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Abstract. This paper jointly leverages two state-of-the-art learning
stra-tegies—gradient boosting (GB) and kernel Random Fourier Features
(RFF)—to address the problem of kernel learning. Our study builds on
a recent result showing that one can learn a distribution over the RFF
to produce a new kernel suited for the task at hand. For learning this
distribution, we exploit a GB scheme expressed as ensembles of RFF
weak learners, each of them being a kernel function designed to fit the
residual. Unlike Multiple Kernel Learning techniques that make use of
a pre-computed dictionary of kernel functions to select from, at each
iteration we fit a kernel by approximating it from the training data as a
weighted sum of RFF. This strategy allows one to build a classifier based
on a small ensemble of learned kernel “landmarks” better suited for the
underlying application. We conduct a thorough experimental analysis to
highlight the advantages of our method compared to both boosting-based
and kernel-learning state-of-the-art methods.

Keywords: Gradient boosting + Random Fourier features - Kernel
learning

1 Introduction

Kernel methods are among the most popular approaches in machine learning
due to their capability to address non-linear problems, their robustness and their
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simplicity. However, they exhibit two main flaws in terms of memory usage and
time complexity. Landmark-based kernel approaches [2] can be used to dras-
tically reduce the number of instances involved in the comparisons, but they
heavily depend on the choice and the parameterization of the kernel. Multiple
Kernel Learning [13] and Matching Pursuit methods [12] can provide alternative
solutions to this problem but these require the use of a pre-defined dictionary
of base functions. Another strategy to improve the scalability of kernel methods
is to use approximation techniques such as the Nystrom [3] or Random Fourier
Features (RFF) [10]. The latter is probably the most used thanks to its simplic-
ity and ease of computation. It allows the approximation of any shift-invariant
kernel based on the Fourier transform of the kernel. Several works have extended
this technique by allowing one to adapt the RFF approximation directly from the
training data [1,6,11]. Among them, the recent work of Letarte et al. [6] intro-
duces a method to obtain a weighting distribution over the random features by a
single pass over them. This strategy is derived from a statistical learning analy-
sis, starting from the observation that each random feature can be interpreted as
a weak hypothesis in the form of trigonometric functions obtained by the Fourier
decomposition. However, in practice, this method requires the use of a fixed set
of landmarks selected beforehand and independently from the task before being
able to learn the representation in a second step. This leads to three important
limitations: (%) the need for a heuristic strategy for selecting relevant landmarks,
(i) these latter and the associated representation might not be adapted for the
underlying task, and (ii7) the number of landmarks might not be minimal w.r.¢.
that task, inducing higher computational and memory costs.

We propose in this paper to tackle these issues with a gradient boosting
approach [4]. Our aim is to learn iteratively the classifier and a compact and
efficient representation at the same time. Our greedy optimization method is
similar to Oglic & Gértner’s one [8], which at each iteration of the functional
gradient descent [7] refines the representation by adding the base function min-
imizing a residual-based loss function. But unlike our approach, their method
does not allow to learn a classifier at the same time. Instead, we propose to
jointly optimize the classifier and the base functions in the form of kernels by
leveraging both gradient boosting and RFF. Interestingly, we further show that
we can benefit from a significant performance boost by (i) considering each weak
learner as a single trigonometric feature, and (i) learning the random part of
the RFF.

Organization of the Paper. Section2 describes the notations and the nec-
essary background knowledge. We present our method in Sect. 3 as well as two
efficient refinements before presenting an extensive experimental study in Sect. 4,
comparing our strategy with boosting-based and kernel learning methods.

2 Notations and Related Work

We consider binary classification tasks from a d-dimensional input space R?
to a label set Y={—1,+1}. Let S:{(xi,yi)}nzl be a training set of n points.

%
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We focus on kernel-based algorithms that rely on pre-defined kernel functions
k : RIxR? — R assessing the similarity between any two points of the input
space. These methods present a good performance when the parameters of the
kernels are learned and the chosen kernels are able to fit the distribution of the
data. However, selecting the right kernel and tuning its parameters is computa-
tionally expensive, in general. To reduce this overhead, one can resort to Multiple
Kernel Learning techniques [13] which boil down to selecting the combination
of kernels that fits the best the training data: a dictionary of T" base functions
{k'}L_, is composed of various kernels associated with some fixed parameters,
and a combination is learned, defined as

T
= Zat k' (x,x"), (1)

with a?€R the weight of the kernel kf(x, x’). As shown in Sect. 3, our main con-
tribution is to address this issue of optimizing a linear combination of kernels
by leveraging RFF and gradient boosting (we recall basics on it in Sect.3.1).
To avoid the dictionary of kernel functions in Eq. (1) from being pre-computed,
we propose a method inspired from Letarte et al. [6] to learn a set of approxi-
mations of kernels tailored to the underlying classification task. Unlike Letarte
et al., we learn such functions so that the representation and the classifier are
jointly optimized. We consider landmark-based shift-invariant kernels relying
on the value § = x'—x € R? and usually denoted by abuse of notation by
k() = k(x'—x) = k(x',x), where x* € R? is a point—called landmark—Tlying
on the input space which all the instances are compared to, and that strongly
characterizes the kernel. At each iteration of our gradient boosting procedure,
we optimize the kernel function itself, exploiting the flexibility of the framework
of Letarte et al., where a kernel is a weighted sum of RFF [10] defined as

gt (x" — %) Zq] cos ( (x' —x)), (2)

where the w; are drawn from the Fourier transform of a shift-invariant kernel &
denoted by p(w) and defined as

1

plw) = @)

k(8)e~™9ds. (3)

When ¢' is uniform, we retrieve the setting of RFF and we have k(d) ~ kq:(9)
where larger number of random features K give better approximations [10].
Letarte et al. [6] aim to learn the weights of the random Fourier features ¢*. To
do so, they consider a loss function £ that measures the quality of the similarities
computed using the kernel k4. Their theoretical study on £ leads to a closed-form
solution for ¢ computed as

vie{l,..., K}, q;%fthexp( 5\f24 ) (4)
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Algorithm 1: Gradient boosting [4]

Inputs : Training set S = {(xi, yi)},:;l; Loss ¢; Number of iterations T'
Output: sign (Ho(x) + 307 alhg (x))

L Vi=1,...,n, HOx;)=argmin, Y i, £(y;,p)
2: fort=1,...,T do

Ol (ys, H' (x))
© 9H'(x))
4:  a' =argming Y. (3 — ha (Xi))2
5 af =argming Y1 £(ys, H7H(xi) + athae (x5))
6: Vi=1,...,n, H'(x;)=H"Y(x;) + a’hg(x;)
7: end for

3: Vi:l,...,n, ﬂz:

with 3>0 a parameter to tune, hl, (x)=cos (w-(x'—x)), and Z* a normalization
constant such that Zfil q;:l. They learn a representation of the input space
of ny, features where each of them is computed using £k, with the landmark
(xt, y*) selected randomly from the training set. Once the new representation is
computed, a (linear) predictor is learned from it, in a second step.

It is worth noticing that this kind of procedure exhibits two limitations. First,
the model can be optimized only after having learned the representation. Second,
the landmarks have to be fixed before learning the representation. Thus, the
constructed representation is not guaranteed to be compact and relevant for the
learning algorithm considered. To tackle these issues, we propose in the following
a strategy that performs both steps at the same time through a gradient boosting
process that allows to jointly learn the set of landmarks and the final predictor.

3 Gradient Boosting Random Fourier Features

The approach we propose follows the widely used gradient boosting framework
first introduced by Friedman [4]. We briefly recall it below.
3.1 Gradient Boosting in a Nutshell

Gradient boosting is an ensemble method that aims at learning a weighted major-
ity vote over an ensemble of T" weak predictors in a greedy way by learning one
classifier per iteration. The final majority vote is of the form

T
vx € RY, sign (HO (x) + Zathat (x)> ,
t=1

where HY is an initial classifier fixed before the iterative process (usually set such
that it returns the same value for every sample), and «of is the weight associated



Learning Landmark-Based Ensembles with RFF and Gradient Boosting 145

Algorithm 2: GBRFF1

Inputs : Training set S = {(xi, yi)}?:ﬁ Number of iterations T
K number of random features; Parameters v and 8

Output: sign (HO (x) + Zthl af Zle q} cos (w} - (x* — x)))

Lew
1 HO — HO(x;) = b Sy =imvs

T ST
2: fort=1,...,T do

3 Vi=1,...,n, w;=exp(—y:H '(x;))

4: Wzl,...,n, gzzylwz

5. Vji=1,...,K, draw w} ~ N(0, 27)‘1

6: x' = argmin 1 > exp ( Tige Z ', cos(wf - (x — xz)))
n

x€Rd

7. Vi=1,... K, q?z%exp B\le 1exp(—§¢cos(w§-(Xt—xi)))>

1+y; 25 qf cos (wé‘(xt*xi)))’wi
SSK gt cos (wt,-(xtfx:)) w;
i=19; J g i

9: Vi=1,...,n, H(x;) = H '(x;) + o Zjil q; cos (wh - (x' — x4))
10: end for

8: at:%ln (
ZL 1(

1-y;

to the predictor h,: and is learned at the same time as the parameters a® of that
classifier. Given a differentiable loss ¢, the objective of the gradient boosting
algorithm is to perform a gradient descent where the variable to be optimized
is the ensemble and the function to be minimized is the empirical loss. The
pseudo-code of gradient boosting is reported in Algorithm 1. First, the ensemble
is constituted by only one predictor: the one that outputs a constant value
minimizing the loss over the whole training set (line 1). Then at each iteration,
the algorithm computes for each training example the negative gradient of the
loss (line 3), also called the residual and denoted by g;. The next step consists
in optimizing the parameters of the predictor h,: that fits the best the residuals
(line 4), before learning the optimal step size o' that minimizes the loss by
adding h,:, weighted by o, to the current vote (line 5). Finally, the model is
updated by adding athg: () (line 6) to the vote.

3.2 Gradient Boosting with Random Fourier Features

Our main contribution takes the form of a learning algorithm which jointly
optimizes a compact representation of the data and the model. Our method,
called GBRFF1, leverages both Gradient Boosting and RFF. We describe its
pseudo-code in Algorithm 2 which follows the steps of Algorithm 1. The loss
function ¢ at the core of our algorithm is the exponential loss:

HT);iexp(yiHT(xi)). (5)
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Given / (H T), line 1 of Algorithm 1 amounts to setting the initial learner as

1 n
Vie{l,...,n}, Hx;)= llnw.
2 1-2X j=1Yi
(%(yz, Hi T (Xl))
OH*1(x;)
Line 4 of Algorithm 1 tends to learn a weak learner that outputs exactly the
residuals’ values by minimizing the squared loss; but, this is not well suited in
our setting with the exponential loss (Eq. (5)). To benefit from the exponen-
tial decrease of the loss, we are rather interested in weak learners that output
predictions having a large absolute value and being of the same sign as the resid-
uals. Thus, we aim at favoring parameter values minimizing the exponential loss
between the residuals and the predictions of the weak learner as follows:

(6)

The residuals of line 3 are defined as ¢; = — =1 e_ythfl(xi).

al = argmm — Z exp (= Giha(x;)). (7)

1=1

Following the RFF principle, we can now define our weak learner as
qu cos (W + (x' = i), (8)

where its parameters are given by a —({w ] 1, %', ¢"). Instead of using a pre-
defined set of landmarks [6], we build thlb set iteratively, i.e., we learn one
landmark per iteration. To benefit from the closed form of Eq. (4), we propose
the following greedy approach to learn the parameters a®. At each iteration t, we
draw K vectors {w? j ] 1~pX with p the Fourier transform of a given kernel (as
defined in Eq. (3)); then we look for the optimal landmark x*. Plugging Eq. (8)
into Eq. (7) and assuming a uniform prior distribution over the random features,
x! is learned to minimize

x' = argmin f(x Z exp ( Z cos(w! - (x — xl))) (9)

x€ER?

Even if this problem is non-convex due to the cosine function, we can still com-
pute its derivative and perform a gradient descent to find a possible solution.
The partial derivative of Eq. (9) with respect to x is given by

g)f{( ) Li ylZSIH X XZ exp —fZCOS X Xz Zw .

According to Letarte et al. [6], given the landmark x* found by gradient descent,
we can now compute the weights of the random features ¢* as

Vie{l,...,K}, q§ Ztexp[ fZeXp<—g]icos(w§ (xt—xz)))], (10)

with 8 > 0 a parameter to tune and Z! the normalization constant.
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The last step concerns the step size at. It is computed so as to minimize the
combination of the current model H*~! with the weak learner hf, i.e.,

at = argminzexp[—yi(Ht_l(xi)—l—aht(xi))] = argminz w; exp[—y;ah' (x;)],
Y =1 ¢ =1

where w;=exp(—y; H'"1(x;)). In order to have a closed-form solution of a, we
use the convexity of the above quantity and the fact that hi(x;) € [-1,1] to
bound the loss function to optimize. Indeed, we get

n s aht (x; ~ 1— iht X; - - 1+ Z‘ht X; —a
;wie yiah! (x:) S;[W}we +;{y2()}we ,

This upper bound is strictly convex. Its minimum of can be found by setting to
0 the derivative w.r.t. a of the right-hand side of the previous equation. We get

i=1 i=1

21— yiht(Xi))wi>
D it (1 + yiht (%)) w;
The same derivation can be used to find the initial predictor HP.

As usually done in the RFF literature [1,10,11] we use the RBF kernel

Fy (%, x")=e~YI*=*I* with as Fourier transform vectors of d numbers each drawn
from the normal law with zero mean and variance 2y that we denote A/(0,2)9.

1
for which the solution is given by of = 3 In (

3.3 Refining GBRFF1

In GBRFF1, the number of random features K used at each iteration has a
direct impact on the computation time of the algorithm. Moreover w’ is drawn
according to the Fourier transform of the RBF kernel and thus is not learned.
The second part of our contribution is to propose two refinements. First, we bring
to light the fact that one can drastically reduce the complexity of GBRFF1 by
learning a rough approximation of the kernel, yet much simpler and still very
effective, using K'=1. In this scenario, we show that learning the landmarks boils
down to finding a single real number in [—m, 7]. Then, to speed up the conver-
gence of the algorithm, we suggest to optimize w! after a random initialization
from the Fourier transform. We show that a simple gradient descent with respect
to this parameter allows a faster convergence with better performance. These two
improvements lead to a variant of our original algorithm, called GBRFF2 and
presented in Algorithm 3.

Cheaper Landmark Learning Using the Periodicity of the Cosine. As
we set =1, the weak learner h,:(x) is now simply defined as

hat (x) = cos (wt S(xt - Xi)) )
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Algorithm 3: GBRFF2
Inputs : Training set S = {(xi,yi)}?zl; Number of iterations T
Parameters v and A
Output: sign (HO(X) + ZtT=1 o cos (wh - x; — bt))
S (14)

o (1-w)

1: H — Ho(x;) = 1In
2: fort=1,...,T do

3 Vi=1,...,n, w;=exp(—y;H1(x;))

4: Vi=1,....n, 4 =yw;

5. Draw w ~ N(0,27)4

6:  b' = argmin 3" 1exp(—gicos (w-xi —b)))

be[—m,7)
7wt —argmm Alwll3 + L3 1exp(—gjicos (w-xi—bt))).

S (1+yi cos (w ~x,i—bt))w1,

;l:1 (1—y7~, cos (“"t‘xi—bt))wi
9: Vi=1,...,n, H(x;) = H"1(x;) + o' cos (wt X — bt)
10: end for

. t_ 1
8: o =35ln

where its parameters are given by a® = (w?,x?). This formulation allows us to

eliminate the dependence on the hyper-parameter K. Moreover, one can also get
rid of 3, because learning the weights q§- (line 7 of Algorithm 2) is no more nec-
essary. Instead, since K=1, we can see o' learned at each iteration as a surrogate
of these weights. As our weak learner is based on a single random feature, the
objective function (line 6) to learn the landmark at iteration ¢ becomes

x! = argmin f,,+(x Zexp ( 7 cos(w' - (x — Xl)))

x€R4

Let ¢ € [1,d] be the index of the c-th coordinate of the landmark x*. We can
rewrite the objective function as

1 n ~ t t t 1 n ~ t .t tt t
fwt <) = = e~ Ui cos(u xt—w ~xi) - = eV cos(wcxc+zj#cwjxj—u xl)
(x) = ; - ;
We leverage the periodicity of the cosine function along each direction to find the
optimal c-th coordinate of the landmark x! € [wt , w‘] that minimizes f,+(x") by
fixing all the other coordinates. Figure 1 illustrates this phenomenon on the two-
moons dataset when applying GBRFF1 with K=1. The plots in the first row
show the periodicity of the loss represented as repeating diagonal green/yellow
stripes (light yellow is associated to the smallest loss). There is an infinite number

of landmarks giving such a minimal loss at the middle of the yellow stripes. Thus,
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by setting one coordinate of the landmark to an arbitrary value, the algorithm
is still able at any iteration to find along the second coordinate a value that
minimizes the loss (the resulting landmark at the current iteration is depicted
by a white cross). The second row shows that such a strategy allows us to get
an accuracy of 100% on this toy dataset after 10 iterations. By generalizing this,
instead of learning a landmark vector x € R, we fix all but one coordinate of
the landmark to 0, and then learn a single scalar b* € [—, 7] that minimizes

fur(0) = %Zexp (=i cos (w' - x; — b))
i=1

Learning w! for Faster Convergence. The second refinement concerns the
randomness of the RFF due to vector w?. So far, the latter was drawn according
p and then used to learn bf. We suggest instead to fine-tune w? by doing a
gradient descent with as initialization the vector drawn from p. Supported by
the experiments performed in the following, we claim that such a strategy allows
us to both speed up the convergence of the algorithm and boost the accuracy.
This update requires to add a line of code, just after line 6 of Algorithm 2,
expressed as a regularized optimization problem:

1 n
w' = argmin M|w||? + = Zexp ( — i cOs (w X — bt)>),
weERd n i—1

Ofe 1 — - _pt
its derivati bei —9) L i~i . . i_bt —4; cos(w-x;—b )
its derivative being — (w) w + - E x;y; sin(w-x;—b") e

i=1

4 Experimental Evaluation

The objective of this section is three-fold: first, we aim to bring to light the
interest of learning the landmarks rather than fixing them as done in Letarte
et al. [6]; second we study the impact of the number K of random features;
lastly, we perform an extensive experimental comparison of our algorithms. The
Python code of all experiments and the data used are publicly available'.

4.1 Setting
For GBRFF1 and GBRFF2, we select by cross-validation (CV) the hyper-

compare our two methods with the following algorithms.

e LGBM [5] is a state-of-the-art gradient boosting method using trees as base
predictors. We select by CV the maximum tree depth in {1,...,10} and the
L2 regularization parameter A€ {0, 2{~5%~=2}},

! The code is available here: https://leogautheron.github.io.
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Loss f., depending on landmark positions
Iteration 5 Iteration 10

Iteration 1 17

Overall decision boundary.
Accuracy: 95.0%

!
e

. 5
® Training points +Prew’ous landmarks EEZI Last landmark

Fig.1. GBRFF1 with K=1 on the two-moons dataset at different iterations. Top
row shows the periodicity of the loss (light yellow indicates the minimal loss). Bottom
row shows the resulting decision boundaries between the classes (blue & red) by fixing
arbitrarily one coordinate of the landmark and minimizing the loss along the other one.
(Color figure online)

e BMKR [13] is a Multiple Kernel Learning method based on gradient boosting
with least square loss. It selects at each iteration the best kernel plugged
inside an SVR to fit the residuals among 10 RBF kernels with v € 2{~%-5}
and the linear kernel k(x,x’) = x"x’. We select by CV the SVR parameter
Ce10{=2-2},

e GFC [g] is a greedy feature construction method based on functional gradient
descent. It iteratively refines the representation learned by adding a feature
that matches the residual function defined for the least squared loss. We use
the final representation to learn a linear SVM where C € 101=22} is selected
by CV.

e PBRFF [6] that (1) draws with replacement ny, landmarks from the training
set; (2) learns a representation of nj, features where each feature is computed
using Eq. (2) based on K=10 vectors drawn like our methods from A/(0, 2)%;
(3) learns a linear SVM on the new representation. We select by CV its param-

We consider 16 datasets coming mainly from the UCI repository that we bina-
rized as described in Table 1. We generate for each dataset 20 random 70%/30%
train/test splits. Datasets are pre-processed such that each feature in the train-
ing set has 0 mean and unit variance; the factors computed on the training set
are then used to scale each feature in the test set. All parameters are tuned by
5-fold CV on the training set by performing a grid search.
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Table 1. Description of the datasets (n: number of examples, d: number of features,
c: number of classes) and the classes chosen as negative (-1) and positive (41).

Name N | D | C|Label -1|Label +1 | Name N D | C | Label -1 | Label +1
Wine 17811313 (2,3 1 Australian 690 14/2|0 1
Sonar 208160 2 | M R Pima 768 8 120 1
Newthyroid | 2155 |3 |1 2,3 Vehicule 846 184 | Van Bus, opel, saab
Heart 2701312 |1 2 German 1000 (232 |1 2
Bupa 34516 2|2 1 Splice 3175 1602 | +1 -1
Tono 35113412 |G B Spambase 4597 1572 |0 1
Wdbc 56930 2 |B M Occupancy 20560 |5 |2 |0 1
Balance 6254 |3 |B,R L Bankmarketing | 45211 | 51 |2 | No Yes
90.0
87.5 = _-_‘_""‘,__""_.ﬂ...._.-.—----—.
85.0 ":-‘_‘_ et
§82.5 .,.:f."‘
é 80.0 l{::
& 7750
75.01¢ - PBRFF K=10
72.5 o -- GBRFF1 K=10
70.0 — GBRFF2

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

Fig. 2. Mean test accuracy over 20 train/test splits over the 16 datasets. We train the
three methods using from 1 to 50 landmarks.

4.2 Influence of Learning the Landmarks

We present in Fig. 2 the behavior of the three methods that make use of land-
marks and RFF, that is PBRFF, GBRFF1 and GBRFF2. With more than
25 landmarks, PBRFF and GBRFF1 show similar mean accuracy and reach
about 87.5% after 50 iterations. However, for a small set of landmarks (in partic-
ular smaller than 25) GBRFF1 is consistently superior by about 1 point higher
than PBRFF, showing the interest of learning the landmarks. But the certainly
most striking result comes from the performance of our variant GBRFF2 which
outperforms the two competing methods. This is particularly true for a small
amount of landmarks. Notice that GBRFF2 is able to reach its maximum with
about 20 landmarks, while GBRFF1 and PBRFF require more iterations with-
out reaching the same performance. This definitely shows the benefit of learning
the random features compared to drawing them randomly.

4.3 Influence of the Number of Random Features

A key parameter of GBRFF1 is K, the number of random features used at each
iteration. To highlight its impact, we report in Fig. 3 the mean test accuracy of



152 L. Gautheron et al.

GBRFF1 K=20 W GBRFF1 K=10

I GBRFF1 K=5 HEE GBRFF1 K=1

Accuracy
~1 [0 o2} o
wt (=) ot (=)

-
(=}

100 200 300 500

Total number of random features used in the whole process (7" x K)

Fig. 3. Mean results over the 16 datasets w.r.t. the same total number of random
features Tx K for K €{1,5,10,20}, with 7" the number of boosting iterations.

GBRFF1 with K €{1,5,10,20} across all datasets and over the 20 train/test
splits. To have a fair study, the comparison is performed according to the same
total number of random features after the whole boosting process, that is T'x K
with T the number of iterations. First of all, we observe that with a total of 1,000
random features, K does not have a big impact on the performance. However,
when decreasing the value of T' x K, it becomes much more interesting in terms
of accuracy to set K to a small value. This shows that the more we want a
compact final representation, the more we need to refine the random features: it
is better to weight each of the features greedily with o (line 8 of Algorithm 3)
rather than using the closed-form solution of Eq. (10) (line 7 of Algorithm 2) to
weight them all at once. Even if in the usual context of RFF it is desirable to
have a large K value to approximate a kernel, this series of experiments shows
that a simple rough approximation with K=1 along with a sufficient number of
iterations allows the final ensemble to mimic the approximation of a new kernel
suited for the task at hand.

4.4 Influence of the Number of Samples on the Computation Time

The specificities of GBRFF2 come from the number of random features K set
to 1 at each iteration and the learning of w!. We have already shown in Fig. 2
that this allows us to get better results. We study in this section how GBRFF2
scales compared to the other methods. To do so, we consider artificial datasets
with an increasing number of samples (generated with scikit-learn [9] library’s
make_classification function). The initial size is set to 150 samples, and we
successively generate datasets with a size equal to the previous dataset size
multiplied by 1.5. Here, we do not split the datasets in train and test as we are
not interested in the accuracy. We report the time in seconds necessary to train
the models and to predict the labels on the whole datasets. The parameters are
fixed as follows: C' = 1 for the methods using SVM or SVR; the tree depth is
set to b for LGBM; K = 10, v = é, and 8 = 1 for PBRFF and GBRFF1;
v = % and A = 0 for GBRFF2. All the methods are run with 100 iterations (or
landmarks) and are not run on datasets requiring more than 1000 s of execution
time (because larger datasets requiring more than 1000 s by the fastest method
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Fig. 4. Computation time in seconds required to train and test the six methods with
fixed parameters on an artificial dataset having an increasing number of samples. The
whole dataset is used for training and testing, and a method requiring more than 1000
seconds at a given step is not trained on the larger datasets.

do not fit in the RAM memory of the computer used for the experiments). We
report the results in Fig. 4.

We first recall that GBRFF2 learns at each iteration a random feature and
a landmark while GBRFF1 only learns the landmark and PBRFF draws them
randomly. Thus, GBRFF1 should present higher computation times compared
to PBRFF. However, for datasets with a number of samples larger than 20, 000,
GBRFF1 becomes cheaper than PBRFF. This is due to the fact that the SVM
classifier learned by PBRFF does not scale as well as gradient boosting-based
methods. The two-step method GFC is in addition also slower than GBRFF1.
This shows the computational advantage of having a one-step procedure to learn
both the representation and the final classifier. When looking at the time limit
of 1000 seconds, both GBRFF1 and GBRFF2 are the fastest kernel-based
methods compared to BMKR, GFC and PBRFF. This shows the efficiency
of learning kernels in a greedy fashion. We also see that GBRFF2 performs
faster than GBRFF1 for any number of samples. At the limit of 1000 seconds,
it is able to deal with datasets that are 10 times larger than GBRFF1, due
to the lower complexity of the learned weak learner used in GBRFF2. Finally,
GBRFF2 is globally the second-fastest method behind the gradient boosting
method LGBM that uses trees as base classifiers.

4.5 Performance Comparison Between All Methods

Table 2 presents for each dataset the mean results over the 20 splits using 100
iterations/landmarks for each method. Due to the size of the dataset “bankmar-
keting”, we do not report the results of the algorithms that do not converge
in time for this dataset, and we compute the average ranks and mean results
over the other 15 datasets. In terms of accuracy, GBRFF2 shows very good
results compared with the state-of-the-art as it obtains the best average rank
among the six methods and on average the best mean accuracy leaving apart
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Table 2. Mean test accuracy + standard deviation over 20 random train/test splits. A
‘" in the last row indicates that the algorithm did not converge in time on this dataset.
Average ranks and mean results are computed over the first 15 datasets.

Dataset BMKR GFC PBRFF GBRFF1 |LGBM GBRFF2
Wine 99.5 +£1.0/99.3 £1.1|98.1 +2.1 98.3£1.5/96.6 £3.2 |985 % 1.6
Sonar 788 £ 7.2 |76.6 £3.2|76.7+ 52 81.8+3.5/824+43 83.0L£5.0
Newthyroid 96.5 £ 1.7 |96.5 £ 2.1]96.5 £ 1.5 |95.3 £2.2/948 £29 |96.9 + 2.1
Heart 85.6 £ 4.0/79.4 £4.5(85.4 + 3.5 83.6 £4.0/83.0£ 3.5 |83.1+4.0
Bupa 68.1 £49 |64.7+3.2(69.0+ 4.2 70.3+£49|72.0+33|71.2+45
Tono 94.2 +1.4/91.5+ 23942+ 1.8 8.2 +£23]93.3+25 |89.2+ 2.1
Wdbc 96.1 £1.2 /958 £1.3/96.5+1.1 96.8+1.1/95.8+ 1.5 |97.3 £1.2
Balance 96.0 £1.2 /951 £2.0[/98.9 £ 1.1 97.7 £ 0.7/93.5 £ 2.6 |97.7 £ 0.6
Australian 859 £2.0 |80.9 £24(84.6 +2.3 86.7+1.7/8.5+19 |86.9+ 1.9
Pima 76.4 £2.0 |68.7£2.6|76.1 £25 |76.5+27 75527 |7T7.1+£25
Vehicle 96.6 £ 1.3 /{959 +0.8/96.5 £ 1.4 |96.3 £1.2/96.7+ 1.0 |97.1 £ 1.0
German 723+ 1.8 643 +£28|724+14 |73.7+1.673.5+£1.7 |74.0+ 1.3
Splice 87.5£1.0 |87.0+1.0(83.5+0.7 839+ 1.1/97.0+0.5/924 £+ 0.8
Spambase 93.5£04 |91.3 £0.6[91.6 = 0.7 1 90.7 £ 0.7/95.6 £ 0.4 928 £ 0.6
Occupancy 99.3 £0.1/989 £0.7/98.9 = 0.1 988+ 0.1/99.3 £0.1 98.9 +0.1
Mean 88.4 £ 2.1 |8.7+20(87.9 2.0 87.9+2.0/89.0+ 2.1 |89.1 2.0
Average Rank |2.88 4.94 3.75 3.81 3.44 2.19
Bankmarketing | — - - 89.7 +£ 0.2]90.8 + 0.290.0 £ 0.2

“bankmarketing”. Interestingly, our method is the only kernel-based one that
scales well enough to be applied to this latter dataset.

4.6 Comparison of LGBM and GBRFF2 on Toy Datasets

In this last experiment, we focus on LGBM and GBRFF2 which have been
shown to be the two best performing methods in terms of accuracy and execution
time. Even if BMKR is among the three best methods in terms of accuracy, we
do not consider it for this experiment due to its poor execution time. Learning
a classifier based on non-linear kernels through GBRFF2 has the advantage of
being able to capture non-linear decision surfaces, whereas LGBM is not well
suited for this because it uses trees as base learner. To illustrate this advantage,
we consider three synthetics 2D datasets with non-linearly separable classes. The
first one, called “swiss”, represents two spirals of two classes side by side. The
second one, namely “circles”, consists of four circles with the same center and
an increasing radius by alternating the class of each circle. The third dataset,
called “board”, consists of a four by four checkerboard with alternating classes
in each cell. Here, both LGBM and GBRFF2 are run for 1000 iterations to
ensure their convergence and parameters are tuned by CV as previously.
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Figure 5 gives evidence that GBRFF2 is able to achieve better results than

LGBM using only a small amount of training examples, i.e., 500 or less. The
performances are asymptotically similar for both methods on the board and
circle datasets with a faster rate of convergence for GBRFF2. Furthermore, if
we look at the decision boundaries and their associated performances at train and
test time, we can see that LGBM is prone to overfit the training data compared
to our approach, showing a drastic drop in performance between learning and
testing. The learned decision boundaries are also smoother with GBRRF2 than
with LGBM. These experiments show the advantage of having a non-linear weak
learner in a gradient boosting approach.

Overall decision boundary
circles 400 samples

A1

swiss 400 samples board 250 samples

g

Train 96.5% Test 60.5% Train 93.0%Test 66.5% Train 100% Test 80.8%
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Fig. 5. Comparison of LGBM and GBRFF2 on three synthetic datasets in terms of
classification accuracy and decision boundaries (upper part of the figure) and in terms
of performance w.r.t. the number of examples (last row of plots).
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5 Conclusion and Perspectives

In this paper, we take advantages of two machine learning approaches, gradient
boosting and random Fourier features, to derive a novel algorithm that jointly
learns a compact representation and a model based on random features. Building
on a recent work [6], we learn a kernel by approximating it as a weighted sum of
RFF [10]. The originality is that we learn such kernels so that the representation
and the classifier are jointly optimized. We show that we can benefit from a
performance boost in terms of accuracy and computation time by considering
each weak learner as a single trigonometric feature and learning the random part
of the RFF. The experimental study shows the competitiveness of our method
with state-of-the-art boosting and kernel learning methods.

The optimization of the random feature and of the landmark at each iteration
can be computationally expensive when the number of iterations is large. A
promising future line of research to speed-up the learning is to derive other kernel
approximations where these two parameters can be computed with a closed-form
solution. Other perspectives regarding the scalability include the use of standard
gradient boosting tricks [5] such as sampling or learning the kernels in parallel.
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