
A New Collaborative Scheduling
Mechanism Based on Grading Mapping
for Resource Balance in Distributed

Object Cloud Storage System

Yu Lu1, Ningjiang Chen1,2(B), Wenjuan Pu1, and Ruifeng Wang1

1 School of Computer and Electronic Information,
Guangxi University, Nanning 530004, China

chnjgxu@edu.cn
2 Guangxi Key Laboratory of Multimedia Communications and Network Technology,

Nanning 530004, China

Abstract. An algorithmic mapping of storage locations brings high
storage efficiency to the storage system, but the loss of efficient schedul-
ing makes systems prone to crashing at low usage. This paper uses the
Ceph storage system as a research sample to analyze these issues and
proposes a grading mapping adaptive storage resource collaborative opti-
mization mechanism. This approach grading both the storage device and
the storage content, and introduced random factors and influence factors
as two-factors to quantify the grading mapping relationship between the
two of them. This relation coordinates the storage systems’ performance
and reliability. In addition, a collaborative storage algorithm is proposed
to realize balanced storage efficiency and control data migration. The
experimental results show that in comparison with the inherent mecha-
nism in the traditional Ceph system, the proposed cooperative storage
adaptation mechanism for data balancing has increased the average sys-
tem usage by 17% and reduces data migration by 50% compared to the
traditional research approach.

Keywords: Cloud storage · Storage balance · Grading mapping ·
Ceph · Collaborative scheduling

1 Introduction

In the internet-based collaborative computing [1] mode, there are similarities
between the operation and management of collaborative applications and the
scheduling of nodes in distributed systems [2]. The performance of applications
is affected by the construction and management of system infrastructure. In
cloud storage, the storage mapping of data is related to the performance and
the stability of the storage system. Distributed object storage systems with hash

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2020, LNICST 350, pp. 533–549, 2021.

https://doi.org/10.1007/978-3-030-67540-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67540-0_35&domain=pdf
https://doi.org/10.1007/978-3-030-67540-0_35


534 Y. Lu et al.

algorithm mapping storage locations are widely used, have shown good perfor-
mance. However, the lack of a central scheduling service makes the mapping of
data to storage devices uncontrollable, so for balanced storage of data, collabo-
rative scheduling between devices is required spontaneously.

Ceph [3] is a representative object-based storage system [4] (OBSS), which
hasn’t a dedicated metadata server [5] (MDS) to record the object-based storage
device (OSD) locations of segmented objects. The OSD location uses a specific
mapping algorithm CRUSH [6] to determine the locations of the objects and the
replicas. When the data are searched or modified again, the mapping process
can be done independently on each client. When the device is replaced or a
new one is added, it is necessary for the storage system to adaptively calculate
the storage location of the object to realize the recovery and balance, so easily
scaling storage requirements for a huge scale of data.

In today’s medium and large data centers, this feature reduces the data
risks and lowers operating costs when replacing equipment. But the mapping
algorithm [7] can’t sense the state of the device where the data will be written,
and if the device is overloaded, the data writes are denied, at which point the
upper-level systems with Ceph as the base storage (such as Openstack [8], which
provides block storage [15] primarily for applications such as its virtual machines)
will crash.

In view of the above problems, existing researches mainly optimize CRUSH
or adopt frequent migration to balance the system [9]. These are either too
conservative and have a poor balance effect or are too aggressive and cause
more performance problems. In view of these deficiencies, this paper analyzes
the key factors of such problems using Ceph as the research platform, which
differs from existing researches by using the collaborative work between storage
nodes to control the process of mapping and migration of storage data. A graded
mapping adaptation mechanism is proposed to make the data relevant to the
device. This paper first devises influencing and random factors to capture the
relationship between PGs(Placement Group) and OSDs(Object Storage Device),
as well as a collaborative algorithm to enable a single OSD to use these factors
for collaborative scheduling with other OSDs. The classification of OSD and
PG also increases computational efficiency, manages migration direction, and
reduces the operational difficulty. At the same time, the stability of the system
can be greatly improved through effective migration.

The structure of this paper is as follows. In Sect. 2, we will introduce the Ceph
storage process, analyze the problems and the factors that have been missed
by existing researches, and then a new mechanism is proposed in Sect. 3. The
experiments to verify the proposed mechanism are given in Sect. 4, and Sect. 5
conclude the paper.

2 Problem Analysis and Motivation

In the basic framework of Ceph, the Rados is responsible for the mapping pro-
cess between the file to the storage device OSD [10]. This process has three
basic steps: from file to object, from object to PG, and from PG to OSD. The
relationship is shown in Fig. 1.



A New Collaborative Scheduling Mechanism 535

Fig. 1. Ceph storage mapping process

Step 1. (ino, ono) → oid: This step splits the files. ino is the id of the file, ono
is the unique identifier of the file slices, oid is the unique id of the object. Almost
all object storage systems and slicing storage systems split files and store them
in a similar mechanism.

Step 2. hash(oid)&mask → pgid: This step computes the PGs for the object.
The object’s unique identifier is used as the seed. In Ceph, this identifier is
usually composed of the file name and object identifier. Then, a specific hash
algorithm is used to generate the random number, and then the number of PGs
is used to make the remainder operation. This allows objects to be randomly
distributed to individual PGs. The number of PGs is confirmed when the system
cluster is initialized. The conventional method is to use the number of redun-
dancy as the reference when the number of PGs is initialized [11], as calculated
by Eq. (1):

TotalPGs = (Number of OSD ∗ 100)/replication (1)

Object mapping to PG is a completely random process in both research and
production environments. Although the remainder operation is approximately
evenly distributed, the difference between PGs is actually not as small as imag-
ined as the randomness varies from the average value. We conducted an experi-
mental analysis to explore this problem. This experiment uses the Ceph source
code as the object of analysis to calculate the object distribution of 38TB of file
data in 6,666 PGs(300 OSD according to Eq. 1 and the number of PGs in the 2
replica [12] mode). The file size is simulated as 1 GB. The OID is composed of
a random file name and a numeric number, which is consistent with the system
numbering. Figure 2 shows the PG number distribution of the theoretical devi-
ation between the actual number of objects and the number of objects in the
PG for the simulation environment, the horizontal coordinate is the difference



536 Y. Lu et al.

between the size of a single PG and the average size of all PGs, and the verti-
cal coordinate is the number of PGs. From the figure, the largest PG and the
smallest PG differ by approximately 200 objects (4 MB for a single object). PG
is the minimum storage unit considered in the Ceph system. Therefore, neither
balancing efficiency nor data migration control can be improved if PG differences
are not focused on in the research of balanced storage.

Fig. 2. Object deviation statistics in PG

Step 3. crush(pgid) → (osd1, osd2): This step is the OSD selection. It is
implemented by using Ceph’s default algorithm CRUSH which is a pseudo-
random reproducible process. At present, most of researches work about storage
balance focus on optimizing this step, including two typical methods, the first
type is based on the size of the OSD capacity so that the average distribution
of PG on each OSD, the other type is to dynamically adjust the number of PG
on the OSD in the system runtime. Both approaches consider the PG to be uni-
form in size, the difference is that the former is based on the equalization of PG
[13] the latter is based on the use of the classical MDS storage system [14] for
equalization. However, as can be seen from the second step above, PGs do not
have the same size, so these two methods can only perform relatively balanced
work to some extent, without further considering the difference of PG. The size
of the PG changes dynamically in real-time and is random.

Based on these conclusions, we know that distribution of average PG on OSD
does not mean an average distribution of data and that the central scheduling of
PG loses the advantage of mapping storage locations by algorithms. However, the
mapping and parameter changes lead to data migration, which results in further
performance problems and stability risks. Because the PG size difference is not
considered, the existing researches are limited in their ability to solve the problem
of storage balance; they incur performance costs. Therefore, this paper proposes
a collaborative scheduling mechanism based on grading mapping, which gives the
PG the ability to migrate autonomously. The balanced tasks can be coordinated



A New Collaborative Scheduling Mechanism 537

among a number of OSDs, it can also provide accurate data migration solutions
for PGs, ensuring that the amount of migrated data is controllable. Secondly, a
model is established to evaluate the relationship between the PG and the OSD to
avoid the scenarios in which a data migration triggers a cascade of further data
migration. The main grading model guides the migration direction and conforms
to the changes in the cluster’s high performance and reliability for each period
of the cluster’s overall use. As a result, the proposed approach ensures high
performance and high reliability of the system.

3 Collaborative Scheduling Mechanism Based on Grading
Mapping

For the problems in Ceph analyzed in the previous section, the situation is
that when an OSD node usage exceeds the average usage rate, the balancing
mechanism can be triggered by the node itself, and the PG that needs to be
migrated is evaluated according to its own size, usage rate, and the average
cluster usage rate. Each PG that needs to be migrated can get the feedback
from all the new OSD sets and find the best set to migrate, as shown in the
figures below.

For the classic Ceph system, there are unresolved issues at each step:

(a) PG does not have the ability to migrate independently, even if a PG is
selected, it cannot be migrated.

(b) Even with the ability to move, a random choice without direction may never
find a choice that can be migrated.

(c) There is no evaluation standard that reflects whether the OSD combination
can accept the PG.

To address the above problems, this paper proposes a novel solution that is
introduced below.

3.1 Random Factor and Impact Factor

In the traditional Ceph storage system, the PG does not have the ability to redi-
rect. The Reweight artificial modification mechanism is an external enhancement
available in the BlueStore [16]. Therefore, in order to solve the balanced storage
problem, the PG redirection capability is first given, so this capability is con-
tained within the PG. This is accomplished by adding a random factor to the
parameters. The addition of random factors interferes with the CRUSH selection
results, and the changes in the incoming parameters allow the pseudo-random
process to have more solutions. The principle of the random factor ri is as follows:

Ri < OSDs >= CRUSH(pgid, ri) (2)

Where pgid is the unique identifier of the PG, ri is the random factor, i is
the number of selections, and Ri is the OSD combination selected by the ri (the



538 Y. Lu et al.

Fig. 3. The process of achieving storage balance in the Ceph system

master node and multiple copy storage nodes). For ri, it can be randomly gener-
ated as a seed according to parameters such as time or memory space according
to the underlying implementation of each system. Because of the randomness of
CRUSH, the resulting set Ri also changes when ri changes. The purpose of the
balanced storage that this paper focuses on is to make the usage rate of each
OSD of the whole system as close as possible to the average usage rate. If the
average usage rate of a system is assumed to be M, the index equalization rate
of a balanced storage condition of a system is evaluated. β can be calculated as
follows:

β =

∑n
j=1(xj − M)2

n
(3)

where xj is the usage rate of a single node in the cluster. The equalization rate
reflects the variance of cluster usage; it is a reflection of the difference in usage
of each node in the cluster. For the impact of a PG redirection on the whole
system, the calculation of the impact factor can be compared with the β before
the PG migration and the β after the PG migration. The system state after
the PG migration can also be judged, so the impact factor θ can be defined as
follows:



A New Collaborative Scheduling Mechanism 539

θ =

⎧
⎪⎨

⎪⎩

−1 xr > 1 or xr − M>α
∑n

j=1(xr − M)2
∑n

j=1(xj − M)2
else

(4)

Here r is an OSD in a selection result set R, xr is the usage rate of a single
node in the migrated cluster, α is a set threshold. If the usage rate exceeds
the threshold value compared with the average usage rate, the equalization is
triggered. If the usage rate of an OSD in a group of OSDs exceeds 1 after the PG
migration or the usage rate exceeds the average usage rate, the impact factor of
this group is -1. This judgment prevents two undesirable outcomes. The first is
the migration making other OSDs unavailable. The second is that the migration
will not make the new node unavailable, but it will trigger another migration of
the new OSD.

3.2 Grading Mapping Mechanism

The definition of the random factor gives the PG redirection ability. However,
if there is no corresponding control and optimization method, when a PG needs
to be migrated only the unknown random calculation can be performed and the
most suitable combination can be found. This process is uncontrollable, and the
calculation of the impact factor can also result in a substantial computational
performance cost. Therefore, on the basis of random factors, a novel logical divi-
sion OSD method is proposed, and the random number of random factors is used
as the grading division method to ensure that the migration of PGs has direc-
tion and level. The advantage of OSD grading is that each pool can customize
the rules for PG migration in and out. Because PG migration determines the
amount of data migration, it is also possible to indirectly limit data migration
through OSD grading. Further, we propose a grading approach for PGs, which
combines PG grading with OSD grading. This approach converts the selection
process of objects from PG→OSD to PG→grading→OSD. The grading of PG
is matched with the grading of OSD. The OSDs grading is based on the number
of selections of the random factors. Therefore, the PG level change must start
from the lowest level of the OSD; it can be determined according to the random
factor and the impact factor whether it can be migrated to a group of OSDs in
this grading pool. If the low-level grading pool does not accept the PG accord-
ing to the policy, the upgrade selects a higher-level OSD grading pool. The OSD
grading pool is shown in Fig. 4.

In this way, when the average cluster usage is low, the PG can perform the
equalization with less calculation. When the average cluster usage is high, more
choices can be made. High performance is ensured at low system usage and high
reliability at high usage rates. According to the above design concepts, the basic
process of the OSD and PG dual grading strategy is as follows. The first step is
the initialization phase, which consists of two parts: one is to pre-statically set the
initial level of the OSD; the other is to initialize the PG level. Compared with
the traditional random selection strategy of the CRUSH algorithm, the OSD



540 Y. Lu et al.

Fig. 4. Grading pool diagram

classification mechanism constrains the selectable range of PGs to one level.
Considering the real-time changes of the PG size, it should be distributed in
grading pools as evenly as possible in the PG level initialization. Therefore, this
paper constructs a uniform hash ring according to the total size of each grading
pool. The uniform hash is derived from the consistency hash. The maximum
value of the hash ring is an integer, and the length of every hash segment is the
same. The number of nodes on the hash ring is the same as the number of pools,
and PG determines the grade by taking the hash value by pgid and then taking
the surplus in relation to the number of pools. The principle is shown in Fig. 5.

Fig. 5. PG initialization level with hashring

The example shown in the Figures is a grading method of three levels: M,
N, and T. The size ratio of each logical pool is M:N:T = 1:5:2, so 8 nodes can
be constructed according to the ratio. The entire hash ring is divided into 8
equal segments, 8 nodes are randomly scattered in 8 positions. Then, each PG
performs a remainder operation on the ring maximum value according to the



A New Collaborative Scheduling Mechanism 541

hash value calculated by its pgid. The remaining value falls into a point on the
ring. Using a clockwise search, the first node level encountered is the PG level.
The initialization algorithm of the PG is as follows Algorithm1:

Algorithm 1. PG Initialization algorithm
Require: ;

The set of all OSDs Levels size;
The set of all PGs; Integer MAX RING

1: integer nodes count;
2: integer[level][ratio] level array;
3: level array=Get the minimum ratio(OSDs Levels);
4: for each level ∈ level array do
5: nodes count+=level[ratio];
6: end for
7: integer[nodes count] nodes array;
8: for each level ∈ level array do
9: for i = 0 to level[ratio] do

10: i=randomInt(nodes count);
11: while nodes array[i] do
12: i++;
13: end while
14: nodes array[i]=level[level]
15: end for
16: end for
17: initialize a hash ring by levels;
18: MAX RING=MAX RING÷nodes count;
19: for each pg ∈ all PGs do
20: interval=(integer)hash(pgid)÷(MAX RING)
21: pg.level=nodes array[interval] ;
22: end for

The second step is the collaborative balancing process, which is mainly com-
posed of a PG selection, a PG redirection calculation, and a PG redirection to
complete the migration. An example of the working process of this mechanism
is shown in Fig. 6.

Fig. 6. PGs migration process



542 Y. Lu et al.

In the figure, the classification of the cluster is divided into three levels: red,
blue, and green. The maximum random number is set to 2, 4, and 5. In (a), one
node usage rate is higher than the average usage α, the mechanism is triggered
in the OSD, and n PGs in the OSD are selected according to the mechanism.

(a) Select 3 PGs for migration according to the rules.
(b) Starts with the red PG, because the maximum random number of the first

level is 2, so the red PG performs two random calculations to obtain 2
random factors. At the same time, two sets of OSD combinations in the first
stage are obtained. The group OSD sends a migration request, assuming a
reply of [−1, a] (a !=−1). A returned value of −1 indicates that if the red PG
migrates to the combination, a new node migration is triggered or the node
is unavailable. A returned value of non-1 indicates that the combination
accepted the migration request and the red PG completed the migration.
Similarly, the green PG obtains [−1, −1] in the combination of the two
random factors of the first level, and the migration cannot be completed at
the first level. As the result, the level rises to the second level. The maximum
random number of the second level is 4, so 4 sets of OSD combinations are
obtained with 4 random factors. Assuming that the four return values are
[−1, a1, a2, a3] (−1<a1<a2<a3), according to the calculation formula of
the influence factor, we can know that the combined balance degree of a1 is
greater than a3, and the migration of the smallest one of the three non-1s is
taken. Finally, the blue PG also follows this approach.

(c) Set the new level and the new random factor to the new parameters of the
three PGs, and the PG starts to migrate. After the migration, all of the node
usage rates are less than the threshold α compared with the average usage
rate, and no single point usage rate is prominent; therefore, the balance is
achieved.

The algorithm is described as Algorithm 2:

Algorithm 1 is to initialize the parameters, the number of executions of this
algorithmic process is only related to the number of PG, so the time complexity
is O(n). Algorithm 2 is a balanced storage algorithm, the number of executions
of which is a pre-set parameter, and the time complexity of the algorithm is
O(n) too.

The mechanism uses two factors to plan and constrain the balancing, avoid-
ing the uncertainty that occurs in collaborative balancing. Based on the grading
mechanism, each migration of data is a joint decision of multiple nodes. The
management model of a two-way migration strategy avoids the requirement to
balance more nodes that are triggered by data migration. Since the balanc-
ing mechanism is decided first between nodes and then data is migrated, each
migration is an efficient migration, reducing IO performance losses. The key
performance of the mechanism lies in the calculation. When the cluster has a
low usage rate, the balance can be completed in the low-level grading pool. In
this case, the number of operations is small, and the performance is guaranteed.



A New Collaborative Scheduling Mechanism 543

Algorithm 2. Adaptive grading data balanced mechanism algorithm
Require: ;

OSD;
Average usage of this level M;

1: PG[] pgs,i=0;
2: List *Levels;
3: balance=abs((M-OSD.ratio))*OSD.size;
4: allPGs=sort by size asc(OSD.PGs);
5: while balance>0 do
6: pgs.push(allPGs[i]);
7: i++;
8: balance-=allPGs[i];
9: end while

10: for each pg ∈ pgs do
11: map(r,θ) result;
12: while Levels→hasNext() do
13: for i = 0 to Levels.max random count do
14: r=Random();
15: OSDs=CRUSH(pg,r);
16: for each osd ∈ OSDs do
17: result.add(r,result.get(r)+θ)
18: end for
19: end for
20: sort by θ asc(result);
21: repeat
22: if *result.θ>0 then
23: pg.level=Level.level;
24: pg.r=*result.r;
25: end if
26: until !*result.hasNext()
27: end while
28: end for

When the cluster has a high usage rate, it needs to consider higher levels. Find-
ing the right combination decreases the performance, but ensures the validity of
the calculation results, thus improving the reliability of the system.

4 Experiments and Evaluation

Experiments are conducted to compare the performance of the mechanism pro-
posed in this paper, the Ceph system, and related research [9,12] examples in
terms of data balancing and migration control by means of simulation. For the
simulation system, this paper uses the CRUSH in the Ceph source code to re-
implement a simulation system for writing and recording Ceph data based on
the BS architecture. The architecture of the system is shown in Fig. 7.



544 Y. Lu et al.

Fig. 7. Architecture of simulation system

The implementation of the simulation system is mainly divided into five
modules. The uppermost layer is the interface module, which is used to con-
figure the system, write data, obtain storage information, etc. Level Module is
a grading pool class, which defines the capacity, used capacity, level, etc. OSD
Module extends from Level Module, so OSD has the parent class’s properties
and independent PG operation methods. All calculations are performed in a
single module that is completely decoupled to ensure the implementation of the
algorithm for each control group.

4.1 Evaluation of the Effect of Storage Balance

The experimental comparison object of the balanced storage is mainly the
research work of uniform PG and the traditional Ceph storage system. The
experiments make the PG uniformly distributed across OSDs to simulate the
native Ceph balancing method. Three control simulation environments are con-
figured respectively: Normal, Partially small (single OSD capacity is half of the
size), and Partially large (half the OSD size is 2 times the size). The average
overall usage when testing the maximum writes R for the system is defined as:

R = max input/total size (5)

The variance of the OSD usage is defined as:

V =

∑n
j=1(uj − R)2

n
(6)

Where uj is the single node usage rate.



A New Collaborative Scheduling Mechanism 545

Because it is difficult to use 100% of the algorithm map storage locations,
the following approach is used as a reasonable alternative. When the usage rate
of a single-point OSD reaches 100%, the system first returns the usage rate.

Experiments will be performed many times with different level distributions,
different OSD counts, different OSD sizes, and different per-write volumes. Com-
pared the mechanism proposed in this paper, the classic Ceph, and the simulation
of the uniform PG distribution on OSDs(Simulated Ceph open source tool up-
map). All experiments are in 2 replicate mode. Each time the system writes 3
times, the amount of testing data (until one of the nodes reaches 100%), the vari-
ance, and the usage rate at runtime are recorded. The experimental results are
shown in Fig. 8. The vertical coordinates on the left are the variance values for
each experimental control group, represented by a histogram. The right vertical
coordinate is the system usage rate of each control group in each experiment,
and the horizontal coordinate is the number of experiments.

From the figure, we can see that in all of the experiments, the comparison
group using the mechanism proposed in this paper has an average utilization
rate of more than 15% compared with the other two comparison objects. In
some comparison groups, such as Partially small, it can reach 20%. In addition,
the experiment using this mechanism maintains a very stable state in usage,
and there is not much fluctuation. This is because each writes data is random,
and the mechanism of this paper can be used to circumvent this randomness. In
comparison, the other two approaches do not. Especially in the Partially small
experimental environment, the other two approaches collapse when the overall
usage rate is low. This is because the PGs in these approaches are not aware of
the OSD’s usage. The system using tool up-map is not completely better than
the classic system. The reason is that the analyzed distribution of the PG is not
equal to the data distribution. In terms of variance, the control group using the
proposed strategy is lower than the other two approaches. The storage balance
of the system is improved after using the new balancing mechanism.

4.2 Evaluation of Data Migration

In the previous section, we pointed out that although the method of using equal-
ized write frequency has completed the function of equalized storage, it incurred
substantial data migration. This causes the loss of system performance and made
the systems unreliable. Compared with previous research, the algorithm of this
paper focused on the transfer of a balanced object based on a single PG, rather
than an entire OSD. In this experiment, this paper uses a quantitative writing
method to write a fixed size of data each time [9]. The offline calculation to
obtain the data migration will be used in this section. The evaluation compared
the amount of data migration that occurred when writing the same amount of
data due to Reweight in the classic Ceph system. The Reweight mechanism was
not a well-balanced solution, so the amount of data migration was not com-
pared. The results are shown in Fig. 9. The histogram shows the comparison of
the migration of data between the 2 mechanisms in equalized storage at each



546 Y. Lu et al.

Fig. 8. Balanced storage capacity experiment

interval as usage increases, the table below shows the detailed migration data
sizes.

As can be seen from the above figures, using the balanced storage strategy
based on the write frequency, when the data are written into the system, no
matter whether the system usage rate is high or low, a substantial amount
of data migration occurs. The main reason is the differences among the PGs:
this method seeks to migrate objects to achieve balanced storage, but the real
migration is PGs. Consequently, data migration increases each time the data
are written. In contrast, the algorithm strategy of this paper increases with the
usage rate, because each node may trigger a new node to be balanced after
each writes. However, at low usage rates, it does not intervene in the system to
trigger data migration, ensuring equalization. While storing, it also ensures that
the performance of the system is not affected. The migration of data increases at



A New Collaborative Scheduling Mechanism 547

(a) 100OSD(1024M Per Write) (b) 100OSD(2048MB Per Write)

(c) 200OSD(1024MB Per Write) (d) 200OSD(2048MB Per Write)

Fig. 9. Comparisons of data migration

high usage rates; the migration amount across levels increases because the initial
migration leaves many PGs in a low level. The strategy in this paper migrates
50% fewer data compared to the typical research approach and the reduced data
migration ensures the reliability of the system.

4.3 Summary of the Experiments

It can be seen from the above experiments that the mechanism proposed in this
paper has good performance in balanced storage, and at the same time, it has
obvious advantages in data migration control compared to some typical previous
researches. The mode of using collaborative work makes balancing spontaneous
and efficient; it also makes the system more reliable. It is suitable for large-
scale clusters. This is because the use of fewer OSD clusters means there are
fewer OSDs per level after grading, so there are a limited number of different
combinations for every PG.

5 Conclusions

In view of the storage imbalance problem in cloud storage systems, in this paper,
a collaborative scheduling balanced storage mechanism based on a grading map-
ping model is proposed with Ceph as the research platform. The main contribu-
tion is to propose a novel collaboration mechanism to enable collaborative data



548 Y. Lu et al.

balancing among storage nodes, which ensures balanced storage performance
while reducing data migration costs. The proposed mechanism is independent
and can be used with other algorithms mapping storage locations in the stor-
age system to comprehensively solve the balanced storage and data migration
problems. At the same time, many application scenarios such as data migra-
tion, cold data precipitation, etc. can be derived in the future. These are data
balanced storage strategies with high application prospects. However, the work
in this paper also has limitations, which is a goal for future work. First, the
algorithm designed in this paper is very inefficient when the system is at high
usage, because more attempts are needed and no good constraint can be found
at present. Secondly, the structure of the storage system is simple and does not
take into account structures such as Bucket in the algorithm, which is also the
focus of future work.

Acknowledgment. This work is supported by the Natural Science Foundation
of China(No. 61762008), the National Key Research and Development Project of
China (No. 2018YFB1404404), the Major special project of science and technology
of Guangxi(No.AA18118047-7), and the Guangxi Natural Science Foundation Project
(No. 2017GXNSFAA198141).

References

1. Zhang, W., Flores, H., Pan, H.U.I.: Towards collaborative multi-device computing.
In: 2018 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops). IEEE (2018)

2. Rump, F., Timm, B., Raphael, E.: Distributed and collaborative malware analysis
with MASS. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN).
IEEE (2017)

3. Aghayev, A., et al.: File systems unfit as distributed storage backends: lessons
from 10 years of Ceph evolution. In: Proceedings of the 27th ACM Symposium on
Operating Systems Principles. ACM (2019)

4. Zhou, J., et al.: Pattern-directed replication scheme for heterogeneous object-based
storage. In: 17th IEEE/ACM International Symposium on Cluster 2017, Cloud and
Grid Computing (CCGRID). IEEE (2017)

5. Kisley, R.V., Philip, D.K.: Distributed file serving architecture with metadata stor-
age and data access at the data server connection speed. U.S. Patent No. 9,262,094.
16 February 2016

6. Huang, M., et al.: Research on data migration optimization of Ceph. In: 2017
14th International Computer Conference on Wavelet Active Media Technology
and Information Processing (ICCWAMTIP). IEEE (2017)

7. Zhao, N., et al.: A reliable power management scheme for consistent hashing based
distributed key value storage systems. Front. Inf. Technol. Electron. Eng. 17(10),
994–1007 (2016)

8. Zhang, X., Gaddam, S., Chronopoulos, A.T.: Ceph distributed file system bench-
marks on an openstack cloud. In: 2015 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM). IEEE (2015)

9. Wang, L.: Optimizations on Ceph Cache Tiering. KylinCloud, Ceph day (2015)



A New Collaborative Scheduling Mechanism 549

10. Weil, S.A., et al.: RADOS: a scalable, reliable storage service for petabyte-scale
storage clusters. In: Proceedings of the 2nd International Workshop on Petascale
Data Storage: Held in Conjunction with Supercomputing 2007. ACM (2007)

11. Zhou, J., et al.: Pattern-directed replication scheme for heterogeneous object-based
storage. In: 17th IEEE/ACM International Symposium on Cluster 2017, Cloud and
Grid Computing (CCGRID). IEEE (2017)

12. Mseddi, A., Salahuddin, M.A., Zhani, M.F., et al.: Efficient replica migration
scheme for distributed cloud storage systems. IEEE Trans. Cloud Comput. (2018)

13. D’atri, A., Bhembre, V., Singh, K.: Learning Ceph: unifed, scalable, and reliable
open source storage solution. Packt Publishing Ltd. (2017)

14. Ou, J., et al.: EDM: an endurance-aware data migration scheme for load balancing
in SSD storage clusters. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE (2014)

15. Zhang, X., Wang, Y., Wang, Q., et al.: A new approach to double I/O performance
for Ceph distributed file system in cloud computing. In: 2019 2nd International
Conference on Data Intelligence and Security (ICDIS), pp. 68–75. IEEE (2019)

16. Aghayev, A., Weil, S., Kuchnik, M., et al.: File systems unfit as distributed storage
backends: lessons from 10 years of Ceph evolution. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pp. 353–369 (2019)


	A New Collaborative Scheduling Mechanism Based on Grading Mapping for Resource Balance in Distributed Object Cloud Storage System
	1 Introduction
	2 Problem Analysis and Motivation
	3 Collaborative Scheduling Mechanism Based on Grading Mapping
	3.1 Random Factor and Impact Factor
	3.2 Grading Mapping Mechanism

	4 Experiments and Evaluation
	4.1 Evaluation of the Effect of Storage Balance
	4.2 Evaluation of Data Migration
	4.3 Summary of the Experiments

	5 Conclusions
	References




