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Abstract. How can we effectively detect fake reviews or fraudulent con-
nections on a website? How can we spot communities that suddenly
appear based on users’ interaction? And how can we efficiently find the
minimum cut in a big graph? All of these are related to the problem of
finding dense subgraphs, an important primitive problem in graph data
analysis with extensive applications across various domains.

We focus on formulating the problem of detecting the densest sub-
graph in real-world large graphs, and we theoretically compare and con-
trast several closely related problems. Moreover, we propose a unified
framework for the densest subgraph detection (GENDS) and devise a
simple and computationally efficient algorithm, SPECGREEDY, to solve
it by leveraging the graph spectral properties with a greedy approach.
We conduct thorough experiments on 40 real-world networks with up to
1.47 billion edges from various domains, and demonstrate that our algo-
rithm yields up to 58.6x speedup and achieves better or approximately
equal-quality solutions for the densest subgraph detection compared to
the baselines. Moreover, SPECGREEDY scales linearly with the graph size
and is proved effective in applications, such as finding collaborations that
appear suddenly in a big, time-evolving co-authorship network.

Keywords: Dense subgraph detection - Graph pattern mining -
Algorithm

1 Introduction

How can we capture the most contrast groups or communities in temporal or
dynamic graphs—e.g. hot-topics or collaborations in the research community
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that appear suddenly? How can we efficiently determine the minimum cut for a
large graph? How can we find the most suspicious users based on their behaviors
or spot the largest group with consensus opinion on controversial issues? All
these real-world problems are related to the densest subgraph detection task.

Dense pattern mining in graphs is a key primitive task for extracting useful
information and capturing underlying principles in relational data. It has bene-
fited various application domains [16], such as capturing the functional groups
in biology [30], traffic patterns in human behaviors and interactions [20], com-
munities in social networks [25], anomaly detection in financial and other net-
works [1], and more. The densest subgraph problem has garnered significant
interest in practice because it can be solved exactly in polynomial-time and has
an adequate approximation in almost linear time. Goldberg’s maximum flow
algorithm [13] and Charikar’s LP-based algorithm [7] provide the exact solu-
tion, and Charikar [7] proved that the simple greedy algorithm is guaranteed to
find a result of quality better than the factor 2-approx. with linear time to the
graph size. However, these algorithms still incur a prohibitive computational cost
for the massive graphs that arise in modern data science applications, without
considering the properties of real-world data.
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Fig. 1. Proposed algorithm SPECGREEDY is fast, effective, and scalable. (a) Our met-
hod detects the densest subgraphs (qualities in Fig. 1(b)) up to 58.6x faster than the
widely-used GREEDY algorithm for various real-world datasets. (b) SPECGREEDY has
better or comparable density quality compared with GREEDY and SPOKEN algorithm
in the densest subgraph detection. It consistently outperforms SPOKEN for all graphs
and finds up to 28 x denser subgraph; it obtains the same or denser (more than 1.26x)
optimal density for most graphs compared with GREEDY, and 4 graphs with very close
densities (> 0.996x) and only 2 graphs with less than 0.9 density improvement. (c)
The time taken of SPECGREEDY grows linearly with the size of graph.

To the best of our knowledge, there is no related work to study the connec-
tion of the above problems. Here we summarize the differences and relations for
some well-known related problems, including detecting community with sparse
cut and suspicious dense subgraphs. We also propose a unified formulation, gen-
eralized densest subgraph (GENDS ) problem, which subsumes various application
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problems. This unification explicitly highlights those relations in a formal way
and leads to a consistent method for solving these problems. We thus devise an
efficient detection algorithm, SPECGREEDY, that leverages the graph spectral
properties and greedy peeling strategy to solve the generalized problem. With
thorough experiments using 40 diverse real-world networks, we demonstrate that
our algorithm is fast, highly effective, and scalable (linear to the number of edges,
as shown in Fig. 1); it yields 58.6x speedup, and achieves almost equal or better
quality, even for a very large graph with 1.47B edges. We also find interesting
patterns, such as contrast collaboration dense patterns in DBLP co-authorship
data.
Our main contributions include:

— Theory & Correspondences: We propose the generalized densest subgraph
detection formulation, GENDS, to unify several related problems, and analyze
the optimization in the principle of the spectral theory;

— Algorithm: We devise SPECGREEDY, a fast and scalable algorithm to solve
the unified GENDS problem;

— Experiment: We conduct thorough empirical analyses of various real-world
graphs to verify the efficiency and linear-scalability of SPECGREEDY. We also
find some large contrast dense subgraphs in co-authorship relations.

Reproducibility: Our open-sourced code, the data used, and the supplement
document are available at https://github.com/wenchieh /specgreedy.

2 Related Work

In this section, we summarize the related work on the densest subgraph problem
and various methods for detecting dense subgraphs in different applications.
Finding the densest subgraph in the large input graph is a widely studied
problem [16]. Generally speaking, the goal of such a problem is to find a set
of nodes of a given input graph to maximize some notion of density. The so
called densest subgraph problem (DSP) aims to find a subgraph that maximize
the degree density, which is the average of the weights of all its edges. When the
edge weights are non-negative, the densest subgraph can be identified optimally
in polynomial time by using maximum flow algorithms [13]. However, obtaining
the exact solution with maximum flow requires expensive computations despite
the theoretical progress achieved in recent years, thus making it prohibitive for
large graphs. Charikar |7] introduces a linear-programming formulation of the
problem and shows that the greedy algorithm proposed by Asashiro et al. [4]
produces a 1/2-approximation of the optimum density in linear time. [21] pro-
poses an optimization model for local community detection by extending the
densest subgraph problem. A recent study [5] proposes a GREEDY++ algorithm
to improve the output quality of the subgraph over Charikar’s greedy peeling
algorithm [7] by drawing insights from the iterative approaches from convex opti-
mization. However, when the edge weight can be negative, the above problem
becomes NP-hard [27]. When restrictions on the size lower bound are specified,
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the densest k-subgraph problem (DkS) becomes NP-complete [2] and there does
not exist any PTAS under a reasonable complexity assumption.

Another line of related research includes contrast graph pattern mining,
which aims to discover subgraphs that manifest drastic differences between
graphs. Yang et al. [31] proposed to detect the density contrast subgraphs which
is equivalent to mining the densest subgraph from a “difference” graph, and
employed a local search algorithm to find the solution. Tsourakakis et al. [27]
focused on the risk-aversion dense subgraph pattern for a graph with small neg-
ative weights and extended the greedy algorithm for this case. [9] detects the
k-oppositive cohesive groups by solving a quadratic optimization problem for
signed networks. Also, dense subgraphs are used to detect communities [8,30]
and anomaly [15,24]. Fraudar [15] proposed to use the greedy method that incor-
porates the suspiciousness of nodes and edges during optimization. SPOKEN [24]
utilizes the “eigenspokes” pattern of community in the EE-plots produced by
pairs of eigenvectors of a graph, which is applied to fraud detection.

Table 1. Symbols and definitions

Symbol Definition
G=(V,E) Undirected graph with node set V' and edge set E CV x V

G = (LU R, E) | Bipartite graph with node set, L and R, and edge set E C L X R
Gr=(V,E,) Positive residual graph with node set V' and residual edge set E,

T,y Indicator vector for the selected subset of nodes

u,v Eigenvector or singular vector

AL Adjacency and Laplacian matrix of a graph

d,D Node degree vector and its diagonal matrix, d; = Ej Qij
I Identity matrix of size n X n

D. Diagonal matrix for the vector

Besides, there are many works that utilize the spectral properties of the graph
to detect communities [25] and dense subgraphs [3,22], and to partition the input
graph [10].

3 Problem and Correspondences

Preliminaries and Definitions. Throughout the paper, vectors are denoted
by boldface lowercase letters (e.g. &), matrices are denoted by boldface upper-
case letters (e.g. A), and sets are denoted by uppercase letters(e.g. S, V). The
operator | - | denotes the cardinality of a set or the number of non-zero (nnz)
elements in a vector and ||| is the lo norm of a vector, [z] = {1,...,z} for
brevity. Table 1 gives the complete list of symbols we use in the paper.
Consider an undirected graph G = (V,E) with [V| = n. Let S C V and
E(S) be the edges of subgraph G(S) induced by the subset S, i.e. E(S) = {e;; :
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v;,v; € S A e € E}. Let A = (a;;) € R™*™ be the adjacency matrix of G and
[£27] > 0.

Given an indicator vector x of size n for the subset S, the average degree
density of the subgraph G(S5), being the mostly used density measure for the
densest subgraph problem, is defined by Charikar [7] as

9(8) = lEfsf)' -5 S we {0 W

and avoids the trivial solution by limiting |x| > 1. Generally, Hooi et al. [15]
proposed to consider the node weight (some constant for each node) for the total
mass, the density of G(S5) is

IES)+>eve  xfAz z"Dex  1z'(A+2D.)z
— z — _ 1\
9(5) S| > oTs | olw 2 Tz ce {01
(2)

where ¢; € R™ is the weight of node i and D, is the diagonal matrix of the
weight vector ¢ = [e1,. .., ¢p].

In addition to dense subgraphs within a single graph, we also consider the
“contrast” patterns of cross-graphs, i.e., a subset of nodes that have significantly
different edges or edge weights in two given graphs of the same nodeset, like the
different snapshots of a dynamic graph.

Table 2. Summary for correspondence to problem GENDS

Method matrix P matrix Q Constraint
1| MinQuotientCut [10] A — D =-L I lz] <n
2 | Charikar [7] A 1
3| Fraudar [15] A + 2 Dy I
4|SparseCuTDS' 21] |A - 2% D I |z| > 1
5| TEMPDS [30] A, A1 + 21 =A;
6 Risk-averse DS [27] |AT + A1 I =AT A~ + oI =A-
GENDS? A + 2 D. A"+ 41 =A

! The contrast subgraph pattern [19] equals to set o = 1, and @ = % is considered

2
in [18] for community detection.
2 Bipartite graphs can be transformed into an undirected graph as Lemma 9.

Generalized Densest Subgraph Problem. Therefore, we propose a gener-
alized densest subgraph problem which subsumes various well-known formula-
tions:
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Problem 1 (GenDS: Generalized Densest Subgraph detection). Given a
graph G = (V, E) and its contrast G’ = (V, E’) with |V| = n nodes; find
the optimal subset S* C V and |S*| > 1 such that

TPz

S* = argmax ¢g(S;P,Q) = argmax —— (3)
scv,Isi>1 wefo,1}pn o>1 BT QT

where matrices P and Q are related to G and G/, that is, P = A + 2D,
and Q = A’ + 1.

Here we define A/ = A’ + ~I as the augmented adjacency matriz of graph
G'. The denominator in Eq. (3) simultaneously considers the size of the node
subset and the connections in the subgraph G(S). Specifically, if the contrast
G’ is an empty graph, Q degenerates to be a 7-scale identity matrix with only
considering the size of the subgraph in GENDS. Note that P also becomes an
augmented adjacency matrix of G as well if the node weights are equal, i.e.,
ci =c1 > 0.

As we show in Theorem 2, our proposed GENDS problem is more general
and many dense subgraph-based formulations are special cases of it.

Theorem 2. GENDS is a general framework for the MinQuotientCut, the dens-
est subgraph detection (Charikar), Fraudar (suspicious dense subgraph), SPAR-
SECUTDS (dense community with sparse cut), TEMPDS (temporal dense sub-
graph), and Risk-averse DS (consensus dense subgraph), and more.

The following remarks provide detailed instantiations of GENDS for several
problems. Table 2 summarizes the setting and provides the corresponding equa-
tion carefully aligned to highlight the correspondences to GENDS.

Remark 3. [MinQuotientCut] The optimal quotient cut ratio problem aims at
partitioning the graph into two parts with minimum cut. Let the set of cut
edges for S be cut(S) = {(u,v) € Elu € S,v € V'\ S}, its size can be formulated
as

|cut(S)| = Z aij(x; —z;)? =" (D — A)xz = ' Lz,
eijEE

where x; = 1if ¢ € S, and «; = 0 otherwise. The cut ratio of S is %

Without loss of generality, assuming S is the smaller set compared with its
T

complement, we have the minimum cut ratio by maximizing — ”’mTIf , which cor-

responds to P = —L with ¢ = —% and Q =I with A’ =0 and y = 1.}

Remark 4. [Charikar| The densest subgraph detection problem as formulated in
Eq. (1) corresponds to P = A and Q = I with ignoring the constant factor.?

! In the other setting with Q = D, this problem is also equivalent to set P =

—D Y2LD~'/2  i.e., the normalized Laplacian matrix of G, and Q = I.
2 [23,29] used A with different v to explore the trade-off between density and size of
final dense subgraphs with the domain-set based optimization method.
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Remark 5. [Fraudar] The suspicious densest group detection problem treats the
weights of nodes and edges as their suspiciousness score of nodes and edges, i.e.
¢, and a;; measure how individually suspicious the particular node u and edge
ei; is (can be determined by other information, like profile and text of content)
resp. As Eq. (2) shows, it corresponds to P = A + 2D, and Q = I, where
the numerator ” Pz is the total suspiciousness of the subgraph ignoring the
constant factor.

Remark 6. [SPARSECUTDS] SPARSECUTDS finds a community that is densely
connected internally but sparsely connected to the rest of the graph, and it is
optimized by maximizing the density while minimizing the average cut size [21].
With the formulation of the cut size in remark 3, the objective to be maximized
by SPARSECUTDS is denoted as

2T (1 +a)A —aD) x z” A- 32Dz
()~ B =ajeut(s) _a” (G+a)A-aD)e (A-52D) |

|S| zTx zTx

where a controls the weight of the |cut(S)| term and ¢ = 3 4+ « is a constant.

Thus, it corresponds to P = A + 2D, with D, = fﬁﬂD and Q =1.

Remark 7. [TEMPDS| TEMPDS detects dense subgraphs with nodes S appear-
ing at time ¢ suddenly while having very few edges at time ¢ — 1 [30]. Let A; and
A,_1 be adjacency matrices of the snapshots of a temporal graph. Thus, 7T A,z
and 7 A;_1x are twice the numbers of edges in corresponding subgraphs. By
considering the size of subset S, the objective of TEMPDS can be formulated as:

zT A,z T Az

S) = = = .
g( ) (BT(At,1+2I)J¢ mTAt—l-'B

Remark 8. |Risk-averse DS| Given a graph G, the positive entry a;; of its adja-
cency matrix A represents the expected reward of the edge (u;,u;) and the
negative entry is opposite to the risk of the edge, the absolute value |a;;| mea-
sures the strength. Then A can be written into A = AT — A~ where AT
is the reward network and composed of all positive edges in A, that is, its
entry ij = max (a;;,0); and A~ is the opposition risk network and its entry
A, = |min(a;;,0) .

The Risk-averse dense subgraph detection problem finds a subgraph that
has a large positive average degree and small negative average degree [27], it
is formulated in GENDS format by setting P = At + 2D, with ¢ = 21 and
Q = A7 + 71, where 71,72 > 0 control the size of the subgraph by considering
the contribution of the size of the subset S.

As for the densest subgraph detection in a bipartite graph & , it can be reduced
to the GENDS framework by converting G to be a monopartite graph as follow-
ing.



188 W. Feng et al.

Lemma 9. Given a bipartite graph G = (L U R, E) with |L| + |R| = n, the
densest bipartite subgraph detection problem over G corresponds to the setting
that x = [y, 2|, where y € {0,1}/F 2z € {0,1}I%], and P, Q € R,

[D, 27 1[0 A D, O 1z 0
p= 2 gl | =aar o) o o= ] @

2 cr

where c¢;, and cgr are the node weight vectors for the nodesets L and R respec-
tively, 1| is the identity matriz of size |L| x |L|, and 1| is similar.

To avoid the trivial solution for the weighted graph (single edge with heavy

weight), we can introduce column weights as A - diag(ﬁ) for some function

h, e.g. h(xz) = z® with o € RT or h(x) = log(x + ¢) (c is a small constant to
prevent the denominator becoming zero). Besides, we can use the motif-based
high-order graphs [32] to recognize more complex and interesting dense patterns.

4 Theoretical Analysis

In this section, we connect the optimization of GENDS to the graph spectral
theory, showing that we can efficiently approximate the solution by the skewness
properties of the spectrum in real-world graphs, thus guide our algorithm design.

Given the graph G and its contrast G, we construct a “positive residual”
graph G, = (V, E,) with E, = {(u,v)|(u,v) € E A (u,v) ¢ E'}, and its adjacency
matrix is denoted as A, = (P — Q)™. Then the densest subgraph detection in
G, means that it maximizes the density in G while minimizes the connection in
G’. Thus, the objective function in Eq. (3) is reformulated as

2T(P - Q) tx T A,z

S = argmax ¢(S;P,Q) = argmax ——————— = argmax e
SCV,|S|>1 ze{0,1}",|z|>1 - ze{0,1}" |z[>1 T T

()

We will use this transformation in the following theoretical optimality analysis.

Consider the optimization problem with a similar form as Eq. (5) defined in
the real domain, which is formulated in the Rayleigh quotient manner, that is

zT A, x
T

R(A;,x) = sz €R™, x#0, (6)
where A, € R™™™ is a symmetric matrix; R(A,,cx) = R(A,,z) for any non-
zero scalar ¢. The objective of GENDS in Eq. (5) is a binary-variable special
case.

The Rayleigh—Ritz Theorem [10] in the spectral theory gives the optimality
of Eq. (6) with eigenvalues of A, € R™*", that is,

Theorem 10 (Rayleigh—Ritz Theorem). Let A, be a symmetric matric
with eigenvalues A1 > ... > A, and corresponding eigenvectors wui,...,Uy.
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Then? r
A =maxR(A,,z)= max gz 'Arx=—=z=u
20 wekn |z =1 -
Ap =min R(A,, x) = min T A,z = = = u,.
x#0 z€R™ ||z||=1

In general, for 1 < k < mn, let 8 denote the span of uy,...,uy (with § = 0),
and let 8 denote the orthogonal complement of 8. Then

A= max R(A, z)= max ' A x = x = uy, (8)
z#0,ze8; | lzl|l=1,ze8;_,

which means Ay, is the largest value of R(A,., x) over the complement space Sﬁ_l.

With the analogy of eigenvalues and singular values of matrices, the lat-
ter achieve the optimality property that resembles those of Rayleigh quotient
matrices [11]. To avoid the large magnitude negative eigenvalues for the real
graphs [26], here we utilize the singular values and singular vectors instead in
the following.

Let A, = UXVT = 22:1 o;u;v} be the singular value decomposition of the
matrix A, the columns of U and V are called the left- and right- singular vectors
respectively, i.e., U = [uy,...,u,] and V = [vy,...,v,]. ¥ = diag(o1,...,0.)
for singular values 01 > .-+ > o, > 0. Then, we also have the following repre-
sentation regard to the GENDS problem,

Lemma 11. The optimal solution for the GENDS in Eq. (3) can be written as

y zTA,x 1 <&
S* = argmax ————— = argmax @ Z oi Z Uyj Z Vij 9)
i=1

T
xe{0,1}m,|z[>1 T T [S|>1 jes jes

where u;; and v;; denote the j-th element of the singular vector u; and v; cor-
responding to the singular value o; resp. The optimal density value gop: < 071.

As for the bipartite graph case, given an asymmetric matrix A, € R™*", we
define the related quadratic optimization problem as

zTAy

RAj;2,y) = 0
(A, y) 2Tzt 4Ty

,x €R™ yeR", x#0,y #0. (10)
And we also obtain the following theorem that leads to a similar statement as
Theorem 10. Thus, it helps to avoid constructing the big matrix (R(m+7)x(m+n))
for the bipartite graph. The detailed proof is given in the supplement.

Theorem 12 (Bigraph Spectral). Suppose A, is an m X n matriz, A, =

USVT is its singular value decomposition. For any vector x € R™,y € R",

> max 2-R(A, z,y) = miul. (11)

o1 = max x'A,
lzll=[lyll=1 z#0,y#0 Yy =7

3 The proof details of the theorem refer to [10].
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In general, for1 <k <r, let SkU, S,‘C/ denote the span of wy, ..., ur and vy, ..., vg
(with 8§ = 0,8Y = 0), then

= max xTAy > max 2-RA,,z,y) =" ".
lzll=llyll=1 z£0,y#0 Y=
xl8y_,yl8y zl8Y_ |, yl8y |

Therefore, given a bipartite graph G = (LU R, E) with the adjacency matrix
A e RIFIXIBI we will have the similar properties as Lemma 11 as

Lemma 13. For the densest bipartite subgraph detection in Fraudar with P =
diag([A/2,A"/2]) and TPz = |E(S)|, the optimal solution can be written as

T

' Px

S* = argmax T = arg max R(A,,y,z)
ze{0,1}" Je|>1 T°L  ye{0,1}L, 2€{0,1} 1Rl |y|>0,]z]>0

< arg max |S‘ZUZ Z Ujj Z Vij |,

S=6(y)Ud(z),|S|>1 j€s(y) jed(z)

(12)

where u;j, v;; denote the j-th element of the singular vector w; and v;, and the
optimal density value gopr < 071.

Moreover, if the matrix Q is positive definite (i.e., 2Qx’ > 0 for any = # 0)
in GENDS, the Eq. (3) under the relaxation & € R™ is equivalent to the gener-
alized Rayleigh quotient, its optimization reduces to the generalized eigenvalue
decomposition problem; the min-max principle provides result about the opti-
mality similar to Theorem 10. Due to the singularity of Q in the real scenario,
we take the residual graph form G, for approximation as discussed above.

Real-World Graph Properties. The sparsity and various power-laws are key
components of the real-world networks gathered from the world-wide-web, social
networks, E-commerce, on-line reviews, recommend systems, and more. Those
primary properties contribute to the time and space-efficient computing or stor-
age, and synthetically modeling the realistic networks. Various studies [12,17]
have shown that most real-world graphs have a statistically significant power-
law distribution with degree distribution, the distribution of “bipartite cores”
(~communities), a cutoff in the eigenvalue or singular values of the adjacency
matrix and the Laplacian matrix, etc. Also, the distribution of eigenvector ele-
ments (indicators of “network value”) associated with the top-ranked eigenvalues
of the graph adjacency matrix is skewed [6].

Thus, based on the spectral formulation of GENDS, the skewness of singular
values and components in singular vectors of real-world graphs guarantees that
we can simply consider the top singular vectors and use a few of top-rank ele-
ments in them to efficiently construct the candidates for dense subgraphs and
detect the optimal result, We will introduce this in more details in the following
algorithm.
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5 Algorithms and Complexity Analysis

In this section, we present our proposed method SPECGREEDY for the gener-
alized densest subgraph detection problem GENDS and provide analysis for its
property.

We first review the related Charikar’s peeling algorithm. It takes the entire
original graph as the starting point, then greedily removes the node with the
smallest degree from the graph, and returns the densest one among the shrinking
sequence of subgraphs created by the procedure. It is guaranteed to return a
solution of at least half of the optimum density, i.e., g* > %gopt. In addition,
using the priority tree to manage the nodes in the peeling process, the complexity
of the greedy algorithm is O(|E|log |V|).

However, the densest subgraphs usually have small sizes and are embedded
in a large graph (background), which leads to many searches and update steps
to obtain an approximation solution or even the candidates for Charikar’s algo-
rithm.

Implications of Theoretical Analysis: Lemma 11 and 13 show the upper
bound of the optimal density, i.e., gopt < 01, and the oy, is the optimal value for
the real space orthogonal to 8;_1 (k > 1) as Theorem 10 and 12; the formulation
of S* highlights that the real-value singular vectors provide some insight to find
the optimal densest subgraph. Thus, these nodes in S* will have higher impor-
tance in the singular vectors associating with the top-ranked singular values.

Considering the skewed distribution of the elements in a singular vector, we
can construct some small nodeset candidates, which derive some subgraphs, with
the top-ranked nodes based on the singular vectors to avoid detecting the densest
subgraph from the whole graph, that is, S¢ = {S1,..., Sk} for some 1 < k < n,
where the candidate S; = {j;u;; > Ar,j € [|L|1} U {j;vi; > Ar,j € [|R||}
for the singular vectors u; and v;, Ay, and Ap are some pre-defined truncation
thresholds; the optimal density for G(.S;) is g; < o;. Here we determine the selec-
tion thresholds as Ay, = 1/\/|z] and Ag = 1/\/|r[* based on the re-formulation
of the optimal solution in the Eq. (9) and Eq. (12).

Proposed Algorithm. Therefore, we propose SPECGREEDY, which utilizes
graph spectral properties and the greedy peeling strategy to solve the GENDS
problem. Algorithm 1 summarizes our approach.

Given the adjacency matrix A, of the positive residual graph G,, density
metric g, and the top approximation rank k which controls the maximum size of
the candidate set. SPECGREEDY finds the top-k spectral decomposition of the
matrix at first (Line 2) , then detects the possible densest subgraphs based on the
top singular vectors. In each round, it constructs the candidate subset S, based
on the truncated singular vectors u, and v,., then uses the greedy algorithm to
search the densest subgraph for G(.S,) to maximize the density metric g. It checks

4 If A, is the symmetric matrix as in Eq. (9), |L| = |R| =n and Ap = A = /ym.
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Algorithm 1 SPECGREEDY: General dense subgraph detection

Input: Matrix A, of the positive residual G,; density metric g; top approx. rank k.
Output: The densest subgraph.

1: S=0

2: [U, X, V] = SVD(A,,k) > Top-k spectral decomposition of A,

3: forr—1,...,kdo

4: Construct the candidate node subset S, based on u, and v, i.e.
Sr:{z‘:um>ﬁ,ieL}u{j:vm > ﬁ,jeR}

5 Sy < GREEDY(G(Sr), g) > Greedily remove nodes to maximize the metric g.

6: if g(S;) > g(S) then > g(S) = gl

7 S «— S

8: if g(S) > or4+1 then > Spectral early-stopping condition

9: break

10: return G(S).

the stop condition based on the next singular value for the current optimal result
in Line 8 for early stopping.

How many subgraph candidates do we need to check? Let g%, be the current
detected optimal density with some off-the-shelf detection approaches, if there is
some 1 < j < k satisfied that g, > 0;, the optimal density then can be achieved
based on the singular vectors is g, due to the decreasing-order of singular
values (0; > 0,4+1) and the aforementioned upper-bound (g; < ¢;). Finally, the
subgraph with the optimal density is returned. It is worth mentioning that the
power-law distribution nature of the eigenvalues and singular values of real-world
graphs and the theoretical bounds of solutions (the exact or 1/2-approx. result)
for detection approaches guarantee that the size of candidates will be very small.

Besides the pre-computing top-k spectral decomposition strategy in Line 2,
we can use a lazy or online way to compute the (r+1)-th largest spectral decom-
position result with the power method or the efficient Krylov subspace methods
such as the Lanczos method [14]. In the experiment, we adopt an incremen-
tal decomposition way which gets the top-l singular values and singular vectors
first, and if the stop condition in Line 8 is not satisfied, then get the further
top-(I + s) singular values and vectors with step-size s. This stepwise increasing-
decomposition will continue until [+ s > k or the early-stopping condition holds.
Moreover, we can use other densest subgraph detection approaches in Line 5 con-
sidering the enhancement of solution, e.g. GREEDY++ [5] or the LP method.

Theorem 14 (Time Complexity). The complexity of SPECGREEDY algo-
rithm is O(K - |E| + K - |E(S)|log|S|) where S = max|g, S; and K is the top
approrimation rank.

Ideally, K = min {k,r., + 1} where k is the input parameter and r,p; is the
rank with optimal resultant density ¢g*. The complexity of computing a top
eigenvector /singular vector in sparse graphs is linear, i.e., O(|E(V)]|), and the
total complexity of the greedy algorithm in Line 5 is O(|E(S)|log|S|) for G(S).
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Given the skewness of the top singular vectors in real-world graphs, we usually
have |S| < |V, making SPECGREEDY a linear algorithm in the number of edges.

6 Experiments

We design experiments to answer the following questions:

1. Q1. Efficiency: How does our SPECGREEDY compare to the state-of-the-art
greedy algorithm for detecting the densest subgraph?

2. Q2. Effectiveness: How well does SPECGREEDY work on real data, and
perform on detecting the contrast dense subgraph and injected subgraphs?

3. Q3. Scalability: How does our method scale with the input graph size?

Data: We used a variety of datasets (40 in total) obtained from 5 popular
network repositories, including 32 monopartite graphs and 8 bipartite ones,
and 5 of them also have edge weights; the largest unweighted graph is the
soc-twitter graph with roughly 1.47B edges, while the smallest unweighted
graph has roughly 14.5K edges. Multiple edges, self-loops are removed, and
directionality is ignored for directed graphs. The detailed information about
those real-world networks is provided in the supplement.

Implementations: We implemented efficient dense subgraph detection algo-
rithms for comparison. We implemented our algorithm, GREEDY [7], SPO-
KEN [24], and Fraudar [15] in Python; SPOKEN actually detects the densest
subgraph only based on the truncation of the singular vectors like our method.
In all the experiments, we set the parameter of top approximation rank k£ = 10
and [ = s = 3 for SPECGREEDY. We ran all experiments on a machine with
2.4GHz Intel(R) Xeon(R) CPU, 64GB of main memory.

6.1 Q1. Efficiency

To answer Q1, we apply our method SPECGREEDY and the baseline GREEDY
on 40 unweighted networks and compare their runtime.

Figure 1(a) shows the statistical information about the runtime improvement
ratio of SPECGREEDY compared with the GREEDY algorithm for detecting the
densest subgraphs; Fig. 2(a) illustrates more detailed information about the time
taken of the two methods: for each network dataset, it provides the runtime of
the two methods and the network size.

Observation: Our method runs faster than GREEDY and achieves the same
or comparable optimal densities as shown in Fig. 1(b). Among these varied-size
datasets, SPECGREEDY achieves 3.0-5.0x speedup for 17 of them, 1.5-3.0x for 8,
and 5.0-7.0x for 7 graphs, and more than 58.6x for the ca-DBLP2012 graph. As
we can see, SPECGREEDY is efficient for large graphs, e.g. 30x for ca-DBLP-NET,
25x for cit-Patents, and 3x speedup for soc-twitter.
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Fig. 2. The performance of SPECGREEDY for the real-world graphs. (a) SPECGREEDY
runs faster than GREEDY in all graphs for detecting the densest subgraph with the same
or comparable density, achieves 58.6 x speedup for ca-DBLP2012 and about 3x for the
largest graph soc-twitter. (b) The statistic information about & for spectral vectors. The
densest subgraphs with optimal density g+ are achieved in the first singular vector for
most of the datasets. The blue bars show the statistics of k£ when algorithm stops
given the parameter k = 10. (¢) The contrast patterns for DBLP co-authorship data in
2000 — 2017 with the positive residual G, (very large cliques in 2017, 2015, and 2014).
(Color figure online)

For the 5 weighted graphs, we observe similar results as above. SPECGREEDY
achieves 24-39x speedup for 3 of them and 11-17x for the rest. GREEDY will
have poor performance for the graph dominated by few edges with heavy weights
due to it needs to peel each edge of the whole graph.

Figure 2(b) summarizes the statistics about spectral vectors k for obtaining
the optimal density ¢g* and actual k when the algorithm stops. Larger k means
taking more time for SVD and detection candidate subgraphs. We can see that
the densest subgraphs with optimal density ¢g* are achieved in the first spectral
vector for most of the datasets, the second one for 6 of the graphs, and only 3
graphs need to check more than 5 singular vectors. There are 26 graphs where
SPECGREEDY stops for the early-stopping condition, while the rest need to check
all 10 singular vectors due to the small optimal density or flat power-law factor
of singular values. Besides, we find that some subgraphs detected based on the
top k — 1 vectors also cliques with a smaller size than the optimal one. So, the
above heuristic observation and the power-law distribution of singular values
contribute to the efficiency of SPECGREEDY, and the small k is enough for good
results.

6.2 Q2. Effectiveness

In this section, we verify that SPECGREEDY detects high-quality densest sub-
graphs in real-world graphs and accurately detects injected subgraphs with differ-
ent injection density. Moreover, focusing on a large-scale collaboration network,
we show that SPECGREEDY also finds significant contrast dense subgraphs.
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Density Improvement. Following the setup we described in Q1, Fig. 1(b)
shows the improvement ratio of optimal densities found by SPECGREEDY com-
pared to the GREEDY and SPOKEN algorithm. As we can see, SPECGREEDY
consistently outperforms SPOKEN by detecting denser densest subgraphs for all
real-world datasets. It even achieves more than 28.3x higher density for the
soc-twitter graph, Also, SPECGREEDY obtains the same or denser (more than
1.26x) optimal density for most graphs compared with GREEDY; there are 4
graphs that the optimal densities detected by SPECGREEDY have less than but
very close (> 0.996x) densities as detected by GREEDY, and 2 graphs with less
than 0.9 density improvement. So, utilizing the spectral distribution of the dens-
est subgraph, SPECGREEDY can improve the quality of solution of GREEDY in
most cases due to avoid arbitrary ties-break in graphs for removing in GREEDY
to some extent.

Injection Detection. We further evaluate the performance of SPECGREEDY by
performing a synthetic experiment where we inject dense subgraphs as ground
truth. For a more realistic setting, we also added extra edges as ‘camouflage’
between the nodes in the selected injection subgraph and the remaining unse-
lected nodes. We compared SPECGREEDY, GREEDY and SPOKEN in terms of F
measure in detecting the injected patterns, and reports the averaged F-score over
5 trials. Specifically, we injected a 600 x 600 subgraph with different injection
densities to an amazon-Art review subgraph of size 4K x 4K, and we select the
two different cases with background densities 2.7E-5 and 3.4E-5 for comparison.
From the result, we observe that SPECGREEDY achieves equally high accuracy
as GREEDY and is better than SPOKEN, the detailed figures are provided in the
supplement.

Case Study. As a case study, we also apply SPECGREEDY on the DBLP co-
authorship data [28] from 2000 to 2017 to identify interesting contrast dense
patterns. Figure 2(c) shows the contrast dense subgraphs pattern detected by
SPECGREEDY with constructing the positive residual graphs G,.. Those densest
contrast subgraphs are all cliques of different sizes, which means the connections
that form a clique only appear in G; rather than G;_; (or Gi11). As we can
see, there are 3 extremely large cliques for 2017, 2015, and 2014, related to
the publications in ‘Brain network and Disease’, ‘Neurology and Medicine’, and
‘Physics’ from some large collaborative groups of different disciplines.

6.3 Q3. Scalability

Figure 1(c) shows the linear scaling of SPECGREEDY’s running time in the num-
ber of edges of the graph. Here we used the ca-Patents-AM graph and randomly
subsampled different proportions of the edges from it for detecting the densest
subgraph. The slope parallel to the main diagonal indicates linear growth.
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7 Conclusions

In this paper, we propose the generalized densest subgraph detection, GENDS,
which unifies several well-known instances of related problems. We devise the
SPECGREEDY algorithm to solve the generalized problem based on graph spec-
tral properties and a greedy peeling approach. Our main contributions are as
follows.

— Theory & Correspondences: We propose the unified formulation for the
densest subgraph detection from different applications, and analyze our pro-
posed optimization problem by leveraging spectral theory.

— Algorithm: We devise a fast algorithm, SPECGREEDY, to solve the GENDS.

— Experiments: The efficiency of SPECGREEDY is verified on 40 real-world
graphs. SPECGREEDY runs linearly with the graph size and is effective in
applications, like finding sudden bursts in research co-authorship relation-
ships.

The quality guaranteed detection algorithm design and streaming graphs
adaptation are also possible extension directions for this work.
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