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Abstract. Unsupervised Domain Adaptation (UDA) has attracted a lot
of attention in the last ten years. The emergence of Domain Invariant
Representations (IR) has improved drastically the transferability of rep-
resentations from a labelled source domain to a new and unlabelled target
domain. However, a potential pitfall of this approach, namely the pres-
ence of label shift, has been brought to light. Some works address this
issue with a relaxed version of domain invariance obtained by weight-
ing samples, a strategy often referred to as Importance Sampling. From
our point of view, the theoretical aspects of how Importance Sampling
and Invariant Representations interact in UDA have not been studied in
depth. In the present work, we present a bound of the target risk which
incorporates both weights and invariant representations. Our theoreti-
cal analysis highlights the role of inductive bias in aligning distributions
across domains. We illustrate it on standard benchmarks by proposing
a new learning procedure for UDA. We observed empirically that weak
inductive bias makes adaptation more robust. The elaboration of stronger
inductive bias is a promising direction for new UDA algorithms.

Keywords: Unsupervised domain adaptation · Importance sampling ·
Invariant representations · Inductive bias

1 Introduction

Deploying machine learning models in the real world often requires the ability to
generalize to unseen samples i.e. samples significantly different from those seen
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during learning. Despite impressive performances on a variety of tasks, deep
learning models do not always meet these requirements [3,14]. For this reason,
out-of-distribution generalization is recognized as a major challenge for the reli-
ability of machine learning systems [1,2]. Domain Adaptation (DA) [28,30] is
a well-studied approach to bridge the gap between train and test distributions.
In DA, we refer to train and test distributions as source and target respectively
noted pS(x, y) and pT (x, y) where x are inputs and y are labels. The objective of
DA can be defined as learning a good classifier on a poorly sampled target domain
by leveraging samples from a source domain. Unsupervised Domain Adaptation
(UDA) assumes that only unlabelled data from the target domain is available
during training. In this context, a natural assumption, named Covariate shift
[19,33], consists in assuming that the mapping from the inputs to the labels is
conserved across domains, i.e. pT (y|x) = pS(y|x). In this context, Importance
Sampling (IS) performs adaptation by weighting the contribution of sample x in
the loss by w(x) = pT (x)/pS(x) [30]. Although IS seems natural when unlabelled
data from the target domain is available, the covariate shift assumption is not
sufficient to guarantee successful adaptation [5]. Moreover, for high dimensional
data [12] such as texts or images, the shift between pS(x) and pT (x) results from
non-overlapping supports leading to unbounded weights [20].

In this particular context, representations can help to reconcile non-
overlapping supports [5]. This seminal idea, and the corresponding theoretical
bound of the target risk from [5], has led to a wide variety of deep learning
approaches [13,23,24] which aim to learn a so-called domain invariant represen-
tation:

pS(z) ≈ pT (z) (1)

where z := ϕ(x) for a given non-linear representation ϕ. These assume that
the transferability of representations, defined as the combined error of an ideal
classifier, remains low during learning. Unfortunately, this quantity involves tar-
get labels and is thus intractable. More importantly, looking for strict invari-
ant representations, pS(z) = pT (z), hurts the transferability of representations
[20,22,36,40]. In particular, there is a fundamental trade-off between learning
invariant representations and preserving transferability in presence of label shift
(pT (y) �= pS(y)) [40]. To mitigate this trade-off, some recent works suggest to
relax domain invariance by weighting samples [8,9,36,37]. This strategy differs
with (1) by aligning a weighted source distribution with the target distribution:

w(z)pS(z) ≈ pT (z) (2)

for some weights w(z). We now have two tools, w and ϕ, which need to be
calibrated to obtain distribution alignment. Which one should be promoted?
How weights preserve good transferability of representations?

While most prior works focus on the invariance error for achieving adapta-
tion [13,23,24], this paper focuses on the transferability of representations. We
show that weights allow to design an interpretable generalization bound where
transferability and invariance errors are uncoupled. In addition, we discuss the



Robust Domain Adaptation: Representations, Weights and Inductive Bias 355

role of inductive design for both the classifier and the weights in addressing the
lack of labelled data in the target domain. Our contributions are the following:

1. We introduce a new bound of the target risk which incorporates both weights
and domain invariant representations. Two new terms are introduced. The
first is an invariance error which promotes alignment between a weighted
source distribution of representations and the target distribution of represen-
tations. The second, named transferability error, involves labelling functions
from both source and target domains.

2. We highlight the role of inductive bias for approximating the transferabil-
ity error. First, we establish connections between our bound and popular
approaches for UDA which use target predicted labels during adaptation, in
particular Conditional Domain Adaptation [24] and Minimal Entropy [15].
Second, we show that the inductive design of weights has an impact on rep-
resentation invariance.

3. We derive a new learning procedure for UDA. The particularity of this proce-
dure is to only minimize the transferability error while controlling represen-
tation invariance with weights. Since the transferability error involves target
labels, we use the predicted labels during learning.

4. We provide an empirical illustration of our framework on two DA benchmarks
(Digits and Office31 datasets). We stress-test our learning scheme by mod-
ifying strongly the label distribution in the source domain. While methods
based on invariant representations deteriorate considerably in this context,
our procedure remains robust.

2 Preliminaries

We introduce the source distribution i.e. data where the model is trained with
supervision and the target distribution i.e. data where the model is tested or
applied. Formally, for two random variables (X,Y ) on a given space X × Y,
we introduce two distributions: the source distribution pS(x, y) and the target
distribution pT (x, y). Here, labels are one-hot encoded i.e. y ∈ [0, 1]C such that∑

c yc = 1 where C is the number of classes. The distributional shift situation
is then characterized by pS(x, y) �= pT (x, y) [30]. In the rest of the paper, we
use the index notation S and T to differentiate source and target terms. We
define the hypothesis class H as a subset of functions from X to Y which is the
composition of a representation class Φ and a classifier class G, i.e. H = G ◦ Φ.
For the ease of reading, given a classifier g ∈ G and a representation ϕ ∈ Φ, we
note gϕ := g ◦ ϕ. Furthermore, in the definition z := ϕ(x), we refer indifferently
to z, ϕ, Z := ϕ(X) as the representation. For two given h and h′ ∈ H and � the
L2 loss �(y, y′) = ||y − y′||2, the risk in domain D ∈ {S, T} is noted:

εD(h) := ED[�(h(X), Y )] (3)

and εD(h, h′) := ED[�(h(X), h′(X))]. In the seminal works [5,27], a theoretical
limit of the target risk when using a representation ϕ has been derived:
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Bound 1 (Ben David et al.). Let dG(ϕ) = supg,g′∈G |εS(gϕ, g′ϕ) −
εT (gϕ, g′ϕ)| and λG(ϕ) = infg∈G{εS(gϕ) + εT (gϕ)}, ∀g ∈ G,∀ϕ ∈ Φ:

εT (gϕ) ≤ εS(gϕ) + dG(ϕ) + λG(ϕ) (4)

This generalization bound ensures that the target risk εT (gϕ) is bounded by
the sum of the source risk εS(gϕ), the disagreement risk between two classifiers
from representations dG(ϕ), and a third term, λG(ϕ), which quantifies the ability
to perform well in both domains from representations. The latter is referred to
as the adaptability error of representations. It is intractable in practice since it
involves labels from the target distribution. Promoting distribution invariance of
representations, i.e. pS(z) close to pT (z), results on a low dG(ϕ). More precisely:

dG(ϕ) ≤ 2 sup
d∈D

|pS(d(z) = 1) − pT (d(z) = 0)| (5)

where D is the so-called set of discriminators or critics which verifies D ⊃ {g⊕g′ :
(g, g′) ∈ G2} where ⊕ is the XOR function [13]. Since the domain invariance
term dG(ϕ) is expressed as a supremal value on classifiers, it is suitable for
domain adversarial learning with critic functions. Conversely, the adaptability
error λG(ϕ) is expressed as an infremal value. This ‘sup / inf’ duality induces an
unexpected trade-off when learning domain invariant representations:

Proposition 1 (Invariance hurts adaptability [20,40]). Let ψ be a repre-
sentation which is a richer feature extractor than ϕ: G ◦ ϕ ⊂ G ◦ ψ. Then,

dG(ϕ) ≤ dG(ψ) while λG(ψ) ≤ λG(ϕ) (6)

As a result of Proposition 1, the benefit of representation invariance must be
higher than the loss of adaptability, which is impossible to guarantee in practice.

3 Theory

To overcome the limitation raised in Proposition 1, we expose a new bound of the
target risk which embeds a new trade-off between invariance and transferability
(3.1). We show this new bound remains inconsistent with the presence of label
shift (3.2) and we expose the role of weights to address this problem (3.3).

3.1 A New Trade-Off Between Invariance and Transferability

Core Assumptions. Our strategy is to express both the transferability and
invariance as a supremum using Integral Probability Measure (IPM) computed
on a critic class. We thus introduce a class of critics suitable for our analysis. Let
F from Z → [−1, 1] and FC from Z → [−1, 1]C with the following properties:

– (A1) F and FC are symmetric (i.e. ∀f ∈ F ,−f ∈ F) and convex.
– (A2) G ⊂ FC and {f · f ′ ; f , f ′ ∈ FC} ⊂ F .
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– (A3) ∀ϕ ∈ Φ, fD(z) �→ ED[Y |ϕ(X) = z] ∈ FC .1

– (A4) For two distributions p and q on Z, p = q if and only if:

IPM(p, q;F) := sup
f∈F

{Ep[f(Z)] − Eq[f(Z)]} = 0 (7)

The assumption (A1) ensures that rather comparing two given f and f ′, it is
enough to study the error of some f ′′ = 1

2 (f − f ′) from FC . This brings back
a supremum on F2

C to a supremum on FC . The assumption (A2), combined
with (A1), ensures that an error �(f , f ′) can be expressed as a critic function
f ∈ F such that f = �(f , f ′). The assumption (A3) ensures that FC is rich
enough to contain label function from representations. Here, fD(z) = ED[Y |Z =
z] is a vector of probabilities on classes: fD(z)c = pD(Y = c|Z = z). The
last assumption (A4) ensures that the introduced IPM is a distance. Classical
tools verify these assumptions e.g. continuous functions; here IPM(p, q;F) is the
Maximum Mean Discrepancy [16] and one can reasonably believe that fS and fT
are continuous.

Invariance and Transferability as IPMs. We introduce here two important
tools that will guide our analysis:

– INV(ϕ), named invariance error, that aims at capturing the difference
between source and target distribution of representations, corresponding to:

INV(ϕ) := sup
f∈F

{ET [f(Z)] − ES [f(Z)]} (8)

– TSF(ϕ), named transferability error, that catches if the coupling between Z
and Y shifts across domains. For that, we use our class of functions FC and
we compute the IPM of Y · f(Z), where f ∈ FC and Y · f(Z) is the scalar
product2, between the source and the target domains:

TSF(ϕ) := sup
f∈FC

{ET [Y · f(Z)] − ES [Y · f(Z)]} (9)

A New Bound of the Target Risk. Using INV(ϕ) and TSF(ϕ), we can
provide a new bound of the target risk:

Bound 2. ∀g ∈ G and ∀ϕ ∈ Φ:

εT (gϕ) ≤ εS(gϕ) + 6 · INV(ϕ) + 2 · TSF(ϕ) + εT (fT ϕ) (10)

The proof is in Appendix A.1. In contrast with Bound 1 (Eq. 6), here two IPMs
are involved to compare representations (INV(ϕ) and TSF(ϕ)). A new term,
εT (fT ϕ), reflects the level of noise when fitting labels from representations. All
the trade-off between invariance and transferability is embodied in this term:
1 See Appendix A.1 for more details on this assumption.
2 The scalar product between Y and f(Z) emerges from the choice of the L2 loss.
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(a) λG(ϕ) adaptability in bound 1 from [5].
Inside class clusters, source and target rep-
resentations are separated.

(b) TSF(ϕ) transferability from bound 2
(contribution). Inside class clusters, source
and target representations are not distin-
guishable

Fig. 1. t-SNE [26] visualisation of representations when trained to minimize (a) adapt-
ability error λG(ϕ) from [5], (b) transferability error TSF(ϕ) introduced in the present
work. The task used is A→W of the Office31 dataset. Labels in the target domain are
used during learning in this specific experiment. For both visualisations of represen-
tations, we observe well-separated clusters associated to the label classification task.
Inside those clusters, we observe a separation between source and target representa-
tions for λG(ϕ). That means that representations embed domain information and thus
are not invariant. On the contrary, source and target representations are much more
overlapping inside of each cluster with TSF(ϕ), illustrating that this new term is not
conflictual with invariance.

Proposition 2. Let ψ a representation which is a richer feature extractor than
ϕ: F ◦ ϕ ⊂ F ◦ ψ and FC ◦ ϕ ⊂ FC ◦ ψ. ϕ is more domain invariant than ψ:

INV(ϕ) ≤ INV(ψ) while εT (fψ
T ψ) ≤ εT (fϕ

T ϕ) (11)

where fϕ
T (z) = ET [Y |ϕ(X) = z] and fψ

T (z) = ET [Y |ψ(X) = z]. Proof in
Appendix A.2.

Bounding the target risk using IPMs has two advantages. First, it allows to better
control the invariance/transferability trade-off since εT (fT ϕ) ≤ λG(ϕ). This is
paid at the cost of 4 · INV(ϕ) ≥ dG(ϕ) (see Proposition 7 in Appendix A.1).
Second, εT (fT ϕ) is source free and indicates whether there is enough information
in representations for learning the task in the target domain at first. This means
that TSF(ϕ) is only dedicated to control if aligned representations have the same
labels across domains. To illustrate the interest of our new transferability error,
we provide visualisation of representations (Fig. 1) when trained to minimize
the adaptability error λG(ϕ) from Bound 1 and the transferability error TSF(ϕ)
from Bound 2.

3.2 A Detailed View on the Property of Tightness

An interesting property of the bound, named tightness, is the case when
INV(ϕ) = 0 and TSF(ϕ) = 0 simultaneously. The condition of tightness of
the bound provides rich information on the properties of representations.
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Proposition 3. INV(ϕ) = TSF(ϕ) = 0 if and only if pS(y, z) = pT (y, z).

The proof is given in Appendix A.3. Two important points should be noted:

1. INV(ϕ) = 0 ensures that pS(z) = pT (z), using (A4). Similarly, TSF(ϕ) = 0
leads to pS(y, z) = pT (y, z). Since pS(y, z) = pT (y, z) implies pS(z) = pT (z),
INV(ϕ) does not bring more substantial information about representations
distribution than TSF(ϕ). More precisely, one can show that TSF(ϕ) ≥
INV(ϕ) noting that Y · f(Z) = f(z) when f(z) = (f(z), ..., f(z)) for f ∈ F .

2. Second, the equality pS(y, z) = pT (y, z) also implies that pS(y) = pT (y).
Therefore, in the context of label shift (when pS(y) �= pT (y)), the transfer-
ability error cannot be null. This is a big hurdle since it is clearly established
that most real world UDA tasks exhibit some label shift. This bound high-
lights the fact that representation invariance alone can not address UDA in
complex settings such as the label shift one.

3.3 Reconciling Weights and Invariant Representations

Based on the interesting observations from [20,40] and following the line of study
that proposed to relax invariance using weights [9,36–38], we propose to adapt
the bound by incorporating weights. More precisely, we study the effect of mod-
ifying the source distribution pS(z) to a weighted source distribution w(z)pS(z)
where w is a positive function which verifies ES [w(Z)] = 1. By replacing pS(z)
by w(z)pS(z) (distribution referred as w ·S) in Bound 2, we obtain a new bound
of the target risk incorporating both weights and representations:

Bound 3. ∀g ∈ G,∀w : Z → R
+ such that ES [w(z)] = 1:

εT (gϕ) ≤ εw·S(gϕ) + 6 · INV(w,ϕ) + 2 · TSF(w,ϕ) + εT (fT ϕ)

where INV(w,ϕ) := sup
f∈F

{ET [f(Z)] − ES [w(Z)f(Z)]} and TSF(w,ϕ) := sup
f∈FC

{
ET [Y · f(Z)] − ES [w(Z)Y · f(Z)]}.
As for the previous Bound 2, the property of tightness, i.e. when invariance and
transferability are null simultaneously, leads to interesting observations:

Proposition 4. INV(w,ϕ) = TSF(w,ϕ) = 0 if and only if w(z) = pT (z)
pS(z) and

ET [Y |Z = z] = ES [Y |Z = z]. The proof is given in Appendix A.4.

This proposition means that the nullity of invariance error, i.e. INV(w,ϕ) = 0,
implies distribution alignment, i.e. w(z)pS(z) = pT (z). This is of strong interest
since both representations and weights are involved for achieving domain invari-
ance. The nullity of the transferability error, i.e. TSF(w,ϕ) = 0, implies that
labelling functions, f : z �→ E[Y |Z = z], are conserved across domains. Further-
more, the equality ET [Y |Z] = ES [Y |Z] interestingly resonates with a recent line
of work called Invariant Risk Minimization (IRM) [2]. Incorporating weights in
the bound thus brings two benefits:
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1. First, it raises the inconsistency issue of invariant representations in presence
of label shift, as mentioned in Sect. 3. Indeed, tightness is not conflicting with
label shift.

2. TSF(w,ϕ) and INV(w,ϕ) have two distinct roles: the former promotes
domain invariance of representations while the latter controls whether aligned
representations share the same labels across domains.

4 The Role of Inductive Bias

Inductive Bias refers to the set of assumptions which improves generalization
of a model trained on an empirical distribution. For instance, a specific neural
network architecture or a well-suited regularization are prototypes of inductive
biases. First, we provide a theoretical analysis of the role of inductive bias for
addressing the lack of labelling data in the target domain (4.1), which is the
most challenging part of Unsupervised Domain Adaptation. Second, we describe
the effect of weights to induce invariance property on representations (4.2).

4.1 Inductive Design of a Classifier

General Formulation. Our strategy consists in approximating target labels
error through a classifier g̃ ∈ G. We refer to the latter as the inductive design
of the classifier. Our proposition follows the intuitive idea which states that the
best source classifier, gS := arg ming∈G εS(gϕ), is not necessarily the best target
classifier i.e. gS �= arg ming∈G εT (gϕ). For instance, a well-suited regularization
in the target domain, noted ΩT (g) may improve performance, i.e. setting g̃ :=
arg ming∈G εS(gϕ)+λ ·ΩT (g) may lead to εT (g̃ϕ) ≤ εT (gSϕ). We formalize this
idea through the following definition:

Definition 5 (Inductive design of a classifier). We say that there is an
inductive design of a classifier at level 0 < β ≤ 1 if for any representations ϕ,
noting gS = arg ming∈G εS(gϕ), we can determine g̃ such that:

εT (g̃ϕ) ≤ βεT (gSϕ) (12)

We say the inductive design is β−strong when β < 1 and weak when β = 1.

In this definition, β does not depend of ϕ, which is a strong assumption, and
embodies the strength of the inductive design. The closer to 1 is β, the less
improvement we can expect using the inductive classifier g̃. We now study the
impact of the inductive design of a classifier in our previous Bound 3. Thus, we
introduce the approximated transferability error:

T̂SF(w,ϕ, g̃) = sup
f∈FC

{ET [g̃(Z) · f(Z)] − ES [w(Z)Y · f(Z)]} (13)

leading to a bound of the target risk where transferability is target labels free:



Robust Domain Adaptation: Representations, Weights and Inductive Bias 361

Bound 4 (Inductive Bias and Guarantee). Let ϕ ∈ Φ and w : Z → R
+

such that ES [w(z)] = 1 and a β−strong inductive classifier g̃ and ρ := β
1−β then:

εT (g̃ϕ) ≤ ρ
(
εw·S(gw·Sϕ) + 6 · INV(w,ϕ) + 2 · T̂SF(w,ϕ, g̃) + εT (fT ϕ)

)
(14)

The proof is given in Appendix A.5. Here, the target labels are only involved in
εT (fT ϕ) which reflects the level of noise when fitting labels from representations.
Therefore, transferability is now free of target labels. This is an important result
since the difficulty of UDA lies in the lack of labelled data in the target domain.
It is also interesting to note that the weaker the inductive bias (β → 1), the
higher the bound and vice versa.

The Role of Predicted Labels. Predicted labels play an important role in
UDA. In light of the inductive classifier, this means that g̃ is simply set as
gw·S . This is a weak inductive design (β = 1), thus, theoretical guarantee from
Bound 4 is not applicable. However, there is empirical evidence that showed
that predicted labels help in UDA [15,24]. It suggests that this inductive design
may find some strength in the finite sample regime. A better understanding of
this phenomenon is left for future work (See Appendix B). In the rest of the
paper, we study this weak inductive bias by establishing connections between
T̂SF(w,ϕ, gS) and popular approaches of the literature.

Connections with Conditional Domain Adaptation Network. CDAN [24] aims
to align the joint distribution (Ŷ , Z) across domains, where Ŷ = gSϕ(X) are
estimated labels. It is performed by exposing the tensor product between Ŷ and
Z to a discriminator. It leads to substantial empirical improvements compared
to Domain Adversarial Neural Networks (DANN) [13]. We can observe that it
is a similar objective to T̂SF(w,ϕ, gS) in the particular case where w(z) = 1.

Connections with Minimal Entropy. MinEnt [15] states that an adapted classi-
fier is confident in prediction on target samples. It suggests the regularization:
ΩT (g) := H(Ŷ |Z) = EZ∼pT

[−g(Z) · log g(Z)] where H is the entropy. If labels
are smooth enough (i.e. it exists α such that α

C−1 ≤ ES [Ŷ |Z] ≤ 1−α), MinEnt is

a lower bound of transferability: T̂SF(w,ϕ, gs) ≥ η (HT (gSϕ) − CEw·S(Y, gSϕ))
for some η > 0 and CEw·S(gSϕ, Y ) is the cross-entropy between gSϕ and Y on
w(z)pS(z) (see Appendix A.6).

4.2 Inductive Design of Weights

While the bounds introduced in the present work involve weights in the repre-
sentation space, there is an abundant literature that builds weights in order to
relax the domain invariance of representations [8,9,36,37]. We study the effect
of inductive design of w on representations. To conduct the analysis, we consider
there is a non-linear transformation ψ from Z to Z ′ and we assume that weights
are computed in Z ′, i.e. w is a function of z′ := ψ(z) ∈ Z ′. We refer to this as
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inductive design of weights. For instance, in the particular case where ψ = gS ,
weights are designed as w(ŷ) = pT (Ŷ = ŷ)/pS(Ŷ = ŷ) [9] where Ŷ = gϕ(X). In
[24], entropy conditioning is introduced by designing weights w(z′) ∝ 1 + e−z′

where z′ = − 1
C

∑
1≤c≤C gS,c log(gS,c) is the predictions entropy. The inductive

design of weights imposes invariance property on representations:

Proposition 6 (Inductive design of w and invariance). Let ψ : Z → Z ′

such that F ◦ψ ⊂ F and FC ◦ψ ⊂ FC . Let w : Z ′ → R
+ such that ES [w(Z ′)] = 1

and we note Z ′ := ψ(Z). Then, INV(w,ϕ) = TSF(w,ϕ) = 0 if and only if:

w(z′) =
pT (z′)
pS(z′)

and pS(z|z′) = pT (z|z′) (15)

while both fϕ
S = fϕ

T and fψ
S = fψ

T . The proof is given in Appendix A.7.

This proposition shows that the design of w has a significant impact on the
property of domain invariance of representations. Furthermore, both labelling
functions are conserved. In the rest of the paper we focus on weighting in the
representation space which consists in:

w(z) =
pT (z)
pS(z)

(16)

Since it does not leverage any transformations of representations ψ, we refer
to this approach as a weak inductive design of weights. It is worth noting this
inductive design controls naturally the invariance error i.e. INV(w,ϕ) = 0.

5 Towards Robust Domain Adaptation

In this section, we expose a new learning procedure which relies on weak induc-
tive design of both weights and the classifier. This procedure focuses on the
transferability error since the inductive design of weights naturally controls the
invariance error. Our learning procedure is then a bi-level optimization problem,
named RUDA (Robust UDA):

⎧
⎨

⎩

ϕ� = arg min
ϕ∈Φ

εw(ϕ)·S(gw·Sϕ) + λ · T̂SF(w,ϕ, gw·S)

such that w(ϕ) = arg min
w

INV(w,ϕ)
(RUDA)

where λ > 0 is a trade-off parameter. Two discriminators are involved here. The
former is a domain discriminator d trained to map 1 for source representations
and 0 for target representations by minimizing a domain adversarial loss:

LINV(θd|θϕ) =
1

nS

nS∑

i=1

− log(d(zS,i)) +
1

nT

nT∑

i=1

− log(1 − d(zT,i)) (17)

where θd and θϕ are respectively the parameters of d and ϕ, and nS and nT

are respectively the number of samples in the source and target domains. Set-
ting weights wd(z) := (1 − d(z))/d(z) ensures that INV(w,ϕ) is minimal (See
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Appendix C.2). The latter, noted d, maps representations to the label space
[0, 1]C in order to obtain a proxy of the transferability error expressed as a
domain adversarial objective (See Appendix C.1):

LTSF(θϕ, θd|θd, θg) = inf
d

{
1

nS

nS∑

i=1

−wd(zS,i)g(zS,i) · log(d(zS,i))

+
1

nT

nT∑

i=1

−g(zT,i) · log(1 − d(zT,i))

}

(18)

where θd and θg are respectively parameters of d and g. Furthermore, we use
the cross-entropy loss in the source weighted domain for learning θg:

Lc(θg, θϕ|θd) =
1

nS

nS∑

i=1

−wd(zS,i)yS,i · log(g(zS,i)) (19)

Finally, the optimization is then expressed as follows:
⎧
⎨

⎩

θ�
ϕ = arg minθϕ

Lc(θg, θϕ|θd) + λ · LTSF(θϕ, θd|θd, θg)
θg = arg minθg

Lc(θg, θϕ|θd)
θd = arg minθd

LINV(θd|θϕ)
(20)

Losses are minimized by stochastic gradient descent (SGD) where in practice infd

and infd are gradient reversal layers [13]. The trade-off parameter λ is pushed
from 0 to 1 during training. We provide an implementation in Pytorch [29] based
on [24]. The algorithm procedure is described in Appendix C.5.

6 Experiments

6.1 Setup

Datasets. We investigate two digits datasets: MNIST and USPS transfer tasks
MNIST to USPS (M→U) and USPS to MNIST (U→M). We used standard
train/test split for training and evaluation. Office-31 is a dataset of images
containing objects spread among 31 classes captured from different domains:
Amazon, DSLR camera and a Webcam camera. DSLR and Webcam are
very similar domains but images differ by their exposition and their quality.

Label Shifted Datasets. We stress-test our approach by investigating more chal-
lenging settings where the label distribution shifts strongly across domains. For
the Digits dataset, we explore a wide variety of shifts by keeping only 5%,
10%, 15% and 20% of digits between 0 and 5 of the original dataset (refered
as % × [0 ∼ 5]). We have investigated the tasks U→M and M→U. For the
Office-31 dataset, we explore the shift where the object spread in classes 16
to 31 are duplicated 5 times (refered as 5 × [16 ∼ 31]). Shifting distribution in
the source domain rather than the target domain allows to better appreciate
the drop in performances in the target domain compared to the case where the
source domain is not shifted.
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Comparison with the State-of-the-Art. For all tasks, we report results from
DANN [13] and CDAN [24]. To study the effect of weights, we name our method
RUDA when weights are set to 1, and RUDAw when weights are used. For the
non-shifted datasets, we report a weighted version of CDAN (entropy condi-
tioning CDAN+E [24]). For the label shifted datasets, we report IWAN [38],
a weighted DANN where weights are learned from a second discriminator, and
CDANw a weighted CDAN where weights are added in the same setting than
RUDAw.

Training Details. Models are trained during 20.000 iterations of SGD. We report
end of training accuracy in the target domain averaged on five random seeds. The
model for the Office-31 dataset uses a pretrained ResNet-50 [18]. We used the
same hyper-parameters than [24] which were selected by importance weighted
cross-validation [35]. The trade-off parameters λ is smoothly pushed from 0 to
1 as detailed in [24]. To prevent from noisy weighting in early learning, we used
weight relaxation: based on the sigmoid output of discriminator d(z) = σ(d̃(z)),
we used dτ (z) = σ(d̃(z/τ)) and weights w(z) = (1−dτ (z))/dτ (z). τ is decreased
to 1 during training: τ = τmin + 2(τmax − τmin)/(1 + exp(−αp)) where τmax =
5, τmin = 1, p ∈ [0, 1] is the training progress. In all experiments, α is set to 5
(except for 5% × [0 ∼ 5] where α = 15, see Appendix C.3 for more details).

Table 1. Accuracy (%) on the Office-31 dataset.

Method A→W W→A A→D D→A D→W W→D Avg

Standard ResNet-50 68.4 ± 0.2 60.7 ± 0.3 68.9 ± 0.2 62.5 ± 0.3 96.7 ± 0.1 99.3 ± 0.1 76.1

DANN 82.0 ± 0.4 67.4 ± 0.5 79.7 ± 0.4 68.2 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 82.2

CDAN 93.1 ± 0.2 68.0 ± 0.4 89.8 ± 0.3 70.1 ± 0.4 98.2 ± 0.2 100. ± 0.0 86.6

CDAN+E 94.1 ± 0.1 69.3 ± 0.4 92.9 ± 0.2 71.0 ± 0.3 98.6 ± 0.1 100. ± 0.0 87.7

RUDA 94.3 ± 0.3 70.7 ± 0.3 92.1 ± 0.3 70.7 ± 0.1 98.5 ± 0.1 100. ± 0.0 87.6

RUDAw 92.0 ± 0.3 67.9 ± 0.3 91.1 ± 0.3 70.2 ± 0.2 98.6 ± 0.1 100. ± 0.0 86.6

5 × [16 ∼ 31] ResNet-50 72.4 ± 0.7 59.5 ± 0.1 79.0 ± 0.1 61.6 ± 0.3 97.8 ± 0.1 99.3 ± 0.1 78.3

DANN 67.5 ± 0.1 52.1 ± 0.8 69.7 ± 0.0 51.5 ± 0.1 89.9 ± 0.1 75.9 ± 0.2 67.8

CDAN 82.5 ± 0.4 62.9 ± 0.6 81.4 ± 0.5 65.5 ± 0.5 98.5 ± 0.3 99.8 ± 0.0 81.6

RUDA 85.4 ± 0.8 66.7 ± 0.5 81.3 ± 0.3 64.0 ± 0.5 98.4 ± 0.2 99.5 ± 0.1 82.1

IWAN 72.4 ± 0.4 54.8 ± 0.8 75.0 ± 0.3 54.8 ± 1.3 97.0 ±0.0 95.8 ±0.6 75.0

CDANw 81.5 ± 0.5 64.5 ± 0.4 80.7 ± 1.0 65 ± 0.8 98.7 ± 0.2 99.9 ± 0.1 81.8

RUDAw 87.4 ± 0.2 68.3 ± 0.3 82.9 ± 0.4 68.8 ± 0.2 98.7 ± 0.1 100. ± 0.0 83.8

6.2 Results

Unshifted Datasets. On both Office-31 (Table 1) and Digits (Table 2), RUDA
performs similarly than CDAN. Simply performing the scalar product allows
to achieve results obtained by multi-linear conditioning [24]. This presents a
second advantage: when domains exhibit a large number of classes, e.g. in Office-
Home (See Appendix), our approach does not need to leverage a random layer.
It is interesting to observe that we achieve performances close to CDAN+E
on Office-31 while we do not use entropy conditioning. However, we observe
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Table 2. Accuracy (%) on the Digits dataset.

Method

Shift of [0 ∼ 5]

U→ M M→U Avg

5% 10% 15% 20% 100% Avg 5% 10% 15% 20% 100% Avg

DANN 41.7 51.0 59.6 69.0 94.5 63.2 34.5 51.0 59.6 63.6 90.7 59.9 63.2

CDAN 50.7 62.2 82.9 82.8 96.9 75.1 32.0 69.7 78.9 81.3 93.9 71.2 73.2

RUDA 44.4 58.4 80.0 84.0 95.5 72.5 34.9 59.0 76.1 78.8 93.3 68.4 70.5

IWAN 73.7 74.4 78.4 77.5 95.7 79.9 72.2 82.0 84.3 86.0 92.0 83.3 81.6

CDANw 68.3 78.8 84.9 88.4 96.6 83.4 69.4 80.0 83.5 87.8 93.7 82.9 83.2

RUDAw 78.7 82.8 86.0 86.9 93.9 85.7 78.7 87.9 88.2 89.3 92.5 87.3 86.5

a substantial drop in performance when adding weights, but still get results
comparable with CDAN in Office-31. This is a deceptive result since those
datasets naturally exhibit label shift; one can expect to improve the baselines
using weights. We did not observe this phenomenon on standard benchmarks.

Label Shifted Datasets. We stress-tested our approach by applying strong label
shifts to the datasets. First, we observe a drop in performance for all methods
based on invariant representations compared with the situation without label
shift. This is consistent with works that warn the pitfall of domain invariant
representations in presence of label shift [20,40]. RUDA and CDAN perform
similarly even in this setting. It is interesting to note that the weights improve
significantly RUDA results (+1.7% on Office-31 and +16.0% on Digits both
in average) while CDAN seems less impacted by them (+0.2% on Office-31 and
+10.0% on Digits both in average).

Should we Use Weights? To observe a significant benefit of weights, we had to
explore situations with strong label shift e.g. 5% and 10% × [0 ∼ 5] for the
Digits dataset. Apart from this cases, weights bring small gain (e.g. + 1.7% on
Office-31 for RUDA) or even degrade marginally adaptation. Understanding
why RUDA and CDAN are able to address small label shift, without weights, is
of great interest for the development of more robust UDA.

7 Related Work

This paper makes several contributions, both in terms of theory and algorithm.
Concerning theory, our bound provides a risk suitable for domain adversarial
learning with weighting strategies. Existing theories for non-overlapping sup-
ports [4,27] and importance sampling [11,30] do not explore the role of repre-
sentations neither the aspect of adversarial learning. In [5], analysis of represen-
tation is conducted and connections with our work is discussed in the paper.
The work [20] is close to ours and introduces a distance which measures sup-
port overlap between source and target distributions under covariate shift. Our
analysis does not rely on such assumption, its range of application is broader.

Concerning algorithms, the covariate shift adaptation has been well-studied
in the literature [17,19,35]. Importance sampling to address label shift has also



366 V. Bouvier et al.

been investigated [34], notably with kernel mean matching [39] and Optimal
Transport [31]. Recently, a scheme for estimating labels distribution ratio with
consistency guarantee has been proposed [21]. Learning domain invariant repre-
sentations has also been investigated in the fold of [13,23] and mainly differs by
the metric chosen for comparing distribution of representations. For instance,
metrics are domain adversarial (Jensen divergence) [13,24], IPM based such as
MMD [23,25] or Wasserstein [6,32]. Our work provides a new theoretical support
for these methods since our analysis is valid for any IPM.

Using both weights and representations is also an active topic, namely for
Partial Domain Adaptation (PADA) [9], when target classes are strict subset of
the source classes, or Universal Domain Adaptation [37], when new classes may
appear in the target domain. [9] uses an heuristic based on predicted labels for
re-weighting representations. However, it assumes they have a good classifier at
first in order to obtain cycle consistent weights. [38] uses a second discriminator
for learning weights, which is similar to [8]. Applying our framework to Partial
DA and Universal DA is an interesting future direction. Our work shares strong
connections with [10] (authors were not aware of this work during the elaboration
of this paper) which uses consistent estimation of true labels distribution from
[21]. We suggest a very similar empirical evaluation and we also investigate the
effect of weights on CDAN loss [24] with a different weighting scheme since our
approach computes weights in the representation space. All these works rely on
an assumption at some level, e.g. Generalized Label Shift in [10], when designing
weighting strategies. Our discussion on the role of inductive design of weights
may provide a new theoretical support for these approaches.

8 Conclusion

The present work introduces a new bound of the target risk which unifies weights
and representations in UDA. We conduct a theoretical analysis of the role of
inductive bias when designing both weights and the classifier. In light of this anal-
ysis, we propose a new learning procedure which leverages two weak inductive
biases, respectively on weights and the classifier. To the best of our knowledge,
this procedure is original while being close to straightforward hybridization of
existing methods. We illustrate its effectiveness on two benchmarks. The empir-
ical analysis shows that weak inductive bias can make adaptation more robust
even when stressed by strong label shift between source and target domains. This
work leaves room for in-depth study of stronger inductive bias by providing both
theoretical and empirical foundations.
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A Proofs

We provide full proof of bounds and propositions presented in the paper.

A.1 Proof of Bound 2

We give a proof of Bound 2 which states:

εT (gϕ) ≤ εS(gϕ) + 6 · INV(ϕ) + 2 · TSF(ϕ) + εT (fT ϕ) (21)

First, we prove the following lemma:

Bound 5 (Revisit of Theorem 1). ∀g ∈ G:
εT (gϕ) ≤ εS(gϕ) + dFC

(ϕ) + εT (fSϕ, fT ϕ) + εT (fT ϕ) (22)

Proof. This is simply obtained using triangular inequalites:

εT (gϕ) ≤ εT (fT ϕ) + εT (gϕ, fT ϕ)
≤ εT (fT ϕ) + εT (gϕ, fSϕ) + εT (fSϕ, fT ϕ)

Now using (A3) (fS ∈ FC):

|εT (gϕ, fSϕ) − εS(gϕ, fSϕ)| ≤ sup
f∈FC

|εT (gϕ, fϕ) − εS(gϕ, fϕ)| = dFC
(ϕ) (23)

which shows that: εT (gϕ) ≤ εS(gϕ, fS) + dFC
(ϕ) + εT (fSϕ, fT ϕ) + εT (fT ϕ) and

we use the property of conditional expectation εS(gϕ, fSϕ) ≤ εS(gϕ). �

Second, we bound dFC
(ϕ).

Proposition 7. dFC
(ϕ) ≤ 4 · INV(ϕ).

Proof. We remind that dFC
(ϕ) = supf ,f ′∈FC

|ES [||fϕ(X) − f ′ϕ(X)||2] −
ET [||fϕ(X)−f ′ϕ(X)||2]|. Since (A1) ensures f ′ ∈ FC , −f ′ ∈ FC , then 1

2 (f −f ′) =
f ′′ ∈ FC and finally dFC

(ϕ) ≤ 4 supf ′′∈FC
|ES [||f ′′ϕ||2] − ET [||f ′′ϕ||2]|. Further-

more, (A2) ensures that {||f ′′ϕ||2} ⊂ {fϕ, f ∈ F} which leads finally to the
announced result. �

Third, we bound εT (fSϕ, fT ϕ).

Proposition 8. εT (fSϕ, fT ϕ) ≤ 2 · INV(ϕ) + 2 · TSF(ϕ).

Proof. We note Δ = fT − fS and we omit ϕ for the ease of reading

εT (fS , fT ) = ET [||Δ||2]
= ET [fT · Δ] − ET [fS · Δ]
= (ET [fT · Δ] − ES [fS · Δ]) + (ES [fS · Δ] − ET [fS · Δ])
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Since fT does not intervene in ES [fS ·Δ]−ET [fS ·Δ], we show this term behaves
similarly than INV(ϕ). First,

ES [fS · Δ] − ET [fS · Δ] ≤ 2 sup
f∈FC

ES [fS · f ] − ET [fS · f ] (Using(A1))

≤ 2 sup
f ,f ′∈FC

ES [f ′ · f ] − ET [f ′ · f ] (Using(A3))

≤ 2 sup
f∈F

ES [f ] − ET [f ] (Using(A2))

= 2 · INV(ϕ) (24)

Second,

ET [fT · Δ] − ES [fS · Δ] ≤ 2 supET [fT · f ] − ES [fS · f ] = 2 · TSF(ϕ)
(Using(A1))

which finishes the proof. �

Note that the fact fS , fT ∈ FC is not of the utmost importance since we can
bound:

εT (gϕ) ≤ εS(gϕ, f̂S) + dFC
(ϕ) + εT (f̂S , f̂T ) + εT (f̂T ) (25)

where f̂D = arg minf∈FC
εD(v). The only change emerges in the transferability

error which becomes:

TSF(w,ϕ) = sup
f∈FC

ET [f̂T ϕ · fϕ] − ES [f̂Sϕ · fϕ] (26)

A.2 Proof of the New Invariance Transferability Trade-Off

Proposition 9. Let ψ a representation which is a richer feature extractor than
ϕ: F ◦ ϕ ⊂ F ◦ ψ and FC ◦ ϕ ⊂ FC ◦ ψ. Then, ϕ is more domain invariant than
ψ:

INV(ϕ) ≤ INV(ψ) while εT (fψ
T ψ) ≤ εT (fϕ

T ϕ) (27)

where fϕ
T (z) = ET [Y |ϕ(X) = z] and fψ

T (z) = ET [Y |ψ(X) = z].

Proof. First, INV(ϕ) ≤ INV(ψ) a simple property of the supremum. The defi-
nition of the conditional expectation leads to εT (fψ

T ψ) = inff∈Fm
εT (fψ) where

Fm is the set of measurable functions. Since (A3) ensures that fψ
T ∈ FC then

εT (fψ
T ψ) = inff∈FC

εT (fψ). The rest is simply the use of the property of infre-
mum. �

A.3 Proof of the Tightness of Bound 2

Proposition 10. INV(ϕ) + TSF(ϕ) = 0 if and only if pS(y, z) = pT (y, z).
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Proof. First, INV(ϕ) = 0 implies pT (z) = pS(z) which is a direct applica-
tion of (A4). Now TSF(ϕ) = supf∈FC

ES [fS(Z) · f(Z)] − ET [fT (Z) · f(Z)] =
supf∈FC

ES [fS(Z) · f(Z)] − ES [fT (Z) · f(Z)] = supf∈FC
ES [(fS − fT )(Z) · f(Z)].

For the particular choice of f = 1
2 (fS − fT ) leads to ES [||fS − fT ||2] then

fs = fT , pS almost surely. All combined leads to pS(y, z) = pT (y, z). The
converse is trivial. Note that TSF(ϕ) = 0 is enough to show pS(z) = pT (z)
by choosing f(z) = (f(z), ..., f(z)) (C times f(z)) and Y · f(Z) = f(Z) then
TSF(ϕ) ≥ supf∈F ES [f(Z)] − ET [f(Z)]. �

A.4 Proof of the Tightness of Bound 3

Proposition 11. INV(w,ϕ) + TSF(w,ϕ) = 0 if and only if w(z) = pT (z)
pS(z) and

ET [Y |Z = z] = ES [Y |Z = z].

Proof. First, INV(w,ϕ) = 0 implies pT (z) = w(z)pS(z) then which is a direct
application of (A4). Now TSF(w,ϕ) = supf∈FC

ES [w(z)fS(Z)·f(Z)]−ET [fT (Z)·
f(Z)] = supf∈FC

ES [w(z)fS(Z) ·f(Z)]−ES [w(z)fT (Z) ·f(Z)] = supf∈FC
ES [(fS −

fT )(Z) · f(Z)]. For the particular choice of f = 1
2 (fS − fT ) leads to ES [||fS − fT ||2]

then fs = fT , pT almost surely. The converse is trivial. �

A.5 Proof of Bound 4

Bound 6 (Inductive Bias and Guarantee). Let ϕ ∈ Φ and w : Z → R
+

such that ES [w(z)] = 1 and a β−strong inductive classifier g̃, then:

εT (g̃ϕ) ≤ β

1 − β

(
εw·S(gw·Sϕ) + 6 · INV(w,ϕ) + 2 · T̂SF(w,ϕ, g̃) + εT (fT ϕ)

)

Proof. We prove the bound in the case where w = 1, the general case is then
straightforward. First, we reuse Bound 5 with a new triangular inequality involv-
ing the inductive classifier g̃:

εT (gϕ) ≤ εS(gϕ) + dFC
(ϕ) + εT (fSϕ, g̃ϕ) + εT (g̃ϕ, fT ϕ) + εT (fT ϕ) (28)

where εT (g̃ϕ, fT ϕ) ≤ εT (g̃ϕ). Now, following previous proofs, we can show that:

εT (fSϕ, g̃ϕ) ≤ 2 · T̂SF(ϕ, g̃) + 2 · INV(ϕ) (29)

Then,

εT (gϕ) ≤ εS(gϕ) + 6 · INV(ϕ) + 2 · T̂SF(ϕ, g̃) + εT (g̃ϕ) + εT (fT ϕ) (30)

This bound is true for any g and in particular for the best source classifier we
have:

εT (gSϕ) ≤ εS(gSϕ) + 6 · INV(w,ϕ) + 2 · T̂SF(w,ϕ, g̃) + εT (g̃ϕ) + εT (fT ϕ) (31)
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then the assumption of β−strong inductive bias is εT (g̃ϕ) ≤ βεT (gSϕ) which
leads to

εT (gSϕ) ≤ εS(gSϕ)+6 ·INV(w,ϕ)+2 ·T̂SF(w,ϕ, g̃)+βεT (gSϕ)+εT (fT ϕ) (32)

Now we have respectively εT (gSϕ) and βεT (gSϕ) at left and right of the inequal-
ity. Since 1 − β > 0, we have:

εT (gSϕ) ≤ 1
1 − β

(
εS(gSϕ) + 6 · INV(w,ϕ) + 2 · T̂SF(w,ϕ, g̃) + εT (fT ϕ)

)

(33)
And finally:

εT (g̃ϕ) ≤ βεT (gSϕ) ≤ β

1 − β

(
εS(gSϕ) + 6 · INV(w, ϕ) + 2 · T̂SF(w, ϕ, g̃) + εT (fT ϕ)

)
(34)

finishing the proof. �

A.6 MinEnt [15] is a Lower Bound of Transferability

Proof. We consider a label smooth classifier g ∈ G i.e. there is 0 < α < 1 such
that:

α

C − 1
≤ g(z) ≤ 1 − α (35)

and we note Y = gϕ(X). One can show that:

log
(

α

C − 1

)

≤ log(g(z)) ≤ log(1 − α) (36)

and finally:

1 ≥ 1
log( α

C−1 )
log(g(z)) ≥ 1

log( α
C−1 )

log(1 − α) ≥ 0 (37)

We choose as particular f , f(z) = −η log(g(z)) with η = − log( α
|Y|−1 )−1 > 0.

The coefficient η ensures that f(z) ∈ [0, 1] to make sure f ∈ FC . We have the
following inequalities:

T̂SF(w,ϕ, g) ≥ η · (ET [−g(Z) · log(g(Z))] − Ew·S [−Y log(g(Z))])

≥ η ·
(
HT (Ŷ |Z) − CEw·S(Y, g(Z))

)

Interestingly, the cross-entropy is involved. Then, when using CEw·S(Y, g(Z)) as
a proxy of εw·S(gϕ), we can observe the following lower bound:

CEw·S(Y, g(Z)) + T̂SF(w,ϕ, g) ≥ (1 − η) · CEw·S(Y, g(Z)) + η · HT (Ŷ |Z) (38)

which is a trade-off between minimizing the cross-entropy in the source domain
while maintaining a low entropy in prediction in the target domain (Fig. 2).
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Fig. 2. We set C = 31 which is the number of classes in Office31. Label smoothing
α leads naturally to a coefficient η which acts as a trade-off between cross-entropy
minimization in the source domain and confidence in predictions in the target domain.
This result follows a particular choice of the critic function in the transferability error
introduced in this paper.

A.7 Proof of the Inductive Design of Weights

Proposition 12 (Inductive design of w and invariance). Let ψ : Z → Z ′

such that F ◦ψ ⊂ F and FC ◦ψ ⊂ FC . Let w : Z ′ → R
+ such that ES [w(Z ′)] = 1

and we note Z ′ := ψ(Z). Then, INV(w,ϕ) = TSF(w,ϕ) = 0 if and only if:

w(z′) =
pT (z′)
pS(z′)

and pS(z|z′) = pT (z|z′) (39)

while both fϕ
S = fϕ

T and fψ
S = fψ

T .

Proof. First,

INV(w,ϕ) = sup
f∈F

ES [w(Z ′)f(Z)] − ET [f(z)] (40)

≥ sup
f∈F

ES [w(Z ′)f ◦ ψ(Z)] − ET [f ◦ ψ(z)] (F ◦ ψ ⊂ F)

= sup
f∈F

ES [w(Z ′)f(Z ′)] − ET [f(z′)] = 0 (Z ′ = ψ(Z))

which leads to w(z′)pS(z′) = pS(z′) which is w(z′) = pT (z′)/pS(z′). Second,
INV(w,ϕ) = 0 also implies that w(z′)pS(z) = pT (z):

w(z′) =
pT (z)
pS(z)

=
pT (z|z′)
pS(z|z′)

pT (z′)
pS(z′)

=
pT (z|z′)
pS(z|z′)

w(z′) (41)

then pT (z|z′) = pS(z|z′). Finally,
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TSF(w, ϕ) = sup
f∈FC

ES [w(Z′)Y · f(Z)] − ET [Y · f(Z)] (42)

= sup
f∈FC

EZ′∼pS

[
w(Z′)EZ|Z′∼pS

[Y · f(Z)]
] − EZ′∼pT

[
EZ|Z′∼pT

[Y · f(Z)]
]

(43)

= sup
f∈FC

EZ′∼pS

[
w(Z′)EZ|Z′∼pS

[Y · f(Z)]
] − EZ′∼pT

w(Z′)
[
EZ|Z′∼pS

[Y · f(Z)]
]

(w(z′)pS(z
′) = pT (z′))

= sup
f∈FC

EZ′∼pS

[
w(Z′)

(
EZ|Z′∼pS

[Y · f(Z)] − EZ|Z′∼pT
[Y · f(Z)]

)]
(44)

= sup
f∈FC

EZ′∼pS

[
w(Z′)

(
EZ|Z′∼pS

[fS(Z) · f(Z) − fT (Z) · f(Z)]
)]

(pS(z|z′) = pT (z|z′))
= sup

f∈FC

EZ′∼pS

[
w(Z′)

(
EZ|Z′∼pS

[fS(Z) · f(Z) − fT (Z) · f(Z)]
)]

(pS(z|z′) = pT (z|z′))

≥ 2EZ′∼pS

[
w(Z′)

(
EZ|Z′∼pS

[||fS(Z) − fT (Z)||2])] (45)
≥ 2EZ′∼pT

[(
EZ|Z′∼pT

[||fS(Z) − fT (Z)||2])] (46)
≥ 2EZ′∼pT

[(
EZ|Z′∼pT

[||fS(Z) − fT (Z)||2])] (47)
≥ 2EZ∼pT

[||fS(Z) − fT (Z)||2]] (48)

Which leads to fS(z) = fT (z), pT (z) almost surely, then ET [Y |Z] = ES [Y |Z]
for Z ∼ pT . Now we finish by observing that:

TSF(w,ϕ) = sup
f∈FC

ES [w(Z ′)Y · f(Z)] − ET [Y · f(Z)] (49)

≥ sup
f∈FC

ES [w(Z ′)Y · f ◦ ψ(Z)] − ET [Y · f ◦ ψ(Z)] (50)

≥ sup
f∈FC

ES [w(Z ′)Y · f(Z ′)] − ET [Y · f(Z ′)] (51)

which leads to ES [Y |Z ′] = ET [Y |Z ′] for Z ′ ∼ pT . The converse is trivial. �

B CDAN, DANN and TSF: An Open Discussion

In CDAN [24], authors claims to align conditional Z|Ŷ , by exposing the multi-
linear mapping of Ŷ by Z, hence its name of Conditional Domain Adversarial
Network. Here, we show this claim can be theoretically misleading:

Proposition 13. If E[Ŷ |Z] is conserved across domains, i.e. g is conserved,
and D and D⊗ are infinite capacity set of discriminators, this holds:

DANN(ϕ) = CDAN(ϕ) (52)

Proof. First, let d⊗ ∈ D⊗. Then, for any (ŷ, z) ∼ pS (similarly ∼ pT ), d(ŷ⊗z) =
d(g(z) ⊗ z) since ŷ = g(z) = E[Ŷ |Z = z] is conserved across domains. Then
d̃ : z �→ d⊗(g(z) ⊗ z) is a mapping from Z to [0, 1]. Since D is the set of infinite
capacity discriminators, d̃ ∈ D. This shows CDAN(ϕ) ≤ DANN(ϕ). Now we
introduce T : Y ⊗ Z → Z such that T (y ⊗ z) =

∑
1≤c≤|Y| yc(y ⊗ z)cr:(c+1)r = z
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where r = dim(Z). The ability to reconstruct z from ŷ⊗z results from
∑

c yc = 1.
This shows that D⊗ ◦ T = D and finally CDAN(ϕ) ≥ DANN(ϕ) finishing the
proof.

This proposition follows two key assumptions. The first is to assume that
we are in context of infinite capacity discriminators of both Z and Y ⊗ Z.
This assumption seems reasonable in practice since discriminators are multi-layer
perceptrons. The second is to assume that E[Ŷ |Z] is conserved across domains.
Pragmatically, the same classifier is used in both source and target domains
which is verified in practice. Despite the empirical success of CDAN, there is
no theoretical evidence of the superiority of CDAN with respect to DANN for
UDA. However, our discussion on the role of inductive design of classifiers is an
attempt to explain the empirical superiority of such strategies.

C More Training Details

C.1 From IPM to Domain Adversarial Objective

While our analysis holds for IPM, we recall the connections with f−divergence,
where domain adversarial loss is a particular instance, for comparing distri-
butions. This connection is motivated by the furnished literature on adversar-
ial learning, based on domain discriminator, for UDA. This section is then an
informal attempt to transport our theoretical analysis, which holds for IPM,
to f−divergence. Given f a function defined on R

+, continuous and convex,
the f−divergence between two distributions p and q: Ep[f(p/q)], is null if and
only if p = q. Interestingly, f−divergence admits a ’IPM style’ expression
Ep[f(p/q)] = supf Ep[f ] − Eq[f�(f)] where f� is the convex conjugate of f. It
is worth noting it is not a IPM expression since the critic is composed by f� in
the right expectation. The domain adversarial loss [13] is a particular instance of
f−divergence (see [7] for a complete description in the context of generative mod-
elling). Then, we informally transports our analysis on IPM distance to domain
adversarial loss. More precisely, we define:

INVadv(w,ϕ) := log(2) − sup
d∈D

ES [w(Z) log(d(Z))] + ET [log(1 − d(Z))] (53)

TSFadv(w,ϕ) := log(2) − sup
d∈DY

ES [w(Z)Y · log(d(Z))] + ET [Y · log(1 − d(Z))]

(54)

where D is the well-established domain discriminator from Z to [0, 1], and DY
is the set of label domain discriminator from Z to [0, 1]C .
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C.2 Controlling Invariance Error with Relaxed Weights

In this section, we show that even if representations are not learned in order to
achieve domain invariance, the design of weights allows to control the invariance
error during learning. More precisely w�(ϕ) = arg minw INV(w,ϕ) has a closed
form when given a domain discriminator d i.e. the following function from the
representation space Z to [0, 1]:

d(z) :=
pS(z)

pS(z) + pT (z)
(55)

Here, setting w�(z) := (1 − d(z))/d(z) = pT (z)/pS(z) leads to w(z)pS(z) =
pT (z) and finally INV(w�(ϕ), ϕ) = 0. At early stage of learning, the domain
discriminator d has a weak predictive power to discriminate domains. Using
exactly the closed form w�(z) may degrade the estimation of the transferability
error. Then, we suggest to build relaxed weights w̃d which are pushed to w�

during training. This is done using temperature relaxation in the sigmoid output
of the domain discriminator:

wτ
d(z) :=

1 − σ
(
d̃(z)/τ

)

σ
(
d̃(z)/τ

) (56)

where d(z) = σ(d̃(z)); when τ → 1, wd(z, τ) → w�(z).

C.3 Ablation Study of the Weight Relaxation Parameter α

α is the rate of convergence of relaxed weights to optimal weights. We inves-
tigate its role on the task U→M. Increasing α degrades adaptation, excepts in
the harder case (5% × [0 ∼ 5]). Weighting early during training degrades repre-
sentations alignment. Conversely, in the case 5% × [0 ∼ 5], weights need to be
introduced early to not learn a wrong alignment. In practice α = 5 works well
(except for 5% × [0 ∼ 5] in Digits) (Fig. 3).

Fig. 3. Effect of α.
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C.4 Additional Results on Office-Home Dataset

See Table 3.

Table 3. Accuracy (%) on Office-Home based on ReseNet-50.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

RUDA 52.0 67.1 74.4 56.8 69.5 69.8 57.3 50.9 77.2 70.5 57.1 81.2 64.9

C.5 Detailed Procedure

The code is available at https://github.com/vbouvier/ruda.

Algorithm 1. Procedure for Robust Unsupervised Domain Adaptation
Input: Source samples (xS,i, yS,i)i, Target samples (xT,i, yT,i)i, (τt)t such that
τt → 1, learning rates (ηt)t, trade-off (αt)t such that αt → 1, batch-size
b

1: θg, θϕ, θd, θd random initialization.
2: t ← 0
3: while stopping criterion do
4: BS ∼ (xs

i ), BT ∼ (xt
j) of size b.

5: θd ← θd − ηt∇θdLINV(θd|θϕ; BS , BT )
6: θd ← θd − ηt∇θdLTSF(θg, θϕ, θd|θd, τt)
7: θϕ ← θϕ − ηt∇θϕ (Lc(θg, θϕ|θd, τt) − αtLTSF(θϕ, θd|θg, θd, τt))
8: θg ← θg − ηt∇θg Lc(θg, θϕ|θd, τt)
9: t ← t + 1

10: end while
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35. Sugiyama, M., Krauledat, M., MÃžller, K.R.: Covariate shift adaptation by impor-
tance weighted cross validation. J. Mach. Learn. Res. 8(May), 985–1005 (2007)

36. Wu, Y., Winston, E., Kaushik, D., Lipton, Z.: Domain adaptation with
asymmetrically-relaxed distribution alignment. In: International Conference on
Machine Learning, pp. 6872–6881 (2019)

37. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adapta-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2720–2729 (2019)

38. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for
partial domain adaptation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8156–8164 (2018)

39. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target
and conditional shift. In: International Conference on Machine Learning, pp. 819–
827 (2013)

40. Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant repre-
sentations for domain adaptation. In: International Conference on Machine Learn-
ing, pp. 7523–7532 (2019)

http://arxiv.org/abs/1803.04899

	Robust Domain Adaptation: Representations, Weights and Inductive Bias
	1 Introduction
	2 Preliminaries
	3 Theory
	3.1 A New Trade-Off Between Invariance and Transferability
	3.2 A Detailed View on the Property of Tightness
	3.3 Reconciling Weights and Invariant Representations

	4 The Role of Inductive Bias
	4.1 Inductive Design of a Classifier
	4.2 Inductive Design of Weights

	5 Towards Robust Domain Adaptation
	6 Experiments
	6.1 Setup
	6.2 Results

	7 Related Work
	8 Conclusion
	A  Proofs
	A.1  Proof of Bound 2
	A.2  Proof of the New Invariance Transferability Trade-Off
	A.3  Proof of the Tightness of Bound 2
	A.4  Proof of the Tightness of Bound 3
	A.5  Proof of Bound 4
	A.6  MinEnt ch21grandvalet2005semi is a Lower Bound of Transferability
	A.7  Proof of the Inductive Design of Weights

	B  CDAN, DANN and TSF: An Open Discussion
	C  More Training Details
	C.1  From IPM to Domain Adversarial Objective
	C.2  Controlling Invariance Error with Relaxed Weights
	C.3  Ablation Study of the Weight Relaxation Parameter 
	C.4  Additional Results on Office-Home Dataset
	C.5  Detailed Procedure

	References




