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Abstract. In the recent literature on multi-label classification, a lot of
attention is given to methods that exploit label dependencies. Most of
these methods assume that the dependencies are static over the entire
instance space. In contrast, here we present an approach that dynami-
cally adapts the label partitions in a multi-label decision tree learning
context. In particular, we adapt the recently introduced predictive bi-
clustering tree (PBCT) method towards multi-label classification tasks.
This way, tree nodes can split the instance-label matrix both in a hori-
zontal and a vertical way. We focus on hierarchical multi-label classifica-
tion (HMC) tasks, and map the label hierarchy to a feature set over the
label space. This feature set is exploited to infer vertical splits, which
are regulated by a lookahead strategy in the tree building procedure. We
evaluate our proposed method using benchmark datasets. Experiments
demonstrate that our proposal (PBCT-HMC) obtained better or com-
petitive results in comparison to its direct competitors, both in terms of
predictive performance and model size. Compared to an HMC method
that does not produce label partitions though, our method results in
larger models on average, while still producing equally large or smaller
models in one third of the datasets by creating suitable label partitions.

Keywords: Predictive clustering trees - Hierarchical multi-label
classification - Bi-clustering

1 Introduction

Most of the research on machine learning has investigated traditional classifica-
tion problems whose classes are mutually exclusive, meaning that one instance
may not belong to more than one label (class) simultaneously. Certain applica-
tions, however, present more complex learning tasks. In multi-label classification
for instance, instances can be associated to multiple labels at the same time.
Originally, two main approaches were used for multi-label classification [1]:
local and global approaches. The local approach transforms the multi-label set-
ting to a single-label setting, such that traditional classification algorithms can be
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applied. Binary relevance and label powerset methods [1] are examples of a local
approach. The global approach (also called big bang) adapts classification algo-
rithms, such that they are able to work with the multi-label structure directly.
Predictive clustering trees [2] are an example of a global approach. Despite hav-
ing their respective advantages, the literature does not present a consensus on
which strategy is superior. Later, approaches that group labels in different sub-
sets were presented [3-5], resulting in methods in-between the global and local
ones. That is, certain subsets of labels are believed to be more correlated among
themselves than the label set al.together. In the recent years, a lot of attention in
the multi-label literature goes to developing methods to optimally handle such
correlations hidden in the label space. Many of these methods require ensemble
methods [6-8] or exploit correlations in a pre-processing step [9-11]. In either
case, the label dependencies are handled in a static way. In contrast, we hypothe-
size here that label correlations may differ throughout the instance space. Thus,
rather than partitioning the label space as a pre-processing step in the same
manner for all instances, models should dynamically detect such correlations,
and create suitable partitions during their induction process.

Recently, a method has been introduced in the context of pairwise learning
[12], that predicts interactions between two data points by bi-clustering the
interaction matrix. Bi-clustering, also called co-clustering or two-way clustering,
is the simultaneous clustering of the rows and columns of a matrix. We leverage
this idea, which was set in the predictive clustering tree (PCT) framework, to
the multi-label classification task, by bi-clustering the label space. This means
that the PCT can induce both horizontal and vertical splits in the label matrix,
instead of only horizontal ones. The vertical splits allow the model to partition
the label set and group labels with a similar interaction pattern. This procedure
is performed dynamically during the induction process: at each node to be split,
horizontal as well as vertical candidate splits are considered.

Although the bi-clustering method for interaction prediction [12] also
employed multi-label classification techniques, the end goal considered here is
different, and hence, some adaptations to the method are required. In particu-
lar, we generate the vertical splits by incorporating a lookahead strategy in the
tree learning procedure. Lookahead [13] is a technique that alleviates the myopia
in greedy tree learning algorithms by taking into account the effect that a split
has on deeper levels of the tree, when calculating its quality. In order to control
computational complexity (which would become a bottleneck when considering
all possible 2%l candidate splits of labels, with L the label set for the node
under consideration) and maximize interpretability, we employ a feature-based
splitting strategy, just as with the horizontal splits.

In this paper, we apply the proposed idea to the task of hierarchical multi-
label classification (HMC), i.e., problems where each data instance can be associ-
ated to multiple paths of a hierarchy defined over the label set. Such a hierarchy
reflects a general-to-specific structure of the labels, and predictions must con-
form with the hierarchy constraint, that is, if a given label is predicted, all its
ancestor labels must be predicted as well. One example is the task of image
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classification into a topic hierarchy, where an image may be classified as belong-
ing to the paths Nature — Tree — Pine and Nature — Snow.

To evaluate our proposed algorithm, we have performed experiments using
24 benchmark datasets from the domain of functional genomics, email classifi-
cation and medical X-Ray images. We have compared our approach (which we
call PBCT-HMC) to three other approaches: 1) Regular PCTs for HMC (Clus-
HMC) [14]; 2) Predictive bi-clustering trees, as originally proposed to inter-
action prediction tasks [12] and later also applied to multi-label classification
tasks [15] (PBCT); and 3) A static approach where label subsets are defined
upfront according to the subtrees in the label hierarchy (Clus-Subtree).

The results show that PBCT-HMC outperforms PBCT and Clus-Subtree
in terms of predictive performance and model size. Compared to Clus-HMC,
while the predictive performance is comparable, our model sizes are larger on
average. Nevertheless, for 8 out of 24 datasets, PBCT-HMC yields equally or
more interpretable models than Clus-HMC by creating suitable label partitions.

The remainder of this paper is organized as follows: Sect. 2 discusses recent
methods from the multi-label classification literature that also focus on exploit-
ing label correlations. Section3 presents our approach. Section4 exposes the
empirical comparison, with a discussion of the results. Finally, Sect.5 provides
a conclusion of this work and future work directions.

2 Related Work

Many multi-label studies have focused on exploiting label relationships, an
important aspect for good multi-label predictors. In many of these studies, label
relationships are defined by the problem domain, such as in hierarchical multi-
label classification (HMC), where a taxonomy organizes the classes involved.

Predictive clustering trees for HMC were investigated in [14]. This work pro-
poses a global method, named Clus-HMC, which induces a single decision tree
predicting all the hierarchical labels at once, and shows that it outperforms local
variants. The method was later extended to an ensemble approach [16], boosting
the performance at the cost of reduced interpretability.

HMC has also been addressed by neural network based methods. In [17], the
proposed method associates one multi-layer perceptron (MLP) to each hierarchi-
cal level, each MLP being responsible for the predictions in its associated level.
The predictions at one level are used to complement the feature vectors of the
instances used to train the neural network associated to the next level. Novel
architectures for HMC tasks have been proposed in [18], where local and global
loss functions are optimized for discovery of local hierarchical class-relationships
and global information, being able to penalize violations of the hierarchy.

In [19], the authors propose a component to the output layers of neural
networks that is applicable to HMC tasks. It makes use of prior knowledge on
the output domain to map the hierarchical structure to the network topology.
The so-called adjacency wrapping matrix incorporates the domain-knowledge
directly into the learning process of neural networks.
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In the absence of explicit label relationships, many studies have focused on
extracting relationships from the label vectors of the instances, in order to exploit
them during training. In [3], a probabilistic method is presented, that enforces
discovery of deterministic relationships among labels in a multi-label model. The
study focused on two main relationships: pairwise positive entailment and exclu-
sion. Such relationships are represented as a deterministic Bayesian network.

A label co-occurence graph is created in [5]. Then, community detection
methods are applied on the graph, as an alternative to the random partition-
ing performed by the RAKEL method [20]. A label powerset approach is used
on the created label subsets. The results of the community detection methods
on label co-occurence graphs outperformed the results obtained by using ran-
dom partitioning. Another study [10] proposes to modify multi-label datasets
by creating new features that represent correlations, in order to exploit instance
correlations in the classification task. The features take into account distances
between instances in the feature space.

Although the previous methods aim at extracting label relationships from
a class hierarchy or label vectors, these relationships are considered to be fixed
throughout the dataset. Recently, ensemble methods have been proposed, that
allow different relations (modeled as label partitions) in each individual model.

In [7], an ensemble of PCTs is proposed, that consider random output sub-
spaces to multi-label classification: each tree of the model uses a subset of the
label space, thereby combining problem transformation and algorithm adapta-
tion approaches into one method. The same approach was also proposed for
multi-target regression [8]. Also, this work proposed a new prediction aggrega-
tion function that provides best results when used with extremely randomized
PCTs. A recent study [21] proposed to use evolutionary algorithms for multi-
label ensemble optimization. It selects diverse multi-label classifiers, each focus-
ing on a label subset, in order to build an ensemble which takes into account
data attributes, such as label relationship and label imbalance degree.

Differently from these approaches, in the current paper we present a method
that learns a single (i.e., interpretable) tree model, that allows different label
partitions in different parts of the instance space.

3 Predictive Bi-clustering Trees for HMC

3.1 Background

A predictive clustering tree (PCT) is a generalization of a decision tree, where
each node corresponds to a cluster. Depending on the information contained in
the leaf nodes, PCTs can be used for different learning tasks, including clustering,
classification (single or multi-label) and regression (single or multi-target). They
are implemented in the Clus software’. PCTs are built in a top-down approach,
meaning that the root node corresponds to the complete training set, which is
recursively partitioned in each split. The heuristic used to select tests to include

! https://dtai.cs.kuleuven.be/clus/.
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in the tree is the reduction of intra-cluster label variance, i.e., each split aims to
maximize the inter-cluster label variance. In the multi-label classification setting,
the labels are represented by a binary label vector, and the variance of a set of
instances S is defined as:

Var(S) = Z‘(Tgh’h) (1)

where d is the distance between each instance’s label vector h; and the mean
label vector from the set, h.

In HMC tasks, it is convenient to consider that the similarity of higher levels
of the hierarchy are more important than the similarity of lower levels. In order
to implement such idea, the HMC implementation of PCTs in Clus (Clus-HMC)
uses a weighted Euclidean distance in the function d above [14]. The class weight
w decreases exponentially with the depth of the class in the hierarchy. The weight
w of a class ¢, is given as:

w(c) = wgepth(c) (2)

A predictive bi-clustering tree (PBCT) is a PCT that is capable to predict
interactions between two node sets in a bipartite network [12]. Interaction pre-
diction is found in many applications, such as predicting drug-protein interac-
tions, user-product interactions, etc. The network can be described by an adja-
cency matrix where each row and each column corresponds to a node, and each
cell receives the value 1 if its corresponding nodes are connected, and 0 other-
wise (Fig.1). Each row and each column is also associated to a feature vector
(e.g., chemical characteristics for drugs and structural properties for proteins in
a drug-protein interaction network).
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Fig. 1. (a) Representation of an interaction network, (b) The same network represented
as an interaction matrix.

As PCTs, the PBCT is also built in a top-down approach. That means that
in each iteration, a test is applied to one of the features. The test is chosen
considering both sets of features for row and column nodes (H and V, as shown in
Fig. 1), based on a heuristic and a stop criterion. The heuristic is the same as for
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multi-label classification (minimize intra-cluster variance of the label vectors),
in the sense that for a horizontal split, row-wise label vectors are considered,
while for a vertical split, column-wise label vectors.

3.2 Proposed Method: PBCT-HMC

In order to leverage PBCTs to the HMC domain, we apply the PBCT construc-
tion procedure to the label matrix of the HMC problem. Figure2 provides an
example, where for the label matrix shown in the top left box, there is no proper
horizontal split, but if a vertical split is performed first, then it is possible to
find two horizontal splits afterwards, resulting in four pure bi-clusters.

Vertical
Split
T

11111000 1111 'ooo
1 i 11
00000111 00000 111

_____ Horizontal
Horizontal 1 111 Split

split |~ oo

Fig. 2. Example in which using a PBCT has advantages compared to using a PCT.

While the PBCT method has been applied to multi-label classification tasks
before [15], it was designed for a different task (interaction prediction), and
thus, we argue that some additions and adaptations to the algorithm described
above are necessary in order to make the method fully accommodated to the
HMC context. Our proposed approach is further denoted as PBCT-HMC. We
introduce the following notation. H and V, the two node sets from before, now
respectively denote the set of instances and the set of labels. Each of these sets is
composed by a (usually real-valued) feature matrix (HF and V¥) and a (binary
valued) target matrix (HT and VT), such that HT is equivalent to transposing
V™. Vectors are denoted in boldface and we use the notation w[Z] to denote the
subvector of w, restricted to the components defined by Z.

Feature Representation of Label Hierarchy. In order to represent the feature
matrix V¥, we propose the following simple mapping of the corresponding label
hierarchy. We provide a single categorical feature, that denotes for each label [ the
name of the label just below the root, that is on the path from [ to the root. A toy
hierarchy is shown in Fig. 3, along with its representation. The proposed mapping
takes into account the structural properties of the label hierarchy, it guarantees
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to produce predictions that fulfil the hierarchy constraint (i.e., the prediction
probability for a child label can not exceed that for its parent label), and has
the advantages to be small (which is beneficial for the lookahead approach - see
further), very simple to model and to be domain independent.

root Feature V

— T 1 «r
1 2 3 2 4‘27)
T 2.1 «on
2.1 2.2 2.1.1 “
| 2.2 4‘27)
“n

2.1.1 3 3

(a) (b)

Fig. 3. (a) Example of label hierarchy and (b) its resulting feature vector.

Tree Induction and Split Heuristic. As in PBCT, tree induction is performed in a
top-down manner. Any given node k of the tree can be associated to a bi-cluster
defined by a pair (Hy, V) with Hy C HT and Vj, C V. The subsets Hj, and V,
can be obtained by following the path of split nodes all the way from the root
until node k. The root node is associated to (H, V).

In order to split node k, we first go through each feature in HY, in order to
choose the best horizontal test. We apply the variance reduction heuristic, given
by Eq.1, to HT, in order to evaluate the quality of each split. In doing so, we
restrict the label vectors h; and h to those components that are in Vj. As we
are dealing with a hierarchical task, we take into account the weights for each
class, as exposed in Eq. 2. This results in the following variance definition:

_ S d(bsVi), BV

Va’l"(Hk, Vk) = |Hk;‘ with h; € Hy, (3)

and, consequently, in the following heuristic function for horizontal splits:

|Hp1|
| H|

Hyg|
| Hy

hh(S,Hk,Vk) = Va’l“(Hk,Vk)< 'Va’I"(HkL,Vk)Jr | -VaT(HkR,Vk)>

(4)
In Eq.4, L and R refer to the left and right child nodes that are created for node
k, after applying horizontal split s.

In a regular PBCT [12], the same procedure would be applied to the features
in V¥, after which the best overall test would be chosen to split the node. How-
ever, since the goal here is to perform HMC, we are not interested in the variance
reduction over V. Instead of measuring the quality of a vertical split directly,
we need to make sure that the choice of a vertical split will indeed benefit the
instance space partitioning, since in the end we want to make predictions for new
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(unseen) rows. To do so, the algorithm goes through each possible test from V¥,
defined by taking a subset of its feature values?, and uses a lookahead approach
[13] (illustrated in Fig.4): For each test, the vertical split is simulated, as well
as the next horizontal split (if any) in both resulting child nodes (Hg, Vi) and
(Hy, Vir) of (Hy,Vj). Thus, the heuristic function for vertical splits is based
on the best value of the subsequently applied heuristic for horizontal splits. For
computational reasons, we only perform a lookahead of depth one. This results
in the following function to evaluate the quality of a vertical split s:

Vi Vir
ho(s, Hg, Vi) = [Vic| “hn(sp, Hy, Vir) + [Vir|

Vil [Vl
Splits sy, and sg are chosen to maximize the values of the horizontal heuristic in
the left and right child nodes of node k, respectively. The split s that is chosen

to split the node k, is the one giving the overall maximal value for Eq. 4 or Eq. 5.

~hn(Sr, Hi, Vir) (5)

Horizontal Split

Horizontal Split

Horizontal Split
#N

Horizontal Split
#1

LookAhead Approach N T .
Split #1 Spht‘#M

Horizontal Split
Left #1

Horizontal Split
Left #M

Horizontal Split

Horizontal Split
Right #1

Right #M

Fig. 4. Tllustration of lookahead approach: for each test from V¥, the vertical split is
simulated, as well as the next horizontal split (if any) in the left and right child obtained.

Before applying the split, an F-test is used to check if the variance reduction
induced by the split is statistically significant. If the reduction is not significant, a
leaf node is created instead. Otherwise, the test is included in the tree, the subsets
of Hy or Vj are created to form new bi-clusters and the induction is recursively
called until a stopping criterion, e.g. the minimal number of instances in a leaf,
is reached. When a vertical split is included, the two subsequent horizontal splits
are also included, i.e., a vertical split yields six instead of two new nodes, four
of them being nodes to consider for splitting in the next iteration.

Each leaf receives a prototype vector, which corresponds to the vector of
classwise (i.e., rowwise) averages. Figure5(a) shows a small example of a tree
resulting from our approach, using the label hierarchy from Fig. 3.

2 In our implementation, we consider a greedy generation of the subsets.



Predictive Bi-clustering Trees for Hierarchical Multi-label Classification 709
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Fig. 5. (a) Illustration of an induced PBCT-HMC tree. H,, is the nth feature from H*',
and V; is the (single) categorical feature from V. (b) Tllustration of the prediction
procedure for the constructed PBCT-HMC tree. The two bi-clusters where the new
instance arrives are colored in gray. The prototypes from these bi-clusters are then
copied and concatenated into the prediction vector.

Stop Criterion. The smaller the prototype vector gets (after vertical splits), the
easier it becomes to find a statistically significant subsequent horizontal split,
using a fixed significance level ly. This results in the tree making more splits
than necessary and becoming overfitted. For that reason, we apply a correction
to the F-test significance level: when checking the significance of a split in a node
k defined by (Hg,Vi), we use I = Iy x (|[Vi|/|V|) as significance level. Thus, the
significance criterion becomes stricter, as the target vectors become smaller.

Making Predictions. After the tree is built, it is possible to enter a test set and
get the predicted vector of probabilities for each test instance. To do this, each
test instance is sorted down the tree, starting with the root node. Whenever
a horizontal split is encountered, one of the child nodes is followed, according
to the outcome of the test. Whenever a vertical split is encountered, however,
both child nodes are followed, since a prediction is required for all labels. As
such, the test instance may end up in multiple leaf nodes. The final prediction is
constructed by concatenating the prototypes from these leaf nodes. Figure 5(b)
illustrates the prediction procedure.

Pseudocode. Our proposed PBCT-HMC algorithm is presented in Algorithm 1.

4 Experiments and Discussion

4.1 Datasets

We used 24 datasets in our experiments, from the domain of functional genomics,
image and email classification. Twenty datasets contain proteins from the Sac-
charomyces cerevisiae (yeast, 16 datasets) or Arabidopsis thaliana (4 datasets,
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Algorithm 1. PBCT-HMC

1: procedure INDUCE(DATA H, DATA V, TREE NODE) RETURNS TREE
2 bestHorizontal «— chooseBestTest(H)

3: bestVertical « chooseBestTest Look Ahead(V)

4

5

if isAcceptable(best Horizontal,bestVertical) then > Stop criterion
if isBetterThan(bestHorizontal,bestVertical) then > Horizontal

split
6: (subsetsH, children) «— split Horizontal(node)
T induce(subsetsH|0], V, children|0]) > Recursive call
8: induce(subsetsH[1],V, children[1]) > Recursive call
9: else > Vertical split
10: adjustF'Test()
11: (subsetsV, children) « splitVertical(node)
12: induce(H, subsetsV[0], children]0]) > Recursive call
13: induce(H, subsetsV[1], children]l]) > Recursive call
14: end if
15: else
16: includeLeaf N ode(node) > Create leaf node and stop
17: end if
18: return node

19: end procedure

with suffix ‘_ara’) genome®. The datasets differ mainly in how the protein fea-
tures are represented, e.g., using sequence, cellcycle, or expression information.
The label hierarchy employed is the Functional Catalogue (FunCat), a hierarchi-
cally structured classification system that enables the functional description of
proteins from almost any organism (prokaryotes, fungi, plants and animals). The
FunCat annotation scheme covers functions like cellular transport, metabolism
and protein activity regulation [22]. The yeast datasets come in 2 versions: the
2007 version datasets® were used in the original Clus-HMC publication [14] and
the 2018 version datasets® come from a recent update of the class labels [23].
The datasets ImgClef07a and ImgClef07d contain annotations of medical X-Ray
images, with the attributes being descriptors obtained from EHD diagrams [24].
The Diatoms dataset contains descriptors of image data from diatoms, unicel-
lular algae found in water and humid places [25]. Finally, the Enron dataset
specifies a taxonomy for the classification of a corpus of emails [26]°.

Table 1 summarizes the datasets used, presenting the number of instances
in each subset (Train, Valid and Test), the number of attributes of each type
(Categorical and Numerical), and the number of labels per level of the hierarchy.

3 Available at https://dtai.cs. kuleuven.be/clus/hmc-ens//.

* Available at https://dtai.cs.kuleuven.be/clus/hmcdatasets/.

5 Available at https://itec.kuleuven-kulak.be/supportingmaterial.

5 Available at http://kt.ijs.si/DragiKocev/PhD /resources/doku.php.
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Table 1. Summary of datasets
Train | Valid | Test | Categorical | Numerical | L1 |L2 |L3 |L4 |L5|L6
Cellcycle2007 | 1628 | 848 | 1281 0 77 18 | 80 | 178 | 142 |77 |4
Derisi2007 1608 | 842 | 1275 0 63 18 | 80 | 178 | 142 |77 |4
Eisen2007 1058 | 529 | 837 0 79 18 | 76 | 165 |131|67 |4
Expr2007 1639 | 849 | 1291 4 547 18 | 80 | 178 | 142 |77 |4
Gasch1-2007 | 1634 | 846 | 1284 0 173 18 | 80 | 178 | 142 |77 |4
Gasch2_2007 | 1639 | 849 | 1291 0 52 18 | 80 | 178 | 142 |77 |4
Seq2007 1701 | 879 | 1339 5 473 18 | 80 | 178 | 142 |77 |4
Spo2007 1600 | 837 | 1266 3 77 18 | 80 | 178 | 142 |77 |4
Cellcycle2018 | 1628 | 848 | 1281 0 77 20 | 86 [210 |171/92 |6
Derisi2018 1608 | 842 | 1275 0 63 20 | 86 [210 |[171/92 |6
Eisen2018 1058 | 529 | 837 0 79 19 | 84 1201 |159|83 |6
Expr2018 1639 | 849 | 1291 4 547 20 | 86 (210 |171/92 |6
Gasch1.2018 |1634 | 846 | 1284 0 173 20 | 86 [210 |171/92 |6
Gasch2_.2018 | 1639 | 849 | 1291 0 52 20 | 86 [210 |171/92 |6
Seq2018 1701 | 879 | 1339 5 473 20 | 86 [210 |171/93 |6
Spo2018 1600 | 837 | 1266 3 77 20 | 86 [210 |[171/92 |6
Exprindiv_ara | 1579 | 735 | 1182 | 418 834 15| 98 | 63 |35 |- |—
Interpro_ara | 1674 | 781 | 1264 | 2816 0 15 /101 | 63 |36 |- |—
Scop-ara 1407 | 648 | 1042 1 2003 15 91| 62 |32 |- |-
Seq_ara 1674 | 781 | 1264 3 4448 15 /101 | 63 |36 |- |—
Diatoms 1032 | 1033 | 1054 0 371 85 | 310 31— |— |-
Enron 494 | 494 | 660 0 1001 3140 13 |- |- |-
ImgClef07a 5000 | 5000 | 1006 0 176 8| 25| 63 |- |- |-
ImgClef07d 5000 | 5000 | 1006 0 158 41 16 | 26 |— - |-
4.2 Comparison Methods and Evaluation Measures
We compare PBCT-HMC to its three competitor methods, all set in the PCT

framework. Although a lot of recent work on HMC is based on neural networks
[17-19], here, next to predictive performance, we also want to assess the inter-
pretability of the models. To do that, we compare the following methods:

— Clus-HMC: Original PCT models proposed for HMC tasks [14]7 (Sect. 3.1);

— PBCT: Original bi-clustering PCT proposed for interaction prediction tasks
[12], as described in Sect.3.1, which has also been applied to multi-label
classification tasks before [15];

7 Available at https://dtai.cs.kuleuven.be/clus.
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— Clus-Subtree: A static approach where one Clus-HMC model is built for each
subtree of the root of the hierarchy;
— PBCT-HMC: Our proposed method?®;

In order to have a fair comparison, we have re-implemented the PBCT
method, which was originally implemented in Python, in Clus. For the label
feature space, it uses the same mapping of the label hierarchy as PBCT-HMC.
The main difference is the split heuristic, which uses rowwise and columnwise
variance reduction, without class weights.

The Clus-Subtree method was included to compare against a static variant
of our proposed method. In this case, the vertical splits are made upfront: for
each subtree of the label hierarchy root, a Clus-HMC model is constructed.
Afterwards, all prediction vectors are concatenated. For each model, all available
training instances are used, thus including the instances with an all-zeroes label
vector (negative instances).

In accordance with the HMC literature [14,18,19], we adopted the Pooled
Area Under Precision-Recall Curve (Pooled AUPRC) as the evaluation mea-
sure. It is the micro-averaged area under the label-wise precision-recall curves,
generated by using threshold values (steps of 0.02) ranging from 0 to 1.

We have optimized the F-test significance level parameter (Ip), a parameter
used in all compared methods, using the following values: 0.001, 0.005, 0.01, 0.05,
0.1 and 0.125. For each of these values, a model is built using only the training
subset, and evaluated using the validation dataset. The value associated to the
best performance is selected. Finally, the optimized model is built using the train
and validation datasets together, and results are reported using the test dataset.
For the parameters minimum of examples perf leaf, we have fixed the value to 5.

4.3 Results and Discussion

Table 2 shows the results regarding the Pooled AUPRC for each dataset and each
approach. The best results are highlighted. Looking at this table, we can notice
that Clus-HMC and PBCT-HMC presented superior results when compared to
Clus-Subtree and PBCT. In all datasets, apart from 3 exceptions, either Clus-
HMC or PBCT-HMC was superior. When compared between themselves, Clus-
HMC and PBCT-HMC yielded very similar results. Although on average, Clus-
HMC has a slight advantage, in 7 cases PBCT-HMC outperformed or resulted
in the same performance as Clus-HMC. In Fig. 6, we present a critical distance
diagram following a Friedman and Nemenyi test, as proposed by [27], comparing
the Pooled AUPRC of all methods. The Friedman test resulted in a p-value =
5.441e-07. PBCT-HMC and Clus-HMC present a statistically significant differ-
ence when compared to PBCT, but not between themselves. Likewise, PBCT
and Clus-Subtree do not present a statistically significant difference. Although
PBCT-HMC did not present a statistically significant difference compared to
Clus-Subtree, their average ranks are at the limit of the critical difference.

8 Available at https://github.com/biomal/Clus-PBCT-HMC.
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Fig. 6. Critical diagram comparing the Pooled AUPRC of all methods (CD = 1.0724)

Table 2. Pooled AUPRC using optimal values for the F-test.

Clus-HMC | Clus-Subtree | PBCT | PBCT-HMC
Cellcycle2007 | 0.172 0.170 0.154 |0.165
Derisi2007 0.175 0.173 0.175 |0.177
Fisen2007 0.205 0.201 0.182 1 0.195
Expr2007 0.210 0.167 0.187 |0.207
Gasch1.2007 |0.205 0.182 0.177 |0.206
Gasch2_2007 |0.195 0.180 0.178 1 0.189
Seq2007 0.211 0.127 0.172 |0.191
Spo2007 0.186 0.173 0.179 |0.184
Cellcycle2018 |0.192 0.194 0.181 |0.192
Derisi2018 0.195 0.192 0.192 |0.192
Eisen2018 0.229 0.224 0.211 |0.218
Expr2018 0.218 0.193 0.191 |0.216
Gasch1.2018 |0.212 0.193 0.206 |0.212
Gasch2.2018 |0.205 0.196 0.197 |0.205
Seq2018 0.229 0.164 0.201 |0.219
Spo2018 0.205 0.193 0.198 | 0.208
Exprindiv_ara | 0.175 0.129 0.165 |0.168
Interpro_ara |0.384 0.370 0.383 |0.364
Scop_.ara 0.526 0.521 0.498 |0.490
Seq_ara 0.280 0.217 0.271 10.272
Diatoms 0.220 0.217 0.217 |0.234
Enron 0.636 0.715 0.636 | 0.636
ImgClef07a 0.562 0.619 0.560 |0.551
ImgClef07d 0.749 0.712 0.793 |0.794
Mean 0.282 0.268 0.271 1 0.278

The contrasting performance between PBCT-HMC and PBCT is associated
to the lookahead procedure and the F-test significance level adjustment. PBCT,
which targets interaction prediction and aims to maximize also column-wise
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Table 3. Model size: Nodes (Leaves)

Clus-HMC | Clus-Subtree | PBCT PBCT_HOR | PBCT-HMC | PBCT-HMC_HOR

Celleycle2007 |41 (21) | 574 (296) | 383 (192) | 290 (192) |45 (23) 41 (23)
Derisi2007 |7 (4) 200 (109) |23 (12) |20 (12) 23 (12) 20 (12)
Eisen2007 11 (6) 414 (216) 262 (132) | 251 (132) | 209 (105) | 192 (105)
Expr2007 75 (38) 1634 (826) | 289 (145) |282 (145) | 163 (82) 156 (82)
Gasch1.007 |67 (34) |864 (441)  |521 (261) | 504 (261) |73 (37) 67 (37)
Gasch2.007 |53 (27) 422 (220) |71 (36) |67 (36) 31 (16) 29 (16)
Seq2007 95 (48) | 2112 (1065) | 319 (160) |310 (160) | 269 (135) | 255 (135)
Spo2007 11 (6) 354 (186) |79 (40) |74 (40) 25 (13) 22 (13)
Cellcycle2018 |35 (18) | 472 (246) |47 (24) | 43(24) 63 (32) 57 (32)
Derisi2018 |19 (10) | 216 (118) |35 (18) |31 (18) 15 (8) 13 (8)
Eisen2018 55 (28) 375 (197) | 315 (158) |287 (158) |33 (17) 28 (17)
Expr2018 19 (10) | 1602 (811) | 789 (395) | 761 (395) | 119 (60) 108 (60)
Gasch1.018 |81 (41) |914 (467)  |173 (87) | 165 (87) 153 (77) 141 (77)
Gasch2.018 |41 (21) |412 (216) |81 (41) |76 (41) 81 (41) 73 (41)
Seq2018 23 (12) |2162 (1091) 237 (119) | 225 (119) | 153 (77) 145 (77)
Spo2018 39 (20) 386 (203) |59 (30) |54 (30) 25 (13) 20 (13)
Exprindiv_ara |19 (10) | 1183 (600) |85 (48) |83 (43) 29 (15) 27 (15)
Interpro.ara | 173 (87) | 1119 (568) | 1231 (616) | 1003 (616) | 139 (70) 131 (70)
Scop_ara 267 (134) |814 (415) | 1675 (838) 1422 (838) | 173 (87) 165 (87)
Seq.ara 37 (19) | 1489 (753) | 207 (104) |194 (104) | 145 (73) 140 (73)
Diatoms 427 (214) 1975 (1038) | 1603 (802) | 1382 (802) | 1269 (635) | 1206 (635)
Enron 55 (28) |39 (21) 63(23) 59 (23) 55 (28) 55 (28)
ImgClef07a | 721 (361) | 1390 (699) | 1971 (986) | 1739 (986) | 1785 (893) | 1755 (893)
ImgClef07d | 509 (255) | 1296 (650) | 595(208) | 593 (208) | 597 (299) | 596 (299)
Mean 120 (60) |934 (477) | 462 (206) | 413 (232) |236 (116) | 217 (116)

variance reduction, performs vertical splits prematurely, leading to subopti-
mal splits. As for the F-test, not adjusting its significance level can result in
overfitting.

As for model size (Table 3), we see that PBCT-HMC results in models that
are 4 and 2 times smaller on average compared to Clus-Subtree and PBCT,
respectively. Thus, compared to the methods that also partition the label space,
our method can be expected to yield more interpretable models. This finding is
expected for Clus-Subtree since it contains multiple models, and thus its size con-
sists of the summed size of all models. As for PBCT, we suspect that the models
may be overfitted due to their larger size, but inferior performance. In contrast,
when compared to Clus-HMC, on average, our models are twice as large. This
can be explained by the fact that Clus-HMC only introduces horizontal splits
and that each vertical split in PBCT-HMC results in six new nodes compared
to only two nodes for horizontal splits, as explained before. Since at prediction
time, the vertical nodes are not used semantically, in the sense that their split
condition does not need to be checked for the test instances (they follow the
paths to both child nodes), and hence, they do not add to the prediction time,
we also report the number of horizontal splits for the bi-clustering-based methods
(reported as PBCT_HOR and PBCT-HMC_HOR).
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Table 4. Induction time of the optimized model, in seconds

Clus-HMC | Clus-Subtree | PBCT | PBCT-HMC
Cellcycle2007 2.62 17.51 7.80 | 10.64
Derisi2007 1.60 18.37 2.71 8.97
Eisen2007 4.26 11.21 2.64 | 15.22
Expr2007 29.74 309.46 25.86 | 94.61
Gasch1_2007 20.13 46.43 10.39 | 29.17
Gasch2_2007 3.10 23.86 2.16 4.17
Seq2007 20.09 216.04 23.51 | 75.56
Spo2007 2.41 24.78 3.12 14.56
Cellcycle2018 3.05 16.94 2.89 | 18.29
Derisi2018 2.98 19.90 3.36 | 10.47
Eisen2018 2.17 11.79 4.04 7.75
Expr2018 18.09 343.38 56.67 | 93.41
Gasch1.2018 8.85 50.5 8.07 | 25.82
Gasch2_2018 10.98 25.08 2.77 | 24.07
Seq2018 17.37 235.93 24.39 | 37.52
Spo2018 4.37 29.79 3.82 | 17.89
Exprindiv_ara 13.19 247.01 20.17 | 25.80
Interpro_ara 2.60 15.27 7.63 | 10.58
Scop_ara 55.13 136.00 102.03 | 85.90
Seq_ara 90.18 1184.37 100.44 |144.04
Diatoms 3.5 311.69 45.95 | 62.12
Enron 0.26 3.69 1.57 1.14
ImgClefQ7a 1.08 15.76 7.32 | 16.50
ImgClef07d 0.92 9.64 4.29 5.52
Mean 13.27 138.51 19.73 | 34.99

Although Clus-HMC induced smaller models on average, we see that PBCT-
HMC, specially when considering only the horizontal nodes, yielded consider-
ably smaller models for some datasets. Nevertheless, our results raise the ques-
tion under which conditions label partitions should be considered to exploit
correlations.

Finally, Table4 exposes the induction time for each experiment. Clus-HMC
presented lower induction times overall due to its simplicity. On the other hand,
Clus-Subtree demands most time since it builds multiple models per dataset.
PBCT-HMC comes in third, after PBCT, due to the lookahead strategy. The
induction time depends on the number of categorical feature values of the dataset
V', meaning the hierarchy size has a direct effect on the induction time. However,
as the table shows, the run time is still feasible.
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5 Conclusions

In this work, we have proposed a predictive bi-clustering tree method for hier-
archical multi-label classification (HMC). Opposed to traditional approaches for
HMC, our method, named PBCT-HMC, automatically partitions the label space
during its induction process. To achieve this, a lookahead approach is incorpo-
rated in the tree construction, such that a label space partition is introduced if
it leads to a better instance space partition in a deeper level of the tree.

Our experiments demonstrated that PBCT-HMC obtained better or compet-
itive predictive performances compared to three related methods, yielding the
second smallest models overall. Specially in comparison with the original PBCT
and the static method Clus-Subtree, PBCT-HMC performed better in the large
majority of the datasets, achieving a great interpretability gain. Still, our results
put into question the advantage of considering label partitions to exploit label
correlations in multi-label classification, a topic that receives a lot of attention.
Further research is needed to identify which type of models can benefit from it.

Future extensions of our work might address more challenging applications,
e.g., datasets with a label hierarchy structured as a directed acyclic graph, and
the application to non-hierarchical multi-label classification tasks.
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