
From Fig. 2, videos of the different languages, including English, Tamil, Malay-
alam, Kannada, Telugu and Hindi videos, are separately clustered.

Further, as shown in Fig. 3, we give a visualization instance of shows from
the three-dimension perspective. From Fig. 3, we can see the shows of similar
style posters are clustered closely. Then we zoom the two regions and find that
the cartoon shows are clustered closely and the drama and romance shows are
clustered closely.

These visualization results vividly demonstrate that Equuleus can generate
high-quality video embeddings.

5.4 Performance Comparison

We select following seven methods as competitors to conduct comparative exper-
iments:

• DeepWalk [13]. DeepWalk is one of the earliest random walk based graph
embedding approach.

• LINE [15]. LINE optimizes the objective function that preserves both the
local and global network structures by first- and second-order proximities.

• node2vec [8]. node2vec designs a biased random walk to efficiently explore
diverse neighborhoods.

• GraphSAGE [9]. GraphSAGE utilizes the node attributes and aggregates the
local neighborhoods into the node embeddings.
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Fig. 2. The visualization of language
distribution

Fig. 3. The visualization of posters
of shows

• GATs [16]. GATs introduces the multi-head self-attention mechanism to
dynamically aggregate the neighborhoods based on the attention scores
between target node and neighborhood nodes.

• EGES [17]. EGES proposed by Alibaba differentially fuses the attributes of
nodes by adaptive coefficients to obtain the node embeddings.

• PinSage [21]. PinSage is a random walk based GCN in Pinterest, which is
trained in a supervised fashion using a max-margin ranking loss. We regard
the co-click video pairs in the feedback data (described in Sect. 4.3) as the set
of labeled pairs in our scenarios.

The above methods use the graph G constructed in Sect. 4.1 as the input.
For each method, we set the values of dimensions k for unique id embedding
and attribute embeddings to 64, the length of the random walk l to 20, the
window size h to 5 and the number of negative samples T to 50. We utilize
the grid search method to find the best values for the remaining parameters.
That is, for node2vec, we set its own parameters q = 2, p = 4. For GraphSAGE,
we use a two-layer mean aggregators with 25 and 10 sampled neighbors for
each layer, respectively. For GATs, we use two attentional layers, each with
2 attention heads and 10 sampled neighbors. For PinSage, we use a two-layer
GCN with neighborhood size 20. For Equuleus, λ1 = 1.0, λ2 = 2.0,M = 5.
For fair comparison, GraphSAGE, GATs, EGES, PinSage and Equuleus all use
the ids and attributes as features. The parameters for training are kept the
same for these methods. i.e., lr = 3e−4, batch size = 1024, epoch = 10. We employ
AdamOptimizer to control the progress of learning procedures.

Table 2 shows the performance results of different methods for the four types
of video recommendation scenarios. The last column of Table 2 gives the improve-
ment proportions of Equuleus relative to the best method of the other seven
methods.
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Table 2. Performance comparison of different methods

Videos Metrics DeepWalk node2vec LINE GraphSAGE GATs EGES PinSage Equuleus % Improv.

Movie Recall@50 0.1942 0.2060 0.2212 0.2363 0.2679 0.2232 0.2452 0.3058 14.15%

NDCG@50 0.3063 0.3134 0.3093 0.3210 0.3560 0.3502 0.3554 0.4211 18.29%

MRR@50 0.1733 0.1724 0.0621 0.1017 0.0906 0.1557 0.1315 0.1964 13.33%

Show Recall@50 0.5047 0.5162 0.5299 0.5259 0.5478 0.5359 0.5259 0.6058 10.59%

NDCG@50 0.4624 0.4715 0.4318 0.4824 0.4865 0.4970 0.4930 0.5465 9.96%

MRR@50 0.2786 0.2814 0.1228 0.2113 0.1939 0.2416 0.2427 0.2880 2.35%

Music Video Recall@50 0.2243 0.2391 0.2383 0.3108 0.3752 0.3209 0.3267 0.4347 15.86%

NDCG@50 0.2208 0.2328 0.2096 0.2725 0.3227 0.3145 0.3041 0.3828 18.62%

MRR@50 0.2074 0.2096 0.0672 0.1493 0.1451 0.2065 0.1774 0.2306 10.02%

Short Video Recall@50 0.1812 0.1956 0.2393 0.3095 0.3588 0.2687 0.3192 0.3924 9.36%

NDCG@50 0.1669 0.1749 0.1905 0.2315 0.2604 0.2409 0.2556 0.3182 22.20%

MRR@50 0.2032 0.1996 0.0598 0.1176 0.0900 0.1986 0.1593 0.2352 15.75%

From Table 2, we find that for all scenarios, the top-K recommendation per-
formance of Equuleus is better than that of other methods, which fully demon-
strates the effectiveness of Equuleus. Further, we can obtain the following obser-
vations and inferences:

• LINE and node2vec generally outperform DeepWalk in terms of Recall@50.
This is probably due to the fact that the first- and second-order proximities
of LINE and the BFS in node2vec can better utilize the local neighborhoods
of nodes to better explore the structural equivalence over the full graph.

• Compared with DeepWalk, node2vec and Equuleus perform better, which
may be due to their biased random walks. Further, Equuleus outperforms
node2vec. We believe this is because Equuleus better captures the scenario-
specific characteristics by the designed behavior-driven random walk.

• GraphSAGE, EGES, GATs, PinSage, and Equuleus are generally superior to
DeepWalk, node2vec, and LINE in terms of the Recall@50 and NDCG@50.
These show that the attributes play significant roles in discovering the
content-related videos and effectively promote the recommendation oppor-
tunities of low-exposed videos.

• Among these methods, the disparity in MRR@50 is observed. In terms of
MRR@50, Equuleus behaves best, followed by EGES. GCNs (e.g., Graph-
SAGE, GATs and PinSAGE) behave worse than some methods without uti-
lizing the node attributes, such as DeepWalk and node2vec. It is probably due
to the different ways of utilizing attribute information. GCNs treat all sparse
attributes equally, i.e., concatenate the corresponding embeddings together
and feed into a fully connected layer to get the node representation. As a
result, they may find many content-related but unsatisfactory videos. Both
EGES and Equuleus fuse the attributes of nodes in a distinguishable way,
which makes it easier to distinguish the satisfactory videos from unsatisfac-
tory ones. Further, the win of Equuleus demonstrates the attention mecha-
nism in Equuleus can better guide which attributes contain more semantics
and form the informative unified embeddings.
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• Equuleus outperforms GCNs. It shows that the careful exploitation of the
internal information of target nodes may be more effective than that of the
information of neighboring nodes. Besides, the feedback-guided learning and
behavior-driven random walk also contribute to the performance of Equuleus.
It is worth noting that our proposed components may be able to give an extra
power to GCNs. Further studies will be made in our future work.

5.5 Online A/B Test

We have applied the learned embeddings to relevant video recommendation sce-
narios in MX Player.

We apply Equuleus to this downstream recommendation task from two
aspects. Firstly, we regard the Equuleus as a new recall method. That is, we
conduct the embedding-based similarity search to recommend top 100 relevant
candidates to each video. The top 100 videos are further regarded as a recall
source of the ranking model. Secondly, we regard the embeddings of videos as
the fixed features of the input to the ranking model. To this end, we set up two
ranking models in the A/B test.

(a) The ranking model without the embeddings of Equuleus (neither as a recall
source nor as input features), called Vanilla Ranking.

(b) The ranking model with the embeddings of Equuleus (both as a recall source
and as input features), called Ranking with Embeddings.

The experimental environments of the two ranking methods are the same.
Figure 4 shows the two-week CTRs on four types of relevant video recommen-
dation scenearios from Nov. 26th, 2019 to Dec. 9th, 2019.

From Fig. 4, we can see that the ranking model using embeddings performs
better on all relevant video recommendation scenarios than the ranking model
without embeddings. Specifically, during the 2-week A/B test, the average CTRs
on Movie, Show, Music Video and Short Video improve by 0.55%, 1.28%, 1.90%
and 3.39%, respectively. These results illustrate the effectiveness of Equuleus in
a live production environment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1.59

1.61

1.63

1.65

1.67

1.69

1.71

1.73

1.75

1.77

Date

C
T
R
(%

)

Movie

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93

Date

Show

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3.3

3.32
3.34
3.36
3.38
3.4

3.42
3.44
3.46
3.48
3.5

3.52
3.54
3.56
3.58
3.6

Date

Music Video

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3.51
3.56
3.61
3.67
3.72
3.77
3.82
3.87
3.92
3.97
4.02
4.07
4.12
4.17
4.22
4.27

Date

Short Video

Vanilla Ranking Ranking with Embeddings

Fig. 4. A/B test on rankings (Nov. 26th, 2019 ∼ Dec. 9th, 2019)
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6 Conclusion

In this paper, we propose the Equuleus approach for recommending videos in
MX Player. Equuleus employs an attributed encoder network, and fuses the
attributes of videos, watching-behavior patterns and user feedback to learn the
embeddings of videos. Results from both offline experiments and online A/B
test demonstrate that Equuleus can generate the high-quality video embeddings.
More practices on graph embedding for recommendation will be our future work.
A possible attempt is to extend a GCN by fusing the components proposed in the
paper, because in principle, these three components can strengthen the power of
most existing graph-based methods including the GCNs.
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Abstract. The proliferation of massive open online courses (MOOCs)
demands an effective way of course recommendation for jobs posted in
recruitment websites, especially for the people who take MOOCs to find
new jobs. Despite the advances of supervised ranking models, the lack
of enough supervised signals prevents us from directly learning a super-
vised ranking model. This paper proposes a general automated weak
supervision framework (AutoWeakS) via reinforcement learning to solve
the problem. On the one hand, the framework enables training multiple
supervised ranking models upon the pseudo labels produced by multiple
unsupervised ranking models. On the other hand, the framework enables
automatically searching the optimal combination of these supervised and
unsupervised models. Systematically, we evaluate the proposed model on
several datasets of jobs from different recruitment websites and courses
from a MOOCs platform. Experiments show that our model significantly
outperforms the classical unsupervised, supervised and weak supervision
baselines.

1 Introduction

Massive open online courses, or MOOCs, are attracting widespread interest as
an alternative education model. Lots of MOOCs platforms such as Coursera,
edX and Udacity have been built and provide low cost opportunities for anyone
to access a massive number of courses from the worldwide top universities. As
reported by Harvard business review1, a primary goal of 52% of the people
surveyed who takes MOOCs is to improve their current jobs or find new jobs.
We call this group of MOOCs’ users as career builders. Meanwhile, people usually
resort to the online recruitment platforms such as LinkedIn.com and Job.com
to seek jobs. However, there always exists a “Skill Gap” [1] between the career
builders and the employers. The career builders who expect themselves to fit
1 https://hbr.org/2015/09/whos-benefiting-from-moocs-and-why.
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a job through taking MOOCs, need to deeply understand the demands of the
job skills and then take the matchable courses. Clearly, to help career builders
improve their skills for finding gainful jobs, it has been an essential task that is
able to automatically match jobs with suitable courses.

Straightforwardly, to solve this problem, unsupervised methods such as
BM25 [2], Word2vec [3] or the network embedding methods such as Deep-
Walk [28] and LINE [6] can be used to calculate the relevance between a queried
job and a candidate course. However, such unsupervised methods aim at mod-
eling the implicit structures of the input data, i.e., the clustering of words in
jobs and courses, while the ranking of different courses to a queried job cannot
be obviously learned. In another word, the unsupervised models do not explic-
itly compare the relevance of the positive courses and the negative courses to a
queried job. Although the supervised neural ranking models are demonstrated to
have good performance in the information retrieval (IR) tasks [7,12], they can-
not directly solve our problem, as the supervision signals about which courses
can be recommended to a job are not easily available.

To alleviate the problem of lacking supervision signals, weak supervision mod-
els are proposed to train supervised IR models upon the pseudo labels provided
by unsupervised models. For example, Dehghani et al. leverage the output of
BM25 as the weak supervision signals [8] and Zamani and Croft extend a single
pseudo signal to multiple signals to guide multiple supervised ranking mod-
els [9]. However, for different tasks, human efforts are demanded to determine
the suitable weak signals and the supervised models. Even if each component
is carefully selected by humans, their combination may not result in the best
performance (which is also justified in our experiments). Thus, it is imperative
to automatically identify an optimal combination of different components.

To address the above challenge, we propose a general automated weak super-
vision model AutoWeakS, which can automatically select the optimal combina-
tion of weak signals, supervised models and hyperparameters for a given rank-
ing task and dataset. Specifically, the auto model trains a weak supervision
model and a controller iteratively through reinforcement learning, where the
weak supervision model aims to train a group of sampled supervised ranking
models upon the pseudo labels (i.e., weak signals) provided by a group of sam-
pled unsupervised ranking models, and the controller targets at automatically
sampling an optimal configuration for the weak supervision model, i.e., it sequen-
tially determines which unsupervised models should be sampled, how to set the
hyperparameters for merging the unsupervised models, and which supervised
models should be sampled. Our proposed model is a general framework to rank
courses for jobs in this paper, but it is general enough to solve other ranking
problems. Besides, we can incorporate any unsupervised and supervised models
as candidate components to be selected by the controller.

Our contributions can be summarized as: (1) we are the first to explore the
problem of recommending courses in MOOCs to jobs posted in online recruit-
ment websites, which can help to eliminate the “Skill Gap” between the career
builders who take MOOCs and the employers in the recruitment; (2) we pro-
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Fig. 1. Overview of the auto weak supervision model.

pose a general automated weak supervision model, AutoWeakS, to rank courses
for jobs. With reinforcement joint training of the weak supervision model and
the controller in AutoWeakS, we can automatically find the best configuration
of the weak supervision model; (3) experiments on two real-world datasets of
jobs and courses show that AutoWeakS significantly outperforms the classical
unsupervised, supervised and weak supervision baselines.

2 The Auto Weak Supervision Model

We denote the jobs in a recruitment website as J and the courses in a
MOOCs platform as C, where each job j ∈ J contains maximal N words,
i.e., j = {j1, · · · , jN}, and each course c ∈ C contains maximal M words, i.e.,
c = {c1, · · · , cM}. The words are extracted from the descriptions of the jobs or
courses. Given J and C, the goal is to learn a predictive function F : (J,C) → Y
to predict the label y ∈ Y for each pair of a queried job j and a candidate course
c, where y is a binary value with y = 1 if c is relevant to j and y = 0 otherwise.

2.1 Model Overview

In our problem, the set of the true labels Y about which courses should be rec-
ommended to a given job are not easily to be obtained, which motivates us to
use a weak supervision method to solve this task, i.e., training supervised rank-
ing models upon the pseudo labels provided by unsupervised models. However,
selecting only one unsupervised model may suffer from the issue of ranking bias,
while combing multiple unsupervised models may bring in additional noises.
Besides, we also have many different choices for the supervised ranking mod-
els. Thus we explore an optimal combination of the pseudo labels from various
unsupervised ranking models, together with various supervised ranking models.

Figure 1 illustrates the proposed auto weak supervision framework
AutoWeakS, which consists of a weak supervision model and a controller, where
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the weak supervision model aggregates the results of multiple unsupervised rank-
ing models as the pseudo labels and trains multiple supervised ranking models
upon them, and the controller is responsible for automatically searching the
optimal configuration of the unsupervised and the supervised models. Specif-
ically, first, the controller is to sample the unsupervised models, sample the
number k of the top ranked courses to a job after aggregating the results of
the unsupervised models, and sample the supervised models to be trained upon
the top-k pseudo labels, and since the above three sampling processes should
be sequentially determined, we formalize the controller by a three-step LSTM
model; second, the sampled supervised models are trained on the pseudo labels
and evaluated on the validation data with a few human annotated labels; finally,
the evaluation metric is returned as the reward signal to guide the training of the
controller. When the whole training process converges, we can obtain an optimal
combination of different components, which can be regarded as the final model
to predict the courses for new jobs.

2.2 Weak Supervision Model

In the weak supervision model, we conduct Nu unsupervised ranking models
to calculate Nu relevance scores for each pair of a queried job and a candidate
course, aggregate the Nu relevance scores to generate the pseudo labels, and train
Ns supervised ranking models on these pseudo labels. Although we select the
following unsupervised and supervised models in our framework, the framework
is general to incorporate any kinds of unsupervised and supervised models.

Unsupervised Ranking Model. We define two types of the unsupervised
ranking models, namely unsupervised text-only matching models and unsuper-
vised graph-based matching models. Unsupervised text-only matching models
calculate a relevance score between a queried job and a candidate course based
on their descriptions. For example, BM25 [2] exactly matches the words between
a job and a course. Word2vec [3] and BERT [4] first embed the descriptions of
a course and a job into two vectors, and then calculate the cosine similarity
between these two vectors.

Different from the unsupervised text-only matching models which represent
the jobs and the courses independently, unsupervised graph-based matching
models leverage the global correlations between the jobs and courses to rep-
resent them. Specifically, we first build a job-word-course heterogeneous graph
G = (V,E), which consists of three types of nodes, i.e., job, course and word, and
two types of edges that connect courses and words, and connect jobs and words.
Then we apply different unsupervised network embedding models to map each
node in G into a low-dimensional vector to capture the structural properties. For
example, LINE [6] and PTE [10] maximize the first-order and the second-order
proximity between two nodes. DeepWalk [28] extends the first-order neighbors
to distinct neighbors which can be reached by random walks. Node2vec [11] fur-
ther proposes the biased random walks to balance the homophily by BFS search
and the structural equivalence by DFS search. GraphSAGE [5] aggregates the



40 B. Hao et al.

Fig. 2. Traditional supervised text-only matching models.

neighbors’ embeddings of the nodes to represent them. Finally, we can calculate
the relevance based on the learned embeddings of job and course.

Pseudo Label Generator. To avoid the labeling bias from a single unsuper-
vised model, we aggregate the results of the Nu unsupervised ranking models
to generate the pseudo labels. Specifically, for each queried job, we average the
Nu relevance scores for each candidate course, rank all the courses according to
their average relevance scores, and then annotate the top-k courses as positive
instances and the other courses as the negative instances for the queried job.

Supervised Ranking Model. We define two types of the supervised ranking
models, including supervised text-only matching models and supervised graph-
based matching models. For the supervised text-only matching models, we first
explore two traditional models, namely traditional representation model and
traditional interaction model, and inspired by the recently proposed pre-training
model BERT [4], which has advanced the state-of-the-art in various NLP tasks,
we further explore two BERT-based models, namely BERT representation model
and BERT interaction model. Finally, we explore one supervised graph-based
matching model, GraphSAGE.

Traditional Representation Model directly compares the embeddings of a queried
job and a candidate course to capture their semantic relevance. Figure 2(a) illus-
trates the architecture of the model. We first transform the input word repre-
sentations x ∈ R

N×d0 of a job into low-dimensional embeddings, and then apply
multi-layer nonlinear projections on them to get the intermediate embeddings
hl ∈ R

dl and the final embedding y ∈ R
dL of a job, where N is the maximal

number of words included in all the jobs, d0, dl and dL represent the embed-
ding dimensions. The paired inputs of courses are transformed in the same way.
Finally, we estimate the relevance score r(j, c) of c to j as the cosine similarity
between the job embedding yj and the course embedding yc.

Traditional Interaction Model compares each pair of the words in a queried job
and a candidate course. Figure 2(b) illustrates the model. Inspired by [13], we
first build a similarity matrix S between the word embeddings of a queried
job and a candidate course, where each element Sik in the similarity matrix
S stands for the cosine similarity between the embedding of the i-th word
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Fig. 3. BERT-based supervised text-only matching models.

in job j and the embedding of the k-th word in course c. Then we trans-
form the i-th row Si = {Si0, . . . , SiM} of the similarity matrix S into a fea-
ture vector K(Si) = {K1(Si), . . . ,KH(Si)}, where Si = {Si0, . . . , SiM} rep-
resents the similarities between the i-th word of the queried job j and every
word of the course c. Each of the h-th element is converted from Si by the
h-th RBF kernel with the mean value μh and the variance value σh, i.e.,
Kh(Si) =

∑M
k=1 exp[(Sik − μh)2/2σ2

h]. Next, the similarity vectors of all the
words in j are summed up into a similarity feature vector, i.e.,

∑N
i=1 logK(Si),

which is then mapped into a one-dimension relevance score r(j, c) to represent
the relevance between the job j and the course c.

BERT Representation Model compares the embeddings of a queried job and a
candidate course through independently encoding the descriptions of a queried
job and a candidate course by the pre-training model BERT [4]. Figure 3(a) illus-
trates the proposed model. Specifically, for each job j, we take [CLS], j1, · · · , jN ,
[SEP] as the input, where j1, · · · , jN represent job tokens, [CLS] and [SEP] are
special tokens. Then we add a multi-layer perceptron (MLP) layer on top of the
first output [CLS] embedding to get the representation of job j. A course c is
represented in the same way. Finally, we calculate the cosine similarity between
the embeddings of the job and the course to obtain the relevance score r(j, c).

BERT Interaction Model compares each pair of the words in a queried job and a
candidate course through a unified BERT model, where the multi-head attention
in the BERT unit spans over the interactions between the job and the course
so that the job-course interactions can be captured. Figure 3(b) illustrates the
proposed model. Specifically, we take [CLS], j1, · · · , jN , [SEP], c1, · · · , cM as
the input, where j1, · · · , jN represent the job tokens and c1, · · · , cM represent
the course tokens. Then we add a MLP layer on top of the first output [CLS]
embedding to obtain the relevance score of the job-course pair.

SuperGraphSAGE Model aggregates the embeddings of the nodes’ neighbors to
represent them in a supervised end-to-end fashion. Specifically, given the job-
word-course graph G = (V,E), we invoke the bert-as-server API2 to generate
2 https://github.com/hanxiao/bert-as-service.

https://github.com/hanxiao/bert-as-service
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the features for all nodes in G. For each job j, at the l-th convolutional time, it
aggregates the embeddings of all its neighbors to obtain its new embedding hl

j ,
i.e., hl

j=σ(Wl · CONCAT(hl−1
j ,hl

N (j))), where σ is a nonlinear function, Wl is
the parameter matrix, hl

N (j) is the aggregated embedding of the job’s neighbors,
hl−1

j is the previous embedding of the job, and CONCAT is the concatenate
operation. We can obtain the l-th course embedding hl

c in the same way. The
cosine similarity between the final L-th embeddings of the course and the job
can be viewed as their relevance score r(j, c).

We use the loss function, L =
∑

j,c+ log σ(r(j, c+)) +
∑

j,c− log(1 −
σ(r(j, c−))), to train the supervised models based on the pseudo labels provided
by the unsupervised models. For a new (j, c) pair in the test set, we estimate
their relevance r(j, c) as the average of all the relevance scores predicted by the
Ns supervised models, i.e., r(j, c) = 1

Ns

∑Ns

i=1 ri(j, c).

2.3 Automated Model Search

To avoid human efforts to determine the suitable weak signals and the super-
vised models, in this paper, we propose to automatically search the optimal
configuration of the weak supervision model. As the weak supervision model is a
sequential process that first trains the unsupervised ranking models, then aggre-
gates their outputs as the pseudo labels and finally trains the supervised ranking
models based on the pseudo labels, we formalize the controller as a three-step
LSTM model to sequentially determine which unsupervised models to select,
which value of top-k to select and which supervised models to select. The con-
troller maintains a representation for each choice of different components, i.e.,
each unsupervised model, each value of k and each supervised model. At step t,
the representations of all the selections at t−1 are viewed as the input xt ∈ R

d′
,

which is taken together with the previous hidden vector ht−1 ∈ R
d′

and the cell
state et−1 ∈ R

d′
to produce the hidden vector ht and the cell state et, i.e.,

ht, et = LSTM(xt,ht−1, et−1, Φ), (1)

where Φ are the parameters of LSTM and d′ is the hidden vector dimension.
Finally, the component at step t is determined according to the hidden vector
ht and the representations of all the choices of the component at time t. Now
we present the details of the sampling process:

Step 1: Unsupervised model sampling is to sample unsupervised models. At the
beginning, the controller selects none of the components and has no memory,
thus we set the initial hidden state h0, the cell state e0 as empty embeddings,
and randomly initialize the input x1. The controller takes h0, e0 and x1 as
input, and output h1 and e1 by Eq. (1). Then given h1, the controller samples
the unsupervised models. Intuitively, an unsupervised model is more likely to be
sampled if it is more related to the hidden vector h1 at this step. We randomly
initialize the representation wi ∈ R

d′
for each unsupervised model, multiply wi

with h1 to represent their relevance, based on which we perform sampling:
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I1i ∼ softmax(f(hT
1 × wi)), (2)

where hT
1 ×wi is a d′-dimensional element-wise product between the two embed-

dings and f is a fully-connected layer that converts the product into a 2-
dimensional vector. Softmax is used to convert the vector into a probability
distribution, from which the indicator variable I1i ∈ {0, 1} is sampled to repre-
sent whether the i-th unsupervised model should be selected or not. Essentially,
we sample each model from a binomial distribution. After this step, we can get
the indicator vector I1 = [I11 , · · · , I1Nu ] to indicate the selected unsupervised
models. For example in Fig. 1, I1 = [10010000] indicates the controller selects
BM25 and LINE as the unsupervised models.

Step2: k sampling is to sample the value of k for selecting the top-k ranked posi-
tive instances in the pseudo labels. After sampling the unsupervised models, we
multiply the indicator vector I1 = [I11 , · · · , I1Nu ] with the model representations
[w1, · · · ,wNu ] as the input x2 of the second step:

x2 = [I11 , · · · , I1Nu ] · [w1, · · · ,wNu ]T , (3)

where x2 denotes the summation of the representations of all the sampled models.
With x2, h1 and e1 as the input, we can obtain h2 and e2 by Eq. (1). Since the
value space of k can be very large, to simplify the sampling process, we first
categorize all the values of k into τ categories and sample one category for k.
The sampling process is defined as:

I2 ∼ softmax(g(h2)), (4)

where g is a full-connected layer that converts the hidden vector h2 into a τ -
dimensional vector. Softmax is used to convert the vector into a probability
distribution, from which the indicator vector I2 ∈ {0, 1}τ is sampled to represent
which category of k is selected. Note that I2 is a one-hot vector with only one
dimension as one, whose index indicates the sampled category of k. Essentially,
we sample the category of k from a multinomial distribution. For example in
Fig. 1, I2 = [10000] indicates the controller selects the first category for k and
its corresponding value is 20.

Step 3: Supervised model sampling is to sample supervised models. After sam-
pling k, we multiply the sampling indicator I2 with the concatenation of the k’s
category representations [z1, · · · , zτ ] as the input x3 of the third step:

x3 = [I21 , · · · , I2τ ] · [z1, · · · , zτ ]T , (5)

where the category representations [z1, · · · , zτ ] for each category of k are ran-
domly initialized. The input x3 denotes the representation of the selected cat-
egory. With x3, h2 and e2 as the input, we can obtain h3 and e3 by Eq. (1).
Given h3, we can sample the indicator I3 following the same sampling pro-
cess of step 1 to determine which supervised models should be selected, i.e.,
I3i ∼ softmax(q(hT

3 × ui)), where q is a fully-connected layer that converts the
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Input: A set of jobs J and a set of courses C.
Output: Parameters Θ of the weak supervision model and Φ of the controller.
Initialize Φ = Φ0, Θ = Θ0;
Pre-train the Nu unsupervised ranking models;
repeat

Sample a weak supervision model m from π(m; Φ);
Train Θ of m by Eq. (6);
Calculate Rs + Ru of m on the validation set;
Update Φ in the controller by REINFORCE;

until Convergence;

Algorithm 1: Reinforcement Jointly Training

product hT
3 × ui into a 2-dimensional vector, ui ∈ R

d′
is a randomly initial-

ized embedding for the i-th supervised model. As shown in Fig. 1, I3 = [00010]
indicates the controller selects BERT interaction model.

2.4 Reinforcement Joint Training

Once the controller finishes searching the configurations of the weak supervision
model, i.e., the unsupervised models, the top-k value and the supervised models,
a combination with this architecture is built and trained. When the searching
architecture achieves convergence, it will get an accuracy R on a small hold-out
annotated dataset (validation set). The accuracy R is viewed as reward and the
parameters of the controller LSTM are then optimized in order to search the
best configurations that can achieve the maximal expect validation accuracy.
In this paper, we propose a reinforcement joint training process to update the
parameters of the controller LSTM, denoted by Φ, and the parameters of the
weak supervision model, denoted by Θ. The reinforcement joint training process
consists of two interleaving phrases (Algorithm 1), the first phrase trains Θ, while
the second phrase trains Φ, the details are as follows:

Training Θ. When training Θ, we fix the controller’s sampling policy π(m;Φ),
i.e., the three-step sampling strategy, and perform stochastic gradient descent
on Θ to maximize the expected loss Em∼π[L(m;Θ)], where L(m;Θ) is the loss
computed on a minibatch of training data, with a weak supervision model m
sampled from π(m;Φ). The gradient is computed using Monte Carlo estimate:

∇ΘEm∼π[L(m;Θ)]≈ 1
Nm

Nm∑

p=1

N ′
u+N ′

s∑

q=1

∇ΘLq(mp, Θ), (6)

where Nm is the sampling times of the weak supervision model in one epoch.
It is empirically proven that Nm=1 works just fine [14]. Notations N ′

u and N ′
s

represent the number of the sampled unsupervised and the supervised models
respectively. The whole loss L(mp, Θ) is the summed losses of all the sampled
models. No matter which unsupervised ranking models are sampled, they are
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always trained on the same training data. So we can pre-train each unsuper-
vised ranking model on the training data, and directly fetch the relevance scores
between jobs and courses from all the sampled unsupervised models during each
update of Eq. (6). Thus after each sampling of m, we only need to re-optimize
the loss Lq of each sampled supervised model. As a result, the loss L(mp, Θ) is
the summed losses of all the sampled supervised models.

Training Φ. When training Φ, we fix Θ of the weak supervision model and
perform REINFORCE algorithm [15] on Φ to maximize the expected reward
Em∼π(m;Φ)[R(m, Θ)]. The actions of the controller are to sample the unsuper-
vised models, k, and the supervised models sequentially. The reward is regarded
as the evaluated mean reciprocal rank (MRR) of the sampled supervised mod-
els on the validation set, which is the set of a few job-course pairs annotated by
human beings. Besides, the MRR achieved by the aggregation results of the sam-
pled unsupervised models can also be regarded as the additional reward to accel-
erate the training process [16]. Thus, the final reward is defined as R = Rs +Ru,
where Rs and Ru are the rewards from the supervised and unsupervised models.

3 Experiment

In this section, we evaluate our proposed model AutoWeakS against several unsu-
pervised, supervised, and weak supervision baselines. We also explore whether
the selections for each component in AutoWeakS (i.e., the selections for the unsu-
pervised models, the supervised models and the top-k values) are necessary.

3.1 Experimental Setup

Dataset. We collect all the courses from XuetangX3, one of the largest MOOCs
in China, and this results in 1951 courses. The collected courses involve seven
areas: computer science, economics, engineering, foreign language, math, physics,
and social science. Each course contains 131 words in its descriptions on aver-
age. We also collect 706 job postings from the recruiting website operated by
JD.com4 (JD) and 2,456 job postings from the website owned by Tencent cor-
poration5 (Tencent). The collected job postings involve six areas: technical post,
financial post, product post, design post, market post, supply chain and engi-
neering post. Each job contains 107 and 151 words in its posting on average in
JD and Tencent respectively. To evaluate the model performance, for both JD
and Tencent dataset, we randomly select 200 jobs, and ask ten volunteers to
annotate the relevant courses to the jobs. Specifically, for a queried job, we first
use each unsupervised model in Sect. 2.2 to calculate a relevance score for each
course, average all the scores over all the models, select top 60 candidate courses,

3 http://www.xuetangx.com.
4 http://campus.jd.com/home.
5 https://hr.tencent.com/.

http://www.xuetangx.com
http://campus.jd.com/home
https://hr.tencent.com/
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Table 1. Overall performance of recommending courses for jobs. We try different k for
WeakS and report its best performance.

Model JD-XuetangX Tencent-XuetangX

HR@5 NDCG@5 MRR HR@5 NDCG@5 MRR

BM25 0.162 0.151 0.173 0.072 0.046 0.070

Word2vec 0.301 0.212 0.217 0.142 0.107 0.114

BERT 0.348 0.239 0.238 0.159 0.104 0.122

LINE 0.489 0.362 0.409 0.396 0.284 0.279

PTE 0.378 0.244 0.334 0.295 0.204 0.210

DeepWalk 0.390 0.249 0.258 0.370 0.262 0.261

Node2vec 0.374 0.279 0.284 0.386 0.282 0.277

GraphSAGE 0.312 0.252 0.232 0.186 0.121 0.139

Traditional Representation 0.407 0.261 0.262 0.201 0.125 0.148

Traditional Interaction 0.470 0.429 0.414 0.324 0.215 0.214

BERT Representation 0.350 0.232 0.231 0.294 0.195 0.204

BERT Interaction 0.564 0.537 0.497 0.405 0.254 0.222

SuperGraphSAGE 0.263 0.176 0.186 0.231 0.144 0.155

WeakS 0.704 0.548 0.592 0.370 0.255 0.227

LINE+AllS 0.736 0.550 0.624 0.408 0.289 0.236

AutoWeakS 0.793 0.615 0.671 0.631 0.522 0.540

annotate each candidate and obtain the ground truth by majority voting of all
the volunteers’ annotations. The Dataset and the code are online now6.

Settings. For training the unsupervised ranking models, we use all the 706
job postings from JD and all the 2,456 job postings from Tencent to learn the
embeddings of the jobs and courses. For the supervised ranking models, we hold
out the human annotated jobs and only use the 506 unlabeled jobs from JD and
2,256 unlabeled jobs from Tencent for training. On each dataset, we averagely
partition the annotated 200 jobs into a validation set and a test set and sample
99 negative instances for each positive instance (1 positive plus 99 negatives) [17].
We use Hit Ratio of top K items (HR@K), Normalized Discounted Cumulative
Gain of top K items (NDCG@K) and Mean Reciprocal Rank (MRR) as the
evaluation metrics for ranking, where K is set as 5.

3.2 Experimental Results

Comparison with Baselines. In this experiment, we evaluate our model
AutoWeakS against the unsupervised and supervised models in Sect. 2.2, the
weak supervision model WeakS, which includes all the unsupervised models

6 https://github.com/jerryhao66/AutoWeakS.

https://github.com/jerryhao66/AutoWeakS
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and the supervised models without model search, and one competitive base-
line, LINE+AllS, which includes LINE as the unsupervised model and all the
supervised models. Note that due to the lack of enough labeled data, we only use
a small annotation data (i.e., the validation set) to train the supervised models.

Table 1 shows the results on two datasets. We vary the value k for WeakS,
LINE+AllS and report its best performance in Table 1. From the results, we can
see that the proposed AutoWeakS performs clearly better than other baselines.
Compared with the unsupervised graph-based matching methods, unsupervised
text-only matching models perform worse, as only using the descriptive words
of the jobs and the courses can not capture high-order relationships between
the jobs and the courses. Some supervised methods such as BERT interaction
model and traditional interaction model perform better than the unsupervised
methods, as the unsupervised methods do not explicitly compare the relevance
of the positive courses and the negative courses to a queried job. However, due
to the lack of enough training labels, the performance of the supervised models
is worse than WeakS, LINE+AllS and our proposed method AutoWeakS.

Table 2. Performance of different choices of unsupervised models in AutoWeakS with
k and the supervised component fixed.

Unsuper. choices JD-XuetangX Tencent-XuetangX

HR@5 NDCG@5 MRR HR@5 NDCG@5 MRR

BM25+ 0.203 0.194 0.182 0.183 0.139 0.159

Word2vec+ 0.435 0.392 0.336 0.333 0.312 0.321

BERT+ 0.705 0.511 0.511 0.393 0.373 0.387

LINE+ 0.722 0.559 0.516 0.589 0.478 0.499

PTE+ 0.657 0.488 0.505 0.471 0.451 0.497

DeepWalk+ 0.677 0.503 0.462 0.508 0.461 0.411

Node2vec+ 0.684 0.507 0.451 0.534 0.449 0.463

GraphSAGE+ 0.642 0.495 0.402 0.563 0.471 0.491

All unsupervised+ 0.609 0.423 0.458 0.415 0.396 0.426

AutoWeakS 0.793 0.615 0.671 0.631 0.522 0.540

WeakS performs better than all the unsupervised models on JD-XuetangX,
as it explicitly learns the ranking of the candidate courses to queried jobs. How-
ever, on Tencent-XuetangX, WeakS underperforms several unsupervised models,
because BM25 performs particularly poorly on this dataset, which reduces the
effect of the aggregated pseudo labels from all the unsupervised models. This
also indicates that indiscriminately combing all the models may not result in
the best performance. Besides, AutoWeakS beats LINE+AllS, which implies
selecting only one unsupervised model may suffer from the issue of ranking bias.

We further remove BM25 from WeakS, name the model as WeakS-BM25 and
show the performance of WeakS, LINE+AllS and WeakS-BM25 in Fig. 4(a) and
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Fig. 4. (a), (b) show that the baselines with any choice of top-k underperform
AutoWeakS with the automatically searched top-k value. (c), (d) further present the
results of AutoWeakS under different top-k values, which indicates that the automati-
cally searched top-k value performs the best against all the other top-k values.

Fig. 5. The optimal selections of AutoWeakS.

Fig. 4(b). The k value of AutoWeakS is fixed as the automatically searched value.
The results show that even if the worst performed BM25 is removed, given any
value of k, WeakS-BM25 still underperforms AutoWeakS, which indicates the
advantage of the automated model search in AutoWeakS.

Analysis of Unsupervised Component. We evaluate the performance of dif-
ferent choices of the unsupervised models, when fixing the sampled k and the
supervised component in AutoWeakS. We name the model as BM25+ if only
BM25 is chosen to produce pseudo labels. Other single model is named in the
same way. All unsupervised+ means we combine the labels of all the unsuper-
vised models. Figure 5(a) shows that on JD-XuetangX, AutoWeakS selects the
combination of BERT, LINE, and DeepWalk, which performs better than any
single unsupervised model and All unsupervised+ shown in Table 2. On Tencent-
XuetangX, AutoWeakS also obtains the best performance, and it selects the
combination of LINE and Node2vec as the unsupervised component. The results
indicate the advantage of automatically searching the unsupervised models.

Analysis of k. We evaluate the performance of different choices of k to generate
the pseudo labels, when fixing the sampled unsupervised and the supervised
components in AutoWeakS. Figure 5 presents that the automatically searched k
is 23 on JD-XuetangX and is 32 on Tencent-XuetangX. Figure 4(c) and Fig. 4(d)
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Table 3. Performance of different choices of supervised models in AutoWeakS with
the unsupervised component and k fixed.

Super. choices JD-XuetangX Tencent-XuetangX

HR@5 NDCG@5 MRR HR@5 NDCG@5 MRR

Traditional Representation+ 0.525 0.349 0.335 0.362 0.283 0.269

Traditional Interaction+ 0.679 0.508 0.483 0.601 0.502 0.504

BERT Representation+ 0.604 0.483 0.462 0.318 0.209 0.209

BERT Interaction+ 0.729 0.537 0.609 0.576 0.464 0.481

SuperGraphSAGE+ 0.348 0.212 0.368 0.265 0.181 0.193

All supervised+ 0.652 0.482 0.507 0.402 0.317 0.301

AutoWeakS 0.793 0.615 0.671 0.631 0.522 0.540

show that AutoWeakS with other k values underperforms the searched k values.
The results indicate the advantage of automatically searching k.

Analysis of Supervised Component. We evaluate the performance of dif-
ferent choices of the supervised models, when fixing the sampled unsupervised
component and k in AutoWeakS. We name the model as BERT Interaction+ if
only the BERT interaction model is trained. Other single supervised model is
named in the same way. All supervised+ means we train all the supervised mod-
els. Figure 5(a) and Fig. 5(b) show that on both of the JD-XuetangX and the
Tencent-XuetangX datasets, AutoWeakS selects the combination of the BERT
interaction model and the traditional interaction model. The results show that
AutoWeakS performs better than all the other choices shown in Table 3, which
indicates the advantage of automatically searching the supervised models.

4 Related Work

Much effort has been made to provide better services for job seekers and
recruiters through analyzing the flow of job seekers [29] or matching the job
recruitment postings and the resumes of the job seekers [1]. The related works
include:

Weak Supervision Model. Training neural ranking models on pseudo-labeled
data has been attracted attentions. For example, Dehghani et al. [8] leverage the
output of traditional IR models such as BM25 as the weak supervision signal
to generate a large amount of pseudo labels to train effective neural ranking
models. Zamani et al. [9] train a neural query performance predictor by multiple
weak supervision signals, and they also provide a theoretical analysis of this
weak supervision method [18]. The same idea is employed in [19,20]. However,
for different tasks, human efforts are demanded to determine the suitable weak
signals and the supervised models. Even if each signal is carefully selected by
humans, their combination may not be optimal.
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Automated Machine Learning (AutoML). The goal of AutoML is to auto-
matically determine the optimal configurations such as selecting the optimal
models [21,22], features [23,24], and neural architecture [25,26], which can help
people use machine learning models easily. Different types of techniques are
studied to search the optimal configuration. For example, Bayesian optimiza-
tion methods such as Auto-sklearn [21] and Auto-Weka [22] model the relation-
ship between a configuration and the corresponding performance in a probabilis-
tic way. Reinforcement learning trains the optimal search policies according to
the feedbacks of the searched configurations [27], where the search policy can
be modeled by RNN [14,25]. Inspired by the above works, we propose a RL-
based joint training framework to search an optimal combination of the unsu-
pervised/supervised models and the hyperparameter k in the proposed weak
supervision model for recommending courses for jobs.

5 Conclusion

We present the first attempt to solve the problem of recommending courses in
MOOCs for jobs by a general automated weak supervision model. With rein-
forcement joint training of a weak supervision model for recommending courses
and a controller for searching models, we can automatically find the best configu-
ration of the weak supervision model. Experiments on two real-world datasets of
jobs and courses show that the proposed AutoWeakS significantly outperforms
the classical unsupervised, supervised and weak supervision baselines.
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Abstract. A good representation of urban areas is of great importance
in on-demand delivery services such as for ETA prediction. However,
the existing representations learn either from sparse check-in histories
or topological geometries, thus are either lacking coverage and violat-
ing the geographical law or ignoring contextual information from data.
In this paper, we propose a novel representation learning framework for
obtaining a unified representation of Area of Interest from both contex-
tual data (trajectories) and topological data (graphs). The framework
first encodes trajectories and graphs into homogeneous views, and then
train a multi-view autoencoder to learn the representation of areas using
a ranking-based loss. Experiments with real-world package delivery data
on ETA prediction confirm the effectiveness of the model.

Keywords: Representation learning · Trajectories · Multi-view
autoencoder

1 Introduction

In recent years, we witness the rapid growth of on-demand deliveries everywhere
and every day (e.g., Amazon Prime Now). We deliver people, food, parcels by
cars, bicycles, and foot from dawn to midnight and from city centers to subur-
bans. The explosion of E-commerce and recent advances in spatial crowdsourcing
have prompted the surge of deliveries, and are still calling for better solutions.

A good representation of spatial units is of vital importance to all delivery-
related services [13]. Various companies like Uber and DiDi utilize different spa-
tial extents such as grids, hexagons, or polygons to partition the space into spatial
units [10]. These spatial units, represented by their coordinates and other geo-
metric features, are then used as sources and targets for delivery services. Such
spatial units fully cover an entire space (e.g., a city) and have nice topological
properties. Thus, the algorithms based on these units can accommodate any pos-
sible delivery request. However, such topological representation can only capture
c© Springer Nature Switzerland AG 2021
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spatial relationships between these units and ignore human’s intuition and tacit
knowledge on how to navigate between these regions. For example, when couriers
deliver packages on foot and/or by bike, they mainly choose paths according to
their knowledge and experience on real-world road conditions and connections
such as shortcuts, bridges, crowded streets, and crossings with long traffic lights.
In such cases, mere topological representation often fails to capture key informa-
tion thus may not be sufficient for the real delivery tasks. Fortunately, human
trajectories capture such tacit knowledge and experiences.

Towards this end, recent work [3,15,32] strives to add such contextual data to
Point Of Interest(POI) representation from check-in histories by adopting NLP
models like Word2vec [17]. However, these studies mainly focus on recommending
POI to users. Hence, the representation of POIs usually does not cover the entire
space, thus they cannot be directly applied to delivery systems that requires
every points in space to be reachable. Besides, the learned representation may
also lose the topological property and conflict with the Tobler’s First Law of
Geography [26] which says “Everything is related to everything else, but near
things are more related than distant things”, due to the discrete locations of
POIs and sampling bias in the collection of check-in histories.

Therefore, the best representation should learn from both topological and
contextual data to take advantage of the best of the two worlds. To achieve
this, we propose a novel Deep Multi-view informAtion-encoding RanKing-based
network (DeepMARK) to learn a representation of spatial regions. Rather than
regular-shaped regions, we consider the spatial regions to be geographically par-
titioned by map segmentation, i.e., the Areas of Interests (AOI) used in this
paper. AOIs are non-overlapping irregular polygons that fully partition (and
hence cover) the space and each AOI captures its individual context. For exam-
ple, while hexagons or grids may split a school into two units or may have a unit
containing multiple land uses, each AOI represents a single context.

To learn both the topological and contextual features of these AOIs, our
proposed framework DeepMARK consists of three components: one to learn the
topological representation, the second one to learn the contextual representation
and finally the third to unify the first two components.

Contextual Representation Component: In the field of NLP, contextual
representations are usually learned based on the distributional hypothesis [21]
from real-world language sequences, i.e., human utterance. Analogous to NLP,
for “spatial” context, we consider location sequences, i.e., human trajectories,
as the data source from which we learn the contextual representation of AOIs.
The trajectory data is selected for its relevance and scalability in learning con-
textual representations for delivery problems: 1) trajectories preserve human’s
knowledge and preferences in traveling between AOIs. 2) with the ubiquity of
mobile devices and the prevalence of spatial crowdsourcing apps, trajectories can
be easily collected at scale. To learn contextual representation from trajectories,
we model the spatial distributional hypothesis using Pointwise Mutual Informa-
tion (PMI) between AOIs calculated from trajectories. Subsequently, we learn a
distributed representation based on the PMI using an autoencoder framework.
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Topological Representation Component: To model topological properties
of irregular-shaped AOIs, we define Euclidean graph and Adjacency graph to
capture the spatial relationships of the AOIs. Lately, to learn representations
from graphs, researchers proposed various graph embedding approaches [2,6,
7,20,27]. Popular methods like Deepwalk [20] and Node2vec [6] are based on
random walks and train the network on randomly generated samples. However,
in our problem, such a process cannot be easily trained with trajectories jointly.
Therefore, we propose to estimate the node-wise mutual information in graphs
and use the same autoencoder framework as used for trajectories to align the
learning of the two heterogeneous views.

Unified Representation Component: Finally, to combine the two heteroge-
neous views, previous studies employ different strategies to model the correlation
between views and control the learning across views [4,14,24]. However, none of
these approaches could be directly applied to our problem because most of them
are designed for text and image data. To the best of our knowledge, we are the
first to study the joint learning of AOI representation using both trajectory and
graph data. To join the learning of trajectories and graphs, we propose a novel
multi-view autoencoder neural network that takes the PMI matrices generated
by the previous two components and utilizes an innovative ranking-weighted loss
to dynamically balance the learning between views.

We evaluated our representation with a large real-world package delivery data
acquired from Cainiao Network. Our representation approach is shown to have
up to 20% reduction of errors as compared to the adapted baseline approaches
in predicting Estimated Time of Arrival (ETA) of real-world deliveries.

The remainder of the paper is organized as follows. Section 2 clarifies some
basic definitions and important notations used in this paper. Section 3 presents
the details of our proposed framework. In Sect. 4, we show the evaluation of our
approach on real-world data. Finally, Sect. 5 introduces the related work followed
by our conclusion in Sect. 6.

2 Preliminaries

In this section, we introduce some important concepts followed by the formal
problem definition.

Definition 1 (Area Of Interest (AOI)). An AOI is a minimum geographical
unit in the form of a polygon. The raw AOIs are generated by partitioning a
space with fine-grain road networks and geometric boundaries (e.g., roads, rivers,
railways) using map segmentation techniques.

By definition, the boundaries of AOIs, i.e., the irregular polygons can have
different sizes and numbers of edges, which differentiate them from those of the
conventional space partitioning techniques using regular shapes (e.g., hexagons).
Moreover, our AOIs still do cover the entire space and each AOI captures a single
context (e.g., a school). Later in Sect. 3.2 we show how we add latent features
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(learned from topological representations) to each AOI to enforce the Tobler’s
First Law of Geography.

Definition 2 (Trajectory). A trajectory s is a sequence of spatio-temporal
tuples s = [s(1), s(2), . . . , s(k), . . . ], where s(k) is represented by a tuple con-
sisting of the AOI v that contains the GPS point and a timestamp t, i.e.,
s(k) = (v, t).

We derive the modeling of contextual representation from the analogy in
language models. Most word representation models explicitly or implicitly follow
the distributional hypothesis introduced by linguists [21]. The hypothesis is often
stated as: words which are similar in meaning occur in similar contexts. In our
problem, as sequences of AOIs (trajectories) are analogous to sequences of words
(sentences), we make the following assumption:

Assumption 1 (Contextual representation of AOIs). A contextual representa-
tion of AOIs follows the spatial distributional hypothesis, that AOIs have similar
contextual representations are usually visited closely and in a trip.

Given the above definitions, we define our problem of learning a contextual
and topological representation of AOIs as below.

Definition 3 (Learning a Contextual and Topological Representation
of AOIs (CTRA) Problem). Given a set of raw AOIs (i.e., without latent
features) V , and a set of trajectories S, s.t. ∀s ∈ S,∀(v, t) ∈ s, v ∈ V , the
objective is to learn a mapping V → Z, s.t., it generates a latent representation
z ∈ Z for each AOI v ∈ V , that follows the spatial distributional hypothesis, and
Tobler’s First Law of Geography.

3 Methodology

We propose a Deep Multi-view informAtion-based RanKing network (Deep-
MARK) to solve the CTRA problem. DeepMARK consists of three parts: learn-
ing contextual representation, learning topological representation and jointly
learning of both representations, which are elaborated in the following sections.

3.1 Learning Contextual Representation from Trajectories

Modeling Spatial Distributional Hypothesis. The learning of contextual
representation of AOIs in trajectories is analogous to the learning of word embed-
dings from sentences. To model the distributional hypothesis, word embedding
techniques usually describe similarities between words using their contexts and
then map words to hidden embeddings according to such similarities. For exam-
ple, the word2vec model [17] maximizes the log probability as in Eq. 1. The
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modeling of the context similarity is implicitly computed by predicting the con-
text words (wt+j) of a target word (wt), which usually requires a sampling-based
training process, e.g., negative sampling.

1
T

T∑

t=1

∑

−c≤j≤c,j �=0

log p(wt+j |wt) (1)

In this paper, rather than use the sampling-based training and objective, we
propose to use Pointwise Mutual Information (PMI) to describe the contextual
similarity between AOIs and learn the representation by decomposing the simi-
larities using neural networks. We believe such approach has better compliance
with CTRA problem because of the following reasons.

1. The similarity is symmetric. In word2vec models, people choose a center word
and its context word to describe the similarity. In this case, the similarity
of “A to B” might be different that of “B to A”, when choosing A or B
as the center word. However, in delivery scenarios, we concern more about
whether the 2 places are likely to be visited from each other. So we expect the
similarity to be symmetric, i.e., similarity(A,B) = similarity(B,A), which
is guaranteed in PMI.

2. The decomposition of PMI has comparable performance and is implicitly
equivalent to SGNS. As shown in recent studies, the SGNS model is implic-
itly factorizing the shifted PMI matrix [11] and a good decomposition of
PMI(PPMI) matrix is comparable with word2vec models in various tasks [12].

3. The training process is easy for alignment in a multi-view learning framework.
Sampling-based training is hard to be extended to multi-view problems like
CTRA. Even applying iterative training one cannot align different views well
to the same training target (a single AOI) and train them jointly. However,
the decomposition of PMI is easy for aligning the same AOI from different
views which allows joint training described in Sect. 3.3.

Formally, given AOI vi and vj , we define the contextual similarity from the
trajectory data as follows:

PMItraj(vi, vj) = log(
p(vi, vj)

p(vi)p(vj)
) (2)

Here, p(vi) and p(vj) denote the probability of randomly visiting vi and vj , and
p(vi, vj) denotes the probability of visiting vi and vj together. we can interpret

p(vi,vj)
p(vi)p(vj)

as: the ratio of how likely people visit vi and vj together in the real world
to how likely vi and vj are visited together at random. Therefore, a large ratio
means the two AOIs vi and vj are, rather than randomly visited together, co-
visited for some real reason, e.g., they are easily accessible in human knowledge.

Computation of PMI in Trajectories. Now, to compute the PMI between
AOIs, the remaining task is to define the computation of p(vi, vj), p(vi) and
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p(vj) for AOIs in trajectories. For calculating p(vi, vj), it’s important to properly
define the co-occurrence of AOI vi and AOI vj in the trajectories. Different from
the skip-gram model, we define that two AOIs co-occur in a close context if
they fall in a fixed-length temporal window in a trajectory. To count such co-
occurrences, we apply a time sliding window to each trajectory: [t, t+Δ], where
Δ is the window size. As shown in Fig. 1b, each sliding window may contain
various numbers of AOIs (window T1 has 2 AOIs while T3 includes 3 AOIs)
but the temporal length of each window is the same. In addition, we slide the
windows with an offset of Δ/2 to make the best use of the trajectories while
avoid generating too many samples, similar to [31].

We use such temporal windows for defining co-occurrence because of the
nature of trajectories. In detail, as depicted in Fig. 1a, if we adopt the way
skip-gram model building context windows (C1 to C4), for each AOI in the
trajectory, we have to extract a fixed number of preceding and succeeding AOIs
as its co-occurring neighbors. However, in trajectories, consecutively collected
spatio-temporal points usually have variant time differences, e.g., from 2 min to
20 min, because of the unstable signals and different mobile application settings.
Consequently, if we adopt skip-gram and consider two consecutive but distant
AOIs as a co-occurrence, it will mislead the model to produce similar embeddings
between the two distant AOIs (e.g., in C3, two distant nodes are counted in the
same context window), which is not expected.

After the sliding windows are generated, we count any two AOIs in the same
window as a co-occurring pair. The probabilities p(vi, vj), p(vi), p(vj), and the
PMI matrix between AOIs can be estimated by counting the co-occurring pairs
as below.

PMItraj(vi, vj) = log(
p(vi, vj)

p(vi)p(vj)
)

= log(
#(vi, vj)/|C|

(#(vi)/|C|) · (#(vj)/|C|) )

= log(
#(vi, vj) · |C|
#(vi) · #(vj)

)

where |C| =
∑

i′

∑

j′

#(vi′ , vj′)

In the equation above, #(vi, vj) denotes the count of co-occurring pairs (vi, vj)
from all windows, #(vi) and #(vj) denotes the count of pairs containing vi and
vj respectively. C denotes the set of all co-occurring pairs and |C| is the number
of all pairs.

Learning a Distributed Representation Using Autoencoder. After the
computation of PMI from trajectories, we propose to use autoencoder to decom-
pose the PMI for a dense and distributed representation. Although for each
AOI vi, we can use its PMI similarity to all AOIs as its representation, i.e.,
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C1

C2

time

C3

C4

Count co-occurrences by skip-gram.

T1 T2

time

T3 T4 T5 T6

Count co-occurrences by sliding window.

Fig. 1. Count co-occurrences by skip-gram.

[PMItraj(vi, v0),PMItraj(vi, v1), . . . PMItraj(vi, vn)], we propose to apply low-
rank decomposition by autoencoder on the sparse PMI matrix. Because a dis-
tributed representation [9](i.e., each element encodes multiple things) is always
expressive and allows efficient activation in downstream training [1]. In addition,
an autoencoder allows non-linear encoding, and thus could have more accurate
reconstruction of the similarities. Specifically, the autoencoder consists of an
encoder f and a decoder g. The encoder f takes the PMI vector of each AOI
and learns a low-dimensional embedding. Then the decoder g takes the low-
dimensional embedding and reconstructs the PMI vector with minimum error.
The objective of the network is minimizing the reconstruction error L in Eq. 3.

Ltraj =
n∑

i

||PMItraj(i), g(f(PMItraj(i)))||2 (3)

In summary, as depicted in Fig. 2, DeepMARK first slides windows in trajecto-
ries, and then counts the co-occurring pairs in these windows. After that, the

... ...

0.6 1 ... 0.3

1

...

0.3 ...

Trajectories Sliding windows
PMI Autoencoder

Fig. 2. Learn contextual representation from trajectories.
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PMI matrix is computed based out of the counts, and is fed to an autoencoder
for learning representations. Notice that here we actually employ the common
practice of positive PMI [8,11,12] rather than PMI but we use PMI for simplicity.

3.2 Learning Topological Representation from Graphs

Given that our initial AOIs already cover the entire space (see Definition 1 in
Sect. 2), here we would like to learn features (latent representation) per AOI
to capture the spatial relationships among these AOIs that follow Tobler’s first
Law of Geography. Therefore, we use two graphs to capture the spatial relations
between AOIs: Euclidean Graph Geuc and Adjacency Graph Gadj . Intuitively,
the former graph captures Euclidean proximity to enforce Tobler’s First Law
between nearby AOIs and the latter uses adjacency relationships to enforce the
law for adjacent AOIs.

Euclidean Graph Geuc. We define Geuc = {V,Eeuc,Weuc}. V is the set of
nodes i.e., AOIs. We define the weights W = [wij ] ∈ R

n×n representing the
proximity between vi and vj as a function of their Euclidean distance dist(vi, vj).
In particular, we define the proximity function as a thresholded Gaussian kernel
function [22] as in Eq. 4. Intuitively, the closer nodes, the larger weight is assigned
to the edge between the nodes.

Wij =

{
exp(−dist(vi,vj)

2

σ2 ) if dist(vi, vj) ≤ K
0 otherwise

(4)

Adjacency Graph Gadj. We model the adjacency between AOIs as a graph
Gadj = {V,Eadj ,Wadj}. V is the set of nodes, i.e., AOIs. The weights W =
[wij ] ∈ {0, 1} represent the adjacency between AOIs, where wij is defined as
below.

Wij =

{
1 if vi is adjacent to vj

0 otherwise
(5)

We expect the learning from the two graphs and from trajectories could have
homogeneous processes for a flexible and alignable joint learning of topologi-
cal and contextual representations. Therefore, we design PMI matrices for the
graphs to be homogeneous with the trajectory view. For any two nodes vi, vj

in a graph G given its weights W , to prepare the probabilities p(vi, vj), p(vi)
and p(vj) in the graph, we define p(vi, vj) as the proximity from vi to vj within
K-step random walks. Specifically, we first define a transition matrix Mk, in
which Mk

i,j presents the probability of visiting vj in a k step random walk from
vi with restart ratio η according to [25].

Mk = η · I + (1 − η)M (k−1) · (D−1W ),

where M0 = I

Here I is the identity matrix. D is a diagonal matrix, s.t., each element in the
diagonal is the summation of the corresponding row in W , i.e., Dii =

∑
j Wi,j .
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And respectively, as depicted in Fig. 3, we can compute the proximity matrix
PK as the sum of random walks within K steps starting from any node: PK =∑K

k=1 Mk. Then p(vi, vj) is defined as PK
i,j , and accordingly, p(vi) is defined as∑

l P
K
l,i .

k = 1 k = 2

Fig. 3. Calculate proximity to other nodes by different-step random walks

Therefore we compute the PMI matrix for a graph G = {V,E,W} with the
maximum walking step k as below.

PMIK
graph(vi, vj) = log(

PK
i,j∑

l P
K
l,i · ∑

l P
K
l,j

)

where PK =
K∑

k=1

Mk

After computing the PMI matrices for Geuc and Gadj , we can use the same
autoencoder framework as for PMItraj to learn the topological representations
from the graphs. And the remaining task is to jointly learn a representation from
all autoencoders.

3.3 Jointly Learning One Representation by a Multi-view Ranking
Autoencoder

After the heterogeneous data are transformed into homogeneous views through
different PMI computations, we propose to use a multi-view autoencoder for
jointly learning the PMI in both trajectory and graphs as described in previous
sections. In detail, all views (the PMI matrices) are fed into separate encoders
and share the same middle layers, which generate embedding for the AOIs. Then
separate decoders take the outputs of the shared layers and reconstruct the views
and minimizing all errors. The network structure is depicted in Fig. 4. For a
straightforward multi-view autoencoder [18], the loss of our network could be
written as a summation of all reconstruction losses:

� = (1 − α − β) · Ltraj + α · Leuc + β · Ladj (6)
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Dynamic Ranking-Weighted Loss. In the Eq. 6, α, β are the weights of the
two topological views (graphs). Rather than use static weights which require
much effort in finding the optimal values and do not change during the train-
ing, we propose to dynamically change the weights according to the alignment
between different views. Specifically, we expect the weight on the contextual
view be correlated with the order-sensitive discordance between contextual and
topological views. Below we provide the definition of such discordance:

Definition 4 (Order-sensitive Discordance). For a given AOI vi, an order-
sensitive discordance between view A and view B happens if, the sorting of other
AOIs by their similarities to vi in view A is largely different from that in view
B. In other words, AOI vj ranks high in vi’s similarity sorted by view A, but
ranks low in the sorting by view B.

In this strategy, we introduce the inductive bias from real-world observations
and domain knowledge. In detail, we observe that trajectories have different
sampling density at different AOIs. Some AOIs and their neighbors are frequently
visited in the trajectories. These AOIs have sufficient contextual semantics and
are also consistent with the geography law. Then we want to learn more from (put
more weight on) the contextual view. In contrast, some AOIs are rarely or never
visited, and the learning from trajectories cannot learn a meaningful embedding
from these AOIs. From the trajectory view, these AOIs cannot correctly order
their relationships to other AOIs and would conflict the geographical law. In the
latter case, we require more effort from the learning of graphs (higher weights
on topological views) to ensure the law of geography.

Therefore, rather than use static values for α and β, we propose to use
dynamic weights based on ListMLE [30], a list-wise ranking loss, computed
between the graph PMI vectors and the trajectory PMI vector. If we denote
xtraj as the reconstructed vector from trajectory view, yeuc, yadj as the recon-
structed vectors from Geuc and Gadj , hi(yeuc) as the AOI index at the ith largest
value of yeuc, the ListMLE-based weights can be written in Eq. 7. Intuitively, α
and β are large if yeuc, yadj have a different ranking of elements from xtraj . In
other words, the largest element in yeuc might be the smallest in xtraj . A pos-
sible example could be when both v1 and v2 are not visited in trajectories, the
ranking of their similarity is based on a default value which could conflict with
the ranking of the topological similarity learned from yeuc and yadj . In this case,
DeepMARK puts more weights on Geuc and Gadj .

α = −1
2

n∑

j=1

log
extraj(hj(yeuc))

∑n
k=j extraj(hk(yeuc))

(7)

β = −1
2

n∑

i=1

log
extraj(hj(yadj))

∑n
k=j extraj(hk(yadj))

(8)
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Fig. 4. DeepMARK Network Structure

4 Experiments

In this section, we evaluate the proposed model with real-world delivery datasets
and task. We also include visualizations of interpretive results to help understand
the model and the effect of different modules.

4.1 Dataset

We conduct the experiments on the package delivery data collected by Cainiao
Network, handling more than a hundred million packages per day. In the exper-
iment, the trajectory data is from a dispatching region from July 1, 2019 to
Aug 31, 2019. The trajectories are pre-processed by removal of outliers, proper
aggregation and mapped to AOIs. The original form of trajectories are GPS
coordinates and timestamps, and after pre-processing, the input of this paper is
sequences of AOIs and timestamps.

4.2 Experimental Settings

Adapted Baseline Algorithms Since there is no existing work on learning a con-
textual and topological AOI representation from trajectories and graphs, we
adapted various approaches to our problem and compare them with DeepMARK.
Here we list these adapted baseline approaches:

– Topological-only baselines:
• GeoHash [19] is a general encoding of spatial objects. It maps the coor-

dinates to fixed-length vectors in which common prefix usually infers close
locations.

• Deepwalk [20] and Node2vec [6] are state-of-the-art graph representa-
tion models which learn node embedding by skip-gram model from gen-
erated random walks.
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– Contextual-only baseline:
• Word2vec [17] is a word embedding approach that learns word repre-

sentation from sentences. We adapt the model to our problem by treating
trajectories as sentences and AOIs as words.

– Homogeneously integrated baselines:
• We create two straightforward baselines word2vec + deepwalk and

word2vec + node2vec, which are concatenations of word2vec embed-
ding and graph embeddings. Thus these approaches also have the same
input information as PTE (described below) and DeepMARK for a fair
comparison.

– Heterogeneously integrated baseline:
• PTE [24] is a heterogeneous embedding model that learns word embed-

ding from both sentences and graphs based on a Heterogeneous Informa-
tion Network Embedding (HINE) approach. We adapt this model to our
problem by treating the trajectories of AOIs as the sentences of words
and replacing their graphs with our graphs.

Parameter Settings For all random walk generations from graphs in Deepwalk,
Node2vec and PTE, the walking length is set to 30, and walks per node is set
to 30. Specifically, for Node2vec, p and q are set to 4 and 1. In DeepMARK, the
revisiting ratio η for Geuc and Gadj is set to 0.1. The sliding window size is set
to 20 min and the sliding offset is 10 min.

Training, Validation and Testing. Following the principle of time-related predic-
tion, we use the latter data for testing and the earlier for training and validation
using 80-20 splits.

4.3 Evaluation with ETA Prediction

We evaluate our embedding framework in the prediction of the Estimated Time
of Arrival(ETA) in the last-mile package delivery task. Predicting ETA in the
last-mile deliveries is challenging because the couriers usually travel by non-
motor vehicles and the environments are very complex. In this task, we use
deepETA [29] as the prediction model and replace the spatial representation
of AOIs (by default Geohash in deepETA) with embeddings from the listed
approaches to evaluate their performances.

Evaluation Metrics. We utilize Rooted Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) to evaluate the prediction performance on different
embeddings. The smaller value indicates better performance in the prediction of
ETA.

Comparison Results. In Table 1 we compare the errors of ETA prediction
using deepETA with different representations. We can observe that DeepMARK
has a significant advance over all other baselines, inducing up to 20% reduction of
errors. Its variant DeepMARKstatic which uses fixed weights on multiple views is
worse than DeepMARK but slightly better than others. We also draw the curves
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Fig. 5. Learning curves of ETA prediction by different representations

Table 1. ETA prediction performance

Model RMSE (min) MAE (min)

Geohash 55.22 40.98

word2vec 53.43 36.91

Deepwalkeuc 56.52 37.35

Deepwalkadj 55.36 37.44

Node2veceuc 54.76 37.12

Node2vecadj 55.23 38.56

word2vec + deepwalk 54.15 37.41

word2vec + node2vec 53.86 36.53

PTE 53.17 36.52

DeepMARKstatic 51.78 34.87

DeepMARK 48.68 32.61

of MAE of validation set versus the training epochs in deepETA using different
representations. We can observe that the embedding by DeepMARK enables
the model converge to the lowest validation error. And we can observe that PTE
has a similar performance with word2vec+node2vec. Both have little control of
coordinating different views, thus induce larger errors than DeepMARK (Fig. 5).

4.4 Model Interpretation

Visualization of the Effect of Joint Learning. We utilize t-SNE [16] to
visualize the embeddings of AOIs by Word2vec on trajectories, Node2vec on Geuc

and DeepMARK on both views in Fig. 6. The colors of the points are based on
Geohash values. That means points in similar colors are close in the real world.
We can observe that in the Word2vec result, many distant AOIs are embedded
closely (light yellow points and dark blue points). The Node2vec result has a
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smooth color transition from yellow to blue which indicates a nicely consistency
with the law of geography, but the colors are almost evenly distributed which
means it does not reveal any human knowledge on the AOIs. On the contrary, in
DeepMARK result, the points have some variances in colors and shapes (holes
and clusters in the figure) while overall the color transition is also smooth. This
reflects that DeepMARK can learn human knowledge and meanwhile maintain
the law of geography.

Word2vec Node2vec DeepMARK

Fig. 6. Embedding visualization by t-SNE

Visualization of the Changes of Ranking-Based Weights. To understand
how the listMLE losses direct the training process of DeepMARK, we visualize
the change of β (the ranking loss between the trajectory view and Gadj view)
in Fig. 7. In each plot, the x-axis and y-axis are the geometric coordinates, i.e.,
longitude and latitude. Each dot in the figures representing an AOI and its color
denotes the value of β calculated for this AOI. dark blue indicates large β and
shallow green indicates small β. In Fig. 7 we show the calculated β of all AOIs at
different training stages, i.e., epoch = 1, 30, 100. We can observe that: (a) The β
for all AOIs have little difference at epoch 1 because of the randomness caused
by initial parameters of the neural network; (b) The β of some AOIs get larger
and others get smaller as the training proceeds to epoch 30; (c) A few AOIs have
relatively large enough beta while the majority of AOIs gain low beta when the
network is well-trained at epoch 100. Such change from epoch 0 to epoch 100
indicates the intuition behind our ranking-based weight strategy. Specifically, the
ranking losses don’t affect much in the reconstruction of all views at the early
stages. Therefore it allows the model to have a warm start on roughly learning
the representation of all views. However, when each view gets well trained and
the topological views and contextual view become inconsistent in the ordering
perspective, the ranking losses (α and β) start to regularize these disordering
according to our inductive bias until the reconstructions and the ranking losses
across different views are balanced.

5 Related Work

Point of Interest Recommendation. Lately, a few researchers spot their
light on employing trajectory or (mostly) user check-in data in recommendation
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Epoch 1 Epoch 30 Epoch 100

Fig. 7. Visualize the change of ranking loss between the topological view and the
contextual view

services, e.g., in [3,15,32]. These approaches utilize word2vec ideas for learning
POI embeddings in the recommendation task. However, they are restricted to
study embeddings for POIs which are discrete places thus not fully cover the
space. And they didn’t sufficiently consider the law of geography for the learned
representation.

Graph Representation Learning. As diverse real-world data could be formu-
lated as graph structures, recent researchers study how to learn a graph repre-
sentation to support different prediction and recommendation tasks. Inspired by
word2vec models from studies in NLP, many researchers learn the node embed-
ding in a graph by conducting random walks in the graph and treat the walks as
corpus [6,20]. In addition, some recent researches utilize deep neural networks to
learn more neighboring information through an autoencoder framework [2,27].

Multi-view Representation Learning. Since real-world problems always
involve different views of data, such as audio/video, image/text, multi-view rep-
resentation learning attracts more attention in recent studies [14,28]. In this
area, researchers usually align different views by similarities or correlations or
adopt different parameter sharing strategies to learn a representation [5,18,23].
Researchers also discover representation learning from heterogeneous graphs
such as in [4]. Based on the heterogeneous graph embedding approaches, a recent
study [24] proposed an approach that learns from sentences as well as graphs for
text representation. However, the adaption of these approaches may not perform
as good in delivery tasks due to the domain-specific alignment requirements in
the spatial scenario.

6 Conclusion

In this paper, we introduced DeepMARK, an innovative deep multi-view autoen-
coder framework which learns a representation of AOI from trajectories and
graphs data. The framework learns embedding of AOI that takes the best of
both contextual and topological representations, i.e., incorporates data-driven
contextual information and follows the Tobler’s First Law of Geography. Deep-
MARK is evaluated in real-world package delivery ETA prediction and achieved
a better performance than various adapted baselines.
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Abstract. There is a rapidly growing demand for itinerary planning
in tourism but this task remains complex and difficult, especially when
considering the need to optimize for queuing time and crowd levels for
multiple users. This difficulty is further complicated by the large number
of parameters involved, i.e., attraction popularity, queuing time, walk-
ing time, operating hours, etc. Many recent works propose solutions
based on the single-person perspective, but otherwise do not address
real-world problems resulting from natural crowd behavior, such as the
Selfish Routing problem, which describes the consequence of ineffective
network and sub-optimal social outcome by leaving agents to decide
freely. In this work, we propose the Strategic and Crowd-Aware Itinerary
Recommendation (SCAIR) algorithm which optimizes social welfare in
real-world situations. We formulate the strategy of route recommenda-
tion as Markov chains which enables our simulations to be carried out
in poly-time. We then evaluate our proposed algorithm against various
competitive and realistic baselines using a theme park dataset. Our sim-
ulation results highlight the existence of the Selfish Routing problem and
show that SCAIR outperforms the baselines in handling this issue.

Keywords: Tour recommendations · Trip planning · Recommendation
systems · Sequence modelling

1 Introduction

Itinerary recommendation has seen a rapid growth in recent years due to
its importance in various domains and applications, such as in planning tour
itineraries for tourism purposes. Itinerary recommendation and planning is espe-
cially complex and challenging where it involves multiple points of interest
(POIs), which have varying levels of popularity and crowdedness. For instance,
while visiting a theme park, the visitor’s route can include POIs such as roller
coasters, water rides, and other attractions or events. The itinerary recommenda-
tion problem can be modelled as an utility optimization problem that maximizes
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Fig. 1. Existing itinerary recommendation problems leverage data-driven approaches
with a single-person perspective. In real life, this will result in the Selfish Routing
problem, where leaving all agents free to act according to their own interests results
in a sub-optimal social welfare. As illustrated, the recommended path performed sub-
optimally, where the closer the POIs are to the start of the route, the more crowded
they would be, while leaving all other POIs (in grey) not utilized.

the number of facilities visited and the popularity of these facilities1, while mini-
mizing the queuing time and travel time from one facility to the other. Facilities
in a theme park come with different properties such as popularity, duration,
location and a dynamic queuing time. Visitors are often constrained by a time
budget that limits the number of facilities one could visit in a single trip. While
many algorithms have been developed [4,7,18,26,40], they mostly aim to rec-
ommend itineraries for individual travellers, whereas a real-life itinerary is also
affected by the actions of other travellers, such as lengthening the queuing time
at a facility.

Many works focus on constructing a single optimal path for the individual
traveller, solely based on historical data. While this approach works for the indi-
vidual traveller, it leads to a sub-optimal itinerary when all travellers are given
the same recommendation. Consider a recommender system that recommends an
itinerary comprising the most popular POIs with the least queuing time based
on such historical data. In a real-life scenario with multiple travellers, all trav-
ellers will follow the same recommended itinerary with the shortest historical
queuing time, resulting in an expected queuing time that would grow with each

1 The terms “POIs”, “attractions” and “facilities” are used interchangeably.
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new arrival, as illustrated in Fig. 1. In other words, the later an agent2 arrives to
the system, the longer her expected queuing time will be. As a result, the social
welfare or the collective utility of all agents has failed to be optimized. As an
individual traveller, it is extremely difficult for an agent to gain knowledge of
the system state, i.e., the people who are visiting the park and their respective
paths. As a result, letting the agent find an optimal strategy that maximizes her
expected utility is unrealistic without considering the actions of other agents.

To address this problem, we propose the Strategic and Crowd-Aware
Itinerary Recommendation (SCAIR) algorithm, which is a recommender system
that maintains an internal information of all recommended routes and leverages
on this internal information to make routing recommendations to its arriving
agents. In other words, we take a game-theoretic approach to address the prob-
lem and formulate a crowd-aware itinerary recommendation algorithm having in
mind the Selfish Routing problem [32], i.e., allowing agents act freely results in a
sub-optimal social welfare. Concretely, we model the itinerary recommendation
problem into a strategic game [25], where the system, i.e., a theme park, defines
a set of allocation rules to allocate route to each player in the system, instead
of leaving the agents a high degree of freedom to choose their own path. Exper-
iments show that our approach is effective in optimizing utility of all agents.

2 Main Contributions

Our main contributions are as follows:

– We introduce and formulate the crowd-aware itinerary recommendation prob-
lem as a social welfare optimization problem that considers the actions of
multiple travellers, in contrast to existing works that only consider the per-
spective of the single traveller (Sect. 4).

– To address this crowd-aware itinerary recommendation problem, we propose
the SCAIR algorithm which utilizes a game-theoretic approach to recommend
itineraries for multiple travellers (Sect. 5).

– Using a theme park dataset, we compare our SCAIR algorithm against various
competitive and realistic baselines and show how SCAIR outperforms these
baselines with a large reduction in queuing times (Sects. 6 and 7).

For the rest of the paper, Sect. 3 discusses related works and how our research
differs from these earlier works. Section 8 summarizes this paper and introduces
some future research directions. Next, we introduce the problem formulation of
this crowd-aware itinerary recommendation problem.

3 Related Work

There have been numerous works that aim to solve the itinerary recommen-
dation problem and other related tourism recommendation problems. In this
literature review, we cover various related work from the Operations Research
and Information Retrieval communities.
2 We use the terms “travellers”, “visitors” and “agents” interchangeably.
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3.1 Itinerary and Tourism-Related Recommendation

Many works have modelled the itinerary recommendation problem as a vari-
ant of the Orienteering problem [4,7,17]. In the Orienteering problem [33], the
recommendation aims to optimize social welfare with a global reward such as
popularity, with respect to budget constraints such as travel time or distance
among attractions in an itinerary. This approach typically does not take into
consideration the trade-off between the duration in a facility and its popular-
ity, which may contribute substantially to the global profit. For more details on
the Orienteering problem and its variants, we refer the interested reader to the
various survey papers on this topic [8,34].

There have been various approaches proposed to solve this itinerary recom-
mendation problem based on variants of the Orienteering problem. For exam-
ple, Zhang et al. proposed the use of heuristic approximation to solve a vari-
ant of this problem that involves POI opening hours and incorporating uncer-
tainty in different travel modes [40,41]. Others have used variations of the Ant
Colony System to solve the itinerary recommendation problem [19], and vari-
ants that incorporate the additional consideration of crowd levels [36]. Another
approach is to solve this itinerary recommendation problem using integer pro-
gramming, to optimize for user interests based on the amount of time tourists
spend at POIs [18]. Similarly, there are also various works that aim to rec-
ommend routes that are deemed more attractive to tourists [10,35,42]. In the
Information Retrieval community, a popular research topic is on item recommen-
dations and this problem can be easily extended for recommending POIs. For
example, many works have used matrix factorization or collaborative filtering
approaches for finding a ranked list of top locations, which is known as top-k
POI recommendation [14,15,37–39].

3.2 Discussion

These earlier works face a major limitation where the recommendation algo-
rithms are constructed based on a single person’s perspective. Despite some
recent works exploring the effects of group or crowd behavior [1,6,9,11,36], the
algorithms treat the system as a static environment where properties such as
queuing time only depend on historical data. Simulating an optimal path in such
a static environment has a natural disadvantage where self-interested agents pri-
oritize personal objective functions which may result in ineffective social welfare.
For instance, when everyone visiting the theme park follow the same recom-
mended path, the queuing time will increase dramatically, and the optimality
of such recommendation algorithms will then collapse. Roughgarden’s work [32]
discusses this problem extensively, defined as Selfish Routing problem, where
giving agents the freedom to act according to their own interests results in a
sub-optimal social welfare.

The Selfish Routing problem was studied in the area of Game Theory and
Mechanism Design [12,28,32]. The inefficiency of achieving the optimize natural
objective is quantitatively measured by Price of Anarchy, which was first defined
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as the ratio between the worst-case Nash equilibrium and the optimum sum
of payoffs in game-theoretic environments [12,28]. Braess’s Paradox for traffic
flow [3] describe the phenomenon where adding a new link to a transportation
network might not improve the operation of the system, in the sense of reducing
the total vehicle-minutes of travel in the system [30]. To break out from this
phenomenon, a system operator can manually interfere with or change agents’
actions to provide policies or economic incentives with well designed strategies.
Our proposed game-theoretic, dynamic itinerary recommendation algorithm in
this paper is an instance of such strategy.

To address these limitations, we propose the Strategic and Crowd-Aware
Itinerary Recommendation (SCAIR) algorithm to address the ineffectiveness of
welfare optimization due to the lack of centralized control [31]. The proposed
recommendation algorithm takes into consideration all visits in an itinerary plan-
ning scenario (e.g., a theme park), and makes recommendations to the next vis-
itor with the knowledge of other visitors’ paths in the park. Furthermore, the
queuing time at all facilities at a certain hour is dynamically modelled according
to the expected number of visitors in the same place at the same hour.

4 Crowd-Aware Itinerary Recommendation Problem

In this section, we first give an overview of our general approach, followed by
formulating our crowd-aware itinerary recommendation problem, before showing
the NP-hardness of this proposed problem.

4.1 General Approach

In this work, we view the itinerary recommendation problem from a global per-
spective and formulate it as a strategic game where the system designs and
distributes the optimal path to every agent on arrival, based on the existing
agents in the system and their respective paths. In the context of a theme park,
one can think of this entity as the theme park operator that gives out the rec-
ommendation of various itineraries to visit the attractions to different visitors.
We propose the SCAIR algorithm that dynamically recommends routes taking
into consideration all existing agents in the system.

The crowd-aware itinerary recommendation problem aims to maximize the
sum of all agents’ utility in the system. This turns out to be a social welfare
optimization problem that is NP-hard [24]. Furthermore, simulating or solving
the problem is also empirically challenging. One has to take into consideration
the entire history of existing visitors results in exponential space-complexity with
respect to the number of agents, and exponential time-complexity with respect
to the number of facilities in a path.

To overcome these challenges, we propose a simplified version which models
the recommendation problem as a finite markov chains and is known to be in
NC [29] and decidable in poly-logarithmic time [2]. The simplified model makes
an assumption that each decision embeds information of the immediate last
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decision and the model as a result is able to provide a snapshot of the entire
history. Next we will discuss the formulation of the problem.

4.2 Problem Formulation

We formulate the crowd-aware itinerary recommendation problem to be a finite
markov chain and impose constraints such as (1) fixing the starting point, (2)
setting a time budget for the path, and (3) limiting the distance between two
stations. These constraints reflect real-life considerations closely, such as fixed
starting point near the entrance; visitors having limited time to tour; and dis-
satisfaction arising with long walking distance among facilities.

Concretely, we model the theme park comprising numerous tourist attrac-
tions as a fully connected graph G(F,C), where F = {f1, ..., fn} is the collection
of n facilities in the system, and C = [cij ] is the set of connections from fi to
fj . Each connection cx is associated with the properties of distance Dist(cij)
and travel time Trav(cij) in minutes. Each facility fx is associated with a set
of properties including coordinates (latx, longx), duration of visit Dur(fx) in
minutes, capacity Cap(fx) and popularity Pop(fx).

We formulate the agents’ visits as m states S = {s1, ..., sm}, where each
state sx is associated with a feasible path px = [f (x)

1 , ..., f
(x)
nx ] with n facilities

[f (x)
1 , ..., f (xn)]. The total time TTx of path px is defined as:

TTx =
nx∑

i=1

Dur(f (x)
i ) +

nx−1∑

i=1

Trav(ci,i+1) (1)

We model the utility of the agents with respect to the popularity of each facil-
ity visit normalized by the expected waiting time at each facility. Our assumption
is that higher popularity of a facility indicates a greater attractiveness to vis-
itors, subjected to how long they have to wait for that facility. Concretely, we
define the utility function Ux for path x with n nodes as follows:

Ux =

∑
f∈pj

Pop(f)

Q(px|px−1)
(2)

where Q(px|px−1) is the expected queuing time at path px given px−1, and
Pop(px) is the sum of popularity of all facilities in the path. The path’s expected
queuing time Q(px|px−1) is calculated by summing up the queuing time at all
facilities:

Q(fi) =
1

Cap(fy)
Dur(fy)δ(f

(x)
y,h = f

(x−1)
y,h ) (3)

where δ(f (x)
y,h = f

(x−1)
y,h ) = 1 if the facility appears to overlap between paths px

and px−1 within the same hour h. Capacity Cap(fx) is set to be a constant for
simplicity. Finally, the transition matrix T is defined as:

Tij =

∑
f∈pj

Pop(f)

Q(pj |pj−1=i)
(4)
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The transition matrix is then normalized by:

Tij :=
Tij∑
j Tij

(5)

The set of feasible paths, i.e., total search space, is determined by solving an
optimization problem, as follows:

maximize TTx =
nx∑
i=1

Dur(fi) +
nx−1∑
j=1

Trav(cj,j+1)

subject to Dist(cj,j+1) ≤ s, TTx ≤ t

(6)

for n facilities in the path, with a constant time budget t.

Finally, we model the strategic itinerary recommendation problem as a social
welfare optimization problem as follows:

maximize W =
∑
x

Uxpx

subject to
∑
x

TTx ≤ t, x ∈ {1, ..., n}
(7)

for n agents and time budget t.

4.3 Proof of NP-Hardness

We further investigate the NP-hardness of various sub-problems and show the
respective proofs in this section.

Theorem 1. The path finding problem defined in Eq. 6 is NP-hard.

Proof. We prove the NP-hardness of the path finding problem by reduction from
the 0-1 Knapsack problem which is known to be NP-hard [23]. Recall that the
0-1 Knapsack problem is a decision problem as follows:

maximize z =
∑
i

pixi

subject to
∑
i

wixi ≤ c

xi ∈ {0, 1}, i ∈ {1, ..., n}

(8)

for n available items where xi represents the decision of packing item i, pi is
the profit of packing item i, wi is the weight of item i, c is the capacity of the
knapsack.

Intuitively, the path finding problem is a decision problem of allocating a set
of facilities into a path with a capacity of time budget, where each facility comes
with properties of profit and duration time.
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Formally, we transform the minimization problem in Eq. 6 to an equivalent
maximization problem. Concretely, the binary variable fi ∈ {0, 1} is included,
where fi = 1 if fi is in path px, and 0 if otherwise. Furthermore, we define the
profit of facility fi as pi = −Dur(fi) and set the travel time Trav(cij) to be
a constant. Finally, the distance constant cap s is set to be infinity. The new
problem formulation is represented as follows:

maximize T ′
path =

∑
i

pifi

subject to
∑
i

Dur(fi)fi ≤ t

fi ∈ {0, 1}, i ∈ {1, ..., n}

(9)

In this formulation, a path is equivalent to the knapsack in the 0-1 Knapsack
problem, where each facility has its profit of Pop(pi), and its cost of Dur(fi) that
is equivalent to the profit and weight of an item respectively. The maximization
problem is subjected to a constant time budget t which is equivalent to the
capacity c in a 0-1 Knapsack problem.

As a result, for any instance of the 0-1 Knapsack problem (i.e. item allocation
decisions), we are able to find an equivalent instance of the path finding problem
(i.e. a facility allocation decisions). Therefore, a solution in the path finding
problem yields an equivalent solution to the 0-1 Knapsack decision problem. As
such, we have completed the proof of NP-hardness for our path finding problem
to be NP-hard. ��
Theorem 2. The social welfare optimization problem defined in Eq. 7 is NP-
hard.

Proof. Once again, we prove the NP-hardness of our welfare optimization prob-
lem by reduction from the 0-1 Knapsack problem.

In Eq. 7, the set of paths assigned to agents in the system is equivalent to
the set of items in 0-1 Knapsack problem; each path has its utility and total
time, which are equivalent to the profit and weight of an item respectively;
the maximization problem is subjected to a constant time budget t which is
equivalent to the capacity c in a 0-1 Knapsack problem.

As a result, for any instance of the 0-1 Knapsack problem decisions, we are
able to find an equivalent instance of a path assignment decision that yields a
solution to the original Knapsack decision problem. As such, we conclude the
proof of NP-hardness and have shown that our welfare recommendation problem
is NP-hard. ��

Next, we describe our proposed SCAIR algorithm for solving this crowd-
aware itinerary recommendation problem.
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5 Strategic and Crowd-Aware Itinerary Recommendation
(SCAIR) Algorithm

In this section, we describe our proposed SCAIR algorithm, which comprises
the main steps of finding feasible paths, generating a transition matrix and
simulating traveller visits.

5.1 Finding Feasible Paths

Algorithm 1 shows the pseudocode of our path finding algorithm based on a
breadth-first strategy. The input is a graph G(F,C) that represent a theme park
with the set of facilities F and connections C, time budget TTmax, and distance
limit between two facilities Distmax. This algorithm then generates and returns
a collection of feasible paths, Paths, with respect to the provided input graph
G(F,C).

We iterate the collection of intermediate Paths, and call the
FindV iableFacilities function to find viable facilities, where f

(i)
−1 is the last

facility of the path, and Distmax is the maximum distance an agent wants
to travel from one facility to another. We set the parameters of total time
budget Tmax < 8 h and maximum allowed distance between two facilities
Distmax(fcurrent, fnext) < 200 m. If there are no available facility that meets
the distance constraint and the path has available time budget remaining, the
agent proceeds to the next nearest facility. We also do not allow an agent to
revisit a facility in the same trip.

Line 2. The algorithm starts with constructing a 2-dimensional array, where
each row represent a path as a sequence of facilities visited. We then conduct a
breadth-first search (line 3 to 25), starting with the first row with an element of
the initial facility, i.e., the entrance of a theme park.

Line 6 to 11. If the algorithm is unable to find a facility within the feasible
range, it will instead find the nearest facility that is not yet visited, and assign
the new path into the Paths collection if two conditions are met, namely (1)
the new path’s total time is within the visitor’s time budget TTmax, and (2) no
identical path exists in the Paths collection. Eventually we remove the path the
iteration started off.

Line 13 to 20. If the algorithm manages to find a set of viable facilities, it will
then iterate through the set and execute a similar selection process.

Line 22 to 24. The algorithm breaks out from the infinite loop when any
one of two conditions is met, namely (1) all paths in the Paths collection have
maximized its time budget i.e. any additional facility will make the total time of
a path to be larger than the visitor’s time budget; or (2) every path has included
all available facilities.
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Algorithm 1. SCAIR - FindFeasiblePaths()
Data: fi ∈ F, cij ∈ C, TTmax, Distmax, f0
Result: Paths: the set of feasible paths

1 begin
2 Paths = [[f0]];
3 while True do
4 for pathi ∈ Paths do

5 V F = FindV iableFacilities(f
(i)
−1, Distmax);

6 if len(V F ) == 0 then

7 pathx = pathi + [FindNextNearest(f
(i)

(−1))];

8 if TTx < TTmax and pathx �∈ Paths then
9 Paths+ = [pathx];

10 Paths.pop(pathi)

11 end

12 end
13 foreach vf ∈ V F do
14 pathx = pathi + [vf ];
15 if TTx < TTmax and pathx �∈ Paths then
16 Paths+ = [pathx];
17 end

18 end
19 Paths.pop(pathi);

20 end
21 if AllPathsMaxTimeBudget(Paths) or

AllPathsReachFullLength(Paths) then
22 break;
23 end

24 end

25 end

5.2 Transition Matrix

Using the set of feasible paths found (Sect. 5.1), we now construct a Transition
Matrix T by calculating Tij as the costs of taking path j given path j − 1 = i.
The output of FindCost() function varies based on the arrival interval λ because
it affects the expected time of arrival for each facilities at pathj , which leads to
different occurrence of overlapping facilities between pathi and pathj .

5.3 Simulation

Algorithm 2 shows an overview of the simulation procedure, which involves iter-
ating through the visit data of theme parks Parks, a list of time budgets
TimeBudgets, and an array of arrival intervals ArrivalIntervals.

Line 6 to line 13. For each step, the FindFeasiblePaths() function finds the
set of feasible paths which enables the ConstructTM() function to construct the
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Algorithm 2. SCAIR - Simulate()
Data: Parks, T imeBudgets, ArrivalIntervals
Result: Export simulation data to a CSV file

1 begin
2 Results = {};
3 for Park ∈ Parks do
4 for SimTime ∈ TimeBudgets do
5 for λ ∈ ArrivalIntervals do
6 Paths = FindFeasiblePaths(Park, SimTime);
7 T = ConstructTM(Park, Paths);
8 Qt, Pop, Utility = RunSimulation(Paths, λ, SimTime);
9 Update(Results, [Qt, Pop, Utility]);

10 end

11 end

12 end
13 ExportCsvFromDict(Results);

14 end

transition matrix, with input parameters namely park data Park and simulation
time SimTime. The RunSimulation() function then runs the simulation to find
the total queuing time Qt, average sum of popularity among all facilities visited
Pop, and the expected utility Utility which is calculated as a function of Qt
and Pop. Finally, we update the Results dictionary (Line 9) and export the
experimental data into CSV files (line 13) after completing the simulations.

6 Experimental Setup

In this section, we describe our dataset, evaluation process and baselines.

6.1 Dataset

We conduct our experiments using a publicly available theme park dataset
from [16]. This dataset is based on more than 655k geo-tagged photos from
Flickr and is the first that includes the queuing time distribution of attractions
in various Disney theme parks in the United States. In our work, we perform
our experiments and evaluation using the dataset of user visits in Epcot Theme
Park and Disney Hollywood Studio.

6.2 Experimental Parameters

As previously described in Sect. 5.2, we denote the arrival interval of agents as λ
which indicates the time between the arrival of two agents, measured in minute.
In this work, λ is set to be a constant for simplicity. For a robust evaluation,
we perform our evaluation using multiple values of the evaluation parameters,
namely arrival interval λ ∈ {0.01, ...0.09, 0.1, ..., 1.0}, and simulation time T
between 60 and 360 min in 30 min intervals (i.e. T ∈ {60, 90, ..., 360}).
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6.3 Evaluation and Baselines

We compare our proposed SCAIR algorithm against three competitive and realis-
tic baselines. The first two algorithms are based on intuitive strategies commonly
used by visitors in real-life [18], while the third is a greedy algorithm used in [41].
In summary, the three baseline algorithms are:

1. Distance Optimization (denoted as DisOp) [18]. An iterative algorithm where
agents always choose the facility with the shortest distance to the currently
chosen one.

2. Popularity Optimization (denoted as PopOp) [18]. An iterative algorithm
where agents always choose the next most popular facility that satisfies the
specified distance constraint from the currently chosen one.

3. Popularity over Distance Optimization (denoted as PodOp) [41]. An iterative
greedy approach that models utility as the popularity of the POI normalized
by the distance from the current one, and iteratively chooses the POI with
the highest utility.

Similar to many itinerary recommendation works [16,17], we adopt the fol-
lowing evaluation metrics:

1. Average Popularity of Itinerary (denoted as AvgPop). Defined as the average
popularity of all attractions recommended in the itineraries.

2. Expected Queuing Time per Visitor (denoted as AvgQt). Defined as the aver-
age queuing time that each visitor spends waiting for attractions in the rec-
ommended itinerary.

3. Expected Utility (denoted as Uty). Defined as the average utility score for all
users based on the recommended itineraries.

7 Results and Discussion

Figure 2 shows the experimental results of our proposed SCAIR algorithm com-
pared to the three baseline algorithms. The x-axis indicates the time budget
of visits and the y-axis indicates the queuing time, popularity and utility. To
examine the effects of different user arrival frequency, multiple experiments are
conducted based on different arrival intervals λ, i.e., from 0.01 to 0.1 with a step
size of 0.01, and from 0.1 to 1.0 with a step size of 0.1. The values in the graph
are averaged across all λ.

7.1 Queuing Time

In relative terms, we observe that SCAIR outperforms the baselines for both
the queuing time and utility in both theme parks. SCAIR is able to maintain a
low queuing time with different time budgets, while the baseline’s queuing time
increases with the growth of time budget. The observation is consistent for both
theme parks. Table 1 shows the ratio of queuing time and time budget of visitors.
SCAIR produces a queuing time ratio that is 78.9% to 93.4% shorter than that
of the baselines, across both DisHolly and Epcot theme parks.
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Fig. 2. The plots show how the queuing times, popularity and utility change with
respect to simulation time T , over two theme parks data (Disney Hollywood and Epcot
Theme Park). We observe that: (1) SCAIR’s queuing time is consistently and signifi-
cantly lower than the baselines. (2) Popularity of of all 4 algorithms perform similarly
for DisHolly, while DisOp performs significantly poorer than the others for Epcot. (3)
SCAIR’s utility consistently outperforms the baselines.

7.2 Popularity

All four algorithms perform similarly for the DisHolly dataset, while PopOp,
PodOp and SCAIR remain similar but outperform DisOp for the Epcot dataset.
We observe that PodOp achieves a relatively high Popularity when time budget
is equal to 180 min and 210 min. We observe that this phenomena is due to the
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Table 1. Queuing Time Ratio (Smaller values are better)

Disney Hollywood (DisHolly) Epcot Theme Park (Epcot)

DisOp 0.045 ± 0.221 0.076 ± 0.414

PopOp 0.046 ± 0.215 0.092 ± 0.368

PodOp 0.045 ± 0.211 0.092 ± 0.368

SCAIR 0.003 ± 0.010 0.016 ± 0.006

special geographic distribution of the POIs in DisHolly, where the optimal path
according to the algorithm includes two POIs that are remote from other POIs
but yield very high popularity.

7.3 Utility

In terms of Utility, SCAIR outperforms all baselines consistently across all time
budgets for both theme parks. The main contributing factor for this result is due
to the much improved queuing time performance that SCAIR is able to achieve,
compared to the various baselines. In turn, the reduced queuing time leads to a
higher utility score as tourists are able to utilize more of their time budget in
visiting attractions, rather than spending excessive amount of time queuing.

8 Conclusion and Future Work

We now summarize the main findings of our work and discuss some possible
directions for future research.

8.1 Conclusion and Discussion

Prior works on itinerary recommendation typically aim to make recommenda-
tions for the individual traveller and perform poorly in scenarios where multiple
travellers use the same recommended itinerary, i.e., the Selfish Routing problem.
In this paper, we introduced the crowd-aware itinerary recommendation prob-
lem and highlighted this Selfish Routing problem where all self-interested agents
aim to maximize their own utility which result in sub-optimal social welfare.
For example, when all travellers are recommended the same POIs with a short
queuing time based on historical data, those POIs then become congested and
suffer from a long queuing time.

To address this problem, we proposed the SCAIR algorithm that takes into
consideration crowd behavior and addresses the NP-hard Social Welfare Opti-
mization problem with a finite markov chains, which is in NC and can be solved
in poly-logarithmic time. We performed a series of experiments using a theme
park dataset. Experimental results show that SCAIR outperforms various com-
petitive baselines in terms of a reduced queuing time and improved utility, while
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offering similar levels of popularity scores. An investigation into the effects of
user arrival rates show that the performance of SCAIR remains competitive,
compared to the various baselines, regardless of the arrival rates.

8.2 Future Work

We intend to further investigate models that further simulate real-life situations.
For instance, we can also locate the entrances and exits of the theme parks to
initialize and end paths; we could also use soft-max instead of one-hot to sim-
ulate the choices of paths which simulates the probabilistic decisions visitors
make in real-life. We will also attempt to improve the formulation of the multi-
objective optimization problem, such as by assessing the Pareto efficiency of the
two objectives. It is also worthwhile to look into modifying our strategic recom-
mendation algorithm and applying them to other game-theoretic environments,
such as knowledge acquisition [20], crisis management [22] and career path plan-
ning [5,21]. Finally, we intend to look further into prior works, such as [13,27]
to explore Machine Learning approaches in solving time-variant path planning
problems and attempt to enhance the solution and simulation performance.
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Abstract. Abnormal human behaviors can be signs of a health issue
or the occurrence of a hazardous incident. Detecting such behaviors is
essential in Ambient Intelligent (AmI) systems to enhance the safety
of people. While detecting abnormalities has been extensively explored
in different domains, there are still some challenges for developing effi-
cient approaches dealing with the limitations of data-driven approaches
to detect abnormal human behaviors in AmI systems. In this paper, a
novel approach is proposed to detect such behaviors exploiting the con-
textual information of human behaviors. Machine-learning models are
firstly used to recognize human activities, locations, and objects. Differ-
ent contexts of human behaviors are then extracted in terms of the dura-
tion, frequency, time of the day, locations, used objects, and sequences
of the frequent recognized activities. An ontology, called Human ACtiv-
ity ONtology (HACON), is proposed to conceptualize the contexts of
human behaviors. Finally, a probabilistic version of ASP, a high-level
expressive logic-based formalism, is proposed to detect abnormal behav-
iors through a set of rules based on the HACON ontology. The proposed
approach is evaluated in terms of precision, recall, F-measure, and accu-
racy using two datasets, namely Orange4Home dataset and HAR dataset
using smartphones. The evaluation results demonstrate the ability of the
proposed approach to detect abnormal human behaviors.

Keywords: Context-aware approach · Human behavior analysis ·
Abnormal human behavior detection · Answer set programming

1 Introduction

An abnormal human behavior can be seen as any behavior that deviates from
typical or usual behaviors. This type of behavior can be signs of a health issue or
a hazardous incident [15]. Detecting such behaviors is essential in Ambient Intel-
ligent (AmI) systems to provide smart and supportive services to enhance the
safety of people [5,13,22,23]. While detecting abnormalities has been extensively
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explored in different domains [5,31], there are still some challenges for develop-
ing efficient approaches dealing with the limitations of data-driven approaches
intended for detecting abnormal human behaviors in AmI systems. One of the
main limitations of these approaches is their inability to consider the context
of human behaviors [22]. Dey [8] defined context as “any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves”. Moreover, develop-
ing efficient approaches to detect abnormal human behaviors requires a compre-
hensive and machine-understandable human behavior definition which considers
different contexts of human behaviors.

Although there are some differences between human behaviors and human
activities, these two terms are usually used interchangeably in the literature [27].
However, in a few studies [14,24], these two terms are defined differently; i.e.,
human behaviors are usually defined as repetitive human activities [4]. However,
this definition is not comprehensive and does not consider the different contexts
of human behaviors, such as location, duration, object, etc. Hence, in this paper,
human behavior is defined as repetitive human activities in particular contexts.
Human behavior is defined as a structure with six concepts of context: (i) fre-
quent activities in particular locations, such as eating in kitchen, (ii) frequent
activities with particular objects, such as eating with fork, (iii) frequent activi-
ties in particular times of the day, such as eating at noon, (iv) frequent activities
within particular ranges of duration, such as eating takes between dmin to dmax

minutes, where dmin and dmax represent the minimum and maximum duration
of eating activity, respectively, (v) recurrent activities with particular frequencies
per day, such as frequency of eating activity per day is between fmin and fmax,
where fmin and fmax represent the minimum and maximum frequency of eating
activity, respectively, and (vi) frequent sequences of activities, such as the activity
sequence eating- cleaning. An abnormal human behavior is defined as unexpected
or unusual behavior [9]. According to the proposed definition of human behavior
in this study, abnormal human behavior can be classified into six abnormality
types: (i) recurrent unexpected activities in particular locations, (ii) recurrent
unexpected activities with particular objects, (iii) recurrent unexpected activ-
ities in particular times of the day, (iv) recurrent unexpected activities within
particular ranges of duration, (v) recurrent unexpected activities with particular
frequencies per day, and (vi) recurrent unexpected sequences of activities.

In this paper, a hybrid approach including knowledge-driven and data-driven
methods is proposed to detect abnormal human daily living behaviors by exploit-
ing the contextual information of human behaviors. This approach seeks to
address the drawbacks of knowledge-driven and data-driven methods while lever-
aging their benefits, such as considering different human behavior contexts, han-
dling a huge amount of data, and managing uncertain information. The pro-
posed approach is composed of four main modules: (i) human activity, location,
and object recognition, (ii) capturing human behavior contexts, (iii) mapping to
an ontology, and (iv) abnormal human behavior detection. In the first module,
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machine-learning models are firstly used to recognize human activities, locations,
and objects. The recognized ones are then used to analyze human behaviors in
terms of the duration, frequency, time of the day, location, used objects, and
sequences of the frequent activities to capture six concepts of human behavior
contexts, which include the defined six human behavior concepts. An ontology,
called Human ACtivity ONtology (HACON), is used to conceptualize the rec-
ognized human activities, behaviors, and their contexts. The captured human
behavior contexts are mapped to the HACON ontology to conceptualize human
behavior contexts. The predictions of human activities, locations, and objects
are generally uncertain; Mapping uncertain information over ontology may lead
to weak human behavior recognition [11]. Hence, in the fourth module, a proba-
bilistic version of ASP, called Probabilistic Answer Set Programming (PASP), is
proposed to detect abnormal human behaviors while handling uncertain infor-
mation. The latter are considered in PASP by assigning probabilities to rules and
their literals. The proposed approach is evaluated in terms of precision, recall,
F-measure, and accuracy using two datasets, namely Orange4Home dataset [6]
and HAR dataset using smartphones [1].

The rest of this paper is organized as follows: Sect. 2 is dedicated to a review of
related works in the field of abnormal human behavior detection. The necessary
background of this study is given in Sect. 3. The proposed context-aware app-
roach is presented in Sect. 4. The evaluation results are provided and discussed
in Sect. 5. The conclusion and research perspectives are presented in Sect. 6.

2 Related Works

One of the main challenges in the domain of human behavior analysis is abnor-
mal human behavior detection, which has gained remarkable attention from
researchers in different application domains, such as healthcare [16] and ambi-
ent assisted living systems [14]. Abnormal human behavior detection aims to
detect unexpected human behaviors as they vary from the common behaviors
[16]. The most existing approaches in this domain are vision-based [20,33]; these
approaches present several disadvantages, such as visual occlusions and privacy
issue. The existing abnormal human behavior detection approaches can be classi-
fied into three main categories: (i) data-driven approaches (ii) knowledge-driven
approaches, and (iii) hybrid approaches.

In [2], a probabilistic spatio-temporal model is used to recognize daily behav-
ior. A cross-entropy measure is then used to detect abnormalities, which are
defined as significant changes from the learned behavioral model. In [37], a
Dynamic Bayesian Network (DBN) is proposed to model each behavior pat-
tern. An accumulative abnormality measure is then proposed to detect abnor-
mal behaviors using a Likelihood Ratio Test (LRT) method. The most common
data-driven approaches proposed for abnormal human behavior detection use
machine-learning models, such as Support Vector Data Description (SVDD) [30],
Support Vector Machine (SVM) [16], and Recurrent Neural Networks (RNN) [3].
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The data-driven approaches strongly rely on data and do not consider the con-
texts of human behaviors, which may lead to consider some usual behaviors in
specific situations as abnormal behaviors.

Unlike data-driven approaches, knowledge-driven approaches depend on
knowledge of experts. These approaches commonly use logical axioms and rules.
In [36], a rule-based abnormality detection algorithm is proposed to characterizes
abnormal patterns. Normal behavior is defined based on captured events occur-
ring on the five, six, seven, and eight weeks prior to the consideration day. This
approach depends on the events that fit a certain rule for the current day and
the number of cases matching the same rule from five to eight weeks ago. In [38],
a rule-based approach is proposed to detect abnormality in sleeping behavior.
The adopted rules are based on the location, time of the day, and the duration
of human activities. The proposed rule-based approach is compared to an SVM
model; the results show the superiority of the latter to the former one. In [19],
an approach based on Intertransaction Association Rule (IAR) mining is pro-
posed to detect abnormal behaviors. The major limitation of knowledge-driven
approaches is their inability to handle uncertain data.

To overcome the disadvantages of data-driven and knowledge-driven
approaches while exploiting their advantages, hybrid approaches have been pro-
posed in the literature. In [26], Fine-grained Abnormal BEhavior Recognition
(FABER) hybrid approach is proposed. In this approach, a Markov Logic Net-
work (MLN) is used to detect the starting and finishing points of human activ-
ities. Abnormal human behaviors are detected by analyzing these points using
a knowledge-based inference engine. In [10], an HMM-based approach is used to
detect abnormalities in daily activities. A process is used to identify abnormality
in human routines from statistical histories. A fuzzy rule-based model is then
used to fuse the outputs of these models to detect abnormal human behaviors.
In [31], a K-means model is used to recognize human activities. A sequential pat-
tern mining is then used to analyze the recognized activities based on the time.
From the recognized patterns, some properties and data types for the ontology
are defined. The ontology is then used for semantic analysis of human activities.
Abnormal patterns are detected using pattern analysis algorithms, such as the
longest common subsequence algorithm.

The aforementioned studies deal mainly with the problem of abnormal human
behavior detection either without considering human behavior contexts, such
as location, objects, and sequences of human activities or without considering
uncertain information. In this paper, a hybrid approach is proposed to detect
abnormal human behavior while considering different contexts of human behav-
iors as well as handling uncertain information.

3 Background

ASP is a high-level expressive non-monotonic logic-based formalism which allows
different reasoning, such as defeasible reasoning, causal reasoning, and diagnostic
reasoning [17,18]. ASP represents knowledge through logical phrases and then
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derives new knowledge using reasoning. ASP programs are derived from the
syntax of Prolog language [18]. An ASP program is consists of a set of rules in
the following form:

h ← b1, ..., bk, not bk+1, ..., not bk+n (n, k ≥ 0). (1)

where the left-hand and right-hand sides are known as head and body, respec-
tively; and bi are atoms of propositional language forming the body. The nega-
tion symbol, not, is used to depict epistemic negation [29]. The rules with empty
heads are known as constraints; while the ones with empty bodies are called
facts.

Let S be the set of ground atoms in the ASP program I in the form
of (1). Then S satisfies the body of a rule when {b1, ..., bk} ⊆ S and S ∩
{bk+1, ..., bk+n} = ∅. Hence, S satisfies a rule with a non-empty head when
S does not satisfy body or h ∈ S; moreover, S satisfies a constraint when it does
not satisfy the body. Answer set is formalized as follows:

Suppose program I consists of ASP rules. S is a set of ground atoms obtained
using grounding; the latter replaces variables used in the program I with ground
atoms. A reduct IS , which does not contain any negated atoms, is obtained from
the program I using two steps: (i) for each atom l ∈ S, drop rules with not l
in their body, (ii) drop literals not l from all other rules. The minimal model of
(IS) is the answer set S.

Let considering the following illustrative example, program I is composed
of two facts and one rule, where a fact is a rule without body and with a sin-
gle disjunct in the head. In this program, the predicate act(activity, T ) repre-
sents the fact that the user performs specific activity activity at the timestamp T .
The predicate loc(location, T ) describes the fact that the user is in a specific
location location at the timestamp T . The predicate abnormalActLoc(activity,
location, T ) represents the fact that there is an abnormality at the timestamp T
when activity is performed in specific location. It is worth mentioning that terms
starting with lowercase letter represent constants, e.g., activity ; while terms start-
ing with uppercase letter represent variables, e.g., T.

Program I:
Facts :

act(eating, t).
loc(bedroom, t).

Rule :
abnormalActLoc(eating, bedroom, T ) : −act(eating, T ), loc(bedroom, T ).

The answer set for this program is as follows:

act(eating, t), loc(bedroom, t), abnormalActLoc(eating, bedroom, t)

The inferred information, abnormalActLoc(eating, bedroom, t), is obtained
using reasoning performed by an answer set solver [18]. ASP is suitable for rep-
resenting commonsense knowledge and also modeling commonsense reasoning.
The rich knowledge representation and efficient solvers are the main characteris-
tics of ASP, which make it superior in comparison with other logic programming
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Fig. 1. Architecture of the proposed approach.

languages. However, the main limitation of ASP is its inability to handle uncer-
tainty; i.e., ASP does not make any difference between answer sets that are more
likely to be true with the others that are less likely to be true. To overcome this
limitation, a probabilistic ASP, which allows integrating probabilistic reasoning
with non-monotonic logic programs, is proposed.

4 Proposed Approach

Figure 1 shows the overall architecture of the proposed approach. Firstly, an
LSTM model is used to recognize human activities, locations, and objects. This
model allows sequential information modeling in the short and also long term,
which is required to analyze human behaviors as the latter are characterized by
time-series data. The different contexts of human behaviors are then extracted
in terms of location, object, time of the day, duration, frequency, and sequences
of activities. The captured contexts are mapped to the proposed HACON ontol-
ogy to provide shared concepts about human activities and behaviors. Finally,
PASP is used to detect abnormal human behaviors. PASP enables probabilistic
inferences through a set of probabilistic rules about abnormal human behaviors.
The latter is defined by experts according to the HACON ontology, e.g., shared
concepts defined in HACON ontology are used to define predicates exploited in
PASP rules. Consequently, each PASP rule weighted with a value corresponding
to the true degree of rule, which is learned from data by optimizing a pseudo-
likelihood measure [34].

4.1 Human Activity, Location, and Object Recognition

To classify sensor data into three labels, namely human activity, location, and
object, describing the ongoing activities, a machine-learning model is used.
Learning three models, namely activity recognition, location recognition, and
object recognition, independently allows the proposed approach to detect abnor-
mal human behavior even if the location and/or object models are not available.
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The human activity, location, and object recognition models are formalized as
follows:

ŷ1 = fAct(Xi)
ŷ2 = fLoc(Xi)
ŷ3 = fObj(Xi)

(2)

where Xi = {x1
i , x

2
i , ..., x

d
i } is the ith data sample. Each data sample includes

d attributes. ŷ1, ŷ2, and ŷ3 represent the predicted labels in the case of human
activity, location, and object, respectively. fAct, fLoc, and fObj represent the
prediction function of human activity, location, and object recognition models,
respectively. In this study, an LSTM model, a type of Recurrent Neural Networks
(RNN) that consists of special units beside standard units, is used as activity,
location, and object recognition models. The choice of LSTM can be explained
by the fact that it allows modeling sequential data in the short and also long
term, which is required in modeling human behaviors.

Figure 2 show the overall architecture of the LSTM model used in this study.
This model consists of five layers: (i) LSTM layer with 100 neurons, (ii) dropout
layer with a fraction rate 0.5, (iii) LSTM layer with 50 neurons, (iv) dropout
layer with a fraction rate 0.5, and (v) dense layer with neuron number equals to
the number of classes. The optimization and loss functions are respectively set
to Adaptive Moment Estimation (Adam) and categorical-crossentropy.

4.2 Capturing Human Behavior Contexts

The human behaviors are analyzed to obtain the defined six concepts of human
behavior context. A statistical algorithm is developed to extract these concepts.
In this algorithm, for each activity, eight lists of hash maps are generated; these
eight lists are associated with locations, objects, time of the day, minimum dura-
tion, maximum duration, minimum frequency, maximum frequency, and previous
activity. This algorithm is formalized as a function fBeh as follows:
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Loci, Obji, Acti,Duri, F reqi, Seqi = fBeh(ŷ1, ŷ2, ŷ3) (3)

where Loci, Obji, Acti, Duri, Freqi, and Seqi represent respectively lists of
frequent activities in particular locations, frequent activities with particular
objects, frequent activities at particular times of the day, frequent activities
within particular ranges of duration (minimum and maximum duration), recur-
rent activities with particular frequencies (minimum and maximum frequencies),
and frequent activity sequences.

4.3 Mapping to the HACON Ontology

The HACON ontology, inspired from the ConceptNet semantic network [32], is
proposed to conceptualize human activities and behaviors. The ConceptNet is
a knowledge graph with words and phrases connected using relationships, also
called labeled edge; e.g., the words oven and cooking are linked using the is used
for relationship. The HACON ontology consists of eight main human activity
concepts, namely: activity, date time, time of the day, duration, frequency, object,
actor, and location. These latter are connected using eight relationships, namely
has start time, has end time, has time, has duration, has frequency, has object,
has actor, and has place. Figure 3 shows the overview of the HACON ontology,
which is modeled by the semantic Web Ontology Language (OWL) [21].

ActivityLocation

Time of
the day
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Time

Frequency

Duration

Object

Actor

has location

has start time,
has end time

has duration

has frequency

has object
has participant

has time

Fig. 3. Main human activity concepts and relationships used in the HACON ontology.
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4.4 PASP

PASP exploits the output of mapping to the HACON ontology module to detect
abnormal human behaviors while handling uncertainty of human activity, loca-
tion, and object recognition models. The uncertainties are handled by assigning
a probability to each literal of PASP rule. The PASP is formalized as follows:

(h, p(h)) ← (b1, p(b1)), (b2, p(b2)), ..., (bn, p(bn)) (n ≥ 0). (4)

where (b1, p(b1)), (b2, p(b2)), ..., (bn, p(bn)) represents the body of the rule and
(h, p(h)) represents its head. p(bi) represents the probability of the literal bi.
Moreover, we assume that if the probability of the given literal bi is p(bi), the
probability of the negative literal not bi is 1 − p(bi). The probability of literals
are assumed to be independent from each other. Therefore, the probability for
the head of rules are calculated as follows:

p(h) = wrule × p(b1) × p(b2) × ... × p(bn) (5)

where wrule represents the normalized weight of the rule that can be defined
by experts or weight-learning process [35]. In this study, the weights of rules are
learned from data by optimizing a pseudo-likelihood measure [34]. Consider the
following example with the PASP program II including two facts and one rule.
The latter is defined based on the Knowledge Base (KB) provided by an expert.
The predicate act(activity, T, P ) represents the fact that the user performs spe-
cific activity activity at timestamp T with probability P . loc(location, T, P )
describes the fact that the user is in specific location location at timestamp T
with probability P . abnormalActLoc(activity, location, T, P ) represents the fact
that there is an abnormality with probability P at timestamp T where activity
is performed in location.

Program II:
Facts :

act(eating, t, pact).
loc(bedroom, t, ploc).

Rule :
abnormalActLoc(eating, bedroom, T, (w×Pact×Ploc))
: − act(eating, T, Pact), loc(bedroom, T, Ploc).

The answer set for this program is as follows:
act(eating, t, pact), loc(bedroom, t, ploc),
abnormalActLoc(eating, bedroom, t, w × pact × ploc)

The probability of predicates abnormalActLoc, which is the head of rule, is
calculated using the multiplication of probabilities of literals in the body of the
rule, Pact and Ploc, and the weight of the rule, w. Abnormal human behaviors
are then detected when the probability of abnormal behavior, (w×Pact ×Ploc),
is greater than its complement, 1 − (w × Pact × Ploc). The PASP rules allow
detecting the six different types of abnormal human behaviors, see Table 1.
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Table 1. List of abnormal behaviors with their predicates used in PASP.

Unexpected behaviors in particular
locations

AbnormalActLoc(act, loc, time)

Unexpected behaviors with particular
objects

AbnormalActObj(act, obj, time)

Unexpected behaviors in particular times
of the day

AbnormalActTime(act, timeday, time)

Unexpected behaviors with particular
duration

AbnormalActDur(act, dur, time)

Unexpected behaviors with particular
frequencies

AbnormalActFreq(act, freq, time)

Unexpected behaviors with particular
activity sequences

AbnormalSeqAct(act1, act2, time)

Unlike to ASP, PASP can handle uncertainty through the weight-learning
process and probabilistic reasoning. In addition, PASP can also overcome the
erroneous prediction of machine-learning models by assigning a weight to each
rule and assigning a probability to each literal used in the rules.

5 Experiments, Results, and Discussion

In this section, the abnormal human behavior detection performances obtained
using the proposed approach are presented and discussed. Accuracy, F-measure,
recall, and precision are used as performance evaluation metrics. Moreover, the
proposed approach is evaluated in comparison with two baseline approaches,
namely MLN and SVM using two public datasets: Orange4Home dataset [6] and
HAR dataset using smartphones data [1]. We firstly present the performance
results of the human activity, location, and object recognition module and then
we evaluate the performance of the abnormal human behavior detection module.

5.1 Human Activity, Location, and Object Recognition

The LSTM model used in the proposed approach is evaluated in terms of pre-
cision, recall, F-measure, and accuracy while the epoch number, batch size, and
timestep number are set to 300 iterations, 50 instances, and 128 sequences,
respectively. The hyper-parameters of the LSTM model are estimated using a
grid search method.

Case 1: Orange4Home dataset [6]
In this dataset, the data are collected from 236 environmental sensors placed in
different locations of an instrumented home to capture information, such as the
state of electrical equipment and water consumption. This dataset is composed
of routine daily living activities classified in 17 categories, such as eating and
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Table 2. Performances obtained using the LSTM models in Case 1.

Evaluation metrics Activity recognition Location recognition

Precision 96.00 97.98

Recall 95.71 97.89

F-measure 95.63 97.83

Accuracy 95.71 97.90

Table 3. Comparison with the baseline approaches for activity recognition in Case 1.

Models F-measure

Baseline Approaches [7]

Home MLP 77.85

Home SVM 89.61

Place-based SVM 92.08

Place-based MLP 93.05

Proposed Approach

Proposed LSTM model 95.63

cleaning, performed by one participant during working hours for four weeks.
The interval of timestamps between records of this dataset is two seconds. This
dataset includes three contexts, namely the time of the day, location, and human
activity; therefore, two LSTM models are learned independently to recognize
human activity and location. Table 2 presents the obtained results in terms of
precision, recall, F-measure, and accuracy in the case of human activity and
location recognition, respectively. It can be observed that the obtained rates
in terms of all performance metrics are greater than 95% in case of activity
recognition. However, rates around 97% are achieved for all performance metrics
in the case of location recognition. It is worth noting that the performances in
the case of location recognition are greater than those obtained in the case of
activity recognition. This can be explained by the fact that the sensors used
in this dataset are environmental which help distinguishing different classes of
location (Table 3).

In addition, the LSTM model is compared with two baseline approaches
considering the Orange4Home dataset, see Table 5. The baseline approaches are
MultiLayer Perceptron (MLP) and the SVM model in two different conditions,
namely Home and Place-based. The Home configuration is based on the decision
of a single classifier using all sensors, while Place-based configuration is based on
the fusion of eight different classifiers (one for each location). The results show
the superiority of the proposed LSTM model in comparison with the baseline
approaches. This is explained by the fact that the LSTM model is a well-suited
model for time-series data, which is not the case of MLP and SVM models.
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Table 4. Performances obtained using the LSTM models in Case 2.

Evaluation metrics Activity recognition

Precision 94.08

Recall 94.03

F-measure 94.05

Accuracy 97.98

Table 5. Comparison with the baseline approaches in Case 2.

Models F-measure

Baseline Approaches [28]

KNN 90.16

SVM 93.79

Proposed Approach

Proposed LSTM model 94.05

Case 2: HAR dataset using smartphones dataset [1]
In this dataset, a waist-mounted smartphone with embedded inertial sensors,
such as accelerometers and gyroscopes, is used to collect the data. Six activities,
namely: (i)Walking, (ii) Walking-upstairs, (iii) Walking-downstairs, (iv) Sitting,
(v) Standing, and (vi) Laying, are performed by thirty participants wearing a
smartphone (Samsung Galaxy S II) on the waist. Each participant performed
each activity twice. Triaxial linear acceleration and angular velocity signals are
collected at a sampling rate of 50 Hz. This dataset includes only human activity
label; therefore, an LSTM model is used for human activity recognition. Table 4
presents the obtained results using the LSTM model in terms of precision, recall,
F-measure, and accuracy. It is noticeable that the model obtains more than 94%
on average in terms of all performance metrics.

In addition, the LSTM model is compared with two baseline models, namely
K-Nearest Neighbors (KNN) and SVM. Table 5 shows that the LSTM achieves
better performance in terms of average F-measure with 94.05% while KNN and
SVM achieve 90.16% and 93.79%, respectively.

5.2 Abnormal Human Behavior Detection

PASP is implemented in Clingo [12], an ASP tool for grounding and solv-
ing logic programs, to detect abnormal human behaviors. PASP is evalu-
ated considering different types of abnormal human behaviors in terms of
precision, recall, F-measure, and accuracy. Since the Orange4Home dataset
does not include the object label, abnormality with particular objects
is not considered in the evaluation. The other five types of abnormal
human behaviors, namely recurrent unexpected activities in specific loca-
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Table 6. Performances obtained using SVM, MLN, and PASP in Case 1.

Abnormality types SVM MLN PASP

Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy

AbnormalActLoc 95.22 95.11 95.14 95.11 89.40 94.63 91.94 95.03 100 94.21 97.02 98.26

AbnormalActTime 98.66 98.66 98.66 98.66 94.98 99.53 97.20 98.28 100 98.10 99.04 99.82

AbnormalActDur 81.47 79.59 74.53 79.59 72.00 97.29 82.75 94.86 100 91.89 95.77 98.97

AbnormalActFreq 66.45 81.52 73.22 81.52 81.25 76.47 78.78 93.06 100 94.11 96.96 99.00

AbnormalSeqAct 76.61 72.85 72.71 72.85 87.76 70.37 78.11 86.12 100 88.45 93.87 95.93

Average 83.68 85.54 82.85 85.54 85.08 87.66 85.76 93.47 100 93.35 96.53 98.39

Table 7. Performances obtained using SVM, MLN, and PASP in Case 2.

Abnormality types SVM MLN PASP

Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure Accuracy

AbnormalActDur 80.98 84.89 84.17 84.17 96.15 96.15 96.15 99.15 100 96.15 98.04 99.87

AbnormalSeqAct 62.04 77.31 70.24 70.24 90.44 94.53 92.44 94.69 100 100 100 100

Average 71.51 81.10 77.20 77.20 93.29 95.34 94.29 96.92 100 98.07 99.02 99.93

tions, AbnormalActLoc, recurrent unexpected activities in particular times
of the day, AbnormalActT ime, recurrent unexpected activities within par-
ticular ranges of duration, AbnormalActDur, recurrent unexpected activities
with particular frequencies per day, AbnormalActFreq, and recurrent unex-
pected sequences of activities, AbnormalSeqAct, are used for the evaluation
on this dataset, see Table 1. The HAR dataset using smartphones does not
include object and location labels; therefore only two types of abnormal human
behaviors, namely recurrent unexpected activities within particular ranges of
duration, AbnormalActDur and recurrent unexpected sequences of activities,
AbnormalSeqAct, are considered for the evaluation of the PASP, see Table 7.
Abnormalities are randomly injected into these datasets to simulate the presence
of abnormal human behaviors since the used datasets do not include abnormal-
ities.

PASP is evaluated and compared with two baseline models, namely MLN and
SVM, in terms of abnormal human behavior detection. The evaluation perfor-
mance results obtained using PASP, MLN, and SVM on Orange4Home dataset
are shown in Table 6. It can be noticed that PASP detects more than 93% on aver-
age in terms of precision, recall, F-measure, and accuracy. PASP obtains 100%
in terms of precision while MLN and SVM achieve 85.08% and 83.68%, respec-
tively. Table 4 shows the evaluation performance results achieved using PASP,
MLN, and SVM on the HAR dataset using smartphones. As it can be observed,
PASP outperforms MLN and SVM in terms of precision, recall, F-measure, and
accuracy. PASP also obtains 100% in terms of average precision on this dataset
while MLN and SVM achieve 93.29% and 71.51%, respectively. It is worth notic-
ing that the SVM model is not able to handle uncertainty and does not consider
the contexts of human behaviors, which explains its low performances. How-
ever, the proposed PASP handles uncertainty through probabilistic rules, such
as uncertainties of human activity predictions. PASP also filters abnormalities
with low probability in order to decrease false positive rate. MLN handles the
uncertainty of rules; however, it is not able to consider uncertainty (probability)
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of human activity and location predictions. In MLN, a weight value is assigned
to each rule while in PASP, beside of assigning a weight value to each rule, one
probability is assigned to each literal used in the rules to enhance the detec-
tion performance. In some cases, such as leaving activity and entrance location,
LSTM models achieve low accuracy. Hence detecting abnormal behaviors based
on the outputs of LSTM models using MLN results in a high false-positive rate
if the weight value of rules according to these activity and location is high. Oth-
erwise, if this weight value is low, it may prevent detecting associated abnormal
behaviors.

6 Conclusion and Future Works

In this paper, a comprehensive definition of human behavior considering different
human behavior contexts is provided. A context-aware approach is proposed to
detect abnormal human behaviors in AmI systems. Machine-learning models are
firstly used to predict human activity, location, and object. The predicted labels
are then analyzed to extract different concepts of human behavior contexts; six
main concepts are extracted according to the duration, frequency, sequence, time
of the day, object, and location of repetitive activities. The extracted contexts are
then conceptualized using the HACON ontology. Finally, PASP is used to detect
abnormal behaviors through a set of probabilistic rules, which are defined by
experts considering the HACON ontology. The proposed approach is evaluated
using the Orange4Home dataset and the HAR dataset using smartphones. In
addition, it is compared with MLN and SVM models. The evaluation results
show the superiority of the proposed approach in comparison with these models
in terms of abnormal human behavior detection. As a research perspective, an
interesting topic is to use the proposed approach to develop a recommendation
system based on wellbeing guidelines. Another future research work is to extend
the PASP rules with the dynamic probability of predicates based on real-time
observations.
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Abstract. Leveraging the information-rich and large volume of Elec-
tronic Health Records (EHR), deep learning systems have shown great
promise in assisting medical diagnosis and regulatory decisions. Although
deep learning models have advantages over the traditional machine learn-
ing approaches in the medical domain, the discovery of adversarial exam-
ples has exposed great threats to the state-of-art deep learning med-
ical systems. While most of the existing studies are focused on the
impact of adversarial perturbation on medical images, few works have
studied adversarial examples and potential defenses on temporal EHR
data. In this work, we propose RADAR, a Recurrent Autoencoder based
Detector for Adversarial examples on temporal EHR data, which is the
first effort to defend adversarial examples on temporal EHR data. We
evaluate RADAR on a mortality classifier using the MIMIC-III dataset.
Experiments show that RADAR can filter out more than 90% of adver-
sarial examples and improve the target model accuracy by more than
90% and F1 score by 60%. Besides, we also propose an enhanced attack
by introducing the distribution divergence into the loss function such
that the adversarial examples are more realistic and difficult to detect.

Keywords: Adversarial example detection · Recurrent autoencoder ·
Temporal Electronic Health Records (EHR)

1 Introduction

Electronic Health Record (EHR) is the digital version of a patient’s medical his-
tory including diagnoses, medications, physician summary and medical image.
The automated and routine collection of EHR data not only improves the health
care quality but also places great potential in clinical informatics research [26].
Leveraging the information-rich and large volume EHR data, deep learning sys-
tems have been applied for assisting medical diagnosis, predicting health trajec-
tories and readmission rates, as well as supporting disease phenotyping [33]. Deep
learning models have crucial advantages over the traditional machine learning
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approaches including the capability of modeling complicated high-dimensional
inter-feature relationship within data and capturing the time-series pattern and
long-term dependency [30]. Taking advantage of a sufficient amount of training
dataset, in some cases, complex neural networks can even exceed capabilities of
experienced physicians in head-to-head comparisons [6].

However, recent studies show that the statistical boundary of deep learning
model is vulnerable, allowing the creation of adversarial examples by adding
imperceptible perturbations on input to mislead the classifier [10]. These adver-
sarial threats are more severe in the medical domain. First, the sparse, noisy
and high-dimensional nature of EHR data exposes more vulnerability to poten-
tial attackers. Second, some modalities of EHR data such as genetic panels and
clinical summary may be generated by a third-party company that has a higher
risk being attacked. Finally, medical machine learning systems may be uniquely
susceptible to adversarial examples [8] due to high financial interests such as
insurance claims.

Most research on adversarial examples in medical domain has been focused
on medical images, such as X-ray and MRI image [20,32] which can be easily
adapted from traditional image domain. The attack algorithms in the image
domain aim to minimize the perturbation scale while mislead model predictions.
This optimization problem can be either directly solved such as in C&W attack
[4] or approximated with gradient method such as Fast Gradient Sign Method
[10]. A few recent works have studied adversarial examples on temporal EHR
data. Sun et al. [30] proposed a Recurrent Neural Network (RNN)-based time-
preferential minimum attack strategy to identify susceptible locations on EHR
data. An et al. [1] proposed LAVA, a saliency score based adversarial example
generation approach that aims to minimize the number of perturbations. How-
ever, it only works for binary-coded features and is not applicable for general
temporal EHR with continuous or categorical features.

Despite these two attempts on the attack algorithms for temporal EHR data,
there is no study on potential defense techniques. The existing defense mecha-
nisms in image domain can be categorized into adversarial training [27], image
denoising [7] and detection mechanisms [21,22]. One of the most promising and
state-of-the-art detection methods is MagNet [21], which is based on autoencoder
and rejects examples with large autoencoder reconstruction errors. As MagNet
can work with any pre-trained classifier, only requires clean data for training,
and does not depend on specific image features, it has the potential to be adapted
for temporal EHR data. However, there are several critical challenges due to the
characteristics of temporal EHR data:

– Multivariate temporal dependency. The intuition of autoencoder based defense
is to learn the representation from clean data. However learning the represen-
tation and capturing the pattern of time-series EHR data is more challenging
than images due to the temporal dependency between time points in addition
to the correlations between attributes. Besides, the significance of each times-
tamp on the prediction outcomes differ as more recent features may have a
stronger influence.
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– Sparsity and high-dimensionality. Sequential EHR data is extremely sparse,
discrete and high-dimensional compared to image data. Therefore, the tradi-
tional distance metrics may not be effective for measuring the autoencoder
reconstruction error which cannot capture the real similarity or validity of
temporal EHR data.

In this work, we propose RADAR, a Recurrent Autoencoder based Detector
for Adversarial examples on temporal EHR data, which is the first effort to
defend adversarial examples on temporal EHR data. Similar to MagNet, the
intuition is that an autoencoder can learn the manifold of the clean examples.
At the test phase, given an input, the autoencoder will reconstruct the input and
push the reconstructed output closer to the manifold. As a result, clean examples
will have lower reconstruction error since they are closer to the manifold while
adversarial examples may have larger error because they have been strategically
perturbed. Thus the reconstruction error and additional criteria can be used to
detect adversarial examples.

Different from existing methods, RADAR has two main technical contribu-
tions addressing the challenges that are specific to temporal EHR data. First,
in order to more effectively model the multivariate time series data, we build an
autoencoder by integrating attention mechanism [2] with bi-directional LSTM
cell to capture both past and future of the current time frame and their inter-
dependence. By increasing the amount of input information available to the
network, RADAR has a higher reconstruction ability which guarantees a higher
detectability. Second, to address the sparsity and high dimensionality, besides
lp-norm reconstruction error and prediction divergence of the target classifier
between the input and reconstructed output which are used in MagNet, our
method introduces prediction uncertainty of the constructed output as an addi-
tional detection criteria. Our hypothesis is that autoencoder reconstructed out-
put of adversarial examples can result in more uncertainty on the prediction
due to its goal of flipping the original class label. This metric focuses on the
downstream prediction rather than the data itself thus can overcome the spar-
sity challenge of EHR data, and provide a critical and complementary criteria
for detecting adversarial examples.

Besides RADAR, we also propose an enhanced attack by introducing distri-
bution divergence into the loss function, making the adversarial examples more
realistic and difficult to detect. To our knowledge, RADAR is the first effort to
propose defense techniques on temporal EHR data. We evaluate RADAR on a
mortality classifier using the MIMIC-III [14] dataset against both existing and
our enhanced attacks. Experiments show that RADAR can effectively filter out
adversarial examples and significantly improve the target model performance.

2 Preliminaries and Related Work

Neural Networks for Sequential Data. Deep neural networks (DNN) have
been increasingly applied to solve difficult real-world tasks. For time-sequence
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data, Recurrent Neural Network (RNN) is designed for capturing the tempo-
ral information among features. A variant of RNN, Long Short-Term Memory
(LSTM) network [12] is proposed to capture not only the short-term dependency
but also the long term dependency among temporal features. In order to model
both forward (past to current) and backward (current to past) temporal cor-
relation, Schuster et al. [25] proposed a bi-directional structure by feeding the
reversed input into RNN model as well.

Autoencoder is a type of neural network architecture that learns the data
representation in an unsupervised manner through dimension reduction [11].
Recurrent autoencoder refers to a type of autoencoder whose layers are RNN
cells [29], which has been widely applied to sequence to sequence (seq2seq) tasks
such as machine translation [5,31]. To solve the long-term dependency problem
of recurrent autoencoder, Bahdanau et al. [2] proposed an attention mechanism
that calculates the weights of states among all the time steps as the attention
scores and computes an element-wise weighted sum of all the states as the context
vector. Recurrent autoencoder without attention mechanisms has been applied
for EHR data imputation and synthesization [35]. In this paper, we adopt a
recurrent autoencoder with attention mechanism for the temporal EHR data
and use it for adversarial example detection for the first time.

The applications of RNN on sequential EHR data range from mortality pre-
diction, readmission prediction, to trajectory prediction [24,34,36]. Most works
use different datasets with different pre-processing methods, and cannot be
directly applied to our data. In this work, since our focus is not on the clas-
sification model, we adopt a single layer LSTM model as our target classifier
to demonstrate the effectiveness of the proposed adversarial example detection
method.

Adversarial Examples. Generating adversarial examples can be formulated
as a constrained optimization problem. Given a clean input x, its label y and a
classifier F , if Lp(x, xadv) < C, such that F (xadv) �= y, xadv is an adversarial
example, where Lp represents the Lp-norm of the perturbation and C represents
the perturbation constraint. This optimization problem can be either directly
solved such as in C&W attack [4] or approximated with gradient method such
as Fast Gradient Sign Method (FGSM) [10] and iterative FGSM [15].

Very recently, it has been pointed out that medical machine learning systems
may be uniquely susceptible to adversarial examples [8]. Several works studied
adversarial examples in medical image models [9,17,20,32]. A few works explored
the adversarial examples on temporal sequential EHR data. Sun et al. [30] pro-
posed an RNN-based time-preferential minimum attack strategy. Their attack
algorithm is similar to the C&W attack in image domain. An et.al [1] proposed
a saliency score based adversarial attack on longitudinal EHR data that requires
a minimal number of perturbations and minimizes the likelihood of detection.
The limitation of this work is that their medical features are binary coded so it
is not applicable to continuous features. We propose an enhanced attack in this
paper and compare it with the attack algorithm in Sun et al. [30]
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Defenses Against Adversarial Examples. The existing defense methods
against adversarial examples (mainly focused on the image domain) can be char-
acterized into three categories:

– Image preprocessing and denoising such as image compression [7,13] which
are image specific and autoencoder based denoiser (HGD) [19]. The drawback
of HGD is that it requires a large number of adversarial samples to train the
denoiser.

– Detection based defense mechanism. The traditional detection method is usu-
ally a binary classifier which is trained on both adversarial samples and
clean samples [22]. However, these detectors failed to generalize across vari-
ous attack schemes. More recently, Mend et al. [21] proposed an autoencoder
based detector called MagNet, which rejects samples (as adversarial examples)
with large reconstruction errors. One major advantage of MagNet is that it
only requires clean examples for training the autoencoder, which significantly
increases its generalization ability.

– Adversarial training. Adversarial training [27] utilizes adversarial examples
and integrate them in model training. It can be also used in combination
with gradient masking [3,23] which makes gradient-based attacks infeasible
or difficult. The drawback of adversarial training is that it lacks the general-
ization ability to unseen adversarial examples and may compromise the model
performance on clean examples. In addition, it requires a larger number of
adversarial examples in the training stage.

Until now, there is no defense algorithms proposed for adversarial examples on
sequential EHR data. The existing defense strategies for image data are either
specific to the image domain, or require large volume of clean and adversarial
training data, which is not suitable. MagNet has a strong generalization ability
and does not depend on image characteristics. Besides, it does not require adver-
sarial examples in training phase and is independent of the target classifier. In
this work, we adapt this autoencoder based detection method and propose the
first defense mechanism against adversarial examples on temporal EHR data.

Fig. 1. RADAR pipeline
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3 Methodology

In this section, we first give an overview of the RADAR framework. We then
present the details of the recurrent autoencoder architecture, followed by the
adversarial example detection criteria. Finally, we present our enhanced attack
algorithm.

RADAR is an autoencoder based detector as shown in Fig. 1. A recurrent
autoencoder consisting of encoder and decoder is trained on natural temporal
examples and learns the manifold of the natural examples. At the test phase,
given an input x, the autoencoder will push the reconstructed output x′ closer
to the manifold. Adversarially designed examples can be interpreted as out-of-
manifold examples that are far away from natural example manifold. Therefore,
when an adversarial example x is fed into a well trained autoencoder, the recon-
struction distance between x and x′ would be high. The stronger the adversarial
perturbation, the larger the reconstruction distance. By contrast, as clean exam-
ple itself is close to the manifold, the reconstruction distance would be small.
Based on a set of carefully designed detection criteria including the reconstruc-
tion error, RADAR can detect adversarial examples. As autoencoder can push
the reconstructed output closer to the manifold, it can play the role of a reformer.
In other words, if an adversarial example is detected, its reconstructed output
x′ will be treated as reformed output and fed into the classifier.

3.1 Recurrent Autoencoder Architecture

Temporal EHR data is multivariate time series data. As our goal is to benefit
from the autoencoder’s reconstruction ability to distinguish adversarial examples
and clean examples, it is crucial to build a recurrent autoencoder structure that
is capable of learning both temporal correlations and feature correlations. In this
work, we adopt the bidirectional-RNN with attention mechanism for temporal
EHR. While the architecture is commonly used, the attention mechanism is first
used for EHR data.

Fig. 2. BRNN-AE Architecture.



RADAR: Recurrent Autoencoder Based Detector 111

Our model is a bidirectional-RNN autoencoder which is shown in Fig. 2. For
the RNN cell, we adopt a stacked LSTM cell designed to capture the long-
term dependency and remember information for long periods of time. We feed
into the bidirectional-RNN autoencoder with input x1, x2, ..., xt and reversed
input xt, xt − 1, ..., x1. The forward stacked LSTM of the encoder steps through
forward input and encodes the input into hidden states h1f for the first stack
and h2f for the second stack. Similarly, the backward stacked LSTM works on
the reversed input and generates hidden states h1b and h2b. These hidden states
are concatenated and a fully-connected layer is applied to form two fixed-length
vectors z1 and z2. These two vectors are treated as the initial states of stacked
LSTM cells in the decoder, feeding z1 to the first stacked LSTM cell and z2 to the
second stacked LSTM cell, which enables the decoder to generate reconstructed
output.

One limitation of this encoder and decoder structure is that when the input
sequence is long, the fixed-length vector may fail to compress all the information.
This issue is significant in temporal EHR data, as the duration of a patient’s
stay may vary and can be extremely long. To address this, we add the atten-
tion mechanism between the encoder and the decoder. Rather than encoding
the input sequence into a fixed-length vector, attention forms a weighted sum
of each hidden state, referred to as context vectors, allowing the decoder to
focus on certain parts of the input when generating its output. In this work, we
adopt Bahdanau attention [2] which uses weighted sum of attention weights and
encoder hidden states to calculate context vectors and compute the final output
of decoder.

We train the autoencoder on clean temporal EHR examples. The loss function
is the reconstruction error between the input sequence and the generated output
sequence, which is defined as:

L(x, x′) = ‖x, x′‖2 + Lreg(θ) (1)

where Lreg denotes the L1 regularization on parameters.

3.2 RADAR Detection Criteria

Given an input sequence and the reconstructed sequence, RADAR uses a set
of detection criteria to distinguish between a clean example and an adversarial
example. Considering the sparsity and high-dimensionality nature of EHR data,
our detection criteria includes not only the reconstruction error and prediction
divergence that are employed in MagNet, but also the prediction uncertainty of
the target classifier.

Reconstruction Error. The reconstruction error between the original and
reconstructed sequence is measured by the Lp-norm Lp(x, x′). Most commonly
used Lp-norm is L1 norm and L∞ norm.

Prediction Divergence. In addition to the distance between x and x′ in the
data space, the prediction divergence between x and x′ in their prediction output
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on the target classifier is also considered. The intuition is that clean examples
should have a low divergence. Jensen Shannon Divergence (JSD), a symmetric
measurement of the distribution similarity is applied to the target classifier’s
prediction logits, which is defined as:

JSD(lx||lx′) =
1
2
KL(lx||1

2
(lx + lx′)) +

1
2
KL(lx′ ||1

2
(lx + lx′)) (2)

where lx and lx′ are the classifier’s prediction logits of input x and reconstructed
output x′. KL denotes the Kullback-Leibler divergence which is a non-symmetric
measurement of the difference between two probability distributions. The lower
value of JSD, the more similar two distributions are.

Prediction Uncertainty. In addition to the above two measures, we introduce
a new criteria based on the prediction uncertainty of the reconstructed output
on the target classifier. Our hypothesis is that the reconstructed output of an
adversarial examples can result in more uncertainty on the prediction due to
its goal of flipping the original class label. Prediction uncertainty focuses on the
downstream prediction rather than the data itself thus can overcome the sparsity
challenge of EHR data, and provide a critical and complementary criteria for
detecting adversarial examples. Some existing works have proposed methods to
measure neural network prediction uncertainty, such as entropy of predictive
distribution [18], mutual information and differential entropy [28]. In this work,
we use entropy of predictive distribution to reflect uncertainty, which is defined
as:

Entropy(lx′) = −
n∑

i=1

silog(si), where si =
el

i
x′

∑n
j=1 el

j

x′
(3)

Here, n is the number of prediction classes, si is the softmax value of the ith
class and lix′ is the logits value of the ith class of x′.

Given an input x, RADAR detects it as an adversarial example if any one
of the above three measurements is greater than a threshold: M(x, x′) > δM

where M represents reconstruction error, prediction divergence, and prediction
uncertainty; and δM is the corresponding threshold. In practice, we can choose
δM to allow a certain percentage of clean examples (e.g. 95%) to pass each
criteria. We will study its tradeoff in the experiments section.

3.3 Enhanced Attack

In this paper, we also propose an enhanced attack algorithm that addresses
the sparsity and high-dimensionality of sequential EHR data to generate more
powerful adversarial examples.

Adversarial examples are designed by adding small perturbations to clean
examples. For temporal EHR data, a clean example can be represented as x ∈
R

t×f = {x1, x2, ..., xt}, where xi ∈ R
f denotes the f -dimension feature space at

the time step i. Given a classifier F , if xadv satisfies that F (xadv) �= F (x) and
Lp(x, xadv) < C, we say xadv is the corresponding adversarial example of x. The
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attack algorithm that we applied to evaluate our proposed defense mechanism
is similar to the method proposed in Sun et al. [30]. The purpose of the attack
is to maximize the prediction logits on the position of targeted label (which
equals to minimizing the logits on the position of true label) while minimizing
the perturbation magnitude, which is formulated as:

arg min
xadv

Ly + αLx, with (4)

Ly = max{l(xadv)ytrue
− l(xadv)yfalse

,−k} and Lx = ||xadv − x||p (5)

where l(·)ytrue
and l(·)yfalse

denotes the logits on the position of true label
and false label, as mortality prediction is a binary prediction. A positive value
of k ensures a gap between true and adversarial label, which is commonly set to
0. α is a coefficient for the perturbation magnitude.

The Lp-norm is aimed to minimize the EHR location-wise similarity, which
does not take into consideration the sparsity and high-dimensionality of sequen-
tial EHR data. Therefore, the adversarial examples generated by the attack algo-
rithm can be easily detected by an autoencoder based detection. To craft more
powerful adversarial examples, we introduce Gaussian observation [16] into the
loss function to force the generated adversarial example to follow the same distri-
bution as clean examples and less detectable by an autoencoder based detection.
Gaussian observation is defined as the probability of clean example following
the Gaussian distribution with mean as the corresponding adversarial examples
and covariance as an identity matrix. Adding the objective of maximizing the
Gaussian observation N(x|xadv, I), the attack algorithm can be formulated as a
minimization problem:

arg min
xadv

Ly + αLx − βN(x|xadv, I) (6)

where α and β are the coefficients of the two parts of perturbation constraint.
For the perturbation magnitude Lx, the L1 norm induces sparsity on the pertur-
bation and encourages the attack to be more focused on some specific location.
By contrast, L∞ norm encourages the perturbation to be more uniformly dis-
tributed with smaller magnitude on each location. In the experiments, we will
compare the attack performance of L1 norm and L∞ norm with and without
Gaussian observation.

4 Experimental Evaluation

In this section, we will first compare adversarial examples generated by our
enhanced attack compared to existing works. Then, we will evaluate the detection
performance of RADAR.

Dataset and Model Architecture. MIMIC-III (The Multiparameter Intel-
ligent Monitoring in Intensive Care) dataset [14] is a publicly available clinic
dataset containing thousands of de-identified intensive care unit patients’ health
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care records. For mortality prediction, we directly adopt the processed MIMIC-
III data from Sun et al. [30] The data contains 3177 positive samples and 30344
negative samples. Each sample consists of 48 timestamps and 19 features at
each time step. These 19 variables include vital signs measurements such as
heart rate, systolic blood pressure, temperature, and respiratory rate, as well
as lab events such as carbon dioxide, calcium, and glucose. Missing features are
imputed using average value across all timestamps and outliers are removed and
imputed according to interquartile range (IQR) criteria. Then, each sequence is
truncated or padded to the same length (48 h). After imputation and padding,
each feature is normalized using min-max normalization.

The BRNN-AE architecture consists of an encoder with bi-directional two-
stacked LSTM cells of units 32 and 64 respectively for both forward and back-
ward LSTM, followed by two fully-connected layers of size 16 and 32 to form two
fixed-length vectors as the input to decoder. The decoder consists of an attention
layer of size 64 and two-stacked LSTM cells of size 16 and 32.

Pretrained Model Performance. Our target model is a mortality classifier.
The network architecture is a simple LSTM of 128 units followed by a fully-
connected layer of 32 units and a softmax layer. The 5-fold mean and standard
deviation of the model performance is shown in Table 1.

Table 1. 5-fold cross validation performance of target classifier

Metric Accuracy AUC F1 Precision Recall

Avg ± STD 0.894 ± 0.0124 0.812 ± 0.0187 0.603 ± 0.0279 0.536 ± 0.0548 0.702 ± 0.0564

4.1 Attack Performance

We use different distance metric to measure the similarity between adversarial
examples and clean examples, including Lp-norm and KL divergence. Lp-norm
aims to measure EHR location-wise similarity and KL divergence measures the
distribution similarity over the whole set of adversarial examples and clean exam-
ples. A lower distance means a less detectable attack. In this experiment, the
stop criteria for generating each adversarial example is when the prediction label
is flipped. Only the successfully attacked examples will be used to calculate the
Lp-norm and KL divergence.

Table 2 shows the distance metrics of the successfully flipped examples by
different attacks. For the baseline attack with no distance optimization, the α
and β in Eq. 6 are set to 0. For the L1-norm attack (Sun et al.[30]) and L∞-
norm attack, α is set to 1 and β is set to 0. The last two columns correspond
to our enhanced attacks with Gaussian observation. We observe that the no dist
attack (that only aims to flip the label) has the highest distance as expected.
Our enhanced attacks based on L1 and L∞ have the lowest L1 and L∞ distances
respectively, and significantly outperform the existing L1 and L∞ based attacks.
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Table 2. Attack performance comparison

Metric Loss Func

No dist L1-norm L∞-norm L1-norm enhanced L∞-norm enhanced

L1 3.672 0.815 0.920 0.524 0.792

L∞ 0.427 0.138 0.131 0.129 0.119

KL 6.521 0.736 0.817 0.811 0.735

This verifies the benefit of Gaussian observation in our enhanced attacks. By
forcing the generated adversarial example to follow the same distribution as
clean examples, it not only helps to decrease the KL divergence (in the case of
L∞ based attacks) but more importantly significantly decrease the Lp-norm. The
comparison between L1-norm and L∞-norm enhanced attacks demonstrates that
the L∞-norm enhanced attack achieves smaller KL divergence, as it encourages
the perturbation to be more uniformly distributed with smaller magnitude on
each location.

The above results show the comparison of different attack methods for suc-
cessfully flipped examples. To give a more comprehensive comparison, we also
use varying perturbation magnitude as stopping criteria and compare the attack
success rate and detection rate (by our detection approach) of different attack
methods, which is shown in Fig. 3. In all cases, our enhanced attacks achieve a
higher attack success rate and lower detection rate than the baseline attacks,
which confirms the effectiveness of adding Gaussian observation as part of the
minimization in the attack.

(a) Attack Success Rate (b) Detection Success Rate

Fig. 3. Comparison between baseline attack and enhanced attack

To illustrate the perturbation introduced by the adversarial examples, we also
show the mean perturbation for each of the feature-time points by our enhanced
L∞ attack added to the positive and negative clean examples respectively in
Fig. 4. We observe that most of the perturbation is imposed on the recent time
stamps. In addition, interestingly, it requires more perturbation to flip a posi-
tive example to negative than vice versa. The reason is that, for an imbalanced
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dataset, the confidence level is high when classifier predicts an example as posi-
tive, which means it requires more perturbation to flip its label.

(a) Positive examples (b) Negative examples

Fig. 4. Mean perturbation distribution

4.2 Detection Performance

In this section, we will first show the impact of varying detection threshold on
the clean example pass rate and adversarial example detection rate, and then
evaluate the detectability of RADAR in terms of detection rate and the accuracy
of the classification model with the detection. We use L∞-norm enhanced attack
and apply varying perturbation bounds of 0.5, 0.75, 1.0, 1.25 and 1.5, which
means that the stop criteria for generating each adversarial example is when the
perturbation is larger than the perturbation bound.

Selection of Detection Threshold. The threshold of each detection criteria
is crucial in the trade-off between the adversarial detection rate and the sacrifice
of clean examples, i.e., the true positive and false positive rate. If the threshold
is low, it can successfully detect adversarial examples but can also mistakenly
filter out clean examples. If the threshold is high, the effectiveness of RADAR
will be compromised. Figure 5 demonstrates this trade-off by showing the corre-
sponding adversarial detection rate and the clean example pass rate for different
thresholds under different perturbation bound. As shown in the figure, a higher
perturbation bound results in higher detection rate as expected. When allowing
more clean examples to pass, fewer adversarial examples can be detected. The
optimal threshold would allow a majority of clean examples to pass while still
remaining effective in detecting adversarial examples. In the following experi-
ments, we select the threshold that allows 95% clean example pass rate.

Detection Success Rate. Figure 6 shows how much contribution each detec-
tion criterion makes to filter adversarial examples. It also compares RADAR
(with all three criteria) and the existing MagNet approach (which uses the L-
norm and JS Divergence only). With the increase of attack magnitude, the attack
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Fig. 5. The trade-off between adversarial detection rate and clean pass rate

(a) RADAR performance under L1 en-
hanced attack

(b) RADAR performance under L∞
enhanced attack

Fig. 6. Contribution of each criterion and comparison of RADAR with MagNet

detection rate for all criteria/approaches increase as expected. Among the three
criteria, our newly introduced prediction uncertainty makes the most and dom-
inating contribution in detecting adversarial examples. As a result, RADAR
dramatically outperforms MagNet.

Model Performance. We also evaluate the performance of RADAR in terms of
the improvement of the target model’s prediction accuracy and F1 score. Since
any detection mechanism should not sacrifice the accuracy of clean examples,
we report the accuracy of clean examples without RADAR (clean) and with
RADAR (clean + RADAR). For the purpose of abalation study, we report the
accuracy of adversarial examples under different scenarios: 1) when there is no
defense (adv), 2) with detector only (adv + detector), 3) with reformer only (adv
+ reformer), and 4) with both detector and reformer (adv + RADAR). When
the RADAR detector is used, if an example is detected as adversarial, we will
flip its classification label and softmax output as the final prediction because
our task is a binary classification. When only reformer is used, the autoencoder
reconstructed output will be used for classification.

Figure 7 shows the target model accuracy and F1 score vs. varying perturba-
tion magnitude for different methods under different attacks. For clean examples,
employment of RADAR as a defense mechanism does not affect the prediction
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(a) Acc of L1 Enhanced Attack (b) F1 for L1 Enhanced Attack

(c) Acc of L∞ Enhanced Attack (d) F1 for L∞ Enhanced Attack

Fig. 7. Performance improvement

performance and can even improve the accuracy. We speculate the reason is
that the clean examples that are originally misclassified are usually close to the
classification boundary or are outliers, hence may have a high prediction uncer-
tainty or reconstruction error and be detected as adversarial examples. Once
they are detected, their prediction will be automatically flipped, which will be
correctly classified. Comparing the adversarial examples, only applying RADAR
as a reformer can effectively reform the adversarial examples and improve the
accuracy and F1 score by more than 10%. When RADAR works as both detec-
tor and reformer, it can additionally improve prediction accuracy by more than
60% and even exceeds the accuracy of clean examples. The F1 scores can also
be improved by 40% when the perturbation magnitudes are larger than 1.0. The
benefit of reformer on top of detector can be noticed in Fig. 7d. With increasing
perturbation magnitude, the model accuracy and F1 score of adversarial exam-
ples with no defense and reformer drop dramatically due to the increasing attack
power. However, interestingly, the model performance with the detection mecha-
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nism increases thanks to the increased detection rate as we have observed earlier.
These experiments verify the significant improvement of the model performance
and the effectiveness of the RADAR mechanism.

5 Conclusion

This paper is the first attempt to study potential defense methods for adver-
sarial examples on temporal EHR data. We proposed a recurrent autoencoder
based detection method called RADAR to detect adversarial examples accord-
ing to autoencoder reconstruction error, prediction divergence, and prediction
uncertainty. According to the evaluation on a mortality classifier, RADAR can
effectively detect more than 90% of adversarial examples and improve the target
model accuracy and F1 score by almost 90% and 60% respectively. Besides, we
also introduced an enhanced adversarial attack by incorporating the distribution
divergence into the loss function of the attack algorithm.

In the future, we plan to evaluate the performance of RADAR on other clin-
ical deep learning systems such as readmission prediction models. In addition,
the architecture of RADAR also has great potential to be improved by incorpo-
rating other deep learning models that are more powerful to model structural
EHR data such as Graph Convolutional Networks (GCN).
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Abstract. Logs are extensively used during the development and main-
tenance of software systems. They collect runtime events and allow track-
ing of code execution, which enables a variety of critical tasks such as
troubleshooting and fault detection. However, large-scale software sys-
tems generate massive volumes of semi-structured log records, posing a
major challenge for automated analysis. Parsing semi-structured records
with free-form text log messages into structured templates is the first
and crucial step that enables further analysis. Existing approaches rely
on log-specific heuristics or manual rule extraction. These are often spe-
cialized in parsing certain log types, and thus, limit performance scores
and generalization. We propose a novel parsing technique called NuLog
that utilizes a self-supervised learning model and formulates the parsing
task as masked language modeling (MLM). In the process of parsing,
the model extracts summarizations from the logs in the form of a vec-
tor embedding. This allows the coupling of the MLM as pre-training
with a downstream anomaly detection task. We evaluate the parsing
performance of NuLog on 10 real-world log datasets and compare the
results with 12 parsing techniques. The results show that NuLog outper-
forms existing methods in parsing accuracy with an average of 99% and
achieves the lowest edit distance to the ground truth templates. Addi-
tionally, two case studies are conducted to demonstrate the ability of
the approach for log-based anomaly detection in both supervised and
unsupervised scenario. The results show that NuLog can be successfully
used to support troubleshooting tasks. The implementation is available
at https://github.com/nulog/nulog.

Keywords: Representation learning · Log parsing · Transformers ·
Anomaly detection · IT systems

1 Introduction

Current IT systems are a combination of complex multi-layered software and
hardware. They enable applications of ever-increasing complexity and system
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diversity, e.g., cloud platforms, where many technologies such as the Internet
of Things (IoT), distributed processing frameworks, databases, and operating
systems are used. The complexity and diversity of the systems relate to high
managing and maintenance overhead for the operators to a point where they are
no longer able to holistically operate and manage these systems. Therefore, ser-
vice providers are introducing AI solutions for anomaly detection, error analysis,
and recovery to the IT ecosystems [15,16]. The foundation for these data-driven
troubleshooting solutions is the availability of data that describe the state of the
systems. The large variety of used technologies leads to diverse data requiring
the developed methods to generalize well over different applications, operating
systems, or cloud infrastructure management tools.

One specific data source – the logs, are commonly used to inspect the behav-
ior of an IT system. They represent interactions between data, files, services,
or applications, which are typically utilized by developers, DevOps teams, and
AI methods to understand system behaviors and to detect, localize, and resolve
problems that may arise. The first step for understanding log information and
their utilization for further automated analysis is to parse them. The content of
a log record is semi-structured data which contains markers to separate seman-
tic elements (e.g., timestamp, pid, and service name) and free-text written by
software developers. The tagged data is relatively simple to process, while ana-
lyzing the text has always been a challenge[7,24]. The free text is a composition
of constant string templates and variable values. The template is the logging
instruction (e.g. print(), log.info()) from which the log message is produced. It
records a specific system event. The general objective of a log parser is the trans-
formation of the unstructured free-text into a structured log template and an
associated list of variables. For example, the template “Attempting claim: mem-
ory 〈∗〉 MB, disk 〈∗〉 GB, vcpus 〈∗〉 CPU” is associated with the variable list
[“2048”, “20”, “1”]. Here, 〈∗〉 denotes the position of each variable and is con-
nected with the positions of the values within the list. The variable list can be
empty if a template does not contain variable parts.

Traditional log parsing techniques rely on regular expressions designed and
maintained by human experts. Large systems consisting of diverse software and
hardware components render it intricate to maintain this manual effort. Addi-
tionally, frequent software updates necessitate constant checking and adjusting
of these statements, which is a tedious and error-prone task. Related log pars-
ing methods [2,5,7,25] depend on parse trees, heuristics, and domain knowledge.
They are either specialized to perform well on logs from specific systems or can
reliably parse data with a low variety of unique templates. Analyzing the per-
formance of existing log parsing methods on a variety of diverse systems reveals
their lack of robustness to produce consistently good parsing results [24]. This
implies the necessity to choose a parsing method for the application or system
at hand and incorporating domain-specific knowledge. Operators of large IT
infrastructures would end up with the overhead of managing different parsing
methods for their components whereof each need to be accordingly understood.
We state that log parsing methods have to be accurate on log data from vari-
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ous systems ranging from single applications over mobile operating systems to
cloud infrastructure management platforms with minimal human intervention
as possible.

Accurate parsing of log messages into templates is crucial for many log pro-
cessing methods including anomaly detection and root cause analysis [3,9,17].
However, recent log anomaly detection approaches, are applying methods from
natural language processing (NLP) to achieve improved results and provide
robustness against changes of the underlying system (e.g. software updates) [10,
23]. Thereby, semantic embeddings for parsed log templates together with a
defined distance measure enable a notion of similarity between those. The
described procedures to generate word and log template embedding vectors intro-
duce additional sources of uncertainty. It requires two additional methods (word
and template embedding generation) that rely on good parsing results and are
crucial for the subsequent anomaly detection task. Furthermore, the proposed
semantic embedding models were trained on text datasets (e.g., Wikipedia) or
news articles instead of log data, which renders their embedding results for log
templates as not persuasive. Since a log parsing method needs to analyze the log
dataset anyway, it is reasonable to incorporate the task of generating semantic
log template embeddings into the parsing procedure. Such a log parsing approach
would meet the requirements of recent log analysis methods and avoid the addi-
tional external embedding generators. To the best of our knowledge, no related
log parsing method exists that can provide a representational embedding of the
parsed log messages making it impossible to directly connect them to models for
fine-tuning in downstream tasks that require those.

Contribution. We propose a self-supervised method for log parsing NuLog,
which utilizes the transformer architecture [1,21]. Self-supervised learning is a
form of unsupervised learning where parts of the data provide supervision. To
build the model, the learning task is formulated such that the presence of a
word on a particular position in a log message is conditioned on its context.
This is done with masking the word which is predicted. The model is forced to
learn the appearance of the word within its context. The key idea for parsing
is that the correct prediction of the masked word means that the word isjkk]=]
part of the log template. Otherwise it is a parameter of the log. The advantages
of this approach are that it can produce both a log template and a numerical
vector sumarization, while domain knowledge is not needed. Through exhaustive
experimentation, we show that NuLog outperforms the previous state of the art
log parsing methods and achieves the best scores overall. The model is robust
and generalizes well across different datasets. Further, we illustrate two use cases,
supervised and unsupervised, on how the model can be coupled with and fine-
tuned for a downstream task like anomaly detection. The results suggest that
the knowledge obtained during the masked language modeling is useful as a good
prior knowledge for the downstream tasks.
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2 Related Work

Automated log parsing is important due to its practical relevance for the mainte-
nance and troubleshooting of software systems. A significant amount of research
and development for automated log parsing methods has been published in both
industry and academia [6,24]. Parsing techniques can be distinguished in various
aspects, including technological, operation mode, and preprocessing. In Fig. 1, we
give an overview of the existing methods.

Clustering. The main assumption in these methods is that the message types
coincide in similar groups. Various clustering methods with proper string match-
ing distances have been used. Methods in this groups are SHISO, LenMa, Log-
Mine, LKE, and LogSig [4,5,12,18,19].

Frequent pattern mining assumes that a message type is a frequent set of
tokens that appear throughout the logs. The procedures involve creating frequent
sets, grouping the log messages, and extraction of message types. Representative
parsers for this group are SLCT, LFA, and LogCluster [13,14,22].

Evolutionary. Its member MoLFI [11] uses an evolutionary approach to find
the Pareto optimal set of message templates.

Log-structure heuristics methods produce the best results among the dif-
ferent adopted techniques [6,24]. They usually exploit different properties that
emerge from the structure of the log. The state-of-the-art algorithm Drain [7]
assumes that at the beginning of the logs the words do not vary too much. It
uses this assumption to create a tree of fixed depth which can be easily modified
for new groups. Other parsing methods in this group are IPLoM and AEL [8,22].

Longest-common sub-sequence uses the longest common subsequence algo-
rithm to dynamically extract log patterns from incoming logs. Here the most
representative parser is Spell [2].

Our method belongs to a new category called Neural in the taxonomy of
log parsing methods. Different from the current state-of-the-art heuristic-based
methods, our method does not require any domain knowledge. Through empirical
results, we show that the model is robust and applicable to a range of log types
in different systems. We believe that in future this category will have the most
influence considering the advances of deep learning.

Log Parsers

Frequent 
pattern 
mining

- SLCT
- LFA
- LogCluster

Clustering
- LKE
- LogSig
- SHISHO
- LenMa
- LogMine

Log-structure 
heuristics

- AEL
- Drain
- IPLoM

Longest-
common 

subsequence
- Spell

Evolutionary
- MoLFI

Neural
- NuLog

Fig. 1. Taxonomy of log parses according to the underlying technology they adopt.
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3 Neural Log Parsing

3.1 Preliminaries

We define a log as a sequence of temporally ordered unstructured text messages
L = (li : i = 1, 2, ...), where each message li is generated by a logging instruction
(e.g. printf(), log.info()) within the software source code, and i is its positional
index within the sequence. The log messages consist of a constant and an optional
varying part, respectively referred to as log template and variables. We define
log templates and variables as tuples EV = ((ei, vi) : e ∈ E, i = 1, 2, ...), where
E is the finite set of all log event templates, K = |E| is the number of all unique
templates and vi is a list of variables for the respectively associated template.
They are associated with its original log message by the positional index i.

The smallest inseparable singleton object within a log message is a token.
Each log message consists of a bounded sequence of tokens, ti = (tj : t ∈ T, j =
1, 2, ..., |ti|), where T is a set of all tokens, j is the positional index of a token
within the log message li, and |ti| is the total number of tokens in li. For different
li, |ti| can vary. Depending on the concrete tokenization method, t can be a word,
word piece, or character. Therefore, tokenization is defined as a transformation
function T : li → ti,∀i.

With respect to our proposed log parsing method, the notions of context
and embedding vector are additionally introduced. Given a token tj , its context
is defined by a preceding and subsequent sequence of tokens, i.e. a tuple of
sequences: C(tj) = ((ta, ta+1, ..., tj−1), (tj+1, tj+2, ..., tb)), where a < j < b. An
embedding vector is a d-dimensional real valued vector representation s ∈ R

d of
either a token or a log message.

We establish a requirement and a property for the proposed log parsing
method:

Requirement. Given a temporally ordered sequence of log messages L, gener-
ated from an unknown set E of distinct log templates, the log parsing method
should provide a mapping function f1 : L → EV .

Property. The log parsing approach enables for vector representation of a log
(log2vec), which leads to a possibility for addressing various downstream tasks
like anomaly detection.

The generated vector representations should be closer embedding vectors for
log messaged belonging to the same log template and distant embedding vectors
for log messages belonging to distinct log templates. For example, the embedding
vectors for “Took 10 s to create a VM” and “Took 9 s to create a VM” should
have a small distance while vectors for “Took 9 s to create a VM” and “Failed
to create VM 3” should be distant.

The goal of the proposed method is to mimic an operator’s comprehension
of logs. Given the task of identifying all event templates in a log, a reasonable
approach is to pay close attention to parts that re-appear constantly and ignore
parts that change frequently within a certain context (e.g. per log message). This
can be modelled as a probability distribution for each token conditioned on its
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Fig. 2. Instance of parsing of a single log message with NuLog.

context, i.e. P (tj |C(tj)). Such probability distribution would allow the distinc-
tion of constant and varying tokens, referring to solving Requirement. The
generation of log embedding vectors would naturally enable utilization of such
representation for fine-tuning in downstream tasks. Moreover, the representation
is obtained by focusing on constant parts of the log message, as they are more
predictable, providing the necessary generalization for Property.

3.2 NuLog: Self-attentive Neural Parsing with Transformers

The proposed method is composed of preprocessing, model, and template extrac-
tion. The overall architecture based on an example log message input is depicted
in Fig. 2.

The log preprocessor transforms the log messages into a suitable format
for the model. It is composed of two main parts: tokenization and masking.
Before the tokenization task, the meta-information from the logging frameworks
is stripped, and the payload, i.e., the print statement, is used as input to the
tokenization step.

Tokenization. Tokenization transforms each log message into a sequence
of tokens. For NuLog, we utilize a simple filter based splitting criterion
to perform a string split operation. We keep these filters short and sim-
ple, i.e. easy to construct. All concrete criteria are described in Sect. 4.1. In
Fig. 2 we illustrate the tokenization of the log message “Deleting instance
/var/lib/nova/instances/4b2ab87e23b4de”. If a splitting criterion matches white
spaces, then the log message is tokenized as a list of three tokens [“Deleting”,
“instance”, “/var/lib/nova/instances/4b2ab87e23b4de”]. In contrast to several
related approaches that use additional hand-crafted regular expressions to parses
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parameters like IP addresses, numbers, and URLs, we do not parse any param-
eters with a regex expression [24]. Such approaches are error-prone and require
manual adjustments in different systems and updates within the same system.
In contrast, NuLog utilizes the fact that these are just tokens and considers their
appearance within a context. These parameters are assigned with low probability
as they are not constant within a particular context.

Masking. The intuition behind the proposed parsing method is to learn a gen-
eral semantic representation of the log data by analyzing occurrences of tokens
within their context. We apply a general method from natural language (NLP)
research called Masked Language Modeling (MLM). It is originally introduced
in [20] (where it is referred to as Cloze) and successfully applied in other NLP
publications like [1]. Our masking module takes the output of the tokenization
step as input, which is a token sequence of a log message. A percentage of tokens
from the sequence are randomly chosen and replaced with the special 〈MASK〉
token. If the percentage suggest replacing two tokens with masks, the masking
module will create two samples where each of the words will be masked once as
depicted in Fig. 2. The masked token sequence is used as input for the model,
while the masked token acts as the prediction target. To denote the start and end
of a log message, we prepend a special 〈CLS〉 and apply padding with 〈SPEC〉
tokens. The number of padding tokens for each log message is given by M − |ti|,
where M = max(|ti|) + 1, ∀i is the maximal number of tokens across all log
messages within the log dataset added by one, and |ti| is the number of tokens
in the i-th log message. Note, that the added one ensures that each log message
is padded by at least one 〈SPEC〉 token.

Model. The method has two operation modes - offline and online. During the
offline phase, log messages are used to tune all model parameters via backpropa-
gation and optimal hyper-parameters are selected. During the online phase, every
log message is passed forward through the model. This generates the respective
log template and an embedding vector for each log message.

Figure 3 depicts the complete architecture. The model applies two operations
on the input token vectors: token vectorization and positional encoding. The
subsequent encoder structure takes the result of these operations as input. It is
composed of two elements: self-attention layer and feedforward layer. The last
model component is a single linear layer with a softmax activation overall tokens
appearing in the logs. In the following, we provide a detailed explanation of each
model element.

Since all subsequent elements of the model expect numerical inputs, we ini-
tially transform the tokens into randomly initialized numerical vectors x ∈ R

d.
These vectors are referred to as token embeddings and are part of the training
process, which means they are adjusted during training to represent the semantic
meaning of tokens depending on their context. These numerical token embed-
dings are passed to the positional encoding block. In contrast to e.g., recurrent
architectures, attention-based models do not contain any notion of input order.
Therefore, this information needs to be explicitly encoded and merged with the
input vectors to take their position within the log message into account. This
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block calculates a vector p ∈ R
d representing the relative position of a token

based on a sine and cosine function.

p2k = sin

(
j

10000
2k
v

)
, p2k+1 = cos

(
j

10000
2k+1

v

)
. (1)

Here, k = 0, 1, . . . , d−1 is the index of each element in p and j = 1, 2, . . . , M
is the positional index of each token. Within the equations, the parameter k
describes an exponential relationship between each value of vector p. Addition-
ally, a sine and cosine function are interchangeably applied. Both allow better
discrimination of the respective values within a specific vector of p. Furthermore,
both functions have an approximately linear dependence on the position param-
eter j, which is hypothesized to make it easy for the model to attend to the
respective positions. Finally, both vectors can be combined as x′ = x + p.

The encoder block of our model starts with a multi-head attention element,
where a softmax distribution over the token embeddings is calculated. Intuitively,
it describes the significance of each embedding vector for the prediction of the
target masked token. We summarize all token embedding vectors as rows of a
matrix X ′ and apply the following formula

X ′′
l = softmax

(
Ql × KT

l√
w

)
× Vl, for l = 1, 2, . . . , L, (2)

where L denotes the number of attention heads, w = d
L and d mod L = 0. The

parameters Q, K and V are matrices, that correspond to the query, key, and
value elements in Fig. 3. They are obtained by applying matrix multiplications
between the input X ′ and respective learnable weight matrices WQ

l , WK
l , WV

l :

Ql = X ′ × WQ
l , Kl = X ′ × WK

l , Vl = X ′ × WV
l , (3)

where WQ
l , WK

l , WV
l ∈ R

M×w. The division by
√

w stabilizes the gradi-
ents during training. After that, the softmax function is applied and the result
is used to scale each token embedding vector Vl. The scaled matrices X ′′

l are
concatenated to a single matrix X ′′ of size M × d. As depicted in Fig. 3 there
is a residual connection between the input token matrix X ′ and its respective
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attention transformation X ′′, followed by a normalization layer norm. These
are used for improving the performance of the model by tackling different poten-
tial problems encountered during the learning such as small gradients and the
covariate shift phenomena. Based on this, the original input is updated by the
attention-transformed equivalent as X ′ = norm(X ′ + X ′′).

The last element of the encoder consists of two feed-forward linear layers
with a ReLU activation in between. It is applied individually on each row of
X ′. Thereby, identical weights for every row are used, which can be described
as a convolution over each attention-transformed matrix row with kernel size
one. This step serves as additional information enrichment for the embeddings.
Again, a residual connection followed by a normalization layer between the input
matrix and the output of both layers is employed. This model element preserves
the dimensionality X ′.

The final element of the model consists of a single linear layer. It receives
the encoder result X ′ and extracts the token embedding vector of the 〈CLS〉
token. Since every log message token sequence is pre-padded by this special
token, it is the first row of the matrix, i.e. x′

0 ∈ X ′. The linear layer maps
this vector of size d to a vector whose size corresponds to the total number
of tokens |T| in the dataset. The subsequent softmax is utilized to calculate a
probability distribution over each element of T. During training, the masked
token is used as the target to be predicted. Since the last vector embedding
of the 〈CLS〉 token is used for prediction, it is forced to summarize the log
message. Otherwise, it would not be able to solve the masked token prediction
task well enough across all tokens. We hypothesize that the constant part of log
templates will constraint the model to learn similar 〈CLS〉 token embeddings
when log messages are of the same template. This leads to a mapping of the
log messages to their vector representation, which can after be used for diverse
downstream tasks like anomaly detection. This log message embedding vector
satisfies the proposed Property (see Sect. 3.1).

3.3 Log Template Extraction

The extraction of all log templates within a log dataset is executed online, after
the model training. Therefore, we pass each log message as input and configure
the masking module in a way that every token is masked consecutively, one at
a time. We measure the model’s ability to predict each token, and thus, decide
whether the token is a constant part of the template or a variable. High con-
fidence in the prediction of a specific token indicates a constant part of the
template, while small confidence is interpreted as a variable. More specifically,
for the results in this paper we employ the following procedure. If the prediction
of a particular token is in the top ε predictions and doesn’t contain numbers, we
consider it as a constant part of the template, otherwise, it is considered to be
a variable. For all variables, an indicator 〈∗〉 is placed on its position within the
log message. However, This addresses the Requirement proposed in Sect. 3.1.
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4 Evaluation

To quantify the performance of the proposed method, we perform an exhaus-
tive evaluation of the log parsing task on a set of 10 benchmark datasets and
compare the results with 12 other log template parsing methods. The datasets
together with the implementation of the other parsers were obtained from the log
benchmark [24]. Furthermore, the model of NuLog provides log message vector
embeddings. We show that these, along with the model, can be used for anomaly
detection as downstream tasks.

4.1 Datasets

The log datasets employed in our experiments are summarized in Table 1. These
real-world log data range from supercomputer logs (BGL and HPC), distributed
system logs (HDFS, OpenStack, Spark), to standalone software logs (Apache,
Windows, Mac, Android). To enable reproducibility, we follow the guidelines
from [24] and utilize a random sample of 2000 log messages from each dataset,
where the ground truth templates are available. The number of templates (#T)
contained within each dataset is shown in Table 1.

The BGL dataset is collected by Lawrence Livermore National Labs (LLNL)
from BlueGene/L supercomputer system. HPC logs are collected from a high-
performance cluster, consisting of 49 nodes with 6,152 cores. HDFS is a log data
set collected from the Hadoop distributed file system deployed on a cluster of 203
nodes within the Amazon EC2 platform. OpenStack is a result of a conducted
anomaly experiment within CloudLab with one control node, one network node
and eight compute nodes. Spark is an aggregation of logs from the Spark sys-
tem deployed within the Chinese University of Hongkong, which comprises 32
machines. The Apache HTTP server dataset consists of access and error logs
from the apache web server. Windows, Mac, and Android datasets consist of
logs generated from single machines using the respectively named operating sys-
tem. HealthApp contains logs from an Android health application, recorded over
ten days on a single android smartphone.

As described in Sect. 3.2, the tokenization process of our method is imple-
mented by splitting based on a filter. We list the applied splitting expressions
for each dataset in Table 1. Besides, we also list the additional training parame-
ters. The number of epochs is determined by an early stopping criterion, which
terminated the learning when the loss converges. The hyperparameter ε is deter-
mined via cross-validation.

4.2 Evaluation Methods

To quantify the effectiveness of NuLog for log template generation from the
presented 10 datasets, we compare it with 12 existing log parsing methods on
parsing accuracy, edit distance, and robustness. We reproduced the results from
Zhu et al. [24] for all known log parsers. Furthermore, we enriched the extensive
benchmark reported by an additional metric, i.e., edit distance. Note, that all
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Table 1. Datasets and NuLog hyperparameter setting.

System #T Tokenization filter #epochs ε

BGL 120 ([ |:|\(|\)|=|,])|(core.)|(\.{2,}) 3 50

Android 166 ([ |:|\(|\)|=|,|"|\{|\}|@|\$|\[|\]|\||;]) 5 25

OpenStack 43 ([ |:|\(|\)|"|\{|\}|@|\$|\[|\]|\||;]) 6 5

HDFS 14 (\s+blk_)|(:)|(\s) 5 15

Apache 6 ([ ]) 5 12

HPC 46 ([ |=]) 3 10

Windows 50 ([ ]) 5 95

HealthApp 75 ([ ]) 5 100

Mac 341 ([ ])|([\w-]+\.){2,}[\w-]+ 10 300

Spark 36 ([ ])|(\d+\sB)|(\d+\sKB)|(\d+\.){3}\d+ 3 50

methods we comparing with are described in detail in Sect. 2. To evaluate the
log message embeddings for the anomaly detection downstream tasks, we use
the common metrics accuracy, recall, precision, and F1 score. In the following,
we describe each evaluation metric.

Parsing Accuracy. To enable comparability between our method to the previ-
ous work [24], we adopt their standard proposed parsing accuracy (PA) metric.
It is defined as the ratio of correctly parsed log messages over the total number
of log messages. After parsing, each log message is assigned to a log template.
A log message is considered correctly parsed if its log template corresponds to
the same group of log messages as the ground truth does. For example, if a log
sequence [e1, e2, e2] is parsed to [e1, e4, e5], we get PA = 1

3 since the second and
third messages are not grouped together.

Edit Distance. The PA metric is considered as the standard for evaluation
of log parsing methods, but it has limitations when it comes to evaluating the
template extraction in terms of string comparison. Consider a particular group
of logs produced from single print(“VM created successfully”) statement that is
parsed with the word VM. As long as this is consistent over every occurrence
of the templates from this group throughout the dataset, PA would still yield
a perfect score for this template parsing result, regardless of the obvious error.
Therefore, we introduce an additional evaluation metric: Levenshtein edit dis-
tance. This is a way of quantifying how dissimilar two log messages are to one
another by counting the minimum number of operations required to transform
one message into the other.

4.3 Parsing Results

Parsing Accuracy. This section presents and discusses the log parsing PA
results of NuLog on the benchmark datasets and compares them with twelve
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Table 2. Comparisons of log parsers and our method NuLog in parsing accuracy (PA).

Dataset SLCT AEL LKE LFA LogSig SHISHO LogCluster LenMa LogMine Spell Drain MoLFI BoA NuLog

HDFS 0.545 0.998 1.000 0.885 0.850 0.998 0.546 0.998 0.851 1.000 0.998 0.998 1.000 0.998

Spark 0.685 0.905 0.634 0.994 0.544 0.906 0.799 0.884 0.576 0.905 0.920 0.418 0.994 1.000

OpenStack 0.867 0.758 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.867 0.990

BGL 0.573 0.758 0.128 0.854 0.227 0.711 0.835 0.690 0.723 0.787 0.963 0.960 0.963 0.980

HPC 0.839 0.903 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.903 0.945

Windows 0.697 0.690 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406 0.997 0.998

Mac 0.558 0.764 0.369 0.599 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636 0.872 0.821

Android 0.882 0.682 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919 0.911 0.788 0.919 0.827

HealthApp 0.331 0.568 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.780 0.875

Apache 0.731 1.000 1.000 1.000 1.000 1.000 0.709 1.000 1.000 1.000 1.000 1.000 1.000 1.000

other related methods. These are presented in Table 2. Specifically, each row
contains the datasets while the compared methods are represented in the table
columns. Additionally, the penultimate column contains the highest value of the
first twelve columns - referred to as best of all - and the last column contains
the results for NuLog. In the bold text, we highlight the best of the methods per
dataset. HDFS and Apache datasets are most frequently parsed with 100% PA.
This is because HDFS and Apache error logs have relatively unambiguous event
templates that are simple to identify. On those, NuLog achieves comparable
results. For the Spark, BGL and Windows dataset, the existing methods already
achieve high PA values above 96% (BGL) or above 99% (Spark and Windows).
Our proposed method can slightly outperform those. For the rather complex log
data from OpenStack, HPC and HealthApp the baseline methods achieve a PA
between 78% and 90%, which NuLog significantly outperforms by 4–13%.

PA Robustness. Employing a general parsing method in production requires
a robust performance throughout different log datasets. With the proposed
method, we explicitly aim at supporting a broad range of diverse log data types.
Therefore, the robustness of NuLog is analyzed and compared to the related
methods. Figure 4 shows the accuracy distribution of each log parser across the
log datasets within a boxplot. From left to right in the figure, the log parsers are
arranged in ascending order of the median PA. That is, LogSig has the lowest
and NuLog obtains the highest parsing accuracy on the median. We postulate
the criterion of achieving consistently high PA values across many different log
types as crucial for their general use. However, it can be observed that, although
most log parsing methods achieve high PA values of 90% for specific log datasets,
they have a large variance when applied across all given log types. NuLog outper-
forms every other baseline method in terms of PA robustness yielding a median
of 0.99, which even lies above the best of all median of 0.94.

Edit Distance. As an evaluation metric, PA measures how well the parsing
method can match log templates with the respective log messages throughout
the dataset. Additionally, we want to verify the correctness of the templates, e.g.,
whether all variables are correctly identified. To achieve this, the edit distance
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Fig. 4. Robustness evaluation on the parsing accuracy of the log parsers.

score is employed to measure the dissimilarity between the parsed and the ground
truth log templates. Note that this indicates that the objective is to achieve
low edit distance values. All edit distance scores are listed in Table 3. The table
structure is the same as for PA results. In bold we highlight the best edit distance
value across all tested methods per dataset. It can be seen that in terms of edit
distance NuLog outperforms existing methods on the HDFS, Windows, Android,
HealthApp and Mac datasets. It performs comparable on the BGL, HPC, Apache
and OpenStack datasets and achieves a higher edit distance on the Spark log
data.

Edit Distance Robustness. Similar to the PA robustness evaluation, we want
to verify how consistent NuLog is performing in terms of edit distance across the
different log datasets. Figure 5 shows a box-plot that indicates the edit distance
distribution of each log parser for all log datasets. From left to right in the
figure, the log parsing methods are arranged in descending order of the median
edit distance. Again, it can be observed that although most log parsing methods
achieve the minimal edit distance scores under 10, most of them have a large
variance over different datasets and are therefore not generally applicable for
diverse log data types. MoLFI has the highest median edit distance, while Spell
and Drain perform constantly well - i.e. small median edit distance values - for
multiple datasets. Again, our proposed parsing method outperforms the lowest
edit distance values with a median of 5.00, which is smaller the best of all median
of 7.22.

5 Case Study: Anomaly Detection as a Downstream Task

In previous sections, we demonstrate the effectiveness of NuLog in terms of
accuracy, edit distance and robustness over different datasets. Although high
accuracy is necessary for log parsing methods, it does not guarantee good per-
formance in important subsequent log mining task like anomaly detection. Little
parsing error may cause an order of magnitude performance degradation in log
mining when the errors occur in log messages that are infrequent but essential
for the log analysis task [6].
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Table 3. Comparisons of log parsers and our method NuLog in edit distance.

Dataset LogSig LKE MoLFI SLCT LFA LogCluster SHISHO LogMine LenMa Spell AEL Drain BoA NuLog

HDFS 19.1595 17.9405 19.8430 13.6410 30.8190 28.3405 10.1145 16.2495 10.7620 9.2740 8.8200 8.8195 8.8195 3.2040

Spark 13.0615 41.9175 14.1880 6.0275 9.1785 17.0820 7.9100 16.0040 10.9450 6.1290 3.8610 3.5325 3.5325 12.0800

BGL 11.5420 12.5820 10.9250 9.8410 12.5240 12.9550 8.6305 19.2710 8.3730 7.9005 5.0140 4.9295 4.9295 5.5230

HPC 4.4475 7.6490 3.8710 2.6250 3.1825 3.5795 7.8535 3.2185 2.9055 5.1290 1.4050 2.0155 1.4050 2.9595

Windows 7.6645 11.8335 14.1630 7.0065 10.2385 6.9670 5.6245 6.9190 20.6615 4.4055 11.9750 6.1720 5.6245 4.4860

Android 16.9295 12.3505 39.2700 3.7580 9.9980 16.4175 10.1505 22.5325 3.2555 8.6680 6.6550 3.2210 3.2210 1.1905

HealthApp 17.1120 14.6675 21.6485 16.2365 20.2740 16.8455 24.4310 19.5045 16.5390 8.5345 19.0870 18.4965 14.6675 6.2075

Apache 14.4420 14.7115 18.4410 11.0260 10.3675 16.2765 12.4405 10.2655 13.5520 10.2335 10.2175 10.2175 10.2175 11.6915

OpenStack 21.8810 29.1730 67.8850 20.9855 28.1385 31.4860 18.5820 23.9795 18.5350 27.9840 17.1425 28.3855 17.1425 21.2605

Mac 27.9230 79.6790 28.7160 34.5600 41.8040 21.3275 19.8105 17.0620 19.9835 22.5930 19.5340 19.8815 17.062 2.8920

Fig. 5. Robustness evaluation on the edit distance of the log parsers.

Our model architecture allows for coupling of the parsing approach and a
downstream anomaly detection task. The knowledge obtained during the log
parsing phase is used as a good prior bias. The architecture allows to treat
the problem of anomaly detection in both supervised and unsupervised way.
To illustrate this, we designed two experimental case studies described in the
following.

5.1 Unsupervised Anomaly Detection

We test the log message embeddings produced by NuLog for unsupervised log
anomaly detection by employing a similar approach as during parsing. The model
is trained for three epochs. Each token of a log message is masked and predicted
based on the 〈CLS〉 token embedding. All respectively masked tokens that are
not in the top-ε predictions are marked as anomalies. We compute the percentage
of anomalous tokens within the log message to decide whether the whole log
message is anomalous. If it is larger than a threshold δ, the log message is
considered as an anomaly, otherwise as normal. This process is shown in the left
part of Fig. 6.

To the best of our knowledge, only the BGL dataset contains anomaly labels
for each individual log message, and is therefore suitable to evaluate the proposed
anomaly detection approach. Due to its large volume, we use only the first 10%
of it. For training 80% of that portion is utilized, while the rest is used for testing.
In the first row of Table 4 we show the accuracy, recall, precision, and F1 score
results. It can be seen that the method yields scores between 0.999 and 1.0. We,
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Fig. 6. Unsupervised (left) and supervised (supervised) methods for downstream
anomaly detection.

therefore, regard these results as evidence that the log message embeddings can
be used for the unsupervised detection of anomalous log messages.

Table 4. Scores for the downstream anomaly detection tasks.

Accuracy Recall Precision F1 Score

Unsupervised 0.999 0.999 1.000 0.999

Supervised 0.999 1.000 0.999 0.999

5.2 Supervised Anomaly Detection

For the second case study, we utilize log message embeddings as a feature for
supervised anomaly detection. First, the model is trained on the self-supervised
MLM task. Second, we replace the last softmax layer by a linear layer, that is
adapted via supervised training of predicting a given 〈CLS〉 as either normal
or anomaly, i.e. binary classification. For this downstream task, we applied a
fine-tuning of two epochs.

Again, the first 10% of the BGL dataset were used for evaluation. Thereby,
the model is trained on the first 80% and evaluated on the remaining 20%. The
results are listed in the second row of Table 4 and show that two epochs of fine-
tuning are sufficient to produce an F1 score of 0.99. It further adds evidence
to the proposed hypothesize of enabling the application of the MLM based pre-
training as a good initialization bias for different downstream tasks.

6 Conclusion

We addressed the log parsing problem with deep language modelling. The insight
of having words appearing at a constant position of a log record implies that their
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correct prediction can be directly used to produce a log message type. An incor-
rect prediction indicates that a token is a parameter. The method also produces
a numerical representation of the context of the log message, which primarily is
utilized for parsing. This allows the model for utilization in downstream tasks
such as anomaly detection.

To evaluate the effectiveness of NuLog, we conducted experiments on 10 real-
world log datasets and evaluated it against 12 log parsers. The experimental
results show that NuLog outperforms the existing log parsers in terms of accu-
racy, edit distance, and robustness. Furthermore, we conducted case studies on
a real-world supervised and unsupervised anomaly detection task. The results
show that the model and the learned log vector summarization can be utilized
in both supervised and unsupervised scenario.

Our approach shows that log parsing can be performed with deep language
modeling. This imply that future research in log parsing and anomaly detection
should focus more into generalization across domains, transfer of knowledge,
and learning of meaningful log representations that could further improve the
troubleshooting tasks critical for operation of IT systems.
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Abstract. Australian water infrastructure is more than a hundred years
old, thus has begun to show its age through water main failures. Our
work concerns approximately half a million pipelines across major Aus-
tralian cities that deliver water to houses and businesses, serving over
five million customers. Failures on these buried assets cause damage to
properties and water supply disruptions. We applied Machine Learning
techniques to find a cost-effective solution to the pipe failure problem
in these Australian cities, where on average 1500 of water main failures
occur each year. To achieve this objective, we construct a detailed pic-
ture and understanding of the behaviour of the water pipe network by
developing a Machine Learning model to assess and predict the failure
likelihood of water main breaking using historical failure records, descrip-
tors of pipes and other environmental factors. Our results indicate that
our system incorporating a nonparametric survival analysis technique
called ‘Random Survival Forest’ outperforms several popular algorithms
and expert heuristics in long-term prediction. In addition, we construct
a statistical inference technique to quantify the uncertainty associated
with the long-term predictions.

Keywords: Advanced assets management · Machine learning · Data
mining · Nonparametric · Survival analysis · Random survival forest

1 Introduction

The degradation of urban water mains causes a major problem in urban engineer-
ing in Australia. The most common measures of pipeline breakage are the fre-
quency of the water pipe breaks (breaks per 100 km per year) and the criticality
factor of the breakage. Pipeline failure rate varies widely, as it depends on various
factors, such as pipe material, pipe diameter and various other environmental and
operational conditions. The maintenance and renewal of water mains demand
high financial investments. Moreover, direct inspection of all water mains in
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Fig. 1. Water pipeline failure statistics in three major regions of Australia, using three
metrics; (a) pipeline failure rate (number of failures per year per 100 km), (b) failure
count on the water pipeline network, (c) risk factor (failure likelihood × consequence
of the failure) across the network.

a distribution system is extremely expensive. Therefore, a cost-effective break
mitigation technique such as a prediction model that allows one to predict the
water mains failure, would reduce the negative customer impact and the cost to
serve. Consequently, this proactive maintenance model elaborates an optimized
strategy for water mains maintenance and rehabilitation.

1.1 The Water Pipeline Failure Problem

This study concerns the failure analysis of the water pipeline network of three
major cities located in three different states in Australia, namely: New South
Wales (NSW), Victoria (VIC), and Queensland (QLD). The water network
includes a total of 500,000 pipelines. The oldest pipes were laid in 1890 in Rom-
sey, VIC and surrounding suburbs. The total length of this pipeline network is
over 30,000 km. As depicted in Fig. 2 (a), a water main comprises of several pipes
and each pipe comprises several pipe nodes buried in various ground levels.

Water pipe failures are mainly studied using three different metrics, namely:
failure rate, failure count and the risk factor associated with the failure.
Figure 1(a) shows the pipeline failure rates in major cities of NSW, Australia.
The failure rate is the number of asset failures per 100 km per year. Higher failure
rates are illustrated in darker red spots, and it clearly shows higher failure rates
are not localized to one area, they are spread across the state. Breakages in the
water main network in the region west of VIC is shown in Fig. 1(b). Figure 1(c)
illustrates the risk distribution of pipeline network in south-east QLD. Across the
entire region under our study, an average number of 1500 pipe failures occur each
year, causing water supply disruptions and myriads of property and environmen-
tal damages. Figure 2 (b) shows the increasing trend in breakage of critical pipes
(each water utility has its own method to identify the criticality of a water pipe
depending on the risk associated with its breakage) in NSW from 2000 to 2017.
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Fig. 2. (a) 3D schematic of a water pipeline which comprises of various individual
pipes. X axis, Y axis, and Z axis denote latitude, longitude and the ground level of
the water main, respectively. Vertical blue lines represent the breaks occurred in this
water main since 2000, (b) Increment in number of critical pipe breaks over the recent
years in Sydney, Australia.

1.2 Related Work

There has been a lot of work in recent years on pipe failure prediction in water
infrastructure, ranging from physical models [1,7] to machine learning models
[13,15,27], [12] and the combination of both [22].

Machine learning based pipe failure forecasting dates back to 1979 [21], where
authors developed a forecasting technique to study how the number of breaks
would change with time if the pipes were not replaced. In that study, authors
used a Poisson model based on the age of the pipes. However, research carried out
afterwards shows that the age is not the only factor that causes the pipeline fail-
ure. In fact, some of the very old pipes function more robust than their newly laid
counterparts. Furthermore, the prediction of water main breaks has been studied
widely using statistical based approaches, such as Poisson regression and Weibull
models [2,23]. Most recently, tree-based Machine Learning techniques have been
used to analyse water pipe breakages in Syracuse, USA [12], and QLD, Aus-
tralia [14]. The former study shows that Gradient Boosting (GB) outperforms
other methods when predicting high risk city blocks. The work reported in [25]
uses a combination of Random Forest (RF) and linear regression to predict the
long-term pipe failure likelihood for water and sewer pipes in QLD, Australia.

Although numerous research have been conducted on forecasting water
pipeline failures, open questions still exist regarding the intricate relationship
among the major factors causing pipe failure and their long-term effects on the
life-time of a pipe. This may vary depending on the environment (weather, soil,
ground level, pressure, etc.) that the pipe is laid in and the pipe maintenance app-
roach of each water utility. Thus, prediction of the water main breaks becomes a
complicated task due to their low failure rate and high cost of inspection, which
have led to a sparse historical data.

Most of the research found in the literature predict short-term failure fore-
casting, which spans 1–3 years into the future [12]. However, water utilities
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require long-term estimations for the structural deterioration of water mains to
effectively plan the renewal of water distribution systems and to develop a risk
based investment decisions for capital interventions [24]. Therefore, the main
objective of this work is to investigate pipe failure factors and develop a long-
term prediction model.

1.3 Our Contribution

There are approximately 22850 km, 5900 km, and 2000 km of water mains in the
city of Sydney, South-east QLD and the region West of Melbourne, respectively.
These pipeline networks comprise approximately 500,000 water pipes serving
major residential and industrial cities in Australia. We implement a machine
learning based prediction model using the Random Survival Forest (RSF) to
identify future pipe failure likelihoods for water main asset in these Australian
cities. Firstly, we generate failure likelihood of each pipe using RSF, as it is fully
nonparametric and does not impose a restrictive structure on data distribution
or how the variables should be combined [26]. If the relationship between the
independent variables and the dependent variable is complex with non linear
interactions, then the RSF algorithm is capable of capturing these intricate rela-
tionships [9,19]. In our model, the predictions were validated by separating the
data into training and testing samples. Afterwards, a derived list is generated
and evaluated on the testing data. We further compare the results from RSF
with a variety of other approaches, such as GB, RF and Weibull. Water authori-
ties are often interested in obtaining a confidence interval for the predictions we
produce. This is due to the fact that, pipe failure predictions suffer from various
sources of error, such as the variations in weather conditions, new infrastructure
developments, root clogs caused by near by trees, and many other sources, which
are caused by the inherent stochastic and nonlinear characteristics of water pipe
failures. In order to quantify the uncertainty in failure forecasting effectively, we
have generated the uncertainty interval for the long-term prediction by treating
RSF as quantile regression forests. As a result, for each point that is predicted
with a RSF, we provide the perceived uncertainty of that prediction.

In the past, RSF has been employed in various medical related research
[5,17]. However, to the best of our knowledge, this is the first model applied
on pipe failure problem embracing the quantile regression forests [16] for uncer-
tainty estimation, and proven on real-world datasets collected from multiple
water authorities.

Our data analytical model provides a projection of the likelihood of future
pipe failures. These likelihoods, along with the consequence of failures, are cur-
rently being used in current investment planning of each of these Australian
water utilities, to make risk based investment decisions for capital interventions.
Thus, our contributions help the water asset renewal programs to reduce the
catastrophic consequence of water main failures and the cost to customers.
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1.4 Preliminary

Survival and Hazard Functions. The survival function, S(t) is a non-
increasing function, which provides the probability that a subject will survive
past time t [4,11].

S(t) = Pr(T > t) =
∫ ∞

t

f(u)du

(1)

Here, T is a continuous random variable with the probability density function:
f(u), or more generally, T represents the waiting time until the occurrence of
an event. In our scenario, the survival function illustrates the probability that
a particular pipe survives past a given time. The hazard function describes the
event rate,

λ(t) = lim
δt→0

Pr(t < T ≤ t + δt|T > t)
δt

(2)

S(t) = exp−λ(t) (3)

The Cumulative Hazard Function (CHF) provides the accumulated risk up to
time t,

μ(t) =
∫ t

0

λ(u)du

(4)

μ(t) can be seen as the sum of the risks accumulating from duration 0 to t. Thus,
these functions are of intrinsically pivotal in forecasting about the condition of
a pipe which has survived a certain time period.

Random Survival Forest. An extension of RF to the domain of survival
analysis enhances its value greatly. In survival analysis, many different regres-
sion modeling strategies, such as Cox regression and Poisson regression, can be
applied to predict the survival likelihoods. Extending the RF approach [3] to
survival analysis provides an alternative way to build a robust asset failure pre-
diction model. This technique safely omits the need to impose parametric or
semi-parametric constraints on the underlying distributions and allows for an
accurate prediction [9,17].

RSF consists of arbitrarily grown survival trees. Using independent bootstrap
samples, each tree is grown by randomly selecting a subset of variables at each
node and then splitting the node using the candidate variable that maximizes
survival difference between daughter nodes. The tree is grown until saturation is
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reached due to the condition of each terminal node having no fewer than d0 > 0
unique deaths (in our case, this referred to the number of pipe breakages). The
output of each tree may be estimated as the CHF for each case, the estimator
for which is the Nelson–Aalen estimator for the terminal node in which the case
ends up [9],

μ(t) =
∑
tj≤t

dj

Yj
,

(5)

where tj are the ordered pipe failure times for the terminal node. dj and Yj are
the number of pipe failures and pipes at risk (number of pipes in the terminal
node that are functioning) at time tj in the terminal nodes. However, in our
model, instead of the CHF, we derive an estimate of the survival probability for
each terminal node using the Kaplan-Meier estimator [10] given by,

S(t) =
∏
tj≤t

(
1 − dj

Yj

)
.

(6)

Given the CHF or survival estimate from a tree, an ensemble average is
performed over the entire forest to produce the final prediction.

2 Data Analytic Model for Pipeline Failure Prediction

2.1 Data Extraction and Pre-processing

There are three main data sources used as the inputs to the analytical model:

– Network data: describes water main information such as asset number, instal-
lation date, material, size.

– Work order data: describes water main failure information such as asset num-
ber, failure date, location, and failure type (burst, fitting, leak).

– External data: includes information in addition to assets, such as weather
data from the Bureau of Meteorology and census data from the Australian
Bureau of Statistics, soil data, pressure data, pipe ground level data, etc.

The above data should be sufficiently accurate for the intended use, so a data
quality review has been undertaken based on three key characteristics:

– Completeness: this is a statistical analysis that does not allow empty values.
– Validity: this is a statistical analysis that removes invalid values.
– Consistency: make sure that the data obtained from all the sources are con-

sistent with each other.
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The quality review demonstrates that the data is sufficient and accurate for
further analysis. Accordingly, this process allows to establish a comprehensive
data file with complete information for each asset that can be used as an impor-
tant input for further analysis. Moreover, when information is gathered from
multiple sources, prior to the adoption of advanced analytic techniques, it is
essential to match the failure records with the network data and identify gaps
in the datasets. In addition, environmental and demographic factors need to be
matched with the network data. Specifically, failure records and information are
assigned to the corresponding assets based on the work order number.

2.2 Factor Analysis

Once the data is pre-processed, the next step is to identify the factors that cause
pipeline breakage and compare their relative impact on the network based on
the water network information. Factor analysis measures the correlation between
asset performance based on the comprehensive data and a large range of factors
(including environmental, demographic and asset specific factors) [7,20]. While
a significant amount of literature exists on the pipeline failure causes, this step is
critical to discerning which of these causes would be the most important for each
water utility. The asset performance is based on failure rate, which is the number
of asset failures per 100 km per year. Both single factor analysis and multi-factor
analysis have been performed to identify the possible driving factors. The asset
performance is not usually related to only one factor, so it is essential to measure
the correlation based on multiple factors.

For example, within operational factors, AC water mains were found to break
more often than others in the regions of QLD as shown in Fig. 3 (b). It was also
found that water mains with diameters less than 100 mm exhibit higher failure
rates, compared to larger pipes (see Fig. 3 (a)). Moreover, a quantitative study
on the ground level of water main and its impact on the pipe breakage is shown
in Fig. 3 (c). It can be observed that the failure rate of pipes laid in the bottom
25% of ground level is twice higher than the pipes laid in the top 25% of ground
level (above 75% of quantile).

To quantify the amount of pipe failure information stored in each of the fea-
tures in isolation, we calculate the mutual information between the ‘Pipe Failure’
parameter and each feature (we have selected a basic set of asset specific features
which are common to all three states). The data from all three states display
a very similar dependence of the failures on the predictor variables. Therefore,
the resulting information scores for the VIC dataset are presented in Fig. 3 (d).
Pipe size (or diameter) shares the highest amount of mutual information with
failures while pipe type has the least effect on failures. In general, all predictors
by themselves display very low levels of mutual information indicating that by
themselves, they do not predict failures sufficiently well. However, as we shall
show later, the six features in unison will provide us with an excellent prediction
model of pipe failures.

To this end, we also identified the potential advantages of analysing the fac-
tors causing pipe failures in different datasets across various Australian regions.
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We have been working with a few water utilities and identifying the differences
and the commonalities among these various datasets allow us to improve our
knowledge in developing the prediction framework.
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Fig. 3. Factor analysis examples: (a) Failure rate of water mains based on pipe size in
pipelines located region west of Melbourne, (b) AC materials are more prone to break
in QLD, (c) Factor analysis of the ground level of a water main and how it affects the
pipe breakage in pipelines located region west of Sydney. (d) Feature importance scores
for the VIC dataset, computed using the mutual entropy gain method.

2.3 Long-Term Failure Prediction

This phase involves predicting future water pipe failure probabilities. We framed
this scenario as determining the likelihood of failure on each given pipe. The
failure prediction is generated by training the RSF model on historical failure
records and other factors, such as pipe material, pipe laid year, pipe diameter,
etc. This trained model produces a survival probability score for each water main
asset for each years into the future.

The RSF model utilized in this work uses data on the history of water pipeline
network across major Australian cities. It specifically uses the failure history
of pipes (the response) and their characteristics (the predictor variables). The
response variable includes the minimum of the survival time: Ti, the right cen-
soring time Ci and Δi = �{Ti ≤ Ci} which is the censoring value indicating a
pipe has failed (Δi = 1) or was right-censored (Δi = 0). The predictor variables
Xi = (X1

i , ...,XN
i ) for respective pipe, i consists of both continuous variables,
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such as age, previous failures, as well as qualitative variables, such as pipe mate-
rial and pipe size.

Prediction Uncertainty. We construct a simple, yet effective, statistical infer-
ence technique to quantify the uncertainty associated with the predictions gen-
erated by supervised learning ensembles. Here, we employ quantile regression
forests in survival trees generated by the RSF model. The concept behind the
Random survival quantile regression forests is, instead of recording the mean
value of response variables in each tree leaf in the forest, record all observed
responses in the leaf. The prediction can then be calculated as the mean of the
response variables, as well as the full conditional distribution of response values
for every x. Using the distribution, the prediction intervals for new instances can
be generated by employing the appropriate percentiles of the distribution.

Following [8], the high-level description of the algorithm used in this work,
along with the procedure for determining uncertainty, an be given as follows:

1. Ascertain the training year range and the prediction year range of pipe failure
observations. A training data file is created on average for eight observation
years of pipeline data. Each observation year contains information of all the
pipes in the network, with an indication of whether a particular pipe has
failed in that observation year or not. The observation year range for the
training data is selected and restricted(e.g. 2005–2010).

2. N number of bootstrap samples are pulled from the training dataset by
excluding on average 37% of the data, which is referred to as out-of-bag
(OOB) data.

3. A survival tree is developed for each bootstrap sample. At each node of the
tree, a p number of candidate variables are randomly selected. The node is
split using the candidate variable that maximizes survival difference between
daughter nodes.

4. Grow the tree to full size under the constraint that a terminal node should
have no less than d0 > 0 unique deaths.

5. Using OOB data, the prediction error for the ensemble survival is calculated.
6. Calculate survival probability for the predicting data range of observation

years (e.g. 2011–2025) by recording all observed responses in the leaf, and
obtaining conditional probability distribution of the response variable for
every given set of predictor variables (x) of each pipe. Using the distribu-
tion, create prediction intervals for new instances by using the appropriate
percentiles of the distribution to calculate the lower and upper bounds of the
prediction uncertainty.

3 Case Study

We study the pipeline failure data from three major Australian states: VIC,
NSW and QLD. Each of these three datasets were generated based on the results
of observations made on pipelines in each observation year. As an example, the
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data statistics for selected laid year groups for VIC are presented in Table 1. This
highlights the different dynamics associated in training and testing datasets for
each laid year. For VIC and NSW, data spanning observations from 2000 to 2017
were available while for QLD, only data for observations from 2013 to 2017 were
available. The key information recorded at these observations is represented as
a boolean variable recording whether a failure was detected at the time. We also
use auxiliary data regarding each of the observed pipes as input parameters to
predict failures into the future. The full list of features used in our modelling is
reported in the Fig. 3. We use the age of the pipe observed, the year in which
it was laid in, the material that the pipe is made of, the number of previous
failures and the size (diameter) of the pipe as predictor variables.

Table 1. Data statistics for selected set of laid year groups
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Fig. 4. ROC curves generated based on the predictions made by each technique for
the state of VIC for the year 2017. Observation data collected in and before year 2010
was used for the training task. Therefore, the predictions illustrated here are made 7
years in advance. (a) depicts the ROC curves based on the total pipe length and (b)
the number of pipes, respectively.
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Fig. 5. Complete collection of bar plots depicting the AUC values generated for all
prediction scenarios. (a) and (b) bar plots show the AUC values obtained for the VIC
dataset for the (a) length based and (b) pipe number based ROC curves, respectively.
Similarly, (c) and (d) plots correspond to the NSW dataset and (e) and (f) plots
correspond to the QLD dataset. Inspection of the top 1% and 5% of ranked pipe
length in (a) NSW - 2015, (h) VIC - 2016 and (i) QLD - 2017. In each case, the
failures correctly identified using the predictions made by RSF (blue), GB (orange)
and RF (yellow) techniques are shown therein. The two red vertical lines across each
plot identifies the inspection points at 1% and 5% of total pipe length. The numerical
failure count is indicated in the top left hand corner of each figure for convenience.
(Color figure online)

3.1 Model Setting

Using this information, we perform a comprehensive comparison of performance
between the Random Survival Forest technique and other widely used machine
learning and statistical algorithms along with a baseline predictor. For VIC and
NSW, we use the observations from 2000–2010 to train our machine learning
models and only the data from the year 2013 for QLD. The probabilities of failure
for pipes observed in the years 2015–2017 are then calculated and compared
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to the actual recorded observation. This provides all our methods a common
benchmark to be compared against.

The algorithms we choose to measure RSF against are, GB technique [6],
RF regression [3] and Weibull model [23]. GB is a machine learning technique
that iteratively improves modelling using weak predictors [18]. In RF, indepen-
dently drawn random sub-samples of the complete dataset are used to build an
ensemble of regression trees. For all three algorithms (RSF, GB, RF), we use 100
trees when training the model. Additionally, we predicted failure rates for each
dataset using a 2-parameter Weibull model. We fitted the Weibull model to the
age at first failure distribution of all pipes in each dataset, and the computed
parameters were used to estimate the probability of pipe failure by aging all
pipes according to the prediction year. Further to this, the baseline predictor
we use is the number of previous failures of a given pipe. We assign a higher
probability of failure to the pipes with a history of a higher number of failures.
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Fig. 6. (a) Suburb level model verification for the VIC pipe dataset. (b) Critical suburb
prediction recall (blue) and precision (red) percentages for VIC suburbs in the year
2017. At 5% (out of a total of 42 suburbs), the recall percentage is at 18.18% and the
precision is at 96.67% for all three techniques considered. The RSF is plotted as a solid
line with the RF as a dashed line and the GB method response as a dotted line. This
pattern of similar recall and precision curves across all three techniques and all years
is evident especially at lower population levels. (Color figure online)

To easily compare the predictions, we plot the Receiver Operator Charac-
teristic (ROC) curves of the predictions made by each predictor and compare
them through the Area Under the Curve (AUC). Firstly, the prediction model
was trained using the pipeline features and the failure data. Then the calibrated
model was applied to predict the survival probability for each pipe from year
2015 to 2017. Then the pipes were ranked according to the survival probability
of each pipe. Using the ranked list, actual failures from the lowest to the high-
est probability are accumulated (cumulative sum of failures). The percentage
of detected failures is plotted against the percentage of inspected pipe lengths,
and the percentage of inspected number of pipes. Predictors that reach higher
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true positive rates while maintaining low false positive rates are preferred for
predicting purposes and correspondingly. We also note that we use two separate
methods for generating the ROC. One method defines true positive and false
positive rates based on the number of pipes predicted to fail correctly or falsely,
while the other defines false positive rate as the total length of pipes incorrectly
predicted to fail while retaining the usual definition of true positive rate. We
term these pipe based ROC and length based ROC, respectively. While the pipe
based ROC is the more natural definition of the two, Water Management author-
ities consider failures per unit length as an important parameter and the length
based ROC accounts for this explicitly.

3.2 Experimental Results and Discussion

In order to quantify their prediction performance, we extensively studied the
ROC curves generated by each machine learning technique under various sce-
narios. One such instance is shown in Fig. 4, where the complete set of ROC
curves generated by each technique are plotted together. These curves are based
on the predictions made for the year 2017 for the VIC pipe dataset. Pipe obser-
vations made in and before the year 2010 were used for training purposes and
the predictions are made for a time period that is 7 years into the future (year
2017). The length based ROC curve for RSF clearly demonstrates a ≈5% pre-
diction enhancement over the other two techniques, whereas the pipe number
based ROC curve demonstrates a ≈10% prediction enhancement.

The bar plots in Fig. 5 further demonstrate the superior prediction capabil-
ities of the RSF technique compared to GB, RF and Weibull techniques. For
the VIC pipe dataset, all predictions made using the RSF technique show bet-
ter prediction results when compared with the GB and RF and Weibull. RSF
outperforms both RF and GB by a considerable margin in the 2017 prediction.
A similar observation can be made for both NSW and QLD pipe datasets; pre-
dictions made for a year further away from the last year in the training dataset
(2010 for VIC and NSW, 2013 for QLD) tend to show better accuracy when
predicted using the RSF technique. Furthermore, it is noted that there are some
rare instances where the GB and RF techniques marginally outperform the pre-
dictions made by the RSF technique. This behavior is particularly observed for
the NSW pipe dataset. This is because some divergent trends with respect to
age are observed in the NSW records (failure rate for cast iron pipes decreases
with the age for a subset of pipes).

To establish the effectiveness of the proposed techniques, it is important to
know how many failures can be detected by inspecting the first few pipes within a
group in the ranking order. In order to establish this, we studied the prediction
data for the highest ranked 1% and 5% of pipe lengths in each year for each
state. A sample of these observations is shown in Fig. 5(g)–(i). It is observed
that using the RSF method has an advantage over using other methods in terms
of detecting the most number of failures with a least amount of inspection effort.

We performed further analysis of predicted results using the RSF technique
on the suburb level. For this study, the suburbs within a state are first sorted,
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based on the cumulative probability of all the pipes within the suburb for a given
prediction year. This forms a suburb based dataset and the general procedure is
then followed to obtain the suburb based ROC curve. Results for the VIC pipe
dataset for the years 2015, 2016 and 2017 are shown in Fig. 6 (a). Based on the
results, it is evident that by inspecting the pipes in the top 10 suburbs, it is
possible to detect more than 60% of the total failures. Additionally, inspecting
the pipes in only half of the total suburbs in the ranked order will result in
detecting more than 80% of the total pipe failures for all years.

Extending our analysis of the prediction of pipe failures in suburbs, we turn
our attention towards predicting critical suburbs within each of the three states
analysed. It is extremely valuable for water management authorities to be able
to restrict attention in specific years to monitoring only a select number of pipe
systems located in specific suburbs. This comes with the benefits of reduced
manpower and labour costs. We define critical suburbs within a specific year in
our model to be suburbs that host a number pipe failures greater than the average
for that year. Using this definition, we use our trained models to generate with
aggregate failure probabilities for each suburb. Using these aggregate probability
values and the actual number of failures occurring in each suburb in that year, we
calculate the precision and the recall rates for the detection of critical suburbs.
As shown in Fig. 6 (b), all three techniques we used as candidates demonstrated
satisfactory recall (18.18%) and precision (96.67%) levels for suburbs in VIC
for 2017. We also note that such similar behaviours were observed in the three
techniques across years and geographic locations.

Our experimental results indicate that for most of the studied scenarios, the
RSF technique outperforms other machine learning techniques, clearly highlight-
ing its superior prediction capabilities in long-term predicting pipe failures. We
also note that all three techniques perform better than the baseline as predicted
by the historical number of previous failures in pipes. In general, the RSF tech-
nique tends to improve in its prediction accuracy or at least maintain the same
accuracy as predictions are made further into the future. In contrast, we observe
that the accuracy of the predictions made through GB and RF methods tend to
deteriorate over time.

We finally observe that all the techniques used saturate at a maximum AUC
level of around 0.65 to 0.75. While pipe failures may be extremely unpredictable,
this to also due to the fact that our predictions are made further away into the
future (5–7 years), and also due to the fewer number of features we use for
predictions as compared to other similar studies [12].

In the suburb based analysis, we notice that by the aggregation of pipe
failure probabilities predicted by RSF across suburbs, we were able to predict a
significant proportion of pipe failures. In Fig. 6 (a), we clearly see that at 20%,
more than 40% of the pipe failures were recovered. We also note that the curve
for 2017 dominates that portion of the graph, again signalling the efficiency of
the RSF technique for predicting failures further into the future. Our analysis
of critical suburbs also reveals quite interesting facts regarding pipe failures and
their distribution across suburbs. As Fig. 6 (b) clearly demonstrates, all three
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methods perform well in precisely recalling suburbs with greater-than-average
numbers of failures in a year. This coupled with the results of Fig. 6 (a) also
suggest that in a given year, the pipe failures are clustered in a few vulnerable
suburbs within each state.

Prediction uncertainty for the long-term failure prediction also has been cal-
culated. These long-term prediction curves show that actual failure rates align
with the results generated by RSF and within the uncertainty interval. The
mean failure prediction is ideal for modelling future behaviour of pipeline net-
work benchmarking performance indices such as unplanned water interruption
and water main breaks. In addition to the mean prediction, all the water utilities
require uncertainty interval in order to evaluate the impact and cost of more tar-
geted water network levels of service inform both short and long-term renewals
budgets.

4 Discussion on RSF for Long-Term Pipe Failure
Prediction

The empirical study we conducted here shows that, the longer we predict into the
future, more degradation in the accuracy can be observed in RF and GB, whereas
RSF remains quite consistent in the accuracy when we predict further into the
future. This is because RSF explicitly takes, the time until the occurrence of a
failure (Eq. 6), into account when calculating the CHF, making RSF to provide
a robust prediction over a longer period of time. Secondly, RSF seeks a model
that best explains the data and thus represents a suitable tool for exploratory
analysis where prior information of the survival data is limited (consider the
experimental results for QLD dataset, where we have only one year worth data
for training and also the failure data is highly sparse). Thirdly, in case of multi-
dimensional data, limitations of univariate regression approaches (i.e. Weibull
method) such as unreliable estimation of regression coefficients or convergence
problems do not apply to RSF. To the best of our knowledge, this is the first
research conducted to explore the potential advantages of using RSF in pipe
failure predictions along with the uncertainty estimation.

Currently, our predictive data analytic models are deployed in the city of
Sydney, the region west of Melbourne and south-east QLD mainly for short-term
prediction purposes. Each of these Australian water utilities are monitoring the
number and the location of water main failures to validate our model. They also
use our model in their internal financial modelling, risk distribution assessment
planning and also to assist in the development of condition assessment programs.
In addition to our previous work which have been deployed already, the study
presents in this paper focuses on the development of a nonparametric survival
analysis technique to determine which water main assets and suburbs are most
likely to have water main failures in the next 5–7 years. Our results indicate that
RSF opens up a new avenue for robust pipe failure prediction
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5 Conclusions

The reliability of the water distribution network in any city is critical to deliv-
ering clean water supply to customers. Tailoring data science techniques to
model the pipeline failure prediction provides accurate insights into water main
networks. This will essentially assist water authorities to carry-out proactive
pipeline maintenance. Therefore, we have presented a thorough survey of the
landscape of nonparametric survival analysis as it pertains to predictions of
survival rates and correspondingly decease rates of assets. We have used data
from the water management authorities of three major Australian states to val-
idate the survival analysis technique we propose, Random Survival Forest, to
compare against other state-of-art machine learning techniques that have been
proven effective the in similar applications. We perform a thorough analysis of
the performance of the techniques in making predictions over multiple years. The
results show that the Random Survival Forest (RSF) has consistently shown to
outperform the other techniques, in long-term forecasting. To the best of our
knowledge, this is the first research conducted to explore the potential advan-
tages of using RSF in pipe failure predictions along with the uncertainty estima-
tion. Ultimately, we believe this work, at the intersection of Machine Learning
and Asset Management, will lead to more effective and proactive infrastructure
maintenance in the water industry across the world.

Acknowledgement. We sincerely thank Australian water utilities: Sydney Water,
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valuable feedback.
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Abstract. The advent of Industry 4.0, partly characterized by the
development of cyber-physical systems (CPSs), naturally entails the need
for reliable security schemes. In particular, accurate detection of anoma-
lies is of paramount importance, as even a small number of anomalous
instances can trigger a catastrophic failure, often leading to a cascad-
ing one, throughout the CPS due to its interconnectivity. In this work,
we aim to contribute to the body of literature on the application of
anomaly detection techniques in CPSs. We propose novel Functional
Data Analysis (FDA) and Autoencoder-based approaches for anomaly
detection in the Secure Water Treatment (SWaT) dataset, which real-
istically represents a scaled-down industrial water treatment plant. We
demonstrate that our methods can capture the underlying forecasting
error patterns of the SWaT dataset generated by Mixture Density Net-
works (MDNs). We evaluate our detection performances using the F1

score and show that our methods empirically outperform the baseline
approaches—cumulative sum (CUSUM) and static thresholding. We also
provide a comparative analysis of our methods to discuss their abilities
as well as limitations.

Keywords: Anomaly detection · Forecasting error patterns ·
Cyber-physical systems

1 Introduction

An essential constituent of the Industry 4.0 trend [30], a cyber-physical system
(CPS) is a decentralized integration of physical components characterized by its
autonomy and interconnectivity [42]. As its name indicates, a CPS refers to the
close linkage of physical hardware in smart grids and industrial control systems

S. Park and S. Han—Co-first authors.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 157–172, 2021.
https://doi.org/10.1007/978-3-030-67667-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_10&domain=pdf
http://orcid.org/0000-0002-6769-8218
http://orcid.org/0000-0001-9303-3714
http://orcid.org/0000-0002-8983-1542
https://doi.org/10.1007/978-3-030-67667-4_10


158 S. Park et al.

(ICSs), such as water treatment plants, with software elements. The increasing
complexity of CPSs due to rapid advancements in computation and commu-
nication technology naturally entails the need for reliable security schemes [3],
of which an accurate detection of anomalous instances is indispensable for the
prevention of cascading failure across the whole system [44]. The occurrence of
anomalies is ascribed to a variety of causes, such as cyber-attacks on communi-
cation networks and computing resources [19,28], as well as physical attacks on
other areas of vulnerability, including sensors and actuators [1]; technical failures
such as hardware issues, software bugs, operator errors, and server misconfigu-
ration may also cause the CPS to malfunction, resulting in unexpected spikes or
point anomalies in a given time series [32,48]. In any case, even a small number
of anomalous events can be harmful to the system as a whole, posing a real-world
challenge in the Fourth Industrial Revolution era. Moreover, the mitigation of
false positives due to mediocre anomaly detection performance will be costly,
because the process would require the main infrastructures to stop running for
manual inspections by human experts. It is therefore crucial to correctly distin-
guish minor glitches from perilous anomalies, such that the false alarm rate is
minimal.

In this work, we propose novel functional data analysis (FDA) and
Autoencoder-based approaches to detect anomalies in the physical properties
data collected by iTrust, Center for Research in Cyber Security, Singapore Uni-
versity of Technology and Design (SUTD), from the Secure Water Treatment
(SWaT) testbed [27], which represents a scaled-down industrial water treatment
plant. More specifically, we focus on leveraging the forecasting error data gen-
erated from the SWaT dataset using Mixture Density Networks (MDNs) [5], as
analyzing the underlying patterns of forecasting error has shown to be effec-
tive when detecting anomalies [11,41]. While simple rule-based techniques using
the Out-Of-Limit (OOL) approach may suffice to detect point anomalies, more
sophisticated methods are required to detect contextual anomalies [18,22,43].
The latter type of anomalies are defined only in a specific context with contex-
tual and behavioral attributes: in time series, temporal information determines
the order of the samples within the data [7]. For instance, the forecasting error
time series for the actuator MV101 in the SWaT dataset, which represents a
motorized valve that controls the water flow to the raw water tank [13], plot-
ted in Fig. 1, contains a long sequence of anomalous samples for more than 11 h
(approximately between 7.1 × 105 s and 7.5 × 105 s) that are close to the value 0.
These anomalies would not be correctly identified if a simple OOL technique were
to be used due to the values being significantly lower than the cutoff threshold,
resulting in an extremely high false alarm rate, as they comprise a consider-
able portion of anomalies in the MV101 data. The challenges arising from such
properties justify our choice of forecasting error patterns as anomaly indicators,
rather than simply the magnitudes of the error.

Our proposed methods aim to capture forecasting error patterns, given the
smoothness of data achieved by several preprocessing steps, to effectively detect
point and contextual anomalies. In particular, we formulate a semi-supervised
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Fig. 1. Plot of the forecasting error time series representing the actuator MV101 of
the process P1, where anomalous instances are marked in red. A long sequence of
contextual anomalies can be observed between approximately 7.1 × 105 s and 7.5 ×
105 s, as indicated on the graph.

anomaly detection problem as a representation of challenging real-world scenar-
ios, where anomalies are rare compared to normal data, hence the use of only
this latter data for training. In addition, the intermediate stages of our proposed
methods can be served as dimension and noise reduction techniques. Through
extensive experiments on the SWaT dataset, we empirically demonstrate that
our methods significantly outperform baseline methods, namely Cumulative Sum
(CUSUM) [29] and static thresholding [11]. Also, we evaluate the relative per-
formance of our methods to weigh their pros and cons. Our contributions are
summarized as follows:

– We propose two novel approaches based on FDA and Autoencoder to detect
anomalies in multivariate forecasting error data generated from the SWaT
dataset using MDNs.

– We devise a new algorithm for anomaly detection, which applies dynamic
thresholding to identify point and contextual anomalies based on the tangent
error.

– We empirically demonstrate that our methods significantly outperform base-
line anomaly detection methods—CUSUM and static thresholding—when
evaluated on the SWaT dataset.

2 Related Work

Due to potential threats of cyber and physical attacks against CPSs, a sizeable
body of literature has sought to devise anomaly detection techniques for CPS
security and reliability. In this section, we provide a high-level overview of the
previous work that is directly relevant to our proposed methods.

Considering the partly discrete nature of data collected from CPSs, FDA
can facilitate data analysis by converting point values into functional data [34].
The latter type of data can be broadly categorized into 2 types, analytic and
non-analytic. Typical examples of the former include polynomial, exponential,
logarithmic, and trigonometric functions, while those of the latter include abso-
lute value and piecewise polynomial functions [35]. Allowing further analysis of
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the underlying patterns of the data, FDA has been applied to data of various
domains. Shaadan et al. [40] have studied the behavioral patterns in particulate
matter functional data to detect anomalies. With the application of a polynomial
kernel function to implicitly transform telemetry data at each time point into a
high-dimensional nonlinear feature space, Fujimaki et al. [12] have proposed an
anomaly detection method for spacecraft based on a kernel feature space that
does not require a priori knowledge on the complex spacecraft systems. Yue et
al. [49] have processed a set of discrete points obtained from audit records on a
behavior session using Fourier transform (FT) to detect intrusions, enabling the
detection of anomalies without having to know the actual flaws of the intruded
system or to observe the specific actions exploiting those flaws. Febrero et al. [9]
have analyzed outlier detection in nitrogen oxide emission functional data using
the Fraiman and Muniz depth (FMD), the h-modal depth (MD), and the random
projection depth (RPD), of which the main idea is to determine a robust estimate
C, such that Pr(Dn(xi) ≤ C) = 0.01, i = 1, 2, . . . , n, where Dn(xi) denotes the
functional depth of the ith functional curve xi. Meanwhile, anomalies in CPSs are
rare in practice that their detection often relies on semi-supervised or unsuper-
vised learning schemes [7]. In this work, we apply FT to tackle a semi-supervised
anomaly detection problem, using only the normal data of the SWaT dataset as
our training set, to mimic real-world scenarios with high scarcity of anomalous
samples.

Unlike discriminative models, generative models can effectively handle the
class imbalance issue by learning solely from normal data to detect samples
with deviant behaviors that result in significant reconstruction errors of the
output relative to the original input [39,45]. Due to the scarcity of data rep-
resenting anomalies, as well as the difficulty in modeling realistic scenarios to
generate anomalies in CPSs, neural network-based approaches also often adopt
semi-supervised or unsupervised schemes in the context of anomaly detection [6].
Accordingly, Autoencoders [36] are widely used for the identification of anoma-
lous instances in multivariate time series [25,37]. An Autoencoder encodes the
input data to a lower-dimensional space from which the latent variables are
decoded back to the original input space. Trained only on normal data, the
Autoencoder is then fed with unseen data to produce its reconstruction, and
the sample for which the reconstruction error, that is, the distance between
the input and the reconstructed values, exceeds a certain threshold is deemed
anomalous. An Autoencoder thus attempts to learn a compressed representa-
tion of the original input while preserving the most relevant features based on
its encoder-decoder structure. However, the latent space to which the original
input is mapped is not continuous, since Autoencoders cannot model data dis-
tributions. To this end, Variational Autoencoders (VAEs) [21] have been pro-
posed for the detection of anomalies in multivariate time series [16,50]. Due to
their ability to learn the parameters of normal data distributions, VAEs have
shown to outperform vanilla Autoencoders in terms of anomaly detection using
reconstruction probability [2]. Other variants of Autoencoders, such as Deep
Autoencoding Gaussian Mixture Model (DAGMM) [51] and Long Short-Term
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Fig. 2. Overview of our approach for the detection of anomalies in the SWaT dataset.
(1) The data preprocessing step includes forecasting error generation using MDNs and
time series segmentation. The preprocessed data via this initial step is then used for
both FDA and Autoencoder-based approaches. (2) For the former approach, addi-
tional preprocessing steps—data concatenation, FT, and FPCA—are taken before the
detection phase. For the latter approach, data is transformed into a logarithmic scale
before the training of the Autoencoder; the tangent error is then calculated from the
reconstruction error smoothed via moving average. (3) For the detection of anomalies,
statistical and dynamic thresholds are applied to the FDA and Autoencoder-based
approaches, respectively, and (4) the performance is evaluated based on the F1 score.

Memory (LSTM) Encoder-Decoder [17,26], as well as other deep learning-based
methods, such as Recurrent Neural Networks (RNNs) [10,14] and Generative
Adversarial Networks (GANs) [4,15,23,24], have also shown compelling results
for anomaly detection. In this work, we use a 1D convolutional Autoencoder,
mainly due to the representative power of convolution layers, to encode the tem-
poral patterns of only the normal data from the multivariate forecasting error
time series generated from the SWaT dataset. We also extend the calculation of
ordinary reconstruction errors to that of tangent errors, such that we can lever-
age the fluctuating forecasting error patterns to our advantage for the detection
of anomalies.

3 Proposed Methods

In this section, we explain each step of our proposed approaches in detail. A
high-level overview is presented in Fig. 2.
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3.1 Dataset Description

The physical properties data of the SWaT dataset1 consists of 11 days’ worth
of data collected from a total of 51 sensors and actuators under the continuous
operation of 6 processes, referred to as P1 through P6, each representing (1)
raw water supply and storage, (2) chemical dosing, (3) ultrafiltration (UF), (4)
dechlorination, (5) reverse osmosis (RO), and (6) RO permeate transfer, UF
backwash, and cleaning. Each process is connected to a programmable logic
controller (PLC) that converts readings received from the sensors into control
actions for the actuators. In the first 7 days, data under normal operation has
been collected, while in the remaining 4 days, data undergoing attacks (thus
containing both normal and abnormal samples) has been collected. The data
obtained in the latter period of collection corresponds to streaming data with
real-time updates of observations under various attack scenarios [13]. Samples
have been logged every second from 8:28:14 p.m. on December 22, 2015 to 2:59:58
p.m. on January 2, 2016. We herein refer to the first 7 days’ worth of data
representing normal conditions as the training set and the remaining 4 days’
worth of data as the test set, in which we aim to detect anomalies. A summarized
description of the dataset is provided in Table 1.

Table 1. Summary of the physical properties data of the SWaT dataset.

Data Date of collection Total instances Label Total instances

Training Dec. 22, 2015 20:28:14 -
Dec. 28, 2015 09:59:58

480,705 0 (normal) 873,667

Test Dec. 28, 2015 10:01:34 -
Jan. 02, 2016 14:59:58

449,824 1 (anomaly) 56,862

In our work, we use the whole dataset, containing data representing all 6
processes, as well as its subset, containing data representing only 4 processes,
excluding P2 and P6. We herein refer to the former as Pall and the latter as
P1,3,4,5. The reason for this feature selection is ascribed to the peculiar patterns
observed in the forecasting error data corresponding to the processes P2 and P6,
as shown in Fig. 3. In addition, since we surmised that there exists a considerable
correlation between sensors and actuators belonging to the same process, a more
specialized feature selection approach was avoided; that is, we dealt with each
process as a whole (multivariate time series), instead of treating each sensor or
actuator data from the processes individually (univariate time series).

3.2 Data Preprocessing

Applied to both our FDA and Autoencoder-based methods, the preprocessing
techniques used in our work are (1) forecasting error generation using MDNs

1 https://itrust.sutd.edu.sg/itrust-labs datasets/.

https://itrust.sutd.edu.sg/itrust-labs_datasets/
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Fig. 3. Forecasting error plots for the sensors AIT203 and FIT601 of processes P2 and
P6, respectively, where anomalous instances are marked in red. (Color figure online)

and (2) time series segmentation, which facilitate the analysis of the underlying
patterns of multivariate time series. Detailed intuitions behind adopting these
techniques are explained in this section.

Forecasting Error Generation. Combining neural networks and mixture den-
sity models, MDNs [5] can effectively model conditional density functions of tar-
get data given some input data. We leverage this attribute to forecast the normal
behaviors of the SWaT sensor and actuator data by training an MDN solely with
normal data collected in the first 7 days and testing it with anomalous data col-
lected in the remaining 4 days. Data corresponding to the past 90 s is used to
train the model, which then makes predictions corresponding to the next 10 s. To
account for the relative importance of specific parts of the input data for the pre-
diction of future behaviors, we incorporate attention mechanisms [46] that direct
the attention of the model more to the sample values that are closely located to
the predicted output in terms of time, that is, the sample at the last of the 90 s.
By calculating the difference between the values in the original and predicted
sequences, we obtain the forecasting error data, which is used throughout the
experiments in our work.

Time Series Segmentation. We segment a multivariate time series of dimen-
sion D = 51 into non-overlapping windows. Since the inherent patterns of time
windows vary from one another, we choose to experiment with different window
sizes and investigate the effect of each window size on the anomaly detection
performance.
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3.3 Anomaly Detection

We propose novel (1) FDA and (2) Autoencoder-based methods for anomaly
detection in the SWaT dataset. For both methods, we leverage the forecasting
error patterns of the SWaT data generated by MDNs. Detailed descriptions of
each method are provided in this section.

FDA-Based Approach. The first method we propose is based on FDA. As
an initial step following segmentation of the SWaT forecasting error data, we
convert the point values into functional data using FT, which is more suitable
for periodic data than splines [34]. We will explain the reason for our choice of
the Fourier basis function instead of other basis functions later in this section.

Since a sufficient amount of data is required for its conversion into func-
tional data, we use concatenations of data to increase the total sample size.
More specifically, we aggregate training and test data, such that Sconcat :=⋃k

j=0(Strain∪stest,j), where Strain denotes the segmented training set and stest,j

denotes the jth window of the segmented test set Stest. All subsets of Sconcat are
then converted into k sets of functional data through FT. We apply functional
principal component analysis (FPCA) to achieve dimension reduction, such that
pattern recognition is possible without compromising important information on
the original data. Lastly, we apply statistical thresholding to isolate anomalies
using the interquartile range (IQR) approach, where samples lying below the
25th percentile and above the 75th percentile are considered anomalous.

With the basis set {1, cos(·), sin(·)}, the Fourier series f(x) in the space
L2((−π, π]) is defined as follows:

f(x) = a0 +
∞∑

n=1

(ancos(nx) + bnsin(nx)), x ∈ (−π, π]. (1)

Since L2((−π, π]) is much more flexible than the space C
∞, the Fourier basis

function has the edge over other functions for FDA. Also, the calculation of
Fourier coefficients is simpler with the basis set {1, cos(·), sin(·)}, which is com-
pletely orthogonal, and the computing time is much faster than when using other
functional forms. Using FT, we expect the resulting functional form of abnormal
samples will show a high spike, caused by the difference in forecasting error pat-
terns of normal and anomalous instances, making it distinguishable from that
of normal samples. We use functions in R’s fda package [33] to apply FT and
FPCA.

Autoencoder-Based Approach. The second method we propose is based on
an Autoencoder. Our encoder and decoder respectively consist of five and six
1D convolution layers, of which the last one is added for dimension matching
between the input and the output. Accordingly, all convolution layers except
the last one are followed by a rectified linear unit (ReLU) [31] activation layers,
while zero-padding is applied to every output of a convolution layer. The last
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two convolution layers of the encoder and the first two convolution layers of the
decoder are followed by max-pooling [47] and upsampling, respectively.

We apply log transformation to the segmented forecasting error data, such
that the distribution becomes more uniform. We also add Gaussian noise to
the input for generalization purposes. To account for the distances between the
neighboring components of the original input and the reconstructed output of
the log-transformed forecasting error data, we use the Soft-Dynamic Time Warp-
ing (Soft-DTW) [8] loss function, which is differentiable as opposed to DTW.
Unlike mean squared error (MSE), which simply compares the distance between
two samples at a given time point, Soft-DTW searches for an optimal alignment
between two time series, that is, the log-transformed input X and its recon-
structed output X̂ in our case. More formally, we aim to minimize the following
loss function for all n samples:

L(X, X̂) = − log
n∑

i=0

e−‖Xi−X̂i‖2 − log
n−1∑

i=0

e−‖Xi−X̂i+1‖2 − log
n−1∑

i=0

e−‖Xi+1−X̂i‖2
.

(2)

Fig. 4. Alignment matrix of X and X̂.
The pathways colored in black, red and
green represents the distances ‖Xi − X̂i‖2,
‖Xi − X̂i+1‖2 and ‖Xi+1 − X̂i‖2 from
Eq. 2, respectively.

The distances taken into account
by the loss function L(X, X̂) in Eq. 2
is illustrated in Fig. 4. After train-
ing our model with the Adam opti-
mizer [20], we use Fast-DTW, which
reduces the quadratic time complex-
ity of DTW to a linear one [38], to
calculate the reconstruction error ε, to
which smoothing via moving average
(MA) is applied. We then calculate
the tangent error εtan, using values
of ε that are 30 time windows apart
(δ = 30), as follows:

εtan =
εt
MA − εt−Δ

MA

Δ
, (3)

where Δ = δ·W = 30·W , and εt
MA and εt−Δ

MA denote the respective reconstruction
errors at time points t and t − Δ obtained after MA smoothing. We refer to
the tangent error calculated for the training and test reconstruction data as
Etan,train and Etan,test. From these measures, we aim to discover error patterns
that have significantly changed compared to Δ seconds ago, hence a metric
that solely considers the rate of change among the tangent error values and not
their magnitudes as such, which can be useful for the detection of contextual
anomalies.

Lastly, we present our algorithm for the detection of anomalies in the test
set in Algorithm 1, where μtan,train and σtan,train denote the mean and standard
deviation of Etan,train, respectively. The latter statistics are utilized to define
an initial threshold of τ0, which, when exceeded, marks the start of a range of
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anomalies or an anomaly section. The main idea of our algorithm is to dynam-
ically update the latter threshold based on the change in tangent error of the
test set, Etan,test. The end of an anomaly section is marked by another quantity
τend, which is updated based on a previously encountered maximum tangent
error, denoted by anomalyPeak. Consequently, all samples within the anomaly
section bounded by τ0 and τend are considered anomalous and labeled as ‘1’.

Algorithm 1: Tangent error-based dynamic thresholding
Inputs : Etan,test of size l
Initialize: A set of predictions pred(Etan,test)

A threshold τ0 = μtan,train + 5 · σtan,train

A constant α = 0.5
1 for i = 1 to l do
2 previousPred ← pred(Etan,test[i − 1])
3 if previousPred == 0 then // Previous sample was normal
4 if Etan,test[i] > τ0 then // Check for start of anomaly
5 pred(Etan,test[i]) ← 1 // Mark as anomalous
6 anomalyPeak ← Etan,test[i] // Initialize anomaly peak
7 τend ← −α · anomalyPeak // Initialize end-of-anomaly

threshold

8 else // Previous sample was anomalous
9 if Etan,test[i] < τend then // Check for end of anomaly

10 pred(Etan,test[i]) ← 0 // Mark as normal
11 else // Check for continuance of anomaly
12 pred(Etan,test[i]) ← 1 // Mark as anomalous
13 if Etan,test[i] > anomalyPeak then
14 anomalyPeak ← Etan,test[i] // Update anomaly peak
15 τend ← −α · anomalyPeak // Update end-of-anomaly

threshold

16 end
17 end
18 end

4 Experimental Results and Discussion

In this section, we report our experimental results regarding the anomaly detec-
tion performance and compare them to those of baseline approaches. We also
comparatively assess our methods and discuss their limitations.

4.1 Comparison with Baselines

We compare the anomaly detection performances of our methods with those of
two baseline approaches—CUSUM [29] and static thresholding [11]. The former
also segments a given time series into fixed-size windows and calculates the
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Table 2. Best overall anomaly detection performances of our methods and base-
line approaches. Our FDA and Autoencoder-based methods outperform the base-
line approaches, CUSUM and static thresholding (denoted by STATIC). Overall, the
Autoencoder-based approach achieved the highest F1 score (marked in bold) for the
window size W = 15 and processes Pall.

Evaluation metric CUSUM STATIC FDA (Ours) AE (Ours)

Precision 0.5423 0.4897 0.8113 0.9792

Recall 0.6888 0.5372 0.7021 0.6869

F1 Score 0.6068 0.5124 0.7528 0.8074

cumulative sum of p-norm for each window; the resulting value serves as the
anomaly score for its corresponding window, which is deemed anomalous if the
score exceeds a predefined threshold. The latter simply uses the p-norm as the
anomaly score. In our work, we use p = 4 (4-norm) for the evaluation of both
CUSUM and static thresholding.

The overall detection performance results are summarized in Table 2, where
we can observe that both our methods (denoted by FDA and AE) significantly
outperform the baseline methods: the F1 score of FDA is 24.06% (0.1460) and
46.92% (0.2404) higher than those of CUSUM and static thresholding (denoted
by STATIC), and that of AE is 33.06% (0.2006) and 57.57% (0.2950) higher
than those of CUSUM and STATIC. Presented in Table 2, the best overall per-
formances of FDA and AE were achieved for the window size W = 30 and
processes P1,3,4,5 for the former, and W = 15 and Pall for the latter. The
superior performances of our methods are mainly attributed to their ability
to detect long sequences of contextual anomalies in the SWaT dataset. Conse-
quently, accurate predictions of these anomalies result in a significant increase of
the number of true positives (TP), which is directly reflected in the increase of
our evaluation metrics, precision (Pr) and recall (Re), defined as Pr = TP

TP+FP

and Re = TP
TP+FN , where FP and FN denote false positives and false negatives,

respectively. Since the F1 score is a harmonious mean of Pr and Re, defined as
F1score = 2·Pr·Re

Pr+Re , our methods achieve high F1 scores compared to CUSUM
and STATIC. We can also observe in Table 2 that Pr of FDA and AE are par-
ticularly high: that of FDA is 49.60% (0.2690) and 65.67% (0.3216) higher than
those of CUSUM and STATIC, and that of AE is 80.56% (0.4369) and 99.96%
(0.4895) higher than those of CUSUM and STATIC. Since a high Pr implies a
low FP, our methods clearly demonstrate their ability to correctly identify most
anomalies as shown in Fig. 5, minimizing the potential cost of high FP, one of
which is the need for the main infrastructures of the SWaT processes to stop
running for manual inspections by human experts.

4.2 Comparative Analysis of Our Methods

Meanwhile, the assessment of each of our methods based on only their highest F1

scores may render our analysis hasty. Thus, we would rather attempt to provide
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Fig. 5. Examples of anomaly prediction results for our Autoencoder (top) and FDA-
based (bottom) methods. For the former, noticeable tangent error fluctuations are
circled in red. Some portions have been omitted due to space limitations.

a comparative analysis of the two approaches in terms of their performances with
respect to varying window sizes W and different subsets of the SWaT dataset
involved, that is, P1,3,4,5 and Pall.

The anomaly detection performances of our methods evaluated on window
sizes W = {15, 30, 60, 120, 240}, and processes P1,3,4,5 and Pall are shown in
Table 3, where, in the last column, we can observe that the F1 score of AE quickly
drops with increasing W . On the other hand, the change in F1 score for FDA
with respect to W is rather minimal, resulting in a higher overall mean (0.7061)
and lower standard deviation (0.0332) compared to those of AE (0.6060 and
0.1434, respectively). The most intuitive explanation for this performance drop
for AE can be given based on the reduction of dataset size when W increases. For
instance, the dataset size following segmentation with window size W = 240 will
be 16 times smaller than that following segmentation with window size W = 15,
resulting in a lack of data from which the model can extract relevant features;
further, the encoded data may not result in effective latent representation. On
the other hand, FDA includes a data enlargement process through aggregation
of the training and test data (Sconcat), as described in Sect. 3.3.
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Table 3. Anomaly detection performances of our methods (denoted by FDA and AE)
for all window sizes W , and processes P1,3,4,5 and Pall. The higher F1 score among
those of FDA and AE from their evaluation on each of the dataset used is marked in
bold.

Dataset Precision Recall F1 score

(W P ) FDA AE FDA AE FDA AE

15 P1,3,4,5 0.8075 0.9127 0.6926 0.6888 0.7456 0.7851

15 Pall 0.7105 0.9792 0.7136 0.6869 0.7120 0.8074

30 P1,3,4,5 0.8113 0.6381 0.7021 0.7235 0.7528 0.6781

30 Pall 0.6717 0.7731 0.7291 0.7195 0.6992 0.7453

60 P1,3,4,5 0.7418 0.4921 0.7247 0.7857 0.7332 0.6052

60 Pall 0.6515 0.5574 0.6777 0.7676 0.6643 0.6458

120 P1,3,4,5 0.7107 0.3682 0.7136 0.7981 0.7121 0.5039

120 Pall 0.6057 0.3361 0.681 0.8023 0.6411 0.4737

240 P1,3,4,5 0.6897 0.2808 0.7408 0.8475 0.7143 0.4218

240 Pall 0.6975 0.2687 0.6755 0.7383 0.6863 0.3940

Also noteworthy, the effect of the involved processes differs in the two meth-
ods. While the exclusion of P2 and P6 contributes to the increase in F1 score
for FDA for all window sizes W , it is not always the case for AE: for relatively
small window sizes W = {15, 30, 60}, higher F1 scores are achieved for Pall than
for P1,3,4,5. This is attributed to our proposed algorithm, which accounts for
the change in tangent error values. For instance, we can observe in Fig. 5 that
anomalous instances are well characterized by the tangent error metric, which
largely fluctuates with the occurrence of anomalies.

5 Conclusion and Future Work

We present two novel approaches based on FDA and Autoencoder to detect
anomalies in multivariate time series. We leverage the underlying patterns of
forecasting error data instead of the error values per se and propose promis-
ing options for the detection of contextual anomalies. Our experimental results
show that the proposed methods significantly outperform baseline approaches
in terms of the F1 score when evaluated on a popular CPS dataset, of which
only the normal data is used for training. Based on the relative performance of
the proposed methods, we can formulate research problems to be tackled in the
future, one of which is the improvement of thresholding techniques to better cope
with inferior time series forecasting performance of deep learning models due to
a lack of samples representing anomalies in a real-world scenario. Also, we plan
to extend the application scope of our methods to other CPS datasets, such as
smart grid data, and deploy our algorithms in a testbed environment to validate
their performance. We believe that our work contributes to the reliability and
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security of CPSs, in which anomalous instances are scarce, in that the proposed
methods effectively identify anomalies by exploiting solely the data representing
the normal state of a CPS.
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Abstract. The deep understanding of online users on the basis of their
behavior data is critical to providing personalized services to them. How-
ever, the existing methods for learning user representations are usu-
ally based on supervised frameworks such as demographic prediction
and product recommendation. In addition, these methods highly rely
on labeled data to learn user-representation models, and the user rep-
resentations learned using these methods can only be used in specific
tasks. Motivated by the success of pretrained word embeddings in many
natural language processing (NLP) tasks, we propose a simple but effec-
tive neural user-embedding approach to learn the deep representations of
online users by using their unlabeled behavior data. Once the users are
encoded to low-dimensional dense embedding vectors, these hidden user
vectors can be used as additional user features in various user-involved
tasks, such as demographic prediction, to enrich user representation. In
our neural user embedding (NEU) approach, the behavior events are
represented in two ways. The first one is the ID-based event embedding,
which is based on the IDs of these events, and the second one is the
text-based event embedding, which is based on the textual content of
these events. Furthermore, we conduct experiments on a real-world web
browsing dataset. The results show that our approach can learn infor-
mative user embeddings by using the unlabeled browsing-behavior data
and that these user embeddings can facilitate many tasks that involve
user modeling such as user-age prediction and -gender prediction.

Keywords: User embedding · Web browsing · Demographic prediction

1 Introduction

The Internet has accumulated enormous amount of user-behavior data such as
the data related to web browsing [11], news reading [25], advertisement click-
ing [29], and product purchasing [2], which are generated by hundreds of millions
of online users. The deep understanding of users based on their online-behavior
data is critical to providing personalized services, such as customized online
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advertising [29] and personalized news recommendation [25], to them. There-
fore, learning accurate and informative user representations using the massive
user-behavior data is important in many practical applications.

One of the conventional methods of learning user representations is based on
supervised-learning frameworks, such as user profiling [28], personalized recom-
mendation [25], and product-rating prediction [2]. For example, Zhang et al. [28]
proposed to use long short-term memory (LSTM) [10] to learn the representa-
tions of social-media users on the basis of the microblogging messages posted by
them, for predicting their ages. Wang et al. [25] proposed to learn user represen-
tations on the basis of the news articles clicked by the users by using knowledge-
aware convolutional neural networks (CNNs) and attention networks [1] for news
recommendation. Lu et al. [15] extracted hidden user features from user prod-
uct reviews by using recurrent neural networks (RNNs) and multiple attention
networks for product-rating prediction. However, these methods rely on a large
amount of labeled data to learn user-representation models. Not only annotating
sufficient samples is expensive and time-consuming but also the user represen-
tations learned using these methods are highly restricted to certain purposes
only, thereby restricting their generalization to relevant tasks. For example, the
user representations learned from the user-age prediction task provides negligi-
ble assistance to the user-gender prediction task [12,26]. Consequently, we must
introduce more generalizable user representations, which completely excavate
the underlying properties of the massive behavioral data.

Notably, highly generalizable representation learning is also one of the cen-
tral problems in NLP, where inspirations can be brought from the recent success
on pretrained word embeddings [4,16,20]. These word embeddings are usually
pretrained on a large-scale unlabeled corpus, and they can be applied to many
NLP tasks as initial word representations or as additional word features [4,20].
In addition, many studies have proven that these pretrained word embeddings
can boost the performance of many important NLP tasks [4,20]. For example,
the state-of-the-art performance can be achieved in machine reading compre-
hension, semantic-role labeling, and named-entity recognition by incorporating
as additional word features the word embeddings that are pretrained using the
ELMo model [20]. These word embeddings are usually trained on a large-scale
unlabeled corpus based on some linguistic heuristics and assumptions, e.g.., “You
shall know a word by the company it keeps.” For instance, Mikolov et al. [16]
proposed a CBOW model to pretrain word embeddings by predicting a target
word on the basis of its surrounding words in a sentence. Peters et al. [20] pro-
posed the ELMo model to pretrain contextualized word embeddings based on a
language model by predicting the next word in a sentence according to the pre-
vious words in the sentence. However, these word-embedding methods could not
be directly applied to learn user embeddings, since online user behavior includes
diverse interactions between users and events in multiple sessions and simply
concatenating texts is known to be suboptimal [27].

In this study, we propose a simple but effective neural user embedding (NEU )
approach to learn the deep representations of online users on the basis of unla-
beled behavior data generated by the users. In our approach, online users are
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encoded to low-dimensional dense embedding vectors, which can capture the rich
hidden information of online users and can be applied as additional user features
to boost the performance of various user-modeling tasks, such as demographic
prediction and personalized recommendation. To learn these user embeddings
from the user-behavior data, we propose an event-prediction framework to pre-
dict the behavior events that these users may have by analyzing their embedding
vectors. Our event-prediction framework contains two modules to represent the
behavior events. The first one is ID-based event embedding, wherein each event
is mapped to a low-dimensional dense vector on the basis of the IDs of these
events. The second one is the text-based event embedding, wherein we first
extract the texts in these events and then use a text encoder to learn the seman-
tic representations of these events. Furthermore, we conduct extensive experi-
ments on a real-world web browsing dataset crawled using a commercial search
engine, named Bing1 and we also perform two user demographic-prediction tasks,
namely, user-age and -gender prediction. The experimental results show that the
user embeddings learned using the unlabeled web browsing behavior data can
encode the rich latent information of online users and can effectively improve
the performance of existing query-based age and gender prediction models.

The major contributions of this paper are three fold as follows:

1. We propose a NEU approach to learn user embeddings using unlabeled user-
behavior data; these user embeddings can be used to capture rich user infor-
mation and can enhance various user-involved applications by acting as addi-
tional user features.

2. We propose a user-behavior event-prediction framework to learn user repre-
sentations. Our framework can exploit both event IDs and semantic informa-
tion of events.

3. We evaluate our approach on a real-world user-behavior dataset and two
demographic-prediction tasks.

2 Related Work

Here, we introduce several representative user-modeling methods in different
user-involved applications. The first scenario is of user profiling, which aims to
predict user attributes, such as age, gender, profession, and interests, on the
basis of user-generated data such as blogs and social-media messages [13]. User-
profiling methods rely on learning accurate user-feature representations by using
user-generated data to predict user attributes [3,21,27,28]. For example, Rosen-
thal and McKeown [21] used many handcrafted features to represent blog users
for predicting their ages. In the recent years, many deep-learning methods have
been proposed to learn hidden user representations for user profiling. For exam-
ple, Zhang et al. [28] used LSTM to learn the representations of users by using
social-media logs, for predicting their demographics. Farnadi et al. [5] proposed
a multimodal fusion model to learn user representations by using texts, images,

1 https://www.bing.com.

https://www.bing.com
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and user relations to predict the ages and genders of Facebook users. Wu et
al. [27] used hierarchical attention network to extract user representation from
search queries. Chen et al. [3] applied heterogeneous graph attention networks
for semi-supervised user profiling from JD.com.

The second scenario is of recommender system and product-rating predic-
tion. Many popular recommender-system methods and product-rating prediction
methods involve the learning of both user and item representations [2,15,25].
For example, Wang et al. [25] proposed to learn user representations on the basis
of news articles clicked by these users using CNN and attention network for news
recommendation. Lu et al. [15] proposed the use of RNNs and multiple attention
networks to learn user representations in order to perform product recommen-
dation on the basis of analyzing both user-item ratings via matrix factorization
and the user-generated reviews. Chen et al. [2] also proposed to learn user repre-
sentations for performing product-rating prediction on the basis of the reviews
posted by users, by using CNNs and attention networks.

Although these methods can be used to effectively learn user representations
for user profiling, recommender systems, and product-rating prediction, there are
several drawbacks as follows. First, the user representations learned using these
methods are designed for a specific task and usually cannot be generalized to
other tasks [12,26]. For example, the user representations learned using the age-
prediction task usually have limited informativeness for the gender-prediction
task. Therefore, these methods can only encode latent user features in specific
dimensions and cannot capture the global information of users. Second, these
methods usually rely on labeled data to learn user representations. In many
scenarios, the process of annotating sufficient amount of labeled data to learn
accurate user representations is expensive and time consuming. Different from
these methods, in our approach, we learn deep user representations by using
large-scale unlabeled user-behavior data. The user representations learned using
our approach can encode the global information of users and can be applied to
various user-modeling tasks such as age and gender prediction as additional user
features to improve their performance.

Network-embedding methods are also related to this work, as we can regard
both users and behavior events as nodes in a graph and user-behavior records
as the edges connecting the user nodes and behavior-event nodes. Subsequently,
network-embedding methods can be used to learn the vectors of users from the
graph. For example, DeepWalk [19] and Node2Vec [9] applied the skip-gram
technique [16] on vertex sequences that were generated via truncated random
walk on the graph. LINE [23] preserved both the first- and second-order prox-
imities in its objective function. However, these popular network-representation
methods had two major differences with our approach. First, they were designed
for homogeneous graphs. However, the graph in the problem of user embeddings
is bipartite. Although BiNE [6] can be applied to bipartite graphs, it relies on
the relations between the same kinds of nodes, which is not available in our task.
Second, these methods usually could not incorporate the textual information of
nodes. Although Tu et al. [24] considered textual data in their CANE model,
the model required all the nodes to have relevant texts; however, in our task,
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the textual data of users are not always available. Therefore, the CANE model
is difficult to be applied in our user-embedding task.

3 Our Approach: Neural User Embedding (NEU)

Here, we present our NEU approach to learn neural user embeddings from the
user-behavior data. In our approach, each user is mapped to a low-dimensional
dense embedding vector to capture the latent characteristics of the user. To
learn these user embeddings from the user-behavior data, we assume that we can
predict the behavior events that these users may have, by analyzing their user-
embedding vectors. We explore two approaches to represent behavior events. The
first approach, denoted by NEU-ID, is the ID-based event embedding, wherein
each event is mapped to a low-dimensional dense vector on the basis of the
IDs of these events. The second approach, denoted by NEU-Text, is the text-
based event embedding, wherein we extract the texts in the events and use a
text encoder to encode the textual content into vector representations. Next, we
introduce both the approaches and a model-training method.

3.1 NEU-ID Model for User Embedding

The framework of our NEU-ID approach is depicted in Fig. 1a. In our NEU-
ID approach, each user u is mapped to a low-dimensional dense vector u ∈
RD by using a user-embedding matrix U ∈ RNU×D according to the user IDs,
where D denotes the user-embedding dimension and NU the number of users.
In addition, each behavior event e is also mapped to a low-dimensional dense
vector e ∈ RD by using an event-embedding matrix E ∈ RNE×D according to
the event IDs, where NE denotes the number of events. In our approach, we
assume that the user and the events share the same embedding dimension. Both
the user-embedding matrix and event-embedding matrix are randomly initialized
and tuned in the model-training stage. Subsequently, we predict the probability
of a user u having a behavior event e on the basis of the embeddings of both
this user and this event, as follows:

peu = p(e|u) =
exp(u�e)

∑
e′∈E exp(u�e′)

. (1)

In our approach, we want to maximize the probabilities of all events behaved
by users which are recorded in the large-scale user-behavior data. We denote
the set of all users as U and the set of all events behaved by user u as E(u).
Accordingly, the likelihood of all the user behaved events is formulated as follows:

∏

u∈U

∏

e∈E(u)
peu =

∏

u∈U

∏

e∈E(u)

exp(u�e)
∑

e′∈E exp(u�e′)
. (2)

In our approach, we jointly tune the user embeddings and event embeddings to
maximize the likelihood in Eq. (2). Therefore, the user embeddings learned using
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Fig. 1. Framework of our NEU-ID and NEU-Text model.

our NEU-ID approach can predict the events that a user may have. Accordingly,
the hidden characteristics and patterns of users based on their behavior events
can be effectively encoded to their user embeddings.

3.2 NEU-Text Model for User Embedding

In many user behavior events such as web browsing and advertisement click-
ing, there exists rich textual information such as the title and contents in the
webpage and the keywords in advertisements. Exploiting the semantic mean-
ing of the texts in behavior events can help learn more accurate event rep-
resentations, which are, in turn, beneficial for learning user embeddings. Let
us consider two webpages that may have different titles but considerably sim-
ilar textual content, for example, “Tesla Model X for Sale” and “Tesla buyers
can get a tax credit.” Although browsing both these two webpages involve dif-
ferent behavior event IDs, both the browsing events are closely related in the
semantic space and, therefore, may indicate the same user interest, i.e., the
interest towards the price of the Tesla car. In addition, exploiting the textual
content in behavior events can process the new events. Notably, new events
do not have IDs, but their representations can be learned using their text.

Fig. 2. Architecture of the text encoder.

Therefore, in our NEU-Text app-
roach, we utilize the event text to
learn event representations in our
framework, as depicted in Fig. 1b.
The framework of our NEU-Text
model is considerably similar to
that of the NEU-ID model, except
that in the former the event rep-
resentation is learned using event
texts by employing a text encoder,
rather than using the event IDs.
In addition, different text encoders
can be applied to our NEU-Text
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model. In this study, we introduce a neural-network-based text encoder, whose
architecture is depicted in Fig. 2.

Next, we briefly introduce our neural-network-based text encoder. As
depicted in Fig. 2, there exist three major layers in the text encoder. The
first one is the word-embedding layer. It aims to convert words in a text
to a low-dimensional dense vector. We denote the word sequence in a text t
as [w1, w2, ..., wN ], where N represents the length of the text. In the word-
embedding layer, this word sequence is transformed to a vector sequence
[w1,w2, ...,wN ] by using a word-embedding matrix W ∈ RV ×DW , where V
denotes vocabulary size and DW the word-embedding dimension.

The second layer in the text encoder is a CNN, which is used to capture the
local contexts of words to learn contextual word representations. We denote by
ci the contextual word representation of the i-th word in a text learned using
the CNN, and it is computed as follows:

ci = ReLU(C × w[i−M :i+M ] + b), (3)

where w[i−M :i+M ] denotes the concatenation of the word embeddings between
i−M and i+M . In addition, C and b denote the parameters of the convolutional
filters in the CNN, and 2M+1 is the window size. ReLU is the activation function
used [7]. The output of this layer is a sequence of contextual word representations
[c1, c2, ..., cN ].

The third layer is an attention network [1]. Different words usually have
different informativeness for event representation. For example, the title of a
webpage may be “Tesla Model 3 Deliveries In China To Begin In March 2019.”
The words “Tesla” and “Deliveries” are more informative than “Begin” for rep-
resenting the webpage. Therefore, we used the attention mechanism [1] to select
important words in order to learn informative text-based event representations.
The attention weight of the i-th word in text t is formulated as follows:

ai = tanh(v × ci + v), (4)

αi =
exp(ai)

∑N
j=1 exp(aj)

, (5)

where v and v denote the parameters of the attention network. The final rep-
resentation of an event, based on the text thereof, is the summation of the
contextual word representations weighted by their attention weights as follows:

e =
N∑

i=1

αici. (6)

In our NEU-Text model, both the user embeddings and text encoder are
learned using the data by maximizing the likelihood of the behavior events, as
shown in Eq. (2).
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3.3 Model Training

As previously mentioned in Sect. 3.1 and 3.2, the objective of our event-
prediction framework for learning user embeddings is to maximize the likelihood
of behavior events on the basis of user and event representations. The objec-
tive function of our models is the log-likelihood of behavior events, and it is
formulated as follows:

∑

u∈U

∑

e∈E(u)
log

exp(u�e)
∑

e′∈E exp(u�e′)
. (7)

However, because the number of behavior events is considerably large, it is sig-
nificantly costly to compute the denominator part in Eq. (7). However, inspired
by [17], we counter this problem by employing negative sampling. For each pos-
itive user-event pair (u, e) that actually exists in the user-behavior data, we
randomly sample K negative events e−

i ∈ E , i = 1, 2, · · · ,K. Subsequently, the
objective function can be simplified as follows:

log
exp(u�e)

∑
e′∈E exp(u�e′)

≈ log σ(u�e) +
K∑

i=1

Ee−
i ∼P (e) log σ(−u�e−

i ), (8)

where σ denotes the sigmoid function and P (e) the probability distribution of
negative events. By following the work in [17], P (e) is defined as follows:

P (e) =
f(e)0.75

∑
e′∈E f(e′)0.75

, (9)

where f(e) denotes the frequency of event e.
In our NEU approach, both the NEU-ID model and NEU-Text models were

separately trained. Because the IDs of events and the textual content in events
may contain complementary information for modeling users, in our NEU app-
roach, the user embeddings learned using both the models are concatenated
together as the final representations of online users. These user embeddings can
encode useful global information of users, and they can be used in many tasks
as additional user features to improve their performance.

4 Experiments

In our experiments, we trained user embeddings using real-world web brows-
ing data. In addition, we verified the effectiveness of these user embeddings by
applying them to search-query based age and gender prediction. As depicted
in Fig. 3, we utilize the user-embedding vectors trained using browsing data to
boost the query-based classification. In the present service, browsing data are
not used as user features. Therefore, we designed the experiments in this section
to estimate the best way to introduce browsing data as additional user features
to the present service.
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Fig. 3. Overall framework of age and gender prediction. Our NEU embedding is
attached to task-specific representation, resulting in improved performance.

4.1 Datasets and Experimental Settings

Datasets. We created a real-world web browsing behavior dataset by crawling
the web browsing records of 25,000 anonymous users on Bing, from February 1,
2018 to July 31, 2018. We used the webpage titles in the web browsing records
as the event representation. The average number of browsing events per user
was 584. In addition, we collected the search queries generated by these users
during the same period, along with their gender and age-group tags, to build
two datasets for performing search-query-based age- and gender-prediction tasks.
The two datasets are denoted by Gender and Age, respectively. The average
number of search queries per user was 211. There are 13,496 (53.98%) male
users and 11,504 (46.02%) female users and their age groups are summarized in
Table 1. In both Gender and Age datasets, we randomly sampled 20,000 users as
the training set and remaining as the test set. In addition, we randomly sampled
10% users from the training set for validation.

Table 1. Age distri-
bution of users.

Age range Ratio

[0, 18] 0.94%
[18, 24] 6.81%
[25, 34] 14.20%
[35, 49] 29.08%
[50, 64] 30.56%
[64,∞) 18.41%

Experimental Settings. In our experiments, two sets
of word embeddings were pretrained on all the collected
search queries and webpage titles. The embedding dimen-
sion was 200. In the training of our NEU-ID model, we fil-
tered out the webpages visited by fewer than five distinct
users. Consequently, 93,345 unique events and 3,130,070
user-event pairs were left. However, in the training of
our NEU-Text model, we used all the 2,994,625 available
events and 14,500,108 user-event pairs. In the text encoder,
the window size of the CNN was 3 and the number of filters
200. We used Adam [14] with learning rate 0.001, and the
batch size was set to 500. The number of negative events
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K was 4. To mitigate overfitting, we applied dropout [22] to the word embeddings
and CNN layers, and the dropout rate is 0.2. The user-embedding dimensions
for both NEU-ID and NEU-Text were 200. The hyperparameters were selected
according to the validation data. We randomly repeated each experiment 10
times and reported the average results. We reported both the prediction accuracy
and weighted F1-score as metrics.

4.2 Performance Evaluation

Here, we verify the effectiveness of the user embeddings pretrained using our
NEU approach on the large-scale unlabeled browsing-behavior data. We applied
the user embeddings as additional user features to different methods for per-
forming search-query-based gender- and age-prediction tasks. These methods
include support vector machine [8] and logistic regression [18,21], of which user
search queries are transformed to TF-IDF feature vectors as input, LSTM [10]
and CNN, of which user queries are concatenated into a long document then
applied as input, LSTM+Att, CNN+Att, LSTM+HieAtt and CNN+HieAtt, of
which word-level attention or hierarchical attentions are used to make a final
user representation instead of using a global max-pooling layer.

The experimental results of both tasks are summarized in Table 2. From
the results, we can see that after incorporating as additional user features the
user embeddings pretrained using our NEU approach, the predictive power
of all the classifiers significantly improved for both tasks. For example, after
incorporating the pretrained user embeddings, the age-prediction F-score of the
CNN+HieAtt method increased from 38.33% to 46.90%. In addition, different
methods achieved significant performance improvements after incorporating our
user embeddings. Therefore, these results validate that the user embeddings pre-
trained using our NEU approach on the large-scale unlabeled browsing-behavior
data contain useful latent information of online users, and that they can improve
the performance of various tasks that involve user representations.

Table 2. Gender- and age-prediction performances of different methods both with
and without pretrained user embeddings. Notably, U.E. denotes the user embeddings
pretrained by our approach.

Gender prediction Age prediction

Accuracy F-score Accuracy F-score

Without With U.E. Without With U.E. Without With U.E. Without With U.E.

SVM 62.87 ± 0.28 72.98 ± 0.49 61.47 ± 0.50 72.92 ± 0.49 36.41 ± 0.45 42.66 ± 0.54 34.85 ± 0.57 41.70 ± 0.49

LR 62.92 ± 0.37 73.18 ± 0.65 62.05 ± 0.37 73.11 ± 0.64 39.26 ± 0.28 45.45 ± 0.23 36.33 ± 0.34 43.81 ± 0.58

LSTM 65.57 ± 0.55 75.3 3 ± 0.34 63.92 ± 0.92 75.29 ± 0.36 40.83 ± 0.96 47.7 7± 0.66 35.36 ± 1.21 45.97 ± 0.56

CNN 65.55 ± 0.37 75.40 ± 0.33 64.42 ± 0.57 75.34 ± 0.34 40.35 ± 0.62 47.77 ± 0.66 34.51 ± 0.88 45.46 ± 0.64

LSTM+Att 65.91 ± 0.40 75.21 ± 0.34 64.74 ± 0.80 75.13 ± 0.36 40.75 ± 0.60 47.84 ± 0.54 35.70 ± 0.60 45.95 ± 0.56

CNN+Att 66.14 ± 0.50 75.47 ± 0.33 64.61 ± 0.79 75.40 ± 0.31 41.30 ± 0.61 47.66 ± 0.70 36.01 ± 0.89 46.07 ± 0.63

LSTM+HieAtt 66.58 ± 0.39 75.37 ± 0.30 65.58 ± 0.57 75.32 ± 0.31 42.36 ± 0.54 48.19 ± 0.53 37.69 ± 0.83 46.41 ± 0.49

CNN+HieAtt 66.83 ± 0.61 75.72 ± 0.36 65.98 ± 0.71 75.67 ± 0.38 42.66 ± 0.43 48.61 ± 0.56 38.33 ± 0.61 46.90 ± 0.62
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4.3 Model Effectiveness

Here, we explore the effectiveness of our NEU-ID and NEU-Text models in learn-
ing user embeddings from user-behavior data. The experimental results are pre-
sented in Table 3. The baseline method used in this experiment is CNN+HieAtt.
The experimental settings are the same as those in Sect. 4.2.

According to Table 3, both the user embeddings pretrained by our NEU-ID
model and those pretrained using our NEU-Text model can effectively improve
both gender- and age-prediction performances, thereby showing that the user
embeddings learned using both event IDs and event texts are effective. Interest-
ingly, user embeddings learned using NEU-Text performs very well on gender
prediction and user embeddings learned using NEU-ID performs very well on
age prediction. Although the reason for this phenomenon is not clear, our results
validate that the user embeddings pretrained by both the models using user-
behavior data contain complementary information, and that combining them is
more powerful for representing online users than using them separately.

Table 3. Effectiveness by having both NEU-ID and NEU-Text models.

Gender Age

Accuracy F-score Accuracy F-score

w/o U.E. 66.83 ± 0.61 65.98 ± 0.71 42.66 ± 0.43 38.33 ± 0.61

NEU-ID 73.32 ± 0.39 73.19 ± 0.41 48.10 ± 0.47 46.19 ± 0.84

NEU-Text 75.60 ± 0.44 75.51 ± 0.45 46.73 ± 0.61 44.75 ± 0.55

Both 75.72 ± 0.36 75.67 ± 0.38 48.61 ± 0.56 46.90 ± 0.62

Gender prediction. Age prediction. Predicting Time.

Fig. 4. Comparison between our NEU approach with baseline methods that use brows-
ing data as direct input.

4.4 Comparison with Direct Input

Here, we compare our proposed NEU model with the following two models that
utilize the browsing data as direct input: Merge and Multi-view. In the Merge
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model, browsing titles are considered additional textual information. We use the
CNN+HieAtt model explained in Sect. 4.2 to parse the textual information. In
the Multi-view model, the browsing data are passed through the CNN+HieAtt
model with different parameters, and the concatenation of both the channel
outputs is presented to the classifier. The results are depicted in Fig. 4.

According to Fig. 4, our NEU model performed better than the other meth-
ods that use the browsing data as direct input. Other than the textual informa-
tion, the user vectors trained using the NEU model hold the potential relation-
ship among users. Therefore, the unsupervised embedding method can achieve
better result. In addition, the Multi-view model can also effectively improve the
performance, and it outperforms the Merge model in terms of both age and gen-
der prediction. This indicates that browsing titles are considerably different from
search queries, and that the former should be considered another type of text.
In addition, the performance boost provided by the Multi-view model validates
that age and gender information can be mined using viewed page titles.

In addition, replacing the direct input by user vectors can dramatically
decrease the predicting time according to Fig. 4. Although the initial training
NEU takes some time, the marginal cost of incorporating NEU to a new task is
little. Because user representations can be used in many demographic prediction
tasks, more time can be saved upon increasing the number of tasks in practice.

4.5 Comparison with Network Embedding

Here, we compare our model with network-embedding methods such as Deep-
Walk [19], Node2Vec [9], LINE [23], and BiNE [6]. This comparison is neces-
sary, as the vertex embeddings generated using network-embedding methods are
also generally used in age and gender prediction. Therefore, we can also try to
use them as additional features, and then we can compare the result obtained
by NEU. The total dimensions of the output vertex embeddings were 400, by
default. For LINE, we use the concatenation of the first- and second-order prox-
imities, where the dimension of each is 200. DeepWalk and Node2Vec, we have
10 walks per node, and the size of each walk is 40. The window size for skip-gram
is five. The settings of classification tasks are kept the same as previously.

Accuracy F1-Score
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800

w/o Browsing Data
BiNE
LINE
DeepWalk
Node2Vec
NEU

Gender prediction.

Accuracy F1-Score
0.38

0.40

0.42

0.44

0.46

0.48

0.50
w/o Browsing Data
BiNE
LINE
DeepWalk
Node2Vec
NEU

Age prediction.

Fig. 5. Comparison between our model and network-embedding methods.
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According to Fig. 5, all network-embedding methods enhance the age- and
gender-classification performances, thereby indicating that network-embedding
methods are effective in training the user embeddings. However,the results
obtained using network-embedding methods are not as high as that achieved
using our NEU method, especially for gender classification. The primary reason
should be the lack of textual context. As discussed in Sect. 4.3, textual informa-
tion is important for gender prediction. Therefore, our approach can gain higher
accuracy and F1-score significantly, as it uses textual information, especially in
the gender-prediction task. These results validate the importance of combining
both the ID- and text-based event representations once again.
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Fig. 6. Effect of the number of users.
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Fig. 7. Effect of the number of events.

4.6 Effect of the Number of Users

In this experiment, we investigated the effect of the number of users on the
performance of NEU, by introducing additional users during the embedding
training. We conducted the demographic prediction base on 5,000 users including
1,000 test users, and we varied the number of users for training from 5,000 to
25,000. Each set of training users contained all the users from the previous set.

According to Fig. 6, the performance of NEU continued to increase upon
introducing additional users to the embedding training. Although the additional
users were not present in the classification task, their browsing behaviors helped
build better representations for all users and behaviors. For example, if a few
users had visited a online shopping mall titled “Love necklace handmade jewelry
for her”, then the text information may be insufficient for the model to produce
an accurate representation for this event. However, when this event occurs more
number of times upon introducing additional users, the event representation
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can becomes finer than before. Accordingly, the user embeddings built using
more accurate event representation could be more informative and less noisy.
This result shows that our method can be used in semi-supervised scenarios
wherein we have massive amount of unlabeled user-behavior data but small
amount of labeled users. We think introducing additional users will be helpful
especially for the cases wherein the labeled data are noisy or insufficient, as the
rich information mined from an unlabeled user can be the key to overcoming the
restrictions of end-to-end supervised models.

4.7 Effect of the Number of Events

We also investigated the effect of the number of events on the performance of our
approach by randomly selecting different numbers of events. This experiment is
designed to show the manner in which the lack of events affects user embeddings.
We conducted experiments on both tasks, and the baseline method used in this
experiment was CNN+HieAtt. The results are depicted in Fig. 7.

According to Fig. 7, the performance of our approach consistently improves
upon increasing the number of behavior events. The high diversity in the num-
ber of user events might be helpful to form accurate event and user embeddings.
It could be because the potential association between two webpages may occur
upon introducing another webpage. For example, the relationship between two
webpages titled “Donald Trump News” and “Ivanka Trump Shoes” can be clari-
fied using the webpage titled “Trump considered daughter Ivanka for World Bank
post,” which explain the relationship between two people. In addition, this result
also validates that the user-behavior data contain useful and important informa-
tion of online users, and that our approach can exploit the large-scale unlabeled
user-behavior data to learn accurate user embeddings, which can enhance the
performance of many different tasks by acting as additional user features.

4.8 Qualitative Analysis of the User-Embedding Results

Fig. 8. User groups observed from
their embeddings.

For performing qualitative studies, we visu-
alize the user-embedding results generated
using the NEU model and compare the web-
sites that the users browsed. The t-SNE
results achieved using the learned user embed-
dings are depicted in Fig. 8. Each point
denotes each user in our dataset. From the
result, we could observe some groups of users
in the embedding space and confirm that each
user group had a similar interest by observing
their browsing histories. In Table 4, we present
the browsing titles/histories of the users from
four different groups. From the results, we can
validate the representation power of our NEU
model.
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Table 4. Browsing histories of users in the same group.

Cluster User ID Browsing titles

Game 317 Epic Games’ Fortnite

Razer Cortex: Game Booster

Battle Pass Season 4

958 Xbox Games: Immerse Yourself in all the Action | Xbox
Twitch Prime Pack

Xbox One Accessories | Xbox
Vehicle 873 Used 2015 Nissan Rogue for sale in Knowville, TN 37922:

Sport Utility Details - Autotrader

Used 2001 Dodge Dakota SLT for sale in Alcoa, TN 37701:
Truck Details - Autotrader

CarMax - Browse used cars and new cars online

51 Subaru Cars, Sedans, SUVs | Subaru of America

Motorcycles for Sale on CycleTrader.com: New & Used
Motorcycles

2016 Victory High-Ball Base, Athens OH - Cycletrader.com

Real estate 653 Arcata Real Estate - Arcata CA Homes for Sale | Zillow
Every American should collect “Federal Rent Checks“ -
Money Morning

Table Lamps for Bedroom, Living Room and More | Lamp
Plus

168 Real Estate | Homes for Sale - 0 Homes | Zillow
15325 SE 155th P1 UNIT F2, Renton, WA 98058 | MLS
#1261468 | Zillow
Unitus Mortgage: Refinance Home Loans

Travel 488 Western Caribbean Cruises & Vacations | Celebrity Cruises

Tickets | Santana - Divination Tour 2018 - Calgary, AB at
Ticketmaster

7 Foods that Help Fight Arthritis Pain | ActiveBeat
607 Air Canada Vacations

YYZ to MID Flights | Expedia
The 10 Best Nashville Tours, Tickets, Excursions & Activities
2018 | Viator

5 Conclusion

We proposed an NEU approach to learn the deep representations of online users
by using their large-scale unlabeled behavioral data. In our approach, online
users were encoded to low-dimensional dense vectors. In addition, we proposed
an event-prediction framework to learn the user embeddings by predicting the
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behavior events that these users may have, on the basis of their embedding
vectors. We explored two methods to represent events, one was based on event
IDs and other on the textual content in events. The experiments on real-world
datasets validated the effectiveness of our approach.
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Abstract. Fast IPv6 scanning is challenging in the field of network mea-
surement as it requires exploring the whole IPv6 address space but lim-
ited by current computational power. Researchers propose to obtain pos-
sible active target candidate sets to probe by algorithmically analyzing
the active seed sets. However, IPv6 addresses lack semantic informa-
tion and contain numerous addressing schemes, leading to the difficulty
of designing effective algorithms. In this paper, we introduce our app-
roach 6VecLM to explore achieving such target generation algorithms.
The architecture can map addresses into a vector space to interpret
semantic relationships and uses a Transformer network to build IPv6
language models for predicting address sequence. Experiments indicate
that our approach can perform semantic classification on address space.
By adding a new generation approach, our model possesses a controllable
word innovation capability compared to conventional language models.
The work outperformed the state-of-the-art target generation algorithms
on two active address datasets by reaching more quality candidate sets.

Keywords: IPv6 target generation · Deep learning · Data mining ·
Network measurement · Natural language processing

1 Introduction

Host discovery has always been a vital research method in the field of network
measurement. By exploiting the ability of modern hardware and connectivity,
tools like Zmap [9] and Masscan [13] have been able to complete the exploration
of the global IPv4 address space, which has fundamentally enhanced the ability
of researchers to conduct wide-ranging assessments of Internet services.

However, as has long been recognized, IPv6’s much larger address space [7]
renders exhaustive probing completely infeasible. A recently proposed solution
is to design a target generation algorithm [11,19,25] to generate a candidate set
that may be active. Systems are required to analyze the potential distribution
characteristics of the active address set and infer the target clustering area. The
c© Springer Nature Switzerland AG 2021
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design of effective analysis algorithms directly determines the ability of model
learning and the quality of generated candidate sets.

While prior work has obtained a preliminary understanding of active
addresses distribution [12,21], the results commonly lack interpretability because
IPv6 address consisting entirely of digits misses semantics [3], conditioning our
inability to infer active addresses using sequence relationships. The reason mainly
comes from numerous customizable IPv6 addressing schemes [20,24]. The com-
plexity of address composition causes difficulty in algorithmic inferences.

The representative target generation algorithms include Entropy/IP [11] and
6Gen [19], which are designed based on human observation and assumptions on
network data. Human intervention may result in the algorithm overly dependent
on experience and lose adaptability to the data set. The question of how to push
the candidate set generated by the algorithm from quantity to quality remains.

To address these problems, we consider a new approach employing deep
learning to facilitate effective IPv6 target generation. Word embedding [16] and
language modeling [2,6,14,17] are a critical component of systems that require
modeling long-term dependency, with successful applications such as summariza-
tion and machine translation. By word-to-vector space mapping, word vectors
expose the semantic relationships between various words. Language models can
estimate the probability distribution of a sequence of words by supervised learn-
ing. Based on these principles, we propose to construct an IPv6 vector space
with a certain degree of semantic relationship. Through learning the semantic,
a language model can autonomously infer the components of active addresses to
generate more effective candidate results.

Conventional language models are used to model deterministic sequence
dependency. The predicted sequence results are basically consistent with the
original data set. In the target generation work, language models are required
an innovation to satisfy creative sequence generation.

In this paper, we develop a new concrete instantiation of the target gen-
eration algorithm 6VecLM through deep learning, which includes two mecha-
nisms IPv62Vec and Transformer-IPv6. IPv62Vec maps the entire active address
space to a semantic vector space, where addresses with similar sequences will
be classified into the same cluster. Semantic address vectors will be learned
by Transformer-IPv6 to implement IPv6 language modeling. By modeling with
a Transformer network [26], our work can comprehensively consider multiple
sequence relationships and generate creative and semantically similar sequences
to the data set. To serve the generative task, we decide to employ a new generation
approach based on cosine similarity and softmax temperature [18] to substitute
the probability prediction in language models. Through choosing various sampling
strategies, the model can generate expected and creative host targets.

Contributions: Our contributions can be summarized as follows:

1) We explored the construction of IPv6’s semantic space for the first time.
IPv62Vec can effectively cluster the active address space into several classes.

2) We designed a new target generation algorithm Transformer-IPv6 for lan-
guage modeling in the vector space. The new generation approach we used
can render the language model obtaining creative sequences.
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3) Experiments show that our approach outperformed conventional language
models and state-of-the-art target generation algorithms on multiple metrics.

Roadmap. Section 2 summarizes the prior researches related to our work. Sect. 3
introduces the background of the IPv6 target generation. Sect. 4 and Sect. 5
highlights the overall design of IPv62Vec and Transformer-IPv6 components in
6VecLM. Sect. 6 shows the evaluation results and Sect. 7 concludes the paper.

2 Related Work

Prior work on IPv6 target generation falls into two broad categories: (1) ana-
lyzing known addresses similarity to understand allocation patterns and (2)
designing algorithms that generate candidate targets to scan. In addition, we
will introduce (3) the related applications exploring semantic relationships.

2.1 Address Similarity Learning

To measure behavioral similarity among network hosts, Coull et al. [4] proposed
semantically meaningful metrics for common data types found within network
data and compare its performance to a metric that ignores such information to
underscore the utility. Ring et al. [23] designed IP2Vec to learn the similarity
of IP addresses. They used the meta-information about traffic as the context
of the address to train the Word2Vec [16] model. experiments demonstrate the
effectiveness of clustering IP Addresses within a botnet data set. Our work is also
based on Word2Vec to implement address similarity learning. However, active
host discovery is the problem where meta-information is often lacking. We only
rely on the active address set to discover new active hosts in this paper.

In the prior work of IPv6 active address set analysis, Planka et al. [21] first
explored the potential patterns of IPv6 active addresses in time and space. They
used Multi-Resolution Aggregate plots to quantify the correlation of each portion
of an address to grouping addresses together into dense address space regions.
Gasser et al. [12] employed entropy clustering to classify the hitlist into different
addressing schemes. These efforts indicate that researchers have found a certain
pattern hidden in the active IPv6 address sets, which provides a basis for the
feasibility of IPv6 target generation.

2.2 Target Generation Algorithm

Ullrich et al. [25] used a recursive algorithm for the first attempt to address
generation. They iteratively searched for the largest match between each bit of
the address and the current address range until the undetermined bits were left,
which is used to generate a range of addresses to be scanned. Murdock et al.
[19] introduced 6Gen, which generates the densest address range cluster by com-
bining the closest Hamming distance addresses in each iteration. Foremski et al.
[11] used Entropy/IP for efficient address generation. They used a Bayesian net-
work to model the statistical dependence between the values of different defined
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Fixed IID
Low 64-bit Subnet
SLAAC EUI64 
SLAAC Privacy

2001:0db8:0106:0001:0000:0000:0000:0003
2001:0db8:0100:0015:0000:0000:000a:0005
2001:0db8:0000:4144: f816:3ef f : fe57:0e6d
2001:0db8:fbd0:0021:7c61:2880:3148:36e1

2001:db8:106:1::3
2001:db8:100:15::a:5
2001:db8:0:4144: f816:3ef f : fe57:e6d
2001:db8:fbd0:21:7c61:2880:3148:36e1

Human-readable Text Format Commonly Used Address Format

Fig. 1. Sample IPv6 addresses in presentation format with the low 64 bits shown bold.

segments. This learned statistical model can then generate target addresses for
scanning. Different from the previous approaches, our work tries to focus on the
semantics of IPv6 for the first time to achieve the target generation algorithm
through neural networks.

2.3 Word Embedding and Language Modeling

In order to explore the semantic relationship between words, Mikolov et al.
[16] proposed Word2Vec to learn high-quality distributed vector representations
and prove the availability in measuring syntactic and semantic word similarities.
With the development of word embeddings, Bengio et al. [2] first employed neural
networks to learn the joint probability function of sequences for substituting
statistical language modeling, which subsequently led to deep learning gaining
many successful experiences on language models [6,14,17].

Recently, Vaswani et al. [26] proposed a completely self-attention-based net-
work architecture Transformer. The model achieves state-of-the-art performance
on the WMT 2014 English-to-German and English-to-French translation task.
More work [1,5,8,22] relies on the advantages of this model to achieve break-
throughs in applications. Our work is also based on the Transformer network.
We modified the model to implement semantic discovery in the vector space.

3 Preliminary

While prior work of IPv6 analysis has obtained preliminary insights, active host
discovery in the large and missing semantic IPv6 address space is still a huge
challenge. In this section, we provide basic information on IPv6 and highlight
our consideration of IPv6 target generation.

3.1 IPv6 Addressing Background

To explain IPv6 knowledge and the domain-specific terms we used in this paper,
we provide a brief background on IPv6 addressing. We refer the reader to RFC
2460 [7] for a detailed description of the protocol.

An IPv6 address consists of a global network identifier, subnet prefix, and an
interface identifier [3]. It is composed of 128-bit binary digits, which are usually
represented in human-readable text format, using 8 groups of 4 hexadecimal
digits and separating them by colons, as shown in Fig. 1. Each of the hexadecimal
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digits is called a nybble. IPv6 addresses usually use “::” to replace groups of
consecutive zero values and omit the first zero value in each group.

However, IPv6 addresses are not simply composed of meaningless digits.
There are many IPv6 addressing schemes and network operators are reminded
to treat interface identifiers as semantically opaque [3]. Administrators have the
option to use various standards to customize the address types. In addition, some
IPv6 addresses have SLAAC [24] address format that the 64-bit IID usually em-
beds the MAC address according to the EUI-64 standard [24] or uses completely
pseudo-random [20]. Consider the sample addresses in Fig. 1. In increasing order
of complexity, these addresses appear to be: (1) an address with fixed IID value
(::3). (2) an address with a structured value in the low 64 bits (perhaps a subnet
distinguished by: a). (3) a SLAAC address with EUI-64 Ethernet-MAC-based
IID (ff:fe flag). (4) a SLAAC privacy address with a pseudorandom IID.

3.2 Target Generation Consideration

IPv6 Address Space. Active hosts are scattered in the sparse IPv6 space
because of excessive address reserves. Limited by computational power, a brute-
force approach to probe the entire network space of IPv6 is almost impossible.
The distribution of active addresses is also difficult to extract. Therefore, we con-
sider constructing a vector space with good interpretability, where the distance
between vectors can be defined as the relationship between addresses. However,
IPv6’s large address range means that even hexadecimal IPv6 addresses have 32
nybbles. It is difficult to build a high-quality representation of an address vector
in a high-dimensional space. Our work will focus on address space representa-
tion through model learning and utilize dimensionality reduction techniques to
obtain active address clustering areas.

IPv6 Semantic. It may be difficult to effectively train the learning model when
analyzing the structure of the address set due to the opaque semantics of IPv6
addresses and the existence of multiple addressing schemes. In order to design
an effective target generation algorithm, we believe that reasonably mining the
semantic information of address composition is particularly critical. We define
the IPv6 semantics by building sequences of address words. The context of the
address word sequences can be learned through a model to generate the address
vectors with semantic discrimination, which contributes to learning address word
sequence relationships to speculate address composition by language modeling.

4 IPv62Vec

In this section, we will introduce our first component in 6VecLM, IPv6 vector
space mapping technology IPv62Vec. We outline the underlying ideas of the
work including word building, sample generation, and model training.
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Fig. 2. The overall architecture of IPv62Vec. An address word sequence is composed
of the nybble and index values of an address from the seed set. The training samples
are generated from the corresponding combinations of input words (highlighted in red
color) and context words. The neural network is trained with samples and outputs the
vector representation W of the input word. (Color figure online)

4.1 Word Building

Constructing effective semantic information requires to define a new seman-
tic representation of the address. In Fig. 2, we re-represent each nybble of the
hex address to create address words. We define the value Vi of the i-th nyb-
ble in an address, where V ∈ {0, 1, ..., f}. The index i is defined as Si, where
S ∈ {0, 1, ..., v}. The i-th address word in a new representation is composed of
the nybble value and index value as ViSi (e.g. the 11th nybble value 2 is rep-
resented as the address word 2a). All address words built from the seed set is
defined as vocabulary. Our purpose is to distinguish the nybble values at different
indexes. We consider that the same nybble values usually have different degrees
of semantic importance according to their position in an address. Differentiating
work contributes to discovering the semantic information of key positions (e.g.
The 23rd-26th nybbles of the SLAAC EUI-64 address–fffe).

4.2 Sample Generation

After determining the address words, we follow the word selection process of
Mikolov et al. [16] to select input words and context to generate training samples.
As shown in Fig. 2, we perform a word selection operation on each address word
sequence in the seed set. When a certain word of the sequence is selected as an
input word, words from the surrounding window of the input word are chosen
as context words for building training samples. The window size is 5.



198 T. Cui et al.

20 01 02 1f

0h 0i 0j 2v

0g 0h 0i 0

20 01 02 13 04 d5 b6 87 08 19 0

20 01 02 13 04 d5 b6 87 08 19 0

2001:0db8:0106:0001:0000:0000:0000:0002

IPv62Vec
Embedding

Encoder
Transformer

Block

x N

IPv62Vec
Embedding

Decoder
Transformer

Block

x N

Linear
Sigmoid

Seed set
Input words

Memory K V

<Start symbol>

<End symbol>

Vocabulary vectors
Sampling

Temperature
distribution

Similarity 
calculation

Candidate 
target

New address 
words 0x

1x

6x0x 1x 2x 3x 4x 5x 7x 8x 9x ax bx cx dx ex fx

Language Model

Generation Approach

Fig. 3. The overall architecture of Transformer-IPv6. The language model based on the
Transformer network can generate address word vector by learning past words. Then
the new generation approach will generate sampling probability distribution based on
cosine similarity and adjust the distribution by softmax temperature. The output words
are recombined with the input to generate a new candidate target.

4.3 Model Training

Since neural networks cannot be fed with words, each word is represented as a
One-Hot vector and the length of this vector is equal to the size of the vocabulary.
The number of input and output neurons of the neural network is equal to the
size of the vocabulary. Further, the output layer uses a softmax classifier and
indicates the probabilities that a particular word appears in a specific context.
The neural network is fed with the input word and tries to predict the probability
of the context word. The output layer of the neural network indicates how likely
each word of the vocabulary may be found in the context of the input word.
After training, the final hidden layer result is the vector representation of the
input word. In this paper, we used 100 neurons in our hidden layer.

5 Transformer-IPv6

After obtaining the IPv6 address vector, the next step is how to apply this
semantic vector space to complete network-related tasks. In this section, we will
employ the address vector to realize the IPv6 target generation through building
the second component in 6VecLM, our language model Transformer-IPv6.

5.1 Language Modeling

Language models assign a probability distribution over sequences t0:L by factor-
ing out the joint probability as follows, where L is the sequence length:

P (t0:L) = P (t0)
L∏

i=1

P (ti|t0:i−1) (1)
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To model the conditional probability P (ti|t0:i−1), we train a Transformer net-
work to process the address word sequence t0:i−1. Transformer is a self-attention-
based deep network. We consider focusing on the semantic importance of address
word in the sequence for modeling the probability of the next word given the
preceding word, until obtaining an entire address word sequence.

The architecture of Transformer-IPv6 is shown in Fig. 3. The input words
are converted from addresses in the seed set according to the word building
method in Sect. 4. The vector representation, which is determined by the pre-
trained IPv62Vec, of the first 16 words of the sequence is inputted in the model
to predict the last 16 words. The model then stacks n layers of Transformer
encoder block to encode latent vector as a memory. Following Vaswani et al.
[26], the Transformer encoder block contains a multi-head self-attention sub-
layer followed by a feed-forward network of two fully connected sub-layers. A
residual connection and layer normalization are followed each of the two sub-
layers. The attention mechanism can help addresses consider critical parts of
the sequence when predicting words, while the multi-head attention mechanism
observes more address word combinations by training multiple attentions:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

(3)

where Q,K, V is the output of the upper layer. dq, dk, dv, dmodel are the dimen-
sions of the matrix WQ

i , WK
i , WV

i , and the model input. The linear projections
are parameter matrices WQ

i ∈ R
dmodel×dq , WK

i ∈ R
dmodel×dk , WV

i ∈ R
dmodel×dv ,

WO
i ∈ R

dmodel×hdv .
The last 16 words use the mask method [26] to select the current input of

the Transformer decoder and ensure that the model’s predictions are only con-
ditioned on past words. Transformer decoder block inserts a second multi-head
self-attention sub-layer, which performs attention weights computation while
keeping encoder memory as attention input K and V .

The model finally predicts the next address word vector through a linear layer
and a sigmoid activation function until completing an entire address generation
process. Our model uses Transformer block layers n = 6, attention head numbers
h = 10, parameter matrix dimension dq = dk = dv = 10, and model input
dimension dmodel = 100.

5.2 Generation Approach

In order to complete the target generation task in the vector space, We expect
the generated word vector ypred to have a high semantic similarity to the target
word vector ytrue. Therefore, our model uses the cosine distance as the loss
function L:
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cos(θ) =

∑n
i=1 y

(i)
true · y

(i)
pred√∑n

i=1(y
(i)
true)2 ·

√∑n
i=1(y

(i)
pred)2

L = 1 − cos(θ)

(4)

Unlike conventional language models that directly model word probabilities, our
approach predicts word vectors to preserve the semantic information of the vector
space. Since our training samples are address vectors with semantic relationships
obtained by IPv62Vec, minimizing the cosine distance can obtain prediction
targets with similar context structure to the seed address. This approach aims
to choose the closest address word in the vector space, which contributes to
discovering the active addresses cluster area.

After generating the address word vector in each epoch, we calculate the
cosine similarity between the predicted word vector and each word vector con-
taining the current index in the vocabulary, which is used as a basis for sampling
the predicted words. We employ the softmax function to convert the cosine sim-
ilarity cos(θ) to the word sampling probability P (i):

P (i) =
ecos(θ)i

∑C
j=1 ecos(θ)j

, i = 1, ..., C (5)

Where C is the number of words with the current index in the vocabulary.
To build an effective generative model, we consider two word sampling strate-

gies: greedy sampling and random sampling. The greedy sampling selects the
word with the highest sampling probability in each epoch, while the generated
address is always similar to the training set address and raises a high repetition
rate. Random sampling ignores the sampling probability and always randomly
selected words, while the generated address has high randomness and excessively
loses semantics, thus leading to a low activity rate. To seek a balance between
maintaining semantics and creativity, we use softmax temperature [18] to read-
just the probability distribution:

Pr(i) =
elogP (i)1/t

∑C
j=1 elogP (j)1/t

, i = 1, ..., C (6)

Where temperature t is a hyperparameter. A high temperature t leads close sam-
pling probability of each word, thus the sampled address is more random. While
a low temperature t enhances the difference of original sampling probability,
which results in a strong ordering of the generated address.

6 Evaluation

In this section, we evaluate the performance of our approach. We will intro-
duce the data set and evaluation method used in the experiment and show the
effectiveness of our approach on the active address set.
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Table 1. The detail of the two active address datasets we used in the paper.

Dataset Seeds Period Collection method

IPv6 Hitlist 100,000 January 9, 2020 Public

CERN IPv6 2018 90,010 March 2018–July 2018 Passive measurement

6.1 Dataset

Our experimental datasets are mainly from two parts, a daily updated public
dataset IPv6 Hitlist and a measurement dataset CERN IPv6 2018. Table 1 sum-
marizes the datasets used in this paper. The public dataset IPv6 Hitlist is from
the data scanning the IPv6 public list for daily active addresses, which is pro-
vided by Gasser et al. [12]. In addition, we passively collected address sets under
the China Education and Research Network from March to July 2018. We con-
tinued to scan and track the IPs that are still keeping active as our measurement
dataset CERN IPv6 2018.

6.2 Evaluation Method

Scanning Method. To evaluate the activity of the generated address, we use
the Zmapv6 tool [9] to perform ICMPv6, TCP/80, TCP/443, UDP/53, UDP/443
scans on the generated address. When the query sent by any scanning method
gets a response, we will determine the address as active. Noting the difference
in activity between hosts at different times, we maintain continuous scanning of
the host for 3 days to ensure the accuracy of our method.

Evaluation Metric. Since IPv6 target generation is different from text gen-
eration tasks, we need to define a new evaluation metric for the address gener-
ative model. In the case of a given seed set, Ncandidate represents the number
of the generated candidate set, Nhit represents the number of generated active
addresses, Ngen represents the generated address that is active and not in the
seed set. Then the active hit rate rhit and active generation rate rgen of the
model can be computed as

rhit =
Nhit

Ncandidate
× 100% rgen =

Ngen

Ncandidate
× 100% (7)

rhit can represent the model’s learning ability to learn from the seed set. rgen

highlights the model’s generation ability to generate new active addresses.

6.3 IPv6 Vector Space

To illustrate the effectiveness of our approach IPv62Vec, we use the active
address set IPv6 Hitlist and construct training samples as described in Sect. 4.
After training the model, we extract the hidden layer parameters of the model to
build the mapping relationship between the address word and the word vector.
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Fig. 4. The address word distribution by using t-SNE visualization. The words with a
similar context in an address are clustered in the vector space.

Word Vector Space. Since address word vectors have high dimensions, we use
t-SNE technology [15] to reduce the dimensionality of word vectors to facilitate
display. Figure 4 shows the semantic relationship between address words in word
vector space. Address words with similar contexts perform a tight cluster in
vector space. We found that most address words are clustered according to their
index attributes, which indicates that different nybble values with the same index
possess similar contexts. While the long distance between address words with
the same nybble value indicates that they keep different contexts with different
indexes, which confirms our intention on word building. Nybble value 0 is an
exception to this proposition because address words with nybble value 0 at some
index perform a certain degree of clusters, such as index value 4–5, g–l. We
surmise that consecutive zeros in the address are the reason for this situation.
In addition, the address words with index values 0–7 are close, which indicates
that the network prefixes of addresses often have similar structures.

Address Vector Space. The address vectors are determined by combining
the address word vectors contained in each address in the address set. In addi-
tion, we use a One-Hot vector to represent the characters 0-f and construct the
address vector according to the active addresses composition as a baseline for
comparison. We use t-SNE technology to reduce the dimension of the address
vectors and employ DBSCAN [10] to complete the unsupervised clustering for
display. Figure 5 shows the address distribution in the vector space. IPv62Vec
successfully divided addresses into several classes. Addresses under the same
class perform a high similarity. The One-Hot address vector cannot mine the
addresses similarity due to the lack of semantic information.

IPv62Vec only relies on the address sequences to perform effective address
similarity learning. The network prefix, subnet identifier, and interface identi-
fier in an address cannot be determined due to the opaque sequence. IPv62Vec
extracts the potential network features, thus performing an effective address clus-
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Fig. 5. Comparison of address vector distribution between Ont-Hot Encoding and
IPv62Vec. IPv62Vec classified the address set to 6 categories by learning the address
similarity on the data set IPv6 Hitlist.

Fig. 6. An example of 4 attention heads on address word sequence in the decoder self-
attention in layer 5 of 6. Transformer-IPv6 can conclude a comprehensive target by
considering multiple attention results.

ter. By extracting features on IPv6 addresses, we consider that the approach will
also be feasible for other network tasks, such as encrypted traffic classification.

6.4 Address Attention

After performing the address vector space mapping, we use Transformer-IPv6 to
learn the address vector. To illustrate the effectiveness of Transformer-IPv6, we
performed attention visualization work to show the model performance. Figure 6
shows the model’s focus on IPv6 addresses. In IPv6 address words, each word
has a clear object of attention in the entire address, which enables the associated
information in the address to be effectively mined. For example, 1i, 1j, 0k, and 0l
may respectively have strong correlations in Fig. 6. In addition, the multi-head
attention mechanism guarantees the diversity of address attention, which renders
the final address word output of the model to integrate multiple possibilities.
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Example of address with di erent temperature

2001:0db8:0c06:0200:0000:0000:0000:0002

2001:0db8:0c06:0200:0000:0000:0000:000e

2001:0db8:0c06:0200:0000:0000:0000:00cd

2001:0db8:0c06:0200:0000:0000:009b:007a

2001:0db8:0c06:0200:0000:0000:9d46:4daf

Fig. 7. The predicted address results with different softmax temperature t. Increasing
temperature t will generate targets with more random address words.

6.5 Temperature

In our model, softmax temperature is a key parameter that can control the
quality of the addresses generated by the model. When selecting a high temper-
ature t, the model tends to sample randomly and the generated address contains
more creative sequences. The model is required to sample greedily and the gen-
erated address is more close to the seed set when keeping a low temperature
t. Figure 7 shows the generation results corresponding to different temperature
t. The increase of temperature promotes the generation of address words more
diversified. In order to find the equilibrium point, we measured the generation
performance corresponding to different t values. The model keeps the highest
active hit rate rhit and active generation rate rgen when t = 0.01. We recom-
mend t value between 0–0.05 to ensure the model performance.

6.6 Evaluation Results

Baselines. The baselines in our experiments for comparison mainly contain: (1)
conventional language model. RNN [17], LSTM [14] and GCNN [6] are the prior
paradigms that have shown significant gains in language modeling. In addition,
we added IPv62Vec and our generation approach to the conventional language
model for adapting the model to target generation tasks. (2) target generation
algorithm. Entropy/IP [11] and 6Gen [19] are the state-of-the-art address gen-
eration tools that can also efficiently generate active IPv6 targets. We employed
the open-source code of Entropy/IP and implemented 6Gen according to the
algorithm described by the authors to build baselines.

Experimental Results. Table 2 demonstrates the performance of all the com-
pared models based on the public data set IPv6 Hitlist. The results show 6VecLM
outperforms all the baselines, which confirms the advantage of the IPv62Vec
and Transformer-IPv6 mechanism. Entropy/IP and 6Gen performs poorly com-
pared to our approach due to lacking IPv6 semantics and adaptability to data
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Table 2. The experimental results by comparing with conventional language models
and target generation algorithms Entropy/IP and 6Gen. Results show that 6VecLM
reached the best performance in our experiments.

Category Model Ncandidate Nhit Ngen rhit rgen

Conventional RNN [17] 34,604 995 851 2.88% 2.46%

Language LSTM [14] 34,636 727 564 2.10% 1.63%

Model GCNN [6] 34,817 787 649 2.26% 1.86%

Target generation Entropy/IP [11] 69,167 8,321 2,540 12.03% 3.67%

Algorithm 6Gen [19] 67,712 4,612 1,638 6.81% 2.42%

Adding RNN [17] 44,242 12,133 2,409 27.42% 5.44%

IPv62Vec and LSTM [14] 61,950 10,640 2,019 17.18% 3.26%

Generation approach GCNN [6] 52,046 11,360 2,146 21.83% 4.12%

Our approach 6VecLM 46,461 15,406 2,883 33.16% 6.21%

(a) IPv6 Hitlist (b) CERN IPv6 2018

Fig. 8. The experimental results by comparing with Entropy/IP and 6Gen on the two
datasets. Ngen and rgen are evaluated under the different candidate set Ncandidate.

sets. By adding generation approach and IPv62Vec mechanism, the conventional
language models can reach a not bad performance. While our model is more
competent to the target generation task due to the multiple address attention
mechanism in Transformer-IPv6.

6.7 Generating Ability

In order to evaluate the model’s generating ability, in Fig. 8, we tested the num-
ber of new active generation Ngen and the active generation rate rgen under
the different number of generated candidates on the two address sets. The per-
formance of Entropy/IP and 6Gen is slightly different under the two data sets.
Because of the algorithm’s ability to adapt to different data sets, the data set
CERN IPv6 2018 may have denser address areas than IPv6 Hitlist, which is more
conducive to 6Gen algorithm. However, experiment results indicate that our app-
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roach reaches a better performance than the other two algorithms. 6VecLM can
find 1.23–2.66 times and 1.78–2.31 times more hits than Entropy/IP and 6Gen.
The model has a stable and good performance under different data sets. We
expect that future target generation algorithms will be capable of generating
more valid targets under a limited size of the candidate set to ensure predicting
high-quality candidate sets.

7 Conclusion

In this work, we explored the basic challenge of generating promising IPv6
addresses to scan. We presented 6VecLM, an approach to map addresses to a vec-
tor space and implement an IPv6 language model that can generate addresses.
The address vector generated by IPv62Vec mechanism in 6VecLM effectively
extracts the underlying semantic information of the address. Transformer-IPv6
mechanism can learn the word sequences in the vector space and select the
address generation strategy relying on the cosine similarity and softmax temper-
ature. The work is superior to conventional language models and state-of-the-art
target generation algorithms Entropy/IP and 6Gen.
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Abstract. Predicting user response probability such as click-through
rate (CTR) and conversion rate (CVR) accurately is essential to online
advertising systems. To obtain accurate probability, calibration is usu-
ally used to transform predicted probabilities to posterior probabilities.
Due to the sparsity and latency of the user response behaviors such as
clicks and conversions, traditional calibration methods may not work
well in real-world online advertising systems. In this paper, we present
a comprehensive calibration solution for online advertising. More specif-
ically, we propose a calibration algorithm to exploit implicit properties
of predicted probabilities to reduce negative impacts of the data spar-
sity problem. To deal with the latency problem in calibrating delayed
responses, e.g., conversions, we propose an estimation model to leverage
post-click information to approximate the real delayed user responses.
We also notice that existing metrics are insufficient to evaluate the cali-
bration performance. Therefore, we present new metrics to measure the
calibration performance. Experimental evaluations on both real-world
datasets and online advertising systems show that our proposed solution
outperforms existing calibration methods and brings significant business
values.

Keywords: Online advertising · Calibration · Click-through rate
prediction · Conversion rate prediction

1 Introduction

Online advertising is a multi-billion dollars industry with an annual revenue of
107 billion US dollars for the full year of 2018 in the United States only [27]. Com-
pared to traditional advertising industry such as TV, online advertising provides
services that tie advertisers’ payment directly to measurable user responses such
as clicks and conversions. Therefore, predicting user response probability accu-
rately has become one of the essential problems in online advertising [5,12,20].
The most common tasks are click-through rate (CTR) prediction and conversion
rate (CVR) prediction.

Predicting user response probability is usually treated as a supervised learn-
ing problem. A unique challenge is that the supervision labels are binary obser-
vations. For example, in CTR prediction, the observation is that a user either
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 208–223, 2021.
https://doi.org/10.1007/978-3-030-67667-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-67667-4_13


Calibrating User Response Predictions in Online Advertising 209

clicks or not clicks an ad and there is no ground-truth of the underlying click
probability. Therefore, most existing work for user response prediction strives to
learn binary classifiers and the optimization objectives are based on classification
performance such as Area-Under-Curve (AUC) of Precision-Recall (PR) and/or
Receiver Operating Characteristic (ROC) curves [6]. Even if some classifiers are
modeled to output the user response probability estimations directly, there are
still many factors accounting for the discrepancy between predicted probabilities
and posterior probabilities. These factors include inaccurate modeling assump-
tion, deficiencies in the learning algorithm [10,13], hidden features being not
available at training and/or serving time [20], data up/down sampling [12,15],
etc. While much research effort has been endeavored to address these factors,
calibration provides a complementary and alternative approach to resolve the
discrepancies by transforming predicted probabilities to posterior probabilities
directly [10,15,21]. There are two additional benefits associated with calibration
from the perspective of advertising system designs. First, calibration is helpful
for a loosely coupled system design which separates the concerns of optimization
in the auction and the machine learning machinery [20]. Second, calibration is
a light-weight solution to cope with the real-time changes in the online environ-
ment whenever the user response prediction models are not able to capture the
changes in a timely manner.

For these reasons, in online advertising systems, calibration is usually
designed as a module to transform predicted probabilities to posterior proba-
bilities. Figure 1 shows the architecture of a common online advertising system.
When an ad request arrives, a set of candidate ads are selected by an AD SELEC-

TION module. Then the predicted probabilities of these ads are produced by a
PREDICTION module. These predicted probabilities are calibrated by the CALIBRA-

TION module to posterior probabilities, which are important input for the follow-
ing RANKING module, where an auction mechanism determines which ad will be
shown. Finally, the top ranked ad is shown to the user, and user behaviors are
tracked. The tracked behavior data are used for prediction model training and
calibration function learning.

The online advertising applications pose at least the following two unique
challenges to calibrating user response predictions:

– Sparsity. User response behaviors are usually very rare. For example, the
CTR in certain scenarios may be less than 1% [32]. The number of conver-
sions can be even smaller. According to our experience from an e-commerce
advertising platform, the CVR of some electronic product ads is less than
0.1%. The data sparsity problem makes it difficult to estimate the underlying
probabilities from the observations.

– Latency. User response behaviors may have substantial delays. For example,
it may take several days for a user to convert (e.g., place an order) after she
clicks an ad. If only short-term responses are considered , the underlying
probability will be underestimated. On the other hand, calibration would be
stalled if we wait for a long time to collect response data for calibration.
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Fig. 1. An illustration of a common advertising system.

In this paper, we present a comprehensive calibration solution for online
advertising. More specifically, to cope with the sparsity problem, we propose a
simple yet effective calibration algorithm. This algorithm exploits the property
that the predicted probabilities can rank samples well (with high AUC) and
adds smoothness constraint to ensure that the calibrated probabilities keep the
same order with the original predicted ones. To tackle the latency challenge, we
propose an estimation model to leverage post-click information to approximate
the real delayed responses.

The key contributions of the paper can be summarized as follows:

– We propose the Smoothed Isotonic Regression (SIR) algorithm for user
response prediction calibration. The algorithm learns a monotonically increas-
ing function to transform predicted probabilities to posterior probabilities and
effectively handles data sparsity.

– We propose the Post-Click Conversion Estimation Model (PCCEM) for
delayed response prediction calibration. The model leverages short-term post-
click behaviors for conversion approximation and effectively solves the delayed
response problem.

– We present new metrics to measure the calibration performance. Experimen-
tal evaluations on two real-world datasets and online advertising systems
demonstrate the effectiveness of our calibration solution.

2 Related Work

There has been extensive research on user response prediction [4,8,17–19,28,34],
and calibration methods have been introduced as part of the prediction solution
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[3,5,9,12,15,20]. However, the importance of calibration is usually underrated,
and there is no special study on calibration in online advertising to the best of
our knowledge.

In a more general paradigm, calibration can be regarded as a process to pro-
duce a function to transform predicted probabilities to posterior probabilities.
Existing calibration methods could be divided into parametric and nonparamet-
ric ones. Platt’s method [25] is a traditional parametric method, which tries to fit
a sigmoid calibration function [14]. Beta calibration [14] added more flexibility
by assuming that the scores are beta distributed. These methods may fail when
their parametric assumptions are not met.

The most popular nonparametric method is Isotonic Regression [23,26,31].
This method tries to find a monotonically increasing function to minimize the
squared error between the calibrated probabilities and user response values. A
commonly used algorithm for isotonic regression is the pair-adjacent-violator
(PAV) [1] algorithm. On sparse datasets, the spiking problem [24] makes this
method sensitive to the samples with maximum and minimum predicted proba-
bilities. Another commonly used calibration method is binning method [29,30],
of which the main idea is to divide samples into bins and calibrate a predicted
probability to the posterior probability of the bin it belongs to. One limitation
of this method is that the number of bins needs to be set properly. The BBQ
method [22] was then proposed to consider different number of bins and use their
weighted average to yield more robust calibrations. However, It is hard to cal-
culate accurate posterior probability of each bin on sparse dataset and binning
based methods may not work well.

3 User Response Prediction Calibration

In this section, we first define the problem of calibration and give a brief overview
of our calibration solution. Then we introduce the Smoothed Isotonic Regression
(SIR) algorithm for a general calibration solution and the Post-Click Conversion
Estimation Model (PCCEM) for solving the delayed response problem.

3.1 Problem Definition and Solution Overview

Calibration was defined as a measure: a binary classifier is perfectly calibrated if
for a sample of examples with predicted probability p, the expected proportion
of positives is close to p [2,14,21]. However, calibration has been recently used
to denote the process of obtaining the posterior probabilities [20]. It is beneficial
to define the calibration problem more precisely.

Let X ⊆ [0, 1] be the predicted probability space from a prediction model and
Y = {0, 1} be the user response space where 0 denotes negative response and 1
denotes positive response. Let random variable X denote the predicted proba-
bility and Y denote the response value. We define the conditional expectation
of Y given X = x as
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Fig. 2. Calibration solution overview.

E[Y |X = x] =
∑

y∈Y
y lim

ε→0+
P (Y = y| |X − x| ≤ ε)

= lim
ε→0+

P (Y = 1| |X − x| ≤ ε)
(1)

We are particularly interested in the error function

J(X,Y ) =
∫

X
(E[Y |X = x] − x)2dx (2)

If J(X,Y ) = 0, the prediction model is said to be perfectly calibrated. Other-
wise, let f : X → [0, 1] denote a function from X to [0, 1]. The goal of calibration
is to find the function

f∗ = arg min
f

∫

X
(E[Y |X = x] − f(x))2dx (3)

In this paper, we slightly abuse the terminology so that we define calibration
as the process of finding the optimal function f∗.
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Algorithm 1. Smoothed Isotonic Regression
Input: training set T = {(xi, yi)|i ≤ N}; bin size n;
Output: mapping function f(x);

Phase 1 – Binning

1: Sort T according to xi, get list L = [(xi, yi)], where ∀
i≤j

xi ≤ xj

2: Initialize empty list BL
3: Number of bins K =

⌊
N
n

⌋

4: for k = 0 to K − 1 do
5: S = {i|nk ≤ i < n(k + 1)}
6: lk = min

i∈S
xi, uk = max

i∈S
xi, vk =

∑
i∈S yi
|S| , ck = |S|

7: Append bin (lk, uk, vk, ck) to BL
8: end for

Phase 2 – Pair Adjacent Violator for Bins

9: Initialize empty list IBL
10: for i = 0 to |BL| − 1 do
11: Initialize l = li, u = ui, v = vi, c = ci
12: if IBL is empty then
13: IBL = [(l, u, v, c)]
14: continue
15: end if
16: Choose bin t = (lt, ut, vt, ct) at the end of IBL
17: while v ≤ vt do
18: l = lt, v = v×c+vt×ct

c+ct
, c = c + ct

19: Remove t from IL
20: Choose bin t = (lt, ut, vt, ct) at the end of IBL
21: end while
22: Append new bin (l, u, v, c) to IBL
23: end for

Phase 3 – Interpolation

24: Initialize empty list ML
25: for i = 0 to |IBL| − 2 do

26: mi = li+ui
2

, mi+1 =
li+1+ui+1

2

27: a =
vi+1−vi
mi+1−mi

, b = vi − ami

28: Append bin (mi,mj , a, b) to ML
29: end for
30: f(x) = aix + bi if (li, ui, ai, bi) ∈ ML, li < x ≤ ui

31: return f(x)

However, finding f∗ is not a trivial task. First, it is impossible to calculate
E[Y |X = x] directly because we can only observe limited samples drawn from the
joint distribution of (X,Y ). The best thing one can do is to find an approximate
function f̂∗ based on these observed samples. Second, in real world applications,
the environment may change over time and the prediction model may not capture
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these changes in a timely manner, so that the joint distribution of (X,Y ) may
change over time as well. Therefore the calibration function f̂∗ is not static and
should be updated timely. Third, another unique challenge brought by online
advertising is that user responses can be delayed [4]. Such delays hinder f̂∗ to
be updated in time.

We propose a generic calibration solution to tackle all these challenges.
Figure 2 shows the architecture of this solution. The Smoothed Isotonic Regres-
sion (SIR) module receives samples and updates the calibration function f̂∗ for
the online calibration module. For immediate response (click) prediction cali-
bration, the calibration function can be learned with predicted probability xI

and immediate response yI directly in the SIR module. On the other hand,
for delayed response (conversion) prediction calibration, a post-click conversion
estimation mechanism is designed to leverage the post-click user behaviors to
approximate the delayed response. More specifically, the Post-Click Conversion
Estimation Model (PCCEM) Training module collects short-term user behaviors
and delayed response yD to learn the PCCEM, which is used in the Post-Click
Conversion Estimation module to produce the approximated delayed response
ŷD. The benefit of this design is that the SIR module can also receive calibration
learning samples (xD, ŷD) for delayed response prediction in a timely manner.

3.2 Smoothed Isotonic Regression (SIR)

On the one hand, the joint distribution of (X,Y ) usually changes over time in
real-world applications. Hence, we believe that nonparametric methods would
be preferable to those based on some distribution assumption when designing
the calibration function f̂∗. On the other hand, recent advances of the predic-
tion models that optimize objectives based on ranking performance such as AUC
[9,16,20,34] provide more and more accurate rankings. This property could be
useful while learning calibration function. Therefore, we propose Smoothed Iso-
tonic Regression (SIR), a practical nonparametric method.

The details of SIR is presented in Algorithm 1. The inputs of SIR are training
set T and bin size n. First, a binning strategy is used to produce a sorted list
of bins BL (Phase 1). Second, Isotonic Regression is applied to ensure that the
posterior probability of each bin in BL is monotonically increasing. We adopt
the pair-adjacent-violator (PAV) algorithm due to its computational efficiency.
However, the vanilla PAV algorithm needs to be modified to be applicable to
bins. For two adjacent bins, if the monotonicity is violated, they are pooled
together to generate a new bin (Phase 2). Finally, an interpolation strategy is
used to derive a monotonic and smoothed function. We note that SIR does not
put any constraint on the choice of interpolation strategy. For simplicity, we only
present the linear interpolation strategy (Phase 3).

3.3 PCCEM Based Calibration for Delayed Response

The SIR algorithm proposed in Sect. 3.2 is a general algorithm suitable for vari-
ous calibration tasks. However, there is another challenge for certain calibration
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Fig. 3. Distribution of conversion within different time delays.

tasks: when user responses have substantial delays. For example, a conversion
may happen several days later after the click. Figure 3 shows a case of such
conversion delays for an advertiser on an e-commerce website. As we can see
from the cumulative distribution, only a small portion (8%) of the conversions
happen within an hour after the click and about 17% conversions have delays
for more than 100 h. The delays of the responses result in difficulty for updating
the calibration function: if we only use conversions in a short period of time
after the click, the conversion rate may be substantially underestimated after
calibration. However, to collect all the conversions, we may have to wait for a
long time, e.g., a couple of days, which is undesirable for the calibration function
to be updated timely. To deal with this problem, we introduce the Post-Click
Conversion Estimation Model (PCCEM) to leverage short-term post-click user
behaviors for conversion approximation. Then we use these approximated con-
versions to update calibration functions.

Before detailing PCCEM, we provide an intuitive example as follows. Suppose
a user clicks an ad on the first day, and places an order five days later. Although
we can not observe the conversion until five days later, there can be plenty of
post-click user behaviors that can help us predict how likely the user will convert.
For example, the user may spend a long time on the landing page and add the
item to shopping cart, etc. These post-click behaviors usually happen in a short
period of time, e.g., within a few minutes after the click. Strong evidence shows
that these user behaviors are very good conversion predictors. Figure 4 illustrates
one such example: both the landing page session duration and the number of
page views have positive correlation with conversion rate.

The PCCEM is built on top of the short-term user behaviors to produce
a post-click score which quantifies the probability of the final conversion. The
model is fitted with a dataset with post-click information as features and real
conversions as labels, capturing patterns in the post-click behaviors that are
correlated with the final conversion. It is worth noting that the conventional
conversion rate prediction model used in ad auctions is unable to leverage such
information since the conversion rates are predicted and used before the ad
impressions and clicks.
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Fig. 4. The relationship between post-click information within one hour after the click
and average conversion rate.

Algorithm 2. PCCEM based Calibration for Delayed Response
1: for long-term period T = 1, 2, 3, ... do
2: Generate training set S by using post-click information as features and real

responses as labels
3: Fit PCCEM mT based on S
4: for each short-term period t in T do
5: for each request i in time period t do
6: Collect post-click information
7: Use mT to produce user response score ŷi
8: Generate a sample (xi, ŷi)
9: end for

10: Generate sample set D of recent samples
11: Update f by using SIR based on D
12: end for
13: end for

With PCCEM, the update procedure of calibration solution for delayed
response consists of two parts: PCCEM is used to generate post-click score
for each click. These scores are used to update the calibration function. The
algorithm is shown in Algorithm 2.

4 Metrics

In this section, we first review traditional metrics and discuss their defects. Then,
we propose new metrics which can better quantify the calibration performance.

Predicted click over click (PCOC)1[9,12] is the most commonly used quanti-
tative metric for measuring calibration performance, which is calculated as the
ratio of the average calibrated probability and the posterior probability on the
whole dataset. The posterior probability is underestimated if PCOC < 1 and
overestimated if PCOC > 1. The less PCOC deviates from 1, the better the

1 In the literature this metric is called calibration. We use a different name here to
avoid confusion.
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calibration is. However, PCOC is insufficient to evaluate the calibration perfor-
mance. The following example shows the the defect of PCOC.

EXAMPLE 1 (Defect of PCOC). Suppose we have 20,000 samples, and
half of them have calibrated probability 0.2 whose posterior probability is 0.4
(underestimated). The other samples have calibrated probability 0.8 and their
posterior probability is 0.6 (overestimated). However, the PCOC of these 20,000
samples is 0.2∗10000+0.8∗10000

0.4∗10000+0.6∗10000 = 1. These samples have well-calibrated probability
values according to PCOC, but they really don’t.

The misleading result roots from the fact that PCOC does not consider
the distribution of calibrated probabilities. If we know the joint distribution of
(X,Y ), we can calculate PCOC for each given x as E[Y |X=x]

x . However, we can
only get limited samples drawn from the joint distribution of (X,Y ). An alter-
native is to aggregate samples with similar calibrated probabilities to approx-
imately calculate E[Y |X = x] and evaluate the error on different x. Based on
this idea, we present a new metric calibration-N (Cal-N ). First, the calibrated
probabilities are divided into N bins with equal frequency and PCOC for each
bin is calculated. Then, the error of the i−th bin can be defined as

errori =

{
PCOCi − 1 PCOCi ≥ 1

1
PCOCi

− 1 PCOCi < 1
(4)

Note that when PCOCi < 1, we use its reciprocal so that overestimation
and underestimation are equally treated. Finally, we use the root mean square
to accumulate these N errors. To put it formally, Cal-N is defined as

Cal-N =

√∑N
i=1 error2i

N
(5)

The lower the value is, the better the predicted probabilities are calibrated.
Compared with PCOC, Cal-N can accumulate the calibration error across dif-
ferent calibrated probability subspaces. Consider Example 1 again, the Cal-N
(N = 2) of the 20,000 samples is 2.4, which significantly differs from 0, which
means these samples don’t have well-calibrated probability values.

In online advertising, a campaign is the minimum entity for an advertiser to
setup a marketing strategy, which includes budget, target ad audience, creatives
and bid price, etc. Therefore, we are concerned with calibration performance
of each advertising campaign. Thus we also propose a domain-specific metric
grouped calibration-N (GC-N ), which is the weighted average Cal-N of m cam-
paigns.

GC-N =

∑m
j=1 wjCal-Nj∑m

j=1 wj
(6)
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where Cal-Nj and wj are Cal-N and importance weight of campaign j respec-
tively. In our experiments, wj can be the number of samples in the j-th campaign.
The lower GC-N is, the better the calibrated result is for each campaign.

It is worth mentioning that log-loss is commonly used to compare the predic-
tion performance in some binary supervised learning problem literatures [11,18].
A smaller log-loss means better probabilities. However, the absolute value of log-
loss is not a good indicator of how well the predictions are calibrated. For exam-
ple, suppose we get samples with 0/1 labels drawn from a binomial distribution
with p = 0.5, the log-loss on these samples is not 0 if we predict the ground
truth probability 0.5 for each sample. In real world applications, it is impor-
tant to know the performance of perfectly calibrated probabilities because this
could help us to measure the available performance optimizations for a certain
problem.

5 Experimental Evaluation

In this section, we conduct experiments on three real-world online advertising
datasets. First, we report the experiment results on CTR calibration, comparing
SIR with state-of-the-art methods. For delayed response prediction calibration
problem, we report the experiment results on CVR calibration. Our solution is
also deployed for online A/B test.

5.1 Evaluation of SIR

Dataset. The experiments are conducted on two datasets. Dataset A is from a
world-leading advertising platform2. This dataset comprises roughly 50 million
impressions randomly sampled from the ad serving log from July 1 to July 25,
2018. Each impression has its predicted CTR and a label indicating whether the
user clicks on the ad. Dataset B is a public dataset from iPinYou3. Details of this
dataset are introduced in [32]. Since there is no predicted CTR in this dataset,
we first use the training set to construct a prediction model with GBDT [7],
then produce predicted probabilities on test set. The test set augmented with
predicted CTR is used for our experiment on calibration.

To make the experimental setup similar to real-world application scenarios,
for both datasets, we update and evaluate calibration functions of different meth-
ods by an hourly sliding window: for each hour, the calibration function of each
campaign is updated on the set of samples in the past 24 h (training set) and
evaluated on the set of samples in next hour (test set). Then, we aggregate all
the hourly results.

2 Dataset A is available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=
40792.

3 iPinYou dataset is available at http://data.computational-advertising.org.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=40792
https://tianchi.aliyun.com/dataset/dataDetail?dataId=40792
http://data.computational-advertising.org


Calibrating User Response Predictions in Online Advertising 219

Comparative Experiment. To validate the effectiveness of our method, we
compare the performance of Smoothed Isotonic Regression (SIR) against the
state-of-the-art methods. The methods of the comparative experiment are as
follows:

(1) BBQ [22]: the state-of-the-art binning based method. This method considers
different number of bins and uses their weighted average to yield more robust
calibration results. The parameters of BBQ are set as the same as [22].

(2) IR [3]: the most popular nonparameteric method. We implement this
method by the PAV algorithm [1].

(3) Beta calibration [14]: the state-of-the-art parametric method. This method
assumes that the predicted probabilities and user response values are beta
distributed.

(4) SIR: our proposed method in this paper. We set bin size n as 1,000.

Table 1 shows GC-N of these methods on the test sets with various N . Usu-
ally a larger N will help us evaluate the performance in a more detailed way
(Recall that GC-N reduces to PCOC with N = 1). As we can see, SIR can
decrease GC-N 10.4% on average on dataset A and 29.9% on average on dataset
B respectively. SIR outperforms BBQ because SIR leverages the property that
the predicted probabilities can rank samples well. BBQ assumes that all bins
are independent with each other, so it fails to exploit the ranking relationships
between different bins. SIR outperforms IR because the binning phase in SIR
reduces the effect of the spiking problem [24] of the PAV algorithm. This prob-
lem makes PAV algorithm sensitive to the samples with maximum predicted
probabilities and positive labels. This would make IR performs instability on
sparse dataset. As we can see, the performance of IR is bad on dataset A. Beta
calibration has the closet performance to SIR, which decreases GC-N 9.9% on
average on dataset A and 27.7% on average on dataset B respectively. Since
beta calibration has pre-defined parametric function curve, the performance is
less affected by data sparsity. But it’s also this parametric assumption that lim-
its its accuracy of fitting, while SIR is more adaptive to various of distributions
due to no distribution assumption.

5.2 Evaluation of PCCEM Based Calibration

Dataset. The dataset in this experiment is from a world-leading advertising
platform4. This dataset comprises roughly 7 million clicks randomly sampled
from the ad serving log from July 1 to July 21, 2018. Each record in the dataset
contains information related to a click, including pre-click and post-click features.
The pre-click features include a lot of user behavior information before click such
as number of views/purchases. The post-click features includes landing page
session duration after click, number of views/purchases after click in an hour,
number of add items into cart/favorites in an hour. Data between July 15th to
July 21th are used as test set.
4 This dataset is available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=

40796.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=40796
https://tianchi.aliyun.com/dataset/dataDetail?dataId=40796
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Table 1. GC-N of different methods on two test sets. For a sufficient comparison, we
use N = 3, 4, 5 to calculate GC-N. The best value of them on test sets is highlighted.

Dataset Method N = 3 N = 4 N = 5

A No calibration 0.63 0.67 0.72

(1) BBQ 0.57 (−9.5%) 0.63 (−6.0%) 3.05 (+323.6%)

(2) IR 0.82 (+30.0%) 0.89 (+32.8%) 0.98 (+36.1%)

(3) Beta calibration 0.56 (−11.1%) 0.60 (−10.4%) 0.66 (−8.3%)

(4) SIR 0.56 (−11.1%) 0.60 (−10.4%) 0.65 (−9.7%)

B No calibration 0.40 0.45 0.46

(1) BBQ 0.71 (+77.5%) 0.81 (+80.0%) 0.84 (+82.6%)

(2) IR 0.31 (−22.5%) 0.35 (−22.2%) 0.40 (−13.0%)

(3) Beta calibration 0.27 (−32.5%) 0.32 (−28.9%) 0.36 (−21.7%)

(4) SIR 0.27 (−32.5%) 0.30 (−33.3%) 0.35 (−23.9%)

Comparative Experiment. In this section, we compare the conversion cali-
bration performance of different methods. To make it fair, all the methods use
our proposed SIR algorithm as the calibration algorithm. We consider the fol-
lowing methods:

(1) Short-term Calibration (STC): For each click, we only use the short-
term conversions that are within one hour after the clicks to update the
calibration function.

(2) Long-term Calibration (LTC): For each click, we wait for 7 days to
get the true conversions. In this case, the calibration function can only be
updated with real conversions in the past 7 days and the clicks no later than
7 days ago.

(3) PCCEM based Calibration (PCCEM): We update PCCEM on a daily
basis: each day whenever the new conversion data are available, PCCEM is
updated. For each hour, when the new short-term behavior data are avail-
able, post-click scores are produced by the latest PCCEM, then the calibra-
tion function is updated based on these scores.

Table 2 shows the experiment results for the three methods. As we can see,
STC has the worst performance as the short-term conversions underestimates
the conversion rates by a large margin. Method LTC makes calibration func-
tion updating stalled so it may not capture the relationship between predicted
conversion rate and real conversion in time. Method PCCEM outperforms both
methods, effectively improving calibration performance with delayed response.

5.3 Online Evaluation

To investigate whether our proposed approach can help improve the business
performance, we also conducted an online A/B test experiment on a world-
leading advertising platform. The experiment lasted for seven days with the
setup that the control bucket uses the predicted probabilities given by a deep
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Table 2. GC-N of three calibration methods for predicted conversion rate calibration.

Method N = 3 N = 4 N = 5

No calibration 4.46 4.47 4.49

(1) STC 5.67 (+27.1%) 5.91 (+32.2%) 7.11 (+58.4%)

(2) LTC 1.57 (−64.8%) 1.72 (−61.5%) 1.81 (−59.7%)

(3) PCCEM 0.50 (−88.8%) 0.58 −87.0%) 0.71 (−84.2%)

Table 3. Business result of A/B test.

Business metrics RPM CTR ROI

Improvement (%) +3.86% +8.93% +5.07%

learning-based prediction model and the test bucket uses the further calibrated
probabilities produced by our proposed approach. Each bucket was assigned 10%
of all the online traffic which was in the magnitude of tens of millions. Generally
speaking, an advertising platform strives to provide values to the advertisers,
the users, and the platform itself. A better response prediction is expected to
contribute to all these three values. We use return on investment (ROI)5 to
indicate the advertisers’ benefit, CTR to indicate the user experience and revenue
per mille (RPM) to quantify the platform’s gain. Results are shown in Table 3,
we can observe that our calibration solution can increase RPM by 3.86%, CTR
by 8.93%, and ROI by 5.07%.

6 Conclusion and Future Work

In this paper, we introduced a calibration solution for user response prediction in
online advertising, including the SIR algorithm for data sparsity problem and the
PCCEM for delayed response problem. We also proposed new metrics to evaluate
the effectiveness of calibration. Experiment results on real-world datasets have
proven that the calibration solution can lead to significantly better results both
in terms of technical measurements and business performance.

There is an interesting direction for our future work. In many applications,
the distribution of the observed samples can be different from the distribution of
the ones whose response probabilities need to be predicted and calibrated [33].
Therefore, it is beneficial to design an unbiased calibration algorithm in this case.
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Abstract. Over the past decade, the evolution of video-sharing plat-
forms has attracted a significant amount of investments on contex-
tual advertising. The common contextual advertising platforms uti-
lize the information provided by users to integrate 2D visual ads into
videos. The existing platforms face many technical challenges such as
ad integration with respect to occluding objects and 3D ad placement.
This paper presents a Video Advertisement Placement & Integration
(Adverts) framework, which is capable of perceiving the 3D geometry
of the scene and camera motion to blend 3D virtual objects in videos
and create the illusion of reality. The proposed framework contains sev-
eral modules such as monocular depth estimation, object segmentation,
background-foreground separation, alpha matting and camera tracking.
Our experiments conducted using Adverts framework indicates the sig-
nificant potential of this system in contextual ad integration, and pushing
the limits of advertising industry using mixed reality technologies.

Keywords: Advertisement · Augmented reality · Deep learning

1 Introduction

With the popularity of 4G networks and the decline in data traffic tariffs,
the video content industry has maintained a relatively high growth rate. It is
expected that the overall market size in 2021 will approach 211 billion RMB.
An increase of 351% as compared to 2018 [1]. Such growing video demand and
the increase of user generated videos creates additional challenges for advertise-
ment and marketing agencies. The agencies need to devise innovative strategies
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to attract the attention of end-users. Traditionally, advertisements were added
into existing videos as overlay, pre-roll, mid-roll or post-roll. These approaches
are disruptive to the user’s experience for online streaming applications.

In this paper, we solve the problem of disruptive user experience by creating
a 3D-advertisement creation system. Therefore, this work describes a proof-of-
concept prototype system that enables users to seamlessly insert a 3D object in
any user-generated video. The user can select a 3D object from the library of 3D
objects with in the proof-of-concept prototype, which can then be placed on any
planar surface within a video scene. Our system can automatically analyze dif-
ferent depth layers in a video sequence and seamlessly integrate new 3D objects
with proper occlusion handling.

1.1 Related Work

In the literature, there are several works in the area of advertisements in images
and video streams. However, most of the existing work focus on the identification
of logos and advertisement billboards in videos. Covell et al. in [8] used audio
and video features to accurately identify the sections in the video that contain
the ads. This assists them to replace the existing ads with user-specific adverts
in redistributed television materials. Hussain et al. proposed a novel framework
in [17] that understands the general sentiments of adverts using a large image-
and video- datasets. Recently, Nautiyal et al. [28] used pre-trained deep learning
models to identify existing 2D adverts in video streams, and seamlessly replace
them with new adverts. Using large-scale annotated datasets of billboards [10,
11], it provides them with an end-to-end framework for video editors to perform
2D advert placements. Their system assists in detecting frames in a video that
contains a billboard [15], localizes the billboard in the detected frame [12], and
subsequently replace the existing billboard with a new 2D advertisement. In this
paper, we generalize this problem of product placements into any user-generated
videos, and artificially augment 3D adverts into the existing scenes.

1.2 Contributions and Organization of the Paper

Our contribution in this paper is two fold: (a) we propose a proof-of-concept
prototype system that enables 3D computer graphic advertisement objects to
be inserted seamlessly into video streams; and (b) we thereby establish a new
paradigm in product placements for marketing agencies. Our proposed system
will greatly assist video editors and content producers reduce the time it takes
to dynamically generate augmented videos.

The remainder of the paper is arranged as follows: Sect. 2 briefly describe
the technology behind our cloud-based advertisement creation system. Section 3
presents information regarding the design and development of the proof-of-
concept prototype system. Section 4 describes the various use cases and asso-
ciated applications for the developed prototype. Section 5 concludes the paper.
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2 Technology

This section describes the methods and technologies employed in the Adverts
framework including the monocular depth estimation module, camera tracking,
interactive segmentation and background matting.

2.1 Monocular Depth Estimation

Monocular depth estimation is used to understand the 3D geometry of the scene
and anchor the 3D plane on which the object will be placed. The classical depth
estimation approaches heavily rely on multi-view geometry [4,9,20,33,38] such
as stereo image [31,32]. These methods acquire depth information by utilising
visual cues and different camera parameters which are not often available in
offline monocular videos. The idea of using the monocular image to capture
depth information could potentially solve the memory requirement issue of the
conventional methods, but it is computationally difficult to capture the global
properties of a scene such as texture variation or defocus information. The recent
advancement of Convolutional Neural Networks (CNN) and publicly available
datasets have significantly improved the performance of monocular depth esti-
mation [5,13,14,22,37].

Several deep learning based monocular depth estimation networks are stud-
ied and evaluated in this research [13,16,23,24,34]. Among these, the network
proposed by Hu et al. [16] illustrated a superior performance in terms of accu-
racy and computational time compared to others. More importantly, this model
showed a better generalization in depth scales due to the multi-scale feature
fusion module integrated in the architecture. Figure 1 presents a sample of the
monocular depth estimation followed by a localised plane in the scene. The ori-
entation of the plane is obtained by calculating the normals from the depth
information. The model by Hu et al. [16] is employed as the first module in
Adverts framework.

Fig. 1. Monocular depth estimation on a real-world scene. From left to right: input
image; estimated depth map, localised plane using normal estimation.
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2.2 Camera Tracking

One of the very essential components of any augmented reality platform is track-
ing the camera motion to seamlessly integrate 3D object into the scene. Online
augmented reality tools often utilise accelerometer, GPS, and solid state com-
pass to track the camera motion in real-time. Such information is not available
in offline scenarios. Adverts framework takes advantage of the traditional Struc-
ture from Motion (SfM) pipeline. Initially the user identifies a certain number of
keyframes with manually matched feature points. Further, SIFT features [26] are
detected and matched between the selected Keyframes followed by an optimiza-
tion applied to refined the 3D projected points. The next step involves automatic
feature matching between keyframes and non-keyframes. The matched features
from each non-keyframes are triangulated and reconstructed using the previous
keyframes [R|T ]. The final step of the camera tracking process involves a large
scale sparse bundle adjustment [2] with least square optimization applied to
refine each non-keyframe's [R|T ]. Figure 2 illustrates the pipeline implemented
to track the camera motion in Adverts framework. The camera projection matrix
obtained for each frame is later used to project the 3D objects to camera space.

Fig. 2. Camera tracking pipeline implemented in Adverts framework.
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2.3 Interactive Segmentation

Determining the occluding object in an augmented reality application highly
depends on the location of the 3D object and structural accuracy of the estimated
depth map. By differentiating different layers of depth information, one can
consistently integrate a virtual object in the scene. However, the quality of the
integration result depends on the following measures:

1. How accurate the general structure of depth map is?
2. How temporally consistent the depth of the occluding object is across the

entire video?
3. How much detail is preserved in the depth structure of the occluding object?

To compensate for the flaws of the estimated depth maps such as inaccurate
depth boundaries, Adverts framework takes advantage of object segmentation
in videos to produce binary masks of the occluding object. The generated masks
are later used to estimate the alpha matte which is explained in the next section.
This module allows users to interactively select the occluding object and decide
which part of the scene is causing the occlusion by providing a broader control
over tracking the occluding object across the entire video.

Similar to the depth estimation module, several methods are studied and
evaluated for the segmentation part [3,7,18,19,25,27,29,30,35,36]. The prelim-
inary evaluation based on the DAVIS interactive segmentation benchmark [6]
showed that the deep learning based model proposed by Oh et al. [29] has a
superior performance compared to the state of the art methods. This model
was also ranked as the fastest one in the benchmark with the inference time
of 0.2s for an image with 800 × 600 pixels resolution. The network proposed
by Oh et al. [29] is constructed of two modules: interactive segmentation and
mask propagation. The input to the interactive module is a tensor including a
frame, the object mask from the previous round and two binary user annotation
maps indicating the foreground and background regions. Further, the propaga-
tion module accepts a frame, its previous mask and the mask of the previous
frame as the input to predict a new mask for the current frame. This model also
utilises a Feature Aggregation Module designed to accumulate the information
of the target object from all user interactions.

The Adverts framework employs the model from [29] to interactively obtain
the occlusion masks from users. Figure 3 demonstrate an example of the inter-
active segmentation implemented in this paper.

2.4 Background Matting

To further refine the segmentation masks acquired from Sect. 2.3 and achieving
fine level of details, the Adverts framework refers to alpha matte estimation.
This is performed to calculate the opacity value of each blended pixel in the
foreground object.
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Fig. 3. Illustration of occlusion mask. User input, segmentation, propagation.

Generally, the composition image Ii is represented as a linear combination of
the background Bi and foreground Fi colors [39]:

Ii = αiFi + (1 − αi)Bi (1)

where αi ∈ [0, 1] denotes the opacity or alpha matte of the foreground at pixel
i. Often users provide guidance in a form of a trimap to solve this problem.
Trimap assigns a label to every pixel as foreground α = 1, background α = 0 or
unknown opacity. The goal of the alpha matting algorithms is to estimate the
opacity value of the unknown regions by utilising the pixel values from known
regions. To achieve this goal, we investigated the effect of known background
information in the matting process. This is done by introducing a Background-
Aware Generative Adversarial Network to estimate alpha channels. Unlike the
conventional methods, this architecture is designed to accept a 7 channel volume,
where the first 3 channels contain the RGB image, the second 3 channels contain
the RGB background information and the last channel contains the trimap. The
preliminary experiments using the trained model indicates a significant improve-
ment in the accuracy of the alpha mattes compared to the state of the art. The
full details of this module including the background reconstruction and matting
blocks are available as a preprint article on arXiv [21].

3 System Design

In this section we describe the design and development, as well as the main
technologies used for building the proof-of-concept prototype system that this
work presents. The system can be split into two main components: user interface
and back-end. Figure 4 illustrates the main structure of the system.

3.1 User Interface

The user interface was implemented as a web application using modern web
based technologies. This choice is supported by the fact that web based tech-
nologies only need a browser to run, thus making them cross platform compati-
ble. The main web based technologies utilised in the user interface are: Aurelia,
Three.js, Async, Bootstrap, Fontawesome, as well as state of the art web APIs
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Fig. 4. System design of our proposed Adverts framework.

such as the Broadcast Channel API, the Canvas API, the Fetch API, and the
Web Storage API1.

Aurelia can be described as a core building block of the user interface and is
a JavaScript client framework for web, mobile, and desktops. Three.js is an open
source JavaScript library for 3D graphics on the web that supports WebGL.
Async is a JavaScript library which provides functions for working with asyn-
chronous code. Bootstrap is an open source CSS framework and Fontawesome is
an icon toolkit. The Broadcast Channel API allows bi-directional communica-
tion between browsing contexts (windows, tabs, frames, or iframes) and workers
on the same origin. The Canvas API can be used for animation, game graph-
ics, data visualisation, photo manipulation, and real-time video processing. The
Fetch API provides an interface for fetching resources. The Web Storage API
allows browsers to persistently store key/value pairs.

Figure 5 depicts the video-editor of the user interface, which can be split into
three main components. Component A presents the user with a visual output
of the manipulated video. It consists of a canvas element to which frames of
the selected video, as well as 3D objects, occlusion masks, and depth estima-
tion frames are drawn. If we examine Fig. 5, we can see that a 3D model of a
yellow duck is superimposed onto the current selected video. Figure 6 illustrates
the design of the rendering canvas for component A of the video-editor page.
The rendering canvas consists of one main canvas, and several hidden canvasses.
The hidden canvasses are created in memory and each is responsible for ren-
dering a specific video layer. The layers are composed of video frames of the
selected video, depth estimation frames, 3D scene frames, background subtrac-
tion frames, alpha matting frames, and foreground reconstruction frames. The
canvasses are updated ever iteration of the main rendering loop, where pixels
are then extracted and merged into the main canvas.

1 Aurelia, Three.js, Async, Bootstrap, Fontawesome, Whammy, Broadcast Channel
API, Canvas API, Fetch API, Storage API.

https://aurelia.io
https://threejs.org/
http://caolan.github.io/async/v3/
https://getbootstrap.com/
https://fontawesome.com/
https://github.com/antimatter15/whammy
https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API
https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Storage
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Fig. 5. User interface of our Adverts framework.

Fig. 6. Design of canvas layers in Adverts framework.

Component B consists of a side-menu where the user is presented with a series
of options. These options include opening the plane inspector, model inspector,
light inspector, camera tracking inspector, mask inspector, as well as export
and debug options. The plane inspector is used to add a plane to 3D scene
superimposed onto the current frame. The position of the frame is calculated
using depth estimation information. This is crucial, as the plane acts as a anchor
point for a 3D model. Users can use the plane inspector to change to positions,
size, and rotation of the inserted plane. Further, the user also has the option
to hide/show to plane. The model inspector allows users to select one of the
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included 3D models, and add it to the plane within the superimposed 3D scene.
Similar to the plane inspector, users can change the position, rotation, and size
of the 3D model. Figure 5 shows the model inspector option currently selected.
The light inspector allows users to manipulate lighting settings with the 3D
scene to mimic those of the selected video. Users can switch lights on and off, as
well as change the color, intensity, and position of various lights (ambient lights,
spot lights, etc.). The camera tracking inspector allows users to add tracking
points to the video on several key frames and start the tracking process in the
back-end. The mask inspector allows users to add an occlusion mask layer to the
selected video for a range of frames. The user can select an object within the
video that a mask should be created for.

Component C includes options that allow users to play, pause, fast forward,
and reverse the selected video. Further, an overview timeline and a detailed
timeline are also included in this component. The overview timeline shows the
user in which frame they are currently located with the video. The detailed
timeline shows the user which tracks have been added to the selected video.

3.2 Back-End

The development of back-end service is built upon the concept of Microservices
Architecture. Reason for choosing this architecture lies behind its core concept of
the Single Responsibility Principle which in simple terms means “gather together
those things that change for the same reason and separate those things that
change for different reasons.”

A microservices architecture takes this same approach and extends it to
the loosely coupled services which can be developed, deployed, and maintained
independently. Each of these services is responsible for a discrete task and can
communicate with other services through simple APIs to solve a larger com-
plex business problem. In our application, each module was independent of each
other only those functionalities were grouped together which has a dependency
with the previous module. Once the microservice is developed each one can be
deployed independently which offer improved fault isolation whereby in the case
of an error in one service the whole application doesn’t stop functioning. Another
benefit which this architecture brings to the table is the freedom to choose tech-
nology stack(programming language, databases, cache etc) which is best suited
for the service instead of using the one-size-fits-all approach.

The blue shaded region in Fig. 7 is the back-end service where three major
microservices work as a backbone to the whole application for providing core
services. The three major services are: API Gateway, Video Upload, Video Pro-
cessing.

API Gateway. This service is the first point of contact to any request coming
from outside of the world. The API Gateway is responsible for authenticating the
request and then navigating the request to the requested service. This service can
also be called a proxy server as this is the interface for all the requests coming
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Fig. 7. Back-end Microservices Architecture in Adverts framework.

from the outside world and prevent direct exposure of the delicate services.
The API Gateway accommodate the User Authentication and Service Registry
Module

Authentication. For authenticating user request, JWT Authentication mecha-
nism is being used which is one of the recommended standard authentication
processes for microservices architecture. JWT is open industry-standard RFC
7519 for representing claims securely between two parties. It provides a compact
and self-contained way for securely transmitting information between parties
as a JSON object. This information can be verified and trusted because it is
digitally signed.[jwt.io].

Service Registry. Service Registry is the discovery application for the microser-
vices who want to use the API gateway for authentication and as a proxy server.
We have used Eureka Service Registry developed and maintained by Netflix for
their microservices which is robust and fast and known for its efficiency.

Video Upload Service. The input video upload is supported by video-upload
services where the uploaded video is pre-processed i.e. the frames are extracted
from the video and the frames are then stored in four different resolution (origi-
nal, 480p, 720p, 1080p) along with storing the video property information in the
database.

Video Processing Service. This is the service where the core functionalities
are written and support the application. This service is majorly divided into
three different components: Depth Estimation, Occlusion Detection, and Camera
Tracking.

All these three components are dependent, hence they have been grouped
together to support each other in functionality. Since the whole video processing
is of heavy computation and time-consuming it does not make sense to restart
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the whole service from the beginning if the process is interrupted with an error
at any stage. We go with marking the checkpoints at each stage and save the
latest results of the processing. If the process is interrupted then the work will
be resumed from the last checkpoint with loading the previous results whenever
the process restarts.

4 Application

This section includes several examples of how the proof-of-concept prototype
system can be used to dynamically generate augmented videos. The examples
include superimposing a 3D object into the existing video stream, creating an
occlusion mask for the inserted 3D object, as well as tracking camera movement.
Figure 8 illustrates these processes.

Fig. 8. Static and dynamic camera workflows.

4.1 Superimposing 3D Objects

Superimposing a 3D object onto a video stream consists of two main steps: 1)
adding plane to the video and 2) adding a 3D model to the superimposed plane.
Figure 9 shows an example of both steps. To add a plane to the video, the user
can select the plane inspector menu option (more details in Sect. 3.1). Once this
option is selected, the user can move the mouse cursor over the video, which will
display a temporary plane at the current position of the cursor. The user can
then click the left mouse button to permanently add the plane to the video. The
position of the plane is calculated from the position of the mouse cursor, as well
as from depth information obtained from the depth estimation module. Addi-
tionally, the user also has the option to manually change the position, rotation,
and size of the superimposed plane, after it was added to the video. To add a
3D object to the superimposed plane, the user can select the model inspector
menu option (more details in Sect. 3.1). Once the menu option is selected, the
user can choose a 3D object to add to the video from the 3D object library. The
user has the option to manually change the position, rotation, and scale of the
3D object.
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Fig. 9. Illustration of superimposing plane and 3D object onto video.

4.2 Occlusion Masks

To create an occlusion mask for a superimposed 3D object, the user must first
determine the occluding area with the video. Once determined, the user can
select this area and a segmentation mask is created using the interactive seg-
mentation module described in Sect. 2.3. The user can then choose to modify the
segmentation mask, or propagate it over a range of video frames. After verifying
if mask propagation was successful, the user can start the process of creating the
occlusion masks for the range of selected frames. Once complete, the interface
can be used to export the newly created video. Figure 10 depicts the final result
of adding a 3D object and an occlusion mask to the video.

Fig. 10. Superimposing 3D object onto video with occlusion mask.

4.3 Camera Tracking

To track camera motion over a series of frames, the user must first manually add
tracking feature points to the video. The user can add these points by using the
mouse cursor to place a marker over the corresponding object within the video.
Each frame that the user adds these points to becomes a keyframe. Once the user
has completed adding the markers, the camera tracking process can be started.
More information regarding this process can be found in Sect. 2. An additional
window in the user interface is automatically opened, once the tracking process
has completed. This window displays a 3D view of the video scene, in which
matched feature points and debug cameras are drawn. Figure 11 B shows an
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example of this window. The red circles correspond to the matched feature points
that the camera tracking algorithm returns. This additional window gives the
user an overview of how the cameras position and orientation can change over a
series of frames. Further, it can also be used to help with the placement of 3D
objects and lights.

Fig. 11. Camera tracking - A) User interface B) 3D view of tracking information

5 Conclusion

In this work we presented a proof-of-concept prototype system that enables 3D
computer graphic advertisement objects to be inserted seamlessly into video
streams. Our goal was to establish a new paradigm in product placements for
marketing agencies and facilitate the process of dynamically generating aug-
mented videos. We show that the proof of concept prototype can be used to
inserted 3D objects into existing video streams, create occlusion masks for these
objects, as well as track camera movement.
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Abstract. Machine learning classifiers often require regular tracking of
performance measures such as precision, recall, F1-score, etc., for model
improvement and diagnostics. The population over which accuracy met-
rics are evaluated can be too large for a full ground-truth assessment and
so only small random samples are chosen for estimation. Ground-truthing
often requires human review, which is expensive. Moreover, in some busi-
ness applications, it may be preferable to minimize human contact with
the data in order to improve privacy safeguards. Thus, sampling meth-
ods that can provide estimates with low margin of error, high confidence,
and small sample size are highly desirable. With an ensemble of multiple
binary classifiers, choosing the right sampling method with these desired
properties and small size for the collective sample becomes even more
important. We propose a sampling method to estimate the precisions of
multiple binary classifiers that exploits the overlaps between their pre-
diction sets. We provide theoretical guarantees that our estimators are
unbiased and empirically demonstrate that the precision metrics esti-
mated from our sampling technique are as good (in terms of variance
and confidence interval) as those obtained from a uniform random sam-
ple.

We applied our sampling technique to performance evaluation of an
ensemble of binary classifiers. The reduction in sample size depends on
the extent of overlap between the predicted positive set of the ensem-
ble and that of the individual classifiers. Since we do not have a closed
form solution for quantifying the impact of the overlap, we relied on
simulations to investigate how the overlap between an ensemble (par-
ent) and component (child) classifier affects the overall sample size. We
found that for every combination of parent and child intersection ratio we
tested on, there were significant savings in sample size. Moreover, across
all these simulations, we found a mean reduction of 33% in the sample
size needed from a child. Our simulations also confirm that the preci-
sion metrics estimated from the samples generated using our sampling
technique have accuracy comparable to those estimated from uniform
random sampling.
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1 Introduction

Machine learning (ML) models rely on the assumption that the target data
distribution is close (in statistical sense) to the training data distribution. While
the latter is static when the models are being developed and trained, in many
applications, the target data distribution may vary over time due to the dynamic
nature of production workloads that are classified by the models. In order to
continuously evaluate ML models, accuracy metrics such as precision and recall
need to be measured on a regular basis. For a binary classifier that classifies
any instance into either P (positives) or N (negatives), precision is defined as
the fraction of instances predicted as positive that are in fact positive whereas
recall is defined as the fraction of positive instances that are correctly predicted
as positive. More precisely, if TP, FP, FN denotes True-Positive, False-Positive,
and False-Negative instances respectively based on the classification decisions
by the model, then precision = TP/(TP + FP) and recall = TP/(TP + FN).

One of the main bottlenecks in tracking these model performance metrics
is the need for labeling of the target data used in the evaluation. The label
assignment process, called annotation or ground-truthing, in ML applications is
often done manually, which is not scalable. In particular, the cost of annotating
a dataset increases significantly with the size of the dataset. Additionally, in
some applications, it is preferable to minimize the exposure of data to manual
reviewers, for example, to improve privacy safeguards and increase security.

Quite often, an ML application is composed of an ensemble of multiple clas-
sifiers. As a result, for model performance diagnostics and tracking, it becomes
important to evaluate accuracy metrics of not only the ensemble but also each
individual ML classifiers. Therefore, a challenging problem is how to estimate
the performance metrics (e.g., precision) of multiple (binary) classifiers with low
error, high confidence, and minimal ground truth cost. In this paper, we focus
only on the precision performance metric, however, our techniques can be gen-
eralized to other measures.

There are two main approaches to estimating the precision of a classifier:
simple random sampling and stratified sampling. These sampling approaches
select a small, but statistically relevant, number of instances, called a sample
from the underlying population (i.e., the predicted positive set of a classifier).
Based on the ground-truth assignment of labels to instances in the sample, the
precision is estimated using the formula, discussed earlier, but applied to the
sample instead of the population.

In simple random sampling, one chooses a uniformly random sample from
the population. The main parameter here is the sample size, which as explained
in Sect. 3.2, depends on the desired level of accuracy and confidence. Simple
random sampling is quite effective in that it yields an unbiased estimator for
the precision. However, it can result in a larger sample size than possible with a
stratified sampling.
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Stratified sampling divides the population into k disjoint strata or bins, for
some fixed k. It requires two important considerations: (a) stratification method -
how the bins/strata are constructed and (b) allocation method - how the sample
size is split across all the bins. It is expected that stratification results in near
homogenous bins, i.e., bins containing high concentration of instances with same
ground-truth labels, and therefore it lowers the variance of the precision within
each bin. By giving different weights to bins and taking a weighted average of
the precision estimation from each bin, we can get an unbiased estimator for the
precision of the classifier. Also, if the variance in each bin is low, the resulting
estimator will also have low variance over the population.

In this work, we use the observation that if a random sample for one classifier
overlaps with the prediction set of another, then we can reuse the common
instances so that only a smaller sample size is needed for the other classifier.
Large-scale production systems often consist of multiple binary classifiers whose
individual predictions contribute to the final decision of an ensemble composed
of individual classifiers. This observation is particularly useful in such systems
since the classifiers are expected to have overlaps in their prediction sets. We
give theoretical justification and share experimental findings to show that the
new sampling scheme, based on this observation, reaches the same accuracy at
a significantly reduced sample size.

We describe our algorithms for estimating the precisions of multiple binary
classifiers in Sect. 4. We address the case of an ensemble model and its con-
stituent binary classifiers (Sect. 4.1). We present both theoretical and experi-
mental results to demonstrate that our solution achieves the desired objectives:
low error, high confidence, and low ground truth sample size compared to the
baseline (Sects. 4.1 and 5). Generalization of our method to other accuracy met-
rics (e.g., recall) is explained in Sect. 6. Finally, we conclude with a summary of
the main results (Sect. 7).

2 Related Work

Bennett et al. [1] adapts stratified sampling techniques to present an online
sampling algorithm to evaluate the precision of a classifier. They experimentally
demonstrate that their algorithm achieves an average reduction of 20% in sample
size compared to simple random sampling and other types of stratified sampling
to get the same level of accuracy and confidence. Similarly, Kumar [6] proposes
strategies based on stratified sampling to estimate the accuracy of a classifier.
They also experimentally show that their methods are more precise compared to
simple random sampling for accuracy estimation under constrained annotation
resources. In Kataria et al. [4], an iterative stratified sampling strategy is pre-
sented that continuously learns a stratification strategy and provides improved
accuracy estimates as more labeled data is available. However, for more thanone



Estimating Precisions for Multiple Binary Classifiers Under Limited Samples 243

classifier, it is unclear whether these stratified sampling based methods applied
individually to the constituent classifiers would give a similar saving on the size
of the collective sample set. Our proposed sampling algorithm relies on uniform
random sampling and achieves significant saving (e.g., on average ≈33% and
≈85% average reduction in sample size for any individual classifier in two differ-
ent experimental settings) compared to the baseline of simple random sampling
when applied individually on multiple classifiers for estimating their precisions.

For multiple classifiers, unsupervised methods for estimating classifier accu-
racies, ranking them, and constructing a more accurate ensemble classifier
based solely on classifier outputs over a large unlabeled test data are presented
in [3,7,8]. However, these methods rely on assumptions such as conditional inde-
pendence of classifiers or certain constraints on classifier errors, which limits
their practical applicability in many situations. Our work makes no assumption
regarding the classifiers.

3 Preliminaries

3.1 Notation

We consider binary classifiers that map instances from some universe Ω to either
positives (P) or negatives (N ) label. The predicted positive set (predicted negative
set) of a classifier is the set of all instances that it maps to P (resp., N ). Let
sequence S ⊆ Ω be an ordered multi-set in Ω and denote its length by |S|,
which includes duplicity. A subsequence of a sequence S contains a subset of
elements and preserves their ordering in S. The notation A − B denotes the
set difference between any two sets A and B in Ω. For any sequence S and set
A, we denote S ∩ A to denote the subsequence of S that contains all and only
those elements that are in A. If S and T are sequences, then S + T denotes the
sequence obtained by appending T to S to the right of S. If a is any instance
and S is a sequence, then count(a, S) denotes the number of occurrences of a in
S.

3.2 Sample Size to Estimate Precision

The precision of a classifier C for positives P can be estimated by uniformly
sampling instances from the predicted positive set of C. Given a sample with
sufficient number of such instances, we can label each instance to determine the
number of True-Positives (TPs) and False-Positives (FPs) in the collection. A
point estimate p̂ for the precision p is: p̂ = TP/(TP + FP).

To determine a (1 − δ)-confidence-interval with ±ε additive margin of error,
the sample size needed is given by ε ≥ z1−δ × s/

√
n, where s is the standard

deviation of each random instance, n is the number of samples, and for any
0 < α < 1, zα is the α’th quantile1 of the standard normal distribution. Since a
1 zα is a factor such that a normal r.v. N(μ, σ) lies inside the interval μ ± zασ with

probability α.
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sample instance being in P is a Bernoulli trial with success probability equal to
precision p, its variance is s2 = p(1− p). Plugging into the earlier equation gives

ε ≥ z1−δ ×
√

p(1 − p)
n

. (1)

Thus, for ε = 0.03, δ = 0.05, and the maximum variance assumption (p = 1/2),
the sample size estimate is 1068. If one is willing to make stronger assumptions,
e.g. precision is guaranteed to be at least some threshold p0, then the sample
size estimate can be considerably reduced (e.g., 385 if p0 ≥ 90% and 278 if
p0 ≥ 93%). We denote the sample size needed to estimate precision within ±ε
additive error and 1 − δ confidence by nε,δ.

4 Optimized Precision Estimation by Recycling Samples

Given a collection of binary classifiers, estimating the precision for each one
requires generating samples and assigning a label to each instance. The label
assignment (annotation), is typically a manual, laborious process whose cost is
proportional to the size of a sample. The baseline approach to estimate the pre-
cisions of a collection of k binary classifiers requires labeling individual sample
sets for each of the classifiers. Anchoring on one of the classifiers (called parent
in the follow up discussion), we consider the remaining classifiers as its children.
Any classifier whose predicted positive set is presumed to have significant over-
lap with those of the remaining classifiers is a good choice for the parent. For
example, an ML system may be composed of multiple binary classifiers with an
ensemble of them as the authoritative classifier. In this setting, the ensemble
could be considered a parent classifier because we expect the predicted posi-
tive set of the ensemble to overlap with that of each individual classifier. In
this section, we explain how samples from a parent classifier can be recycled to
generate subsamples of each child classifier, and thereby reduce the combined
sample size.

4.1 Classifiers with Overlapping Predicted Positive Sets

Suppose we have a parent classifier P with predicted positive set, denoted AP ,
and a sample SP generated from AP . Given a child classifier C with predicted
positive set, denoted AC , we exploit the overlap between AP and AC to generate
a sample SC using SP . We show the sample SC retains the statistical property
needed for an unbiased estimator of the precision of C, provided SP possessed
the same. Thus, it results in a smaller sample size to estimate the precisions of
both C and P compared to the baseline. We demonstrate empirically that our
estimates are within the desired margin of error and acceptable confidence.

Algorithm 1, called RecycleSamplesForPrecision, takes the input (a) the pre-
dicted positive sets AP and AC , (b) the size nC of the sample needed to esti-
mate the precision of C, (c) the sample SP , and (d) an option UniformSample
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or UniformShuffle. It generates a sample SC and estimates precision p̂C for C.
In Line 1, S+ equals the subsequence (with repetitions) of all elements in SP

that belong to AC . In Line 2, a call to a function UniformSample is made, which
generates a uniform sample with replacement from a population. The function
takes three arguments (a) the population to sample from, (b) the size of the
sample, (c) and whether (or not) to sample with replacement. The subsequence
S− is a uniformly generated from AC − AP and its size is required to satisfy:
|S−|/|S+| = |AC −AP |/|AP ∩AC |. This is needed because any uniformly gener-
ated sample S from AC of size |S−|+ |S+| is expected to contain instances from
the disjoint sets AP ∩ AC and AC − AP in proportion to their sizes. Sremain in
Line 3 includes uniformly generated instances from AC to backfill any shortage
from just S+ and S− combined.

Any single instance in S+ + S− is not uniformly distributed over AC . To see
this, if e1 is the first instance and el is the last instance in this subsequence,
then e1 is likely to come from S+ and el from S−. Therefore, in such a case, e1’s
distribution is over AP ∩ AC whereas el’s over AC − AP , and so they are not
uniform over AC . The function MixSequence, defined in Algorithm 2, ensures
that S+ + S− is a uniformly random sample from AC , and so the estimator p̂C

in Line 8 is an unbiased estimator of the precision of C.

Algorithm 1: RecycleSamplesForPrecision
Data: Classifiers C and P with predicted positives sets AC and AP ,

respectively; sample size nC for C; a sequence SP of uniformly random
instances from AP ; and a parameter
option ∈ [UniformSample, UniformShuffle].

Result: Estimated precision p̂C of C and a sequence SC of uniformly random
instances from AC of size nC .

1 S+ ← SP ∩ AC .
2 S− ← UniformSample(AC − AP , |AC − AP | × |S+|/|AP ∩ AC |, replace=True)

3 Sremain ← UniformSample(AC , max(0, nC − (|S+| + |S−|), replace=True)

4 SC ← MixSequence(S+ + S−, option) + Sremain

5 if |SC | > nC then
6 SC ← SC [0 : nC ]
7 end
8 p̂C ← fraction of positives instances in SC

9 return p̂C , SC

Figure 1 shows the child-parent relationship and the sets involved in gener-
ating the final sample SC . We transform the sequence S+ + S− into a sequence
S of uniformly random instances in Algorithm 2. Two possible ways are con-
sidered: (a) uniform sampling and (b) uniform shuffling. The former is nothing
but sampling with replacement and the latter is without replacement. In both
options, we show that the new sequence consists of uniformly random instances
from AC , and so the average p̂C is unbiased. We distinguish between these two
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Fig. 1. A parent classifier P overlapping with a child classifier C on their predicted
positive sets AP and AC , respectively. The right circle represents AP and the left AC .
A random sample SP , shown as a closed curve, intersects with AC as shown in the
shaded region. This shaded region represents S+, the shaded closed curve in AC − AP

represents S−, and the sprinkled tick-marks represent Sremain in the description of
Algorithm 1.

Algorithm 2: MixSequence
Data: A sequence S and a parameter

option ∈ [UniformSample, UniformShuffle].
Result: Rearranged sequence S, where option determines the rearrangement

method.
1 if option equals UniformSample then
2 S ← UniformSample(S, |S|, replace=True)
3 else if option equals UniformShuffle then
4 S ← UniformShuffle(S, |S|)
5 return S

options because only uniform sampling would result in total independence of
instances. This observation is useful in situations where C itself is an ensemble
of other classifiers. In such a situation, we may want to start with a uniformly
independent sample SC of C (i.e., sample with replacement), then recursively
apply Algorithm 2 by treating C as a parent classifier and its constituent clas-
sifiers as children of C.

In Lemma 1, we show that with uniform sampling as the option in the func-
tion MixSequence, the original sequence S+ +S− is transformed into a sequence
composed of independent and uniformly distributed instances from AC .

Lemma 1. Let S =df MixSequence(S+ + S−, option = UniformSample) in
Algorithm 1. Then S is a sequence of i.i.d. uniformly random instances from
AC .

Proof. Let si denote the i’th random instance in S. Since each si is chosen
uniformly from S+ + S− with replacement, si’s are independent and identically
distributed. We now show that, for any a ∈ AC and any i, it holds that Pr[si =
a] = 1/|AC |. Fix some a ∈ AP ∩ AC . Let S+ + S− =df Y1, Y2, . . ., Y|S|. Then
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Pr[si = a] =
∑
�>0

Pr[si = a | |S+| = �] × Pr[|S+| = �]

=
∑
�>0

|S|∑
k=1

1
|S|Pr[Yk = a | |S+| = �] × Pr[|S+| = �]

=
∑
�>0

|AP ∩ AC |
|AC |�

|S+|∑
k=1

Pr[Yk = a | |S+| = �] × Pr[|S+| = �]

=
|AP ∩ AC |

|AC |
∑
�>0

1
�

×
�∑

k=1

1
|AP ∩ AC | × Pr[|S+| = �] =

1
|AC | .

Here, the second equality uses the fact that si equals Yk (for any k) with
probability 1/|S|. The third equality uses |S| = |S+| + |S−| = |AC |×|S+|

|AP ∩AC | , |S+| =
�, and the fact that since a ∈ AP ∩AC , the terms are zero for k ∈ [|S+|+1, |S|].
The fourth equality uses the fact that each element of AP ∩ AC is equally likely
to be the k’th element of S+, therefore Pr[Yk = a | |S+| = �] is equal to 1

|AP ∩AC | .

Additionally,
∑�

k=1 Pr[|S+| = �] equals l × Pr[|S+| = �].
For the case where a ∈ AC − AP , the analysis is analogous, with minor

differences. Instead of k varying over [1, |S+|] in the third and the fourth equality,
we now have k vary over [|S+| + 1, |S|], and the term 1

|AP ∩AC | is replaced by
1

|AC−AP | inside the second summation in the fourth equality. �	

In Lemma 2, we show that with uniform shuffling as the option in the function
MixSequence, the original sequence S+ + S− is transformed into a sequence
composed of uniformly distributed instances from AC , but the instances are not
independent.

Both Lemmas 1 and 2 appear identical in that they generate a uniform ran-
dom sample. However, the main distinction is in the independence of the resulting
sequence: uniform sampling results in an independent sequence whereas uniform
shuffle in Lemma 2 does not imply independence. Nevertheless, we explain below
that Lemma 2 gives rise to a stratified sampling procedure. We empirically show
that the mean, the std dev., and the 95% confidence interval of precision errors
are comparable to that of the simple random sample (see Table 1 and Fig. 2(b)
and 2(c)).

Lemma 2. Let S =df MixSequence(S++S−, option = UniformShuffle) in Algo-
rithm 1. Then S is a sequence of identically and uniformly distributed instances
from AC .

Proof. Let si denote the i’th random instance in S. Fix an element a of AP ∩ AC .
(A similar argument will apply if a ∈ AC − AP .) We will show that, for any
1 ≤ i ≤ |S|, Pr[si = a] = 1/|AC |, and so the lemma would follow. By the law of
total probability,
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Pr[si = a] =
∑

S+,S−

Pr[si = a | S+, S−] × Pr[S+, S−]

=
∑

S+,S−

count(a, S+ + S−)
|S| × Pr[S+, S−]

=
∑

S+,S−

|AP ∩ AC |
|AC | × count(a, S+)

|S+| × Pr[S+, S−]

=
|AP ∩ AC |

|AC |
∑
S+

count(a, S+)
|S+| ×

∑
S−

Pr[S+, S−]

=
|AP ∩ AC |

|AC |
∑
S+

count(a, S+)
|S+| × Pr[S+]

=
|AP ∩ AC |

|AC | E[Xa], (2)

where Xk, for any k ∈ AP ∩AC , is a random variable that equals the fraction of
times k occurs in S+ when each element in S (and so S+) is chosen uniformly at
random. Here, the second equality follows since S is a uniformly random shuffle
of S+ + S−. In the third equality, we use the fact that a ∈ AP ∩ AC implies
a ∈ S+, and so count(a, S+ + S−) = count(a, S+). We also use |S| = |AC |×|S+|

|AP ∩AC |
there. Note that

∑
k∈AP ∩AC

Xk = 1 and, by symmetry, E[Xk] = E[Xk′ ] for any
k, k′ ∈ AP ∩ AC . Hence, by the linearity of expectation, E[Xa] = 1/|AP ∩ AC |.
It follows from Eq. (2) that Pr[si = a] = 1/|AC |. �	

Lemma 2 shows that the resulting sequence is composed of uniformly dis-
tributed instances over AC . This shows that the estimator p̂C in Algorithm 1
with option = UniformShuffle is unbiased. Note that Algorithm 1 with option =
UniformShuffle is just a special case of stratified sampling with proportional allo-
cation [2] involving the two strata AC − AP and AC ∩ AP . This is true because
we maintained the ratio of |S+| to |S−| as that of |AC ∩ AP | to |AC − AP |.
Since AC ∩ AP is expected to be more homogeneous than AC and likewise for
AC − AP , the stratification should reduce the variance of p̂C .

Lemma 3 expresses the amount of saving in sample size in terms of various
probability events. As evident from Lemma 3, the saving in the sample size
depends on the extent of the overlap of AP ∩ AC relative to AP and to AC .
We refer to the ratios |AP ∩ AC |/|AP | as PIR (parent intersection ratio) and
|AP ∩ AC |/|AC | as CIR (child intersection ratio).

Lemma 3. Let S =df MixSequence(S+ + S−, option), nP =df |SP |, and X =df

|S+| in Algorithm 1. Let Savings denotes the number of sample instances saved
by Algorithm 1 relative to the baseline (simple random sampling) of sample size
nC . Then the following statements hold:

(a) X | nP ∼ B(nP , |AP ∩AC |
|AP | ).

(b) Savings = X when X
nC

≤ |AP ∩AC |
|AC | .
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(c) Savings = |S[0 : nC ] ∩ S+| when X
nC

> |AP ∩AC |
|AC | .

Here, B(n, p) denotes the binomial distribution with parameters n and p.

Proof. Part (a) follows because each instance in S+ arises because of the suc-
cessful Bernoulli trial of choosing an element in AP ∩ AC uniformly and inde-
pendently from AP . Hence, the distribution of X = |S+| given nP is binomial
with number of trials nP and success probability |AP ∩AC |

|AP | . For Part (b), we note

that if X
nC

≤ |AP ∩AC |
|AC | , then |S| = |S+| + |S−| ≤ nC . Hence, in this case, we can

reuse all of S+ and so Savings equals X. The condition in Part (c) implies that
|S| > nC and so Sremain would equal the empty set. Therefore, any saving we
get would be due to only those instances in S+ that also occur in the first nC

instances in S. �	
Using Lemma 3, we can describe the distribution of savings as a function of PIR,
CIR, nP , and nC .

5 Experiments and Results

5.1 Metrics for Comparison

We consider the below metrics for comparing Algorithm 1 against simple random
sampling. Our simulations involve multiple trials in which each trial requires a
distinct seed for randomly selecting parameters of the simulation. For trial i,

– %Savings: this is the percentage savings in the sample size achieved by our
algorithm against a simple random sample. Formally, if si,a denotes the sam-
ple size required by our algorithm and si,r denotes the sample size required
by a simple random sample in trial i, then this equals si,r−si,a

si,r
× 100.

– %PrecisionError: this is the percentage absolute deviation of the point
estimate from actual precision. Formally, if p̂i and pi denote the estimated
and the actual precisions in trial i, respectively, then this equals |p̂i−pi|

pi
×100.

– %MaxCIError: this is percentage width of the 95% confidence interval
relative to the actual precision. Formally, if [li, ui] denotes the 95% con-
fidence interval and pi is the actual precision in trial i, then this equals
max{|li−pi|,|ui−pi|}

pi
× 100.

5.2 Simulations

We compare the sample sizes required by Algorithm 1 against that of simple
random samples for an ensemble of three classifiers whose properties and per-
formance are randomly chosen. We consider a majority vote ensemble model
(denoted MVE) as parent of three models (denoted ML1, ML2, ML3), which
are its children. We compare three different sampling algorithms for preci-
sions: (1) Simple Random Sample (SRS): each of MVE, ML1, ML2,
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and ML3 requires a separate sample of size 1100. As noted in Sect. 3.2,
1100 samples are sufficient to estimate precision within ±0.03 additive error
and 95% confidence. The collective sample size in this case is at most 4400
and can be lower if sample instances repeat across the collective samples.
(2) RecycleSampleForPrecision(RSFP)-Shuffle This is Algorithm 1 with
option=UniformShuffle. Here, MVE requires 1100 samples, but ML1, ML2,
and ML3 have reduced sampling requirements because of overlap between pre-
dicted positive sets of MVE and ML1, MVE and ML2, and MVE and ML3.
(3) RecycleSampleForPrecision(RSFP)-Sample: This is Algorithm 1 with
option=UniformSample.

We choose the parameters of our simulation as follows: (1) population size of
positives: set to one million; (2) number of trials: 200 (a separate random seed is
used in each trial); (3) class ratio of positives to the size of the entire population:
randomly chosen from [0.01, 0.5] range; (4) precision of model ML1 : randomly
chosen from [0.70, 1.0] range; (5) recall of model ML1 : randomly chosen from
[0.1, 1.0] range; and (6) precisions of models ML2 and ML3 : for each, randomly
chosen between 0.5 and that of ML1.

These random choices range over almost all permissible values of these param-
eters. Thus, our simulations were designed to cover arbitrary model performance
characteristics, and empirically illustrate the validity of our algorithms. The data
within each trial is generated independently as follows. First, the models ML1,
ML2, and ML3 are simulated by independently assigning each one scores between
0 and 1 using a truncated exponential distribution with shape parameter 0.5. In
order to de-correlate the scores across models, we divide the scores into blocks
of size 0.03 and randomly shuffle the scores of ML2 and ML3 within each block.
Next, for any fixed choice of (a) the class ratio of positives to the population
size, (b) precisions of the models, and (c) their recalls, we determine the right
decision threshold for each of the models so that their predicted positive sets
satisfy the precision and recall constraints. Next, fixing one of the models, say
ML1, we uniformly assign true-positive labels over the predicted positive set
and randomly assign the remaining false-negative labels over the predicted neg-
ative set of ML1. Here, we considered different variations of random assignment
of false-negative labels: uniform selection and exponentially decaying selection.
Once the scores and the thresholds of ML1, ML2, and ML3 are determined,
MVE is also uniquely defined. Together with the label assignments, we use the
data within each trial to estimate precisions using these sampling algorithms.

Figure 2 reports the metrics for comparison between our algorithms (RFSP-
Sample and RFSP-Shuffle) and the SRS (baseline) algorithm in the simula-
tion. In all trials and for each model, we compare %Savings in sample size,
%PrecisionError of the point estimate from actual precision, and %MaxCIError
of the 95% confidence interval relative to the actual precision. All three algo-
rithms use a simple random sample of size 1100 for MVE. Thereafter, the baseline
algorithm draws independent random samples of size 1100 for each of three ML
models whereas RFSP-Sample and RFSP-Shuffle require the same sample size
but different option setting. Since sampling for MVE is done similarly in all three
algorithms, we report comparison results only for ML1, ML2, and ML3.
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(a) %Saving in sample size is compared
against simple random sampling for all
three models. High Savings correspond
to reduced sample size required to esti-
mate precision.

(b) %PrecisionError of the point esti-
mate from the actual is compared be-
tween Baseline and our algorithms. A
low precision error corresponds to a
tight point estimate.

(c) %MaxCIError in the width of the
confidence interval relative to the actual
is compared between Baseline and our
algorithms. A low width corresponds to
narrow confidence interval around the
actual.

Fig. 2. The boxplots are based on 200 trials with random selection of parameters of
the experiment. (a) Both RSFP-Sample and RSFP-Shuffle show significant savings
in sample size compared to simple random sampling for all the models. The median
%Savings reach above 85% in all cases because of high overlap between predictive
positives sets. Notice also that %Savings is low (<40%) in certain trials in which this
overlap is small. (b) The %PrecisionError of all three algorithms are low (e.g., the third
quartile is around 3% or less), which suggests that the point estimates from RSFP-
Sample and RSFP-Shuffle are tight. The outliers correspond to those trials where the
estimate deviates too far from actual, which is possible in up to 5% of trials. (c) The
%MaxCIError of RSFP-Sample and RSFP-Shuffle are also close to the Baseline for
all three models, which suggests that the samples generated from RSFP-Sample and
RSFP-Shuffle produce as narrow confidence interval as the simple random sampling.
The outliers correspond to the trials in which one of the (upper or lower) limits of the
generated confidence interval deviates too far from the actual, which is possible in a
small % of trials.
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Figure 2(a) shows that both RSFP-Sample and RSFP-Shuffle can lead to
significant %Savings in sample size compared to SRS. The savings is >85% in
at least half of the trials. The higher savings occur because of large overlap in
the predicted positives sets of the majority ensemble with each of ML1, ML2,
and ML3 in various trials. The overlap is possibly because the model scores
were somewhat positively correlated with each other during the simulation. The
simple random sample for any one model, say ML1, may also save on sample
size because of possible overlap with the random sample for MVE. However, if
the size of predicted positive sets of both ensemble and ML1 are extremely large
compared to the sample size (1100), the overlap is generally low.

In Fig. 2(b), we can see that %PrecisionError of all the algorithms are all
close to each other for each of the models (ML1, ML2, and ML3) and that RSFP-
Shuffle and baseline show slightly lower error than RSFP-Sample. For example,
the median, quartliles, and the inter-quartlile ranges for all three models are
lower for both RSFP-Shuffle and baseline than for RSFP-Sample. This shows
that both RSFP-Shuffle and SRS allow to produce an equally tight point estimate
of the precision with RSFP-Sample a little behind these two in accuracy. The
extreme outlier instance for Model 2 corresponds to a trial run in which the
actual precision was 0.539 and the estimated precision was 0.472, and so the
%PrecisionError turned out to be 12.43%.

In Fig. 2(c), we notice that %MaxCIError of each of the algorithms are again
close to each other. This shows that the confidence intervals produced from
RSFP-Sample and RSFP-Shuffle are almost as narrow as those from the simple
random sampling. The extreme outlier for ML2 is for the case when the actual
precision was 0.539 and the estimated confidence interval from RSFP-Sample
was [0.442, 0.501], and so %MaxCIError turned out to be 17.92%.

5.3 Savings in Sample Size as a Function of PIR and CIR

We ran a simulation of Algorithm 1 to evaluate the amount of savings for dif-
ferent PIR and CIR values. Here, we present results for option=UniformShuffle
because, as reported in Fig. 2 (see Sect. 5.2), the random shuffle provides more
accurate precision estimates. Specifically, we ran 200 trials each for 361 combi-
nations of PIR and CIR (values in the range [0.05, 0.95] in increments of 0.05).
In each trial of the simulations we randomly chose |AP ∩AC | in the range [10K,
100K] and performed a random selection of samples in SP . In Table 1, we report
the percentage saving in sample sizes (mean as well as 95% confidence interval)
for a representative subset of PIR and CIR values we used in the simulations.
We found a mean savings of 33.68%, and that in 95% of the simulation runs, the
savings varied between 4.43% and 82.98%. In Fig. 3, we present a surface plot
of the mean savings in the simulation runs as a function of PIR and CIR. Our
simulations confirm that significant amount of savings is achieved as the amount
of overlap between parent and child classifiers increases. Furthermore, the error
in precision due to our sampling method is extremely low (both mean and std.
dev. of %PrecisionError ≤1.51%) across all choices considered.
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5.4 Practical Application of Algorithm 1

We applied our sampling algorithm to evaluate precision of binary classifiers for
the offensive content detection problem, studied in [5]. We start with the labeled
dataset considered in that work, take random subsets of it to create a train set
with 4.5M texts and a distinct test set with 2M texts. The ratio of positives and
negatives is kept 1:1 in both train and test sets. We implemented three binary
classifiers, namely Bi-LSTM, CNN, and LogReg, described in [9], and trained

Table 1. Percentage saving in sample size as a function of Parent-Intersection-Ratio
and Child-Intersection-Ratio is shown. For each combination of PIR and CIR below, we
report over 200 trials the mean and the 95% confidence interval of %Saving in sample
size and the mean and the std. dev. of %PrecisionError when applying Algorithm 1. As
seen below, the savings increase with increasing values for PIR and CIR, i.e., with the
amount of overlap between parent and child classifiers. Also, the mean, the std. dev,
and the 95% confidence interval of %precision errors from our algorithm are 1.367%,
1.269%, and [0.0379, 4.697]%, resp., which match closely with those from simple random
sampling that are 1.368%, 1.267%, and [0.0385, 4.678]%, resp.

PIR CIR Mean % 2.5th% 97.5th% mean% std. dev%

Saving Saving Saving Precision error Precision error

0.05 0.05 4.72 3.64 5.38 1.50 1.46

0.05 0.25 4.91 3.39 6.42 1.39 1.27

0.05 0.45 4.95 3.23 6.54 1.36 1.31

0.05 0.65 4.92 3.06 6.58 1.43 1.31

0.05 0.85 4.91 2.79 6.70 1.30 1.16

0.25 0.05 4.93 3.65 6.11 1.51 1.33

0.25 0.25 24.21 20.60 25.57 1.45 1.32

0.25 0.45 24.73 19.73 27.79 1.20 1.12

0.25 0.65 24.61 18.70 27.73 1.44 1.36

0.25 0.85 24.61 18.70 27.75 1.26 1.28

0.45 0.05 4.89 3.55 6.29 1.37 1.31

0.45 0.25 24.58 20.63 26.72 1.45 1.28

0.45 0.45 43.85 36.15 46.03 1.31 1.17

0.45 0.65 44.45 33.75 48.56 1.46 1.28

0.45 0.85 44.47 32.82 48.74 1.37 1.42

0.65 0.05 4.83 3.28 6.20 1.29 1.11

0.65 0.25 24.34 18.44 26.88 1.34 1.19

0.65 0.45 44.17 33.15 47.19 1.50 1.50

0.65 0.65 63.68 48.02 67.07 1.37 1.16

0.65 0.85 64.39 49.58 69.21 1.41 1.39

0.85 0.05 4.82 3.19 6.20 1.50 1.43

0.85 0.25 24.29 18.98 26.95 1.43 1.40

0.85 0.45 44.00 32.28 47.36 1.39 1.34

0.85 0.65 64.14 48.59 67.95 1.33 1.24

0.85 0.85 84.04 55.49 88.83 1.30 1.32
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them on our train dataset. We also created a majority vote ensemble (MVE) of
them. As in Sect. 5.3, we present results for option=UniformShuffle only.

We fed the Reddit test dataset as input to the classifiers discussed above, and
applied Algorithm 1 on the predicted positive sets to sample for precision. We ran
1000 trials to generate samples and calculated %PrecisionError and %Savings
from the samples in each trial. In Table 2, we observe that our algorithm can save
>88% in the number of samples needed to estimate precision, while obtaining
very low errors in the precision estimates derived from the smaller sample sizes.
Note that there is no saving for MVE since in this case our algorithm defaults
to a simple random sample. Moreover, the percentage precision errors of our
algorithm closely matches that of simple random sample for each model.

6 Generalizing to Other Performance Measures

The focus of this paper has been on the precision metric. However, as previously
stated, our approach can be generalized to other metrics such as recall. In this
section, we illustrate how we can generalize to recall calculations.

Fig. 3. A surface plot of %Savings as a function of parent intersection ratio (PIR) and
child intersection ratio (CIR). Notice that %Savings increase as both PIR and CIR
increase with %Savings can reach as high as 90%.

Table 2. The sizes of predicted positive sets, and the min/max of %PrecisionError
and %Savings over 1000 trials for each of the component models in MVE (majority
vote ensemble) are reported here. Note that there are no metrics for MVE alone, as we
would use simple random sample for MVE—the parent classifier.

Model Predicted
positive
set size

min/max %
precision error
(Algorithm 1)

min/max %
precision error
(simple random sample)

min/max %
savings

BiLSTM 776653 0.03/0.25% 0.03/0.34% 88.96/94.73%

CNN 848576 0.04/0.50% 0.04/0.41% 97.52/97.90%

LogReg 884272 0.01/0.56% 0.01/0.65% 90.22/91.72%
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Suppose C1 and C2 are classifiers with their precisions p1 and p2, recalls r1
and r2, predicted positive sets A1 and A2, and predicted negative sets B1 and B2,
respectively. Then the number of true-positives for C1 and C2 are given by p1|A1|
and p2|A2|, respectively. Since the total size of positives in the population (say N)
is fixed and independent of the classifiers, it follows that r1

r2
= p1|A1|/N

p2|A2|/N = p1|A1|
p2|A2| .

Generally, sizes of A1, A2, B1, and B2 are known. Therefore, if tight estimates
p̂1 on p1, p̂2 on p2, and r̂1 on r1 are known, then we can obtain a tight estimate
r̂2 on r2. Also, since recall equals TP/(TP + FN) and false omission rate (FOR)
equals FN/(TN + FN), we get recall r1 = p1|A1|

p1|A1|+f1|B1| where f1 is the FOR
of C1. It follows that the recall estimation problem for multiple classifiers is
reducible to obtaining tight estimates on their precisions and a tight estimate
on the FOR of a single classifier, say C1.

Sampling for estimating the FOR and for estimating the precision of a classi-
fier C1 are over disjoint populations B1 and A1, respectively. So, applying Algo-
rithm 1 to estimate FOR (by treating B1 and A1 as child-parent relationship)
will not result in reduced sample size. The overlap between B1 (predicted neg-
ative set of C1) and predicted positive sets of other classifiers are also expected
to be weak. Therefore, it is unlikely that Algorithm 1 will help. In this case,
estimating FOR for classifier C1 under limited annotations should ideally be
done using stratified sampling approaches suggested in [1,4,6]. In other words,
a combination of Algorithm 1 for estimating the precisions of multiple classi-
fiers and stratified sampling method for estimating the FOR of a single classifier
would suffice to estimate the recalls of multiple classifiers to achieve an overall
reduction in number of samples.

7 Conclusion

We presented a sampling algorithm RecycleSamplesForPrecision to estimate pre-
cisions of multiple binary classifiers with minimal sample size. Our algorithm
makes use of two properties: (a) the predicted positive sets of classifiers quite
often have significant overlaps and (b) if a random sample for estimating pre-
cision of one classifier overlaps with the predicted positive set of another clas-
sifier, then we can reuse the common instances to reduce the sample size. We
showed that our algorithm results in uniformly distributed random samples. We
ran experiments with an ensemble of three classifiers (with randomly assigned
accuracy metrics) and observed (in Fig. 2) that, for each individual classifier
in the ensemble, (a) the mean %savings is >80% and (b) the distribution of
%PrecisionError and %MaxCIError are all close to the baseline (simple ran-
dom sample). In particular, our algorithm with option=UniformShuffle gives
a slightly tighter estimate compared to option=UniformSample. Next, focusing
only on RecycleSamplesForPrecision with option=UniformShuffle, we ran exper-
iments over a wide range of possible ratios of intersections for parent and child
classifiers, and observed consistent savings in samples sizes across all these sce-
narios, where the amount of savings increases with the amount of intersection
ratios. Over all the runs of this experiment (see Table 1), we observe (a) a mean
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%savings of ≈33% and (b) the mean, the std. dev., and the 95% confidence inter-
val of %PrecisionError are 1.367%, 1.269%, and [0.0379, 4.697]%, respectively,
which are comparable to those of simple random sampling.

References

1. Bennett, P.N., Carvalho, V.R.: Online stratified sampling: evaluating classifiers at
web-scale. In: Proceedings of the 19th ACM CIKM, pp. 1581–1584. ACM (2010)

2. Cochran, W.G.: Sampling Techniques. Wiley, Hoboken (2007)
3. Jaffe, A., Nadler, B., Kluger, Y.: Estimating the accuracies of multiple classifiers

without labeled data. In: Artificial Intelligence and Statistics, pp. 407–415 (2015)
4. Katariya, N., Iyer, A., Sarawagi, S.: Active evaluation of classifiers on large datasets.

In: IEEE 12th International Conference on Data Mining, pp. 329–338. IEEE (2012)
5. Khatri, C., Hedayatnia, B., Goel, R., Venkatesh, A., Gabriel, R., Mandal, A.: Detect-

ing offensive content in open-domain conversations using two stage semi-supervision.
CoRR abs/1811.12900 (2018)

6. Kumar, A., Raj, B.: Classifier risk estimation under limited labeling resources. In:
Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD
2018. LNCS (LNAI), vol. 10937, pp. 3–15. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93034-3 1

7. Parisi, F., Strino, F., Nadler, B., Kluger, Y.: Ranking and combining multiple pre-
dictors without labeled data. Proc. Natl. Acad. Sci. 111(4), 1253–1258 (2014)

8. Platanios, E.A., Blum, A., Mitchell, T.: Estimating accuracy from unlabeled data.
In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 682–691 (2015)

9. Tripathi, R., Dhamodharaswamy, B., Jagannathan, S., Nandi, A.: Detecting sen-
sitive content in spoken languages. In: Proceedings of the 6th IEEE International
Conference on Data Science and Advanced Analytics (DSAA) (2019)

https://doi.org/10.1007/978-3-319-93034-3_1
https://doi.org/10.1007/978-3-319-93034-3_1


Applied Data Science: Transportation



Automation of Leasing Vehicle Return
Assessment Using Deep Learning Models

Mohsan Jameel1(B), Mofassir ul Islam Arif1, Andre Hintsches2,
and Lars Schmidt-Thieme1

1 Information Systems and Machine Learning Lab, University of Hildesheim,
Hildesheim, Germany

{mohsan.jameel,mofassir,schmidt-thieme}@ismll.uni-hildesheim.de
2 Volkswagen Financial Services AG, Braunschweig, Germany

Andre.Hintsches@vwfs.com

Abstract. The vehicle damage assessment includes classifying damage
and estimating its repair cost and is an essential process in vehicle leas-
ing and insurance industries. It contributes heavily to the actual cost the
customer has to pay. The standard practices follow manual identification
of damages and cost estimation of repairs, resulting in noisy images of
the damaged parts, inconsistent categorization of damage types, and high
variance in repair costs estimation between two appraisers.

We employ explainable machine learning to highlight how the stan-
dard ML models and their training protocols fail when dealing with a
dataset acquired without a standard procedure. In this paper, we present
a multi-task image regression model for the leasing vehicle return assess-
ment that leverages the car configuration to reduce the cost of repair
assessment. Our solution achieves a 50% error reduction in the repair
cost estimates. Furthermore, we present remedies base on hierarchical
taxonomy and cost-sensitive loss to improve the damage classification
accuracy.

Keywords: Image classification · Computer vision · Cost-sensitive ·
Deep learning · Explainable machine learning

1 Introduction

Leasing vehicles such as luxury cars, cooperate vehicle fleets etc., is an attractive
option for many customers as it provides a cost-effective alternative to buying
those vehicles. It is estimated that the market share of the leasing vehicle indus-
try will grow more than USD 300 billion by 2021 [1]. The vehicle is used by
the customer for a contracted period of time. At the end of the contract, an
appraiser inspects the vehicle for damages and generates a report using the pic-
tures of damages and their associated repair cost. Traditional methods rely on
manual identification of damage and cost estimation of repairs, which results

M. Jameel and M. I. Arif—Both authors contributed equally to this research.

c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 259–274, 2021.
https://doi.org/10.1007/978-3-030-67667-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-67667-4_16


260 M. Jameel et al.

in noisy images of the damaged parts, inconsistent categorization of damage
types, and high variance in repair costs estimation between two appraisers. The
high variance in the cost of repair means that either the customer or the leasing
company were overburdened by the disproportionate estimates.

In recent years, the enhancement in the modeling capacity of deep learning
models for image analysis have made the automation efforts feasible in many
fields such as medical image diagnostics, roadside sign recognition, autonomous
driving, predictive maintenance, etc. Damage assessment of leased vehicles
presents another challenging application with huge potential to reap benefits of
advancement in the area deep learning and computer vision. The damage assess-
ment comprises two main components, 1) identification and classification of the
damage type and 2) predicting the cost of repair for that particular damage.
The two components are related, as the accurate classification leads to accurate
cost estimates. Although, there are many off-the-shelf deep learning solutions for
object detection and classification, however, tuning them to an industrial setting
brings its own challenges.

(a) Dent (b) Scratch (c) Stone chip

Fig. 1. In each sub figure, the image on the left is the original and on the right is
GradCAM generated overlay. The region of the images used by the model for decision
making are highlighted using GradCAM. The magenta color region surrounded by
violet is the focus region used for decision making. (Color figure online)

In this paper, we used the data collected by one of the leading vehicle leas-
ing company in Europe. The data collected by the traditional approach was
highly noisy, unstructured and labels were inconsistently categorized as in con-
trast to benchmark datasets available for the research purposes. To showcase the
problem, we trained an Inception v3 model using transfer learning techniques
and fine-tuned it on the label images from the company data. The classification
model was able to predict the correct damage labels with a nominal 50% accu-
racy. The strength of these models comes from extracting useful representations
from images, these representations are then used for decision making in a classi-
fication setting. To further investigate the reason for low accuracy, we employed
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GradCAM [10] to explain the decision made by the model, which is presented
in Fig. 1. Although there are some instances for which the model was able to
base its decision on the correct damage representation, however, due to the high
level of noise and incorrect images, a large majority of the decisions are based on
incorrect representations such as classifying a ‘Scratch’ based on the floor of the
workshop. Another main issue was the incorrect categorization of the damages,
for example, damages with similar visual representation were given two different
labels. Lastly, the cost of repair estimates has a high variance between different
observations for similar damage types.

In this paper, we tackle these problems using a combination of well-
established pre-processing techniques and explainable machine learning to iden-
tify and rectify the problems in the automation process. Firstly, we properly
annotated the images using bounding boxes that help in capturing a proper
representation of the damage types and remove noisy images. The problem of
inconsistent damage labels was tackled by defining the hierarchical class tax-
onomy. Secondly, to better utilize the cost of repair information in the damage
classification, we defined a cost-sensitive classification loss. And Lastly, we define
a cost regression model that uses both images and vehicle meta-features to pre-
dict the cost of repair.

To recap, our contributions are:

• We used a data-driven pre-processing procedure for adapting an industrial
dataset to a machine learning problem and used explainable machine learning
to define better damage categorization.

• We define a cost-sensitive classification loss as the classification error has an
associated penalty in terms of cost estimation.

• We present a cost regression model that leverages both car information as
well as damage images to reduce the variance in cost estimation.

2 Related Work

The detection and classification of damage from the picture and assessing the cost
is the main task of the leasing vehicle return assessment process. The assessment
of damage is not unique to the leasing vehicle return assessment process. It is
a core component of the insurance claim process such as vehicle and housing
damage claims. However, there are limited research studies conducted in this
particular area. In this direction, Patil et al. [8] created a small dataset of damage
cars through web crawling. They used some standard CNN models to extract
image features and feed it to an SVM classifier for predictions. The dataset is
limited to only dent and broken glass/light damage types and did not include
any cost estimations. Li et al. [5] conducted a study on detecting the fraud in a
car insurance claim and generated a damage dataset by crawling the Internet for
the damage images. They used an object detector to identify damage parts and
build a system to check for fraudulent claims. Although both the studies target
detection of the damages but they still fall short of providing or discussing a
complete solution for damage assessment. Previous studies were limited in their
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scope of exploring other types of damages that are frequent in the real world
dataset. On the contrary they focused on dent and scratch, which are easily
distinguishable due to distant features. In our case study, we worked with 14
different damage types, which occur frequently in real-world applications.

There are some literature available on related applications on damage detec-
tion. Maeda et al. [6] conducted a study on detection of road damage such as
cracks. The data was collected using mobile device, which consists of 8 differ-
ent types of damages, and used variety of object detection models to build an
automated solution. Similarly, the assessment of damages to a building after dis-
aster was studied by [7]. There is a commercial interest in the automation of the
damage insurance claim, which is evident from the fact that there are number
of startups working in this area such as Ant Financial and Tractable.ai to name
a few.

3 Methodology

In this section, we will formulate the leasing vehicle assessment process as a
multi-task machine learning problem and present the cost-sensitive loss for dam-
age classification.

3.1 Problem Formulation

The leasing vehicle return assessment process consists of two main tasks, i.e
classify a damage type and estimate its cost of repair. Generally, a multi-task
learning [11] setup best suits this type of problem. Let X = {X v,X p} define a set
of input space, where X v ∈ R

V is a set of vehicle features such as model, make,
color, body part, etc., and X p ∈ R

H×W is a set of associated pictures/images
to a capture visual representation of specific damage. The task-specific output
space Y = {Yd,Yc}, where Yd ∈ R

D represents a set of damages and Yc ∈ R

represents the cost of repair. The dataset set D = {xi, y
d
i , yc

i }N
i=1 consists of N

observations. To learn a joint model for two tasks, we have two sets of model
parameters, a set of model parameters θs that is shared between tasks and task
specific model parameters θd and θc. We want to learn a mapping function for
each task, which can be defined as,

ŷd(x, θs, θd) : X → Yd (1)
ŷc(x, θs, θc) : X → Yc (2)

We also have a specific loss for each task i.e. a cross-entropy loss L̂d(·, ·) for
damage classification and squared loss L̂c(·, ·) for cost of repair assessment. The
multi-task objective function thus becomes:

arg min
θs,θd,θc

αcL̂c (yc, ŷc(x, θs, θc)) + αdL̂d

(
yd, ŷd(x, θs, θd)

)
(3)
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where L̂j(yj , ŷj(x, θs, θj)) = 1
N

∑
(x,yj)∈D Lj(yj , ŷj(x, θs, θj)), j = {d, c}. The

task-specific weights αc ∈ R
+ and αd ∈ R

+ are hyperparameters, which are used
to control the weight of a specific task in the overall loss. However since we are
dealing with an industrial dataset, the images are noisy and collected without
a machine learning application in mind. Therefore, directly using a machine
learning model on this dataset does not yield the desired results. With this in
mind, we propose to solve the classification and regression problem separately.

Image Feature 
Extractor

Vehicle Feature 
Extractor

Damage 
Classification

loss

Cost 
Estimation

loss

MBV
Color
Part
….

FC 
LayersImage

Features

Fig. 2. The cost regression model for vehicle leasing return assessment process. The
upper part of the diagram corresponds to the image classification model and lower part
corresponds to a cost regression model.

3.2 Damage Classification

Damage classification is an important part of cost of repair estimation since
the type of damage directly impacts the cost. We have used Inception v3 and
Resnet20 as image feature extractors and since they are complex models we
have used transfer learning to initialize their weights pre-trained on ImageNet.
Transfer learning has shown to be an effective method to retrain a model with
limited data. For training the models, we propose to use two variations of the
multi-class classification loss function Ld(·, ·), the standard cross entropy loss
and cost-sensitive classification loss.

Cross Entropy Loss: The cross entropy loss is used as a proxy loss for a
misclassification rate, defined in Eq. (4).

Ld

(
yd, ŷd(x, θs, θd)

)
=

{
1, if yd �= ŷd(x, θs, θd).
0, otherwise.

(4)

In this loss function, if a model prediction does not match the target label, it
incurs an error. The error is always one, irrespective of the incorrect label selected
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by the model. This loss is widely used and best suited for situations in which the
penalty for all misclassifications is equal. The cost matrix for misclassification is
given in Table 1. For example, if the model misclassifies a scratch as a dent or
stone-chip, the penalty of the mistake is the same.

Table 1. (left) Cost matrix for misclassification, and (right) Cost matrix based on
average cost difference between pairs of damages

Damage Scratch Dent Stone Wear Burnt

Class -chip -Hole

Scratch 0 1 1 1 1

Dent 1 0 1 1 1

Stone 1 1 0 1 1

-chip

Wear 1 1 1 0 1

Burnt 1 1 1 1 0

-Hole

Damage Scratch Dent Stone Wear Burnt

Class -chip -Hole

Scratch 0 49 327 28 34

Dent 49 0 377 78 84

Stone 327 377 0 298 292

-chip

Wear 28 78 298 0 5

Burnt 34 84 292 5 0

-Hole

Cost-Sensitive Classification: In many applications, the cost for misclassi-
fication is not the same for all types of mistakes, for example, customer churn
prediction. In our problem, we are given the cost of repair for each instance of
the damage. The cost of repair of two different damage types could vary signif-
icantly. For this purpose we created a cost matrix by recording for each pair of
damage the difference between their average cost of repair, a subset of the cost
matrix is shown in Table 1. Again taking the same example as before, now if a
scratch is misclassified as a dent, it will incur a penalty of 49. On the other-hand,
misclassifying a scratch as a stone-chip will result in a penalty of 327. Therefore,
we used this information in the loss function and define a cost-sensitive loss given
in Eq. (5).

Ld

(
yd, ŷd(x, θs, θd)

)
=

{
cyd,ŷd(x,θs,θd), if yd �= ŷd(x, θs, θd).
0, otherwise.

(5)

where c·,· is an element of the cost matrix C ∈ R
D×D.

3.3 Cost Regression

The task of predicting the cost of repair can be categorized as a regression prob-
lem, which is defined in Eq. (2). There are many state-of-the-art machine learning
models, such as Gradient Boosted Decision Trees (XGB) [3] and Random Forest
(RF) [2], which have shown to perform exceptionally good on the regression task
for vector data. However, in our problem, we were given a mix of vector data
and images, more specifically, damage labels are encoded in images. To include
both, the vector data such as car information and pictures of damage, we use a
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deep neural network. We used a CNN based feature extractor i.e. Inception v3
and Resnet, to learn the latent representation of the images. The latent repre-
sentations of images are concatenated with car features and become the input
to the fully connected feed-forward neural network, as shown in Fig. 2. We used
mean squared error (MSE) loss Lc(yc, ŷc(x, θs, θc) = (yc − ŷc(x, θs, θc)2 to train
the model.

L̂c (yc, ŷc(x, θs, θc)) =
1
N

∑

(x,yc)∈D
(yc − ŷc(x, θs, θc)2 (6)

4 Experiments

This section talks about the dataset, the steps taken to make is compatible with
a machine learning setting and lays out the results for our classification and cost
regression.

Table 2. Statistics of leasing vehicle return dataset

Name Reports Images Damage Models Colors Parts repair

with Cost Types (mbv) actions

Count 39,000 342,029 35 51 165 166 21

Table 3. Statistics of dataset after annotation phase

Name Damage classes Sampled Images Annotated Images Total Crops

Count 14 + 1 48,000 17,083 25,228

4.1 Dataset

The dataset used in this paper was collected by one of the leading vehicle leasing
company in Europe. It is made up of 40, 000 reports that have been generated
manually by appraisers at the end of a leasing contract. The appraiser inspects
the car for damages, identify the damages, photograph them, and provides an
estimate for the cost of those repairs. There are 342, 029 photograph images
of damages and each image has a corresponding body part, damage type and
the estimate for the cost of repair. Overall, there are 166 meta-level body parts
and 35 damage types available in the collected dataset. Apart from the damage
specific information, we also have detailed meta-features about the vehicle out of
which the more relevant features are model, make and color. The information of
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the car model was available at a very fine grain level i.e. interior configurations,
and variation in the trim levels. We combined these models in high-level groups
represented by MBV, which are based on the model rather than the variants of
the same model, for example, the same car model with different trim levels is
treated as one model. The color of the car also plays an important role in the
repair cost estimation, as metallic or exotic colors cost more than the standard
colors. Table 2 provides an overview of the number of reports in the dataset and
the final number of these features.

Fig. 3. The frequency of samples for top-14 damage types, represented as a cumulative
frequency plot. It shows that first 9 classes listed from left to right covers around 50%
of the data, whereas, top 14 classes covers 83% data. This shows only 14 classes out of
35 total classes constitute majority of the data.

The dataset consists of 35 damage types, however, there are two main prob-
lems with these damage types. Firstly, the damage types can be categorized
into optical and non-optical damages. Optical damage has a visual appearance
and can be captured through pictures, for example, ‘dent’, ‘scratch’ and ‘stone-
chips’ etc. Whereas, non-optical damage cannot be captured or defined using
visual features, for example ‘smell of a bad odor’, ‘missing item’ or ‘play in a
component’. Therefore, the non-optical damage types cannot be included in the
classification task. Secondly, the damage types suffer from a typical long-tail dis-
tribution, some of the damage types did not have enough samples. To overcome
these two problems, we picked 14 most frequent optical damage classes, which
are shown in Fig. 3 as a cumulative frequency bar plot. We can see that ≈84%
of the dataset can be covered using only the top 14 classes.
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4.2 Exploratory Data Analysis

In this section, we perform an exploratory data analysis to understand the useful
relationship between different features. We used Kernel Density estimate of cost
and different features and plotted them in Fig. 41. To presents more meaningful
information in these plots, we used a single car model (mbv) to represent the
relationship between the color, damage, part, and the cost. In Fig. 4(a) shows
the cost of repair of a particular body part is higher than other, which verifies
that different body parts require a different type of repairs. Figure 4(b) shows the
cost relationship with color and again some colors have a higher cost of repair.
It is also to be noted that it might also depend on the extent of the damage i.e.
a small scratch might cost less to repair than a bigger scratch. Lastly, Fig. 4(c)
shows the relationship between the cost and damage, which is similar to the
color relationship. This can be caused by the extent of that damage but it is
highlighted that the final cost for damage is also impacted by the variance in
the opinion of an appraiser. We also wanted to see how the different parts and
colors were related to the damages, to see if particular damage is always related
to a certain part/color. Figure 5(a) shows that damage and color do not hold
a strong correlation as is expected. Conversely, we can see in Fig. 5(b) that the
damage and part appear to have a strong correlation. A ‘stone chip’ frequently
appears at the curved lining, where the paint is weakest. From this analysis, we
are able to infer that the model, color, part and damage under consideration
have an impact on the final cost and therefore need to be included in the model
as auxiliary information.

(a) cost vs parts (b) cost vs color (c) cost vs damage

Fig. 4. The plots represents Kernel Density estimate between cost and different car
features present in the dataset.

4.3 Data Cleaning and Annotation

The task of image classification relies heavily on the quality of the images being
trained on. The damage images in the reports are taken without a standard
1 The values of the cost of repair is always greater than 0, however, because of the

kernel density function some contours appear to be below zero values.
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(a) damage vs color (b) damage vs parts

Fig. 5. The plots represents Kernel Density estimate between damage and other car
features present in the dataset.

acquisition procedure and therefore vary significantly. Variance in lighting con-
ditions, distance from the damage, noisy backgrounds, and even dirty car parts
make the task of learning useful representations more challenging. In order to
learn a useful classifier for the damages, we annotated the dataset using bound-
ing boxes. We annotated the images with bounding boxes and marked those
images as ‘dirty’, which have a noisy background, dirty car, poor lighting, high
reflections, and blurrey images. We randomly sampled 3500 images from each
damage class to be annotated but because of the high level of noise, only 17, 083
were annotated, while the rest were marked as ‘dirty’. Furthermore, we created
crops of images using the bounding boxes, which resulted in 25, 000 crops of
damages. These crops are useful to learn a damage classifier, as crops capture
the visual representation of damages while reducing the background noise. The
summary of the statistics for the bounding box annotations are presented in
Table 3 and Fig. 7. Examples of the crops generated by the annotation phase
are presented in Fig. 6. An extra class was included, which we called a ‘negative
damage class’ to provide negative examples for training.

Fig. 6. Crops of damages
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Fig. 7. The number of samples for annotation vs actual clean images annotated.

4.4 Damage Classification

In this section, we perform the experiments for the classification task. For this
purpose, we used 25, 228 crop images dataset, which consists of color images,
sized 225×225, with 14 damage classes and a ‘negative damage class’. The data
was split into 90% train-set and 10% test-set, such that test-set contains equal
samples from each damage class. We perform 10 experiment runs, and for each
run creating a new train/test split. We used Inception v3 [12] and Resnet20 [4]
pretrained on the ImageNet dataset [9]. The training of these models was done
using SGD with momentum μ = 0.99 and the learning rate η was searched in
the grid η = {0.001, 0.01, 0.05, 0.1}.

Cross Entropy Loss. In the first set of experiments, we trained the classi-
fier using standard cross entropy loss given in Eq. (4). The results presented in
Fig. 10(a) show the classification accuracy on varying the number of damage
classes. It is evident from the results, as we increase the number of classes, the
complexity of the problem increases and the accuracy drops. The first column
for 3 damage classes consists of ‘Scratch’, ‘Dent’ and ‘Chip-Stone’, which have
very distinctive damage patterns, therefore, both the models were able to achieve
very good results. However, once we start to increase the number of classes, the
accuracy starts to degrade. The most significant drop in accuracy was observed
at 10 classes and more.

In order to investigate the performance degradation, we used an explainable
machine learning approach called GradCAM [10], which provides a method to
visualize the gradients of the image per pixel and gain insight on the regions
in an image used by the model for its decision to assign a particular class. The
GradCAM analysis on a few similar classes is shown in Fig. 8. At a cursory
glance, it becomes evident that the images for ‘Scratch’ and ‘Scratched’ classes,
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(a) Scratch (b) Scratched (c) Dent (d) Dent Paint

Fig. 8. Analysis of the damage crops using GradCAM. It highlights that some damage
types are visually similar.

and ‘Dent’ and ‘Dent Paint’ appear to be causing very similar activations in the
model. This is caused by the similar manifestation of the damages on the car
i.e ‘Dent’ and ‘Dent Paint’ are both visually similar. This will lead to confusion
between these classes and lead to poor classification accuracy.

Optical Damage12. corrosion

13. broken or
torn

14. paint
defect

8. dirty9. worn10. scratched
or stained

3. Stone-Chip2. Dent1. Scratch

7. deformed

6. marten
damage

5. burnt hole

4. wear

11. dent
paint 

(a) Fine Grain

Optical
Damage
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Merged  Stone-
Chip

Merged  Dent

Merged
Scratch

Merged
deformed

6. marten
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10. scratched
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1. Scratch

11. dent
paint 

2. Dent

3. Stone-Chip

13. broken or
torn 7. deformed

9. worn

12. corrosion

(b) Coarse Grain

Fig. 9. Damage class taxonomy, a) original taxonomy and b) proposed taxonomy

In addition to GradCAM, we analyzed the confusion matrix on our test set to
identify the confusing cases. A certain pair of classes are being confused with each
other, which was evident from the confusion matrix, for example ‘Dent Paint’
and ‘Dent’, and ‘Corrosion’ and ‘Stone chip’ are frequently confused. This prob-
lem highlights that the degradation in the performance of a machine learning
model is not necessarily caused by the training or model choice, but it stems from
the non-standard categorization of the damage labels. To rectify the problem of
non-standard categorization of the damage labels, we proposed to group similar
classes based on their visual representations. We defined a hierarchy taxonomy
of the damage labels, which we referred to as ‘Coarse Grain’ (CG) taxonomy
Fig. 9(b), whereas, the original class taxonomy is referred as ‘Fine Grain’ (FG)
taxonomy Fig. 9(a). The classification accuracy for the CG taxonomy is pre-
sented in Fig. 10(b). It is observed that both Inception v3 and Resnet20 model
perform at par with each other. To compare the results of FG and CG tax-
onomy, we have to compare 9 classes results in Fig. 10(a) with Fig. 10(b), and
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it becomes clear that despite increasing the confusing samples by keeping the
number of classes same, there is no degradation in the accuracy.

(a) Fine Grain (b) Coarse Grain

Fig. 10. The classification accuracy on the test-set was presented a) for Fine Grain
taxonomy and b) for Coarse Grain taxonomy. The numbers in the () on the x-axis
represents the case of the number of classes and ‘+’ sign represents that these classes
are added to the classes already present in the left bar.

Cost Sensitive Classification: In the second set of experiments, we trained
the damage classifier using cost sensitive loss given in Eq. (5). We used the same
training protocol as in the previous section, the only change was the evaluation
metric, which is changed from accuracy to cost-sensitive cost define similar to
Eq. (5). The results are presented in Fig. 11(a) and Fig. 11(b) for FG and CG
taxonomies respectively. The models trained on cost-sensitive loss had a lower
misclassification error as compared to the one which was trained on the misclas-
sification rate. It is also evident from the results if the problem is well defined,
for example in the case of classification of 3 damage types, the misclassification
error is very low, therefore, the performance of both the methods is equal.

4.5 Cost Regression

In this section, we perform the experiments for the prediction of the cost of repair.
We used the same dataset as explained in the damage classification section,
however, now the target is to predict the cost of repair. We used the car features
given in Table 2 with 14 damage classes to predict the cost of repair. The data
was split using a three-fold validation strategy, where two folds are used for
training and one for testing. The state-of-the-art models such as RF and XGB
were trained on this data excluding the images and using the appraiser assigned
damage type. We also build a custom Feed Forward neural network (FNN),
which consists of two fully connected layers with Relu activation function and
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(a) Fine Grain (b) Coarse Grain

Fig. 11. The average cost of misclassification (lower the better) on the test-set was
presented a) for Fine Grain taxonomy and b) for Coarse Grain taxonomy. The num-
bers in the () on the x-axis represents the case of the number of classes and ‘+’ sign
represents that these classes are added to the classes already present in the left bar.

Table 4. The results of cost regression task.

Model Features RMSE

Average model ∅ 237.43 ± 0.73

Linear regression Parts, mbv, color, damage, action 106.41 ± 3.81

Random Forest (RF) [2] Parts, mbv, color, damage, action 85.84 ± 3.99

XGboost (XGB) [3] Parts, mbv, color, damage, action 84.77 ± 1.78

FNN (our) Parts, mbv, color, damage, action 82.3 ± 2.8

FNN + Image (our) Image, parts, mbv, color, action 83.6 ± 0.73

dropouts. We performed extensive grid search to find the optimal number of
nodes {32, 64, 128, 256}, dropout rates {0.1, 0.3, 0.5, 0.7, 0.9} and learning rate
{0.01, 0.05, 0.1, 0.5}. Lastly, we combined inputs to FNN with the image latent
features learned in classification task, this helps to remove the dependence on
the true damage labels provided by an appraiser at inference. The RMSE scores
of different models are summarized in Table 4. The regression models were able
to achieve comparable RMSE score. However, it can be seen that FNN with
image feature does not require information about the true damage labels, which
it infers from the image feature. Lastly, Fig. 12 shows a comparison between the
natural variance in the dataset as compared to the error made by the models.
The mean cost variance of the dataset is higher than the model prediction errors,
which means if a customer goes for a repair, the estimate of the appraiser has
a variance of approximately ±172. Whereas, the model was able to significantly
reduce the variance to approximately ±80.
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Fig. 12. The comparison of natural variance in the dataset with the prediction made
by the model.

5 Conclusion

In this paper, we have presented the challenges encountered when translating
the gains made in the field of machine learning to a real-world application and
the necessary steps to overcome those challenges. Translating the gain to a pro-
priety dataset requires a data-driven approach to transform the dataset into one
that lends itself to machine learning problems. We show how explainable machine
learning can be employed to understand the factors causing the machine learning
models to under-perform and design a strategy to be applied to similar datasets.
This work has also shown a novel application of cost-sensitive loss functions to a
new use-case, where widely used cross entropy loss does not capture the impor-
tant aspects of the task at hand. We experimentally show the gains made by
leveraging cross domain knowledge i.e. using bounding boxes to improve classifi-
cation accuracy. Lastly, we developed a cost regression solution, which leverages
latent features from both images and vehicle feature to improve the regression
task. We were able to significantly reduce variance in the cost estimation as
compare to the manual estimations by appraisers.

Acknowledgment. This work is co-funded by the industry project “Data-driven
Mobility Services” of ISMLL and Volkswagen Financial Services (https://www.ismll.
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Abstract. Traffic deployment is highly correlated with the quality of
life. Current research for passenger flow estimation in transportation
route planning focuses on origin-destination matrices (OD) analysis;
however, we claim that urban functions and geographical environments
around passing area and stations should also be considered because
they affect the demand of public transportation. For the route-based
demand prediction task, we therefore define route-affecting region (RAR)
to model the influential region of routes. Based on the proposed RAR,
we further proposed route-based feature extraction approaches along
with adopting several regression models to do high accurate inference.
Given heterogeneous features and faced with the competitive and trans-
fer effects of existing routes, our proposed RAR-based feature engineer-
ing methods are effective for handling and combining dynamic and static
data which are high-correlated with passenger volumes. The experiments
on bus-ticket data of Tainan and Chicago, with public transit network
structures different from each other, show the adaptability and better
performance of our proposed RAR-based approach compared to tradi-
tional OD-based feature extraction strategies.

Keywords: Feature engineering · Origin-destination matrix · Feature
extraction · Traffic demand · Deep Neural Network (DNN)

1 Introduction

Traffic deployment is highly correlated with the quality of life [1]. Governments or
traffic management authorities employ new transportation services such as bus
or MRT routes to serve residents. For residents, new services bring convenience
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and reduce pollution. For traffic management authorities, the number of pas-
sengers traveling by their deployed services is an important indicator. However,
constructing unwanted and redundant routes or stations can lead to environmen-
tal damage and resource waste. Besides, according to our interview with civil
servants in the bureau of transportation, they pointed out that the current pro-
cedure in planning new routes turns out to be lengthy due to many stakeholders
or delegates involved in them. In addition, the overwhelming number of requests
from the public makes it difficult to decide where to construct new routes and
stations. Therefore, an effective evaluation of potential Passenger Flow (PF) for
the requested route in a timely manner turns out to be crucial and helpful for
traffic management authority (user).

A plethora of frameworks utilizing either deep learning methods or statistical
analyses have been developed to solve such PF inference in designing new public
transportation routes. However, their works often rely on surveying data in build-
ing origin-destination matrices (OD). In this work, we claim that the geograph-
ical environment and urban functions of the trajectories between two stations
could also affect the demand for deploying public transportation. Meanwhile,
none of the previous research investigated and solved the problem of inferring
route-based PF utilizing route-based feature extraction strategies. Therefore, we
propose route-affecting region (RAR) to model the influential region of routes;
besides, we investigate the correlations between various features in RAR and PF
in this work.

To show the adaptability of the proposed RAR-based feature extraction
approaches in the PF inference problem, we take bus-ticket data for the realistic
public transit networks of Tainan and Chicago, which represent radial and square
road structure respectively, for evaluation. Several regression models including
DeepNeuralNetwork (DNN) for Regression, Support Vector Regression, Linear
Regression, and XGBoost are adopted along with our proposed RAR-based fea-
ture extraction methods for inferencing PF. Evaluation results show that RAR-
based strategy outperforms traditional OD-based strategy for at most 39%.
Moreover, the DNN for Regression with RAR-based scenario surpasses all other
OD-based settings for 33% to 87%, which demonstrates the effectiveness of our
newly proposed route-based feature extraction strategies.

In particular, we made the following contributions:

– We introduce route-affecting region (RAR) to model the influential region of
routes and thereafter propose several route-based feature engineering methods
for potential PF inference in transportation route planning.

– Given heterogeneous features and faced with the competitive and transfer
effects of existing routes, the proposed RAR and feature engineering methods
are effective for handling dynamic and static data together.

– Experiments on two cities, with public transit network structures differ-
ent from each other, show the adaptability of the proposed RAR-based
approaches compared to traditional OD-based feature extraction strategies.

The system flow for the PF inference framework along with RAR-based fea-
ture engineering strategy is illustrated in Fig. 1. This framework with the pro-
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Fig. 1. System Flow for the PF inference framework.

posed RAR can be adopted for several kinds of urban transportation system,
such as subway or bus, and be utilized in any cities where ticket data is available
for the government or transportation management authority.

2 Background

We look into previous researches that focus on inferencing the PF of designed
transportation routes in order to decide which features are needed to be con-
sidered and extracted for further inference. Some works in designing new trans-
portation routes focused on reducing transportation time through route adjust-
ment or shift [2–6]. There are also some works that optimized route planning with
distance, time, transference considered [7,8]. Some works studied the problem of
predicting arrival time [9–11] or future PF [12–14] based on regression analysis.
There are also some researches that inferred PF utilizing machine learning or
deep learning techniques [15–20]. However, most of the above works focused on
dealing with existing routes utilizing OD-based feature extraction strategies.

By focusing on designing new transportation routes [2–6] and analyzing the
considered and extracted features of formulation for previous works, we general-
ize six kinds of relevant urban features in inferring the PF for new routes deployed
in transportation networks. To be more specific, surrounding POI, human mobil-
ity, road network structure (network structure and trajectory length), relation-
ship with existing routes (transference and competition), population structure,
time information (waiting time and journey interval) are considered as the input
features of the inference model. However, most importantly, all the previous
works utilized these features on an OD-based analysis.

3 Preliminary

Definition 1 (Grid). We divide the city into disjointed grids (0.1 km*
0.1 km) [21] and store all features that are correlated with PF (e.g. population in
this grid, whether existing routes passed this grid, etc.) into corresponding grid.
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Definition 2 (Grid-like graph). Grid-like graph is composed of disjointed
grids that records connections as original road network based on OpenStreetMap
(OSM). Each grid stores the connections between adjacent grids in its eight direc-
tions if there exists a road in OSM that connects each other.

Definition 3 (Station). Station is a facility or area for passenger to regularly
get-into or get-off the mass transit transportation. (Note that the mass transit
transportation here refers to city bus, light rails, trolley bus, etc.) Passenger
need to pay by smart card when getting-into or/and getting-off the mass transit
at a station. Station in original mass transit data or as input given by users as
system is a point with latitude and longitude; but is labelled on a grid that the
point located at in grid-like graph.

Definition 4 (Trajectory). Trajectory is the path that certain mass transit
takes. Trajectory in original mass transit data or as input given by users as
system is a series of road junctions; but turns into a series of connecting grids
in the graph-like grids for further PF inference and route recommendation.

Definition 5 (Route). Route is a set of combination of trajectory and stations.
Note that same series of trajectories with different set of stations does refer to
different route. Route is a series of connecting grids and several grids labelled as
stations in the grid-like graph; however, since we divide the city into disjointed
grids with a meticulous size, the actual route in real world (OSM) can be easily
reproduced given a sequence of grids. Therefore, though some re-projections from
grid to actual road network are needed, no other superfluous process needed to
handle in post-processing.

Definition 6 (Passenger Flow (PF)). Since the price is fixed fare for Chicago
and Tainan bus transit system, and most of mass transit transportation system in
other cities, the passenger flow along the route here refers to the total passengers
who passed any point along the route. To be more specific, PF is counted once
someone pay by smart card when getting-into or getting-off the mass transit at
a station of a route.

Definition 7 (Origin-destination (OD) matrix). An origin-destination
(OD) matrix is essential for efficient traffic control and management [22], which
has been utilized in modeling congestion and estimating travel time by specify-
ing the travel demands between two nodes in network. The input data is usually
based on survey data from the region of origin and destination [23].

4 PF Inference

4.1 Problem Definition

The PF inference problem is defined as follows. Given a base map with urban
heterogeneous features and a set of trajectories for the designated route with its
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stations labeled from users, our goal is to infer the passenger flow PF for that
route.

The workflow of RAR-based approach for PF inference is displayed in Fig. 2,
which mainly consists of three components. In data preprocessing, we divide the
city into disjointed grids (e.g., 0.1 km * 0.1 km) [21], and all features are fetched
and stored in grids for further extraction. The second component is training
models. The feature set for each existing route is extracted and integrated as
the training data along with its corresponding ticket data, which is associated
with the timestamp and PF for each route. We treat various features as inputs
and PF values as the predictive label. We tried several machine learning methods
as training models, and the DNN for regression gets the most promising result
in our evaluation. In the third component, the pre-trained model can be utilized
for the query route given by the user to infer PF value.

Fig. 2. Workflow of RAR-based approach for PF inference.
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4.2 Route Affecting Region (RAR)

Our idea is that the demand for public transportation is not only based on the
origin and destination, but also geographical environment and urban functions of
nearby areas. Thus, we proposed RAR or considering these PF-related features.
A route can comprise multiple segments that contain successive points close to
each other. Then we can draw a circle for each point, where we consider each
point as the center of a circle, and then RAR formed by a set of circles. Based on
Design Manual for Urban Sidewalks [24], the walking tolerance for pedestrians
is 400 to 800 m; we thereafter extract corresponding features within RAR. The
green area in Fig. 3 is an example of RAR of given route qs to qd, with a radius
of 0.4 km.

Fig. 3. A RAR example of user-designated route.

4.3 Feature Extraction Based on RAR

To infer the PF value of a trajectory correctly, we consider six kinds of relevant
urban features in RAR:

POI-Related Features. Various POIs (Point-Of-Interest, specific point loca-
tion such as transportation hubs or entertainment venues) and their density in
RAR indicate the function of a region, which are highly correlated to the PF of a
route. For example, a high PF might be associated with route to many shopping
centers. We consider two aspects of POI features:

POI Density. The density of POI indicates the popularity of a certain activity
type in RAR, which also refers to the function of a region. As the example
mentioned above, a high density of certain types of POI such as shopping centers
and schools can result in high PF value.
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POI Entropy. The POI entropy shows the diversity of purpose when people visit
the nearby area of a route and is based on Information Theory [25]:

Entropy(li) = −
γ∈Γ∑

γ

(
Nγ(li, r)
N(li, r)

× log
Nγ(li, r)
N(li, r)

) (1)

Where Γ indicates set of POI, and γ refers to certain type of POI. Besides, N
(li, r) displays the total number of POI in RAR of trajectory li based on radius
r, Nγ(li, r) displays the number of type-γ POI in RAR of trajectory li.

Human Mobility. The total number of pick-up and drop-off records of Taxi (in
Chicago) or Bike (in Tainan) trip records that occur in RAR are accumulated as
the leaving and incoming flow respectively. Records taking place in same RAR
are viewed as transition flow. Dividing these values by number of all taxi records,
several floating-point numbers are derived.

Road Network Structure. Based on grid-like graph, the degree and closeness
centrality in RAR are calculated as floating-point numbers. Degree centrality
identifies the total number of reachable vertices for all intersections in RAR,
and closeness centrality shows the average distance between one intersection to
another in RAR.

Competition and Transference with Existing Routes. To quantify com-
petitive relationship and since the road network structure is already recon-
structed into grid-like graph, grids that holds designated routes and each existing
route can be labelled respectively. Then a simple algorithm is run to calculate the
number of grids that are labelled as both designated route and certain existing
one, or grids that are labelled as designated route but nearby grids in its RAR are
labelled as certain existing route. Through this process, the numbers of overlap
grids and nearby grids between given route and each existing route are derived;
meanwhile, if certain existing route is transferable, the grids (except for overlap
and nearby ones) of that existing route are viewed as extended grids. Dividing
these values by total grids of corresponding existing route, several floating-point
numbers are derived, representing overlap/ nearby/ extended region between
given and each existing route respectively.

Population Structure. People in RAR of different ages and genders have dif-
ferent intentions for taking public transportation. Consequently, based on pop-
ulation pyramid (if available) for each village, Population in certain RAR of
different ages and genders are derived as several floating-point numbers.

Time Information and Granularity. Seasons and holidays can influence the
passenger flow of public transportation. We adopt one-hot encoding to record
the time information for each ticket record.
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4.4 Inference Model Construction

We adopt and modify multiple machine learning methods including Support Vec-
tor Regression (SVR), Linear Regression (LR), XGBoost, and DNN for Regres-
sion, to derive the PF for the designated route respectively. The input data
includes all the features extracted based on the RAR of the given route, while
the output is the inferred PF value of that route. The architecture of DNN for
Regression is a feed-forward neural network with many levels of non-linearities.
Meanwhile, all our input features are rescaled to 0 to 1, the type of the hidden
units for 4 dense layers is ReLU and the output unit is linear.

As the features been considered include relationship with existing routes
and other relevant factors as described above, we believe that the model is
trained/adapted to infer the PF of an arbitrary route (either new one or existing
one) with the features that are extracted based on RAR of the route.

Descriptions of the features for inference model are provided in Table 1 Due
to the nature of sources provided by authorities of cities, there exists slight dif-
ferences. For instance, population pyramid for each village (the smallest admin-
istrative district; the average area of each village in Tainan City is about 2.91
square kilometers, the value turns to 0.25 square kilometers for the city centre)
is only available for Tainan dataset.

Table 1. Descriptions of the independent variables (features) used in our models.

Feature Description

Timestamp 84 variables for the time of day and day of week
(each 2-h interval)

POI-density 10 variables for each type of POI
(category based on Foursquarea)

POI-entropy 1 variable for the entropy of POI

Human mobility 3 variables for each type of flow
(transition, incoming, leaving)

Road network 2 variables for each type of centrality
(degree, closeness)

Existing routes 15 variables for top-5 related existing routes
(3 values for each)

Population structure 1 variable for total population (Chicago)
6 variables for different ages and genders (Tainan)

ahttps://developer.foursquare.com/docs/resources/categories

5 Evaluation

5.1 Datasets

We use bus-ticket data on two different types (radial and square structure)
of public transit networks from Tainan City Government and Chicago Transit

https://developer.foursquare.com/docs/resources/categories
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Authority (CTA2). The data for Tainan lists ticket id, route id, timestamps, and
the starting and ending stations; on the other hand, the data for Chicago lists
route id, timestamps, and number of passengers. The datasets contain 14,336,226
and 231,196,847 ticket records respectively and hold at least 100 routes and thou-
sands of stations in service. The public transit networks for both cities are shown
in Fig. 4.

The urban spaces of Tainan and Chicago are divided into 505,296 and 330,335
disjointed grids (0.1 km * 0.1 km) based on EPSG: 3857, which is a variant of the
Mercator projection and acts as the standard for web mapping applications.
Since the unit for this projection is meter, we are able to divide the urban
spaces into disjointed grids based on meters precisely considering the ellipsoidal
datum when generating grid-like graph and pre-processing relevant features in
the Geographic Information System. Meanwhile, only 94,282 and 91,320 grids
(vertices) would be considered in route recommendation, which are reduced by
about three times compared to the original road network structure. On the other
hand, static features including POI and road network structures are extracted
from GoogleMap and OpenStreetMap. The population are fetc.hed from respec-
tive agencies. Finally, we take bike trips and taxi trips that list pick-up and drop-
off location as human mobility. Details of both cities are presented in Table 2.

Fig. 4. Public transit networks for Tainan (left) and Chicago (right) on the same scale.

5.2 Evaluation Setting

To demonstrate the effectiveness of our proposed route-based feature extrac-
tion strategies, we hold two kinds of experimental scenarios to be compared.
The first one is feature extraction based on our proposed route-affecting region
(RAR-based), and the second one is to extract features of regions from sim-
ply origin-destination stations (OD-based) traditionally. We then developed four
2 http://www.transitchicago.com/

http://www.transitchicago.com/
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Table 2. Size figures for our input instances.

Instance Dataset Tainan Chicago

Bus data Existing routes 104 139

Existing stations 6.575 11,592

Ticket records 14,336,226 231,196,847

Period 01/2017–12/2017 11/2017–10/2018

Gridized map Grids (0.1 km* 0.1 km) 505,296 330,335

Grids labelled with road 94,282 91,320

Other features POI 8,734 21,889

Bike trips (for human mobility) 139,478 N/A

Taxi trips (for human mobility) N/A 68,461,612

Road nodes 237,866 390,509

Road edges 414,409 560,810

Census blocks (for population) 14,730 46,293

methods for inference: (a) Support Vector Regression (SVR), (b) Linear Regres-
sion (LR), (c) XGBoost, and (d) DNN for Regression (DNN-Reg), along with
two baseline methods: (e) Median value and (f) Average value using the median
and average value of PF in all training routes respectively.

Meanwhile, we conduct other experiments to investigate the importance of
different features and the relationship between RAR-based strategy and each
feature set; Table 3 shows the components of feature sets used in the evaluation.
Apart from time information, which is included in all feature sets, each of the
six urban relevant features is selected respectively from set I to set V ; mean-
while, we split the POI-related features into two parts–density and entropy–to
see the influence between them. Set VII refers to the static location-based fea-
tures, including POI-related ones and population structure; similarly, set VIII
represents the static transportation-based features consist of road network and
competition/ transference with existing routes. Furthermore, set IX combines
all the static features, and human mobility is later considered in set X.

The evaluation is based on the leave-one-out method, where we iteratively
leave one route PF data out of the complete data, and then use the rest of data
to train the model and infer the value of the left out route based on the features
extracted from the RAR of the route. Then we compare the inference value with
the ground-truth, which is the total number of passengers that had taken the
route. We choose the normalized root-mean-square error (RMSE) as the metric.

5.3 Evaluation of Feature Selection

We summarize the preliminary evaluation by illustrating the normalized RMSE
of PF results for all comparative and baseline methods, the latter are depicted
as horizontal lines since they are not affected by feature sets. Considering the
walking tolerance for pedestrians (0.4 km to 0.8 km), Fig. 5 (for Tainan dataset)
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Table 3. Strategy sets to be used in preliminary evaluation.

Research Feature set

I II III IV V VI VII VIII IX X

Timestamp
√ √ √ √ √ √ √ √ √ √

POI-density
√ √ √ √

POI-entropy
√ √ √ √

Human mobility
√ √

Road network
√ √ √ √

Existing route
√ √ √ √

Population structure
√ √ √ √

and Fig. 6 (for Chicago dataset) demonstrate the normalized RMSE of PF results
on RAR-based scenario with ten different feature sets for RAR range from 0.4 km
to 0.8 km.

Based on preliminary evaluation, we first focused on the Tainan dataset and
identified that for a single urban relevant feature, the feature sets I and VI
show better results than the others. This indicates that POI-related features
turn out to have much more impact among all features. Furthermore, for static
features, location-based ones (set VII ) outperform transportation-based ones
(set VIII ) for 13% and 10% while utilizing XGBoost and DNN for Regression
respectively; however, the result for Linear Regression turns out to be −583%
from transportation-based to location-based features in normalized RMSE.

Next, we moved to the Chicago dataset, in general, feature sets I and V show
better results than the others while focusing on a single urban relevant feature.
In other words, POI-related features still turn out to have much more impact
among all features. Furthermore, for static features, although location-based
ones (set VII ) outperform transportation-based ones (set VIII ) for 7% to 16%
while utilizing DNN for Regression, the results for SVR, Linear Regression and
XGBoost turn out to be −3% to −15% from transportation-based to location-
based features in normalized RMSE. Besides, we can observe that the light of
the performance of set V for Chicago is better than Tainan.

We conclude that acting as a public transit focusing on metropolis; the square
route structure in Chicago could construct a tighter connection for passengers to
transfer between one another (e.g. a single station is shared by multiple routes,
as Fig. 4 demonstrates). However, the relationship between existing routes is not
useful since the radial routes structure for Tainan is to commute from suburbs
or mountain areas to the city centre.
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(a) PF with RAR of 0.4 km. (b) PF with RAR of 0.5 km.

(c) PF with RAR of 0.6 km. (d) PF with RAR of 0.7 km.

(e) PF with RAR of 0.8 km.

Fig. 5. Normalized RMSE of PF for different methods and feature sets on RAR-based
scenario in Tainan dataset.

(a) PF with RAR of 0.4 km. (b) PF with RAR of 0.5 km.

(c) PF with RAR of 0.6 km. (d) PF with RAR of 0.7 km.

(e) PF with RAR of 0.8 km.

Fig. 6. Normalized RMSE of PF for different methods and feature sets on RAR-based
scenario in Chicago dataset.
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Fig. 7. Normalized RMSE of PF results for different methods with RAR range from
0.4 km to 0.8 km on RAR-based scenario in Tainan (left) and Chicago (right) dataset.

5.4 Evaluation of RAR Setting

For this experiment, we extract features by varying different RAR-ranges, show-
ing how RAR-settings can influence the effectiveness.

Based on feature set X, which means to take all the urban relevant fea-
tures into consideration, Fig. 7 depicts the normalized RMSE of PF results for
all methods with RAR range from 0.4 km to 0.8 km (according to the walking
tolerance for pedestrians) on RAR-based scenario.

We first notice that the performance of DNN for regression varies dramat-
ically considering the RAR range in Tainan dataset. The experimental result
shows that there exists a not small increase of RMSE for feature set I between
RAR range of 0.6 km and 0.7 km when DNN for regression is utilized. Such phe-
nomenon only takes place in Tainan dataset. We conclude that the reason is,
when the RAR range is set too large, the POIs that being considered could not
represent the characteristics that route actually covers. Evaluation results show
that 0.4 to 0.6 km of RAR range ends up in outperforming other RAR ranges in
Tainan dataset.

5.5 Evaluation of Feature Extraction Strategies

Finally, for this experiment, we extract features under RAR-based and OD-based
scenario and treat each feature set as the input data for each method with
RAR/Radius of 0.4 km.

We compared the results for RAR-based and OD-based scenario under a
RAR/Radius of 0.4 km, which was the best radius as the preliminary evaluation
reveals. Table 4 show the normalized RMSE of PF results for different methods,
scenarios and feature sets with a RAR/Radius of 0.4 km for both two datasets,
where the best performance in each feature set is labelled in bold; while the best
performance in each dataset is labelled in red. Although the advantage of the
proposed RAR strategy is not significant for each single urban relevant feature
(feature sets I to VI), the DNN for Regression on RAR-based scenario consis-
tently gains the best results when considering multiple heterogeneous features
(sets VII to X).

Accordingly, overall performance results for both datasets under RAR/Range
of 0.4 km are shown in Fig. 8, where DNN for Regression gains the best normal-
ized RMSE and outperforms other comparative methods for at least 41% in
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RAR-based scenario for Tainan dataset and at least 57% in RAR-based sce-
nario for Chicago. Though RAR-based strategy performs −6% to 39% compared
to traditional OD-based strategy; in general, RAR-based strategy still performs
better than OD-based for most method and conditions. Besides, the DNN for
Regression with RAR-based scenario surpasses all other OD-based settings for
33% to 87%, which demonstrates the effectiveness and the adaptability of our
proposed route-based feature extraction strategies.

Fig. 8. Normalized RMSE of PF results for different methods and scenarios under a
RAR/Radius of 0.4 km in Tainan (left) and Chicago (right) dataset.

Table 4. Strategy sets to be used in preliminary evaluation.

Experimental settings Feature set

City Method Scenario I II III IV V VI VII VIII IX X

Tainan Median value 0.1564 0.1564 0.1564 0.1564 0.1564 0.1564 0.1564 0.1564 0.1564 0.1564

Average value 0.1501 0.1501 0.1501 0.1501 0.1501 0.1501 0.1501 0.1501 0.1501 0.1501

SVR OD-based 0.1716 0.1660 0.1852 0.1718 0.1738 0.1837 0.1850 0.1735 0.1787 0.1785

RAR-based0.1712 0.1610 0.1858 0.1699 0.1738 0.1826 0.1858 0.1735 0.1784 0.1783

LR OD-based 0.0880 0.0773 0.1951 0.07700.0961 0.0705 0.2289 0.0949 0.1006 0.1006

RAR-based0.0895 0.07710.4770 0.0773 0.0962 0.07030.2458 0.0971 0.1062 0.1063

XGBoost OD-based 0.0748 0.0802 0.0909 0.0841 0.1013 0.0887 0.0767 0.0905 0.0844 0.0830

RAR-based0.0762 0.0846 0.0903 0.0812 0.1013 0.0931 0.0750 0.0860 0.0826 0.0859

DNN-Reg OD-based 0.06560.0900 0.07970.1055 0.0922 0.0747 0.0732 0.0828 0.0723 0.0760

RAR-based0.0682 0.0972 0.0923 0.0941 0.08870.0835 0.06540.06830.05140.0509

ChicagoMedian value 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031 0.2031

Average value 0.1927 0.1927 0.1927 0.1927 0.1927 0.1927 0.1927 0.1927 0.1927 0.1927

SVR OD-based 0.1803 0.1768 0.1826 0.1836 0.1704 0.1886 0.1816 0.1691 0.1714 0.1663

RAR-based0.1823 0.1816 0.1827 0.1837 0.1704 0.1823 0.1813 0.1672 0.1665 0.1641

LR OD-based 0.1609 0.1620 0.1625 0.1632 0.1484 0.1631 0.1619 0.1502 0.1446 0.1442

RAR-based0.1563 0.1568 0.1591 0.1598 0.1451 0.1589 0.1560 0.1448 0.1380 0.1355

XGBoost OD-based 0.0765 0.0858 0.1028 0.0854 0.0583 0.1010 0.0719 0.0642 0.0456 0.0545

RAR-based0.0659 0.0831 0.0932 0.0830 0.0583 0.0936 0.0686 0.0622 0.0483 0.0492

DNN-Reg OD-based 0.0452 0.0393 0.0625 0.0736 0.0545 0.0911 0.0430 0.0538 0.0355 0.0355

RAR-based0.03380.02900.02380.02540.02540.03660.02120.02530.02160.0216

6 Conclusion

This work proposes a route-based approach for potential passenger flow infer-
ence in transportation route planning. We define route-affecting region (RAR)
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to model the influential region of routes and adopt several regression models
along with our proposed RAR-based feature extraction strategies. Given hetero-
geneous features and faced with the competitive and transfer effects of existing
routes, our proposed RAR and feature engineering methods are effective for han-
dling dynamic and static data. Experimental results on bus-ticket data of Tainan
and Chicago, with radial and square road structures, show the adaptability of
our proposed RAR-based approaches compared to traditional OD-based feature
extraction strategies. Although RAR-based strategy performs −6% to 39% com-
pared to traditional OD-based strategy based on utilized methods, the DNN for
Regression with RAR-based scenario surpasses all other OD-based settings for
33% to 87%.
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Abstract. Changing lane configuration of roads, based on traffic pat-
terns, is a proven solution for improving traffic throughput. Traditional
lane-direction configuration solutions assume pre-known traffic patterns,
hence are not suitable for real-world applications as they are not able
to adapt to changing traffic conditions. We propose a dynamic lane con-
figuration solution for improving traffic flow using a two-layer, multi-
agent architecture, named Coordinated Learning-based Lane Allocation
(CLLA). At the bottom-layer, a set of reinforcement learning agents
find a suitable configuration of lane-directions around individual road
intersections. The lane-direction changes proposed by the reinforcement
learning agents are then coordinated by the upper level agents to reduce
the negative impact of the changes on other parts of the road network.
CLLA is the first work that allows city-wide lane configuration while
adapting to changing traffic conditions. Our experimental results show
that CLLA can reduce the average travel time in congested road networks
by 20% compared to an uncoordinated reinforcement learning approach.

Keywords: Reinforcement learning · Spatial database · Graphs

1 Introduction

The goal of traffic optimization is to improve traffic flows in road networks.
Traditional solutions normally assume that the structure of road networks is
static regardless of how the traffic changes in real-time [6]. A less-common way to
optimize traffic is by changing road network configurations at real time. We focus
on dynamic lane-direction changes, which can help balance the usage of traffic
lanes in many circumstances, e.g. when the traffic lanes in one direction become
congested while the traffic lanes in the opposite direction are underused [11,20].

The impact of dynamic lane-direction configurations can be shown in the fol-
lowing example (Fig. 1). In Fig. 1a, there are 4 north-bound lanes and 4 south-
bound lanes. Traffic is congested in the north-bound lanes. Figure 1b shows the
dramatic change of traffic flow after lane-direction changes are applied, where
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 291–307, 2021.
https://doi.org/10.1007/978-3-030-67667-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-67667-4_18


292 U. Gunarathna et al.

(a) Traffic before lane-direction
change

(b) Traffic after lane-direction
change

Fig. 1. The impact of lane-direction change on traffic flow. There are 20 vehicles moving
in the north-bound direction and 2 vehicles moving in the south-bound direction.

the direction of E, F and G is reversed. The north-bound vehicles are distributed
into the additional lanes, resulting in a higher average speed of the vehicles. At
the same time, the number of south-bound lanes is reduced to 1. Due to the
low number of south-bound vehicles, the average speed of south-bound traffic
is not affected. The lane-direction change helps improve the overall traffic effi-
ciency in this case. There is no existing approach for applying such lane-direction
changes at the network level at real-time, which can help improve traffic effi-
ciency of a whole city. We aim to scale this to city-wide areas. The emergence of
connected autonomous vehicles (CAVs) [14] can make such large-scale dynamic
lane-direction changes a common practice in the future. Compared to human-
driven vehicles, CAVs are more capable of responding to a given command in
a timely manner [4]. CAVs can also provide detailed traffic telemetry data to a
central traffic management system in real time, which is important to dynamic
traffic optimization.

In order to optimize the flow of the whole network, one needs to consider the
impact of possible lane-direction changes on all the other traffic lanes. In many
circumstances, one cannot simply allocate more traffic lanes at a road segment
for a specific direction when there is more traffic demand in that direction. This
is because a lane-direction change at a road segment can affect not only the
flow in both directions at the road segment but also the flow at other road seg-
ments. Existing solutions for computing lane-direction configurations [4,9,21] do
not consider the impact of changes at the network level due the assumption that
future traffic dynamics are known beforehand at the beginning of the calculation
which is unrealistic for practical applications. More importantly, the computa-
tion time can be very high with the existing approaches as they aim to find the
optimal configurations based on linear programming, and hence are not suitable
for frequent recomputation over large networks.

To address the issues mentioned above: (1) perform in real-time; and (2)
having less computational complexity, we propose a multi-agent, scalable, and
effective solution, called Coordinated Learning-based Lane Allocation (CLLA),
for optimizing lane-directions in dynamic traffic environments. CLLA uses a two-
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layer architecture. The bottom layer consists of a set of reinforcement learning
agents (RL Agents) that operate at the intersection level. A RL Agent finds
suitable lane-direction changes for the road segments that connect to a spe-
cific intersection. The RL Agents use reinforcement learning [17], which helps
determine the best changes based on multiple dynamic factors. The RL Agents
send the proposed lane-direction changes to the upper layer, which consists of
a set of Coordinating Agents who evaluate the global impact of the proposed
lane-direction changes and decide what changes should be made to the traffic
lanes. The decision is sent back to the RL Agents, which will make the changes
accordingly. The main contributions of our work are as follows:

– We formalize a lane-direction optimization problem.
– We propose a first-of-its-kind solution, CLLA, for efficient dynamic optimiza-

tion of lane-directions that uses reinforcement learning to capture dynamic
changes in the traffic.

– Our experiments with real-world data shows that CLLA improves travel time
by 20% compared to an uncoordinated RL Agent solution.

2 Related Work

2.1 Learning-Based Traffic Optimization

Existing traffic optimization algorithms are commonly based on traffic flow opti-
mization with linear programming [6,7,10]. They are suitable computing opti-
mization solutions if traffic demand and congestion levels are relatively static.
When there is a significant change in the network, the solutions normally need
to be re-computed from scratch. Due to the high computational complexity of
finding an optimal solution, these algorithms are not suitable for highly dynamic
traffic environments and not suitable for applications where real-time informa-
tion are used as an input.

With the rise of reinforcement learning [16], a new generation of traffic opti-
mization algorithms have emerged [13,18,22]. In reinforcement learning, an agent
can find the rules to achieve an objective by repeatedly interacting with an envi-
ronment. The interactive process can be modelled as a finite Markov Decision
Process, which requires a set of states S and a set of actions A per state. Given
a state s of the environment, the agent takes an action a. As the result of the
action, the environment state may change to s′ with a reward r. The agent then
decides on the next action in order to maximize the reward in the next round.
Reinforcement learning-based approaches can suggest the best actions for traf-
fic optimization given a combination of network states, such as the queue size
at intersections [1,2]. They have an advantage over linear programming-based
approaches, since if trained well, they can optimize traffic in a highly dynamic
network. In other words, there is no need to re-train the agent when there is a
change in the network. For example, Arel et al. show that a multi-agent system
can optimize the timing of adaptive traffic lights based on reinforcement learn-
ing [1]. Different to the existing approaches, our solution uses reinforcement
learning for optimizing lane-directions which was not considered before.
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A common problem with reinforcement learning is that the state space can
grow exponentially when the dimensionality of the state space grows linearly.
The fast growth of the state space can make reinforcement learning unsuitable
for large scale deployments. This problem is known as the curse of dimensional-
ity [3]. A common way to mitigate the problem is by using a set of distributed
agents that operate at the intersection level. This approach has been used for
dynamic traffic signal control [5]. Different to the existing work we use this for
dynamic lane-direction configurations.

Coordination of multi-agent reinforcement learning can be achieved through
a joint state space or through a coordination graph [8]. Such techniques, however,
require agents to be trained on the targeted network. Since our approach uses
an implicit mechanism to coordinate (Sect. 4.3), once an agent is trained, it can
be used in any road network.

2.2 Lane-Direction Configurations

Research shows that dynamic lane-direction changes can be an effective way to
improve traffic efficiency [20]. However, existing approaches for optimizing lane-
directions are based on linear programming [4,9,21], which are unsuitable for
dynamic traffic environments dues to their high computational complexity. For
example, Chu et al. uses linear programming to make lane-allocation plans by
considering the schedule of connected autonomous vehicles [4]. Their experiments
show that the total travel time can be reduced. However, the computational
time grows exponentially when the number of vehicles grows linearly, which can
make the approach unsuitable for highly dynamic traffic environments. The high
computational costs are also inherent to other approaches [9,21]. Furthermore,
all these approaches assume the exact knowledge of traffic demand over the time
horizon is known beforehand; this assumption does not hold when traffic demand
is stochastic [12]. On the contrary, our proposed approach CLLA is lightweight
and can adapt to highly dynamic situations based on reinforcement learning.
The reinforcement learning agents can find effective lane-direction changes for
individual road intersections even when traffic demand changes dramatically. To
the best of our knowledge, this is the first work for lane-direction allocation by
observing real-time traffic information.

3 Problem Definition

Definition 1. Road network graph: A road network graph Gt(V,E) is a rep-
resentation of a road network at time t. Each edge e ∈ E represents a road
segment. Each vertex v ∈ V represents a start/end point of a road segment.

Definition 2. Lane configuration: The lane configuration of an edge e, lce, is
a tuple with two numbers, each of which is the number of lanes in a specific
direction on the edge. The sum of the two numbers is always equal to the total
number of lanes on the edge.
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Definition 3. Dynamic lane configuration: The dynamic lane configuration of
an edge e at time t, lce(t), is the lane configuration that is used at the time point.

Definition 4. Travel cost: The travel cost of a vehicle i that presents at time
t, TCi(t), is the length of the period between t and the time when the vehicle
reaches its destination.

Definition 5. Total travel cost: The total travel cost of vehicles that present
at time t, TTC(t), is the sum of the travel costs of all the vehicles. That is,
TTC(t) =

∑n
(i=1) TCi(t), where n is the number of vehicles.

PROBLEM STATEMENT. Given a set of vehicles at time t and the road
network graph Gt−1(V,E) from time t − 1, find the new graph Gt(V,E) by
computing dynamic lane configuration (lce(t)) for all the edges in E such that
the total travel cost TTC(t) is minimized.

4 Coordinated Learning-Based Lane Allocation (CLLA)

To solve the optimization problem defined in Sect. 3, we propose Coordinated
Learning-based Lane Allocation (CLLA) solution. CLLA uses a two-layer multi-
agent architecture, as shown in Fig. 2. The bottom layer consists of a set of
RL Agents that are responsible for optimizing the direction of lanes connected
to specific intersections. The lane-direction changes that are decided by the RL
Agents are aggregated and evaluated by a set of Coordinating Agents at the
upper layer, with the aim to resolve conflicts between the RL agents’ decisions.

CLLA provides a scalable solution for dynamic lane configuration at the road
network level as traffic patterns changes in real-time. CLLA uses reinforcement
learning to help optimize lane-direction configurations, which allows optimiza-
tion in a high variety of real-time traffic conditions. In addition, CLLA achieves
coordination between the RL Agents by considering the impact of a potential
lane-direction change on different parts of the road network. As detailed later,
CLLA only needs to know partial information about vehicle paths in addition
to certain real-time traffic conditions, such as intersection queue lengths and
lane configuration of road segments, which can be obtained from inductive-loop
traffic detectors.

CLLA operates in the following manner. A RL Agent in the bottom layer
observes the local traffic condition around a specific intersection. The RL Agents
make decisions on lane-direction changes independently. Whenever a RL Agent
needs to make a lane-direction change, it sends the proposed change to the
Coordinating Agents in the upper layer. The RL Agents also send certain traffic
information to the upper layer periodically. The Coordinating Agents evaluate
whether a proposed change would be beneficial at the global level based on
the received information. The Coordinating Agents may allow or deny a lane-
direction change request. It may also decide to make further changes in addition
to the proposed changes. After the evaluation, the Coordinating Agents inform
the RL Agents of the changes to be made.
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Fig. 2. An overview of the CLLA’s architecture

4.1 CLLA Algorithm

Algorithm 1 shows the entire optimization process of CLLA. During one iteration
of the algorithm, each RL Agent proposes the lane-direction changes around a
specific road intersection using the process detailed in Sect. 4.2. When it is time
to evaluate the proposed changes, the system uses the Global Impact Evaluation
algorithm (Sect. 4.3) to quantify the conflicts between the proposed changes and
finds coordinated lane-direction changes (Line 8). The coordinated lane-direction
changes are then applied to the road segments (Line 10–11).

4.2 Reinforcement Learning Agent (RL Agent)

In CLLA, the RL Agents use Q-learning technique [19] to find suitable lane-
direction changes based on real-time traffic conditions. The Q-learning algorithm
aims to find a policy that maps a state to an action. The algorithm relies on an
action value function, Q(s, a), which computes the quality of a state-action com-
bination. Q-learning tries to find the optimal policy that leads to the maximum
action value. Q-learning updates the action-value function using an iterative
process as shown in Eq. 1.

Qnew(st, at) = (1 − α).Q(st, at) + α(rt+1 + γ.maxaQ(st+1, a)) (1)

where s is the current state, a is a specific action, st+1 is the next state as a
result of the action, maxaQ(st+1, a) is the estimated optimal action value in the
next state, value rt+1 is an observed reward at the next state, α is a learning
rate and γ is a discount factor. In CLLA, the states, actions and rewards used
by the RL Agents are defined as follows.

States: A RL Agent can work with four types of states as shown below.

– The first state represents the current traffic signal phase at an intersection.
– The second state represents the queue length of incoming vehicles that are

going to pass the intersection without turning.
– The third state represents the queue length of incoming vehicles that are

going to turn at the intersection.
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Algorithm 1: Coordinated Learning Lane Allocation (CLLA)
Input: ta, time between two coordinating operations
Input: LLC, set of edge-change pairs proposed by the RL Agents
Input: G, Road Network
Input: CLC, set of edge-change pairs given by the Coordinating Agents

1 t ← 0, tstep ← 0
2 while True do
3 foreach agent ∈ RL Agents do
4 determine the best lane-direction change for all the edges (road

segments) that connect to the vertex v ∈ G (intersection) controlled by
the agent

5 foreach edge e that needs a lane-direction change do
6 LLC.insert({e, lce(t)})

7 if ta = tstep then
8 CLC ← Global Impact Evaluation(LLC)
9 LLC ← ∅, tstep ← 0

10 foreach {e, lce(t)} in CLC do
11 apply the lane-direction change to e

12 t ← t + 1

13 tstep ← tstep + 1

– The fourth state represents the queue length of outgoing vehicles, i.e., the
vehicles that have passed the intersection.

Although it is possible to add other types of states, we find that the combination
of the four states can work well because the combination of four states provides;
i) information about both incoming and outgoing traffic, ii) from which road to
which road vehicles are waiting to move, iii) current traffic signal information.

Actions: We denote the two directions of a road segment as upstream and
downstream. There are three possible actions: increasing the number of upstream
lanes by 1, increasing the number of downstream lanes by 1 or keeping the
current configuration. When the number of lanes in one direction is increased,
the number of lanes in the opposite direction is decreased at the same time.
Since a RL Agent controls a specific road intersection, the RL Agent determines
the action for each individual road segment connected to the intersection.

We introduced an action restriction mechanism in RL Agents. Changing lane-
direction of a road segment takes time as existing vehicles on that road segment
should move out before reversing the lane-direction. Therefore, it takes an even
longer time to recover from an incorrect lane-direction decision taken by a RL
Agent while learning. In order to stabilize the learning, a RL Agent is allowed to
take a lane-changing action only when there is a considerable difference between
upstream and downstream traffic. The use of this restriction also provides a
way to resolve conflicting actions between neighboring RL Agents. When two
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RL Agents connected to the same road segment want to increase the number of
lanes in different directions, the priority is given to the action, which allocates
more lanes to the direction with a higher traffic volume.

Rewards: We define the rewards based on two factors. The first factor is the
waiting time of vehicles at an intersection. When the waiting time decreases,
there is generally an improvement of traffic efficiency. Hence the rewards should
consider the difference between the current waiting time and the updated waiting
time of all the vehicles that are approaching the intersection. The second factor
is the difference between the length of vehicle queues at different approaches to
an intersection. When the queue length of one approaching road is significantly
longer than the queue length of another approaching road, there is a higher
chance that the traffic becomes congested in the former road. Therefore we need
to penalize the actions that increase the difference between the longest queue
length and the shortest queue length. The following reward function combines
the two factors. A parameter β is used to give weights for the two factors. We
normalized the two factors to stabilize the learning process by limiting reward
function between 1 to −1. To give equal priority to both factors, we set β to 0.5
in the experiments.

R = (1 − β) × Current wait time − Next wait time

max(Next wait time,Current wait time)

− β × Queue length difference

Aggregated road capacity

4.3 Coordinating Agent

Given a locally optimized lane-direction change, Coordinating Agents check
whether the change can help improve traffic efficiency in surrounding areas based
on the predicted traffic demand and the current traffic conditions. If a proposed
change is beneficial, it can be actioned. Otherwise, it is not allowed by CLLA.

We first, explain the process of coordinating lane-direction changes using a
simple example shown in Fig. 3, where two vehicles are moving from left to right
while four other vehicles are moving in the opposite direction. Let us assume that
the RL Agent for road segment e1 proposes to increase the number of lanes from
A to B because there is no vehicle in the opposite direction on e1 now. Although
such a lane-direction change would help reduce the travel time on e1, it may
conflict with the predicted traffic demand on e2. The reason is that four vehicles
will go through e2 from right to left (from C to B) but only two vehicles will go
through the same road segment from left to right (from B to C). Therefore, the
overall traffic demand on e2 will be from right to left (from C to B). However,
by increasing the number of lanes from left to right on e1, the number of lanes
in the opposite direction decreases, which is likely to cause a drop of traffic flow
speed from B to A. The traffic congestion can eventually propagate to the road
segment from C to B. This is not ideal as the overall traffic demand would be
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from C to B. Consequently, increasing the number of lanes from left to right
(from A to B) on e1 is not beneficial and should not be actioned.

Fig. 3. The vehicles on a road with three road links, e1, e2 and e3. The vehicles will
follow the paths shown in arrows.

Due to the dynamic nature of traffic, the Coordinating Agents may not need
to consider the full path of vehicles when evaluating the proposed changes based
on the predicted traffic demand. This is because the route of vehicles may change
dynamically at real time, especially in the era of connected autonomous vehicles
when traffic optimization can be performed frequently. Instead of collecting the
full path of vehicles, the Coordinating Agents can collect the path within a lookup
distance. For example, assuming the lookup distance is 200 m, the Coordinating
Agents only need to know the road segments that the vehicles will pass within
the next 200 m from their current locations.

When there is no conflict between a proposed lane-direction change and the
predicted traffic demand, CLLA evaluates the benefit of the proposed change
based on the current traffic conditions. Our implementation considers one specific
type of traffic condition, the current queue length at road junctions. If a lane-
direction change can lead to a lower traffic speed on a road segment, which has a
longer queue than the road segment in the opposite direction, the lane-direction
change is not allowed. This is because a lower traffic speed can lead to an even
longer queue, which can decrease traffic efficiency.

The coordination of lane-direction changes is performed at a certain interval.
The time between two coordinating operations is the assignment interval, within
which the proposed lane-direction changes are actioned, the predicted traffic
demand and the current traffic condition are aggregated at the Coordinating
Agents.

Global Impact Evaluation Algorithm: The Coordinating Agents use Global
Impact Evaluation Algorithm (Algorithm 2) to quantify the conflicts between
lane-direction changes. The algorithm takes lane-direction changes that are pro-
posed by the RL Agents as an input (LLC). The input consists of the road and
the lane-direction change (lc) proposed by each RL Agent. First, the algorithm
finds the neighboring road segments affected by all the changes proposed by the
RL Agents (Line 3). For each neighboring road segment, the algorithm finds the
predicted traffic flow caused by the proposed lane-direction changes (Line 5).
Then the algorithm adds affected neighboring road segments to a queue (Line
7).
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Algorithm 2: Global Impact Evaluation (GIE)
Input: LLC, a set of local lane-direction changes ( road id, action pair)

proposed by the RL Agents
Input: t, current time
Output: CLC, a set of ( road id, action pair) given by the Coordinating Agents

1 q ← ∅; CLC ← ∅
2 foreach (r, lcr(t)) ∈ LLC do
3 roads ← Neighboring road segments affected by the lane-configuration

(lcr(t)) in r, which are within the lookup distance
4 foreach rnew ∈ roads do
5 Calculate the predicted traffic flow change in rnew due to lcr(t)
6 if rnew not in q then
7 q.add(rnew)

8 foreach rnew ∈ q do
9 lcrnew (t) ← decide the lane-configuration for rnew based on predicted traffic

10 if lcrnew (t) contains a lane direction change then
11 CLC.add([rnew, lcrnew (t)

12 if rnew cannot accommodate predicted traffic flows then
13 mark corresponding change in LLC as a conflict

14 foreach r, lcr(t) ∈ LLC do
15 if no conflicts for r then
16 CLC.add([r, lcr(t)])

In the next step, the algorithm visits each road segment in the queue and
determines the appropriate lane-direction configuration (lcrnew

(t)) and the con-
flicts, where a road segment cannot accommodate the predicted traffic flow (Line
9–13). If a lane-direction change needs to be made, for road segment rnew, the
road segment is added to coordinated lane changes (CLC) (Line 11). If there is
a conflict at road segment rnew, corresponding lane-direction change proposed
by the RL Agents is marked as a conflict (Line 13).

In the last step, the algorithm adds lane-direction changes proposed by the
RL Agents to coordinated lane changes if there is no conflict (Line 14–16).

Complexity of Coordinating Process. Let us use m to denote the number
of requests from the RL Agents. The complexity of visiting the relevant road
segments is O(m × neb) where neb is the number of neighboring road segments
that connect to a road segment at a road junction. Since the number of road
segments connecting with the same junction is normally a small value, neb can be
seen as a constant value with a given lookup distance (lup). Hence the algorithm
complexity can be simplified to O(m). In the worst case, there is a lane-change
request for each road segment of G(V,E), leading to a complexity of O(|E|).
Distributed Version. Since the execution of Global Impact Evaluation algo-
rithm is independent of the order of requests coming from the RL Agents,
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requests can be processed in a distributed manner using multiple Coordinating
Agents. Every Coordinating Agent traverses first depth neighbors and informs
changes to other Coordinating Agents. In such a setting, the complexity of the
algorithm is O(1) with |E| number of Coordinating Agents. In this work, we
implemented the centralized version (with one Coordinating Agent); however,
when applied to very large road networks, the distributed version can be imple-
mented.

5 Experimental Methodology

We compare the proposed algorithm, CLLA, against three baseline algorithms
using traffic simulations. We evaluate the performance of the algorithms using
synthetic traffic data and real traffic data. We use SMARTS (Scalable Micro-
scopic Adaptive Road Traffic Simulator) [15], a microscopic simulator capable
of changing the travelling directions of lanes, for our experiments.

Datasets. The real traffic data contains the taxi trip records from New York
City1. The data includes the source, the destination and the start time of the
taxi trips in the city. We pick an area of Manhattan for simulation (Fig. 4)
because the area contains a larger amount of taxi trip records than other areas.
The road network of the simulation areas is loaded from OpenStreetMap2. For
a specific taxi trip, the source and the destination are mapped to the nearest
OpenStreetMap nodes. The shortest path between the source and the destination
is calculated. The simulated vehicles follow the shortest paths generated from
the taxi trip data.

We also use a synthetic 7 × 7 grid network to evaluate how our algorithm
performs in specific traffic conditions.

We simulate four traffic patterns with the synthetic road network. A traffic
pattern refers to generating vehicles to follow a specific path between a source
node and a destination node in the road network.

– Rush hour traffic (RH): In this setup, traffic is generated so that traffic
demand is directionally imbalanced to represent rush hour traffic patterns.

– Bottleneck traffic (BN): This setup generates high volume of traffic at
the centre of the grid network. This type of traffic patterns create bottleneck
links at the center of the network.

– Mixed traffic (MX): Mixed traffic contains both Rush hour traffic and
Bottleneck traffic conditions in the same network.

– Random traffic (RD): Traffic is generated randomly during regular time
intervals. Demand changes over time intervals.

Comparison Baselines. Different to the proposed solution, CLLA, the existing
approaches assume future traffic dynamics are known, hence not practical in

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2 https://www.openstreetmap.org.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.openstreetmap.org
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Fig. 4. The road network of Midtown Manhattan (MM)

real-world applications. Due to the lack of comparable solutions, we define three
baseline solutions, which are used to compare against CLLA. In our experiments,
the traffic signals use static timing and phasing in all solutions. We conduct
comparative tests against the following solutions:

– No Lane-direction Allocations (no-LA): This solution does not do any
lane-direction change. The traffic is controlled by static traffic signals only.

– Demand-based Lane Allocations (DLA): This solution assumes that the
full knowledge of estimated traffic demand and associated paths are known at
a given time step. DLA computes traffic flow for every edge for both directions
by projecting the traffic demand to each associated path. Then it allocates
more lanes for a specific direction when the average traffic demand per lane in
the direction is higher than the average traffic demand per lane in the opposite
direction. Same as CLLA, DLA configures lane-directions at a certain interval,
ta, which is called assignment interval.

– Local Lane-direction Allocations (LLA): This solution uses multiple
learning agents to decide lane-direction changes. The optimization is per-
formed using the approach described in Sect. 4.2. LLA is similar to CLLA
but there is no coordination between the agents.

5.1 Evaluation Metrics

We measure the performance of the solutions based on the following metrics.

Deviation from Free-Flow Travel Time: The free-flow travel time of a vehi-
cle is the shortest possible travel time, achieved when the vehicle travels at the
speed limit of the roads without slowing down at traffic lights during its entire
trip. Deviation from Free-Flow travel Time (DFFT ) is defined as in Eq. 2, where
ta is the actual time and tf is the free-flow travel time. The lowest value of DFFT
is 1, which is also the best value that a vehicle can achieve.

DFFT = ta/tf (2)

Average Travel Time: The travel time of a vehicle is the duration that the
vehicle spends on travelling from its source to its destination. We compute the
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Table 1. Parameter settings

Parameter Range Default value

Lookup distance in CLLA 1–7 5

Assignment interval in CLLA/DLA (minutes) 0.5–3 1

average travel time based on all the vehicles that complete their trips during
a simulation. A higher average travel time indicates that the traffic is more
congested during the simulation. To make the value robust for network size we
present results by subtracting free flow travel time from actual travel time. Our
proposed solutions aim to reduce the average travel time.

5.2 Parameter Settings

For LLA and CLLA, the learning rate α is 0.001 and the discount factor used
by Q-learning is 0.75. The RL agents are pre-trained, based on the traffic at a
single intersection before deployed to all the intersections in a road network. For
other parameters of the solutions, we use the default values as shown in Table 1.

6 Experimental Results

6.1 Comparative Tests

Average Travel Time: Table 2 shows results with synthetic data. As shown in
the results, LLA algorithm performs well in rush hour traffic conditions (RH).
However, it performs poorly when there are bottleneck traffic links (BN). This
trend is also observed with DLA. When traffic pattern changes frequently (as in
RD), DLA is not able to estimate the demand hence perform poorly. In contrast,
CLLA algorithm performs well in all traffic conditions.

CLLA algorithm outperforms all other baselines in the Manhattan network,
as shown in Table 3. CLLA achieves 5% travel time improvement compared to the
next best baseline. In traffic engineering terms, this is a significant improvement.
The improvement compared to LLA algorithm is around 20%, which highlights
the importance of the coordination between RL Agents.

Table 2. Performance of baselines evaluated using four traffic patterns of the synthetic
grid network. RH, BN, MX, RD refers to the four synthetic traffic patterns

Baseline Travel time (s) % of Vehicles with DFFT>6

RH BN MX RD RH BN MX RD

no-LA 681.08 427.16 506.28 539.89 49.0 4.8 27.7 4.85

LLA 575.59 540.62 561.11 577.6 32.3 24.35 30.5 8.41

DLA 568.02 504.70 493.13 636.51 30.2 16.5 15.5 20.0

CLLA 568.01 428.28 449.26 523.42 32.4 5.7 14.3 3.67
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Table 3. Performance of baselines evaluated using New York taxi data

Baseline Travel time (s) % of Vehicles with DFFT > 6

no-LA 604.32 45.9

LLA 585.83 48.6

DLA 496.12 50.7

CLLA 471.28 45.87

Deviation from Free-Flow Travel Time (DFFT): Table 2 and Table 3
show the percentage of vehicles whose travel time is 6 times or more than their
free-flow travel time. The results show that CLLA is able to achieve a lower
deviation from the free-flow travel time compared to DLA and LLA.

6.2 Sensitivity Analysis

When the assignment interval ta of DLA increases, travel time decrease, because
it is more likely to get a good estimation of traffic demand when the assign-
ment interval is larger, which can lead to more effective optimizations (Fig. 5a).
Different to DLA, the travel time achieved with CLLA grows slowly with the
increase of ta but it is significantly lower than DLA in most cases. The relatively
steady performance of CLLA shows that the coordination between lane-direction
changes can help mitigate traffic congestion for a certain period of time in the
future. If minimizing the average travel time is of priority, one can set ta to a
very low value, e.g.., 0.5 min based on the results.
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Fig. 5. Sensitivity analysis with assignment interval and lookup distance

Figure 5b shows that a larger lookup distance can result in a lower average
travel time. When the lookup distance increases, CLLA considers more road
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segments in a vehicle path. This helps identify the conflicting lane-direction
changes on the path. Reduction in the average travel time becomes less significant
when the lookup distance is higher than 5. This is because the impact of a lane-
direction change reduces when the change is further away.
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Fig. 6. Execution time for one iteration of GIE algorithm with the road network size.
(Lookup distance used = 5)

Figure 6 shows the average execution time of Global Impact Evaluation
algorithm for one iteration as network size grows. For this test, we build synthetic
grid-based road networks. In networks with 9 to 25 nodes, the number of road
links on vehicle paths is usually less than the default lookup distance (5). When
the number of nodes in a road network is 49, 81 or 144, the number of road links
on vehicle paths can be higher than the lookup distance. This is the reason for
the increase in execution time when the number of nodes increases from 25 to
49. When the number of nodes is higher than 49, execution is nearly constant,
showing that the computation cost does not increase with network size when the
lookup distance is fixed.

7 Conclusion

We have shown that effective traffic optimization can be achieved with dynamic
lane-direction configurations. Our proposed hierarchical multi-agent solution,
CLLA, can help to reduce travel time by combining machine learning and the
global coordination of lane-direction changes. The proposed solution adapts to
significant changes of traffic demand in a timely manner, making it a viable choice
for realizing the potential of connected autonomous vehicles in traffic optimiza-
tion. Compared to state-of-the-art solutions based on lane-direction configura-
tion, CLLA runs more efficiently, and is scalable to large networks.

An interesting extension would be to incorporate dynamic traffic signals into
the optimization process to this work. It would also be interesting to develop solu-
tions that can dynamically change vehicle routes in addition to the lane-direction
changes. The dynamic change of speed limit of roads can also be included in an
extension to CLLA. Moreover, it is worthwhile to explore how to jointly optimize
route allocation and lane directions to improve traffic further.
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Abstract. As the demand of taxi reservation services has increased, the
strategies of how to increase the income of taxi drivers with advanced ser-
vice have attracted attention. However, the demand is usually unmet due
to the imbalance of profit. In this paper, we propose a multi-criteria route
recommendation framework that considers real-time spatial-temporal
predictions and traffic network information, aiming to optimize a taxi
driver’s profit when the driver has an advance reservation. Our frame-
work consists of four components. First, we build a grid-based road net-
work graph for modeling traffic network information during the search
routes process. Next, we conduct two prediction modules that adopt
advanced deep learning techniques to guide a proper search direction in
the final planning stage. One module, taxi demand prediction, is used to
estimate the pick-up probabilities of passengers in the city. Another one
is destination prediction, which can predict the distribution of drop-off
probabilities and capture the flow of potential passengers. Finally, we
propose our J* (J-star) algorithm, which jointly considers pick-up prob-
abilities, drop-off distribution, road network, distance, and time factors
based on the attentive heuristic function. Compared with existing route
planning methods, the experimental results on a real-world dataset (NYC
taxi datasets) have shown our proposed approach is more effective and
robust. Moreover, our designed search scheme in J* can decrease the
computing time and make the search process more efficient. To the best
of our knowledge, this is the first work that focuses on designing a guid-
ing route, which can increase the income of taxi drivers when they have
an advance reservation.

Keywords: Taxi service · Heuristic search · Spatial-temporal
predictions · Multi-criteria searching
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1 Introduction

Taxi service plays an essential role nowadays with the development in modern
cities. For example, there are almost ten million requests in Manhattan (New
York City) within a month. In such a rapid-paced urban area, the demand of taxi
reservation services has increased. However, sometimes taking reservations is less
profitable for taxi drivers since they always need to ensure vacancies earlier to
avoid missing reservations. This behavior may decrease their time occupying the
taxi. It’s a common urban policy problem that the supply cannot always meet
the demand. To conquer this dilemma, we propose a route recommendation
framework to help taxi drivers keep picking up passengers and receive better
profit, while also letting drivers successfully arrive at the reservation’s location
on time.

The key challenge of route recommendation for optimizing taxi drivers’ prof-
its with a constraint of advance reservations is multi-criteria consideration. A
desirable route should increase occupancy time while preventing taxi drivers
from missing the reservation. In previous research on guiding taxi drivers, most
of them [7,9,10,14,19,22] only predicted hot spots of taxi demands. Therefore,
their solutions are not feasible for the complicated task of this work because there
are more spatial and temporal factors that should be considered for a reservation
query. On the other hand, in traditional route planning studies [4,6], they are
used to be limited as a single-criteria problem (e.g., the shortest path problem).
Thus, their works cannot model spatial and temporal correlations effectively.
Therefore, under the constraint of reservations, we propose a multi-criteria route
recommendation frame-work which takes not only spatial-temporal predictions,
but also road network information into consideration. The J* route planning
algorithm in the proposed framework is based on a multi-criteria heuristic func-
tion and a designed search scheme.

Three primary types of information are considered in J*, including traffic net-
work, the distribution of pick-up probabilities and the distribution of drop-off
probabilities. The distribution of pick-up probabilities is predicted to tackle the
first factor. Therefore, we exploit a reliable prediction model STDN [20] in our
work. STDN is a spatial-temporal neural network for predicting traffic demands
in the succeeding time interval, so that it can provide real-time information of
predictive taxi demands in the city. The output from this module will be used in
J* algorithm for finding passengers precisely. Another prediction model we need
is for the distribution of drop-off probabilities. We build a convolutional LSTM
model to cope with the second factor, and we adopt it to predict where the pas-
sengers may go. Furthermore, our grid-based road network graph can efficiently
provide all traffic-related information, including estimated driving distance and
estimated travel time between locations. Finally, J* algorithm jointly considers
the aforementioned information, and flexibly adopts an attentive heuristic func-
tion to generate a desirable route by following the rules of our designed search
scheme. Figure 1 is the screenshot of our proposed system interface.
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The main contribution of this paper can be summarized as follows:

– We propose a novel framework that intelligently combines two prediction
modules, traffic network information and our proposed search algorithm, J*
under a reservation constraint. We must emphasize that these two prediction
modules can be flexibly replaced by any machine learning models which have
high prediction accuracy. The higher the accuracy, the more effective the J*
algorithm is.

– We design an attentive heuristic function and a search scheme for J*. These
are used to not only find an optimal solution also to decrease searching space
by taking advantage of a grid-based road network graph.

– We propose three indicators which evaluate the effectiveness of J*’s generated
routes in various aspects. The result shows that our proposed can have better
performance than other methods. We also conduct a visualized user study and
demo system to show and discuss the effectiveness of our proposed framework
comparing others.

Fig. 1. The screenshot of system interface.

2 Related Work

Taxi Demand Prediction. Several studies have investigated traffic prediction,
e.g.. [6,10,19–21]. Among these studies, some of them adopted deep learning
approaches to have better performance than traditional machine learning meth-
ods. Moreover, some works [6,10,19] incorporate additional static or dynamic
features such as meteorological information, time, and textual data with histor-
ical traffic data to enhance the predictive ability. In this paper, we claim that
our proposed J* algorithm can work well together with the arbitrary methods
which can accurately predict taxi demand.

Destination Prediction. Destination prediction recently became popular in
location-based services because it is beneficial for urban applications such as rec-
ommendation of advertising location, route optimization, and mobile resource



A Multi-criteria System for Recommending Taxi Routes 311

arrangement. Two kinds of well-known approaches were used to predict the des-
tination. One is Markov Model based [1,2,6,8,12,16], and the other is machine
learning based [5,11,15]. Recurrent Neural Network (RNN) [5,15,23] and Con-
volutional Neural Network (CNN) [11] are the most popular and effective predic-
tion methods. Most existing approaches predict destination according to existing
trip data based on historical trajectories. In this work, we adopt a convolutional
LSTM model to predict the destination.

Transportation Route Planning. The work [3] is a bus route planner with
multi-criteria, using large-scale taxi GPS traces. For taxi route planning, the
work [13] aims to generate the most profitable route for taxi drivers, using the
DBSCAN algorithm to gather taxi trajectory data for getting some clusters.
However, these works focus on mining trajectory patterns from historical data
to generate a general route, it’s not practical for the query with reservation. For
reservation and dispatch problems, the study [17] proposes a dispatch system
which chains reservations as a route with strategies for taxi drivers in Singapore.
It focuses on dispatching advance reservations, however, as roadside passengers
are the main target for taxi drivers. The aforementioned research is inspiring but
seems inadequate to solve our task here. Therefore, we propose a multi-criteria
route planning approach, in which details will be discussed in the following
sections.

3 Preliminaries

In this paper, we define a gridized map M by splitting a city as n locations
(n = a × b) with the resolution of 300 m × 300 m for each grid, and use id =
{1, 2, 3, . . . n} to denote them. In this paper, the term “grid” and “location” are
used interchangeably. Furthermore, we map all taxi requests which have their
relative pick-up and drop-off coordinates into this gridized map. Hence, all taxi
requests can be represented by grids with time labels. We also split the time
period (e.g., one day) into m time intervals, where T = {1, 2, 3, . . . m}, and each
time interval is 30 min.

Definition 1. Query. A query in this task consists of start information and
reservation information. Start information includes start location gs and start
time ts; they refer to the current condition of a taxi driver. Reservation infor-
mation includes a reservation’s location gr and reservation time tr; they refer a
reservation that a taxi driver has. Hence, a query is composed of <gs, ts, gr, tr>.

Definition 2. Route Information Object (a pick-up or a drop-off object).
A route generated by our method is composed of several predicted pick-up/drop-
off pairs Op, Od. Op denotes an object Op = {gp, tp} that contains a pick-up
location gp and its predicted pick-up time tp, gp ∈ M , and tp ∈ T , so as Od

denotes an object with drop-off information Od = {gd, td}.

Definition 3. Guiding Route. A guiding route R is an ordered sequence
of route information objects with a start object Os(Os = {gs, ts}) and
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reservation object Or(Or = {gr, tr}) . Between these start and reservation
objects are several recommended pick-up and drop-off objects, i.e., R =
{Os, Op1 , Od1 , Op2 , Od2 , . . . , Or}.

Fig. 2. An illustrative example of a recommended route.

Problem Statement. Given the start information Os of taxi driver and reserva-
tion information Or, our spatial-temporal route planning method aims to gener-
ate an effective guiding route R = {Os, Op1 , Od1 , Op2 , Od2 , . . . , Or} that is deter-
mined to pick up more passengers before the reservation time, while arriving
at the reservation’s location on time. In other words, all (Op, Od) pairs indicate
that in these locations, we have high probabilities of picking up passengers, while
also successfully guiding the entire route to the reserved destination. Thus, the
last drop-off location could be close to the reservation’s location. Figure 2 is an
illustrative example of a recommended route.

4 Methodology

In this section, we provide details of our proposed framework. As shown in Fig. 3,
our framework consists of four major parts: (1) Traffic network construction; (2)
Pick-up probability prediction; (3) Drop-off probability distribution prediction;
(4) Spatial temporal route planner (J* algorithm).

4.1 Traffic Network Construction

Road network plays an important role for route planning, since we can store
and associate the information of distance and travel time between grids. Thus,
as Fig. 4 shows, we construct a grid-based road network graph by intersecting
gridized map with road networks. Those grids which are not associated with the
road network will be ignored while searching a route. Therefore, we can estimate
the distance and travel time between all grids, as we are able to generate a
distance table and a travel time table for generating guiding routes. Furthermore,
the grid-based road network graph can save more computing time and space
efficiency than the traditional road network, since its numbers of edges and
nodes have been reduced. The connected in-formation is remained.
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Fig. 3. The architecture of our model.

Fig. 4. The process of creating a grid-based network graph. The right-hand side figure
shows the connectivity of grids.

Definition 4. Grid-based Road Network Graph. Grid-based road network
graph is an undirected graph G = (V,E), where V is a vertex set of grids and
E is an edge set that denotes connectivity of these grids. A vertex represents a
grid. An edge ei,j represents a connected edge between vertex i and vertex j,
and the value of the edge is the distance between vertex i and vertex j, which
is calculated by a shortest path method (e.g., Dijkstra algorithm).

After construction, we obtain a grid-based graph that reflects the connectivity
of locations in the city. Furthermore, we generate distance and travel time for
the grid-based road network graph. Distance di,j represents the shortest length
between vertex i and vertex j. Tri,j represents the estimated travel time between
vertex i and vertex j. Among the part of generating travel time table, we adhere
to the policy of the target city that the speed limit of vehicles must be under a
certain value (e.g., 25 MPH in NYC).

4.2 Pick-Up Probability Prediction

To plan an effective and efficient taxi route before a reservation, an accurate
prediction for a passenger pick-up hot spot is necessary. In this work, we utilize
the Spatial-Temporal Dynamic Network (STDN) model in the work [20], which
claims that their STDN model is the state-of-the-art method for predicting real-
time traffic. STDN model is a deep learning method for taxi demand prediction,
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which handles spatial and temporal information via local CNN and LSTM with
an attention mechanism. The following sections introduce how we use the STDN
model to predict the demand.

4.2.1 Spatial Dynamic Similarity
Flow Gating Mechanism. In the STDN model, Flow Gating Mechanism (FGM)
is based on local CNN that aims to capture the dynamic spatial dependency
of pick-up volume in each area of the city. Besides tackling the similarity of
historical pick-up volume, FGM also takes traffic mobility (including inflow and
outflow volume between regions) into consideration. The formulation of each
convolutional layer is:

Yk
i,t = ReLU(Wk ∗ Yk−1

i,t + bk) ⊗ σ(Fi,k−1
t ) (1)

where Wk and bk are learned parameters, Fi,k−1
t represents flow information at

time interval t of grid i in the last layer, and it captures dynamic dependency
in spatial domain. The output of each layer is Yk

i,t, which represents the spatial
dynamic similarity at time interval t of grid i. Through K convolutional layers
and flatten layer, the output of FGM would be the input of Periodically Shifted
Attention Mechanism.

4.2.2 Temporal Dynamic Similarity. Periodically Shifted Attention
Mechanism

This method considers long-term periodic dependency by modeling relative time
interval targets (e.g., the information from the same time of yesterday, and the
day before yesterday). Moreover, an attention mechanism was added to address
the phenomenon of shifted periodicity. That is, traffic data doesn’t follow a
consistent pattern. We select q ∈ Q time intervals from each day to tackle
temporal shifting. The following formulation is about temporal information made
for each day p ∈ P :

hp,q
i,t = LSTM([Yp,q

i,t ; ep,qi,t ],hp,q−1
i,t ) (2)

where hp,q
i,t represents the information of time q in previous day p for the predicted

time t in grid i. ep,qi,t means external features like weather or events. Second, we
adopt an attention mechanism in order to make the information of each previous
day significantly weighted. In this way, the representation of each previous day
hp
i,t is a weighted sum of each selected time interval q, and the formulation is

defined as:
hp
i,t = Σq∈Qαp,q

i,t · hp,q
i,t (3)

where αp,q
i,t represents relative weight for eachhp,q

i,t , derived by comparing to the
short-term memory hi,t. Afterwards, the authors concatenate temporal infor-
mation as hc

i,t and feed it to the fully connected layer. The final prediction
formulation is:

[ys
i,t+1, y

e
i,t+1] = tanh(Wfahc

i,t + bfa) (4)
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where ys
i,t+1 and ye

i,t+1 represent the predicted value of start and end traffic
volume at the next time interval t + 1 of each grid i respectively. The prediction
of ys

i,t+1 is the target value that we precisely want to utilize in our work. We
normalize the prediction of ys

i,t+1 and treat it as the pick-up probability at time
slot t + 1 of each grid i, i = {1, 2, 3, . . . , n}, and define it as Ai,t+1.

4.3 Drop-Off Probability Prediction

In this section, we aim to predict the destinations where those passengers in
certain regions (usually referred to as the hot spots we predicted in Sect. 4.2)
may go when they were picked up at a certain time slot. The reason is that
acquiring the spatial distribution of drop-off probabilities for those demands is
helpful for our J* algorithm to avoid having the taxi driver too far from the
location of the final reservation.

4.3.1 Urban Drop-Off Prediction Using Convolutional LSTM
To capture the dynamic drop-off distribution of each grid, we use convolutional
LSTM (ConvLSTM) [18] to deal with the spatial-temporal sequence problem.
We preprocess our original taxi record data as a distribution image the same
size as the gridized map. As shown in Fig. 5, one frame Ii,t represents a drop-off
distribution of grid i at time slot t, and each pixel value represents the drop-
off probability transferring from grid i to other grids j = {1, 2, 3, . . . , n}. Our
approach is to treat this as a spatial-temporal sequence forecasting problem,
aiming to predict drop-off probability distribution vector at time t + 1 for each
grid in the city. Figure 6 shows the structure of our ConvLSTM model.

Fig. 5. The schematic flow of predicting drop-off probability distribution.

4.4 Multi-criteria Route Planning (J* Algorithm)

In this section, we introduce our proposed J* algorithm, which intelligently com-
bines the pick-up and the drop-off prediction results together with traffic net-
work information, eventually recommending an effective route efficiently for taxi
drivers. We design a search scheme in J* that can reduce unnecessary locations.
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Fig. 6. (a) The structure of a ConvLSTM cell. (b) Our ConvLSTM framework.

Furthermore, similar to the heuristic function of A*, an attentive heuristic func-
tion is proposed in our J* algorithm which can enhance the effectiveness and
efficiency of route planning. The following sections will introduce the key details
of our J* algorithm.

An Attentive Heuristic Function for Guiding Route. To model the rela-
tionship between taxi driver’s current location and the reservation’s location,
we need to involve more factors for candidate locations using a multi-criteria
heuristic function. The following formulation is our proposed attentive heuristic
function:

f(i, j) = Ai,t · Dj
i,t · Tri,j [(1 − α) · rtj,r − α · dj,r] (5)

where Ai,t represents the pick-up probability of adjacent location i at time inter-
val t, and Dj

i,t represents the drop-off probability from location i to location j.
The benefit of considering Ai,t and Dj

i,t is two-fold. First, drivers can have a high
probability to pick up passengers from adjacent locations without unnecessary
cruising. Second, as drivers can forecast the destinations where these potential
passengers may go, it means that J* can help drivers “select” the potential pas-
sengers who are approximately headed toward the reservation’s location with
high probability. Tri,j is the estimated travel time from location i to location
j. Large Tri,j means carrying passengers for a long time, which generates more
income for taxi drivers in a route. α is a proportional parameter controlling
oriented strength toward reservation’s location. A higher α means we pay more
attention to the distance dj,r between location j and reservation’s location r.
rtj,r represents the estimated remaining time between the time at location j
and the reservation time, in which the estimated arrival time at each location
will be updated automatically by travel time table during the search process.
The temporal factor, rtj,r and the spatial factor, dj,r, are two important values
for guiding the search direction properly toward the reservation’s location before
the searching time is up, to avoid missing the reservation. In this way, f(i, j)
represents the guiding value of each candidate location j from adjacent location i
connected with current location C. During a search iteration, we select the loca-
tion with maximum value to extend the route. One of J*’s novel parts is that
the heuristic function will dynamically strike a balance between the remaining
time and the remaining distance during the search process. If the current time
is close to the reservation time, J* will direct the taxi driver toward the reser-
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vation’s location as soon as possible. On the contrary, if there remains plenty of
time, it will mainly focus on seeking locations with high pick-up and drop-off
probabilities.

Search Scheme. Our search iteration is divided into two steps, as shown in
Fig. 7(a). The first step starts from the current location C, which only considers
transferring to its adjacent locations or stay in its current location. The locations
without connection in the grid-based graph will be ignored and the searching
space pruned. We calculate the pick-up probabilities for the transferable candi-
date locations. In the second step, J* algorithm considers top u drop-off locations
which have high probabilities to transit from these adjacent locations, and then
computes their guiding values by the heuristic function f(i, j) respectively (see
in Fig. 7(b)). We set drop-off branch factor u = 10 in this work. As shown in
Fig. 7(b) and (c), we choose the location which has the highest guiding value
as the next location to extend branches. J* keeps searching until it reaches the
goal (reservation’s location) or the search time runs out.

Fig. 7. (a) A search iteration. (b) Calculating values of drop-off locations by heuristic
function. (c) After an iteration, extend and update the route.

Route Construction. The route will be initialized as R = {Os, Or} according
to the query. Then, the max-heap iteratively pops out a drop-off location and
its relative adjacent location with the highest guiding value f(i, j). The high-
est pair {Op, Od} will be selected and added into the guiding route R, where
Op = {gp, tp}, refers to the selected pick-up grid gp and the timestamp tp,
and Od = {gd, td} refers to the expected drop-off location gd and the expected
drop-off time td. After several search iterations, the final recommended route
R = {Os, Op1 , Od1 , Op2 , Od2 , . . . , Or} is constructed.

5 Experiments

We split the Manhattan area as 13× 53 grids, and the size of each grid is
300 × 300 m. The length of each time slot is 30 min, so we set m = 48 in a
day.
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5.1 Datasets

We evaluate the performance of our framework on real-world taxi trip records
from NYC Taxi and Limousine Commission (TLC). The records include pick-up
and drop-off dates, times, and GPS locations. In this experiment, we use taxi
trip records from 3/1/2015 to 4/30/2015 that contain almost 15 million trips. In
this experiment, we evaluate the performance of J* algorithm by our proposed
multi-criteria metrics to show its effectiveness and efficiency. Here we choose α
value as 0.7 in our attentive heuristic function. According to our experiments, α
performs well from 0.6 to 0.9.

5.2 Comparative Methods

To examine the performance and efficiency of our J* algorithm, we consider the
following methods for comparison:

– Random Method: It randomly selects one of the adjacent locations or stays in
the current location for pick-up and drop-off at every iteration while planning
a route.

– Greedy Method: It selects one of the adjacent locations or stays in the current
location with the highest probability from Ai,t for pick-up and selects a drop-
off location with the highest probability from Di,t at every search iteration.

– Dijkstra Algorithm: Dijkstra algorithm selects pick-up locations and drop-off
locations that have the shortest path to the final location.

– A* Algorithm: A simple A* algorithm selects a pick-up location and a drop-
off location using the heuristic function that only considers distance at every
search iteration.

– High-Frequency A* (HF A*): it is a variation from A* that jointly considers
the pick-up probabilities of adjacent locations and the distance between cur-
rent the reservation’s location. That is, the heuristic function is a combination
of low distance and high pick-up probability.

5.3 Evaluation Metrics

We set up three different evaluation metrics in order to examine the effec-
tiveness of routing methods, including: (1) Occupied rate, (2) Hit rate, and
(3) Success rate. First of all, each method will eventually generate a route
R = {Os, Op1 , Od1 , Op2 , Od2 , . . . , Opk

, Odk
, Or}.

Occupied Rate. This evaluation metric aims to evaluate how many passengers
that a route can pick up in the same search time for these methods. A higher
occupied rate means a route can catch more passengers and lead to a higher
profit for a taxi driver. The following is the formulation of the occupied rate:

OccupiedRate =
Σk

i=1(tdi
− tpi

)
tr − ts

(6)



A Multi-criteria System for Recommending Taxi Routes 319

Hit Rate. This evaluation metric verifies whether the recommended route is
close enough to real demand. For any pick-up/drop-off pair (Opi

, Odi
) in our

recommended route, we then retrieve the real-world requests Q that leave from
gpi

at time tpi
. As long as the pair (Opi

, Odi
) exists in Q, it means a hit that the

demand we recommend is existed. Assuming that a recommended route contains
k pick-up/drop-off pairs, we calculate the ratio of hit counts to k as a hit rate.
The formulation is as follows:

HitRate =
Σk

i=1hit(<Opi
, Odi

> ∈ Q)
k

(7)

Success Rate. The definition of “success” means a taxi driver picks up the
reservation on time. If the ratio of the remaining distance to the remaining time
of a route is less than 25 (MPH), it indicates that the taxi driver can arrive at
the reservation’s location on time under normal speed, meaning it is a “success”.
A higher success rate means a higher probability that a planning method won’t
ruin the future order. The formulation is as follows:

SuccessRate =
success(

dgdf ,gr

tr−tdf
< 25)

NumberOfRoutes
(8)

Comprehensive Score. Though the aforementioned evaluation metrics are
important, each of them cannot fully represent the effectiveness of route plan-
ning methods individually. Therefore, we combine these metrics as a score by
multiplication; the definition of score is shown below:

Score = OccupiedRate × HitRate × SuccessRate (9)

5.4 Results

Fig. 8. (a) The comprehensive performance. (b) The execution time of all methods.
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1) The Comprehensive Performance: As shown in Fig. 8(a), it presents the com-
prehensive performance of all methods by integrating three evaluation metrics
together. The result shows that our proposed method, J*, has the best overall
performance. J* takes advantage of taxi demand and destination prediction so
that it gains good performance on the hit rate. Furthermore, it always pays
attention to both the distance to the reservation’s location and remaining time
before reservation during searching. Hence, it obtains an excellent occupied rate
and meanwhile has a high success rate.

2) Performance on Execution Time: For the route searching problem, the com-
parison of execution time is particularly important because it represents the
practicality of a recommendation system. We set the search time range to 1–3
hours and run 1000 randomly generated testing cases; furthermore, we calculate
the average execution time for each method. Figure 8(b) reports the perfor-
mance of execution time. It shows that the execution time of our J* algorithm is
around 1 s. Most significantly, the time doesn’t increase a lot with the searching
distance. However, the execution time for other shortest-path methods is heavily
influenced by the search distance. The result shows that J* algorithm is a stable
and practical method for route planning.

6 Conclusions

In this paper, we propose a novel framework including taxi demand predic-
tion, destination prediction, and J* algorithm for taxi drivers to not only earn
more profits but also avoid missing the reservation. The proposed multi-criteria
route planning method, J*, taking advantage of real-time predictions and traf-
fic network information to generate routes. The evaluation shows that our J*
algorithm is a more comprehensive route planner than other methods due to
its multi-criteria characteristics; that is, we can intelligently combine multiple
factors using the proposed heuristic function. In the future, we plan to integrate
more accurate prediction models for inferring pick-up and drop-off probability
distributions to improve the performance of J*. Moreover, we plan to extend this
work to consider the competition of taxi fleets and investigate the strategies to
improve the profit of taxi drivers.
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Abstract. Validation of autonomous driving systems remains one of the
biggest challenges that car manufacturers must tackle in order to provide
safe driverless cars. The complexity of this task stems from several fac-
tors: the multiplicity of vehicles, embedded systems, use cases, and the
high level of reliability that is required for the driving system to be at
least as safe as a human driver. In order to circumvent these issues, large
scale simulation that reproduces physical conditions is intensively used
to test driverless cars. Therefore, this validation step produces a massive
amount of data that needs to be processed. In this paper, we present
a new method applied to time-series produced by autonomous driv-
ing numerical simulations. It is a dictionary-based method that consists
in three steps: automatic segmentation of each time-series, regime dic-
tionary construction, and clustering of produced categorical sequences.
We present the time-series specific structure and the proposed method’s
advantages for processing such data, compared to state-of-the-art refer-
ence methods.

Keywords: Autonomous car development · Time series clustering ·
Mixture models · Dictionary models

1 Introduction

Autonomous car development remains a challenge for car manufacturers. One
way to solve this problem is to develop driver assistance systems that are grad-
ually introduced in new car models. This development requires a large amount
of data, of good quality, and in large quantities. To provide such data, Groupe
Renault has made the technical choice to invest in driving simulation technol-
ogy. This choice led to the development of a dedicated simulation platform that
reproduces driving conditions based on car physics, driver behavior, and inter-
action with a parameterizable environment. This tool allows us to overcome
physical simulation limits and to assess an autonomous control law with greater
certainty. The simulation process outputs a large amount of information in the
form of multivariate time-series. Data size, complexity, and dimensions are con-
siderable: for the validation of the control law, the order of magnitude is O(106)
c© Springer Nature Switzerland AG 2021
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simulations, with O(103) sensors, each recording at O(104) time steps. In total,
the validation of a use case requires the production of more than O(1013) data
points.

Specific visualization methods are needed to analyze such data. Clustering is
a first approach to tackle this problem, which consists in the automatic grouping
of “similar” observations into homogeneous groups (clusters). With the help of
these tools, the expert has a way to discriminate the time series but also the
associated parameters. He can then isolate the effects of the control law parame-
ters and adjust them adequately. Time-series clustering has been widely studied
in the past decades. Many dedicated methods have been proposed, each based
on specific assumptions on the underlying data structure. These assumptions are
crucial as they determine both the clustering results and their interpretability.

In this paper, we present a new method applied to time-series produced by
autonomous driving numerical simulations. It is a dictionary-based method that
consists of three steps: automatic segmentation of each time-series, regime dic-
tionary construction, and clustering of produced categorical sequences. In this
paper’s second section, we present the detailed simulation method and the time
series structure. In the second part, we discuss the existing approaches and
describe our contribution. In the third section, we present the results obtained
on public datasets and on an industrial use case: the Autonomous Emergency
Braking (AEB) system validation. Finally, we conclude on our method’s capa-
bilities and perspectives.

2 Simulating Autonomous Behaviour

Validating an autonomous driving rule is a complicated task, that was for a long
time addressed with on-track simulations. The numerical simulation approach
allows overcoming the limits of these physical simulations. A large scale simu-
lation reproduces physical conditions is intensively used to test driverless cars.
Therefore, this validation step produces a massive amount of time series that
needs to be processed.

2.1 Numerical Simulation Assets

Several aspects motivate the use of an autonomous behavior simulation platform.
The first motivation is the physical simulation cost, which requires infrastruc-
ture, equipment management, and significant human intervention. One digital
simulation is estimated 10,000 times cheaper than its physical counterpart. The
savings achieved through the use of digital simulation add up to millions of euros.
The second motivation comes from the fact that physical simulation is the mea-
surement uncertainty: sensors accuracy, but also initial conditions setting.

Another major disadvantage of physical simulation is the impossibility of
producing enough data. A validation objective may be the assessment of vehicle
incident odds (e.g. <10−8 incidents per hour). With a classical sampling method,
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estimating such probability would require running prototypes over hundreds of
millions of kilometers.

Even if such a large amount of real-life data were available, as is the case in
some data science application fields, there would be no guarantees of the data
quality or value. In our case, this value lies in the specific driving situation in
which to test the control law reaction. These situations are rarely observable in
reality, such as the ones of an emergency braking.

2.2 I/O of the Simulation Platform

Assessing a control law reliability requires taking into account every possibility,
even the rarest cases. Therefore, validating such system is only feasible with
accurate control of each simulation context, operated by a set of parameters
divided into five categories:

– Environment parameters: road characteristics, weather conditions, but also
driver behavior (cautious or sporty, cooperative or competitive).

– Car physics: weight distribution, engine capacities, etc.
– Sensors to be recorded, including the frequency of observation.
– Control law: triggers reacting to specific conditions (e.g. in the case of emer-

gency braking, the distance to the next car) and with parameterizable effects
on the vehicle (e.g. the braking intensity).

– Scenario: a sequence of phases followed by the driver and which puts the car
in an experimental context (e.g. reaching a specific speed, then a cruise speed
for a specific period).

Several hundreds of parameters, in total, interact to generate simulations and
produce time-series. In some use cases, field experts may provide additional labels
to help the classification task. However, because of the variety and complexity of
the driving situations, drawing up an exhaustive list of the labels is an arduous
task. The supervised approach is, therefore, unpracticable.

The scenario is the main factor in time-series construction. Other factors
have secondary effects and mainly influence the duration and intensity of the
phases (e.g. time to reach cruise speed, braking power, etc.). Therefore, even
if several time-series originate from the same scenario, their phases may not be
synchronous. Another consequence is that the output time-series differ in length.

2.3 AEB Use Case

In the majority of use cases, the autonomous driving simulation produces a large
amount of unlabeled data. To validate our clustering approach, we apply it to
the specific AEB use case, in which a ground truth is easily producible. In this
situation, the goal is to test the reactions of a car (usually called Ego) equipped
with the control law. Ego runs in a straight line towards another vehicle, which
moves in the same direction but at a slower pace. We expect the target vehi-
cle detection to trigger the control law, which in turn provokes an emergency
braking. The control law objective is to prevent the collision. Three cases can
arise:
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– The control law is not triggered.
– Target is detected, but braking cannot avoid the collision.
– The target is detected, and braking prevents the collision.

In this illustrating use case, field experts visually assessed the different sit-
uations to provide a ground truth. The time series dataset is partitioned in 3
classes according to these labels, depicted in Fig. 1.

Fig. 1. Time series distribution partitioned by ground truth label.

In order to address this data structure, we developed a clustering workflow
independent from the time-series length or regime synchronicity. It relies on the
hypothesis of a latent scenario presence.

3 Related Work

Time series Unsupervised classification (or clustering) is a method that aims to
partition a dataset into groups of “similar” temporal observations, which is the
first step toward understanding its structure. Defining the similarity between
times-series is a crucial point as it determines both the clustering results and
their interpretations.

3.1 Distance-Based Clustering

The Euclidean distance is one of the most popular for this task. In this case
we handle time series as n-size vectors. In practice, this metric is not the most
practical as it does not take into account the temporal information and requires
aligned series and of equal length.

The Dynamic Time Warping (DTW) [18] measure is another typically rele-
vant metric in the presence of local or uniform temporal scaling (a.k.a. warping).
Inspired by the edit distance (used in the context of string comparison), DTW
is a measure of the effort required to match two series point-to-point. Although
quite resource-intensive originally (O(n2) complexity), improved version devel-
opments over the years have allowed this approach to remain a reference in the
domain [11,19].
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As presented by [1], choosing a distance is equivalent to determining the
invariances to be used for cluster construction. For instance, DTW-based clus-
tering relates to warping invariance. It is, first of all, a hypothesis on the global
data structure and a way to cluster shapes. In our case, this approach would not
exploit nor conserve the regimes’ information. Feature-based clustering makes
different assumptions.

3.2 Feature-Based Clustering

The feature-based approach is about designing a way to transform time series
into condensed representations. The hypothesis is that this transformation keeps
the informative aspects of the data. Two situations can be distinguished: the first
when the transformation process is known, the second when it is estimated based
on an external criterion (risk, measure, or model assumptions). Either way, this
method requires prior knowledge on the time series. The dictionary-based meth-
ods family, as proposed by [15] and [21], are based on feature extraction by
uniform time step segmentation and are representative of the first case. This
approach was first appealing in our application as it allows, to a certain extent,
the comparison of similar segments between time series. However, it requires
setting arbitrary parameters (including, but not limited to, the dictionary size
and the uniform segmentation time step), which is not possible in an unsuper-
vised context. The Time-series Forest method [7] illustrates perfectly the other
situation, where feature extraction relies on the supervision of a score based on
Entropy and distance. Deep Learning can also be used in this context, as in [13]
where the extraction is based on the reconstruction error.

In this application, we make full use of the hidden scenario hypothesis and
apply a specific case of feature-based clustering method: a regime-changing time
series approach.

3.3 Regime-Changing Time Series Clustering

AEB use case time series are the result of the chaining of distinct phases, also
known as regimes. Provided the ability to detect those regimes, it is possible
to use their estimated distribution (order, frequency, amplitude. . . ) to charac-
terize the observations and discriminate them. During the last decades, several
papers have been proposed to detect optimal regime change points. Those meth-
ods sum up to piece-wise polynomial regression models. The common strategy
relies on optimizing an approximation error in different ways: sliding windows
of increasing size as in [10] and [8], by dynamic programming as in [12], Hidden
Markov models in [9] or by regression mixture models in [3]. We selected this
last model for two reasons: on the one hand, the benefits of using a mixture
model (confidence intervals, model selection strategy. . . ) and on the other hand,
the particular performances of this model compared to hidden Markov model
approaches and its computational efficiency compared to dynamic programming
methods [3,4].
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In mixRHLP from [20], the same author combines the piece-wise regression
model in a finite mixture to construct a one-step model-based clustering method.
The proposed approach aims at regrouping time series with common regimes
cut-points. mixRHLP also assumes that the number of regimes is known. These
assumptions are not the case in our approach.

Our contribution is an attempt to adapt mixRHLP to our constraints. It
consists of a three-steps workflow with the addition of an original strategy of
segmentation model selection. In the first step, we apply Individual time-series
segmentation with a polynomial regression mixture. In the second step we build a
standard dictionary of regimes by clustering the extracted segments. The cluster-
ing of these sequences using Levenshtein distance in categorical sequence space
produces the final result. Our method, called SDLHC for Segmentation, Dictio-
nary construction, Levenshtein Hierarchical Clustering, has the following advan-
tages:

– Clustering based on regime detection is intuitive and easily interpretable by
experts.

– The method can be applied to a dataset of time-series with unequal lengths.
Moreover, it is independent of the time-series synchronicity and the regime’s
moment of appearance synchronicity.

– The segmentation phase can be applied independently on each time-series,
which makes the computation an embarrassingly parallel task. This step dras-
tically reduces the data dimension.

– Our segmentation strategy optimizes automatically both the number of seg-
ments and polynomial regression on each segment, which allows to get rid of
assumptions on the number of regimes and on their optimal order of polyno-
mial regression.

4 A Three-Step Time-Series Clustering Algorithm
(SDLHC)

The method SDLHC is composed of three steps: segmentation, dictionary con-
struction, and categorical sequence clustering. The first two steps are addressed
with the mixture model approach.

4.1 Segmenting Time-Series with a Mixture of Polynomial
Regressions

The Regression with Hidden Logistic Process from [3] is based on a polynomial
regression model mixture, with time-dependent proportions following a hidden
logistic process. Given a time-series x = (xt)T and φ = (φs(t) = ts)s∈0,...,S a
polynomial basis of size S ∈ N (e.g. monomial basis, Legendre basis, Fourier
basis, etc.). A Polynomial Regression Model (PRM) of sequence x in the basis
φ is defined by

x̃ =
S∑

s=1

βsφs(t) + σ2ε,
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with (βs)s∈1,...,S ∈ R
S , σ ∈ R

+
∗ and ε ∼ N (0, 1). These PRMs are the segmen-

tation mixture model components.
Given a number of clusters K ∈ N, let z = (zt)t∈T be the elements

x = (xt)t∈T cluster membership. At a given time t, zt follows a Multinomial
distribution with parameters π(t) = (πk(t))k∈1,...,K . The distribution of x at
time t is defined by

p(xt) =
K∑

k=1

πk(t)fθk
(xt),

and the sequence x log-likelihood,

l(x; θ) =
T∑

t=1

log

(
K∑

k=1

πk(t)fθk
(xt)

)
, (1)

with fθk
(xt) the density associated to a PRM component. The varying propor-

tions πk(t) can be seen as the parameters of a Multinomial distribution followed
by the clusters memberships at a given time t. These proportions vary according
to a logistic process. More formally, for k ∈ {1, . . . , K} and t ∈ T ,

πk(t) = p(zt = k) =
exp(

∑S
s=1 wk,sφs(t))∑K

h=1 exp(
∑S

s=1 wh,sφs(t))
, (2)

with wk = (wk,s)s∈1,...,S the associated model parameters. In the following para-
graphs, we denote by w the set of parameters (wk)k∈1,...,K . The complete set of
parameters is finally θ = (w, β, σ). The log-likelihood (1) optimization requires
a specific version of the Expectation Maximization (EM) algorithm described in
[6]. The EM algorithm is a standard algorithm for likelihood maximization in
the presence of incomplete data. In our case, these missing data are the cluster’s
membership, denoted by z (the hidden variable). It is an iterative algorithm,
each iteration composed of two steps.

Expectation Step (E): Given the parameters θ, the first step of the EM algo-
rithm consists in optimizing the complete log-likelihood defined as below:

Ex,θ [l(x, z; θ)] = Ex,θ

[
n∑

i=1

K∑

k=1

Izi=klog (p(xi, zi = k; θ))

]

=
n∑

i=1

K∑

k=1

τi,klog (πkfθk
(xi)) . (3)

The development of the Eq. (3) shows that this step is simplified to the estima-
tion of τi,k = p(zi = k|xi; θ), the posterior distribution of z conditionally to x.
The Bayes theorem gives the following estimation of this quantity:

τi,k = p(zi = k|xi; θ) =
p(zi = k, xi; θ)

p(xi)

=
πkfθk

(xi)∑K
h=1 πhfθh

(xi)
. (4)



330 E. Goffinet et al.

Maximization Step (M): At each iteration, the model parameters are updated
during the Maximization step. In this phase, the following decomposition of the
complete log-likelihood expectation is maximized:

Ex,θ [l(x, z; θ)] =
T∑

t=1

K∑

k=1

τt,klog (πkfθk,t(xt))

=
T∑

t=1

K∑

k=1

τt,klogπk +
T∑

t=1

K∑

k=1

τt,klogfθk,t(xt)

= Q1(π) + Q2((θk)k∈{1,...,K}).

with τt,k = p(zt = k|xt, θ) the membership posterior distribution estimated
in (3) during the expectation step, and fθk,t the density associated to cluster k
regression model at time t. This optimization can therefore be achieved by the
separate maximization of Q1 and Q2. The optimization of Q2 with respect to
the parameters θk = (βk, σk) provides the following expressions:

β̃k = arg min
βk

T∑

t=1

τt,k(xt −
R∑

r=1

βkφr(t))2, (5)

σ̃2
k =

1
∑T

t=1 τt,k

T∑

t=1

τt,k(xt − μ̃k(t))2, (6)

with μ̃k(t) =
∑S

s=1 β̃k,sφs(t) the estimated value of xt by the regression
model of cluster k.

4.2 Adaptive Model Selection Strategy

In the initial model [20], the regression polynomial basis is common to every
component, while in our contribution each regression order is specific. More-
over, we do not make a priori assumptions on the segment’s number, which is
also estimated by our strategy. To estimate both the segment’s number and the
polynomial regression order on each segment, we combine this model with an
innovative top-down strategy. The strategy is iterative and consists, at each step,
in identifying the ‘worst’ component, in terms of the partial likelihood defined
as:

lk(x; θ) =
1

∑T
t=1 πt,k

T∑

t=1

πt,klog (fθk
(xt)) , k ∈ 1, ..,K.

This criterion quantifies a component representation quality weighted by the
conditional membership probabilities. By improving the component kold ∈
{1, . . . , K} that minimizes this score, two candidate models are created and
compared. Splitting kold in two sub-components, while conserving the other
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components, produce the first candidate model. We denote by k1 and k2 these
new clusters. We denote tm the weighted median of the sequence {1, . . . , T}
with weights πkold

, and consider this time as the optimal cut-point for splitting
the component πkold

. The observations membership probabilities associated are
based on the former component membership probabilities. The component k1
membership probabilities are defined as follows:

πk1 =
{

πt,kold
, t ∈ {1, . . . , tm}

ε , t ∈ {tm + 1, . . . , T} , (7)

with ε the threshold precision. The new cluster k2 membership probabilities
are obtained likewise, with inverted time indices. A regularization of the (πk)K is
necessary at this point to enforce the constraint

∑
k=1 πk,t = 1,∀t ∈ {1, . . . , T}.

Increasing the order of kold component regression model by one produces the
second candidate. Two runs of EM are then launched, each of them considering
one of the candidates as the initial state. After the convergence of both EM, the
candidate optimizing the Bayesian Information criterion [22] is selected for the
next iteration. This criterion is a score penalizing the likelihood of the model
by its complexity. Given a model M with parameters Θ of size C, a set of
observation x of size n, the BIC is defined as follows:

BIC(X,M,Θ) = C ln(n) − 2 ln(L(X,M,Θ)). (8)

This strategy is summarized in Algorithm 1.

Algorithm 1: Top down segmentation strategy.
Fix the convergence threshold c > 0
Choose an initial state for the first EM run:
θinit

old := ((wk, βk, σ2
k)k∈{1,...,K})init

old

Compute πinit
old using Eq. (2)

Estimate θend
old by applying the EM algorithm

while relative increment in BIC > c do
Construct the first candidate model θinit

addSeg with Eq. (7)
Estimate θend

addSeg by applying the EM algorithm
Construct the second candidate model θinit

incDeg by increasing the least
efficient component of the former mixture by one.
Estimate θend

incDeg by applying the EM algorithm
θend

old = arg maxθ∈{θend
addSeg,θend

incDeg} BIC(θ)

end

After convergence of BIC criterion, we estimate the moments of regime
change by choosing the maximum of membership probabilities. In Fig. 2, we
show the result of segmentation over a few time series from our use case AEB.
This segmentation method is applied individually to each time-series and trans-
forms each one in a set of sub-sequences. A segmentation result of an AEB time
series is shown in Fig. 2.
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Fig. 2. Segmentation result sample.

4.3 Dictionary Construction

Expressing the extracted segment in a common basis is mandatory to compare
and cluster the sequences. This common basis, or dictionary, is constructed with
clustering algorithm applied to the dataset composed of all segments from time
series. The objective is to encode the original time-series in the new dictionary,
as represented in Fig. 3. The sub-segments are first scaled, expressed on a com-
mon support, and regressed in a polynomial regression basis. Other informative
descriptors can be added depending on the case, as the regime’s duration, offset,
or variance. These features are then clustered with a Gaussian mixture model
(GMM) to produce the dictionary. In Sect. 4.1, we mentioned an implicit assump-
tion based on the segmentation polynomial basis. In this section we make the
additional implicit assumption that the GMM is adapted to the regimes density
estimation and makes sense from the field expert point of view.

Fig. 3. SDLHC : from time-series to categorical sequences.
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The EM algorithm is initialized with the K-means++ algorithm, which is a
standard approach [2]. At the end of this step, the modes of the Gaussian mixture
components are the reference regimes, entitled “patterns” in the following, with
which to recode the original time series. The dictionary size is determined by
the field experts, assisted by the BIC.

An example of a dictionary with five patterns is shown in Fig. 4. Using this
dictionary, Fig. 5 shows the encoded sequence. Two stationary patterns can
be recognized (b and c), corresponding to cruise speed phases, as well as two
accelerating (d and e) and one decelerating (a).

Fig. 4. Dictionary produced in the AEB use case.

After this re-coding phase, data dimension is greatly reduced: for a time-series
of size n, the dimension goes from R

n to Dk, with D the categorical space and
k the number of regimes composing the sequences. Clustering these sequences is
SDLHC third step subject.

4.4 Categorical Sequences Clustering

We use the Levenshtein distance [14] combined with Ward’s hierarchical clus-
tering method to obtain the final clusters. Levenshtein distance between two
categorical sequences a and b (of size sa and sb) is defined as the minimum num-
ber of operations (insertion, deletion, substitution) needed to transform a into b.
In this categorical space, Levenshtein Distance complexity is O(sa × sb). In the
original Levenshtein distance, replacing a symbol with another has a fixed unit
cost, independently from the target and replacement symbols. Therefore, it does
not account for the fact that the two patterns may be more or less close. Figure 4
shows that some speed patterns are similar (different phases of acceleration of
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Fig. 5. Segment sequence encoded using the dictionary. Two stationary patterns can be
recognized (b and c), corresponding to cruise speed phases, as well as two accelerating
(d and e) and one decelerating (a).

cruising speed) and distance on categorical sequences should take this similarity
into account. The proposed Weighted Levenshtein Distance allows integrating
this information into our clustering. Considering a set of patterns R = {rs}S ,
the edition cost between ra, rb ∈ R is symmetric and defined as follows:

C(r1, r2) =
||r1 − r2||p

maxs,t ||rs − rt||p , (9)

where ||.||p is the p norm on the pattern space. The choice of p influence mod-
erately the final clustering. In our AEB use case, experience led to the choice
p = ∞. During the second phase of SDLHC, the dictionary is constructed based
on scaled segments of same support, with optional addition of offset, variance
or phase duration. During this part of categorical sequence clustering, the same
features can be integrated to the edit operation cost computation.

Once the weighted Levenshtein Distance Matrix computed, Ward’s hierar-
chical clustering method is applied to produce the final clusters. We compare
the results with those of other state-of-the-art methods to prove the method
capacity to produce a clustering with good performance.

5 Experiments

We present, in this section, the results of several experiments on public datasets
and on a real-world use case AEB obtained from Renault’s simulation system.
The method described in this article was implemented in Scala for the segmen-
tation step and R for the hierarchical step. Code and (public) datasets available
at https://github.com/sdlhc-01/SDLHC.

The following baseline methods are selected:

– Three methods based on classical measures (Euclidean distance and DTW)
associated with Partitional Around Medoid (PAM) clustering approach. We
have also tested the combination of DTW with center construction using the
popular Dynamic Barycenter Averaging (DBA) method [17].

https://github.com/sdlhc-01/SDLHC
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– The K − Shape method [16], a partitional clustering using the shape-based
distance based on the cross-correlation measure.

– The SAX method, a dictionary-based methods from [15] that builds repre-
sentations of the time series based on uniform time step segmentation. Based
on this representation and associated distance, hierarchical clustering with
Ward’s criterion produce the clusters.

– In order to compare to the original method we aimed to extend, the results
of mixRHLP are also reproduced here.

Whenever baseline methods require it, we interpolate time-series to equal-length
sequences. We used the R package TSclust ’s distance-based and SAX methods
implementations and mixRHLP using flamingos R package. Some of these meth-
ods depend on parameters, usually estimated by optimizing a risk in a super-
vised framework. The comparison is based on the Adjusted Rand Index (ARI),
a popular score in the clustering validation context. This criterion represents the
proportion of correctly grouped and separated observations with respect to the
observed classes. The ARIs obtained here are always the maximal ARI obtained
when testing the method on a parameter grid, displayed in Table 1, reproducing
the results that experts can obtain after fine-tuning.

Table 1. Parameters grid for ARI evaluation.

Method Parameters Range

SAX Number of segments (5, 10, 20, 30, 40, 50)

Number of gaussian bins (2, 3, 5, 7, 10, 20, 30, 40, 50)

SDLHC Dictionary size (2, . . . , 12)

MIXRHLP Number of segments (1, . . . , 10)

Polynomial regression order (1, . . . , 3)

5.1 Public Datasets Results

In order to validate SDLHC adequation to the regime-changing time series clus-
tering problematic, we selected a subset of the UCR archive [5] whose data
exhibit regime structure. The ARI score obtained are shown in Fig. 2. Although
performant when applied to Renault’s dataset (c.f. next subsection), we found
that the weighted Levenshtein hierarchical clustering requires fine-tuning to
adapt to the considered data characteristics. The test ran in this section therefore
use the non-weighted Levenshtein distance. The results confirm that the method
perform well when addressing regime-changing time series. In these tests, the
considered datasets contain equal-length time-series. However, SDLHC can also
be applied, without data preprocessing, to unequal-length time-series, which is
the case in our application.
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Table 2. Adjusted Rand Index on the UCR archive datasets.

Name L2.PAM DTW.PAM DTW.DBA K-SHAPE SAX MIXRHLP SDLHC

CBF 0.28 0.66 0.68 0.63 0.46 0.47 0.71

OliveOil 0.46 0.53 0.40 0.50 0.00 0.40 0.55

Trace 0.32 0.40 0.66 0.57 0.32 0.41 0.94

5.2 Real Dataset Results

In the following section, we evaluate the clustering performance of SDLHC on
an industrial use case: the Autonomous Emergency Braking (AEB) system val-
idation. In this case, a ground truth is available, and it is possible to compare
clustering methods based on the similarity between the observed labels and the
produced clusters. The clustering methods performances are, as in the previ-
ous section, measured by the ARI score. Renault’s dataset is composed of 150
time series, with a duration varying from 13 to 52 s and length varying from
415 to 573 data points. The scores are obtained in the same conditions than the
previous tests on public datasets, displayed in Fig. 6. Two versions of SDLHC
are tested: SDLHC − LEV and SDLHC − WLEV corresponding to the use
of the standard and weighted Levenshtein distance in SDLHC ’s last step. ARI
criterion confirms that the SDLHC − WLEV method slightly improves the
score obtained by SDLHC − LEV . Among the distance-based methods, the
K − Shapes method is the best performer without, however, reaching the ARI
threshold of 0.45 regardless of the number of clusters. With high cluster numbers,
SAX method nearly reaches the performance of SDLHC − LEV . This seems
logical given the proximity between the proposed workflow and the dictionary-
based methods.

Fig. 6. ARIs scores of various clustering approaches as a function of the number of
clusters.
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6 Conclusions

In the context of unsupervised classification of regime-changing time-series, we
propose a dictionary-based method that consists in three steps: automatic seg-
mentation of each time-series, regime dictionary construction, and clustering
of produced categorical sequences. SDLHC shows good results when applied to
time-series complying to the regime construction assumption, and is competitive
with other state-of-the-art methods in this case. The ability to address unequal-
length time-series, a-synchronized time-series, and time-series exhibiting asyn-
chronous regimes are its best assets. The current assumptions on the polynomial
regression basis for segmentation are adapted to experimental cases, but may not
be suited to other physics-oriented use cases. In these circumstances, the Fourier
polynomial basis may be another candidate to fit regimes and time-series. In this
case, it is possible to re-interpolate the Fourier coefficient to compare regimes
on a common basis, and even regimes from different sources, leading to the pos-
sibility of multivariate clustering. In this context, our current investigations are
focusing on model selection and reduction through co-clustering.
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20. Samé, A., Chamroukhi, F., Govaert, G., Aknin, P.: Model-based clustering and
segmentation of time series with changes in regime. Adv. Data Anal. Classif. 5,
301–321 (2011). https://chamroukhi.com/papers/adac-2011.pdf
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Abstract. Complex activity recognition is challenging due to the inher-
ent diversity and causality of performing a complex activity, with each
of its instances having its own configuration of primitive events and their
temporal causal dependencies. This leads us to define a primitive event-
based approach that employs Granger causality to discover temporal
causal dependencies. Our approach introduces a temporal causal network
generated from an optimized network skeleton to explicitly character-
ize these unique temporal causal configurations of a particular complex
activity as a variable number of nodes and links. It can be analytically
shown that the resulting network satisfies causal transitivity property,
and as a result, all local cause-effect dependencies can be retained and are
globally consistent. Empirical evaluations on benchmark datasets suggest
our approach significantly outperforms the state-of-the-art methods. In
particular, it is shown that our approach is rather robust against errors
caused by the low-level detection from raw signals.

Keywords: Activity recognition · Complex activity · Primitive event ·
Temporal casual dependence · Network consistency

1 Introduction

A complex activity consists of a collection of temporally-composed events of
basic actions and movements that can be directly detected from sensors or cam-
eras [11]. For instance, actions like open fridge can be observed from an ambient
sensor attached on the object; gestures like shake hand and finger stoke can
be inferred by sensors attached to a user’s arm or fingers; movements like walk
or jump can be inferred by an accelerometer placed on the user’s waist. Tech-
niques so far are mature to recognize these simple actions, gestures and motions
together with their durations, which are referred to as primitive events that
cannot be further decomposed under application semantics.

The main focus of this paper is on complex activity recognition, which faces
several key challenges [4]. First of all, understanding complex activities requires
not only the detection of primitive events, but also the interpretation of their rich
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temporal dependencies. Second, individuals often possess diverse styles of per-
forming the same complex activity, and consequently, a complex activity recog-
nition model should be capable of characterizing the underlying uncertainties
over primitive events and their temporal relationships. Third, a complex activity
recognition model should be also robust to errors caused by incorrect primitive
event detection, due to sensor noise or low-level prediction errors.

Despite being a very challenging problem, in recent years there has been a
rapid growth of interest in modeling and recognizing complex activities. They
typically fall into two major categories, i.e., knowledge-driven approaches which
provide abstract models of common knowledge, while data-driven approaches
which exploits the unseen correlations between complex activities and primitive
events. The knowledge-driven approaches, such as context-free grammar (CFG)
and Markov logic network (MLN), are semantically clear, logically elegant, and
easy to interpret. They are capable of representing rich temporal relations among
primitive events. Yet formulae and their weights in these models (e.g. CFG
grammars and MLN structures) need to be manually encoded, which could be
rather difficult to scale up and is almost impossible for many practical scenarios
where temporal relations among activities are intricate. On the other hand,
the most popular modeling paradigm might be that of the graphical models
and neural networks. With the great success being achieved, these data-driven
models are capable of handling an astonishing number of correlations between
events and are adept at managing uncertainties. However, their results are hard
to interpret, and therefore, they are rather limited in further uncovering rich
cause-effect relationships among events. For example, shooting or passing a ball
is the cause of the action foot pushes the floor in basketball playing. This is
because a player must use the appropriate amount of force against the floor
when shooting or passing. In the Law of Karma, such pair of cause and effect
is also called action and reaction. In fact, most of existing data-driven models
may find that there is a heavy correlation between shooting and passing but
unfortunately cannot discover the further interpretation that the reaction foot
pushes the floor is the common effect of these two actions, which leads to their
extrinsic association.

Granger causality (or GC) [12] is a way to investigate causality between two
primitive events that combines temporal relations with probabilistic description.
GC-based model can capture event interactions and their temporal dependen-
cies. Especially, it demonstrates the effectiveness in exploring causal event sets.
In the field of human activity recognition existing GC-based models exploit tem-
poral dependencies between time series from raw sensor data and use them to
detect primitive events or simple activities. However, since cause and effect are
unidirectional, these models have to check triangle relationships to maintain
causal consistency, which implies temporal consistency in the meantime. Eval-
uating all possible causal structures (which relation should be ignored or not)
are computationally expensive, and would end up being intractable with the
growth of the event sizes. Moreover, it is difficult or even meaningless to under-
stand the causes and effects that are learned from raw time series. It is worth
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clarifying that Granger causality does not imply “true” causality since the ques-
tion of “true causality” is deeply philosophical. It can be thought of as a tool of
specifying a necessary condition for a temporal causal relation.

To address these issues in complex activity recognition, we present a tempo-
ral causal network approach based on Granger causality over primitive events.
In particular, our approach considers a principled way of dealing with the inher-
ent temporal causal variability in complex activities. Briefly speaking, to dis-
cover causal structures in complex activity such as basketball playing, we propose
to introduce a temporal causal network (or network for short) generated from
Granger causality test among primitive events. Now each resulting network con-
tains its unique set of directed links together with their weights that represent
cause-effect relations, characterizing a certain instance of a complex activity that
possess similar primitive events and their temporal causal dependencies. Specif-
ically, we optimize the network by leveraging Lasso regression to achieve link
sparsity. Note that it enables our model to reduce the network size. In addi-
tion, d-separation is introduced to ensure causal consistency during the network
generation procedure without loss of internal relations. In this way, our network-
based approach is more capable of characterizing the inherit causal structural
variability in complex activities when compared to existing methods, which is
also verified during empirical evaluations to be detailed in later sections.

2 Related Work

Existing approaches for complex activity recognition can be divided into three
categories.

2.1 Inferring Complex Activity Directly from Raw Data

Several methods have been proposed for complex activity recognition that oper-
ate directly from sensors data or video clips [5,11]. Among them, neural network-
based approaches have been at the forefront of this research field. At the begin-
ning, simple deep neural network architectures, such as CNN [23,25], were
applied to extract features from raw data. More approaches were introduced
to manage temporal dependencies by modifying network structures. Ordonez et
al. [22] presented a DeepConvLSTM framework that integrates convolutional
and LSTM recurrent layers to characterize activities. Zhao et al. [33] introduced
a network architecture of deep residual bidirectional long short-term memory
LSTM (Res-Bidir-LSTM) to capture the integrity of human activity. Unfortu-
nately, these approaches are mostly time-point based, often ignoring the inher-
ent structures among events, which hinders them handling intricate temporal
relations efficiently. In addition, it is computationally exhaustive to explore rep-
resentative features directly from raw data, which limits their applications in
long-term activity recognition. Furthermore, these approaches are sensitive to
sensor noise, and as a result, they suffer from the effects of adding noise during
backpropagation training.
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Different from the previous work, we design a simple neural network to rec-
ognize complex activities by assuming that primitive events and their corre-
sponding intervals have already been recognized from sensors. So far hundreds
of approaches have been proposed in the literature to detect simple events from
various sensors. We refer the interested readers to the excellent reviews (Aggar-
wal and Ryoo [1] and Bulling et al. [7]) for recognizing primitive events from
sensors.

2.2 Knowledge-Driven Complex Activity Recognition

Semantic-based approaches are one of de-facto knowledge-driven models that
can construct semantics and contextual temporal information in activities [28].
Triboan et al. [29] achieved complex activity recognition by segmenting semantics
of sensor data streams. Liu et at. [18] proposed a unified framework for semantic
query by mining temporal and hierarchical relations over the probability of event
occurrence. Safyan et al. [26] focused on semantic segmentation of ontology-
based temporal formalisms to identify the concurrency of activities. Many other
semantic-based methods [8,27] were proposed to handle temporal relationships
through context or semantic information for complex activity recognition. These
models are capable of representing rich temporal relations by using ontology
or logical representations, but unfortunately they often do not have expressive
power to capture uncertainties. Moreover, the semantic rules and their weights
are typically hand-coded or based on domain knowledge. In particular, it is not
practicable to handcraft the rules whose temporal relations among events are
intricate.

2.3 Data-Driven Complex Activity Recognition

Graphical models, such as Dynamic Bayesian Networks (DBN) [10], Hidden
Markov Model (HMM) [9] and Conditional Random Fields (CRF) [30], utilize
probabilistic network structures to model complex activities. These graphical
model-based approaches are capable of managing uncertainties. However, these
models are time point-based, resulting in high computationally expense when the
number of concurrent activities increases [19]. ITBN [32] and GPA [16] differ sig-
nificantly from the previous graph model-based methods, as they characterize
temporal relations over intervals instead of time points. These graphical-based
models are capable of handling intricate temporal relations under uncertainty.
However, as aforementioned in the introduction section, they are rather limited
in further uncovering rich cause-effect relationships. Therefore, Granger causal-
ity [12] are commonly used to explore temporal causal relations in recent years.
Avilescruz et al. [3] utilized Granger causality test to detect a user’s move-
ment from raw sensor data. Yi et al. [31] introduced a framework that repre-
sents human action sequences by Granger causality between joint movements.
As aforementioned in the introduction section, a major limitation of these GC-
based models concerns that the relationships that are learned from raw data
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are often hard to understand by human beings. They usually lack the expres-
sive power to capture and propagate rich temporal dependencies in complex
activities. Most importantly, these methods often uses GC as a tool to discover
temporal dependencies but fail to maintain causal consistency, which are com-
putationally expensive or even intractable in modeling complex activities, where
the event size is large. To address the problems in these models, we present
our GC-based model to explicitly capture the inherent structural varieties of
complex activities by constructing primitive event-based causal networks with
temporal dependencies under consistency.

3 Problem Formulation

Given a dataset D of N samples from a set of M complex activities, a tem-
poral causal network is constructed with respect to the temporal causal rela-
tions among primitive events. Each sample is a sequence of T data points
measured in time and spaced at uniform time intervals, denoted by x =<
x(1),x(2), . . . ,x(T ) >. A data point x(t) is a vector of K event attributes at time
point t (t = 1, . . . , T ), with each being associated with a certain primitive event
type. We denote it as x(t) = [xt1, xt2, . . . , xtK ], where xti is a binary variable
that xti = 1 indicates the occurrence of the i-th primitive event ei at time point
t; otherwise, xti = 0 (t = 1, . . . , T , i = 1, . . . , K). K denotes the number of prim-
itive event types. In addition, a sequence of t (t ≤ T ) continuous observations of
primitive event ei in a sample x is denoted by x̄i(t) =< x1i, . . . , xti >.

(a) Offensive play(case I) (b) Offensive play(case II)

Fig. 1. Two example instances of the complex activity offensive play and their cor-
responding networks. e1 =walk, e2 = run, e3 = hold ball, e4 = jump, e5 = dribble,
e6 = shoot. It is worth emphasizing that the links in the networks do not imply “true”
causality, but they can be thought of a kind of “strict” temporal relations among
primitive events in complex activity recognition.

A temporal causal network can be used to represent the temporal causal rela-
tionships between primitive events, where a node represents a primitive event
type and a directed link describes the temporal causal relationship of the two
involved events. Denote a temporal causal network G = (V,E) the correspond-
ing network of a sample x, a primitive event ei is a direct cause of ej if there
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is a directed link from ei to ej in E, denoted by ei → ej , where ei, ej ∈ V.
Since causality is transitive, irreflexive and anti-symmetric, it can be verified
that the resulting temporal causal network is a directed acyclic graph. Any
link ei → ej in a temporal causal network G must satisfy Granger causal-
ity test, which defines ei as the cause of ej if the past values of ei contain
helpful information for predicting the future value of ej . More formally, given
the sequences of t observations of ei and ej in a sample x (t < T ), i.e. x̄i(t)
and x̄j(t), respectively, ei is the cause of ej with respect to time point t if
P (xt+1,j | x̄i(t), x̄j(t)) �= P (xt+1,j | x̄j(t)), and also states that ei is not the cause
of ej if P (xt+1,j | x̄i(t), x̄j(t)) = P (xt+1,j | x̄j(t)). It is worth mentioning that
Granger’s definition is not transitive. That is, if any ei → ej and ej → ek ∈ E,
it does not imply ei → ek ∈ E. In other words, ei is an indirect cause of ek,
but ei may be not a direct cause of ek under Granger’s test, or even inversely
ek is a direct cause of ei. To address this, a temporal causal network should be
consistent that the temporal causal relations on every triangle of nodes �ijk in
the network satisfy the transitivity property such that if ei → ej and ej → ek

then ek � ei. In this paper, the term network refers to the temporal causal
network in our definition, and relation refers to the temporal causal relation.

A network however characterizes only a possible style (or an instance) of a
complex activity. Figure 1(a) and Fig. 1(b) show two networks that represents
the same complex activity basketball offensive playing in two different ways of
composing primitive events and their temporal causal dependencies. In this way,
all the generated networks can form a joint network-based feature space that
describes a unique complex activity. This inspires us to present in what follows
a GC-based model where these primitive-based networks can be systematically
constructed to characterize the complex activities of interests.

4 Our Approach

Let us consider a dataset D of N samples {(x, c)} over M complex activities,
where c is the label of the sample x. For any complex activity m(1 ≤ m ≤ M),
denote Dm ⊆ D the corresponding subset of Nm samples. Here each sample
x ∈ Dm is an instance of the m-th complex activity, and is associated with a
sequence of K primitive events e = {e1, . . . , eK} over a length of T time points.
Our objective is to build a set of temporal causal networks as being encoded
as features for complex activity recognition. The overview of our approach is
illustrated in Fig. 2.

4.1 Network Skeleton Measurement

To generate a temporal causal network, we first determine the network skeleton,
i.e., which pairs of nodes (primitive events) and their links (temporal causal rela-
tions) should be considered as candidates in the network. Our approach begins
with measurement of Granger causality for any pair of nodes ei and ej by lever-
aging vector autoregressive model to depict the sequences of primitive events.
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Fig. 2. The framework of our approach. Active node refers to the primitive event that
occurs at least once in current sample, while inactive stands for no occurrence of such
primitive event.

Formally, given two sequences of t observations of primitive events x̄i(t) and
x̄j(t) in a sample x, which are individually and jointly stationary, the processes
of x̄i(t) and x̄j(t) can be individually represented by their autoregressive models
as follows:

xti =
L∑

τ=1

aii(τ)xt−τ,i + εti, εti ∼ N (0, Γi) (1)

xtj =
L∑

τ=1

ajj(τ)xt−τ,j + εtj , εtj ∼ N (0, Γj) (2)

where aii(τ) and ajj(τ) are regression coefficients, and εti and εtj are their
respective regression estimation residuals, which are random Gaussian noises
with zero mean and a given standard deviation, where Γi is the variance of εti,
and Γj is the variance of εtj . L is a finite value called lag order, which can
generally determined by Akaike Information Criterion (AIC).

According to the definition of Granger causality, in prediction for the
sequence x̄ti, it can be seen that another sequence x̄j(t) causes x̄i(t) if adding
x̄j(t) helps predict x̄i(t). Subsequently, the jointly autoregressive model can be
expressed as follows:

xti =
L∑

τ=1

aii(τ)xt−τ,i +
L∑

τ=1

aij(τ)xt−τ,j + ηti, ηti ∼ N (0, Σi). (3)
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Similarly, we can also have

xtj =
L∑

τ=1

ajj(τ)xt−τ,j +
L∑

τ=1

aji(τ)xt−τ,i + ηtj , ηtj ∼ N (0, Σj) (4)

where ηti and ηtj are regression estimation residuals, and Σi = var(ηti) and
Σj = var(ηtj). It is said that ei → ej with respect to t if xti can be more
accurately estimated by Eq. (3) than that by Eq. (1). Inversely, ej → ei if xtj is
more accurately estimated by Eq. (4) than that by Eq. (2).

To measure such accuracy quantitatively from the above definitions, we first
need to estimate the regression coefficients and residuals. More generally, we
define the vector autoregression model regarding all pairs of primitive events (or
nodes) as follows:

x(t) =
L∑

τ=1

A(τ)x(t − τ) + ηt, (5)

where A(τ) is the K×K coefficient matrix at lag τ where its entry aji(τ) ∈ A(τ)
is the regression coefficient that indicates the effect of ei on ej , and ηt is its
corresponding residual vector of size K. There are many ways to estimate these
parameters, such as the ordinary least squares procedure or method of moments
(through Yule-Walker equations).

4.2 Link Sparsity Optimization

Now it is straightforward to determine ei → ej by the condition that if any of the
coefficients aij(τ) ∈ A(τ) at lag τ is non-zero. However, this faces the awkward
situation where bidirectional links such as ei ↔ ej largely exist in the network,
which need additional estimations on these links to ensure network consistency.
As a result, such additional estimation is often exhaustive that does not address
the issue of combinatorial explosion, both in the computational and statistical
senses. Computationally, it is extremely time-consuming and very sensitive to the
number of observations in a sample, that is, O(K2T ) times, and consequently
it is not applicable in complex activity recognition where T is often a very
large value. On the other hand, the statistical significance tests are conducted
sequentially without regard to the possible interactions between them [2].

Here, we adopt a sparse solution of the coefficients by solving the following
Lasso problem:

âj = arg min
aj

T∑

t=L+1

‖xtj −
K∑

i=1

a�
jiẋ(t, L)‖22 + λ‖aj‖1

= arg min
aj

T∑

t=L+1

‖xtj −
K∑

i=1

L∑

τ=1

aji(τ)xt−τ,i‖22 + λ‖aj‖1,
(6)

where aji is the i-th vector of coefficients aj modeling the effect of the event ei

on ej , i.e., aji = [aji(1), . . . , aji(L)], and ẋ(t, L) is the concatenated vector of
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L lagged observations, i.e. ẋ(t, L) = [xt−L,j , . . . , xt−1,j ]. The tuning parameter
λ controls the amount of regularization for sparsity. The resulting optimiza-
tion problem can be solved efficiently by approximate optimization solvers such
as sub-gradient method and least angle regression (LARS). In this way, it is
capable of eliminating the links that have little impact on cause-effect relations
and thereby reduces the density in the network. A network G∗ = (V,E∗) is con-
structed to be an initial skeleton of our network, such that any link ei → ej ∈ E∗

if and only if âji is a nonzero vector.

4.3 Causal Link Orientation

So far we have a network skeleton G∗, which may still contains bidirectional
links or inconsistent triangle of nodes on temporal causal relations. We continue
to determine the directions of links to ensure network consistency.

First we estimate the statistical interdependence between primitive events
ei and ej . After obtaining âij and âji, we can calculate Γi, Γj , Σi and Σj

according to Eq. (1)–(4) separately. Let Σij be the covariance matrix of the

residual terms between ei and ej , defined as Σij =
[
Σi Υij

Υij Σj

]
, where Υij is the

covariance between ηi and ηj , i.e., Υij = cov(ηi, ηj), where ηi and ηj are their
respective residual vectors. We can define the statistical interdependence between
ei and ej as

P (i, j) = ln(ΓiΣi/ | Σij |), (7)

where | Σij | is the determinant of Σij . If ei and ej are independent, resulting
in Υij = 0, Γi = Σi and Γj = Σj , then P (i, j) = 0; otherwise, P (i, j) > 0. We
remove all the links ei → ej with P (i, j) < θ from the network G∗, where θ is a
threshold with small value.

Then, we further orientate the links in G∗ according to the d-separation
criterion, where if ei and ej are d-separated by ek, then ei and ej are independent
given ek; otherwise, ei and ej are interdependent given ek. We elaborate four
situations of d-separation based on the orientation rules [20] in Table 1. In this
way, a set of different networks G can be generated by following the above process.
Finally, the resulting network G = (V,E) is the union of the networks in G,
where ei → ej ∈ E if and only if for every network in G that link is oriented as
ei → ej . Note that every network in G is a completed partially directed acyclic
graph and thus it can be verified that G satisfies network consistent condition.

Besides, the weight on a link can be estimated in terms of its causal power,
as defined by:

wij =

⎧
⎨

⎩

ln(Γj/Σj), if ei → ej ∈ E and i �= j

1, if
∑T

t=1(xti) > 0 and i = j
0, otherwise.

(8)

In fact, Γj measures the prediction accuracy of ej based on its own previous
values, whereas Σj measures it from the previous values of both ei and ej . If Σj

is less than Γj , ei is said to have a causal influence on ej . In other words, the
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Table 1. Orientation rules in d-seperation.

Structure in E∗
ei �� �� ej

ei �� �� ej

ek

�� ei �� ��
��

��

��

���
��

��
� ej

ek

��������
el

�� ei �� ��
��

�� ���
��

��
� ej

ek �� el

��

Condition There is a directed
path from ei to ej in
E∗.

ek → ej /∈ E∗ ek → el /∈ E∗ ek → ej /∈ E∗

Orientation ei → ej

causal power is high if adding ei reduces prediction error of ej . Theoretically,
the larger wij , the stronger the causal influence. It is worth mentioning that we
set wii = 1 if the primitive event ei occurs at least once in the sample x, which
indicates the occurrence of ei.

4.4 Network-Based Complex Activity Recognition

Now we are ready to build a complex activity recognition classifier by treating
these networks as features. In particular, during the training stage, we put all
the generated networks together to form a joint network feature space. Within
this joint network feature space, each sample x from the c-th type of complex
activity in the training set can be represented by a feature vector of size K ×K,
and each entry in the feature vector is the weight value of the corresponding
link (Eq. (8)). We can feed these feature vectors into any appropriate machine
learning models for the recognition task. Here we train a simple neural network
model, which consists of two fully-connected layers and one softmax classifier
to achieve the tasks of complex activity recognition. In our model, ReLU is
used to threshold activation function in each layer. During the testing stage, we
encode the feature vector for each testing sample by generating the corresponding
network and feed the feature vector into the pre-trained neural network classifier
for complex activity recognition.

5 Experiments

5.1 Datasets and Preprocessing

We report the complex activity recognition results from three datasets.

OSUPEL Dataset [6]: This is a video-recorded dataset of real two-on-two
basketball games where the players are tracked and labelled with six primitive
events, including pass, catch, hold ball, shoot, jump, and dribble, which compose
two types of complex offensive play activities with their number of samples being
56 and 16, respectively. We adopted the approach proposed by Zhang et al. [32]
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to detect primitive events from videos clips where dynamic Bayesian network
models are used to model the six basic basketball play events.

CAD Dataset [15]: It is composed of 693 human body skeleton-based samples
captured from RGB-D cameras with 14 actors performing 16 complex activities
such as walk while clapping, talk phone and drink, talk phone and answer, and so
forth. There are a total number of 26 primitive events, including hand wave, dial
phone, among others. Each complex activity contains 3 to 11 primitive events.
We employed the hierarchical discriminative model presented by Lillo et al. [15]
to recognize those primitive events from RGB-D data.

Opportunity Dataset [24]: It contains a total number of 28,976,744 samples
performed by four subjects and recorded in a room with 72 sensors deployed
either in objects or on the body. These sensor data samples are grouped into
five complex daily living activities (relax, coffee time, early morning, cleanup,
and sandwich time), involving a total number of 211 primitive events such as
walk, sit, lying, open doors, reach an object, and so on. We utilized the activity
recognition chain (ARC) system [7] to implement the primitive event recognition
from sensors.

These three datasets contain unique challenges: The OSUPEL dataset com-
prises of a small number of samples of primitive events with simple temporal
relations; The CAD dataset contains a large number of complex activities with
diverse forms of temporal relations, while the Opportunity dataset involves a
relatively large number of samples of primitive events with intricate temporal
relations.

5.2 Baseline Methods

The recognition performance of our approach, named GC-NN, is compared
against nine established knowledge-driven and data-driven methods:

IHMM [21]: It is a graphical model that identifies interactive events based on
time-point.

SCCRF [14]: It is another time point-based model that utilizes the skip chain
conditional random field to model concurrent events.

DBN [10]: This model uses DBN structure with event duration for describing
interacting events.

ITBN [32]: It is an interval-based model that integrates Bayesian networks with
13 Allen relations to identify complex activities.

GPA Family (GPA-C/-F/-S) [16,17]: They are generative interval-based
models that construct Bayesian networks in different ways on link generation
(C - chain, F - fully connected, S - learned structure).

CK [13]: It is common knowledge-based that each rule is encoded manually to
describe the dependence between the occurrences of an event and a complex
activity.
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ARF [18]: It is another knowledge-based approach where an event knowledge
base is learned from data under uncertainty.

DeepconvLSTM [22]: It infers complex activity directly from raw data.

Res-Bidir-LSTM [33]: It is another raw data-based approach.
The standard evaluation metric of accuracy is used, which is computed as

the proportion of correct predictions.

5.3 Experimental Results

Comparison Under the Ideal Situation on Primitive Event Detection.
We first report the comparison results under idealized situations where the entire
sequence of primitive events in a complex activity, including their start-times
and end-times, are correctly detected. As shown in Table 2, it is clear that GC-
NN outperforms other competing approaches with a large margin on all three
datasets. This is mainly due to their abilities to take advantage of the rich
temporal causal dependency information between primitive events. In contrast,
other models such as HMM and DBN encode simple sequential relations between
primitive events only. Although GPA and ITBN can handle the rich temporal
relationships among primitive events, they cannot further exploit their intrinsic
causal relations. As a result, they are not capable of discovering critical depen-
dencies in the OSUPEL dataset which merely contains a small amount of simple
sequential relations. For instance, ITBN discovers a highly temporal correlation
between pass and shoot a ball, but such relation is not real temporal relation
due to the fact that a hidden event foot pushes the floor is the common effect
of the two events, leading to their extrinsic association. GC-NN does not take
such disturbing relation into account because it further exploits the cause-effect
relation rather than merely temporal relation. CK and ARF can characterize
the causal dependence using sematic representation, but it is hard for them to
handcraft all the rules thoroughly and efficiently. This might explain why CK
gives the worst performance among all comparison methods for the Opportunity
dataset where relations among primitive events are intricate.

Table 2. Accuracy comparisons of the competing methods on the three evaluation
datasets.

IHMM SCCRF DBN ITBN GPA-C GPA-F GPA-S CK ARF GC-NN

OSUPEL 0.53 0.67 0.58 0.69 0.79 0.76 0.81 0.69 0.72 0.95

Opportunity 0.74 0.94 0.83 0.88 0.98 0.96 0.98 0.76 0.94 0.98

CAD 0.93 0.95 0.95 0.51 0.97 0.98 0.98 0.90 0.97 0.99

Robustness Test Under Primitive Event Detection Errors. In practice
the accuracy of atomic action recognition will significantly affect complex activ-
ity recognition results. We evaluate the performance robustness of competing
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methods under various atomic activity recognition errors. There are two com-
mon errors with primitive event recognition, namely, misdetection errors that
the correct primitive event is falsely detected as another event, while duration-
detection errors that either the start-time or end-time of a primitive event is
falsely detected. To achieve this, we synthetically perturb the low-level predic-
tions, which represent different noise levels for the sensors or cameras. Synthetic
misdetection errors are simulated by perturbing the true primitive events with
different error rates, while duration-detection errors are simulated by perturbing
the start and end times of those primitive events with a varying noise level of 10,
20, and 30% of maximal temporal distances between neighboring events, respec-
tively. We report detailed experimental results on the Opportunity dataset. In
addition, we evaluated performances under real detected errors caused by the
ARC system (with three classifiers, i.e., kNN, SVM and DT) for low-level recog-
nition. Also, we compared our approach with two models that recognize complex
activities directly from raw sensor data without primitive event detection.

Table 3. Accuracies under primitive event errors on the Opportunity dataset. The
percentage in the bracket shows the rate of change by taking the corresponding accuracy
under the ideal situation (without primitive event error) as a baseline.

Primitive

event

error

rate

Recognition accuracy

IHMM SCCRF DBN ITBN GPA-S CK ARF GC-NN

Under synthetic primitive event misdetection errors

0.1 0.31(−58%) 0.71(−24%) 0.73(−12%) 0.79(−10%) 0.94(−4%) 0.70(−8%) 0.88(−6%) 0.96(−2%)

0.2 0.29(−61%) 0.69(−27%) 0.67(−19%) 0.74(−16%) 0.87(−11%) 0.63(−17%) 0.82(−13%)0.94(−4%)

0.3 0.22(−70%) 0.69(−27%) 0.65(−22%) 0.71(−19%) 0.84(−14%) 0.55(−28%) 0.76(−19%)0.86(−12%)

Under synthetic primitive event duration detection errors

0.1 0.16(−78%) 0.65(−69%) 0.45(−46%) 0.76(−14%) 0.89(−9%) 0.72(−5%) 0.82(−13%)0.92(−6%)

0.2 0.16(−78%) 0.65(−69%) 0.45(−46%) 0.72(−18%) 0.85(−13%) 0.70(−8%) 0.75(−20%)0.92(−6%)

0.3 0.16(−78%) 0.65(−69%) 0.45(−46%) 0.69(−22%) 0.83(−15%) 0.61(−20%) 0.63(−33%)0.92(−6%)

Under real primitive event detected errors

0.165

(kNN)

0.66(−11%) 0.69(−27%) 0.62(−25%) 0.54(−39%)0.91(−7%) 0.71(−7%) 0.81(−14%) 0.90(−8%)

0.242

(SVM)

0.58(−22%) 0.10(−89%) 0.54(−35%) 0.46(−48%) 0.85(−13%) 0.72(−5%) 0.79(−16%)0.88(−10%)

0.315

(DT)

0.16(−78%) 0.10(−89%) 0.04(−95%) 0.38(−57%) 0.71(−28%) 0.52(−32%) 0.69(−27%)0.75(−23%)

Recognize complex activities directly from raw sensor data

Deep

Conv

LSTM

0.83

Res-

Bidir-

LSTM

0.90

As shown in Table 3, it is obvious that the proposed GC-NN is significantly
more robust than other approaches with around 5%–100% performance boost
under various low-level detection errors. It indicates that our model can handle
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noises with various characteristics. It is also clear that CK and ARF perform
worse when the noise level lifts up. This is mainly because the sematic rules in
these approaches are often obtained from prior knowledge and thus they are not
robust to various unknown errors. Notably, ITBN and GPA are more sensitive to
duration-detection errors than GC-NN due to the fact that they heavily rely on
the interval relations. In fact, it can be seen that the time-point based approaches
including GC-NN are more stable than the interval-based approaches against
duration-detection errors.

Runtime Comparison. We present three parameters that may affect the run-
time, i.e. the number of primitive events types (K), the number of samples per
complex activity (N) and the number of primitive events per samples (P). The
empirical runtime is tested on different settings by varying one parameter while
fixing others. The results of varying these three parameters are respectively
shown in Fig. 3. Note that the figure presents the runtime in seconds on a log-
arithmic scale. It can be seen that our approach outperforms other time point-
based methods. Although our approach is not the best on time consumption,
overall it is affordable for practical usage in complex activity recognition. The-
oretically, the time complexity of our approach is O(NK2TL + NMQ2

n), where
Qn is the number of cells set in our neural network classifier.

(a) N = 40, P = 5 (b) K = 10, P = 5 (c) N = 40, K = 10

Fig. 3. Runtime comparison at different settings.

5.4 Ablation Study

To sufficiently analyze the effects of two parameters in GC-NN, i.e., lag order L
and sparsity regularization λ, we carried out the ablation test in this subsection
to answer the intuitive questions: How much will these two parameters affect the
performance of GC-NN?

To answer the question, we compared various settings of these two parameters
in GC-NN on the three datasets. Here we increase the lag order L from 1 to 10
with a step of 1. Figure 4(a) shows that changing the lag order cannot lead
to negative effects on the performance of our model on all the three datasets.
Obviously, there is a sharp decline in accuracy when L is set to 2 in the OSUPEL
dataset. This is mainly because the duration of primitive events in a complex
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activity is very short. For instance, shot or pass a ball, which happens rapidly,
are only associated with a handful of frames (time points). Consequently, the
vector autoregression model in GC-NN is overfitted when a small lag order is
set, leading to over-rejection of the null hypothesis of Granger non-causality.
In other words, fake cause-effect relations are remained in the temporal causal
network, which is harmful to the GC-NN training. Although the selection of lag
order still remains an open issue, we suggest to set the lag order with a value
that is slightly larger than the ordinary length of primitive events occurred in a
complex activity. Note that a very large value of L may result in computational
burden.

The sparsity regularization parameter λ is an important parameter for link
sparsity optimization. Its effect on recognition performance on the three datasets
is shown in Fig. 4(b) by fixing the lag order to L = 5. It is clear that increasing the
value of λ strengthens the regularization effect that will shrink more regression
coefficients aij to zero. Normally, when λ grows to a certain large value, the
number of links will decrease, which would end up that no links are identified
in the network, and as a result, it will lead to accuracy drop. On the other
hand, a small value of λ will bring about a great number of noisy links in the
network, which may also be unfavorable to the recognition results. It can be
viewed that the accuracy drops fast when λ is larger than 10−3 in the OSUPEL
dataset. This might be due to a small number of relatively simpler temporal
causal relations among primitive events contained in this dataset than those in
other two datasets. A large λ will lead to insufficient links, which ultimately
would result in information loss. As far as these three datasets are concerned, a
proper value of λ could be roughly set at the range between 10−4.5 and 10−3.5.

(a) Accuracy changes on different L (b) Accuracy changes on different λ (L = 5)

Fig. 4. Investigation of the impact of the parameters lag order and sparsity regular-
ization on GC-NN performance.

6 Conclusion and Discussion

In this paper, we present a Granger causality-based model where primitive event-
based networks are constructed to capture the inherit temporal causal varieties
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of complex activities. It is more efficient and robust than existing methods for
complex activity recognition. As for future work, we will further investigate the
difference between our model on more datasets, and we will consider relaxing
the assumption that a network is causal consistent and will instead learn the
network satisfying causal Markov condition over time series data.
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2 Université de Toulouse - IRIT, 2 rue Charles Camichel, 31079 Toulouse, France

{thibault.blanc-beyne,axel.carlier,
sandrine.mouysset,vincent.charvillat}@irit.fr

Abstract. Human pose estimation is a widely studied problem in the
field of computer vision that consists in regressing body joints coordi-
nates from an image. Most state-of-the-art techniques rely on RGB or
RGB-D data, but driven by an industrial use-case to prevent muscu-
loskeletal disorders, we focus on estimating human pose based on depth
images only. In this paper, we propose an approach for predicting 3D
human pose in challenging depth images using an image-to-image trans-
lation mechanism. As our dataset only consists in unlabelled data, we
generate an annotated set of synthetic depth images using a human3D
model that provides geometric features of the pose. To fit the challeng-
ing nature of our real depth images as closely as possible, we first refine
the synthetic depth images with an image-to-image translation approach
using a modified CycleGAN. This architecture is trained to render real-
istic depth images using synthetic depth images while preserving the
human pose. We then use labels from our synthetic data paired to the
realistic outputs of the CycleGAN to train a convolutional neural net-
work for pose estimation. Our experiments show that the proposed unsu-
pervised framework achieves good results on both usual and challenging
datasets.

Keywords: Depth images · Unsupervised learning · Human pose
estimation · Image-to-image translation

1 Introduction

Musculoskeletal disorders (MSD) are a leading cause of health issues in the work-
place [27]. This condition covers various types of injuries that typically affect
tendons, muscles, ligaments, etc. Industrial work is often an important source of
MSD, due to the repetitive nature of the tasks that the humans operate as well as
the physical constraints that are exerted on their limbs. More generally, monitor-
ing working conditions is becoming an international concern [1]; in this context
devising systems that can help preventing MSD is an important challenge.
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In our work, we study the particular case of the waste industry, in which
human operators are especially prone to developing MSD. Both industrial and
domestic waste are processed in facilities called waste sorting centers, whose
role is to separate different types of waste (for example papers from cardboard
and plastics) for later recycling or incinerating. While the sorting process is
largely automated, human operators are required to perform negative sorting, i.e.
remove unwanted objects to guarantee the purity of the output waste streams.
This work involves repetitive movements, with sometimes undesirable limbs angu-
lations, which may eventually lead to MSD.

We aim at designing at system that would help identify risk situations, by
monitoring the humans operators posture and revealing harmful angulations.
Driven by our industrial context, we should perform these operations under
several constraints:

(i) The monitoring should be non-invasive, to avoid affecting the operators
work;

(ii) The lightning conditions can not be controlled: the sensor may face a window
or be in a dark corner of the facility;

(iii) The operators may wear reflecting working clothes;
(iv) Anonymity of the workers should be preserved to respect their privacy and

avoid abusive uses of the collected data.

For all these reasons, we choose to frame this problem as human pose estimation
on depth images.

Human pose estimation, which is the task of localizing anatomical keypoints
(joints) or parts, has traditionally been a very challenging task in computer
vision, both in 2D and 3D. Most work focus on single-person pose estimation in
the 2D setting [2,26] using various architectures of convolutional neural networks
(CNN) applied on single RGB images. Another line of work approaches the
problem with the goal of detecting multiple persons, still on RGB frames. These
more recent methods often use a top-down model, as proposed in [10], where
(i) human detection is applied and (ii) single-pose estimation is realized on each
detection. However, the most efficient methods rely on bottom-up approaches [7].
These methods make use of ResNet blocks [14] or of a multi-stage CNN to first
detect joints, and later match them to perform a complete pose estimation. 3D
pose estimation from single images remains a challenge to this day, due to the
lack of available labelled data and to the ambiguity of getting 3D information
from single images. Using deep learning methods, the 3D pose is often inferred
from the 2D estimation [6] as deep neural networks trained on 3D datasets
captured in a motion capture context [15] do not generalize well [37]. To tackle
this issue, an unsupervised approach based on domain adaptation was recently
introduced by [36]. They first train a 2D/3D pose estimator on depth images and
a segmentation module on the 2D pose. Using domain adaptation, the authors
finally use these two components to train a 2D/3D pose estimator on RGB
images.

Even though RGB-D sensors have been used by the general public for many
years now (Microsoft released the first version of the Kinect sensor in 2010), only
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a few research work have focused on how to infer information using depth images
only. In particular, most previous work make use of the human segmentation and
pose estimation embedded in the Kinect [30], which implicitly assumes that the
user is standing in front of the sensor. As previously adopted by [4] in the context
of hospitals for action recognition and fall detection, our approach focuses on
using only the sensor depth information (disregarding the color information), in
order to respect the human operators privacy.

This implies to estimate human pose from unlabelled, noisy depth images.
To do so, we propose in this paper to present a framework of unsupervised pose
estimation process, described in Fig. 1.

Synthetic
depth images

Image-to-image
translation

Realistic
depth images

3D pose
estimation

3D poses

Real
depth images

3D pose
estimation

(frozen)

3D poses

Fig. 1. The framework of our unsupervised pose estimation process.

Our framework relies on the CycleGAN [39] approach, a particular GAN
architecture, that is able to preserve the geometric properties of the image while
changing its texture. We propose to first generate an annotated set of synthetic
depth images using a human 3D model that provides geometric features of the
pose (Sect. 3). We then use a modified CycleGAN architecture that alters the
generated synthetic depth images to mimic real ones, while preserving geometric
content, i.e. the human pose (Sect. 4). In Sect. 5, we present our pose estimation
on real images based on a single convolutional neural network that infers the
3D position of body joints. Finally we present our experiments and discuss our
results in Sect. 6.

2 Related Work

Human Pose Estimation on Depth Images. Only a few work on human
pose estimation discard the RGB images and only analyze the depth values.
Among the recent approaches that build on the advances brought by deep learn-
ing techniques, Jiu et al. [18] do not output an explicit body pose, but segment
body parts using features built by spatially constrained multiscale, CNNs [11].
Wang et al. [33] introduce an inference-embedded multi-task learning framework.
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They use a CNN to generate a heatmap of body parts, which is then fed to an
inference network seeking the optimal configuration of body parts, using both
appearance and geometric compatibility. Similarly, Haque et al. [13] first detect
local body parts. A global body pose is then iteratively produced using a lever-
aged convolutional and recurrent network containing a long short term memory
(LSTM) module. Moon et al. [25] propose a voxel-to-voxel network for hand and
body pose estimation. They split the 3D space into a grid of voxels, and estimate
a per-voxel likelihood for each joint. Maŕın-Jiménez et al. [23] present a model
which uses a CNN to compute weights used to estimate the 3D pose as a linear
combination of prototype poses.

Generative Adversarial Networks. Generative adversarial network (GAN)
is a new machine learning paradigm introduced by Goodfellow et al. in 2014 [12].
In this framework, two models are simultaneously trained: a generative model
G which captures the data distribution, and a discriminative model D that sepa-
rates the data generated by G from the real training data. The training stability
of such system is notoriously difficult to maintain, and improvements were pro-
posed to improve it [29]. GANs were also extended by [24] as conditional GAN
to make the generator able to sample data conditioned on class labels. The
key principle is the use of an adversarial loss, that ideally makes the generated
images indistinguishable from real images at the end of the training. GANs have
achieved impressive results in image editing [38], generation [28] and conditional
generation [35].

Image-to-Image Translation. GANs are also used for the task of image-to-
image translation. Recent approaches rely on a dataset of paired input/output
images, such as “pix2pix” [16], which uses conditional GANs to learn a trans-
lation function between input and output images, improved to high resolution
images by [34] and by the Multimodal Unsupervised Image-to-image Translation
(MUNIT) [40] to control the style of translated output. StarGAN [9] performs
image-to-image translations for multiple domains using a single network trained
on several datasets, while [8] performs image-to-image translation using pose
as latent space. A lot of other methods tackle the unsupervised setting and
aim to map two different data domains. An approach is to use a weightsharing
strategy as in CoGANs [21] or cross-modal scene networks [3]. Another idea is
to encourage the input and the output to share specific content while differing
in style [31]. Popular methods use transitivity to regularize the data thanks to
cycle-consistency [39]. These approaches rely on the fact that, if an image is trans-
lated from one domain to the other and back, the resulting image should ideally
be the one we started with. This allows to perform image-to-image translation
on unpaired datasets, for instance in the task of semantic segmentation [20] or
robotics [17].

3 Training Data Generation

In our industrial context in which human activity is monitored to prevent
musculoskeletal disorders, we are bounded by several constraints such as sen-
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sors positions, uncontrollable lightning conditions, reflective surfaces and clothes,
and the overwhelming number of moving objects. To protect workers’ privacy
and favor our system’s acceptability, we choose to acquire data using depth cam-
eras. The challenging environment introduces complexity and noise to the depth
images and usual human pose estimation approaches fail to produce exploitable
results. We build what we will denote as our real dataset by gathering around
60, 000 frames from 8 live-recorded video sessions in a waste sorting center.

Examples of real depth images are depicted in Fig. 2. The operator is seg-
mented from the frame using the approach proposed in [5].

Depth data is directly acquired and stored on 640×480, 16 bits images rather
than simple 8 bits PNG images, in order to correctly capture the depth value of
each pixel. Indeed, precision in depth values is needed to be able to distinguish
between the hand of the operator and the object he/she may hold. This kind of
storage enables us to perform a better normalization of our data before feeding
it to our networks, while PNG images would have provided us with a poorer
depth sampling of the operator.

Fig. 2. Examples of images from our dataset (top row) and their associated segmenta-
tion (bottom row).

Unfortunately, we can not directly use this data to train our human pose esti-
mation network. Indeed, machine learning often implies a critical need of large
amounts of labelled data during the training phase. In our use-case, annotating
a 3D human pose just from a depth image is a very difficult and time-consuming
task, and in fact almost impossible to realize with a good enough precision as it
involves providing a 3D information on a 2D space. In addition, our industrial
constraints make it likely that the shooting conditions differ from one sorting
center to another. The depth camera may have to be positioned differently or
the human operators may wear different reflective clothes, which would result
in a new type of data, and would thus require a new annotation campaign to
retrain the neural network. We believe this process is not sustainable in our use-
case. That is why we decided to rely on a synthetic labelled dataset rather than
handcrafted annotations.
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The synthetic data is generated using the free and open source 3D creation
suite Blender1. The rigged 3D human model was created using an free opensource
software called MakeHuman2. We made use of the Blender scripting tool to
generate a highly variable set of poses stored as key frames, while its compositing
tool allowed us to render synthetic depth frames. The range of angulations for
each joint of our animated model was built thanks to an ergonomic study to
closely match those of the sorting activity and thus, those of our real data.
These images are encoded the same way we encoded our real depth images, and
at the same resolution. Figure 3 shows some examples of depth images from our
synthetic dataset, consisting in around 200, 000 images.

Fig. 3. Examples of synthetic images created using Blender. To match our use case,
these images represents only the upper body of the user, in a very variable set of poses.

However, we will see later (see Sect. 6) that training our pose estimator
directly with this synthetic data only does not give satisfactory results. We need
to transform this data for it to better match our real data. For this task, we
chose to use CycleGAN [39].

4 Image-to-image Translation

CycleGAN [39] is an unsupervised approach for image-to-image translation
which does not require paired data. The CycleGAN allows to find a mapping
between the distributions of the two sets of data. In the following, we present
the architecture described by Fig. 4 with training details and provide first results
on the synthetic dataset.

4.1 Model Architecture

The CycleGAN is composed of two generative networks and two discriminators.
As we need lightweights architectures to achieve real-time performance in our

1 https://www.blender.org.
2 http://www.makehumancommunity.org.

https://www.blender.org
http://www.makehumancommunity.org
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Fig. 4. Overview of the image-to-image translation training process.

industrial use-case, and as the operator is located at the center of the image and
only occupies a small part of the depth image, we crop the depth images to only
keep the operator and resize it into 64 × 64 × 1 images.

After several tests about the architecture of the generators, the final archi-
tecture of both generators is the same and consists of three parts:

– a first descending part composed of three convolutional layers with stride to
reduce the spatial dimension of the images, with the number of filter doubling
at each convolutional layer from 32 to 128;

– a second part containing three residual blocks [14] of a single 2D convolutional
layer of 128 filters;

– a third ascending part consisting of three deconvolutional layers with stride
to retrieve the original image size, with the number of filters decreasing from
128 to 32.

All the convolutional and deconvolutional layers have a kernel size of 4× 4, with
zero-padding, and are followed by a ReLU activation function and an Instance
Normalization layer [32]. The final layer is a 2D convolutional layer with a single
filter, a kernel size of 4 × 4 and hyperbolic tangent activation function to obtain
our final normalized translated image.

The discriminators are two 64 × 64 PatchGANs [16,31], which are fully con-
volutional neural networks whose goal is to classify whether 64 × 64 overlapping
image patches are real or fake by outputting a probability map. More precisely,
both discriminators contain a four convolutional layers with stride, an increasing
number of filters from 32 to 256, a kernel size of 4 × 4, with zero-padding, and
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are followed by a LeakyReLU activation function with α = 0.2. They are all
followed by an Instance Normalization layer, apart from the first one which is
not normalized. A final convolutional layer with one filter outputs the patchs
discrimination. These architectures are inspired from the architectures proposed
by [39] for both generators and discriminators, and are given in Fig. 5.

+ + +

Descending part Resnet part Ascending part

Generator Discriminator
Input image Conv.+ReLU Instance Norm. Conv.+TanH
Output image Conv.+LeakyReLU Conv. Disc. Output

Fig. 5. The architectures of the generators and discriminators of our proposed Cycle-
GAN.

4.2 Training Details

To train this model, we use, as described in [39], three losses: two adversarial
losses LGAN and a cycle-consistency loss Lcycle.

For the two generators GR : S → R, GS : R → S where R and S are the
respective Real and Synthetic image datasets and their associated discriminators
DR and DS , we express the adversarial losses as:

LGAN (GR,DR, S,R) = Er∈R[||DR(r)||2] + Es∈S [||1 − DR(GR(s))||2] (1)

where GR aims to generate images that are similar to synthetic images from S
and DR tries to distinguish real samples r from generated samples, and:

LGAN (GS ,DS , R, S) = Es∈S [||DS(s)||2] + Er∈R[||1 − DS(GS(r))||2] (2)

where GS aims to generated images that are similar to real images from R and
DS tries to distinguish synthetic samples s from generated samples. We use an
L2 loss function rather than a negative log-likelihood because this loss is more
stable during training and generates higher quality results [22].

In the meantime, the goal of the cycle-consistency loss is to ensure that
GS(GR(s)) ≈ s, i.e that a translation cycle should bring s back to the original
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synthetic image. The same goes with real images, where we want to ensure that
GR(GS(r)) ≈ r. This cycle-consistency loss is then expressed as:

Lcycle(GS , GR) = Es∈S [||GS(GR(s)) − s||1] + Er∈R[||GR(GS(r)) − r||1] (3)

Finally, the global loss to train our model is:

L(GS , GR,DS ,DR) = LGAN (GR,DR, S,R)
+ LGAN (GS ,DS , R, S)
+ λLcycle(GS , GR)

(4)

where λ controls the relative importance of the two kind of loss.
We tried several differents values of λ before sticking to 10 as advised in

the original CycleGAN paper [39]. We train the networks using the Adam opti-
mizer [19] with a learning rate of 10−6.

4.3 Preliminary Results

Fig. 6. Examples of image-to-image translation performed by our CycleGAN. We can
see that the pose of the user is preserved during both translations. First row: synthese
images from our synthetic dataset. Second row: translated realistic images associated
to the images from the first row. Third row: real images from our real dataset. Last
row: translated synthetic images associated to the images from the third row.

Some results are shown in Fig. 6. We see that the real images generator manages
to realistically degrade the synthetic images by adding noise on the human oper-
ator’s body and removing parts, similarly to a real image. On the other hand, the
synthetic images generator seems to fill holes and put together parts from real
images to make them look more “synthetic”. However, and as expected, both
generators neither add nor remove objects around the user.
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5 Pose Estimation on Real Images

We perform 3D pose estimation on single depth images using a deep convolu-
tional neural network. Since our real datasets do not contain 3D human pose
annotations, we can not directly train our network on this data. However, thanks
to our synthetic dataset and the previously trained CycleGAN, we can generate
annotated realistic depth images. This process may ideally yield an unlimited
set of realistic depth images paired to the 3D human pose annotation corre-
sponding to the synthetic images given as input. We use these couples between
realistic depth images and synthetic 3D human pose annotations to train our
pose estimation network.

The 3D pose is defined by the following fifteen upper body joints: BaseSpine,
MiddleSpine, TopSpine, Neck, Head, LeftShoulder, LeftElbow, LeftWrist, Left-
Hand, RightShoulder, RightElbow, RightWrist, RightHand, LeftHip and RightHip.
These joints are illustrated in Fig. 7.

Head

Neck

ShoulderSpine

MiddleSpine

BaseSpine

RightShoulder

RightElbow

RightWrist

RightHand

RightHip

LeftShoulder

LeftElbow

LeftWrist

LeftHand

LeftHip

Fig. 7. The fifteen joints we used to define our 3D human pose.

The 3D pose estimation network is a convolutional neural network. Its inputs
are 64 × 64 depth images, and it outputs a 45-dimensional vector representing
the 3D position of the fifteen body joints. It contains three blocks of three 2D
convolutional layers of 64 4 × 4 filters, with batch normalization and ReLU
activation function. The blocks are separated by max-pooling layers. The final
layer is a dense layer of 15 × 3 neurons, to estimate the 3D pose of the fifteen
joints. An illustration of this architecture is given in Fig. 8.

To train this model, we use a mean squared error loss function. We use the
Adam optimizer [19], with a learning rate of 10−3 and mini-batchs of 32 images.

Examples of our results on pose estimation are depicted in Fig. 9. We can
see that our results look consistent with the depth images, however it is highly
dependent on the variability of the synthetic dataset and of the quality of the
user segmentation in the depth images. Indeed, our synthetic dataset lacks of
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Input image Conv.+B.N.+ReLU MaxPooling Dense 3D Pose

Fig. 8. The architecture of our pose estimation neural network.

synthetic images with the arm up in the air and, as shown in the third row
of Fig. 9, the wrongly estimated pose often display this kind of error on flawed
segmented frames.

Fig. 9. Examples of real depth images and their associated 3D pose estimation. First
two rows: the poses seem consistent with the depth image of the user. Third row:
example of failure cases of our approach. After analysis, these errors often occurs when
there are flaws in the segmentation, for instance pixels of the background breaking the
depth normalization of the image (that we can see here with a different shade of gray
in the image of the third row).

6 Experiments

We compare the different results thanks to various commonly used measures [36]
such as Percentage of Correct Key-Points (PCK) at 150 mm (PCK@150 mm) and
80 mm (PCK@80 mm), that is the percentage of joints whose distance between
predicted and true position lies within a given threshold, the Mean Per Joint
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Position Error (MPJPE), which is the mean euclidean distance between ground
truths and predictions, and the Procrustes Analysis Mean Per Joint Position
Error (PAMPJPE), which is a MPJPE where a similarity transformation is
applied before computing the euclidean distance. For the PCK measures, the
higher is the better, while for MPJPE and PAMPJPE, given in millimeters, the
lower is the better.

In order to be able to measure the quality of our results and since we do not
have annotations on real data, we created a new degraded dataset by applying
a combination of white noise and image parts removal to build the noisy and
degraded dataset, consisting of 200, 000 640 × 480 synthetic images. We perform
an ablation study on this second dataset with three kinds of training: a super-
vised training where the model is trained on the same kind of data as testing
data, a “CycleGAN” training where the model is trained the outputs of the
CycleGAN and an unsupervised training where the model is directly trained on
the undegraded synthetic data, and tested on the noisy and degraded dataset.
This ablation study proves that the image-to-image translation block is useful
in order to improve the quality of the pose estimation.

As shown in Table 1, using the outputs of our image-to-image translation
block clearly improves the quality of the pose estimations compared to directly
training the same network on the synthese depth images, even though its per-
formances are still worse than the supervised setting: the PCK@150 mm and
PCK@80 mm improves respectively from 55.0% to 93.3% and 0.2% to 46.0%,
while the MPJPE and PAMPJPE lower from 148.0 mm to 84.3 mm (43% reduc-
tion) and 87.6 mm to 65.9 mm (25% decrease).

Table 1. Results of our pose estimation network under various training conditions.
We observe that using a CycleGAN improves the results compared to the unsupervised
setting, despite being worse than the supervised learning.

Kind of data Training type PCK@150mm PCK@80mm MPJPE 3D PAMPJPE 3D

Synthetic Supervised 100.0 100.0 10.9 9.9

Noisy Supervised 100.0 100.0 21.4 18.8

& CycleGAN 93.3 46.0 84.3 65.9

Degraded Unsupervised 55.0 0.2 148.0 87.6

It shows that our CycleGAN is able to correctly capture some features of
degraded depth images and translate them on the synthetic images. It is also
important to notice that the real difficulty of our dataset lies in the degradation
induced by the industrial context (i.e the holes in the depth image) and not in
the imprecision of the sensor (simulated by the white noise).

To be able to perform more measures about the quality of our results, we
acquired another real dataset in a controlled setting, simulating a simplified
industrial context. These images were acquired with a Kinect V2 sensor in a
bird’s eye view of the user, allowing us to compare our pose estimation to the
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pose estimation provided by the sensors. This dataset contains around 13,000
depth frames of several subjects in a wide variety of human poses. However,
comparing to this data is difficult for several reasons:

– our model joints are not exactly located at the same place on the human body
than those of the Kinect;

– we estimate a 3D human pose, while Kinect V2 only estimates a 2D+Z human
pose: the two first coordinates (X,Y) are estimated as pixel coordinates in the
depth frame and then translated to the real world space thanks to the camera
intrinsic parameters, but the third one is computed by adding a given offset
to the depth value of the pixel, which can be far away from the real position
of the joint when the sensor is not in front of the user;

– the Kinect V2 pose estimation is calibrated for an entertainment setting where
the sensor is in front of the user. In our setting, the sensor has a bird’s-eye
view on the user, which leads to further deformations of the estimated pose.

An illustration of these issues is given in Fig. 10. In particular, we can see that
the Kinect pose estimation is strongly tilted forwards, while ours stays straight,
which is closer to the real position of the user.

Front view
Top view

Depth image Kinect pose estimation Proposed approach

Fig. 10. Comparison of the Kinect pose estimation against the proposed pose estima-
tion. Left: the segmented depth frame. Center: the 2D+Z pose estimation provided by
the Kinect sensor. Right: the proposed pose estimation.

However, despite not being able to compare our results to a real ground
truth, we confirm the results that we showed on synthetic data (see Table 2).
Due to the facts given previously, there is a large gap between the Kinect pose
estimation and ours, but the use of the CycleGAN greatly reduces this gap
and thus improves the quality of our network’s pose estimation. The CycleGAN
improves the quality of the pose estimations, by reducing both the MPJPE and
PAMPJE, respectively by 39% and 34%.
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Table 2. Results of our pose estimation compared to the pose estimation provided by
the Kinect V2 sensor.

Training type MPJPE 3D PAMPJPE 3D

CycleGAN 268.7 131.6

Unsupervised 442.1 199.6

7 Conclusion

In this paper, we propose an unsupervised framework to provide 3D pose estima-
tion on single depth images to prevent musculoskeletal disorders in an industrial
use-case. The approach relies on a synthetic dataset composed of synthetic depth
images. Using an unsupervised image-to-image translation CycleGAN preserv-
ing geometric features, we refine these images to render realistic depth images.
These images, coupled to the body joints annotations from the input synthetic
images, allow us to efficiently train a simple 3D pose estimation network. Sev-
eral experiments performed both on degraded synthetic data and on real data
acquired in a simulated industrial context prove the efficiency of this image-to-
image translation process to perform unsupervised pose estimation.

In future work, we could exploit temporal information to improve the results
of both our CycleGAN and pose estimator. We could also introduce more com-
plicated models.
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38. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative Visual manipu-
lation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46454-1 36

39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: The IEEE International Conference
on Computer Vision. IEEE (2017)

40. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in
Neural Information Processing Systems, pp. 465–476 (2017)

https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
http://arxiv.org/abs/1607.08022
https://doi.org/10.1007/978-3-319-49409-8_17
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36


Data Generation Process Modeling
for Activity Recognition

Massinissa Hamidi(B) and Aomar Osmani

Laboratoire LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord,
Villetaneuse, France

{hamidi,ao}@lipn.univ-paris13.fr

Abstract. The dynamics of body movements are often driven by large
and intricate low-level interactions involving various body parts. These
dynamics are part of an underlying data generation process. Incorpo-
rating the data generation process into data-driven activity recognition
systems has the potential to enhance their robustness and data-efficiency.
In this paper, we propose to model the underlying data generation pro-
cess and use it to constrain training of simpler learning models via sam-
ple selection. As deriving such models using human expertise is hard,
we propose to frame this task as a large-scale exploration of architec-
tures in charge of relating sensory information coming from the data
sources. We report on experiments conducted on the Sussex-Huawei loco-
motion dataset featuring a sensor-rich environment in real-life settings.
The derived model is found to be consistent with existing domain knowl-
edge. Compared to the basic setting, our approach achieves up to 17.84%
improvement, by simultaneously reducing the number of required data
sources by one-half. Promising results open perspectives for deploying
more robust and data-efficient learning models.

Keywords: Activity recognition · Domain models · Neural
architectures

1 Introduction

Proliferation of internet of things technologies allows the emergence of sensor-
rich environments where sensing-enabled devices constitute sources of diverse
forms of information describing their surrounding. These sources offer a broad
range of perspectives allowing to perform robust activity recognition [33]. Indeed,
positioned in different places and featuring various sensing modalities, these
sources of information generate a lot of data which, if exploited rightfully, could
provide many advantages like improved signal-to-noise ratio, reduced ambiguity,
and enhanced reliability [22].

Learning tasks that emerge in these sensor-rich environments are profoundly
structured. This is the case of wearable technologies with the considered Sussex-
Huawei locomotion-transportation (SHL) dataset [14] studied in this paper. Our
c© Springer Nature Switzerland AG 2021
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work focuses on recognizing mobility-related human activities from data sources
materialized by on-body sensors placed at different locations of the body fol-
lowing a pre-defined and fixed topology. It has been observed that for a given
activity, there is the emergence of dynamics that involve very specific positions
of the body parts for which a set of specific modalities can provide complemen-
tary information. Primarily, what characterizes these dynamics is the fact that
they define largely the activity in question [5,11,25,35].

The dynamics of body movements are part of an underlying data generation
process (DGP) and a long line of research, e.g. [8,30,31], proposed to incorpo-
rate this kind of prior knowledge into activity recognition models. Specifically,
authors in [31] derive 3D body skeleton-based representations while other works
encode prior domain knowledge using ontology-based representations [29,36].
These representations are then used to constrain training of activity recognition
models. While incorporation of prior knowledge about the dynamics of body
movements into learning systems improves performances and is appealing in
terms of interpretability, relying solely on human expertise to derive models for
these dynamics is hard [39]. Indeed, these dynamics are often driven by large
and intricate low-level interactions involving various body parts [21].

In this paper, we propose a novel approach to derive and incorporate DGP
into activity recognition models. Our approach enhances the performance of
activity recognition models through two major steps. It first constructs a model
of the DGP via a large-scale exploration of a neural architecture space. Then, it
selects highly confident data sources for inclusion in the final training set using
a variance-based importance estimation algorithm.

Our contributions can be summarized as follows. (1) We frame the derivation
of the data generation process as an exploration of the neural architecture space;
(2) We propose to estimate the relative importance of data sources and their
interactions using a variance-based method; (3) Extensive experiments show
the effectiveness of combining the data generation process through selection of
highly confident data sources. In particular, we achieve improvement of recog-
nition performances of up to 17.84% over the baseline, which is accompanied
by a substantial reduction of required data; (4) We perform a comprehensive
comparative analysis using different instantiations of the proposed approach (8
exploration strategies) on 4 different representative related datasets.

The rest of the paper is organized as follows. In Sect. 2, we define the problem
of data source selection based on the DGP and Sect. 3 presents the details of our
approach. In Sect. 4, we detail the empirical evaluation of the proposed approach.
We provide a related work in Sect. 5 and finally, Sect. 6 concludes this paper with
a summary and future works.

2 Problem Statement

This section defines the problem of modeling the data generation process in the
context of activity recognition from sensor-rich environments.
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2.1 Preliminaries

We consider settings where a collection S of M sensors (also called data genera-
tors or data sources), denoted {s1, . . . , sM}, are carried by the user during daily
activities and capture the body movements. Each sensor si generates a stream
xi = (xi

1, x
i
2, . . . ) of observations of a certain modality. Furthermore, each obser-

vation is composed of channels, e.g. the x, y, and z axes of an accelerometer.
In our work, we exploit mainly body-motion modalities that are often used in
human activity recognition applications. The goal is to recognize a set Y of
activities, like running or biking, performed in sensor-rich environments.

Definition 1 (Modality). A modality is a form of perception that conveys a
particular perspective about a given phenomenon. E.g. acceleration, gyroscopic
and magnetometric observations are different modalities each describing, in a
particular way, the motions of the body.

Definition 2 (Data source). a given data source (or sensor), denoted s, is
characterized by two main attributes: the first is the modality being produced
by the sensor and the second one is the position where the data source is located
on the body. A data source is then uniquely defined with these two attributes.

2.2 Problem Definition

Human activities are largely determined by the dynamics of the gestures. Indeed,
each activity is characterized by a different set of gestures which in turn involve
specific body parts. In the case of wearable technologies, where these body parts
are equipped with data sources, often, focusing on these specific data sources,
allows recognizing a given activity precisely. Therefore, our approach attempts
to select subsets of data sources that are highly confident and informative with
regards to these dynamics, to create a curated training set for model training.
In this work, we focus on two different notions that encode these dynamics:
importance of a single data source and degree of interaction among a set of data
sources.

Definition 3 (Importance). Given a data source si that is attached to a given
body part and an activity y, the importance of si with regards to activity y,
denoted μy

i ∈ [0, 1), is defined as a quantity that represents the relative involve-
ment of that body part in the dynamics of the gestures pertaining to that activity.

Definition 4 (Interaction). An interaction involves two or more data sources
and is defined as their degree of dependence regarding the relative involvement of
the body parts, they are attached to, in the dynamics of the gestures. The greater
the degree, the more interacting the data sources. Given a set of interacting data
sources, S ⊂ S, their degree of interaction is denoted by μy

S ∈ [0, 1). Specifically,
in the case of two interacting data sources, si and sj, it is denoted μy

ij.
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Problem 5 (Data source selection based on DGP). Let DGP : ℘(S)×Y −→ [0, 1)
be the data generation process, which gives, for each activity y ∈ Y the influence
of a set of data sources S ⊂ S. The goal is to use DGP as an indicator function to
select data sources (or samples) that are highly confident and informative to be
included in the final training set of activity recognition models. Let τimp ∈ [0, 1)
and τint ∈ [0, 1) be two parameters that determine the thresholds above which
a given set of data sources S ⊂ S can be selected. It follows that the subsets of
interacting data sources pertaining to activity y ∈ Y, denoted Sy, is defined as
Sy := {si ∈ S|DGP ({si}, y) = μy

si
≥ τimp} ∪ {S � S|DGP (S, y) = μy

S ≥ τint}
Learning using curated sources of information is widely used in machine

learning [17,38]. The DGP in the Problem5 presents a natural solution for
selecting such sources in the context of activity recognition from sensor-rich
environments.

3 Approach

Our approach enhances the performance of activity recognition models through
two major steps: (1) construct a model of the DGP as described in the Problem5
using an architecture space as a surrogate model (proxy), and (2) select highly
confident and informative data sources for inclusion in the final training set
using a variance-based importance estimation algorithm. These two steps are
described in the following and Algorithm1 outlines the complete process.

3.1 Architecture Space as Proxy for the DGP

We use the space defined by multimodal analysis architectures as a proxy for
the dynamics of the body movements. The exploration of this architecture space
serves, then, to derive the DGP as defined in Problem5.

An architecture is defined as a set of architectural components responsible for
extracting valuable insights, in the form of features, from the observations and
efficiently fusing different data sources carrying different modalities and various
spatial perspectives. We distinguish four types of architectural components: fea-
ture extraction (FE), feature fusion (FF), decision fusion (DF), and analysis unit
(AU) as defined in [2]. These are illustrated in Fig. 1 (left). An architectural com-
ponent takes as inputs either raw data, features, or decisions and outputs either
a feature or a decision. The way a given component processes each individual
input is controlled by a hyperparameter.

It is convenient to represent an architecture as a directed acyclic graph where
the architectural components are connected together using valued edges. We
associate a value (hyperparameter) hv

u with every edge in the directed graph
that connects two components Cu and Cv. These values control how architec-
tural components process each individual input and by the same occasion their
influence on the overall architecture performance. We refer to the set of all
hyperparameters of a given architecture by H.
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Fig. 1. (Left) feature extraction and multimodal fusion components defined in [2]. Fea-
ture extraction (FE), feature fusion (FF), decision fusion (DF), and analysis unit (AU).
These building blocks can be combined in order to form feature-level, decision-level,
and hybrid multimodal analysis. Additionally, the hyperparameters hi controlling the
effects of each individual input are depicted. (Right) An illustration of an architec-
ture where each node corresponds to a component. An edge from component Cu to
component Cv denotes that Cv receives the output of Cu as input.

We focus, particularly, on the insights that stem from tuning and adapting
these architectures, through their hyperparameters and specifically those con-
trolling the influence of the data sources. At each layer of a given architecture,
setting the right combination of hyperparameters is critical. In particular, choos-
ing the right instantiation for the features learning and sensor fusion components
can lead to an architecture capable of building, from the various data sources,
an original set of features which is suitable for recognizing a given activity. We
take into account the following assumption: let Hs � H be the set of hyperpa-
rameters controlling the impact of a given data source s. The global impact of
Hs on the recognition performances represents the impact of the data source s.

The problem of modeling the DGP becomes, then, an exploration of the
architecture (hyperparameter) space. This exploration is determined by three
aspects: (1) a search space which defines the architectural components and the
type of branching that is allowed for the architectures (e.g. convolutional layers);
(2) a search strategy which decides how the exploration of the space should be
carried (e.g. Bayesian optimization of the hyperparameters); and (3) a perfor-
mance estimation strategy (e.g. sequence classification problem) [9].

In the case of convolutional layers, for example, architectures can be con-
structed by stacking a series of Conv1d/ReLU/MaxPool blocks followed by
Fully-Connected/ReLU layers. Denote by νk the validation loss of a particu-
lar instantiation k of the set of hyperparameters. The exploration strategy tries
to find an architecture k∗ that minimizes the validation loss ν∗

k(w∗). The weights
w associated with the architecture are obtained by optimizing the weights of the
components using, for example, a gradient descent algorithm over a predefined
class of functions.

Given an exploration budget B, the exploration strategy yields a series of vali-
dation losses ν1, . . . , νB including partial validation losses pertaining to individual
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activities. The task of modeling the DGP, therefore, reduces to find a link between
these validation losses and the impact of each individual data source.

3.2 Variance-Based Importance Estimation

Let V be a set of validation losses where each validation loss νk represents the
estimated performance of a particular instantiation of the hyperparameters. To
estimate the importance of each individual data source, we decompose the non-
linear relation f described by V as follows

f(S, y) = μy
0 +

M∑

i=1

μy
i (si) +

∑

i�=j

μy
ij(si, sj) + · · · + μy

1...M (si, . . . , sM ) (1)

a constant mean μy
0 plus first-order effects (μy

i ), plus second-order effects (μy
ij)

and so on. The lower the variance induced by a data source, the higher its
influence of on the non-linear relation f . This formulation corresponds to an
additive expansion and the variance of each term can be estimated using the
functional analysis of variance (fANOVA) [18]. It can be quantified using the
efficient implementation proposed in [19] which is based on a linear-time algo-
rithm for computing marginals of random forest predictions.

As we have access to the set of validation losses indexed by the hyperparame-
ters instantiation, in order to estimate the decomposition, we have to determine,
first, the correspondence between each individual data source and the set of
hyperparameters that controls their influence.

Data Source/Hyperparameters Correspondence. Given an architecture A, we
determine a correspondence, CorrA : S −→ ℘(H × R), between each individ-
ual data source and the hyperparameters that influence their effects, as follows:

CorrA(s) =
⋃

(u,v)∈s−→∗t

< hv
u, w > (2)

where s −→∗ t denotes all paths in the architecture that have s as a source and t as
sink, hv

u the hyperparameter associated with edge (u, v), and w corresponds to a
weight computed as w = ω1·dist(s,v)+ω2·δ−(v)

ω1+ω2
which ponders the correspondence

of a given hyperparameter hv
u depending on its distance (dist(s, v)) to the input

s and the number of incoming edges to the component v (δ−(v)). The weight
parameters ω1, ω2 ∈ [0, 1) are both set to 1

2 . In the case an edge is shared
by many different paths, we sum the weights assigned to the corresponding
hyperparameter following each path.

4 Experiments and Results

In this section, we perform empirical evaluation of the proposed approach. We
first derive a model of the data generation process from the SHL dataset using
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Algorithm 1: DGP-based Data Sources Selection
Input : (i) {xi}M

i=1 streams of annotated observations generated by the data
sources, (ii) B exploration budget, (iii) τimp, (iv) τint,
(v) E exploration strategy, (vi) O maximal order of interaction effects

Result: Sy ∈ ℘(S)|y∈Y , the sets of most important and interacting data
sources for each individual human activity

1 begin
2 V ← ∅, Sy ← ∅

3 (X, Y ) ← segmentation({xi}M
i=1) ; % preprocess for sequence classif. pblm

4 V ← E(X, Y, B) ; % architecture space exploration
5 foreach s ∈ S do
6 {(h, w)|h ∈ H, w ∈ R}s ← CorrA(s) ; % DS/HPs correspondence
7 end
8 {μy

S |S � S} ← QuantifyImportance(V, {{(h, w)}s}, O) ; % Section 3.2
9 foreach activity y′ ∈ Y do

10 foreach μy
S ∈ {μy

S |S � S, y = y′} do
11 if μy

S > τint then
; % use τimp if S = s

12 Sy ← Sy ∪ S

13 end

14 end

15 end
16 return {Sy}y∈Y
17 end

different space exploration strategies. We, then, demonstrate the effectiveness of
incorporating the derived model into four different activity recognition datasets
(including SHL). Code to reproduce the experiments is publicly made available1.

4.1 Datasets

We use the SHL dataset primarily to derive the data generation model. The
derived model is then incorporated into the SHL dataset itself and three other
datasets including (1) USC-HAD [42] containing body-motion modalities of 12
daily activities collected from 14 subjects (7 male,7 female) using MotionN-
ode, a 6-DOF inertial measurement unit, that integrates a 3-axis accelerome-
ter, 3-axis gyroscope, and a 3-axis magnetometer; (2) HTC-TMD [41] contain-
ing accelerometer, gyroscope, and magnetometer data all sampled 30 Hz from
smartphone built-in sensors in the context of energy footprint reduction; and
(3) US-TMD [6] featuring motion data collected from 13 subjects (9 male, 4
female) using smartphone built-in sensors.

1 Software package and code to reproduce empirical results are publicly available at:
https://github.com/sensor-rich/shl-nas.

https://github.com/sensor-rich/shl-nas
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SHL Dataset. The SHL dataset [15] is a highly versatile and precisely annotated
dataset dedicated to mobility-related human activity recognition. In contrast to
related representative datasets like [6,41–43], the SHL dataset provides, simul-
taneously, multimodal and multilocation locomotion data recorded in real-life
settings. There are in total 16 modalities including accelerometer, gyroscope,
cellular networks, WiFi networks, audio, etc. making it suitable for a wide range
of applications. Data collection was performed by each participant using four
smartphones simultaneously placed in different body locations: Hand, Torso,
Hips, and Bag. These four positions define the topology that allows us to model
and leverage the dynamics of body movements for activity recognition models.
Among the 16 modalities of the original dataset, we select the body-motion
modalities to be included in our experiments, namely: accelerometer, gyroscope,
magnetometer, linear acceleration, orientation, gravity, and in addition, ambient
pressure.

4.2 Training Details

We use Tensorflow [1] for building the neural architectures. In this work, we con-
struct neural architectures by stacking Conv1d/ReLU/MaxPool blocks. These
blocks are followed by a Fully Connected/ReLU layers. Architecture performance
estimation is based on the validation loss and is framed as a sequence classifica-
tion problem. As a preprocessing step, annotated input streams from the SHL
dataset are segmented into sequences of 6000 samples which correspond to a
duration of 1 min. given a sampling rate of 100 Hz. For weight optimization, we
use stochastic gradient descent with Nesterov momentum of 0.9 and a learning-
rate of 0.1 for a minimum of 12 epochs (we stop training if there is not improve-
ment). Weight decay is set to 0.0001. Furthermore, to make the neural networks
more stable, we use batch normalization on top of each convolutional layer [20].

Different exploration strategies will lead to different sets of hyperparame-
ter instantiations. In our experiments, we instantiate our approach with vari-
ous exploration strategies. We use the Microsoft-NNI toolkit2 which provides
a comprehensive list of exploration strategies, in particular, those based on
hyperparameter tuning, including (1) exhaustive search (random search [3], and
grid search); (2) heuristic search (näıve evolution [34], anneal [4], and hyper-
band [23]); and (3) sequential model-based optimization (Bayesian optimiza-
tion hyperband [10], tree-structured Parzen Estimator [4], and Gaussian process
tuner [4]).

We quantify the influence of data sources using the efficient implementation
of fANOVA proposed in [19], which is based on a linear-time algorithm for com-
puting marginal predictions in random forests. Interaction structure of the data
sources is estimated using fanova-graph [26].

2 https://github.com/microsoft/nni.

https://github.com/microsoft/nni


382 M. Hamidi and A. Osmani

still walk run bike car bus train subway
class

0.0

0.2

0.4

0.6

0.8

1.0
f-
sc
or
e

position
Bag
Torso
Hips
Hand

(a)

Hips

Hand

Bag Torso

Bike

Bag

Torso

Hips

Hand

Run

Bag

Torso

Hand

Hips

Walk

(b)

Fig. 2. (a) Contribution of the data sources to the overall recognition performances of
each human activity. (b) Estimated interaction structure (fANOVA graph [26]) of the
data sources for 3 different activities (bike, run, and walk). Data sources are grouped
by their respective positions. The circumference of the circles represents main effects
(importance), the thickness of the edges represents total interaction effects.

4.3 Performance Evaluation

In our experiments, each architecture is evaluated with a 10-fold meta-segmented
cross-validation to avoid the problem of overestimation of the quality of results
induced by standard cross-validation procedure [16]. This technique relies on
a modified partitioning procedure that alleviates the neighborhood bias, which
results from the high probability that adjacent (moreover, overlapping) segments
fall into training and test-set at the same time.

We use the f1-score in order to assess performances of the architectures. We
compute this metric following the method recommended in [12] to alleviate bias
that could stem from unbalanced class distribution. Given the usual definition
of precision Pr(i) and recall Re(i) for the ith fold, we compute the f1-score by
averaging its different components obtained for each fold as Favg = 1

k ·∑k
i=1 F(i)

where F(i) = 2 · Pr(i)·Re(i)

Pr(i)+Re(i)
, if both Pr(i) and Re(i) are defined. The i-super-

scripted measures correspond to measures obtained when the ith fold is used as
the test set.

4.4 Evaluation of the Data Generation Model

Here we evaluate the data generation model that is derived using our proposed
approach. We specifically assess the plausibility of the derived important data
sources and their interactions based on a comprehensive set of studies around
activity recognition. These studies are compiled into a data generation model
that we refer to as human expertise-based data generation model HExp. Further-
more, we instantiate our proposed approach using different space exploration
strategies and compare the derived knowledge using each strategy.

Figure 2 shows how data sources grouped by their respective positions con-
tribute to the overall recognition of each human activity. Figure 3 and Table 1
summarize results of the variance-based importance estimation conducted using
the fANOVA framework (Sect. 3.2). The estimated first and second order effects
of the hyperparameters controlling the importance of each considered modality
are illustrated, respectively.
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shown.

Table 1. Most important interactions
of the kernel size (ks) hyperparameter.
Hyperparameters are grouped by the cor-
responding modalities that they control.

Hyperparam. Interaction (×10−4)

(ks2gyr, ks2gra) 9.2778

(ks1mag, ks2ori) 7.0166

(ks2gyr, ks2ori) 5.5122

(ks1acc, ks1mag) 4.0382

(ks1pre, ks3gyr) 2.3154

(ks3gyr, ks1mag) 2.2472

Data Source Location. Results in Fig. 2 show that the contributions of data
sources for recognizing bus, train, and subway related activities are equivalent.
More variability appears in the case of the bus activity. Data sources located on
the hips, for their part, yield overall the smallest variability. This variability is
to some extent more important in the case of bus and run activities but stays
in fairly acceptable terms. In the case of car-related activities, relying on the
data sources located on the hips seems to be sufficient, this position yielding the
best models overall (90%-95% f1-score). The same observation can also be made
regarding bike and walk activities where Hips data sources seem to discriminate
them accurately. This may be explained by the tight link that exists between
these activities and the hips position: biking, walking and conducting a car
involve specific repetitive patterns that are their hallmark [6].

Data Source Modality. From modalities perspective, data sources carrying grav-
ity, gyroscope, and magnetometer account for a large part of the variability
that is observed on the recognition performances. Surprisingly, another set of
modalities emerges from the derived model rather than the accelerometric data
which is considered to be one of the most important modalities in representa-
tive related work [35,40]. Indeed, the respective individual marginal importance
of the accelerometer-related data lies approximately around 0.004 and does not
exceed 0.006, while those of gravity, gyroscope, as well as magnetometer, reach
0.01 and almost 0.02 (See Fig. 3). This observation is further confirmed when
we analyze the pairwise marginals of the hyperparameters controlling the set of
three modalities mentioned above.

Impact of the Space Exploration Strategies. Here, we compare the data gener-
ation models obtained using different space exploration strategies. Specifically,
we compare the derived subsets of data sources in terms of their level of agree-
ment with those aggregated in the human expertise-based data generation model
(HExp). We use for this, Cohen’s kappa coefficient [7] which measures the agree-
ment between two raters. We also compare the average recognition performance
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Table 2. Degree of agreement with human expertise and average cardinality of the
derived sets of data sources obtained using different space exploration strategies.

Exploration strategy Agreement νk on avg

Exhaustive search

Random Search 0.156 ± 0.04 67.12%

Grid Search 0.251±0.05 66.78%

Heuristic search

Näıve evolution 0.347 ± 0.12 73.35%

Anneal 0.481±0.05 75.47%

Hyperband 0.395 ± 0.08 74.2%

Sequential Model-Based

BOHB 0.734 ± 0.03 84.25%

TPE 0.645 ± 0.1 83.87%

GP Tuner 0.865±0.02 84.95%

νk of the explored architectures which can indicate many aspects concerning the
exploration strategy, like the concentration of important sets of data sources in
regions of the architecture space.

Results in Table 2 show that the sequential model-based exploration strate-
gies are indeed better than heuristic search-based ones. Exhaustive search-based
strategies are far behind with an agreement that does not exceed 3. It is worth
mentioning that even with a larger exploration budget allowed to exhaustive
search, using these kinds of strategies does not allow to derive a valuable data
generation process. This could be explained by the fact that important sets of
data sources are concentrated in very specific regions the grid search, for exam-
ple, can not capture. As the GP tuner yields the highest agreement with HExp,
in the following, we will, first, use the data generation process derived using this
strategy to assess the effectiveness of incorporating such knowledge into activity
recognition models.

4.5 Effectiveness of the Data Generation Model

In this second experiment, we incorporate the derived data generation model into
activity recognition models via sample selection. We select highly informative
data sources to form training sets. During the training phase, activity recognition
models are encouraged to concentrate on the provided subsets of data sources
to learn the corresponding human activities. We refer to this setting as w-DGP,
which stands for, with data generation process.

For this, we construct activity recognition models based on neural net-
works, similar to the architectures used to derive the data generation model,
but restricted to 3 Conv1d/ReLU/MaxPool stacked blocks. These blocks are
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Fig. 4. Recognition performances as a
function of the data source importance
threshold τimp. In parallel, the cardinal-
ity on average of the subsets |Sy| used
to train the models is shown. The left-
most points correspond to a configura-
tion where all data sources are used, i.e.,
no DGP.

Table 3. Comparison of different DGP
incorporation settings in terms of recog-
nition performances. Scores of column w-
DGP correspond to top-performing mod-
els selected while varying the data source
importance threshold τimp.

Dataset Performances

wo-DGP w-HExp w-DGP

USC-HAD 72.1% 75.38% 89.33%

HTC-TMD 74.4% 77.16% 78.9%

US-TMD 71.32% 80.28% 83.64%

SHL 70.86 % 77.18% 88.7%

followed by a Fully Connected/ReLU layers. The weights of the layers corre-
sponding to all inputs are optimized during training without distinction, the
constraining being specified via data augmentation. Indeed, in this setting, for
each subset of interacting data sources, we perform data augmentation by assign-
ing values, drawn from a normal distribution, to the unimportant data sources.
The goal is to make the neural network insensitive to the remaining inputs. We
provide training examples to the neural network according to the given subsets
of interacting data sources that we extract from the derived model. Furthermore,
we experiment with different values of τint and τimp to extract the subsets of
data sources.

For comparison, we train the activity recognition models on the whole data
sources of each dataset, i.e., without incorporation of the derived data generation
model. These models constitute our baselines and we refer to this setting as
wo-DGP. In addition, we also incorporate the data generation model based on
human expertise (HExp). We refer to this setting as w-HExp. Table 3 compares
recognition performances obtained, on each dataset, using these settings. Overall,
we obtain substantial improvements for all datasets when incorporating a data
generation process (either w-HExp or w-DGP). It is to note, though, that for
HTC-TMD, we get a smaller improvement compared to the other datasets. This
could be related to the limited number of modalities and unavailability of the
precise location of the data sources.

Figure 4 shows the evolution of the obtained recognition performances
depending on the parameters τint and τimp. In addition, this figure illustrates
the average number of data sources, that are included in the subsets, depending
on these two thresholds. In particular, when, for example, τimp and τint are set
to 0, all data sources are included. We find that the neural networks trained
with smaller subsets of data sources perform better than the baseline and most
of the settings which rely on a higher number of data sources. Noticeably, we
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Table 4. Recognition performances of activity recognition models while incorporating
the data generation models derived using different space exploration strategies.

Dataset Exhaustive search Heuristic search Sequential model-based

Random Grid Näıve Anneal HB BOHB TPE GP Tun

USC 79.28% 79.58% 80.76% 83.56% 85.27% 86.66% 82.37% 89.33%

HTC-TMD 76.34% 75.17% 74.98% 73.18% 77.45% 75.86% 80.13% 78.9%

US-TMD 74.14% 72.21% 79.71% 81.13% 80.80% 79.17% 84.39% 83.64%

SHL 72.2% 71.32% 79.46% 84.16% 82.33% 84.22% 86.7% 88.7%

get a recognition performance of 88.7% ± 0.6, measured by the f1-score, using
subsets containing on average 12 data sources. Thus, an improvement over the
baseline of 17.84% in terms of recognition performances and a reduction of one-
half concerning the required quantities of data. Surprisingly, we do not see a
lot of bad subsets of interacting data sources for 0.2 ≤ τimp ≤ 0.6, where the
number of data sources per subset is confined between 5 and 12. It is also wor-
thy to note that in some configurations where |Sy| = 13, the trained model
performs badly (less than 40%±0.16 f1-score). In the contrary, for smaller sub-
sets (|Sy| ≤ 5), trained models get high recognition performances (more than
80%±0.05 f1-score). A Deeper inspection of these configurations reveals that the
location of selected data sources plays an important role, in particular, the latter
subsets are mainly composed of hips data sources.

4.6 Alternative Exploration Strategies

In the previous experiment, we constrain training of activity recognition mod-
els using data generation model derived using the Gaussian process tuner as it
had the highest degree of agreement with HExp. Since the exploration strategies
tend to favor different regions of the architecture space, we hypothesize that the
derived models will be characterized by variety in terms of combinations of data
sources but will still hold the same property, which is being highly informative
with regards to the dynamics of body movements. Here we evaluate the effective-
ness of the data generation models derived using the other exploration strategies.
Table 4 presents the results obtained for this setting on each individual dataset.

Note that TPE outperforms GP tuner in the case of HTC-TMD and US-
TMD datasets. It is also interesting to note that even though exhaustive search
strategies have a low degree of agreement with HExp, incorporation of their
corresponding data generation models is competitive for both HTC-TMD and
USC-HAD, which can be explained by the ability of our approach to derive
knowledge that is hardly captured by the sole human expertise.
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5 Related Work

In our work, we proposed to derive and incorporate the DGP into activity recog-
nition models. Incorporating domain knowledge into activity recognition models
is particularly appealing and attracted lots of research.

A long line of research, e.g. [8,21,30,31,39], proposed to incorporate the 3D
body skeleton-based representation into activity recognition models. Specifically,
authors in [31] estimate centroids for upper, middle and lower body and use
slopes of the segments delimited by these centroids in order to represent the
posture in terms of the overall orientation of the upper and lower body. In [30],
authors introduced a representation based on the calculation of spherical angles
between selected joints and the respective angular velocities. They used their
system for real-time tracking of human activities. Other works encode prior
domain knowledge using ontology-based representations [29,36] which are then
used to constrain training of activity recognition models. While incorporation of
domain knowledge into learning processes is beneficial, the way it is done differs
substantially from one approach to another. In [21], the obtained ontology serves
as a basis for constructing a network of Bayesian inference while in [31], the
constructed representations help the neural networks to self-organize.

Beyond activity recognition, many other applications leverage domain mod-
els to enforce certain conditions or equations, which are part of prior knowl-
edge, within machine learning models. In [27,37], authors propose to incorpo-
rate domain knowledge, like known laws of physics, by constraining neural net-
works via regularization. Their settings introduce new challenges for encoding
knowledge into appropriate loss functions and avoiding trivial solutions in the
constraint space. In the same vein, authors in [28] propose to make use of a more
experimented model, a proxy, that is responsible for selecting samples in order
to train new generations of models in the context of industrial monitoring. New
paradigms, like Vapnik’s learning using privileged information [38] and Hinton’s
distilled knowledge [17], propose to incorporate high capacity models, similar to
proxy’s, called ”intelligent teachers” into machine learning models.

A growing volume of work proposes to exploit domain knowledge to improve
the performances of machine learning models. Our experiments encourage an
even broader range of future applications, where larger and more experienced
models like the proposed neural architecture space, form surrogates for prior
domain knowledge and provide guidance to simpler models via sample selection.

6 Summary and Future Work

We presented in this paper a novel approach for deriving a model of the data
generation process underlying sensor-rich environments. We framed this task as
an exploration of the neural architecture space and proposed a variance-based
method to estimate the relative importance of data sources and their interac-
tions. Incorporating the derived data generation model into activity recognition
models allows us to obtain consistent improvement in recognition performances
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using a reduced number of data sources. We performed a comprehensive compar-
ative study on various representative datasets using different instantiations of
the space exploration strategy. Obtained promising results open perspectives for
the development of more robust and data-efficient learning systems pertaining
to the internet of things.

In this work, we used exploration strategies based on hyperparameters tun-
ing. An alternative way is to have fine-grained control on the architectural
components that make up the neural architectures allowing for more special-
ized architectures. Recent approaches in neural architecture search, such as
ENAS [32] and DARTS [24], enable this kind of granularity. Furthermore, recent
advances in weight-agnostic neural architectures [13] and the possibility of build-
ing architectures that are completely specialized in a given task and requiring no
further weight adjustments open perspectives for these kinds of approaches. As
part of our future work, we plan to derive more precise data generation processes
using these fine-grained control mechanisms.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265–283 (2016)

2. Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion
for multimedia analysis: a survey. Multimed. Syst. 16(6), 345–379 (2010). https://
doi.org/10.1007/s00530-010-0182-0

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13, 281–305 (2012)

4. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
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Abstract. Recently several models have been developed to reduce the
annotation effort which is required to perform semantic segmentation.
Instead of learning from pixel-level annotations, these models learn from
cheaper annotations, e.g. image-level labels, scribbles or bounding boxes.
However, most of these models cannot easily be adapted to new annota-
tions e.g. new classes since it requires retraining the model. In this paper,
we propose a similarity measure between pixels based on a mutual infor-
mation objective to determine whether these pixels belong to the same
class. The mutual information objective is learned in a fully unsupervised
manner while the annotations (e.g. points or scribbles) are only used dur-
ing test time. For a given image, the unlabeled pixels are classified by
computing their nearest-neighbors in terms of mutual information from
the set of labeled pixels. Experimental results are reported on the Pots-
dam dataset and Sentinel-2 data is used to provide a real world use case
where a large amount of unlabeled satellite images is available but only
a few pixels can be labeled. On the Potsdam dataset, our model achieves
70.22% mIoU and 87.17% accuracy outperforming the state-of-the-art
weakly-supervised methods.

Keywords: Mutual information maximization · Weakly supervised
learning · Similarity measure · Image segmentation · Satellite datasets

1 Introduction

Most of the successful models for semantic segmentation rely on a supervised
learning approach [16]. Even though these models achieve remarkable results,
the effort of collecting carefully annotated data to train these models make them
impractical to use in many contexts. Generally, these models require a training
dataset composed of images with pixel-level annotations, e.g. a class label is
assigned to every pixel in the image. Labeling images is very time-consuming,
e.g. the reported time to segment a single image from the PASCAL VOC 2012
dataset is around 240 s [2]. Consider the particular case of satellite data, many
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missions have been launched to observe the Earth producing massive amounts of
satellite images which are absolutely impossible to be annotated by human oper-
ators. For example, each of the Sentinel-2 mission satellites [6] provides up to
1.6 TB of images per day. Different methods have been developed to reduce the
need of carefully pixel-level annotations for large-scale data analysis. These meth-
ods propose a weakly supervised approach for semantic segmentation where the
required annotations are less tedious to obtain than pixel-level annotations such
as image-level annotations [12], points [2], scribbles [15] or bounding boxes [13].
These annotations are included during the training stage for learning semantic
segmentation models. As a consequence, these models are not easily adaptable
to new annotations (e.g. to refine the segmentation results or add new class
labels) since retraining the models using these new annotations is required. For
this purpose, few-shot learning techniques for semantic segmentation have been
proposed [24] but it still requires a significant number of labeled samples from
seen classes to perform well on unseen classes. Additionally, these methods often
produce suboptimal results without providing the user with an interactive way
to make corrections without the need to retrain the model.

Recent work has focused on mutual information estimation and maximization
for learning representations in an unsupervised manner [3,9,18,19]. The main
goal of these unsupervised approaches is to capture the most salient attributes of
data to perform downstream tasks using the learned representations. Extensions
of the previous models have been proposed using a self-supervised approach to
capture the shared attributes from multiple views of a common context [1,21,23].
We think that designing a self-supervised task to learn suitable representations
for semantic segmentation is an appealing idea. In particular, our work is inspired
by these models [1,9,21] to learn a similarity measure without supervision.

In this work, we take a step forward and propose a model that performs
semantic segmentation by computing the similarity between pixels based on
a mutual information approach without requiring annotations during training.
Using an ideal similarity measure as distance metric, pixels belonging to the
same class are close and simultaneously distant from pixels belonging to other
classes. A very few pixel-level annotations are only used during test time. Our
model computes the mutual information similarity between labeled pixels and
unlabeled pixels and then performs a per-pixel nearest-neighbor search from the
set of labeled pixels to classify the unlabeled pixels.

Our model offers several advantages. First, there is no need to retrain our
model when new annotations are included since the similarity measure is learned
using an unsupervised learning approach. Second, our model requires a small
amount of annotated data which can be acquired in multiple formats e.g. points,
scribbles, bounding boxes. Third, we propose a simple neural network architec-
ture that achieves competitive semantic segmentation results while keeping a
reasonable processing time. The following contributions are made in this paper:

• We propose a model that combines a similarity measure based on mutual
information between pixels using self-supervised techniques [1,9,21] and a
nearest-neighbor search to perform semantic segmentation.
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• We show that excellent results can be achieved by labeling less than 0.75%
of the total number of pixels in an image.

• We present quantitative results for image segmentation on the Potsdam
dataset [10] outperforming the state-of-the-art weakly-supervised methods
and qualitative results on Sentinel-2 data [6] to show a real world use case.

• We analyze the impact of using multiple views via data augmentation tech-
niques [1] on the segmentation performance and we perform an ablation study
to evaluate the contribution of each element of the model.

2 Related Work

Image Segmentation. Exceptional results have been achieved by fully super-
vised models on semantic segmentation [16]. To reduce the annotation effort
required by supervised learning settings, several methods have been pro-
posed which use cheaper annotations e.g. points [2], scribbles [15], image
annotations[12] or bounding boxes [13]. Labels provided by points or scribbles
are then propagated to unlabeled pixels during training [2,15]. The main draw-
back is that these models are not easy to adapt to new annotations for refining
the segmentation results or adding new class labels as it requires retraining
the whole model. GrabCut [20] performs interactive image segmentation using
a bounding box to separate foreground and background. On the other hand,
Khoreva et al. [13] propose a semantic segmentation method requiring a costly
recursive training where bounding boxes are refined iteratively. Recent work has
been presented [24] to segment classes containing few labels in the dataset. How-
ever, this method still requires many training examples from the known classes
to perform well on the unknown classes.

Self-supervised Learning. In contrast to the prevalent paradigm based on
generative or reconstructive models, recent work has been focused on mutual
information maximization for representation learning. These models maxi-
mize the mutual information between an input and its representation. Mutual
information is computed using different estimators based on the Kullback–
Leibler [3], Jensen-Shannon [9], Wasserstein [19] divergences or noise-contrastive
estimation[18]. Interesting extensions of these mutual information based frame-
works have been presented to capture the common attributes from paired
images [1,21,23]. Learning representations that capture the most significant
attributes of an image from multiple views is useful for semantic segmentation.

Deep Metric Learning. Measuring the similarity between pixels is a useful
tool for image segmentation since similar pixels under a given criterion belong
to the same class while dissimilar pixels belong to different classes. Generally,
raw pixels are mapped to a representation space by a deep neural network and
then similarity between pixels is computed in the representation domain [5,8,
22]. For instance, Sun et al. [22] propose a neural diffusion distance to perform
segmentation. However, it requires labeled data during training to be consistent
with a human criterion. For video segmentation, Chen et al. [5] propose a metric
based on the triplet loss [4] which is trained in a supervised manner.
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In this paper, we propose a model that performs image segmentation in
a weakly-supervised setting. The procedure is split into two stages. First, the
model learns a mapping from the pixel domain to a representation domain which
captures relevant attributes for image segmentation using a mutual informa-
tion based framework combining the approaches [1,21]. Using this mapping, our
model measures the similarity between pixels in terms of mutual information.
In contrast to the models [5,8,22], the similarity measure is learned in a fully
unsupervised manner. Secondly, our model computes the mutual information
similarity between labeled pixels provided by an operator and unlabeled pixels
and then performs a per-pixel nearest-neighbor search from the set of labeled
pixels to propagate the labels to unlabeled pixels. The labeled pixels are only
used during test time instead of training time like the models [2,12,13,15].

3 Background

3.1 Mutual Information

The mutual information between two random variables X ∈ X and Z ∈ Z is
defined in Eq. 1 where p(x, z) is the joint probability density function of X and
Z while p(x) and p(z) are the marginal probability density functions of X and
Z, respectively.

I(X,Z) =
∫

X

∫
Z

p(x, z) log
(

p(x, z)
p(x)p(z)

)
dxdz (1)

It is straightforward to see that I(X,Z) is defined as the Kullback-Leibler
divergence between the joint probability distribution PXZ and the product of
the marginal distributions PXPZ , i.e. I(X,Z) = DKL (PXZ ‖ PXPZ). Generally,
computing the mutual information between high dimensional variables is a dif-
ficult task since the distributions PXZ and PXPZ are unknown. Thus, some
methods based on deep neural networks have recently been proposed [3,9,18,19].

3.2 Representation Learning

Equation 1 can be used as objective for unsupervised learning where X is a
variable corresponding to a given input (image, speech, text, etc.) and Z is the
representation of X. The representation Z is extracted by an encoder function
defined by a deep neural network of parameters ψ, Eψ : X → Z, i.e. Z = Eψ(X).

The Deep InfoMax framework [9] proposes a mutual information estimator
Î(X,Z) based on the Jensen-Shannon divergence instead of the Kullback-Leibler
divergence, i.e. I(JSD)(X,Z) = DJS (PXZ ‖ PXPZ).

Intuitively, let Xi and Xj be two observations of X. Let Zi and Zj be the
representations of Xi and Xj respectively extracted via Eψ. Therefore, (Xi, Zi) is
an input-representation pair sampled from the joint probability density function
p(x, z) while (Xi, Zj) is an input-representation pair sampled from the product
of the marginal probability density functions p(x)p(z).
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We define a discriminator function defined by a deep neural network of
parameters ρ, Dρ : X × Z → [0, 1] which represents the probability of a sample
(X,Z) coming from p(x, z) instead of p(x)p(z), i.e. the probability that Z is the
representation of X. The discriminator Dρ and the encoder Eψ are trained to
assign a high probability to samples from p(x, z) (close to 1) and a low proba-
bility to samples from p(x)p(z) (close to 0) as shown in Eq. 2.

max
Eψ,Dρ

Î(X,Z) = Ep(x,z) [log Dρ(X,Z)] + Ep(x)p(z) [log (1 − Dρ(X,Z))] (2)

By redefining the discriminator function [17] Dρ(X,Z) = e−Tθ(X,Z)

1+e−Tθ(X,Z) where
Tθ : X ×Z → R is called the statistics network, we obtain the mutual information
objective proposed by the Deep InfoMax framework [9] in Eq. 3.

max
Eψ,Tθ

Î(X, Z)=Ep(x,z)

[
− log

(
1+e−Tθ(X,Z)

)]
−Ep(x)p(z)

[
log

(
1+eTθ(X,Z)

)]
(3)

Two mutual information objectives are proposed in the Deep InfoMax frame-
work. Maximizing the mutual information between an input X and a repre-
sentation Z is called global mutual information, i.e. Lglobal

θ,ψ (X,Z) = Î(X,Z).
Additionally, maximizing the mutual information between patches of the image
X represented by a feature map Cψ(X) of the encoder Eψ and a feature represen-
tation Z is called local mutual information i.e. Llocal

φ,ψ (X,Z) =
∑

i Î(C(i)
ψ (X), Z).

4 Method

In this paper, we propose a model that combines the mutual information based
methods [1,21] to learn a suitable representation domain to measure the simi-
larity between pixels. Our model is trained in a fully unsupervised manner by
leveraging large amounts of unlabeled data. Sanchez et al. [21] extends the Deep
InfoMax framework to separate the common information and the exclusive infor-
mation for paired images. Bachman et al. [1] use the Deep InfoMax framework
to perform self-supervised representation learning by maximizing the mutual
information between representations extracted from multiple views of a shared
context, e.g. the context is provided by an image and the multiple views are
generated via data augmentation techniques. Learning the common information
between images [1,21] provides a way to compute how similar these images are.
In Sect. 4.1, we present the mutual information objective to learn the similarity
measure and we explain how to use this similarity measure to perform image
segmentation in Sect. 4.2.

4.1 Shared Mutual Information

To create a suitable representation domain for image segmentation, we propose
to capture the common information between images of the same context (e.g.
satellite images from the same forest) into a shared representation. By removing
the particular information of each image, we create a representation that distills
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the class information which is useful for image segmentation. We propose to
learn this shared representation by using the principle presented in [1,21]. Let
X and Y be two images of the same context and let SX and SY be the respective
shared representations extracted by an encoder Eψ. In order to enforce learning
only the common information between images X and Y , the methods [1,21]
maximizes the mutual information between the image X and the representation
SY and similarly, between the image Y and the representation SX . In order to
create pairs of images of the same context, we follow the approach of Bachman
et al. [1] and we use data augmentation techniques (rotation, flip, pixel shift,
color jitter) to create a second image from a given image, i.e. X = f(Y ) where
f is a data augmentation function. We use the objective function proposed by
Sanchez et al. [21] since it is simpler to optimize. Equations 4 and 5 displays the
global and local mutual information maximization objectives.

Lglobal
MI (X,Y ) = Lglobal

θ,ψ (X,SY ) + Lglobal
θ,ψ (Y, SX) (4)

Llocal
MI (X,Y ) = Llocal

φ,ψ (X,SY )+Llocal
φ,ψ (Y, SX) (5)

Sanchez et al. [21] also includes a L1 constraint to force the shared representa-
tions to be identical as shown in Eq. 6. The final objective function is displayed
in Eq. 7, where α, β and γ are constant coefficient.

L1(X,Y ) = Ep(sx,sy) [|SX − SY |] (6)

max
ψ,θ,φ

Lshared = αLglobal
MI (X,Y ) + βLlocal

MI (X,Y ) − γL1(X,Y ) (7)

4.2 Mutual Information as Similarity Measure

Similarly to Chen et al. [5], we perform per-pixel retrieval to find the closest
pixel from the reference pixel set using the learned representations. A k-nearest-
neighbors approach is used to determine the class of unlabeled pixels by prop-
agating the information from labeled pixels. A common way of computing the
distance between pixels is to measure the L1 or L2 distance between their cor-
responding representations [5]. Alternatively, we propose to use the global and
local mutual information objectives introduced in Sect. 3.2.

During training, the mutual information objective is computed using an
image X and a different view of X generated via data augmentation techniques,
i.e. Y = f(X). In contrast, during test time the mutual information objective
is computed using two different images. Let Xi and Xj be two image patches
centered at the pixels i and j respectively and let SXi

and SXj
be the shared

representations provided by the encoder function. The similarity between pixels
i and j is measured by computing Lglobal

θ,ψ (X,SX) and Llocal
φ,ψ (X,SX).

After training, our model is capable to predict whether a shared represen-
tation SXi

corresponds to the image Xi. Since the shared representation SXi

contains the class information of Xi, it provides a means to identify pixels
belonging to the same class of Xi. For example, consider that Xi and Xj are
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Fig. 1. Network architecture. The encoder and statistics networks are implemented
using convolutional and dense layers defined by the number of units, k: kernel size, f :
feature maps, BN: batch normalization and activation function. The statistics networks
and the encoder share weights: the input F of the statistics network is the output of
the Conv 2 layer of the encoder, Cψ(X).

two different images (e.g. a satellite image from an urban area and another
from an agricultural area), the mutual information objective Lglobal

θ,ψ (X,SX) (or
Llocal

φ,ψ (X,SX)) achieves a high score since it is easy to distinguish both images.
On the other hand, suppose that Xi and Xj are two similar images (e.g. satellite
images from the same forest), the mutual information objective Lglobal

θ,ψ (X,SX)
(or Llocal

φ,ψ (X,SX)) achieves a low score since it is hard to distinguish the images.

4.3 Implementation Details

Our model is composed of three deep neural networks: the encoder Eψ, the global
statistics network Tθ and the local statistics network Tφ. The architecture details
are provided in Fig. 1. Every network is trained from scratch by using randomly
initialized weights. To optimize the objective Lshared defined in Eq. 7, we use the
Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999. We use
a batch size of 512 images. Images pairs are created by applying data augmen-
tation techniques (flip, rotation, pixel shift, color jitter). According to Sanchez et
al. [21], our baseline model use the following coefficients to weight the terms of the
objective function Lshared: α = 0.5, β = 1.0 and γ = 0.1. The size of the shared rep-
resentation is zdim = 10. The training algorithm was executed on a NVIDIA Tesla
K80 GPU. The training and image segmentation procedures are summarized in
Algorithms 1 and 2. For image segmentation, the number of nearest neighbors is
set to k = 1. More details are provided in the additional material section.

5 Experiments

5.1 Datasets

Potsdam. The Potsdam dataset [10] contains 8550 aerial images of the city of
Potsdam. Each image has a size of t = 200 × 200 pixels and is composed of four
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Algorithm 1. Training algorithm.
1: Random initialization of model parameters ψ(0), θ(0), φ(0).
2: for k = 1; k = k + 1; k < number of iterations do
3: Sample a batch of C image patches {X1, . . . , XC}. Image patches have a size s.
4: Create a new view of Xi via a data augmentation technique Yi = f(Xi).
5: Create a batch of C paired images X : {(X1, Y1), . . . , (XC , YC)}.
6: Create a batch of C unpaired images X̃ by shuffling the Y dimension of X.
7: Compute L(k) = Lshared(X, X̃, ψ(k), θ(k), φ(k)):

L(k) = α
[− ∑

X sp (−Tθ(Cψ(Xi),Eψ(Yi))) − ∑
X̃ sp (Tθ(Cψ(Xi),Eψ(Yi)))

− ∑
X sp (−Tθ(Cψ(Yi),Eψ(Xi))) − ∑

X̃ sp (Tθ(Cψ(Yi),Eψ(Xi)))
]
+ β

∑
j

[

− ∑
X sp

(
−T

(j)
φ (Cψ(Xi),Eψ(Yi))

)
− ∑

X̃ sp
(
T

(j)
φ (Cψ(Xi),Eψ(Yi))

)

− ∑
X sp

(
−T

(j)
φ (Cψ(Yi),Eψ(Xi))

)
− ∑

X̃ sp
(
T

(j)
φ (Cψ(Yi),Eψ(Xi))

)]

− γ
∑

X (|Eψ(Xi) − Eψ(Yi)|)
where the softplus function is defined by sp(x) = (1+ex)

8: Update the parameters ψ(k+1), θ(k+1) and φ(k+1) by gradient ascent of L(k).
9: end for

Algorithm 2. Image segmentation algorithm.
1: Select an image Xt from the dataset. Image Xt has a size t � s.
2: Label a set of L pixels into N classes P = {(p1, c1), . . . , (pL, cL)} from Xt.
3: where pi defines the coordinates and ci is the class of the i-th labeled pixel.
4: for unlabeled pixel at qj ∈ Xt do
5: for labeled pixel at pi ∈ P do
6: Select the image patches Xj and Xi of size s centered at qj and pi.
7: Extract the representations SXi = Eψ(Xi) and SXj = Eψ(Xj).
8: Extract the feature maps CXi = Cψ(Xi) and CXj = Cψ(Xj).
9: Create the image-representation sets X = {(CXi , SXi), (CXj , SXj )}

10: and X̃ = {(CXi , SXj ), (CXj , SXi)}
11: Compute the global/local mutual information between Xj and Xi:
12: Di = Lglobal

θ,ψ = − ∑
X sp (−Tθ(CXk ,SXk)) − ∑

X̃ sp (Tθ(CXk ,SXk)) or

13: Di = Llocal
φ,ψ =

∑
j

[
−∑

X sp
(
−T

(j)
φ (CXk ,SXk)

)
− ∑

X̃ sp
(
T

(j)
φ (CXk ,SXk)

)]

14: end for
15: Assign the pixel qj the class ci∗ of the nearest pixel i∗ = arg mini{Di}L

i=1.
16: end for

channels: red, green, blue and infrared (RGBI). The dataset is split into three
parts: 3150 unlabeled images, 4545 training labeled images and 855 test labeled
images. Images are labeled into 6 classes (road, car, vegetation, tree, building
and clutter). Similarly to [11], we also perform image segmentation using a 3-
label version by merging classes (road and car, vegetation and tree and building
and clutter). Image patches of size s = 13 × 13 pixels are randomly sampled
from the unlabeled images to optimize the model objective (Eq. 7) and the test
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Input image

Ground truth

M = 50 M = 10 M = 5 M = 1

Fig. 2. Image segmentation examples. During test time, only M points per class ran-
domly sampled from the ground truth are used to perform image segmentation. As
M increases the accuracy and mIoU are improved. Best viewed in color and zoom-in.
(Color figure online)

labeled images to report the experimental results. We use this dataset to provide
quantitative results and comparisons to other models.

Sentinel-2. We collected 100 GB of Sentinel-2 time series [6] by selecting sev-
eral regions of interest on the Earth’s surface. Images are acquired at 13 spectral
bands using different spatial resolutions. We use the RGBI bands which corre-
spond to bands at 10m spatial resolution. Our dataset is composed of 4200 time
series of 12 images acquired at different dates between 2016 and 2018. The size of
each image is t = 512 × 512 pixels. Image patches of size s = 9 × 9 pixels are ran-
domly sampled from these images. In addition to data augmentation techniques,
the function f creates an image pair by selecting an image patch Y from the same
location of X but on a different date. Since there are no labels available, we use
this dataset to provide qualitative results in a real world use case where a huge
amount of unlabeled data is available and a few annotated pixels are provided
by a human operator. Data can be downloaded from the Sentinel Hub [7]. More
dataset construction details are provided in the additional material section.

5.2 Image Segmentation on Potsdam

Global and Local Mutual Information. We train our model as described in
Sect. 4.3 using the unlabeled images of the Potsdam dataset. Image segmenta-
tion is performed on test images where M pixels per class are known. Typically,
these annotated pixels are provided by a human operator. To simplify the eval-
uation, annotated pixels are simulated by randomly sampling M pixels per class
from the ground truth. We use several values of M ∈ {1, 5, 10, 50} to evaluate
the performance on image segmentation. An example of the impact of M on the
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Table 1. Segmentation results. Accuracy and mIoU for N classes, M points per class
and zdim = 10 using the global/local mutual information in the Potsdam dataset.

Mutual
informa-
tion

Metric N = 6 N = 3

M = 1 M = 5 M = 10 M = 50 M = 1 M = 5 M = 10 M = 50

Global Accuracy 0.4576 0.6366 0.7147 0.8517 0.5310 0.6626 0.7362 0.8843

mIoU 0.2793 0.4598 0.5354 0.6777 0.3333 0.4888 0.5691 0.7407

Local Accuracy 0.5013 0.6894 0.7670 0.8717 0.5397 0.7274 0.8045 0.9163

mIoU 0.3332 0.5085 0.5818 0.7022 0.3632 0.5589 0.6415 0.7866

segmentation results is shown in Fig. 2. By using the learned mutual information
based similarity measure, nearest neighbor search is applied to classify pixels into
one of N ∈ {3, 6} classes. The performance is reported in terms of mean inter-
section over union (mIoU) and accuracy. To measure the pixel similarity, we use
either the global mutual information objective or the local mutual information
objective (see Algorithm 2). Results are reported in Table 1. As expected, the
performance is improved as M increases. Our experiments suggest that using
the local mutual information objective achieves a better performance than the
global mutual information when a few pixels are annotated while the perfor-
mance is similar when a larger amount of annotated pixels is provided (M = 50).
Segmentation examples are shown in Fig. 3.

Input image Ground truth M = 50 M = 10 M = 5 M = 1 Input image Ground truth M = 50 M = 10 M = 5 M = 1

Fig. 3. Image segmentation examples using M points per class to compute the local
mutual information. The image segmentation performance is improved as M increases.

Model Comparison. To provide a comparison, we perform image segmenta-
tion using different similarity measures to search the nearest neighbor of the
unlabeled pixels. First, we compute the nearest neighbor using the L1 distance
between raw pixels. Secondly, we use the L1 distance between the representa-
tions extracted from the VAE model [14], Deep InfoMax model [9] and our model.
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Table 2. Model comparison in terms of accuracy and mIoU for N classes, M = 50 and
zdim = 10 using the local mutual information in the Potsdam dataset.

Model N = 6 N = 3

Accuracy mIoU Accuracy mIoU

Raw pixels (L1) 0.6073 0.3962 0.7267 0.5337

VAE (L1) 0.5844 0.3826 0.7045 0.5230

DIM (L1) 0.4063 0.2103 0.4754 0.2887

Ours (L1) 0.6498 0.4570 0.7391 0.5685

DIM 0.5973 0.4114 0.6497 0.4649

Ours 0.8717 0.7022 0.9163 0.7866

Similar images do not necessarily have to be close in the representation domain
in terms of the L1 distance. Therefore, a low performance is expected at image
segmentation using the L1 distance between representations. Finally, we use the
mutual information objective of Deep InfoMax [9]. As Deep InfoMax represen-
tations keeps all the image information, i.e. more than just class information,
we expect this representation to be less appropriate for image segmentation.
Table 2 displays the segmentation results. As shown, the local mutual informa-
tion objective outperforms the other similarity measures for image segmentation.
Segmentation examples are shown in Fig. 4.

Input image Ground truth Ours DIM VAE Raw pixels

Fig. 4. Image segmentation model comparison. Our model produce the closest predic-
tions to the ground truth using N = 6, M = 50 and zdim = 10 in the Potsdam dataset.
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Table 3. Ablation analysis results in terms of accuracy and mIoU for N labels, M = 50
and zdim = 10 in the Potsdam dataset.

Model N = 6 N = 3

Accuracy mIoU Accuracy mIoU

Baseline 0.8717 0.7022 0.9163 0.7866

Baseline + α = 0 0.8724 0.7068 0.9147 0.7863

Baseline + γ = 0 0.8636 0.6934 0.9026 0.7655

Baseline + no jitter 0.8767 0.7131 0.9097 0.7800

Baseline + no flip 0.8730 0.7077 0.9123 0.7815

Baseline + no rotation 0.8759 0.7094 0.9114 0.7819

Baseline + no shift 0.7584 0.5710 0.7949 0.6280

Baseline + no SSR 0.7230 0.5405 0.7576 0.5918

Baseline + no SSR + no DA 0.5973 0.4114 0.6497 0.4649

Baseline + random φ 0.3994 0.2384 0.5834 0.3986

Ablation Study. We analyze two important factors in our model: the influence
of data augmentation techniques to generate multiple views (pixel shift, color
jitter, image flip and image rotation) and the importance of some model com-
ponents, e.g. the statistics networks. Results are displayed in Table 3. Several
conclusions can be drawn from our experiments. First, the model architecture
can be simplified since the global statistics network can be removed (α = 0)
without modifying the performance on image segmentation. The local statistics
network plays the most important role during training as pointed out by Bach-
man et al. [1]. Second, removing the L1 distance between shared representations
(γ = 0) leads to a slightly reduction in the performance. Third, when the shared
representations are not swapped in Eqs. 4 and 5 (no SSR) the performance dras-
tically decreases since these representation contains more information than the
class information required for image segmentation. Concerning the data aug-
mentation techniques, we surprisingly notice that the performance remains the
same by individually removing the color jitter, image rotation and image flip.
We believe that the effect of the color jitter is ignored since it is an attribute
which is not captured in the shared representation. Additionally, the impact of
removing the image rotation or image flip is minimal due to the local information
objective where the mutual information is maximized between the representation
and image patches instead of the whole image. On the other hand, removing the
pixel shift degrades the performance considerably. By removing the data aug-
mentation techniques and not swapping the shared representations (no SSR + no
DA) the performance is significantly degraded. We also study the impact of the
representation space dimension without noticing significant differences between
zdim = 10 and zdim = 32.



Mutual Information Measure for Image Segmentation Using Few Labels 403

M = 10 M = 5 M = 1 M = 10 M = 5 M = 1

a) b)

Fig. 5. Image segmentation examples in the Sentinel-2 dataset. A human operator
identifies N classes in the satellite image and selects M pixels per label. a) Buenos
Aires, Argentina; b) Valencia, Spain. Best viewed in color and zoom-in.

5.3 Image Segmentation on Sentinel-2 Time Series

Since the Sentinel-2 mission does not provide pixel-level annotations for image
segmentation, we perform only qualitative experiments. In contrast to the Pots-
dam case where the annotated pixels are randomly sampled from the available
ground truth, now we ask a human operator to label M pixels per class for each
image during test time. The reader must note that scribbles, points or bounding
boxes can be used for obtaining annotated pixels. As these pixels are annotated
under a human criterion, these pixels carry more significant information than
pixels randomly sampled from the ground truth and thus the quality of the seg-
mentation results improves significantly using just a few well-selected pixels. As
shown in Fig. 5 as the number of pixels per class M increases, the segmentation
results considerably improve. Nevertheless, the percentage of annotated pixels
remains insignificant. For instance, 60 annotated pixels in a 512 × 512 pixel
image represent less than 0.03% of the total number of pixels. Also the time
required for image segmentation is reasonable, an image of 512 × 512 pixels
with 60 annotated pixels takes around 33 s to be segmented.

Segmentation over the Time. Since we maximize the mutual information
between images from the same time series, the learned representation ignores
the temporal information. As a consequence, by annotating pixels from a single
image our model is capable to segment the whole time series the image belongs
to. In Fig. 6, it can be seen that the segmentation results are coherent over the
time. For instance, agricultural areas are belonging to the same class regardless
of whether these areas are grown or harvested.
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Input image t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

a)

b)

Fig. 6. Image segmentation over the time in the Sentinel-2 dataset. In the first column,
the input image and the selected pixels are displayed for M = 10. Our method is able
to perform image segmentation with few labeled pixels on the entire time series the
input image belongs to. The time series and the corresponding predictions are shown
in the remaining columns for a) Toulouse, France; b) Valencia, Spain. Best viewed in
color and zoom-in.

Segmentation over the Space. In the same manner we perform image seg-
mentation over the time using a single image, our model is able to do it over the
space. The annotated pixels provided by a human operator are generally used
to perform image segmentation on the image these pixels are extracted from.
We also use these annotated pixel to segment other images from the same area
achieving satisfactory results as can be seen in Fig. 7. In general, using annotated
pixels from a single image we can perform image segmentation on images of the
same area independently of the acquisition time.
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Input image Image 0 Image 1 Image 2 Image 3 Image 4

a)

b)

Fig. 7. Image segmentation over the space in the Sentinel-2 dataset. Selected pixels
are not only useful for propagating the information from labeled pixels to unlabeled
pixels in the same image but also in different images of the same area. a) Toulouse
area, France; b) Tubarjal area, Saudi Arabia. Best viewed in color and zoom-in.

6 Conclusion

In this paper, we have proposed to use a mutual information based similarity
measure to perform image segmentation. Our approach offers the advantage of
learning the proposed similarity measure in an unsupervised manner leveraging
large amounts of unlabeled data. Then, per-pixel nearest-neighbor search using
the proposed similarity measure is carried out to assign classes to the unlabeled
pixels from the labeled pixels provided by a human operator. In particular, we
have studied the case of aerial/satellite data where massive amounts of unlabeled
images are available while the annotations are scarce. In the Potsdam case, our
experiments suggest that the local mutual information objective is useful to
measure similarity between pixels. Our approach outperforms other approaches
based on state-of-the-art methods demonstrating the usefulness of our learned
representation domain. On the other hand, the ablation experiments show that
the model can be further simplified as some data augmentation techniques are
more relevant and the global mutual information objective can be removed. In
the Sentinel-2 case, we have shown that image segmentation can be performed
over the time and over the space using a very few amount of annotated pixels,
e.g. labeled pixels are less than 0.002% of the total number of pixels of a time
series and it can be achieved in a reasonable amount of time.
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Abstract. Carbon fiber reinforced polymers (CFRP) are light yet
strong composite materials designed to reduce the weight of aerospace
or automotive components – contributing to reduced emissions. Resin
transfer molding (RTM) is a manufacturing process for CFRP that can
be scaled up to industrial-sized production. It is prone to errors such as
voids or dry spots, resulting in high rejection rates and costs. At runtime,
only limited in-process information can be made available for diagnostic
insight via a grid of pressure sensors. We propose FlowFrontNet, a deep
learning approach to enhance the in-situ process perspective by learning
a mapping from sensors to flow front “images” (using upscaling layers),
to capture spatial irregularities in the flow front to predict dry spots
(using convolutional layers). On simulated data of 6 million single time
steps resulting from 36k injection processes, we achieve a time step accu-
racy of 91.7% when using a 38×30 sensor grid 1 cm sensor distance in x-
and y-direction. On a sensor grid of 10×8, with a sensor distance of 4 cm,
we achieve 83.7% accuracy. In both settings, FlowFrontNet provides a
significant advantage over direct end-to-end learning models.

Keywords: Process monitoring · Convolutional neural networks ·
Digital twin · Manufacturing · Industrial automation · Resin transfer
molding · Carbon composites

1 Introduction to Composite Manufacturing via RTM

Carbon fiber reinforced polymers (CFRP) are extremely strong composite mate-
rials despite their low weight. That makes them attractive for the construction
of lighter aerospace and automotive parts (conventionally made from steel or
aluminum) to reduce fuel consumption and CO2 emissions [5]. In essence, these
composites are made from a so-called polymer matrix that is reinforced with tex-
tiles containing carbon fibers. To produce CFRP parts industrially, resin transfer
molding (RTM, [1]) is a commonly applied manufacturing process for medium
volumes (1,000s to 10,000s of parts) and is depicted in Fig. 1a): A liquid ther-
moset polymer (called a resin) is injected under pressure into a mold cavity that
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 411–426, 2021.
https://doi.org/10.1007/978-3-030-67667-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_25&domain=pdf
http://orcid.org/0000-0002-3753-8264
http://orcid.org/0000-0002-7154-3374
http://orcid.org/0000-0002-5283-5304
http://orcid.org/0000-0002-5123-3918
http://orcid.org/0000-0002-4086-0043
https://doi.org/10.1007/978-3-030-67667-4_25


412 S. Stieber et al.

v
(a) Front view of the hardware involved in RTM. (b) Top view of the evolving flow

front inside (B), with a dry spot.

Fig. 1. Overview of resin transfer molding (RTM): The resin (2) is injected into a
mold cavity (B) filled with textiles containing carbon fibers (C). A press (A) applies
the necessary pressure (1).

contains reinforcement material such as textiles with carbon fibers. This results
in a “flow front” that separates impregnated material from dry material, shown
in Fig. 1b. Thermoset resins are converted from a liquid to a solid through heat
– they are “cured”.

During the RTM process, several errors can render the result useless and,
thus, make the overall production expensive [4,9,17]. They occur, inter alia, due
to high input variances of the fiber contents in the textile (the “preform”). Dry
spots refer to areas of the preform that are not impregnated by the liquid, as
shown in the top right of Fig. 1b. In some cases, these dry spots irreparably
invalidate the stability and stiffness properties required for the manufactured
part. In others, they can be repaired manually. Either way, automated process
monitoring based on sensors applied to the mold would significantly improve
the quality assurance – called in-situ monitoring. These sensors (e.g., tempera-
ture, dielectric, ultrasound, or pressure) are able to track the flow front of the
fluid and, consequently, predict spatial deviations from proper RTM runs. This
may indicate problems such as dry spots or voids (i.e., enclosures where air is
trapped), providing diagnostic insight, or even control actions to avoid rejects.

In this paper, we propose to use machine learning, in particular convolutional
neural networks (CNN), to get a binary classifier f : Rn → {0, 1} from n mold-
integrated sensors to labels describing whether, at a given point in time, there is a
dry spot present or not. As an intermediate step, we train the network to generate
higher-resolution images of the flow front (extracted from an RTM simulation in
PAM-RTM1) from sensor data. These images capture spatial irregularities in the
flow. Since such full images are only available during simulation or specialized

1 https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/
pam-composites/pam-rtm-composites-molding-simulation-software.

https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/pam-composites/pam-rtm-composites-molding-simulation-software
https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/pam-composites/pam-rtm-composites-molding-simulation-software
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permeability studies [3] and not in real-world closed molds, a trained model could
substantially enhance the spatial information transmitted by actual flow front
sensors in productive settings – in the sense of a digital twin [8]. In this paper,
we focus on detecting dry spots from sensor input obtained from simulated data
as a first step towards a transfer to real data. These are major quality concerns
during the injection process [7].

Our model, FlowFrontNet, first uses several deconvolutional and convolu-
tional layers to create the image representation from pressure sensor data and
proceeds to perform the binary classification using convolutional and dense lay-
ers. The overall classification is performed individually for every frame of a sim-
ulated injection sequence such that a warning of dry spots can be issued at any
time. Our central scientific question is if we can detect dry spots from simu-
lated sensor data and whether the spatial flow-front information captured in
convolutional layers improves the classification. We compare the accuracy the
simulation-enhanced FlowFrontNet achieves to that of a standard feed-forward
network (both based on sensor data) and find major improvements in Sect. 4.
Our goal is to offer FlowFrontNet as a starting point for future research in com-
posite manufacturing: code2, checkpoints [19] and data [20] are available.

Following a discussion of related work, we present the data regime including
input variation for simulation and automated label acquisition in Sect. 2, present
the neural network models and training methodology in Sect. 3, and conclude
with experimental results in Sect. 4.

1.1 Related Work

To cover the relevant related work, two aspects have to be addressed: The tech-
nical process and the machine learning models.

There have been several publications on in-situ monitoring the RTM process.
Pantelelis et al. [12] present a system on how to detect the curing state but only
mention ML-based analyses as future work. Zhang et al. [22] use simulated and
actual sensor data to detect the curing rate of the process. They use aggregated
shallow neural networks to achieve this based on two sensors. They further use
the model to adapt the heating of the process. Our work, by contrast, focuses on
the resin injection and detect dry spots in the flow front from multiple sensors.
Leveraging the spatial capabilities inherent to CNNs has never been applied to
dry spot detection in the RTM process before.

Unrelated to composite production, deconvolutional layers that increase the
spatial dimensions have been used for image enhancement tasks. Xu et al. [21]
used them to deblur images. Shi et al. [15] approach superresolution, the task of
upscaling pictures from low to high resolution, with deconvolutional networks.
For semantic segmentation, Noh et al. [11] used a combination of convolutional
and deconvolutional networks. They compress the input image with a VGG-16
to afterward decompress the encoding with deconvolutional layers.

2 https://github.com/isse-augsburg/rtm-predictions.

https://github.com/isse-augsburg/rtm-predictions
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Out of these approaches, [15] comes closest to our task of extracting infor-
mation from a grid of sensors since the compressed data is known before and
not a learned encoding as in [11]. However, our approach works with more het-
erogeneous data in that it generates images from sensors rather than improving
the resolution of conventional photos. Furthermore, the dimensions of the input
are enlarged and not kept the same as in [21].

2 Creating Training Data from Simulation

To train a detector for dry spots from RTM sensor data, we need to observe
sufficiently many training instances. Generally speaking, industrial ML use cases
based on sensor data from actual production cycles tend to suffer from limited
data quality and quantity. Moreover, setting up a new process (including design
of the mold, choice of the resin, etc.) takes time until sufficiently many training
runs have been processed, not to mention the material costs. Simulation is a
proven remedy for the lack of data [13] which is our focus in this paper. Basic
RTM processes are well supported by existing engineering tools [3].

The lack of real high-quality data is only one reason to opt for simulation.
Another more pressing reason is that we can create a spatial representation of
the flow front, i.e., a “flow front image” (see Fig. 3a), that is not observable
in real closed molds. Those images will serve as the target for the generative
Deconv/Conv part of FlowFrontNet, described in Sect. 3.

Being able to simulate the process might raise the question of why one has
to apply machine learning at all – instead of just running the simulation online.
First, the trained models will encapsulate only those aspects of the simulation
that are needed to make good dry spot predictions for a given RTM setup.
An online simulation would take much longer and be infeasible for real-time
monitoring. Second, we can reasonably anticipate that real runs will contain
aspects that are not properly captured by simulation. For instance, variability
in the process parameters such as the textile might not be observable. Using an
ML-model will eventually enable us to add real data to the training.

In the following, we describe our process of obtaining enough (6 million)
domain-specific training instances from simulations executed with randomized
initial conditions (variances in the input textile) and automatically deriving the
corresponding dry spot labels that are images with the filling level as intensities.

2.1 Simulated RTM Runs in PAM-RTM

PAM-RTM is a software package designed for laying out RTM processes, includ-
ing fluid dynamics simulation. Modeling flow transport in porous media math-
ematically is most commonly carried out based on Darcy’s law [2] for one-
dimensional flow:

vx = −kx

η

ΔP

Δx
(1)
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Fig. 2. Simulated composite plate with a full sensor grid and central injection point -
1140 sensors located at 1 cm in x and y. On the right, a fiber volume content (FVC)
map is given with local perturbations (rectangular and circular).

where vx is the 1D flow velocity, kx represents the permeability value of the
textile (corresponding to how “easily” fluids can permeate it), η denotes the fluid
viscosity, and ΔP

Δx expresses the pressure drop along a specific flow length [3].
PAM-RTM includes other features as well, including draping simulation, the

meshing of CAD parts, and distortion during curing which makes it a stan-
dard tool in composite manufacturing. For this paper, we only needed the fluid
simulation part modeling resin injection. Getting the flow front prediction and,
subsequently, dry spot classification right is a high-impact quality goal.

Setting up a particular RTM simulation consists of defining the geometrical
3D-model of the part to be constructed, the viscosity and permeability param-
eters of the resin and textile, respectively, as well as temperature and pressure
of the injection. A single simulation run then represents a whole injection that
continues to pump resin until the mold cavity is filled entirely.

As our running example, we choose a simple rectangular composite plate
with dimensions of 38 × 30 cm. Adding a simulated pressure sensor for every
centimeter in x and y direction yields a total of 1140 sensors, as Fig. 2 shows.
The sensors can be placed at any location in the simulated composite plate,
independent of the mesh grid of the plate. To ensure that the chosen parameters
are realistic, this configuration follows the setup for experimental permeability
characterization available at the Processing of Composites Group of Montanuni-
versität Leoben as presented by Grössing et al. [3]. For the textile, the setup
assumes a natural fiber fabric with a fiber volume content (FVC) of 0.268 and
a 3.5 mm thickness. Finally, the resin used in the model experiment in Leoben
was a plant oil with a viscosity of 0.065 N·s

m2 .
In reality, dry spots emerge from local variations in the textiles (thicker or

thinner areas) that lead to regions of low or high fluid permeability, respectively.
To recreate that effect in our simulation and obtain varied training data, we
altered the fiber volume content in certain areas, as shown in Fig. 2. These per-
turbations are responsible for the distribution our training and test RTM runs
are drawn from. For simplicity, every perturbation corresponds to one circle with
a random diameter and one rectangle with random side lengths – with varying
strengths of FVC perturbation. All of these perturbations were automatically
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Table 1. Data set sizes – train/val/test-split

Data set # Runs # Samples % (Samples)

Training 29,663 5,067,352 81.11

Validation 756 131,072 2.09

Test 6,244 1,048,576 16.78

All 36,663 6,247,000 100

created for 40k simulation setups that were run in parallel on 10 hosts with 32
cores each. We repeated the simulations with different random strengths of FVC
perturbations: setting them to 0.1–0.8 covers a wide range of cases (including
mild cases that will eventually not produce dry spots), increasing them to 0.2–0.8
or even 0.3–0.8 provokes more severe perturbations leading to dry spots.

For training our models, Table 1 shows how we split the data obtained from
those FVC-perturbed simulation runs. Although we consider individual frames
(corresponding to time steps of runs), the splits do not break up runs, i.e., a run
is fully contained in either train, validation, or test set. That allows for reusing
the data when considering sequence models in the future.

When working with simulations, we have to double-check the time series
resolution. We noted that PAM-RTM distinguishes between multi-state results
for the simulated pressure sensors and single-state results for the simulation
results at every node of the mesh of the plate such as filling status and pressure.
While multi-state results are present for every simulated time step (including
the respective simulation times), single state results are saved every k-th second
in simulation time or every i-th simulation step. To keep the simulation efforts
tractable and produce enough runs, we selected an approximate time resolution
of 0.5 s and dispose of all pressure sensor results that do not correspond to time
steps with available filling status. Finally, before feeding the pressure sensors’
values to the ML-models, we divide them by 105 to obtain numerically well-
behaved training dynamics in the early layers of the neural networks.

2.2 Dry Spot Label Creation

Varying the FVC locally in the input textiles and recording the simulated runs
provides us with pressure value time series and flow front developments as
“images” where every pixel corresponds to the filling level at a given point in
time. To classify dry spots in a supervised manner, we also need labels indicat-
ing whether a flow front image contains a dry spot (e.g., Fig. 3a) or not (e.g.,
Fig. 3c). And we need those labels for all 6 million frames from 36k runs.

An area counts as a dry spot if it is a non-filled area that is enclosed by
resin. Comparing Fig. 3a and Fig. 3b, we might be tempted to directly derive
binary labels from the modified FVC maps that served as simulation input.
However, the matter is more complicated. First, an observed dry spot tends to
be smaller than the original perturbation since the outskirt still gets permeated
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(a) Interior dry spot (b) FVC map corre-
sponding to 3a

(c) No dry spot at
the flow front

(d) FVC map corre-
sponding to 3c

Fig. 3. Exemplary flow fronts resulting from locally perturbed FVC-maps extracted
from specific time steps (Color figure online)

by resin. Second, an FVC perturbation would be the same for all frames of a run
even though the dry spot only becomes apparent after the flow front reached
it geometrically. Third, a regular flow front might be jagged such as the one in
Fig. 3c. Such areas should not be counted (yet) as dry spots since they tend to
eventually be filled. Thus, we devised a heuristic that combines the perturbed
FVC-maps with computer vision techniques on the flow front images to output
label maps indicating if a pixel belongs to a dry spot or not.3

First, we extract the already filled pixels from each frame, e.g., the light
(yellow) pixels in Fig. 3a. The negative of that image only contains the dry
parts. Since dry spots cannot lie within the filled regions, we focus on the latter
for finding contours. We use OpenCV4 to find contours in those negative images.
The contours are constrained to be smaller than the whole flow front but at least
larger than the central injection point. However, not all of the contours identified
as dry spot candidates must be dry spots. Instead, they could emerge from jagged
flow fronts as apparent in Fig. 3c) that are not enclosed by resin. To distinguish
between these two cases, we enhance the pure computer vision operations (such
as contour or hole detection) with the perturbed FVC maps. Since a high FVC
corresponds to low permeability and vice versa, we overlap the dry spot candidate
contours with the FVC map. For every contour in the dry area, its probability of
being a dry spot is estimated proportionally to the percentage of the overlap with
an FVC perturbation. To reduce the number of incorrectly labeled dry spots, we
look at runs, i.e., sequences of frames, and discard candidates that only occur
in a single frame. This is justified since the flow front is expanding continuously
and, thus, the probability of a dry spot has to be similar for multiple frames in
a run. Some edge cases (e.g., simulation errors or dry spots in areas other than

3 Note that we did not use the “air entrapment” feature in PAM-RTM since that
would prematurely end simulation runs, produces lagging information, and cause
the experimental setup to diverge from the model setup in Leoben.

4 https://opencv.org/.

https://opencv.org/
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Fig. 4. FlowFrontNet: The first part (dashed, green) is a Deconv/Conv network that
maps from sensors to images. The second part (solid, orange) is the DrySpotNet consist-
ing of five convolutional/max-pooling layers and two fully-connected layers to perform
the final classification task. Numbers denote the resulting feature maps. (Color figure
online)

the FVC perturbations) lead to unexpected jumps in dry spot probabilities over
consecutive frames. To maintain high-quality data, we excluded whole runs with
such phenomena – approximately 9.16% of all runs which leaves us with 36,663
valid runs (cf. Table 1).

3 Approach - Model and Training

After generating data for different FVC contents in a sufficient amount and
labeling them in an automated manner, the next step is to present FlowFrontNet,
the main model of our approach, which is shown in Fig. 4. Before going into
detail, we present the key points of this network.

The overall FlowFrontNet maps pressure sensor inputs to classification deci-
sions. It consists of the generative part that upsamples from sensor grids to flow
front images (called Deconv/Conv) and the binary classification part (called
DrySpotNet). By learning to produce a flow front from sensor input, the net-
work learns a representation of fluid dynamics. The Deconv/Conv part itself is
useful for other use cases down the road, say, exact dry spot localization or pixel-
wise flow front detection. The later DrySpotNet performs a binary classification
on the generated images (see Figs. 5b and 5c for example inputs to that part).
By adding spatial fluid dynamics knowledge, we aim to surpass the performance
of a conventional feed-forward classifier achieves based on the same sensor input.

We present the version of FlowFrontNet that is used for 1140 sensors. The
other sensor resolutions (see Table 2) only require slight changes in kernel size
and layer count. Those are necessary since the smaller input sizes lead to smaller
outputs with the hyperparameters used for the 1140-sensors Deconv/Conv net-
work. Due to the resulting poor image resolution, the results would not be ade-
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quate for detecting dry spots. In the following, we describe the intricacies of each
network and their training processes.

Deconv/Conv Network: Sensor Data to Flow Front Images. The first part of
FlowFrontNet, Deconv/Conv, is a fully convolutional neural network [14] (see
Fig. 4, left part) that receives the low-resolution sensor grid values and out-
puts a high-resolution flow front image. The first four layers are deconvolutional
to extract features from the sensor array. As opposed to convolutional layers,
deconvolutional layers increase the spatial dimensions of an image, known from
image segmentation or superresolution [11,15].

Our approach is similar in this regard: the pressure sensor grid has a low
resolution and constitutes a compressed representation of the flow front. We
apply deconvolutional layers to increase the resolution of the sensor array while
simultaneously filling the spaces between the sensors, i.e., interpolating miss-
ing values. Afterward, we utilized five standard convolutional layers (providing
the required amount of non-linearity) to create and shape the final flow front
image (e.g., with spatial dimensions 117 × 149).

The first step is to pre-train the Deconv/Conv network to produce images
of the flow front from sensors, as shown in the left part of Fig. 4. As mentioned
before, this pre-training needs simulated data since flow fronts are hidden in
real-world closed molds. All hidden layers are followed by the rectified linear
unit (ReLU) activation, while the output layer is activated by the sigmoid func-
tion to make sure the generated flow front images lie within the range [0, 1].

DrySpotNet: Flow Front Image to Binary Dryspot Classification. The second
part of FlowFrontNet, DrySpotNet, receives the generated images and classi-
fies them concerning dry spots. The dry spot labels are obtained as described in
Sect. 2.2. The architecture for this classification follows a standard convolutional
classification network [6] (see the latter part of Fig. 4). The final output yields
soft classification scores using the sigmoid function (commonly interpreted as
class probabilities) that are eventually thresholded to achieve a hard classifica-
tion.

FlowFrontNet: Training End-to-End Sensor Data to Dryspot. After pretraining
the Deconv/Conv net using flow front images, we append the untrained DrySpot-
Net for the final classification. To avoid changing the already trained weights of
the generative Deconv/Conv layers, the pre-trained layers are “frozen”, mean-
ing that their weights are not updated during training. This is identical to the
practice of freezing convolution layers in fine-tuning for special purpose image
classification [16]. After training the newly appended output layer, it can be
useful to also “unfreeze” the pre-trained weights of early hidden layers during
backpropagation. The data is exchanged and parts of the original network are
used as the backbone for a new image processing task. Here, our approach is
different: we change the objective and targets from generating images to that of
doing dry spot binary classification, leaving the early layers fixed.
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Table 2. Sensor layouts

Sensors Layout Sensor distance - x and y

1140 38 × 30 1 cm

80 10 × 8 4 cm

20 5 × 4 8 cm

When combining the generative part of the Deconv/Conv net with the
DrySpotNet, low sensor input numbers may lead to comparably “blurry” flow
front images (e.g., Figs. 5b to 5d) before handing them to the classification part.
To obtain higher-contrast flow front images and, consequently, better classifica-
tion results, we add a non-differentiable hard pixel-threshold to the forward pass
of the network after the Deconv/Conv net. This operation sets all values below
the threshold to 0 and all above to 1. Since the flow-front-generating layers of
the networks that lie before the pixel-threshold are frozen and need no gradients,
we can easily incorporate this operation.

Feed-Forward Network: Baseline Classifier. To judge the merits of FlowFront-
Net, we design a basic end-to-end feed-forward network as a baseline classifier.
It consists of two ReLU-activated, fully-connected hidden layers and a sigmoid
output for the dry-spot probabilities. As input, it receives the sensor values
described in Sect. 2 without performing upsampling to the flow front image.

For training all models, we utilized an Nvidia DGX-1 with 8 Tesla V100
GPUs. This machine is able to train with a batch size of 2048 for both steps of the
training process. Especially the Deconv/Conv network is very resource-intensive
in terms of its parameters, with the highest consumption of computation power
when using 1140 sensor values as input. For this training, the DGX-1 reached its
maximum load with batch size 2048, for training runs with smaller sensor grids,
the same batch size yielded the best performance compared to larger batch sizes.

4 Experimental Evaluation

To put FlowFrontNet to the test, we devised three central evaluation hypotheses.
The first is if we can predict a dry spot from simulated pressure sensors at all.
The second and central hypothesis is, whether the intermediate step of flow
front image generation can improve dry spot classification. This also involves
testing the pixel thresholding introduced to obtain sharper internal flow front
representations. As a third point that is interesting to evaluate, we investigate
the number of sensors that are necessary to classify dry spots sufficiently well,
with and without the intermediate flow front generation. We investigate models
for 1140, 80, and 20 sensors, to estimate the prediction quality achievable by a
reduced number of sensors, see also Table 2.

These particular numbers emerge from taking every 4-th or every 8-th sensor
of the full 1140 grid. Taking 1140 sensors corresponds to a sensor distance of
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Table 3. Accuracy values on three different sensor resolutions for feed-forward base-
lines and FlowFrontNet

# Sensors Feed-forward FlowFrontNet

Threshold Accuracy Threshold Accuracy

1140 0.54 82.74% 0.49 91.68%

80 0.52 79.57% 0.57 83.69%

20 0.49 74.68% 0.51 75.22%

1 cm, which is an unrealistically high number. To come closer to reality, we
focused on a sensor distance 4 cm for the 80 sensors because that is within range
of physical feasibility and set a baseline with even fewer sensors 8 cm distance.

4.1 Results

Can Machine Learning Predict Dry Spots Based on Sensor Inputs? To start
with the first question, we obtained a baseline from the feed-forward network
performing the classification task directly from sensor inputs. When optimizing
this architecture, we found that larger batch sizes positively affected the evo-
lution of the validation loss, with a sweet spot found at 32,768 = 215 training
instances per batch. The results from experiments suggest the following base-
lines: the best feed-forward network with two hidden layers achieves an accuracy
of 82.73% with 1140 sensors, an accuracy of 79.51% with 80 sensors, and an
accuracy of 74.6% with 20 sensors, see Table 3. Unsurprisingly, the more sensors
we use, the better the accuracy gets for a network unaware of the underlying
fluid dynamics.

(a) Label (b) 1140 sensors (c) 80 sensors (d) 20 sensors

Fig. 5. Exemplary flow front predictions in the Deconv/Conv part of FlowFrontNet
based on the different sensor counts.

Does the Deconv/Conv Net Improve the Classification Accuracy? For the sec-
ond question – the improvement of the classification by generating flow front
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Table 4. Confusion matrices for 1140 and 80 sensors: Feed-forward vs. FlowFrontNet

For 1140 sensors

Actual

¬ Dry spot Dry spot

Pred.
¬ Dry spot 40.44% 8.59%

Dry spot 8.66% 42.31%

Actual

¬ Dry spot Dry spot

Pred.
¬ Dry spot 44.60% 4.43%

Dry spot 3.89% 46.98%

For 80 sensors

Actual

¬ Dry spot Dry spot

Pred.
¬ Dry spot 38.97% 10.06%

Dry spot 10.37% 40.06%

Actual

¬ Dry spot Dry spot

Pred.
¬ Dry spot 41.60% 7.44%

Dry spot 8.87% 42.10%

images using deconvolutional and convolutional layers – the answer is a clear
yes, with only a slight limitation. Figure 5 allows us to visually inspect exem-
plary results from the learned sensor-to-flow-front mapping on the test set. Even
for 20 sensors, a rough idea of the underlying flow front is obtained, for 80 and
more sensors, a fairly accurate image can be reconstructed. Based on that inter-
nal representation of the flow front, the accuracy of FlowFrontNet with 1140
sensors as input increases to 91.68%, which is a 9% advantage over the pure
Feed-forward Network. For 80 sensors (with pixel-thresholding), the accuracy
can be enhanced from 79.51% to 83.69%, a margin of 4%. Furthermore, the 80
sensor FlowFrontNet performs better than the feed-forward network with 1140
sensors which shows that sensor investments could be reduced in favor of encoded
simulation knowledge.

Alas, the improvement over the feed-forward network decreases even more
with 20 sensors: 75.22%, which is less than 1% of accuracy boost. The spatial
information density in a 5 × 4 input sensor grid turned out too low to still get
a useful representation, which can also be observed in Fig. 5d. The image of
the flow front is not clear at all and it appears as though there is no dry spot
enclosed by resin but rather a jagged flow front. Therefore, we only focus on the
models equipped with 80 or 1140 sensor inputs.

To get a more comprehensive performance overview, Table 4 shows the con-
fusion matrices for the 1140 and 80 sensors input, respectively. The models are
rather balanced regarding their false positive and false negative shares, but these
values are – as always – object to modification by the classification threshold
applied to the output probability score. Especially in industrial processes, one
type of error can be more favorable than the other, depending on whether false
positives (e.g., causing disruptions in the process) or false negatives (e.g., lead-
ing to undetected errors in the produced parts) are more acceptable. For the
behavior of the classifiers under various classification thresholds, consider the
ROC curve in Fig. 6. The confusion matrices here are given for the classification
threshold value that gives the highest validation accuracy, as per Table 3.
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Fig. 6. ROC Curves for different models and sensor inputs. * pixel-threshold at .8

Is the Pixel-Thresholding Step in FlowFrontNet Useful? By experimenting with
possible pixel thresholds (see Sect. 3) of 0.2, 0.5, and 0.8, we found that 0.8
yielded the best results and is used for the 80-sensor results (also in the already
presented results). The accuracy increased from 81.48 to 83.69%. We observed
that the training loss decreases steeper and farther without pixel-thresholds but
the validation loss increases to a greater extent. By contrast, the validation loss
for the pixel-threshold model declined steadily – indicating that the thresholding
of flow front images regularizes.

Moreover, training more than one epoch without pixel-thresholds produced
heavy overfits. Even with an exponential learning rate scheduler and a very low
initial learning rate, the training dynamics did not improve. While the valida-
tion loss was decreasing, it was at a higher base level than before. With pixel-
thresholds in place, training got easier, even without scheduling the learning
rate but using a fixed value of 10−4 with AdamW [10]. Alas, for the smallest 20
sensor grid, pixel-thresholding did not give better results.

The ROC curves and the corresponding area under the curve (AUC) values
are shown in Fig. 6. The AUC for the .8-pixel-thresholded model is the best of
all 80 sensor models, but only by a small margin. The other curves do not hold
any surprises, with the 1140 sensor model outperforming all and all other models
with similar AUCs. Only the 80 sensor feed-forward net is underperforming.

4.2 Discussion - Metrics on Run Level

Our previous evaluations exclusively considered metrics per frame that are each
drawn from many independent injection runs. Such a dry spot classification for
every frame and, thus, point in time is desirable to closely monitor the RTM
process (in a “digital twin”-manner) to intervene at process execution time by
adjusting process parameters. Additionally, practitioners care about a judgment
concerning the process quality of a single run, e.g., a single produced composite
plate. This is similar to lifting single-frame classification to video classifications,
e.g., how many dry spot frames make a dry spot run? The first difficulty is to



424 S. Stieber et al.

Fig. 7. Different classifications of two runs by three different models

decide when a run counts as a failure and doing so automatically for both the
label maps and predictions for all 36,663 runs.

The naive approach would take the last few frames to determine if a run
counts as having produced a dry-spot. However, we would miss dry spots that
only occur in the middle of a run. These might hint at problems in reality
and only “close” due to simulation artifacts (e.g., unrealistically increasing the
pressure). Another possible criterion counts all dry spot frames and prescribes
a minimal amount to mark a run as failed. Alternatively, we could require the
dry spot sequences to be contiguous, to avoid listing too many runs as failed if
there are single dry spots in the label maps or predictions which could also be
artifacts from the label generation process described in Sect. 2.2. Figure 7 offer
some insight into how different run classifiers would behave for two exemplary
runs, given the frame-wise ground truth and predictions.

Here, it becomes apparent that the models perform very differently and also
confirms that the models taking 80 sensors as input cannot be compared to the
1140 sensor input models. The 1140-sensor-models adhere closely to the label
most of the time whereas both 80-sensor-models produce more noise, in different
ways. We anticipate further experiments as future work, especially combining
the single-frame predictions with another sequence model to classify whole runs
– provided that we can obtain or define meaningful run labels.

5 Conclusion and Future Work

We presented FlowFrontNet, a deconvolutional/convolutional neural network
suitable for detecting dry spots in simulated RTM processes, i.e., improved pro-
cess monitoring. In doing so, we showed that it is possible to learn the inter-
mediate representation of flow fronts from sensor data by upsampling via a
deconvolutional network. This enabled us to reliably classify dry spots on indi-
vidual frames substantially better than with a feed-forward network using the
same sensor input. The classifier makes it possible to intervene during the man-
ufacturing of a single composite plate. We also investigated that the prediction
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quality decreases with the number of sensors in use, and found that acceptable
accuracy requires at least 80 sensors, a sensor grid 4 cm distance. That is a realis-
tic order of magnitude for real mold sensor layouts whereas 1140 sensors cannot
be placed as closely due to cost and wiring issues.

Future work can be divided into short and long term goals that focus on use
cases with simulated and actual data, respectively. In the short run, we plan
to use the flow front image generated from sensors for other classification or
object detection tasks and use sequence models for predicting full runs, with
their temporal information. Our long term goal is to use models pre-trained on
simulated data for real RTM process data [18], much like sim-to-real applications
are being used in reinforcement learning and robotics [13]. In addition to the
costly process of actually producing composite plates in a sufficient number for
training, reality confronts us with heterogeneous and noisy sensors other than
pressure alone. Eventually, we want to generate feedback for process control to
avoid rejects. The first step towards this goal, learning the flow front from sensor
data and applying it to dry-spot classification, has been successfully achieved.
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Abstract. Flash based solid state drives (SSDs) have established them-
selves as a higher-performance alternative to hard disk drives in cloud
and mobile environments. Nevertheless, SSDs remain a performance bot-
tleneck of computer systems due to their high I/O access latency. A com-
mon approach for improving the access latency is prefetching. Prefetch-
ing predicts future block accesses and preloads them into main memory
ahead of time. In this paper, we discuss the challenges of prefetching
in SSDs, explain why prior approaches fail to achieve high accuracy,
and present a neural network based prefetching approach that signifi-
cantly outperforms the state-of the-art. To achieve high performance, we
address the challenges of prefetching in very large sparse address spaces,
as well as prefetching in a timely manner by predicting ahead of time.
We collect I/O trace files from several real-world applications running on
cloud servers and show that our proposed approach consistently outper-
forms the existing stride prefetchers by up to 800× and prior prefetching
approaches based on Markov chains by up to 8×. Furthermore, we pro-
pose an address mapping learning technique to demonstrate the applica-
bility of our approach to previously unseen SSD workloads and perform
a hyperparameter sensitivity study.

Keywords: Prefetching · Neural network · Flash

1 Introduction

Solid state drives (SSDs) have become the primary storage device technology for
mobile devices and high-performance servers. SSDs have replaced the spinning
disks (HDDs) for many applications in cloud services due to their higher I/O
performance [47], lower failure rate [37], and better endurance [34]. Nevertheless,
although SSDs deliver significantly higher speeds than HDDs, SSDs still remain
a performance bottleneck of computing systems [24], as processors and DRAM
technologies support three orders of magnitude lower access latency. Two com-
mon approaches to hide the high access latency of storage devices are caching
and prefetching. Caching utilizes less dense but faster types of memory to store
frequently used data items, filtering out many accesses of the slow SSDs. Exam-
ples include Linux’s page cache [12] and filesystem caches [43]. Prefetching [9]
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approaches read data from SSDs in advance, in order to serve the later demand
accesses from the cache with low latency. Prefetching can be implemented either
in software, e.g., within operating system [29,35] or within the SSD itself [48].

Existing prefetching mechanisms [38,39] are limited by the computational
complexity and difficulty of correctly predicting future I/O accesses. For
instance, the read-ahead prefetcher [15,26] is limited to prefetching the next
data item within a file to accelerate sequential accesses. More advanced prefetch-
ers [5,17] that can learn complex I/O access patterns have been dismissed
because of their computational cost. Recently, storage vendors, including Sam-
sung, have proposed SmartSSDs [14,33], adding computational capabilities to
SSDs. These devices offer new opportunities as they enable offloading of prefetch-
ing to hardware, removing the burden from the host CPU. While this approach
addresses the compute overhead of prefetching, predicting future I/O accesses
accurately remains a challenge. Real-world applications not only perform sequen-
tial accesses, but also exhibit complex workload patterns [7]. Applications are
frequently used by multiple users simultaneously, performing independent tasks,
resulting in a mix of sequential and random I/O requests which are difficult to
model and challenging to predict. Furthermore, in existing systems, I/O accesses
need to traverse a deeply layered software stack, transforming the easy to pre-
dict accesses on the application side into seemingly random accesses on the SSD
level. Predicting future memory accesses from multiple interleaved I/O access
streams on the SSD device layer hence represents a challenging problem.

Modern SSDs and operating systems offer a wide range of telemetry data
for analysis. Utilizing I/O access tracing in hardware and software enables the
collection of large, clean, and automatically labeled datasets that can fuel power-
ful machine learning models. In this work, we leverage Long Short-Term Mem-
ory (LSTM) [19] based sequence-to-sequence neural networks to learn spatial
I/O access patterns of applications from block level I/O traces collected from
a diverse set of data center applications. LSTMs are capable of capturing long-
term dependencies in data and can address sequences of different lengths. LSTMs
integrate model training and representation learning together, without requiring
additional domain knowledge, enabling the discovery of unseen patterns in the
data to improve generalization capability of a model. In this work, we leverage
LSTMs to deliver the following contributions. First, our model provides high
accuracy even in the presence of complex interleaved I/O streams. Second, it
addresses the challenge of timeliness by predicting multiple I/O accesses ahead
of time. Third, to cope with the dynamic behavior of applications and to improve
the reusability of our model, we propose an address mapping learning (AML)
technique enabling our model to predict different types of workloads. To demon-
strate the practicality of our approach, we build a simulator enabling us to
measure timeliness in addition to prediction accuracy. We utilize I/O traces to
train the neural network models offline and predict future logical block addresses
(LBAs) at runtime using the simulator. To reduce address space, we take the l1
norm between a pair of consecutive memory accesses as input to the model in
addition to the requested I/O size. This enables the model to also predict the
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size of the incoming I/O request, representing the amount of data blocks to be
prefetched ahead of time. We show that our approach enables predicting LBAs
sufficiently far ahead to compensate for the read latency of accessing flash as well
as for the inference latency of our model. We present an analysis of the impact of
predicting N steps ahead into the future and evaluate the impact of cache size on
the performance of our prefetcher. We compare our work with three baselines, a
naive approach that only prefetches the most frequently accessed LBAs, a stride
prefetcher [23], and the Markov chain based prefetcher [11,26,48], showing an
improvement of up to 800× over the stride prefetcher and up to 8× over the
Markov chain prefetcher.

2 Background

2.1 Flash Device Architecture

NAND flash drives or SSDs are non-volatile memory devices storing individ-
ual bits on floating gate transistors. Floating gate transistors are arranged in
large bit cell arrays increasing not only the storage capacity, but also the access
latency. Furthermore, flash cells suffer from limited endurance and frequent bit
errors, which are exacerbated by transistor scaling and the introduction of tech-
niques such as multi-level cells [31]. To ensure data integrity, multiple reads
using different reference voltages need to be performed, and the controller needs
to perform error detection and correction as part of each read, further increas-
ing the read latency. As a result, the I/O access latency of SSDs (∼100µs) is
three orders of magnitude higher than the latency of reading DRAM (∼100ns).
Hence, a mechanism that prefetches the data into DRAM provides significant
performance gains.

2.2 Prefetching

Prefetching in storage systems is the process of preloading data from a slow
storage device into faster memory, generally DRAM, to decrease the overall
read latency. Accurate and timely prefetching can effectively reduce the perfor-
mance gap between different levels of memory [30]. There are three important
metrics used to compare prefetchers including coverage, accuracy, and timeliness
of prefetchers [23]. Coverage is the ratio of the number of SSD reads that can be
prefetched to the total number of SSD reads. Accuracy is the ratio of number
of data blocks being prefetched to the number of prefetched data blocks that
were actually requested by the application. Timeliness requires data blocks to
be prefetched sufficiently ahead of time so that the data is present in DRAM
whenever the read request is performed by the application. If the prefetched data
blocks are not available when they are needed, the application is required to stall,
rendering prefetching ineffective. Furthermore, if the data is prefetched too early,
it may not be available anymore when it is actually needed, due to the eviction
from the capacity-limited cache. Inaccurate prefetches that read in unneeded
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Fig. 1. Demonstration of prefetching at time, t

data are harmful as they waste I/O bandwidth and DRAM capacity. If prefetch-
ing is performed too conservatively, coverage is low and the overall performance
gains are limited. Hence, the ideal prefetcher has high coverage, high accuracy,
and executes prefetching timely so that the data is fetched exactly when it is
needed. A basic prefetching mechanism is shown in Fig. 1. The SSD prefetcher
(P) is responsible for predicting candidate data blocks (C) to prefetch from the
SSD (S) into a fast cache (DRAM) buffer (B) of size s. The cache eviction policy
(E) is responsible for evicting the data blocks from B in order to make space
for new incoming data. In this example, at time t, P determines candidates x1,
x2, x3, and x4 for prefetching, but the actual data requested at time t is x1, x2,
and x3. Here, x1 was prefetched too early while x4 was inaccurately prefetched,
resulting in cache miss in both the cases. Candidates x2 and x3, however, were
present in the cache when requested, and hence, result in cache hit.

2.3 Neural Network Based Prefetching

While most work on I/O prefetching has focused on conventional techniques,
some prior works have explored using machine learning techniques. Hashemi [18]
used neural network based sequence models for prefetching DRAM accesses. The
models proposed in this work, however, cannot be applied to our problem as
prefetching I/O accesses differs significantly from prefetching DRAM accesses.
First, I/O accesses do not contain instruction information to enable stream dis-
ambiguation, second, I/O accesses do not have a fixed size like DRAM accesses,
third, I/O accesses and DRAM accesses interact differently with the OS, and
fourth, I/O prefetching models need to account for timeliness. A second line of
work utilized Markov chains [11] for prefetching data from SSDs [26,48]. We com-
pare our approach with these prior works in Sect. 6, confirming prior observations
that Markov chain based prefetchers perform poorly on real world applications
where the I/O streams are more complex [44].

3 Problem Statement

We assume a digital system that consists of the following components. A flash
based digital storage device (SSD) that provides high capacity but low perfor-
mance, and a high access latency. A central processing unit (CPU) that can
process data at orders of magnitude faster than the SSD. In addition, the sys-
tem is comprised of a cache (usually DRAM) that is placed in between the CPU
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and the SSD. The CPU can access data with low latency from the cache, how-
ever, the cache capacity is orders of magnitude smaller than the SSD capacity.
Reads access a specific logical block address (LBA) and are generally more per-
formance critical than writes, as future operations depend on the data supplied
by the reads, which is why this work focuses on reads. The goal we aim to
achieve is to accurately predict future LBAs so that they can be prefetched into
the cache, enabling low latency accesses by the CPU. In addition to the LBA,
we also need to predict the size of the I/O, as prefetching only parts of an I/O
access is useless. Thus, an efficient prefetching mechanism requires optimizing
three metrics, particularly, the coverage, accuracy, and timeliness.

Coverage or recall refers to the ratio of future memory accesses that are
attempted to be prefetched. Prefetching of an LBA is accurate if the same
LBA is subsequently accessed by a demand read. Accuracy is hence defined
as the ratio of accurate prefetches to executed prefetches. A prefetch is timely
if it is executed sufficiently ahead of time of the demand read. In particular,
Tcand + Tread < PA ∗ Tarrival must hold, where Tcand represents the time to
compute a prefetch candidate, Tread represents the time to perform a read from
the SSD, Tarrival represents the inter arrival time between demand reads, and
PA represents prefetch-ahead, which is the number of accesses we need to predict
into the future. Executing prefetches too early is generally of a lesser concern as
prefetches can be stored for a finite time in the cache. As a result, the time that
a prefetch can be executed too early is bounded only by the cache capacity.

Storage accesses to an LBA are generally handled by the operating system.
User applications, however, generally communicate with the storage devices by
reading and writing files. Consequently, the filesystem layer within the OS needs
to map file accesses to LBA accesses before they can be submitted to the storage
device. Furthermore, to improve performance, the OS maintains several caching
layers in the filesystem and logical block layer, aiming to filter out a significant
fraction of all application accesses. The result of this architecture is that even a
seemingly easy to predict operation on the application layer, such as reading a
file sequentially, may result in a very hard to predict access patterns on the LBA
level, as perceived by the SSD. Finally, the storage device is generally accessed
by different application threads simultaneously, resulting in multiple interleaved
I/O streams that are indistinguishable by the SSD. In summary, the existing
storage stack architecture renders predicting future I/O accesses a challenging
problem. Predictive models need to be able to separate multiplexed I/O streams
and then predict future LBAs from within the hard to predict sequences. In
addition, they need to provide information on the number of data blocks to
prefetch, starting from the initial predicted LBA.

4 Proposed Prefetching Technique

Learning SSD storage accesses for prefetching is a challenging task for the follow-
ing reasons. As SSDs are increasing their storage capacity to 16TB and beyond,
drives are now supporting billions of logical block addresses. As prefetching is



432 C. Chakraborttii and H. Litz

only successful if every bit of the logical block address is predicted accurately,
models are required to predict which LBA to prefetch with perfect accuracy
within a very large LBA space. This space is often sparse, as the operating sys-
tem allocates blocks within the filesystem layer, and hence, even sequential data
within files may be mapped to arbitrary LBAs within the SSD. Furthermore, as
prefetches need to be timely, predicting only the next LBA and the requested I/O
size is not sufficient, and it is required to predict several accesses into the future.
Finally, to support dynamically changing workloads, we evaluate our proposed
address mapping learning technique to determine whether prefetching models
can learn generalized patterns within complex I/O access patterns.

4.1 Data Preparation for Reducing the Output Label Space

We preprocess the input dataset to address the problem of large logical block
address space. The number of unique memory addresses within an SSD is typi-
cally of the order of billions, rendering a separate class for each memory address
impractical. To reduce the address space, we take the l1 norm of each pair of
consecutive LBAs (LBA delta). For example, if consecutive I/O accesses starting
from LBA 10000 are requested as 10001, 10003 and 100006, the corresponding
LBA deltas were recorded as 1, 2, and 3, respectively. This significantly reduces
the number of classes that our model needs to predict. We identify the top
1000 frequently occurring LBA deltas and assign each one of them to a class
in decreasing order of frequency. All remaining LBA deltas are assigned to a
separate class representing a “no prefetch” operation, thus limiting the number
of classes for model to predict to 1001. The reason for choosing LBA deltas over
actual addresses is to increase the coverage of LBA deltas in the data. For exam-
ple, for Microsoft Research Cambridge traces [27] (MSR 1), the top 1000 most
frequently occurring LBAs covered only 2.77% of all the LBA accesses, whereas
the top 1000 most frequently occurring LBA deltas covered 91.66% of all LBA
accesses. The coverage of top 1000 frequent LBA deltas for the datasets used
in this study ranged between 54% and 92%, as seen in Table 1. Expanding the
number of classes to beyond 1000 is possible with more computational power,
however, for our datasets, we chose 1000, as it provides a considerable coverage
for LBAs and is a sufficiently large size to prove the practicality of our approach.

The requested I/O sizes for the analyzed real world applications ranged from
4KB to several MBs with up to 10,000 different I/O sizes for an individual
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application. In order to reduce the number of possible target I/O size values,
we round off each observed I/O size to the nearest number that is a power of 2,
2n, and use n as an I/O size class. This reduces the number of possible target
I/O sizes for most applications to 16 while still supporting requests of size up to
64MB. A limitation of this approach is that, in the worst case, roughly twice as
many as required 4KB blocks may be prefetched from the SSD.

4.2 Model Architecture

We designed our proposed neural network model to predict both the I/O size
and LBA deltas at the same time. The model has two separate input layers, one
for I/O size and one for LBA delta, where each input layer is an embedding layer
[49] consisting of 500 neurons. The inputs to the model are categorical, one-hot,
representation of the two features, LBA deltas and I/O size, each being fed to a
separate embedding layer. The model has two hidden LSTM layers, where each
LSTM layer has 500 hidden nodes. The outputs of the two embedding layers
are first concatenated and then fed to the shared LSTM layers. The final output
layer is split into two branches, where each branch is a dense layer consisting
of softmax [32] nodes. The number of neurons in the LBA delta output layer
is 1001, representing top 1000 LBA deltas and a “no prefetch” LBA delta, and
the number of neurons in the I/O size output layer ranged between 12 and 20,
depending on the I/O sizes present in each dataset. The model architecture is
shown in Fig. 2. The number of neurons in each of the first three layers of the
model was set to 500 to ensure a good representation of input features, and we
used a dropout [16] of 0.2 to prevent overfitting of the model. Having an initial
embedding layer facilitates better representation of the input features and helps
the subsequent LSTM layers to learn effectively from sequential data.

4.3 Timeliness

As discussed in Sect. 3, a prediction from the prefetcher is timely only if the fol-
lowing equation holds: Tcand+Tread < PA∗Tdemand. We empirically determined
Tcand to be 734µs by measuring the inference latency of our model. We mea-
sured the latency of accessing an Intel P3600 NVMe based SSD using the flexible
I/O tester (FIO) [6] to be 300µs on average under 80% workload. For the traces
that we examined, the average time between two successive I/O requests ranged
between 800µs and 1200µs, and the minimum time was 10µs. As a result, a
good PA value is in the range of 5 > PA > 100. We evaluate a range of PA
values and its impact on prediction accuracy in Sect. 6. Predicting further ahead
in the future typically reduces the accuracy due to the increased uncertainty. We
find that, in order to increase the accuracy in case of a high PA value, training
the model with longer history of sequences can improve performance.

4.4 Address Mapping Learning

Different workloads show similar I/O access patterns due to shared design
patterns and commonly used data structures. For instance, array-based data
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structures used by applications generally entail sequential I/O access patterns.
Furthermore, as most applications leverage the same underlying filesystem, it is
likely that I/O accesses show common patterns. An ideal prefetcher would be
trained once, on a varied set of applications, providing high performance even
for previously unseen applications. Such a prefetcher is also likely to be more
robust with respect to dynamically changing data inputs or code changes to the
original application. To test the idea that applications share common patterns
that can be learned, we train the model on traces from one dataset (source) and
evaluate the performance of the prefetcher on another dataset (recipient). The
mapping of addresses to labels is done by sorting the frequency distribution of
LBA deltas from both the source and recipient traces and assigning them labels
in decreasing order of frequency of occurrences. We call the process of extracting
the LBA deltas, training the model on source dataset, and using the model to
predict LBA deltas and I/O sizes for the recipient dataset as Address Mapping
Learning (AML) and present the block diagram of this process in Fig. 3.

5 Methodology and Experimental Setup

5.1 Model Training

For our experiments, we used a total of 10 block-level I/O traces from three
different sources running applications in live production servers. The datasets
included traces describing enterprise storage traffic in commercial office virtual
desktop infrastructure (VDI) [27], as well as traces from live production servers
at Microsoft SNIA [22] and Microsoft Research Cambridge [36]. We did not use
any synthetic benchmarks, as used in previous work [26,48], as those traces do
not accurately represent the complexity and interleaved patterns exhibited in real
applications. The utilized trace files are open-source and can be obtained online
[1,2,22]. Table 1 provides information about the datasets used in this study. From
the table, we see that the coverage of top 1000 LBA deltas is consistently higher
than direct memory addresses (offset), and hence it was selected as one of the
features for training the model. The datasets also contained other information
such as the I/O size, response time, filename, file location, etc. In this work,
we only used the timestamp, offset (LBA), and I/O size as features. We trained
our model using Google’s Tensorflow [3] library on a Intel Xeon server with 8
CPU cores running 1.7 GHz containing 96GB of DRAM. The server also had
4 NVIDIA Tesla 2080TI GPUs for training the model. We split the dataset
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Table 1. Dataset description

Trace source Dataset name Represented
name

Num obs Coverage
offset (%)

Coverage
LBA
delta (%)

VDI 2016022315.csv VDI 1 5226120 58.76 66.96

VDI 2016030817.csv VDI 2 4443487 63.94 70.08

VDI 2016030819.csv VDI 3 2902328 68.94 69.8

VDI 2016031115.csv VDI 4 2408227 68.65 72.35

MSR proj 3.csv MSR 1 2244642 2.77 91.66

MSR mds 0.csv MSR 2 1211034 63.46 76.94

MSR src1 1.csv MSR 3 45746222 28.6 77.7

MSR usr 1.csv MSR 4 45283980 2.64 82.12

Microsoft buildserver-2.csv MS 1 1600430 2.77 28.84

Microsoft buildserver-7.csv MS 2 1714151 8.97 55.49

into training and test set, where the training set contained the first 70% of the
I/O accesses, and the test set contained the last 30% of the I/O accesses. The
sequence of LBA deltas, ordered by timestamps, is fed to the model for training.
For all the experiments, we trained our model using Adam optimizer [46] with
a cross-entropy loss function, and a learning rate of 10−3 for up to 1000 epochs,
and stopped model training if there was no improvement in validation loss, with
validation loss not decreasing by at least 10−5 for five consecutive epochs.

5.2 Prefetcher Simulation Environment

To enable the comparison of our prefetcher against prior baselines, evaluating
only recall and precision is not sufficient. As motivated before, analyzing the
prefetcher’s timeliness is required to evaluate the end-to-end performance gains
of prefetching, as even the most accurate prefetcher will not improve the per-
formance if it lacks timeliness. As shown in Sect. 4.3, in order to compensate
for the model’s prediction latency and the latency to perform a read from the
SSD, it is required to generate predictions ahead of time (PA). We evaluate the
end-to-end performance as follows. As we iterate through the test dataset, the
evaluation models continuously generate prefetch candidate predictions that are
inserted into the cache.

Trace Data
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IOSize, Offset

Our Approach
Trained Model)

Trace 
replay

Baselines
(Stride Prefetcher/ 
TopLBA/ Random

Prefetch Cache
(Size = N)

Predict IOSize
and LBA

Predicted LBA in 
Prefetch cache?

Yes

No

hit
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Fig. 4. Block diagram of the evaluation process using our simulator



436 C. Chakraborttii and H. Litz

Every I/O access is checked against the cache to see if the LBA is present,
where the access is recorded as a hit, otherwise it is recorded as a miss. We
utilize the Least Recently Used (LRU) [42] eviction policy for our experiments.
The architecture of the simulator is presented in Fig. 4. We choose variable cache
sizes of LBAs for the stride, Markov-based, and our proposed prefetcher, and
run experiments to provide a comparative study in Sect. 6.

5.3 Baselines

We compare our proposed prefetcher to three baselines. The first, naive prefetch-
er, baseline always predicts the most common delta of a trace. The second base-
line implements a Markov chain predictor [26,48]. This method treats each LBA
access as a state and predicts the next LBA based on the previous state by com-
puting a probability distribution over the probabilities of transition from one
state to another. The third baseline is a stride prefetcher which is commonly used
in software and hardware systems. The stride prefetcher concurrently observes
128 I/O access streams. Each access is mapped to a stream based on hashing the
most significant bits of the LBA. For each stream, the stride prefetcher tracks
the last three I/O accesses. If the difference between the three I/O accesses
match, the prefetcher detects a stride and prefetches the next access. Note that
the stride prefetcher’s results are optimistic, as it only prefetches one access
ahead of time and does not compensate for timeliness. In the next section, we
evaluate our proposed prefetcher in terms of prediction accuracy, timeliness, and
capability to generalize to different workloads.

6 Results

6.1 Prefetcher Accuracy, Precision and Recall

Table 2 shows the comparative performance of our neural network based pre-
fetcher against the three chosen baselines. The table lists the dataset name,
number of samples in the dataset, and the accuracy for the three chosen baselines,
Naive prefetcher, Stride prefetcher, and Markov chain based prefetcher. For our
approach, we provide the accuracy, precision, and recall results. For each sample,
our prefetcher predicts both LBA and I/O size in increments of 4KB blocks, as
the minimum block size for a drive operation in SSD is typically of 4KB size
[33]. We only count the actual blocks that are correctly prefetched. For each
data sample, we prefetch only the top predicted LBA and I/O size using the
prediction with the highest confidence. We used a batch size of 64, look back
of 64, and predict-ahead of 64 in this experiment. Each prefetcher has a cache
size of 1000 for this experiment. In the next section, we present a more detailed
analysis of the impact of cache size on the performances of the prefetchers.

As shown in Table 2, our proposed prefetcher consistently outperforms all
three baselines delivering up to 11× improvement over the stride prefetcher using
Microsoft SNIA traces with the same cache size. For VDI traces, our proposed
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Table 2. Performance comparison of our proposed prefetcher against baselines

Dataset
name

No. samples Naive
prefetcher

Stride
prefetcher

Markov
prefetcher

Our
(accuracy)

Our
(precision)

Our
(recall)

VDI 1 5226120 0.17 0.01 0.09 0.73 0.76 0.71

VDI 2 4443487 0.21 0.01 0.07 0.59 0.75 0.49

VDI 3 2902328 0.19 0.02 0.12 0.66 0.73 0.57

VDI 4 2408227 0.21 0.05 0.09 0.73 0.77 0.69

MSR 1 2244642 0.14 0.01 0.21 0.41 0.66 0.31

MSR 2 1211034 0.09 0.21 0.17 0.49 0.65 0.33

MSR 3 45746222 0.12 0.001 0.16 0.79 0.89 0.46

MSR 4 45283980 0.33 0.007 0.15 0.53 0.66 0.38

MS 1 1600430 0.27 0.02 0.25 0.63 0.79 0.53

MS 2 1714151 0.41 0.003 0.07 0.77 0.83 0.61

prefetcher achieves the highest accuracy, providing 800× improvement over the
stride prefetcher. Our prefetcher also achieved the highest precision and recall
compared to the baselines. The Markov chain based prefetcher performed con-
siderably worse compared to our prefetcher, with the accuracy ranging between
7% and 25%, performing even worse than the Naive prefetcher in several cases.

6.2 Impact of Cache Size, Look-Back, and Predict-Ahead

In this section, we present an analysis of the impact of look back, predict-ahead,
and cache size on our proposed prefetcher’s performance. In order to ensure the
availability of data in the cache when the data block is requested, we trained
the model to predict N steps ahead for varying values of N , and evaluated the
performance of the prefetcher. Higher values of N typically resulted in lower
accuracy due to the increased uncertainty in predicting further ahead in the
future, while improving timeliness. To improve our prefetcher’s predict-ahead
performance, we found that it is necessary to increase the look back size for
increasing values of PA, where, as described in Sect. 4.3, good values for PA are
in the range of 5 < PA < 100. Low values (< 5) of PA result in cache misses as
the data cannot be fetched soon enough, whereas higher values of PA (> 100)
result in untimely predictions as the data gets evicted before requested. Table 3
shows the performance of our prefetcher for different values of PA showing the
accuracy of predicting the LBA and I/O size, as well as the cache hit ratio (Net
Hit ratio). We measured accuracy as the actual number of 4KB data blocks that
were correctly prefetched for three different values of PA, 32, 64, and 128.

In general, the accuracy of predictions decreases as we predict further ahead,
producing the worst performance when predicting 128 samples ahead. For MS
SNIA traces, the performance was comparable for PA equal to 32 and 64, and
the accuracy degraded significantly for PA= 128, whereas for VDI and MSR
Cambridge traces, the performance degradation was gradual. These results show
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Table 3. Impact of different predict values on our prefetcher performance

Dataset Predict ahead = 32 Predict ahead = 64 Predict ahead = 128

Accuracy

(LBA)

Accuracy

(Size)

Net

hit

ratio

Accuracy

(LBA)

Accuracy

(Size)

Net

hit

ratio

Accuracy

(LBA)

Accuracy

(Size)

Net

hit

ratio

VDI 1 0.72 0.65 0.71 0.69 0.65 0.73 0.42 0.6 0.33

VDI 2 0.76 0.51 0.58 0.64 0.51 0.59 0.41 0.42 0.29

VDI 3 0.73 0.88 0.69 0.48 0.88 0.66 0.42 0.67 0.37

VDI 4 0.71 0.66 0.71 0.71 0.66 0.73 0.32 0.34 0.31

MSR 1 0.65 0.49 0.41 0.65 0.49 0.41 0.34 0.19 0.29

MSR 2 0.59 0.69 0.49 0.59 0.69 0.49 0.19 0.61 0.33

MSR 3 0.95 0.67 0.66 0.91 0.61 0.79 0.13 0.61 0.19

MSR 4 0.59 0.77 0.51 0.49 0.77 0.53 0.49 0.47 0.28

MS 1 0.93 0.67 0.61 0.93 0.52 0.63 0.62 0.52 0.49

MS 1 0.89 0.71 0.73 0.88 0.69 0.77 0.57 0.69 0.47

Table 4. Impact of cache size on the accuracy of our and two baseline prefetchers

Dataset

name

Cache size = 10 Cache size = 100 Cache size = 1000

Markov

prefetcher

Stride

prefetcher

Our

prefetcher

Markov

prefetcher

Stride

prefetcher

Our

prefetcher

Markov

Prefetcher

Stride

prefetcher

Our

prefetcher

VDI 1 0.05 0.001 0.68 0.05 0.001 0.69 0.09 0.011 0.73

VDI 2 0.05 0.0001 0.55 0.05 0.0001 0.55 0.07 0.0015 0.59

VDI 3 0.04 0.0001 0.64 0.04 0.0001 0.64 0.12 0.0014 0.66

VDI 4 0.01 0.006 0.7 0.01 0.006 0.71 0.09 0.005 0.73

MSR 1 0.12 0.00005 0.39 0.12 0.00005 0.39 0.21 0.0011 0.41

MSR 2 0.09 0.1 0.41 0.09 0.1 0.41 0.17 0.21 0.49

MSR 3 0.07 0.0002 0.75 0.07 0.0002 0.76 0.16 0.001 0.79

MSR 4 0.06 0.0005 0.51 0.06 0.0005 0.51 0.15 0.007 0.53

MS 1 0.16 0.004 0.57 0.16 0.004 0.57 0.25 0.02 0.63

MS 1 0.02 0.0003 0.71 0.02 0.0003 0.71 0.07 0.003 0.77

that our approach is successful in prefetching SSD accesses, as PA equal to 32 or
64 is generally sufficient to ensure timeliness in real-world settings. Nevertheless,
to support upcoming storage devices that support even higher request ratios,
reducing the inference latency and predicting even further ahead will be required.

Table 4 presents the impact of varying cache size on our prefetcher’s perfor-
mance. The table shows the accuracy of our approach compared to the Markov
and Stride prefetchers for cache sizes of 10, 100, and 1000 LBAs, respectively.
From the table, we can see that our prefetcher consistently outperforms the base-
lines for each cache size, and the performance improvement using VDI traces is
as high as 800× over the Stride prefetcher, and 8× over the Markov prefetcher.
While the baselines show marginal improvements using larger cache sizes, our
prefetcher benefits significantly from a larger cache size. This suggests that while
our prefetcher provides high accuracy and coverage, its timeliness can still be
improved. For a large cache, prefetched blocks remain in the cache for a longer
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Table 5. Performance of Address Mapping Learning (AML)

Similar source Dissimilar source

Source Trace MSR 3 MSR 1 MS 1 VDI 1 VDI 3 MSR 3 MS 1 VDI 4

Recipient Trace MSR 2 MSR 4 MS 2 VDI 2 VDI 4 VDI 3 VDI 1 MSR 2

Accuracy on Source Trace 0.95 0.63 0.93 0.75 0.87 0.92 0.92 0.82

Acuracy on Recipient Trace 0.59 0.59 0.87 0.72 0.75 0.75 0.75 0.72

AML Accuracy 0.37 0.39 0.84 0.52 0.47 0.31 0.22 0.35

time and hence, prefetching exactly at the time when the LBA is requested is
less important. Achieving perfect timeliness would require adjusting PA dynam-
ically, as the inter-arrival time between requests varies at runtime.

6.3 Evaluation of Address Mapping Learning

In this section, we evaluate whether our prefetcher can learn common patterns
among workloads to predict accesses for previously unseen workloads. In the
previous sections, we obtained the training and test datasets from different por-
tions of the same workload and the trace file. In this section, we define two
types of dataset sources. Similar sources are those where the training and test
data are from the same application, however, with different data inputs, dif-
ferent execution times, and only small run time modifications in applications.
Dissimilar sources are those where the training and test data are from com-
pletely different applications. Table 5 shows the prediction accuracy for different
types of sources. We show the accuracy of the model when it is trained and
tested on similar source traces, and also when it is trained and tested on the
dissimilar source traces. In Table 5, for our proposed AML technique, the model
is trained on the source trace and tested on the recipient trace. For instance,
when training on MS 1 and evaluating on MS 2 trace files, the accuracy of our
address mapping approach is 84% which is only 3% less than training and evalu-
ating both on MS 2 (fourth column). The overall effectiveness of AML depends
on the frequency distribution of LBA deltas in the two datasets. The results in
Table 5 show that our approach can be applied to diverse workloads, as long
as they share some similar characteristics. This increases the practicality of our
approach, as we can train specific models for various workloads, and expect at
least a moderate increase in performance for other workloads.

7 Related Work

Machine learning techniques have been applied to the prefetching problem in
multiple domains such as web caching [4] and memory prefetching [18,50]. While
previous work also utilized neural networks for determining prefetch candidates,
they operate on very different datasets, as DRAM accesses differ significantly
from I/O accesses. For instance, I/O accesses are not tagged with the source
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instruction for stream disambiguation, I/O accesses do not have a fixed size
[41] and, in contrast to I/O, memory accesses are not intercepted by the OS.
Prior work on SSD prefetching utilized algorithmic approaches, typically using
a data-range-table to detect usable strides and memory access streams [23].
Several variations of stride prefetchers have been proposed [20,25] taking into
account the spatial locality [20], feedback [40], and context [8]. However, as we
showed in this work, algorithm based prefetchers do not perform well on real
world applications due to their limited ability to learn complex patterns. The
only prior research we are aware of that applies machine learning for prefetching
in SSDs is based on Markov chains [26,48], which we used as a baseline in this
work. Finally, machine learning techniques have been applied to improve SSDs
in other ways, for instance, by optimizing garbage collection [45], for predicting
device failures [21,37], for improving SSD virtualization [13], for managing SSDs
in large clusters [28], and for improving the quality of service of SSDs [10]. These
prior works are orthogonal to our work.

8 Conclusion

In this paper, we showed how to leverage neural network models to predict
future storage I/O accesses to improve SSD performance via prefetching. We
addressed several challenges such as the large and sparse logical block address
space, ensuring timeliness of prefetching, predicting both the address and size of
I/O accesses, as well as the challenge of training predictive models that can gen-
eralize across different workloads. We achieved generalization across workloads
by leveraging a large set of real world cloud application traces. We compared the
performance of our prefetcher to existing techniques and used an in-house sim-
ulator developed to test the accuracy, coverage, and timeliness of our proposed
prefetcher. Our proposed model outperforms prior approaches such as the stride
prefetcher by up to 800× and Markov chain based prefetcher by up to 8×.
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Abstract. Electrical power networks are heavily monitored systems,
requiring operators to perform intricate information synthesis before
understanding the underlying network state. Our study aims at help-
ing this synthesis step by automatically creating features from the sen-
sor data. We propose a supervised feature extraction approach using
a grammar-guided evolution, which outputs interpretable and dimen-
sionally consistent features. Operations restrictions on dimensions are
introduced in the learning process through context-free grammars. They
ensure coherence with physical laws, dimensional-consistency, and also
introduce technical expertise in the created features. We compare our
approach to other state-of-the-art feature extraction methods on a real
dataset taken from the French electrical network sensors.

Keywords: Grammar-Guided Genetic Programming (GGGP) ·
Supervised learning · Feature extraction · Interpretability · Electrical
power system

1 Introduction

Electric transmission power grids are large complex systems monitored and oper-
ated in real-time, 24/7, by highly trained control room operators (also called
dispatchers). Their task is mainly to ensure that the overall system, critical in
modern societies, remains in a secure state at all times to conduct electricity
from producers to consumers. In particular, they watch over the electrical flow
on each line to keep it under its thermal limit ; a physical threshold above which a
short-circuit could happen, risking for the safety of property and people nearby.
To accomplish this monitoring, a large number of sensors placed throughout
the electrical network provide them measurements relayed by a large number of
screens in the control room. From these measurements, operators continuously
perform information synthesis to prepare their strategy upstream and plan pre-
ventive actions (mainly changing the network topology) to redirect the power
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flow before it reaches its limit. However, even if their ability to run the power
system is well established, highlighted by the absolute absence of any signifi-
cant blackout recently, Transmission System Operators (TSO) have noticed a
steep rise in the complexity of real-time operations [8]. This trend is mainly
linked to market dynamics, increased renewable energy sources connected to the
grid, and the development of electrical interconnections with other European
countries. As a consequence, power lines are operated closer to their thermal
limit, and dispatchers have to go through their decision-making process faster
to keep time to handle more critical situations. Today, the information synthe-
sis step is computer-assisted by some hand-crafted aggregation indicators and
computationally massive simulations calculated from the network measurements.
Historically created by operators with the use of their expert knowledge, these
few indicators aren’t exhaustive and can not confirm the safety of all situations
regarding electrical flows. Also, these indicators might need to be revised more
frequently than they are now, given the system’s current dynamics (e.g., newly
installed renewable power plants or cross-border flow thresholds adjusted by the
markets). Besides, the simulations are quite long to compute and cannot cover
all possible forecasts of the future. Consequently, operators still perform some
parts of this information synthesis by themselves using their knowledge of the
system and the outputs of the simulations to synthesize measurements, results,
and information about the connection of the lines in the grid.

A recent study on the French electrical transmission power system [31] pro-
posed an exploratory dimensionality-reduction method, to identify interactively
some factors influencing atypical consumption behaviors. In this experiment,
knowledge was introduced by conditioning autoencoder with input features
experts thought to be causing the output behavior. As in our application data
is given with different physical dimensions such as voltage and active power
and needs to respect physical properties, we were interested in finding ways to
inject a different kind of knowledge coming from the field of physics (Ohm’s law
for example). Therefore, the aim of our work is to propose an automatic fea-
ture extraction method to explain electrical flow with physically consistent and
intelligible indicators created from sensor data. From this point on, dispatchers
could directly then use these indicators as a surrogate of the status of the power
network zone they look after.

In this context, we investigate how to perform feature extraction with expert
constraints for power line flow explanation, by creating relevant and potentially
non-linear combinations of features from the initial dataset. The proposed app-
roach relies on Grammar-Guided Genetic Programming [34], often abbreviated
as GGGP (or G3P), to extract human-readable combinations of features. Our
contribution is twofold. First, we propose a feature creation method which inte-
grates domain-knowledge from power system experts using a context-free gram-
mar build interactively with them. More specifically, this grammar includes some
physical properties of electrical systems and prevents from using worthless com-
bination operators, which helps reduce the search space. Finally, the created
features are analyzed by a human expert who provides insights on what is
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correct and what would be expected from operators. The second contribution
presented in the experiments is the interpretability evaluation of the outputs.
Following the terminology used by Doshi-Velez and Kim in [9], we performed
both “Functionally-Grounded” and “Human-Grounded” evaluations of the pro-
posed approach by comparing it to other interpretable state-of-the-art meth-
ods and give created feature for expert analysis. In this paper, we also use a
correlation-based optimization objective as a metric to evaluate individuals. We
compare this metric to distance-based metric Mean Squared Error (MSE) to
detail why both metrics can’t be used equivalently. Throughout this article, we
use the real-world dataset created from measurements of the French power grid,
from January 2014 to December 2018 at 5-min intervals.

This paper is organized as follows. Section 2 summarizes related works on
the topics of feature extraction, interpretability, and Grammar-Guided Genetic
Programming. Then, Sect. 3 details the data used to develop our method. In
Sect. 4, we described the proposed approach. The experimental evaluations and
their results are presented in Sect. 5, and finally, Sect. 6 concludes this paper and
introduces some future works.

2 Related Works

2.1 Feature Extraction

Real-world applications often produce data in a very high-dimensional space
[25], but they are very sparse, redundant, and their underlying structure is often
representable in a much lower dimension. In this context, dimensionality reduc-
tion (DR) techniques can be of great support to visualize data or improve a
classifier performance [49] and are even used for data compression [6]. Thus, DR
is an important preprocessing step in many machine learning pipelines. More
formally, DR can be defined as the set of techniques taking inputs X with a high
number of features D, and mapping it to a reduced set of features X ′ with size d,
such as d << D while retaining as much information from the original structure
as possible. Exhaustive reviews on this topic can be found in [17,27,47].

DR is mainly done using two types of approaches: feature selection or fea-
ture extraction (also called sometimes feature transformation, augmentation,
or creation). While feature selection only selects the most informative features
from the dataset, feature extraction tries to effectively combine features from the
original dataset to produce more expressive ones. Among the feature extraction
methods, another distinction can be made between linear and non-linear meth-
ods (also called manifold-learning methods). Linear methods have been used
for a long time. They include methods such as Principal Component Analysis
(PCA) [16] which finds axis by variance maximization, Laplacian Eigenmaps
[3], Non-Negative Matrix Factorisation [24] or Locally Linear Embedding (LLE)
[36]. PCA has the advantage of providing quite interpretable results using the
selected principal components [48]. However, in many cases, the data structures
are too complex, and linear mappings cannot retain enough information from
the initial feature space. In this context, non-linear mappings are considered



Interpretable Dimensionally-Consistent Feature Extraction 447

to represent the original data as closely as possible. Among non-linear algo-
rithms, Isomap [46] is one of the widely used methods. Other methods include
Kernel PCA [43] (non-linear extension of PCA), t-SNE [30] or UMAP [33] two
dimensionality-reduction methods for data visualization, or deep learning meth-
ods such as Variational Autoencoders [18] or Conditional Autoencoders [45].

However, these DR methods were initially presented in an unsupervised set-
ting and did not use any supervision scheme. This element is an issue in our
application, as they can’t take into account the valuable knowledge of available
target values. More recent works focus either on how to extend classical methods
to supervised configurations (supervised-LE) [38] or on how to take advantage of
some target features to structure the new feature space: for example by integrat-
ing an additional optimization objective (i.e., as second loss term in the neural
network [28]) or producing multiple transformations one for each class.

2.2 Interpretability

One of the recurring concerns about DR is the lack of interpretability of the
axes in the feature space. As we discussed above, linear methods are often con-
sidered as interpretable (even when they add up different dimensions), but it is
not the case for non-linear ones. It has been observed that many DR methods
construct the new feature space “upon arbitrary combinations of many uncorre-
lated physical dimensions” [15], leading to the non-usability in many industrial
processes. Some promising works propose interpretable DR methods based on
kernel dimensionality reduction [15,50], which are able to project the embedding
dimensions on the label-space to make interpretations.

In the supervised machine learning community, the interpretability of the
results is a key challenge to improve the user trust and acceptation of the cre-
ated model, and the proposed results. The existing interpretability methods are
roughly divided into two categories: interpretable models and post-hoc inter-
pretability. Interpretable models include Linear Regression, Decision Trees [5],
Generalized Additive Models [13], or Rule Fit [12]. They produce interpretable
outputs, but they are often considered as sub-optimal regarding complex classi-
fication or regression tasks. On the other side, post-hoc interpretability is often
used for more complex models which produce more accurate results such as Deep
Neural Networks. This problem is called the accuracy-interpretability trade-off
[4]. With the omnipresence of deep learning models, several works focus today
on the post-hoc interpretation of models using model-agnostic methods such as
LIME (Local Interpretable Model agnostic Explanations) [40] or model-specific
ones SHAP (SHapley Additive exPlanations) [29].

However, recent works by Laugel et al. [23] warns about the “risk of having
explanations that are a result of some artifacts learned by the model instead
of actual knowledge from the data”. They also suggest that further research
needs to be done to provide satisfying post-hoc explanations, both faithful to
the predictor and to ground-truth data. Rudin et al. [41] rather suggests to start
with interpretable models and only shift to black-box models if no sufficient
solution has been found. They also suggest asking for strong explanations of the
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created models. Interpretability is therefore increasingly required, whether for
safety, fairness, specification issues, or scientific understanding. However, there
is no complete consensus for now about how to define and how to evaluate inter-
pretability. To answer this problem, Doshi-Velez and Kim [9] proposed a three-
level evaluation: the first one is an “Application-grounded” evaluation where
humans evaluate interpretability on an exact application task; the second, called
“Human-grounded”, uses a similarly applied evaluation but on a simpler task;
finally, the “Functionaly-grounded” category uses an even simpler evaluation on
a simple task and involves no human. This final category assesses, for exam-
ple, multiple interpretable algorithms on the same metric to identify which one
performs best. We’ll detail interactivity in our experiment using this taxonomy.

2.3 Grammar-Guided Genetic Programming

Recently there has been new application perspectives for Genetic Programming
(GP) regarding the increasing need for interpretable results. GP was for example
used to provide interpretable policies in reinforcement learning [14], to learn
manifolds [25], to create visualizations [26] or to explain complex deep learning
models [10]. For dimensionality reduction tasks, GP has also been used a lot as
a feature construction method [35]. It presents some advantages in comparison
with other methods presented in Sect. 2.1. As identified in [25]:

– they try building a global learner unlike local methods such as t-SNE [30],
– they do not require a differentiable fitness function (unlike Autoencoders)

and thus can be used with a great variety of objective functions,
– they intrinsically produce an interpretable mapping.

Genetic programming was initially introduced by Koza [20,21], who identified
that many problems could be reformulated as program induction. Unlike Genetic
Algorithms, which evolves a population of fixed-length binary vector, GP evolves
a population of programs represented as trees. Each tree consists of a combination
of initial features using several operations taken in a list of allowed functions (e.g.,
+, −, ×, %). Initial features are represented in leaves and functions in nodes.

Nowadays, there are many different variants and implementations of GP for
program creation. The three major ones are the following : the first and most
classical approach, tree-like GP; the second Linear GP [2] represents programs
as linear sequences to perform imperative program evolution; the third is gram-
matical evolution [42], where the representation language uses a Backus Naur
Form grammar [19] and programs-trees are derived from this grammar.

As in some cases, the search space in GP may be too large, thus preventing
the algorithm from converging, some alternatives have been proposed among
grammatical evolution strategies. For example, in Grammar-Guided Genetic
Programming (GGGP) [22], the search space is constrained by a set of rules
to create features. These rules are defined using grammar written in Backus-
Naur Form (BNF) [19] as the one provided in Fig. 1. A comprehensive review of
Grammar-Guided Genetic Programming can be found in [34]. GGGP has been
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identified as a way to enforce expert domain knowledge into the learning pro-
cedure [39] using ontologies. For instance, it has been used as a way to impose
constraints on the dimensions of variables in a classification problem [7]. This is
what led us to consider this method to find explanatory variables.

3 Data Description

The electrical power network can be represented as a graph G = (N,L) with a
set of nodes N and lines L. Lines represent here electrical transmission power
lines, and nodes are the locations where lines can be physically connected. Mea-
surements are acquired in nodes and line extremities. In each node n ∈ N
the observed quantities are active power pn and reactive power qn while for
a line l measures contain information about the line connection connectedorl ,
connectedexl and also an neighbor idl key corresponding to the list of neighbor-
ing lines at this timestep.

Using these measurements as inputs, simulations can be done to estimate
voltage magnitude vn and angle θn in nodes n ∈ N using Netwon-Raphson
based power-flow analysis [44] and eventually compute flow values at each line
extremities (with origin or and extremity ex), iorl and iexl , ∀l ∈ L. In our case,
a solver computes these quantities for each timestep. In the rest of this article,
flow values iorl and iexl will constitute the output of our different methods and
experiments. We can thus consider the studied system as a closed system without
time dependency as the target features ior,exl provided by our simulator only
depends on measures and expert hyperparameters setting used to calibrate the
power-flow calculus.

First, we exhaustively describe the graph with variables reflecting the differ-
ent electrical links (connectedor,exl a boolean representing the connection of line
l at its origin or its extremity, and neighbor idl an id used as a key to represent
all lines electrically connected to line l). We move the measured variables from
the nodes of the graph to each origin/end of the line connected to this node.
Although this representation implies redundancy in the data, we can now rea-
son only in terms of power lines and forget about nodes objects. From now on,
we’ll refer to measured and simulated variables by X = (Xl)l∈L and target flow
variables y = (yl)l∈L where:

∀l ∈ L,Xl = ((p, q, v, θ)n or(l),n ex(l), connectedor,exl , neighbor idl)
yl = (iorl , iexl )

In our case, we focus on the network operated by the French TSO called
Rte (Réseau de Transport d’Electricité). The French power grid as a whole is
a very complex system, with up to 6500 nodes, 12000 power lines, and many
interactions both with other European networks and within it. A common app-
roach, to control how these interactions influence studies of the grid, is to divide
into sub-zones within which the elements have a high-mutual influence on each
other [32]. This approach, historically done by TSOs, allows several operators to
work simultaneously on separated zones of an acceptable size they can control.
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Thus, we focus on a specific mountainous valley where the escarpment intrinsi-
cally constrains interactions with the rest of the network. This selection restricts
the study perimeter to 69 nodes and 92 lines, where 9 lines connect the zone
with other parts of the network. By collecting measurements from January 2014
to December 2018, we obtained 365 165 timestep observations and target flow
variables.

4 Proposed Approach

As explained in the introduction, we are interested in finding “explanations”
about flow variable yl, ∀l ∈ L. More formally, given a set of observed features
X ∈ R

D, we want to extract relevant and potentially non-linear combinations
of these features ∀l ∈ L,Xprime

l ∈ R
d with d << D and so that Xl is relevant

to explain yl. We chose to focus on Grammar-Guided Genetic Programming
(GGGP) methods to propose a custom grammar for electrical data and a new
correlation-based metric.

4.1 Grammar Description

Grammar construction plays a crucial role in GGGP methods as it defines the
search rules in the feature space: a too-loose grammar would have a too-wide
space to search, while a too-constraint grammar would be limited to sub-relevant
zones. For the sake of comprehension, we provide a simplified version of our gram-
mar in Fig. 1. The complete version of the grammar uses all features described
in Sect. 3 including topological variables, and a wider variety of functions on
each dimension. The grammar is iteratively constructed with experts-in-the-loop
withdrawing or adding constraints such as new variables or new operations.

Dimensions Definition. Firstly, we need to define the dimensions the grammar
can handle. The physical dimensions taken into account in this grammar can
either be active power p (with dimension : watt W), reactive power q (volt-
ampere reactive VAR), apparent power s (volt-ampere VA), voltage magnitude
v (voltage V) or intensity i (ampere A). From there, we can define the square of
all dimensions: p2, for example, is the squared value of p with dimension W2.

Grammar Structure. The first step to build a grammar is to define the output
structure, here <expr>. The output can be one of the elements separated by the
character “|”. This formulation allows to enforce expert knowledge on the output
dimension. In this example, <expr> can be of dimension q, p2, q2 or v2.

The second step is to impose the dimensional consistency of the output vari-
able, by defining which operations can be performed on each dimension and how
to combine two dimensions. To jump from one dimension to the next, laws of
physics such as the power triangle s =

√
p2 + q2 or some variation of Ohm’s law

i = s
v have been expressed in the grammar. Input variables are defined here using
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# 1) Create unitary expressions (allowed returned dimensions)
<expr> ::= <p> | <s> | <i> | <f> * <expr> | <p>/<v>
# 2) Define legal operations on each dimension
<p> ::= <p>-<p> | <pop>(<p>, <p>) | <sop>(<p>) | <p_var>
<q> ::= <q>-<q> | <pop>(<q>, <q>) | <sop>(<q>) | <q_var>
<v> ::= <v>-<v> | <pop>(<v>, <v>) | <sop>(<v>) | <v_var>
<p2> ::= <p>*<p> | square(<p>)
<q2> ::= <q>*<q> | square(<q>)
<s> ::= sqrt(<p2> + <q2>) |<v> * <i>
<i> ::= <s>/<v> | <pop>(<i>,<i>) | <sop>(<i>) | <i_frontier_var>
<f> ::= <f>*<f> | <p>/<p> | <q>/<q> | <v>/<v>
# 3) Define operations returning variable with the same dimension
<pop>::= sum | minimum | maximum # Functions with two arguments
<sop>::= abs | neg | pos # Functions with only one argument

Fig. 1. Grammar example. “|” represents separation between each possibility of
replacement of the element located at the beginning of the line, before “::=”. Input
variables are <p var> <q var>, <v var> and <i frontier var>.

observations <p var>, <q var>, <v var>, and <i frontier var> (i frontier cor-
responding to the flow for 9 cross-border lines to model interactions with outside
the zone) with corresponding dimension p, q, v, i. They can be combined to pro-
duce a new variable with either the same dimension (for example <p> - <p>
produces a new variable with dimension p), or a different dimension (<p>/<p>
has no dimension while square(<p>) has dimension p2).

Finally, we define licit operations to perform on a single or a pair of variables,
which are repeated for almost all dimensions.

4.2 Methodology Description

We base our method on GGGP algorithms and introduce human-experts in the
grammar construction process. First, as in GGGP methods, we use a population-
based search on the space by performing multiple times operations (selection,
crossover, mutation) on a group of individuals, as described in Algorithm1. The
particularity of GGGP methods is to ensure individuals are still consistent with
grammar rules after each crossover and mutation operation. In order to select the
parents of the next generation, the performance of each individual in the current
generation is assessed using an optimization objective (called fitness function).
The algorithm stops either when reaching the maximum number of iterations or
when a tree-program has a higher score than a satisfaction threshold.

To constrain the search space, we asked operators to look at the variables
created by the algorithm, to extract relevant characteristics from them and to
propose new grammatical rules. These iterations allowed us to create the gram-
mar described above.

4.3 Objective Function

We use the absolute value of the correlation coefficient r as a measure of
the efficiency of each individual. This measure, based on the linear Pearson
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Algorithm 1: Interactive Evolutionary Search Algorithm
input : observations X, target y
grammar ← initialize grammar()
while operator not satisfied do

population ← create population(grammar)
evolutionary search condition not met ← True
while evolutionary search condition not met do

parents, best individual ← parents selection(population, X, y)
offspring ← crossover(parents)
offspring ← mutation(offspring)
population ← replacement(population, offspring)
evolutionary search condition not met ← test conditions(best individual)

grammar ← operator grammar update(grammar)

return grammar, best individual

correlation, lies between 0 and 1, where a r value of 1 indicates that the pre-
dictions yhat perfectly matches the behavior of the target y. While the linear
correlation coefficient mainly measures the strength of the linear relationship
between two variables, it also has a clear advantage to be able to compare the
behavior of two variables which range on different scales.

This measure seems particularly well suited in this particular case because we
are not interested here in predicting the exact flow value but rather to understand
the global underlying relationship between input variables X and flow output y.
Moreover, from an operator viewpoint, it is as interesting to look at one feature
F as its rescaled value 10×F . To understand the advantages of using this metric,
we also compare it to the distance-based metric Mean Squared Error (MSE).

5 Experiments

5.1 Target Selection

As we are only interested in analyzing flows y on sensitive lines, we first selected
a subset of all 92 lines on which we’ll perform feature extraction. This preprocess-
ing step ensures that we won’t look at residual information or negligible effects
on the target. To do so, we identified which are the most frequently loaded lines
by selecting the ones above a designated percentage percent i threshold (100,
90, 80, and 70%) of the line thermal limit i threshold during a percentage of
total time percent time (0.05 or 0.1%). The final target selection is defined as the
union of lines identified as loaded by one of each combination of hyperparameters
(percent i threshold, percent time). Using this method, we detected 24 lines.

5.2 Settings

Experimental Protocol. For each line identified as sensitive, with a corre-
sponding target flow y, we now search for a tree-like variable to represent it. We
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evolve a large population of 2 000 individuals over 200 generations by following
the grammatical rules defined above. A large population is proved necessary due
to the high number of constraints defined in the grammar. The initial dataset
containing 365 165 observations is split following a 80/20% ratio between the
train and test sets. Each line feature search is launched 30 times with random
population initialization, and only the top features are kept for manual inspec-
tion. All hyperparameters are provided in Table 1 for reproducibility, and were
selected during preliminary cross-validation experiments.

Table 1. Evolutionary parameters chosen for the experiment.

Parameter Setting

Generation 200

Population size 2000

Initialization PI Grow with max initial depth 10

Selection Tournament with a size of 2

Crossover Type variable one point (0.9 probability)

Mutation Type int flip per codon (0.1 probability)

Elitisme Top 10

Replacement Generational

Fitness Absolute Pearson correlation or MSE

For the two fitness metrics (correlation and MSE) in both experiments, we
insert an additive regularization term, relative to the depth of the feature-tree:
individual depth. The depth is the maximum number of nodes in the feature
from the root to any leaf. This constraint aims at preventing the tree size explo-
sion (called bloating phenomenon) [37] and is slightly weighted to only remove
redundant nodes without constraining the search-space too much. Eventually our
fitness function is: fitness = selected_metric + 10−8 * individual depth.

Implementation. To take advantage of their parallelized implementation, we
used the open-source implementation of GE in Python PonyGE2 [11] as back-
bone code. We inserted correlation-based error-metrics, a specialized data pro-
cessing, custom evolutionary step, and the full grammar tailored to our problem.

5.3 Results

Experiment 1 :MetricsComparison. In this first experiment, we conduct two
parallel trials, where we only vary the fitness metric used to evolve and assess the
top-individuals performance line per line. Our objective is to identify the adequate
fitness to our problem, choosing between distance-based methods such as Mean
Squared Error (MSE) and correlation-based methods such as absolute Pearson
correlation. Obtained results on the test set are summarized in Figs. 2 and 3.
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Fig. 2. Comparison of two evolution strategies, either using MSE (in blue) or Pearson
Correlation (in orange) as fitness on 30 runs. Each boxplot summarizes the log-MSE
scores for each line’s best individuals (i.e., for each run, the one with the highest fitness
score at the end of the evolution). Figures are best seen in color. (Color figure online)

Fig. 3. Comparison of two evolution strategies on the same 30 runs presented in Fig. 2.
Each boxplot now represents the absolute Pearson Correlation score for the best indi-
viduals of each line. Individuals compared in Figs. 2 and 3 are identical.

Figure 2 details the results of the two trials (MSE or Pearson as fitness) for
30 runs and compares them using MSE metric on a log-scale. In this Figure,
two boxplots are associated to each line. They are placed on each side of a ver-
tical dotted line: on the left the blue boxplot corresponds to the top-individuals
evolved with MSE fitness ; on the right an orange boxplot contains scores
of correlation-based evolutions. Similarly, Fig. 3 compares the same two trials
regarding the absolute value of the Pearson correlation of the top-individual.

By comparing power line per power line the correlation-based and distance-
based evolutions using correlation (Fig. 3) and MSE (Fig. 2) metrics, we identify
that the two evolutions produce contrastive individuals, with top MSE-fitness
individuals usually performing far worse than correlation-fitness individuals on
the Pearson correlation scale (and conversely on the log-MSE scale). Except for
few lines, where both fitness metrics performed well (ex. lines 3 and 15 on a
log-MSE scale, 15 and 17 on correlation scale which have close scores whatever
the evolution fitness metric), the 2 metrics seem to explore the feature space
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in opposite directions and can’t be used equivalently. Moreover, when analyzing
the features produced using MSE fitness, we identify that they tend to select
combinations of features preferentially from the initial dataset with value ranges
similar to the target one (although their behavior is different). Unlike individ-
uals created with the correlation fitness, features obtained with MSE fitness
wouldn’t have a physical/technical interest and would mainly use the feature
with intensity variables i. This point is critical to use distance-based fitness
metrics because we can’t normalize our data to have similar ranges as it would
result in the impossibility to respect physical laws. For example, after normal-
izing each input features independantly, Kirchhoff’s circuit laws don’t apply
anymore. Based on these observations, the only acceptable strategy is then to
use fitness-based metrics such as Pearson correlation.

Regarding the outputted features, this first experiment also identified that
we couldn’t have constructed fewer features than the number of lines without
loosing in performance, because extracted variables are very different from one
line to another.

Experiment 2: Comparison to Other Methods. In the second experiment,
we compare individuals from experiment 1 (obtained through evolution with a
correlation-based fitness) with the output of algorithms such as LASSO Lars
with Bayes Information criterion (Lasso Lars-BIC) [51], depth-3 Decision Tree
[5]. These algorithms were selected because of their capacity to give outputs
with a comparable level of interpretability, thus falling under the “Functionally-
grounded” evaluation [9]. We also show the most correlated feature from the
original dataset as a baseline. The obtained results are presented in Fig. 4. In
this figure, the results associated with each line are displayed along a dotted
vertical line and labeled at the bottom by their corresponding line name. Thus,
for line 24 on the right, we have from the bottom to the top: the most correlated
feature from the initial dataset (marked by a red star); the correlation to Lasso
Lars-AIC output (pink rectangle); the correlation to a Decision Tree output
(blue diamond) and the boxplot of our GGGP method (orange box).

Fig. 4. Comparison between GGGP and state-of-the-art-algorithms. (Color figure
online)
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As presented in Fig. 4, all GGGP outputs have a higher correlation to the
target than features from the initial dataset. Furthermore, by looking at only
at boxplots, we identify that only 3 out of 24 highest values in boxplots were
under the 0.7 threshold, under which correlation is usually not considered strong
enough for the feature to be significant. We finally compare our approach in
terms of correlation with partially interpretable ones such as Lasso Lars or a
depth-constrained Decision Tree. From these experiments, we can highlight that
GGGP outputs with significant correlation are at least as highly and sometimes
even more correlated to the target than outputs from other methods. In the next
paragraph, we’ll look in detail at the produced combination categories.

Human-Expert Output Analysis and Pieces of Advice. Eventually, the
relevance of top features obtained with GGGP-method is technically assessed
by power system experts to identify whether the obtained formulas are con-
clusive from a technical and physical perspective, could be useful to operators,
and would make sense to them. This experiment aims at confirming outputs
interpretability from a human perspective by performing a “Human-Grounded”
evaluation [9]. The first conclusions are that all features above a 0.8 correlation
are relevant even if some of them could be improved. Thus, 0.8 could then be
used as an acceptation threshold below which features created would be rejected.
Indeed, extracted features with a very high score (above 0.9) show a small dis-
crepancy between runs and could be useful as-is. However, for features under 0.8,
experts would have found it interesting to intervene during the learning process
by removing, replacing, or adding nodes or leaves in the evolved trees to increase
their score. Uncovering the literal expression of features, we identify groups of
features with intriguing expert interpretations:

– some features are variations around the expression
√

p2 + q2 (such as
√

p2+q2

v

or
√

(p1 + p2)2 + (q1 + q2)2)
– some others are the sum, minimum or maximum of a list of active powers,

tweaked using absolute value, positive or negative parts. In some cases, these
non-linearities are also found useful to tackle outliers coming from sensor or
simulation errors.

– few features are also an aggregation (sum or difference) of cross-border flows
(ex. i frontier1 − abs(i frontier2)). These combinations would tell us that
the corresponding target line is more sensitive to a global phenomenon than
other lines. It could allow to identify which lines are sensitive to a high flow
coming inside or leaving the zone.

– using a specific grammar version, some of those features could even include
multiple features combined using graph topology as conditions, such as :

if{line_1 is connected} then{monitor gggp_feature_1}
else{monitor gggp_feature_2}
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6 Conclusion and Future Works

We have shown that the proposed interactive GGGP method achieved promising
results on interpretable feature extraction. We marked the first milestone with
first the production and then both qualitative and quantitative validation of a
custom context-free grammar, which could interactively include some power sys-
tem knowledge. Our experiments also provide some insights on the interpretabil-
ity of our method from “Human-Grounded” and “Functionally-Grounded” [9]
perspectives. By introducing expertise and physical properties in the grammar
rules, we obtained explainable features. Some of them were also found relevant
enough by power system operators to be included in hyper-vision tools. However,
a few target features were still tricky to handle with only one dimension. Indeed,
for these few lines, a 1D-manifold is surely too restrictive, and we envision that
building a multi-dimensional space could highly increase the representativity
of the reduced space. We also identified the use of Probabilistic Grammars to
enhance more precise space exploration.

Moreover, as these new features are made to be used by operators, the very
next step will be to introduce interactivity with non-machine-learning experts,
directly inside evolutionary runs [1]. We would allow them to provide insights
and technical information that could significantly help to create more insightful
representation: either selecting/removing individuals, inforcing constraints on
the search space by iteratively changing the grammar over the generations.

Undergoing works also focus now on applying the same method to a wider
geographical zone only on high voltage power lines (low voltage power lines
modeled as aggregated consumptions). This perspective brings us closer to per-
forming an “Application-Grounded” evaluation of our method with humans on a
more complex task. Eventually, to release reproducible results on power systems
test cases and open-source our code, we plan to use the open-source framework
Grid2Op1 developed to test machine learning strategies for power grid opera-
tions.
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Abstract. An essential task in predictive maintenance is the prediction
of the Remaining Useful Life (RUL) through the analysis of multivari-
ate time series. Using the sliding window method, Convolutional Neu-
ral Network (CNN) and conventional Recurrent Neural Network (RNN)
approaches have produced impressive results on this matter, due to their
ability to learn optimized features. However, sequence information is only
partially modeled by CNN approaches. Due to the flatten mechanism in
conventional RNNs, like Long Short Term Memories (LSTM), the tem-
poral information within the window is not fully preserved. To exploit the
multi-level temporal information, many approaches are proposed which
combine CNN and RNN models. In this work, we propose a new LSTM
variant called embedded convolutional LSTM (ECLSTM). In ECLSTM
a group of different 1D convolutions is embedded into the LSTM struc-
ture. Through this, the temporal information is preserved between and
within windows. Since the hyper-parameters of models require careful
tuning, we also propose an automated prediction framework based on
the Bayesian optimization with hyperband optimizer, which allows for
efficient optimization of the network architecture. Finally, we show the
superiority of our proposed ECLSTM approach over the state-of-the-art
approaches on several widely used benchmark data sets for RUL Esti-
mation.

Keywords: Multivariate time series prediction · Remaining useful
life · Predictive maintenance · Embedded convolutional LSTM

1 Introduction

As system complexity and efficiency requirements continue to increase, the strat-
egy of machine maintenance has changed. Where in the past, breakdown correc-
tive maintenance or scheduled preventive maintenance was the standard, now,
more intelligent approaches, like predictive maintenance (PM), are strived for.
Unlike previous maintenance strategies, PM uses the machine’s historical time
series sensor data to evaluate the condition. The goal is to proactively main-
tain the machines before failures occur and therefore minimize down-times. One
c© Springer Nature Switzerland AG 2021
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critical part of PM is the estimation of the remaining useful life (RUL). By quan-
tifying the remaining time until a component loses functionality, downtimes and
costs of premature maintenance can be avoided by replacing only components
that will fail soon.

Over the past decade, deep learning (DL) has achieved remarkable results
in this task. By reviewing the related works, we found that there are still some
challenges.

– Temporal information preservation and utilization in state-of-the-art algo-
rithms: Recently, researchers focused mainly on constructing various types
of neural networks for RUL. However, we found that in many works, the
flatten mechanism (layer) is applied. This obfuscates temporal information
and potentially leads to under-utilization (This will be further explained in
the Sect. 2). While recent works, such as [18,27], build complex structures to
fully preserve and utilize this information, they are often not usable for RUL
estimation because of the high model complexity.

– Flexibility: As RUL estimation is used for various components with differ-
ent degradation patterns, such as lithium batteries [17], Rolling Bearing [1]
and complex power generation systems [9], experts have designed special-
ized deep learning model structures and often employed task-specific feature
engineering. However, the design of the model architecture and the setting
of hyper-parameters may be challenging for non-experts. Thus a universal
automatic prediction framework is of huge benefit for practical applications.

To preserve and exploit the multi-level temporal information, we design a
novel LSTM variant called embedded convolutional LSTM (ECLSTM). Instead
of prepending a convolutional layer, it allows inputs of each time step to be
2-dimensional or 3-dimensional. The convolution can make full use of local tem-
poral information and the complexity of the model does not depend on the size
of the window but only the width of the kernel. In order to address the difficulty
of setting the hyper-parameters of the model, we propose an automatic deep
learning framework for RUL estimation. In the framework, we apply stacked
ECLSTM as the backbone to extract features. By using Bayesian Optimiza-
tion and Hyperband (BOHB) [7], this framework can automatically adapt all
hyper-parameters involving in the whole data analysis pipeline without expert
knowledge. We validate the performance of our approach on a number of real-
world public RUL data sets. The results show, that the proposed ECLSTM has
a superior prediction ability over competing state-of-the-art approaches.

2 Related Work

The methods of RUL estimation can be roughly categorized into model-based
methods and data-driven methods. Deriving a model-based method is difficult,
as it requires an accurate understanding of the underlying physical phenomena.
Data-driven methods, on the other hand, model the degradation characteris-
tic based on historical sensor data. Among the data-driven methods, DL-based
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Fig. 1. The sliding window method to turn a multivariate time series data into a
supervised learning problem (top). Features in each labeled window are sequentially
fed into the (unrolled) LSTM (bottom right).

approaches attract the most attention due to their ability to learn task-specific
features from time series.

In order to train DL models, the time series problem is reframed as a super-
vised regression problem using the sliding window method (see Fig. 1). Time
series data is segmented into overlapping, fixed-length sequences where each
sequence is assigned a label (the RUL). In RUL estimation tasks, the aim is to
predict the corresponding RUL at a given point in time.

In order to predict the RUL, early works applied simple RNNs [11]. However,
to address the problem of learning long-term time dependencies in RNN, LSTM
models [23,25] consume the values at each point in time sequentially. In order
to provide more context and enhance the feature extraction, the sliding window
method (see Fig. 1) can be used [26]. Here, all values in the window are fully
connected to an LSTM layer. Due to the fully connected layer in the LSTM
(FCLSTM), the input of each time step must be one-dimensional, so that tem-
poral and feature structure need to be projected (see Fig. 2). Furthermore, the
model complexity (number of weights) increases linearly with the window size,
which is unfavorable.
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Flatten according to feature dimension

Flatten according to time dimension

Sliding Window Convolutional Kernel

Fig. 2. Multiple features (shapes) at multiple sampling times (colors) within one win-
dow must be flattened into a 1D vector for LSTM input destroying the natural sequence.
Alternatively, a convolutional kernel can be applied to aggregate local information.
(Color figure online)
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Alternatively Convolutional Neural Network (CNN) based methods [3,20],
however, they can not perceive temporal patterns exceeding the window size.
Therefore, in order to combine the strengths of shared weights in CNNs with an
additional long term memory capability, [15,21] combined LSTMs and CNNs.
In such architectures, the flattening problem persists. Late fusion strategy may
be applied to deal with this problem [18,27], which adds model complexity and
may thus easily lead to over-fitting.

The structure of Convolutional LSTM (ConvLSTM) [24] is widely used in
video processing in which the spatial information in images and sequential infor-
mation in videos are fully preserved. Inspired from that, we design the ECLSTM
with a more general structure targeted at multivariate time series.

Automated machine learning is now a very popular research direction.
There are many open-source tools such as auto-sklearn [8] and auto-weka [13].
These tools help users automatically select the best model and the best hyper-
parameters. Based on the existing automated machine learning framework, we
build a tool that can automatically perform RUL estimation. The implementa-
tion of the framework is available online1.

3 Problem Definition

By reviewing various open-source data sets, we consider the RUL estimation
problem in a more general form that takes round-robin sampling strategy into
account. In actual production or run-to-failure experiments, the sensor informa-
tion is not always recorded as storing large amounts of high-precision floating-
point data is expensive and requires extremely high bandwidth to transmit.
Therefore, the data is typically collected using a round-robin sampling strat-
egy, which records values only once per predefined cycle. For example, in the
C-MAPSS data set [9], only one sample is recorded in each cycle, while in the
FEMTO-ST bearing data set [19], values are recorded at a frequency of 25.6 KHZ
0.1 s per each cycle (10 s).

Formally, RUL estimation can be described as a sequence to target problem.
Given a T length sequence time series X = (xt | t = 1, · · · , T ) with xt ∈ Rn×m,
where n is the number of sensors and m the number of samples per cycle. Now,
the aim is to predict the corresponding output yT , yT = f (xt | t = 1, · · · , T ),
where xt denotes all samples at cycle t. When the sliding window method is
applied, the previous formula should be modified to yT = f(xw

t |t = w, · · · , T ),
where w is the size of the window. The vector xw

t thereby contains all the samples
in the time window which is denoted as xw

t = (xt−w+1, · · · ,xt). In our settings,
the size of sliding step is always set to 1. For any model, the sequence length
determines how past information is used, while the window size describes the
complexity of dynamic features over time. As both parameters can greatly affect
the model performance, both should be considered when optimizing the model.

1 https://github.com/YexuZhou/AutoRUL.

https://github.com/YexuZhou/AutoRUL
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4 Embedded Convolutional LSTM

Inspired by the work ConvLSTM [24], we propose an extension of FCLSTM, in
which a group of different 1D convolutions is embedded into the LSTM structure,
which we call Embedded Convolutional LSTM (ECLSTM). We assume that such
ECLSTM architecture is more powerful than FCLSTM in handling multivariate
time series tasks.

In order to preserve the temporal information within the window, the input
should be kept as a 2-dimensional tensor. This can be achieved by replacing the
full connection in the FCLSTM with the convolutional operation. The equations
of ECLSTM are then given by

it = σ(Wi ∗ [xt, ht−1] + bi)
ft = σ(Wf ∗ [xt, ht−1] + bf )
ot = σ(Wo ∗ [xt, ht−1] + bo)
Ct = ft ◦ Ct−1 + it ◦ tanh(WC ∗ [xt, ht−1] + bC)
ht = ot ◦ tanh(Ct),

(1)

where ∗ indicates the convolution operator and ◦ the element-wise product.
There are three benefits to using the convolution operator in LSTM. Firstly, the
convolution parameters are only related to the defined kernel size and the number
of filters and not to the size of the window. When the window size is large, the
complexity of the model does not increase with it. Secondly, the hidden state
H and the memory C also become 2D tensors. This means that they implicitly
inherit and preserve the temporal relationship. Thirdly, the input, hidden state,
and memory can even maintain a 3-dimensional shape, as this will not affect
the operation of the convolution. Keeping the three-dimensional shape allows
for more different convolutions.

The stacking of convolutional layers allows a hierarchical decomposition of
the raw data and combinations of lower-level features. In order to get more
complex features, the convolutions in (1) can be stacked as convolutional cells
in a chain structure. If three convolutional layers are stacked in the cell, we call
the ECLSTM as 3-depth-ECLSTM. Taking the input gate in ECLSTM as an
example, the activation can be calculated as

it = σ(W 3
i ∗ σ(W 2

i ∗ σ(W 1
i ∗ [xt, ht−1] + b1i ) + b2i ) + b3i ). (2)

Other gates have the same structure, but do not share the weights.
Moreover, the results of many multivariate time series analysis works like

[18] indicate that different fusions strategies affect the performance. Inspired by
that, the convolution cell can be composed of the following three different 1-
dimensional convolutions, which are shown in the Fig. 3. The first is the early
fusion convolution, which is same as conventional 1D convolution. Here, the
features are extracted from all sensory information jointly. The second is the
late fusion convolution. In late fusion, the features are extracted separately from
each sensor. The third is hybrid fusion convolution, where features are separately
extracted from each sensor but weights are shared.
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(a) Early Fusion 1D convolution (b) late Fusion 1D convolution (c) Hybrid Fusion 1D convolution

Fig. 3. In the early fusion convolution, the kernel height is fixed, that is, the same as
the number of features. The sliding direction of the convolution kernel is along the time
axis. In the late fusion convolution, the kernel height is 1. Each feature has its own
convolution kernel. The convolution kernel also has only one sliding direction, namely
the time axis. In hybrid fusion convolution, the kernel height is also 1. But it has
two sliding directions, one is the time axis and the other is the feature axis. Because of
weight sharing, it can save many parameters. It should be noted that when the number
of filters is greater than 1, the output of the early fusion convolution is 2-dimensional.
The outputs of the two remaining convolutions are 3-dimensional.

5 Automatic Prediction Framework

Because the above architecture is sensitive to hyper-parameters that are difficult
to choose even by domain experts, we introduce the automatic prediction frame-
work. Our assumption is that such a framework will outperform typical state of
the art time series prediction algorithms when applied to RUL prediction.

The framework’s structure is designed based on a summary of the structures
from other related works that use neural networks to handle multivariate time
series tasks. This framework consists of three parts, namely the pre-processing,
feature extraction and RUL prediction parts. The structure and configuration
space of each part will be introduced separately. Then the optimization process
of the entire framework will be shown at the end of this section.

Pre-processing. When the sampling frequency in one cycle is too high, it is
impractical to directly use the raw data as the input to the recurrent neural
network. Processing so many values requires a larger kernel width or a relatively
deep convolutional network. Both will lead to increased model complexity i.e.
parameters and lead to over-fitting. Traditional methods to reduce the mode
complexity are feature extraction or down-sampling. Since down-sampling leads
to a loss of information, and manual feature extraction needs to be done on a
per task basis, we avoid both for our framework. In order to control the model
complexity while still being able to extract sophisticated features, we resort to
convolutions with a kernel height of 1. Through this, the dimensionality can
be reduced while useful features can be extracted automatically (illustration
see Fig. 4). By adjusting the kernel width, the stride, and the dilation rate, the
intensity of the dimensional reduction can be adjusted. Note that in this step the
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conventional 1D convolution is applied and the weights used by the convolution
in each cycle and each feature are shared.

Fig. 4. Convolutions applied to a window size of 3 over 3 cycles. Each color represents
a cycle of 12 samples. All convolutions are performed simultaneously in each cycle and
feature with shared weights. A kernel width of 3, the dilation rate of 2, and the stride
of 2 reduce the dimensionality to 4 samples per cycle each feature.

The configuration space for this section is shown in Table 1. There are depen-
dencies between parameters. If the number of layers is defined as 0, it means that
no pre-processing is performed. Only when the number of levels is greater than
0, other parameters are used. These parameters are not defined separately for
each layer. As a rule of thumb, we define simple rules here. All layers are ini-
tialized with the same number of filters, stride and dilation rate. The kernel
width is halved in each subsequent layer. Additionally, whether to perform 1d
max-pooling between layers can be selected.

Feature Extraction. The main part of a neural network model is the backbone
network, which is responsible for extracting features. Our framework uses stacked
ECLSTM as the backbone. By default, batch normalization is applied between
layers. Table 1 also shows the configuration space for this part. We define the
hyper-parameters on a per-layer basis. Although this is a relatively simple setup,
it guarantees the diversity of the backbone network where subsequent layers can
have different structures. Due to the requirement for the optimized time budget,
the training time for each configuration is not expected to be too long. Therefore,
we limit the maximum number of stacked ECLSTM layers to 4. After the number
of stacked layers is determined, the depth of the convolution needs to be defined
for each layer. Finally, the type of convolution, the number of filters and the
kernel width are set for each convolution.

RUL Prediction. The RUL prediction part is composed of stacked fully con-
nected layers. The input is the feature extracted by the previous backbone. The
last layer outputs the final prediction. As shown in Table 1, each layer needs to
define the number of nodes, the activation function, and the size of the dropout.

Hyper-parameter Optimization. In addition to the structure parameters
introduced earlier, also the sequence length, window size, and training batch
size need to be determined. One common solution is the use of random search,
but that is very inefficient. For such a highly conditional configuration space, the
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Table 1. Configuration space of the proposed framework.

Part Conditioned on Name Range Type

Pre-processing – No. of layers [0, 5] int

No. of layers Kernel width [2, 1024] int

Strides [1, 20] int

Dilation rate [1, 10] int

Activation {“Sigmoid”,
“ReLU”,
“Leaky”, “Linear”,
“hard sigmoid”}

cat

No. of filters [1, 20] int

1D max pooling {“True”, “False”} cat

Feature Extraction – No. of layers [1, 3] int

No. of layers Dropout in layer [0.0, 0.99] float

Depth of cell [1, 4] int

Depth of cell Activation {“Sigmoid”,
“ReLU”,
“Leaky”, “Linear”,
“hard sigmoid”}

cat

Convolutional type {“early”,
“hybrid”, “late”}

cat

No. of filters [4, 64] int

Kernel width [2, 32] int

RUL Prediction – No. of layers [1, 4] int

No. of layers No. of units [8, 1024] int

Activation {“Sigmoid”,
“ReLU”,
“Leaky”, “Linear”,
“hard sigmoid”}

cat

Dropout in layer [0.0, 0.99] float

proposed framework uses the BOHB optimizer [7], which consists of the Bayesian
optimization (BO) and the Hyperband (HB). By repeatedly calling Successive-
Halving (SH), HB can efficiently identify the best of n randomly-sampled con-
figurations. More time budget will be invested in promising configurations and
the configurations with poor performance will be stopped early. BO uses a ker-
nel density estimator (KDE) to model the objective function of configurations.
It describes the regions of high performance in the configuration space. In our
framework, the objective function is the performance of 3-folds cross validation.

6 Experiments

In this paper we have stated two hypotheses that we want to support with our
experiments: (H1) Our ECLSTM architecture is more powerful than FCLSTM
when applied to common multivariate time series prediction tasks and (H2)
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that when included into an automated prediction framework it can outperform
state-of-the-art multivariate time series prediction algorithms on RUL prediction
benchmark data sets. Further we want to explore if such an approach might
generalize to similar time series prediction problems.

In this section, we evaluate the proposed framework on four benchmark data
sets, three from the domain of predictive maintenance and one human activity
recognition task. We compare our results to state-of-the-art approaches and per-
form an ablation study to provide insights into the effectiveness of the different
elements of the framework. All experiments are run on a single GPU(RTX 2080
8 G RAM). Models are trained with the Adam optimizer [12].

6.1 C-MAPSS Data Set

C-MAPSS data set [9] which contains turbofan engine degradation data is a
widely used prognostic benchmark data for predicting the RUL. This data set is
simulated by the tool Commercial Modular Aero Propulsion System Simulation
(C-MAPSS) developed by NASA. Run-to-failure simulations were performed for
engines with varying degrees of initial wear but in a healthy state. During each
cycle in the simulation, one sample of all 21 sensors such as the physical core
speed, the temperature at fan inlet and the pressure at fan inlet etc. will be
recorded once. As the simulation progresses, the performance of the turbofan
engine degrades until it loses functionality.

Table 2. Description of four sub-data sets from C-MAPSS.

Data set FD001 FD002 FD003 FD004

Training set 100 260 100 249

Test set 100 259 100 248

Operational conditions 1 6 1 6

Fault conditions 1 1 2 2

Data Description. C-MAPSS data consists of four sub-data sets with different
operational conditions and fault patterns. As shown in Table 2, each sub-data
set has been split into a training set and a test set. The training sets contain
sensor records for all cycles in the run-to-failure simulation. Unlike the training
sets, the test sets only contain partial temporal sensor records which stopped
at a time prior to the failure. The task is to predict the RUL of each engine
in the test sets by using the training sets with the given sensor records. The
corresponding RUL to test sets has been provided. With this, the performance
of the model can be verified. It should be noted that the four sub-data sets are
of varying complexity.
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Evaluation Metrics. There are two performance metrics utilized to measure
the quality of our proposed model and other benchmark models. One is the com-
monly used root mean squared error (RMSE) and the other is the scoring func-
tion which was used in the PHM08 prognostics challenge competition. RMSE is
a symmetric loss that assigns the same penalties for over- and under-prediction.
However in practice, over- and under-prediction will lead to different value con-
sequences. The scoring function assigns more penalty when the predicted RUL
is larger than the true RUL. Due to being based on such a prediction, the main-
tenance plan will be delayed. The following equations show these two evaluation
metrics.

RMSE =

√
√
√
√ 1

N

N∑

i=1

(r̂i − ri)
2 (3)

score =

⎧

⎪⎪⎨

⎪⎪⎩

N∑

i=1

(e− r̂i−ri
13 − 1), if r̂i < ri

N∑

i=1

(e− r̂i−ri
10 − 1), if r̂i ≥ ri

(4)

where N denotes the total number of engines in the test sets. r̂ and ri represent
predicted RUL and true RUL respectively.

Data Preparation. The data preparation for the C-MAPSS data set mainly
consists of two aspects, one is normalization and the other is the definition of
the RUL objective function. In order to do the following ablation study and
comparison with other published work, the data preparation work is consistent
with the works as [15,26]. Due to the different distribution of the values from each
sensor, these values are normalized through the z-score normalization method
which is described in the following equation x′

i = (xi − μi)/σi. μi represents
the mean of i-th sensor and σi the corresponding standard deviation. The RUL
objective function assigns each cycle an RUL label. Here we adopt the piece-wise
linear RUL target function, where the maximum RUL is defined as 130.

Ablation Study. To validate whether the ECLSTM can improve performance
with the sliding window method, in this study, we investigated two fundamen-
tally similar neural network architectures evaluated on the four sub-data sets.
One neural network model, called FCLSTM, was taken from [26], which is often
cited as a baseline by other related works. The network has a five-layer architec-
ture. The first layer is a LSTM layer with 32 hidden nodes. The second layer is
the same, but contains 64 hidden nodes. The third and fourth layers are forward
fully connected layers, each with 8 hidden nodes. The last layer is a 1-dimensional
output layer which predicts the RUL. This architecture has been optimized on
the four sub-data sets in [26]. The other neural network model is composed of the
proposed ECLSTM. The difference from the former network is that the first and
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second layers are replaced by 2-depth-ECLSTM layer. To determine the hyper-
parameters (convolution kernel size and filters number) in ECLSTM layers we
apply simple rules. The number of filters in these two layers is simply defined as
10. The size (width) of the convolution kernel varies with the window size, that
is, the rounded value of the window size divided by 4. The window sizes can be
1, 5, 10, 15 and 20. According to the work [26], the sequence length is defined as
30. These two architectures were trained 10 times for each window size. Their
performance on the test set was recorded.

Fig. 5. Ablation study comparing ECLSTM against FCLSTM models on the four sub-
data sets of C-MAPSS using different window sizes on RMSE metric (lower is better).

In most cases, the performance of FCLSTM deteriorates with the increase of
the window size. This can be seen in Fig. 5. Only on the FD002 and FD003 sub-
data, when the window sizes are equal to 5 and 20 respectively, the performance
of FCLSTM improves, but it is not significant. The reason is that with flatten,
the temporal relationship within the window is ignored. In contrast when the
window size becomes larger, the performance of ECLSTM, in most cases, is
improved. We also observe that the performance of ECLSTM keeps increasing
from window size equals 1 to 15 but drops at 20. This is likely due to less
temporal information between windows. Because the sequence length is fixed,
if the window size is too large, the time-steps (number of windows) becomes
smaller. Smaller time-steps means less temporal information between windows,
which leads to worse model performance.

Here we conducted a significance test and the results show that the perfor-
mance of ECLSTM compared to FCLSTM with window size 1 is significant.
Also, on sub-data FD002, ECLSTM has already achieved the best result com-
pared to other state-of-the-art methods. It is worth noting that the input sensor
is not being selected and the structure of the network can be further optimized.
Therefore, the ECLSTM’s performance still has room for improvement. Because
the difference between the two structures lies only in the first and second layers,
and ECLSTM achieves better performance on all four sub-data sets. So through
this experiment, it proves that when the window size is not equal to 1, ECLSTM
can more efficiently extract temporal information.
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Results of Proposed Framework. To get better results, the proposed frame-
work is used to optimize the architecture of the model. The search space consists
of the hyper-parameters listed in Table 1. The optimization was run on GPU
RTX 2080 for 24 h. The final optimized model is trained 10 times with different
seeds. The average results on the test set are listed in Table 3. The approaches
listed in the table are all recently published. Among them [16] is currently the
best performer on C-MAPSS data set. It can be seen that the optimized model
achieved the best results on all four sub-data sets, whose RMSE values of the 4
sub-data sets are the lowest. Especially on the FD002 and FD004 sub-data set,
the estimation accuracy has improved significantly.

Table 3. RMSE and Score comparison on C-MAPSS data.

Datasets FD001 FD002 FD003 FD004

Methods Metric

RMSE Score RMSE Score RMSE Score RMSE Score

LSTM [26] 16.14 3.38× 102 24.49 4.45× 103 16.18 8.52× 102 28.17 5.55× 103

DCNN [20] 12.61 2.74× 102 22.36 1.04× 105 12.64 2.84× 102 23.31 1.25× 105

DAG [15] 11.96 2.29× 102 20.34 2.73× 103 12.46 5.35× 102 22.43 3.37× 103

AdaBN [16] 11.94 2.20× 102 19.29 2.25× 103 12.31 2.60× 102 22.14 3.63× 103

Proposed 11.03 2.16×102 15.95 1.44×103 11.23 1.93×102 16.21 1.4×103

6.2 PHM 2008 Data Set

This data set is similar to C-MAPSS data set. It was used for the prognostics
challenge competition at the International Conference on Prognostics and Health
Management (PHM) in the year 2008. It contains only one failure mode and
therefore shows lower complexity. Associated true RUL values to test trajectories
are not revealed. After the model is trained on the training trajectories, the
results on the test trajectories need to be uploaded to the website, which will
return a final score value as Eq. (4). Data preparation is the same as it on C-
MAPSS data set. We use piece-wise linear RUL as the target function, where
the maximal RUL is 130. The values of each sensor are normalized through the
z-score normalization. We let our framework optimize for 12 h and select the
model with the best validation performance as the final model. The score results
are shown in Table 4.

6.3 FEMTO-ST Bearing Data Set

The FEMTO-ST data set [19] was used in the PHM Challenge in the year
2012 for the RUL estimation of bearings. As shown in Table 5, run-to-failure
experiments were performed on 17 bearings. There were three different conditions
for the experiment. In each condition, the data of 2 bearings were used as the
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Table 4. Score of prediction results compared to PHM ’08 rognostics challenge

Methods Year Score

Competition rank 1 2008 436.841

Competition rank 2 2008 512.426

Competition rank 3 2008 737.769

Competition rank 4 2008 809.757

Proposed framework 2020 823.341

Competition rank 5 2008 908.588

Competition rank 15 2008 1557.61

Deep LSTM [26] 2017 1862

Deep CNN [3] 2016 2056

Table 5. Data sets of IEEE 2012 PHM Prognostic Challenge.

Operation Conditions Training set Test set

1800 rpm and 4000N Bearing1 1, Bearing1 2 Bearing1 3, Bearing1 4, Bearing1 5,
Bearing1 6, Bearing1 7

1650 rpm and 4200N Bearing2 1, Bearing2 2 Bearing2 3, Bearing2 4, Bearing2 5,
Bearing2 6, Bearing2 7

1500 rpm and 5000N Bearing3 1, Bearing3 2 Bearing3 3

training set. The model is trained on 6 bearings and then predicts the RUL of
the remaining 11 bearings. Two accelerators are mounted on the outer ring of
the bearing and vertical and horizontal vibrations are recorded. The sampling
frequency is 25.6 KHZ. It Records 0.1 s every 10 s. That is, 2560 samples are
recorded per cycle. To evaluate the performance of methods, the absolute percent
error of predicted results are used, which was also applied in the challenge. It
is defined as Eri = abs(ActRULi−RULi

ActRULi
× 100%), where ActRULi is the actual

RUL and RULi the predicted RUL of the i-th testing bearing.
After the values of the two sensors are normalized by z-score normalization,

we let the optimizer BOHB of the framework run for 24 h. The model with the
best validation performance is trained on all training data. its performance on
the test set is shown in Table 6. The work in [22] has the best performance among
existing studies, in which the original data is first converted into time-frequency
images by continuous wavelet transform. Lei Y. et al. [14] proposed to apply the
mutual information from multiple time series to construct the health indicator.
Guo L. et al. [10] applied a set of selected features based on expert knowledge
as input to the RNN model. For our framework, no expert knowledge is used for
pre-processing and we reach comparable results (see Table 6).
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Table 6. FEMTO-ST RUL prediction mean absolute percentage error for each model.

Testing Actual Predicted RNN-HI [10] WMQE[14] CCG-HI [22] Proposed

Bearing1 3 5730 5883 43.28% 0.35% 25.09% 2.67%

Bearing1 4 339 495 67.55% 5.6% 16.22% 46.02%

Bearing1 5 1610 1357 22.98% 100.00% 15.34% 15.71%

Bearing1 6 1460 1715 21.23% 28.08% 26.30% 17.47%

Bearing1 7 7570 7227 17.83% 19.55% 6.68% 4.53%

Bearing2 3 7530 5810 37.84% 20.19% 31.23% 22.84%

Bearing2 4 1390 1804 19.42% 8.63% 25.39% 29.78%

Bearing2 5 3090 3855 54.37% 23.3% 41.65% 24.76%

Bearing2 6 1290 1510 13.95% 58.91% 11.24% 17.05%

Bearing2 7 580 670 55.17% 5.17% 12.41% 15.52%

Bearing3 1 795 950 3.66% 40.24% 3.05% 19.50%

Mean of Error 34.28% 28.18% 18.51% 19.62%

6.4 UCI Human Activity Recognition (HAR)

In order to further verify if the proposed approach may also be applicable to
general multivariate time series prediction task aside from RUL estimation, we
conduct an experiment on the UCI-HAR data set [2]. HAR has the same problem
definition as RUL estimation. Given a fixed length sequence multivariate time
series, the aim is to predict the corresponding activity. This data set consists
of sensor signals (accelerometer and gyroscope) gathered from a smartphone by
30 volunteer subjects. The volunteers performed six activities (walking, walk-
ing upstairs, walking downstairs, sitting, standing, laying). A total of 10298
sequences were collected. The data has been pre-processed and each sequence
has 128 samples. Moreover, UCI-HAR data set provides a train-test partition. 21
volunteers were selected for generating the training data and 30% the test data.
To evaluate the performance, balanced accuracy is used as the metric. After the
values are normalized through z-score normalization, we let the optimization
run for 12 h. The model with the best cross validation performance is trained 10
times with different seeds. The balanced accuracy on the test data set is listed
in Table 7.

Table 7. Comparison of different models (publication year) using mean balanced accu-
racy on UCI-HAR data set

CNN-LSTM [5] (2019) HCF+CNN [4] (2020) Proposed (2020)

93.40% 93.80% 94.69% ± 0.42%
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7 Conclusion and Future Work

In this work, an automatic RUL estimation framework is proposed. The back-
bone of the framework is the ECSLTM, which effectively combines the strengths
of CNNs and LSTMs. In order to show the effectiveness of the framework, we
evaluated its performance on different, real-world benchmark data sets. From
our experiments, the following conclusions can be drawn:

1. The window size can affect the performance of the model. Compared to
LSTMs, the proposed ECLSTM has better performance with an increase
in window size.

2. Our framework has achieved state-of-the-art results on the three benchmark
RUL estimation data sets. Especially on the C-MAPSS data set, a significant
improvement compared to other recently published methods was achieved.
Furthermore, the entire process does not require expert knowledge for archi-
tecture and parameter tuning and is therefore user-friendly for non-experts.

3. To check if the proposed framework works for general multivariate time series
tasks, We additionally validate the framework’s capabilities on an activity
recognition data set. The result shows that our proposed framework achieves
state-of-the-art performance. This framework can be applied to other similar
multivariate time series tasks.

For future work, the diversity of the framework should be increased through
e.g. adding attention mechanisms and including properties from bidirectional
ECLSTM. At the same time, we will try to design a more reasonable configura-
tion space. The configuration space defines how the architectures can be repre-
sented, which also determines the difficulty of the hyper-parameter optimization
problem. A well-designed configuration space can simplify the optimization and
may discover better models faster [6].
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Abstract. Modern high-energy astroparticle experiments produce large
amounts of data everyday in continuous high-volume streams. The First
G-APD Cherenkov Telescope (FACT) aims at detecting particle showers
of gamma rays, because cosmic events can be derived from the energy and
angle of gamma rays. The separation of gamma rays from background
noise, which is inevitably recorded, is called the Gamma-Hadron sepa-
ration problem. Current solutions heavily rely on hand-crafted features.
The current approach computes these features in a long data process-
ing pipeline and trains a random forest classifier for the Gamma-Hadron
separation. The overall machine learning pipeline is executed on com-
modity computer hardware after an event has occurred. In this paper,
we propose an alternative approach which applies (Binary) Convolu-
tional Neural Networks (B-CNN) directly to the raw feature stream of
the telescope’s camera. We investigate if these models can be executed
on commodity hardware available at the telescope to handle its datas-
tream in real time. For fully Binary Neural Networks we also study the
use of FPGAs for inference. Our experiments show that this approach
outperforms hand-crafted features and random forests by a large mar-
gin, while still being applicable in real-time for moderate sized models.
Furthermore, we show that our approach does not only work well on
simulated data, but also on real cosmic events originating in the Crab
Nebula, a supernova remnant.

Keywords: Deep learning · Binary Neural Networks · Astroparticle
physics · FPGA

1 Introduction

To study our universe, modern astronomy observes high energy beams emit-
ted from celestial objects in order to categorize the sources together with their
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key characteristics. For example, different types of supernovae can be found
by observing high energy beams [5]. Large international collaborations deploy
a wide variety of detector hardware including telescopes [2,10,19] to observe
different ranges of electromagnetic beams. A central problem in all these detec-
tors is the distinction between gamma rays which indicate a celestial object and
background noise which is mostly produced by cosmic rays from hadrons that
do not allow to conclude on a particular source – the gamma-hadron separation
problem. Data analysis has been established as an effective tool for analyzing
modern high energy particle experiments and solving the gamma-hadron sepa-
ration problem [4]. Current approaches use a basic trigger, i.e., they begin the
recording of an event when sufficient energy hits the detector. Then, a complex
analysis pipeline calibrates the data and extracts pre-defined features which are
used for classifying the stored event as hadron or gamma rays.

We wonder, whether we could replace the long pipeline by a deep learning
process. Deep learning is supposed to decrease the burden of feature engineer-
ing, as the network already learns a suitable feature representation. Is this true
for gamma-hadron-separation? Deep Learning is widely known to be resource
hungry requiring not only vast amounts of training data, but also GPU hours to
train and apply models. Future monitoring facilities will be installed around the
world for a round-about view of the sky [21]. They need to detect an interesting
gamma event fast, so that they can notify the other telescopes, which then turn
in order record the event from their angle. In modern multi-messenger astro-
physics, even different types of detectors inform each other so that the same
event can be verified by different measurements. This includes places where run-
ning and maintaining a server with GPUs is not so easy. Hence, we investigate
whether deep learning models can be executed on a small device that needs lit-
tle maintenance. We tackle these questions in the context of the First G-APD
Cherenkov Telescope (FACT) telescope [2]. The contributions of our interdisci-
plinary research are the following:

– A Deep Learning model is trained on the raw data which accurately predicts
gamma events.

– A Binary Neural Network (BNN) is constructed as a resource-efficient version
of this classifier.

– An efficient implementation of BNNs on commodity hardware is presented by
the means of code generation which outperforms current solutions and forms
the basis of our FPGA implementation.

– The BNN model is implemented on Field Programmable Gate Arrays (FPGA)
allowing the direct incorporation into the telescope as a hardware trigger.

This paper is organized as follows. Section 2 introduces the data driven astro-
nomical research using the FACT telescope and surveys related work. We explain
the data gathering, the pre-processing, the overall workflow, the simulations
used for labeling the data. Section 3 shortly characterizes Deep Learning for
Cherenkov astronomy, particularly Convolutional Neural Networks (CNN) and
BNNs. Section 4 explains the implementation of a BNN model by the means
of code generation. Section 5 shows the experiments of learning from raw data
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in comparison to learning from the long pre-processing pipeline. First, simu-
lation data are used. Second, we apply learning to real-world data, where the
true event is known, namely the Crab Nebular. Third, we investigate the FPGA
implementation regarding runtime.

2 Data Analysis in Cherenkov Astronomy

Celestial objects of several of hundred million light-years away from the earth are
recognized by observing the energy beams emitted by these sources. The energy
beams have an effect on a detector medium. For example, particles interact
with the earth’s atmosphere, producing cascading air showers. These showers
emit Cherenkov light which, in turn, can be measured by telescopes such as
FACT. Figure 1 shows an air shower triggered by some cosmic ray beam, emit-
ting Cherenkov light that is captured by the FACT telescope (left side). The
telescope can be viewed as a camera with 1440 pixels arranged in hexagonal
form. Each pixel consists of a small light sensor which samples light pulses at
2 GHz frequency. The right side of Fig. 1 shows the resulting images taken by
the telescope. Green indicates the telescopes surface, whereas blue indicates the
amount of light hitting the sensors (the shower). Red indicates padding pixels
which are used to form quadratic images from the telescope (discussed in more
detail later). The camera continuously samples all the pixels into a ring-buffer
and a hardware trigger initiates a write-out to disk storage, if some pixels exceed
a specified threshold indicating that a shower is hitting the telescope. Upon trig-
ger activation, a series of camera samples which amount for a time period of
150 ns, called the region of interest (ROI), are written to disk. This time-series
of sensor voltages represents an event and corresponds to the light cone induced
by the airshower. The FACT telescope records roughly 60 events per second,
where each event amounts up to 3 MB of raw data, resulting in a rate of about
180 MB/s.

γ

Atmosphere
Air Shower

Cherenkov Light

Telescope

Camera Samples (2000 MHz)

Fig. 1. An air shower produced by a particle beam hitting the atmosphere (left) and
the corresponding measurements (right side). Picture was taken and modified from
[4]. (Color figure online)
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The processing pipeline that is used to analyze the data performs multiple
steps as depicted in Fig. 2. First, the data are calibrated in order to account
for environmental changes such as, e.g., the day-night cycle. Second, the result-
ing raw data are cleaned, i.e., values from broken sensors are corrected and
artifacts are removed. Third, the pipeline extracts high level features based on
hand-crafted rules from domain experts. Finally, the ML model for the gamma-
hadron separation is applied. For a detailed explanation of the over 80 individual
steps involving this pipeline and its very fast execution on commodity hardware
we refer interested readers to [4]. Unfortunately, this approach does not scale
well with higher data rates and larger telescopes. For example, the Cherenkov
Telescope Ring (CTR) aims to connect multiple telescopes around the globe
thereby increasing the data-rate orders of magnitudes [21]. Moreover, we note
that even a Mac mini (as used in [4]) requires up to 85W as well as space and
cooling. In this paper, we want to move beyond the given solution and try novel
ways which might later on be applied on CTR and remotely deployed telescopes
in resource-constraint environments.

The current approach heavily relies on hand-crafted features. A more philo-
sophical question is whether this introduces some bias into the data. Ultimately,
we want to enhance our understanding of the universe by measuring the energy
beams of celestial objects. However, we often have some hypothesis about our
data which lead to these higher-level features. In turn, the ML classifier which
has only access to these biased features will indirectly confirm our hypothesis,
whereas the raw data might not really support them.

Raw Data
Calibration

Cleaning Feature
Extraction

Signal
Separation

Replace with
ML model

Fig. 2. Data processing steps from raw data acquisition to signal separation. The classic
workflow of using a simple trigger with data calibration/cleaning as well as feature
extraction now to be replaced by a model learned from the raw observations. Picture
was taken and modified from [4].

Labeled Data by Probabilistic Simulation. When applying machine learn-
ing in astrophysics, it is difficult to obtain labeled data since particles from outer
space can come from any source. A common approach to solve this problem is to
combine Monte Carlo simulations with a careful training of the classifier. Astro-
physics has a profound understanding of particle interactions in the atmosphere:
Given the energy and direction of some parent particle (gamma, proton, etc.),
its interaction can be described by a probabilistic model which gives a probabil-
ity for particle collisions, possibly resulting in secondary particles, which again
may interact with each other. This results in a cascade of levels of interactions
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that form the air shower, which can be simulated by particle simulation software
like CORSIKA [8]. The output is a simulated air shower, which needs to be run
through a simulation of the telescope and camera device to produce realistic raw
data mimicking a shower that would have been recorded using the telescope. We
can simulate interesting particles (e.g. gamma) and uninteresting particles (e.g.
proton) and label the resulting raw-data accordingly.

Pre-processing: As mentioned before, we want to move the machine learning
model closer to the telescope. Nevertheless, a minimal pre-processing consisting
of three steps is necessary. Sensor calibration: The detectors’ sensors behave dif-
ferently in different environmental situations, e.g., the temperature has an effect
on the sensor which should be corrected. This calibration involves the correcting
of sensor values by multiplicative constants and biases and can therefore easily
be performed either by an FPGA or a digital signal processor. Extracting pho-
ton counts: The FACT telescope produces 1440 time series each with a length
of 150 ns. We remove noise from the time series and focus on a time window of
50 ns which contains most of the relevant Cherenkov photons. Calibration mea-
surements for the sensors depict a typical voltage-curve when a single photon
hits the sensor. This baseline measurement is subtracted as often as possible
from the actual measurement until there is no signal left [14]. The number of
subtractions can be considered the number of photons which arrived during the
time series. The resulting image then shows the photon counts for each sensor in
each pixel. Image mapping: The FACT sensors are arranged in a hexagonal form.
In hexagonal grids, each pixel has up to six neighbors instead of four as in reg-
ular Euclidean grids. CNNs (as presented below) apply rectangular convolution
filters to extract and generate higher level features. Although the neighborhood
of pixels in rectangular and in hexagonal grids are slightly different, in a series
of pre-experiments as well as student theses, no performance difference could
be found between using rectangular and hexagonal filters for FACT [13,22]. We
therefore choose to transform the data into 45 × 45 images in which the hexag-
onal grid is slightly rotated into the middle of the image. This allows us to
use regular CNNs architectures and filters together with common frameworks.
Figure 1 (right side) depicts the sensor mapping. Here, the red color denotes
unused pixels which are always ‘0’, whereas green (and blue) pixels are mapped
to the corresponding sensors.

3 Deep Learning for Cherenkov Images

The observations from the telescope are 2-dimensional images where each pixel
represents the number of photons arrived at each sensor. We apply CNNs to
classify images as produced by hadron or gamma rays. CNNs are feed-forward
networks which repeatedly apply convolutional filters to extract high level fea-
tures. The goal of learning is to find a suitable weight configuration for the
network. Let D = {(x1, y1), . . . , (xN , yN )} denote the training data obtained by
simulation where xi ∈ N

45×45 is a photon count image and yi ∈ {0, 1} is its
corresponding label.
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3.1 Binary Neural Networks

CNNs are often over-parameterized and thus require not only a lot of memory but
also a lot of computational power for the inference. While GPUs are the natural
choice for model inference in this setting they are not ideal to be deployed in
the field. GPUs not only require a lot of energy, but also require space and
cooling. We propose to use BNNs as an alternative which can be executed on
small devices using less energy, space and cooling so that they can be deployed
in remote areas. BNNs are a subclass of feed-forward nets which use binary
weights F2 = {−1,+1}. Therefore, BNNs require 32 times less memory as do
single-precision floating point nets. Moreover, the inference of BNNs can be
implemented using simple bit-level and integer operations making them ideal
candidates to be implemented on an FPGA. Before discussing the inference and
FPGAs implementation of these networks we will revisit the training of BNNs.
Recall that regular floating-point CNNs are trained with stochastic gradient
methods and backpropagation: For a batch of examples the forward-pass of the
network is computed to obtain its current prediction. Then we compute the
gradient with respect to the models weights via backpropagation, which is then
used to update the weights accordingly.

For training BNNs the same general methodology can be used. Recall that
CNNs are usually trained with gradient-based approaches which apply small
changes to the current weight tensors at each iteration to better fit the train-
ing data. In the case of BNNs, we cannot perform gradient-based optimization
directly for two reasons: First, the space of weights is discrete and thus the
parameter-vector obtained by taking a small step in the opposite direction of
the gradient is almost certainly not binary. Second, the sub-gradient of the sign-
function is zero almost everywhere. Thus, arguably the most direct method to
train BNNs is to store weights as floating point numbers during training, but
round both - activation as well as weights - to F2 during forward computa-
tions [9]. More formally, Hubara et al. [9] propose a scheme that during training
stores weights as floating point numbers constrained to values between -1 and
1 and then binarizes the network during the forward pass. Let b : R → F2 be a
binarization function with

b(x) =

{
1 x > 0
−1 else

and let B(W ) denote the element-wise application of b to a tensor W , then
we simply apply B during the forward pass to each weight tensor. During the
backward pass, the authors propose to use full floating point precision. To miti-
gate the second problem – b is not differentiable – they replace the gradient of b
with the so-called straight-through estimator. Consider the forward computation
Y = B(X). Let ∇Y � denote the gradient with respect to Y . The straight-through
estimator approximates

∇X� := ∇Y �,

essentially pretending that B is the identity function. Algorithm1 summarizes
this approach.
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Algorithm 1. Binarized forward pass for a network with L layer each with weight
tensors W l performing a generic operation ◦l (e.g. a convolution in CNNs).
1: function forward(model, x)
2: for l ∈ {1, . . . , L} do
3: x ← B(B(W l) ◦l x)

4: return x

4 On-Site BNN Execution with FPGAs

Combining the computation power of FPGAs with Deep Learning models has a
long history (see, e.g., [11,25] for overviews). Focusing on the implementation of
BNNs on FPGAs, there are two trends. Some approaches map singular building-
blocks such as Matrix-Vector multiplication to FPGAs which are applicable for
training and testing. For example, Nurvitadhi et al. compare the implementation
of Binarized Matrix-Vector operations to their float-point siblings in [15] on
an Intel Startix 10 FPGA. They highlight that GPUs excel in dense floating-
point matrix multiplication, whereas BNNs naturally involve sparse operations
which is better suited for FPGAs. They indicate some possible speed gains by
combining BNNs and FPGAs.

The second trend focuses on fast model application of pre-trained models.
Zhao et al. exemplify this in [27] by presenting a hardware accelerator design
for a fixed CNN architecture which outperforms existing approaches by up to a
factor of 7. For each layer type used in their model architecture, they provide a
highly optimized implementation which is then fine-tuned for the specific param-
eters used in the model. The specialized implementations are then pipelined by
leveraging high level synthesis (HLS) programming. Similarly, Fraser, Umuroglu
and others present the FINN accelerator in [7,24] which also leverages High Level
Synthesis tools to generate optimized FPGA code, but is not limited to a single
network architecture.

These approaches all show the potential advantages of implementing BNNs
on FPGAs, but are unfortunately not yet ready for production. For example,
FINN aims to support all major types of layers, but currently1 only supports
fully connected layers, completely.

In order to still study the application of BNNs on FPGAs for our application,
we use the possibly simplest solution and expect performance to improve in the
near future. We generate C-Code for each layer with minimal optimization and
include the learned weights into the generated code. Then, we rely on HLS tools
for optimizations, so that we gain acceptable performance.

Let us now describe our solution in more detail. We assume that we are given
an ONNX2 model definition file which defines the computation graph of the
(binarized) neural network including its weights. For each layer, the code gener-
ator uses a template which is then instantiated with the specific layer parameters

1 Date March 17, 2020. https://github.com/Xilinx/finn.
2 https://onnx.ai/.

https://github.com/Xilinx/finn
https://onnx.ai/
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and correct data types. Once the code for each layer is created, we connect each
layer’s output to the input of subsequent layers, thus describing the complete
computation graph. We generate C-style code without dynamic data structures
or pointers. We automatically check for type-correctness and use the smallest
appropriate data type in each processing step. All weights of each layer are stored
in static arrays at the beginning of the code. Buffers for intermediate outputs
of each layer are also statically allocated. The resulting code is then synthesized
either by a HLS tool in case of an FPGA or compiled using a compiler in case
of a regular CPU. Template substitutions are managed by jinja23.

We provide optimized template code and perform a post-code-generation
design space exploration using the HLS tool, e.g., to unroll or pipeline certain
loops. The only code optimization we perform across layers during the generation
phase is the shift of activation thresholds by batch normalization as explained
below. The implementation follows the established best-practices in literature
for implementing BNN using bit-level and integer operations whenever possible
[7,24]:

– Fully Connected/Convolutional Layers: Recall that for BNNs, we need
to compute a binary dot-product. The multiplication of two binary values
can be implemented with XOR operations, whereas their sum represents the
number of 1 in the resulting bitstring (after the XOR operation). This oper-
ation is also known as popcount and CPUs usually ship specific instructions
for this operation. On FPGAs, we can perform the XOR operation in paral-
lel for each value inside the bitstring and then simply count the number of
set-bits, e.g. by combining multiple look-up tables.

– Activation: For BNNs, we use the step function as activation, which can be
directly implemented by comparing its input against 0.

– Batch Normalization: Batch Normalization (BN) re-scales and shifts the
input to follow a normal distribution. Note, that if a BN layer precedes the
activation (as done in our experiments) the scaling does not change the acti-
vation, but only shifting of the input does. Thus, we simply need to move the
comparison threshold according to the BNs running mean value to implement
the combination of BN+Activation. Also note that even though the running
mean of BN is not binary, this is no problem, because float comparison can
be implemented by comparing their binary representation [1]. Thus, from an
FPGAs perspective, it does not matter if we compare against a float or an
integer threshold.

5 Experiments

Experiments are designed to answer three key question: First, can (binarized)
CNNs replace hand-crafted features with reasonable accuracy on simulated data?
Second, will these models generalize well enough to be used for real data? Third,
can we execute these models on-site and in real-time using commodity hardware

3 https://jinja.palletsprojects.com/en/2.11.x/.

https://jinja.palletsprojects.com/en/2.11.x/
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and/or FPGAs? We now tackle each question individually. For the first two
question we want to emphasize, that Random Forest are still the state of the
art for the FACT data due to their resilience against overfitting and thereby
overcoming the gap between simulation and real-world data.

5.1 Models

For our study we investigate one small and one large VGG-style neural network
architecture [23]. These networks are composed of blocks, where each block con-
sists of two 3 × 3 convolutional layers each followed by a batch normalization
layer and a ReLU activation as well as a single max-pooling layer of stride 2.
The small network is composed of two of these blocks, while the large network
is composed of four. The number of channels in the convolution layers starts
with 128 in the first block and then increases by 128 with every following block.
Finally we compute a linear layer of size 128 or 512, respectively. We apply batch
normalization, before we compute the class probabilities using a final softmax
layer. We have also experimented with residual neural networks, as suggested by
Zhang et al. for training BNNs [28], but found that they did not outperform our
purely convolutional models (see supplementary material).

We train our neural network models using the AMSGrad optimizer [20] with
a batch size of 128 examples and minimize the cross entropy loss. We train our
models for 100 epochs and use an initial learning rate of 0.001 which we reduce
by a factor of 0.1 every 25 epochs. The neural networks learn from raw photon
counts (denoted by PhC).

Since the state of the art is the Random Forest (RF) learner, it is applied
for comparison. It learns from the hand-crafted high-level features (denoted by
DL2) as well as from PhC data. Our RFs consist of 128 decision tree estimators
of unlimited depth. Its decision trees are built using bootstrap samples of the
training data and each of its splits is selected by maximizing the Gini score on a
random subset of features of size

√
d, where d = 22 (DL2) or d = 452 (PhC). For

deep learning we use PyTorch [17] and for fitting RF we use scikit-learn [18].

5.2 Experiments on Simulation Data

The Monte Carlo simulator CORSIKA has produced 200k training data and
100k test data, each set with perfectly balanced class frequency of hadron and
gamma events. The simulation comes in two variants, with or without qual-
ity cuts. The simulation designers have identified regions, where the simulation
is inaccurate and does not resemble real events sufficiently well. The so-called
quality-cuts eliminate such unrealistic simulated events. We train our models
on both variants of the simulation data and summarize the findings in Table 1.
Neural networks beat the RF baseline trained on high-level features by a large
margin. Possibly due to the neatness of the simulation data, a RF trained on pho-
ton counts also beats the baseline. As the results show, the dataset with quality
cuts poses an easier classification problem where higher accuracies are achieved.
Float models show overfitting after 100 epochs. Hence, we also tried training
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Table 1. Accuracy on simulation data. We distinguish models trained on simulations
with and without quality cuts (QC). For the neural networks, we also report accuracies
for models trained with early-stopping after 10 epochs.

Model Data Accuracy, no QC Accuracy, QC

Epochs:100 Epochs:10 Epochs:100 Epochs:10

RF DL2 0.70959 0.78483

RF PhC 0.74711 0.78839

CNN (small) PhC 0.90825 0.88867 0.93441 0.93846

BNN (small) PhC 0.90861 0.88644 0.90440 0.88866

CNN (large) PhC 0.91094 0.90251 0.93735 0.94228

BNN (large) PhC 0.90011 0.89925 0.93112 0.91369

with early-stopping after 10 epochs, which results in a small positive effect for
floating points trained with quality cuts. BNNs, however, need more training
epochs to achieve good test accuracy. Overall, our BNNs perform slightly worse
than their floating point counterparts. However, for the large models this differ-
ence is small. In the next section, we investigate if our findings carry over from
simulation data to data recorded by a real telescope.

5.3 Experiments on Real-World Crab Nebula Observations

Now we evaluate our trained models from the last section on real-world data
collected by the FACT telescope at the Observatorio del Roque de los Muchachos
(La Palma, Canary Islands, Spain). The telescope has been directed once towards
a known gamma source, the Crab Nebula which emits large amounts of gamma
rays. On these recorded data, we run the full source detection pipeline of the
FACT experiment and investigate the influence of the gamma-hadron separation
models on the overall quality of the source detection.

The evaluation proceeds in the following steps: We take the publicly avail-
able4 Crab Nebula observation data [2,3], which consist of 17.7 h or 3,972,043
recorded events. Our gamma-hadron classification models are applied to clas-
sify which events are gamma rays. Then, an established model estimates the
direction of the incoming gamma rays [16]. From the direction, we compute the
angle between the trajectory of any incoming ray and the known direction of
the Crab Nebula. The number of gamma rays can be regarded as a distribution
that depends on the angle. High counts are to be expected for small angles. The
distribution with respect to the direction of the Crab Nebula is called an on-
distribution [6]. Contrasting the distribution of counts with distributions for five
different positions with no known gamma sources yields the off-distributions. A
uniform distribution of counts over angles is expected, where the majority of
counted rays can be attributed to misclassified hadronic rays. We state the null-
hypothesis that on-distribution and off-distribution follow the same distribution,
4 https://fact-project.org/data/.

https://fact-project.org/data/
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or, intuitively, that there is no gamma source at the direction of Crab Nebula.
The margin by which a significance test rejects this null-hypothesis gives us a
significance of detection SLi&Ma, reported by the number of standard deviations
σ [12]. This SLi&Ma is the performance metric for gamma-hadron classifiers,
where larger numbers are better.

The trained classifiers output probabilities that an event is a gamma ray and
we can control the classification behavior by varying the threshold for actually
predicting gamma. A large threshold yields less events and also less misclassified
events, because the classifier is more certain. If we set the threshold too large,
we get too few total events which results in a small statistical significance. In
contrast, if we decrease the threshold, we obtain more events, but also more
misclassifications. If we set the value too small, we count too many noise events,
the difference between on- and off-distribution shrinks, which also yields a low
significance of detection.

To ensure that the output probabilities of the models are meaningful esti-
mates of the classifiers’ confidence, we apply isotonic probability calibration [26]
using the simulated test-examples as calibration data. If not explicitly mentioned
otherwise, the RFs use a threshold of 0.85, CNNs use a threshold of 0.6 and BNNs
a threshold of 0.75. A careful analysis of the influence of these thresholds on the
significance of detection is performed in the supplementary material.

In Table 2 we summarize the results for all models. Using the established RF
classifier on high-level features, we obtain a significance of detection of 23.8σ.
Small and large float CNNs outperform the baseline with a significance of 24.12σ
and 24.20σ, respectively. BNNs achieve a slightly smaller significance of 22.96σ
and 22.35σ. We hypothesise that this is again due to overfitting. To investigate
this, during training of our models, we compute the validation loss on the simu-
lated test data after each epoch and use the best epoch for classification. When
we inspect the Sli&ma scores for the epoch with best loss, we see that these more
carefully selected models indeed perform better: Both the small BNN and CNN
now achieve significances over 25.8σ. For large models, however, we do not see
the same benefits, further analysis is needed to better understand the connection
between loss on simulation data and detection significance on real data. Last,

Table 2. Significance of detection

Model Data Sli&ma, no QC Sli&ma, QC

Epoch: 100 Epoch: best loss Epoch: 100 Epochs: best loss

RF DL2 22.86σ 23.82σ

RF PhC 2.09σ 3.35σ

CNN (small) PhC 24.09σ 25.83σ 24.12σ 24.89σ

BNN (small) PhC 19.55σ 25.87σ 22.96σ 21.67σ

CNN (large) PhC 23.68σ 24.64σ 24.20σ 23.17σ

BNN (large) PhC 22.70σ 22.92σ 22.35σ 22.26σ
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Fig. 3. Histogram of the frequencies as a function of the squared angular distance
between the trajectory of any incoming ray and a position in the sky. On-events show
the frequency with respect to the position of the Crab Nebula, while Off-events are
w.r.t. positions with no known sources. The significance of detection test only considers
angles smaller than 0.025 (left of the dashed vertical line).

we see that the random forests trained on photon counts are not useful at all for
real-world data.

Visual inspection of the on- and off-distribution in Fig. 3 reveals the different
classification behavior of the random forest baseline and our float CNN: We
see that the random forest has a uniform off-distribution, while the CNN has a
decaying distribution with smaller counts for larger angles. This suggests that
our classifier is biased to predict gamma at the camera positions used for the off-
distributions. Indeed, the gamma rays in the simulation data are not generated
uniformly, which can explain this bias.

5.4 Proof-of-Concept with FPGAs

We want to measure the impact of using BNNs compared to floating-point nets
running on different hardware. Since FACT produces data at a rate of roughly
60 events per second, on average we cannot spend more than 16ms to classify a
single event.

As explained above, we generate c-code for each model and compile this for
the target architecture, either by High Level Synthesis or by a regular com-
piler for CPUs. For CPUs, we enabled the most aggressive optimizations -Ofast
-march=native -mtune=native using gcc version 8.3. We compare our results
with the deep learning inference engine ONNX Runtime5, which is optimized
towards real-time model inference.
5 https://microsoft.github.io/onnxruntime/.

https://microsoft.github.io/onnxruntime/
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Experiments are run on commodity hardware, namely an Intel i7-6700 CPU
with 16 GB RAM. For consistent runtime measurements, we randomly sampled
1000 events and measure the total runtime to process these events, then compute
the average runtime per event in this batch. This process is repeated 20 times
and we report the average runtime and standard deviation per single event across
all batches.

For the FPGA, we us a Xilinx Virtex UltraScale VCU110 Evaluation Board
with 805,680 lookup-tables (LUTs) and 132.9 MB Block-Ram (BRAM). The
synthesis was performed with Xilinx Vivado HLS 2018.3. We used the generated
c-code as basis and performed a minimal design space exploration by either pipe-
lining or unrolling loops in the design to maximize the performance without
exceeding the available LUTs and BRAM. The design for the small BNN is
clocked at 25 MHz6 whereas the design for the large BNN is clocked at 100 MHz.

Note, that we allocate independent input/output buffers for each layer. For
classifying a single event this is wasteful, because we only use one buffer pair
at the same time, while all other pairs are not used. However, we expect our
design to run continuously so that a stream of events is available. This enables
efficient pipe-lining of the entire design: For each event we process one layer,
so that the classification of the first event is delayed by the number of layers L
in the entire network. Processing a single layer is much quicker than processing
all layers, which means that despite the initial delay we can classify events at a
faster overall rate.

Table 3 shows the latency of the different neural network configurations using
different inference engines. We see that ONNX Runtime offers the fastest clas-
sification rate for small and large float networks, whereas our code generator
outperforms Onnx Runtime in case of BNNs. It was not possible to synthesize a
working FPGA design for float networks, because they utilize too much BRAM.
The FPGA offers the fastest (small BNN, pipelined) and slowest execution time
(large binary, pipeline) for BNNs depending on the specific configuration. In sum-
mary, for floating point networks Onnx Runtime is the fastest method, whereas
for smaller BNNs the FPGA is the fastest and for larger BNNs our generated
code seems to be the best method. The reasons for this are three-fold: Onnx
Runtime is highly optimized for floating-point operations utilizing vectorization
instructions to their fullest. In contrast, the code generator relies on the compiler
to vectorize loops. Looking at BNNs, the situation reverses. Where our imple-
mentation exploits the specific structure of BNNs to gain performance, Onnx
Runtime does not support this. Finally, small models have the lowest latency
on FPGAs, because large parts of the network can be unrolled so that they fit
entirely on the FPGA. In contrast, larger models which do not fit well on the
FPGA suffer tremendously. If most loops cannot be unrolled, the result is a very
slow design. For the application at the Cherenkov telescope, large CNNs are not
an option with either inference system, since none of them meet the required
16 ms latency. It is interesting to note that small float nets can be executed
slightly quicker than BNNs on commodity hardware. We attribute this fact to the

6 We found that using fewer clocks improved latency because loops can be unrolled.
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Table 3. Latency of different neural net configurations using different inference engines.
The best inference engine for float and binary is marked in bold. Smaller is better.

System Type Runtime [ms/event]

Float Binary

ONNX Runtime Large 21.083 ± 0.078 26.642 ± 0.100

Small 0.957 ± 0.020 1.861 ± 0.037

Generated Code Large 78.583 ± 1.704 11.250 ± 0.077

Small 2.757 ± 0.026 1.574 ± 0.014

FPGA Large - 561.588 ± 0.000

Small - 4.221 ± 0.000

FPGA pipelined Large - 72.657 ± 0.000

Small - 0.662 ± 0.000

floating point vectorization instructions available on current Intel CPUs. If these
are not available, BNNs are a very attractive alternative especially for large net-
works. All in all, the generated code satisfies the most scenarios enabling small
CNNs, small BNNs and large BNNs making it the best overall choice.

6 Conclusion

Machine Learning is one of the basic building blocks of modern high-energy
astroparticle experiments. One important problem in this application domain
is the gamma-hardron separation problem which aims at separating interesting
gamma events from hadronic background noise. The FACT telescope measures
Cherenkov light emitted in earth’ atmosphere when hit by gamma beams. The
telescope measures at a rate of 60 events per second demanding fast processing
pipelines. This is even more crucial for large telescope arrays in one location
or a global distribution of sites that are possibly being deployed in resource
constraint and remote locations. Current approaches solve the gamma-hadron
problem for FACT by using long processing pipelines that extract hand-crafted
features which are then used by RFs. In this paper, we successfully replaced the
long pipeline by a CNN. For a resource-efficient alternative, BNNs were applied.
Extensive experiments with larger and smaller VGG networks on state of the
art astrophysical simulation data with and without quality cuts showed that
our large CNNs is the by far best performing model with BNNs second. Both
methods outperform RF with hand-crafted feature set. Hence, learning from the
raw telescope data is now possible.

Moreover, the learned models were applied to data of a known source of
gamma rays, the supernova remnant Crab Nebula. Again we see that CNNs
outperform RF on the real-world data, whereas BNNs are on-par with RF only
using raw measurements.
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A third contribution of this paper is the careful implementation on different
hardware. This is important for future astrophysical applications, when mon-
itoring explorations in a ring of telescopes demand fast notification of events
from places around the world. We presented a novel way to implement neu-
ral network inference by the means of code generation. This approach utilizes
the fact, that neither the weights nor the structure of a network changes during
inference and therefore statically creates the entire network code. Then the same
code can either be compiled for execution on CPUs or synthesized for FPGAs
using HLS tools. Our experiments show, that this approach outperforms current
inference for BNN execution and to the best of our knowledge, our implemen-
tation of BNN inference is the fastest implementation available for CPUs. With
respect to runtime we showed that large CNNs cannot be executed on CPUs or
FPGAs in a timely manner as is dictated by FACT. Here, smaller CNNs and
BNNs in general show superior performance. We achieved the fastest execution
with small BNNs on FPGAs, whereas larger BNNs are best executed on regular
CPUs. However, we expect more performance gains in the future when larger
FPGAs become available fitting the entire BNN network on a single chip.
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Abstract. Rapid intensification (RI) of tropical cyclones often causes
major destruction to human civilization due to short response time. It
is an important yet challenging task to accurately predict this kind of
extreme weather event in advance. Traditionally, meteorologists tackle
the task with human-driven feature extraction and predictor correction
procedures. Nevertheless, these procedures do not leverage the power
of modern machine learning models and abundant sensor data, such as
satellite images. In addition, the human-driven nature of such an app-
roach makes it difficult to reproduce and benchmark prediction models.
In this study, we build a benchmark for RI prediction using only satellite
images, which are underutilized in traditional techniques. The bench-
mark follows conventional data science practices, making it easier for
data scientists to contribute to RI prediction. We demonstrate the use-
fulness of the benchmark by designing a domain-inspired spatiotemporal
deep learning model. The results showcase the promising performance
of deep learning in solving complex meteorological problems such as RI
prediction.

Keywords: Atmospheric science · Tropical cyclone · Rapid
intensification · Spatiotemporal data · Deep learning · Attention

1 Introduction

The tropical cyclone (TC) is one of the most devastating weather systems on
Earth, characterized by intense and rapidly rotating winds around a low-pressure
center and associated with eyewall clouds and spiral rainbands producing heavy
rainfall. In order to reduce and respond to damage caused by TCs, the past
half-century has seen much effort devoted to improving the forecast of TC track,
intensity, and the associated rainfall and flooding. Although TC track forecasts
has improved significantly during the past few decades, prediction of TC rapid
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 497–512, 2021.
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intensification (RI) remains challenging, which affects the subsequent production
of TC structure and rainfall forecast [5]. TC intensity is defined as the maximum
sustained wind in the TC inner-core region, and rapid intensification (RI) is
defined as a TC experiencing an intensity increase surpassing a threshold (25–35
knots) within a 24-h period. The range of thresholds represents the 90 to 95
percentiles of 24-h TC intensity changes in different basins.

Accurately predicting the onset of RI is particularly crucial because react-
ing to an off-shore RI event before TC landfall requires sufficient time; delayed
reaction has caused some of the most catastrophic TC disasters. For instance,
hurricane Harvey in August 2017 caused 107 casualties and cost approximately
$125 billion USD as it rapidly intensified to a category 4 hurricane only hours
before landfall. However, improvement in RI prediction has been slow partly
because RI events are rare. Additionally, favorable environmental conditions are
generally necessary but do not guarantee RI onset [7]. Thermo-dynamical pro-
cesses within the TC in response to these environmental forces are believed to be
even more critical. For example, the development of up-shear convective burst
[11,14] and asymmetric surface fluxes and boundary-layer inflow associated with
the background flow [2,13] are factors that control the rainfall distribution and,
in turn, TC intensification. Thus, a successful RI prediction scheme must accu-
rately depict both environmental conditions (in which a TC is embedded) and
vortex-scale features such as the distribution of precipitation or inner-core TC
structure.

The goal of this paper is to tackle TC RI prediction from a data-science
perspective. We propose a new benchmarking procedure with rigorous prac-
tices common to data science which includes a satellite image based dataset to
be publicly released. We experiment with deep learning methods for this task.
In Sect. 2, we briefly review related work on TC intensity and RI prediction. In
Sect. 3, we introduce our newly devised benchmark and the major improvements
over previous benchmarks. In Sect. 4, we propose an attention-based deep learn-
ing approach for this task and highlight the connection between model design
and meteorological domain knowledge. In Sect. 5, we present the experimental
results and attempt to interpret what the model has learned based on attention
mechanisms. We conclude our findings in Sect. 6.

2 Related Work

Previous studies on predicting TC RI focus on utilizing predictors as features
(specifically predictors published by the SHIPS project, to be introduced in
Sect. 2.1). Predictors are high level statistics (e.g., mean or standard deviation)
that summarize collected or simulated atmospheric data in a span of time and
space. The high level physical meaning carried by predictors allow human to eas-
ily comprehend and design prediction models accordingly. However, the major
downside of studies relying on predictors is the lack of exploration for new tech-
niques that better exploit the raw data. The loss of detail in predictors has
bottlenecked improvements in prediction performance.
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In this work, instead of relying on predictors, we directly utilize raw data
collected from satellite sensors with deep learning models. Our model architec-
ture is inspired by domain insights from the Advanced Dvorak Technique (ADT)
[12], an operational technique for TC intensity forecasting based on raw data.
Details of ADT will be discussed in Sect. 2.2.

2.1 Statistical Hurricane Intensification Predictive Scheme

The SHIPS project has developed a series of statistical models for probabilistic
prediction of RI based on atmospheric predictors [8,15,16]. The SHIPS RI index
(SHIPS-RII [8]) predicts the probability of a TC intensifying by at least 25, 30,
and 35 kt within 24 h. This scheme uses simple linear discriminant analysis to
determine the RI probability based on a relatively small number (<10) of pre-
dictors describing mainly environmental factors and limited aspects of internal
TC structure observed by meteorological satellites. Candidate predictors (∼20)
for SHIPS-RII [8] are subjectively determined by human intelligence, and the
final predictors used for linear discriminant analysis are basin-dependent. The
final model is not publicly available, but the details of model design are well
documented in publication and thus technically reproducible.

A subsequent work [15] uses Bayesian inference (SHIPS-Bayesian) and logis-
tic regression (SHIPS-logistic) to predict RI probability. The authors show that
both SHIPS-Bayesian and SHIPS-logistic exhibit forecast performance that gen-
erally exceeds the skill of SHIPS-RII; blending the three models further improves
performance. Another study [16] integrates an additional 4 to 6 predictors
derived from satellite passive microwave (PMW) observations into the SHIPS-
logistic model and demonstrates a relative performance improvement from 53.5%
to 103.0% in the Atlantic compared to the original model. More details will be
discussed in Sect. 3.1. Note that these SHIPS-RII techniques are only applicable
in the Atlantic and eastern Pacific basins. Thus, a new technique applicable for
all global TCs is demanded.

2.2 Advanced Dvorak Technique

ADT [12] is an automated technique for real-time TC intensity estimation based
on satellite image analysis. The technique replaces several human steps in the
Dvorak Technique (DT) with automated procedures. The ADT has two stages:
scene type classification and intensity post-processing. A satellite image instance
is first classified into one of many pre-determined scene types according to the
cloud distribution with respect to the TC center. Scene scores are derived from
the characteristic matching test for each scene type, and the image is classi-
fied as the scene type with the highest corresponding scene score. For instance,
the curved band cloud scene characteristic matching test measures how well the
curve of the cloud bands matches the 10◦ log spiral. For each scene type, there
is a unique method of deriving the intensity of the satellite image. In the second
stage, the predicted intensity is post-processed by applying heuristic rules to
clip the intensity into a reasonable range, after which the value is smoothed by
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applying a weighted average over the intensity of previous time steps. Although
ADT is currently used only to estimate TC intensity, it inspires our proposed
model in (a) focusing on individual frames to relate cloud features and TC inten-
sity in the first stage; (b) averaging to take the time information into account in
the second stage. More details are presented in Sect. 4.

3 Benchmark

A fair and reproducible benchmark is the key to validating model performance
for the continuous improvement of RI prediction. This includes adequately cho-
sen metrics to reflect model performance and well-defined, disjoint training and
testing datasets to evaluate how well the model generalizes on holdout data. In
this section, we first review the limitations of the current benchmark within the
development of SHIPS-RII. Then, we propose a revised benchmark that solves
the limitations and is better aligned with data science practices.

3.1 Existing Benchmark Within SHIPS-RII Development

The metric adopted in the meteorology domain for benchmarking RI prediction
is the Brier score (BS), which is the mean square error (MSE) between the {0, 1}-
valued ground-truth RI labels and the probabilistic ([0, 1]-valued) predictions.
Leave-one-year-out cross validation of TC data from 1995 to 2013 is applied for
model training and hyperparameter tuning, with the Brier score serving as both
the optimization objective and evaluation metric. Cross-validated performance
is reported with no special mention of holdout data for testing.

The dataset for building SHIPS-RII is constructed as follows. First, numerous
features are collected from TCs, including climatology features (statistical prop-
erties calculated from historical data), real-time measured atmospheric/oceanic
features, and features extracted from large-scale numerical model simulations of
current atmosphere conditions. Then, a cherry-picked subset of TCs is removed
for feature extraction to improve model performance. Finally, a subset of summa-
rized features is selected by linear discriminant analysis and heuristics to serve
as the final set of features (i.e. predictors in Sect. 2.1).

Given the metric and dataset within the current benchmark above, we
observe four main issues:

1. The original data for deriving the features is not easily accessible to the public.
2. The cherry-picking data cleaning is subjective and not easily reproducible.
3. There is no holdout test set to gauge the true generalization performance of

models.
4. The BS metric is knowingly sensitive to class imbalance, but the RI prediction

problem is class-imbalanced in nature.

3.2 Proposed Benchmark

Next, we proposed a new benchmark to conquer the four issues. The new bench-
mark includes a more adequate evaluation metric and a publicly accessible
dataset with a reproducible construction procedure and training/test splitting.
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Metric. Different metrics are appropriate for evaluating different problems. For
instance, for problems that involve outliers in the data that one would like to
ignore, mean absolute error (MAE) is more suitable than mean square error
(MSE), which puts greater emphasis on outlying data points. For the TC RI
task, one major property of the data is its highly imbalanced classes. Due to the
nature of the TC life cycle, RI mostly occurs only during the early to mid stages
of a TC when it grows in strength in a short period of time. Thus, the number
of RI to non-RI timeframes is approximately 1:20 (the positive class comprises
5% of the total data). Naturally, the performance metric should account for such
data imbalance and should avoid rewarding highly biased classifiers that only
output the majority class.

Unfortunately, the Brier score does not take class imbalance into consider-
ation. For instance, a naive constant classifier that predicts only the majority
class (in this case, no-RI) with class imbalance of 1:20 yields a very low Brier
score of 0.05. As we are more interested in discerning the minority class, it is
difficult for the Brier score to differentiate skillful models from unskillful models.

The Heidke Skill Score (HSS) is a metric commonly used in meteorology
that accounts for class imbalance. It is defined as how much better the model
prediction accuracy is than the standard forecast:

HSS =
ACC − SF

1 − SF
, ACC =

TP + TN
N

, and

SF =
TP + FN

N
× TP + FP

N
+

TN + FN
N

× TN + FP
N

,

where N is the number of total instances, ACC is the accuracy, SF is the standard
forecast, defined as correct by chance with class proportion, TP is the number
of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives. It is more difficult for the
standard forecast to correctly predict under class imbalance as a skewed class
proportion increases the odds of being correct by chance, Thus, using standard
forecast as the baseline makes HSS class-imbalance aware.

Other common metrics for handling imbalanced data include the F1 score
(the harmonic mean of precision and recall), the Matthews correlation coefficient,
the precision-recall area under the curve (PR-AUC), and the receiver operating
characteristic area under the curve (ROC-AUC) (the latter two are only for
binary classes). We select PR-AUC as the main evaluation metric, since precision
and recall are both important for this task, coupled with HSS as a side metric
to make it easier for meteorology experts to gauge performance.

Dataset. Since the raw form of most TC features is too complicated for people
to analyze and comprehend, only summarized statistical properties are released
for public usage and used by SHIPS-RII. For example, one common feature is
the standard deviation of 100–300 km infrared brightness temperatures whereas
the entire distribution of infrared brightness temperatures over the whole geo-
graphical location is available but not fully utilized. Another common feature
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is the time-averaged potential TC intensity estimated by simulation, even when
data is available for the entire duration of the TC. Information loss due to statis-
tical properties taken over time or space is particularly harmful for RI prediction
because location- and timing-specific properties of the tropical cyclone are known
to cause rapid intensification.

Thus, we present a new dataset derived from [3,4], which consists of satel-
lite images of tropical cyclones (four channels) with data available every three
hours.1 Each TC sequence is split into 24-h segments. Each segment is associated
with a label indicating the occurrence of RI during the period. Preprocessing
of satellite images follows typical meteorology practices with emphasis on the
“objectiveness”, i.e., the entire procedure involves no human intervention. The
data consists of TCs from 2003 to 2017 and is split into two parts for training
(2003 to 2014) and testing (2015 to 2017). A disjoint testing set allows for the
evaluation of model generalization on holdout data; cross-validation is avoided
because it is particularly infeasible in terms of efficiency for deep learning models.

Satellite images, unlike features generated by predictive simulations, are con-
sidered lower-level data, i.e., they involve less processing. On the other hand,
predictive features are generated by large-scale dynamic atmospheric simula-
tions. Depending on predictive features poses a consistency issue because the
simulation models are updated yearly; thus they may change over a short period
of time. The fact that previous studies all depend on mixed data underlines the
importance of making better use of satellite images.

To highlight the contribution of our proposed benchmark, we inspect whether
the issues with the existing benchmark are resolved. First of all, the satellite
image data including the scripts for preprocessing are released for public use.
The preprocessing procedure is fully automated and does not require any human
intervention. A disjoint set of data is reserved for testing to avoid presenting over-
fitting benchmark results. Finally, PR-AUC and HSS are adopted as evaluation
metrics, both better reflect model performance under class imbalance.

4 Proposed Method

The new benchmark allows us to design and evaluate the potential of a domain-
inspired model that takes in satellite images as inputs. The model belongs to the
family of spatiotemporal deep learning methods, using deep convolutional neural
networks (CNNs) to extract essential features from image data in an autonomous
manner. As models generally suffer from the curse of dimensionality, complex
spatiotemporal data requires manual feature extraction (such as hand-carved
kernels) to compress it into smaller chunks. Such manual processing discards a
large amount of information and is inefficient in finding optimal features because
all feedback comes from trial and error. Currently the meteorology community
is attempting to break through the performance bottleneck by experimenting
with modalities such as lightning strike occurrence.
1 Tropical Cyclone Rapid Intensification with Satellite Images: https://www.csie.ntu.

edu.tw/∼htlin/program/TCRISI/.

https://www.csie.ntu.edu.tw/~htlin/program/TCRISI/
https://www.csie.ntu.edu.tw/~htlin/program/TCRISI/
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We opt for an orthogonal path by attempting to extract more from the
data that we already have, specifically TC satellite images with infrared (IR1),
water vapour (WV), visible light (VL), and passive microwave (PMW) channels.
Table 1 shows that satellite images contain sufficient if not significantly more
information in comparison to the features adopted in SHIPS-RII. One thing to
note is the overlapping dependence on the infrared and water vapor channels,
with infrared strictly dominating water vapor. Another is the lack of connection
with the visible light channel as the signal is useful for only half of the time
(the other half is nighttime). This is aligned with the feature selection in [3],
which conclude that using only the IR1 and PMW channels yields the best
performance. We follow the same practice to use only IR1 and PMW channels
in our study.

Table 1. Potential satellite channels implicitly related to SHIPS-RII environmental
conditions

SHIPS-RII feature Satellite channel

200-hPa divergence from 0–1000-km radius IR1

850–700-hPa relative humidity from 200–800-km radius IR1/WV

Total precipitable water averaged from 0–100-km radius IR1/WV

Std dev of 50–200-km IR cloud-top brightness temperatures IR1

4.1 Model Architecture

To recapitulate, the data for this task is spatiotemporal and highly class-
imbalanced while relatively lacking in quantity, with only approximately 1900
tropical cyclone instances in total (from 2003 to 2017). The constraint posed
by data properties guides our model design. As the tropical cyclone is a well-
studied phenomenon in meteorology and many techniques have been proposed
and withstood the test of time, translating the accumulated domain knowledge
into data science is a difficult but rewarding task. Specifically, the Advanced Dvo-
rak Method (ADT) is the inspiration for the attention modules in our model,
which also allows us to observe what the model is focusing on. More details
regarding individual components of the model are discussed later in this section.

4.2 Base Structure

Convolutional neural networks (CNNs) are suitable for modeling data with local
spatial dependency, as the convolution operator operates on neighboring pix-
els, making it the base structure of our model. We further extend the model to
take into account the sequential nature of data. Currently there are three main
neural network families that deal with time series: 3D-CNN, recurrent neural
networks (RNNs), and Transformer (from low to high model complexity). 3D-
CNN applies convolution on the time dimension in addition to the two spatial
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dimensions. RNN reuses the same recurrent block to process each single time
frame in a series and summarizes past time frames to feed into the next time
frame. The long-short term memory network (LSTM) is one of the most popular
implementations of RNN with an additional memory state for storing long-term
dependencies in sequences. It can be coupled with CNNs to form a convolutional
LSTM (ConvLSTM) [18], replacing all matrix multiplications with convolution
operations to simultaneously model spatial and temporal aspects of data. Trans-
former relies on an attention mechanism to determine dependency between each
input and output time frame, calculating a similarity score between each input
time frame (a query) and a set of context (keys) to serve as importance weight-
ing for a linear combination of the values that correspond to the individual keys.
The query approach decouples the similarity and information aspect as the keys
and values—in contrary to past attention mechanisms—can now be different. It
also allows the output at each time frame to pull information from any (masked)
input time frame, thus excelling in modeling sequential dependency. However,
Transformers are huge architectures requiring large amounts of data to train,
which exceeded the resources of the authors at the time this research was con-
ducted.

Most pretrained computer vision neural networks are pretrained on large-
scale image classification datasets such as CIFAR-10 or ImageNet. As the domain
for satellite images is fundamentally different from those represented in publicly-
available pretrained models, it is difficult to apply common image models (for
instance ResNet50 [6]) to this task. Due to the lack of data, training from scratch
was not feasible for larger models (as verified empirically). In the end, we opted
for the minimalist model architecture presented in Fig. 1. The base structure is a
ConvLSTM model with convolutional layers in the front to enrich features and a
dense block in the end to compress the three-dimensional features to one single
probabilistic scalar output.

4.3 Incorporating Meteorological Knowledge

Neural network models in deep learning are notorious for their lack of explain-
ability and interpretability. This may work without major drawbacks in com-
mon tasks such as image classification or language translation, as the purpose
of these tasks is to autonomize previously human-labor-intensive jobs. The rela-
tively lower cost of making mistakes in these tasks allows for the application of
black-box models, as deep neural networks outperform past approaches. How-
ever, for other tasks with more at stake (for instance in the medical domain),
being able to peek into the black box becomes significantly more important than
pure performance. Understanding when and why a model makes mistakes helps
people build trust the model output and evaluate the risk of incorporating it
into the workflow. For instance, saliency maps [17] are utilized to trace which
part of the image contributes most to the classification result.
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One of the most intuitive methods of understanding models is to directly
design the model according to previously acquired domain knowledge. By
exploiting such know-how, the learning is guided by expert insight which allows
analysis of whether the models learn as intended. As mentioned in earlier sec-
tions, the Advanced Dvorak Technique used for TC intensity estimation inspired
the attention components of our model. The major purpose of these additional
components is to help diagnose and understand the model, as opposed to improv-
ing its performance.

Cross Channel Attention (CCA). The first of the two key points of ADT is
to locate the TC eye and perform scene-type analysis. The extreme convection
in the core area of TCs is known to be critical for RI. We integrate this into
our model by applying cross channel attention between the CNN encoder block
and recurrent block to reinforce the key locations for the model to focus on.
Specifically, cross channel attention takes the multiple channel feature and apply
a 2-dimensional importance weighting mask that is shared across every channel.
In our model, the importance mask is implemented as a two-layer CNN with
sigmoid function in the end for normalization. The global view across all different
channels allows incorporation of information from different sources to facilitate
an overall importance evaluation of where in the hidden map the model should
focus its attention. Given our domain knowledge, we expect a successful model
to focus mainly on the TC core.

Sequence Self-attention (SSA). The second key point of ADT is to apply
time averaging on the predicted intensity, showcasing the importance of tak-
ing earlier information into account. In ADT the averaging scheme calculates
the non-weighted mean intensity over a 3-hr window (empirically determined).
Directly translating the concept to RI prediction is problematic, as (1) our model
predicts the occurrence of a future event, so the ground truth for the recent past is
still not available; and (2) averaging the RI probability may not be as reasonable
as averaging TC intensity. Also, we are not satisfied with the heuristic of applying
the non-weighted average over a fixed window as, intuitively, the optimal con-
tribution of different time steps is certainly different and should be determined
dynamically. As a result, we incorporate the widely adopted sequence atten-
tion mechanism [10] into our recurrent block. Of the different styles of sequence
attention, we base our design on Bahdanau style self-attention [1]. For each time
step, features with information for the current time step is concatenated with
a weighted average of features from all time steps prior to form the recurrent
block input. The weighting is calculated by evaluating the similarity between
features for the current time step and prior features. In our model, we use the
projected cosine distance as the similarity metric, which is implemented as first
passing the two given features through a two-layer CNN for feature extraction,
then applying normalized inner product. The CNN for feature extraction before
calculating the cosine distance is essential due to the self-rotation motion of trop-
ical cyclones. Pixel misalignment caused by rotation is remedied by adding the
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additional feature extractor, which implicitly learns to transform the features
into higher level ones with rotation-invariance.

Fig. 1. Model architecture. The proposed model is split into three main components:
CNN encoder block, recurrent block, and dense block.

5 Experiment and Analysis

For the experiments, we trained the model on the training set for 500 epochs,
validating on the validation set every 10 epochs. Hyper-parameter tuning and
epoch selection were achieved by selecting the model with best validation PR-
AUC. We then evaluated the trained model on the test set and report the test
performance in this paper. Hyper-parameters were minimally tuned only for the
base ConvLSTM model such that the model converges and does not collapse to
predicting the majority class only; for all other variants, they were kept identical.
Tuned parameters include

– Batch size: 256
– Learning rate: 5e−4
– L2 regularization factor: 1e−5
– Dense layer dropout rate: 0.2.

All weights are initialized identically according to convention except for the
final logits layer bias, which was carefully set to log( #of positive class instances

#of negative class instances ) to
output a closer guess initially before any training given class imbalance. We
chose the Adam optimizer [9] to optimize the weighted binary cross entropy
loss with class weights corresponding to the reciprocal of the number of class
instances (1:20). We experimented with both class weighting and minor class
bootstrapping to prevent model collapse and found that the latter caused the
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model to overfit. The batch size was set as large as possible to mitigate large
variances in gradient magnitude when the number of sampled instances was
different for each mini-batch. The input satellite images were augmented by
random rotation to simulate the natural rotation of tropical cyclones. This is
the key to making deep learning possible, as without rotation augmentation,
even the most shallow neural network model easily overfits the training set. All
the code and trained models are publicly released.2

5.1 Input Time Length Experiment

The input time length is how long prior to the time step should be included as
the input to the model. It may seem that the longer the better, as the model
can actively choose what features to depend on. However, tropical cyclones are
fundamentally chaotic systems where small changes in the initial value lead to
largely bifurcated results. In SHIPS-RII, 24 h of data are fed into the model.
The trade-off for the input time length is that with a shorter length, the model
can start predicting in the very early stages of TC development but may use
more information from earlier stages, whereas with a longer length, the situa-
tion is the exact opposite, and the training time is extended linearly with longer
gradient backpropagation. As ConvLSTM can take arbitrary-length sequence
input, we experimented with dynamic- and fixed-length input and found that
dynamic-length resulted in inefficient training (each sequence cannot be stacked
uniformly) and poor performance, suggesting that fixed-length input is better.
We experimented with input lengths of 12, 24, 36, and 48 h; the results are
presented in Fig. 2. For PR-AUC, an input length of 24 h yields the best perfor-
mance, identical to the empirically determined length adopted in past studies.
An input length of 36 h performs satisfactorily as well, indicating the possibility
of the model benefiting from more data. For HSS, an input length of 36 h yields
the best performance, in contrast to the empirically determined length in past
studies, with 24 and 48 h not far behind. Thus, input lengths of 24 or 36 are
in the range of optimal input time lengths. Interestingly, this alignment with
meteorology-domain knowledge suggests that approaches from past studies and
our model, as different as they might be, find important features from a sim-
ilar range in history. For the sake of faster training and less data required for
prediction, we conducted the following experiments with 24 h as input.

5.2 Ablation Study

We conducted an ablation study on the two ADT-inspired components attached
to the base ConvLSTM model. Recall that the purpose of CCA and SSA is to
assist in the understanding of the model prediction with gains in model perfor-
mance as a secondary goal. As a result, the hyperparameters are not specifically
tuned for each model, nor is the architecture. Performance gains via optimizing

2 https://github.com/jybai/TCRI-Benchmark.

https://github.com/jybai/TCRI-Benchmark
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Fig. 2. Performance given different input time lengths (left: PR-AUC, right: HSS).
These results show that input lengths of 24 or 36 are in the range of optimal input
time lengths.

these details is left as future work. The PR-AUC and HSS results of the different
variants are shown in Table 2.

ConvLSTM, ConvLSTM + CCA, and ConvLSTM + SSA perform similarly
in both metrics, which shows that the additional domain-inspired components
do not harm prediction quality. Note however that the combination of CCA
and SSA results in clearly worse performance as the model size becomes too
large, causing the model to overfit on the training set. This is an example of the
most difficult issue we encountered when designing the model: balancing having
enough capacity to model spatiotemporal relations and being compact enough
to not overfit on the small dataset. We will discuss the takeaways from CCA and
SSA in the following sections.

Table 2. Results of ablation study

PR-AUC Heidke Skill Score

ConvLSTM 0.098 0.159

ConvLSTM + CCA 0.095 0.164

ConvLSTM + CCA 0.099 0.161

ConvLSTM + CCA + SSA 0.089 0.152

5.3 Cross Channel Attention Analysis

The purpose of CCA is to combine information across all channels to produce a
shared importance mapping. In Fig. 3 we randomly sampled four instances for
visualization and compare these with existing domain knowledge in meteorology
regarding factors relevant to rapid intensification. We observe that CCA helps
the neural network to focus on coherent convective features within the TC core
region. High importance is given to areas with extreme convection characterized
by high PMW rain rates (warm color in the figures) and extremely low IR1
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brightness temperatures (dark blue in the figures), indicating that cross chan-
nel information is jointly considered. The strongly subsidence and dry area in
the TC outer region characterized by zero PMW rain rate and very high IR1
brightness temperatures are also highlighted by the weighting. Domain knowl-
edge holds that RI is closely related to the convective burst within the TC inner
core. Therefore, we conclude that the focus of the model from a meteorological
perspective is crucial to making correct predictions.

Furthermore, we demonstrate how the model follows the dynamical TC devel-
opment process with the bottom-right subfigure in Fig. 3. We observe the for-
mation of the TC eye (high IR1 Tb at the center) indicating the potential inten-
sification of the TC in the last three IR1 satellite images. Importance weighting
becomes significantly stronger at the TC center, focusing on the evolution of TC
inner-core convection.

Fig. 3. Cross channel attention. Four randomly sampled instances are visualized, each
with three rows; the top, middle, and bottom being the satellite IR1 channel, satellite
PMW channel, and model attention map (CCA), respectively. White implies a higher
importance for the weighting.

5.4 Sequence Self-attention Analysis

In ADT, an intensity average is taken over a 3-hr window with equal weighting,
which is counter-intuitive as the importance of each time step should be different.
We inspected the attention weights of the last time step over the time series
extracted from the sequence attention component. We assume that since later
time steps are closer to the final step, their similarities are higher, analogous to
the exponential weighted moving average giving higher weights to more recent
information. In Fig. 4 we present the histogram of the time step associated with
the highest attention score.

Interestingly, the attention is highest on the first frame and exponentially
decays over time. The last four steps have never been given the highest atten-
tion score out of all time steps, going against our intuition that later frames
are more important. This phenomenon is explained by a key difference between
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Fig. 4. Histogram of time step with highest attention score. Counts are normalized
with respect to total number of instances, presented here as percentages.

our approach toward the weighted average versus the time averaging in ADT.
In ADT, as the averaging is applied directly to intensity, due to the changes in
atmospheric environment being continuous, intensity remains similar between
time steps that are closer. In our model, the weighted average of sequence atten-
tion is applied to the hidden maps derived from the input satellite image features.
Neighboring time steps provide similar or even redundant information whereas
more distant time steps offer more. As the entire 24-h duration is important,
the last frame gives more attention to the distant past to retrieve features that
may not be sufficiently encoded in the ConvLSTM memory. It is also possible
that since the end goal is to predict occurrences of rapid intensification, which is
defined as whether the wind speed of the last frame increases by over 35 knots
within 24 h, the model looks back in time to determine the difference between
features from now and 24 h ago as a point of reference.

6 Conclusion

In this work, we propose a new benchmark for detecting rapid intensification of
tropical cyclones, including a benchmark dataset based on TC satellite images
with clearly defined, disjoint training, validation, and testing sets. We seek to
exploit features from lower-level data such as satellite signals as they offer the
most detailed information, in contrast to features utilized in the past derived
from trial-and-error heuristics with a mix of measured and simulated data. We
point out the insuitability of the commonly-reported Brier skill score given the
nature of the high class imbalance of the task, and replace it with the precision-
recall area under the curve (PR-AUC) and the Heidke skill score (HSS) to
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better reflect true model prediction performance. We also explore the poten-
tial of applying deep learning methods, which are known to benefit from large
quantities of detailed spatiotemporal data which humans are unable to directly
process. The proposed model is based on the ConvLSTM network with addi-
tional components—cross channel attention (CCA) and sequence self-attention
(SSA)—inspired by the Advanced Dvorak Technique, a meteorological technique
used to estimate TC intensity. We examine importance weighting from CCA and
observe that the model focuses on the TC core where extreme convection occurs,
a key factor for rapid intensification. We also evaluate sequence self-attention to
determine which time step in a 24-h series is paid the most attention by the
model. The overall results suggest that important prediction features are spread
across the entire series. In future work, we will better incorporate CCA and
SSA to maintain model performance and hopefully incorporate all channels of
satellite data.
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Abstract. Accurate travel products price forecasting is a highly desired
feature that allows customers to take informed decisions about purchases,
and companies to build and offer attractive tour packages. Thanks to
machine learning (ML), it is now relatively cheap to develop highly accu-
rate statistical models for price time-series forecasting. However, once
models are deployed in production, it is their monitoring, maintenance
and improvement which carry most of the costs and difficulties over
time. We introduce a data-driven framework to continuously monitor
and maintain deployed time-series forecasting models’ performance, to
guarantee stable performance of travel products price forecasting models.
Under a supervised learning approach, we predict the errors of time-series
forecasting models over time, and use this predicted performance mea-
sure to achieve both model monitoring and maintenance. We validate the
proposed method on a dataset of 18K time-series from flight and hotel
prices collected over two years and on two public benchmarks.

Keywords: Model monitoring · Model maintenance · Time-series ·
Forecasting

1 Introduction

Travel industry actors, such as airlines and hotels, nowadays use sophisticated
pricing models to maximize their revenue, which results in highly volatile fares
[8]. For customers, price fluctuation are a source of worry due to the uncer-
tainty of future price evolution. This situation has opened the possibility to new
businesses, such as travel meta-search engines or online travel agencies, pro-
viding decision-making tools to customers [32]. In this context, accurate price
forecasting over time is a highly desired feature, as it allows customers to take
informed decisions about purchases, and companies to build and offer attractive
tour packages, while maximizing their revenue margin.
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The exponential growth of computer power along with the availability of large
datasets has led to a rapid progress in the machine learning (ML) field over the
last decades. This has allowed the travel industry to benefit from the powerful
ML machinery to develop and deploy accurate models for price time-series fore-
casting. Development and deployment, however, only represent the first steps
of a ML system’s life cycle. Currently, it is the monitoring, maintenance and
improvement of complex production-deployed ML systems which carry most of
the costs and difficulties in time [24,27]. Model monitoring refers to the task
of constantly tracking a model’s performance to determine when it degrades,
becoming obsolete. Once a degradation in performance is detected, model main-
tenance and improvement take place to update the deployed model by rebuilding
it, recalibrating it or, more generally, by doing model selection.

While it is relatively easy and fast to develop ML-based methods for accurate
price forecasting of different travel products, maintaining a good performance
over time faces multiple challenges. Firstly, price forecasting of travel products
involves the analysis of multiple time-series which are modeled independently,
i.e. a model per series rather than a single model for all. According to the 2019
World Air Transport Statistics report, almost 22K city pairs are directly con-
nected by airlines through regular services [15]. As each city pair is linked to
a time-series, it is impossible to manually monitor the performance of every
associated forecasting model. For scalability purposes, it is necessary to develop
methods that can continuously and automatically monitor and maintain every
deployed model. Secondly, time-series comprise time-evolving complex patterns,
non-stationarities or, more generally, distribution changes over time, making
forecasting models more prone to deteriorate over time [1]. Poor estimations
of a model’s degrading performance can lead to business losses, if detected too
late, or to unnecessary model updates incurring system maintenance costs [27],
if detected too early. Efficient and timely ways to model monitoring are therefore
key to continuously accurate in-production forecasts. Finally, a model’s degrad-
ing performance also implies that the model becomes obsolete. As a result, a
specific model might not always be the right choice for a given series. Since time-
series forecasting can be addressed through a large set of different approaches,
the task of choosing the most suitable forecasting method requires finding sys-
tematic ways to carry out model selection efficiently. One of the most common
ways to achieve all of this is cross-validation [3]. However, this approach is only
valid at development and cannot be used to monitor and maintain models in-
production due to the absence of ground truth data.

In this work we introduce a data-driven framework to continuously monitor
and maintain time-series forecasting models’ performance in-production, i.e in
the absence of ground truth, to guarantee continuous accurate performance of
travel products price forecasting models. Under a supervised learning approach,
we predict the forecasting error of time-series forecasting models over time. We
hypothesize that the estimated forecasting error represents a surrogate measure
of the model’s future performance. As such, we achieve continuous monitor-
ing by using the predicted forecasting error as a measure to detect degrading
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performance. Simultaneously, the predicted forecasting error enables model
maintenance by allowing to rank multiple models based on their predicted perfor-
mance, i.e. model comparison, and then select the one with the lowest predicted
error measure, i.e. model selection. We refer to it as a model monitoring and
model selection framework.

The remaining of this paper is organized as follows. Section 2 discusses related
work. Section 3 reviews the fundamentals of time-series forecasting and perfor-
mance assessment. Section 4 describes the proposed model monitoring and main-
tenance framework. Section 5 describes our datasets and presents the experimen-
tal setup. Experiments and results are discussed in Sect. 6. Finally, in Sect. 7 we
summarize our work and discuss key findings.

2 Related Work

Maintainable Industrial ML Systems. Recent works from tech companies [4,
19,24] have discussed their strategies to deal with some of the so-called technical
debts [27] in which ML systems can incur when in production. These works
mainly focus on the hard- and soft-ware infrastructure used to mitigate these
debts. Less emphasis is given to the specific methods put in place.

Concept Drift. The phenomenon of time-evolving data patterns is known as
concept drift. As time-series are not strictly stationary, it is a common problem
of time-series forecasting usually addressed through regular model updates. Most
works have focused on its detection, what we denote model monitoring, without
performing model selection as they are typically limited to a single model [11,20].
The exception to this is the work of [25,26], where a weighted sliding-window is
used to combine the forecasts of multiple candidate models into a single value.

Performance Assessment Without Ground Truth. An alternative to cross-
validation is represented by information criteria. The rationale consists in quan-
tifying the best trade-off between models’ goodness of fit and simplicity. Informa-
tion criteria are mostly used to compare nested models, whereas the comparison
of different models requires to compute likelihoods on the same data. Being fully
data-driven, our framework avoids any constraint regarding the candidate mod-
els, leading to a more general way to perform model selection. Specifically to
time-series forecasting, Wagenmakers et al. [30] achieve performance assessment
in the absence of ground truth using a concept similar to ours. They estimate the
forecasting error of a new single data point by adding previously estimated fore-
cast errors, obtained from already observed data points. The use of the previous
errors makes it sensible to unexpected outlier behaviors of the time-series.

Meta-learning. Meta-learning has been proposed as a way to automatically
perform model selection. Its performance has been recently demonstrated in the
context of time-series forecasting. Both [2,28] formulate the problem as a super-
vised learning one, where the meta-learner receives a time-series and outputs the
“best” forecasting model. Authors in [7] share our idea that forecasting perfor-
mance decays in time, thus they train a meta-learner to model the error incurred
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by the base models at each prediction step as a function of the time-series fea-
tures. Differently from [28], our approach does not seek to select a different model
family for each time-series, and avoids model selection at each time step [7], since
these two represent expensive overheads for in-production maintenance. Instead,
we maintain a fast forecasting procedure and select the best model for a given
time period in the future, which length can be relatively high (6–9 months, for
instance).

3 Time-Series Forecasting and Performance Measures

A univariate time-series is a series of data points T = {y1, . . . , yT }, each one
being an observation of a process measured at a specific time t. Univariate time-
series contain a single variable at each time instant, while multivariate time-series
record more than one variable at a time. Our application is concerned with uni-
variate time-series, which are recorded at discrete points in time, e.g., monthly,
daily, hourly. However, extension to the multivariate setting is straightforward.

Time-series forecasting is the task consisting in the use of these past obser-
vations (or a subset thereof) to predict future values Th = {ŷT+1, . . . , ŷT+h},
with h indicating the forecasting horizon. The number of well-established meth-
ods to perform time-series forecasting is quite large. Methods go from classical
statistical methods, such as Autoregressive Moving Average (ARMA) and Expo-
nential smoothing, to more recent machine learning models which have shown
outstanding performance in different tasks, including time-series forecasting.

The performance assessment of forecasting methods is commonly done using
error measures. Despite decades of research on the topic, there is still not an
unanimous consensus on the best error measure to use among the multiple avail-
able options [14]. Among the most used ones, we find Symmetric Mean Absolute
Percentage Error (sMAPE) and Mean Absolute Scaled Error (MASE). These
two have been adopted in recent time-series forecasting competitions [21].

4 Monitoring and Model Selection Framework

Let us denote X = {T (i), T (i)
h }Ni=1 the input training set. A given input i is

formed by the observed time-series T (i) and h forecasted values, T (i)
h . The values

in T (i)
h are obtained by a given forecasting model which we hereby denote a

monitored model, g. Let eg = {e(i)g }Ni=1 be a collection of N performance measures
assessing the accuracy of the forecasts T (i)

h estimated by g. A given performance
measure e

(i)
g is obtained by comparing the forecasts T (i)

h from g to the true
values.

Lets define a monitoring model as a model that is trained to learn a function
f mapping the input time-series X to the target eg. Given a new set of time-
series X ∗ = {T ∗(i), T ∗(i)

h }N∗
i=1, formed by a time-series of observations T ∗(i),

|T ∗(i)| = T ∗
i , and h forecasts T ∗(i)

h obtained by g, the learned monitoring model
predicts e∗

g, i.e. the predicted performance measure of g given X ∗ (Fig. 1).
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Fig. 1. Illustration of the proposed method. X and X ∗ contain multiple time-series,
each of these composed of Ti observations (green) and h forecasts (red) estimated by a
monitored model, g. eg represents the forecasting performance of the monitored model.
It is computed using the true values (yellow). A monitoring model is trained to learn
the function f mapping X to eg. With the learned f , the monitoring model is able
to predict e∗

g, the predicted forecasting performance of the monitored model given X ∗.
(Color figure online)

The predicted performance measures e∗
g represent a surrogate measure of the

performance of a given g within the forecasting horizon h. As such it is used
for the two tasks: model monitoring and selection. Model monitoring is achieved
by using e∗

g as an alert signal. If the estimated performance measure of the
monitored model is poor, this means the model has become stale. To achieve
model selection, e∗ are used to rank multiple monitored models and choose the
one with the best performance If the two tasks are executed in a continuous
fashion over time, it is possible to guarantee accurate forecasts in an automated
way.

In the following, we describe the performance measure e that we use in our
framework, as well as the monitoring and monitored models that we chose to
validate our hypotheses.

4.1 Performance Measure

As previously discussed, performance accuracy of time-series forecasts is mea-
sured using error metrics. In this framework, we use the sMAPE. It is defined
as:
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sMAPE =
1
h

h∑

t=1

2
|yt − ŷt|
|yt| + |ŷt| , (1)

where h is the number of forecasts (i.e. forecasting horizon), y is the true value
and ŷ is the forecast.

In the literature, there are multiple definitions of the sMAPE. We choose the
one introduced in [9] because it is bounded between 0 and 2; specifically, it has a
maximum value of 2 when either y or ŷ is zero, and it is zero when the two values
are identical. The sMAPE has two important drawbacks: it is undefined when
both y, ŷ are zero and it can be numerically unstable when the denominator in
Eq. 1 is close to zero. In the context of our application, this is not a problem
since it is unlikely to have prices with value zero or very close to it.

4.2 Monitoring Models

The formulation of our framework is generic in the sense that any supervised
technique that can solve regression problems can be used as a monitoring model.
In this work, we decided to focus on latest advances in deep learning. We con-
sider four alternative monitoring models: Long Short-Term Memory (LSTM)
networks, Convolutional Neural Networks (CNNs), Bayesian CNNs and Gaus-
sian processes (GP). The latter two models differ from the former ones in that
they also provide uncertainties around the predictions. This can enrich the out-
put provided by the monitoring framework, in that whenever an alert is issued
because of poor performance, this is equipped with information about its relia-
bility This section illustrates the basic ideas of each of the selected monitoring
models.

Long Short-Term Memory Networks. LSTM [13] networks are a type of
Recurrent Neural Networks (RNNs) that solve the issue of the vanishing gradi-
ent problem [5] present in the original RNN formulation. They achieve this by
introducing a cell state into each hidden unit, which memorizes information. As
RNNs they are a well-established architecture to model sequential data. By con-
struction, LSTMs can handle sequences of varying length, with no need for extra
processing like padding. This is useful in our application, whereby time-series in
the datasets have different lengths.

Convolutional Neural Networks. CNNs [17] are particular class of deep neu-
ral networks where the weights (filters) are designed to promote local information
to propagate from the input to the output at increasing levels of granularity. We
use the original LeNet [18] architecture, as it obtains generally good results in
image recognition problems, while being considerably faster to train with respect
to more modern architectures. CNNs are not originally conceived to work with
time-series data. We adapt the architecture to work with time-series by using
1D convolutional filters. Unlike RNNs, this model does not support inputs of
variable size, so we to resort to padding: where necessary we append zeros to a
time-series to make them uniform in length. We denote this model LeNet.
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Bayesian Convolutional Neural Networks. Bayesian CNNs [12] represent
the probabilistic version of CNNs, used in applications where quantification of
the uncertainty in predictions is needed. Network parameters are assigned a prior
distribution and then inferred using Bayesian inference techniques. Due to the
intractability of the problem, the use of approximations is required. Here we
choose Monte Carlo Dropout [12] as a practical way to carry out approximate
Bayesian CNNs. By applying dropout at test time we are able to sample from
an approximate posterior distribution over the network weights. We use this
technique on the LeNet CNN with 1D filters to produce probabilistic outputs.
We denote this model Bayes-LeNet.

Gaussian Processes. GPs [23] form the basis of probabilistic nonparametric
models. Given a supervised learning problem, GPs consider an infinite set of
functions mapping input to output. These functions are defined as random vari-
ables with a joint Gaussian distribution, specified by a mean function and a
covariance function, the latter encoding properties of the functions with respect
to the input. One of the strengths of GP models is the ability to characterize
uncertainty regardless of the size of the data. Similarly to CNNs, in this model
input sequences must have the same length, so we resort to padding.

4.3 Monitored Models

Similar to monitoring models, given the generic nature of the proposed frame-
work, there is no constraint on the type of monitored models that can be used.
Any time-series forecasting method can be monitored. For this proof of concept,
we consider six different monitored models. We select five of them from the ten
benchmarks provided in the M4 competition [21], a recent time-series forecasting
challenge. These are: Simple Exponential Smoothing (ses), Holt’s Exponential
Smoothing (holt), Dampen Exponential Smoothing (damp), Theta (theta) and
a combination of ses - holt - damp (comb). Besides these five methods, we
included a simple Random Forest (rf), in order to enrich the benchmark with a
machine learning-based model. We refer the reader to [6,21] for further details
on each of these approaches.

5 Experimental Setup

This section presents the data, provides details about the implementation of
our methods to ease reproducibility and concludes by describing the evaluation
protocol carried during the experiments.

5.1 Data

Flights and Hotels Datasets. We focus on two travel products: direct flights
between city pairs and hotels. Our data is an extract of prices for these two travel
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products obtained from the Amadeus for Developers API1, an online web-service
which enables access to travel-related data through several APIs. It was collected
over a two-years and one-month period. Table 1 presents some descriptive fea-
tures of the datasets.

Using the service’s Flight Low-fare Search API, we collected daily data for
one-way flight prices of the top 15K most popular city pairs worldwide. The
collection was done in two stages. A first batch, corresponding to the top 1.4K
pairs (flights), was gathered for the whole collection period. The second batch,
corresponding to the remaining pairs (flights-ext), was collected only over the
second year. For hotels, we used the Hotel API to collect daily hotel prices for a
two-night stay at every destination city contained in the top city pairs used for
flight search. These represent 3.2K different time-series.

Both APIs provide information about the available offers for flights/hotels,
that meet the search criteria (origin-destination and date, for flights; city, date
and number of nights, fixed to 2, for hotels) at the time of search. As such, it is
possible to have multiple offers (flights or hotel rooms) for a given search criteria.
When multiple offers were proposed, we averaged the different prices to have a
daily average flight price for a given city pair, in the case of flights, or daily
average hotel price for a given city, in the case of hotels. In the same way, it is
possible to have no offers for a given search criteria. Days with no available offers
were reported as missing data. Lack of offers can be caused by sold outs, specific
flight schedules (e.g. no daily flights for a city pair) or seasonal patterns (e.g.
flights for a part of the year or seasonal hotel closures). More rarely, they could
even be due to a failure in the query sent to the API. As a result, the number
of available observations is smaller than the length of the collection period (see
Table 1).

Public Benchmarks. In addition to travel products data, we decided to include
data coming from publicly available benchmarks. Benchmark data are typi-
cally curated and avoid problems present in real data, such as those previ-
ously discussed regarding missing data, allowing for an objective assessment and
more controlled setup for experimentation. We included two sets from the M4
time-series forecasting challenge competition [21] dataset, yearly and weekly.
Table 1 presents statistics on the number of time-series and the available number
observations per time-series for these two datasets. Here, the number of avail-
able observations is equivalent to the time-series length as no time-series contains
missing values.

5.2 Implementation

The LSTM network was implemented in Tensorflow. It is composed of one hidden
layer with 32 hidden nodes. It is a dynamic LSTM, in that it allows the input
sequences to have variable lengths, by dynamically creating the graph during
execution. The two CNN-based monitoring models use the LeNet architecture.

1 https://developers.amadeus.com/.

https://developers.amadeus.com/
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Table 1. Information about number of time-series, and minimum (min-obs), maximum
(max-obs), mean (mean-obs) and standard deviation (std-obs) of the available number
of time-series observations per dataset.

Name # time-series min-obs max-obs mean-obs std-obs

flights 1,415 431 745 734 23

flights-ext 13,810 50 347 346 13

hotels 3,207 1 658 368 128

yearly 23,000 13 835 31 25

weekly 359 80 2,597 1022 706

We modified both convolutional and pooling layers with 1D filters, given that
the input of the model consists in sequences of one dimension. We added dropout
layers to limit overfitting. In the Bayesian CNN, we applied a dropout rate of 0.5,
also at testing time, to obtain 100 Monte Carlo samples as approximation of the
true posterior distribution. The GP model used the implementation of Sparse GP
Regression from the GPy library2. The inducing points [29] were initialized with
K-means and were then fixed during optimization. We used a variable number
of inducing points depending on the size of the input and a RBF kernel with
Automatic Relevance Determination (ARD). In all experiments we used 75%
data for training and 25% for test and the Adam optimizer with default learning
rate [16]. Only in the dataset flights-ext we used mini-batches of size 128 to
speed up the training. For the monitored models, we used the implementation
available from the M4 competition benchmark Github repository3 and we used
the Python sklearn package [22] implementation of R andom Forest. All code
has been made publicly available4.

5.3 Evaluation Protocol

For flight and hotel data we set h = {90, 180}, which means we are predicting
the price for h days ahead. These are two commonly used values in travel, rep-
resenting 3 and 6 months ahead of the planned trip, so it is important to have
accurate predictions over those horizons. For the M4 competition datasets, we
use the horizon given by the challenge organizers: h = 6 for yearly and h = 13
for weekly. For each dataset, we reserve the first Ti data points of the i-th
time-series, where Ti depends on the time-series’s length, as input of the moni-
tored models to obtain h forecasts. Where missing values were found, in flights
or hotels, these were replaced with the nearest non-missing value in the past. We
build X and X ∗, by taking 75% and 25% from the total number of time-series,
respectively. We thus compute the forecasting errors e using the sMAPE in Eq. 1

2 http://github.com/SheffieldML/GPy.
3 https://github.com/M4Competition/M4-methods.
4 https://github.com/robustml-eurecom/model monitoring selection.

http://github.com/SheffieldML/GPy
https://github.com/M4Competition/M4-methods
https://github.com/robustml-eurecom/model_monitoring_selection
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for the training set X . Finally, we predict the performance measure e∗ for the
time-series in X ∗, using the four monitoring models.

We compare our model monitoring and selection framework with the stan-
dard cross-validation method, which we here denote baseline, where a model’s
estimated performance is obtained “offline” at training time with the available
data. Specifically, given T observations, we use the last h observations as valida-
tion set to evaluate the model. This implies to reduce the number of observations
available to train the forecasting models, which can be problematic when either
T is small or h is large.

6 Experiments and Results

We first study the proposed framework’s ability to achieve model monitoring
(Sect. 6.1). Then, we demonstrate how the predicted forecasting errors can be
used to carry out model selection and how it positions w.r.t state-of-the-art meth-
ods doing the same task (Sect. 6.2). In Sect. 6.3, we illustrate the performance of
the joint model monitoring and selection framework in our target application.

6.1 Model Monitoring Performance

We evaluate if the monitoring models’ predicted sMAPEs can be used for model
monitoring by estimating if the predicted measure represents a good estimate
of a monitored model ’s future forecasting performance. We assess the quality
of the predicted forecasting errors by estimating the root mean squared error
(RMSE) between the predicted sMAPEs and the true sMAPEs, for every mon-
itored model. The true sMAPE is obtained using the monitored model ’s predic-
tions and the time-series’ observations in through Eq. 1. As a reference, we report
the baseline RMSE, which is obtained by comparing the estimated sMAPE
at training with the observed values at testing. Figure 2 left summarizes the
obtained results on all datasets.

Fig. 2. RMSE between predicted and measured
forecasting error (sMAPE) on all datasets (log
scale). The reported baseline RMSE is obtained by
comparing the estimated sMAPE at training with
the observed values at testing.

The overall average error
incurred by the monitoring
models is low. This suggests
that the forecasting error pre-
dictions are accurate, mean-
ing that it is reliable to carry
out model monitoring. When
compared to it, the monitor-
ing models consistently per-
form better than standard
cross-validation when estimat-
ing the future performance
of the forecasting monitored
models. There is an exception
to this when the monitored
model is the Random Forests
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Fig. 3. RMSE between predicted and measured forecasting error (sMAPE). From left
to right flights and flights-ext (top) with 1) h = 90, 2) h = 180, hotels 3) h = 90,
4) h = 180.

Table 2. RMSE between predicted and true sMAPEs for flights and hotel time-series.

Monitoring model Flights Hotels

h = 90 h = 180 h = 90 h = 180

LSTM 0.116± 0.017 0.151± 0.031 0.193± 0.021 0.182± 0.039

LeNet 0.117± 0.017 0.155± 0.031 0.209± 0.039 0.224± 0.062

Bayes-LeNet 0.084±0.017 0.100±0.035 0.135±0.022 0.148±0.044

GP 0.136± 0.007 0.126± 0.028 0.164 ± 0.014 0.165± 0.036

baseline 0.119 ± 0.006 0.604± 0.328 0.190± 0.020 0.609± 0.302

(rf). In this case, the baseline is not the worst performing approach. However,
it is still surpassed in performance by both LSTM and GP.

Figure 3 details the results obtained for flights and hotels time-series. Table 2
stratifies the results for travel product time-series in terms of the forecasting
horizon. results show that Bayes-LeNet obtains the lowest RMSEs, whereas GPs
follows closely and reports lower standard deviation. Overall, our approach out-
performs the baseline for large forecasting horizons, e.g. h = 180, while the
methods get closer as the forecasting horizon decreases. This is consistent with
our hypothesis that data properties change over time. Using a validation set
composed of time points close to the unseen data gives consistent information
about the model’s performance, because the two sets of data (validation and
unseen data) have similar properties. However, increasing h has the effect of
pushing away the validation time points from the unseen data. In this case, it is
better to rely on the forecast error prediction rather than on an error measure
obtained during training.

6.2 Model Selection Performance

In this experiment, we assess the capacity of the proposed method to assist
model selection in the absence of ground truth. Monitored models are ranked by
estimating the average predicted sMAPE over a given time-series and ordering
the resulting values in ascending order. In this way, we obtain a list of monitored
models from the best to the worst one. The best performing monitored model is
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Fig. 4. Measured average forecasting performance(sMAPE) using the proposed method
for model selection in the weekly dataset with fixed forecasting models over the whole
horizon. Average performance with Bayes-LeNet and GPs as monitoring models (left).
Error bars denote standard deviation. Using GPs as monitoring model with six (GP-6)
and ten monitored models (GP-10), worst (center) and best (right) model selection
performances in comparison with ADE and FFORMS.

selected. We compare the ground truth ranking with the one obtained by each of
the monitoring models and the baseline. We apply a Wilcoxon test [31] to the
ranking results to verify if there are significant differences between each of the
ranked monitored models. Table 3 presents obtained results in hotels and flights.

Overall, the obtained rankings are consistent with the ground truth, prov-
ing the ability of the method to carry out model selection, by identifying the
model with the lowest error measure. Moreover, comparing our approach with
the baseline, we find that our framework largely outperforms the latter, in that
the ranking resulting from the baseline is very different from the true one. Even
in predictions with a small forecasting horizon (h = 90), the baseline’s ranking
performance remains sub-optimal . Looking at the four monitoring models, we
find that they have a different behavior depending on the dataset. Specifically,
GPs result to be slightly more reliable than Bayesian-LeNet, as the latter in some
cases swapped the first and second model of the ranking. LSTM’s performance
is close to the two probabilistic models, although the latter two globally have a
better performance in terms of RMSE (see Table 2).

Having showed the reliability of the rankings, we evaluate if these can be
effectively used to maintain accurate forecasts over time by doing model selection
at fixed periods of time. Specifically, given a forecasting horizon, we divide it in
smaller periods. At each time point, we use the predicted forecasting error to
rank the monitored models and thus perform model selection by picking the best
ranked model. We use the public benchmark data to guarantee curated data and
we limit the experiments to the best two monitoring models, Bayesian-LeNet and
GPs (Table 2). We compare our model selection with the results obtained using
the same monitored model along the forecasting horizon. Figure 4 left shows
the average forecasting performance, measured through the real sMAPE, on the
weekly dataset. The proposed model selection scheme allows to have the lower
forecasting errors, i.e. a better performance, along the whole forecasting horizon.
Among the two monitoring models, GPs result in smoother curves.

Finally, we compare with two state-of-the-art meta-learning methods, arbi-
trated dynamic ensembler [7], ADE, and Feature-based FORecast-Model Selec-
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Fig. 5. Average forecasting performance in terms of sMAPE using the proposed model
monitoring and selection framework (GPs as monitoring model) and using forecasting
fixed models over the whole horizon. Error bars denote the standard deviation.

tion [28], FFORMS, with the best performing monitoring model in our approach.
The characteristics of these two methods allows them to be used to achieve
good forecasting model’s performance. FFORMS uses 12 different base models,
whereas ADE uses up to 40 different models. To remain competitive with these
two methods that use a larger number of base models, we add three standard
forecasting models, Arima (arima), Random Walk (rwf) and TBATS (tbats)
[10], and a feed-forward neural network (nn), to our set of monitored models.
We present sMAPE results over two time-series from the weekly dataset: one
where our method performs worst (Fig. 4 center) and the one where it performs
best (Fig. 4 right). We show the results of our approach using the original six
monitored models and the enlarged set. Using the original six monitored mod-
els, our performance is worse than the two meta-learning models. However, by
enlarging the set of monitored models, our method performs better than FFORMS
and achieves a performance comparable to ADE with much less monitored/base
models.

6.3 Model Monitoring and Selection Performance

Finally, we illustrate the performance of the proposed model monitoring and
selection framework by using it to guarantee continuous price forecasting accu-
racy of our two travel products: flights and hotels. In this context, the predicted
sMAPE is used as a surrogate measure of the quality of the forecasts estimated
by the monitored models. When the predicted sMAPE surpasses a given thresh-
old, model selection is performed. Otherwise, the monitored model is kept. We
use the best performing monitoring model, GPs. Since this is a probabilistic
method, in addition to having a high predicted sMAPE, we add the condition
of having a low uncertainty in the prediction. In our experiments, we set the
sMAPE threshold at 0.02 for flights and 0.01 for hotels. The uncertainty was
set at 0.01 for both. For this experiment, we removed rf from the monitored
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Table 3. Comparison between true and predicted model rankings, in ascending order
of sMAPE. Underlined values indicate pairs of forecasting models not significantly
different, according to Wilcoxon test.

Ground Truth Monitoring models Baseline

LSTM LeNet Bayes-LeNet GPs

hotels - h = 180

model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 damp 0.244
(0.153)

ses 208
(0.015)

ses 0.208
(0.032)

ses 0.212
(0.087)

damp 0.230
(0.119)

ses 0.326
(0.202)

2 ses 0.246
(0.164)

damp 0.220
(0.033)

damp 0.211
(0.056)

damp 0.224
(0.130)

ses 0.231
(0.121)

rf 0.413
(0.333)

3 theta 0.269
(0.217)

theta 0.233
(0.059)

theta 0.231
(0.024)

comb 0.249
(0.166)

comb 0.251
(0.149)

damp 0.462
(0.391)

4 comb 0.270
(0.207)

comb 0.234
(0.057)

rf 0.236
(0.047)

theta 0.268
(0.234)

theta 0.252
(0.160)

comb 0.746
(0.569)

5 rf 0.316
(0.300)

holt 0.280
(0.124)

comb 0.278
(0.145)

rf 0.324
(0.329)

rf 0.291
(0.207)

theta 0.938
(0.620)

6 holt 0.325
(0.277)

rf 0.292
(0.210)

holt 0.298
(0.189)

holt 0.325
(0.162)

holt 0.299
(0.190)

holt 1.047
(0.660)

hotels - h = 90

model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 damp 0.242
(0.175)

ses 0.203
(0.022)

ses 0.217
(0.065)

ses 0.238
(0.088)

damp 0.221
(0.137)

comb 0.237
(0.166)

2 ses 0.243
(0.174)

damp 0.218
(0.026)

damp 0.223
(0.073)

damp 0.239
(0.122)

comb 0.238
(0.155)

ses 0.239
(0.177)

3 comb 0.253
(0.189)

theta 0.223
(0.022)

theta 0.227
(0.063)

comb 0.259
(0.108)

theta 0.240
(0.151)

damp 0.250
(0.194)

4 theta 0.254
(0.190)

comb 0.224
(0.030)

comb 0.229
(0.047)

theta 0.263
(0.132)

ses 0.244
(0.180)

theta 0.251
(0.201)

5 holt 0.275
(0.217)

holt 0.244
(0.052)

holt 0.252
(0.096)

holt 0.282
(0.190)

holt 0.265
(0.185)

holt 0.277
(0.235)

6 rf 0.293
(0.285)

rf 0.254
(0.103)

rf 0.263
(0.059)

rf 0.298
(0.176)

rf 0.266
(0.191)

rf 0.311
(0.296)

flights - h = 180

model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 rf 0.238
(0.163)

rf 0.203
(0.007)

rf 0.199
(0.039)

rf 0.219
(0.075)

rf 0.213
(0.108)

rf 0.259
(0.200)

2 ses 0.247
(0.144)

theta 0.217
(0.026)

ses 0.215
(0.012)

theta 0.220
(0.097)

theta 0.226
(0.098)

damp 0.277
(0.150)

3 theta 0.248
(0.175)

ses 0.218
(0.024)

damp 0.216
(0.074)

ses 0.233
(0.098)

ses 0.227
(0.100)

ses 0.278
(0.151)

4 damp 0.249
(0.144)

damp 0.219
(0.022)

theta 0.217
(0.042)

damp 0.240
(0.090)

damp 0.229
(0.098)

theta 0.281
(0.155)

5 comb 0.250
(0.148)

comb 0.221
(0.027)

comb 0.219
(0.016)

comb 0.241
(0.094)

comb 0.231
(0.054)

comb 0.283
(0.160)

6 holt 0.260
(0.162)

holt 0.223
(0.034)

holt 0.222
(0.036)

holt 0.250
(0.088)

holt 0.238
(0.119)

holt 0.299
(0.199)

flights - h = 90

model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE model sMAPE

1 comb 0.174
(0.102)

comb 0.154
(0.081)

theta 0.160
(0.067)

comb 0.151
(0.086)

damp 0.159
(0.073)

ses 0.187
(0.110)

2 damp 0.175
(0.106)

damp 0.155
(0.076)

comb 0.164
(0.085)

damp 0.161
(0.086)

comb 0.160
(0.082)

theta 0.188
(0.109)

3 theta 0.176
(0.105)

theta 0.157
(0.042)

holt 0.166
(0.076)

theta 0.163
(0.087)

theta 0.162
(0.086)

damp 0.189
(0.110)

4 ses 0.177
(0.106)

ses 0.158
(0.028)

rf 0.174
(0.066)

holt 0.188
(0.074)

ses 0.163
(0.094)

comb 0.190
(0.112)

5 holt 0.179
(0.113)

holt 0.159
(0.036)

ses 0.183
(0.087)

ses 0.212
(0.070)

holt 0.171
(0.119)

holt 0.195
(0.118)

6 rf 0.232
(0.150)

rf 0.200
(0.025)

damp 0.212
(0.044)

rf 0.287
(0.083)

rf 0.210
(0.094)

rf 0.207
(0.137)
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models pool as it is the method giving the poorest performance. It is impor-
tant to remark that differently from other approaches removing a method from
the monitored models pool simply requires to stop generating forecasts with the
removed model. No re-training of the monitoring models is required.

Figure 5 illustrates the results obtained in terms of the average performance
(sMAPE) for hotels with forecasting horizon h = 90. Our experiment here is
quite restrictive, in the sense that no monitored model is re-trained along the
forecasting period. In this way, we show that even under this restrictive setting
the proposed framework is able to improve the performance of simple models.
This suggests that through the use of this framework it is possible to extend
the moment where monitored models need to be re-trained by simply using the
ranking information to pick a new model. Delaying model re-training represents
important cost savings.

7 Conclusions

In this paper we introduce a data-driven framework to constantly monitor and
compare the performance of deployed time-series forecasting models to guarantee
accurate forecasts of travel products’ prices over time. The proposed approach
predicts the forecasting error of a forecasting model and considers it as a surro-
gate of the model’s future performance. The estimated forecasting error is hence
used to detect accuracy deterioration over time, but also to compare the per-
formance of different models and carry out dynamic model selection by simply
ranking the different forecasting models based on the predicted error measure
and selecting the best. In this work, we have chosen to use the sMAPE as fore-
casting performance measure, since it is appropriate for our application but, it
cannot be used in settings where the time-series could present zero-valued obser-
vations. However, the framework is general enough that any other measure could
be used instead.

The proposed framework has been designed to guarantee accurate price fore-
casts of different travel products price and it is conceived for travel applications
that might be already deployed. As such, it was undesirable to propose a method
that performs forecasting and monitoring altogether, as in meta-learning, since
this would require deprecating already deployed models to implement a new
system. Instead, thanks to the proposed fully data-driven approach, monitoring
models are completely independent of those doing the forecasts, i.e. the moni-
tored models, thus allowing a transparent implementation of the monitoring and
selection framework.

Although our main objective is to guarantee stable accurate price forecasts,
the problem we address is relevant beyond our concrete application. Sculley et
al. [27] introduced the term hidden technical debt to formalize and help reason
about the long term costs of maintainable ML systems. According to their termi-
nology, the proposed model monitoring and selection framework addresses two
problems: 1) the monitoring and testing of dynamic systems, which is the task of
continuously assessing that a system is working as intended; and 2) the produc-
tion management debt, which refers to the costs associated to the maintenance
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of a large number of models that run simultaneously. Our solution represents a
simple, flexible and accurate alternative to these problems.
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Abstract. Simulation of the real-world traffic can be used to help vali-
date the transportation policies. A good simulator means the simulated
traffic is similar to real-world traffic, which often requires dense traffic
trajectories (i.e., with high sampling rate) to cover dynamic situations
in the real world. However, in most cases, the real-world trajectories are
sparse, which makes simulation challenging. In this paper, we present a
novel framework ImIn-GAIL to address the problem of learning to sim-
ulate the driving behavior from sparse real-world data. The proposed
architecture incorporates data interpolation with the behavior learning
process of imitation learning. To the best of our knowledge, we are the
first to tackle the data sparsity issue for behavior learning problems.
We investigate our framework on both synthetic and real-world trajec-
tory datasets of driving vehicles, showing that our method outperforms
various baselines and state-of-the-art methods.

Keywords: Imitation learning · Data sparsity · Interpolation

1 Introduction

Simulation of the real world is one of the feasible ways to verify driving poli-
cies on autonomous vehicles and transportation policies like traffic signal control
[22,23,25] or speed limit setting [27] since it is costly to validate them in the
real world directly [24]. The driving behavior model, i.e., how the vehicle accel-
erates/decelerates, is the critical component that affects the similarity of the
simulated traffic to the real-world traffic [7,9,14]. Traditional methods to learn
the driving behavior model usually first assumes that the behavior of the vehicle
is only influenced by a small number of factors with predefined rule-based rela-
tions, and then calibrates the model by finding the parameters that best fit the
observed data [5,16]. The problem with such methods is that their assumptions
oversimplify the driving behavior, resulting in the simulated driving behavior far
from the real world.

In contrast, imitation learning (IL) does not assume the underlying form
of the driving behavior model and directly learns from the observed data (also
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 530–545, 2021.
https://doi.org/10.1007/978-3-030-67667-4_32
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Fig. 1. Illustration of a driving trajectory. In the real-world scenario, only part of the
driving points can be observed and form a sparse driving trajectory (in red dots). Each
driving point includes a driving state and an action of the vehicle at the observed time
step. Best viewed in color.

called demonstrations from expert policy in IL literature). With IL, a more
sophisticated driving behavior policy can be represented by a parameterized
model like neural nets and provides a promising way to learn the models that
behave similarly to expert policy. Existing IL methods (e.g., behavior cloning
[13,21] and generative adversarial imitation learning [3,4,18,30]) for learning
driving behavior relies on a large amount of behavior trajectory data that con-
sists of dense vehicle driving states, either from vehicles installed with sensors,
or roadside cameras that capture the whole traffic situation (including every
vehicle driving behavior at every moment) in the road network.

However, in most real-world cases, the available behavior trajectory data is
sparse, i.e., the driving behavior of the vehicles at every moment is difficult to
observe. It is infeasible to install sensors for every vehicle in the road network or
to install cameras that cover every location in the road network to capture the
whole traffic situation. Most real-world cases are that only a minimal number of
cars on the road are accessible with dense trajectory, and the driving behavior of
vehicles can only be captured when the vehicles drive near the locations where
the cameras are installed. For example, in Fig. 1, as the cameras are installed
only around certain intersections, consecutive observed points of the same car
may have a large time difference, resulting in a sparse driving trajectory. As data
sparsity is considered as a critical issue for unsatisfactory accuracy in machine
learning, directly using sparse trajectories to learn the driving behavior could
make the model fail to learn the behavior policy at the unobserved states.

To deal with sparse trajectories, a typical approach is to interpolate the sparse
trajectories first and then learn the model with the dense trajectories [10,28,31].
This two-step approach also has an obvious weakness, especially in the problem
of learning behavior models. For example, linear interpolation is often used to
interpolate the missing points between two observed trajectory points. But in
real-world cases, considering the interactions between vehicles, the vehicle is
unlikely to drive at a uniform speed during that unobserved time period, hence
the interpolated trajectories may be different from the true trajectories. However,
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the true trajectories are also unknown and are exactly what we aim to imitate. A
better approach is to integrate interpolation with imitation because they should
inherently be the same model. To the best of our knowledge, none of the existing
literature has studied the real-world problem of learning driving policies from
sparse trajectory data.

In this paper, we present ImIn-GAIL, an approach that can learn the driving
behavior of vehicles from observed sparse trajectory data. ImIn-GAIL learns to
mimic expert behavior under the framework of generative adversarial imitation
learning (GAIL), which learns a policy that can perform expert-like behaviors
through rewarding the policy for deceiving a discriminator trained to classify
between policy-generated and expert trajectories. Specifically, for the data spar-
sity issue, we present an interpolator-discriminator network that can perform
both the interpolation and discrimination tasks, and a downsampler that draws
supervision on the interpolation task from the trajectories generated by the
learned policy. We conduct experiments on both synthetic and real-world data,
showing that our method can not only have excellent imitation performance on
the sparse trajectories but also have better interpolation results compared with
state-of-the-art baselines. The main contributions of this paper are summarized
as follows:

– We propose a novel framework ImIn-GAIL, which can learn driving behaviors
from the real-world sparse trajectory data.

– We naturally integrate the interpolation with imitation learning that can
interpolate the sparse driving trajectory.

– We conduct experiments on both real and synthetic data, showing that our
approach significantly outperforms existing methods. We also have interesting
cases to illustrate the effectiveness on the imitation and interpolation of our
methods.

2 Preliminaries

Definition 1 (Driving Point). A driving point τ t = (st, at, t) describes the
driving behavior of the vehicle at time t, which consists of a driving state st

and an action at of the vehicle. Typically, the state st describes the surrounding
traffic conditions of the vehicle (e.g., speed of the vehicle and distance to the
preceding vehicle), and the action at ∼ π(a|st) the vehicle takes at time t is the
magnitude of acceleration/deceleration following its driving policy π(a|st).

Definition 2 (Driving Trajectory). A driving trajectory of a vehicle is a
sequence of driving points generated by the vehicle in geographical spaces, usually
represented by a series of chronologically ordered points, e.g. τ = (τ t0 , · · · , τ tN ).

In trajectory data mining [11,12,32], a dense trajectory of a vehicle is the
driving trajectory with high-sampling rate (e.g., one point per second on aver-
age), and a sparse trajectory of a vehicle is the driving trajectory with low-
sampling rate (e.g., one point every 2 min on average). In this paper, the observed
driving trajectory is a sequence of driving points with large and irregular inter-
vals between their observation times.
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Problem 3. In our problem, a vehicle observes state s from the environment,
take action a following policy πE at every time interval Δt, and generate a raw
driving trajectory τ during certain time period. While the raw driving trajectory
is dense (i.e., at a high-sampling rate), in our problem we can only observe a
set of sparse trajectories TE generated by expert policy πE as expert trajectory,
where TE = {τi|τi = (τ t0

i , · · · , τ tN
i )}, ti+1−ti � Δt and ti+1−ti may be different

for different observation time i. Our goal is to learn a parameterized policy πθ

that imitates the expert policy πE .

3 Method

In this section, we first introduce the basic imitation framework, upon which we
propose our method (ImIn-GAIL) that integrates trajectory interpolation into
the basic model.

3.1 Basic GAIL Framework

In this paper, we follow the framework similar to GAIL [4] due to its scalability to
the multi-agent scenario and previous success in learning human driver models
[8]. GAIL formulates imitation learning as the problem of learning policy to
perform expert-like behavior by rewarding it for “deceiving” a classifier trained
to discriminate between policy-generated and expert state-action pairs. For a
neural network classifier Dψ parameterized by ψ, the GAIL objective is given by
maxψ minθ L(ψ, θ) where L(ψ, θ) is:

L(ψ, θ) = E(s,a)∼τ∈TE
log Dψ(s, a) + E(s,a)∼τ∈TG

log(1 − Dψ(s, a)) − βH(πθ)
(1)

where TE and TG are respectively the expert trajectories and the generated
trajectories from the interactions of policy πθ with the simulation environment,
H(πθ) is an entropy regularization term.

• Learning ψ: When training Dψ, Eq. (1) can simply be set as a sigmoid cross
entropy where positive samples are from TE and negative samples are from
TG. Then optimizing ψ can be easily done with gradient ascent.

• Learning θ: The simulator is an integration of physical rules, control policies
and randomness and thus its parameterization is assumed to be unknown.
Therefore, given TG generated by πθ in the simulator, Eq. (1) is non-
differentiable w.r.t θ. In order to learn πθ, GAIL optimizes through rein-
forcement learning, with a surrogate reward function formulated from Eq. (1)
as:

r̃(st, at;ψ) = − log(1 − Dψ(st, at)) (2)

Here, r̃(st, at;ψ) can be perceived to be useful in driving πθ into regions of the
state-action space at time t similar to those explored by πE . Intuitively, when
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Fig. 2. Proposed ImIn-GAIL Approach. The overall framework of ImIn-GAIL includes
three components: generator, downsampler, and interpolation-discriminator. Best
viewed in color.

the observed trajectory is dense, the surrogate reward from the discriminator
in Eq. (2) is helpful to learn the state transitions about observed trajectories.
However, when the observed data is sparse, the reward from discriminator will
only learn to correct the observed states and fail to model the behavior policy
at the unobserved states. To relieve this problem, we propose to interpolate the
sparse expert trajectory within the based imitation framework.

3.2 Imitation with Interpolation

An overview of our proposed Imitation-Interpolation framework (ImIn-GAIL) is
shown in Fig. 2, which consists of the following three key components.

Generator in the Simulator. Given an initialized driving policy πθ, the dense
trajectories T D

G of vehicles can be generated in the simulator. In this paper, the
driving policy πθ is parameterized by a neural network which will output an
action a based on the state s it observes. The simulator can generate driving
behavior trajectories by rolling out πθ for all vehicles simultaneously in the
simulator. The optimization of the driving policy is optimized via TRPO [17] as
in vanilla GAIL [4].

Downsampling of Generated Trajectories. The goal of the downsampler
is to construct the training data for interpolation, i.e., learning the mapping
from a sparse trajectory to a dense one. For two consecutive points (i.e., τ ts and
τ te in generated sparse trajectory TG), we can sample a point τ ti in T D

G where
ts ≤ ti ≤ te and construct training samples for the interpolator. The sampling
strategies can be sampling at certain time intervals, sampling at specific locations
or random sampling and we investigate the influence of different sampling rates
in Sect. 4.5.

Interpolation-Discriminator. The key difference between ImIn-GAIL and
vanilla GAIL is in the discriminator. While learning to differentiate the expert
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trajectories from generated trajectories, the discriminator in ImIn-GAIL also
learns to interpolate a sparse trajectory to a dense trajectory. Specifically, as is
shown in Fig. 3, the proposed interpolation-discriminator copes with two sub-
tasks in an end-to-end way: interpolation on sparse data and discrimination on
dense data.

Fig. 3. Proposed interpolation-discriminator network.

Interpolator Module. The goal of the interpolator is to interpolate the sparse
expert trajectories TE to the dense trajectories T D

E . We can use the generated
dense trajectories T D

G and sparse trajectories TG from previous downsampling
process as training data for the interpolator.

For each point τ ti to be interpolated, we first concatenate state and action
and embed them into an m-dimensional latent space:

hs = σ(Concat(sts , ats)Ws + bs), he = σ(Concat(ste , ate)We + be) (3)

where K is the feature dimension after the concatenation of ste and ate , Ws ∈
R

K×M , We ∈ R
K×M , bs ∈ R

M and be ∈ R
M are weight matrix to learn, σ is

ReLU function (same denotation for the following σ). Here, considering ts and
te may have different effects on interpolation, we use two different embedding
weights for ts and te.

After point embedding, we concatenate hs and he with the time interval
between ts and ti, and use a multi-layer perception (MLP) with L layers to
learn the interpolation.

hin = σ(Concat(hs, he, ti − ts)W0 + b0)
h1 = σ(hinW1 + b1), h2 = σ(h1W2 + b2), · · ·
hL = tanh(hL−1WL + bL) = τ̂ ti

(4)

where W0 ∈ R
(2M+1)×N0 , b0 ∈ R

N0 are the learnable weights; Wj ∈ R
Nj×Nj+1

and bj ∈ R
Nj+1 are the weight matrix for hidden layers (1 ≤ j ≤ L − 1) of

interpolator; WL ∈ R
Nj×K and bL ∈ R

K are the weight matrix for the last
layer of interpolator, which outputs an interpolated point τ̂ ti . In the last layer of
interpolator, we use tanh as all the feature value of τ ti is normalized to [−1, 1].
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Discriminator Module. When sparse expert trajectories TE are interpolated into
dense trajectories T D

E by the interpolator, the discriminator module learns to
differentiate between expert dense trajectories T D

E and generated dense tra-
jectories T D

D . Specifically, the discriminator learns to output a high score when
encountering an interpolated point τ̂ ti originated from T D

E , and a low score when
encountering a point from T D

G generated by πθ. The output of the discriminator
Dψ(s, a) can then be used as a surrogate reward function whose value grows
larger as actions sampled from πθ look similar to those chosen by experts.

The discriminator module is an MLP with H hidden layers, takes hL as input
and outputs the probability of the point belongs to TE .

hD
1 = σ(hLWD

1 + bD
1 ), hD

2 = σ(hD
1 WD

2 + bD
2 ), · · ·

p = Sigmoid(hD
H−1W

D
H + bD

H)
(5)

where WD
i ∈ R

ND
i−1×ND

i , bD
i ∈ R

ND
i are learnable weights for i-th layer in

discriminator module. For i = 1, we have WD
1 ∈ R

K×ND
1 , bD

1 ∈ R
ND

1 , K is the
concatenated dimension of state and action; for i = H, we have WD

H ∈ R
ND

H−1×1,
bD
H ∈ R.

Loss Function of Interpolation-Discriminator. The loss function of the
Interpolation-Discriminator network is a combination of interpolation loss LINT

and discrimination loss LD, which interpolates the unobserved points and pre-
dicts the probability of the point being generated by expert policy πE simulta-
neously,:

L = λLINT + (1 − λ)LD = λEτt∼τ∈T D
G

(τ̂ t − τ t)+

(1 − λ)[Eτt∼τ∈TG
log p(τ t) + Eτt∼τ∈TE

log(1 − p(τ t))]
(6)

where λ is a hyper-parameter to balance the influence of interpolation and dis-
crimination, τ̂ t is the output of the interpolator module, and p(τ) is the output
probability from the discriminator module.

3.3 Training and Implementation

Algorithm 1 describes the ImIn-GAIL approach. In this paper, the driving policy
is parameterized with a two-layer fully connected network with 32 units for all
the hidden layers. The policy network takes the driving state s as input and
outputs the distribution parameters for a Beta distribution, and the action a
will be sampled from this distribution. The optimization of the driving policy is
optimized via TRPO [17]. Following [3,8], we use the features in Table 1 to repre-
sent the driving state of a vehicle, and the driving policy takes the drivings state
as input and outputs an action a (i.e., next step speed). For the interpolation-
discriminator network, each driving point is embedded to a 10-dimensional latent
space, the interpolator module uses a three-layer fully connected layer to inter-
polate the trajectory and the discriminator module contains a two-layer fully
connected layer. Some of the important hyperparameters are listed in Table 2.
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Algorithm 1: Training procedure of ImIn-GAIL

Input: Sparse expert trajectories TE , initial policy and
interpolation-discriminator parameters θ0, ψ0

Output: Policy πθ, interpolation-discriminator InDNetψ
1 for i ←− 0, 1, . . . do
2 Rollout dense trajectories for all agents

T D
G = {τ |τ = (τ t0 , · · · , τ tN ), τ tj = (stj , atj ) ∼ πθi};

3 (Generator update step)

4 • Score τ tj from T D
G with discriminator, generating reward using Eq. 2;

5 • Update θ in generator given T D
G by optimizing Eq. 1;

6 (Interpolator-discriminator update step)
7 • Interpolate TE with the interpolation module in InDNet, generating dense

expert trajectories T D
E ;

8 • Downsample generated dense trajectories T D
G to sparse trajectories TG;

9 • Construct training samples for InDNet
10 • Update InDNet parameters ψ by optimizing Eq. 6

Table 1. Features for a driving state

Feature type Detail features

Road network Lane ID, length of current lane, speed limit

Traffic signal Current phase of traffic signal

Ego vehicle Velocity, position in current lane, distance to the next traffic signal

Leading vehicle Relative distance, velocity and position in the current lane

Indicators Leading in current lane, exiting from intersection

4 Experiment

4.1 Experimental Settings

We conduct experiments on CityFlow [29], an open-source traffic simulator
that supports large-scale vehicle movements. In a traffic dataset, each vehicle
is described as (o, t, d, r), where o is the origin location, t is time, d is the des-
tination location and r is its route from o to d. Locations o and d are both
locations on the road network, and r is a sequence of road ID. After the traffic
data is fed into the simulator, a vehicle moves towards its destination based on
its route. The simulator provides the state to the vehicle control method and
executes the vehicle acceleration/deceleration actions from the control method.

Dataset. In experiment, we use both synthetic data and real-world data.

Synthetic Data. In the experiment, we use two kinds of synthetic data, i.e.,
traffic movements under ring road network and intersection road network, as
shown in Fig. 4. Based on the traffic data, we use default simulation settings
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Table 2. Hyper-parameter settings for ImIn-GAIL

Parameter Value Parameter Value

Batch size for generator 64 Batch size for InDNet 32

Update epoches for generator 5 Update epoches for InDNet 10

Learning rate for generator 0.001 Learning rate for InDNet 0.0001

Number of layers in generator 4 Balancing factor λ 0.5

of the simulator to generate dense expert trajectories and sample sparse expert
trajectories when vehicles pass through the red dots.

• Ring: The ring road network consists of a circular lane with a specified length,
similar to [19,26]. This is a very ideal and simplified scenario where the driving
behavior can be measured.

• Intersection: A single intersection network with bi-directional traffic. The
intersection has four directions (West→East, East→West, South→North, and
North→South), and 3 lanes (300 m in length and 3 m in width) for each
direction. Vehicles come uniformly with 300 vehicles/lane/hour in West↔East
direction and 90 vehicles/lane/hour in South↔North direction.

Real-world Data We also use real-world traffic data from two cities: Hangzhou
and Los Angeles. Their road networks are imported from OpenStreetMap1, as
shown in Fig. 4. The detailed descriptions of how we preprocess these datasets
are as follows (Table 3):

• LA1×4. This is a public traffic dataset collected from Lankershim Boulevard,
Los Angeles on June 16, 2005. It covers an 1 × 4 arterial with four successive
intersections. This dataset records the position and speed of every vehicle at
every 0.1 s. We treat these records as dense expert trajectories and sample
vehicles’ states and actions when they pass through intersections as sparse
expert trajectories.

• HZ4×4. This dataset covers a 4 × 4 network of Gudang area in Hangzhou,
collected from surveillance cameras near intersections in 2016. This region
has relatively dense surveillance cameras and we sampled the sparse expert
trajectories in a similar way as in LA1×4.

Data Preprocessing. To mimic the real-world situation where the roadside
surveillance cameras capture the driving behavior of vehicles at certain locations,
the original dense expert trajectories are processed to sparse trajectories by
sampling the driving points near several fixed locations unless specified. We use
the sparse trajectories as expert demonstrations for training models. To test the
imitation effectiveness, we use the same sampling method as the expert data
and then compare the sparse generated data with sparse expert data. To test
1 https://www.openstreetmap.org.

https://www.openstreetmap.org
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(a) Ring road (b) Single intersection (c) Lankersim
Blvd, LA 

(d) Gudang District,
Hangzhou 

Fig. 4. Illustration of road networks. (a) and (b) are synthetic road networks, while
(c) and (d) are real-world road networks.

Table 3. Statistics of dense and sparse expert trajectory in different datasets

Ring Intersection LA1×4 HZ4×4

Duration (seconds) 300 300 300 300

# of vehicles 22 109 321 425

# of points (dense) 1996 10960 23009 87739

# of points (sparse) 40 283 1014 1481

the interpolation effectiveness, we directly compare the dense generated data
with dense expert data.

4.2 Compared Methods

We compare our model with the following two categories of methods: calibration-
based methods and imitation learning-based methods.

Calibration-Based Methods. For calibration-based methods, we use Krauss model
[7], the default car-following model (CFM) of simulator SUMO [6] and CityFlow
[29]. Krauss model has the following forms:

vsafe(t) = vl(t) +
g(t) − vl(t)tr
vl(t)+vf (t)

2b + tr
(7)

vdes(t) = min[vsafe(t), v(t) + aΔt, vmax] (8)

where vsafe(t) the safe speed at time t, vl(t) and vf (t) is the speed of the leading
vehicle and following vehicle respectively at time t, g(t) is the gap to the lead-
ing vehicle, b is the maximum deceleration of the vehicle and tr is the driver’s
reaction time. vdes(t) is the desired speed, which is given by the minimum of
safe speed, maximum allowed speed, and the speed after accelerating at a for
Δt. Here, a is the maximum acceleration and Δt is the simulation time step.
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We calibrate three parameters in Krauss model, which are the maximum
deceleration of the vehicle, the maximum acceleration of the vehicle, and the
maximum allowed speed.

• Random Search (CFM-RS) [2]: The parameters are chosen when they
generate the most similar trajectories to expert demonstrations after a finite
number of trial of random selecting parameters for Krauss model.

• Tabu Search (CFM-TS) [16]: Tabu search chooses the neighbors of the
current set of parameters for each trial. If the new CFM generates better
trajectories, this set of parameters is kept in the Tabu list.

Imitation Learning-Based Methods. We also compare with several imitation
learning-based methods, including both traditional and state-of-the-art meth-
ods.

• Behavioral Cloning (BC ) [21] is a traditional imitation learning method.
It directly learns the state-action mapping in a supervised manner.

• Generative Adversarial Imitation Learning (GAIL) is a GAN-like
framework [4], with a generator controlling the policy of the agent, and a
discriminator containing a classifier for the agent indicating how far the gen-
erated state sequences are from that of the demonstrations.

4.3 Evaluation Metrics

Following existing studies [3,8,30], to measure the error between learned policy
against expert policy, we measure the position and the travel time of vehicles
between generated dense trajectories and expert dense trajectories, which are
defined as:

RMSEpos =
1
T

T∑

t=1

√√√√ 1
M

m∑

i=1

(lti − l̂ti)2, RMSEtime =

√√√√ 1
M

m∑

i=1

(di − d̂i)2 (9)

where T is the total simulation time, M is the total number of vehicles, lti and
l̂ti are the position of i-th vehicle at time t in the expert trajectories and in the
generated trajectories relatively, di and d̂i are the travel time of vehicle i in
expert trajectories and generated trajectories respectively.

4.4 Performance Comparison

In this section, we compare the dense trajectories generated by different methods
with the expert dense trajectories, to see how similar they are to the expert
policy. The closer the generated trajectories are to the expert trajectories, the
more similar the learned policy is to the expert policy. From Table 4, we can
see that ImIn-GAIL achieves consistently outperforms over all other baselines
across synthetic and real-world data. CFM-RS and CFM-RS can hardly achieve
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Table 4. Performance w.r.t Relative Mean Squared Error (RMSE) of time (in seconds)
and position (in kilometers). All the measurements are conducted on dense trajectories.
Lower the better. Our proposed method ImIn-GAIL achieves the best performance.

Ring Intersection LA1×4 HZ4×4

time (s) pos (km) time (s) pos (km) time (s) pos (km) time (s) pos (km)

CFM-RS 343.506 0.028 39.750 0.144 34.617 0.593 27.142 0.318

CFM-TS 376.593 0.025 95.330 0.184 33.298 0.510 175.326 0.359

BC 201.273 0.020 58.580 0.342 55.251 0.698 148.629 0.297

GAIL 42.061 0.023 14.405 0.032 30.475 0.445 14.973 0.196

ImIn-GAIL 16.970 0.018 4.550 0.024 19.671 0.405 5.254 0.130

satisfactory results because the model predefined by CFM could be different from
the real world. Specifically, ImIn-GAIL outperforms vanilla GAIL, since ImIn-
GAIL interpolates the sparse trajectories and thus has more expert trajectory
data, which will help the discriminator make more precise estimations to correct
the learning of policy.

4.5 Study of ImIn-GAIL

Interpolation Study. To better understand how interpolation helps in simulation,
we compare two representative baselines with their two-step variants. Firstly, we
use a pre-trained non-linear interpolation model to interpolate the sparse expert
trajectories following the idea of [20,28]. Then we train the baselines on the
interpolated trajectories.

Table 5 shows the performance of baseline methods in Ring and Intersection.
We find out that baseline methods in a two-step way show inferior performance.
One possible reason is that the interpolated trajectories generated by the pre-
trained model could be far from the real expert trajectories when interacting
in the simulator. Consequently, the learned policy trained on such interpolated
trajectories makes further errors.

In contrast, ImIn-GAIL learns to interpolate and imitate the sparse expert
trajectories in one step, combining the interpolator loss and discriminator loss,
which can propagate across the whole framework. If the trajectories generated
by πθ is far from expert observations in current iteration, both the discriminator
and the interpolator will learn to correct themselves and provide more precise
reward for learning πθ in the next iteration. Similar results can also be found in
LA1×4 and HZ4×4, and we omit these results due to page limits.
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Table 5. RMSE on time and position of our proposed method ImIn-GAIL against
baseline methods and their corresponding two-step variants. Baseline methods and
ImIn-GAIL learn from sparse trajectories, while the two-step variants interpolate sparse
trajectories first and trained on the interpolated data. ImIn-GAIL achieves the best
performance in most cases.

Ring Intersection

time (s) position (km) time (s) position (km)

CFM-RS 343.506 0.028 39.750 0.144

CFM-RS (two step) 343.523 0.074 73.791 0.223

GAIL 42.061 0.023 14.405 0.032

GAIL (two step) 98.184 0.025 173.538 0.499

ImIn-GAIL 16.970 0.018 4.550 0.024

(a) Ring (b)Intersection (c) LA1 4 (d) HZ4 4

Fig. 5. RMSE on time and position of our proposed method ImIn-GAIL under different
level of sparsity. As the expert trajectory become denser, a more similar policy to the
expert policy is learned.

Sparsity Study. In this section, we investigate how different sampling strategies
influence ImIn-GAIL. We sample randomly from the dense expert trajectories
at different time intervals to get different sampling rates: 2%, 20%, 40%, 60%,
80%, and 100%. We set the sampled data as the expert trajectories and evaluate
by measuring the performance of our model in imitating the expert policy. As is
shown in Fig. 5, with denser expert trajectory, the error of ImIn-GAIL decreases,
indicating a better policy imitated by our method.

4.6 Case Study

To study the capability of our proposed method in recovering the dense trajec-
tories of vehicles, we showcase the movement of a vehicle in Ring data learned
by different methods.

We visualize the trajectories generated by the policies learned with differ-
ent methods in Fig. 6. We find that imitation learning methods (BC , GAIL,
and ImIn-GAIL) perform better than calibration-based methods (CFM-RS and
CFM-TS). This is because the calibration based methods pre-assumes an exist-
ing model, which could be far from the real behavior model. On the contrast,
imitation learning methods directly learn the policy without making unrealistic
formulations of the CFM model. Specifically, ImIn-GAIL can imitate the posi-
tion of the expert trajectory more accurately than all other baseline methods.
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Fig. 6. The generated trajectory of a vehicle in the Ring scenario. Left: the initial
position of the vehicles. Vehicles can only be observed when they pass four locations
A, B, C and D where cameras are installed. Right: the visualization for the trajectory
of V ehicle 0. The x-axis is the timesteps in seconds. The y-axis is the relative road
distance in meters. Although vehicle 0 is only observed three times (red triangles),
ImIn-GAIL (blue points) can imitate the position of the expert trajectory (grey points)
more accurately than all other baselines. Better viewed in color.

The reason behind the improvement of ImIn-GAIL against other methods is
that in ImIn-GAIL, policy learning and interpolation can enhance each other
and result in significantly better results.

5 Related Work

Parameter Calibration. In parameter calibration-based methods, the driving
behavior model is a prerequisite, and parameters in the model are tuned to
minimize a pre-defined cost function. Heuristic search algorithms such as random
search, Tabu search [16], and genetic algorithm [5] can be used to search the
parameters. These methods rely on the pre-defined models (mostly equations)
and usually fail to match the dynamic vehicle driving pattern in the real-world.

Imitation Learning. Without assuming an underlying physical model, we can
solve this problem via imitation learning. There are two main lines of work: (1)
behavior cloning (BC) and Inverse reinforcement learning (IRL). BC learns the
mapping from demonstrated observations to actions in a supervised learning way
[13,21], but suffers from the errors which are generated from unobserved states
during the simulation. On the contrast, IRL not only imitates observed states
but also learns the expert’s underlying reward function, which is more robust
to the errors from unobserved states [1,15,33]. Recently, a more effective IRL
approach, GAIL [4], incorporates generative adversarial networks with learning
the reward function of the agent. However, all of the current work did not address
the challenges of sparse trajectories, mainly because in their application contexts,
e.g., game or robotic control, observations can be fully recorded every time step.
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6 Conclusion

In this paper, we present a novel framework ImIn-GAIL to integrate interpola-
tion with imitation learning and learn the driving behavior from sparse trajectory
data. Specifically, different from existing literature which treats data interpola-
tion as a separate and preprocessing step, our framework learns to interpolate
and imitate expert policy in a fully end-to-end manner. Our experiment results
show that our approach significantly outperforms state-of-the-art methods. The
application of our proposed method can be used to build a more realistic traffic
simulator using real-world data.

Acknowledgments. The work was supported in part by NSF awards #1652525 and
#1618448. The views and conclusions contained in this paper are those of the authors
and should not be interpreted as representing any funding agencies.
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Abstract. Learning from noisy labels is getting trendy in the era of big
data. However, in crowdsourcing practice, it is still a challenging task
to extract ground truth labels from noisy labels obtained from crowds.
In this paper, we propose a latent variable model built on probabilis-
tic logistic matrix factorization model and classical Gaussian mixture
model for inferring ground truth labels from noisy, crowdsourced ones.
The proposed model incorporates item heterogeneity in contrast to pre-
vious works and allows for vector space embeddings of both items and
worker labels. Moreover, we derive a tractable mean-field variational
inference algorithm to approximate the model posterior. Meanwhile,
related MAP approximation problem to the model posterior is also inves-
tigated to identify links to existing works. Empirically, we demonstrate
that the proposed method achieves good inference accuracy while pre-
serving meaningful uncertainty measures in the embeddings, and there-
fore better reflects the intrinsic structure of data.

Keywords: Crowdsourcing · Label aggregation · Latent variable
models · Variational inference

1 Introduction

Data quality is crucial for classification. In practice it is not an easy job to obtain
gold standard labels to train accurate classifiers. A large amount of time and a
big budget are required to label huge unlabeled datasets. Crowdsourcing arises
as a cost-saving paradigm to collect labels as training data from hundreds and
thousands of people through large-scale online platforms. However, the practice
is not perfect since annotators from these platforms typically have different back-
grounds and their abilities to provide accurate labels vary. The collected labels
are subject to annotator-specific and item-specific noise. Common concerns in
crowdsourcing practice regarding annotator heterogeneity include identification
of “spammers”, who submit their works without deliberate thinking and expect
to be paid effortlessly [17,24], or “adversaries”, who intentionally give wrong
c© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2020, LNAI 12460, pp. 546–561, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67667-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-67667-4_33


Learning from Crowds 547

answers [10]. As another largely ignored perspective, the properties of tasks can
be extremely different, in the sense that some tasks may be extremely difficult
or ambiguous in nature whereas some may be trivially simple.

Majority voting is a simple but effective method to combine noisy annota-
tions, and is statistically optimal when all annotators follow the same under-
lying labeling distribution. However, this is not generally true and improved
performance is expected by explicitly modeling annotator behaviors and task
difficulties using principled probabilistic methods.

To our best knowledge, the problem is first considered in [8], in which a sim-
ple latent variable model (henceforth DS model) is proposed. The labeling accu-
racy of each annotator is parameterized by a “confusion matrix” and could be
estimated by EM scheme. However, DS model does not account for item hetero-
geneity and the observed noisy labels are assumed to be generated purely based
on ground truth labels. Also, DS model consumes large number of parameters
(O(MK2)) and the estimation can be difficult when the number of annotators,
M , and classes, K, become larger. This issue is typically handled by restricting
the confusion matrices, e.g. the “one-coin” assumption considered in [12].

Several probabilistic models were proposed to extend vanilla DS model to
incorporate item specific properties. Specific examples include GLAD [23], a
model for binary labels with a single parameter accounting for difficulties, and
CUBAM [22], a more generalized multivariate model for binary labels. For more
works in this line of research, see also [3,11,18] and references therein.

In deep learning community, [26] proposed a generative framework of varia-
tional auto-encoder style and some variants to improve expressing power. Also,
as noticed by [19], DS model can be equivalently formulated as a restricted
Boltzmann machine with a single hidden node with categorical distribution.

In this paper, we consider to model multinominal noisy labels from crowds
and propose an architecture combining exponential family matrix factorization
and Gaussian mixture model (GMM) for clustering. In contrast to existing meth-
ods, the proposed one is a parsimonious adaptation for multinomial labels and
incorporates both annotator specific parameters and item specific latent fea-
tures. The model draws connections among some existing probabilistic anno-
tation models and generative factor analytic models, e.g. [9,16]. An efficient
fully Bayesian inference procedure is devised based on a modified lower bound.
Besides, maximum a posteriori (MAP) approximate inference is investigated for
better understanding the nature of the algorithm.

2 The Model

2.1 Problem Setting

Given N items that can be divided into K classes, we denote by a one-hot random
vector yn ∈ {0, 1}K the unknown true label of item n, i.e., yn = ek represents
that “item n is of class k”. Additionally, we have access to annotated labels
from M annotators, denoted as rnm ∈ {0, 1}K . The full set of predicted labels is
collected into a tensor R ∈ {0, 1}N×M×K . Due to the nature of crowdsourcing,
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each item is typically labeled by only a subset of annotators, and hence R might
be incomplete. Particularly, we use Ω ⊂ [N ] × [M ] to represent the observed
subset of indices, and RΩ to denote the observed entries in R. In addition, let
Ω•m = {n : (n,m) ∈ Ω} be subset of items labeled by annotator m, and Ωn• be
similarly defined as the subset of annotators who label item n.

2.2 Proposed Model

To model the generation process of R, we assume that each of yn is sampled
independently from multinomial distribution with parameter π, i.e.,

yn|π ∼ M(yn|π), (1)

where π ∈ ΔK−1 is a discrete probability vector over K states, and ΔK−1 is
the (K−1)-dimensional probability simplex. Moreover, let there be a latent fea-
ture, bn ∈ R

L, associated with each item and following a Gaussian distribution
conditional on ground truth label yn, i.e.,

bn|yn� = 1 ∼ N (bn|μ�,Λ
−1
� ). (2)

Equivalently, bn is assumed to be sampled marginally from a Gaussian mix-
ture model (GMM) where the ground truth label yn serves as the latent class
indicator.

During the annotation process, each annotator is assumed to act like a multi-
nomial logistic regression model based on the perceived latent features bn, rather
that ground truth labels, compared with DS model. Specifically, for item n, its
annotation probability by annotator m is modeled as

p(rnmk = 1|bn,amk, cmk) ∝ exp(aTmkbn + cmk), (3)

where amk ∈ R
L and cmk ∈ R are coefficient and intercept terms of the kth

discriminant function of annotator m. With (restricted) multinomial logistic
operator, S : RK−1 → ΔK−1, the full likelihood can be written in a compact
form as

p(RΩ |A,B) =
∏

(n,m)∈Ω

M(rnm|S(Ambn)), (4)

where B ∈ R
N×L and A ∈ R

M×(K−1)×L denote the collection of corresponding
individual variables or parameters, namely bn ∈ R

L and Am ∈ R
(K−1)×L. The

intercept terms are henceforth omitted for simplicity and ease of presentation,
by assuming that annotators display no particular labeling tendencies.

Then it is clear that the crowdsourcing problem is cast into an exponential
family PCA framework [7,14], with a structured GMM prior over item features
B. The multinomial likelihood accounts for reconstruction fidelity of raw labels
and the prior promotes a clustered structure in latent space and extract infor-
mation of the unknown labels.
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Fig. 1. Graphical representation of the proposed model architecture. Shaded nodes are
the observed variables.

To adopt a fully Bayesian formulation, for each annotator m ∈ [M ], we
further assign usual independent Gaussian prior distributions over regression
coefficients as

ãm = vec(AT
m) ∼ N (ãm|α̃0,V−1

0 ). (5)

For GMM parameters Θ = {π,μ,Λ}, conjugate Dirichlet and Gaussian-Wishart
priors are considered, i.e.,

π ∼ D(π|ϕ0), μ�,Λ� ∼ N (μ�|m0, (η0Λ�)−1)W(Λ�|S0, ν0); (6)

where � ∈ [K]. The parameters with subscripts 0 are fixed as hyperparameters.
A full graphical representation of the proposed model architecture is shown in
Fig. 1.

Intuitively, the main rationale behind the formulation lies in the belief that
annotators make their decisions based on perceptions of item-specific properties
rather than purely on ground truth labels. The information reflected by differ-
ent label patterns from crowds could be valuable for discovering relationships
across items and classes. The constructed latent item features are designed to
capture variability that cannot be explained by different class memberships, such
as heterogeneous difficulties of tasks, and allows for correlation among annota-
tions, even conditional on ground truth. The logistic coefficients encode annota-
tors’ understandings about each class, and hence are interpreted as crowd label
embeddings.

2.3 Relationships with Other Models

Comparing with our model given in Eq. 3, DS model can be summarized as a
hierarchical latent variable model with likelihood

p(rnm|yn,Φm) = M(rnm|Φmyn), (7)

where Φm = [φm1, . . . ,φmK ] ∈ R
K×K is the column-stochastic confusion matrix

with Φmk� = p(rnmk = 1|yn� = 1) indicating the probability that annotator m
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Fig. 2. Difference characterizations of annotator confusion probabilities under DS
model (left) and our generative model (right). In DS model, a single point φmk ∈ ΔK−1

is used to model the underlying distribution of annotations for a class-k object. In our
proposal, the induced logistic-Gaussian distribution reflects variability in annotator
accuracy for different items in presence of noise.

assigns label k to a an object belonging to class �. Clearly the formulation resem-
bles a probabilistic version of factor model proposed in [2]. We make clear the
relationship between the proposed architecture and DS model as the following
proposition.

Proposition 1. Suppose in the proposed model, it is chosen that L = K−1
and Λ� = λ0I is fixed for all � ∈ [K], then in the limit λ0 → ∞, the model
reduces to a reparameterization of DS model. That is, for every {Φm}M

m=1 in DS
parameter space, there exists a set of parameters {Am}M

m=1 and {μ�}K
�=1 such

that the marginalized conditional matches the likelihood in DS, i.e.

p(rnm|yn,Am,μ) =
∫

p(rnm|Am,bn)p(bn|yn,μ) dbn = rTnmΦmyn,

for every (rnm,yn).

Collapsing down the Gaussian components effectively connects yn with
{rnm}m∈[M ]. It is clear that if we choose L < K−1, the model constitutes
a reduced rank formulation of confusion matrices. We depict the difference of
annotator characterization in DS model and our generative assumption in Fig. 2.

Moreover, we identify that the proposed model is effectively a parsimonious
version of mixture of latent trait analyzer (MLTA) [9]. Specifically, MLTA for
unordered categorical data can be considered as a hierarchical model with priors
over latent variables yn ∼ M(yn|π) and bn ∼ N (bn|0, I), and likelihood

rnm|bn, yn� = 1 ∼ M(rnm|S(Am�bn + cm�)), (8)

where Am� and cm� are deterministic parameters. Using reparameterization trick
of Gaussian distribution and conditioning on yn� = 1, the natural parameters in
likelihood (Eq. 4) can be rewritten as

Ambn + cm = AmΛ
−1/2
� Λ

1/2
� εn + Amμ� + cm, (9)
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where εn ∼ N (εn|0,Λ−1
� ) is the conditional noise vector. Redefining Ãm� =

AmΛ
−1/2
� , c̃m� = Amμ� +cm, and ε̃n = Λ

1/2
� εn recovers the structure of MLTA

with corresponding restrictions. Note that the spehered noise ε̃n ∼ N (ε̃n|0, IL)
is now independent of yn and serves as the continuous latent features in MLTA.

3 Model Inference

Since the exact model posterior is not available in closed form, mainly due to
loss of conjugacy and difficulty of marginalization of nuisance latent variables, we
resort to mean-field variational inference based on a modified bound to approx-
imate the posterior. The MAP approximation scheme is then obtained by col-
lapsing down part of the variational distributions to delta measures.

To facilitate the presentation of concrete algorithms, let the restricted label
representation be r′

nm ∈ {0, 1}K−1, which is the first (K−1) coordinates of rnm.
The posterior expectation Eq(·) is abbreviated as 〈·〉 for notational convenience.
Also, we denote as Ξ = {A,B,Y, Θ} all the latent variables to be inferred.

3.1 The Modified ELBO

To address the intractability of inference arising from non-conjugate model struc-
ture, we adopt the treatment with Böhning’s quadratic bound [5,6] for log-sum-
exp (LSE) function appearing in multinomial likelihood. The bound is previously
used for fully probabilistic inference of Bayesian logistic regression [15] and mix-
ture of factor analyzers [13]. Specifically, Böhning’s bound is formulated as a
quadratic function

Ψ̃(η; ξ) =
1
2
ηTQη − h(ξ)Tη + d(ξ) ≥ Ψ(η), (10)

where Q is a constant centering matrix satisfying Q � ∇2Ψ(η) for all η ∈ R
K−1

and h(ξ) and d(ξ) are functions solely depending on deterministic variational
parameters ξ.

Although the Böhning’s bound is not tight in general as it utilizes a constant
curvature, it bypasses the repeatedly expensive computation of second order
statistics and hence dramatically simplifies the computation than other tight
approximate inference methods, e.g. [1].

Replacing each Ψ appearing in the multinomial likelihood by its upper bound
leads to a “Gaussianized” likelihood

log p̃(rnm|Am,bn; ξnm) = r′
nmAmbn − Ψ̃(Ambn; ξnm) ≤ log p(rnm|Am,bn)

(11)
where ξnm is a local variational parameter specific to each label. Given a fixed set
of variational parameters ξ, the modified likelihood can be written in two equiva-
lent forms, which are quadratic in terms of ãm and bn, respectively. Specifically,
expanding each Ψ̃ gives the following two equivalent representations
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log p̃(rnm|Am,bn; ξnm) = −1
2
bT

nA
T
mQAmbn + zTnmQAmbn − d(ξnm) (12)

= −1
2
ãTmB̃nQB̃T

nãm + zTnmQB̃T
nãm − d(ξnm), (13)

where znm = Q−1(r′
nm + h(ξnm)) is a Gaussianized pseudo measurement and

B̃n ∈ R
(K−1)L×(K−1) is a block diagonal matrix given by IK−1 ⊗ bn.

Then the modified ELBO defined by

F̃ [q; ξ] = Eq(Ξ) log p̃(RΩ |Ξ; ξ) − JKL[q(Ξ)‖p(Ξ)] (14)

minorizes the original model ELBO, i.e. F̃ [q; ξ] ≤ F [q]. The variational inference
problem is then transferred to the modified bound, which allows for closed form
updates for each block of latent variables.

3.2 Optimal Posterior Distributions

Standard treatment in mean-field variational inference (refer to e.g. [4]) can be
applied to F̃ under the structured mean-field variational family. As the modified
bound is quadratic in each ãm and bn, we equivalently have a Gaussian observa-
tion model on transformed data up to some constants. This recovers a conjugate
model structure, which naturally allows for Gaussian posterior distributions,
assuming factorization between q(ãm) and q(bn).

Making use of the formulation in Eq. 13, the optimal posterior with respect
to modified bound over ãm can be written up to an additive constant as

log q∗(ãm; ξ) =
∑

n∈Ω•m

〈log N (znm|B̃T
nãm,Q−1)〉

+ log N (ãm|m0,V−1
0 ) + const, (15)

which recovers an Gaussian observation model with pseudo measurement znm

and design matrix 〈B̃n〉. Standard operations yield the optimal solution as
q∗(ãm; ξ) = N (ãm|αm,V−1

m ) with posterior parameters

Vm =
∑

n∈Ω•m

〈B̃nQB̃T
n〉 + V0, (16)

Vmαm =
∑

n∈Ω•m

〈B̃n〉Qznm + V0α0. (17)

The block diagonal nature of B̃n simplifies evaluation of the expectation terms.
The quadratic term is evaluated as 〈B̃nQB̃T

n〉 = Q⊗〈bnbT
n〉 and 〈B̃n〉 = (IK−1⊗

〈bn〉) due to linearity.
As we shall see, the approximation over bn is again Gaussian and hence

〈bnbT
n〉 can be efficiently evaluated. The posterior result for ãm is analogous

to usual Bayesian logistic regression with Böhning’s bound, only different by
posterior precision terms arising from the posterior uncertainty of B.
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For latent item features, the optimal solution can be analogously written as

log q∗(bn; ξ) =
∑

m∈Ωn•

〈log N (znm|Ambn,Q−1)〉

+
∑

�

〈yn�〉〈log N (bn|μ�,Λ
−1
� )〉 + const. (18)

Similar results then follow, i.e. q∗(bn; ξ) = N (bn|βn,H−1
n ) with

Hn =
∑

m∈Ωn•

〈AT
mQAm〉 +

∑

�

〈yn�〉〈Λ�〉 (19)

Hnβn =
∑

m∈Ωn•

〈Am〉Qznm +
∑

�

〈yn�〉〈Λ�μ�〉. (20)

Unfortunately, full evaluation of term 〈AT
mQAm〉 is not as easy as 〈B̃nQB̃T

n〉.
Also note that this result is not true when intercept coefficients are included,
which requires explicit adjustment in the pseudo-measurement znm and compu-
tation of quadratic term 〈AmQAm〉. Empirically we find a first order approxi-
mation works well.

The computation of remaining factors, namely latent class memberships Y
and GMM parameters Θ = (π,μ,Λ), are rather similar as the usual inference
procedure in a Bayesian GMM (BGMM) [15]. However, appropriate adjustments
are required to account for posterior uncertainty arising from full probabilistic
inference of q∗(B; ξ).

Specifically, for latent class memberships, it can be derived that q∗(yn) =
M(yn|γn) for each n ∈ [N ] with adjusted posterior responsibility γn given by

γn� ∝ exp
{

− 1
2
tr(ν�S�H−1

n ) − Lη�

2
+ 〈log det(Λ�)〉

− ν�

2
(βn − m�)TS�(βn − m�) + 〈log π�〉

}
, (21)

where the first term is from posterior uncertainties of q∗(bn) and is not included
in BGMM. Intuitively, it tracks whether the posterior covariance is well aligned
with a particular component precision. The probability not compatible with a
Gaussian component will contribute more to other classes.

For GMM parameters, q∗(π) depends on γ only and the posterior uncer-
tainty from q∗(B; ξ) does not affect factors q∗(μ�|Λ�) due to linear depen-
dence. Therefore, compared with inference of BGMM, the only affected factor is
q∗(Λ�) = W(Λ�|S�, ν�), which depends on second order statistics of q∗(B). The
posterior scale matrix is adapted as

S−1
� =

∑

n

γn�H−1
n +

∑

n

γn�(βn − β̄�)(βn − β̄�)
T

+
η0

∑
n γn�

η�
(β̄� − m0)(β̄� − m0)T + S−1

0 , (22)
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and β̄� = (
∑

n γn�)−1(
∑

n γn�βn) is the weighted average of posterior means of
item features.

To tighten the modified bound, variational parameters are also refreshed
along with the factors. The optimal solution is obtained by optimizing the mod-
ified bound with respect to each ξnm. The solution is given by ξ∗

nm = 〈Ambn〉 =
〈Am〉〈bn〉, where the second equality is a consequence of mean-field assumption.

3.3 MAP Approximation

We consider MAP approximation over all approximate factors except for the
discrete q(yn) due to its special role in crowdsourcing practice. Optimal MAP
approximations can be obtained by ignoring the infinite entropy contribution
of delta approximations and solving the folded-in optimization problem with
respect to all parameters {α,β,γ, Θ̂}.

For simplicity, let the component covariances be fixed as λ−1
0 IL. Updating

the blocks {γ,π,μ}, with fixed β, is achieved by solving sub-problem

max
γ ,π ,μ

∑

n,�

γn�

(
log π� − λ0

2
‖βn − μ�‖2

)
+

∑

n

H[γn], (23)

where the target is exactly the ELBO for MAP fitting of a deterministic location-
mixture of Gaussians with data matrix β. Therefore standard results implies
optimal γn is given by γnk ∝ πkN (βn|μk, λ−1

0 IL).
Secondly, the folded-in MAP sub-problem for β is naturally linked to reg-

ularized Bregman projection [7], due to Bregman divergence representation of
exponential family distributions. Specifically, with γ fixed, updating {α,β} boils
down to solve

min
α ,β

∑

(n,m)∈Ω

D−H[rnm‖S(αmβn)] +
λ0

2

∑

n,�

γn�‖βn − μ�‖22, (24)

where D−H is the Bregman divergence defined based on negative entropy func-
tion −H(π) and rnm is understood as a degenerated discrete probability. The
prior precision λ0 acts as a regularization coefficient controlling the strength of
shrinkage towards cluster centers. Moreover, if we restrict q(yn) to be a degener-
ated discrete measure, the simplified problem constitutes an exponential family
extension to the formulation proposed in [25]. Computations of α and β can be
done with an alternating algorithm and easily parallelized. It worth noting that
each sub-problem is convex due to negative semi-definiteness of Hessians.

4 Experiments

In this section we present the experimental results of the proposed model mainly
on label aggregation task, compared with two baseline methods, DS and majority
voting heuristic. Computationally, it worth mentioning that as finite mixture
models, the discrete posterior probability in both our proposed architecture and
DS model are only identifiable up to a label permutation. This issue is resolved
by initializing using majority voting in our experiments.



Learning from Crowds 555

4.1 Evaluation Metrics

Since the main goal of labeling models is to infer ground truth labels from
noisy ones provided by crowds, we consider aggregation accuracy measured with
respect to ground truth labels associated with each item. Secondly, to better
assess the fidelity of predictive uncertainty and demonstrate the proposed model
is more advantageous in terms of uncertainty calibration, we consider symmetric
KL divergence with degenerated labels yn replaced by some oracle prediction
q∗(yn), when we have full knowledge of the generative parameters. That is,

CalibSKL =
1
2

∑

n

JKL[q∗(yn)‖q(yn)] + JKL[q(yn)‖q∗(yn)].

Empirically we found the measure is highly correlated with aggregation cross
entropy measured against degenerated true labels, which is subject to sampling
noise. The estimation error of confusion matrices is also investigated. For our
model, the estimates are constructed through a MC estimation of the mean of
induced logistic-Gaussian distribution. The error of estimating a single confusion
matrix is measured in terms of mean symmetric KL divergence

ErrSKL =
1

2M

∑

m,�

π̂�JKL[φ̂m�‖φ∗
m�] + π∗

� JKL[φ∗
m�‖φ̂m�].

4.2 Synthetic Data

Experimental Setup. We generate synthetic data according to two assumptions,
namely the DS assumption and our generative assumption (denoted as LR).
Under our generative assumption, we first uniformly generate K points as {μk}
on an L dimensional hypersphere. A location-GMM model is then formulated
using fixed component parameters {(μk, λ−1

0 I)}K
k=1 and mixing probabilities

π ∝ 1K . We leverage on linear discriminant analysis as an oracle decision rule to
generate coefficients of noisy annotators. Specifically, let (A∗, c∗) be the set of
coefficients obtained from oracle rule, and for each annotator, we generate anno-
tator coefficients from a Gaussian distribution centered at (A∗, c∗). Hierarchical
sampling is adopted according to our generative model to obtain full annota-
tions. Under DS assumption, we generate proper confusion matrices directly
and confirm that the two assumptions in [27] regarding overall accuracy and
class distinguishability are satisfied.

We use N = 300 and M = 50 as a base configuration under both assumptions
for demonstration. Following “missing at random” assumption of observed labels,
entries of generated rating tensor are randomly masked with a specified missing
probability.

Due to nonidenfiability, for MAP inference, our model is fitted with a fixed
component precision matrix λ0IL, where λ0 is taken as a tunable hyperparame-
ter. Other parameters are fitted in mean-field Bayes (MFB) or MAP fashion. For
datasets generated under our generative assumption, the full precision matrix is
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freed as adaptive and also updated with MFB/MAP criterion. For the reduced
rank (RR) case, we run the proposed method with a two dimensional latent space
(L = 2) for datasets with K = 3, 5 and L = 4 for the datasets with K = 10. For
the full rank (FR) case, the proposed model is fitted with L = K−1 for each
scenario.

Annotator Reliability. We evaluate the effects of overall reliability of annota-
tors, by manipulating the generative parameters. For DS assumption, the reli-
ability is measured by the average of diagonal elements in confusion matrices.
For our generative assumption, we alter ‖μ�‖ to represent change in overall reli-
ability. Note that this characterization of reliability is different from annotator
variability, which is reflected by scale of p(ã) in our model. Figure 3, Fig. 4 and
Fig. 5 summarize the aggregation accuracy, estimation error and calibration loss,
respectively, on different reliability scenarios under both assumptions.

In terms of aggregation accuracy, we can see that the proposed model achieves
comparable accuracy with DS model under both assumptions, while gaining
advantages under our generative assumption. The margin that the proposed
model improves DS model increases as the number of class becomes larger, espe-
cially for LR-K10 scenario. This conforms with our prior belief that DS model
is less efficient for large K.

Fig. 3. Aggregation accuracy for synthetic data under our generative assumption and
DS assumption. Overall reliability deteriorates along horizontal axis.

Moreover, the comparable aggregation accuracy is achieved with better esti-
mation, in terms of error measured by symmetric KL divergence, as demon-
strated in Fig. 4. We can expect better aggregation results when generalizing the
fitted model to streaming-in data from the same set of annotators.

Another interesting phenomenon worth mentioning is the impact of item-
specific random effect. Under DS generative assumption, one can observe that
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Fig. 4. Estimation accuracy for synthetic data under our generative assumption and
DS assumption. Overall reliability deteriorates along horizontal axis.

as overall reliability increases and hence the annotators becomes more “homoge-
neous”, the performance gap between probabilistic methods and voting heuristic
tends to vanish. However, it is not the case in presence of item-specific random-
ness, where the performance gap remains. This empirically verifies that voting
is sub-optimal under such scenarios.

Further, smaller calibration loss of our method indicates that it assigns lower
probability to misclassified items and demonstrates its ability of preserving item
ambiguity in the inferred posterior distribution. In contrast, the higher calibra-
tion loss of DS indicates more “confident” errors.

Fig. 5. Calibration accuracy for synthetic data under our generative assumption and
DS assumption. Overall reliability deteriorates along horizontal axis.
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Moreover, for dataset generated from our assumption, better results are
obtained with smaller embedding dimensions in terms of both accuracy and
calibration, in accordance to the dimension of ground truth GMM.

Missing Rate. The performance pattern of increasing missing rate is similar to
the that with decreasing reliability, as shown in Fig. 6 and Fig. 7. It worth noting
that our approaches render better estimation results for scenarios with high miss-
ing rate and lager number of classes, even under DS assumptions. Another obser-
vation reveals that DS performance deteriorates under our generative assumption
as missing rate decreases, which shows the benefits of incorporating item-specific
noise.

Fig. 6. Aggregation accuracy for synthetic data under our generative assumption and
DS assumption. Missing rate increases from 20% to 90% along horizontal axis.

4.3 Realistic Data

We explored 6 real toy datasets and related aggregation results are listed in
Table 1. Among these toy datasets, Bluebirds and Ducks are image datasets
containing binary labels; WSD, Adult, and TlkAgg5 are crowdsourced relevance
judgements containing 3, 4 and 5 levels; and Dogs is an image datasets containing
4 classes. For all 6 datasets, the results from proposed model are obtained using
a 2 dimensional latent space.

In general our proposed method outperforms DS model. Especially for Ducks
dataset, where DS model performs even worse than majority voting and our
model improves majority voting result by a large margin. The main reason of
this phenomenon is that the dataset is created with strong intra-class variability.

Further, we provide visualizations of final item embeddings of Dogs dataset in
Fig. 8. From the visualization one can find the four classes are roughly partitioned
into two groups, reflecting the fact that the pair of classes within a group are
more similar than those in different groups. This is also reflected in the block
structure of mean confusion matrices obtained from DS model plotted in Fig. 8.
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Fig. 7. Estimation accuracy for synthetic data under our generative assumption and
DS assumption. Missing rate increases from 20% to 90% along horizontal axis.

Table 1. Aggregation accuracy for real datasets. Tlkagg5 is accessed at https://
research.yandex.com/datasets/toloka.

Bluebirds [22] Ducks [22] Dogs [28] WSD [21] Adult [20] TlkAgg5

DS 89.81 61.25 84.14 98.87 75.68 84.34

MAP 89.81 80.00 85.01 99.44 78.38 89.06

MFB 89.81 80.83 85.01 98.31 76.58 81.42

MV 75.93 67.92 81.66 99.44 75.68 90.46

Fig. 8. Final 2D embeddings for Dogs dataset and estimated confusion from DS model.

5 Discussion

In summary, we propose a principled probabilistic model for ground truth infer-
ence in crowdsourced multinomial labeling tasks. In fact, the model is general
and applies to clustering and visualizing other types of high-dimensional categor-
ical data in a reduced latent space and could be generalized to other applications.

https://research.yandex.com/datasets/toloka
https://research.yandex.com/datasets/toloka
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A full probabilistic inference procedure is devised. Empirical results validate that
the model better reflects the intrinsic structure of data.

However, as an extended probabilistic matrix factorization model, the pro-
posed model does not account for visible item and user features, which are typ-
ically available in crowdsourcing tasks. It would be an interesting direction to
learn a classifier in this sense, with redundant and noisy labels. For example, the
extended continuous latent features could be directly connected to visible item
side information through a deep generative model. The intrinsic item uncertainty
would become more important for prediction and the model will be advantageous
in terms of quantifying such uncertainties. Also, the proposed model can be fur-
ther extended to deep generative models in conjunction with neural networks.
We leave these aspects for future explorations.

Acknowledgements. We thank the reviewers for providing valuable comments. Jun-
hui Wang’s research is supported in part by HKRGC Grants GRF-11303918 and GRF-
11300919.

References

1. Ahmed, A., Xing, E.: On tight approximate inference of the logistic-normal topic
admixture model. In: Proceedings of the 11th Tenth International Workshop on
Artificial Intelligence and Statistics (2007)

2. Bhattacharya, A., Dunson, D.B.: Simplex factor models for multivariate unordered
categorical data. J. Am. Stat. Assoc. 107(497), 362–377 (2012)

3. Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 127–134. ACM (2003)

4. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for
statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)
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Abstract. Intelligent Transportation Systems employ different local-
ization technologies, such as the Global Navigation Satellite System.
This system transmits signals between satellite and receiver devices on
the ground which can estimate their position on earth’s surface. The
accuracy of this positioning estimate, or the positioning error estima-
tion, is of utmost importance for the efficient and safe operation of
autonomous vehicles, which require not only the position estimate, but
also an estimation of their operation margin. This paper proposes a
workflow for positioning error estimation using a random forest regres-
sor along with a post-hoc conformal prediction framework. The latter
is calibrated on the random forest out-of-bag samples to transform the
obtained positioning error estimates into predicted integrity intervals,
which are confidence intervals on the positioning error prediction with at
least 99.999% confidence. The performance is measured as the number of
ground truth positioning errors inside the predicted integrity intervals.
An extensive experimental evaluation is performed on real-world and
synthetic data in terms of root mean square error between predicted and
ground truth positioning errors. Our solution results in an improvement
of 73% compared to earlier research, while providing prediction statistical
guarantees.

Keywords: GNSS · Positioning error estimation · Random forest ·
Linear regression · Feature selection · Conformal prediction

1 Introduction

Intelligent Transport Systems (ITS) refer to technologies aiding transportation
safety and mobility, consisting of autonomous driving devices, highway speed
and traffic control systems, among others [1]. For an appropriate operation, ITS
require accurate vehicle localization, which is available through a Global Nav-
igation Satellite System (GNSS) composed of orbital navigation satellites pro-
viding geo-spatial positioning [9]. GNSS is conformed by satellite constellations:
(1) Global Positioning System (GPS), from the United States; (2) Globalnaya
Navigazionnaya Sputnikovaya Sistema (GLONASS), from Russia; (3) Galileo
Satellite System, from Europe; and (4) BeiDou Satellite System, from China [5].
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The electromagnetic signals transmitted from satellites to ground receivers
and the position estimates are affected by different error sources including iono-
sphere electron content, troposphere temperature, humidity, pressure, receiver
and satellite clock offset, dilution of precision (DOP) [12]1 and other unmodelled
phenomena, such as multipath, also known as urban canyon effect [23], which is
caused by the reflection of the broadcasted signal onto surfaces surrounding the
receiver [9]. In Tang et al. [12] findings indicate that multipath errors have great
impact on positioning error, of up to a 100 m according to Zimmermann et al.
[13], while Bauer et al. [14] concludes that multipath error is incorrectly modeled
and expensive to compensate for.

Real Time Kinematic Differential GNSS (RTK DGNSS) is a technique that
uses two satellites and two ground receivers. The latter consist of a master
receiver with a known static location, and a rover receiver, whose location is
unknown. The master’s location is given by a reference positioning system or an
already localized static station. By applying double differences between the sig-
nals received at both master and rover to calculate the position vector (x, y and
z -ground coordinates [6]), ionospheric and troposhperic errors are considerably
reduced, but other unmodelled errors remain [2]. The position vector between
them and the known master location are added to localize the rover.

The motivation for this paper is the fact that ITS require accurate vehi-
cle localization, and this in turn needs accurate position and positioning error
estimates. Obtaining accurate position estimation is crucial due to ITS systems
dependency on position knowledge to perform real-time decisions. Not know-
ing the current position is highly restrictive, e.g., a self-driving vehicle without
accurate position estimates imposes risks to pedestrians and other vehicles, and
should hence not operate. Moreover, positioning error estimation is as impor-
tant as the position estimation. A hypothetical autonomous vehicle that esti-
mates its own position but not the position estimate accuracy, may incur in a
hazardous operation for itself, its occupants and/or pedestrians, as the system
trusts its position estimate because it cannot evaluate its quality. The common
safety margins for ITS applications are demanding, and confidence levels from
99.999% up to 99.9999999% are accepted to minimize risk [3,4]. These high levels
of confidence are known as integrity.

This work was supported by Waysure Sweden AB, which is a high accuracy
GNSS service provider in Sweden interested in obtaining real-time high accuracy
GNSS positioning error estimation. This has previously been investigated by
Kuratomi [15], where decision trees were used to select a set of relevant features
from the real-world dataset, which was then used as input to a Support Vector
Regressor (SVR) to obtain an estimation of positioning error. Nonetheless, no
guarantees were provided to the regression output (e.g., in the form of integrity
intervals) and its performance could be improved.
Contributions. In this paper, we propose a framework for GNSS position-
ing error estimation with statistical guarantees on the predicted error values,

1 It is the error margin in the positioning of the receiver due to the spatial distribution
of the satellites.
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using conformal prediction on random forest regressors. More concretely, our
contributions include:

– A random forest conformal prediction framework, called NAVEEG, capa-
ble of obtaining positioning error estimates and their corresponding integrity
intervals while preserving relevant feature information.

– High accuracy positioning error estimation, which is achieved by our pro-
posed framework implemented using RTK DGNSS information, on bench-
marks on a real-world dataset involving tests on a truck and a lawnmower.

– High integrity intervals of 99.999% confidence level are provided for the
predicted positioning error in the real-world dataset, which are obtained
through the post-hoc conformal prediction stage to the RF regression algo-
rithm. This is in compliance to typical safety requirements in ITS.

– Repeatability is achieved by also performing experimental benchmarks on
a synthetic dataset generated based on the real one, which is available along
with our code at an anonymous github repository2.

The remainder of the paper is organized as follows: Section 2 summarizes
the related work, followed by the problem formulation. Section 3 presents the
methodological approach, the feature selection methods applied, and the machine
learning model implemented with the post-hoc conformal prediction framework.
Finally, Sect. 4 presents the dataset and our obtained results, while Sect. 5 sum-
marizes our paper and discusses directions for future work.

2 Background

In this section we outline the related work in the area of GNSS positioning error
estimation, followed by the problem formulation.

2.1 Related Work

Positioning Error Estimation. In Karlsson et al. [5], data from a GNSS
sensor in a Volvo vehicle and a reference position system is gathered. A model
based on Autoregression (AR) models and Gaussian Mixture Models (GMM) is
proposed to analyze the positioning errors. The model estimates environmental
conditions surrounding the test vehicle, based on which, a sub-model is trained
that clusters data into subsets, each with similarities in AR model coefficients.
The final objective is to simulate positioning error distributions that are com-
pared to the real positioning error distributions. The simulations show a good
match, but prediction performance is not shown (due to confidentiality).

Moreover, in El Abbous et al. [7], positioning error distribution is charac-
terized using data obtained from several static positioning tests with a variety
of obstructing objects between the receiver and the satellites in orbit. Data is
collected and analyzed to calculate error average and standard deviation, which

2 https://github.com/alku7660/gnss position error guarantees.

https://github.com/alku7660/gnss_position_error_guarantees
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are then related to the cost function of a Quasi Optimal Satellite Selection algo-
rithm. The higher the cost, the higher average and standard deviation used to
estimate the positioning error. The error between the estimated error distribu-
tions and the real error distributions lies between 10 and 30 cm. The method
implemented relies on the estimation of parameters of assumed normal distri-
butions based on the satellite geometrical cost function in a satellite selection
method. As authors explain, variables like multipath phenomena are not easily
estimated with parametric models, which may lead to positioning errors.

Kuratomi [15], proposes sky obstruction estimates in the RTK DGNSS fea-
ture vector, to try to estimate multipath phenomena. This feature vector is
used by decision trees and SVR. The results indicate a performance inside the
range described by El Abbous et al. [7] with the maximum RMSE of estimated
positioning errors at 29 cm and an added sky obstruction feature which was
not statistically significant. However, more complex and accurate methods such
as ensemble learning models are suggested. Furthermore, in Yang et al. [16], a
real-time model is built using Long Short-Term Memory (LSTM). Mean Abso-
lute Error (MAE) between ground truth error values and predicted error values
is experimentally measured, indicating a maximum MAE of 3%. However, the
paper does not provide the exact data and the model does not measure con-
fidence intervals for error prediction, which is important for ITS applications
[3,4].
Conformal Prediction. Boström et al. [21,22] present a confidence interval
generator framework designed as a post-hoc algorithm, adaptable to RF predic-
tor models. The single value output from the machine learning model may then
be transformed into a confidence interval, with a chosen significance level. The
framework avoids the need to reserve instances for calibration by using Out of
Bag (OOB) samples, allowing a more robust model training and testing phases.
The interval is also adapted to consider each single instance prediction difficulty
in the dataset, i. e., it generates a larger confidence interval for a harder to
classify instance, based on the variance of decision trees predictions in the RF.

2.2 Problem Formulation

Let D = {D1, . . . ,DN} be a dataset of N test-runs. A test-run is a vehicle
drive experiment to collect GNSS data, which may have thousands of instances,
denoted as xit, each with a time stamp t. Hence, each test-run is defined as
a set of instances Di = {xit}, ∀t ∈ {1, . . . , mi}, with mi being the maximum
number of available time stamps in Di. For each instance xit the respective
target positioning error at time t is defined as yit. Note that the positioning
errors are obtained from the RTK DGNSS process and a reference positioning
system.

Moreover, let fi(xit) be the test-run i predictor function that maps the
instance vector xit to a predicted value ŷit so as to minimize εit = ŷit − yit,
where εit corresponds to the error between the prediction and target error of
xit. The total error of a given test-run Di is calculated as the RMSE as seen in
Eq. 1.
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RMSEi =

√
√
√
√

1
mi

mi∑

t=1

ε2it (1)

The complexity of the predictor function may be reduced by decreasing the
number of features that are irrelevant or noisy in xit [8]. This may lead to
improved predictive performance in terms of RMSEi.

Hence, in this paper, we apply six different feature selection methods I =
{baseline, backward, forward, stepwise, lasso, experts}. Let xk

it be the instance
vector containing the features returned by the kth feature selection process in I,
with k = {1, . . . , |I|}. For each k, a predictor function fi(xk

it) is identified with
a corresponding εkit and RMSEk

i . The final feature selection process minimizing
the RMSE throughout the possible processes in I is given by Eq. 2:

k∗
i = arg min

k
RMSEk

i ,∀i ∈ {1, 2, . . . , N} (2)

For a given prediction f(xk
it), a confidence interval (a, b) with significance level

δ ≤ 0.001% is generated around each predicted instance value [21] as follows:

P (a ≤ f(xk
it) ≤ b) ≤ 1 − δ (3)

Conformal prediction performance in test-run Di is defined as Ωinti , and is
measured as the number of instances inside the predicted confidence interval
limits (a, b) over the total number of instances in Di, as defined in Eq. 4:

Ωk
inti :=

mi∑

t=1
h(f(xk

it))

mi
, h(f(x)) =

{

1, a ≤ f(x) ≤ b

0, otherwise
(4)

We finally define a predictor function F (xt) for dataset D containing all instances
from all test-runs. The goal of this paper is to define such functions fi(xit) and
F (xt) for GNSS positioning error prediction with high accuracy. Moreover, for
each prediction fi(xit) in all Di, we want to define an integrity interval (ait, bit)
with significance level δ ≤ 0.001%.

3 NAVEEG: A Positioning Error Estimation Framework
with Guarantees

We propose a Positioning Error Estimation framework, which we call NAVEEG,
that provides guarantees on the error estimations using Conformal Prediction.
The framework comprises three main components: (1) data pre-processing, (2)
feature selection, and (3) conformal prediction. In Fig. 1, we outline the main
steps of NAVEEG. Next, we provide further details for each step.

3.1 Data Preprocessing

For each test-run in D we first perform a K-Fold random split (for our exper-
iments, we set K = 5) before applying feature selection. Additionally, every
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Fig. 1. General research framework implemented.

instance is assumed to be time-independent with other instances, i.e., the time
dimension is not considered and predictions are obtained per instance. More-
over, min-max normalization is applied to each continuous data variable, while
for categorical variables we apply one-hot encoding.

3.2 Feature Selection

We apply six feature selection techniques, as defined in I (Sect. 2.2), i.e., baseline,
backward, forward, stepwise, lasso regression, and experts. Note that baseline
includes all features, while experts includes the most relevant features according
to a set of GNSS experts. The remaining four techniques are linear regression-
based feature selection methods.

Assuming the linearity property holds among the independent and dependent
variables in the dataset, we compute the linear regression p-value for the inde-
pendent features, which is an estimate of the feature relevance to the dependent
response variable [18]. A p-value lower than the significance threshold indicates
that the variable is relevant to the target estimation.

More concretely, the feature selection techniques we employ are as follows:

1. Baseline: uses all features;
2. Backward: one-by-one eliminates the least significant feature until a set of

significant features remains;
3. Forward: one-by-one adds the most significant feature, starting from zero,

until a set of significant features is built;
4. Stepwise: one-by-one adds the most significant feature to a preliminary fea-

ture set. The preliminary feature set is then run with another linear regres-
sion model to evaluate if all preliminary features are significant. If one is
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Algorithm 1: Conformal Prediction Framework for Random Forests
input : Dataset Z; new instance xn

output: Integrity interval ŷδ
n for new instance xn

1 [Zt, Zc] = Split(Z) // Split Z into Zt and Zc (OOB samples)

2 modelt = Train(Zt) // Train modelt on Zt

3 ŷ = Predict(modelt, Zc) // Predict on Zc (OOB samples) with modelt

4 α = |y − ŷ| // Calculate nonconformity scores α
5 Sort(α) // sort α in descending order

6 αδ = Find(α, δ) // find αδ which separates the top δ fraction

7 ŷn = Predict(xn) // predict ŷn from new instance xn

8 ŷδ
n = ŷn ± αδ // estimate the integrity interval ŷδ

n

not (p-value > 0.05) the latest added feature to the preliminary feature set
is removed. The algorithm iterates until the preliminary set of significant
features has run through all features and is then selected as the feature set;

5. Lasso: applies linear model regression with L1 regularization to decrease the
coefficient value of irrelevant variables;

6. Experts: a team of GNSS experts is consulted to get a feature ranking. The
most important features are used, based on a Pareto 80-20 ranking score.

3.3 Random Forest (RF)

The next step is to employ a regression RF using the previously selected features.
A regression RF provides predictor functions for regression tasks with categor-
ical or continuous features. It is able to handle high dimensionality data while
maintaining a low bias with a relatively low variance compared to single decision
trees. As shown in Boström et al. [21,22], RF allows an easy conformal predic-
tion implementation. Although the data records are time evolving, the model we
aim to create does not consider time dependency, assuming that the data at a
given time t suffices to predict the positioning error at that time.

Hence, the selected features from the previous step are evaluated using the
RF regression feature importance method, which is based on variance or impurity
reduction, averaged throughout the trees in the forest [20]. The features with the
highest importance are then used for building the regression RF, which is then
forwarded to the third step of NAVEEG.

3.4 Conformal Prediction

Finally, a conformal prediction framework is applied to the RF to define predic-
tion integrity intervals. Conformal prediction is an algorithm that delivers confi-
dence intervals with regards to any model’s prediction output by using a sorting
score known as the nonconformity measure. Its outcome is the real interval (a, b)
for which P (a ≤ X ≤ b) ≤ 1 − δ for a given significance level δ and instance
[21]. This allows the system to obtain an integrity interval of δ = 0.001%, for
the positioning error prediction values, for every instance.
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The main steps of the conformal prediction framework that is applied to the
regression RF for each test instance are based on Boström et al. [21], and are
outlined in Algorithm1.

4 Empirical Evaluation

In this section, we present the datasets used in our experimental evaluation, we
outline the experimental setup and present our results.

4.1 Datasets

We used one real-world dataset, as well as a synthetically generated dataset.

GNSS Dataset. The dataset consists of 23 files, each with the features and the
target value for a test-run. The test-runs are distributed into 5 d, and 2 vehicles,
a truck and a lawnmower. The features are summarized in Table 1. Due to the
RTK DGNSS data processing steps, each instance may not have an appropriate
time stamp or a proper ground truth value as the system might be unavailable
(due to initialization process). For this reason, the data must be filtered to
eliminate instances with incorrect time stamps or without ground truth. The
total number of initial instances considering all 23 JSON files is 228894. A total
of 33603 instances have an incorrect time stamp, and an additional 13257 lack a
correct ground truth position error. The final dataset contains 182034 instances.

The total number of features after applying min-max normalization and one-
hot encoding (Sect. 3.1) ranges between 220 and 260 per test-run, while the
feature vector length varies according to the number of available satellites in
space at any given time t. The preprocessing has been performed using Python
3.6 and the JSON, Numpy, and Pandas libraries.

Synthetic Dataset. We additionally generated a synthetic dataset by multi-
plying a sampled observation from a normally distributed variable with mean
10 and variance 1, and then adding an observation from another variable with
normal distribution with mean 0 and variance 1 to every feature. A total of 220
features have been generated with 10000 instances. The dataset is available at
the github repository mentioned in the introduction.

4.2 Results

For the real-world dataset, we carried out the following experimental bench-
marks: (1) comparison of the performance of RF with respect to different fea-
ture selection techniques; (2) assessment of the impact of integrity intervals
introduced by the conformal prediction framework using RF; (3) comparison of
all methods with respect to RMSE, and finally (4) a study on the important
variables identified by the algorithms. We present four test-run results out of
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Table 1. Features available from the real GNSS dataset.

Feature Description Data type

Number Satellites Number of satellite measurements available Discrete

Constellation GPS, GLONASS or Galileo Categorical

Ambiguity lock Fixed or unknown Categorical

Cycle slip Discontinuity in the receiver’s phase lock on
the satellite signal

Discrete

Multipath Multipath estimator based on CNO Discrete

CNO Carrier to noise ratio Continuous

RAIM Receiver autonomous integrity monitoring.
Indicates if a satellite induces high error

Discrete

Used Indicates if a satellite is used Discrete

Master position Master reference position on earth’s surface Continuous

LSR Least Square Residuals per satellite Continuous

PDOP Position dilution of precision error Continuous

Tracking type pll, costas, or no tracking Categorical

Elevation Angle over horizon. Maximum 90◦ Continuous

Azimuth Horizontal angle to north plane Continuous

Prediction
covariance

EKF coordinates position covariance Continuous

Difference EKF prediction minus EKF correction Continuous

Innovation Innovation value from EKF algorithm Continuous

the 23 test-runs available from the real-world dataset. The remaining test-run
results are in the github repository. Note that RF is implemented using Scikit-
Learn package RandomForestRegressor, with a total of 100 trees, a minimum of
10 samples required for split, and a minimum of 1 instance per node. Next, we
provide more details of these benchmarks and discuss our findings.

Feature Selection. Figure 2 depicts the RF performance in terms of RMSE
for each feature set for the four selected tests, defined as Truck test 2, Truck
test 4, Lawnmower test 4, and Lawnmower test 11. Each method has 5 points in
the plot, each corresponding to 1 of the 5 folds in the K-Fold Cross Validation
process. We observe that the RMSE performance does not significantly vary for
most methods. The results, provided from Figures 1 to 23 in folder RMSE vs
Dim Reduction Figures in the repository indicate a similar performance with a
smaller set of features. Exp corresponds to the features selected by the GNSS
experts. The results are similar for the rest of the test-runs, indicating highly
correlated or noisy features which have been filtered through these selections.
The results of each fold are also analyzed in terms of prediction performance
and integrity levels.
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Fig. 2. RF Regressor RMSE vs. Dimensionality reduction percentage (due to feature
selection).

Each of the pre-selected features is ranked according to the RF feature rel-
evance. Figure 24, available at the repository, shows the normalized score of
features used by the RF regression model. The experts features are, according
to RMSE and Ωint, the best at predicting positioning error and did not include
Azimuth and Least Squares Residuals (LSR). Elevation and CNO are more rel-
evant. There is a high variance in the weights, and a study should be done to
verify significant statistical difference among features’ relevance.

RF and Conformal Prediction. Figure 3 shows the Stanford diagram on one
fold for Truck tests 1 and 4, and for Lawnmower tests 4 and 11. The diagram indi-
cates the predicted positioning error versus the ground truth positioning error.
Each blue line corresponds to each instance’s predicted integrity interval with a
significance level of 0.001% or confidence (integrity) of 99.999%. The red dashed
line is the y = x line, and the closer the center of each blue line or predicted
integrity interval is to it, the better the prediction. If the blue line contains the
red line, then it is considered a correct prediction. We observe a higher integrity
interval variation among test-runs. Figure 3b is considerably different to Fig. 3c,
with wider spread of instances and smaller integrity intervals. Lawnmower test 11
(Fig. 3d) fold 1 shows a relatively different performance among methods, where
backward presents a compact and accurate set of integrity intervals along the red
line, while the rest a broader range, and stepwise the widest integrity intervals.
This is expected, as Fig. 2 showed that most folds of backward method had the
lowest RMSE for the test-runs, while the stepwise folds a higher RMSE.
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These results are also evaluated through RMSE and Ωint. Table 2 summarizes
these two measures for all test-runs. There are a total of 8 test-runs with a
truck, and 15 test-runs with a lawnmower. The RMSE and Ωint performance
metrics are provided for every feature selection method, while the best results
for each test-run are shown in bold. We observe that the experts’ features were
the best set in 16 out of the 23 test-runs for RMSE and in 10 out of 23 test-
runs for Ωint. The lowest RMSE was obtained in Lawnmower 1 with experts set
at 4.62 mm, while the highest in Truck 6 with lasso at 28.75 mm. The highest
Ωint was Truck 6 for all methods at 99.99%, and the lowest was Truck 5 with
experts set at 57.96%. A strong performance dependency on each test indicates
that other variables relative to the tests themselves, may be affecting prediction
performance. As suggested in Kuratomi [15], Tang et al. [12] and Bauer et al.
[14] these variables may be related to environmental conditions causing hard-to-
model phenomena such as multipath. Further tests could be run including more
environmental information to improve prediction accuracy.

With regard to the synthetic dataset, Table 2 shows a higher RMSE (around
41 mm in average) and high Ωint. The RMSE increase might be related to
the synthetic data generation process, in which a randomized sample from all

Table 2. RMSE and interval accuracy results for every test. “T.”, “L.” and “Synth”
stand for Truck, Lawnmower and Synthetic dataset respectively.

RMSE (mm) & Integrity Interval inclusion Percentage [Ωint] (%)

Baseline Backward Stepwise Forward Lasso Experts

Test RMSE Ωint RMSE Ωint RMSE Ωint RMSE Ωint RMSE Ωint RMSE Ωint

T. 1 4.94 98.89 5.02 98.54 5.18 98.37 4.84 98.81 4.94 98.70 4.84 98.95

T. 2 6.28 79.17 6.43 77.95 6.69 75.11 6.37 77.32 6.27 77.88 6.26 80.86

T. 3 8.04 71.19 8.01 69.22 8.34 66.78 8.24 71.65 8.03 70.37 7.88 69.34

T. 4 8.53 69.24 8.27 68.83 8.66 68.19 8.39 68.23 8.48 66.13 8.31 69.05

T. 5 5.28 65.57 5.41 65.02 5.66 67.56 5.46 65.12 5.47 63.93 5.03 57.96

T. 6 27.73 99.99 28.44 99.99 25.30 99.99 27.27 99.99 28.75 99.99 26.16 99.99

T. 7 13.23 99.41 12.88 99.33 12.74 98.90 13.15 99.35 12.24 99.34 12.90 99.16

T. 8 8.22 90.85 8.30 90.87 8.73 89.51 8.33 90.42 8.21 90.60 8.17 90.75

L. 1 4.89 93.00 4.90 92.82 4.84 92.60 4.79 94.70 4.88 93.71 4.62 94.86

L. 2 8.31 85.36 8.16 83.59 8.13 85.98 8.39 85.50 8.81 84.83 7.59 89.19

L. 3 6.68 85.08 6.88 87.46 7.95 93.79 6.58 84.06 6.81 86.18 7.40 99.32

L. 4 5.34 64.61 5.16 66.56 5.61 67.26 5.29 64.24 5.30 64.13 5.03 64.01

L. 5 7.23 98.99 7.06 99.22 7.08 89.67 7.49 95.88 7.21 98.94 6.78 97.97

L. 6 11.65 98.04 11.79 97.77 15.37 95.91 11.61 97.11 11.70 98.07 6.69 98.29

L. 7 6.89 88.34 7.12 91.44 7.73 93.33 7.11 89.82 7.01 86.27 6.76 92.55

L. 8 7.03 62.17 7.02 62.68 7.14 60.29 7.04 61.86 7.10 62.13 6.60 65.96

L. 9 9.47 92.42 11.46 87.23 10.45 89.99 9.67 90.94 9.54 92.38 9.20 91.87

L. 10 8.14 70.61 8.96 72.23 9.56 70.50 8.21 70.74 8.27 72.93 7.66 72.92

L. 11 7.41 73.76 6.34 79.03 8.53 80.33 7.54 77.48 7.44 77.24 7.34 74.07

L. 12 7.66 64.01 7.59 64.92 7.99 61.50 7.85 64.44 7.70 60.84 7.03 65.18

L. 13 7.00 67.70 6.95 66.53 7.61 70.22 7.06 68.36 7.03 67.27 6.65 69.06

L. 14 15.85 99.53 15.19 99.61 21.85 99.75 14.82 99.15 16.03 99.26 15.01 99.40

L. 15 11.34 97.32 10.44 97.37 13.17 98.01 10.83 93.59 11.34 98.22 10.43 92.89

Synth 40.16 99.98 40.24 99.97 41.44 99.98 40.92 99.97 40.74 99.98 40.91 99.97
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(a) Truck test 2 fold 1

(b) Truck test 4 fold 1

Fig. 3. Stanford diagram with varying conformal prediction integrity intervals (blue
lines) for each test instance in the fold, for every feature selection method. (Color figure
online)
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(c) Lawnmower test 4 fold 1

(d) Lawnmower test 11 fold 1

Fig. 3. (continued)
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Fig. 4. Stanford diagram for baseline method, which achieved best result on fold 1 in
the synthetic dataset.

Fig. 5. SVR and RF Stanford diagrams for all instances and no integrity intervals.

test-runs (with different multipath influence levels) is modified and used to train
and test the model.

Comparison with Previous Results. A Support Vector Regression (SVR)
was implemented with the hyperparameters used in Kuratomi [15]. Using a 5-
Fold Cross Validation scheme to measure RMSE, for both SVR and RF Regres-
sion with all the test-runs combined.

The RF algorithm performed better than SVR using the same set of features.
Kuratomi [15] obtained a 35.4 mm RMSE, which differs to these results due
possibly to the dataset and preprocessing. A total of 12 features are used: CNO,
number of satellites, elevation, difference East, difference North, difference Up,
LSR, azimuth, innovation East, innovation North, innovation Up and pdop which
matches the feature selection obtained from the combined RF feature relevance
and linear based methods. RF had an average RMSE of 9.44 mm which is 91.4%
lower than SVR, which is 109.17 mm, 73.3% lower compared to Kuratomi [15]
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best RMSE. The Mean Absolute Percentual Error (MAPE) is calculated for this
case at 18.8%. This measure is higher than the maximum reported 3% by Yang et
al. [16], however, it is unclear whether Yang used MAPE or MSE, and their data
was not accesible, which makes comparisons difficult. However, it is important
to note that the results here obtained were achieved without considering time
dependencies. The results on the synthetic dataset for fold 1 and baseline features
are shown in Fig. 4. In Fig. 5 the results for all positioning error predictions of
SVR and RF are shown. The results for all selection methods and folds can be
found in the mentioned repository.

5 Conclusions and Future Work

We proposed a positioning error estimation framework that used an RF regres-
sor in conjunction with conformal prediction that fits the requirements for an
implementation in the field of GNSS localization services and ITS. The obtained
performance in terms of RMSE provides substantial improvements compared to
a recent state-of-the-art competitor method, while providing statistical guaran-
tees on the predictions. Directions for future work include the exploration of
additional variables from the application domain, such as velocities and accel-
eration obtained from the vehicle dynamics, a hyperparameter and program
optimization for improved performance, the consideration of the time dimension
and dependencies between the data variables, as well as a real-time implementa-
tion of the proposed framework that can possibly result in lower error intervals.
This real-time implementation could also consider the inclusion of information
obtained from sensors able to capture environmental conditions, such as having
an infrared camera tracking satellite locations for multipath estimation.

Acknowledgements. We thank the company Waysure Sweden AB for supporting
this research project, providing the real-world dataset, and their GNSS experts input
for the feature selection process.
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Măndoiu, I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS, vol. 4463, pp. 170–181.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72031-7 16

9. Joardar, S., Siddique., T.A., Alam, S., Hossam-E-Haider, M.: Analyses of different
types of errors for better precision in GNSS. In: 3rd International Conference on
Electrical Engineering and Information and Communication Technology, pp. 1–6
(2016)

10. Molnar, C.: Interpretable Machine Learning. https://christophm.github.io/
interpretable-ml-book/limo.html. Accessed 2 Mar 2020

11. Radi, A., Nassar., S., Khedr, M., El-Sheimy, N., Molinari, R., Guerrier, S.:
Improved stochastic modelling of low-cost GNSS receivers positioning errors. In:
IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 108–117
(2018)

12. Tang, D., Lu, D., Baigen, C., Wang, J.: GNSS localization propagation error esti-
mation considering environmental conditions. In: 16th International Conference on
Intelligent Transportation Systems Telecommunications (ITST), pp. 1–7 (2018)

13. Zimmermann, F., Schmitz, B., Klingbeil, L., Kuhlmann, H.: GPS multipath anal-
ysis using Fresnel zones. Sensors J. 19, 25 (2018)

14. Bauer, S., Obst, M., Wanielik, G.: 3D environment modeling for GPS multipath
detection in urban areas. In: International Multiconference on Systems, Signals
and Devices (SSD), pp. 1–5 (2012)

15. Kuratomi, A.: GNSS position error estimated by machine learning techniques with
environmental information input. M.Sc. Mechatronics, KTH, Sweden (2019)

16. Yang, S., Tabatowski-Bush, B., Xiang, W.: Build up a real-time LSTM position-
ing error prediction model for GPS sensors. In: 90th IEEE Vehicular Technology
Conference (VTC), pp. 1–5 (2019)

17. Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., et. al.: Multi-horizon time
series forecasting with temporal attention learning. In: 25th SIGKDD Conference
on Knowledge Discovery and Data Mining (ADST), pp. 2527–2535 (2019)

18. Amrhein, V., Korner-Nievergelt, F., Roth, T.: The earth is flat (p > 0.05): signifi-
cance thresholds and the crisis of unreplicable research. PeerJ. 5, e3544 (2015)

19. Suzuki, T., Kitamura, M., Yoshiharu, A., Hashizume, T.: High accuracy GPS
and GLONASS positioning by multipath mitigation using omnidirectional infrared
camera. In: IEEE International Conference on Robotics and Automation, pp. 311–
316 (2011)

20. Pereira, S., et al.: Enhancing interpretability of automatically extracted machine
learning features: application to a RBM-random forest system on brain lesion seg-
mentation. Med. Image Anal. 44, 228–244 (2018)

21. Boström, H., Linusson, H., Löfström, T., Johansson, U.: Accelerating difficulty
estimation for conformal regression forests. Ann. Math. Artif. Intell. 81(1), 125–
144 (2017). https://doi.org/10.1007/s10472-017-9539-9

https://doi.org/10.1007/978-3-540-72031-7_16
https://christophm.github.io/interpretable-ml-book/limo.html
https://christophm.github.io/interpretable-ml-book/limo.html
https://doi.org/10.1007/s10472-017-9539-9


578 A. Kuratomi et al.

22. Bostrom, H., Asker, L., Gurung, R., Karlsson, I., Lindgren, T., Papapetrou, P.:
Conformal prediction using random survival forests. In: 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), Cancun, pp. 812–817
(2017). https://doi.org/10.1109/ICMLA.2017.00-57

23. Gong, H., Chen, C., Bialostozky, E., Lawson, C.: A GPS/GIS method for travel
mode detection in New York City. Comput. Environ. Urban Syst. 36, 131–139
(2012)

https://doi.org/10.1109/ICMLA.2017.00-57


Author Index

Acker, Alexander 122
Agrahari, Rahul 224
Amirat, Yacine 89
An, Mingxiao 175
Arif, Mofassir ul Islam 259
Attal, Ferhat 89
Azzag, Hanane 323

Bacher, Ivan 224
Bai, Ching-Yuan 497
Barbesant, Vincent 444
Beigl, Michael 461
Blanc-Beyne, Thibault 358
Bogatinovski, Jasmin 122
Borovica-Gajic, Renata 291
Boudjeloud-Assala, Lydia 444
Buschjäger, Sebastian 478
Buss, Jens 478

Candela, Rosa 513
Cardoso, Jorge 122
Carlier, Axel 358
Chakraborttii, Chandranil 427
Charvillat, Vincent 358
Chen, Buo-Fu 497
Chen, Chacha 530
Chen, He 19
Chen, Hong 36
Chibani, Abdelghani 89
Conran, Clare 224
Corrigan, David 224
Crochepierre, Laure 444
Cui, Tianyu 192

Deng, Chao 208
Dev, Soumyabrata 224
Dhamodharaswamy, Balaji 240
Dong, Xinzhou 19

Fang, Jie-Yu 275, 308
Fang, Yuan 3
Filippone, Maurizio 513

Gai, Kun 208
Giraldi, Loic 323
Goffinet, Etienne 323
Gou, Gaopeng 192
Gunarathna, Udesh 291

Hamidi, Massinissa 374
Han, Siho 157
Hao, Bowen 36
Hefenbrock, Michael 461
Hintsches, Andre 259
Hoffmann, Alwin 411
Hossari, Murhaf 224
Hsieh, Hsun-Ping 275, 308
Hu, Junfeng 341
Huang, Yiran 461

Jagannathan, Srinivasan 240
Jameel, Mohsan 259
Javidnia, Hossein 224
Jiang, Xiaoqian 105
Jin, Beihong 19

Kao, Odej 122
Karunasekara, Shanika 291
Kim, Sundong 175
Kuratomi, Alejandro 562

Lebbah, Mustapha 323
Lee, Wonjung 546
Li, Beibei 19
Li, Cuiping 36
Li, Zhenhui 530
Li, Zhidong 139
Liao, Jun 341
Lim, Kwan Hui 69
Lin, Fandel 275, 308
Lin, Hsuan-Tien 497
Lin, Leyu 3
Lindgren, Tony 562
Litz, Heiner 427
Liu, Chang 530



580 Author Index

Liu, Junhua 69
Liu, Li 341
Lu, Yuanfu 3

MallawaArachchi, Sudaraka 139
Michiardi, Pietro 513
Mojarad, Roghayeh 89
Morik, Katharina 478
Mouysset, Sandrine 358

Nedelkoski, Sasho 122
Nicholson, Matthew 224

Ortner, Mathias 391
Osmani, Aomar 374

Pan, Wenhai 19
Papapetrou, Panagiotis 562
Park, Seoyoung 157
Pfahler, Lukas 478
Pitié, François 224

Reif, Wolfgang 411
Rhode, Wolfgang 478
Riedel, Till 461

Sanchez, Eduardo H. 391
Schiendorfer, Alexander 411
Schmidt-Thieme, Lars 259
Schröter, Niklas 411
Serrurier, Mathieu 391
Shahabi, Cyrus 52
Shi, Chuan 3
Shi, Junzheng 192
Song, Peng 224
Stieber, Simon 411
Sun, Tianshu 52

Tan, Qing 208
Tang, Jian 224
Tang, Pengfei 105
Tanin, Egemen 291
Tripathi, Rahul 240

Wang, Hao 208
Wang, Junhui 546
Wang, Wei 3
Wang, Wenjie 105
Wang, Yang 139
Warnakula, Tharindu 139
Weeraddana, Dilusha 139
Wei, Hua 530
Woo, Simon S. 157
Wood, Kristin L. 69
Wu, Fan 52
Wu, Lixia 52

Xia, Wei 192
Xie, Hairuo 291
Xie, Ruobing 3
Xiong, Gang 192
Xiong, Li 105
Xu, Jian 208
Xu, Yinghui 52
Xue, Taofeng 19

Yao, Wuguannan 546
Yin, Hongzhi 36
Yue, Mingxuan 52

Zhang, Jing 36
Zhang, Xu 3
Zhang, Xuejian 19
Zheng, Guanjie 530
Zhou, Yexu 461
Zhuo, Wei 19
Zuluaga, Maria A. 513


	Preface
	Organization
	Contents – Part IV
	Applied Data Science: Recommendation
	Social Influence Attentive Neural Network for Friend-Enhanced Recommendation
	1 Introduction
	2 Preliminaries
	3 The Proposed Model
	3.1 Model Overview
	3.2 Attentive Feature Aggregator
	3.3 Social Influence Coupler
	3.4 Behavior Prediction and Model Learning

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Experimental Results
	4.4 Impacts of Multifaceted Information
	4.5 Analysis on Social Influence in FER
	4.6 Parameters Analysis

	5 Related Work
	6 Conclusion
	References

	Feedback-Guided Attributed Graph Embedding for Relevant Video Recommendation
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Equuleus Approach
	4.1 Construction of Graph
	4.2 Node Attributed Encoder Network
	4.3 Feedback-Guided Learning
	4.4 Behavior-Driven Random Walk

	5 Evaluation
	5.1 Experimental Setting
	5.2 Ablation Study
	5.3 Visualization
	5.4 Performance Comparison
	5.5 Online A/B Test

	6 Conclusion
	References

	Recommending Courses in MOOCs for Jobs: An Auto Weak Supervision Approach
	1 Introduction
	2 The Auto Weak Supervision Model
	2.1 Model Overview
	2.2 Weak Supervision Model
	2.3 Automated Model Search
	2.4 Reinforcement Joint Training

	3 Experiment
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Related Work
	5 Conclusion
	References

	Learning a Contextual and Topological Representation of Areas-of-Interest for On-Demand Delivery Application
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Learning Contextual Representation from Trajectories
	3.2 Learning Topological Representation from Graphs
	3.3 Jointly Learning One Representation by a Multi-view Ranking Autoencoder

	4 Experiments
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Evaluation with ETA Prediction
	4.4 Model Interpretation

	5 Related Work
	6 Conclusion
	References

	Strategic and Crowd-Aware Itinerary Recommendation
	1 Introduction
	2 Main Contributions
	3 Related Work
	3.1 Itinerary and Tourism-Related Recommendation
	3.2 Discussion

	4 Crowd-Aware Itinerary Recommendation Problem
	4.1 General Approach
	4.2 Problem Formulation
	4.3 Proof of NP-Hardness

	5 Strategic and Crowd-Aware Itinerary Recommendation (SCAIR) Algorithm
	5.1 Finding Feasible Paths
	5.2 Transition Matrix
	5.3 Simulation

	6 Experimental Setup
	6.1 Dataset
	6.2 Experimental Parameters
	6.3 Evaluation and Baselines

	7 Results and Discussion
	7.1 Queuing Time
	7.2 Popularity
	7.3 Utility

	8 Conclusion and Future Work
	8.1 Conclusion and Discussion
	8.2 Future Work

	References

	Applied Data Science: Anomaly Detection
	A Context-Aware Approach to Detect Abnormal Human Behaviors
	1 Introduction
	2 Related Works
	3 Background
	4 Proposed Approach
	4.1 Human Activity, Location, and Object Recognition
	4.2 Capturing Human Behavior Contexts
	4.3 Mapping to the HACON Ontology
	4.4 PASP

	5 Experiments, Results, and Discussion
	5.1 Human Activity, Location, and Object Recognition
	5.2 Abnormal Human Behavior Detection

	6 Conclusion and Future Works
	References

	RADAR: Recurrent Autoencoder Based Detector for Adversarial Examples on Temporal EHR
	1 Introduction
	2 Preliminaries and Related Work
	3 Methodology
	3.1 Recurrent Autoencoder Architecture
	3.2 RADAR Detection Criteria
	3.3 Enhanced Attack

	4 Experimental Evaluation
	4.1 Attack Performance
	4.2 Detection Performance

	5 Conclusion
	References

	Self-supervised Log Parsing
	1 Introduction
	2 Related Work
	3 Neural Log Parsing
	3.1 Preliminaries
	3.2 NuLog: Self-attentive Neural Parsing with Transformers
	3.3 Log Template Extraction

	4 Evaluation
	4.1 Datasets
	4.2 Evaluation Methods
	4.3 Parsing Results

	5 Case Study: Anomaly Detection as a Downstream Task
	5.1 Unsupervised Anomaly Detection
	5.2 Supervised Anomaly Detection

	6 Conclusion
	References

	Long-Term Pipeline Failure Prediction Using Nonparametric Survival Analysis
	1 Introduction
	1.1 The Water Pipeline Failure Problem
	1.2 Related Work
	1.3 Our Contribution
	1.4 Preliminary

	2 Data Analytic Model for Pipeline Failure Prediction
	2.1 Data Extraction and Pre-processing
	2.2 Factor Analysis
	2.3 Long-Term Failure Prediction

	3 Case Study
	3.1 Model Setting
	3.2 Experimental Results and Discussion

	4 Discussion on RSF for Long-Term Pipe Failure Prediction
	5 Conclusions
	References

	Forecasting Error Pattern-Based Anomaly Detection in Multivariate Time Series
	1 Introduction
	2 Related Work
	3 Proposed Methods
	3.1 Dataset Description
	3.2 Data Preprocessing
	3.3 Anomaly Detection

	4 Experimental Results and Discussion
	4.1 Comparison with Baselines
	4.2 Comparative Analysis of Our Methods

	5 Conclusion and Future Work
	References

	Applied Data Science: Web Mining
	Neural User Embedding from Browsing Events
	1 Introduction
	2 Related Work
	3 Our Approach: Neural User Embedding (NEU)
	3.1 NEU-ID Model for User Embedding
	3.2 NEU-Text Model for User Embedding
	3.3 Model Training

	4 Experiments
	4.1 Datasets and Experimental Settings
	4.2 Performance Evaluation
	4.3 Model Effectiveness
	4.4 Comparison with Direct Input
	4.5 Comparison with Network Embedding
	4.6 Effect of the Number of Users
	4.7 Effect of the Number of Events
	4.8 Qualitative Analysis of the User-Embedding Results

	5 Conclusion
	References

	6VecLM: Language Modeling in Vector Space for IPv6 Target Generation
	1 Introduction
	2 Related Work
	2.1 Address Similarity Learning
	2.2 Target Generation Algorithm
	2.3 Word Embedding and Language Modeling

	3 Preliminary
	3.1 IPv6 Addressing Background
	3.2 Target Generation Consideration

	4 IPv62Vec
	4.1 Word Building
	4.2 Sample Generation
	4.3 Model Training

	5 Transformer-IPv6
	5.1 Language Modeling
	5.2 Generation Approach

	6 Evaluation
	6.1 Dataset
	6.2 Evaluation Method
	6.3 IPv6 Vector Space
	6.4 Address Attention
	6.5 Temperature
	6.6 Evaluation Results
	6.7 Generating Ability

	7 Conclusion
	References

	Calibrating User Response Predictions in Online Advertising
	1 Introduction
	2 Related Work
	3 User Response Prediction Calibration
	3.1 Problem Definition and Solution Overview
	3.2 Smoothed Isotonic Regression (SIR)
	3.3 PCCEM Based Calibration for Delayed Response

	4 Metrics
	5 Experimental Evaluation
	5.1 Evaluation of SIR
	5.2 Evaluation of PCCEM Based Calibration
	5.3 Online Evaluation

	6 Conclusion and Future Work
	References

	An Advert Creation System for 3D Product Placements
	1 Introduction
	1.1 Related Work
	1.2 Contributions and Organization of the Paper

	2 Technology
	2.1 Monocular Depth Estimation
	2.2 Camera Tracking
	2.3 Interactive Segmentation
	2.4 Background Matting

	3 System Design
	3.1 User Interface
	3.2 Back-End

	4 Application
	4.1 Superimposing 3D Objects
	4.2 Occlusion Masks
	4.3 Camera Tracking

	5 Conclusion
	References

	Estimating Precisions for Multiple Binary Classifiers Under Limited Samples
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Sample Size to Estimate Precision

	4 Optimized Precision Estimation by Recycling Samples
	4.1 Classifiers with Overlapping Predicted Positive Sets

	5 Experiments and Results
	5.1 Metrics for Comparison
	5.2 Simulations
	5.3 Savings in Sample Size as a Function of PIR and CIR
	5.4 Practical Application of Algorithm 1

	6 Generalizing to Other Performance Measures
	7 Conclusion
	References

	Applied Data Science: Transportation
	Automation of Leasing Vehicle Return Assessment Using Deep Learning Models
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Damage Classification
	3.3 Cost Regression

	4 Experiments
	4.1 Dataset
	4.2 Exploratory Data Analysis
	4.3 Data Cleaning and Annotation
	4.4 Damage Classification
	4.5 Cost Regression

	5 Conclusion
	References

	A Route-Affecting Region Based Approach for Feature Extraction in Transportation Route Planning
	1 Introduction
	2 Background
	3 Preliminary
	4 PF Inference
	4.1 Problem Definition
	4.2 Route Affecting Region (RAR)
	4.3 Feature Extraction Based on RAR
	4.4 Inference Model Construction

	5 Evaluation
	5.1 Datasets
	5.2 Evaluation Setting
	5.3 Evaluation of Feature Selection
	5.4 Evaluation of RAR Setting
	5.5 Evaluation of Feature Extraction Strategies

	6 Conclusion
	References

	Real-Time Lane Configuration with Coordinated Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Learning-Based Traffic Optimization
	2.2 Lane-Direction Configurations

	3 Problem Definition
	4 Coordinated Learning-Based Lane Allocation (CLLA)
	4.1 CLLA Algorithm
	4.2 Reinforcement Learning Agent (RL Agent)
	4.3 Coordinating Agent

	5 Experimental Methodology
	5.1 Evaluation Metrics
	5.2 Parameter Settings

	6 Experimental Results
	6.1 Comparative Tests
	6.2 Sensitivity Analysis

	7 Conclusion
	References

	A Multi-criteria System for Recommending Taxi Routes with an Advance Reservation
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Traffic Network Construction
	4.2 Pick-Up Probability Prediction
	4.3 Drop-Off Probability Prediction
	4.4 Multi-criteria Route Planning (J* Algorithm)

	5 Experiments
	5.1 Datasets
	5.2 Comparative Methods
	5.3 Evaluation Metrics
	5.4 Results

	6 Conclusions
	References

	Autonomous Driving Validation with Model-Based Dictionary Clustering
	1 Introduction
	2 Simulating Autonomous Behaviour
	2.1 Numerical Simulation Assets
	2.2 I/O of the Simulation Platform
	2.3 AEB Use Case

	3 Related Work
	3.1 Distance-Based Clustering
	3.2 Feature-Based Clustering
	3.3 Regime-Changing Time Series Clustering

	4 A Three-Step Time-Series Clustering Algorithm (SDLHC)
	4.1 Segmenting Time-Series with a Mixture of Polynomial Regressions
	4.2 Adaptive Model Selection Strategy
	4.3 Dictionary Construction
	4.4 Categorical Sequences Clustering

	5 Experiments
	5.1 Public Datasets Results
	5.2 Real Dataset Results

	6 Conclusions
	References

	Applied Data Science: Activity Recognition
	Recognizing Complex Activities by a Temporal Causal Network-Based Model
	1 Introduction
	2 Related Work
	2.1 Inferring Complex Activity Directly from Raw Data
	2.2 Knowledge-Driven Complex Activity Recognition
	2.3 Data-Driven Complex Activity Recognition

	3 Problem Formulation
	4 Our Approach
	4.1 Network Skeleton Measurement
	4.2 Link Sparsity Optimization
	4.3 Causal Link Orientation
	4.4 Network-Based Complex Activity Recognition

	5 Experiments
	5.1 Datasets and Preprocessing
	5.2 Baseline Methods
	5.3 Experimental Results
	5.4 Ablation Study

	6 Conclusion and Discussion
	References

	Unsupervised Human Pose Estimation on Depth Images
	1 Introduction
	2 Related Work
	3 Training Data Generation
	4 Image-to-image Translation
	4.1 Model Architecture
	4.2 Training Details
	4.3 Preliminary Results

	5 Pose Estimation on Real Images
	6 Experiments
	7 Conclusion
	References

	Data Generation Process Modeling for Activity Recognition
	1 Introduction
	2 Problem Statement
	2.1 Preliminaries
	2.2 Problem Definition

	3 Approach
	3.1 Architecture Space as Proxy for the DGP
	3.2 Variance-Based Importance Estimation

	4 Experiments and Results
	4.1 Datasets
	4.2 Training Details
	4.3 Performance Evaluation
	4.4 Evaluation of the Data Generation Model
	4.5 Effectiveness of the Data Generation Model
	4.6 Alternative Exploration Strategies

	5 Related Work
	6 Summary and Future Work
	References

	Mutual Information Measure for Image Segmentation Using Few Labels
	1 Introduction
	2 Related Work
	3 Background
	3.1 Mutual Information
	3.2 Representation Learning

	4 Method
	4.1 Shared Mutual Information
	4.2 Mutual Information as Similarity Measure
	4.3 Implementation Details

	5 Experiments
	5.1 Datasets
	5.2 Image Segmentation on Potsdam
	5.3 Image Segmentation on Sentinel-2 Time Series

	6 Conclusion
	References

	Applied Data Science: Hardware and Manufacturing
	FlowFrontNet: Improving Carbon Composite Manufacturing with CNNs
	1 Introduction to Composite Manufacturing via RTM
	1.1 Related Work

	2 Creating Training Data from Simulation
	2.1 Simulated RTM Runs in PAM-RTM
	2.2 Dry Spot Label Creation

	3 Approach - Model and Training
	4 Experimental Evaluation
	4.1 Results
	4.2 Discussion - Metrics on Run Level

	5 Conclusion and Future Work
	References

	Learning I/O Access Patterns to Improve Prefetching in SSDs
	1 Introduction
	2 Background
	2.1 Flash Device Architecture
	2.2 Prefetching
	2.3 Neural Network Based Prefetching

	3 Problem Statement
	4 Proposed Prefetching Technique
	4.1 Data Preparation for Reducing the Output Label Space
	4.2 Model Architecture
	4.3 Timeliness
	4.4 Address Mapping Learning

	5 Methodology and Experimental Setup
	5.1 Model Training
	5.2 Prefetcher Simulation Environment
	5.3 Baselines

	6 Results
	6.1 Prefetcher Accuracy, Precision and Recall
	6.2 Impact of Cache Size, Look-Back, and Predict-Ahead
	6.3 Evaluation of Address Mapping Learning

	7 Related Work
	8 Conclusion
	References

	Interpretable Dimensionally-Consistent Feature Extraction from Electrical Network Sensors
	1 Introduction
	2 Related Works
	2.1 Feature Extraction
	2.2 Interpretability
	2.3 Grammar-Guided Genetic Programming

	3 Data Description
	4 Proposed Approach
	4.1 Grammar Description
	4.2 Methodology Description
	4.3 Objective Function

	5 Experiments
	5.1 Target Selection
	5.2 Settings
	5.3 Results

	6 Conclusion and Future Works
	References

	Automatic Remaining Useful Life Estimation Framework with Embedded Convolutional LSTM as the Backbone
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Embedded Convolutional LSTM
	5 Automatic Prediction Framework
	6 Experiments
	6.1 C-MAPSS Data Set
	6.2 PHM 2008 Data Set
	6.3 FEMTO-ST Bearing Data Set
	6.4 UCI Human Activity Recognition (HAR)

	7 Conclusion and Future Work
	References

	On-Site Gamma-Hadron Separation with Deep Learning on FPGAs
	1 Introduction
	2 Data Analysis in Cherenkov Astronomy
	3 Deep Learning for Cherenkov Images
	3.1 Binary Neural Networks

	4 On-Site BNN Execution with FPGAs
	5 Experiments
	5.1 Models
	5.2 Experiments on Simulation Data
	5.3 Experiments on Real-World Crab Nebula Observations
	5.4 Proof-of-Concept with FPGAs

	6 Conclusion
	References

	Applied Data Science: Spatiotemporal Data
	Benchmarking Tropical Cyclone Rapid Intensification with Satellite Images and Attention-Based Deep Models
	1 Introduction
	2 Related Work
	2.1 Statistical Hurricane Intensification Predictive Scheme
	2.2 Advanced Dvorak Technique

	3 Benchmark
	3.1 Existing Benchmark Within SHIPS-RII Development
	3.2 Proposed Benchmark

	4 Proposed Method
	4.1 Model Architecture
	4.2 Base Structure
	4.3 Incorporating Meteorological Knowledge

	5 Experiment and Analysis
	5.1 Input Time Length Experiment
	5.2 Ablation Study
	5.3 Cross Channel Attention Analysis
	5.4 Sequence Self-attention Analysis

	6 Conclusion
	References

	Model Monitoring and Dynamic Model Selection in Travel Time-Series Forecasting
	1 Introduction
	2 Related Work
	3 Time-Series Forecasting and Performance Measures
	4 Monitoring and Model Selection Framework
	4.1 Performance Measure
	4.2 Monitoring Models
	4.3 Monitored Models

	5 Experimental Setup
	5.1 Data
	5.2 Implementation
	5.3 Evaluation Protocol

	6 Experiments and Results
	6.1 Model Monitoring Performance
	6.2 Model Selection Performance
	6.3 Model Monitoring and Selection Performance

	7 Conclusions
	References

	Learning to Simulate on Sparse Trajectory Data
	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Basic GAIL Framework
	3.2 Imitation with Interpolation
	3.3 Training and Implementation

	4 Experiment
	4.1 Experimental Settings
	4.2 Compared Methods
	4.3 Evaluation Metrics
	4.4 Performance Comparison
	4.5 Study of ImIn-GAIL
	4.6 Case Study

	5 Related Work
	6 Conclusion
	References

	Learning from Crowds via Joint Probabilistic Matrix Factorization and Clustering in Latent Space
	1 Introduction
	2 The Model
	2.1 Problem Setting
	2.2 Proposed Model
	2.3 Relationships with Other Models

	3 Model Inference
	3.1 The Modified ELBO
	3.2 Optimal Posterior Distributions
	3.3 MAP Approximation

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Synthetic Data
	4.3 Realistic Data

	5 Discussion
	References

	Prediction of Global Navigation Satellite System Positioning Errors with Guarantees
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Problem Formulation

	3 NAVEEG: A Positioning Error Estimation Framework with Guarantees
	3.1 Data Preprocessing
	3.2 Feature Selection
	3.3 Random Forest (RF)
	3.4 Conformal Prediction

	4 Empirical Evaluation
	4.1 Datasets
	4.2 Results

	5 Conclusions and Future Work
	References

	Author Index



