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Abstract. Recently, there has been much work on the use of Networked
Point Processes (NPPs) to extract the latent network structure of times-
tamp data. Several models currently exist to capture implicit interac-
tions in hospital visits, blog posts, e-mail messages, among others. The
problem is that evaluating these solutions is not a trivial task. First,
the methods have only been evaluated in a few datasets by a limited
number of metrics. Second, and even worse, the evaluation metrics are
often unsuitable for the typically sparse networks, which consequently
lead to inconclusive results. To provide the community with a rigorous
benchmark, in this paper we propose an empirical evaluation framework
of NPP models in the task of network extraction. We reevaluate several
models of the literature using our framework and compare the results to
two null models designed for this task. In our discussion, we point out
when some methods should be used depending on the expected efficacy,
execution time, or dataset properties. Overall, we find that only three
models show consistent significant results in real-world data.
Source Code: http://github.com/guilhermeresende/NPPs/.

Keywords: Temporal point processes · Benchmarking · Network
inference

1 Introduction

Modeling the occurrence of events through temporal point processes is a necessity
in many different fields. A temporal point process P is a stochastic process whose
realizations consist of random event times t1, t2, · · · , where each ti is the time of
the occurrence of the i−th event. Different point processes can be interrelated in
such a way that events occurring in one process influence the occurrence of events
in other processes [12]. In this case, the relationship among them can be encoded
as an influence graph (or matrix) of Networked Point Processes (NPPs), where
the nodes are the different processes, and the edge weights encode the influences
from one node to the others [1,5]. Inferring this influence matrix via timestamp
data only [41] is a challenging task that has been studied in a variety of settings,
such as hospital visits of multiple patients [10], viewing records of TV programs
[41], and the publication times of articles across different websites [1,45].
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Following the growing popularity trend of Machine Learning (ML), several
models for inferring the influence matrix of NPPs were recently proposed [1,2,15,
25,41,45,46]. One problem is that, similarly to what is being reported for other
fields within ML [20,22,27,30,35–38], the rate of empirical advancement of NPP
models is not being followed by a consistent increase in the level of empirical
rigor. Models are being evaluated using only a handful of efficacy metrics at
best [1,41,45,45], and most of these metrics are inadequate to assess sparse
weighted networks, which is usually the case in NPPs. In addition, most studies
evaluated their approaches using only a few real-world datasets, sometimes even
only one [1]. Hyper-parameter sensitivity analyses are not conducted and almost
no effort is shown to tune hyperparameters for baselines. Finally, very little is
done to account for model limitations. Previous studies rarely report confidence
intervals or comparisons with null models. As usual, in the field of ML, negative
results are omitted in favor of wins. Sanity checks, such as verifying if the model
is robust to false positives (i.e., i.i.d. data), are also ignored.

Motivated by these issues, and inspired by recent general guidelines for empir-
ical rigor in the field of ML [35], we propose an empirical evaluation framework
for NPP models. Our framework assumes that NPP models receive k series of
timestamps (processes) as input and outputs the influence matrix among these
k processes. This task is especially challenging because the input data is usually
bursty [3], with sparse connectivity among processes [45], and may contain all
sorts of noise (e.g., spams or bot messages) [44]. Also, the latent network struc-
ture may serve several purposes and, because of that, should be assessed and
evaluated accordingly. While one may need the network to identify only the most
influential nodes, another might require the whole network structure. Moreover,
while some applications demand a low false-positive error rate, others are more
concerned with false-negative errors. Thus, properly evaluating NPP models is
not a trivial task.

Our proposed framework has five complementary fronts of evaluation, which
can be applied to assess any data-driven model. First, we perform an analysis
of how the likelihood of the model to the data correlates with evaluation met-
rics (e.g., NDCG). Second, we present a methodology to estimate an empirical
upper-bound estimate based on the number of hyper-parameter configurations
tested. Third, we evaluate the asymptotic complexity of training such methods
and, fourth, we evaluate the models on seven real-world datasets using three
complementary metrics. Finally, we assess the robustness of the models to false-
positives via i.i.d. simulated data. In short, the main contributions of this work
are:

– A comprehensive empirical evaluation framework for NPP models;
– A thorough comparison of state of the art NPP models;
– Guidelines for selecting NPP models for the task of network inference.

The rest of this work is organized as follows. In Sect. 2, we describe the related
work. Next, in Sect. 3, we present the problem formulation and our empirical
evaluation framework. Section 4 describes the results and, finally, in Sect. 5 we
discuss the conclusions.
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2 Related Work

In a recent position paper, Sculley et al. [35] made a sound statement about how
empirical rigor is not keeping pace with advances in Machine Learning (ML). The
good news is that, like us, many others are taking a step back and reviewing the
current state of the art of different areas of ML through rigorous and thorough
empirical evaluations [20,22,27,30,36–38]. A striking and common conclusion of
these evaluations is that hyper-parameter tuning and testing multiple datasets
can make traditional and most recent methods to perform equally. This was
verified for generative adversarial networks [27], decision making [37], language
models [30], information retrieval [22,42], and clinical prediction [20].

Inspired by these works, we conduct an extensive evaluation of NPP models
for network inference. Most previous work on NPPs falls into three classes: those
that explore Hawkes Processes [21,28,31,33], those that explore information cas-
cades [7,16–18,32,39], and those that explore Wold processes [15]. We argue that
NPP models have also reached a point where there is a need to take a step back
and evaluate models using a rigorous empirical methodology. Often, previous
efforts to extract latent networks from data rely on fixed hyper-parameters [1]
and test their methods on only a handful of real datasets [9,14,29,43,45,46].
Also, previous works have employed a variety of distinct metrics and tools for
validation, such as different simulated datasets, different problem definitions, and
different error and ranking measures. Moreover, metrics do not usually trans-
fer from one work to the other. For instance, [15] discussed how the Kendall
correlations employed by [41,43,46] is unsuitable for sparse matrices.

3 The Evaluation Framework

We argue that a proper framework to evaluate the networked point process
models must take into account: (1) a comparison with the state of the art models
using (2) different metrics over (3) several datasets with (4) the proper use of
confidence intervals and null models to test significance hypotheses. Throughout
this section, we present the problem definition and our methodology to perform
such evaluations.

3.1 Problem Definition

Consider multiple point processes Pa,Pb, · · · ,PK observed simultaneously,
where each event is associated to a single process: Pa = {0 ≤ ta1 < ta2 < . . .}.
Let P = {1, · · · ,K} be the set of all processes, where |P| = K, i.e., we
have a total of K processes or nodes. For each a ∈ P, the counting process
Na(t) =

∑|Pa|
i=1 1tai

≤t is the total number of events of Pa until time t. Finally,
N = |

⋃K
a=1 Pa| is is the total number of events considering the superimposed

union of all events from all point processes.
Let Ha(t) be the history of the a-th point process up to time t, called

the filtration of the process. A point process can be completely character-
ized by its conditional intensity function [12] defined as: λa(t|Ha(t)) =
limh→0

P(Na(t+h)−Na(t)>0|Ha(t))
h . Assuming no simultaneous events, this function
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Table 1. Complexity and hyper-parameter ranges used for optimizing the models.

Method Complexity (per
iteration)

Hyper-parameter range

ExpKern O(NK2) β ∈ [0, 10]; C ∈ [0, 103]; pnlty ∈ [l1, l2, nuc, none];
solver ∈ [gd, agd]; α ∈ [10−4, 1];tol ∈ [10−8, 10−4]

HkEM Ω(NK2) support ∈ [1, 200]; size ∈ [1, 400]; tol ∈ [10−8, 10−4]

ADM4 O(N3K2) β ∈ [0, 10]; C ∈ [0, 103]; lasso ∈ [0, 1];
tol ∈ [10−8, 10−4]

MLE-SGP O(MN3K2) max − mean − f ∈ [1, 200]; #f ∈ [1, 20];
α ∈ [10−9, 10−3]; C ∈ [0, 103]; lasso ∈ [0, 1];
tol ∈ [10−8, 10−4]

HC O(K3) H ∈ [1, 200]; C ∈ [0, 103];
solver ∈ [adam, ada, rmsp, adad];
pnlty ∈ [l1, l2, none]; α ∈ [10−4, 1]; tol ∈ [10−8, 10−4]

GB O(N( log(N) +
log(K)))

β ∈ [1, 10]

NetInf — α ∈ [0, 1]; m ∈ [exp, powerlaw, rayleigh]

defines the instantaneous probability of one event occurring at each time t given
the entire previous history up to t. In a multivariate setting, we can extend this def-
inition by conditioning the intensity λa(t|HP(t)) on the history of all events HP(t).
For instance, if we have three timestamps from two processes ta1 < tb1 < ta2 < t:
HP(t) = {ta1, tb1, ta2}; Ha(t) = {ta1, ta2}; and, Hb(t) = {tb1}. In other words,
λa(t|Ha(t)) captures the evolution of process Pa by focusing solely on Pa’s his-
tory, λa(t|HP(t)) states that a’s evolution also depends on Pb. This is our starting
point for defining the network structure as follows.

Network Structure: Let Pa and Pb be two arbitrary processes in P. Also,
let Q = P − {Pb}. When λa(t|HQ(t)) = λa(t|HP(t)) we can state that process
Pb does not influence process Pa. That is, the intensity function of a with or
without Pb is, at least statistically, equivalent. When λa(t|HQ(t)) �= λa(t|HP(t)),
Pb influences Pa, as Pb’s past has some influence on the intensity function of Pa.
In other words, Pb’s history impacts the instantaneous probability of one event
occurring at t for process Pa.

The literature commonly exploits two class of processes for modeling NPPs:
Hawkes [19] and Wold [40] processes. In both classes, one may re-write the
intensity as a sum of two factors, an exogenous (Poissonian) constant, μa, and an
endogenous factor accounting for HP(t): λa(t|Ha(t)) = μa +

∑K
b=1 αbaφa(Hb(t)),

where φ is some influence kernel. Following this definition, let Â = [αba] be a
K by K matrix capturing the network structure of the processes, with αba ≥ 0.
Here, αba = 0 when Pb does not influence Pa (i.e., αbaφa(Hb(t)) = 0). Con-
versely, Pb does influence Pa when αba ≥ 0. In other words, an edge exists in
the latent graph when αba �= 0. Inferring Â is done using timestamps (or in some
cases cascades) only.
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3.2 Models

We evaluated six different state-of-the-art models, chosen to represent both
recent and older methods (2011 to 2018), with different characteristics (e.g.,
employ Hawkes, cascades and Wold Processes), and open-source implementa-
tions available online1. We also evaluate a classic Hawkes process with an Expo-
nential kernel [19]. The runtime complexity per learning iteration for each model
is measured according to K and N .

The most commonly employed Hawkes model is one with an Exponential
influence function [19], simply called ExpKern. We learn this model using the
open source tick library. It has an asymptotic cost of O(NK2) (K2 parameters
updated for each N timestamp per learning iteration). Out of the recent meth-
ods, from 2011 onward, the earliest we evaluate is HawkesEM (HkEM) [25].
It is a non-parametric estimator for the Hawkes processes with a complexity
lower bound of Ω(NK2) per iteration2, where Ω(.) is a lower bound. In 2013,
Zhou et al. proposed ADM4 [45], a parametric Hawkes model that employs
an exponential kernel with a fixed decay and complexity of O(N3K2). We also
tested MLE-SGP [41], which uses a parametrization of the kernel as a sum of
M basis functions (Gaussian functions in the author’s experiments) with a com-
plexity of O(MN3K2), where M is the number of basis functions. More recently,
Achab et al. proposed HawkesCumulants (HC) [1], a non-parametric model that
uses a moment matching method to compute the causal matrix. Because of this,
the method avoids estimating the kernels themselves and the per-iteration com-
plexity does not depend on N , but only on K. The per iteration complexity is
O(K3).

For Wold processes only one option was available, namely Granger-Busca
(GB) [15]. The method is an EM algorithm with complexity of O(N( log(N) +
log(K))). For the cascades framework, we tested NetInf3, one of the state-of-
the-art models. Cascade models are usually employed in datasets different than
the ones we explore in this work (i.e., require cascade information), so we chose to
evaluate NetInf on the only dataset where this is possible (Memetracker). The
authors of this model state that there is no closed form for run-time complexity
as it depends on the underlying network structure.

Hyper-parameters were optimized via random search [4]. As we discuss in
the next section, when extracting networks via point processes, cross-validation
is not usually employed [1,15,45]. A ground truth matrix of source destina-
tion pairs is constructed and models are learned using only events from either
sources or destinations. Thus, the most appropriate model for the dataset is
selected using the log-likelihood function. When available in the source code, we
present results for the learned models with the best log-likelihood. For HC, the

1 https://github.com/X-DataInitiative/tick. http://github.com/flaviovdf/granger-bu-
sca. http://snap.stanford.edu/netinf/.

2 The asymptotic upper bound was not reported by the authors.
3 Other models considered were MMEL [46] and Hawkes Conditional Law [2]. However,

the first crashed consistently and the latter did not finish its execution on time.

https://github.com/X-DataInitiative/tick
http://github.com/flaviovdf/granger-bu-sca
http://github.com/flaviovdf/granger-bu-sca
http://snap.stanford.edu/netinf/
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Table 2. Number of processes and events for each dataset.

Dataset # of processes # of events

CollegeMsg 100 17750

sx-askubuntu 28 3335

sx-mathoverflow 29 2767

sx-superuser 33 4157

email-Eu-core 100 11220

wiki-talk 100 30442

Memetracker 25 177163

objective function [1] was used. Thus, we were able to properly optimize hyper-
parameters for HkEM, ADM4, ExpKern, GB and for HC. The remain-
ing method (MLE-SGP) does not have a log-likelihood function implemented.
Thus, for this approach we keep the default values. Table 1 summarizes our
models and hyper-parameters choices.

3.3 Ground Truth Data

In order to evaluate the models, we need a ground truth causal matrix A. A
common approach to construct this matrix is through datasets composed by
(source, destination, timestamp) triples, which indicates that some interaction
(e.g. messages) occurred from source to destination at time timestamp. The
ground truth matrix is, thus, captured by the normalized number of interactions
between (source, destination) pairs: Aij = #events(i → j)/#events where i is
a source. To train the models on such triples, we remove the source column. Each
process consists of destination nodes and their timestamps only. The models in
these settings capture the causal notion that a received message can trigger other
messages.

The most common dataset explored by these types of models is Meme-
tracker [23], composed of publication times of articles across multiple web-
domains. We selected the top 25 domains with the highest number of hyper-
links during the month of January, 2009. Sources are webpages, and the ground
truth edges arise when the source creates a hyperlink to a destination. Thus,
the number of times the source domain cites the destination domain defines the
whole matrix. Six other datasets were gathered from the Snap Network Reposi-
tory [24] representing human communications in social networks, where sources
and destinations are defined when one user contacts another. For each network,
we selected the month with the highest number of events and only considered
processes with more than 60 events each. If there were more than 100 processes
that fulfilled this condition, we chose the top 100. Table 2 shows the number of
processes and events for each dataset.
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3.4 Metrics

We now describe the metrics used to evaluate the quality of the influence matrix
inferred by the model. Let A be the K × K ground truth matrix and Ai the ith
row of this matrix. Similarly, we denote by Â the matrix generated by a model.
We defined our metrics considering the rows of Ai and Âi, i.e., they capture the
efficacy of the method from the viewpoint of a source node, or process Pi.

Average Precision at n (AP@n). Initially, we calculate the Precision@n
(P@n) as: P@n(Ai, Âi) = |Tn(Ai) ∩ Tn(Âi)|/n, used in [15]. Here, Tn(Ai)
are the top n elements in Ai ordered by their value. The P@n metric avoids
the problem of sparsity, as it only considers the edges with the highest weight.
However, it ignores the distribution of weights for the edges that are not in the
top n. Average Precision at n (AP@n) aggregates the Precision at n for every
possible n. By doing so, this metric solves the issue of choosing a specific n.
However, equal weight is given to all of these choices. The NDCG, our next
metric, mitigates this issue.

Normalized Discounted Cumulative Gain (NDCG). NDCG [11] is a mea-
sure of ranking quality that penalizes the errors according to the ranking. It is
defined as DCGi

IDCGi
, where for each row, DCGi(Ai, Âi) =

∑
Aij∈ Ai

2A ij −1
log2(posm(j)+1)

and IDCGi(Ai, Âi) =
∑

Aij∈ Ai

2A ij −1
log2(pos(j)+1) . pos(j) captures the position of

Aij in the ranking of cell values Aij ∈ Ai and, similarly, posm(j) is the posi-
tion of Âij in the ranking of Âij ∈ Âi. However, the NDCG does not penalize
an overestimation of edge values if they are not too far up in the ranking. The
NDCG varies from 0 to 1, the higher the better.

Normalized Root-Mean-Square Error (NRMSE). NRMSE considers the
difference in values between two matrices, being defined as the root-mean-square
error between the cells of the estimated and ground truth matrices, normalized

by the range of values: NRMSE(Ai, Âi) =
√∑

i(Aij−Âij)2/K

Aimax−Aimin
, where Aimax and

Aimin are the maximum and minimum values for the vector Ai, respectively.
Other metrics were used to evaluate NPPs, such as the average row rank cor-

relation coefficient [1,15,45] and the relative error [1,15,41,45]. However, these
metrics suffer from small sample sizes (non-zero columns in each rows) due to
graph sparsity. It is expected that small samples lead to less statistical signifi-
cance, thus we shall limit our discussion to the subset of complementary metrics
that are able to reject a higher number null-hypothesis tests (e.g., we have a
higher confidence that their values did not arise due to chance).

3.5 Null Models and Confidence Intervals

We also use a Null model composed of a random generation (or permutation)
of rankings for the ranking metrics (e.g., AP@n). For the remaining metrics,
we generate a random permutation of the values of the ground truth matrix.
This matrix allows the null model to maintain the sparsity and usual range of
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values of the original ground truth matrix. These permutations are generated
1000 times and compared to the ground truth matrix using the metrics to create
a confidence interval of 95% for each (metric, dataset) pair.

We also generated confidence intervals for the estimates calculated with
the real datasets. As we do not know the true stochastic data generating
mechanism, we used a bootstrap procedure adapted to point processes data
[26,34]. The time axis (0, T ] was partitioned into 10 parts of equal length:
T = (0, T/10], . . . , (9T/10, T ] and new pseudo-datasets were created by gluing
together 10 temporal pieces sampling with replacements from T . The estimates
were calculated in the pseudo datasets, and this procedure was repeated 100
times to generate the sampling distributions from which confidence intervals
were derived. In this paper, we present the first comparison of models under
statistical significance tests.

3.6 Upper Bounds and Optimization

As with any ML task, an important step when comparing models is testing and
choosing hyper-parameters. However, in the setting of Latent Network Extrac-
tion, we do not have validation sets to optimize hyper-parameters. That is, start-
ing from an intensity function λa(t) (see Sect. 3.1), we derive a likelihood for the
entire dataset [12]. This is one of the most important results from Point Pro-
cesses, and the intensity is a sufficient function for learning model parameters.
Using the theory of Maximum Likelihood Estimation (MLE), we can argue that
hyper-parameters should be chosen to maximize the likelihood for the datasets.
However, which guarantees do we have that this model in-fact performs the best
network extraction? Notice that without any edge, we cannot test the hyper-
parameters on the validation data. It turns out that (from our empirical results
in the next section) most methods do not present a correlation of likelihood with
the aforementioned efficacy metrics. We now detail how we used the expected
validation [13] alongside with this correlation to evaluate the NPP models.

Given a choice of n hyper-parameter configurations, we can compute the
expected validation score (for a choice of evaluation metric) of the models by
assuming that the graph is known. That is, we may simply pick the choice of
hyper-parameters that maximizes some accuracy metric and not the likelihood.
This score is captured via the equation:

E[V ∗
n |n] =

∑

υ

υ P (V ∗
n = υ|n) =

∑

υ

υ (P̂ (Vi ≤ υ)n − P̂ (Vi < υ)n).

Here, V ∗
n is the maximum score after testing n hyper-parameters configurations,

υ are the observed scores and Vi is the score for the i-th configuration, drawn i.i.d.
(with random search, for example). Given that hyper-parameter configurations
are i.i.d., P̂ (Vi ≤ υ)n captures the probability of observing n configurations
below or equal to the threshold υ. Similarly, P̂ (Vi < υ)n captures the probability
of these n configurations being below υ. By iterating over all observed values of
the given score υ, this function is thus an expectation of the score given that:
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P̂ (Vi = υ) = P̂ (Vi ≤ υ)n − P̂ (Vi < υ)n. Thus this value is simply an expected
value of the score when testing n hyper-parameter configurations.

Conditioning on n is interesting as it measures the expected validation score
as a function of the computational power set forth to optimize the model. More
hyper-parameter tests imply a need of more computational resources. Thus, from
this metric we can infer not only an upper-bound on the score, as the graph is
known, but also have some notion of the expected computing cycles needed to
achieve such a score. After computing the value of E[V ∗

n |n], we analyze if there
is a correlation between a higher likelihood and a higher value for the efficacy
metrics. If a correlation is present, then we can argue that such an upper-bound is
achievable by the method. If not, we can state that optimizing the likelihood will
not lead to better results for that model. To have some notion of the variability
of this estimate, we can also compute the variance V[V ∗

n |n] = E[V 2∗
n |n]−E[V ∗

n |n]2

by computing the the expected value using υ2 in order to estimate E[V 2∗
n |n].

3.7 Sensitivity to False Positives

When processes are known to be independent among themselves, LNE models
must yield a zero matrix Â and we can test them for false positives. To do so,
we simulate K = 10 independent Poisson (homogeneous and inhomogeneous)
processes with n = 1000 events each. A Poisson process is independent of its
history, and its intensity function is given by λ(t|Ha(t)) = λ(t). In this case,
besides comparing Â with a zero matrix, the models should also infer the baseline
intensities μ, which should be similar to the average λ(t), or simply n/T .

4 Results

We start this section with a discussion about the empirical maximum values each
model can achieve. Next, we evaluate the models’ resilience to false positives
using synthetic data. Experiments were run on an i7-6700 CPU with eight cores
and 32 GB of RAM.

4.1 Upper Bounds and Optimization

Three factors are considered for assessing the accuracy of the models when learn-
ing the network structure:

1. F1: the best score achieved by the model when it is tuned specifically to
improve the comparison metric over the ground truth network;

2. F2: the number of hyper-parameter configurations needed to be tested to
achieve this maximum score;

3. F3: whether optimizing the model without using the ground truth network
(i.e. using the likelihood or loss function over the timestamps) can improve
the model’s performance measured by the comparison metric.
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Fig. 1. Expected value of the best score according to the number of hyper-parameter
configurations tested for the sx-superuser dataset.

These analyses serve to verify whether the models are well-defined, i.e., if
optimizing the likelihood leads to better estimates of A. Hyper-parameter opti-
mization is done via random-search. Each step of the search defines a hyper-
parameter configuration. For every dataset and hyper-parameter configuration,
we computed the expected validation score E[V ∗

n |n] and the variance V[V ∗
n |n],

which may vary according with the number of hyper-parameter configurations
tested. In Fig. 1, we show the expected score for the models on the sx-superuser
dataset as a function of the number of hyper-parameter configurations tested.
The variance is shown as the shaded region. For each curve we can derive two
values: the number of hyper-parameter tests necessary until the metric no longer
improves (defined as an increase of less than 0.001) and the metric value at this
step, which we refer as the upper-bound of the triple (method, dataset, metric).

In Fig. 2 we plot these two quantities for every triple (method, dataset,
metric). We do not present results for MLE-SGP on the Memetracker dataset
because it did not converge. Each method is determined by a color and each
dataset by a symbol. The shaded region on the plots are determined by median
values on the x and y-axis. When inside this region, we can state that the method
and dataset pair is above the overall median for the corresponding axis consid-
ering the given metric. In the caption of the figure we describe how many times
each method fell inside this region. Higher values of counts indicates that the
method is performing well for (dataset, metric) pairs. In total, we have 7 datasets
and 3 metrics (21 results), so the ideal method would be counted 21 times. In
general, HkEM, HC and GB obtained the best upper bounds with few hyper-
parameter tests, and the remaining methods need a larger amount of tests and
obtain varying results. HkEM and GB, both with 13 wins, require few hyper-
parameter tests to reach their upper-bound.

Recall that a model can only approximate the upper bound in practice if
optimizing its likelihood (or loss function) improves the quality of the recovered
network (F1). Thus, in Fig. 3 we show the Kendall-tau correlation (τ) between
the value of the metric and the likelihood of each model when this value is
achieved. Every point is a (metric value, likelihood) pair and each sub-figure
refers to a (method, metric) pair. Due to space limitation, we only show these
results for the sx-superuser dataset. Notice that only HkEM and ADM4 have
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Fig. 2. Maximum expected value achieved vs number of hyper-parameter tests. The
shaded area is where methods are above the median for both axis. Counts for how
many times each model was in the shaded area: HkEM: 13, ADM4: 4, MLE-SGP:
0, HC: 12, GB: 13, ExpKern: 1.

high correlations regardless of the evaluation metric. This result is an initial
indicator that these methods are better defined than the others. Being ill-defined
means that optimizing the likelihood will not lead to better network recovery.

In Fig. 4, we summarize these results for all datasets by plotting the Kendall-
tau correlation and the upper-bound for the models for all metrics and datasets.
Note that MLE-SGP is not included in this analysis since no implemented
likelihood function was available for testing. Similar to Fig. 2, we also present
a shaded region indicating where models out-perform others (medians of the
x and y-axis). Observe that HkEM tends to have high correlation values and
usually outperforms others (11 wins), being followed by ADM4 (7 wins). GB
(2 wins), which was a good candidate before, regularly shows no correlation. The
remaining models also performed poorly.

This second analysis argues in favor of HkEM and ADM4. Our results so
far are based on a hypothetical setting in which we are able to measure validation
scores. Some methods (e.g. HC) appear to be able to reach high metric values
(e.g. NDCG) but the lack of correlation limits their applicability. To provide
a more accurate evaluation, we next discuss the real-world setting where such
optimization is not possible, that is, there is no ground truth and only the
likelihood is available for hyper-parameter tuning.

4.2 Experimental Results for the LNE Task

In Fig. 5 we show the overall results of the models for the latent network extrac-
tion (LNE) task. Each plot contains the results for a given metric. The markers
are the values models achieved when executed on the original timestamp data
and the lines are the 95% confidence intervals (computed using bootstrap). Areas
where the models are equivalent or worse than the Null model (95% confidence
interval) are shaded in gray. In a few cases, the result on the original data lies
marginally outside of the confidence interval. This is expected because Web
datasets are bursty, and results may depend on specific periods of time left out
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Fig. 3. Log-likelihood of the model (or loss function for HC) vs metric values when
comparing the generated network with the ground truth for the sx-superuser dataset.

by the bootstrap. Hyper-parameters were optimized using the log-likelihood or
loss function. For MLE-SGP, the default parameters were used.

Again, HkEM achieved the best results, being the best model in 9 out of the
21 combinations of dataset and metric, never overlapping with the null model’s
range. ADM4, MLE-SGP, HC and GB followed next, with each one getting
the best value for 3 (dataset, metric) pairs. ExpKern was never the best model.
These results can be well explained by the previous experiments. A model with
good correlation and upper bound managed to get the best scores (HkEM),
while models without a good correlation are difficult to optimize and tend to
have erratic behaviour (HC and ExpKern).
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Fig. 4. Maximum expected value achieved by a model versus correlation between like-
lihood and metrics. The shaded area is where methods are above the median for both
axis. Counts for how many times each model was in the shaded area are HkEM: 11,
ADM4: 7, GB: 2, HC: 3, ExpKern: 2.

Fig. 5. Evaluations for every method in all datasets. Each marker is the result of the
model in the original dataset and the lines are 95% confidence intervals calculated
through bootstrap. The shaded regions correspond to the confidence interval of null
models.

Considering the bootstrap intervals, HkEM was tied for the best model 14
times. MLE-SGP and GB were the best models 12 times, HC 8 times, ADM4
5 times, and ExpKern 2 times. Concerning the datasets, Memetracker seems
to be the easiest to capture the network structure. Relationships defined from
links created from one process to another may be more suitable for NPP models
than when defined from message exchanges. On the other hand, datasets without
self-excitation (CollegeMsg and email-Eu-core) are the hardest to infer the latent
network.
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Table 3. MSE for the baselines and Granger matrix on simulated Poisson processes.

Method/Metric Homogeneous Inhomogeneous

Baseline error LN error Baseline error LN error

HkEM 1.00 (1.00, 1.00) 1.08 (1.06, 1.10) 1.00 (1.00, 1.00) 3.47 (3.27, 3.67)

ADM4 0.02 (0.01, 0.03) 0.05 (0.03, 0.07) 0.71 (0.68, 0.76) 6.03 (5.86, 6.16)

MLE-SGP 0.39 (0.30, 0.48) 1.61 (1.14, 2.12) 0.92 (0.89, 0.97) 20.11 (19.45, 20.79)

HC 2.44 (0.75, 37.32) 22.46 (14.48, 729.34) 2.46 (1.28, 3.60) 8.63 (5.47, 34.30)

GB 0.32 (0.31, 0.34) – 0.40 (0.39, 0.41) –

ExpKern 0.03 (0.02, 0.05) 0.07 (0.05, 0.09) 0.68 (0.65, 0.70) 4.50 (4.32, 4.67)

Our results so far argue in favor of HkEM and possibly ADM4 as the best
methods. Nevertheless, we point out that GB should not be ignored as it is
the only method that executes on Web scale data [15] (see asymptotic cost in
Sect. 3). Also, HC tends to have very high upper-bound values, but the lack of
correlation leads the model to under-perform when used for the LNE task. This
is not the case for GB as its efficacy appears to be less sensitive to the choice
of hyper-parameters.

4.3 Comparison with Cascades Method

We now compare the methods when more information (e.g., cascade sets) are
available for usage. In particular, we compare Hawkes and Wold models with
NetInf [32], the only cascades model. Because NetInf requires cascade data,
our analysis is limited for the Memetracker dataset. Also, since the problem
formulation is slightly different, we processed the Memetrackler data in two dif-
ferent forms. In Memetracker, cascades are captured when short sentences are
repeated over websites. Thus, to determine cascades, sentences with more than 3
words were extracted together with the timestamps when each different website
first mentioned the sentence. The sequence of timestamps of a sentence form a
cascade. While all the other models process only the sequence of timestamps
on each website, NetInf also processes the cascade to which each timestamp
belong. Only the top K = 50 websites in terms of hyperlink mentions were con-
sidered in our analysis. The ground truth is the hyperlink counts as described in
Sect. 3.3, a total of 182,379 events.

It is also important to note that NetInf infers an unweighted network, thus
the metrics that employ rankings (AP@n and NDCG) become meaningless. For
this reason, we limit our comparison using NRSME. We found that NetInf
achieves a worse score than most of the other Hawkes and Wold models, with a
NRMSE of 0.398. Out of the other six methods, only ExpKern had a higher
value (0.616). This result is quite remarkable as the Hawkes and Wold methods
do not explore cascades. That is, they make use of less information than NetInf .
Overall, these results point that exploring cascade data may not be a necessity in
real world settings. Full results are presented in the Supplementary Information
material [6].
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4.4 False Positive Analysis (Simulations)

To test for false positives, we simulated K = 10 homogeneous Poisson processes
with λ(t) = 1 for N = 10, 000 steps. In this case, all models should infer baseline
(or background) intensities μa = 1 for each process a and Âij = 0 ∀i, j. Next,
we simulate 10 inhomogeneous Poisson processes, where each process indexed
by a = {1, 2, · · · , 10} has intensity λa(t) = 1 + sin(ωat), where ωa = 1

2a ∈ R.
For both experiments we run the models over the simulated timestamps and
repeated this process 200 times to calculate the confidence intervals.

Table 3 shows the mean squared error (MSE) of the estimated baseline inten-
sities (μa) with respect to the Poisson intensities (λ(t)), denoted by baseline
error, and the MSE of the cells of the matrix with respect to the all zero matrix,
denoted by LN error. The values between parenthesis are the bounds for the
95% confidence interval. Note that we do not calculate the squared error of the
matrix estimated by GB, because it is a row stochastic matrix and, thus, would
never generate a zeroed row.

Surprisingly, only ADM4 and ExpKern were able to capture the homoge-
neous Poisson processes successfully, with both errors close to 0. The probable
reason is that both models impose an exponential kernel on its intensity func-
tion, while all the other Hawkes methods try to approximate a kernel function,
which can lead to overfitting. GB performed fairly well in estimating the base-
line intensities, having the third smallest error, followed by HkEM and MLE-
SGP. However, part of the events of these three models were still estimated
to be caused by other processes. HC was the one with the worst performance,
having the highest errors for the baseline and the matrix. Regarding the inhomo-
geneous Poisson processes, all models identified a dependence structure among
the processes, which does not exist. GB, ADM4 and ExpKern models had
the smallest baseline errors. HkEM had the closest estimate for the network,
followed by ExpKern and ADM4. Other Hawkes models had higher errors.

5 Conclusions

Laborious, rigorous evaluations and scrutiny is a necessity in any scientific field.
As we have argued throughout this paper, the machine learning (ML) field is cur-
rently at a position where there is a need to revisit its state of the art, given the
plethora of applications and scenarios involved. In particular, empirical rigor
is critical to avoid spurious findings and to delineate the scope of ML mod-
els. In his original review of the “two cultures” [8], Breiman made an in-depth
comparison between theory-based models and empirical prediction-based algo-
rithms, concluding that researchers must move away from exclusive dependence
on data models and adopt a more diverse set of tools. Similarly, machine learn-
ing researchers [20,22,27,30,35–38] are taking a step back and asking themselves
if too much effort is put on sophisticated and complex ideas that, in practice,
perform worse than traditional approaches.
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This work serves as a methodological guide to new studies on network infer-
ence from networked point processes and corroborates with the warnings men-
tioned above, which asks for more empirical rigor in ML research. Based on
our results, we argue that the classical HkEM model is the best general-
purpose NPP model as it had superior results in most settings and positive
correlations for likelihood and evaluation scores. ADM4, while generally less
useful than HkEM, also presents strong positive correlations and is the best
model for detecting false positives. Although GB does not present a correlation
between likelihood and efficacy, it is the only method known to scale for full
Web datasets [15], being recommended for these cases. The other models have
not excelled in any of the five evaluation fronts.
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