Chapter 7 ®
Fast Automatic Artifact Annotator for e
EEG Signals Using Deep Learning

Dong Kyu Kim and Sam Keene

7.1 Introduction

The study of the brain, neuroscience, to understand about ourselves better has been
a great research area that combines the efforts of scientists and engineers across
various disciplines. Due to the brain’s complexity, the understanding of the basis
of learning, perception, and consciousness is sometimes described as the “ultimate
challenge” of biological sciences (Aminoff 2001). Currently, many advances in
neuroscience come from analyzing recordings of the brain. However, due to the
overwhelming amount of electrochemical activities in the brain, the collection of
reliable data is still one of the biggest challenges in neuroscience (Louis et al. 2016).

There are two main branches of brain signal acquisition methods: invasive and
non-invasive methods. Invasive methods involve placements of electrodes inside the
brain or insertion of needles through the subject’s head to collect precise and highly
local data. On the other hand, non-invasive methods such as electroencephalogram
(EEG) and magnetic resonance imaging (MRI) suffer from noise and various
artifacts (Louis et al. 2016). Due to the high interest and potential in this area of
research, in addition to relatively cheap and accessible EEG recording machines
(DellaBadia et al. 2002), there are a lot of interesting data available for analysis.
However, a lot of EEG data suffer from artifacts which are unwanted signals present
in the recordings as a result of the procedure of measurements. Artifacts in EEGs
are both physiological and technical, and they require well-trained observers to
be identified well (Louis et al. 2016). If there is a system that can distinguish
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between artifacts, and cerebral data automatically, neuroscience can advance further
as reducing the effect of artifacts will increase the signal-to-noise ratio so that brain
activity can be detected more precisely.

To achieve this goal, Temple University has constructed a large dataset of
EEG signals from various subjects that are specifically labeled for artifacts (Obeid
and Picone 2016) to aid engineers and scientists to build models that detect and
remove the artifacts. Previously, Golmohammadi and colleagues developed a model
that automatically analyzes EEG signals to help physicians diagnose brain-related
disorders such as seizures using hybrid deep learning architectures. This model
integrates hidden Markov models, deep learning models, and statistical language
models to deliver a composite model that has a true positive rate of 90% while
having a false alarm rate of below 5% on events of clinical interests: spike and
sharp waves, periodic lateralized epileptiform discharges, and generalized periodic
epileptiform discharges (Golmohammadi et al. 2019). This model proves the
viability of big data and deep learning methods in detecting events in EEG signals.

The work in Golmohammadi et al. (2019) attempts to classify artifacts as well
as the mentioned events of clinical interest, but the model developed was only able
to distinguish 14.04% of the artifacts correctly from the data. As the goal of that
model was to detect seizures and epilepsy, no further analysis of artifacts was done,
but it was noted that transient pulse-like artifacts such as eye movements and muscle
movements can significantly degrade the performance. In this chapter, a method that
can quickly identify the presence of artifacts and the type of the artifacts during the
data acquisition is proposed so that a clinician can resolve the problem immediately
and ensure the collected data is cleaner. To achieve this goal, multiple deep learning
models with varying model size, inference time, and accuracies were developed
and optimized to compare and contrast between advantages and disadvantages of
different approaches. The key feature of the models is that all the inferences are
done directly on the signals with a minimal preprocessing such as normalizing and
aggregating enough samples to be used for predictions by the model. The system
aims to be memory efficient, and computationally light, while being fast enough to
be implemented on portable systems such as Raspberry Pi. Such portable systems
would be able to detect and classify artifacts in real-time, potentially in a clinical
setting.

7.2 Related Works

There have been numerous efforts to combat the artifact problems in EEG signals.
A lot of research has been done to reduce the effects of artifacts by utilizing prior
knowledge such as how some artifacts behave in the signal. Artifact removal and
detection tools of this nature tend to examine the statistical characteristics of the
signals.
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Nolan, Whelan, and Reilly (Nolan et al. 2010) proposed FASTER, Fully Auto-
mated Statistical Thresholding for EEG artifact Rejection, which uses independent
component analysis (ICA) to separate EEG signals into neural activity and artifacts.
ICA works by separating multivariate signals into additive subcomponents by
assuming that different subcomponents are statistically independent of each other.
The advantage of using ICA is that ICA reduces the statistical dependencies of
different components of the signal, by separating the components (Lee et al. 1999).
After the separation, the model uses a statistical comparison charts to check for
features such as correlation with signal components, mean, variance, spatial, etc.
This model was tested on simulated EEGs and real EEGs and had a true positive rate
of over 90% in detecting artifacts when the model was given data with more than
64 channels. However, the true positive rate drops to 5.88% when the number of
channels provided decreases to 32. Besides, the algorithm takes an hour per 400 s to
yield the results using a machine with a 64-bit dual-core machine. Nevertheless, the
model not only detects the signal quite accurately but also can remove the artifact,
as any separated component of the signal can be extracted. This model can detect
eye movements, EMG artifacts, linear trends, and white noise.

Similarly, Singh and Wagatsuma (2017) used Morphological Component Analy-
sis (MCA), which uses a dictionary of multiple bases to guarantee the reconstruction
of original signals. MCA is applied to the EEG signal so that the signal is
deconstructed into a combination of bases in the dictionary. Singh and Wagatsuma
hypothesized that three dictionaries of bases are dominant, and they are undecimated
wavelet transform (UDWT), discrete sine transform (DST), and DIRAC (standard
unit vector basis). The decomposition was able to show that EEG signals and their
artifacts are represented by different dictionaries of bases, indicating that given the
decomposition result, artifacts can be distinguished from the signals of interest.
Singh and Wagatsuma successfully categorized which dictionary corresponds well
with the signal or the artifact. This research demonstrates that an ensemble of
different signal processing techniques could work well for artifact classification. The
drawback of this method is similar to that of Nolan’s. MCA takes about 6 s on 1024
samples of data that are sampled at 173.61 Hz. This corresponds to spending around
1.01 s of computation time per 1 s of a signal. As a result, this computational time
is not suitable for fast EEG artifact detection. There are numerous other additional
statistical approaches to separate the real EEG signal from the artifacts, such as
canonical correlation analysis, which Clercq used to remove muscle artifacts from
the EEG signals (Clercq et al. 2006).

All of the statistical approaches of the problem require a deconstruction of EEG
signals into multiple components and analyzing each component to determine which
components are responsible for artifacts and which are responsible for the real
signal. Though they are highly interpretive, the separation procedure takes a lot of
computation, and correct prior knowledge, such as the number of artifacts, a set of
orthogonal bases that work well with the time-series data, or the general behavior of
artifacts, is required. Due to the complex nature of the EEG signals, deep learning
with its ability to learn hidden features from the raw data has shown great promises
(Goodfellow et al. 2016).
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According to the review paper by Roy et al. (2019), among the 156 papers about
applying deep learning to EEG signals that the authors reviewed from January
2010 to July 2018, some papers applied data preprocessing techniques and artifact
rejection techniques such as the ICA mentioned above to combat the artifacts, while
some papers just used the raw EEG signals. Given that the majority of the papers did
not use any artifact removal schemes, Roy et al. suggest that using deep learning on
EEG signals directly might avoid the artifact removal step without any performance
degradation. However, all the papers mentioned in Roy’s review paper specifically
target certain applications such as detecting epilepsy, monitoring sleep, and making
a brain-computer interface, and none of the papers mentioned targets the detection of
artifacts specifically. The review paper suggests that convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are the most used networks in this
field; 40% of the studies use CNNS and 14% use RNNs.

Other works relating to deep learning and EEG signals or EEG like signals not
mentioned in the review paper above include Krishnaveni’s work on ocular artifact
removal in EEG signals (Krishnaveni et al. 2007) and Hasasneh’s work on automatic
classification of ocular and cardiac artifacts in magnetoencephalography (MEG)
(Hasasneh et al. 2018). Both of these works include some data preprocessing. Hasas-
neh’s work utilizes ICA, and Krishnaveni’s work utilizes the Joint Approximation
Diagonalisation of Eigen-matrices (JADE) algorithm to separate the real signals
from the artifact signals before using neural networks. The detection rates for the
test data for both of these works are 94.4% and 92%, respectively. However, both
of them only address one or two types of artifacts at the same time, while the model
proposed will include four different artifacts to be classified separately with no
preprocessing such that the model can be applied directly to the raw data.

There have been many attempts and there have been successful attempts in
detecting artifacts and classifying them using statistical machine learning and
inferences, but there are not much done using deep learning. Deep learning
approaches are particularly adept at optimizing an arbitrary large model and
recognizing complex patterns (Goodfellow et al. 2016). The previous methods
require mathematical models for artifact events or seizure events to classify the
signals accurately; hence the performance of the models depends highly on the
accuracy of the proposed mathematical models. However, the usage of deep learning
models can alleviate the incorrect modeling error as no accurate mathematical model
is needed to classify different events. In addition, the statistical analysis of large
temporal data is computationally heavy and takes a long time. While training a deep
learning model to optimize the parameters may take a long time, the inference time
for the completed model is relatively short compared to that of statistical models.
To use these advantages, many works have attempted to classify different aspects of
the EEG signals for monitoring purposes for seizure and sleep disorders using deep
learning. However, not a lot of works have been done in detecting and classifying
artifacts using deep learning, especially classifying multiple artifacts instead of
detecting a small number of artifacts.
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7.3 Method

7.3.1 Resources

The dataset used to develop our model is the Temple University Hospital’s EEG
Artifact Corpus. This dataset was developed to help researchers build models to
reduce the harmful effects of artifacts for EEG event classification algorithms such
as seizure detection algorithms. The version of the dataset is v1.0.0, and the dataset
is derived from the v1.1.0 of the TUH EEG Corpus (Obeid and Picone 2016). The
TUH EEG Corpus is the largest publicly available database of clinical EEG data
that contains over 30,000 EEGs spanning from 2002 to present, and the Artifact
Corpus is a subset of the original corpus that has been specifically labeled to enhance
artifact related research. There are 310 observations with 213 subjects with varying
durations and sampling rates.

The experiments to build our model were done using Python. Specifically, the
version of the python that was used is 3.6.8. Additional libraries used are matplotlib
v3.0.2, numpy v1.16.0, tqdm v4.31.1, scipy v1.2.0, tensorflow v1.12.0, and keras
v2.2.4. matplotlib and tqdm library were used for making plots and monitoring
progress, and numpy, scipy, tensorflow, keras libraries were used to build a deep
learning model and test. All the experiments were done using a machine equipped
with 16GB memory, AMD FX(tm)-6300 Six-Core Processor 3.5GHz, and a Geforce
GTX 1070 8GB graphics card. The data drive in which the corpus was in was a
standard hard drive with 7200RPM. Finally, the environment was a Windows 10
operating system with a virtual environment with all the above libraries created
using conda for the Anaconda Python distribution.

7.3.2 Data Preprocessing

The data corpus contains three different configurations of EEG. The first is the
AR (averaged reference) where the average of a finite number of electrodes is
used as a reference. This means that the average is subtracted from the signals of
each electrode for every time point to account for the common noise. The second
configuration is the LE (linked ears reference) which is based on the assumption that
ears do not have any electrical activity so that ears can be used as reference points
(Lopez et al. 2016). The third configuration is the AR_A which is a modified version
of the AR configuration, where A1_REF and A2_REF are not used. All the data
contain standard measurements that one could expect from the 10-20 International
System. For the AR, and the LE configurations, 22 channels can be derived from the
available channel information, while for the AR_A configuration, only 20 channels
can be derived. This is because the AR_A configuration lacks the EEG A1_REF
and the EEG A2_REF channels. The computations necessary to derive the channels
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Table 7.1 List of channels

. . . Channel number | Computation
with appropriate computation

1 FP1-F7
2 F7-T3
3 T3-T5
4 T5-01
5 FP2-F8
6 F8-T4
7 T4-T6
8 T6-02
9 Al-T3
10 T3-C3
11 C3-CZ
12 CZ-C4
13 C4-T4
14 T4-A2
15 FP1-F3
16 F3-C3
17 C3-P3
18 P3-01
19 FP2-F4
20 F4-C4
21 C4-P4
22 P4-02

are tabulated in Table 7.1. The AR_A configuration lacks channel number 9 and 14
from Table 7.1.

There are only seven occurrences of the AR_A configuration with four subjects,
and as this configuration lacks similarity to other configurations, this configuration
was discarded for the experiments. Too few examples of different data would hinder
the model from learning the important aspects of the artifacts, and for deep learning
models, consistent data size is important. The tradeoff is either to give up 2 channels
across all 303 observations or to give up 7 observations, and we have decided to give
up these 7 observations. Hence, for the experiment, there are 303 observations with
209 subjects available.

Another way to alleviate this problem is to fill in the missing channels. Nolan’s
work describes a method to fill in any missing channels using adjacent channels
(Nolan et al. 2010). However, since the missing Al and A2 electrodes in the AR_A
configuration are reference points that are placed on ears, they cannot be interpolated
from other electrodes, as all the other electrodes are on the head. We decided that
guessing the signals on ears based on signals from the brain would not be accurate
at all. As a result, we decided not to use the interpolation method and thus discard
this configuration.

The original data are in the European Data Format (EDF), which is a standard
file format designed for the storage of medical time series data. All the EDF
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Table 7.2 Possible labels Label
and corresponding
descriptions

Description

eyem | Eye movements

chew | Chewing

shiv Shivering

elpp | Electrode related artifacts such as
electrode
pops, static electrodes, lead artifacts

musc | Muscle related artifacts

bckg | Background noise

null Undefined annotation

files provided have all the electrode information so that channels defined in the
instruction can be derived easily using the computations tabulated in Table 7.1. In
addition, the corresponding label files contain the artifact class labels for the whole
EEG session and also for each channel.

There are seven possible labels and the labels and the corresponding descriptions
are tabulated in Table 7.2. The label files provide the start time and the stop time
of the existing artifacts in seconds. The files have the confidence level of the label,
which indicates the probability that the artifact is what the label says it is. All the
labels in this data corpus have the confidence levels of 1, and the background noise
label, “bckg,” is not available for this dataset. This is because the corpus is still in
the beginning stage of the development so it does not have a lot of data available
so the “bckg” label seems to be lacking in this version. As a result, the model is
developed to classify five artifacts and a “null” label. The “null” label is defined to
be any undefined annotation, in this corpus; this label is given to signals that do not
seem to have artifacts.

The EEG signals in the dataset have varying sampling frequencies of 250 Hz,
256 Hz, 480 Hz, and 500 Hz. As deep learning models require input features to be
consistent that is input features need to be of the same size and having different
sampling rates for temporal data can harm the performance of the model. For
example, if we were to optimize the model to infer using 500 time points, this is
equivalent to using 2 s if the sampling frequency is 250 Hz, and 1 s if the sampling
frequency is 500 Hz. Then the two samples have different kinds of information
available, as the former sample will have more seconds of information, while the
latter sample will have more detailed information on a smaller time window.

To alleviate this problem, all the signals were resampled to 250 Hz, which is
the lowest sampling rate using a Fourier method. Then the signals were separated
into 1-second segments without overlaps. The separation is done so that the input
signal to the model is kept small. The deep learning model size depends on the
number of layer parameters, which depends on the complexity of the layer and the
input size. Also, the separation allows the model to be able to infer on any instance,
which means we can determine whether the segment of the signal is affected by
artifacts at any time using the small accumulated data around the specific time. The
1-second segment was chosen as the lowest frequency of brain waves is around
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Table 7.3 Occurrences and Label

o Occurrences | Percentage (%)
the percentage of original

1-second segment samples of cyem 7471 2.16

each label chew 2727 0.79
shiv 1338 0.39
elpp 2663 0.77
musc 4892 1.41
null 327,222 94.49
Total: | 346,313 100

3 Hz, which allows the segment to have at least three occurrences of the smallest
wave. In addition, all the observations end at a whole second, so that there is no loss
of information when the time window for segments is 1 s.

After the resampling and the separation, 303 observations of varying lengths
turn into 346,313 1-second segments. The breakdown of the number and the
corresponding percentage of samples available for each label are tabulated in
Table 7.3. There is a high imbalance of data due to many examples with the label
“null.” This is due to the nature of the signal as the artifact content in the clinical
EEG waves collected should be ideally low. There are only 1338 observations of
“shiv,” which consists of 0.39% of all the data available. Due to the relatively small
number of occurrences, this label caused problems in developing models. When a
preliminary study was done to investigate possible research directions, the “shiv”
label caused problems by not being able to separate into three sets required for the
development of the models. Since there are too few samples of “shiv” available, and
most of the samples are from the same subject, when the dataset is separated into the
train, the test, and the validation sets, depending on the random state of the machine,
samples with “shiv” label are only found in one or two of the three sets. To illustrate
this problem, a recurrent neural network model was trained for 100 epochs on the
dataset with the “shiv” label. The confusion matrix for this model is shown in Fig.
7.1. The model completely fails to classify the “shiv” label and predicts all the “shiv”’
events to be either a “musc” event, an “elpp” event, or a “null” event. In fact, the
model does not predict anything to be the “shiv”” event. The reason why the model
failed to do so was because there was no “shiv” label available in the training set,
which caused the model to never be exposed to the label. As a result, we decided
to leave out the “shiv” label from the experiments. The updated numbers and the
updated percentages of samples available for each label are tabulated in Table 7.4.

The data were divided into a train set, a validation set, and a test set. The ratio
among the three was 0.75:0.10:0.15. The ratio was determined arbitrarily while
making sure a good amount of data was available for each of the sets. The data
division was done on the unique patient ID that was provided in the EEG corpus.
The reason why the division was done on the IDs rather than the sessions is that we
wanted to ensure that the training and the testing were not performed on the same
patient as the goal of the models is to generalize to detect artifacts on new subjects.
Out of the 209 subjects, 157 subjects were allocated to the training set, 21 subjects
were allocated to the validation set, and 31 patients were allocated to the test set.
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eyem

chew -

shiv 4

True label

elpp 1

musc -
- 0.2
null 4 0.08 0.03 0.00 0.01 0.05
T T T T T —i 0.0
& S Q
& & & & &

Predicted label

Fig. 7.1 Confusion matrix of the RNN-based model with all the labels

Table 7.4 Occurrences and Label | Occurrences | Percentage (%)
the percentage of 1-second T, 517
segment samples of each cyem :
label after the removal of chew 2727 0.79
“shiv” elpp 2663 0.77

musc 4892 1.42

null | 327,222 94.85

Total | 344,975 100

This translates to 224 sessions in the train set, 23 sessions in the validation set, and
56 sessions in the test set. The order of the patient ID has been shuffled before the
division to remove any lingering pattern.

In addition to the sampling rate change, the signals are normalized. As the neural
network models generally perform better when the data are in the (—1,1) range, the
dynamic range of the EEG signals is modified. All the signals were normalized to
have a 0 mean, and a standard deviation of 1. The statistics of the whole training
set were used for the normalization, and these statistics are used for all the sets
as statistics of the unseen data are assumed to be not available. The mean of the
training set was 1.5977595, and the standard deviation was 219.39517. In order to
normalize, the mean was subtracted from all the signals and the resulting values
were divided by the standard deviation.

All the EDF files are in the 16-bit floating-point format; however as the
Tensorflow library does not work with the 16-bit floating-point format, all the
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data after the preprocessing were all converted to the 64-bit floating-point format.
Converting all the data to the 64-bit floating-point format and saving the data as
numpy array objects increased the size of the whole dataset from 5.39GB to 14.2GB.
From our initial experiments, it was evident that the extra precision degraded the
performance of the training process as the speed of the hard drive reading the data
could not keep up with the speed at which the model was training. In order to combat
this problem, all the data were converted to the 32-bit floating-point format, which
decreased the size of the whole dataset to 7.1GB.

As the goal is to have a fast, online automatic annotator for artifacts, no further
signal processing or artifact removal currently available was applied. All the data
preprocessing steps were done in python.

7.3.3 Preliminary Studies

In order to examine the dataset to learn the general characteristics and the general
behavior, a deep learning model with two fully connected layers was built. The input
layer was flattened to reduce the dimension so that the fully connected layer that
follows can access all the data. Each fully connected layer had 1024 nodes and was
activated by a ReLu (Rectified Linear Unit). The ReLu was chosen as the activation
function as it tends to have a good convergence and is computationally light
compared to other activations such as the sigmoid function. The Adam optimizer
(Kingma and Ba 2015) was used, with the default setting. The default setting is
that the learning rate is 0.001, the beta-1 value is 0.9, and the beta-2 value is
0.999 with no decay. The Adam optimizer was used for all the experiments as it is
computationally efficient and has a small memory requirement. This fully connected
model was trained using the training set for 10 epochs with the batch size of 32. The
model was validated using the validation set created, and this model was never tested
with the test set. The loss function that was used is “categorical_crossentropy,”
which is defined as below:

N
== (vinlog (3in)) - (7.1)
n=1

i denotes the index of the observation, and n denotes the class label. y and y denote
the true label and the estimated probability of the label, respectively. This is a
categorical cross-entropy for N number of classes. The model minimizes this loss
function by maximizing the estimated probability of the class when the true label
for the class matches the estimation. The model trains completely with an accuracy
of 94.4%, which is around the accuracy that one will get with a baseline classifier
that guesses all the signals as “null” that yields an accuracy of around 94.9%. The
relative frequencies of labels other than “null” were so insignificant as shown in
Table 7.4 that the model never attempted to optimize the parameters to account for
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Table 7.5 Occurrences and Label | Occurrences | Percentage (%)
the percentage of 1-second oYer 6,20
segment samples of each cyem .
label after the subsampling of chew 2727 9.56
“null” elpp 2663 9.34

musc 4892 17.16

null 10,763 37.74

Total | 28,516 100

artifact labels. This was evident in the behavior of the test and validation losses and
accuracies which just fluctuated a bit without making a meaningful movement over
the 10 epochs.

In order to combat the label-imbalance problem, another dataset was prepared.
In this dataset, the “null” label is sampled such that every 30th “null” observation is
included in the dataset. The number 30 was chosen with one purpose of making the
“null” label to be not dominating the dataset, but still be the most frequently occur-
ring label. This effectively reduces the number of “null” observations to around
10,000, which still lets this label to be the most dominant, but not overwhelming.
After the sampling, the breakdown of the occurrences and the percentage of each
label are tabulated in Table 7.5.

Using the newly created dataset, the model was retrained for 10 epochs. During
the first two epochs, the validation accuracy increased to 33%, and the accuracy
fluctuated around 33% for the rest of the eight epochs. This indicates that the
model’s complexity is not high enough for this task.

7.3.4 Version 1: Recurrent Neural Network Approach

Using the prior knowledge that EEG signals are temporal, and previous works on
detecting artifacts relied on statistical significances of various signal features such
as mean and standard deviation, the recurrent neural network (RNN) seems to be
a logical choice for the replacement of a network of 2 fully connected layers. The
rationale is that since RNNs have access to the previous outputs as well as the current
inputs, they would be adept at capturing patterns spread across time. After trying out
different combinations of recurrent layers, long short-term memory (LSTM) layer
was found out to be the most successful.

LSTM is a specific architecture of an RNN that was proposed by Hochreiter and
Schmidhuber in 1997 to combat the vanishing or exploding gradient problems that
are common among RNNs (Hochreiter and Schmidhuber 1997). These problems
occur as having access to all the previous outputs essentially leads to a large chain
of connections between the error and the input. Hence the gradient information
could be vanishing or exploding depending on the situation as the information is
propagated back to update the weights.
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Table 7.6 Model structure for the RNN-based classifier

Layer (type) Output shape Number of parameters
Input_1 (InputLayer) (None, 22, 250) 0

LSTM_1 (LSTM) (None, 50) 60,200

Dense_1 (Dense) (None, 1024) 52,224

Dense_2 (Dense) (None, 5) 5125

The success of a model was determined by predicting the behavior of the training
the model from just observing the first few epochs. The different models have been
compared by how much training loss was reduced in three epochs and how much
validation loss was reduced as a result of those three epochs. For the cases in which
the loss function for this dataset did not decrease significantly (by 0.1 or more), the
losses never decreased in a reasonable time, and the model tended to overfit to the
training data. The final model that was decided is organized in Table 7.6. The total
number of trainable parameters is 117,549, and this translates to 225 KB of weights
when the weights are saved.

The LSTM layer is to extract the temporal information embedded in the signal.
The final dense layers are to do the classification tasks at the end. The parameters on
each layer were chosen such that the model is as light as possible without sacrificing
significant performance degradation. For the number of cells in the LSTM layer, a
varying number of cells was tried such as 5, 10, 25, 50, 100, 200, and 250, and
increasing the number of cells decreased the performance by overfitting. However,
having too few cells resulted in degraded performance as well. Hence, the number
of cells in the LSTM layer was chosen to be 50. The “None” is the placeholder for
the batch size. Changing the number of the batch size does not change the number
of parameters.

The model was trained on the training data using categorical cross-entropy as the
loss function. The model was optimized using the Adam optimizer with the default
learning rate and the beta values. The batch size was 32, and the model was trained
for 100 epochs. Each epoch takes about 40 s, and the training roughly took about
half an hour. The result of this model will be given in the section.

7.3.5 Version 2: Convolutional Neural Network Approach

Another approach that we investigate is using convolutional neural networks
(CNNs). As all the channels are available and ordered such that the arrangement
reflects the actual spatial closeness of the electrodes roughly, we hypothesize that
there will be certain localities across different channels that will be visible in certain
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channels. As EEG measures net neural activity, if an area of the brain gets triggered,
all the electrodes that are near that area will be triggered, which makes channels that
are close in the ordered list to have similar activity. As CNNs are known to work
well with image data by using the fact that pixels that are related are close together
in images, it seems possible that convolutional layers will also work well with this
task. As there is only one-dimensional information available per time frame, 1-D
convolutional layers were used instead of 2-D convolutional layers.

While the convolutional layers capture the spatial information, we have added the
max-pooling layers to capture the temporal information by grouping up time frames
together. Extracting spatial information and temporal information is done multiple
times so that any hidden information can be extracted.

Before the max-pooling layers, batch normalization layers are added so that the
values of the latent space representation of the input signals are normalized and
scaled. Parameter changes in layers during the training cause the layers to yield
different outputs each iteration. This forces all the layers to readjust to the new
distribution of the outputs every iteration, which delays the training. The batch
normalization layer normalizes the activations to reduce these internal covariate
shifts to make the training process to be faster, and more stable, especially for
deep and large neural networks (Ioffe and Szegedy 2015). Finally, the model has
a flattening layer to prepare the data shape to be usable by fully connected layers,
and the model uses fully connected layers to do the classification task.

Two versions of the deep convolutional neural network models have been
constructed. One version is “deeper” than the other one to see whether adding
more layers helped with the classification or not. The structures of both versions
are organized in Tables 7.7 and 7.8.

Both versions were optimized using the Adam optimizer with the default setting.
The batch size was 32, and the model was trained for 30 and 100 epochs,
respectively. The first CNN model was highly overfitting to the train set at around
epochs 40, as the validation loss went up by 10 times. The source of this behavior
could not be tracked, so the number of epochs that the shallow CNN model was
trained for was decreased to 30 epochs. The shallow CNN model took about 20 s
per epochs, and the deeper model took about 40 s per epochs.

The hyperparameters used in the model, such as the filter sizes and the output
sizes, for the convolutional layers were optimized based on observations of the first
few epochs during the training phase just as we did in the development of the RNN
based model.

7.3.6 Ensemble Method

In addition to all the methods with different approaches, the final method that
incorporates all the models was created. This model takes in the logit outputs of
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Table 7.7 Model structure for the shallow CNN-based classifier

Layer (type) Output shape Number of parameters
Input_1 (InputLayer) (None, 22, 250) 0
convld_1 (ConvlD) (None, 16, 250) 1072
batch_normalization_1 (None, 16, 250) 1000
max_poolingld_1 (None, 16, 125) 0
convld_2 (ConvlD) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500
max_poolingld_2 (None, 32, 63) 0
convld_3 (ConviD) (None, 64, 63) 6208
batch_normalization_3 (None, 64, 63) 252
max_poolingld_3 (None, 64, 32) 0
convld_4 (ConvlD) (None, 128, 32) 24,704
batch_normalization_4 (None, 128, 32) 128
max_poolingld_4 (None, 128, 16) 0
convld_5 (ConvlD) (None, 256, 16) 98,560
batch_normalization_5 (None, 256, 16) 64
max_poolingld_5 (None, 256, 8) 0
convld_6 (ConviD) (None, 512, 8) 393,728
batch_normalization_6 (None, 512, 8) 32
flatten_1 (None, 4096) 0
dense_1(Dense) (None, 1024) 4,195,328
dense_2(Dense) (None, 5) 5125

each of the three models and simply adds the logits to do the decision-making by
choosing the label with the highest logit. Different methods of adding up the logits
were tested such as weighing one of the three models higher than the other two or
excluding one of the models, but weighing all the models equally without exclusion
had the highest validation accuracy.

For all the models, binary classification versions were constructed and trained
using the same settings to examine how well models detect artifacts. The binary
classification task for this problem is determining whether a 1-second segment
contains an artifact or not, which will be denoted as either “artifact” or “null.” The
only deviation for these new models from the original models is the last dense layer.
Instead of returning a label of length 5, the binary classification versions return the
output label of length 2 (artifact, null). This causes the parameter numbers to be
multiplied by 2/5 on the last dense layer. The number of total trainable parameters
for the shallow CNN classifier is 4728269, and for the deeper CNN classifier is
11,548,141. When weights are saved, the shallow CNN classifier requires 18.0 MB,
while the deep CNN classifier requires 44.1 MB. The results for both versions are
given in the following chapter. All the construction of the models and the pipelines
for the input and the output for the EEG signals are done in python.
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Table 7.8 Model structure for the deep CNN-based classifier

Layer (type)

Input_1 (InputLayer)
convld_1 (ConvlD)
batch_normalization_1
max_poolingld_1
convld_2 (ConvlD)
batch_normalization_2
max_poolingld_2
convld_3 (ConviD)
batch_normalization_3
max_poolingld_3
convld_4 (ConvlD)
batch_normalization_4
max_poolingld_4
convld_5 (ConvlD)
batch_normalization_5
max_pooling1d_5
convld_6 (ConvlD)
batch_normalization_6
max_pooling1d_6
convld_7 (ConvlD)
batch_normalization_7
max_pooling1d_7
convld_8 (ConvlD)
batch_normalization_8
convld_9 (ConvlD)
batch_normalization_9
flatten_1
dense_1(Dense)
dense_2(Dense)
dense_3(Dense)

Output shape
(None, 22, 250)
(None, 16, 250)
(None, 16, 250)
(None, 16, 125)
(None, 32, 125)
(None, 32, 125)
(None, 32, 63)
(None, 64, 63)
(None, 64, 63)
(None, 64, 32)
(None, 128, 32)
(None, 128, 32)
(None, 128, 16)
(None, 256, 16)
(None, 256, 16)
(None, 256, 8)
(None, 512, 8)
(None, 512, 8)
(None, 512, 4)
(None, 1024, 4)
(None, 1024, 4)
(None, 1024, 2)
(None, 1024, 2)
(None, 1024, 2)
(None, 1024, 2)
(None, 1024, 2)
(None, 2048)
(None, 1024)
(None, 1024)
(None, 5)

7.4 Results and Discussion

Number of parameters
0

1072
1000

0

1568

500

0

6208

252

0

24,704
128

0

98,560

64

0

393,728
32

0
1,573,888
16

0
3,146,752
8
3,146,752
8

0
2,098,176
1,049,600
5125

After optimizing hyperparameters, and model structures using validation set accu-
racy, each model was tested using the test set. We find in all the models that there
are limitations in precisely predicting labels, and we were interested in whether the
models can act as indicators for artifact presence. So, in addition to being trained to
do multi-class classification, the models were retrained to do binary classification
with the same number of epochs and optimizer settings.

One thing to note for the binary classification is that the evaluation of the binary
classification based on the accuracies depends highly on the threshold that is set for
the detection. For example, when there are many examples of “null,” or no artifacts,
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high accuracy could be achieved by intentionally raising the threshold of detection
for artifacts high so that most of the examples are classified as “null.” Then the
system will have high accuracy while failing to act as a respectable classifier for
artifacts.

To evaluate the performance of the detection systems receiver operating char-
acteristic (ROC) curves are used, which illustrate the ability of the systems to
diagnose with different thresholds. The ROC curve plots the probability of detection
versus the probability of false alarm (Richards 2005). The probability of detection
which is also known as the true positive rate (TPR), sensitivity, or recall denotes
the proportion of actual positives that are correctly identified. Using the problem
of this chapter as an example, the true positive rate is the proportion of segments
that contain the artifacts that are correctly classified by the model among all the
segments that contain the artifacts. The probability of false alarm, which is often
referred to as the fall-out, the Type I error, or the false-positive rate (FPR), denotes
the proportion of negatives that are misidentified as positives. Using this task as an
example again, the false-positive rate would be the proportion of segments that do
not contain artifacts that are classified as containing artifacts by the model.

A perfect classifier has a true positive rate of 1.0 and a false positive rate of 0.0,
which makes the ROC curve to pass the upper left corner. Hence, a ROC curve that
closely approaches the upper left corner indicates a system that discriminates well
(Zweig and Campbell 1993). To numerically compare the performance of different
ROC curves, the area under the curve (AUC) is computed to indicate how close the
ROC curve is to the upper left corner. For example, AUC ranges from O to 1, and
AUC value of 1 corresponds to the perfect separation case where the true positive
rate is 1.0 and the false-positive rate is 0.0 (Hand and Till 2001).

For all the ROC curves provided in this chapter, the area under the curve is also
computed and provided.

7.4.1 Recurrent Neural Network-Based Classifier

The recurrent neural network model was trained for 100 epochs. At the end of the
training, the train set accuracy was 0.7168, and the validation accuracy was 0.4262.
However surprisingly, the test set accuracy was 0.5801, and the confusion matrix is
shown in Fig. 7.2.

The model does well on predicting “eyem” and predicting “null.” However, the
model cannot predict the electrode popping “elpp” label and the muscle movement
“musc” label that well. Unfortunately, this pattern persists in all the results. Our
conjecture of the behavior of the model is that eye movement and chewing labels
have certain localities. For example, we expect electrodes located near the mouth to
be more affected by chewing, and electrodes that are far away from mouth to be less
affected. This causes specific channels to be affected while leaving other channels
to be like “null.” As there is a distinguishing feature to be extracted consistently
across all the patients, the model does well on the “eyem” and the “chew” labels.
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Fig. 7.2 Confusion matrix of the RNN-based model on the test

However, for the cases of “elpp,” and “musc”, the region of the channels, which are
affected, is ambiguous. “elpp” causes similar noise pattern to occur when it occurs,
but this can be anywhere, and similar observation could be made regarding “musc.”

To see if the RNN-based model is at least powerful enough to indicate the
presence of artifacts, the model was retrained to do the binary classification. The
RNN-based model trained to the train set accuracy of 0.9885, with the validation
accuracy of 0.6254. When tested on the test set, the highest accuracy was 0.7126.
In Fig. 7.3, the ROC curve for the RNN based model is shown to visualize the
performance of the system. The orange line is the ROC curve, and the dotted blue
line is the straight line connecting the (0,0), and (1,1) points. The straight line
indicates the worst possible detection system. At around the false-positive rate of
0.424, the true positive rate is 0.800. This indicates that the model would work in
a system roughly but would not be recommended in any device that requires high
accuracy. The area under the curve is 0.75.

7.4.2 Convolutional Neural Network-Based Classifier

Similar evaluations were done on the shallow CNN model and the deeper CNN
model. The confusion matrices are shown in Figs. 7.4 and 7.5, and ROC curves are
shown in Figs. 7.6 and 7.7.
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Fig. 7.3 ROC curve for the RNN-based model

Fig. 7.4 Confusion matrix of the shallow CNN-based model
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The shallow CNN-based model was trained for 30 epochs, due to its tendency to
overfit when it was trained for more than 40 epochs. The model was trained until
the train accuracy of 0.7409 and the validation accuracy of 0.4203. The final test
accuracy was 0.6515. Given that both the RNN-based model and the CNN-based
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Fig. 7.5 Confusion matrix of the deep CNN-based model
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Fig. 7.6 ROC curve for the shallow CNN-based model

model trained until the validation accuracy was around 0.42, the fact that CNN-
based model did about 7% better in predicting the 5-class classification problem was
interesting. One possibility is that the difference in the complexities of both models
causes the difference. Comparing the number of trainable parameters, the CNN-
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Fig. 7.7 ROC curve for the deep CNN-based model

based model is 4 times bigger, and this may have helped the model to generalize
better. However, as evident in Fig. 7.4, this model does significantly better in
predicting “eyem” and “chew” than “elpp,” and “musc”, which is similar to what
we observed for the RNN-based model.

The result for the deep CNN-based model is similar. The model was trained
to the 100th epochs, the train accuracy of 0.9472 was reached, and the validation
accuracy at this epoch was 0.4430. This validation accuracy is slightly higher than
that of the shallow CNN-based model. The final test accuracy was 0.6517, which
is 0.0002 higher than that of the shallow CNN model. This is likely to be from just
noise. The confusion matrix shown in Fig. 7.5 indicates a similar behavior compared
to the other models. Hence, we can conclude that CNN-based models work better
in multi-class models, but RNN-based model is much lighter, and simply making
CNN-based models more complex does not improve the performance of the model
significantly.

The more interesting findings are ROC curves. The same analytic method that
converts a five-class classification task into a binary classification task was applied
to both versions of the CNN-based models just as in the RNN-based model. The
shallow CNN model was retrained for 30 epochs, and the deep CNN based model
was retrained for 100 epochs. The train set accuracies were 0.8108 and 0.9684, the
validation accuracies were 0.5227 0.6008, and the test accuracies were 0.6958 and
0.7499 for the shallow and the deep CNN-based models, respectively. Although
these numbers might be misleading as the accuracy depends on the threshold of
the binary classifier, for the binary classification problem, the more complex and
deeper model has a performance improvement of about 0.05. The receiver operating
characteristic curves of CNN-based models are shown in Figs. 7.6 and 7.7.
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These ROC curves, compared to that of the RNN based model, have a signif-
icantly higher area under the curve, indicating that CNN-based models perform
better. Numerically, the areas under the curve for the shallow CNN-based model and
the deep CNN-based model are 0.82 and 0.80, respectively, which are larger than
that of the RNN-based model which is 0.75. At the true positive rate of 0.800, the
false-positive rates are 0.424, 0.295, and 0.339 for the RNN, the shallow CNN, and
the deep CNN-based models, respectively. This indicates that CNN-based models
can predict the presence of artifact correctly, with fewer false alarms compared to
the RNN-based model.

7.4.3 Ensemble Method

Lastly, the ensemble method was examined in the same procedure. The ensemble
method incorporates all the other methods by adding the logits produced at the
output layers of the other methods. The confusion matrix is shown in Fig. 7.8. The
ensemble method’s accuracy measures are higher compared to all the other methods,
except for the “musc” label. The shallow CNN-based model achieves the accuracy
of 0.33 on the “musc” label, while the ensemble method achieves 0.28. Regardless,
the ensemble method achieves the overall accuracy of 0.6759, which is the highest
among all the methods. In addition to the confusion matrix, the ROC curve for the
binary classification version of the model is produced. The ROC curve is shown in
Fig. 7.9, with all the ROC curves from other models for better comparison.

Interestingly the ROC curve for the shallow CNN-based model has a similar area
under the curve as the ensemble method. The shallow CNN-based model has higher
true positive rates in certain regions than the ensemble method, and the ensemble
method performs superior to the shallow CNN-based model in the regions of lower
thresholds.

For the binary classification problem, as the main purpose is to accurately point
out the artifact events, the time-lapse system was proposed to further enhance the
performance. The idea comes from the fact that artifacts often come in bursts, such
that the previous segment’s label correlates well with the new segment that follows.
This method does not change any of the models but rather works directly on the
logits produced by the models. A sliding window adds all the logits in the window
to produce a new logit that the classifier uses. Different methods of producing the
new logit were tried such as taking the maximum or doing a weighted sum of the
logits, but simply adding all the logits worked the best. Different sizes of sliding
windows were tried, ranging from 1 to 10, but a 2-second window produced the best
result. The ROC curves for the highest performing window setting are shown in Fig.
7.10.

The time-lapse method improves all the ROC curves, especially lifting the
regions in the lower false positive rates. At the true positive rate of 0.800, the new
time-lapse method yields the false-positive rates of 0.310, 0.288, 0.268, and 0.258
for the RNN-based, the shallow CNN-based, the deep CNN-based, and ensemble
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Fig. 7.10 ROC curves for all the models with the time-lapse method

methods, respectively. This is a slight improvement from the false-positive rate of
0.295 from the shallow CNN model without the sliding window. The ensemble
method does the best for this method proposed.

In order to see the viability of the model in real-life settings, all the binary
classification models were tested on a test set that contains all the “null” information
without the sampling procedure. The five-class classification accuracies of the
models are 0.7234, 0.7612, 0.7534, and 0.7808, for the RNN based, the shallow
CNN-based, the deep CNN-based, and ensemble methods, respectively. Only one
confusion matrix from the best result is shown as all the confusion matrices behave
similarly. The resulting confusion matrix is shown in Fig. 7.11. The increase in the
accuracy comes from the fact that there are more “null” labels in the dataset; hence
the accuracy converges to the accuracy of predicting the “null” label which is around
0.78 for the ensemble method.

The ROC curves for the binary classification problem using all the models on the
original data are shown in Figs. 7.12 and 7.13. Figure 7.12 shows the ROC curves of
the models without the time-lapse method, and Fig. 7.13 shows the ROC curves of
the models with the time-lapse method. The areas under the curves are significantly
higher than those of the sampled data cases. These curves indicate the viability of
the models in a real clinical setting.

Lastly, the average time elapsed in processing one example was computed for
each model, for each classification problem to see whether the model is feasible
for doing an on-line signal processing task of indicating whether the artifact exists
or not. For the reference, there are 5797 observations in the test set. In addition,
the time elapsed while loading the Tensorflow module and the libraries as well as
loading the data was not accounted for. The results for the accuracy with default
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Table 7.9 The Time elapsed, the accuracy, and the size of each model

Average time elapsed

Model (ms/sample) Test set accuracy (%) | Size of the model (KB)
RNN 0.707 58.01 476

RNN-binary 0.677 71.26 464

CNN 0.483 65.15 18,526

CNN-binary 0.468 69.58 18,514

DeepCNN 0.595 65.17 45,189
DeepCNN-binary | 0.568 74.99 45,177

Ensemble N/A 67.59 64,191

thresholds, which looks at the maximum confidence level of each label, the average
time elapsed, and the size of each model are tabulated in Table 7.9. All the test
results on this table are from the sampled test data.

All the average time elapsed for inference for all the models is less than 1 ms,
for each of the 1-second segment. This indicates that the model is able to predict
the presence and the kind of artifact almost instantaneously. Also, the sizes of
the models are small enough to be implemented in a Raspberry Pi, which could
make this model highly portable. Since the original EEG signals were expressed
in 16-bit floating-point values, the model can be further compressed if all the
parameters are converted to 16-bit floating-points instead of 32-bit floating-points.
This compression is approximately half the size of the model, further improving the
portability. All the evaluations were done in python.
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7.5 Conclusion

The chapter proposes three types of deep learning-based machine learning model
that learns to distinguish artifacts from the real signal and classify artifacts. Three
models, the RNN-based model and the two CNN based models of different depth,
have been constructed and evaluated. In addition, the ensemble model was created
that utilizes all the other methods. The ensemble model, which has the best
overall performance, achieves a 67.59% five-class classification accuracy, and a true
positive rate of 80% at the false positive rate of 25.82% for the binary classification
problem. The models are light and fast enough to be implemented in a portable
device, such as Raspberry Pi. The largest model only has 65 MB of trainable
parameters, and the slowest model only takes about 0.7 ms to predict on a 1-second
long EEG signal. The speed of the ensemble model has not been tested but given
that the slowest component in the model occupies less than 0.1% of the segment
implies we expect it to be fast enough for the goal. We expect the time elapsed to
be slightly more than the three models combined. As this model can successfully
detect whether artifacts are present in the collected signals quickly, and can tell
what type of artifacts they are, physicians can use this device while collecting data
to check whether the data that are being collected are free of artifacts or not. If the
data are being affected by any artifacts, physicians can quickly check which artifact
is present and act in response to that artifact. This work is significant to the research
community as it adds deep learning as one of the tools that the community can use
in recognizing artifacts in EEG signals and potentially removing them also.
Clinicians indicate that a sensitivity, which is the true positive rate, of 95%, and
specificity, the false positive rate, of below 5% to be the minimum requirement
for clinical acceptance (Golmohammadi et al. 2019). As none of the models
achieve that guideline yet, there are many more investigations needed in optimizing
the models. Hence for future works, an investigation into incorporating different
features that can be extracted quickly, and larger and more complex models to reach
the recommended guideline can be done. In addition, since the models were trained,
validated, and tested on the first version of the EEG artifact corpus which only
consists of observations from 310 patients, in the future when there are more data
available, the model could be trained again to see whether the lack of data was part of
the inadequate performance. Also, since classification within the artifacts, excluding
the “null” label, seems to work at high accuracies evident from the confusion matrix,
and the binary classification of artifacts can have arbitrarily high true positive rate,
an investigation on a two-step system seems to be another interesting path to take
on. This research envisioned to have a portable device that can be used during
data acquisition. Building a portable machine that runs these models to predict the
presence of artifacts and to classify the artifacts should be the next step. Finally,
testing this machine in a real-life setting will be beneficial to see if the machine
works and to see if there are additional adjustments and improvements to make.
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