
Chapter 6
Determination of Vascular Access
Stenosis Location and Severity
by Multi-domain Analysis of Blood
Sounds

Steve J. A. Majerus, Rohan Sinha, Binit Panda, and Hossein Miri Lavasani

6.1 Introduction and Background

Hemodialysis is a renal replacement therapy which replaces the lost function of the
kidneys for individuals with acute or chronic kidney disease. For those with end-
stage renal disease (ESRD), hemodialysis is essential for survival unless a kidney
transplant is available. Despite the mortality risk of ESRD, successful hemodialysis
can greatly prolong patient lifespans and increase the chance of receiving a donor
transplant (Leypoldt 2005). During hemodialysis, arterial blood is filtered through
a dialyzer to remove waste products and excess fluid before being returned to the
venous system. For individuals with ESRD, hemodialysis is required typically three
times per week, which requires a high-flow vascular access so core blood can be
filtered efficiently. To improve hemodialysis, permanent vascular access is usually
obtained using arteriovenous fistulas or grafts or central venous catheters (Fig. 6.1).
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Fig. 6.1 The hemodialysis circuit removes arterial blood, filters it externally, and returns it to the
body through the vascular access

Patency of a hemodialysis vascular access is the “Achilles Heel” of hemodialysis
treatment (Pisoni et al. 2015). Access dysfunction accounts for two hospital
visits/year (Cayco et al. 1998; Sehgal et al. 2001) for dialysis patients, and the loss
of access patency greatly increases mortality risk (Lacson et al. 2010). Maintenance
of vascular access is therefore a key objective in clinical guidelines for dialysis
care and is often handled by dedicated vascular clinics to deal with the high
volumes of individuals needing emergency interventions (Feldman et al. 1996). The
predominant causes of access dysfunction are stenosis (vascular narrowing) and
thrombosis (vascular occlusion), which occur in 66–73% of arteriovenous fistulas
(AVFs) and 85% of arteriovenous grafts (AVGs) (Al-Jaishi et al. 2017; Huijbregts
et al. 2007; Bosman et al. 1998). Venous stenosis near the artery-vein anastomosis
occurs in 50–71% of grafts and fistulas, but stenoses can occur anywhere along
the vascular access or central veins (Duque et al. 2017; Roy-Chaudhury et al.
2006). Clinical monitoring is essential to identify at-risk accesses for diagnostic
imaging and treatment planning and to avoid emergencies, missed treatments, or
loss of the access (H. Inc for OSORA CMS n.d.; Hemodialysis | NIDDK n.d.).
Doppler ultrasonic imaging, for example, is a noninvasive method for characterizing
vascular access function but requires a visit to a healthcare center and evaluation
by specifically trained personnel (Sequeira et al. 2017). The promise of efficient,
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point-of-care monitoring is to proactively identify which patients might need this
specialized examination to minimize vascular access dysfunction or loss.

Monitoring for vascular access dysfunction relies on data efficiently gathered
in the dialysis center, most regularly through physical exam. When blood flows
through a constricted vessel, the resulting high-speed flow jet induces turbulence
and pressure fluctuations in the vessel wall (Seo n.d.). This produces distinct
bruits which can be heard with a stethoscope during physical examination. Access
surveillance, occasionally performed monthly using flow-measuring equipment,
cannot detect fast-growing lesions or restenosis after angioplasty and is often a
late indicator of access risk (Krivitski 2014) which reduces utility (Krivitski 2014;
White et al. 2006; Moist and Lok 2019). Higher-frequency monitoring for access
dysfunction would be ideal for early detection of stenosis but must be balanced
against the labor and time required. Existing monitoring techniques have variable
sensitivities (35–80%), in part due to the expertise dependence of bruit interpretation
and physical exam techniques (Tessitore et al. 2014a). Since listening to bruits is
an important aspect of physical exams, clinicians have sought to identify auditory
features of bruits for quantitative analysis since the 1970s (Duncan et al. 1975).

Recording and mathematical analysis of bruits—sometimes referred to as
phonoangiograms (PAGs)—is called phonoangiography because it has the same
objectives of characterizing vascular stenosis as angiographic images (Seo n.d.; Kan
et al. 2015; Majerus et al. 2018; Doyle et al. n.d.). The primary motivation behind
phonoangiography is efficiency and objectivity, because sounds can be recorded
easily from the skin surface without particular need for expertise. Signal analysis
of PAGs can then be used to objectively describe the underlying turbulent flow
and degree of stenosis. Recent advances in spectral and multiresolution analysis,
autoregressive models, and machine learning make real-time PAG analysis feasible
at the point of care for rapid patient screening. PAG monitoring has the potential to
provide widespread, objective screening of hemodialysis vascular access function
for early detection of accesses at-risk for thrombosis. This chapter covers relevant
signal processing in the analog and digital domains and strategies for extracting clas-
sification features from an array of microphone recording sites (Figs. 6.2 and 6.3).

The chapter is organized beginning with a brief summary of prior work using
PAGs to locate and classify vascular stenotic lesions. Next, an analysis of recorded
bruits is presented to determine the minimum signal bandwidth and dynamic range
for analog signal processing prior to digitization. Digital signal processing methods
for feature extraction is reviewed, demonstrating feature extraction in spectral,
temporospectral, and spatial domains based on recording site location. Finally, three
digital analysis strategies are presented to locate, classify, and estimate the actual
degree of stenosis using machine-learning methods. While estimation of degree
of stenosis provides clinically actionable data, classification enables simpler user
notification, for example, with at-home monitoring. Therefore, we highlight these
differing approaches to using machine learning for stenosis characterization from
acoustic analysis.
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Fig. 6.2 Chronic hemodialysis is best achieved using an arteriovenous fistula vascular access, or
an arteriovenous graft for individuals with compromised vascular structure. The vascular access is
surgically created and monitored clinically to detect the symptoms of dysfunction such as stenosis.
Note: for simplicity this image shows the venous and arterial needles at differing angles and
positions; in practice, hemodialysis needles are generally placed in the venous segment of the
access with the arterial needle antegrade to flow

Fig. 6.3 Vascular access stenosis may be detected and quantified using flexible microphone arrays
capable of detecting regions of turbulent blood flow produced in the region distal to stenosis

6.2 Prior Work in Phonoangiograhic Detection of Stenosis

PAGs have been analyzed for decades, but there is still wide variance in the
descriptions of relevant spectral properties in functional and dysfunctional vascular
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accesses. However, there is a clear relationship between changing acoustic spectra
relative to the dimensions of the stenosis. Further, there is relative agreement that
PAGs recorded close to the location of stenosis have the distinctive shift in acoustic
timber introduced by turbulent flow. Previous studies have analyzed PAGs from
humans, from vascular bench phantoms, and from computer simulations of blood
flow. Here, we describe two topics which have been studied previously: the spectral
properties of PAGs in normal and stenosed cases and the impact of recording
location on PAG spectra.

6.2.1 Classification of Degree of Stenosis
from Phonoangiograms

Because the degree of stenosis (DOS) in a blood vessel influences the level of
turbulent flow, PAG properties are related to DOS. DOS is defined as the ratio of
the stenosed cross-sectional area of the blood vessel to the proximal (non-stenosed)
luminal area but is also clinically calculated as the ratio in minimum diameter of
the stenosed vessel section to the non-stenosed lumen diameter. When angiography
is used to determine DOS, linear vessel and stenosis diameter measurements are
generally used to estimate DOS within 10% (Allon and Robbin 2009). In our
work, because we used computerized tomography (CT) scans of vascular stenosis
phantoms (described below), we calculated DOS as the ratio in luminal area in
the stenosed and non-stenosed vessel segments, because this accounted for stenosis
phantoms that were not circular.

Much early work in PAG analysis represented the combined frequencies gener-
ated during systolic and diastolic phases of turbulent blood flow. Because clinical
interpretation of pathologic bruits relies on detecting a high-pitched whistling
character, it was hypothesized that stenosis would shift spectral power within a
certain frequency band (Sung et al. 2015). Although all studies agree that the
frequency range of interest is in the 20–1000 Hz band, and that DOS enhanced high-
frequency spectral power, identification of specific frequency bands varied widely
(Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al. 2015; Mansy et al. 2005;
Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen et al. 2013; Akay et al. 1993;
Obando and Mandersson 2012; Wang et al. 2011; Clausen et al. 2011; Sato et al.
2006; Gram et al. 2011; Milsom et al. 2014; Rousselot 2014; Gaupp et al. 1999;
Gårdhagen n.d.).

Despite the disagreement in the precise effect of stenosis on bruit spectra,
these prior studies confirmed that stenosis definitively changes PAG amplitude and
pitch. The change, however, could be an enhancement or a suppression of certain
frequencies depending on the impact of stenosis on blood flow. Other patient-
dependent variables such as PAG amplitude and the recording location relative to
stenosis must also be accounted for and are described below.
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6.2.2 Localization of Vascular Stenosis
from Phonoangiograms

Bruits are only detectable close to where they are created due to the low acoustic
amplitude and acoustic attenuation of human tissue. Fluid dynamic simulations
have established to a high degree of precision that stenosis induces turbulent
flow at physiologic blood pressures, flow rates, and nominal lumen diameters of
vascular accesses (Gaupp et al. 1999; Gårdhagen n.d.). These simulations have
been confirmed by Doppler ultrasound measurements, which agree that turbulent
flow occurs within 2–5 times the diameter of the unoccluded vessel distal to
stenosis. Therefore, the presence of a bruit indicates stenosis or some other vascular
malformation is nearby.

An important effect is that turbulence and decreased pressure occurs on the
downstream side of the stenosis—for an arteriovenous vascular access, this is closer
to the venous outflow tract. Therefore, bruits recorded proximally and distally to
stenosis have different frequency spectra due to stenosis turbulence (Du et al. 2015).
However, the acoustical influence of biomechanical properties and thickness of
tissue over the vascular access varies between patients. Because tissue acts as a
low-pass filter at auditory frequencies, it is presumed that the most accurate bruit
recordings would be obtained in the 1–3 cm region distal to stenosis (assuming
unoccluded tube diameter to be 6 mm), where turbulent flow is maximal (Gaupp et
al. 1999; Gårdhagen n.d.).

6.3 In Vitro Reproduction of Vascular Bruits

The spectral content of bruits produced by human blood flow is affected by a
wide range of uncontrollable factors such as vascular anatomy, blood pressure,
blood concentration (hematocrit), and flow rate. We developed an in vitro vascular
phantom to reproduce bruits so that relevant acoustic features and classifiers could
be matched with known degree of stenosis. Acoustic recordings from the phantom
system were used to validate the stenosis classification strategies described below.
The reproduction performance of the phantom was validated against 3283 unique
10-s recordings obtained from 24 hemodialysis patients over 18 months (Majerus
et al. 2000). Human and phantom bruits were recorded using the same digital
stethoscope (Littman 3200) and compared based on aggregate power spectral
density. Peak arterial pressure in the phantom was controlled using an adjustable
pressure dampening system. Cardiac stroke volume was varied by changing the
duty factor of a pulsatile pump. The acoustic power spectra of phantom bruits were
validated against reference recordings taken from humans, as previously described
(Chin et al. 2019).

Specific construction details of the vascular phantom were previously described
(Chin et al. 2019; Panda et al. 2020) and are briefly introduced here (Fig. 6.4). The
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Fig. 6.4 (a) Vascular stenosis phantom flow diagram. Two pumping systems produced pulsatile
flows in a vascular access phantom within physiological ranges of flow and pressure. The recording
sites are shown in the stenosis phantom diagram (b). 10–85% stenosis is simulated in the center of
phantom by tying a band around 6-mm silicone tubing (c)

phantom consisted of a 6 mm silicone tube banded by a silk suture at one location
to simulate an abrupt vascular narrowing. Phantoms were produced with DOS from
10% to 85%. The banded tube was then encased below 6 mm of tissue-mimicking
silicone rubber (Ecoflex 00-10). The tissue-mimicking portion also extended at least
10 cm in all directions from the stenosis. The final DOS for each phantom was then
calculated from images slices taken by CT scan.

Each phantom was connected to a pulsatile flow pumping system (Cole Parmer
MasterFlex L/S, Shurflo 4008). Pulsatile pressures and aggregate flow rate were
measured with a pressure sensor (PendoTech N-038 PressureMAT) and flow sensor
(Omega FMG91-PVDF), respectively. Pulsatile waveforms were delivered to one of
the pumps at a rate of 60 beats per minute using a solid-state relay to produce flows
from 600 to 1200 mL/min at peripheral peak blood pressures of 110–200 mmHg.

6.4 Signal Processing: Considerations in the Transduction
of Bruits

While the main focus of this chapter is signal processing of bruits to pro-
duce phonoangiograms for classification, system-level consideration of the signal
processing requirements can help optimize performance and avoid over-design.
Therefore, this section will review the design considerations for a transducer and
front-end interface amplifier to best capture the relevant acoustic signals to the
accuracy needed for classification (Fig. 6.5).
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Fig. 6.5 Signal processing is
required first in the analog
domain to maximize
signal-to-noise ratio and
prevent aliasing in
analog-to-digital conversion.
After digitization, digital
signal processing is used to
extract features for
classification

6.4.1 Skin-Coupled Recording Microphone Array

Fabrication details for recording arrays were detailed previously (Panda et al.
2019a), so this section will introduce new data on the bandwidth considerations
for these sensors. The true spectral bandwidth and dynamic range of vascular
sounds may still be unknown since only stethoscopes have been used to record
these signals previously. Published analyses of PAGs report higher-pitched sounds
associated with vascular stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014;
Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al.
2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang
et al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et
al. 2014; Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), which suggests
that the reduced frequency range of stethoscopes might be insufficient for blood
sounds. Therefore, acoustic recordings from the in vitro phantom were made with
a reference transducer (Tyco Electronics CM-01B) with a flat frequency response
to at least 2 kHz. For each recording, the 95% power bandwidth was calculated by
integrating the power spectral density. To compute the power bandwidth, the power
spectral density was computed using fast Fourier transform and then cumulatively
integrated by frequency bin until the integration met 95% of the total power in
all bins. Because electronic circuits suffer from increased flicker noise at low
frequencies, and because all prior reports of PAGs indicate increased power above
100 Hz associated with vascular stenosis (Sung et al. 2015; Du et al. 2015; Du et al.
2014; Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al.
2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang et
al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014;
Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), we adopted a lower integration
bound of 25 Hz. This had a further benefit of enabling shorter-duration recordings
(e.g., 10 s), which otherwise do not accurately capture extremely low-frequency
signal components. For this analysis 10-s recordings were taken 1 cm before the
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simulated stenosis, at the stenosis, and 1 and 2 cm after the stenosis relative to the
direction of blood flow.

Signal bandwidth was related to the degree of stenosis, as expected, but also
to recording location (Figs. 6.6 and 6.7). Both effects were expected based on
prior measurements and simulations indicating turbulent flow existing up to 1–
2 cm from a typical stenotic lesion (Gaupp et al. 1999; Gårdhagen n.d.). These
results suggest the need to record from multiple locations to accurately detect the
presence and severity of a stenotic lesion. In an analysis of 156 recordings, the
maximum interquartile range for 95% bandwidth was 25 Hz–1.2 kHz; the lower-
frequency bound correlated with phantoms with low DOS producing little turbulent
flow (Fig. 6.8). These data suggest that a signal bandwidth of at least 1.5 kHz
is appropriate for measuring vascular bruits. With a safety factor, we adopted a
bandwidth of 25–2.25 kHz.

The required bandwidth was achieved with a signal-to-noise ratio of 24 dB using
a polyvinylidene fluoride (PVDF) film as a 2-mm diameter circular transducer. This
transducer was developed to be coupled directly to the skin to measure blood sounds
through direct piezoelectric transduction (Panda et al. 2019b). The small size of the
transducer allowed it to be fabricated in recording arrays (M and Panda 2019). In
this work we describe testing from arrays arranged as 1×5 channels spaced by 1 cm
laterally (Fig. 6.4).

6.4.2 Transducer Front-End Interface Amplifier Design

Each PVDF microphone in the recording array must be coupled to an interface
amplifier to amplify the signal amplitude before digital conversion. The analog
performance of the interface amplifier is driven by three constraints: the electrical
impedance of the PVDF transducer, the required signal bandwidth, and the required
dynamic range. In this case, the dynamic range constraint is driven by the minimum
signal accuracy needed for the digital signal processing and classification strategy.
In a retrospective analysis of blood sounds measured from hemodialysis patients and
an in vitro phantom, we determined that a minimum dynamic range of 60.2 dB was
needed for accurate classification of stenosis severity (Panda et al. 2019a), which is
roughly equivalent to 10-bit accuracy after digital conversion. As described in the
previous section, a bandwidth of 2.25 kHz is needed to capture most of the energy
in the PAG signals.

The amplifier input impedance constraint is based on the electrical model for
each 2-mm transducer which was extracted using an impedance analyzer (Hioki
IM3570). The PVDF transducer was modeled electrically as a resistor and capacitor
in parallel (Fig. 6.9). Measured values of the sensor resistance, capacitance, and the
equivalent sensor output current when recording PAGs are shown in Table 6.1.

Because the PVDF transducer has a large impedance with a small signal current,
a transimpedance amplifier (TIA) was designed to convert the piezoelectric sensor
current to a voltage that can be digitized. Each microphone within the array feeds
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Fig. 6.6 Power spectral density recorded at different locations relative to a 75% stenosis show a
site-specific signal bandwidth. In general, sites after stenosis have wider signal bandwidths because
of the local presence of turbulent blood flow

Fig. 6.7 The 95% power bandwidth for 156 PAG recordings for DOS 10-90% were aggregated
based on recording site. Recordings at sites 2 and 3 indicate wider bandwidth independent of
degree of stenosis or flow rate. This forms the basis of the classifier methodology, as there is a
distinct correlation between elevated power and frequency content in the presence of stenosis
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Fig. 6.8 Analysis of interquartile range for PAGs recorded with DOS 10–90% showed a required
bandwidth of at least 1600 Hz to accurately capture signal dynamics in the analog signal processing
section. Including a safety factor, the interface amplifier was designed for 2.25 kHz bandwidth to
limit noise

Fig. 6.9 The PVDF transducer is modeled simply as a resistor (RS) and capacitor (Cs) in parallel
with output current Isignal based on measured impedance at 100 Hz

Table 6.1 Measured
transducer parameters for an
electrical model for the
PVDF sensor

Parameter Nominal value

Current source amplitude (ISignal) 0.63 μA
Current source frequency 100 Hz
Sensor resistance (RS) 12.4 M�

Sensor capacitance (Cs) 100 pF
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Table 6.2 Design specifications for transimpedance interface amplifier

Parameter Nominal value

Nominal input current 0.63 μA (from PVDF transducer)
Required dynamic range 60.2 dB minimum
Nominal output voltage level 30 mV peak
Low-pass signal bandwidth 2.25 kHz

a dedicated TIA. The TIA converts the current produced by the transducer to an
output voltage while minimizing the input referred noise power. The TIA is an
ideal interface to high impedance, current output devices, but certain critical design
considerations must be made to optimize the total signal-to-noise ratio of the output
signal. The most important design consideration, which has a direct impact on the
sensitivity, is the input-referred noise of the TIA. In feedback TIAs built using
general voltage amplifiers such as an op-amp with a shunt-shunt feedback, the
input referred noise is a function of the input-referred voltage and current noise of
the op-Amp (Binkley 2008). Therefore, op-amps with high input-referred voltage
(nV/

√
Hz) and/or current noise (nA/

√
Hz) should be avoided.

The design specifications for the TIA were chosen assuming it would be followed
by a 2nd-stage programmable gain amplifier and a 10-bit analog-to-digital converter.
Therefore, a small-signal output level was chosen to limit harmonic distortion which
can occur with large signal swing. The performance of the TIA dominates the
analog noise floor and linearity, so these later stages are not described here. Design
requirements for the TIA are summarized in Table 6.2 based on measured properties
from PAGs in humans and the vascular phantom (Panda et al. 2019a).

In addition to the inherent noise of the op-amp, the feedback resistor plays a key
role in the overall input-referred noise power of the TIA. Increasing the feedback
resistance not only reduces the noise current associated with the resistance but also
results in higher TIA gain which helps lower the overall input-referred noise of
the TIA. Nevertheless, the requirement imposed on the frequency response of the
TIA when interfacing with the transducer limits the amount of resistance that can
be used in the feedback path. Still, optimizing the feedback resistance will lead to
lower input-referred noise within the required gain bandwidth (GBW) of the TIA
(Fig. 6.10).

The critical performance metrics are important in completing the design process.
Major small-signal TIA performance metrics are the transimpedance gain, the 3-dB
bandwidth, and input-referred noise power. Considering the transimpedance gain
and the bandwidth, the feedback network is the first physical parameter that must
be determined. The feedback network generally consists of a resistor and capacitor
that are connected in parallel. The resistive part helps set the transimpedance gain of
the TIA, while the capacitive component helps with setting the frequency response,
particularly the bandwidth and the stability. The frequency response affects the TIA
noise transfer function, and consequently, the input referred noise of the TIA, too.
Eqs. 5, 6 demonstrate how to optimize feedback capacitor ranges, e.g.,
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Fig. 6.10 Example of
op-amp open loop transfer
function and noise transfer
functions versus frequency.
Ideally, the noise transfer
function will be flatter until
the op-amp gain begins to roll
off (e.g., “B”)

If

(
Rf

Rs

+ 1

)
≥ 2

√
Rf ∗ Cs ∗ GBW Cf = Cs

2
(

Rf

Rin
+ 1

)

If

(
Rf

Rs

+ 1

)
≤ 2

√
Rf ∗ Cs ∗ GBW Cf =

√
Cs

Rf ∗ GBW

Another critical consideration for feedback capacitor value is the desired cutoff
frequency. This cutoff frequency determines the TIA’s -3db bandwidth, f−3dB,
expressed as

f−3dB = 1

2π ∗ Rf ∗ Cf

Input referred power is defined by the ratio of the output noise power, divided by
the TIA transfer function. This can be calculated using the SNR of the circuit (Fig.
6.11):

SNR = Powersignal

P owernoise

= Is
2 ∗ Rf

i2n ∗ Rf

= Is
2

i2n

The TIA design process is to maximize SNR given constraints on required
bandwidth, available supply voltage/current, and necessary dynamic range. The
transfer function of output voltage level (Vout) and input current (Isignal) is dependent
on the feedback resistance:

Vout = − [
Isignal ∗ Rf

] + Vref.

In this example, Vref is generated by a voltage divider of R1 and R2. Both were
selected to be 10k� to set the reference at half of the supply voltage, i.e.,
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Fig. 6.11 Equivalent transducer and transimpedance amplifier circuit model for input-referred
noise calculations with parallel current source, in, functioning as input noise source

Vref = Vsupply ∗ R2

R1 + R2
(where R2 = R1)

The DC value of the output for this stage of amplification was selected to be
2.1 V. From this parameter, the feedback resistance was calculated as:

Rf = Vout − Vref

Isignal

= 2.1V − 1.65V

0.63μA
= 715k�

The value of the feedback capacitance was determined from the required signal
bandwidth. Rearranging Eq. 7 for Cf , we arrive at:

Cf = 1

2π ∗ Rf ∗ f−3dB

= 1

2π ∗ 715k� ∗ 2.25kHz
= 100ρF

The minimum op-amp bandwidth for this circuit was calculated using the
feedback resistance and capacitance, Rf and Cf , as well as the capacitance of
the input pin of the selected op-amp (Texas Instruments OPA2378). The IN-
pin capacitance is the sum of the sensor capacitance (Cs), common-mode input
capacitance (CCM), and differential mode capacitance (CDiff ) as:

CIN = Cs + CCM + CDiff = 1000ρF + 5ρF + 4pF ∼= 1000ρF

fGBW ≥ Cf + Cin

2π ∗ Rf ∗ C2
f

≥ 24.7 kHz

Therefore, the op-amp must have a minimum bandwidth of roughly 25 kHz. The
OPA2378’s 900 kHz bandwidth satisfies this requirement and is a viable component
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for this application. The OPA2378 has an input voltage noise density of 20nV
Hz1/2

. The

input referred voltage noise was calculated as 183nV
Hz1/2

which meets the 60 dB dynamic
range requirement over the signal bandwidth of 2.25 kHz.

6.5 Signal Processing and Feature Classification Strategies
for Acoustic Detection of Vascular Stenosis

The preceding sections described how phonoangiograms can be efficiently trans-
duced through arrays of flexible microphones and the bandwidth and dynamic range
needed for interface and data conversion electronics. After a bruit is recorded, a
wide range of digital signal processing strategies can be used to extract meaningful
features. Prior examples have reported that autoregressive spectral envelope estima-
tion, wavelet sub-band power ratios, and wavelet-derived acoustic features correlate
to degree of stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al.
2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen
et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang et al. 2011;
Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014; Rousselot
2014; Gaupp et al. 1999; Gårdhagen n.d.). Features can be extracted from multiple
signal processing branches and compared using machine-learning techniques, e.g.,
radial basis functions or random forests. However, feature extraction and model
training must be constrained to prevent over-fitting on limited datasets and to
improve generalized use. In this section we provide an overview of how two derived
time domain signals—acoustic spectral centroid (ASC) and acoustic spectral flux
(ASF)—have unique properties for bruit classification. Importantly, ASC and ASF
are derived directly from the discrete wavelet transform coefficients, which reduce
feature dimensionality and aid scalar feature extraction.

A specific physical system implementation provides constraints on computa-
tional complexity, accuracy, and ease of implementation which can guide the
selection of features. In this section, we review the fundamental approach for
extracting spectral features from a single acoustic recording site. We will then
expand this signal processing into other domains, specifically into time and space,
by leveraging time-synchronized recordings from an array of microphones.

6.5.1 Multi-domain Phonoangiogram Feature Calculation

Because PAGs are time domain waveforms, they can be analyzed in both the
temporal or spectral domains, i.e., as one-dimensional signals in either domain.
Spectral transforms such as discrete cosine transform and continuous wavelet
transform combine these domains to form a two-dimensional waveform along time
and frequency (or scale) axes. However, when PAGs are acquired at multiple sites
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along a vascular access, the spatial distribution of PAG properties provides an
additional analysis domain. If PAGs are also sampled simultaneously, time domain
differences between signals are correlated and can be analyzed. When features
are extracted from different domains, they can be compared to each other using
clustering and classifier techniques as long as they are reduced to scalar form.

In this section we review how features can be extracted from each domain with
dimensional reduction to scalar values. The spectral domain provides scalar features
such as average pitch. The temporospectral (combined time-spectral) domain allows
segmentation of blood sounds in cardiac cycles to provide sample indices for systole
onset. After temporospectral segmentation, spectral features can be separately
calculated in systolic and diastolic phases. Finally, the spatial domain provides
features describing the time delay between PAGs at different recording sites. Spatial
analysis also enables detection of spectral changes between sites to predict where
turbulent blood flow is occurring.

6.5.1.1 Spectral Domain Feature Extraction

Spectral domain feature extraction is likely the most common approach in PAG
signal processing. This is intuitive because humans perceive frequency content with
great sensitivity, and PAG processing seeks to replicate traditional auscultation by
ear. In this section we review spectral domain feature extraction using continuous
wavelet transform (CWT) to describe the spectral variance over time.

CWT over k scales W[k, n] is computed as:

W [k, n] = xPAG [n] ∗ ψ [n/k] ,

where ψ[t/k] is the analyzing wavelet at scale k. We used the complex Morlet
wavelet because it has good mapping from scale to frequency, defined as:

ψ [n] = e−(n/2fc)
2
ej2πfcn,

where fc is the wavelet center frequency. In the limit fc → ∞, the CWT with Morlet
wavelet becomes a Fourier transform. Because of the construction of the Morlet
wavelet as the wavelet ψ[n] is scaled to ψ[n/k], and k is a factor of 2, the wavelet
center frequency will be shifted by one octave. Therefore, CWT analysis with the
Morlet wavelet can be described by the number of octaves (NO) being analyzed
(frequency span) and the number of voices per octave NV (divisions within each
octave, i.e., frequency scales). Mathematically the set of scale factors k can be
expressed as:

k [iO, iV ] = 2(iO+iV /NV ).
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iO = k0, k0 + 1, k0 + 2 . . . NO

iV = k0, k0 + 1, k0 + 2 . . . NV

Where k0 is the starting scale and defines the smallest scale value and the total
number of scales K= NONV . For PAG analysis, we compute CWT with NO = 6
octaves and NV = 12 voices/octave, starting at k0 = 3. After computing the CWT,
pseudofrequencies F[k] across all K scales are calculated as:

F [k] = fc/k.

Because the CWT involves time domain convolution, each discrete sample n has
a paired sequence of k CWT coefficients, i.e., it is a 2-dimensional sequence. In the
context of phonoangiogram classification, features must be extracted from W[k, n]
that are of singular dimension. Dimension reduction of W[k, n] can operate over
all or part of the k scales at each discrete sample n, over a single k scale for all
n samples, over all points of W[k, n], or through a more complex combination of
summation over k and n.

The systolic and diastolic portions of pulsatile blood flow contain differing
spectral information on turbulent flow, so we have chosen to first reduce the
CWT dimensionality to n to produce time domain waveforms. This preserves the
spectral differences between different times in the cardiac flow cycle. Two n-point
waveforms are calculated from W[k, n]: auditory spectral flux (ASF) and auditory
spectral centroid (ASC). From these waveforms, we can compute time-independent
features such as RMS spectral centroid, or we can extract time domain spectral
features as explained in the next section.

ASF describes the rate at which the magnitude of the auditory spectrum changes
and approximates a spectral first-order derivative. It is calculated as the spectral
variation between two adjacent samples, i.e.,

ASF [n] = 1

K

√√√√ K∑
k=1

(|W [k, n]| − |W [k, n − 1]|)2

where W[k, n] is the continuous wavelet transform obtained over k total scales.
To intuitively demonstrate how ASF describes a signal, Fig. 6.12 shows ASF

calculated from a stepped single tone test waveform. The tone changes over [100,
200, 400, 800, 1000] stepping every 2 s. At every tonal change, the spike in the
ASF waveform corresponds to the time of the spectral shift and the magnitude. The
ASF waveform, therefore, describes how when, and how quickly, spectral power is
shifting between bands. This is useful in mapping large variations in a PAG signal,
such as the systole and diastole phases. Segmentation of these phases, therefore,
uses the ASF waveform (described below).
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Fig. 6.12 Spectrogram of artificially generated test waveform with 6 single-tone frequencies from
100-1500 Hz. The ASF curve (lower) shows a spike at every change of frequency, approximating
the spectral first derivative

ASC describes the spectral “center of mass” at each n sample in time. For
Gaussian-distributed white noise, ASC will be constant at pseudofrequency F[K/2].
ASC is commonly used to estimate the average pitch of audio recordings, where a
higher value corresponds to “brighter” acoustics with more high frequency content
(Tzanetakis and Cook 2002). ASC is calculated as:

ASC [n] =
∑K

k=1 (|W [k, n]| .f c [k])∑K
k=1 |W [k, n]|

where W[k, n] is the continuous wavelet transform obtained over K total scales of
the PAG and fC[k] is the center frequency.

ASC for the same test waveform is plotted to intuitively describe how this
waveform describes the time domain spectral energy of a signal (Fig. 6.13). Because
only a single tone is used at each time point, ASC consistently describes the
frequency of the sine wave until it changes. Because F[k] represents pseudofre-
quencies, there is not a perfect mapping between ASC pseudofrequency and real
auditory frequency. The use of the Morlet waveform in the CWT improves the
pseudofrequency accuracy, but for PAG classification, absolute frequency accuracy
is not needed (discussed below).

Example computations of ASC and ASF waveforms, compared to the time
domain and spectral domain PAG recording, demonstrate feature calculation (Fig.
6.14). After the three-dimensional W[k, n] is computed, time domain ASC and
ASF waveforms are calculated. From these waveforms simple, time-invariant scalar
values such as RMS or peak amplitude are calculated and used for stenosis
classification.
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Fig. 6.13 Spectrogram of artificially generated test waveform with 6 single-tone frequencies from
100-1500 Hz. The ASC curve describes the frequency of the sine wave at each time point

Fig. 6.14 Time-domain bruit (a) and continuous wavelet transform spectral domain (b). The
descriptive signals auditory spectral centroid and flux were extracted from CWT coefficients (c,d).
The RMS value of the descriptive signals is one example of a scalar feature derived from the
time-domain waveform

6.5.1.2 Temporospectral Domain Feature Extraction

For PAG analysis we are primarily interested in identifying the time onset of systolic
and diastolic phases. This allows separate spectral feature extraction in each phase,
ratioed features by comparing spectral changes between phases, and time domain
comparisons such as lengths of cardiac phases, or time shifts between recording
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Fig. 6.15 Auditory spectral centroid (ASC) varies with degree of stenosis but also between
systolic and diastolic phases (a). The auditory spectral flux (ASF) waveform enables segmentation
between pulsatile phases so that the RMS value of ASC (ASCRMS) can be separately calculated
(b)

sites. This analysis is useful because blood flow acceleration occurs in the high-
pressure systolic pulse, which gives rise to turbulence producing high spectral
power. As a spectral derivative, the ASF waveform is well suited to describe the
onset of systolic turbulence and is used for temporospectral segmentation.

Segmentation simply used a thresholding procedure; systolic ASF onset is
defined as the time when the ASF waveform exceeds a threshold in each pulse
cycle (Fig. 6.15). A suitable threshold of 25% of the ASFRMS value was determined
empirically using data recorded from human patients and the vascular phantom
(Panda et al. 2019b). Pulse width is also used to reduce false threshold crossings.
The times between threshold crossings are calculated, and any crossings which
produce pulse widths less than 40% of the mean are discarded (Lázaro et al. 2013).

Temporospectral segmentation produces a set of i indices (nASF,i) describing
systolic and diastolic pulse widths, which themselves can be used as features.
However, the indices can also be used to segment spectral waveforms such as ASF
and ASC to split them into systolic ASFS and ASCS, and diastolic ASFD and ASCD.
Features for each phase can be calculated by combining all segments or by averaging
the feature for each segment. As an example, consider an ASC waveform segmented
into P systolic segments each with length n. The RMS value of ASC in the systolic
phase only is then:

ASCS,RMS = 1

P

P∑
i=1

√
1

n

∑
ASC2

S,P,n
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Fig. 6.16 Features can be derived for each recording site, or based on differences between
sites. Since all features are scalar, they can be combined into the same featureset and used for
classification

In practice, because systolic segments do not all have the same length n, any
derived features are calculated for each segment independently and averaged over P
segments.

Ratiometric features can also be calculated as ratios or differences between
successive systolic/diastolic pairs. This reduces the effect of interference caused
by recording which is correlated between adjacent segments or can be a less
individual-specific feature because the diameter of the blood vessel and absolute
flow rate contribute to ASC and differ between people. For example, ASC and ASF
waveforms show significant differences in systolic and diastolic phases (Fig. 6.15),
especially as DOS increases.

6.5.1.3 Spatial Domain Feature Extraction

The final domain analyzed in this model of PAG signal processing is the spatial
domain. Features are not extracted directly from the spatial domain; rather, new
features are derived as the difference in features between sites (Fig. 6.16). This
is a powerful technique because not only does it accentuate regions of turbulent
flow, but also the proportional feature changes between recording locations are
themselves related to degree of stenosis. Therefore, spatial domain features are
useful for both physical localization of stenosis and classification of degree of
stenosis. Furthermore, ratiometric site-to-site feature comparisons remove some of
the individual variation in features attributed to differences in anatomy. For example,
the dimensionless change in systolic ASC (ASCS) between sites 1 and 2 can be

calculated as ASC2,S
/

ASC1,S
. To obtain a similar comparison in approximate

units of Hertz, a difference is used, i.e., ASC2, S − ASC1, S.
This spatial domain technique can be generalized to produce composite features

for any multi-site measurement with little complications as long as the compared
features are independent scalars. However, any site-to-site calculations relying
on time require synchronization in sample rates between sites, or alignment of
waveforms based on a reference symbol so that relative time differences can be
calculated. For example, composite temporospectral features require time invariance
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Fig. 6.17 ASF calculated at proximal and distal locations showed an inversion in Td . At moderate
and severe DOS, Td became negative, suggesting flow velocity increase

in the calculation. Once this condition is met, composite spatial domain features
based on time shifts are simple to calculate. For example, the time delay in ASF
systolic onset (nASF) between sites 1 and 2 can be calculated as:

td,1−2 = 1
/

Fs

(
nASF,1 − nASF,2

)
.

This calculation is easily performed from feature calculations for each recording
site (Fig. 6.17) and is transformed to a continuous time difference in units of seconds
by dividing by the sample rate FS. Scalar features from multiple domains can be
combined to form a single feature set (Fig. 6.16), especially if a machine-learning
classifier will be used because the scalar features can be analyzed as if they are
unitless.

6.6 Classification of Vascular Access Stenosis Location
and Severity In Vitro

The clinical goal for multi-site recordings of PAGs is to both locate and describe
the severity of stenosis. In our previous work, we showed that binary or ternary
classification using single features was sufficient to classify DOS as mild, moderate,
or severe. Analysis of this method using receiver operating characteristic (ROC)
revealed detection sensitivities as high as 88–92% and specificities as high as 96–
100% (Panda et al. 2020), but classification was only accurate at certain recording
locations. Therefore, feature selection for an array of recording sites is important to
detect differences between recording sites. This section demonstrates comparing
features between sites using hyperdimensional classifiers to greatly improve the
stenosis classification accuracy from PAG recordings.
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Fig. 6.18 As features are
extracted, the dimensionality
of the dataset is reduced to
yield a final set of features.
Since each site has features
extracted from site-specific
features and intra-site feature
differences, a total featureset
of F[S,M] is produced with S
features over M sites

6.6.1 Multi-domain Feature Selection

The previous sections described how phonoangiograms are transduced and pro-
cessed as analog signals, prior to being digitized for digital signal processing.
Features are then extracted from multiple dimensions to yield a final set of M
features F[S.M], which are site-specific to each of S recording sites (Fig. 6.18).
In previous work we and others have described more than 15 features that are
correlated with degree of stenosis in humans and in bench phantoms of vascular
stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al. 2015; Mansy et
al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen et al. 2013; Akay
et al. 1993; Obando and Mandersson 2012; Wang et al. 2011; Clausen et al. 2011;
Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014; Rousselot 2014; Gaupp et
al. 1999; Gårdhagen n.d.; Chin et al. 2019; Panda et al. 2020; Panda et al. 2019a).

Machine-learning classifiers require optimized feature selection through numer-
ous methods. Feature selection improves the performance of classifier algorithms
and reduces the likelihood of over-fitting to a data set of limited size. Numerical
methods such as principal component analysis are powerful tools, as is supervised
feature selection which relies on trained experts to select the features describing
most of the variance in the observed effect. In this work we used both automated and
supervised feature selection to select the most appropriate features. In the following
classification examples, we explain the rationale behind feature selection for the
given classification task.
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Fig. 6.19 Stenosis
localization uses spatial
features derived from feature
differences between adjacent
sites. In this example, the
shift in ASCS between sites
is used to detect the presence
of stenosis beneath a specific
recording site

6.6.2 Stenosis Spatial Localization Using Acoustic Features

Because the presence of stenosis produces turbulent flow in blood, a characteristic
high-frequency sound is produced locally within 1–2 cm of the lesion (Gaupp
et al. 1999; Gårdhagen n.d.). Spatial domain feature analysis is ideal to detect
differences between recording sites caused by dramatic changes in blood flow
patterns. To demonstrate the feasibility of detecting the location of stenosis using
acoustic features alone, we tested eight stenosis phantoms on the vascular phantom
previously described over variable blood flow rates of 700–1200 mL/min. This range
of flows was tested at each degree of stenosis to simulate the nominal levels of
human blood flow rates in arteriovenous vascular accesses. DOS for the phantoms
ranged from 10% to 85%.

A vascular access is typically a uniform segment of blood vessel with few
collateral veins, so we simply tested a one-dimensional recording array with five
locations along the path of blood flow (Fig. 6.4). Recording sites were spaced
by 1 cm and used skin-coupled microphones as previously described. While we
analyzed over 15 features for stenosis localization, we found many features were
correlated (Chin et al. 2019) and therefore adopted the site-to-site change in mean
systolic ASC (�ASCS) as the sole feature for localization (Fig. 6.19). This feature
was intuitively selected because it is well documented that the presence of stenosis
causes high-pitched blood sounds. Therefore, we expect that an abrupt stenosis
in an otherwise smooth vessel will produce higher pitch at sites within several
centimeters. Five site-to-site features for each flow rate and DOS were calculated,
and including replications this yielded 370 total samples for statistical analysis.

In this experiment, the actual stenosis was located directly under location 2;
location 1 was recorded 1 cm proximal, and locations 3, 4, and 5 were 1, 2,
and 3 cm distal to stenosis. The interval plot (Fig. 6.20) indicated a positive
shift between �ASCS,differences from proximal to distal locations (p < 0.001 for
30% < DOS < 90%) (Panda et al. 2019a). Confidence intervals and differences
in group means were calculated using ANOVA followed by Tukey’s test with
95% confidence intervals (α = 0.05). Because sample data followed a normal
distribution, Tukey’s test was used to adjust confidence intervals based on the
number of comparisons tested. Statistical analysis was performed in Minitab
software (Minitab, LLC, State College, PA, USA). In general, differences between
locations 3 and 4 and 4 and 5 were positive by 50–70 Hz, while the other site



6 Determination of Vascular Access Stenosis Location and Severity. . . 185

Fig. 6.20 Difference in ASCS between adjacent locations showed no significant variation for 0%
DOS (p>0.05) (a). A large spectral shift at locations distal to stenosis (stenosis center at location
2) (b). Data plotted for phantoms with 30%<DOS<90%, p<0.001 for all locations. Analysis of
variance and Tukey’s test were identified statistically significant differences in ASC means at
significance level α=0.05

differences were negative. This suggested that a simple threshold difference of
70 Hz in�ASCS,between adjacent array recording locations could identify stenosis
proximally to the recording sites within 1–2 cm.

6.6.3 Stenosis Severity Classification from Acoustic Features

While the location of stenosis can be estimated by comparing feature shifts between
sites to a threshold, classification of the degree of stenosis is more challenging from
a single feature. This is in part because the degree of stenosis and the nonlinear
properties of blood interact such that DOS nonlinearly impacts overall flow rate and
turbulence pattern (Gaupp et al. 1999; Gårdhagen n.d.), introducing time-dependent
changes to both acoustic spectra and intensity. Many classification strategies have
been proposed and studied for a single recording site (Sung et al. 2015; Du et al.
2015; Du et al. 2014; Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-
Yi Wang et al. 2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson
2012; Wang et al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011;
Milsom et al. 2014; Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), e.g.,
showing classification accuracy of about 84% using binomial Gaussian modeling
(Sung et al. 2015). Here we extend classification to leverage temporospatial domain
features drawn from multiple recording sites.

We chose to classify PAG data using a quadratic support vector machine (SVM)
(Joachims 1998). The quadratic SVM is widely used in natural language processing
tasks and is suitable for PAGs which have similar autoregressive properties as
speech (Majerus et al. 2018). As a machine-learning algorithm, the SVM defines
a hyperplane which is used to separate clusters of data points in a high-dimensional
space. The hyperplane is used as a decision surface and is optimized to maximize
the separation distance between the classes of data.
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Because the data are not linearly separable, the SVM transforms the input data
points into a higher dimension using a kernel function. For the quadratic SVM, the
kernel K is a polynomial of order 2, i.e.,

K (x1, x2) =
(
x1

Tx2 + 1
)2

.

Expanding this kernel reveals how data are expanded into higher dimension
through interaction terms:

K (x1, x2) =
(

n∑
i=1

x1
Tx2 + 1

)2

=
n∑

i=1

x1,i
2x2,i

2 +
n∑

i=2

i−1∑
j=1

(√
2x1,ix1,j

) (√
2x2,ix2,j

)

+
n∑

i=1

(√
2x1,i

) (√
2x2,i

)
+ 1.

This dimensional expansion changes the distances between data points in the higher-
dimensional space and allows a decision surface to be constructed. The decision
surface is a hyperplane optimized to the distance between the hyperplane and the
nearest data points in each class. Because this quadratic optimization problem
involves significant computation, SVMs are developed using machine-learning
strategies and generally tuned iteratively.

For the case of DOS classification, we trained the SVM in MATLAB using the
same dataset of 370 recordings described above. For each of S recording sites, a set
of M features was calculated giving a total feature array F[S,M]. However, after
detecting the location of stenosis, only recordings from the nearest site need to
be classified, i.e., the SVM was only trained on a single feature vector F[M]. In
our example with 5 recording sites, this reduced the total number of observations
(recordings) to 50.

Training of the SVM was performed in MATLAB in three phases. First, PAG
features were transformed to a high-dimensional space using the polynomial kernel.
Then feature selection was performed to reduce the total number of features
(and hence the dimensionality) of the SVM. This reduced the overall model
complexity, reduced the numerical instability risk inherent to SVMs, and reduced
the risk of over-fitting. Principal component analysis was used to define the three
features which described variance between the data classes: ASC · ASF (mean
ASC multiplied by mean ASF), ASCS (mean value of ASC in systole), and td
(time shift in ASF onset compared to first recording site). The computation of these
features is illustrated in Fig. 6.21. Then, quadratic optimization was performed to fit
an optimal hyperplane between the classes of data. Model validation was performed
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Fig. 6.21 Scalar features are derived from the time-domain ASC and ASF descriptive waveforms,
including interaction features such as ASC · ASF . Temporo-spectral features such as systolic
width can be derived, or compared to adjacent sites to compute spatial features such as td which
describes the time shift at ASF onset in systole between time-synchronous recordings

using fivefold cross-validation such that the model was trained on ten observations
and tested by classifying the remaining 40.

The quadratic SVM was designed to classify PAGs into three output classes for
DOS: mild, moderate, and severe. Because these classes were ordinal (monotonic)
and known a priori, quadratic SVM was selected (versus, e.g., clustering methods).
Further, while DOS is a continuous variable, we chose to bin it into classification
ranges because clinical monitoring does not require precise quantification of DOS;
imaging is then used after a lesion is identified to more precisely determine
treatment options (Sequeira et al. 2017). However, acoustic features can also be used
to continuously estimate the DOS using regression, as described in the following
section. Thresholding after regression can be used to similarly classify estimated
DOS into ranges for clinical action.

Class definitions were chosen to be consistent with our prior work (Panda et al.
2020; Panda et al. 2019a): DOS < 30% (mild), 30% ≤ DOS ≤ 70% (moderate), and
DOS > 70% (severe). Validation accuracy of the quadrative SVM on this data was
100% even though the features were not linearly separable (Fig. 6.22). Importantly,
most of the classification accuracy came from the ASC and ASF features; however,
adding the temporospatial measure td helped prevent misclassifications at high DOS
which occur when the stenosis greatly reduces vascular flow rate (Table 6.3).

However, while td boosts classification accuracy only slightly, multiple recording
locations for stenosis localization are still essential to accurate classification. For
example, Table 6.4 indicates how classification accuracy drops significantly when
applied to PAGs recorded more than 2 cm from the actual site of stenosis and
dropping the spatial feature td. This suggests that accurate PAG classification
requires either a priori knowledge of stenosis location or multi-site recordings to
detect locations for analysis.
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Fig. 6.22 The quadratic SVM classified DOS as mild (< 30%), moderate (30%<DOS<60%), and
severe (DOS>60%) with 100% accuracy. This demonstrates the advantage of SVM as the included
features are not fully separable linearly in the feature space (a, b)

Table 6.3 Performance of Quadratic SVM versus included features

Number of features Included features Average validation accuracy

3 ASC · ASF , ASCS , td 100%
2 ASC · ASF , ASCS 96%

ASCS , td 84%
ASC · ASF , td 88%

1 ASC · ASF 84%
ASCS 82%
td 48%

Table 6.4 Classifier
accuracy of quadratic SVM
versus single recording sites

Recording site ASC · ASF ASCS ASC · ASF , ASCS

1 70% 68% 66%
2 70% 68% 78%
3 60% 54% 86%
4 84% 84% 96%

While this analysis suggested that machine-learning can be used for accurate
classification of PAGs, it must be noted that cross-validation alone is only sufficient
to optimize the hyperplane on the training data. The model was trained using data
from a set of vascular phantoms with variable rates of blood flow, but this does
not account for the wide anatomical variance seen in humans. Therefore, it is still
unclear how accurately this model will function on unseen data. This remains an
opportunity for future work.
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6.6.4 Degree of Stenosis Estimation from Acoustic Features

The previous section discussed using acoustic features from PAGs to classify
stenosis into clinically actionable ranges, but features can also be used to predict
the actual degree of stenosis. Previous work in this area demonstrated that DOS
could be estimated within 6% given a priori knowledge of the stenosis location (Du
et al. 2015). Here, we demonstrate how features from multiple domains can be used
to further improve DOS estimation using Gaussian process regression (GPR).

GPR is a regression modeling method, but unlike linear or nonlinear regression—
which seeks to fit a least-squares model to minimize prediction error to a dataset
f(x)—GPR is a Bayesian process which models f(x)as a Gaussian process (Ras-
mussen and Williams 2006). Thus, the value f(x) at each point x is represented
as a random variable with a Gaussian distribution (Applebaum et al. 2002). The
actual values used to train the model are therefore considered simply as independent
observations drawn from the underlying normal probability distribution at each
point. For example, observation-response pairs (x1, y1) and (x2, y2) are represented
by normal distributions P(y1| x1) and P(y2| x2). Regression of a new response y3
based on a new observation x3 is then calculated as the conditional probability
P(y3| (y1, y2), (x1, x2, x3))

Assuming the mean of the joint distribution of all input features F[M] is zero
(accomplished through normalization without losing information between each
recording), training the GPR involves solving for the unknown covariance matrix
using a radial basis function kernel K(xm, xn), i.e.,

Cov (f (xm) , f (xn)) = K (xm, xn) = α2e
− 1

2l2
(xm−xn)2

.

In this example the parameter α2 is the output variance of the data, while l2

represents the length scale of the data variance. Generally, α2 indicates the average
distance of the function from its mean, while l determines the memory length of
the modeled GPR. For a GPR trained on time-invariant features, e.g., PAG features,
l = 1. Similarly to the quadratic SVM, training data are transformed by the basis
function to a higher-dimensional space. Optimization of the basis function is then
performed iteratively to minimize the RMS predicted error to the input data. Model
training was performed in MATLAB on the same 50 recordings used to train the
quadratic SVM classifier. The RMS error of the optimized GPR was calculated
using fivefold cross-validation.

While the SVM classifier was demonstrated in the previous section, SVM
regression was not used for stenosis estimation. GPR was selected after feature
distribution analysis, which indicated that due to the chaotic nature of turbulent
fluid flow, and the dependency on variable blood flow rate, features measured at
each degree of stenosis spanned a range of observations around a defined central
value. Generally, for DOS > 50% extracted features followed a normal distribution
when pooled across all recording sites and all flow rates. Although GPR would
suffer from finite bounds on confidence intervals because DOS is bounded on the
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Table 6.5 RMS error from exponential GPR model versus features and recording sites included

Features included in model
Sites included in model ASC · ASF ASCS ASC · ASF ,ASCS ASC · ASF ,ASCS,td
Site 1 only 20.0% 16.6% 10.1% 9.4%
Site 2 only 20.0% 19.0% 12.9% 9.2%
Site 3 only 21.3% 22.0% 8.6% 7.5%
Site 4 only 13.8% 16.9% 12.2% 8.0%
All sites included 8.9% 7.9% 5.2% 4.3%

range of 0–100%, because the model was only validated on the range of DOS from
10% to 90%, GPR out-performed other regressions, perhaps due to estimation of
the underlying variance for each feature. For example, using the same features as in
Table 6.5, quadratic SVM regression only achieved a best-case 8.3% RMS error.

As in the quadratic SVM classifier, the addition of more features reduced the
RMS error of the regression. However, unlike the SVM, the regression required
data from sites around the stenosis to improve accuracy. In this example, the actual
stenosis lesion was located under Site 2 with turbulent flow occurring beneath
Site 3 and Site 4 based on established models (Gaupp et al. 1999; Gårdhagen
n.d.). Including features from recordings proximal and distal to the lesion greatly
improved the estimation accuracy. For all tested DOS, error was in the range [−11%
14%], and for DOS>50% error was [−11% 3%] (Fig. 6.23). From this outcome we
conclude two things. First, this in vitro experiment clearly demonstrates the need
for multiple recording sites for accurate phonoangiographic estimation of degree of
stenosis. In humans with more variable vascular anatomy, the need for the multiple
recording sites is likely greater because the location or presence of stenosis is not
known a priori. Second, the achieved accuracy is sufficient for clinical monitoring,
which generally only needs to detect when stenosis exceeds 50% or is rapidly
progressing (Sequeira et al. 2017; Valliant and McComb 2015; Tessitore et al.
2014b). Clinical imaging would still be used, so the objective for phonoangiographic
monitoring is simply to identify which patients to select for imaging.

6.7 Conclusion

This chapter discussed a new technique for point-of-care clinical monitoring of
a vascular access using an array of microphones. Turbulent blood flow produces
bruits that are recorded by each microphone and analyzed as phonoangiograms
to detect the location and severity of stenosis. Signal processing spans several
domains, beginning with the analog signal processing needed to amplify and filter
the PVDF microphone signals before digital conversion. In the digital domain,
continuous wavelet transform was used to produce acoustic spectral centroid and
acoustic spectral flux analytic signals, from which acoustic features were derived.
Systolic-diastolic segmentation provided additional features or the calculation of
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Fig. 6.23 Exponential Gaussian process regression estimated degree of stenosis for each in vitro
vascular stenosis phantom (a). The trained model estimated degree of stenosis with RMS error of
4.3% (b) and error range of [−11% 14%] and [−11% 3%] for all tested stenoses and for stenoses
> 50%, respectively (c)

ratiometric features. Techniques to calculate features from multiple domains—
spectral, temporospectral, and spatial—were feasible because of time-synchronous
recordings from the microphone array.

A 1×5 microphone array was used to record bruits from a vascular phantom
using stenosis models of 10–90% and blood-mimicking fluid at physiologic flow
rates and pressures. This produced a dataset of recordings from which features were
calculated. Stenosis localization was demonstrated using a simple binary classifier
against a pitch-shift threshold to detect which recording site was nearest the stenotic
lesion. A quadratic support vector machine classifier was trained using multi-
domain features from a single recording site and achieved 100% accuracy when
classifying the degree of stenosis as mild, moderate, or severe. Finally, estimation
of the actual degree of stenosis was demonstrated using an exponential Gaussian
process regression. The regression model combined features recorded from four
sites to estimate degree of stenosis with 4.3% RMS error. Because the clinical
threshold for elective surgery for vascular stenosis is 50% (Sequeira et al. 2017;
Valliant and McComb 2015; Tessitore et al. 2014b) (and clinical monitoring for
stenosis does not need to be as accurate as angiographic imaging), this suggests that
phonoangiographic analysis is feasible for point-of-care monitoring.
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