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Abstract. Unsupervised Domain Adaptation (UDA) attempts to trans-
fer knowledge from a labeled source domain to an unlabeled target
domain. Recently, domain-adversarial learning has become an increas-
ingly popular method to tackle this task, which bridges source domain
and target domain by adversarially learning domain-invariant represen-
tations that cannot be discriminated by a domain discriminator. In spite
of the great success achieved by domain-adversarial learning, most of
existing methods still suffer two major limitations: (1) due to focus-
ing only on learning domain-invariant representations, they ignore the
individual characteristics of each domain and fail to extract domain-
specific information that is beneficial for final classification; (2) by focus-
ing only on performing domain-level distribution alignment to learn
domain–invariant representations, they fail to achieve the invariance of
representations at a class level, which may lead to incorrect distribu-
tion alignment. To address the above issues, we propose in this paper
a novel model called Joint Domain-Adversarial Reconstruction Network
(JDARN), which integrates domain-adversarial learning with data recon-
struction to learn both domain–invariant and domain-specific representa-
tions. Meanwhile, we propose to employ two novel discriminators called
joint domain-class discriminators to achieve the joint alignment and
adopt a novel joint adversarial loss to train them. With both domain and
class information of two domains, the two discriminators can be used
to promote domain-invariant representation learning towards the class
level, not only the domain level. Extensive experimental results reveal
that the proposed JDARN exceeds the state-of-the-art performance on
two standard UDA datasets.

Keywords: Unsupervised domain adaptation · Domain-adversarial
learning · Data reconstruction · Distribution alignment

1 Introduction

Deep learning methods have achieved great success in many fields, such as com-
puter vision and nature language process. The access to massive amounts of
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labeled training data is one of the reasons for such success. Generally, deep
learning methods usually train deep neural networks with a large scale labeled
training dataset, and then test on a testing dataset, which has similar distri-
bution as the training one. Nevertheless, training datasets are usually either
difficult to collect, or prohibitive to annotate. Meanwhile, due to dataset bias
[35] or domain shift [29], traditional deep models do not generalize well on new
datasets or tasks.

Unsupervised Domain Adaptation tackles the aforementioned problems by
transferring knowledge from a label-rich source domain to a label-scarce target
domain whose distribution is different from the source one [25,26]. The deep
UDA methods [6,19,21,32,37] have achieved remarkable performance, which
leverage deep networks to learn transferable representations by embedding adap-
tation modules in deep architectures.

Recently, adversarial learning has been successfully embedded into deep net-
works to learn domain-invariant representations to reduce distribution discrep-
ancy between source domain and target domain. Inspired by generative adver-
sarial networks (GAN) [9], domain–adversarial learning [6] pits two networks
against each other—feature extractor and domain discriminator. It plays a min-
imax game to learn the domain discriminator that aims to distinguish feature
representations of source samples from those of target samples, and the feature
extractor that aims to learn domain-invariant representations to fool the domain
discriminator. Theoretically, domain alignment is achieved when the minimax
optimization reach an equilibrium.

In spite of the great success achieved by domain-adversarial learning, most
prior efforts still suffer two major limitations. Firstly, most of them only con-
centrate on learning domain–invariant representations, but ignore the individ-
ual characteristics of each domain, and are limited in extracting domain-specific
information. Since domain-specific representations not only preserve the discrim-
inability, but also contains more meaningful information of each domain, they are
beneficial for the final classification. Secondly, most of them only focus on align-
ing the marginal distributions of two domains, which is referred as domain-level
distribution alignment, but ignore the alignment of class conditional distribu-
tions across domains, which is referred as class-level distribution alignment. A
perfect domain-level distribution alignment does not imply a fine-grained class-
to-class overlap. With an intuitive example shown in Fig. 1, with domain-level
alignment only, the learned domain–invariant representations may not only bring
source domain and target domain closer, but also mix samples with different
class labels together, which may cause false classification. The lack of class-level
distribution alignment is a major cause of performance reduction [24]. Thus, it
is necessary to pursue the class-level and domain-level distribution alignments
simultaneously under the absence of target true labels.

For the first issue, we note that some UDA methods based on encoder–
decoder reconstruction [3,8] use data reconstruction of source or target domain
samples as an auxiliary task, which typically learn domain-invariant repre-
sentations by a shared encoder and maintain domain-specific representations
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Fig. 1. Left: Only with domain-level alignment, there may exists some misaligned
samples in the target domain, which will cause false classification. Right: With both
domain-level and class-level alignment, the classification performance will be better.

by a reconstruction loss [38]. Inspired by these methods, we integrate the
domain-adversarial learning with the data reconstruction to learn domain–
invariant and domain-specific representations simultaneously. Besides, most non-
reconstruction methods map target domain samples to source domain in the
deep feature space, or map source and target domain samples to a common
deep feature space, which can not promise that the structure of feature space
is not distorted after mapped. On the contrary, reconstruction loss enforces the
data decoded from latent representations as close to original data as possible,
which is helpful for maintaining the structure of feature space and making it
undistorted. In this paper, we choose variational autoencoder (VAE) [14] as the
basic encoder–decoder reconstruction model. VAE is a directed graphical model
with certain types of latent variables, such as Gaussian latent variables. To some
degree, using VAE as the basic reconstruction model is also helpful for allevi-
ating the distribution discrepancy between domains, since the distributions of
latent representations form two domains are forced to be close to a same certain
distribution by VAE.

For the second issue, to promote domain-invariant representations learning
towards the class level, we propose a novel domain-adversarial learning paradigm
in this paper. In previous adversarial methods, the output of the domain dis-
criminator is a layer with 2 nodes that can only indicate the domain label of one
feature representation. Different from them, in our method, the output of the
discriminator is a layer with K + 1 (K is the number of classes) nodes, where
the first K nodes represent the class of one feature representation and the last
node indicates the domain of the representation. We call this new discrimina-
tor a joint domain-class discriminator, since it learns a joint distribution over
both domain and class variables. In our model, we employ two joint domain-
class discriminators in our model, and adopt a novel joint adversarial loss to
train them, instead of a simple binary adversarial loss. Class labels are needed
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when calculating the loss, but they are not available in the target domain. Some
existing methods [20,28,39] use pseudo-labels to make up for the lack of target
domain class labels. Following this idea, we first train a source classifier using
labeled source data to initialize a target classifer, and then update the target
classifer by a semi-supervised learning (SSL) style [23] to provide target domain
pseudo-labels.

Briefly, we summarize our contributions below.

– We propose in this paper a novel model termed Joint Domain-Adversarial
Reconstruction Network for unsupervised domain adaptation. Our proposed
JDARN integrates domain-adversarial learning with data reconstruction to
learn both domain-invariant and domain-specific representations.

– In order to achieve the invariance of representations at the domain level and
class level simultaneously, we introduce two novel discriminators called joint
domain-class discriminators to our proposed model and adopt a joint adver-
sarial loss to train them.

– We conduct careful experiments to investigate the efficacy of our proposed
model. Based on commonly used basic networks (ResNet-50 [11]), our pro-
posed model outperforms the state-of-the-art methods on two benchmark
domain adaptation datasets.

2 Related Works

In this section, we briefly review recent domain adaptation methods, in particular
domain-adversarial learning methods and those based on data reconstruction.

Inspired by GANs, adversarial learning has been widely adopted in domain
adaptation [6,7,13,18,36,37]. The domain-adversarial neural network (DANN)
[6] uses adversarial training to find domain–invariant representations. DANN
minimizes the domain confusion loss for all samples and label prediction loss only
for source samples while maximizing domain confusion loss via a gradient reversal
layer (GRL). The adversarial discriminative domain adaptation (ADDA) [37]
summarizes that each adversarial method makes three design choices: whether
to use a generative or discriminative base model, whether to tie or untie the
weights, and which adversarial learning objective to use. The ADDA uses a
discriminative base model without the generator and unshared weights that can
better model the difference in low level features than shared ones. Besides, it use
a standard GAN loss function, which has the same fixed-point properties as the
minimax loss but provides stronger gradients to the target mapping.

Some recent adversarial UDA methods [20,28,31,33,39,40] have paid atten-
tion to pursuing the class-level alignment. The moving semantic transfer network
(MSTN) [39] learns semantic representations for unlabeled target samples by
aligning labeled source centroid and pseudo-labeled target centroid. The multi-
adversarial domain adaptation (MADA) [28] and the conditional domain adver-
sarial network (CDAN) [20] exploit multiplicative interactions between feature
representations and category predictions as highorder features to help adversar-
ial training.
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In another line of UDA methods, data reconstruction is used as an aux-
iliary task that simultaneously learns shared representations between domains
and keeps the individual characteristics of each domain [3,8,12]. The deep recon-
struction classification network (DRCN) [8] learns a shared encoding representa-
tion that provides useful information for cross-domain object recognition. DRCN
minimizes the classification loss with labeled source data and the unsupervised
reconstruction loss with unlabeled target data. The domain separation network
(DSN) [3] explicitly and jointly models both private and shared components of
the domain representations to reconstruct the images from both domains.

3 Method

3.1 Problem Setting

For clear description, we give some definitions. In unsupervised domain adap-
tation, we have access to a source domain Ds = {(x(i)

s , y
(i)
s )}Ns

i=1 of Ns labeled
samples from Xs × Ys and a target domain Dt = {(x(i)

t )}Nt
i=1 of Nt unlabeled

samples from Xt, where X represents the feature space and Y represents the label
space. The source and target domain samples are sampled from joint distribu-
tions Ps(xs, ys) and Pt(xt, yt) respectively, and the i.i.d. assumption is violated
as Ps �= Pt. The goal of UDA is to train a deep network f : x → y which formally
reduces the shifts in the data distributions across domains, such that the target
error εt(f) = E(xt,yt)∼Pt

[f(xt) �= yt] can be bounded by the sum of the source
error εs(f) = E(xs,ys)∼Ps

[f(xs) �= ys] and the distribution discrepancy d(Ps, Pt).

3.2 Network Structure

Fig. 2. Overall structure of our proposed JDARN

Our proposed JDARN is equipped with two VAEs, two joint domain-class dis-
criminators and two task-specific classifiers. An overview of the proposed model
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is shown in Fig. 2. The ADDA [37] suggests that allowing independent source
and target mappings is a more flexible learning paradigm as it allows more
domain specific feature extraction to be learned. Therefore, following this idea,
we employ two separate VAEs, one for source domain, and another for target
domain. The encoders of VAEs, denoted as Ecs for source and Ect for target,
encode source domain or target domain samples x into latent representations
z = Ec(x), which aims to learn domain-invariant representations to fool the
two discriminators. The decoders of VAEs, denoted as Dcs for source and Dct

for target, decode the latent representations z back to a reconstructed version,
which aims to extract more domain-specific information and make the structure
of source and target domain feature space undistorted. The two joint domain-
class discriminators, denoted as D1 and D2, are not only trained to distinguish
whether latent representations are from source domain or target domain, but
also trained to discriminate the class of the latent representations. The two
task-specific classifiers, denoted as Cs for source and Ct for target, are trained
to classify the samples from two domains.

3.3 Loss Functions

In this paper, our final goal is to learn a target encoder Ect, and a classifier Ct

that can classify target domain smaples into one of K categories correctly when
testing. Due to lack of target domain class labels, it is impossible to directly
learn a target encoder and a target classifier. Thereby, we instead train a source
encoder, Ecs, along with a source classifier, Cs, and then adapt that model for
use in the target domain.

Classification Loss. First of all, Ecs and Cs are pre-trained using a standard
supervised loss as follows:

Lcls = E(xs,ys)∼Ds
�ce(Cs(Ecs(xs)), ys), (1)

where �ce(f(x), y) := −〈y, log f(x)〉 is the cross-entropy loss calculated for one-
hot, ground-truth label y ∈ {0, 1}K and label prediction f(x) ∈ R

K(the output
of a deep neural network with input x).

Reconstruction Loss. In this paper, data reconstruction of source or target
samples is used as an auxiliary task to improve our model’s ability to extract
the domain-specific representations. Specifically, we use VAE as the basic recon-
struction model, which first encodes a sample x to a latent representation z,
and then decodes the latent representation back to data space x̃:

z ∼ q(z|x) = Ec(x), x̃ ∼ p(x|z) = Dc(z). (2)
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The VAE imposes a prior over the latent distribution p(z) to regularize the
encoder. Typically z ∼ N(0, I) is chosen. A variational lower bound of the log-
likelihood is used as a surrogate objective function:

log p(x) ≥ −DKL[q(z|x)||p(z)] + Eq(z |x)[log p(z|x)], (3)

where DKL is the Kullback-Leibler divergence. Thus, the VAE loss is minus
the sum of the expected log likelihood (the reconstruction error) and a prior
regularization term:

Lvae = Lrec + Lprior = −Eq(z |x)[log p(z|x)] + DKL[q(z|x)||p(z)]. (4)

With the VAE loss, we can not only extract more domain-specific information
of each domain, but also allow the structure of source and target domain feature
space to be undistorted. Moreover, as the distributions of latent representations
form two domains are all forced to be close to a same certain distribution by
VAE, the distribution discrepancy between domains might be alleviated to some
degree.

Joint Adversarial Loss. As we know, in GAN, the generator G and the
discriminator D are trained alternately. Similarly, domain-adversarial learning
methods optimize the domain discriminator D with the feature extractor F
fixed, and then optimize F with D fixed. Specifically, D and F are optimized
alternately according to an adversarial objective, which is shown as follows:

min
D

Ladv−D,min
F

Ladv−F . (5)

There are various different adversarial loss functions to choose, each of which has
their own unique use cases. All adversarial losses train the D using a standard
supervised loss:

Ladv−D = Exs∼Xs
�ce(D(F (xs)), [1, 0]) + Ext∼Xt

�ce(D(F (xt)), [0, 1]), (6)

where [1, 0] and [0, 1] are the domain labels. However, the loss used to train the
F is different. Here, we only take ADDA as an example. It trains the F according
to a standard loss function called GAN loss function with inverted labels, which
is shown below:

Ladv−F = Ext∼Xt
�ce(D(F (xt)), [1, 0]). (7)

These prior efforts only align the feature distributions across domains at
the domain level, but ignore the class-level alignment. To tackle the issue, we
introduce a joint domain-class discriminator whose output is a layer with K + 1
nodes and employ a joint adversarial loss to train the target model, instead of a
simple binary adversarial loss above.

To be specific, we first train a joint domain-class discriminator D1 according
to a standard supervised loss:

Ladv−D1 = E(xs,ys)∼Ds
�ce(D1(Ecs(xs)), d(1)s ) + Ext∼Xt

�ce(D1(Ect(xt)), d
(1)
t ).

(8)
d
(1)
s and d

(1)
t are defined as follows:
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d(1)s = [

K
︷ ︸︸ ︷

0, ..., 0, 1, 0, ..., 0
︸ ︷︷ ︸

ys

, 0], d(1)t = [

K
︷ ︸︸ ︷

0, ..., 0, 0, 0, ..., 0, 1], (9)

where ys is the one-hot, ground-truth source class label. Obviously, the discrim-
inator D1 trained by minimizing Eq. 8 cannot distinguish the class of target
domain samples, because the first K dimensions of d

(1)
t are set to zero. Thereby,

we introduce another joint domain-class discriminator D2, which is also trained
according to a standard supervised loss:

Ladv−D2 = E(xs,ys)∼Ds
�ce(D2(Ecs(xs)), d(2)s ) + Ext∼Xt

�ce(D2(Ect(xt)), d
(2)
t ).
(10)

Inversely, d
(2)
s and d

(2)
s are defined as follows:

d(2)s = [

K
︷ ︸︸ ︷

0, ..., 0, 0, 0, ..., 0, 1], d(2)t = [

K
︷ ︸︸ ︷

0, ..., 0, 1, 0, ..., 0
︸ ︷︷ ︸

ŷt

, 0]. (11)

where ŷt is the pseudo-label predicted by the target classifier. In this way, the two
joint domain-class discriminators complement each other to align the marginal
and class conditional feature distributions of two domains at the same time.

Similar to ADDA above, the target encoder Ect is adversarially optimized
according to the loss Ladv−Ec with inverted labels to learn domain-invariant
representation to fool the joint domain-class discriminators:

Ladv−Ec = Ext∼Xt
�ce(D1(Ect(xt)), [ŷt, 0]) + Ext∼Xt

�ce(D2(Ect(xt)), [0, 1]),
(12)

where 0 is a zero vector of size K. The joint adversarial loss, Ladv−D1, Ladv−D2

and Ladv−Ec, contains both domain and class information, so the marginal and
class conditional feature distributions of two domains can be aligned.

Entropy Loss. After aligning the feature distributions of two domains, UDA
can be regarded as a semi-supervised learning(SSL) problem. The large amount
of unlabeled target domain samples can be used to bias the decision boundaries
to be in the low-density regions [16]. Applying entropy minimization for classifier
training can push the decision boundaries away from the high density regions, a
desired property under the cluster assumption [4]. Therefore, our method trains
the target classifier Ct according to the following entropy loss:

Letp = Ext∼Xt
�e(Ct(Ect(xt))), (13)

where �e(f(x)) := −〈f(x), log f(x)〉. However, entropy minimization satisfies the
cluster assumption only for Lipschitz classifiers [10]. Fortunately, the Lipschitz
condition can be realized by virtual adversarial training(VAT) as suggested by
[23]. Therefore, as with most previous methods, we apply entropy mimimization
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in conjunction with VAT on the target domain samples. The VAT loss is given
as follows:

Lvat = Ext∼Xt
[max
‖r‖≤ε

DKL(Ct(Ect(xt))||Ct(Ect(xt + r)))]. (14)

The above SSL regularizations can be applied after aligning the feature distri-
butions of two domains [34]. But, we find that applying SSL regularizations at
the beginning of the training also works well.

Fig. 3. Adversarial training steps of JDARN

3.4 Training Steps

In this section, we combine the loss functions mentioned above to train all the
networks including two VAEs, two joint domain-class discriminators and two
classifiers, and summarize the whole training step. Specifically, the training of
JDARN is divided into three steps:

Step 1. First of all, the source VAE and source classifier are trained using all
the labeled source domain samples according to the classification loss and the
VAE loss together. The objective is written as follows:

min
Ecs,Dcs,Cs

Lcls + λvaeLvae, (15)

where λvae is a trade-off parameter. Due to lack of target domain annotations,
we use the pre-trained source model as an initialization for the target model,
and then fix the source model at the later steps.

Step 2. In this step, the two joint domain-class discriminators are trained
according to the joint adversarial loss to discriminate the class and domain of
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one latent representation, with the target VAE and classifier fixed. The objective
is given as follows:

min
D1

Ladv−D1,min
D2

Ladv−D2. (16)

Step 3. In this step, the target VAE is trained according to the joint adversarial
loss to learn the domain–invariant representations to fool the discriminators,
with the two discriminators fixed. In addition, VAE loss is added to the objective
to help the target VAE extract more domain-specific information. The target
classifier is also optimized in this step according to entropy loss and VAT loss,
which can push the decision boundaries away from the high density regions. The
final objective is given as follows:

min
Ect,Dct,Ct

Ladv−Ec + λvaeLvae + λt(Letp + λvatLvat), (17)

where λvae, λt, and λvat are trade-off parameters.
Step 2 and Step 3 are conducted in an alternating fashion, as shown in

Fig. 3.

3.5 Connection to Domain Adaptation Theory

Most adversarial domain adaptation methods are based on the theoretical anal-
ysis proposed in [1,2], which states that the target error εt is bounded by four
terms:

Theorem 1. Let H be a hypothesis space of VC dimension d. If Us, Ut are
unlabeled samples of size m each, drawn from Ps and Pt respectively, then for
any δ ∈ (0, 1), with probability at least 1 − δ, for every h ∈ H,

εt(h) ≤ εs(h) +
1
2
dHΔH(Ps, Pt) + λ

≤ εs(h) +
1
2
d̂HΔH(Us,Ut) + 4

√

2d log(2m) + log(2δ )
m

+ λ,

(18)

where εs(h) is the expected error on the source domain samples that can be
minimized easily with source class label information and λ = minh[εs(h)+ εt(h)]
is combined error of ideal joint hypothesis. dHΔH(Ps, Pt) denotes the HΔH-
distance between two domains, which is written as follows:

dHΔH(Ps, Pt) = 2 sup
h,h′∈H

|Prx∼Ps
[h(x) �= h′(x)] − Prx∼Pt

[h(x) �= h′(x)]|. (19)

d̂HΔH(Us,Ut) is the empirical HΔH-distance.
Let Fs#Ps and Ft#Pt be the marginal push-forward distributions of source

and target domain distribution Ps and Pt, where Fs and Ft are the feature
extractors (encoders in our model). If Fs#Ps and Ft#Pt are aligned well, the
dHΔH will vanish for any space H of sufficiently smooth hypotheses. However,
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if the corresponding class conditional distributions Fs#Ps(·|y) and Ft#Pt(·|y)
are aligned incorrectly, λ will be large because there may not be a h ∈ H with
low error in both domains. Since our proposed model aligns the marginal and
class conditional distributions by the two joint domain-class discriminators and
the joint adversarial loss, the above problem can be tackled well. Furthermore,
as m increases, the third term will decrease. The m can increase with data
augmentation. Therefore, using VAT that has the same effect of augmenting
data can make the third term decrease.

4 Experiments

In this section, we evaluate our proposed model with some state-of-the-art deep
UDA methods and demonstrate promising results on UDA benchmark tasks.

4.1 Experimental Setup

Office-31 [30] is a standard benchmark dataset for domain adaptation, which
consists of 4,110 images spread across 31 classes in 3 domains: Amazon (A),
Webcam (W), and DSLR (D). We focus our evaluation on six transfer tasks: A
→ D, A → W, D → A, D → W, W → A and W → D.

ImageCLEF-DA1 is a benchmark dataset for ImageCLEF 2014 domain adap-
tation challenge, which contains three domains: Caltech-256 (C), ImageNet
ILSVRC 2012 (I), and Pascal VOC 2012 (P). For each domain, there are 12
classes and 50 images in each class. We evaluate all methods on six transfer
tasks: C → I, C → P, I → C, I → P, P → C and P → I.

We compare our proposed model with the following state-of-the-art UDA
methods: Deep Adaptation Network (DAN) [19], Domain Adversarial Neu-
ral Network (DANN) [6], Adversarial Discriminative Domain Adaptation
(ADDA) [37], Virtual Adversarial Domain Adaptation (VADA) [34], Maxi-
mum Classifier Discrepancy (MCD) [32], Conditional Domain Adversarial Net-
work (CDAN) [20], and Transferable Adversarial Training (TAT) [17]. Besides,
as a basic model, ResNet-50 [11] is also used for comparison.

We implement our model in PyTorch [27]2. Following the commonly used
experimental protocol for UDA [6,20], we use all labeled source samples and all
unlabeled target samples. We repeat each domain adaptation task three times,
and then compare the mean classification accuracy. ResNet-50 [11] is adopted
as the based model with parameters fine-tuned from the model pre-trained on
ImageNet [15].

For our proposed model, the dimension of the latent representation is set
to 256; the classifier is a one-layer fully connected network (256 → K), where
K is the number of classes; the discriminator consists of three fully connected
layers with ReLU (256 → 3072 → 2048 → 1024 → K + 1). In all the tasks, the

1 https://www.imageclef.org/2014/adaptation.
2 Codes are available at https://github.com/NaivePawn/JDARN.

https://www.imageclef.org/2014/adaptation
https://github.com/NaivePawn/JDARN
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mini-batch stochastic gradient descent (SGD) with momentum of 0.9 is adopted.
During pre-training (Step 1), batchsize is set to 32; learning rate is set to 10−4

for based ResNet-50, and 10−3 for the other new layers of source VAE and
source classifier that are trained from scratch. During adaptation (Step 2&3),
batchsize is set to 16; learning rate is set to 10−3 for two joint domain-class
discriminators, and 10−5 for target VAE and classifier.

For hyperparameters λvae (in Eq. 15 and Eq. 17) and λt (in Eq. 17), we fix
their value to 0.1. For hyperparameter λvat(in Eq. 17), we do search over the
grid {1.0, 10.0}, which is suggested by [5]. We also search for the upper bound
of the adversarial perturbation in VAT, ε ∈ {0.1, 0.5, 1.0, 2.0, 4.0, 8.0} (in Eq.
14), as in [5]. We train the models within 200 epoches for pre-training and 2000
epoches for adaptation.

Table 1. Classification accuracies (%) on Office-31 for unsupervised domain adaptation
with ResNet-50

Method A→D A→W D→A D→W W→A W→D Avg

RESNET-50 [11] 68.9± 0.2 68.4± 0.2 62.5± 0.3 96.7± 0.1 60.7± 0.3 99.3± 0.1 76.1

DAN [19] 78.6± 0.2 80.5± 0.4 63.6± 0.3 97.1± 0.2 62.8± 0.2 99.6± 0.1 80.4

DANN [6] 81.5± 0.4 82.6± 0.4 68.4± 0.5 96.9± 0.2 67.5± 0.5 99.3± 0.2 82.7

ADDA [37] 77.8± 0.3 86.2± 0.5 69.5± 0.4 96.2± 0.3 68.9± 0.5 98.4± 0.3 82.9

VADA [34] 86.7± 0.4 86.5± 0.5 70.1± 0.4 98.2± 0.4 70.5± 0.4 99.7± 0.2 85.4

MCD [32] 92.2± 0.2 88.6± 0.2 69.5± 0.1 98.5± 0.1 69.7± 0.3 100.0 ± .0 86.5

CDAN [20] 92.9± 0.2 94.1± 0.1 71.0± 0.3 98.6± 0.1 69.3± 0.3 100.0 ± .0 87.7

TAT [17] 93.2± 0.2 92.5± 0.3 73.1± 0.3 99.3 ± 0.1 72.1± 0.3 100.0 ± .0 88.4

JDARN 93.5 ± 0.2 94.5 ± 0.2 74.2 ± 0.1 98.9± 0.1 72.9± 0.1 100.0 ± .0 89.0

4.2 Results

We now discuss the experiment results. The results of baselines are directly
reported from the original papers if protocol is the same.

Table 1 shows the results on office-31 dataset based on ResNet-50. The pro-
posed model significantly outperforms all comparison methods on most transfer
tasks. It is desirable that our model improves the accuracies on four hard trans-
fer task: A → D, A → W, D → A and W → A, where the source and target
domains are substantially different. Meanwhile, our model produces comparable
classification accuracies on easy transfer tasks: D → W and W → D, where the
source and target domain are similar.

Table 2 shows the results on ImageCLEF-DA dataset based on ResNet-50.
Different from Office-31 where different domains are of different sizes, the three
domains in ImageCLEF-DA are balanced, which makes it a good complement to
Office-31 for more controlled experiments and avoids the class imbalance prob-
lems. Our model outperforms all comparison methods on most transfer tasks,
especially on tasks P → C and P → I.
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Table 2. Classification accuracies (%) on Image-CLEF for unsupervised domain adap-
tation with ResNet-50

Method C→I C→P I→C I→P P→C P→I Avg

RESNET-50 [11] 78.0± 0.2 65.5± 0.3 91.5± 0.3 74.8± 0.3 91.2± 0.3 83.9± 0.1 80.7

DAN [19] 86.3± 0.4 69.2± 0.4 92.8± 0.2 74.5± 0.4 89.8± 0.4 82.2± 0.2 82.5

DANN [6] 87.0± 0.5 74.3± 0.5 96.2± 0.4 75.0± 0.3 91.5± 0.6 86.0± 0.3 85.0

CDAN [20] 91.3± 0.3 74.2± 0.2 97.7± 0.3 77.7± 0.3 94.3± 0.3 90.7± 0.2 87.7

TAT [17] 92.0± 0.4 78.2± 0.4 97.5± 0.3 78.8± 0.2 94.7± 0.4 92.0± 0.2 88.9

JDARN 92.1 ± 0.1 77.5± 0.1 97.0± 0.2 79.0 ± 0.2 97.0 ± 0.2 94.0 ± 0.2 89.4

(a) Before adaptation (b) After adaptation

Fig. 4. Features visualization. (a) and (b) show the feature representations of two
domains before and after the domain adaption on the task A → D, respectively. Yellow
and purple points indicate the source and target domain samples, respectively. After
adaptation, target clusters are well-aligned with source clusters. (Color figure online)

4.3 Analysis

Features Visualization. We visualize the feature representations to investigate
the effectiveness of domain adaptation on the task A → D using t-distributed
stochastic neighbor embedding (t-SNE) [22]. As shown in Fig. 4(a) and 4(b), the
discrepancy between A and D is significantly reduced in the latent representation
space after adaptation. Moreover, the feature representations with the same class
label but from different domains are much more closer after adaptation, which
demonstrates the effectiveness of the class-level distribution alignment.

Cross-Domain A-Distance. The theory of domain adaptation [1] suggests
A-distance as a measure of distribution discrepancy. The proxy A-distance is
defined as dA = 2(1 − 2ε), where ε is the test error of a classifier (e.g. kernel
SVM) trained to discriminate the source domain from the target domain. Table
3 shows dA on tasks A → W, W → D with features of ResNet-50, DANN,
CDAN and JDARN. We observe that dA on JDARN features is smaller than dA
on both ResNet-50, DANN and CDAN features, which implys that our model
can effectively reduce the domain distribution discrepancy. As domains W and
D are similar, dA on task W → D is smaller than that on A → W, implying
higher accuracies.
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Table 3. Cross-domain A-distance

Method A → W W → D

RESNET-50 [11] 1.82 1.31

DANN [6] 1.51 1.18

CDAN [20] 1.20 1.10

JDARN 1.12 1.10

Table 4. Ablation experiments

Method W → A P → C

JDARN (w/o vae) 65.4 95.6

JDARN (w binary) 67.2 96.3

JDARN (w/o etp& vat) 71.0 96.7

JDARN 72.9 97.0

Ablation Study. To investigate the effects of each component in our model, we
also try ablation study on tasks W → A and P → C with different components
ablation: (i) removing the decoders and only training the encoders (w/o vae), (ii)
training one domain discriminator with a binary adversarial loss (w binary), and
(iii) training the target VAE without entropy loss and VAT loss (w/o etp&vat).
As seen in Table 4, once one part is removed, the accuracy degrades. The results
show that all the losses are designed reasonably and they all promote the clas-
sification accuracy for domain adaptation.

5 Conclusion

In this paper, we propose a novel model called Joint Domain-Adversarial Recon-
struction Network for unsupervised domain adaptation. Our model mainly tackle
two problems of existing domain-adversarial learning methods: ignoring the indi-
vidual characteristics of each domain and ignoring the class-level alignment.
JDARN uses data reconstruction as an auxiliary task to help domain-adversarial
learning to learn domain-specific representations. Meanwhile, JDARN uses two
joint domain-class discriminators to distinguish both class and domain of the
learned representations and trains them according to a joint adversarial loss, so
that the distributions of two domains can be aligned at the domain level and the
class level simultaneously. Comprehensive experiments on two standard UDA
datasets and tasks verify the effectiveness of our proposed model.
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