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Abstract. We study repeated posted-price auctions where a single seller
repeatedly interacts with a single buyer for a number of rounds. In previ-
ous works, it is common to consider that the buyer knows his own valua-
tion with certainty. However, in many practical situations, the buyer may
have a stochastic valuation. In this paper, we study repeated posted-price
auctions from the perspective of a utility maximizing buyer who does
not know the probability distribution of his valuation and only observes
a sample from the valuation distribution after he purchases the item.
We first consider non-strategic buyers and derive algorithms with sub-
linear regret bounds that hold irrespective of the observed prices offered
by the seller. These algorithms are then adapted into algorithms with
similar guarantees for strategic buyers. We provide a theoretical analy-
sis of our proposed algorithms and support our findings with numerical
experiments. Our experiments show that, if the seller uses a low-regret
algorithm for selecting the price, then strategic buyers can obtain much
higher utilities compared to non-strategic buyers. Only when the prices
of the seller are not related to the choices of the buyer, it is not beneficial
to be strategic, but strategic buyers can still attain utilities of about 75%
of the utility of non-strategic buyers.

Keywords: Online learning · Posted-price auctions · No-regret
learning

1 Introduction

A growing fraction of online advertisements are sold via ad exchanges. In an ad
exchange, after a visitor arrives on a webpage, advertisers compete in an auction
to win the impression (the right to deliver an ad to that visitor). Typically, these
auctions are second-price auctions, where the winner pays the second highest
bid or a reserve price (whichever is larger), and no sale occurs if all of the bids
are lower than the reserve price. However, as indicated by e.g. [2,3,21], a non-
trivial fraction of auctions only involve a single bidder and this reduces to a
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posted-price auction [20] when reserve prices known: the seller sets a reserve
price and the buyer decides whether to accept or reject it. A single publisher
can track a large number of visitors with similar properties over time and sell
the impressions generated by these visitors to buyers. As buyers typically are
involved in a large number of auctions, there is an incentive for them to act
strategically [2,3,16,21]. These observations have led to the study of repeated
posted-price auctions between a single seller and strategic buyer.

In this paper we consider a repeated posted-price auction between a single
seller and a single buyer, similar to that considered in [2,21]. In every round, the
seller posts a price and the buyer decides to buy or not at that price. The buyer
does not know the distribution of his valuation, the seller’s pricing algorithm
or the seller’s price set. Furthermore, the seller does not know the valuation
distribution and needs to learn how to set the price over time. There are a number
of differences between this paper and previous work on repeated posted-price
auction such as [2,3,21]. First, unlike in previous work, we study the problem
from the perspective of a buyer that aims to maximize his expected utility or
surplus, instead of the perspective of the seller that aims to maximize his revenue.
Second, previous papers assume that the buyer knows his valuation in each
round. In this paper, we relax this assumption and assume the buyer does not
know the distribution of his valuation and the valuation is only revealed after
he buys the item. This is motivated by applications in online advertising where
the buyer (advertiser) does not know the exact value of showing the ads to a set
of users: some users may click on the ad and in some cases the ad may lead to a
sale, but the buyer only observes a response after he displays the advertisement
to the user.

As the valuation distribution is unknown, buyers face an exploration and
exploitation trade-off and their decisions lead to regret: (i) accepting a price that
is at most the mean valuation leads to positive expected utility and accepting a
price above it leads to negative utility; (ii) buying the item leads to additional
information about the mean valuation (at the risk of negative utility), but by not
buying there is a risk of missing out on positive utility. We study two types of
buyers: strategic buyers and non-strategic buyers. Non-strategic buyers are only
interested achieving sub-linear regret given the prices that are observed and do
not attempt to manipulate or influence the observed prices. Strategic buyers
are also interested in sub-linear regret given the observed prices, but they also
actively attempt to influence future prices that will be offered. If non-strategic
buyers knew the mean valuation they would use the following rule: always accept
a price that is at most the mean valuation and always reject a price above it.
Strategic buyers on the other hand, would sometimes deviate from this rule
in an attempt to influence future prices that will be offered. If non-strategic
buyers knew the mean valuation, then their decisions would have low regret but
the seller could learn to ask a price very close to the mean valuation, resulting
in low utility for the buyer [2,21]. Strategic buyers attempt to influence the
learning process of the seller in order to lower the price and to increase the
utility. However, as these attempts are not guaranteed to succeed (as buyers
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don’t know the seller’s pricing algorithm or price set), strategic buyers still want
to ensure sub-linear regret for all possible prices sequences.

In our setting, the seller needs to learn to set his prices because he does
not know the valuation distribution. To the best of our knowledge, there are
no existing ‘optimal’ algorithms with performance guarantees (specifically) for
repeated posted-price auctions with a single seller and a single strategic buyer
that doesn’t know his valuation: existing algorithms (e.g., [2,3,14,15,21,25])
assume that buyers know their valuation and thus lose their performance guar-
antees. In our experiments (see Sect. 5) we therefore assume that the seller uses
an off-the-shelf low-regret learning algorithm for adaptive adversarial bandit
feedback as these have known performance guarantees [10,20,22].

Our main contributions are as follows. First, to the best of our knowledge, we
are the first to study repeated posted-price auctions in strategic settings from the
perspective of the buyer. We do not assume that the buyer knows his valuation
distribution. Second, we construct algorithms with sub-linear (in the problem
horizon) regret for both non-strategic and strategic buyers by using ideas from
popular multi-armed bandit algorithms UCB1 [5] and Thompson Sampling [1].
Our algorithms do not require knowledge about the seller’s pricing algorithm or
price set. Third, we use experiments to support our theoretical findings. Using
experiments we show that, if the seller is using a low-regret learning algorithm
based on weights updating (such as EXP3.P [4,10]), then strategic buyers can
obtain much higher utilities compared to non-strategic buyers.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
the related literature. Section 3 provides a formal description of the problem.
In Sect. 4 we present the our proposed algorithms and provide a theoretical
analysis. In Sect. 5 we perform experiments in order to assess the quality of our
proposed algorithms. Section 6 concludes our work and provides some directions
for further research.

2 Related Literature

The work in this paper is mainly related to the following areas of the literature:
posted-price auctions, low-regret learning by sellers and buyers, and decision
making for buyers in auctions. We discuss these areas in more detail below.

Repeated posted-price auctions with the goal of maximizing revenue for the
seller and assuming that the feedback from buyers is i.i.d. distributed was studied
in [20]. Other works [2,3,14,15,19,21,25] instead study repeated posted-price
auctions with strategic buyers. However, these papers all study the seller side of
the problem and assume that buyers know their valuations in each round.

On a high level this paper is related to works that study repeated auctions
where either the seller and/or the buyer is running a low-regret learning algo-
rithm [8,9,11] and the interaction between bandit algorithms and incentives of
buyers [6,7,12,18]. The goal in such studies is to design (truthful) mechanisms
that either maximize revenue of the seller or welfare, when decision are made
based on low-regret algorithms. This is not the focus of our paper.



Low-Regret Algorithms for Strategic Buyers 419

The aforementioned works focus on either the seller side or on mechanism
design, but there is also work that considers the perspective of buyers or bid-
ders. In [13,23,24] the focus is on maximizing clicks when click-through-rates
are unknown and typically with budget constraints. In this paper, rewards for
buyers are not determined by the number of clicks, instead the buyer aims to
maximize cumulative utilities or his net surplus as in e.g., [2,3,21]. In [17] the
focus is on designing bidding strategies for buyers that compete against each
other and where the buyer valuation is unknown. However, these studies do not
focus on repeated posted-price auctions and strategic behaviour of buyers is not
considered.

3 Problem Formulation

We consider a single buyer and a single seller that interact for T rounds. An
item, such as an advertisement space, is repeatedly offered for sale by the seller
to the buyer over these T rounds. In each round t ∈ T = {1, . . . , T}, a price
pt ∈ P is offered by the seller and a decision at ∈ {0, 1} is made by the buyer:
at = 1 when the buyer accepts to buy at that price, at = 0 otherwise. The buyer
holds a private valuation vt ∈ [0, 1] for the item in round t. The value of vt is
an i.i.d. draw from a distribution D and has expectation ν = E {vt}. The buyer
does not know D and ν. Also, the buyer does not know P or the seller’s pricing
algorithm. The value vt is only revealed to the buyer if he buys the item in round
t, i.e., the buyer only observes the value after he buys the item. The seller also
does not know D or ν and does not observe vt.

The utility of the buyer in round t is given by ut = at·(vt−pt). In other words,
if the buyer purchases the item the utility is the difference between the valuation
and the price. Otherwise, the utility is zero. For a fixed sequence −→p = p1, . . . , pT

of observed prices and a fixed sequence of decisions a1, . . . , aT by the buyer, the
pseudo-regret of the buyer over T rounds is defined as RT (−→p ) =

∑T
t=1 max{ν −

pt, 0} −
∑T

t=1 at · (ν − pt). The term max{ν − pt, 0} represents the expected
utility of the optimal decision in round t and the term at · (ν −pt) represents the
expected utility of the actual decision that is made by the buyer in round t. The
expected pseudo-regret over T rounds is defined as RT (−→p ) = E {RT (−→p )}, where
the expectation is taken with respect to possible randomization in the selection of
the actions a1, . . . , aT . In the remainder, the expected pseudo-regret will simply
be referred to as the regret. The notation using −→p makes it clear that the regret
depends on the sequence of observed prices. We will omit this dependence when
the meaning is clear from the context or when a relation is understood to hold
for all possible price sequences. For example, we write RT ≤ O(

√
T log T ) when

RT (−→p ) ≤ O(
√

T log T ) for all choices of −→p .
We consider two types of buyers: non-strategic buyers and strategic buyers.

Non-strategic buyers are interested in achieving sub-linear regret for all possi-
ble price sequences, but they treat the price sequence as exogenous. That is, if
non-strategic buyers knew ν, then they would follow this rule: buy if and only
if pt ≤ ν. Strategic buyers also want sub-linear regret for all possible prices
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sequences, but they would sometimes deviate from this rule in an attempt to
influence (i.e., lower) future prices that will be offered. If non-strategic buyers
knew ν, then their decisions would have low regret but the seller could learn to
ask a price just below ν, resulting in low utility for the buyer [2,21]. Strategic
buyers actively attempt to influence the learning process of the seller in order
to lower the price and to increase the utility. However, as these attempts are
not guaranteed to succeed (recall that buyers do not know the seller’s pricing
algorithm or P), strategic buyers still want to ensure sub-linear regret for all
possible prices sequences. The seller does not know D or ν and does not observe
vt, and so he has to learn how to set his price over time under bandit feed-
back. This paper focuses on the buyer side and the regret bounds that we derive
do not depend on the seller’s pricing algorithm. However, in order to test our
algorithms, some assumption about the seller’s algorithm is required. To the
best of our knowledge, there are no existing ‘optimal’ algorithms for sellers with
performance guarantees (specifically) for repeated posted-price auctions with a
single seller and a single strategic buyer that doesn’t know his valuation: exist-
ing algorithms (e.g., [2,3,14,15,19,21,25]) assume that buyers know vt and thus
lose their performance guarantees. In our experiments (see Sect. 5) we there-
fore assume that the seller uses an off-the-shelf low-regret learning algorithm for
adaptive adversarial bandit feedback as these have known performance guaran-
tees [10,20,22].

Algorithm 1: UCB-NS
1 Input: N ∈ N, T .
2 Set V = ∅. Set t = 1. ;
3 Set n = 1. ;
4 Buy item at price pt. ;
5 Observe vt. ;
6 Set V = V ∪ {vt}. ;
7 for t ∈ {2, . . . , T} do
8 Set nt = n. ;
9 Set v̄t = 1

nt

∑
v∈V v. ;

10 Set rt =
√

(2 log t)/nt. ;
11 Set It = v̄t + rt. ;
12 if It ≥ pt then
13 Buy item at price pt. ;
14 Observe vt. ;
15 Set V = V ∪ {vt}. ;
16 Set n = n + 1. ;
17 end
18 end

Algorithm 2: TS-NS
1 Input: N ∈ N, T .
2 Set V = ∅. Set t = N . ;
3 Set n = N . ;
4 Buy item in first N rounds. ;
5 Observe VN = ∪N

k=1{vk}. ;
6 Set V = V ∪ VN . ;
7 for t ∈ {N + 1, . . . , T} do
8 Set nt = n. ;
9 Set v̄t = 1

nt

∑
v∈V v. ;

10 Sample It ∼ N (v̄t,
1
nt

). ;
11 if It ≥ pt then
12 Buy item at price pt. ;
13 Observe vt. ;
14 Set V = V ∪ {vt}. ;
15 Set n = n + 1. ;
16 end
17 end
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4 Algorithms and Analysis

In this section we present our proposed algorithms for strategic and non-strategic
buyers and we provide a theoretical analysis of these algorithms.

4.1 Non-strategic Buyers

We provide two algorithms for non-strategic buyers that have sub-linear regret.
The first algorithm, UCB-NS, is based on UCB (upper confidence bound) style
bandit algorithms [5] and the second algorithm, TS-NS, is based on the Thompson
Sampling principle [1]. In every round, UCB-NS maintains an optimistic estimate
of the unknown mean ν and decides to buy the item if the estimate is at least
as large as the offered price pt. TS-NS samples from a posterior distribution and
decides to buy the item if the sampled value is at least as large as the offered price
pt. Proposition 1 and 2 bound the regret of UCB-NS and TS-NS, respectively.

Proposition 1. If Algorithm 1 is run with inputs: T , then RT ≤ O(
√

T log T ).

Proof. If I {ν > pt > It} = 1 then the buyer did not buy the item when instead
he should have bought it. Similarly, if I {ν < pt ≤ It} = 1, then the buyer did
buy the item when instead he should not have bought it.

Note that we can bound the regret as follows

RT ≤ 1 +
T∑

t=1

E {(ν − pt) · I {ν > pt > It}}

+
T∑

t=1

E {(pt − ν) · I {ν < pt ≤ It}} .

Define A =
∑T

t=1 E {(ν − pt) · I {ν > pt > It}} and
B =

∑T
t=1 E {(pt − ν) · I {ν < pt ≤ It}}. We will bound each term separately.

Define the following events Ft = {ν > pt > It}, Et = {It > ν}, Ht = {|v̄t − ν| ≤√
2 log T

nt
} and HC

t = {|v̄t − ν| >
√

2 log T
nt

}.

For term A we have,

A ≤
T∑

t=1

E {(ν − pt) · I {Ft}} ≤
T∑

t=1

E {1 · I {Ft}}

≤
T∑

t=1

P {Ft} ≤
T∑

t=1

P {ν > It}

Using Hoeffding’s inequality (and a union bound) we obtain P {ν > It} ≤ 1
t3 ≤

1
t2 . Therefore, we conclude that

∑T
t=1 P {ν > It} ≤ π2

6 .
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Define B = {t ∈ T | It ≥ pt}. For term B we have,

B ≤
∑

t∈B
E {(pt − ν) · I {ν < pt ≤ It}} ≤

∑

t∈B
E {(It − ν) · I {It > ν}}

≤
∑

t∈B
E {(It − ν) · I {Et ∩ Ht}} +

∑

t∈B
E

{
(It − ν) · I

{
Et ∩ HC

t

}}
.

Define B1 =
∑

t∈B E {(It − ν) · I {Et ∩ Ht}}. We bound B1 as follows:

B1 ≤
∑

t∈B
E {|It − ν| · I {Ht}} ≤

∑

t∈B
E

{
|ν − It|

∣
∣
∣ Ht

}
· P {Ht}

≤
∑

t∈B
E

{
|ν − It|

∣
∣
∣ Ht

}
≤

∑

t∈B
2
√

2 log T

nt

≤
∑

t∈T
2

√
2 log T

t
≤ 2

∫ T

0

√
2 log T

t
dt ≤ 4

√
2 log T

√
T .

Define B2 =
∑

t∈B E
{
(It − ν) · I

{
Et ∩ HC

t

}}
. We bound B2 as follows:

B2 ≤
∑

t∈B
P

{
HC

t

}

≤
∑

t∈B
P

{

|v̄t − ν| >

√
2 log T

nt

}
(a)

≤ T · 2
T 4

.

Inequality (a) follows from applying Hoeffding’s inequality and from the fact
that |B| ≤ T .

Putting everything together we obtain RT ≤ 1 + π2

6 + 4
√

2 log T
√

T + T · 2
T 4 .

Therefore, we conclude that RT ≤ O(
√

T log T ). 
�

Proposition 2. If Algorithm 2 is run with inputs: T and N = �cN · T
2
3 , then

RT ≤ O(T
2
3
√

log T ).

Proof. The proof can be found in the Appendix. 
�

4.2 Strategic Buyers

In this section we show how the algorithms for non-strategic buyers can be con-
verted into algorithms for strategic buyers with the same growth rate (up to
constant factors) for the regret. Our proposed approach BUYER-STRAT is pre-
sented in Algorithm 3. The main idea behind BUYER-STRAT is to take a base
algorithm Abase for non-strategic buyers (e.g. UCB-NS or TS-NS) and modify
it using what we refer to as strategic cycles.

We now give a description of how Algorithm 3 works. In BUYER-STRAT the
buyers make decisions according to Abase for the first N1 rounds. Afterwards, in
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the next N2 rounds, we enter a so-called strategic cycle. In this strategic cycle,
the buyer only buys the item if the price is below some threshold, that is, if
pt ≤ v∗ − c1. Here v∗ is an estimate of the unknown mean ν and 0 < c1 < 1 is a
parameter chosen by the buyer (e.g. c1 = 0.1). The purpose of this strategic cycle
is to entice the seller into asking prices that are lower than ν. After this strategic
cycle comes to an end, we start another strategic cycle of length L with some
small probability pcycle. If another strategic cycle has been triggered, we set a
new parameter 0 < ctarget < 1 and only prices pt ≤ v∗ − ctarget are accepted.
If no strategic cycle is triggered, the buyer makes decisions according to Abase.
In the next round, we start a strategic cycle of length L with probability pcycle

and the aforementioned process is repeated.
Algorithm 3 makes use of the functions F1, F2, F3, F4, F5, F6. The intuition

behind these functions is as follows. In every strategic cycle, only prices that
satisfy pt ≤ v∗ − c are accepted, where c ∈ C for some set C. The value of v∗ is
selected using the function F5(·) which takes as input a base algorithm Abase.
The value c ∈ C is selected by using the function F1(·) which depends on a
counter of the number strategic cycles that have passed Cphase. Initially, the
number of strategic cycles in which values c ∈ C are used, is equal to Nphase.
When F2(x) = 1, this indicates that the last strategic cycle in which a value
c ∈ C is used has just been completed, and the function F3(·) is used to collect
information about the price trajectory. When F6(x) = 1, a final value for ptarget

is chosen (using F4(·)) and only prices with pt ≤ ptarget are accepted in all
subsequent strategic cycles. In Sect. 5 we discuss these functions in more detail
and give specific examples that are used in our experiments.

The key parameters to control the regret of Algorithm 3 are the cycle prob-
ability pcycle and the cycle length L. Proposition 3 shows that BUYER-STRAT
with Abase chosen as UCB-NS has regret of order O(

√
T log T ) if the proba-

bility pcycle and the cycle length L is carefully chosen. Proposition 4 shows an
analogous result for BUYER-STRAT with TS-NS.

Proposition 3. Let Ap, AL and AN be positive real constants. Assume that
Algorithm 3 is run with Abase chosen as UCB-NS and with inputs: T , N1 =
�T 2

3 (log T )
1
2 , N2 = �AN

√
T log T , pcycle = ApT

− 1
2 and L = AL

√
log T , then

RT ≤ O(
√

T log T ).

Proof. We will decompose the regret in two parts: the regret incurred in
rounds that are part of strategic cycles and rounds that are not. For an
arbitrary subset T ∗ ⊆ T , let RT,T ∗ =

∑
t∈T ∗ E {(ν − pt) · I {ν > pt > It}} +∑

t∈T ∗ E {(pt − ν) · I {ν < pt ≤ It}}. Let TS ⊆ T denote the indices of the rounds
that are part of strategic cycles and let TNS = T \ TS denote the indices of the
rounds that are not. Then we can write, RT = RT,TNS

+ RT,TS
.

For RT,TS
we have that RT,TS

≤ N2 +T ·pcycle ·L. This follows from the fact
that the expected number of triggered strategic cycles (after round N1 + N2) is
at most T · pcycle and the regret in every such cycle is at most L. Furthermore,
the first strategic cycle has length N2. For RT,TNS

we have that RT,TNS
≤

5 + 4
√

2 log T
√

T . This follows from the fact that RT,TNS
represents the regret

after |TNS | ≤ T rounds in a problem with horizon T , and by Proposition 1,
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this quantity is bounded by 5 + 4
√

2 log T
√

T . By plugging in the values we get
RT = RT,TNS

+ RT,TS
≤ O(

√
T log T ). 
�

Proposition 4. Let Ap, AL and AN be positive real constants. Assume that Algo-
rithm 3 is run withAbase chosen as TS-NS and with inputs: T ,N1 = �T 2

3 (log T )
1
2 ,

N2 = �AN

√
T log T , pcycle = ApT

− 1
2 and L = AL

√
log T . Assume that TS-NS

is run with inputs: T and N = �cN · T
2
3 . Then RT ≤ O(T

2
3
√

log T ).

Proof. The proof uses similar arguments as the proof of Proposition 3 and is
omitted. A complete proof can be found in the Appendix. 
�

Algorithm 3: BUYER-STRAT
1 Input: F1, F2, F3, F4, F5, F6, L, pcycle, Nphase, N1, N2, c1, T , Abase.
2 Set Lp = ∅, Ltarget = ∅, Cphase = 0, t = 1.;
3 for t = 1, . . . , N1 do
4 Observe price pt. Choose to buy or not based on Abase.;
5 end
6 v∗ = F5(Abase).;
7 for t = N1 + 1, . . . , N1 + N2 do
8 Observe price pt. Buy if pt ≤ v∗ − c1.;
9 end

10 while t ∈ {N1 + N2 + 1, . . . , T} do
11 Draw D from Bernoulli distribution with success parameter pcycle.;
12 if D = 1 then
13 v∗ = F5(Abase).;
14 if Cphase ≤ Nphase then
15 Set ctarget = F1(Cphase). Set ptarget = v∗ − ctarget.;
16 end
17 for l ∈ {1, . . . , L} do
18 Observe price pt.;
19 Lp = Lp ∪ {pt}.;
20 Buy if pt ≤ ptarget.;
21 Set t = t + 1.;

22 end
23 if F2(Cphase) = 1 then
24 Set ce = F3(Lp). Set Ltarget = Ltarget ∪ {ce}.;
25 Set Cphase = Cphase + 1.;
26 if F6(Cphase) = 1 then
27 ptarget = F4(Ltarget);
28 end

29 end
30 if D = 0 then
31 Observe price pt.;
32 Choose to buy or not based on Abase.;
33 Set t = t + 1.;

34 end

35 end

36 end
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Remark 5. In order to derive the results of Proposition 3 and 4, we only used
the fact that the regret for Abase is bounded by O(

√
T log T ) or O(T

2
3
√

log T ).
The same proof is also valid for any other base algorithm that satisfies these
bounds. Also, the exact choices for functions F1, F2, F3, F4, F5, F6 do not effect
the regret guarantee (in Sect. 5 we discuss these functions in more detail).

In which setting is BUYER-STRAT useful? As the seller does not know
D, it is reasonable to assume (as argued in Sect. 3) that the seller uses a low-
regret algorithm to learn how to set prices. Note that many online learning
algorithms (e.g. EXP3 and its variants) are weight-based algorithms: at round
t, there are weights wk,t, . . . , wK,t and an action k ∈ {1, . . . , K} is chosen with
probability wk,t/

∑K
k=1 wk,t. We call an algorithm a pure weight-based algorithm

if in round t, only the weight of the selected action gets updated and if weights
can only increase due to positive rewards (note that EXP3 is an example, see
the Appendix for a general definition). Proposition 6 shows that, if the seller
uses a pure weight-based algorithm, then BUYER-STRAT tends to encourage
lower prices by using strategic cycles.

Proposition 6. Assume that the buyer uses Algorithm 3, that the seller is
using a pure weight-based algorithm and that the price set P is finite. Suppose
that a strategic cycle runs from round t + 1 to round t + L with ptarget, then
P {pt+L+1 ≤ ptarget} ≥ P {pt+1 ≤ ptarget}.

Proof. The proof can be found in the Appendix. 
�

5 Experiments

In this section we verify the theoretical results that were derived and investigate
the effects of strategic behaviour on the regret in different scenarios.

5.1 Setup of Experiments

In the experiments vt is drawn from an uniform distribution on [a − 0.3, a +
0.3], where a is drawn from an uniform distribution on [0.4, 0.7] indepen-
dently for each run. We consider two settings for the set of prices used
by the seller and these are given by P1 and P2: P1 = {a + x | x ∈
{−0.35,−0.3,−0.25,−0.2,−0.1,−0.05,−0.02, 0.0, 0.1, 0.3}}, P2 = {a + x | x ∈
{−0.05,−0.02, 0.0, 0.1, 0.3}}. We will use the following abbreviations: P1 and
P2. The abbreviation P1 means that P1 is used. The other abbreviations have
a similar interpretation.

We consider three options for the seller pricing algorithm: (i) the seller
chooses a price at random from the price set (RAND seller); (ii) the seller
uses the low-regret learning algorithm EXP3.P (EXP3.P seller); (iii) the seller
uses the full-information algorithm HEDGE (HEDGE seller). RAND seller is
included because it models a situation where the buyer has no influence over
the prices. EXP3.P seller is included because it is a bandit algorithm designed
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for adaptive adversaries and it enjoys high-probability regret bounds [4,10]. It
models a seller that is learning which prices to use based on bandit feedback
that is non-stochastic. HEDGE seller is included in order to investigate whether
the restriction to bandit feedback has a major impact on the performance of
BUYER-STRAT. HEDGE seller is tuned according to Remark 5.17 in [22] and
EXP3.P according to Theorem 3.2 in [10].

In the experiments, BUYER-STRAT is tuned with N1 = �T 2
3 log T , N2 =

�2
√

T log T , L = �25
√

log T �, pcycle = 5√
T

, c1 = 0.1. We set Nphase = 4 · N3,

where N3 = �0.1 ·
√

T . TS-NS is tuned with N = �0.005 · T 2
3 . We will refer to

BUYER-STRAT with Abase chosen as UCB-NS, as UCB-S (Upper Confidence
Bound Strategic). Similarly, We will refer to BUYER-STRAT with Abase chosen
as TS-NS, as TS-S (Thompson Sampling Strategic). The functions F1, F2, F3,
F4, F5, F6 are chosen as follows.

F1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.2 if x ≤ N3

0.3 if 1 · N3 < x ≤ 2 · N3

0.4 if 2 · N3 < x ≤ 3 · N3

0.5 if 3 · N3 < x ≤ 4 · N3

(1)

For F2(x) we take F2(x) = I{x ∈ {N3, 2 · N3, 3 · N3, 4 · N3}}. The function
F3(Lp) takes the last 100 elements added to the input list Lp and then cal-
culates the 25-th percentile of these 100 values. The function F4(·) is defined
as F4(Ltarget) = min{Ltarget} + ε. The function F4(Ltarget) takes the smallest
number in the set Ltarget and adds a small value to it. In our experiments we
use ε = 0.005. The function F5(·) takes as input a base algorithm and returns
the value of v̄t in the base algorithm. For F6(x) we take F6(x) = I{x = 4 · N3}.

The intuition behind these choices is as follows. In every strategic cycle, only
prices that satisfy pt ≤ v∗ − c are accepted, where c ∈ C = {0.1, 0.2, 0.3, 0.4, 0.5}
and where c is chosen in increasing order (to try to reduce the price in stages)
as the number of strategic cycles increases (this is specified by the function
F1(·)). Initially, the number of strategic cycles in which every c ∈ C is used, is
proportional to N3. When F2(x) = 1, this indicates that the last strategic cycle
in which c = x has just been completed, and the function F3(·) is used to collect
information about the price trajectory. When F6(x) = 1, a final value for ptarget

is chosen (using F4(·)) and this value is used in all subsequent strategic cycles.
We perform 100 independent simulation runs in order to calculate our per-

formance metrics. We use three performance metrics in order to evaluate our
algorithm. In each run, we calculate the cumulative regret RT =

∑T
t=1 max{ν −

pt, 0}−
∑T

t=1 at · (ν − pt), the cumulative utility UT =
∑T

t=1 at · (ν − pt) and the
scaled cumulative regret RS

T = RT /
∑T

t=1 max{ν − pt, 0}. In the experiments we
set T ∈ {25000, 50000, 75000, 100000, 200000, . . . , 1000000}.
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5.2 Results: Non-strategic Buyers vs. Strategic Buyers

Non-strategic Buyers. In Figs. 1 and 4 the cumulative regret is shown for dif-
ferent experimental settings and different values for the problem horizon. Each
point in the graph shows the cumulative regret over T rounds for a problem of
horizon T averaged over 100 simulations. In all figures, the lines indicate the
mean and the shaded region indicates a 95% confidence interval. The results
indicate that the expected regret indeed grows as a sub-linear function of T and
that this pattern holds for both RAND seller and EXP3.P seller. An interesting
finding is that the regret for TS-NS is lower than UCB-NS: based on the theo-
retical analysis one would expect the opposite pattern. Figures 3 and 6 show the
scaled cumulative regret and provides further evidence that the expected regret
is a sub-linear function of the horizon T , as the curve shows a monotonically
decreasing pattern. Figures 2 and 5 show the cumulative utility against different
sellers. Here we observe that the utility tends to be higher if the seller uses P1,
which makes intuitive sense as this price set contains lower prices.

Strategic Buyers. Figures 7, 8, 9, 10, 11 and 12 show the same performance
metrics as for the non-strategic bidders. Figures 1 and 4 show that the level of
the expected regret for strategic bidders is higher compared to the non-strategic
bidders. Figures 9 and 12 again indicate that the expected regret is sub-linear in
T , as the curves show a monotonically decreasing pattern (from Fig. 7 it is hard
to tell). Thus, we observe sub-linear regret for both UCB-S and TS-S regardless
of the seller algorithm and this is in line with the theoretical analysis. If we
compare the cumulative utility in Figs. 8 and 11 with those in Figs. 2 and 5,
then we observe some interesting results. First, when strategic buyers are facing
RAND seller (Fig. 8), then we see that the cumulative utility is about 70%–
80% of the cumulative utility if non-strategic buyers are facing RAND seller
(Fig. 2). Second, we see that if the seller is using EXP3.P (i.e, a low-regret
learning algorithm), then the cumulative utility for strategic buyers is much
higher compared to the cumulative utility for non-strategic buyers. In scenario
P1 utilities are about 2.5–3 times higher and in scenario P2 utilities are about 2
times higher. The results for scenario P2 imply that, even when the lowest price
is very close to the unknown mean valuation (absolute distance at most 0.05), it
is still beneficial to act strategically. Additional experimental results when the
seller uses EXP3.S [4] can be found in the Appendix.

Fig. 1. RT with RAND
seller.

Fig. 2. UT with RAND
seller.

Fig. 3. RS
T with RAND

seller.
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Fig. 4. RT with EXP3.P
seller.

Fig. 5. UT with EXP3.P
seller.

Fig. 6. RS
T with EXP3.P

seller.

5.3 Explanation of Differences

In order to study the impact of the quality of feedback that the seller observes,
we give the seller full-information feedback instead of bandit feedback. More
specifically, we assume the seller uses the algorithm HEDGE. Figures 13, 14 and
15 show results for TS-S and TS-NS against HEDGE seller. Even with full-
information the results are qualitatively similar as before: the regret for the
strategic buyers is sub-linear and cumulative utility is much higher for strategic
buyers. Thus, the results indicate that the feedback type is not the main driver
for the observed patterns.

Figures 16 and 17 display the gap ν − pt for a problem with horizon T =
200000 averaged over the 100 simulation runs. If the seller is using a low-regret
algorithm in order to set prices and buyers are non-strategic, then we observe
that prices tend to increase towards the mean valuation ν. This effect is stronger
for HEDGE seller compared to EXP3.P seller and this is in line with expectations
as HEDGE uses full-information feedback. Furthermore, we see a qualitatively
similar pattern for the price sets P1 and P2, although the increase in price
with P2 is slightly larger. For HEDGE seller, we hardly see any difference for
different price sets. If buyers are strategic then we see the opposite pattern.
The algorithms for strategic buyers tend to lower the price over time and the
magnitude of this reduction depends on the price set of the seller (reduction for
P1 is larger than for P2).

Fig. 7. RT with RAND
seller.

Fig. 8. UT with RAND
seller.

Fig. 9. RS
T with RAND

seller.
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Fig. 10. RT with EXP3.P
seller.

Fig. 11. UT with EXP3.P
seller.

Fig. 12. RS
T with EXP3.P

seller.

Fig. 13. RT with HEDGE
seller.

Fig. 14. UT with HEDGE
seller.

Fig. 15. RS
T with HEDGE

seller.

Fig. 16. ν − pt with EXP3.P seller. Fig. 17. ν − pt with HEDGE seller.

However, even with price set P2 where the lowest prices are very close to ν,
strategic behaviour is beneficial and strategic buyers can induce prices that are
almost twice as far from ν.

6 Conclusion

This is paper we study repeated posted-price auctions with a single seller from
the perspective of a utility maximizing buyer that does not know the distribution
of his valuation. Previous work has only focused on the seller side and does not
study how buyers should make decisions, hence in this paper, we address this gap
in the literature. We study two types of buyers (strategic and non-strategic) and
derive sub-linear regret bounds that hold for all possible sequences of observed
prices. Our algorithms are based on ideas from UCB-type bandit algorithms and
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Thompson Sampling. Our experiments we show that, if the seller is using a low-
regret learning algorithm based on weights updating, then strategic buyers can
obtain much higher utilities compared to non-strategic buyers.

In practice, buyers have limited budgets for purchasing items. One direction
for future work is to investigate the impact of this on the problem. In particular,
it would be interesting to analyze how a budget constraint would affect the regret
guarantees derived in this paper and whether budget constraints make it easier
or harder to engage in strategic behavior.

Appendix

Section A contains proofs that are omitted from the main text. SectionB presents
some additional experimental results.

A Proofs for Sect. 4

A.1 Proof of Proposition 2

Proof. We can bound the regret as follows RT ≤ N · 1 +∑T
t=N+1 E {(ν − pt) · I {ν > pt > It}} +

∑T
t=N+1 E {(pt − ν) · I {ν < pt ≤ It}}.

Define A =
∑T

t=N+1 E {(ν − pt) · I {ν > pt > It}} and
B =

∑T
t=N+1 E {(pt − ν) · I {ν < pt ≤ It}}. We will bound each term sepa-

rately. Define the event Ft = {ν > pt > It}.

A ≤
T∑

t=N+1

E {(ν − pt) · I {Ft}} ≤
T∑

t=N+1

E {(ν − It) · I {Ft}}

≤
T∑

t=N+1

E {|ν − It| · I {Ft}} ≤
T∑

t=N+1

E

{
|(ν − v̄t) − (It − v̄t)|

∣
∣
∣ Ft

}
· P {Ft}

≤
T∑

t=N+1

E

{
|ν − v̄t|

∣
∣
∣ Ft

}
· P {Ft} +

T∑

t=N+1

E

{
|It − v̄t|

∣
∣
∣ Ft

}
· P {Ft}

≤
T∑

t=N+1

E {|ν − v̄t|} +
T∑

t=N+1

E {|It − v̄t|}

Using Hoeffding’s inequality we obtain, for t > N , that E {|ν − v̄t|} ≤ 2
T 4 +

2
√

2 log T
N . Using the fact that N = �cN · T

2
3  and that T − (N + 1) ≤ T , this

yields
∑T

t=N+1 E {|ν − v̄t|} ≤ 2
T 3 + T

2
3 2

√
2 log T

cN
. Using the fact that, for t > N ,

It − v̄t ∼ N (0, σ2) with σ2 = 1
nt

≤ 1
N , we obtain that E {|It − v̄t|} ≤

√
2

π·cN T− 1
3

and this yields
∑T

t=N+1 E {|It − v̄t|} ≤
√

2
π·cN T

2
3 .
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Define B = {t ∈ T | t > N, It ≥ pt}. Let Et = {It > ν}, let Ht = {|v̄t − ν| ≤√
2 log T

nt
} and let HC

t = {|v̄t − ν| >
√

2 log T
nt

}. Let v̂s denote the sample mean of

s i.i.d. draws from distribution D and let Îs ∼ N (v̂s,
1
s ). For term B we have,

B ≤
∑

t∈B
E {(pt − ν) · I {ν < pt ≤ It}} ≤

∑

t∈B
E {(It − ν) · I {It > ν}}

≤
∑

t∈B
E {(It − ν) · I {Et ∩ Ht}} +

∑

t∈B
E

{
(It − ν) · I

{
Et ∩ HC

t

}}
.

Define B1 =
∑

t∈B E {(It − ν) · I {Et ∩ Ht}}. We bound B1 as follows:

B1 ≤
∑

t∈B
E {|It − ν| · I {Ht}} ≤

∑

t∈B
E

{
|ν − It|

∣
∣
∣ Ht

}
· P {Ht}

≤
∑

t∈B
E

{
|It − v̄t|

∣
∣
∣ Ht

}
· P {Ht} +

∑

t∈B
E

{
|v̄t − ν|

∣
∣
∣ Ht

}
· P {Ht} .

Define B11 =
∑

t∈B E

{
|It − v̄t|

∣
∣
∣ Ht

}
· P {Ht} and

B12 =
∑

t∈B E

{
|v̄t − ν|

∣
∣
∣ Ht

}
· P {Ht}.

We bound B11 as follows:

B11 ≤
∑

t∈B
E

{
|It − v̄t|

∣
∣
∣ Ht

}
· P {Ht} +

∑

t∈B
E

{
|It − v̄t|

∣
∣
∣ HC

t

}
· P

{
HC

t

}

=
∑

t∈B
E{|It − v̄t|} =

∑

t∈B
E

{
|Înt

− v̂nt
|
}

≤
∑

t∈T
E

{
|Ît − v̂t|

}

≤
∑

t∈T

√
2
πt

≤
∫ T

0

√
2
πt

dt = 2

√
2
π

T .

We bound B12 as follows:

B12 ≤
∑

t∈B
E

{
|v̄t − ν|

∣
∣
∣ Ht

}
· P {Ht} ≤

∑

t∈B
E

{
|v̄t − ν|

∣
∣
∣ Ht

}

≤
∑

t∈T
E

{

|v̂t − ν|
∣
∣
∣ |v̂t − ν| ≤

√
2 log T

t

}

≤
∑

t∈T

√
2 log T

t
≤

∫ T

0

√
2 log T

t
dt ≤ 2

√
2 log T

√
T .

Define B2 =
∑

t∈B E
{
(It − ν) · I

{
Et ∩ HC

t

}}
. We bound B2 as follows:

B2 ≤
∑

t∈B
P

{
HC

t

}
≤

∑

t∈B
P

{

|v̂nt
− ν| >

√
2 log T

nt

}

≤
∑

t∈T
P

{

|v̂t − ν| >

√
2 log T

t

}

≤ T · 2
T 4

.
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Putting everything together we obtain RT ≤ N · 1 + 2
T 3 + 2T

2
3

√
2 log T

cN
+

√
2

π·cN T
2
3 + 2

√
2T
π + 2

√
2T log T + T · 2

T 4 . So, we conclude that RT ≤
O(T

2
3
√

log T ). 
�

A.2 Proof of Proposition 4

Proof. We will decompose the regret in two parts: the regret incurred in
rounds that are part of strategic cycles and rounds that are not. For an
arbitrary subset T ∗ ⊆ T , let RT,T ∗ =

∑
t∈T ∗ E {(ν − pt) · I {ν > pt > It}} +∑

t∈T ∗ E {(pt − ν) · I {ν < pt ≤ It}}. Let TS ⊆ T denote the indices of the rounds
that are part of strategic cycles and let TNS = T \ TS denote the indices of the
rounds that are not. Then we can write, RT = RT,TNS

+ RT,TS
.

For RT,TS
we have that RT,TS

≤ N2 +T ·pcycle ·L. This follows from the fact
that the expected number of triggered strategic cycles (after round N1 + N2) is
T · pcycle and the regret in every such cycle is at most L. Furthermore, the first
strategic cycle has length N2. For RT,TNS

we have that RT,TNS
≤ O(T

2
3
√

log T ).
This follows from the fact that RT,TNS

represents the regret after |TNS | ≤ T
rounds in a problem with horizon T , and by Proposition 2, this quantity is
bounded by O(T

2
3
√

log T ). By plugging in the values we get RT = RT,TNS
+

RT,TS
≤ O(T

2
3
√

log T ). 
�

A.3 Proof of Proposition 6

In this section we give a proof of Proposition 6. We first give a definition of a
pure weight-based algorithm.

Definition 7. Let there be K actions in total and let K = {1, . . . ,K}. Let wk,t ∈
R denote the weight of action k at the beginning of round t. Suppose that action
j is selected in round t and that the observed reward for action j in round t
equals rj,t. Let p̂k,t denote the probability that action k is selected in round t. An
algorithm A is called a pure weight-based algorithm if the following conditions
are satisfied:

1. if rj,t > 0, then wj,t+1 > wj,t.
2. if rj,t = 0, then wj,t+1 = wj,t.
3. if k �= j, then wk,t+1 = wk,t.
4.

∑
k∈K∗ p̂k,t = F (

∑
k∈K∗ wk,t/

∑K
k=1 wk,t) for all subsets K∗ ⊆ K, where

F (·) is an increasing function. That is, for all subsets K∗ ⊆ K, if a =
∑

k∈K∗ wk,t/
∑K

k=1 wk,t, b =
∑

k∈K∗ w′
k,t/

∑K
k=1 w′

k,t and a > b, then F (a) >
F (b).

Note that if p̂k,t = wk,t/
∑K

k=1 wk,t then condition 4 in Definition 7 is satis-
fied. Also note that EXP3 of [4] uses p̂k,t = (1 − γ)wk,t/

∑K
k=1 wk,t + γ/K and

this choice also satisfies condition 4 in Definition 7.
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Proof (of of Proposition 6 ). Let |P| = K, K = {1, . . . , K}, pmax = max{P}
and pmin = min{P}. Assume, without loss of generality, that P = {p1, . . . , pK}
and that 0 < pmin = p1 ≤ p2 ≤ · · · ≤ pK−1 ≤ pK = pmax. Let P̂ = {p ∈
P| p ≤ ptarget}. Let P̄ = {p ∈ P| p > ptarget}. Let K̂ = {k ∈ K| pk ∈ P̂}. Let
K̄ = {k ∈ K| pk ∈ P̄}. Let wk,t denote the weight of action k at the beginning
of round t.

We now proceed to prove the statement in the Proposition. We prove the
Proposition for L = 1. The case for general L follows by repeatedly applying the
result for L = 1.

We distinguish the following cases. Case 1: ptarget ≥ pmax. Case 2: ptarget <
pmin. Case 3: pmin ≤ ptarget < pmax.

– Case 1: ptarget ≥ pmax. In this case, p ≤ ptarget for all p ∈ P. Therefore,
P {pt+1 ≤ ptarget} = 1 and P {pt+2 ≤ ptarget} = 1 and the statement in the
Proposition holds.

– Case 2: ptarget < pmin. In this case, p > ptarget for all p ∈ P. Therefore,
P {pt+1 ≤ ptarget} = 0 and P {pt+2 ≤ ptarget} = 0 and the statement in the
Proposition holds.

– Case 3: pmin ≤ ptarget < pmax. There are 2 subcases to consider. Case A:
pt+1 > ptarget and Case B: pt+1 ≤ ptarget.

• In Case A, none of the weights get updated. This is true because none
of the prices in P̂ are selected since pt+1 > ptarget. By condition 3 in
Definition 7, it follows that none of the weights corresponding to the
prices in P̂ will get updated.
Also, none of the prices in P̄ will get a positive reward because they will
all be rejected by the buyer. By condition 2 in Definition 7, it follows that
none of the weights corresponding to the prices in P̄ will get updated. As
none of the weights will get updated after round t + 1 is completed, we
have that P {pt+2 ≤ ptarget} = P {pt+1 ≤ ptarget}. So we conclude that
the statement in the Proposition holds.

• In Case B, there exists a j ∈ {1, . . . , K} such that pt+1 = pj and the
reward for action j satisfies rj,t+1 > 0. This is true because the price
pt+1 = pj will be accepted by the buyer and the reward equals the price
pj which (by assumption) satisfies pj ≥ pmin > 0.
By condition 1 in Definition 7, it follows that wj,t+2 > wj,t+1. By condi-
tion 3 in Definition 7, it follows that wk,t+2 = wk,t+1 for all k �= j, since
these prices/actions are not selected in round t + 1.
This yields the following:

∑

k∈K̂

wk,t+2 >
∑

k∈K̂

wk,t+1 (2)

∑

k∈K̄

wk,t+2 =
∑

k∈K̄

wk,t+1 (3)
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K∑

k=1

wk,t+2 >

K∑

k=1

wk,t+1 (4)

Note that we also have:

P {pt+2 ≤ ptarget} = 1 − P {pt+2 > ptarget} , (5)

P {pt+1 ≤ ptarget} = 1 − P {pt+1 > ptarget} . (6)

By combining (3) and (4), and by condition 4 in Definition 7, we obtain
that P {pt+2 > ptarget} < P {pt+1 > ptarget}. As a consequence, by using
(5) and (6), it follows that P {pt+2 ≤ ptarget} > P {pt+1 ≤ ptarget}. So we
conclude that the statement in the Proposition holds.

The case for general L follows from repeatedly applying the above argument.
Note that the argument above works every initial weight vector. By repeat-
edly applying the above argument, one can show that P {pt+1 ≤ ptarget} ≤
P {pt+2 ≤ ptarget} ≤ · · · ≤ P {pt+L ≤ ptarget} ≤ P {pt+L+1 ≤ ptarget}. 
�

B Additional experiments

This part contains additional results related to the experiments in the main text.
We show results for non-strategic and strategic buyers against another (more
powerful) seller algorithm. We assume the seller uses the EXP3.S algorithm
from [4]. We will refer to this as EXP3.S Seller. This algorithm has sub-linear
regret with respect to action sequences with at most S switches. EXP3.S Seller
is tuned according to Corollary 8.2 in [4].

Figures 18, 19 and 20 display the results for non-strategic buyers and Figs. 21,
22 and 23 display the results for strategic buyers. In all figures, the lines indicate
the mean and the shaded region indicates a 95% confidence interval. The results
are qualitatively similar to those reported in the main text. The results indicate
that the proposed algorithms for strategic and non-strategic buyers have sub-
linear regret in all cases considered.

In scenario P1 utilities are about 2.0–2.5 times higher. In scenario P2 the
differences are smaller, which is in line with expectations since the lowest price
of the seller is very close to the unknown mean valuation. In general, the strategic
buyers tend have higher utilities.
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Fig. 18. RT with EXP3.S
seller.

Fig. 19. UT with EXP3.S
seller.

Fig. 20. RS
T with EXP3.S

seller.

Fig. 21. RT with EXP3.S
seller.

Fig. 22. UT with EXP3.S
seller.

Fig. 23. RS
T with EXP3.S

seller.
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