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Preface

This edited volume consists of the expanded versions of the exceptional papers
presented at the 2019 IEEE Signal Processing in Medicine and Biology Symposium
(IEEE SPMB) held at Temple University in Philadelphia, Pennsylvania, USA. IEEE
SPMB promotes interdisciplinary papers across a wide range of topics, including
analysis of biomedical signals and images, machine learning, data, and educational
resources. The symposium was first held in 2011 at New York University Poly-
technic (now known as NYU Tandon School of Engineering). Since 2014, it has
been hosted by the Neural Engineering Data Consortium at Temple University as
part of a broader mission to promote machine learning and big data applications
in bioengineering. The symposium typically consists of 18 highly competitive
full paper submissions that include oral presentations and 12 to 18 single-page
abstracts that are presented as posters. Two plenary lectures are included – one
focused on research and the other focused on emerging technology. The symposium
provides a stimulating environment where multidisciplinary research in the life
sciences is presented. More information about the symposium can be found at
www.ieeespmb.org.

Biomedical engineering bridges the gap between biological science, medicine,
and engineering. Innovative hardware solutions enabled by compact wireless
devices are changing the way we can monitor and understand biological systems.
Machine learning plays an integral role in real-time control and classification of
signals collected by these devices. These rapid advances in hardware and software
are paving the way for a new generation of technological developments in the health
sciences.

The papers represented in this volume as chapters can be classified into three
areas: (1) classification and control of biological signals, (2) improved transduction
and processing of biological signals, and (3) enhanced infrastructure for electroen-
cephalograms (EEGs). Algorithms and data play a key role in all these chapters,
reinforcing the emphasis on data science we see across many engineering fields.

The first two chapters, titled “Multi-Class fNIRS Classification of Motor Exe-
cution Tasks with Application to Brain Computer Interfaces” and “A Comparative
Study of End-To-End Discriminative Deep Learning Models for Knee Joint Kine-
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vi Preface

matic Time Series Classification,” address issues in motor control of the human
body. The first chapter applies functional Near Infrared Spectroscopy (fNIRS) to
the problem of classification of motor execution tasks. The second chapter addresses
classification of knee kinematic signals using deep learning with a goal to improve
diagnosis of knee joint pathologies.

The next group of four chapters focus more on acquisition and understanding of
biological signals using novel signal processing techniques. The first chapter in this
group, titled “Nonlinear Smoothing of Core Body Temperature Data with Random
Gaps and Outliers (DRAGO),” proposes new ways to smooth core body temperature
estimates acquired from an ingestible pill. The second chapter, titled “An Adaptive
Search Algorithm for Detecting Respiratory Artifacts Using a Wireless Passive
Wearable Device,” proposes a new way to measure respiratory activity using smart
fabrics. The third chapter, titled “The Spatial Distribution of a Seismocardiographic
Signal,” explores new ways to measure chest surface vibrations resulting from
cardiac activity. The fourth chapter in this group, titled “Determination of Vas-
cular Access Stenosis Location and Severity by Multi-Domain Analysis of Blood
Sounds,” analyzes blood sounds (bruits) using phonoangiography and classifies
signals by the degree of stenosis. These chapters are good examples of how
co-design of sensor technology and signal processing algorithms can result in
significant improvement in performance.

The final two chapters deal with encephalography, which has been a popular
focus for the symposium. The first chapter, titled “Fast Automatic Artifact Annota-
tor for EEG Signals Using Deep Learning,” introduces three deep learning methods
for the classification of artifacts in EEG signals. The second chapter, titled “Objec-
tive Evaluation Metrics for Automatic Classification of EEG Events,” promotes the
use of industry-standard, open source evaluation paradigms to calibrate and advance
technology development. These chapters deal with a problem known as sequential
decoding, which involves identification of the onset and offset of an event in an EEG
signal in addition to classification of the type of event. Standardization of scoring is
an important step towards promoting community-wide collaboration on technology
development.

We are indebted to all of our authors who contributed to making IEEE SPMB
2019 a great success. The authors represented in this volume worked very diligently
to provide excellent expanded chapters of their conference papers, making this
volume a unique contribution. In 2020, IEEE SPMB will celebrate its 10th
anniversary and will include a special session on an industry-wide competition for
classification of seizures in EEG signals.

Philadelphia, PA, USA Iyad Obeid

Brooklyn, NY, USA Ivan Selesnick

Philadelphia, PA, USA Joseph Picone
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Chapter 1
Multi-class fNIRS Classification of Motor
Execution Tasks with Application
to Brain-Computer Interfaces

Foroogh Shamsi and Laleh Najafizadeh

1.1 Introduction

1.1.1 fNIRS

functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging tech-
nique, which measures local changes in the cerebral concentration of oxygenated
hemoglobin ([�HbO2]) and deoxygenated hemoglobin ([�HbR]) associated with
the underlying brain activities (Ferrari and Quaresima 2012). The continuous-
wave (CW) fNIRS takes advantage of the principle that oxygenated and deoxy-
genated hemoglobin have different extinction coefficients in the near-infrared range
(Ardeshirpour et al. 2013). In CW-fNIRS, light transmitters (sources), placed over
the surface of the head, emit light at two different near-infrared wavelengths into the
scalp. By measuring changes in the received light intensities as measured by the light
detectors, at the two different near-infrared wavelengths, [�HbO2] and [�HbR],
can be quantified using the modified Beer-Lambert law (Ardeshirpour et al. 2013).

Although fNIRS is a relatively new neuroimaging tool for monitoring brain
activities, it has been widely used in various neuroscience research studies, due to
its advantages comparing to other noninvasive neuroimaging techniques such as
electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and
magnetoencephalogram (MEG). fNIRS offers a better spatial resolution than EEG
and a better temporal resolution than fMRI (Ardeshirpour et al. 2013). Moreover,
unlike fMRI and MEG, it is not vulnerable to electromagnetic environment, which
makes it suitable for patients with metallic implants. fNIRS is known to have a low
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2 F. Shamsi and L. Najafizadeh

sensitivity to motion artifacts which makes it ideal for monitoring brain activities
associated with tasks that involve movements. Additionally, its portability and ease
of use provide a comfortable setting for monitoring and recording brain activities in
various patient groups (Amyot et al. 2012; Liu et al. 2019; Perpetuini et al. 2017).

In clinical studies, fNIRS have been used to detect abnormal activities associated
with several psychiatric and neurological disorders such as schizophrenia (Hosomi
et al. 2019; Song et al. 2017), depression (Baik et al. 2019; Nishizawa et al. 2019;
Rosenbaum et al. 2017), and post-traumatic stress disorder (Gramlich et al. 2017;
Tian et al. 2014; Yennu et al. 2016). Due to its ease of use and robustness to motion
artifacts, fNIRS has been extensively used in studies related to infants and young
children. For example, it has been used to investigate development of cognitive skills
in children for educational purposes (Aslin et al. 2015; Soltanlou et al. 2018). fNIRS
has also been extensively employed for identifying neurodevelopmental disorders
such as autism spectrum disorder (ASD) (Mazzoni et al. 2019; Zhang and Roeyers
2019) and attention deficit hyperactivity disorder (ADHD) (Gu et al. 2018; Gu
et al. 2017) in infants and children. Another clinical application of fNIRS includes
neurorehabilitation (Mihara and Miyai 2016), where fNIRS has been utilized in
studying the neural correlates of motor dysfunction induced by traumatic brain
injuries (TBI), or stroke (Cao et al. 2015; Kato et al. 2002; Takeda et al. 2007).
Furthermore, it has been used in understanding the underlying neural mechanisms
of motor learning (Hatakenaka et al. 2007; Hatakenaka et al. 2012), gait, balance,
and posture control (Hatakenaka et al. 2012; Koenraadt et al. 2014; Mahoney et al.
2016; Maidan et al. 2015; Rea et al. 2014a, b; Takakura et al. 2015). fNIRS has also
been used as a therapeutic tool as neurofeedback in the treatments of disabilities
and psychiatric disorders (Ehlis et al. 2018; Lapborisuth et al. 2017; Marx et al.
2015; Mihara et al. 2013; Naseer and Hong 2015b). Another major application of
fNIRS is in brain-computer interfaces (BCIs), where it is employed for recording
brain activities related to intended tasks performed by the user. fNIRS-based BCIs
are described in more details in the following section.

1.1.2 fNIRS-Based BCIs

One major application of fNIRS is in BCIs. A BCI directly translates brain activities
into commands to control external devices. BCIs can be integrated with assistive
technologies to aid patients with severe motor disabilities such as individuals with
high spinal cord injury (SCI), stroke, or amyotrophic lateral sclerosis (ALS) with
their daily activities. BCIs have also been employed in rehabilitation and therapies
(Ang and Guan 2013; Bamdad et al. 2015).

Compared to noninvasive techniques, the use of invasive neuroimaging tech-
niques such as electrocorticographic (ECoG) (Schalk and Leuthardt 2011) for
BCIs offers advantages including achieving high degree of spatial resolution and
high signal-to-noise ratio (SNR) recordings. However, due to the required invasive
procedures, invasive BCIs have been only used either in animal studies or in specific
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groups of patients (e.g., severely paralyzed patients or those with epilepsy) and are
not currently applicable to the general population. Invasive BCIs also face other
technical challenges. For example, the implants should be biologically compatible
and able to function reliably for a long period of time. Additionally, implanted
electrodes may become encapsulated by fibrous tissue, resulting in degradation in
the quality of the recorded data (Nicolas-Alonso and Gomez-Gil 2012). As such,
noninvasive neuroimaging modalities such as EEG (Lotte et al. 2018; McFarland
and Wolpaw 2017) and fNIRS (Naseer and Hong 2015a) have received considerable
attention in BCIs. The major problems with noninvasive techniques are that
compared to their invasive counterparts, they provide signals with lower SNR and
have relatively lower spatial resolution (Steyrl et al. 2016; Waldert 2016). For
example, EEG is sensitive to muscle, eye, and movement artifacts and requires
extensive noise and artifact removal analysis before the classification can take place
(Gajbhiye et al. 2019; Lai et al. 2018; Minguillon et al. 2017; Singh and Wagatsuma
2017). Compared to EEG, fNIRS is less sensitive to movement artifacts comparing
(Naseer and Hong 2015a) and has less setup preparation time. fMRI and MEG
as other major noninvasive neuroimaging techniques are not generally well-suited
choices for BCIs due to lack of the essential properties of portability and low cost.

During the past decade, several studies have employed fNIRS in developing BCIs
(Abibullaev et al. 2013; Hennrich et al. 2015; Herff et al. 2013; Hong et al. 2015;
Janani and Sasikala 2018; Naseer and Hong 2013a, c; Noori et al. 2016, 2017; Peifer
et al. 2014; Rea et al. 2014a; Shamsi and Najafizadeh 2019; Shamsi and Najafizadeh
2020; Shin and Im 2020; Yin et al. 2015a, c; Zafar et al. 2019; Zephaniah and Kim
2014; Zhang et al. 2017). Moreover, in order to increase the classification accuracy
and number of commands, it has been suggested to integrate fNIRS with EEG,
forming hybrid EEG-fNIRS BCIs (Ahn and Jun 2017; Buccino et al. 2016; Chiarelli
et al. 2018; Ge et al. 2017; Hong et al. 2018a, b; Koo et al. 2015; Li et al. 2017; Noori
et al. 2017; Shin et al. 2018; Yin et al. 2015b). While using both modalities offers
higher accuracy results, these hybrid BCIs have longer setup times and require more
data processing steps.

In this chapter, we will focus on fNIRS-based BCIs only and present an overview
of challenges associated with data acquisition and data analysis in these BCIs and
discuss approaches for improving their performance and efficiency.

1.1.2.1 Data Acquisition

The first step of data acquisition deals with selecting the right set of tasks to evoke
brain activities. The most commonly used tasks in BCIs can be roughly classified
into motor-related and cognitive tasks. Motor-related tasks include movement
execution tasks such as finger tapping, hand squeezing, and knee extension, as
well as motor imagery tasks, which involve mental imagination of moving different
body parts without actual movements. Motor-related tasks are interesting in BCI
applications, as various movement-related (e.g., different directions, different body
parts, imagery vs actual movement) commands can be generated. Several studies in
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fNIRS-based BCIs have employed motor-related tasks for user’s intention decoding
(Batula et al. 2014, 2017; Erdoğan et al. 2019; Gemignani et al. 2018; Holper and
Wolf 2011; Kabir et al. 2018; Nagaoka et al. 2010; Naseer and Hong 2013b; Nguyen
et al. 2013; Noori et al. 2017; Peng et al. 2018; Rahman et al. 2019; Robinson et al.
2016; Seo et al. 2012; Shin and Jeong 2014; Stangl et al. 2013; Yin et al. 2015c;
Zafar et al. 2019; Zhang et al. 2017). These tasks have also been utilized in BCI-
based neurorehabilitation applications (Petracca et al. 2015; Rea et al. 2014a).

Another group of tasks commonly used in BCIs is cognitive tasks. These
tasks include mental arithmetic tasks (e.g., mental subtraction, multiplication),
(Abibullaev and An 2012; Abibullaev et al. 2011; Hennrich et al. 2015; Holper
and Wolf 2011; Naseer et al. 2014, 2016a, b; Power et al. 2010, 2011, 2012;
Schudlo et al. 2013; Yoo et al. 2018; Zafar and Hong 2017), mental counting (or
backward counting) (Yoo et al. 2018; Zafar and Hong 2017), mental singing (or
music imagery) (Chan et al. 2012; Power et al. 2010, 2011), word formation (or
verbal fluency) (Abibullaev and An 2012; Abibullaev et al. 2011; Faress and Chau
2013; Hennrich et al. 2015; Schudlo and Chau 2015b), object rotation (Abibullaev
and An 2012; Abibullaev et al. 2011; Hennrich et al. 2015), Stroop task (Ho et al.
2019a, b; Schudlo and Chau 2015b; Zafar et al. 2019), picture imagery (Naito et al.
2007), and puzzle solving (Yoo et al. 2018; Zafar and Hong 2017). The cognitive
tasks have shown to be effective for some patients in locked-in state who are unable
to perform motor-related tasks (Hong et al. 2018a, b).

In some BCI studies, both motor-related and cognitive tasks have been used to
increase the number of commands (Hong et al. 2015; Hwang et al. 2014; Stangl
et al. 2013).

Once the appropriate tasks are identified, locations for recording the hemody-
namic response should be determined, to design the fNIRS probe. For example, for
motor-related activities, the fNIRS channels are commonly placed over the motor
cortex (Abtahi et al. 2017; Cui et al. 2010; Gemignani et al. 2018; Holper and Wolf
2011; Kabir et al. 2018; Naseer and Hong 2013b; Noori et al. 2017; Robinson et al.
2016; Seo et al. 2012; Shin and Jeong 2014; Yin et al. 2015c; Zafar et al. 2019;
Zhang et al. 2017; Zimmermann et al. 2013), while for the cognitive tasks, these
channels are generally located over the prefrontal cortex (Abibullaev and An 2012;
Abibullaev et al. 2011; Bauernfeind et al. 2011; Chan et al. 2012; Dong and Jeong
2018a, b; Falk et al. 2010; Faress and Chau 2013; Hennrich et al. 2015; Ho et al.
2019a, b, Huang et al. 2018; Naseer et al. 2014, 2016a, b; Noori et al. 2016; Pathan
et al. 2019; Power et al. 2010, 2011, 2012; Yoo et al. 2018). In (Schudlo and Chau
2015b), prefrontal and parietal cortices were used for collecting fNIRS data to study
cognitive tasks. In studies that considered a combination of motor-related and cog-
nitive tasks as their experimental paradigm, the channles were located at both motor
and prefrontal cortices (Hong et al. 2015; Hwang et al. 2014; Stangl et al. 2013).

In some studies, for the classification of motor imagery/execution paradigms,
fNIRS data has been recorded from the prefrontal area (Peng et al. 2018; Rahman
et al. 2019, 2020). This selection was based on the idea that if in some patients,
the motor cortex is damaged; classification of the motor-related tasks might not
be possible using the signals recorded from the motor cortex. In this condition,
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the hemodynamic response from prefrontal cortex was investigated as a possible
substitution due to its correlation with voluntary hand movements. Moreover, Wu
et al. (2018) reported that the prefrontal cortex plays an important role in motor
imagery tasks.

It should be noted that designing a proper channel configuration to cover the
regions of interest is very important. Moreover, the source-detector distance is
another factor which should be considered in determining the source-detector
arrangements (Taga et al. 2007). In this work, we will study the effects of using the
hemodynamic response from different brain regions on the classification of fNIRS
signals corresponding to motor execution tasks.

1.1.2.2 Data Analysis

After acquiring fNIRS signals, the next step is to design a data processing algorithm
to decode different classes of tasks. The data analysis usually starts with removing
noise and artifacts from the recordings. Cleaned signals are then converted to
[�HbO2] and [�HbR], using the modified Beer-Lambert law and passed to the next
processing step, which is feature extraction, in order to extract informative features
which can discriminate various tasks. The final step is the classification algorithm
which employs the extracted features to predict the user’s intention. In what follows,
we will discuss the challenges of each data analysis step in more details.

Pre-processing

The recorded raw signals usually contain noise and artifacts, which are not
originated from brain activities and, therefore, need to be removed in order to
provide clean and noise-free inputs for the classification problem. Depending on
the sources of these unwanted signals, they can be categorized into physiological
noise, motion artifacts, and instrumental noise.

In previous studies, various techniques based on adaptive filtering have been pro-
posed for removing motion artifacts (Janani and Sasikala 2017). These techniques
include principal component analysis (PCA) (Zhang et al. 2005), Wiener filtering
(Izzetoglu et al. 2005), Kalman filtering (Dong and Jeong 2018a, b; Durantin et al.
2016; Izzetoglu et al. 2010), wavelet-based methods (Chiarelli et al. 2015; Molavi
and Dumont 2012), and Savitzky-Golay filtering (Nguyen et al. 2013; Shin and
Jeong 2014). Dynamic time warping-based averaging has also been proposed to
improve the detection power in fNIRS recordings (Zhu and Najafizadeh 2017).

To remove physiological noise such as heartbeat, respiratory rate, and Mayer
waves, band-pass filtering has been extensively used in previous studies (Abtahi
et al. 2017; Erdoğan et al. 2019; Ho et al. 2019a, b; Hong et al. 2015; Hwang
et al. 2014; Noori et al. 2016, 2017; Peng et al. 2018; Schudlo and Chau 2015a,
b; Seo et al. 2012; Yoo et al. 2018; Zafar et al. 2019; Zafar and Hong 2017;
Zhang et al. 2017). The other methods for removing the physiological noise
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include adaptive filtering (Kamran and Hong 2013, 2014), PCA (Zhang et al.
2005) and independent component analysis (ICA) (Bauernfeind et al. 2014; Santosa
et al. 2013). Some studies employed short-distance fNIRS channels to measure
the superficial responses which can be used to remove the scalp-hemodynamics
(Gagnon et al. 2011, 2014; Sato et al. 2016; Zhang et al. 2009).

While pre-processing is a very important step in a BCI algorithm and can
significantly affect the classification performance, the pre-processing algorithms
that are computationally extensive are not generally suitable for real-time BCI
applications.

Feature Extraction

Selecting a proper set of features which provide discriminatory information among
different tasks is crucial for achieving accurate classification performance. Various
time- and frequency-domain features have been employed in fNIRS-based BCIs.

Time-domain features include signal mean (Dong and Jeong 2018a, b; Erdoğan
et al. 2019; Holper and Wolf 2011; Hong et al. 2015, 2017; Huang et al. 2018;
Hwang et al. 2014; Kabir et al. 2018; Khan and Hong 2015; Naseer and Hong
2013b; Naseer et al. 2014, 2016b; Noori et al. 2016, 2017; Peng et al. 2018; Rahman
et al. 2019; Robinson et al. 2016; Shin and Jeong 2014; Zafar et al. 2019; Zafar
and Hong 2017; Zhang et al. 2017), max (peak) (Erdoğan et al. 2019; Hong et al.
2017; Huang et al. 2018; Khan and Hong 2015; Naseer et al. 2016b; Noori et al.
2017; Rahman et al. 2019; Zafar et al. 2019), slope (Erdoğan et al. 2019; Faress
and Chau 2013; Hong et al. 2015; Huang et al. 2018; Kabir et al. 2018; Khan and
Hong 2015; Noori et al. 2016, 2017; Naseer et al. 2016a, b; Power et al. 2012;
Rahman et al. 2019; Schudlo and Chau 2015a, b; Schudlo et al. 2013; Shin and
Jeong 2014; Zafar and Hong 2017; Zhang et al. 2009), variance (Holper and Wolf
2011; Huang et al. 2018; Kabir et al. 2018; Noori et al. 2016, 2017; Naseer et al.
2016b; Rahman et al. 2019; Shin and Jeong 2014; Zafar and Hong 2017; Zhang
et al. 2017), skewness (Erdoğan et al. 2019; Holper and Wolf 2011; Hong et al.
2017; Khan and Hong 2015; Noori et al. 2016, 2017; Naseer et al. 2016b; Zafar
and Hong 2017), kurtosis (Erdoğan et al. 2019; Holper and Wolf 2011; Khan and
Hong 2015; Noori et al. 2016, 2017; Naseer et al. 2016a, b; Zafar and Hong 2017),
min (Huang et al. 2018; Zafar et al. 2019), and number of peaks (Khan and Hong
2015). In Naseer et al. (2016a), all possible two- and three-feature combinations
of mean, slope, variance, max, skewness, and kurtosis were evaluated to find the
best combination of features for fNIRS classification of mental arithmetic tasks.
(Abibullaev and An 2012; Abibullaev et al. 2011; Koo et al. 2016; Pathan et al. 2019;
Xu et al. 2011). Features based on fractality of fNRS recordings have also shown
to carry discriminatory power (Zhu et al. 2020; Zhu and Najafizadeh 2016). Time-
frequency-based features such as wavelet coefficients have also been employed in
fNIRS-based BCI algorithms (Abibullaev and An 2012; Abibullaev et al. 2011;
Koo et al. 2016; Pathan et al. 2019; Xu et al. 2011). Some studies have extracted
the features directly from recorded light intensities rather than using the oxy and
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deoxy hemoglobin (Luu and Chau 2008; Power et al. 2010, 2011). Signal mean and
slope are the most common features that were used in previous studies. Their results
suggest that using a combination of features (e.g., the signal mean along with other
time-domain features) leads to a better classification performance, compared to the
case of using only one type of feature. However, it should be noted that extracting
more features requires more computational effort which can negatively affect the
speed of the BCI algorithms.

Besides selecting the type(s) of features, the other challenge in feature extraction
is to determine the time intervals of the hemodynamic signals that will be used
for feature extraction. Due to the natural delay in the hemodynamic response of the
brain, time intervals with long durations are usually considered for feature extraction
from fNIRS signals. However, while longer intervals may offer a better classification
accuracy, it also results in longer required time to generate control commands and,
hence, reduce the speed and the practicality of BCIs. Therefore, an algorithm that
can decode fNIRS signals with high accuracy using the data acquired over a shorter
interval is desirable. Most of the previous studies considered a time interval of 10 s
or more for extracting features (Abibullaev and An 2012; Abibullaev et al. 2011;
Erdoğan et al. 2019; Falk et al. 2010; Faress and Chau 2013; Gemignani et al.
2018; Hennrich et al. 2015; Hong et al. 2017; Huang et al. 2018; Hwang et al.
2014; Naseer et al. 2014, 2016a, b; Pathan et al. 2019; Peng et al. 2018; Power
et al. 2010, 2011; Schudlo et al. 2013; Seo et al. 2012; Yin et al. 2015a, c; Zhang
et al. 2017; Zimmermann et al. 2013). Some other studies used shorter intervals
of 5–10 s (Cui et al. 2010; Hong et al. 2015; Kabir et al. 2018; Naseer and Hong
2013b; Nguyen et al. 2013; Power et al. 2012; Rahman et al. 2019). However, the
duration of 5–10 s is still considered to be long for real-time implementation of a
BCI algorithm. Recently, Zafar et al. 2019; Zafar et al. (2017) proposed a method for
fNIRS classification of three mental tasks using the initial dip of the hemodynamic
response, showing that it significantly improves the speed of the fNIRS-based BCIs.
Time domain features of mean, max, slope, skewness, and kurtosis were extracted
from time intervals of [0–2.5] and [2–7] s, and the classification accuracy results
from these two intervals were compared. The classification accuracy using the [2–
7] s interval was about 10% higher than the [0–2.5] s interval. However, considering
the [0–2.5] s interval offers the potential of improving the speed of the BCI system
for real-time applications.

Classification

In BCI applications, the prediction of user’s intentions from their neural signals with
high accuracy is very crucial to ensure their safety. Additionally, any differentiable
task (e.g., motor-related or cognitive) can be used as a unique command to control
the external device. It is known that the discrimination of multiple tasks is more
challenging than differentiation among two tasks. However, in BCI applications,
differentiation of more tasks results in generating a greater number of commands
that can be used to control external devices. To this date, majority of the previous
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studies have focused on binary classification problems (Bauernfeind et al. 2011;
Chan et al. 2012; Cui et al. 2010; Dong and Jeong 2018a, b; Erdoğan et al. 2019;
Falk et al. 2010; Faress and Chau 2013; Gemignani et al. 2018; Hennrich et al.
2015; Huang et al. 2018; Hwang et al. 2014; Kabir et al. 2018; Naseer and Hong
2013a; Naseer et al. 2014, 2016a; Noori et al. 2016; Nguyen et al. 2013; Pathan et al.
2019; Power et al. 2010, 2011, 2012; Rahman et al. 2019; Robinson et al. 2016;
Schudlo and Chau 2015a; Shin and Jeong 2014; Stangl et al. 2013; Yin et al. 2015c;
Zafar et al. 2019; Zhang et al. 2017; Zimmermann et al. 2013). There are a few
works which considered multi-class classification of fNIRS signals corresponding
to motor-related (Holper and Wolf 2011; Peng et al. 2018; Shin and Jeong 2014; Yin
et al. 2015a), cognitive (Abibullaev and An 2012; Abibullaev et al. 2011; Schudlo
and Chau 2015b; Yoo et al. 2018; Zafar and Hong 2017), or both tasks (Hong et al.
2015).

Several classifier models have been employed in classification of fNIRS signals.
Linear discriminant analysis (LDA) (Abibullaev and An 2012; Bauernfeind et al.
2011; Faress and Chau 2013; Gemignani et al. 2018; Holper and Wolf 2011; Hong
et al. 2015; Hwang et al. 2014; Kabir et al. 2018; Naseer and Hong 2013b; Naseer
et al. 2014; Noori et al. 2016; Power et al. 2011, 2012; Rahman et al. 2019; Schudlo
and Chau 2015a, b; Stangl et al. 2013; Zafar and Hong 2017; Zhang et al. 2017) and
support vector machine (SVM) (Abibullaev and An 2012; Cui et al. 2010; Dong
and Jeong 2018a, b; Erdoğan et al. 2019; Huang et al. 2018; Naseer et al. 2014;
Nguyen et al. 2013; Pathan et al. 2019; Peng et al. 2018; Robinson et al. 2016; Yin
et al. 2015c; Zhu et al. 2020) are commonly used classifier models in fNIRS-based
BCIs due to their simplicity and good classification performance. Other classifier
models that have been used include hidden Markov model (HMM) (Chan et al.
2012; Falk et al. 2010; Power et al. 2010; Zimmermann et al. 2013), artificial neural
network (ANN) (Abibullaev and An 2012; Abibullaev et al. 2011; Chan et al. 2012;
Erdoğan et al. 2019; Naseer et al. 2016a, b; Nguyen et al. 2013), random forest
(RF) (Erdoğan et al. 2019), Naïve Bayes (Shin and Jeong 2014), extreme learning
machine (ELM) (Yin et al. 2015a), Deep Neural Network (Hennrich et al. 2015),
and long-short-term memory (LSTM) (Yoo et al. 2018; Zafar et al. 2019). Among
the abovementioned classification algorithms, LDA, SVM, and ANN are the most
commonly used methods that have outperformed other methods in terms of the
average classification accuracy.

1.1.3 Objective

In order to implement a BCI system that is practical and efficient, a multi-class
classification algorithm which offers a high classification accuracy using features
extracted from a short time interval is of great interest. Considering the challenges
involved in different steps of data acquisition and analysis in fNIRS-based BCIs
and the results of the previous studies, in this work, we aim to study the multi-class
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classification of motor execution tasks. Moreover, we will explore the effects of
various parameter selections on the performance of the BCI algorithm including:

• Location of channels from which the fNIRS signals are recorded
• Duration of the interval used for extracting features as well as its delay from the

stimulus onset
• Different types of time-domain features
• Different classification models

1.2 Experiments

1.2.1 Participants

Five healthy and right-handed subjects including three males and two females, aged
between 19 and 35 participated in the experiment. All participants had no history
of neurologic, psychiatric, and mental disorders. All participants had normal or
corrected-to-normal vision. Written informed consents approved by the Rutgers’
Institutional Review Board (IRB) were obtained prior to the experiments.

1.2.2 fNIRS Recording

NIRx System (NIRScout, NIRx Medical Technologies, LLC) was used to record
hemodynamic responses at a sampling rate of 7.81 Hz and using two wavelengths of
near infrared lights (760 and 830 nm). A customized fNIRS cap was designed using
16 sources and 24 detectors, which were placed over the prefrontal, motor, parietal,
and occipital cortices (see Fig. 1.1). Considering the source-detector separation of
3 cm, a total of 54 fNIRS measurement channels were formed. It has been shown
that a source-detector separation of 3 cm ensures that the photons reach the cortex.
Moreover, source-detector separation of higher than 5 cm results in weak signals
(Taga et al. 2007). Figure 1.2a–d shows the source-detector arrangements over the
prefrontal, motor, parietal, and occipital regions.

1.2.3 Experimental Protocol

Experiments were conducted in the neuroimaging laboratory located in the Depart-
ment of Electrical and Computer Engineering at Rutgers University. Subjects were
asked to sit in a comfortable chair facing a 21.5-inch monitor positioned at a distance
of 70 cm. A joystick was placed in front of them so they could move it with their
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Fig. 1.1 Customized cap designed for fNIRS recordings from (a) back and (b) top views

Fig. 1.2 Channel configuration for placement of the probe on (a) prefrontal, (b) occipital, (c)
motor, and (d) parietal regions

right hand (see Fig. 1.3). The experiment consisted of three blocks. Each block
started with 10 s of initial rest. Two types of tasks were considered:
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Fig. 1.3 Experimental setup

Fig. 1.4 Visual illustration of a single trial

• Dictated motor execution tasks: if a symbol with an arrow inside the square is
displayed, subjects had to move the square from the center of the screen towards
one of four (up, down, left, and right) directions using the joystick,

• Non-movement task: the subjects were asked do nothing (center) if there was a
circle inside the square.

During each block, the subjects performed 75 randomly ordered trials which
included 5 classes (4 motor-execution and 1 non-movement) of tasks. Each trial
consisted of 4 s post-stimulus motor execution interval followed by a rest interval
between 10 and 12 s during which a fixation cross was displayed. The subjects were
asked to avoid any body movement during the rest interval. The schematic of the
experimental paradigm is shown in Fig. 1.4. The green blocks indicate the motor
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execution task period, and the red blocks show the inter-trial rest period. In each
block, 15 trials of each class (directions/center) were performed by each subject
resulting in 45 trials for each class in total.

Prior to the recordings, the participants completed a short training block consist-
ing of five trials of each class to become familiar with the tasks. The total time of
the experiment was up to 70 min considering the average rest time of 5 min between
the experiment blocks. E-prime 3 was used to display the cues, send the stimulus
onset triggers to the fNIRS recording computer, and monitor the joystick responses.

1.3 Methods

1.3.1 Pre-processing

fNIRS recordings from the [-1,12] s interval, where 0 is the time of motor execution
stimulus onset, were selected from each trial. We tried to minimize the pre-
processing steps performed on the raw fNIRS signals. Although noise and artifact
removals are important steps in preparing the acquired signals for feature extraction
and classification, they are not always computationally affordable in practical and
real-time BCI applications. Therefore, in this work, we only performed the basic
band-pass filtering with [0.01–0.2] Hz pass band, to remove the cardiac signal and
low-frequency oscillations.

After filtering, the modified Beer-Lambert law was utilized to convert the
filtered optical intensity data into changes in the concentration of oxy and deoxy
hemoglobin ([�HbO2] and [�HbR]) (Ardeshirpour et al. 2013; Qureshi et al. 2017;
Zhu and Najafizadeh 2017):

[
�HbO2

�HbR

]
= 1

l × d

[
αHbO2 (λ1) αHbR (λ1)

αHbO2 (λ2) αHbR (λ2)

]−1 [
�A(t, λ1)

�A (t, λ2)

]

where l is the distance between the source and detector (in mm), d is the differential
path length factor, �A(t, λi)(i = 1, 2) is the optical density variation of the light
emitted of wavelength λi (in μM−1mm−1), and αHbO2 (λi) and αHbR(λi) are the
extinction coefficients of oxy and deoxy hemoglobin, respectively.

Here, we used ([�HbO2] signal for our classification problem, as it generally has
a higher SNR as compared to [�HbR]. For the baseline correction, the baseline was
considered as the mean of the signal from the [−1,0] interval, and it was subtracted
from the post-stimulus data ([0–12] s). This baseline-corrected data was then passed
to the feature extraction algorithm.
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1.3.2 Feature Extraction

Various features were extracted from different time intervals. For each interval,
the data was segmented into 1-s windows with 50% overlap. Features extracted
from these segments for a specific set of channels formed the feature vectors. For
example, if 24 motor channels were considered for classification, the size of feature
vectors was 24 × 1.

Time-domain features including “mean,” “max,” “slope,” “variance,” “skew-
ness,” and “kurtosis” were extracted to evaluate their ability in discriminating motor
execution tasks. These features were calculated as follows:

• Mean:

μ (Xi) = 1

N

N∑
j=1

Xi(j)

• Max (peak):

max (Xi) = max
j

{Xi(j)}

• Slope:

slope (Xi) = Xi(N) − Xi(1)

W

• Variance:

σ (Xi) = 1

N − 1

N∑
j=1

(Xi(j) − μ)2

• Skewness:

sk (Xi) = 1

N − 1

N∑
j=1

⎛
⎝
(
Xi(j) − μ

σ

⎞
⎠

3

• Kurtosis:

kur (Xi) = 1

N − 1

N∑
j=1

⎛
⎝
(
Xi(j) − μ

σ

⎞
⎠

4
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where Xi is the [�HbO2] signal obtained from the ith channel, N is the number of
samples in the segment from which the features are being extracted, and W is the
duration of the segment. For a selected time interval, these features were calculated
for a specific set of channels and put in a vector to form the feature vectors. In the
case of using multiple brain regions for feature extraction, the feature vectors from
channels over the corresponding regions were concatenated into a vector. Extracted
features were passed to the classifier for training and testing steps.

These time-domain features were employed due to their simplicity as well as
their effectiveness in fNIRS classification problems in previous studies. Predefined
MATLAB functions were used to calculate these features.

1.3.3 Classification

Two well-established classification algorithms, SVM and ANN, were employed for
classification, and the accuracy results were compared. Implementation of these
algorithms are summarized as follows:

Support vector machine (SVM): SVM is a well-known supervised classifier which
has been widely used in classification of fNIRS recordings. The SVM classifier
with an appropriate kernel function determines the hyperplanes that maximize
the distance between the training data points of classes. In this work, we used an
SVM classifier with a second-degree polynomial kernel function, which is also
called quadratic SVM (QSVM).

Artificial neural network (ANN): ANN is another commonly used classification
algorithm considered in fNIRS classification studies. ANN consists of multiple
layers including the input layer, hidden layer (s), and the output layer. To achieve
a proper ANN classification algorithm, various parameters should be tuned
such as the number of hidden layers, the number of neurons in each layer, the
training function, the learning rate, and the number of epochs. To implement
the ANN classifier, we employed MATLAB deep learning toolbox. The ANN
classifier here consisted of 2 fully connected hidden layers with 20 neurons each
and an output layer with 5 neurons (see Fig. 1.5). The Levenberg-Marquardt
optimization was used as the network training function.

Fig. 1.5 Neural network architecture
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Fig. 1.6 Overview of the data classification steps

For implementing both of the classification algorithms, for each subject, the
extracted features from all trials were separated into two randomized groups for
training and validation (75%), and testing (25%). A fivefold cross-validation was
considered for both classifiers. Note that the classification problem in this study is
subject-specific.

An overview of various data analysis steps to predict different tasks from raw
fNIRS recordings is illustrated in Fig. 1.6.

1.4 Results and Discussions

Classification was performed under various conditions to investigate the effects of
different parameters on the classification accuracy.

To study the effects of the interval duration from which the features were
extracted, six intervals with lengths of 2, 4, 6, 8, 10, and 12 s, from the stimulus
onset, were considered. We first considered the “mean” of [�HbO2] from these
intervals as the feature and considered data from all channels. The classification
accuracy results using QSVM for 5 classes (the movement directions of up, down,
left, right, and the non-movement) are presented in Table 1.1 for all subjects. The
results of the average classification accuracy for 2, 4, 6, 8, 10, and 12 s intervals
are 71.49%, 82.06%, 84.48%, 85.48%, 86.41%, and 87.24%, respectively. These
results indicate that increasing the length of the interval from which the features
are extracted improves the classification accuracy. By comparing the classification
accuracy results from consecutive intervals, it can be seen that by increasing the
interval length from 2 to 4 s, the accuracy is increased by 10–14% across subjects.
However, as the interval duration is increased to 6 s, the accuracy results were
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Table 1.2 Classification
accuracy results for
movement directions of “up,”
“down,” “left,” “right,” and
non-movement, (total of 5
classes), using features
extracted from different
windows of post-stimulus
intervals

Time window (s)
0–2 1–3 2–4

Subject 1 70.22 ± 3.75 76.68 ± 3.40 78.87 ± 3.65
Subject 2 73.69 ± 3.67 80.14 ± 3.48 80.89 ± 3.56
Subject 3 69.47 ± 3.76 72.96 ± 3.91 75.84 ± 4.11
Subject 4 75.73 ± 3.92 81.07 ± 4.51 81.47 ± 3.69
Subject 5 68.34 ± 4.59 74.47 ± 3.69 76.38 ± 4.01
Average 71.49 ± 4.81 77.06 ± 4.92 78.69 ± 4.42

For all cases, the features are the “mean” of [�HbO2] from
all channels and the classifier is QSVM. The results show
that the highest average accuracy is obtained from the [2–
4] s interval, which is more delayed from the stimulus onset,
compared to the other two intervals. One explanation is that
due to the natural delay in the hemodynamic response of the
brain, the features extracted from delayed intervals from the
stimulus onset provide more discriminatory information for
the classification problem

improved only by 2–3%. After 6 s, adding 2 s to the interval length enhanced
the accuracy by 1%. These results reveal that although the 12 s interval offers the
highest accuracy, the accuracy improvement from 4 to 12 s intervals is only 5%
(on average). In other words, by tripling the duration of the interval for feature
extraction, the average classification accuracy increases from 82.06% to 87.24%.
Therefore, in order to avoid the extra processing effort, it seems more reasonable to
use the shorter interval of [0–4] s, which still offers a reasonably high accuracy for
the five-class classification problem.

To further investigate the effect of interval selection for feature extraction on the
classification results, we divided the [0–4] s interval into three 2-s intervals ([0–
2], [1–3], and [2–4] s) to evaluate which part of this interval is more informative
in terms of discriminating different classes. For this analysis, the “mean” of the
[�HbO2] signal from all channels and the QSVM were considered as features
and classifier, respectively. The classification accuracy results are summarized in
Table 1.2. The results show that the highest average classification accuracy is
achieved form the [2–4] s interval (78.69%), and it is 6–8% higher than the result
for the [0–2] s interval (71.49%). This might be due to the natural delay in the
hemodynamic response of the brain, which makes the data extracted from later
intervals more informative for the classification problem. Given these results, for
the rest of the analysis here, we considered the [2–4] s window as the fixed time
interval for feature extraction.

After selecting the time window for feature extraction, we investigated the effects
of channel locations on the classification results. As discussed earlier, most existing
fNIRS studies on classification of movement execution/imagery tasks have used
signals recorded over the motor and/or prefrontal cortices. Here, we designed an
fNIRS customized cap such that the parts of motor, prefrontal, parietal, and occipital
cortices are covered. To evaluate the significance of including fNIRS data from
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Table 1.3 Classification accuracy results for movement directions of “up,” “down,” “left,” “right,”
and non-movement, (total of 5 classes), using features extracted from different channel locations

Channel locations
Prefrontal Motor Parietal Occipital All channels

Subject 1 35.67 ± 2.96 65.90 ± 3.38 53.90 ± 2.85 44.59 ± 3.49 78.87 ± 3.65
Subject 2 37.32 ± 3.64 68.12 ± 3.47 58.47 ± 3.39 52.21 ± 3.39 80.89 ± 3.56
Subject 3 39.27 ± 3.58 63.47 ± 3.72 56.41 ± 3.94 49.48 ± 4.11 75.84 ± 4.11
Subject 4 35.88 ± 3.77 69.61 ± 3.79 54.81 ± 3.66 47.70 ± 3.76 81.47 ± 3.69
Subject 5 34.77 ± 3.03 64.40 ± 4.30 58.01 ± 3.06 46.88 ± 3.38 76.38 ± 4.01
Average 36.58 ± 3.73 66.30 ± 4.36 56.32 ± 3.81 48.17 ± 4.43 78.69 ± 4.42

For all cases, the features are the “mean” of [�HbO2] from [2–4] s post-stimulus interval and
the classifier is QSVM. The results indicate that the highest classification accuracy is achieved
when features extracted from all the recording channels (placed on prefrontal, motor, parietal, and
occipital cortices) are included, which suggests the significance of considering the hemodynamic
response from different brain regions rather than just using the data from one specific area (e.g.,
motor cortex for movement-related tasks)

different locations on the classification accuracy, classification was performed using
recordings obtained from different locations and compared to the case were the
data from all channels were used. The “mean” of [�HbO2] from the [2–4] s
interval was used as the feature. The classification accuracy results are presented
in Table 1.3. The highest average classification accuracy when using data from
channels placed in one region is achieved from the motor cortex region (66.30%).
This is expected, since we are studying the problem of classification of motor-
related tasks. For parietal, prefrontal, and occipital cortices, an average accuracy
of 56.32%, 36.58%, and 48.17% is obtained, respectively. Interestingly, when the
data from all channels were considered, the classification accuracy is significantly
increased (78.69%). These observations suggest the data from brain regions other
than the motor cortex contain discriminatory information for motor-related tasks.
One possible explanation for this finding is that various brain regions are involved
in the planning and performing of motor execution tasks (Hanakawa et al. 2008;
Kim et al. 2018).

Up to this point, only the “mean” of [�HbO2] was used as feature. We
also calculated other time-domain features (max, slope, variance, skewness, and
kurtosis) of [�HbO2] from the [2–4] s interval for all channels. The classification
performance was evaluated for each choice, and results are given in Table 1.4. As
can be seen, the highest classification accuracy is achieved when “mean” (78.69%)
and “max” (77.46%) are used as features. Using the “slope” and “variance” of
the signal as the feature, the classification accuracy drops to 63.78% and 47.39%,
respectively. The classification accuracy results for the “skewness” and “kurtosis”
features are 39.44% and 25.61% (the chance level is 20%), respectively. These
results for “skewness” and “kurtosis” could have been possibly improved if longer
intervals were used for feature extraction. Considering these findings, it can be
concluded that for the selected interval, both “mean” and “max” features offer
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Table 1.5 Classification
accuracy results for
movement directions of “up,”
“down,” “left,” “right,” and
non-movement, (total of 5
classes), using different
classifiers

Classifier type
Q-SVM ANN

Subject 1 78.87 ± 3.65 86.02 ± 4.06
Subject 2 80.89 ± 3.56 86.56 ± 3.28
Subject 3 75.84 ± 4.11 82.36 ± 4.31
Subject 4 81.47 ± 3.69 89.00 ± 3.81
Subject 5 76.38 ± 4.01 82.57 ± 4.56
Average 78.69 ± 4.42 85.30 ± 4.73

For all cases, the features are the “mean”
of [�HbO2] from the [2–4] s post-stimulus
interval from all channels. The classification
results show that the ANN algorithm outper-
forms the QSVM classifier and is a better
choice for this classification problem

higher classification accuracies comparing to the other features. For most subjects,
the classification accuracy using “mean” is 1–2% higher than using “max” features.

Finally, to study the effects of the classifier model, we compared the classification
accuracy results using QSVM with an ANN classifier. The results are presented in
Table 1.5. It can be seen that when ANN is used as the classifier, the accuracy is
improved by 6–7% across subjects. These results suggest that the ANN offers a
higher classification accuracy (85.30%) than QSVM classifier and is a better choice
for this multi-class classification problem. The confusion matrices for each subject
are depicted in Figs. 1.7 and 1.8 shows the confusion matrix for all subjects.

It is worth mentioning that although in this study the ANN classifier outper-
formed the QSVM in terms of the classification accuracy, the ANN classification
algorithm requires more computational effort compared to QSVM.

The goal of this study was to discriminate multiple movement execution tasks
from fNIRS recordings. Using the presented BCI algorithm, we successfully
differentiated five classes including four classes of movement execution and one
non-movement class. Moreover, we evaluated the effects of changing various
parameters related to feature extraction and classification algorithms on the accuracy
of decoding the movement execution tasks. The results of our study revealed that
by increasing the length of the window from which the features are extracted, the
classification accuracy increases. Specifically, by lengthening the time window from
[0–2] s to [0–4] s, the classification accuracy increases significantly. However, for
time intervals longer than 4 s, the accuracy slightly improves. Interestingly, the
classification results revealed that including data from all regions leads to the highest
accuracy when classifying motor tasks. Furthermore, the classification accuracy
achieved by considering the “mean” of [�HbO2] as the feature was higher compared
to the cases where other time domain features were used. These results can be
employed for parameter selection in classification of fNIRS recordings.
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Fig. 1.7 (a)–(e). Confusion matrix of classification results for subjects 1–5 using the “mean” of
the [�HbO2] as feature extracted from the [2–4] s interval and considering all channels. ANN was
used as the classifier
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Fig. 1.7 (continued)
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Fig. 1.7 (continued)

Fig. 1.8 Confusion matrix of classification results for all subjects using the “mean” of the
[�HbO2] as feature extracted from the [2–4] s interval and considering all channels. ANN was
used as the classifier
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1.5 Conclusions

In this chapter, the classification problem for multi-class motor execution tasks
using fNIRS recordings was considered. This study pursued the following goals:
investigating the effects of using different time window lengths for extracting
features on the classification accuracy, investigating the effects of the latency of the
time interval used for feature extraction, and investigating the effects of different
channel locations on the classification results. Additionally, it was examined
whether using data from different regions can improve the results of classification
of different movement-related tasks in contrast to using data only from the motor
cortex. Classification accuracy results were computed for various time-domain
features as well as two commonly used classification algorithms of SVM and ANN.

Future works will involve employing more advanced feature extraction and
classification algorithms as well as using feature selection methods in order to
improve the classification performance in terms of accuracy, required computational
effort, and speed of the BCI algorithm.
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Chapter 2
A Comparative Study of End-To-End
Discriminative Deep Learning Models for
Knee Joint Kinematic Time Series
Classification

M. Abid, Y. Ouakrim, A. Mitiche, P. A. Vendittoli, N. Hagemeister,
and N. Mezghani

2.1 Introduction

The knee is a complex joint that requires perfectly coupled three-dimensional
(3D) motions for proper function. As a result, reliable diagnosis of knee-joint
pathologies is a difficult task, requiring in many cases a combination of clinical
examinations and imaging, such as magnetic resonance imaging and computed
tomography. Such methods provide little direct objective information on the func-
tional aspects of the knee-joint and are not typically performed during knee
movement. For this reason, biomechanical gait analysis has become essential
in knee-joint pathology diagnosis: it provides quantitative information about the
structure and motion of the knee-joint to complement the usual evaluation methods
for more accurate diagnosis (Medved 2000). 3D knee kinematic signals, measuring
knee flexion/extension, abduction/adduction, and internal/external rotation during
locomotion, are now commonly used in gait analysis to assist knee-joint pathology
diagnosis. Knee kinematic gait signals can be acquired in a normal clinical setting,
using a commercially available treadmill and a motion capture system. Motion
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capture systems are generally composed of optoelectronic cameras which track
3D coordinates from active or passive markers 1 fixed onto the knee segments
(e.g., femur and tibia). These marker data are transformed into knee-joint angles,
which describe the relative motion between knee segments over time, such as the
angular displacement of the tibia with respect to the femur (de Guise et al. 2011;
Phinyomark et al. 2016). As functions of time, the data can be viewed as time
series. Their analysis has concentrated on classification to distinguish asymptomatic
and pathological knee function. The overall classification system flow consists
generally of three steps: pre-processing to put the measurements in easily usable
form, feature extraction and selection to describe the data by characteristics, and
classification into different categories. Classification faces the challenge of data
high-dimensionality, and variability, which several studies have addressed explicitly
(Chau 2001a; Mezghani et al. 2018). High dimensionality has been addressed by
dimensionality reduction using feature extraction and selection (Abid et al. 2019a).
Local features, most often considered, are characteristic points on the kinematic
signals, such as flexion angle peak values from the kinematic data of locomotion.
Global features consider the shape of the whole kinematic signal, rather a few
characteristic points on it. Classification is then performed based on the elected
features using machine learning methods (Abid et al. 2019a). Measured patterns of
locomotion are characterized by high within-subject and stride-to-stride variability.
For each subject, several measurements are repeated a number of times, giving a
family of curves that can differ from each other, some possibly affected by outliers.
Variability analysis is generally done as a pre-processing task. Standard deviation
band (Labbe et al. 2008) and functional boxplot (Mechmeche et al. 2016), for
instance, have been used for estimating this variability. An outlier is any curve
that is more than two standard deviations away from the mean or that is outside
the maximum non-outlying envelope. However, the mean itself of the data can be
significantly affected by outliers, and the band-depth computation is very complex.

In general, current studies include manual feature extraction as an essential
step. Feature design is often time-consuming, can be unreliable when there are
few training data, and generally does not exploit temporal information. Recent
investigations have obtained good results but have been tested on small datasets,
which limits the generality of their conclusions. For instance, 40 knee osteoarthritis
(OA) subjects and 40 healthy subjects participated in a study in which 3D knee kine-
matics data (flexion/extension, abduction/adduction, and internal/external rotation)
were recorded (Mezghani et al. 2018). The authors examined a set of 70 specific
kinematic features to determine the most discriminant to be used. Regression tree
representation gave 85% accuracy in discriminating knee OA subjects from healthy
subjects.

The aim of this study is to investigate deep neural networks (LeCun et al.
2015) for automatic classification of asymptomatic (AS) and knee OA kinematic
data using the entire pre-processed signal and a relatively large dataset compared
to previous studies of biomechanical data classification (Abid et al. 2019a). Pre-
processing is to determine representative patterns of a subject’s kinematic signals by
averaging these after addressing variability so as to improve data objectivity. Deep
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Table of abbreviations

Abbreviation Meaning

ICC Intraclass correlation

OA Osteoarthrosis

3D Three-dimensional

MTS Multivariate time series

GRF Ground reaction force

IQR Inter-quartile range

CMC Coefficient of multiple correlation

ANOVA Analysis of variance

KS Knee straining

RTs Regression trees

KL Kellgren and lawrence

CART Classification and regression tree

SVD Singular value decomposition

PCA Principal component analysis

WT Wavelets transform

AS ASymptomatic

ACL Anterior cruciate ligament

ACL-R Anterior cruciate ligament reconstructed

PCs Principal components

LR Logistic regression

FR Femero-Rotulian

FT Femero-tibial

DBSCAN Density-based spatial clustering of applications with noise

SVM Support vector machine

SSA Singular spectrum analysis

HS Heel strike

TO Toe-off

MS Mid-swing

RMSE Root mean square error

CNN Convolutional neural network

time-CNN Time convolutional neural network

t-LeNet Time le-net

FCN Fully convolutional neural network

ResNet Residual network

ReLU Rectified linear unit

PReLU Parametric ReLU

TP True positives

FP False positives

FN False negatives

TN True negatives

ROM Range of motion

CAM Class activation map

MLP Multilayer perceptron
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Nomenclature Symbol Meaning

X Knee kinematic time series

y Labels

T Time steps

D Knee kinematic time series dataset

N Number of samples in the dataset

j Time instance

m Number of features

learning obviates the need for feature engineering. The motivation for investigating
deep neural networks in knee kinematic data classification is their success in
classification of time series at large on UCR (Dau et al. 2018) and/or MTS
(Baydogan 2015) time series archive datasets (Wang et al. 2017; Fawaz et al.
2019) from different domains such as human activity recognition and sleep stage
identification. The advantage of deep neural networks is their ability for automatic
feature extraction from raw, complex, and high-dimensional data. In this work, pre-
processed knee kinematic data signals are the inputs to deep neural networks to learn
kinematic features capable of discriminating knee OA patients from AS participants.
The proposed methodology is depicted schematically in Fig. 2.1. Data collection
is followed by pre-processing steps of gait events detection, normalization, outlier
detection, and cycle selection. This allows us to determine the most representative
shape by considering the within-subject variability, defined as the fluctuation in gait
parameters from one stride to the next. Afterward, pre-processed knee kinematic
data signals (entire gait cycle) are input to deep neural networks. Our investigation
provides a comparison of the effectiveness of various deep neural networks in knee
kinematic time series classification problem. To the best of our knowledge, this is
the first study on classifying raw knee kinematic time series data using end-to-end
discriminative deep learning classifiers.

2.2 Related Work

In this section, we first present related work at each step of the pre-processing
flowchart depicted in Fig. 2.1. Then, we provide a review on knee-joint kinematic
data analysis for knee pathology classification.

2.2.1 Kinematic Data Pre-processing

The choice of an appropriate method in each step of kinematic data pre-processing,
while significantly affecting performance, is not always obvious and requires a
combination of experience and trial-and-error (Chau 2001b). Any gait events,
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Fig. 2.1 The flowchart describes the knee kinematic data classification process. Data collection
is followed by pre-processing steps of gait events detection, normalization, outlier detection, and
cycle selection. Afterward, pre-processed knee kinematic data signals (entire gait cycle) are input to
deep neural networks, to distinguish between asymptomatic (AS) subjects and knee osteoarthritis
(OA) patients

outliers detection, and cycle selection methods developed must therefore be both
accurate and reliable.

• Gait Events Detection. Several methods of determining gait events from knee
kinematic curves have been shown in the literature. Kinetics-based gait event
detection methods have been widely used. That is, a force plate is conventionally
used to identify gait events instants, whereby a vertical ground reaction force
(GRF) threshold of 2% of the patients’ body weight is defined (Labbe et al.
2008; Boivin 2010; Gaudreault et al. 2013). Velocity-based algorithms was also
used to determine when gait events occur with relatively successful results. For
example, using the foot velocity algorithm proposed by O’Connor et al. (2007),
the beginning and the final of each cycle are determined using the vertical
velocity signals, derived from heel markers placed on each foot (Leporace et al.
2012). When instrumentation is not available to determine gait events timing,
some studies rely on kinematics-based gait event detection methods (Zeni et al.
2008; Hreljac and Marshall 2000).
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• Outlier Removal. Within a sample of single-cycle gait curves, there is both phase
and amplitude variation. The literature refers to lateral displacements in curve
features as phase variation, as opposed to amplitude variation in curve height.
Typically, when we describe variability in gait curves, we refer to amplitude
variability. Mechmeche et al. (2016) proposed to deal with phase variability in
knee kinematic curves using curve registration. A popular approach to estimating
curve variability is to peg prediction bands around a group of curves. However,
the presence of a small fraction of outliers can unduly inflate our estimates of
gait variability and subsequent analysis. Johnson (1998) defines an outlier to be
“an observation in a data set which appears to be inconsistent with the remainder
of that set of data.” One common way of estimating curve variability in knee
kinematics is the calculation of the standard deviation band and then to mark as
a potential outlier any curve that is more than two standard deviations away from
the mean (Labbe et al. 2008). The problem with this method is that the mean
of the data can be greatly affected by outliers. Other related work for detecting
outlying observations consists of the construction of a functional boxplot based
on the concept of band-depth and then to mark as a potential outlier any curve
that is outside the maximum non-outlying envelope obtained by inflating the
inter-quartile range (IQR) 1.5 times (Mechmeche et al. 2016). One of the main
limitations of the band-depth computation is its computational complexity.

• Most Repeatable Cycles Selection. Two similarity indices that attempt to assess
the within-subject repeatability of knee kinematic data were considered in
the literature: the coefficient of multiple correlation (CMC) and the intraclass
correlation coefficient (ICC). The CMC represents the root square of the adjusted
coefficient of multiple determination (Kadaba et al. 1989). It was used to identify
the most repeatable 15 curves (Fuentes-Dupré 2010; Mezghani et al. 2015). The
limitations of the use of CMC to assess within-subject repeatability in kinematic
gait data have been discussed (Røislien et al. 2012), notably the influence of the
range of motion of the joint. The intraclass correlation coefficient (ICC) has also
been used to determine which representative curves to select (Duhamel et al.
2004). For each participant, a minimum of four and a maximum of 10 gait cycles
were obtained for each knee angle. In his work the computation of the ICC is
based on a one-way, random, linear model and doesn’t take into account the
correlation between the repeated measurements.

• Averaging. Once the outliers removed, traditionally, the average curve of all
observations was used as a representative gait cycle (Mezghani et al. 2012). Two
gait cycles were included to represent the variability of the individual gait instead
of using the average of some gait cycles (Leporace et al. 2012). A representative
data curve was also determined by a variational method to characterize a subject
(Ben Nouma et al. 2018). Other related works average over the most repeatable
15 cycles among all observations (Gaudreault et al. 2013; Mezghani et al. 2016a).
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2.2.2 Classification

Knee kinematic data classification is aimed at distinguishing automatically between
the normal subjects and pathological knee patients. Two broad types of approaches
can be distinguished: statistical methods and machine learning methods. Both
local and global features can serve dimensionality reduction. A comparison table
(Table 2.1) is given that inform on data acquisition techniques and accuracies.

Table 2.1 Knee kinematic data classification-related studies

Study Pathology Population
Data
acquisition

Feature
ext/select Classification Accuracy

Li et al. (2005) OA 35 OA 107 3D Knee Local rep. ANOVA –
AS Analyzer

Ouakrim
(2011)

OA 30 OA 14
AS

KneeKG Local rep global
rep

SVD 77.27%
93.18%

Mezghani et al.
(2012)

OA 30 OA 14
AS

KneeKG Global rep SVD 93.1%

Leporace et al.
(2012)

ACL-R 6 ACL-R
10 AS

Four
cameras
motion
analysis
system
(INNOVI-
SION)

Global rep PCA LR 93.75%

Gaudreault
et al. (2013)

OA 18 KS 20
non-KS

KneeKG Local rep Student t test –

Mezghani et al.
(2013)

AS 111 AS KneeKG Global rep PCA Discriminant
model based
on PCs’ sign

–

Mezghani et al.
(2015)

OA 25 KS 25
non-KS 29
OA

KneeKG – Bayes
classifier

–

Mezghani et al.
(2016a)

OA 44 S 40
non-S

KneeKG Local rep CART 84.7%

Mezghani et al.
(2016b)

OA 100 OA KneeKG Local repn RTs 88%

Christian et al.
(2016)

ACL 7 ACL 7
AS

Vicon
motion
analysis
system

PCA SVM 100%

Mezghani et al.
(2018)

OA 100 OA 40
AS

KneeKG Local rep RTs 85

Zgolli et al.
(2018)

AS 165 AS KneeKG Isometric
mapping

DBSCA –

Ben Nouma
et al. (2019)

OA 63 OA KneeKG WT Kohnen
neural
network

90.47%
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Several biomechanical studies on discriminating patients with knee-joint OA from
normal subjects using local approaches are available in the literature. The maximum
knee flexion, abduction angles during three daily activities were analyzed, using
ANOVA, to know whether there were statistically significant differences between
normal and OA groups at different disease severity levels (Li et al. 2005). In
Gaudreault et al. (2013), specific kinematic parameters, such as knee angle at initial
foot contact, peak angles, minimal angles and angle range, were extracted, which
concord with those identified in the knee-joint gait literature (Astephen et al. 2008;
Teixeira and Olney 1996). A student t-test has been performed to investigate the
differences between workers exposed to Knee Straining (KS) postures and non-
KS for gait kinematic variables (peak, ranges, and minimum values). In recent
studies, a set of 70 features were extracted from 3D kinematic patterns based
on variables routinely assessed in clinical biomechanical studies of knee OA
populations, such as maximums, minimums, varus and valgus thrust, angles at
initial contact, mean values, and range of motion throughout gait cycles or gait
cycle sub-phases (Mezghani et al. 2016a,b, 2018). Within these features, a set of
14 features have been identified as diagnostic and burden of disease biomarkers
for knee OA characterization. Regression Trees (RTs) have then been applied to
feature-based OA vs non-OA discrimination and to grade OA severity (according
to the Kellgren and Lawrence (KL) grades from 1 to 4) (Mezghani et al. 2016b,
2018). The success rate of the RTs classifier was 86% to distinguish KL1-2 from
KL3-4 grades, 88.2% for KL1 from KL2 grades, and 88% for KL3 from KL4
grades. Using features extracted from the waveforms, another study investigated
the Classification and Regression Tree (CART) to classify surgical versus non-
surgical patients with a primary diagnosis of moderate to severe knee OA and
scheduled for arthroplasty consult (Mezghani et al. 2016a). In contrast to local
approaches, waveform methods for global feature extraction such as Singular
Value Decomposition (SVD), Principal Component Analysis (PCA), and Wavelets
Transform (WT) are outlined.

SVD was used to characterize the kinematic waveform while also identifying
gait sub-cycles for a better discrimination between AS and OA groups and for
assessing the severity of the disease of OA patients into KL1-2 and KL3-4 categories
according to the Kellgren and Lawrence (KL) scale (Mezghani et al. 2012; Ouakrim
2011). The kinematic waveforms were characterized using 14 points of interest
(Ouakrim 2011). For AS/OA classification, the analysis showed that the most
discriminant sub-cycle was during the stance phase. Concerning the knee-joint
OA severity assessment, the most discriminant sub-cycle was during the swing
phase of the frontal kinematic waveform, and the success rate was 93.2%. For
the discrimination of Anterior Cruciate Ligament Reconstructed (ACL-R) subjects
and healthy subjects, PCA was applied on kinematic waveforms (Leporace et al.
2012). The ACL-R subjects had a mean of 12 ± 2 months time from surgery and
had incurred a complete ACL tear. All ACL-R subjects had a unilateral tear of
their ligament, with no previous ligament injury of either knee, and no history of
knee surgery. Differences were found between groups in the frontal and transverse
planes. Then, the principal components (PCs) of the three planes were retained for
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classifying the status of normality using Logistic Regression (LR). Only the frontal
plane kinematics had high importance for classifying the status of normality. PCA
was also used to extract meaningful patterns representative of the AS gait to separate
the entire kinematic waveforms in the sagittal, transverse and frontal planes into
homogenous groups (Mezghani et al. 2013). A wavelet representation of kinematic
data extracted in each plane separately (sagittal, frontal, and transverse planes) has
been used to train a sample-encoding Kohonen network to distinguish between two
types of knee OA pathologies, namely, femero-rotulian (FR) and femero-tibial (FT)
(Ben Nouma et al. 2019).

Few studies have investigated clustering techniques for knee biomechanical pat-
terns. The PCs clustering model was applied to the frontal, sagittal, and transverse
plane kinematic data (Mezghani et al. 2013), which led to the identification of four
distinct patterns in normal gait. The clustering quality has been verified based on
the analysis of the silhouette width and with statistical evaluation by hypothesis
testing. The density-based spatial clustering of applications with noise (DBSCAN)
algorithm has been applied to the frontal, sagittal, and transverse plane kinematic
data, which led to the identification of two representation patterns for each plane.
Cluster divisions are evaluated using the silhouette index, the Dunn index, and
connectivity (Zgolli et al. 2018).

A Bayes classifier has been applied to determine if workers exposed to KS
have knee kinematic data that resemble those of knee OA patients rather than of
non-KS workers on the first 20-gait cycle percentages of the kinematic waveforms
(Mezghani et al. 2015). A Support Vector Machine (SVM) was also trained to
distinguish kinematics of patients with an ACL injured knee from healthy subjects
(Christian et al. 2016). ACL patients had either a knee extension or flexion deficit or
a combination of both in the affected limb, but were able to walk without a walking
aid for a minimum of 10 m, and sustained a complete unilateral ACL rupture within
a period of 21 days (13 (SD 5) days) prior to the experiment.

2.3 Methods and Materials

2.3.1 Data Collection

This study has been approved by ethics committee of the Centre de Recherche
du Centre Hospitalier de l’Université de Montréal (CRCHUM) and the École
de Technologie Supérieure (ÉTS), Hôpital Maisonneuve-Rosemont (HMR). All
subjects provided an informed consent before participation.

We used 3D knee kinematics of 239 subjects collected in different centers. The
first group included 49 asymptomatic (AS) subjects. The second group included 190
knee osteoarthritis (OA) patients. The demographic characteristics of the data in the
two classes are shown in Table 2.2. Statistical analyses were performed using the
two-sample t-test. A p value below 0.05 was considered statistically significant.
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Table 2.2 Demographic characteristics of AS and OA groups

Characteristics AS group OA group P value

Age (years) (Mean ± SD) 60.4 ± 4.2 63 ± 9 0.05

Height (cm) (Mean ± SD) 167.4 ± 11.2 167.3 ± 9.6 0.944

Weight (kg) (Mean ± SD) 86.1 ± 19.1 82.7 ± 14.8 0.182

BMI (kg/m2) (Mean ± SD) 30.5 ± 5.4 29.5±4.5 0.181

Sex ratio (Male:Female) 16:33 78:112 0.285

SD Standard Deviation, BMI body mass index

Fig. 2.2 Knee motion analysis recording equipment setup using theKneeKGT M : (a) The
KneeKGT M is composed of an infrared motion capture system (Polaris Spectra camera, Northern
Digital Inc.) and a computer equipped with the Knee3D software suite (Emovi, Inc.). The camera
and computer can both be mounted on a cart making the entire system mobile. (b) Exoskeleton
of the KneeKGT M system fixed on the participant’s lower limb. The harness lies on the femoral
condyles, and the plate is fixed on the tibial crest

3D knee kinematics are acquired with the KneeKGT M system (Emovi Inc.
Canada) during gait on a treadmill (45 s duration). KneeKG is a non-invasive
knee-marker attachment system consisting of an exoskeleton, an infrared camera,
and a computer equipped with the KneeKGT M software (Lustig et al. 2012)
(Fig. 2.2). The exoskeleton is composed of a femoral arch with lateral markers and a
tibial marker attachment. The exoskeleton, designed to reduce skin-motion artifacts
(Labbe et al. 2008), is placed on the participant’s lower limb. The 3D positions
and movements of the markers are captured at a frequency rate of 60 Hz by the
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Fig. 2.3 (a) Plot of measured knee-joint angles (flexion-extension, abduction-adduction, and
internal-external rotations) during a 45 s walking trial on the treadmill for one AS subject. (b)
The detection of the HS and MS instants based on the knee flexion extrema of one AS subject. (c)
Depicted are gait cycles for one AS subject, beginning at HS and ending at the next HS, for knee-
joint angles in all three planes. (d) Boxplot (in blue) of knee flexion angles, for one AS subject,
highlighting outliers (in red)
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infrared camera (Lustig et al. 2012). Kinematic data were used to generate knee-
joint angles with the KneeKGT M software (Emovi Inc.): knee flexion-extension,
abduction-adduction, and internal-external rotation, representing the motion of the
tibia relative to the femur, according to the knee-joint coordinate system as defined
by Grood and Suntay (Grood and Suntay 1983). The accuracy (Sati et al. 1996),
reproducibility (Hagemeister et al. 1999), repeatability (Hagemeister et al. 2005),
and reliability (Labbe et al. 2008) of the system have been studied. Each participant
undergoes a series of successive gait trials during a given session. In each trial,
the motion trajectories in the sagittal, frontal, and transverse planes of the knee
reference system are recorded. These data are filtered using a non-parametric time
series analysis called Singular Spectrum Analysis (SSA) (Aissaoui et al. 2006) and
transformed into 3D knee-joint angles (Hagemeister et al. 2005). The KneeKGT M

software produces a dataset for each subject represented by a standardized KKG
file format stored in an SQLite database format. The dataset contains the 3D knee-
joint angles, namely, flexion-extension, abduction-adduction, and internal-external
rotation, in the form of time series, i.e., the time-varying angle values (Fig. 2.3a).
In the knee-joint coordinate system, flexion-extension occurs about the femoral axis
in the sagittal plane, internal-external rotation occurs about the tibial axis in the
transverse plane, and abduction-adduction occurs about an axis that is perpendicular
to the femoral and tibial axes in the frontal plane.

2.3.2 Kinematic Data Pre-processing

Once data collection is complete, the raw kinematic data (Fig. 2.3a) are pre-
processed in order to find robust representative patterns for each participant, via
steps of missing data interpolation, gait events detection, normalization, outlier
detection, cycles’ selection, and averaging (Abid et al. 2020). The time series is
interpolated by cubic spline interpolation to fill gaps that may be present between
data point measurements.

• Gait events detection. The raw kinematic curves of each participant are then
divided into distinct gait cycles. The gait cycle is the time between two successive
heel contacts of the same foot and consists of a stance and swing phase (Fig. 2.4).
Analysis of knee kinematics relies on the accurate determination of the timing of
key gait events such as heel strike (HS), the time at which the heel first hits
the walking surface, toe-off (TO), the time at which the foot leaves the walking
surface, and mid-swing (MS), the maximum knee flexion. In the context of
kinematics-based gait event detection methods, our approach center around the
location of local maxima values in the sagittal plane curve, since the data from
the sagittal plane are more reproducible than those from the other two planes (Yu
et al. 1997). MS points correspond to local maxima. HS points are the first local
minima after the local maxima and are specified as the start of each gait cycle
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(Fig. 2.3b). By convention, HS initiates the cycle, TO initiates the swing phase,
and stance is followed by swing phases (Fig. 2.3c).

• Normalization. Knowing gait events allows for normalization of the resulting
knee kinematic curves over percentages of the gait cycle rather than absolute
time. A typical gait cycle normalized in time is represented on a linear 1–100%
scale, therefore giving 100 sample points. That is, HS is generally taken as
the starting point of a complete gait cycle (0%); TO occurs at about 60–62%,
denoting the initiation of the swing phase; and the end of the cycle (100%) occurs
with the next HS which will be the HS of the next cycle. Thus, for each knee
angle, the superposed normalized cycles (about 30 to 40 cycles depending on
the person’s stride) constitute the observations to describe with representative
patterns characterizing the given participant (Fig. 2.3c).

• Outlier removal. These observations correspond to a family of curves each one
slightly different from the other, due to within-subject variability from stride-
to-stride. In this work, we first propose to use cross-validation to quantify the
true achieved coverage probability for a robust estimate of the spread of the
sample of gait curves (Lenhoff et al. 1999). We argued that bootstrap prediction
bands provide inadequate coverage probability toward boxplot, when applied
to the knee angle curves of AS and knee OA subjects employed in this study.
A boxplot is a schematic plot, a box, and whiskers plot, made up of five
components, that give a robust summary of the distribution of a dataset: the
minimum, the maximum, the median, and the first and third quartiles. Afterward,
the variability among the group of curves, as estimated by boxplot, is minimized

Fig. 2.4 An illustration of gait phases. The gait cycle involves two main phases, the stance phase
when the foot is in contact with the ground and the swing phase when the foot is not in contact
with the ground. The stance phase generally corresponds to the first 60% of the gait cycle, and the
swing phase to the remaining last 40%. The stance phase is further composed of a period of double
stance during the first and last 10% of the stance phase, when both feet contact the ground, and a
period of single stance during the remainder of the stance phase when only one foot is in contact
with the ground. The swing phase also has three parts: the initial swing, the mid swing, and the
terminal swing



46 M. Abid et al.

by the subsequent removal of outlying curves in all three planes of motion. In
case of gait curves, the outlier is not a single point, but an entire curve (Fig. 2.3d).
In order to affirm that a curve is an outlier, we apply the Chebyshev’s theorem
stating the percentage of data points falling outside the sample values that are a
factor k of the IQR below the 25th percentile or above the 75th percentile, i.e.,
the first and third quartiles.

• Most repeatable cycles selection. After estimating within-subject variability,
we evaluate the similarity of curves to decide which curves can be selected
as characterizing the subject. In other words, we intend to determine whether
these curves are repeatable, i.e., sufficiently similar to consider that their mean
estimates the true, unknown curve (Duhamel et al. 2004). In this study, a cross-
validation methodology was applied to the set of observations. The idea is to
remove one curve from the original dataset, then calculate the Root Mean Square
Error (RMSE) on the remaining curves. The number of RMSE calculated is equal
to the number of curves in the dataset. The curve resulting in the highest RMSE
is removed. A set of 15 curves for each knee angle is selected that demonstrate
the best repeatability (Boivin 2010).

• Averaging. In this study, each subject is represented by a single gait curve, which
is the mean of the 15 most repeatable cycles, as proposed in Gaudreault et al.
(2013) and Mezghani et al. (2016a).

The proposed pre-processing steps have been performed on each subject of the two
population databases (OA and AS), for ease of analysis and visualization. Figure 2.5
shows the knee kinematic signals in the sagittal plane, frontal plane, and transverse
plane, for each population separately.

2.3.3 Classification

The purpose is to classify knee kinematic signals using deep neural networks in
order to discriminate between AS and OA subjects. We tested various end-to-
end discriminative deep learning models of time series classification, in order to
find which model works best for knee kinematic signals classification (Abid et al.
2019b). In contrast to feature engineering, discriminative deep learning directly
learns a mapping between the raw input and outputs a class probability distribution.
This is important in our study because it avoids the bias due to handcrafted features.

More formally, let (X, y) be an instance with T = 100 observations (time steps)
X = (X1, . . . , XT ) (the knee kinematic time series) and a discrete class variable y
which takes 2 possible values (the labels, i.e., AS or OA). Target values are 0 for the
AS class and 1 for the OA class. A dataset D is a set of N (samples) such instances:
D = {(X1, y1), (X2, y2), . . . , (XN, yN)}. The task of classifying knee kinematic
time series data consists of learning a classifier on D in order to map from the space
of possible inputs {X} to a probability distribution over the classes y. Each data
observation Xj , (j = 1, . . . , T ) of a time series X can be a list of one or more data
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Fig. 2.5 Plots of pre-processed knee kinematic signals for AS population (in red) and OA
population (in blue), in all three planes flexion-extension, abduction-adduction, and internal-
external rotation
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measurements (features), i.e., Xj = (X1j , . . . , Xmj ) for m data measurements, all
taken at the j th time instance. Elements Xmj are real numbers corresponding to
the knee kinematic angles. An m-dimensional multivariate (m-variate) time series
(MTS) X = (X1, . . . , XT ) consists of T ordered elements Xj ∈ R

m. A univariate
time series X of length T is simply an MTS with m = 1, i.e. Xj → Xj ∈ R and
X = (X1, . . . , XT ).

A deep neural network has an input layer, an output layer, and more than two
hidden layers. A layer is a collection of neurons. A neuron takes a group of weighted
inputs, applies an activation function, and returns an output.

The input layer has T xm neurons. Like in image classification problems, we
consider multidimensional time series, y ∈ R

N×T ×m. A tensor is a multidi-
mensional array. Vectors and matrices are first-order and second-order tensors,
respectively, where order is the number of ways or modes of the tensor. When m

equals 1, we train one feature at a time (flexion/extension, abduction/adduction, or
internal/external rotation), at each time step for each sample. When m equals 3, the
3-variate time series is jointly trained (flexion/extension, abduction/adduction, and
internal/external rotation, together).

Hidden layers of a deep network are designed to learn hierarchical feature repre-
sentations of the data. During training, a set of hyper-parameters is optimized, and
the weights are initialized randomly (LeCun et al. 2012). By gradient descent, the
weights are updated using the back propagation algorithm, in a way that minimizes
the cost function on the training set. The choice of the model, the architecture, and
the cost function are crucial for obtaining a network that generalizes well and are
generally problem and data dependent. We trained five deep learning models, which
have convolutional neural network (CNN)-based architecture (LeCun and Bengio
1998), and designed specifically for time series classification.

CNN combines three architectural ideas: local receptive fields, shared weights,
and pooling. Convolutional neural networks (CNNs) consist of alternating convolu-
tional layers and pooling layers. The convolutional layer implements the receptive
field and shared weights concepts. Neurons in the convolutional layers are locally
connected to neurons inside its receptive field in the previous layer. Neurons in a
layer are organized in planes within which all the neurons share the same set of
weights (also called filters or kernels). The set of outputs of the neurons in such a
plane is called a feature map. The number of feature maps is the same as the number
of filters. A pooling layer performs either average sub-sampling (mean-pooling) or
maximum sub-sampling (max-pooling). For a time series, the pooling layers simply
reduce the length and thus the resolution, of the feature maps.

The different hyper-parameters of CNN are the optimization algorithm (momen-
tum), the number of epochs, the number of layers, the number of filters, the filter
size, the activation function, the cost function, the batch size, and the weight
initialization. Here the following are the deep learning models (Fig. 2.6) that we
investigated to determine their ability to discriminate between knee kinematic
signals of patients with OA and AS participants.



2 A Comparative Study of End-To-End Discriminative Deep Learning Models. . . 49

• Time convolutional neural network (time-CNN) (Zhao et al. 2017): Convolution
and pooling operations are alternately used to generate deep features of the
raw data. Then the features are connected to a multilayer perceptron (MLP)
to perform classification. Figure 2.6a summarizes the architecture of the time-
CNN model. There are three layers in this network including two convolutional
blocks and one fully connected layer, with a Sigmoid activation function. The
convolutional block consists of a convolution layer, a Sigmoid layer, and an
average pooling layer with pooling size 3. The number of filters {6, 12} and
the filter size {7, 7} in each block. The following parameters were tuned:
convolutional filter size in set {5, 7, 9}, the pooling size in {2, 3, 4, 5}, the pooling
method in {mean-pooling, max-pooling}, and the number of convolution filters
in {2, 3, 4, 6, 9, 12, 15}.

• Time Le-Net (t-LeNet) (Le Guennec et al. 2016): is a time series-specific version
of leNet model (Lecun et al. 1998). Figure 2.6b summarizes the architecture of
the t-LeNet model. There are 4 layers in this network including 2 convolution
blocks, 1 fully connected layer with 500 neurons and a rectified linear unit
(ReLU)activation function, and finally a Softmax layer. The convolutional block

Fig. 2.6 The architecture of the 5 tested end-to-end deep learning models. The consecutive blocks
without arrows between them, represent a convolutional block. In each convolutional block, the
number inside the first rectangle represents the number of filters, and the number below is the filter
size
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consists of a convolution layer, a ReLU layer, and a max pooling layer with
pooling size 2 and 4 on the first and second block, respectively. The number
of filters {5, 20} and the filter size {5, 5} in each block. Two data augmentation
techniques have been proposed namely window slicing and window warping.

• Fully Convolutional Neural Network (FCN) (Wang et al. 2017): Fig. 2.6c
summarizes the architecture of the FCN model. There are 5 layers in this network
including 3 convolution blocks, 1 global average pooling layer, and finally a
Softmax layer. The convolutional block consists of a convolution layer, a batch
normalization layer, and a ReLU activation layer. The number of filters {128,
256, 128} and the filter size {8, 5, 3} in each block.

• Encoder (Serrà et al. 2018): is a standard convolutional network, with a con-
volutional attention mechanism to summarize the time-axis and a final fully
connected layer to set the desired representation dimensionality. Figure 2.6d
summarizes the architecture of the encoder model. There are five layers in this
network including three convolution blocks, one attention mechanism, and finally
a Softmax layer. The convolutional block consists of a convolution layer, an
instance normalization layer, a Parametric ReLU (PReLU) activation layer, a
max pooling layer with pooling size 2, and a dropout of 0.2. The number of
filters {128, 256, 512} and the filter size {5, 11, 21}.

• Residual Network (ResNet) (Wang et al. 2017): extends the neural networks
towards deeper architectures by adding the shortcut connection to enable the
gradient flow directly through the bottom layers. Figure 2.6e summarizes the
architecture of the ResNet model. There are 11 layers in this network including
9 convolution blocks, 1 global average polling layer, and finally a Softmax layer.
The convolutional block consists of a convolution layer, a batch normalization
layer, and a ReLU activation layer. The number of filters {64, 64, 64, 128, 128,
128, 128, 128, 128} and the filter size {8, 5, 3, 8, 5, 3, 8, 5, 3}.

All deep learning models have an output layer with two neurons, corresponding to
the binary classification in this application.

2.3.4 Weighting Imbalanced Classes

We can notice the imbalance of the dataset (49 asymptomatic (AS) subjects vs.
190 knee osteoarthritis (OA) patients). We do not include any oversampling to
handle the class imbalance problem, but an algorithm-level method. That is, a class
weighting is added to automatically assign higher weights to the minority classes in
the learning process, in order to reduce bias toward the majority group (Krawczyk
2016; Johnson and Khoshgoftaar 2019).



2 A Comparative Study of End-To-End Discriminative Deep Learning Models. . . 51

2.3.5 Cross-Validation

To find the best hyper-parameters, we performed hyperband searches (Li et al.
2016) with the Keras Tuner Python package,1 using double cross-validation (Bengio
2012). Keras Tuner is a library to easily perform hyper-parameter tuning with
Tensorflow 2.0. Hyperband uses early-stopping to speed up the hyper-parameter
tuning process. The main idea is to fit a large number of models for a small
number of epochs and to only continue training for the models achieving the highest
accuracy on the validation set. Double cross-validation applies recursively the idea
of cross-validation, using an outer loop cross-validation to evaluate generalization
error and then applying an inner loop cross-validation inside each outer loop split’s
training subset (i.e., splitting it again into training and validation folds) in order to
select hyper-parameters for that split. Table 2.3 summarizes the optimized hyper-
parameters configuration for each model. We trained the deep learning models
presented above with 10 different runs each. The validation is performed using a
stratified ten-fold cross-validation of the knee kinematic dataset D, to preserve the
class distribution in the train and test sets for each evaluation of a given model. The
model is fit on nine fold as the training dataset and evaluated on the holdout fold as
the testing dataset. Instead of averaging the performance measure computed on each
holdout fold, predictions are made and stored in a list. Then, at the end of the run,
the predictions are compared to the expected values for each holdout test set and a
single performance measure is reported (Fig. 2.6).

All models were initialized randomly using the Glorot’s uniform initialization
method (Glorot and Bengio 2010). The number of epochs (training iterations) is
optimized using the principle of early stopping (Bengio 2012). Early stopping
allows to specify an arbitrary large number of training epochs and stop training
once the model performance stops improving on a holdout validation dataset. The
batch size is set equal to the training set size (batch gradient descent).

Table 2.3 Hyper-parameters’ optimization for knee kinematic signals dataset

Model Cost function Learning rate Optimizer Activation function

Time-CNN MSE 0.001 Adam Sigmoid

t-leNet Entropy 0.01 Adam ReLU

FCN Entropy 0.001 Adam ReLU

Encoder Entropy 0.00001 Adam PReLU

ResNet Entropy 0.001 Adam ReLU

1http://keras-team.github.io/keras-tuner/

http://keras-team.github.io/keras-tuner/
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2.3.6 Performance Measures

Metrics of accuracy, precision, recall, and F1 score were used for model selection,
i.e., the ability of the model to discriminate between AS and OA participants. These
metrics are defined in Equation 2.1–2.4. In these equations, T P stands for true
positives, i.e., the number of OA participants correctly classified as OA participants.
T N stands for true negatives, i.e., the number of AS participants correctly classified
as AS participants. FP stands for false positives, i.e., the number of AS participants
misclassified as OA participants, and FN stands for false negatives, i.e., the number
of OA participants misclassified as AS participants.

Accuracy = T P + T N

T P + T N + FP + FN
(2.1)

Precision = T P

T P + FP
(2.2)

Recall = T P

T P + FN
(2.3)

F1 = 2 ∗ precision ∗ recall

precision + recall
(2.4)

In all reported experiments, the prediction metrics of the models are calculated as
the average of the repeated stratified ten-fold cross-validation.

In order to compare the five end-to-end deep learning models over the four
datasets, following Fawaz et al. (2019), we conduct statistical analysis by using the
Friedman test to reject the null hypothesis. The test addresses the hypothesis that
all methods perform equally well. For the post hoc analysis, following the recent
recommendations in Benavoli et al. (2016), we perform the pairwise comparisons
of the post-hoc analysis using the Wilcoxon signed rank test instead of the average
rank comparison. In order to visualize the comparison, we used a critical difference
diagram (Demšar 2006) to visualize the results of these statistical tests projected
onto the average rank axis, with a thick horizontal line showing a clique of classifiers
that are not significantly different (Fawaz et al. 2019). Following Fawaz et al. (2019),
we perform the pairwise comparisons of the post hoc analysis using the Wilcoxon
signed rank test (Benavoli et al. 2016). We used the Python code provided in Fawaz
et al. (2019).

2.4 Results

In the following, we present the experimental results obtained using the method-
ology detailed above. We first present the results of the proposed pre-processing
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steps, by measuring the reliability of the subjects’ curves before and after pre-
processing. In the second subsection, we present the performance of the described
end-to-end deep learning models to determine their ability to discriminate between
knee kinematic signals of patients with OA and AS participants.

2.4.1 Kinematic Data Pre-processing

For each subject, the gait curve reliability was gauged by fulfilling the following
steps: (1) summarize the variability within the time-normalized curves of the
subject, which is further reduced by the subsequent removal of outlying curves;
(2) identify a subset of representative curves for the subject; (3) compute the
intraclass correlation (ICC) (Mcgraw and Wong 1996) estimates and their 95%
confidence intervals for knee kinematics of a multicenter dataset of 239 knee OA
and AS subjects (presented in Sect. 2.3.1), in order to measure the reliability of
the subjects’ curves before and after pre-processing. These pre-processing steps are
implemented in Matlab. To summarize the variability, we have adopted a displaying
of the distribution via boxplot. Based on the true achieved coverage estimation,
boxplot is a robust measurement of variability in knee angle curves of AS and
knee OA subjects employed in this study. In Fig. 2.3d, the curves of this subject
are graphically superimposed in order to visually assess reliability. We observe that
two curves seem to be different from the others. Using interquartile range, we detect
with no doubt that these curves can be considered as outliers. Figure 2.7 shows, for
each plane, the frequency distribution of the ICC computed on the dataset before
and after processing, for all the subjects. The graph shows that the subset of the 15
curves selected to represent the gait of the subject are perfectly reliable (ICC ≥ 0.7)
(Koo and Li 2016).

2.4.2 Classification

Tables 2.4, 2.5, 2.6, and 2.7 summarize the accuracy, precision, recall, and F1
score of the compared deep learning models: time-CNN, t-leNet, FCN, encoder, and
ResNet, applied for each plane separately, namely, the sagittal (flexion/extension),
frontal (Abduction/adduction), and transverse (Internal/external rotation) planes,
and trained jointly as well. The compared deep learning models are available in an
open-source deep learning framework which is implemented using the open-source
deep learning library Keras with the Tensorflow back-end. The corresponding
critical difference diagram is depicted in Fig. 2.8, where the statistical test failed
to find any significant difference between the five end-to-end deep learning models.

In a nutshell, we presented deep learning models that take univariate and
multivariate time series. That is, in univariate time series classification, the model is
trained for each knee kinematic data plane separately, i.e., m=1. In multivariate time
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Fig. 2.7 ICC Values and their 95% confident intervals based on a single measurement, absolute
agreement, 2-way mixed-effects model, of knee kinematics for all subjects in all three planes,
before processing (in blue), and after processing (in orange). ICC values less than 0.5 are
indicative of poor repeatability, values between 0.5 and 0.75 indicate moderate repeatability, values
between 0.75 and 0.9 indicate good repeatability, and values greater than 0.90 indicate excellent
repeatability

Table 2.4 The results of applying five end-to-end deep learning models on the sagittal plane
(flexion/extension), in terms of mean and standard deviation of Precision, Accuracy, Recall, and F1
score, for classifying OA (190 subjects) and AS (49 subjects). The out-of-fold prediction metrics of
the models are calculated as the average of the repeated (10 runs) stratified ten-fold cross-validation

Model Precision Accuracy Recall F1

Time-CNN 92.11 ± 0.11 93.77 ± 0.09 98.15 ± 0.008 94.66 ± 0.07

t-leNet 49.99 ± 0.0 50 ± 0.0 1.0 ± 0.0 66.66 ± 1.11

FCN 60.27 ± 0.17 57.36 ± 0.15 74.31 ± 0.20 62.92 ± 0.12

Encoder 74.46 ± 0.09 73.76 ± 0.06 74.47 ± 0.04 74.16 ± 0.05

ResNet 72.97 ± 0.15 76.69 ± 0.16 92.36 ± 0.11 80.70 ± 0.12

series classification, the model is jointly trained for all three planes (sagittal, frontal,
and transverse), i.e., m=3. We observed an average improvement on multivariate
time series classification in comparison with univariate time series classification,
which proves advantageous for knee kinematic data classification, and specifically
for small datasets, and necessitates further investigation.
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Table 2.5 The results of applying 5 end-to-end deep learning models on the plane frontal plane
(abduction/adduction), in terms of mean and standard deviation of Precision, Accuracy, Recall,
and F1 score, for classifying OA (190 subjects) and AS (49 subjects). The out-of-fold prediction
metrics of the models are calculated as the average of the repeated (10 runs) stratified ten-fold
cross-validation

Model Precision Accuracy Recall F1

Time-CNN 93.31 ± 0.12 94.84 ± 0.11 99.68 ± 0.003 95.90 ± 0.07

t-leNet 95.49 ± 0.13 95.89 ± 0.12 99.94 ± 0.001 97.07 ± 0.08

FCN 65.02 ± 0.09 67.80 ± 0.11 80.10 ± 0.13 71.18 ± 0.10

Encoder 64.52 ± 0.05 67.51 ± 0.05 79.52 ± 0.05 71.04 ± 0.04

ResNet 62.40 ± 0.09 68.02 ± 0.11 92.57 ± 0.13 74.29 ± 0.09

Table 2.6 The results of applying five end-to-end deep learning models on the transverse plane
(internal/external rotation), in terms of mean and standard deviation of Precision, Accuracy, Recall,
and F1 score, for classifying OA (190 subjects) and AS (49 subjects). The out-of-fold prediction
metrics of the models are calculated as the average of the repeated (10 runs) stratified ten-fold
cross-validation

Model Precision Accuracy Recall F1

Time-CNN 91.94 ± 0.12 93.78 ± 0.11 99.21 ± 0.007 94.96 ± 0.08

t-leNet 95.53 ± 0.13 95.93 ± 0.12 99.63 ± 0.011 97.03 ± 0.08

FCN 66.33 ± 0.21 66.68 ± 0.22 83.57 ± 0.12 73.10 ± 0.17

Encoder 88.96 ± 0.12 89.09 ± 0.11 90.63 ± 0.12 89.24 ± 0.11

ResNet 93.91 ± 0.14 94.25 ± 0.15 97.68 ± 0.06 95.44 ± 0.11

Table 2.7 The results of applying five end-to-end deep learning models on the three-variate knee
kinematic time series jointly, in terms of mean and standard deviation of Precision, Accuracy,
Recall, and F1 score, for classifying OA (190 subjects) and AS (49 subjects). The out-of-fold
prediction metrics of the models are calculated as the average of the repeated (10 runs) stratified
ten-fold cross-validation

Model Precision Accuracy Recall F1

Time-CNN 88.36 ± 0.11 91.81 ± 0.09 98.73 ± 0.009 92.29 ± 0.07

t-leNet 95.65 ± 0.13 96.14 ± 0.11 99.84 ± 0.004 97.18 ± 0.08

FCN 86.57 ± 0.14 89.76 ± 0.11 97.89 ± 0.03 91.35 ± 0.09

Encoder 83.17 ± 0.16 86.25 ± 0.15 95.15 ± 0.08 88.33 ± 0.12

ResNet 90.95 ± 0.12 93.11 ± 0.11 98.68± 0.01 94.24 ± 0.08

2.5 Discussion and Conclusion

In this study we investigated the application of machine learning techniques to
differentiate between gait patterns of OA patients and AS participants using raw
knee kinematic data. To the best of our knowledge, the present study is the
first to explore the application of deep learning approaches, which obviates the
need for feature engineering. The developed techniques have been tested on a
database collected from different sites to have a larger number of OA patients and
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Fig. 2.8 Statistical comparison of classifiers over multiple datasets: a critical difference diagram
showing pairwise statistical difference comparison of 5 end-to-end deep learning models on the
sagittal, frontal, and transverse knee kinematic datasets, and the three-variate time series as well.
Average ranks of examined models are presented. A thick horizontal line shows a group of
classifiers that are not-significantly different in terms of accuracy

AS participants compared to previous studies, which gives better generalization
capabilities (Mezghani et al. 2018).

We believe that gait curves classification relies heavily on the output of the pre-
processing step. That is why, we performed pre-processing steps for summarizing
the knee kinematic signals of asymptomatic and osteoarthritis subjects. Our analysis
takes into consideration the within-subject variability. The proposed methods make
it possible to solve two main problems encountered in clinical practice: the removal
of outliers and the selection of reliable curves to represent the gait of a given subject.
The robust estimation of variability in a family of gait curves is itself a non-trivial
challenge. For this issue, we supported the use of boxplot which provide adequate
coverage to the kinematic curves employed in this study. We demonstrated that
the variability among a subject’s family of curves, as estimated by boxplot, can be
minimized by the removal of outlying curves and further reduced by the subsequent
selection of the most repeatable cycles as representative of a subject’s gait. We
point out that reducing variability has been used to obtain representative patterns.
However, it is worth mentioning that the within-subject variability from stride-
to-stride carries important information and is an important predictor for various
neurological (such as cerebral palsy) and age-related diseases, which lead to inflated
stride-to-stride variability during gait. In these contexts, pre-processing techniques
should be performed prudently for addressing variability issues.

Descriptive statistics such as peak angles are commonly extracted from the gait
signal. In this study, the entire signal is employed as the initial features. End-to-
end deep learning approaches come to remove the bias due to handcrafted features,
thus enabling the network to learn the most discriminative useful features for the
classification problem. We started from the most successful existing deep learning
models applied in various time series domains in order to answer the question of
selecting the most appropriate and best-performing model for the knee kinematic
time series classification problem to distinguish knee OA and AS participants. We
discovered how to fit five end-to-end deep learning models to a univariate (one plane
of motion at a time) and multivariate knee kinematic time series (multiple planes of
motion at a time) classification problem. An average improvement on multivariate
time series classification has been observed in comparison with univariate time
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series classification. In the literature, the focused analysis using each plane data
separately corroborates that the abduction/adduction patterns are the most discrim-
inative patterns that are able to distinguish OA and AS participants (Cooke et al.
2007; Cerejo et al. 2002; Sharma et al. 2001; Mezghani et al. 2015). Additionally,
we used a 3-D N × T × m tensor to represent the time series data, in which N

is the number of samples or depth, T is the time step, and m is the number of
features. Besides, we dealt with imbalance problem in the classification stage. Even
though we found promising results for knee kinematics time series classification
using end-to-end deep learning models, the problem remains challenging. Further
studies, using different datasets, will be needed before confident general conclusions
about the relative suitability of different deep learning models can be given. A first
perspective is to fine-tune the deep learning models with much larger datasets and
conduct more extensive experiments on knee kinematic time series.

In a future work, we intend to consider each participant in the dataset to be
represented by a vector of 15 cycles and not their mean, as a data augmentation
solution. Moreover, features could be learned independently on each plane, then
the learned features would be concatenated and fed into the classifier. We could
also look in more details at multivariate time series classification, where models
are jointly trained for all three planes (sagittal, frontal, and transverse). We intend
also to compare the deep learning models toward traditional machine learning
algorithms applied to a set 70 handcrafted features from the knee kinematic data
curves (Mezghani et al. 2018; Cherif et al. 2018). The feature extraction methods
is based on variables routinely assessed in clinical biomechanical studies of knee
OA populations, such as maximums, minimums, varus and valgus thrust, angles
at initial contact, mean values, and range of motion (ROM) throughout gait cycles
(Mezghani et al. 2018). It is common practice to extract subsequences from time
series to do classification. However, in our case, we should take into consideration
the gait cycle events and phases, to segment appropriately. In our problem settings,
the gait cycle event-based segmentation techniques would be more adequate than the
sliding window segmentation technique. The former would split the knee kinematic
signal based on the gait cycle events (Heel Strike, toe-off, etc.), whereas the latter
split the signal into windows of a fixed size. A suggested hypothesis is to find a
sub-cycle or phase of the overall gait signal which contains the relevant information
for the correct discrimination of subjects from different groups.

We intend also to understand the learned features by the deep learning models by
applying Class Activation Map (CAM) (Zhou et al. 2016), after improving accuracy,
and compare them to the previously cited handcrafted features.
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Chapter 3
Nonlinear Smoothing of Core Body
Temperature Data with Random Gaps
and Outliers (DRAGO)

A. Parekh, I. W. Selesnick, A. Baroni, O. M. Bubu, A. W. Varga,
D. M. Rapoport, I. Ayappa, E. M. Blessing, and R. S. Osorio

3.1 Introduction

Circadian rhythms are physiologic and behavioral cycles with a period of approx-
imately 24 h in healthy individuals (Zee et al. 2013). These physiologic and
behavioral cycles are generated by the endogenous biological pacemacker, the
suprachiasmatic nucleus (SCN), located in the anterior hypothalamus (Golombek
and Rosenstein 2010). The biological processes of sleep-wake cycle and body
temperature follow in sync by the circadian rhythms, and alterations in these
rhythms can lead to circadian rhythm disorders such as an irregular sleep-wake
rhythm disorder, which is prevalent in subjects with traumatic brain injury (Zee
and Vitiello 2009). Moreover, circadian rhythm alterations may also be observed
in neurodegenerative diseases such as Alzheimer’s disease (Zee and Vitiello 2009;
Skene and Swaab 2003; Dowling et al. 2008; Monk et al. 1995).
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3.1.1 Measuring Core Body Temperature

Core body temperature (CBT) is considered an objective measure of the human
circadian rhythm and is known to characterize their circadian phase (Wever 1975).
The CBT is typically measured from either the esophagus, nasopharynx, rectum,
or tympanum/auditory meatus (Fulbrook 1993). While rectal measurements of the
CBT are considered to be the gold standard, compliance and duration of recording
are the common challenges complicating reliable measurements. In recent years,
there is a growing interest in utilizing ingestible capsules such as the CorTemp
ingestible pill (CorTemp® HQ Inc., Palmetto, FL, USA.) for measuring CBT
(Monnard et al. 2017). The CorTemp® ingestible pill sensor wirelessly transmits
temperature measurements to a recorder worn on the waist as it travels through the
digestive tract. The CBT measured using the ingestible pill has a good agreement
with the rectal core body temperature, which is a gold standard method of circadian
rhythm measurement (Byrne and Lim 2007; Duffy et al. 1999). Moreover, the
circadian profile classically exhibited in free-living humans was also seen using
CBT measured with the CorTemp pill (Monnard et al. 2017). The CBT recordings
using the CorTemp pill can be extended over several days with the usage of multiple
pills taken successively.

The measurement of CBT using CorTemp pill, while feasible and accurate,
suffers from numerous challenges. Most noteworthy is the issue of fast “turbo” gut
transit (Monnard et al. 2017): one in every five subjects discharge the pill in < 15 h
after ingestion. As a result, any measurement of a roughly 24-h circadian rhythm is
challenging. During sleep it has been known that homeotherms conserve energy by
lowering body temperature. However, when recording CBT using the CorTemp pill
during sleep, it was also reported that body movements may count for individual
variations in the expected nocturnal decline of CBT (Monnard et al. 2017).

As noted before, the CorTemp pill wirelessly transmits CBT data to a waist-
worn recorder. This waist-worn recorder must be in close proximity to the pill
at all times. It has been reported that due to this limitation of the CorTemp pill,
large temperature swings outside of normal ranges can be observed (Monnard et al.
2017). Notably, these swings were increasingly observed in subjects with abdominal
adiposity (waist circumference > 100 cm). Previous studies have discarded values
>2 standard deviations (SD) from the mean in a moving window to correct for these
temperature swings. However, this resulted in many data points being unusable for
analyses (Monnard et al. 2017). Moreover, ingestion of hot liquids also results in
these temperature swings.

In addition to the noise in CBT due to physiologic changes, the CorTemp
pill data also consists of noise because of the way the data is collected. The
CorTemp pill data contains missing values whenever the waist-worn receiver is out
of range (e.g., during showers). Furthermore, electromagnetic interference from the
surroundings also impacts the CorTemp pill data resulting in outliers (spikes). The
presence of random gaps and outliers in the raw CBT signal can lead to inaccurate
measurements of several features of an individual’s circadian rhythm, (e.g., period,
mean temperature, timing of peak and nadir temperatures, etc.) (Refinetti et al.



3 Nonlinear Smoothing of Core Body Temperature Data with Random Gaps. . . 65

97.5

98

98.5

99

99.5

100

100.5
T

em
pe

ra
tu

re
 (

°F
)

Fig. 3.1 An 18-hour segment of core body temperature (CBT) measured using the CorTemp
ingestible pill. The data consists of random gaps (missing data) and outliers (spikes)

2007). As a result, it is not uncommon to either discard the entire CBT data or
in some cases repeat the CBT measurements. Figure 3.1 shows an 18-hour segment
of CBT data collected using CorTemp pill. Random gaps and outliers (spikes) can
be seen throughout the recording. In addition, variations of < 0.05◦F are constantly
seen throughout the CBT data segment.

The CorTemp pill receiver allows the user to specify a sampling rate that can
range from 1 sample every 10 s (0.1 Hz) to an hourly sampling rate. The higher
sampling rates allow for a better temporal resolution but the resulting measurements
are highly sensitive to the various forms of noise described previously. On the other
hand, an hourly sampling rate does not allow for studying the micro-oscillations in
the CBT. The CBT data is uniformly sampled with the prespecified sampling rate;
however, the data obtained can be non-uniformly sampled as well. Notably, any
interaction with the receiver to check for the temperature measurements results in
the measurements being non-uniformly sampled. As an example, if the sampling
rate is set to 1 sample every 10 s and if the receiver sends a signal requesting the
temperature at 25 s, then the data collection resets and starts collecting 1 sample
every 10 s starting at 25 s, i.e., the next 3 samples would be at 35, 45, and 55, instead
of 30, 40, and 50, which would have been the case if the receiver didn’t send a signal
requesting the current temperature.

3.1.2 Analysis of Core Body Temperature Measurements

The CBT data is always pre-processed. The pre-processing of CBT data ensures
signal integrity. Briefly, the steps involved in pre-processing are:

1. Re-gridding: As described previously, often the CBT data collected using the
CorTemp pill is non-uniformly sampled. As a first step, it is often beneficial to
re-grid the data to a uniformly sampled grid. Common interpolating techniques
such as linear or spline interpolation can be used for re-gridding (Akima 1970).
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2. Missing Data: Missing data up to a few samples, generally less than 20% of
the entire duration of the signal, can be imputed based on traditional methods
such as averaging, similar response pattern imputation, and maximum likelihood
estimation (Enders 2010). However, most of these methods assume that the
underlying data is stationary, which is not met in the case of CBT signals. Newer
methods such as wavelet-lifting (Knight et al. 2012) can be used to handle
missing or non-uniformly sampled data as well.

3. Outlier removal: Traditional methods for outlier removal consist of either
replacing them with more moderate values (e.g., mean of few preceding samples)
or treating them as missing values and imputing as above. However, if the data
are not missing completely at random, which is the case for CBT data, such
outliers removal techniques bias the underlying signal model.

Pre-processing of the CBT data as described above is imperative to analyze its
periodicity. In addition to Fourier and Wavelet-based methods, other periodogram-
based approaches involve the Lomb-Scargle periodogram (Leise 2013; Scargle
1982; Lomb 1976). The Lomb-Scargle periodogram can handle missing data as
well as non-uniformly sampled data. However, in the event of outliers (spikes)
which result in a sub-optimal signal-to-noise ratio, the estimates obtained by the
Lomb-Scargle periodogram may not be reliable (VanderPlas 2017).

3.1.3 Contribution

In this chapter, we propose a pre-processing method for the CBT data collected
using CorTemp pill. We propose a principled convex optimization based framework.
The proposed framework nonlinearly smoothes the CBT data while correcting for
missing data and random gaps in the data. To our knowledge, this is the first such
unified framework proposed for pre-processing the CBT signal that is capable of
tackling both random gaps and outliers in a single pass. We hypothesize that the
proposed framework improves SNR of the CBT signal thereby leading to a better
estimate of the period using the Lomb-Scargle Periodogram. It is worth noting
that the proposed framework can be applied to other time-series signal that exhibit
similar behavior: smooth signal with random gaps and outliers.

The rest of the chapter is organized as follows. In Sect. 3.2, we describe
the preliminaries for encoding random gaps in the input signal. In Sect. 3.3, we
define the signal model and an objective function for estimating the underlying
smooth signal. Here we also propose an iterative algorithm using the majorization-
minimization procedure and demonstrate its performance on simulated data. In
Sect. 3.4, we show the utility of the proposed framework in estimating circadian
rhythm using CBT data from the CorTemp ingestible pill from fully entrained
cognitively normal elderly subjects.
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3.2 Preliminaries

3.2.1 Notation

We denote vectors and matrices by lower and upper case letters, respectively. The
N -point signal y is represented by the vector

y = [y0, . . . , yN−1
]T

, y ∈ R
N, (3.1)

where [·]T represents the transpose. The �1 and �2 norm of the vector y are defined
as

‖y‖1 :=
∑
n

|yn|, ‖y‖2 :=
(∑

n

|yn|2
)1/2

(3.2)

We define the second-order difference matrix D as

D =

⎡
⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
. . .

1 −2 1

⎤
⎥⎥⎥⎦ . (3.3)

Using the matrix D of size (N − 1) × N , the second-order difference of an N -point
discrete signal x is given by Dx.

3.2.2 Encoding Random Gaps in the Input Signal

Suppose only K samples of an N -point input signal q are observed, where K <

N . This is particularly true when a given signal q contains gaps that are randomly
distributed or when non-uniformly sampled data is re-gridded to a uniform grid. We
express the observed values q̂ as

q̂ = Sq, q̂ ∈ R
K, q ∈ R

N, (3.4)

where S ∈ R
K×N is a sampling matrix. As an example, if only the first, second, and

last elements of a 5-point signal q are observed, then the matrix S is given by

S =
⎡
⎣1 0 0 0 0

0 1 0 0 0
0 0 0 0 1

⎤
⎦ . (3.5)
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Note that the matrix S is deduced from the input data by simply deleting the relevant
rows from an N - by-N identity matrix. For the example shown above, the third and
fourth rows of a 5-by-5 identity matrix are deleted to derive the matrix S. The matrix
S satisfies the properties listed below. We will use these properties throughout the
paper.

1. The matrix S satisfies the following identities:

SST = I, (3.6)

where I is the K × K identity matrix.
2. The matrix S satisfies

ST S = diag(s), s ∈ R
N, (3.7)

where diag(s) denotes a diagonal matrix with s as its diagonal. For example, with
S in (3.5), we have

ST S =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, (3.8)

which can be expressed as ST S = diag ([1, 1, 0, 0, 1]).
3. The matrix ST represents zero-filling. As an example, for the matrix S in (3.5),

we have

ST y =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦

·
⎡
⎣y0

y1

y2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

y0

y1

0
0
y2

⎤
⎥⎥⎥⎥⎥⎦

. (3.9)

3.2.3 Majorization-Minimization

Majorization-minimization (MM) is an approach that is widely used to solve
optimization problems which cannot be solved directly (Figueiredo et al. 2007).
Here instead of minimizing the objective function, the MM approach solves a
sequence of optimization problems. With F(x) as the objective function, the MM
approach solves Gk(x), k = 0, 1, 2, . . . with the rationale that solving G is easier to
solve than F . As a result, the MM approach produces a sequence xk that is obtained
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by minimizing Gk−1(x). In order to use the MM approach, at every iteration, a
suitable function Gk must be specified which satisfies the following properties:

1. Gk must be convex for all k.
2. Each Gk must be a majorizer of F ,

Gk(x) � F(x), ∀x, (3.10)

3. Gk agrees with F at xk

Gk(xk) = F(xk) (3.11)

An example majorizer G(x) = ax2 + b of a convex function F(x) = |x| is shown
in Fig. 3.2.

The MM approach to minimize the function F can then be summarized as
follows:

(a) Set k = 0. Initialize x0.
(b) Choose Gk(x) such that it satisfies the properties above.
(c) Set xk+1 as the minimizer of Gk(x), i.e.,

xk+1 = arg min
x

Gk(x) (3.12)

(d) Set k = k + 1 and go to step (b)

x

0
-1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2 |x|

ax2 + b

Fig. 3.2 Majorization of f (x) = |x| by a quadratic function g(x) = ax2 + b. Note that g(x) �
f (x) for all x values and g(x) = f (x) for x = 0.49 in this example
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When F is a convex function, then under mild conditions, the sequence xk

generated as result of the MM iterations convergers to the minimizer of F (see
Figueiredo et al. 2007 and the references therein). Note that if the initial value of x0
is zero, the subsequent MM iterations converge to zero. This is commonly referred
to as the “zero-locking” issue. In order to prevent zero-locking, the initial value of
x0 should be set appropriately.

3.3 Nonlinear Smoothing of Data with Random Gaps
and Outliers (DRAGO)

In this section, we derive the objective function for nonlinear smoothing of data
with random gaps and outliers. We then proceed to derive an algorithm using the
MM approach and evaluate its performance on a simulated example.

3.3.1 Problem Formulation

We assume that the underlying true CBT data is smooth, i.e., with finite energy, and
that the observed smooth signal contains random gaps and outliers (spikes). To this
end, let y be the N -point observed signal with random gaps and outliers in presence
of additive white Gaussian noise. The signal model can then be written as

Sy = Sf + x + w, (3.13)

where f is the smooth signal, x is the sparse signal representing outliers, S is the
given sampling matrix, and w represents additive white Gaussian noise (AWGN)
with a standard deviation of σ . The matrix S encodes the position of the gaps, and
we assume it to be known. In order to estimate the underlying smooth signal f , we
consider the following sparse-regularized optimization problem

{f̂ , x̂} = arg min
f,x

{
F(f, x) := 1

2
‖Sy − Sf − x‖2

2 + λ1

2
‖x‖1 + λ2

2
‖Df ‖2

2

}
,

(3.14)

where λ1 and λ2 are the regularization parameters. The objective function in (3.14)
promotes the sparsity of the signal x using the �1 norm while preserving the
smoothness of f using the energy of its second-order derivative. If x = 0, i.e., the
observed signal does not contain outliers, then the resulting optimization problem
F(f ) reduces to a smoothing operation using least squares weighted regularization.
On the other hand, if f = 0, i.e., the observed signal is not smooth, but is sparse
and contains outliers, then the optimization problem reduces to an instance of the
�1 norm regularized least squares. It is worth noting that the proposed objective
function does not require the input signal to be stationary.
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3.3.2 Algorithm

We derive an algorithm for the proposed objective function in (3.14) using the
majorization-minimization (MM) procedure (Figueiredo et al. 2007). Note that the
proposed objective function (3.14) is convex, and hence global minimum of (3.14)
can be reliably obtained. As described in Sect. 3.2.3, the MM principle consists of
the iteration

{f (i+1), x(i+1)} = arg min
f,x

F M(f, x; x(i)), (3.15)

where i is the iteration index and F M denotes a majorizer of the objective function
F . In particular, we have

F M(f, x; v) � F(f, x), for all f, x, v, (3.16)

F M(f, v; v) = F(f, v), for all v. (3.17)

We define the majorizer F M as

F M(f, x; v) :=1

2
‖S(y − f ) − x‖2

2 + λ2

2
‖Df ‖2

2

+ λ1

2
xT
[
W(v)

]
x, (3.18)

where W(v) is a diagonal matrix defined as

[
W(v)

]
n,n

= 1

|vn| . (3.19)

To obtain the solution to (3.15), we minimize (3.15) with respect to f and x

alternatively. Minimizing F M with respect to x gives

x = (I + λ1[W(v)])−1
S(y − f ). (3.20)

Equivalently,

xn = 1

1 + λ1[W(v)n,n] [S(y − f )]n,n (3.21)

= 1

1 + λ1/|vn| [S(y − f )]n,n (3.22)

= |vn|
|vn| + λ1

[S(y − f )]n,n . (3.23)
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Using (3.20) in (3.18) gives

F M(f ; v) = 1

2
‖S(y − f ) − (I + λ1[W(v)])−1

S(y − f )‖2
2

+ λ2

2
‖Df ‖2

2 +
(

λ1

2
(y − f )T ST

(
I + λ1[W(v)])−1

× [W(v)](I + λ1[W(v)])−1
S(y − f )

)
, (3.24)

which can be re-written as

F M(f ; v) = 1

2
‖A1(v)S(y − f )‖2

2 + λ2

2
‖Df ‖2

2

+ 1

2
(y − f )T ST [A2(v)]S(y − f ), (3.25)

where A1 and A2 are diagonal matrices defined as

[A1(v)] := I −
(
I + λ1[W(v)]

)−1
(3.26)

[A2(v)] := λ1

(
I + λ1[W(v)]

)−1×

[W(v)]
(
I + λ1[W(v)]

)−1
(3.27)

The matrices A1 and A2 can be written alternatively using (3.23) as

[A1(v)]n,n = λ1

|vn| + λ1
, (3.28)

[A2(v)]n,n = λ1|vn|
(|vn| + λ1)2

. (3.29)

On the other hand, minimizing F M with respect to f gives

f = [ST ([A1(v)]2 + [A2(v)])S + λ2D
T D
]−1

× ST ([A1(v)]2 + [A2(v)])Sy. (3.30)

Note that

[A1(v)]2
n,n + [A2(v)]n,n =

(
λ1

|vn| + λ1

)2

+ λ1|vn|
(|vn| + λ1)2 (3.31)
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Algorithm 1 DRAGO iterative algorithm for smoothing of data with random gaps
and outliers. The objective function is given in (3.14)

1: input: y ∈ R
N, λ1, λ2

2: initialize: x = Sy

3: repeat
4: An,n = λ1/(|xn| + λ1)

5: B = ST AS + λ2D
T D

6: f = B−1ST ASy

7: xn = |xn| [S(y − f )]n / (|xn| + λ1)

8: until convergence

= λ1

|vn| + λ1
. (3.32)

As a result, we have

f =
(
ST [A(v)]S + λ2D

T D
)−1

ST [A(v)]Sy, (3.33)

where [A(v)] is a diagonal matrix with entries

[A(v)]n,n = λ1

|v(n) + λ1| . (3.34)

Note that the matrix to be inverted in (3.33) is banded.1 As a result, the equation
(3.33) can be implemented efficiently.

The MM procedure (3.15) gives rise to the following iterative algorithm for
smoothing of data with random gaps and outliers (DRAGO), which is also sum-
marized in Table 1.

[A(i)]n,n = λ1

|x(i)
n | + λ1

, (3.35a)

f (i+1) =
(
ST A(i)S + λ2D

T D
)−1

ST A(i)Sy, (3.35b)

x(i+1)
n = |x(i)

n |
|x(i)

n | + λ1

[
S(y − f (i+1))

]
n,n

. (3.35c)

1A banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal band and
zero or more diagonals on either side.
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In order to avoid the zero-locking issue, wherein a chosen value for x(0) results in
all subsequent iterations to be zero, i.e., xi+1

n = 0, i > 0, for alln, we set the initial
value for the iterative algorithm as x(0) = Sy.

3.3.3 Simulated Example

We illustrate the performance of the proposed DRAGO method for smoothing data
with random gaps and outliers using the following simulated example. Shown in
Fig. 3.3a is the simulated data which consists of two low-frequency sinusoids that
are uniformly sampled. Figure 3.3b shows the observed data y with missing data
(random gaps; 45% missing) and outliers(spikes). Running the DRAGO iterative
algorithm in Table 1 with y as the input results in the estimated signal f shown in
Fig. 3.3c, with the input signal y shown in the background (light gray) and the error
in estimation is given by root mean square error (RMSE), defined as follows:

RMSE(xorg, xest) := ‖xorg − xest‖2
2

‖xorg‖2
2

. (3.36)

The estimated outliers x are shown in Fig. 3.3d and the residual y − (x + f )

is shown in Fig. 3.3e. It can be seen that residual does not contain any outliers or
components (peaks) of the smooth signal. Further, the estimated smooth signal f is
free of any random gaps or outliers.

The Lomb-Scargle power spectral density (PSD) estimate of the simulated data s

is shown in Fig. 3.4a. The Lomb-Scargle PSD estimate shows prominent peaks (red
circles in Fig. 3.4a) at the two fundamental frequencies of x. As noted previously,
the Lomb-Scargle PSD estimate can be calculated in the presence of outliers (spikes)
and random gaps (missing data). The Lomb-Scargle PSD estimate of the observed
signal y without any pre-processing is shown in Fig. 3.4b. It can be seen that a
false peak appears at 0.018 Hz. While it may be possible to still detect the two
peaks corresponding to the fundamental frequencies of x, this example highlights
the issues with using the Lomb-Scargle PSD estimate without any pre-processing.
On the other hand, the DRAGO pre-processed estimate f retains the two prominent
peaks at the fundamental frequencies of x while at the same time showing the
attenuation at higher frequencies as observed in the Lomb-Scargle PSD estimate
of the simulated data s (see Fig. 3.4c). The progression of the DRAGO iterative
algorithm using the MM procedure for the input data y in Fig. 3.3a is shown in
Fig. 3.5. It can be seen that the algorithm converges in about five iterations.

In order to further evaluate the robustness of the proposed DRAGO iterative
algorithm, we assess its performance across various levels of (a) missing data and (b)
additive white Gaussian noise (AWGN). Figure 3.6 shows the RMSE as a function
of % missing data for the simulated data s in Fig. 3.3a. The error stays relatively
low when up to 50% of the data is missing, beyond which the algorithm is fairly
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Fig. 3.3 Illustration of the
proposed DRAGO method on
simulated data s. The
observed signal y shown in
(b) contains missing data
(random gaps) and outliers.
DRAGO estimated smooth
signal (f ) is shown in (c).
The outliers are shown in (d)
with the residual values in (e)
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a Simulated smooth data (s)

b Noisy data (y) with random gaps (45% Missing) and outliers

c Estimated smooth signal (f). RMSE = 0.10

d Estimated outliers (x)

e Residual y - (x + f).

unstable and the estimates cannot be obtained reliably. The noise level in this case
was kept fixed at σ = 0.25.

Using the same simulated data s, we further assess the performance of the
proposed DRAGO iterative algorithm across varying levels of noise. To this end,
Fig. 3.7 shows the RMSE as a function of noise level σ with 0 � σ � 2.
Figure 3.7 shows the RMSE for several instances of the simulated data with varying
percentages of missing data (0, 20, 40, and 50%). As expected, the error increases
proportional to the level of noise (σ ) as well as with increasing % missing data.

3.3.4 Parameter Selection

The proposed DRAGO iterative algorithm requires the selection of two regulariza-
tion parameters λ1 and λ2. Recall that λ1 influences the sparsity of the estimated
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Fig. 3.4 Lomb-Scargle power spectral density estimates for the (a) simulated smooth data s, (b)
noisy data y with random gaps and outliers, and (c) smooth signal estimate f using DRAGO. The
signal s, y, and f are shown in Fig. 3.3

outliers x and λ2 influences the smoothness of the estimate f . Here we detail a
pseudo-analytic approach to set these parameters.

Consider the simpler problem wherein the input data y has no gaps or noise.
In other words, we observe the underlying smooth signal with only outliers, but
without random gaps or noise. Recall that in this case the matrix S, which is used
to encode random gaps, reduces to the N × N identity matrix and the proposed
optimization problem in (3.14) reduces to
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Fig. 3.5 Value of the
objective function in (3.14)
for every iteration using the
simulated data in Fig. 3.3a as
an example

Iteration number (k)

10
0 5 10 15

12

14

16

F
(f

k ,
 x

k )

Fig. 3.6 Performance of
DRAGO iterative algorithm
across various levels of
missing data. Shown here is
the error (RMSE) as a
function of % missing data
for the simulated smooth data
in Fig. 3.3 with σ = 0.25
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{f̂ , x̂} = arg min
f,x

{
F(f, x) := 1

2
‖y − f − x‖2

2 + λ1

2
‖x‖1 + λ2

2
‖Df ‖2

2

}
.

(3.37)

If the solution f̂ were known, then x̂ can be obtained by solving the optimization
problem

x̂ = arg min
x

{
F1(x) := 1

2
‖y − f̂ − x‖2

2 + λ1

2
‖x‖1

}
, (3.38)

which is the sparse regularized least squares problem and whose solution is given
explicitly by

x̂ = soft(y − f̂ , λ1), (3.39)

where soft(·, ·) is the soft-threshold function (Donoho 1995). If we assume that the
solution f̂ is sufficiently close to the true signal f , then y − f̂ is the additive white
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Fig. 3.7 Performance of DRAGO iterative algorithm across various levels of noise. Shown here
is the error (RMSE) as a function of noise level (σ ) for the simulated smooth data in Fig. 3.3. The
different lines correspond to different levels of % missing data

Gaussian noise signal w. In this case, λ1 should be chosen large enough so that x̂

contains only true outliers. However, it should not be chosen arbitrarily large so as
to exclude outliers from x̂. As a result, it is reasonable to set λ1 to three times the
standard deviation of the noise (i.e., λ1 = 3σ ). Since we expect that for the additive
white Gaussian noise signal with zero mean, 99.7% of the values will lie within 3σ .
As a result, we suggest setting λ1 as

λ1 = cσ, c ∈ (2, 3). (3.40)

In order to set λ2, consider the simpler problem where in the observed data y

does not contain any gaps or outliers. In other words, we observe a low-pass signal
f with additive white Gaussian noise only. In this case, the optimization problem in
(3.14) reduces to

f̂ = arg min
f

{
F2(f ) := 1

2
‖y − f ‖2

2 + λ2

2
‖Df ‖2

2

}
, (3.41)

whose solution is given explicitly by

f̂ =
(
I + λ2D

T D
)−1

y. (3.42)



3 Nonlinear Smoothing of Core Body Temperature Data with Random Gaps. . . 79

This solution for f̂ can be interpreted as a linear time-invariant (LTI) filter H with
a frequency response

H(ω) = 1

1 + λ2|D(ω)|2 , (3.43)

where D(ω) is given by

D(ω) = (1 − e−jω)2 (3.44)

= −4e−jω sin2(ω/2). (3.45)

Hence H(ω) can be written as

H(ω) = 1

1 + 16λ2 sin4(ω/2)
. (3.46)

The frequency response H(ω) is that of a low-pass filter with H(0) = 1, i.e., with a
DC gain of unity. We can use this frequency response H(ω) to solve for λ2 at some
frequency ω0. Thus, λ2 can be expressed as

λ2 = 1

16 sin4(ω0/4)

(
1

H0 − 1

)
, H(ω0) = H0. (3.47)

As such λ2 can be obtained using the pair (ω0,H0). In particular, we can set the filter
so that its passband contains the spectrum (if known) of the signal f . For example,
we may define the passband edge frequency as ωp for which H(ωp) = 0.98.

Since the value of λ2 determines the frequency response H(ω) of the filter, we
propose to set λ2 according to an appropriate choice of filter. In particular, if a
segment of the input data is available, one that is not corrupted by random gaps or
outliers, then this segment can be used to determine a suitable value of λ2. In this
case, we apply the low-pass filter prescribed by H(ω) to this data and vary λ2 until
the result is satisfactory (so that the output signal is smooth but not distorted).

It should be noted that the strategies described above for setting λ1 and λ2 make
certain assumptions about the underlying signal which may not be true for real data.
However, these values can be used as a starting point to then empirically set the
parameters λ1 and λ2 so as to achieve the best estimate of the smooth signal f

possible. Indeed, this was the approach used to set the regularization parameters for
the simulated example in Fig. 3.3.
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3.4 Estimating Circadian Rhythm Using DRAGO Processed
Core Body Temperature Signal

We now illustrate the application of the DRAGO iterative algorithm for estimating
circadian rhythm from raw CorTemp pill data. Figure 3.8a, c shows the raw data
from two fully entrained subjects who participated in a parent study on orexin and
tau pathology in cognitively normal elderly. The circadian rhythm, i.e., period of
the CorTemp data, estimated using the Lomb-Scargle PSD estimate is shown in
Fig. 3.9a, c for Subject 1 and 2, respectively. These subjects were fully entrained
in a 24-h environment, confirmed with 7-day actigraphy, and had no complaints
of circadian rhythm sleep disorders. Entrainment is defined as alignment of the
circadian system to the 24-h day. As a result, these subjects are expected to
demonstrate a roughly 24-h circadian rhythm. The subjects were administered the
pill on the first night of their scheduled two-night in-lab polysomnography visits,
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Fig. 3.8 Core body temperature data using CorTemp ingestible pill from fully entrained cogni-
tively normal subjects is shown in (a) and (c). The DRAGO smoothed signal is shown (solid black
line) in (b) and (d) for the two subjects, respectively. The gray background shows the original
unprocessed signals
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Fig. 3.9 Lomb Scargle PSD estimates for the corresponding data in Fig. 3.4. Note that the
circadian rhythm calculated from the raw data in Fig. 3.4a and Fig. 3.4c is inaccurate as we expect
a roughly 24-h circadian rhythm
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and the data was collected until the pill was passed by the body (approx. 36–
40 h). The sampling rate for the CorTemp data was fixed at 1 sample per 25 s.
Note that the sampling rate is not uniform since datapoints are recorded when the
subjects manually read the temperature data. All subjects signed informed consent
documents, and the protocol for the study was approved by the NYU IRB and the
Mount Sinai IRB.

Figure 3.8b, d shows the result of using the DRAGO iterative algorithm on the
raw CorTemp data. Note that the data has been re-gridded to a sampling rate of
1 sample per second. It can be seen that the estimated smooth data contains no
outliers (e.g., significant outliers in Fig. 3.8c around 6PM) and the missing data
has been approximated with a smooth segment (e.g., the segment of missing data
in Fig. 3.8a around 3AM on Night 1). It worth noting that estimates of the mean
temperature from the smooth signal estimated using DRAGO are more accurate
due to the absence of outliers. The estimated circadian rhythm using the smoothed
CorTemp data for the Subjects 1 and 2 can be seen in Fig. 3.9b, d, respectively.
Figure 3.6 shows the circadian rhythm estimated from the raw data and the DRAGO
processed data for all the 18 subjects who participated in the parent study. It can be
seen that processing the CBT signal using DRAGO provides better circadian rhythm
estimates than using the raw signal alone. The DRAGO iterative algorithm takes on
an average 0.67 ± 0.02 s for a CBT signal with a duration of approx. 45 h.

One of the limitations of the proposed DRAGO framework is that it requires
the setting of two regularization parameters λ1 and λ2. For simulated data where
the ground-truth is available, often the parameters are set so as to minimize the
error criteria (RMSE). However, when no ground-truth data is available, a suggested
method is to synthetically set a segment of raw data as missing and/or with outliers
and tune the two parameters so as to obtain the lowest RMSE for that segment. We
used this method for processing the CBT signals from the 18 participants shown in
Fig. 3.10. In addition, as is seen often with imputation methods, when a significantly
large segment of data is missing, the reconstructed signal using the proposed

Fig. 3.10 Circadian rhythm
estimates using Lomb-Scargle
periodogram directly on the
raw and on the DRAGO
pre-processed CBT signal
from N=18 participants.
Median values are indicated
by the solid red lines. Light
colored patches represent
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DRAGO framework may not be accurate. Our ongoing work is directed toward
developing a theoretical framework for the setting of regularization parameters as
well as deriving bounds on the length of missing data when the reconstructed signal
using DRAGO may not be reliable.

3.5 Conclusion and Future Work

Ingestible pills allow feasible monitoring of core body temperature in a home-
based ambulatory setting. However, the presence of random gaps and outliers
hinders the assessment of circadian rhythm and its features. In this chapter we
detail our principled convex optimization based framework for smoothing the core
body temperature data with random gaps and outliers (DRAGO). We propose a
convex objective function utilizing the sparsity of the outliers and the smoothness
of the underlying signal. We derive a computationally efficient iterative algorithm
using the majorization-minimization procedure and demonstrate its performance
on simulated data as well as on actual data from fully entrained subjects with an
expected 24-h circadian rhythm. We show that the proposed method can reliably
estimate the underlying CBT signal and its features such as the period and phase.
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R21AG059179, AASM Foundation FP-199-18, BS-233-20, NSF CCF-1525398, and the Office of
Postdoctoral Affairs at the Icahn School of Medicine at Mount Sinai.

References

H. Akima, A new method of interpolation and smooth curve fitting based on local procedures. J.
ACM 17(4), 589–602 (1970)

C. Byrne, C.L. Lim, The ingestible telemetric body core temperature sensor: a review of validity
and exercise applications. Br. J. Sports Med. 41(3), 126–133 (2007)

D. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
G.A. Dowling, R.L. Burr, E.J. Van Someren, E.M. Hubbard, J.S. Luxenberg et al., Melatonin and

bright-light treatment for rest-activity disruption in institutionalized patients with alzheimer’s
disease. J. Am. Geriatr. Soc. 56(2), 239–246 (2008)

J.F. Duffy, D.J. Dijk, E.F. Hall, C.A. Czeisler, Relationship of endogenous circadian melatonin and
temperature rhythms to self-reported preference for morning or evening activity in young and
older people. J. Investig. Med. 47(3), 141–50 (1999)

C.K. Enders, Applied Missing Data Analysis (Guilford Press, New York, 2010)
M.A.T. Figueiredo, J.M. Bioucas-Dias, R.D. Nowak, Majorization–minimization algorithms for

wavelet-based image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007)
P. Fulbrook, Core temperature measurement in adults: a literature review. J. Adv. Nurs. 18(9),

1451–60 (1993)
D.A. Golombek, R.E. Rosenstein, Physiology of circadian entrainment. Physiol. Rev. 90(3), 1063–

1102 (2010)



84 A. Parekh et al.

M. Knight, M. Nunes, G. Nason, Spectral esti- mation for locally stationary time series with
missing observations. Stat. Comput. 22, 877–895 (2012)

T.L. Leise, Wavelet analysis of circadian and ultradian behavioral rhythms. J. Circadian Rhythms
11(1), 5 (2013)

N.R. Lomb, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci.
39(2), 447–462 (1976)

T.H. Monk, D.J. Buysse, C.F. Reynolds, D.J. Kupfer, P.R. Houck, Circadian temperature rhythms
of older people. Exp. Gerontol. 30(5), 455–474 (1995)

C.R. Monnard, E.J. Fares, J. Calonne, J.L. Miles-Chan, J.P. Montani et al., Issues in continuous 24-
h core body temperature monitoring in humans using an ingestible capsule telemetric sensor.
Front Endocrinol (Lausanne) 8, 130 (2017)

R. Refinetti, G.C. Lissen, F. Halberg, Procedures for numerical analysis of circadian rhythms. Biol.
Rhythm Res. 38(4), 275–325 (2007)

J.D. Scargle, Studies in astronomical time series analysis. II. statistical aspects of spectral analysis
of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

D.J. Skene, D.F. Swaab, Melatonin rhythmicity: effect of age and alzheimer’s disease. Exp.
Gerontol. 38(1–2), 199–206 (2003)

J.T. VanderPlas, Understanding the lomb-scargle periodogram. arXiv:17030982, pp. 1–54 (2017)
R. Wever, The circadian multi-oscillatory system of man. Int. J. Chronobiol. 3(1), 19–55 (1975)
P.C. Zee, H. Attarian, A. Videnovic, Circadian rhythm abnormalities. Continuum (Minneap Minn)

19(1) Sleep Disorders 132–47 (2013)
P.C. Zee, M.V. Vitiello, Circadian rhythm sleep disorder: irregular sleep wake rhythm type. Sleep

Med. Clin. 4(2), 213–218 (2009)



Chapter 4
Wearable Smart Garment Devices
for Passive Biomedical Monitoring

Chelsea Amanatides, Stephen Hansen, Ariana S. Levitt, Yuqiao Liu,
Patrick O’Neill, Damiano Patron, Robert Ross, Daniel Schwartz, Jesse Stover,
Md Abu Saleh Tajin, Genevieve Dion, Adam K. Fontecchio, Vasil Pano,
William M. Mongan, and Kapil R. Dandekar

4.1 Introduction

Textile-based wearable systems have the potential to enable unobtrusive monitoring
of ambulatory patients, improving Quality of life during critical care periods. Often,
patients are immobilized while tethered to a medical device, increasing the risk of
side effects such as bedsores, blood clots, and muscle atrophy. Wearable devices
embedded in textile garments allow a patient to be monitored in specified ways
and, potentially, to be actuated unobtrusively (e.g., via a noninvasive ventilator for
respiratory therapy). We have developed a knitted textile antenna (Mongan et al.
2016) that deforms as the wearer moves and tunes near the 902–928 MHz Industrial,
Medical, and Scientific (ISM) RFID frequency band in the United States. As RFID
interrogation signals are reflected by the knitted antenna and passive RFID chip,
the physical properties of the interrogation backscatter, such as the received signal
strength indicator (RSSI), are perturbed in a controlled and predictable manner. We
deploy biomedical sensors by fabricating knitted antenna and RFID chip assemblies
on a wearable textile garment.
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These sensors can enable real-time, unobtrusive, passive patient monitoring in a
number of settings, such as passive monitoring of uterine contractions in a pregnant
woman or respiration for apnea detection in an infant. Several elements of this
effort, including real-time capture, post-processing, and big data analytics of RFID
data, rely on a software module to capture and store this data in real time from
various hardware devices. However, this software module is dependent upon the
type of chip being sensed and the type of interrogator being used. Moreover, it is
necessary to compare this data to that collected by legacy medical equipment in
a clinical trial setting in order to measure performance of and determine viability
of the system. All of this necessitates a software framework for collecting data in
real-time from heterogeneous medical devices and RFID sensors simultaneously,
providing a consistent data representation for each.

RFID interrogation works by transmitting RF energy at a certain frequency
to a small chip. The chip may contain a state machine capable of performing
rudimentary collision avoidance to reduce the possibility that it responds at the
same time as another chip, which would result in interference in the returned signal.
The signal is then modulated and reflected back to the interrogator, either with
the aid of an external battery source (an “active” tag), or using only the original
interrogation signal as the energy source (a “passive” tag). The reflected signal
modulation contains information about the chip; specifically, an identifier string is
encoded into the response back to the interrogator. This chip is often embedded
within an item, which enables a mapping of the identifier string to an item in space.
This process is outlined in Fig. 4.4.

RFID has been used for localization or movement tracking of items in space by
observing changes in the physical properties of the reflected signal energy during
successive interrogations (Han et al. 2014; Nguyen et al. 2005; Yamanoi et al. 2004;
Schloter 2006; Wang et al. 2017; Li et al. 2016). For example, the received signal
strength indicator (RSSI) from successive interrogations may become stronger or
weaker as the chip is moved closer or farther from the interrogation source. If the
source or reference tags are in known locations, the movements of an RFID chip
and the item to which it is attached can be tracked (Amendola et al. 2014; Montaser
and Moselhi 2014; López et al. 2011; Dag and Arsan 2018; Truijens et al. 2014). In
addition to observing changes in the observed signal strength of the energy reflected
from the chip and received by the interrogator, changes in the phase angle (Qiu et al.
2017; López et al. 2017; Alsalih et al. 2014) and Doppler shift (Boyer 1963) have
been observed for chip tracking and associated subject movements or activities.

We similarly exploit observable changes in physical backscattered signal prop-
erties to detect subject activity state. Specifically, we have knitted a smart garment
“Bellyband” which embeds a small, passive RFID chip. Our aim is to detect fine
movements such as respiratory patterns, uterine contractions at the abdominal wall,
and electrical changes resulting from human heartbeats, by knitting an antenna
around the chip that deforms as the subject moves. We will consider respiratory
artifacts such as sleep apnea and respiratory rate as a case study here. For example,
during inspiration, a subject’s abdominal wall will expand, stretching the fabric
antenna; during expiration, the knitted antenna contracts again with the abdomen or
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Fig. 4.1 A knitted smart-fabric Bellyband is worn about the abdominal area by a mannequin
SimBaby (Laerdal), showing the knitted antenna as a gold rectangle of conductive yarn surrounding
the chip in the center (O’Neill et al. 2019). ©2019 IEEE. Reprinted, with permission, from An
Adaptive Search Algorithm for Detecting Respiratory Artifacts Using a Wireless Passive Wearable
Device. IEEE Signal Processing in Medicine and Biology (SPMB)

chest wall. The antenna tunes across a frequency band during this movement, which
perturbs the reflected physical signal to the interrogator. See Fig. 4.1 for an example
of the Bellyband, including the knitted antenna, on a mannequin SimBaby (Laerdal).

In this chapter, we address several challenges in order to employ RFID tech-
nology for movement or activity monitoring and synthesize those solutions into an
“end-to-end” system for generating, collecting, processing, and classifying signals
from knitted antennas using RFID systems for biomedical applications. First, RF
sheet antennas are usually made from solid conductive substrates such as copper
sheets, rather than from knitted conductive materials; fabrication modeling systems
must be synthesized with antenna modeling systems, and the resulting chip cannot
be soldered to the antenna. The antenna must be modeled so as to mitigate signal loss
due to its proximity to aqueous tissues of the human body. Commercial-off-the-shelf
(COTS) RFID interrogators in the United States must comply with Federal Commu-
nication Commission (FCC) regulations that require spread-spectrum operation in
the 900 MHz frequency band (U.S. Government Publishing Office 2018); this is
implemented via frequency hopping, such that the interrogation frequency iterates
every 200 ms over 50 channels, 500 kHz apart, between 902 and 928 MHz. Because
COTS RFID interrogators are typically designed for chip inventory purposes, the
repeated interrogation of those chips is intended to mitigate signal loss due to
reflected interference in a dense tag environment. Unfortunately, changes in inter-
rogation frequency perturb the observed physical properties in the backscattered
signal.

Because the physical properties are perturbed as the interrogation frequency is
changed, and because the tag identifier is more important in inventory applications
than the RF physical attributes associated with the interrogation, the physical
properties from successive tag reports are sometimes not retained in favor of merely
reporting the tag identifier in each interrogation. To obtain these RF physical
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attributes for processing, it is necessary to configure the interrogator to send a single
tag report for each interrogation, so that the physical backscatter signal properties
are retained; however, this results in network inefficiencies that can push process-
ing time beyond that conducive to real-time performance. To facilitate efficient
communication with the interrogator, we have designed a software framework for
communicating with heterogeneous Internet-of-Things sensor networks, including
RFID-based systems, capable of interrogating, storing, processing, and communi-
cating sensor readings for real-time classification. The software frameworks for
data collection and communication,1 and for sensor fusion and classification2 are
available on GitHub under a GPLv3 open-source license.

4.1.1 System Deployment

The Bellyband uses a Murata MAGICSTRAP RFID (Murata) chip, which we
interrogate using an Impinj R420 (Impinj) RFID interrogator. We have also used
an Intermec IP30 (Intermec) Bluetooth portable interrogator, an Impinj R1000
interrogator, and an Impinj XArray. The interrogator is placed at a distance from
the human subject based on the FCC Maximum Permissible Exposure (MPE)
of 0.6 mW/cm2 (U.S. Government Publishing Office 2018). At our minimum
separation of 50 cm and a maximum interrogation power of 1 W , the theoretical
MPE is 0.03 mW/cm2, which we confirmed via an RF power meter in the field.
A minimum distance of 50 cm will limit the peak Specific Absorption Rate (SAR)
below the maximum permissible 0.8 W/kg, as the SAR is 0.25 W/kg at 50 cm from
a 1 W interrogator (Fiocchi et al. 2013). A software module (described in Sect. 4.3)
drives the interrogator and stores or communicates sensor readings to a processing
framework for classification. The workflow is summarized in Fig. 4.2, and a sample
deployment can be seen in Fig. 4.3 and summarized by the block diagram in Fig. 4.4.

4.2 Functional Fabrics

We now describe two versions of the smart garment Bellyband that were produced
and the design decisions that were taken into account. The first generation of the
Bellyband was inductively coupled. However, in the second generation, the RFID
chip is soldered on top of a PCB (printed circuit board) and inserted into a pocket,
connecting two ports of the folded dipole structure.

1iot-sensor-framework (Mongan et al. 2020b) codebase: https://github.com/
drexelwireless/iot-sensor-framework.
2iot-processing-framework (Mongan et al. 2020a) codebase: https://github.com/
drexelwireless/iot-processing-framework.

https://github.com/drexelwireless/iot-sensor-framework
https://github.com/drexelwireless/iot-sensor-framework
https://github.com/drexelwireless/iot-processing-framework
https://github.com/drexelwireless/iot-processing-framework
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Fig. 4.2 A system-level block diagram of a deployed wearable RFID-based system. The subject
wears a knitted fabric Bellyband (which could be unobtrusively integrated as part of a traditional
garment), which responds to interrogations from an RFID interrogation antenna and stores data in
a storage node for processing and classification. The results of this processing can be visualized,
communicated to a predictive module, or forwarded for medical advice or for just-in-time wearable
actuation therapy

Fig. 4.3 A square RFID interrogator interrogates a knitted smart-fabric Bellyband (including
an embedded passive RFID chip) with a respiratory visualization plot on the middle laptop
screen (Patron et al. 2016). The laptop on the right and air compressor at the rear are used to
control the SimBaby mannequin to create ground-truth respiratory movements for passive wireless
monitoring. (©2016 IEEE. Reprinted, with permission, from On the Use of Knitted Antennas and
Inductively Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical
Circuits and Systems)
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Fig. 4.4 Block diagram of the RFID interrogator system. The RFID reader antenna powers up the
sensor over the air. The sensor replies to the reader in terms of RSSI. The continuous stretching
and relaxation of the wearable sensor causes the RSSI to fluctuate over time (Patron et al. 2016).
(©2016 IEEE. Reprinted, with permission, from On the Use of Knitted Antennas and Inductively
Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical Circuits and
Systems)

4.2.1 First Generation Knitted Antenna: Initial Prototype

The design procedure of the knitted strain sensor includes the selection of
conductive and non-conductive yarns, the RFID chip/transponder, and the RF
design (Patron et al. 2016). The design parameters for the first generation knitted
antenna are now described.

4.2.1.1 Fabric Material Selection

The knitted antenna consists of both conductive and non-conductive knitted yarns.
Since the sensing is performed based on periodic cycles of stretch and relaxation,
it is imperative that the final structure would be flexible and comfortable to the
user while maintaining good electrical performance. The non-conductive part of the
antenna is made from a mix of wool and lycra yarn, and the conductive part is knitted
with silver-coated nylon yarn. A polyethylene foam is used as a substrate support for
non-human body-based measurements, such as a mannequin SimBaby (described in
Sect. 4.5.1). The relative permittivity of the polyethylene form and the mix of wool
and lycra is 1.2 and 1.5, respectively (both close to the relative permittivity of air,
1). Their loss tangents are 0.01 and 0.03, respectively, which is relatively low. The
conductivity of the knitted fabric is dependent on the direction of the current flow
in the fabric, knitting geometry, and loop density (Locher et al. 2006). The knitted
antenna is washable and provides system level electrostatic discharge protection.



4 Wearable Smart Garment Devices for Passive Biomedical Monitoring 91

4.2.1.2 RFID Chip Selection

Unlike metal sheets, knitted conductive fabric cannot tolerate soldering. As a result,
the seamless integration of RFID chip (with metal pads) and knitted fabric becomes
a challenging task. On the other hand, the use of conductive epoxy and other solid
compounds negatively affects the flexibility of the antenna. In this section, a novel
approach is proposed to connect the RFID chip to the fabric antenna. A 2-port RFID
chip (Murata MAGICSTRAP) Murata is inserted into a small pocket that enables
the antenna ports to be inductively coupled to the chip pads. The advantage of this
scheme is twofold. First, there is no need for soldering or conductive epoxy. Second,
when the antenna is stretched, the distance between the antenna ports and the chip
pads increases, resulting in a weaker coupling. The weakened coupling teams up
with the impedance mismatch caused by the stretching and results in a higher degree
of fluctuation (i.e., a greater dynamic range) in RSSI, which is convenient for the
sensing purpose. The input impedance of the RFID chip is 25−j200 �. The negative
reactance (capacitive) of the RFID chip plays an important role in the antenna design
selection for conjugate matching.

4.2.1.3 Antenna Design

According to the theory of maximum power transfer, maximum power will be
delivered when the input impedance of the antenna is the complex conjugate of
the chip input impedance. Since the chip impedance is 25 − j200 �, the antenna
impedance is aimed to be 25 + j200 �. A folded dipole structure is knitted
that serves as the strain sensor antenna. The loop structure aims to achieve the
inductive reactance needed for conjugate match impedance. The textile antenna
is manufactured using fully automated industrial knitting machines. The antenna
design is imported into the 2D software tool, then knitted in a single piece of fabric
incorporating conductive and non-conductive yarns, a pocket for the RFID chip, and
the rest of the surrounding structure required for use as a garment.

After selecting the antenna design, a simulation model is created. While con-
ventional metal sheets (e.g., copper, silver, aluminum, etc.) can be easily modeled
with electromagnetic simulators, the knitted fabrics pose new challenges in terms
of electrical characteristics. Metal-coated yarns form loops to provide flexibility,
leading to rough surface and irregular coating profile. The sheet conductivity of a
knitted antenna highly depends from the density of the knitted loops. Furthermore,
at high frequencies the skin depth of knitted fabrics is harder to model. To simplify
the simulation process, complex sheet impedance is assigned to a 2D structure that
resembles the conductive layout. The real part of the sheet resistance accounts for
the ohmic losses in the structure, and the imaginary part is related to the antenna
reactance. A parametric modeling of the sheet impedance may be necessary to fit the
simulation model to the measured characteristics. Figure 4.5 shows the simulation
of the knitted antenna in HFSS (High Frequency Structure Simulator) at 870 MHz.
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Fig. 4.5 HFSS simulation of the wearable knitted strain sensor. Instead of a standard 50 Ohm
impedance, a lumped port with an impedance Zc = 25 − j200 � is used to design the RFID
chip (Patron et al. 2016). (©2016 IEEE. Reprinted, with permission, from On the Use of Knitted
Antennas and Inductively Coupled RFID Tags for Wearable Applications. IEEE Transactions on
Biomedical Circuits and Systems)

The outer dimension of the antenna is 88 mm × 7.5 mm, with a 68 mm × 1.5 mm
slot made from non-conductive fabric.

The return loss (S11) of the antenna shows the range of tuning between the
antenna and the RFID chip. Since antenna feed port is balanced, the return loss
is measured with a differential RF probe (Fig. 4.8),

S11 = 10 log10

(
1 − 4RaRc

|Za + Zc|2
)

(4.1)

where Za (Fig. 4.6), Zc, Ra , and Rc indicate the antenna impedance, chip
impedance, real part of the antenna impedance, and real part of the chip impedance.

The simulated return loss (Fig. 4.7) shows that the 10 dB bandwidth ranges from
870 to 915 MHz, covering most of the relevant ISM (Industrial, Scientific, and
Medical) band 865–928 MHz. Additionally, the radiation pattern is omnidirectional,
as expected by design (Fig. 4.8).
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Fig. 4.6 Simulated input impedance vs. frequency plot with real and imaginary parts (Patron
et al. 2016). (©2016 IEEE. Reprinted, with permission, from On the Use of Knitted Antennas
and Inductively Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical
Circuits and Systems)

Fig. 4.7 Simulation of the return loss using equation 4.1 (Patron et al. 2016). (©2016 IEEE.
Reprinted, with permission, from On the Use of Knitted Antennas and Inductively Coupled RFID
Tags for Wearable Applications. IEEE Transactions on Biomedical Circuits and Systems)
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Fig. 4.8 Differential probe and knitted dipole antenna prototype (Patron et al. 2016). (©2016
IEEE. Reprinted, with permission, from On the Use of Knitted Antennas and Inductively Coupled
RFID Tags for Wearable Applications. IEEE Transactions on Biomedical Circuits and Systems)

4.2.2 Second Generation Knitted Antenna: Improved
Design Liu et al. (2016)

In the design of the first generational of the wearable strain sensor, inductively
feeding method was used in order to avoiding physically soldering the RFID chip
to the antenna arms. However, the coupling technology required less than 10 μm
spacing between the chip pads and antenna arms, therefore, was proved to be
difficult to control during fabrication.

The second version of design solves the coupling problem faced by previous
versions of the strain sensor antenna by soldering the tag chip onto a small and
thin Printed Circuit Board (PCB) (10 × 10 mm2). Copper pads have been wrapped
around the sides of the PCB or FPC to improve coupling. Conductive yarns are
knitted into each side edge of a non-conductive pocket knit from elasticated yarn.
This provides a compression-based connection between the conductive yarns and
the RFID chip. The PCB or FPC is then inserted into an integrated pocket within
the knit antenna. Conductive yarns are knitted into the pocket using tuck stitches,
stitches produced when a knitting needle holds an original loop while receiving
a new one, to improve the connection between the antenna arms and the RFID
chip. The Bellyband is designed such that during the stretching of the antenna, the
transmission coefficient and radiation efficiency significantly increase or decrease
simultaneously. By designing an antenna with higher efficiency and good matching
while it is being stretched and lower efficiency and poor matching while at rest, the
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Fig. 4.9 Measured return loss of the folded dipole prototype (Patron et al. 2016). (©2016 IEEE.
Reprinted, with permission, from On the Use of Knitted Antennas and Inductively Coupled RFID
Tags for Wearable Applications. IEEE Transactions on Biomedical Circuits and Systems)

Fig. 4.10 Directional RFID reader antenna connected to Impinj Speedway reader and knitted
folded dipole antenna with MAGICSTRAP tag attached to a 3D positioner (Patron et al. 2016).
(©2016 IEEE. Reprinted, with permission, from On the Use of Knitted Antennas and Inductively
Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical Circuits and
Systems)

RSSI value will change according to the following equation (Liu et al. 2016):

RSSI = f (Pt , d)Gtag(1 − |S11|2) (4.2)

where Pt is the transmitted power from the reader antenna, d is the distance from
the reader antenna to the tag, Gtag is the tag gain, and S11 is the reflection coefficient
defined in equation 4.1. f (Pt , d) is a nonlinear function of the distance between the
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Fig. 4.11 Measured radiation pattern of the knitted folded dipole along the azimuth and elevation
planes (Patron et al. 2016). (©2016 IEEE. Reprinted, with permission, from On the Use of Knitted
Antennas and Inductively Coupled RFID Tags for Wearable Applications. IEEE Transactions on
Biomedical Circuits and Systems)

reader and tag (d) and transmitted power (Pt ). f (Pt , d) is dependent on the RFID
chip manufacturer. It can be obtained using the datasheet of the chip.

Due to the complexity of knit smart textiles arising from variables including
yarn material properties and fabric properties such as stretch and relaxation, the
sheet impedance is determined through a series of parametric simulations and
compared with a measured prototype. The optimal sheet impedance value is Zs =
0.8 + j1.8�/sq. The dimension of the antenna is tuned for conjugated matching
with the complex input impedance of Murata MAGICSTRAP Zc = 25 − j200�,
while considering the radiation efficiency. Figure 4.12 shows the 3D antenna HFSS
model for numerical simulations. In the stretching condition with good impedance
matching and radiation efficiency, the outer dimension of the optimized antenna is
W = 30 mm and L = 100 mm, while the internal slot dimension is Wslot = 2 mm and
Lslot = 25 mm, as shown in Fig 6. When the antenna is at rest, the outer dimension
is W = 30 mm and L = 80 mm, while the internal slot dimension is Wslot = 2 mm
and Lslot = 20 mm. This results in larger return loss, lower radiation efficiency, and
lower gain (Fig. 4.9).

4.2.2.1 Characteristics of Improved Bellyband

The antenna is first knitted with a PCB alone (without an RFID chip) to measure
the reflection coefficient and radiation pattern using a vector network analyzer.
Figure 4.13 demonstrates both the simulated reflection coefficient and measured
results. While the antenna is being stretched, simulated, and measured, results match
very well. Both show the return loss is lower than −8 dB within the UHF RFID band.
At rest, we observe the frequency shift of the return loss curves, resulting in lower
RSSI. However, simulated and measured results do not match as well because the
sheet impedance of the knitted yarns is also a function of frequency and antenna
size. Figure 4.14 demonstrates the radiation pattern of the antenna. The gain Gtag is



4 Wearable Smart Garment Devices for Passive Biomedical Monitoring 97

Fig. 4.12 Dimension when stretching with PCB in the pocket of improved Knitted antenna (Liu et
al. 2016). (©2016 IEEE. Reprinted, with permission, from An improved design of wearable strain
sensor based on knitted RFID technology, 2016 IEEE Conference on Antenna Measurements &
Applications (CAMA))

about 3 dB greater in stretching condition than in the rest condition. The Bellyband
antenna is then knitted with an RFID chip soldered onto the PCB. By using an
Impinj Speedway RAIN RFID Reader, the variation of maximum RSSI value is
verified and the maximum reading range is measured. Reader antenna is placed
3 feet away from the tag antenna. Figure 4.15 shows the measurement results of
RSSI change vs. the change of antenna length L. Due to the contribution of both
radiation efficiency (antenna gain) and impedance matching condition (reflection
coefficient or return loss), RSSI changes from −58 to −48 dBm when stretched.
The tag sensitivity to length change is about 1 dB/mm. The maximum reading range
is up to 13 feet in the Line of Sight (LOS) indoor environment.

4.2.3 Antenna Characteristics

The folded dipole is a balanced structure, while the coaxial cable is an unbalanced
feed. As a result, the conventional S-parameters do not apply. A differential probe
(Fig. 4.8) is used to determine the input impedance of the balanced folded dipole
antenna using Equation 4.3:
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Fig. 4.13 Comparison of measured and simulated Reflection Coefficient vs. frequency when
stretching and at rest (Liu et al. 2016). (©2016 IEEE. Reprinted, with permission, from An
improved design of wearable strain sensor based on knitted RFID technology, 2016 IEEE
Conference on Antenna Measurements & Applications (CAMA))

Fig. 4.14 Azimuth radiation pattern of Bellyband antenna showing the change of maximum gain
while stretching at center frequency of 900 MHz (Liu et al. 2016). (©2016 IEEE. Reprinted, with
permission, from An improved design of wearable strain sensor based on knitted RFID technology,
2016 IEEE Conference on Antenna Measurements & Applications (CAMA))
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Fig. 4.15 RSSI vs. antenna
length plot. The slope of the
curve is the sensitivity of the
sensor (Liu et al. 2016).
(©2016 IEEE. Reprinted,
with permission, from An
improved design of wearable
strain sensor based on knitted
RFID technology, 2016 IEEE
Conference on Antenna
Measurements &
Applications (CAMA))

Za = Ra + jXa = 2Z0
(1 − S2

11 + S2
21 − 2S12)

(1 − S11)2 − S2
21

(4.3)

4.2.4 Radiation Pattern

The radiation pattern of folded dipole antennas is omnidirectional. The radiation
pattern is measured in an anechoic chamber where a directional RFID reader
antenna is connected to Impinj Speedway reader (Impinj) and the folded dipole
antenna with MAGICSTRAP tag is attached to a 3D positioner (Fig. 4.10). The
radiation pattern of the antenna is measured in an anechoic chamber along the
azimuth and elevation planes (Fig. 4.11).

4.2.5 Fabrication and Sheet Resistance Extraction Tajin et al.
(2020b)

The use of HFSS simulation is crucial to the design of wearable knitted antennas.
Unlike metals, conductive fabrics do not have fixed electrical properties (e.g.,
conductivity). The knitting and handling of the silver-coated nylon yarns introduce
exfoliation of silver coating. The effect of exfoliation is addressed by extracting
sheet resistance from transmission line measurements. Sheet resistance helps us
compare multiple sets of fabrics with different coating profile (thickness), knitting
pattern, coating material (e.g., copper, silver, etc.). If pure silver plates were
used, exfoliation would not be a concern; however, this is not conducive to a
knitted wearable application. Gradual exfoliation during use would lead to increased
conductor loss. As a result, the radiation efficiency (and gain) of the antenna would
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Fig. 4.16 (top) SEM (FESEM Zeiss VP5 Supra) images and EDS (Oxford EDS with INCA
software) hypermaps prior to knitting; (bottom) silver-coated nylon yarns after knitting

gradually decrease. Consequently, the read range would be reduced. Nevertheless,
the sensor would be functioning since we are comparing inhalation and exhalation
state RSSI values. From our observation, silver-coated nylon is very robust, and the
moisture study supports the claim. Moreover, antenna tuning (with chip) is a strong
function of the antenna dimensions, rather than the sheet resistance. As a result, with
gradual increase in sheet resistance, the sensor remains functioning, with minuscule
decrease in the read range.

Moreover, oxidation of silver coating plays an important role. Scanning Electron
Microscope (SEM) images (Fig. 4.16) show the silver flakes around nylon yarn. In
HFSS, a complex sheet impedance is assigned to a 2D structure resembling the
Bellyband antenna geometry. Previously the designer went through repeated trial-
and-error stages to extract effective sheet impedance by matching the simulation
and measurement results. This is a time-consuming process and excessive amount
of materials are consumed. The real part of the sheet impedance is called the
sheet resistance. The behavior of the knitted antenna is strongly determined by
sheet resistance, compared to its complex counterpart. DC sheet resistance can
be measured using four-probe method; however, this method does not work for
radio frequencies. Radiofrequency sheet resistance of knitted conductive fabric can
be extracted from S-parameter measurements of two-port fabric transmission lines
(Fig. 4.17) (Tajin et al. 2020b,c). The top layer of a two-port microstrip transmission
line (Fig. 4.17) is constructed with conductive knitted fabric, while the ground is
made of copper and the substrate is FR4. Two-port S-parameters (si,j ; i, j = 1, 2)

are measured with a network analyzer. ABCD parameters are calculated from
measured S-parameters using Equations 4.4(a–d) (Kiirgad et al. 1991):
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Fig. 4.17 (top) Simulated surface current density at the top (conductive fabric) and bottom
(copper) layer, (bottom) conductive fabric-based microstrip transmission line structure (Tajin et
al. 2020b). (©2020 IEEE. Reprinted, with permission, from On the Effect of Sweat on Sheet
Resistance of Knitted Conductive Yarns in Wearable Antenna Design. IEEE Antennas and Wireless
Propagation Letters)

A = (1 + s11)(1 − s22) + s12s21

2s21

B = Z0
(1 + s11)(1 + s22) − s12s21

2s21

C = 1

Z0

(1 − s11)(1 − s22) − s12s21

2s21

D = (1 − s11)(1 + s22) + s12s21

2s21
(4.4)

where Z0 is the normalizing impedance (50 �). Characteristic impedance (Zc) and
propagation constant (γ ) of the transmission line can be derived from the ABCD
parameters according to Equation 4.5:

Zc =
√

B

C
; γ = 1

l
cosh−1(A) (4.5)

where l is the length (80mm) of the transmission line. As the extraction of RLGC
parameters is an ill-posed mathematical problem, ripples are observed in Zc, while
γ is free from ripples (Papazyan et al. 2004). So we accept γ and reconstruct Zc by
optimization (Papazyan et al. 2004).

A transmission line can be represented by an equivalent electrical circuit
(Fig. 4.18) with distributed parameters (R, L, G, and C). The per unit length
distributed parameters can be found:

R = Re(γZc) ; L = Im(γZc)/ω (4.6a)

G = Re(γ /Zc) ; C = Im(γ /Zc)/ω (4.6b)
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Fig. 4.18 Distributed RLCG parameter model of a transmission line (Tajin et al. 2020b). (©2020
IEEE. Reprinted, with permission, from On the Effect of Sweat on Sheet Resistance of Knitted
Conductive Yarns in Wearable Antenna Design. IEEE Antennas and Wireless Propagation Letters)

where ω = 2πf , f being the frequency of interest (913MHz). To validate the
process, S-parameters are reconstructed with the extracted RLGC parameters.
Total resistance (�) between the two ports of the transmission line is Rtotal =
( l

1000 )R ; l = 80mm. The total conductor loss in the transmission line is the
summation of the losses occurring in the top (fabric) layer (Rfab), bottom (copper)
layer (Rgnd = 0.05�), and radiation resistance (Balanis 2005; Faraji-Dana and
Chow 1990), as shown in Equation 4.7. Finally, sheet resistance (Rs,�/sq) of the
conductive fabric is given in Equation 4.8, where w is the width (4 mm) of the top
layer of the transmission line.

Rtotal = Rfab + Rgnd + Rrad (4.7)

Rs =
(w

l

)
Rfab (4.8)

Figure 4.19 demonstrates the extracted R-parameters vs. frequency plot. The R-
parameters for different transmission line samples increase with frequency. The
calculated sheet resistance of the fabric transmission line at 913 MHz is 0.4 �/sq.

4.2.6 Mitigating On-Body Effects and Signal Degradation

The maximum allowable distance between the reader antenna and the RFID
tag/sensor is called the read range. The read range of the Bellyband antenna is
reduced in human body proximity. The two factors responsible for this limiting
phenomenon are the antenna radiation pattern and the water-dense structure of
human body tissues. The relative permittivity of water is 81 times higher than
that of air (εair = 1). The Bellyband antenna has an omnidirectional radiation
pattern in free space. However, in the presence of the human body, the radiation
pattern becomes directional with reduced maximum gain. To investigate the effect
of body-proximity, the radiation efficiency ηrad (see Equation 4.9) of the Bellyband
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Fig. 4.19 Extracted per unit
length resistance
(R-parameter) of three
fabric-based transmission line
samples before the
introduction of sweat (Tajin et
al. 2020b). (©2020 IEEE.
Reprinted, with permission,
from On the Effect of Sweat
on Sheet Resistance of
Knitted Conductive Yarns in
Wearable Antenna Design.
IEEE Antennas and Wireless
Propagation Letters)
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Fig. 4.20 Reverberation chamber setup for radiation efficiency measurement

is measured in a reverberation chamber at different antenna orientations (free-
space/on-body, relaxed/stretched) (Tajin et al. 2020a).

ηrad = Power radiated by the radiator

Power delivered to the radiator
(4.9)

The reverberation chamber is a metal cavity equipped with horizontal and/or
vertical metal stirrers/paddles. Reverberation chambers are gaining popularity for
antenna radiation pattern measurement, mostly due to brief measurement time
and convenience for on-body measurement. The reverberation chamber used for
Bellyband antenna radiation efficiency measurement is a 5 m × 5 m × 3.5 m cham-
ber with a vertical stirrer (Fig. 4.20). The measured radiation efficiency results
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Fig. 4.21 On-body radiation
efficiency measurement in the
reverberation chamber

Table 4.1 Radiation efficiency measured in different methods at 900 MHz

Antenna orientation

HFSS
Radiation
efficiency (%)

Reverberation
chamber
radiation
efficiency (%)

Anechoic
chamber
radiation
efficiency (%)

Unstretched and not attached to body 22.4 24.4 20.5

Stretched and not attached to body 44 41.5 40.9

Unstretched and On-body 2.8 2.9 N/A

Stretched and On-body 5.9 7.3 N/A

Table 4.2 Comparison of Bellyband read range

Antenna orientation Predicted read range (m) Measured read range (m)

Free-space 1.61 1.6

On-body 0.7 0.6

are validated with anechoic chamber measurements and HFSS (High Frequency
Structure Simulator) simulations. Figure 4.21 shows the on-body antenna under test
in the reverberation chamber. The radiation efficiency results are as follows:

Table 4.1 shows that the free space radiation efficiency of the unstretched/relaxed
(81 mm × 20 mm) Bellyband antenna is 24.4%. The radiation efficiency jumps to
41.5% when the flexible antenna is stretched (100 mm × 20 mm) along its length.
When the antenna is worn by a human subject around the abdomen, the radia-
tion efficiency sharply drops to 2.9%. On-body stretching increases the radiation
efficiency to 7.3%. The interpretation of the results is that radiation efficiency is
another important factor that dictates the RSSI (received signal strength indicator)
fluctuation due to periodic stretching and relaxation of the antenna. This is true for
both free-space and on-body cases. Body proximity limits the read range of the
antenna, but the antenna does not lose sensing capabilities. Table 4.2 shows how the
read range is affected due to body proximity:
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4.2.7 Effect of Sweat and Moisture on Antenna Performance

As a wearable knitted antenna, the Bellyband is supposed to undergo cycles
of sweat, moisture, washing, and drying. To understand their effects on the
performance of the antennas, artificial sweat is applied to the top fabric layer
of fabric-based microstrip transmission lines. The sweat solution is rinsed with
distilled water and dried. This cycle is repeated for 7 days. Sheet resistance (at
913 MHz) of the knitted conductive fabric is extracted for each day.

With the introduction of sweat, the sheet resistance of the fabric shows an increas-
ing trend. This is likely due to the silver coating delaminating from the surface
of the nylon fibers upon exposure to sweat, washing, and drying. Consequently,
the resistive loss in the antenna increases. This increase in internal loss mainly
affects the fabric antenna in two ways. First, the radiation efficiency declines with
increased loss. HFSS simulation of the fabric-based Bellyband antenna shows that
after undergoing cycles of sweat-immersion, washing and drying for 6 days, the
radiation efficiency of the antenna decayed from 32.7% to 24% (Fig. 4.22, sample-
1). At 913 MHz this degradation in radiation efficiency represents a reduction in
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Fig. 4.22 Extracted sheet resistance and simulated radiation efficiency of the fabric antennas at
913 MHz vs. time. The samples are separated by the width of transmission line top layer (Tajin
et al. 2020b). (©2020 IEEE. Reprinted, with permission, from On the Effect of Sweat on Sheet
Resistance of Knitted Conductive Yarns in Wearable Antenna Design. IEEE Antennas and Wireless
Propagation Letters)
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read range by 0.17 m (10% of initial value 1.6 m (Tajin et al. 2020a)). Additionally,
the impedance match between the RFID chip and the antenna might be affected
due to a change in antenna input impedance. However, HFSS simulation shows
that over 7 days of experimentation, the input impedance of the antenna changed
from (12.6 + j176.02) � to (17.1 + j175.95) �. Compared to the reduction in
radiation efficiency, this small variation in impedance mismatch does not result in
any significant change in read range.

4.3 A Software Framework for Signal Collection
and Processing in the Internet-of-Things

The data typically reported by an RF interrogator includes the RSSI, Doppler shift,
phase angle, interrogation frequency, antenna port, among other measurements.
Unlike inventory applications which must successfully interrogate a tag at least
once, we rely on repeated interrogations of the same tag in order to observe small
differences in these measurements over time to infer state changes in the knitted
textile antenna and, thus, changes in the state of the subject wearing the garment.

In order to facilitate repeated experimentation across signal processing algo-
rithms, it is useful to provide a software framework for collecting, storing, and
transmitting interrogator data for processing (Mongan et al. 2020b) (see Sect. 4.3.1).
This framework extracts features from these measurements; for example, we
compute the received power (Prx) from the RSSI that accounts for changes caused
by interrogation frequency hopping required in the United States by FCC regula-
tions (U.S. Government Publishing Office 2018). Data collected is encrypted, and
access is logged per Health Insurance Portability and Accountability Act (HIPAA)
guidance. Specifically, we implement an audit table, and encryption using AES in
Counter Mode (CTR) for use with streaming interrogations. Because this stream
is likely to contain repetitive data, we use a counter derived from the timestamp
of the interrogation itself (Mongan 2018; View et al. 2011), and this is combined
with a user password to form the key. We organize a modular database layer so
that the database engine can be rotated according to usage requirements, balancing
ease of portability of data with the need for high-performance data collection and
storage. Software to drive the interrogators are modular and are architected to
enable real-time storage and processing. Finally, a RESTful interface is provided
to facilitate adaptation with processing clients; we have developed connectors to
the REDCap (Vanderbilt University) human subjects research data system as well
as to external processing systems developed in-house (Mongan et al. 2020a) (see
Sect. 4.3.2). These software frameworks are available as open-source projects for
download and modification (Mongan et al. 2020a,b).
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Fig. 4.23 A high-level design of the IoT Sensor Framework software

4.3.1 A Sensor Data Framework for Heterogeneous Sensor
Communications in the Internet-of-Things

The IoT Sensor Framework is a Python-based adaptor that connects a heterogeneous
suite of interrogators to a modular choice of database engine. Data collected can
be retrieved “live” as it arrives or in “simulated” mode (which “plays back” a
database from the beginning as if it were being collected in real-time), via a
RESTful web service interface. This approach facilitated repeated experimentation
on existing datasets with different algorithms, different parameterizations on those
algorithms, and various fusion approaches carried out using those algorithms. It
has also enabled the rapid generation of new synthetic datasets probabilistically
generated from existing ones, to simulate environmental effects such as multipath
fading and shadowing. The high-level design of the IoT Software Framework, which
we detail in this section, is shown in Fig. 4.23.

4.3.1.1 Interrogator Drivers

The interrogator drivers are designed by creating a generic Interrogator
interface that defines the minimal base functionality required to communicate data
collected from an interrogator to a database engine or server. It defines the starting
time, the timestamp of the most recent interrogator data collection, the number of
interrogations (used to compute the interrogation rate), and connection information
to a database engine. Additionally, a “dispatch sleep” time specifies an interval by
which data is packaged and communicated with the server; this is offered in order to
reduce network overhead resulting from sending each received interrogation packet
individually to the database (Mongan et al. 2017a).
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4.3.1.2 Modular Database

Like the Interrogator drivers, the database engine layer provides modular
drivers that accept data from an interrogator driver and store them in a database for
live or future retrieval by a processing module. The Database interface provides
for the minimal base functionality for such a database engine driver and stores an
SSL key, an encryption/decryption module, interface methods to connect, initialize,
store, and retrieve data from the underlying database engine, and common data
functionality such as categorizing data into sliding time windows or according to
their tag identifier. This interface is implemented for specific databases, such as
Sqlite, MySQL, MongoDB, REDCap, and others. Like the interrogator layer, the
database implements a Producer/Consumer pattern, in which the Producer listens
on a RESTful service endpoint for new data to arrive and enqueues it; this approach
separates the I/O functionality from the data processing functionality in order to
reduce latency. The corresponding Consumer thread retrieves data from the queue
and inserts it into the database; the Consumer also retrieves records in batches when
able to reduce the I/O latency of inserting the data into a possibly disk- or cloud-
based database. As records are inserted, they are encrypted by the database class
(they are subsequently decrypted when they are retrieved, but transmitted via SSL
between the interrogator, the database, and the subsequent processor); as records are
retrieved, a log entry is made in a corresponding Audit table within the database
for HIPAA control purposes.

4.3.2 A Signal Processing, Multisensor Fusion and
Visualization Framework

The IoT Processing Framework provides a Visualizer, a live Detector processing
module, and a Multisensor Fusion processing module; each operates by polling the
IoT Sensor Framework (described in Sect. 4.3.1) via its RESTful interface for data.
If the software is being run in “live” mode, the software polls for the most recent
n seconds of data (i.e., n = 1). If the software is run in “simulated” mode (i.e., on
an existing dataset not populated in real-time by an interrogator), then the software
polls for a window of data starting at time n = 0 and iterating until it reaches the
end of the dataset. In both cases, the records are passed to the processing module(s)
and appear to the algorithm as if they are arriving from a “live” interrogator in real
time. The high-level design of the IoT Processing Framework is shown in Fig. 4.24.
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Fig. 4.24 A high-level design of the IoT Processing Framework software

4.3.2.1 Visualization

The Visualizer module is a matplotlib animated plot (Vanderplas) that refreshes
itself at an interval. The records are grouped by their Electronic Product Code (EPC)
tag and antenna number and plotted according to a data field (i.e., RSSI or phase).

4.3.2.2 Detector Processing Module

The Detector is built upon a similar foundation as the Visualizer, in that it
polls the server for data in “live” or “simulated” mode. However, to support easy
interchangeability of processing algorithms, a Processor superclass is provided.
The class provides basic underlying functionality, including spawning threads to
manage and plot the data. Two methods are required to implement the superclass
interface: process_loop(), which is called automatically by the thread, and
get_data(), which is called automatically by the Plotter.

4.3.2.3 Sensor Fusion and Experimental Protocols with Semi-synthetic
Data

The Fusion Framework module is an extension of the Detector which
allows for manipulation of the data, comparison to ground truth for error calculation,
and fusion of multiple processing measurements while preserving the general
structure of the Processor. Here, the processor is referred to as a Sensor
superclass and implementing subclass. The Sensor operates like the Processor
from the Detector module, but instead of implementing processing algorithms
directly, it creates an array of objects that specify how to perturb the data to generate
new synthetic datasets, how to process the data, and how to compare against ground
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truth for deeper experimental reporting. When the Sensor is started, it invokes
each of these modules to automate processing.

4.4 Signal Processing for Sensing and Actuation

As discussed in Sect. 4.1 and shown in Fig. 4.4, an RFID interrogation signal is
modulated with a tag identification string called an EPC. This EPC is decoded by the
interrogator and used traditionally for tag inventory purposes. However, the inter-
rogator antenna can also sense physical properties of the reflected and modulated RF
signal, including the RSSI, phase angle, Doppler shift, and time of arrival. We model
features extracted from the small changes in these signal properties over time as the
wearable RFID-based smart garment is queried repeatedly by the interrogator at a
variable rate (typically approximately 90 Hz) that we resample for spectral analysis
to 25 Hz.

In this section, we process sensor inputs from an RFID interrogator using the
knitted Bellyband antenna, perform filtering with a reference tag (if available, when
knitted on the fabric on a relatively stationary part of the body) and without, extract
features from the filtered data, and perform temporal, spectral, and fusion analysis
to generate one or more estimates of the wearer’s state (e.g., to estimate respiratory
rate, to detect an apnea condition, to detect muscle movements consistent with a
uterine contraction, or to detect the absence of muscle movements in the extremities
that could indicate risk of blood clotting). An overview of our algorithmic approach
is shown in Fig. 4.25.

4.4.1 RF Signal Model for Biomedical Monitoring

The strength of a reflected RF signal is defined by Friis Transmission Formula (Su
et al. 2010), and the phase is defined in terms of the interrogation frequency and
Doppler shift over successive interrogations (Impinj). The tag velocity and signal
strength are shown in Equations 4.10 and 4.12, respectively, where: PRx,reader is the
calculated power received at the interrogator given a constant environment PT x,reader
is the interrogator transmit power (configured to be 1 Watt) Greader is the reader
gain (assumed to be constant) Gtag is the tag gain (which can change over time
with the shape of the knit antenna) λ is the interrogation wavelength ( 1

f
, given an

interrogation frequency f ) r is the interrogation radius (which can change as the
subject moves in space with the tag) R is the return loss over the interrogation path
v is the tag velocity c is the speed of light in a vacuum fm is the Doppler shift,
or change in phase angle, observed in two successive tag interrogations α is the
interrogation angle (which can change over time as the tag moves in space)
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Fig. 4.25 A flowchart indicating the data flow and algorithmic processing of RFID data into
features and, ultimately, state estimation or classification
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v = c × fm

2f × cos(α)
(4.10)

v × cos(α) = c × fm

2f
(4.11)

Of these terms, r , Gtag, R, v, and α may change over time as the wearer moves
about, inhales, exhales, etc. Our goal, then, is to observe signal changes that are
compounded within those terms and infer wearer state changes from them. These
velocity-based and received signal strength features are given in Equations 4.11
and 4.13, respectively. Substituting for G = 4πAλ−2 (relating the tag gain G to
the effective antenna aperature A) in Equation 4.13 (Su et al. 2010), we obtain
the relationship for received power ζ with respect to the interrogation frequency
in Equations 4.14 through 4.15 (Mongan 2018).

PRx,reader = PT x,reader × G2
reader × G2

tag ×
( λ

4πr

)4 × R (4.12)

ζ̂ = r4

G2
tag × R

= PT x,reader × G2
reader

PRx,reader
×
( λ

4π

)4
(4.13)

ζ̂ = r4

(4πλ−2Atag)2 × R
= PT x,reader × (4πλ−2Areader)

2

PRx,reader
×
( λ

4π

)4
(4.14)

ζ̂ = r4λ4

(4πAtag)2 × R
= PT x,reader × (4πAreader)

2

λ4 × PRx,reader
×
( λ

4π

)4
(4.15)

ζ̂ = r4

A2
tag × R

= PT x,reader × A2
reader

λ4 × PRx,reader
(4.16)

Finally, we compute ζ from ζ̂ by removing a residual sawtooth artifact that
results from quantization of the reported RSSI that mitigates part of the compen-
sation for interrogation frequency when computing ζ̂ .

4.4.2 Signal Filtering and Denoising

There are two potential approaches to signal denoising in this medium. If the noise
is somewhat observable out-of-band via a reference tag, which is an RFID knitted
antenna worn on a relatively stationary area of the body (and thus not subject to
stretching artifacts), we can extract higher order features by fusing this reference
signal and the signal received from the primary worn antenna as it interacts with
the body during cardiorespiratory activity. This is discussed in Sect. 4.4.2.2. This
approach requires a second tag; although the knitted antennas are small enough to
support multiple deployments on a body, it is advantageous to explore statistical
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filtering approaches that do not assume the presence of a reference tag in order
to improve SNR on the primary band signal. Statistical filtering algorithms exist for
this purpose, but one challenge is that they must be parameterized and configured for
use. In Sect. 4.4.2.1, we explore automatic and dynamic parameterization of such a
statistical filter for use in real-time respiratory applications. We outline each of these
two pre-processing steps in this section.

4.4.2.1 Filtering with an Adaptively Parameterized Savitzky-Golay Filter

It is necessary to determine certain parameters in order to configure a Savitzky-
Golay (SG) filter (Savitzky and Golay 1964; Schafer 2011) for a biomedical
application like respiratory monitoring, including how high a peak must be to
be considered the point of maximum inhale, how large a window over which to
calculate respiratory rate, etc. For this application, we chose to fit a polynomial of
degree three (k = 3) to the data which represents a single breath. The difficulty
is that we do not know beforehand the number of data points which represent a
single breath and so we don’t know how to set n. If we did, we would already know
the respiratory rate. Further, a person’s respiratory rate changes through time, so no
constant value for n will suffice. Instead, we modify the SG filter so that the n used
in the current time window is chosen based upon the respiratory rate detected in the
previous time window. Thus, the SG filter adapts, harnessing the intuition that the
current respiratory rate will be close enough to the previous respiratory rate that an
SG filter which uses an n value equal to the n value found in the previous window
will be able to correctly smooth the signal in the current window. In one of our
experiments, a test subject varied their respiration wildly (moving from 10 breaths
per minute (BPM) to 70 bpm instantaneously), and the adaptive SG filter was able
to smooth the signal so that the algorithm could count the peaks. The equation for
converting from the respiratory rate for the ith window to the n value to use in the
(i + 1)th window is ni+1 = s×60

ri
, where s is the system’s sample rate in Hz and ri

is the respiratory rate detected in the current window in breaths per minute.

4.4.2.2 Denoising with a Reference Tag

In addition to the challenge of quantization to the nearest integer unit of RSSI, RFID
is susceptible to noise artifacts related to the environment and multipath effects. One
method of isolating and removing environmental noise is by placing a second tag
on the patient as a reference, then fusing the data from the two tags together.

Using sensor fusion, non-respiratory artifacts in the Bellyband’s signal can
be filtered irrespective of their source. We outline the algorithm below which
improves the signal quality with an increase in signal-to-noise ratio (SNR). For
this algorithm (Hansen et al. 2020), we describe the Bellyband as a main antenna,
where a fixed relaxed state describes when it is in phase with the interrogator during
exhalation, and so has a higher RSSI. A second stationary tag is introduced to the
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system, which we define as a reference antenna. The reference antenna is never
physically altered and at every moment is either coupled or non-coupled with the
main antenna. When coupled, the reference antenna has low RSSI; otherwise, the
reference antenna signal is similar to the main antenna’s fixed relaxed state and has
high RSSI.

First, the RSSI and Doppler shift are observed for each RFID antenna. We
compute the antenna velocity according to Equation 4.11. Next, for each antenna,
we separate each interrogation feature into “stretching” (breathing) and “relaxed”
(non-breathing) states as described in Sect. 4.4.3.1. A Metropolis random walk using
a Markov Chain Monte Carlo simulation (MCMC), similar to that employed in
Sect. 4.4.3.1, is used to predict posterior distributions of these hidden states without
needing to train with a large dataset.

Since both tags may be coupled as a result of close proximity, we leverage
a z-test to separate each signal’s data, assigning every point to the distribution
it is closest to. The points belonging to the distributions that describe the main
antenna’s fixed-relaxed state and the reference antenna’s coupled state are ignored,
resulting in two separate non-coupled signals. Sliding window sampling is applied
to the resulting time series such that main antenna’s signal has a set of windowed
distributions concurrent with those of the reference antenna. RSSI values have
relatively small changes during respiration, resulting in a singular covariance matrix
for these distributions. To resolve this, a multidimensional covariance matrix is built
from higher-order features (the Mahalanobis Distance and the Minkowski Distance
measures), induced by the Lp norm, between each window’s RSSI and Doppler
values.

Sensor fusion is accomplished by measuring a Mahalanobis Distance, a multi-
dimensional generalization of standard deviation, between the main and reference
distributions for each window. The windowed Mahalanobis distance is interpolated
over the dataset, outputting a final “transformed” signal. We compute the increase in
SNR by calculating a delta of the SNRs for the raw input signal and the transformed
signal. High-frequency components and other non-respiratory artifacts present in the
Bellyband’s raw signal decrease the signal’s quality and SNR. After transformation,
these artifacts are filtered out, resulting in a clear sinusoidal respiratory signal and
higher SNR.

4.4.3 Biomedical Applications

The applications of the Bellyband within the biomedical signal domain are broad.
In the past, our lab has used the Bellyband to detect bio-signals as diverse as uterine
contractions in pregnant women (Mongan et al. 2016), risk factors of deep vein
thrombosis (Gentry et al. 2019), and heart rate (Vora et al. 2017). In this section, we
explore respiratory monitoring in detail (Mongan et al. 2017b, 2016), specifically:
apnea detection (Sect. 4.4.3.1) and respiratory rate estimation (Sect. 4.4.3.2).
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4.4.3.1 Activity Classification and Apnea Detection

Infant respiration results in small movements of the abdominal wall, and, thus,
only small stretches of the knitted textile antenna on the Bellyband. Sleep apnea
is defined by a 95% reduction in respiratory activity for at least 10 s (Begg and
Palaniswami 2006); our hypothesis test identifies 95% outliers from the sample
collected during a brief semi-supervised period (20 s), during which no explicit
labeling is required but only that normal respiration is taking place. Using the
fundamental features defined in Equations 4.11 and 4.15, we seek to emit a
square-wave signal that represents a binary classification of band-stretching activity
over time (i.e., stretched or unstretched), for purposes of wearer state detection
such as sleep apnea. This activity can be mapped to biomedical applications
such as respiration or a uterine contraction. For example, we used a pumping
air-bladder to simulate abdominal movement due to a uterine contraction, and
measured the change in pressure using a gold standard tocodynamometer (a Philips
50XM Philips) and simultaneously with the RFID-based Bellyband; a plot of these
observed actuations is shown in Fig. 4.26.

Fig. 4.26 Visualization of data collected from a tocodynamometer (top) and RFID (bottom),
measured in dB, with a Gaussian filter and saturation point applied (Mongan 2018) (note a short
time latency between the two devices which is attributable to their startup times)
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Hypothesis Testing

We begin by performing a t-test against a null hypothesis which posits that respira-
tion is taking place at the current time window. We then collect a short time window
of recent RFID interrogations, compute their signal strength per Equation 4.15, and
extract a set of samples for the hypothesis test. We investigated several statistical
features on which to perform hypothesis testing, including the mean, extrema,
average frequency component, and maximum spectral magnitude after computing
the Fast Fourier Transform (FFT) on a window of data. Features were compared
using Fisher Linear Discriminant analysis (LDA) (Fisher 1936), which compares
the ratio of the difference of the means to the sum of the variances of the feature
as collected across two classes (i.e., breathing vs. non-breathing). A high LDA
score indicates that the means of the samples have a large difference across the two
classes, with relatively small variances within each class; thus, features with a high
LDA score are good candidates for hypothesis or other classification approaches.
The mean and maximum spectral magnitude were somewhat separable feature, and
we selected the spectral magnitude which enabled shorter 0.5 s FFT windows to
compute these spectral densities.

Unsupervised Classification of Individual “Stretching” and “Non-stretching”
Interrogations

One challenge in performing a hypothesis test is the need to compare the spectral
magnitude against a reference in order to classify potential apnea conditions. This
reference is obtained by assuming that a brief period at the start of monitoring
is populated with normal respiratory activity. However, even during respiratory
periods, there is a duration in-between inspiration and expiration (and subsequent
inspiration) during which relatively little abdominal activity takes places. As a
result, non-stretching data are intermixed with stretching data even during these
samples. We observed an increase in the LDA score for the FFT magnitude feature
from 0.49 to 3.85 when considering only data collected during the band’s stretching
periods. Classification of each RF interrogation as “stretching” or “non-stretching”
would enable better unsupervised training of the hypothesis test classifier for sleep
apnea detection and would enable finer-grained detection of uterine contractions
or interbreath intervals, which require knowledge of the start and duration of each
artifact.

To perform point-by-point classification, we construct a Hidden Markov Model
(HMM), again with a brief period of unlabeled, semi-unsupervised data assumed
to contain “normal” activity (i.e., respiratory activity). By computing correlation
of the signal strength ζ and the tag velocity, and taking a rolling Root-Mean-
Squared (RMS) calculation on sliding windows of this resulting correlation feature,
we can identify the magnitudes of strain movements resulting from band stretching
activity (Mongan et al. 2017b). As a result of the observed relationship between the
signal strength and Doppler- or phase-based tag velocity, we constructed a feature
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tuple for the HMM consisting of the Doppler, the received signal strength, and the
tag velocity (Mongan 2018).

Square-Wave Classification

To generate a square wave of point-by-point classification estimates, we begin
with the Hidden Markov Model point-by-point estimate of each data point into
a stretching distribution and a non-stretching distribution. An augmented Kalman
Filter is employed to remove noise artifacts from the window using a voting
classifier that fuses logistic regression, decision tree, Naive Bayes, and similarity
classification (Acharya et al. 2019). This filter was augmented by modeling the
measurement noise as an Autoregressive Moving Average (ARMA) process, to
capture temporal correlations observed in the measurement noise (Acharya et
al. 2019). To correct for high-frequency spikes in this square wave, k-means
classification is performed on the data in the window with varying threshold levels
for classification. A voting classifier determines which of the two distributions best
fits each data point, and a resulting smoothed square wave is emitted that indicates
the start time and duration of each detected artifact from the RFID-based input
features on a point-by-point basis (O’Neill et al. 2019).

Activity-State Classification Using a Monte Carlo Simulation

For subject activity classification, we initialize an MCMC simulation using the
rough but generally unsupervised estimate of each data point’s classification (i.e.,
band stretching or stationary states). Specifically, the MCMC model is initialized to
assume that the data in the window is comprised of two distinct distributions: one
representing band stretching activity, and the other representing a stationary band.
Each distribution is initially defined by the mean and variance of the states identified
by the HMM, and the MCMC iterates to converge upon parameters of one or two
distributions in the window (Mongan 2018).

By inverting the activity classes, we can consider a similar approach to classifica-
tion of uterine activity during labor and delivery. We perform hypothesis testing on
the distribution of data identified by the Markov Chain Monte Carlo process, with
the null hypothesis asserting that the band is stationary. If the band is stationary,
only a single distribution should exist in the data, and so the hypothesis tests that
the window consists of one of the distributions identified by the MCMC process.
Similarly, if only a single distribution is observed during respiratory monitoring, we
infer that a potential apnea condition has commenced because the band is no longer
stretched by the wearer.
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Fusion with a Voting Classifier

The MCMC simulation yields useful features for classification and estimation.
Specifically, we observe properties of the two distributions identified by the MCMC
simulation to classify changes in wearer state. For example, if the mean of the
distribution representing motion artifacts (the band stretching class) increases,
we can infer that the band itself is being stretched further during that window.
Symmetrically, we can infer that the band is being relaxed as this distribution mean
decreases, until the MCMC-estimated distribution population has become small or
disappears because the band has become stationary again. It is assumed that a single
distribution corresponds to a “non-stretching” classification, with no “stretching”
distribution present. Finally, we initialize a voting classifier that observes changes
in the MCMC stretching distribution mean, the proportion of data samples assigned
to each MCMC distribution, a change in variance of the stretching distribution, the
original HMM classifications, and the hypothesis test z-score using the maximum
spectral magnitude. Voting yields the classification of band state activity (Mongan
2018).

4.4.3.2 Respiratory Rate Estimation

Dominant Frequency Extraction via the Fourier Transform

The classification approach taken in Sect. 4.4.3.1 can be useful for classify-
ing anomalies such as cessation of breathing or detecting a uterine contraction.
However, it is also useful to determine the rate of the observed activity, using peak-
frequency analysis via a Fourier Transform. Frequency-domain analysis suffers
from spectral leakage, which is more pronounced as the window size becomes
smaller. Unfortunately, it is desirable to use a small window to compute a more
precise instantaneous respiratory rate. To balance these constrains, we utilized
Quinn’s interpolation method (Quinn 1994) to estimate the dominant frequency
between discrete Fourier Transform magnitude coefficients. To select the dominant
frequency in the potential presence of non-stationary motion artifacts, we applied
Giovannelli’s algorithm to track the respiratory frequency as a Markov chain over
successive time window samples (Giovannelli et al. 2002). This approach applies
the Baum-Welch Forward-Backward algorithm as a Bayesian approach to identify
the most likely frequency given not only the current sample but the recent history of
samples (referred to as a frequency “track”).

Savitzky-Golay Smoothing

In Sect. 4.4.2.1, we described the method of smoothing the oscillatory, varying
frequency, signal which comes from the Bellyband when it is attached to the
subject’s abdomen and the subject breathes. Once the signal is smoothed with
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a Savitzky-Golay (SG) filter, the extrema are counted. In our application, we
calculated the respiratory rate over a 15 s window and returned that value as the
instantaneous respiration rate for the moment at the end of the 15 s window. We
used a sliding window with �t = 0.5 s.

The equation for converting from the number of extrema detected in the current

window to the respiratory rate for the current window is r = 1
2 (z−1)

tf −ti
× 60, where

z = the number of extrema in the window, tf = either the time (in seconds) of the
final extremum or the time (in seconds) of the final point in the window, as observed
by that point’s time of arrival, and ti = either the time (in seconds) of the initial
extremum or the time (in seconds) of the initial point in the window, as observed by
that point’s time of arrival.

Fusion of Respiratory Rate Estimates

Each rate detection algorithm is subject to estimation error: spectral analysis is
subject to leakage and variance, especially when the window is small, Bayesian
tracking approaches can drift and “lose” the primary frequency, requiring re-
initialization, and time-domain approaches may misclassify spurious peaks. We
have addressed these challenges in this section, but can apply fusion techniques on
these estimates to reduce the variance of these estimates over time. We constructed
a Gaussian Mixture Model (GMM) using the recent history of our rate estimation
algorithms and interpreted the relative variance among those histories as a measure
of uncertainty within each sensor estimate (Mongan et al. 2017b). The current point
estimates from the sensors is taken as the mean of each distribution and is weighted
according to its corresponding likelihood constructed from its history variance.

4.5 Experimental Setup, Results, and Discussion

4.5.1 Experimental Setup

The Bellyband has been tested on three platforms: (1) a robotic mannequin that
mimics various bio-signals, including respiration and heartbeat, (2) human test
subjects in a controlled lab environment, and (3) a synthetic channel emulator.
To simulate an experimental environment in preparation for human study, we use
the Laerdal Simbaby (Laerdal) as a simulator for apnea detection and a pregnant
mannequin as a simulator for uterine monitoring, each containing an air bladder,
and each wearing a tocodynamometer and an RFID Bellyband. The SimBaby is
programmed to execute several respiratory scenarios for detection purposes. The
Bellyband and tocodynamometer are each monitored using a thread spawned by
the software, and they are plotted together with optional data filtering techniques.
The mannequin is actuated using a peristaltic pump that fills the bladder with
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either water or air to a predefined and programmable pressure or duration. We also
gathered respiration rate data from human test subjects.3 The humans wore two
sensors: the Bellyband and a Vernier Go Direct Respiration Belt (Vernier) (used to
establish ground truth respiration rate). In some tests, subjects were instructed to
breathe at a constant rate while listening to a metronome. In other tests, subjects
were instructed to instantaneously double their respiration, from, for example, 15
to 30 breaths per minute, again listening to a metronome for assistance. In all,
22 min of data were collected in this way. Finally, an Echo Ridge DYSE (DYnamic
Spectrum Environment Emulator) (Dandekar et al. 2019; Echo Ridge) is used to
emulate two channels for sensor fusion. One channel represents the realized gain
fluctuation of Bellyband, while the other channel represents a reference tag with
static gain. Non-respiratory artifacts such as fading can be added to each channel
by randomly sampling from a statistically modelled noise profile. We generate this
model by fitting Rayleigh, Rician, and Normal distributions to a static signal with
non-respiratory features present. Chi squared and KS tests are then leveraged to
choose which of the resulting parameterized distributions best describe the non-
respiratory features present in this signal. A value randomly sampled from the
chosen distribution is used as a factor to scale each channel output by the DYSE.

4.5.2 Results and Discussion

4.5.2.1 Semi-unsupervised Classification

In simulation, we observed significant improvement in respiratory event classifi-
cation (i.e., inspiration) using a mannequin SimBaby using the tag velocity feature
over the signal strength alone (RMS error of 0.56 s vs. 1.22 s, p = 0.0001) (Mongan
et al. 2017b). As a result, tag velocity was fused with signal strength as a feature via
a GMM as described in Sect. 4.4.3.2 (Mongan et al. 2017b). Initializing an MCMC
simulation using a semi-unsupervised HMM classifier, we constructed a voting
classifier using features extracted from the distributions (one for a stationary band,
or two if stationary band interrogations are mixed with stretching interrogations in
the data window) detected by the simulation, as described in Sect. 4.4.3.1.

A human subject was instructed to breathe at a rate of 30 breaths per minute, with
cessations at 30 and 90 s. As shown in Fig. 4.27, the cessations were identified by
the voting classifier at 34 and 98 s, with no false positives (false apnea detections).
These experiments were repeated at different breathing rates (10, 15, 20, 30 breaths
per minute) (Mongan 2018); in each trial, the cessations were detected within
15 s, with at most one false positive occurring generally around the boundary of
a state change from breathing to non-breathing or vice versa. These datasets were

3Human subjects testing was approved by the Drexel University IRB under protocol numbers
1504003601, 1504003602, and 1604004440.
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Fig. 4.27 RFID signal strength plotted over time during a human trial of a subject breathing at
a rate of 30 breaths per minute with brief cessations at 30 and 90 s (denoted by red dots near the
x-axis) (Mongan 2018)

typically collected for a period of 2 to 5 min.4 The MCMC simulation features
allowed voting that eliminated two false positives that would have been identified
by hypothesis testing alone. A similar experiment using the SimBaby mannequin
and depicting the internal classifier features is shown in Fig. 4.28. Individual point-
by-point classification of each interrogation was achieved through an augmented
Kalman Filter, which improved classification accuracy from 76.7% (F-Score: 0.56)
without the augmented Kalman Filter to 91.8% accuracy (F-Score: 0.87) using the
augmented Kalman Filter (Acharya et al. 2019).

4.5.2.2 Respiratory Rate Estimation

Using hypothesis testing (Mongan et al. 2016), we performed peak detection as
depicted by the oscillations between classification states over time, resulting in a
RMS error of 9 respirations per minute overall, as shown in Fig. 4.29, for a SimBaby
mannequin programmed to breathe during 1-min intervals at rates of 31, 15, 0, 15,
and 30 breaths per minute. Using our spectral estimator and the same experimental
data collection setup, we estimated an average rate over each 30 s period of 28.6
(time 0–30), 39.9 (time 30–60), 18.9 (time 60–90), 18.9 (time 90–120), 0.3 (time

4Non-human datasets are available at: https://github.com/drexelwireless/bellyband-datasets.

https://github.com/drexelwireless/bellyband-datasets
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Fig. 4.28 A plot depicting respiratory data collected from the Bellyband worn on a SimBaby
mannequin, programmed to breathe at a rate of 15 breaths per minute, with periodic cessations in
breathing (from times 30–60 s and 90–120 s). The plots include (from top to bottom) the percentage
of interrogations classified in the “low mean” distribution by the MCMC simulation, the mean
and variance of each “low mean” distribution, and, finally, the mean and variance of the “high
mean” distribution (Mongan 2018). Blue dots along the x-axis of the bottom plot indicate the
voting classifier classification of cessation periods. Additional dots indicate the results of individual
classification votes along the x-axes of the remaining graphs

120–150), 0.0 (time 150–180), 15.9 (time 180–210), 17.2 (time 210–240), 22.6
(time 240–270), and 25.2 (time 270–300) breaths per minute. Respiratory rate
estimation RMS error was reduced from 9 (using hypothesis testing) to 6 breaths per
minute by utilizing HMM frequency tracking (Giovannelli et al. 2002; Mongan et
al. 2017b). Our estimators were fused using Expectation Maximization on a GMM
constructed on the estimator history with Quinn interpolation (Quinn 1994) applied
to the Fourier frequency bins, and with relative variance (uncertainty). An example
result is shown in Fig. 4.30.

4.5.2.3 Square-Wave Generation for Artifact Prediction

Using the dynamic k-means voting classifier for square wave generation using a
Hidden Markov Model, we detected all but one breath in a SimBaby simulation,
within 0.38 s on average and within 0.92 s in the worst case (O’Neill et al. 2019).
This square wave can be integrated with an adaptive respiratory artifact prediction
algorithm using Maximum Likelihood analysis on an autoregressive model using
the observed interbreath interval times (Indic et al. 2013; Barbieri et al. 2005).
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Fig. 4.29 Respiratory rate estimation using hypothesis testing for a SimBaby trial programmed to
breathe at 31 breaths per minute, 15 breaths per minute, no breathing, 15 breaths per minute, and
30 breaths per minute, for 1 minute each. The first 20 s are omitted since this is used for the semi-
unsupervised training period (Mongan et al. 2016). (©2016 IEEE. Reprinted, with permission,
from Real-Time Detection of Apnea via Signal Processing of Time-Series Properties of RFID-
Based Smart Garments. IEEE Signal Processing in Medicine and Biology (SPMB))

4.6 Conclusion and Future Work

Using passive RFID technology, we have developed an unobtrusive wearable
garment using conductive yarns that interact with the human body to communicate
biometric data for ongoing ambulatory monitoring. These yarns stretch and contract
as the wearer moves naturally in space, and the resulting changes in reflected
RF signal properties about the deforming antenna are monitored to estimate the
wearer’s state. This technology enables monitoring outside of the hospital setting or
for more comfortable monitoring as an alternative to tethered sensors. Our novel
approach required fusion of technical innovations in knitted conductive textile-
based antennas, design and manufacturing, and semi-supervised machine learning.
We have developed and released an open-source software framework that uses a
modular architecture and lightweight communications mechanism to enable rapid
integration of heterogeneous IoT sensors such as our wearable smart garments.

In the future, we seek to integrate our ubiquitous sensors across the medical
pipeline, to support real-time therapy devices such as ventilation, and to develop
an adaptive filtering algorithm to refine predictive strategies for inferring the onset
of artifacts in time for actionable response using our classification algorithms.
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Fig. 4.30 Respiratory rate estimation using estimate fusion for a human subject breathing at a
rate of 30 per minute for 30 s, followed by a rate of 15 per minute for 30 s (Mongan et al. 2017b).
The bottom four subplots indicate point-by-point estimates using temporal and spectral algorithms,
with the GMM fused result shown in the top subplot. (©2017 IEEE. Reprinted, with permission,
from Data Fusion of Single-Tag RFID Measurements for Respiratory Rate Monitoring. IEEE
Signal Processing in Medicine and Biology (SPMB))
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Chapter 5
Spatial Distribution
of Seismocardiographic Signals

Md Khurshidul Azad, John D’Angelo, Peshala T. Gamage, Shehab Ismail,
Richard H. Sandler, and Hansen A. Mansy

5.1 Introduction

Cardiovascular diseases are one of the leading causes of disability and death in
the United States (Virani et al. 2020). Hence, improved means for early detection
of cardiovascular disease is of great significance to engineering and medicine.
Modern clinical techniques of measuring heart function most frequently involve
history and physical examination (including stethoscope auscultation), electrocar-
diograms (ECG), echocardiogram imaging, and various blood tests. While these
techniques provide valuable electrophysiological, acoustic, structural, and hemo-
chemical/hormonal information, additional potentially diagnostically useful infor-
mation may be gleaned from measurements of the mechanical vibrations induced
by cardiac movements. Seismocardiography (SCG) relies on accelerometers to
measure vibrations on the chest wall surface and can be used in ambulatory settings
to measure heart function along with other modalities. SCG also offers significant
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potential to provide additional information about cardiac function as it detects low
frequency vibrations that are infrasonic which may offer unique insights into heart
muscle and other cardiac functions. Phonocardiography (PCG), which is equivalent
to stethoscope auscultation, uses microphones to detect sounds due to valve closure,
abnormal blood flow, and pathological ventricular filling, but it does not always
detect low frequency sounds such as S3 and S4 heart sounds (Siejko et al. 2013;
Hosenpud and Greenberg 2007; Glower et al. 1992). SCG provides this information
as it detects low frequency vibrations with good resolution, and it can also be used
to detect cardiac events such as isovolumetric contraction, aortic opening, and mitral
opening (Crow et al. 1994; Tavakolian 2016). Despite this, SCG signals are subject
to noise as they pick up respiratory activity, abdominal sounds, and body movement.
In addition, SCG signals vary based on the sensor’s position on the chest, and an
ideal position to detect cardiac activity has not yet been adequately studied.

As previously mentioned, SCG provides information about infrasonic vibrations
of the chest wall surface, and Taebi et al. (Taebi and Mansy 2017; Taebi et al.
2019) examined the various frequencies that compose SCG signals in healthy human
adults. Taebi found that SCG signal intensities reached maximal values during two
portions of a cardiac cycle that roughly correspond to S1 and S2 sounds of PCG
(referred to as SCG 1 and SCG 2, respectively). The SCG 1 signal provided greater
signal intensity compared to SCG 2, and analysis of SCG 1’s power spectral density
(PSD) showed that the PSD consisted of three dominant frequencies at 9 Hz, 25 Hz,
and 50 Hz. Taebi speculated that the lowest dominant frequency corresponds to
ventricular contraction, while the larger frequency corresponds to atrioventricular
valve closure.

In the past, the problem of identifying an ideal location to listen for heart sounds
was also encountered in the realm of PCG, even though common auscultation sites
have now been identified. Okada (1982) used 36 spatially distributed PCG micro-
phones to acquire heart sounds, and their results showed that sounds specifically
associated with closure of the aortic and pulmonic valves were loudest at the cardiac
apex and 2nd intercostal space along the right parasternal border, respectively. Cozic
et al. (1998) expanded on this by placing 22 spatially distributed PCG microphones
on the chest surface and found that the highest amplitude were associated with the
S1 heart sound (corresponding to mitral and tricuspid valve closure) at the mid-
clavicular 5th ICS location and tricuspid auscultation location. Kompis et al. (1998,
2001) placed PCG sensors at the neck, 3rd ICS, 5th ICS, and 7th ICS and found
that heart sounds with the highest intensity were detected at the neck bilaterally
and parasternally in the 3rd ICS on the left. However, this result was likely due to
detection of the carotid pulse in the neck and not of valvular activity. In addition,
the neck has little muscle and fat compared to the chest wall, and this makes it
easier to detect sound. More recently, Sapsanis et al. (2018) used a vest with 12
embedded PCG sensors to record heart sound and suggested that the loudest signals
were associated with S1 along the left parasternal border especially near the 4th ICS.

This century, there have been pilot studies on the SCG genesis from cardiac
activity and its propagation across the chest wall surface with a limited number
of subjects. Kawamura et al. (2007) used 64 accelerometers to measure cardiac
activity over the left anterior chest wall. Kawamura postulated that vibration waves
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due to cardiac activity stem from a source and then spread over a plane. He
suggested that SCG peak associated with aortic opening achieves a maximal value
near the right upper sternal border and propagates down toward the apex. By doing
a cross-correlation of adjacent SCG signals and determining the shortest path of
propagation using the Dijkstra method (1959), Kawamura et al. (2007) created
surface contour maps of SCG signal propagation over the chest surface that showed
how the loudness of SCG 1 peak moved away from the apex, while the SCG 2 peaks
loudness moved away from the aortic valve. Based on this, they speculated that the
SCG wave associated with mitral opening initially reaches its maximal value near
the apex and moves up toward the right upper sternal border. Using this, Kawamura
et al. (2007) estimated that the SCG signal propagation speed across the chest wall
surface was approximately 11 m/s. Nogata et al. (2010, 2014) used an identical
set up to Kawamura et al. with 64 SCG sensors to study the propagation of the
chest wall vibrations, and they concluded that the SCG signal high-frequency peaks
associated with the traditional S1 sound of cardiac auscultation started in the apex
and the traditional S2 sound started near the aortic valve of the right upper sternal
border. Nogata speculated that these SCG signals were due to both valve closure
and chamber contraction, and not just valve closure

While SCG is measured on different locations on the chest surface (i.e., xiphoid
process, 4th intercostal space, mid-sternum), most studies have placed SCG sensors
on the sternum (Taebi et al. 2019). Pandia et al. (2012) suggested that larger
amplitude of SCG 2 peak were observed at the left mid-sternal, mid-clavicular
location. While this location was noted for louder SCG 2 signal compared to the
mid-sternal location, variations in the SCG waveform relative to other positions
were not examined. Given the reported differences in SCG signal intensity between
the sternum and the left mid-sternal, mid-clavicular location, it becomes apparent
that understanding SCG signal variations across the chest wall surface is critical for
precise feature extraction. A detailed study of the spatial distribution of SCG feature
variations on the chest surface has not yet been reported. The objective of the current
study is to:

(a) Document spatial SCG signal variability over the chest surface
(b) Understand effects of sensor location on different SCG signal features
(c) Document signal quality over sensor placement

5.2 Methods

Figure 5.1 summarizes the methodology employed in this study. More details are
provided in following sections.

5.2.1 Accelerometer Calibration

The current study used 36 uniaxial accelerometers (Model: 352C65, PCB Piezotron-
ics, Depew, NY) to acquire the SCG on the chest surface. Prior to human subject
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Fig. 5.1 Methodology workflow

Reference accelerometer

a b

Testing accelerometer

Fig. 5.2 Accelerometer calibration showing (a) accelerometer placed on the metal disc attached
to the mechanical wave driver, (b) top view of the metal disc showing accelerometer arrangement
on the disc. Arrow indicates the direction of wave driver movement

experiment, all 36 accelerometers were calibrated using a pre-calibrated reference
accelerometer and a mechanical wave driver (model: SF-9324, Pasco, Roseville,
CA) moving with a reference signal. In addition, the waveform variability of each
accelerometer was compared relative to the reference accelerometer output. A metal
disc was attached on the driver stinger to attach the accelerometers. Figure 5.2 shows
the accelerometer calibration setup.

Due to limited space on the disc, the accelerometers were separated into a group
of 16 and a group of 20 accelerometers. The first group of accelerometers were
then attached using double-sided medical-grade tape (B205-1, 3M, Minneapolis,
MN) on the driver disc. An artificial SCG signal (Taebi and Mansy 2017) having
similar characteristics of a typical SCG signal were then employed to drive the
disc. All accelerometer outputs were recorded. The experiment was repeated for
the remaining 20 accelerometers. The accelerometer output is shown in Fig. 5.3.

Waveform morphological variability (later discussed in Sect. 5.2.5.3) was cal-
culated for each accelerometer output relative to the waveform of the reference
accelerometer. The mean variability with standard error of the 36 sensors was found
to be 0.16±0.04 mg which is approximately 10–15 times lower than the SCG
variability observed at the chest surface (later discussed in Sect. 5.3.4).
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a

b

Fig. 5.3 Accelerometer output recorded from (a) accelerometer 1–16 (b) accelerometer 17–36
are shown. The waveforms are plotted on top of each other showing significant similarity between
accelerometer outputs

The calibrated sensitivity of an accelerometer is given by Eq. 5.1:

Calibrated sensitivityi = Ampi

Ampref
∗ Sensitivityref (5.1)

where Calibrated sensitivityi and Ampi are the calibrated sensitivity and amplitude
of ith accelerometer, while Sensitivityref and Ampref are the sensitivity and ampli-
tude of reference accelerometer.
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a

b

Fig. 5.4 (a) Calibrated sensitivities of all accelerometers are plotted along with their manufac-
turer’s sensitivity (b) Bland-Altman analysis of calibrated sensitivity and manufacturer specified
sensitivity. The difference in sensitivity values is within the limit of agreement (±1.96*SD)

The sensitivities of all 36 accelerometer are plotted with their manufacturer’s
sensitivity and compared using Bland-Altman analysis (1999) in Fig. 5.4.

Figure 5.4 suggests that the calibrated sensitivities of the sensors are approxi-
mately 1–2% of manufacturer specified value and are within the limit of agreement
(±1.96*SD). There is a small positive bias (~ 0.2 mV/g) between the calibrated sen-
sitivity and the manufacturer’s specified sensitivity values. Peak-to-peak amplitude
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Table 5.1 Subject
characteristics

Age (years) 26± 4.4
Height (cm) 174.1 ± 8.9
Weight (kg) 75.7 ± 14.5
BMI 24.9 ± 3.2

differences between sensors are within 1% of peak to peak amplitude of reference
accelerometer.

5.2.2 Experimental Measurements

SCG signals were acquired from 15 healthy male subjects after Institutional Review
Board (IRB) approval. Subject characteristics are listed in Table 5.1.

A diagram of the experimental setup along with sensor locations is shown in
Fig. 5.5. Eight accelerometers were placed in each of the parasternal 2nd, 3rd, 4th,
and 5th intercostal spaces (ICS) bilaterally. Two additional accelerometers were
placed on the left and right clavicle along the mid clavicular line. In addition, two
accelerometers were placed at mid-sternum and xiphoid process, respectively. The
signal from the accelerometers were amplified using a charge amplifier (Model:
482C, PCB Piezotronics, Depew NY) and then acquired using a data acquisition
module (Model: NI-USB-6255, National Instruments, Austin, TX). The utilized
SCG sensor is sensitive to chest wall movement due to respiration. While this
movement is an artifact that can corrupt SCG, that artifact has a much lower
frequency (0.1–0.4 Hz). This makes it easy to remove that artifact by low pass
filtering, which is the approach implemented in this study.

Two other signals were simultaneously acquired. These include ECG (in the
lead two arrangement, Model: AD 8232, SparkFun Electronics, Niwot, CO) and
respiratory flow signal (via a mouthpiece using a with a pressure transducer, Model:
CXLdp, Ashcroft Inc, Stratford, CT). Subjects were asked to avoid food and drinks
and heavy exercise approximately 4 h prior to experiment to help exclude potential
effects of activity on SCG signal. The subjects laid supine on an exam table for
approximately 10 min prior to data acquisition. The data was then acquired for
approximately 5–10 min at a sampling rate of 10 kHz.

5.2.3 Preprocessing

5.2.3.1 Filtering

The signal processing steps were implemented in MATLAB (2017b. The Math-
Works, Inc., MA). To reduce the background noise and baseline wondering (i.e.,
variation) due to respiration, SCG and ECG signals were forward-backward filtered
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Fig. 5.5 (a) Setup for SCG spatial distribution measurement (b) sensor location with index

using a fourth-order Chebyshev 2 type band-pass filter (0.5-50 Hz) to remove
respiratory sounds and low-frequency noise (typically lower than 0.5 Hz) and other
high-frequency noise (typically higher than 50 Hz, e.g., 60 Hz come from electrical
connections) described in previous studies (Azad et al. 2019; Gamage et al. 2020).
In addition, a moving average filter of order 5 (low pass with cut-off ~ 2 kHz) was
employed to further smooth the signal (Azad et al. 2019; Gamage et al. 2020). A
similar method was used to filter SCG and ECG signals in previous studies (Azad
et al. 2019; Gamage et al. 2020).

5.2.3.2 SCG Segmentation

R peaks of the ECG signal were used to segment the SCG signal into SCG beats
(also called events in this manuscript). Here, Pan Tomkins algorithm (1985) was
used to detect R peaks. Each SCG beat was selected to start 0.1 s before the R
peak of the corresponding ECG, while the end point of SCG beat was selected 0.1 s
before the R peak of the following ECG complex (Fig. 5.6). Since the R-R interval
varies over time, this approach resulted in SCG beats with varying duration. Similar
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Fig. 5.6 Segmentation of the SCG signal using ECG beats (Gamage et al. 2020)

approach of segmenting the SCG signal is used in previous studies (Azad et al. 2019;
Gamage et al. 2020).

5.2.4 Reducing SCG Variability Using Unsupervised Machine
Learning

The effect of respiratory variation on the SCG signal may lead to inaccurate
estimation of SCG features. Previous studies (Gamage et al. 2020; Sandler et al.
2019) have shown that the SCG morphology can be optimally clustered in to two
groups which have coherent relations with the respiratory phases and such clustering
allows precise estimation of SCG features. Hence, SCG events were clustered
based on their morphology using unsupervised machine learning as suggested in
previous studies (Azad et al. 2019; Gamage et al. 2018, 2020) which used k-
medoid clustering with dynamic time warping (DTW) as a variability measure. This
clustering method has shown higher accuracies over other methods for shape-based
(i.e., morphology-based) clustering of time series (Paparrizos and Gravano 2017).
After clustering, the cluster morphologies can be represented by the medoid SCG
beat (i.e., the median beat) of each cluster (Gamage et al. 2020). Figure 5.7 shows
an example of the distribution of SCG clusters relative to respiration cycle.

Figure 5.7 shows that SCG events don’t cluster entirely based on respiratory
flow or lung volume phases. The results suggest that most cluster 1 events happen
from the late LLV-INSP phase to early HLV-EXP phase in the respiratory cycle
while cluster 2 events happen from late HLV-EXP phase to early LLV-INS phase.
To estimate SCG features, medoids of these clusters are considered to be the
representative waveforms of these clusters (Gamage et al. 2020). Figure 5.8 shows
an example of SCG waveform medoids of cluster 1 and 2 from a single measurement
session.
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Fig. 5.7 (a) SCG clusters occurrence in a respiratory cycle (Lung volume). (b) SCG cluster
assignment in a lung volume and respiratory flow rate space. SCG beats are represented by blue
circles and red triangles showing their respiratory phase suggesting the clusters separate at LLV-
INS and HLV-EXP phase

Fig. 5.8 An example of SCG waveform for medoid of cluster 1 and 2. There is noticeable
morphological variability between the two cluster medoids due to respiratory variation

5.2.5 SCG Features

After reducing the SCG variability using clustering, the spatial distribution of
different SCG features (or attributes) over the chest surface were analyzed. The
analyzed features (or attributes) include SCG amplitude, signal-to-noise ratio,
morphological variability, cardiac timing intervals (CTIs), and few other time and
frequency domain SCG features.
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Peak to peak amplitude

Fig. 5.9 An example of SCG waveform. The arrow indicates the peak to peak (i.e., max-min)
amplitude of SCG waveform

5.2.5.1 SCG Peak-to-Peak Amplitude

Peak-to-peak amplitude of SCG waveform can be an important SCG feature which
indicates the loudness of SCG signal. The spatial variability of SCG peak-to-peak
amplitude would allow us estimate signal strength at different locations on the chest
surface. Figure 5.9 illustrates the peak-to-peak amplitude of a SCG waveform.

5.2.5.2 SCG Signal-to-Noise ratio

Signal-to-noise ratio (SNR) is defined as the ratio between the signal energy and
energy of background noise. SNR is regarded as a metric to estimate the signal
quality over the background noise. The background noise is typically acquired in
absence of the signal of interest. With regard to the signal quality of SCG signal,
use of SNR is challenging because the signal of interest here is the SCG signal due
to cardiac activity and is measured on the chest surface of a live human subject.
Hence measurement of chest surface background noise is difficult. A previous study
(Luu and Dinh 2018) suggested to use cardiac quiescent phase (T-P interval of
ECG) as a period to measure noise, since the heart chambers in this period are at a
relaxed phase and comparatively lower acceleration is observed during this period.
Figure 5.10 illustrates the waveform window considered for the systolic and cardiac
quiescent period to calculate relative SNR.
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Fig. 5.10 SCG and simultaneously recorded ECG waveform showing SCG waveform window
considered during systolic and quiescent period

The relative signal-to-noise ratio is calculated by the following equation.

Relative SNR

= (rms (100 ms window of SCG waveform during systolic period))

(rms (100 ms window of SCG waveform during cardiac quiescent period))

(5.2)

5.2.5.3 SCG Morphological Variability

SCG morphological variability was quantified using intra-cluster variability and
inter-cluster variability. These measures are indicative of beat-to-beat variation of
SCG and may contain useful information about respiratory effects on the SCG signal
due to the coherent relationships of clusters and respiratory phases (Azad et al. 2019;
Gamage et al. 2020). The following equations were used to calculate the intra and
inter-cluster variabilities. Similar variability measures are used in previous studies
(Azad et al. 2019).

Intra − cluster variability = 1

n1 + n2

[∑n1

i=1
dtw (C1, Xi1) +

∑n2

i=1
dtw (C2, Xi2)

]
(5.3)
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Inter − cluster variability = 1

n1 + n2

[∑n1

i=1
dtw (C2, Xi1) +

∑n2

i=1
dtw (C1, Xi2)

]
(5.4)

Here, Xi1 , Xi2 are the ith SCG event belonging to cluster 1 and cluster 2, respectively,
while C1 and C2 are the respective cluster medoids. And n1, n2 are the total number
of events belonging to cluster 1 and 2, respectively.

In Eqs. 5.3 and 5.4, the function dtw is used to calculate the morphological
difference between two SCG beats using dynamic time warping (DTW) dissim-
ilarity measure. DTW is an estimate of the similarity between two time series.
Initially, DTW was used for automatic speech recognition (Sakoe and Chiba 1978)
specifically to identify the same word spoken at different speeds. DTW calculates
the optimal “global alignment” between two-time sequences (i.e., SCG beats) by
identifying the temporal distortions between them (Sakoe and Chiba 1978; Silva
and Batista 2016) and nonlinearly “warps,” the two time series to determine a
quantitative measure of their dissimilarity (Sakoe and Chiba 1978). Recent studies
(Gamage et al. 2020; Paparrizos and Gravano 2017) used this measure in similar
time series clustering. The steps for calculating the DTW distance between two
time series with different lengths, X and Y, are as follows:

X = {x1, x2, . . . xi, . . . .xn} (5.5)

Y = {y1, y2, . . . yj , . . . .ym

}
(5.6)

where n and m are the lengths of the two signals.
This distance matrix is recursively filled using following formula,

D (i, j) = δ
(
xi, yj

)

+ min

⎧⎨
⎩

D (i, j − 1)

D (i − 1, j)

D (i − 1, j − 1)

where δ
(
xi, yj

) = (xi − yj

)2
or
∣∣xi − yj

∣∣
(5.7)

An optimal alignment (warping path) W = {w1,w2, . . . . wk, . . . ,wN} is to be
found where wk = (i, j) represent the alignment between ith point of X and jth point
of Y.
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Fig. 5.11 An illustration of distance measure using (a) Euclidean distance and (b) DTW distance
between two SCG signals. For convenience few points in each signal that corresponds to other
signal are shown here

The optimal warping path is found such that it minimizes

DT W (X, Y ) = argmin
k=N∑
k=1

D(w) (5.8)

where the warping path should satisfy the following three conditions.

Boundary constraint: w1 = (1, 1), wN = (n,m)
Monotonicity constraint: wk = (i, j), wk + 1 = (i

′
, j

′
) where i

′ ≥ i and j
′ ≥ j

Continuity constraint: wk = (i, j), wk + 1 = (i
′
, j

′
) where i

′ ≤ i + 1 and j
′ ≤ j + 1

The computed DTW(X, Y) reflects the morphological dissimilarity between X
and Y. Figure 5.11 shows the difference between using Euclidean distance and DTW
as a dissimilarity measure.

Figure 5.11 shows the associated points between two SCG beats when measuring
the dissimilarity between them. As can be seen in Fig. 5.11, associated points are
concurrent for Euclidean distance and portion of one SCG beat is not considered
due to length difference. In DTW, associated points are related nonlinearly in time
based on the morphological similarity of the SCG beats.

5.2.5.4 Cardiac Timing Intervals (CTIs)

Cardiac timing intervals are important parameters in assessment of cardiac health
(Crow et al. 1994; Tavakolian 2010; Shafiq et al. 2016). In the current study, the
spatial variability of pre-ejection period (PEP) which is typically defined as the time
duration between the Q wave location of ECG signal and aortic opening (AO) peak
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PEP LVEP

Fig. 5.12 An illustration of pre-ejection period (PEP) and left ventricular ejection period (LVEP)
along with ECG and SCG signal

of SCG signal while left ventricle ejection period (LVEP) is defined as the time
period between aortic opening (AO) peak and aortic closure (AC) peak in SCG
signal are analyzed. Figure 5.12 shows the identification of cardiac timing intervals
using simultaneously captured SCG and ECG waveforms.

5.2.5.5 SCG 3 Amplitude

Previous studies (Glower et al. 1992; Abrams 1978) suggested that the presence
of the third heart sound (S3) detected in PCG measurements may indicate left
ventricular dysfunction. The corresponding high energy region in the SCG signal
is called SCG 3 in this paper. A recent study (Siejko et al. 2013) employed an
accelerometer to record precordial vibrations located S3 (i.e., similar to SCG 3)
by finding the peak of the signal envelop in the frequency band (5-60 Hz) within
a window of 100–200 ms after S2 peak location. A similar approach was used to
locate SCG 3 in the current study. Here, SCG 1, SCG 2, and SCG 3 were located
by seeking for high energy peaks of the SCG signal. The energy signal of SCG
waveform was calculated using polynomial chirplet transform (PCT) as it showed
better accuracy in a previous study (Taebi and Mansy 2017). An example of located
SCG 1, SCG 2, and SCG 3 locations and respective high-energy regions in the PCT
distribution is shown in Fig. 5.13.
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Fig. 5.13 (a) SCG 1, SCG 2, and SCG 3 located on the SCG waveform. (b) Time frequency
distribution of SCG waveform using PCT showing high-energy regions corresponds to SCG 1,
SCG 2, and SCG 3

5.2.5.6 Maximum Instantaneous Frequency Around SCG 1 and SCG 2
Peak

The instantaneous frequency (IF) is a transient parameter that corresponds to the
average of the frequencies present in a signal at a given time as the signal morphol-
ogy varies in time. The IF signal of SCG may provide important features related
to cardiac mechanical movements such as myocardial movements (correspond to
low frequency) and valve fluctuations (correspond to relatively higher frequencies)
(Taebi and Mansy 2017). The instantaneous frequency was calculated using the
following equation.

fins(t) =

50∫
0.5

f.PCT (t, f ) df

50∫
0.5

PCT (t, f ) df

(5.9)

Here, f is the frequency and PCT(t, f ) is the energy in the time frequency
distribution using PCT. An example of located maximum instantaneous frequencies
around SCG 1 and SCG 2 in the instantaneous frequency signal is shown in Fig.
5.14.
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Fig. 5.14 Maximum instantaneous frequency around SCG 1 and SCG 2

5.3 Results

For each sensor location, two medoid SCG beats were calculated after clustering.
These medoids were used to calculate the SCG features presented in the following
parts of this section. Figure 5.15 shows an example of the derived two medoid SCG
beats plotted on top of each other at each sensor location in one subject. In general,
for all subjects, louder acceleration signals with prominent SCG feature points (i.e.,
clear peaks and nadirs) were observed near the left sternal border in the precordial
region. In contrast, low-amplitude SCG with less clear SCG features were seen on
the right side of the sternum. Also, the clarity of the SCG features diminished toward
the lateral direction away from the left sternal boarder. As a whole, these results
suggested that attaching a sensor on the precordium near left sternal border would
deliver a strong SCG signal with prominent features.

The study focused further on evaluating the optimum sensor locations (or
regions) for estimating particular SCG features based on their amplitudes and
localized spatial variability. The color map plots representing the feature amplitudes
and pairwise t-test connectivity graphs indicating the statistical significance of
feature variations between neighboring locations are presented in the following
sections. For simplicity, when calculating a feature value for a sensor location, the
average feature value of the two SCG medoid beats were used in the presented
results.
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Fig. 5.15 Medoid SCG beats from cluster 1 and 2 plotted on top of each other at different sensor
location. Magnitude of acceleration is louder around the left sternal border. Feature points are also
prominent closer to the sternal border. Signal amplitude and feature point clarity diminish as the
sensor location move laterally away from the left sternal border increasing error in feature point
identification

5.3.1 SCG Peak-to-Peak Amplitude

Figure 5.16 shows the peak-to-peak amplitude variation with respect to sensor
location.

While SCG amplitude varied from subject to subject, for most subjects, the
region with high SCG amplitudes were concentrated at an approximately 3-cm-wide
region near left sternal border ranging from 3rd ICS to 5th ICS. SCG amplitude
varied significantly at the right lateral border (50~80%) compared to left sternal
border (LSB). For some subjects, relatively high SCG amplitudes were seen on the
xiphoid region.

5.3.2 Signal-to-Noise Ratio

The relative SNR as described in Sect. 5.2.5.2 with respect to sensor locations are
illustrated in Fig. 5.17.
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Fig. 5.16 Peak-to-peak SCG amplitude variation visualized by color map. Amplitude of the
waveform tends to increase as the sensor move toward left sternal border for most cases. A few
subjects showed higher amplitude around xiphoid process

Fig. 5.17 Relative SNR of SCG signal with respect to sensor location. Figure showed that SNR
values increased as the sensor moved toward left sternal border suggesting better signal quality
around that region
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Figure 5.17 suggests that relative SNR values are higher along the left sternal
border from 3rd to 5th ICS, and it varied significantly at the right lateral border
(50~80%) relative to LSB. This is coherent with SCG peak-to-peak amplitude
variations. Few subjects showed higher SNR values around xiphoid process. These
results suggest that a high-energy SCG with better signal quality can be acquired by
attaching the sensor on the region near the left sternal border ranging from 3rd to
5th ICS which may include xiphoid process in some subjects.

5.3.3 SCG Morphological Variability

The SCG morphological variabilities of the SCG signal as described in Sect.
5.2.5.3 (intra- and inter-cluster variabilities) can contain useful features related to
respiratory variation which may help predicting cardiac health (Sandler et al. 2019).
The intra- and inter-cluster variability spatial distribution maps for all subjects are
presented in Figs. 5.18 and 5.19.

Figures 5.18 and 5.19 suggest that the spatial distribution of SCG variability
(intra- and inter-cluster variability) was found to be subject-dependent. The SCG
intra- and inter-cluster variability remained comparable (within 5%) in 3-cm-wide
region along the 4th ICS left sternal border, while it varied elsewhere (10~40%)
relative to 4th ICS near LSB. This variation may be caused by the differences

Fig. 5.18 Intra-cluster variability for all subjects. The intra-cluster variability values were compa-
rable around the left sternal border region within 3 cm laterally spread region among most subjects



5 Spatial Distribution of Seismocardiographic Signals 149

Fig. 5.19 Inter-cluster variability for all subjects. The inter-cluster variability values were consis-
tent around the left sternal border within the 3 cm wide region for most subjects

Fig. 5.20 Pairwise test p values connectivity graph comparing sensor location for (a) intra-cluster
(b) inter-cluster variability between neighboring locations. The red lines link significantly different
values, while blue lines link the adjacent locations with similar values. The variability values
showed similarity within a 3 cm wide region lateral to left sternal border

in subject breathing patterns and variations of soft tissue concentration on the
chest surface. This can also be illustrated by Fig. 5.20 which plotted the statistical
significance of the differences between the SCG variability values observed at
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adjacent locations (using p value from pairwise t-test). In this figure, the red lines
link significantly different variability values, while blue lines link the adjacent
locations with similar variabilities.

5.3.4 Cardiac Timing Intervals

The spatial distribution of the CTIs, namely, pre-ejection period (PEP) and left
ventricle ejection period (LVEP), is shown in Figs. 5.21 and 5.22, respectively.

The PEP values remained comparable for most of the sensor locations (0–10%)
relative to 4th ICS left lower sternal border (LLSB) except the locations on right
anterior axillary lines where they varied significantly (30~60%) relative to 4th ICS
near LSB. For LVEP, the values are most consistent (within 2~4%) along the sternal
border around 3 cm region lateral to the border. They varied around 10–20% along
the right and left anterior axillary lines relative to 4th ICS. To compare PEP and
LVEP values with its neighboring locations, pairwise t-test was performed, and the
statistical significance between the neighboring sensor locations is represented as a
connectivity chart in Fig. 5.23. The red link indicates significant difference between
adjacent locations, while blue link indicates similarity.

Figure 5.23 suggests that the PEP and LVEP values were not significantly
different around the left sternal border and around 3 cm wide region laterally from
4th to 5th ICS. In addition, sensor at xiphoid process showed similar values to 4th
ICS near LSB for PEP and LVEP.

Fig. 5.21 PEP relative to sensor location for individual subjects. Figure suggests that the error in
PEP is lower around the left lower sternal border region compared to right side of the sternal border
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Fig. 5.22 LVEP relative to sensor location for (a) individual subjects. Figure suggests that the
error in LVEP values is comparable relative to sensor locations

Fig. 5.23 Pairwise t-test p values connectivity graph performed for (a) PEP and (b) LVEP values
between neighboring locations. The red lines link significantly different values, while blue lines
link the adjacent locations with similar values. PEP and LVEP values were not significantly
different at the left sternal border and at xiphoid process
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Fig. 5.24 Variation of SCG 3 amplitude relative to sensor locations

5.3.5 SCG 3 Amplitude Variation Over Sensor Location

The variation of SCG 3 amplitude relative to sensor location is plotted in Fig. 5.24.
Figure 5.24 suggests that SCG 3 amplitude values were similar (1~2 mg and were

within 2–5%) around left sternal border. The SCG 3 amplitude varied (10–20%)
relative to 4th ICS LLSB among most sensor locations. The pairwise test p values
connectivity chart for SCG 3 amplitudes between adjacent locations is plotted in
Fig. 5.25.

Fig. 5.25 suggests that SCG 3 magnitudes are not consistent as observed in
previous findings in the 3-cm-wide region near the left sternal border. However, the
values showed similarity just at the sternal border and xiphoid process. There may be
other regions of consistent SCG 3, but these regions are away from the pericardium
region and with low SCG 3 magnitude. This may be due to the inconsistent nature of
the presence of SCG 3 (Correspond to S3) in healthy subjects. However, for patients
with heart failure, different results may be expected with the strong likelihood of S3
presence in HF patients.

5.3.6 Maximum Instantaneous Frequency Around SCG 1
and SCG 2 Peak

The variation of maximum instantaneous frequency around SCG 1 and SCG 2
relative to sensor location is plotted in Fig. 5.26.
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Fig. 5.25 Pairwise test of SCG 3 amplitude values between neighboring locations. The red lines
link significantly different values, while blue lines link the adjacent locations with similar values.
SCG 3 amplitude values were similar at left sternal border and at xiphoid process

The maximum instantaneous frequency variations around SCG 1 and 2 peak at
the LSB were small (within 5%), and in other locations they varied approximately
(5~10%) relative to 4th ICS near LSB. Pairwise test p value connectivity graph
for Max IF around SCG 1 and SCG 2 peaks is plotted in Fig. 5.27. Pairwise test
suggested that the values are not significantly different at the left sternal border
locations from 3rd to 5th ICS and at xiphoid process. Other locations were also
found to be consistent such as right and left lateral border in the anterior axillary
lines. However, the SCG in these locations were with low signal amplitude and low
feature clarity.

5.3.7 Surface Acceleration Map at Feature Points

Chest surface instant acceleration maps may help us understand the entire chest
surface motion during a cardiac cycle. The surface acceleration during a cardiac
cycle at important feature points relative to left sternal border near 4th ICS for a
subject is shown in Fig. 5.28. Similar trend was observed for other subjects as well.

Figure 5.28 suggests that during pre-ejection period, an inward motion followed
by a loud outward motion in the dorsoventral direction is observed around the left
sternal border from approximately 3rd ICS to 5th ICS. During aortic closure, the
surface acceleration showed a mild outward motion followed by an inward motion
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Fig. 5.26 Maximum instantaneous frequency around SCG 1 and 2 peaks. Figure suggests that the
instantaneous frequency ranges from 30 to 35 Hz around the left sternal border

around the same area. A recent numerical study which modeled cardiac-related
precordial vibrations (Gamage et al. 2019) suggested similar acceleration pattern
at the chest surface from the finite element modeling of the cardiac motion.
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Fig. 5.27 Pairwise test p value connectivity graph for Max IF around SCG 1(top) and SCG 2
(bottom) plotted. The red link indicates significant difference between adjacent locations, while
blue link indicates similar feature values. Max IF around SCG 1 and 2 peaks tend to be similar at
left sternal border

5.4 Discussion

The results of the current study are consistent with previous studies (Kawamura et
al. 2007; Nogata et al. 2010, 2014; Pandia et al. 2012). The current study expands
the analysis by investigating more SCG features that may help increase SCG clinical
utility.

The current manuscript compared SCG features between neighboring sensor
locations (e.g., Figs. 5.20, 5.23, 5.25, and 5.27) to quantify the variation in features
with relatively small sensor placement changes. For example, Fig. 5.20 compares
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Fig. 5.28 Instantaneous chest surface acceleration during mitral closure (MC), isovolumic con-
traction (IC), aortic opening (AO), aortic closure (AC), and mitral opening (MO). The positive
(i.e., outward) acceleration tended to be loudest around left sternal border between 3rd and 5th
ICS during aortic opening and closure. During isovolumic moment, a negative (i.e., inward)
acceleration was observed around the same surface region

the intra- and inter-cluster waveform variability at adjacent locations. Results
suggested that although the waveform remained similar at the left side of the
sternal border, they were significantly different from those at right sternal border.
However, some cardiac timing intervals (PEP and LVEP) were similar for the left
and right sternal borders. This increased similarity may be expected since waveform
timing depends on travel distance (of cardiac vibration waves), and this distance is
relatively small between left and right borders. For SCG 3 amplitudes and maximum
IF (Figs. 5.25 and 5.27, respectively), SCG 3 amplitude varied significantly between
left and right sternal margin (possibly due to tissue damping), while IF variation was
smaller since it is independent of damping.

One limitation of the study is that it was done in young healthy male non-
obese adults. To generalize findings, further investigation is needed over a wider
population including females and those with cardiovascular disease.

The study used a large number of sensors to map the surface distribution of
SCG to help guide sensor position choices and estimate potential sensor positioning
errors. In a clinical setting, likely only one or perhaps two sensors would be used
at locations where SNR and signal strength are highest. The study suggested that
certain locations would be optimal based on these criteria.
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5.5 Conclusion

In this study, SCG spatial variability was investigated using 36 accelerometers
attached on the chest surface in 15 healthy subjects. The spatial variations of several
features were studied to identify optimum location for SCG sensor placement. The
magnitude of acceleration and relative signal-to-noise ratio was found higher around
the left lower sternal border around a 3 cm wide laterally spread region ranging
from 3rd to 5th ICS and may include the xiphoid process. In this region, SCG signal
variability (i.e., intra- and inter-cluster variability) tend to be around 4–5% of SCG
signal peak-to-peak amplitude. The SCG features in a 3–6 cm laterally spread region
from the left sternal border found to be inconsistent and significantly different than
its adjacent locations outside this region. Several potentially important SCG features
(including the PEP and LVEP values) were found to be similar (p > 0.05) at 3-
cm-wide region near the left lower sternal border. Other features including SCG 3
magnitude, maximum instantaneous frequency around SCG 1 and SCG 2 showed
consistent values only along the left sternal border (ranging from 3rd ICS to 5th ICS)
and xiphoid process. These results suggest that those sensor locations are optimal
and should help provide guidance for accurate SCG sensor positioning. Sensor
positioning optimization in turn should help advance the utility of SCG analysis
for improved cardiovascular health. Further investigation is needed over a wider
population including those with cardiovascular disease.
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Chapter 6
Determination of Vascular Access
Stenosis Location and Severity
by Multi-domain Analysis of Blood
Sounds

Steve J. A. Majerus, Rohan Sinha, Binit Panda, and Hossein Miri Lavasani

6.1 Introduction and Background

Hemodialysis is a renal replacement therapy which replaces the lost function of the
kidneys for individuals with acute or chronic kidney disease. For those with end-
stage renal disease (ESRD), hemodialysis is essential for survival unless a kidney
transplant is available. Despite the mortality risk of ESRD, successful hemodialysis
can greatly prolong patient lifespans and increase the chance of receiving a donor
transplant (Leypoldt 2005). During hemodialysis, arterial blood is filtered through
a dialyzer to remove waste products and excess fluid before being returned to the
venous system. For individuals with ESRD, hemodialysis is required typically three
times per week, which requires a high-flow vascular access so core blood can be
filtered efficiently. To improve hemodialysis, permanent vascular access is usually
obtained using arteriovenous fistulas or grafts or central venous catheters (Fig. 6.1).
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Fig. 6.1 The hemodialysis circuit removes arterial blood, filters it externally, and returns it to the
body through the vascular access

Patency of a hemodialysis vascular access is the “Achilles Heel” of hemodialysis
treatment (Pisoni et al. 2015). Access dysfunction accounts for two hospital
visits/year (Cayco et al. 1998; Sehgal et al. 2001) for dialysis patients, and the loss
of access patency greatly increases mortality risk (Lacson et al. 2010). Maintenance
of vascular access is therefore a key objective in clinical guidelines for dialysis
care and is often handled by dedicated vascular clinics to deal with the high
volumes of individuals needing emergency interventions (Feldman et al. 1996). The
predominant causes of access dysfunction are stenosis (vascular narrowing) and
thrombosis (vascular occlusion), which occur in 66–73% of arteriovenous fistulas
(AVFs) and 85% of arteriovenous grafts (AVGs) (Al-Jaishi et al. 2017; Huijbregts
et al. 2007; Bosman et al. 1998). Venous stenosis near the artery-vein anastomosis
occurs in 50–71% of grafts and fistulas, but stenoses can occur anywhere along
the vascular access or central veins (Duque et al. 2017; Roy-Chaudhury et al.
2006). Clinical monitoring is essential to identify at-risk accesses for diagnostic
imaging and treatment planning and to avoid emergencies, missed treatments, or
loss of the access (H. Inc for OSORA CMS n.d.; Hemodialysis | NIDDK n.d.).
Doppler ultrasonic imaging, for example, is a noninvasive method for characterizing
vascular access function but requires a visit to a healthcare center and evaluation
by specifically trained personnel (Sequeira et al. 2017). The promise of efficient,
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point-of-care monitoring is to proactively identify which patients might need this
specialized examination to minimize vascular access dysfunction or loss.

Monitoring for vascular access dysfunction relies on data efficiently gathered
in the dialysis center, most regularly through physical exam. When blood flows
through a constricted vessel, the resulting high-speed flow jet induces turbulence
and pressure fluctuations in the vessel wall (Seo n.d.). This produces distinct
bruits which can be heard with a stethoscope during physical examination. Access
surveillance, occasionally performed monthly using flow-measuring equipment,
cannot detect fast-growing lesions or restenosis after angioplasty and is often a
late indicator of access risk (Krivitski 2014) which reduces utility (Krivitski 2014;
White et al. 2006; Moist and Lok 2019). Higher-frequency monitoring for access
dysfunction would be ideal for early detection of stenosis but must be balanced
against the labor and time required. Existing monitoring techniques have variable
sensitivities (35–80%), in part due to the expertise dependence of bruit interpretation
and physical exam techniques (Tessitore et al. 2014a). Since listening to bruits is
an important aspect of physical exams, clinicians have sought to identify auditory
features of bruits for quantitative analysis since the 1970s (Duncan et al. 1975).

Recording and mathematical analysis of bruits—sometimes referred to as
phonoangiograms (PAGs)—is called phonoangiography because it has the same
objectives of characterizing vascular stenosis as angiographic images (Seo n.d.; Kan
et al. 2015; Majerus et al. 2018; Doyle et al. n.d.). The primary motivation behind
phonoangiography is efficiency and objectivity, because sounds can be recorded
easily from the skin surface without particular need for expertise. Signal analysis
of PAGs can then be used to objectively describe the underlying turbulent flow
and degree of stenosis. Recent advances in spectral and multiresolution analysis,
autoregressive models, and machine learning make real-time PAG analysis feasible
at the point of care for rapid patient screening. PAG monitoring has the potential to
provide widespread, objective screening of hemodialysis vascular access function
for early detection of accesses at-risk for thrombosis. This chapter covers relevant
signal processing in the analog and digital domains and strategies for extracting clas-
sification features from an array of microphone recording sites (Figs. 6.2 and 6.3).

The chapter is organized beginning with a brief summary of prior work using
PAGs to locate and classify vascular stenotic lesions. Next, an analysis of recorded
bruits is presented to determine the minimum signal bandwidth and dynamic range
for analog signal processing prior to digitization. Digital signal processing methods
for feature extraction is reviewed, demonstrating feature extraction in spectral,
temporospectral, and spatial domains based on recording site location. Finally, three
digital analysis strategies are presented to locate, classify, and estimate the actual
degree of stenosis using machine-learning methods. While estimation of degree
of stenosis provides clinically actionable data, classification enables simpler user
notification, for example, with at-home monitoring. Therefore, we highlight these
differing approaches to using machine learning for stenosis characterization from
acoustic analysis.
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Fig. 6.2 Chronic hemodialysis is best achieved using an arteriovenous fistula vascular access, or
an arteriovenous graft for individuals with compromised vascular structure. The vascular access is
surgically created and monitored clinically to detect the symptoms of dysfunction such as stenosis.
Note: for simplicity this image shows the venous and arterial needles at differing angles and
positions; in practice, hemodialysis needles are generally placed in the venous segment of the
access with the arterial needle antegrade to flow

Fig. 6.3 Vascular access stenosis may be detected and quantified using flexible microphone arrays
capable of detecting regions of turbulent blood flow produced in the region distal to stenosis

6.2 Prior Work in Phonoangiograhic Detection of Stenosis

PAGs have been analyzed for decades, but there is still wide variance in the
descriptions of relevant spectral properties in functional and dysfunctional vascular
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accesses. However, there is a clear relationship between changing acoustic spectra
relative to the dimensions of the stenosis. Further, there is relative agreement that
PAGs recorded close to the location of stenosis have the distinctive shift in acoustic
timber introduced by turbulent flow. Previous studies have analyzed PAGs from
humans, from vascular bench phantoms, and from computer simulations of blood
flow. Here, we describe two topics which have been studied previously: the spectral
properties of PAGs in normal and stenosed cases and the impact of recording
location on PAG spectra.

6.2.1 Classification of Degree of Stenosis
from Phonoangiograms

Because the degree of stenosis (DOS) in a blood vessel influences the level of
turbulent flow, PAG properties are related to DOS. DOS is defined as the ratio of
the stenosed cross-sectional area of the blood vessel to the proximal (non-stenosed)
luminal area but is also clinically calculated as the ratio in minimum diameter of
the stenosed vessel section to the non-stenosed lumen diameter. When angiography
is used to determine DOS, linear vessel and stenosis diameter measurements are
generally used to estimate DOS within 10% (Allon and Robbin 2009). In our
work, because we used computerized tomography (CT) scans of vascular stenosis
phantoms (described below), we calculated DOS as the ratio in luminal area in
the stenosed and non-stenosed vessel segments, because this accounted for stenosis
phantoms that were not circular.

Much early work in PAG analysis represented the combined frequencies gener-
ated during systolic and diastolic phases of turbulent blood flow. Because clinical
interpretation of pathologic bruits relies on detecting a high-pitched whistling
character, it was hypothesized that stenosis would shift spectral power within a
certain frequency band (Sung et al. 2015). Although all studies agree that the
frequency range of interest is in the 20–1000 Hz band, and that DOS enhanced high-
frequency spectral power, identification of specific frequency bands varied widely
(Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al. 2015; Mansy et al. 2005;
Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen et al. 2013; Akay et al. 1993;
Obando and Mandersson 2012; Wang et al. 2011; Clausen et al. 2011; Sato et al.
2006; Gram et al. 2011; Milsom et al. 2014; Rousselot 2014; Gaupp et al. 1999;
Gårdhagen n.d.).

Despite the disagreement in the precise effect of stenosis on bruit spectra,
these prior studies confirmed that stenosis definitively changes PAG amplitude and
pitch. The change, however, could be an enhancement or a suppression of certain
frequencies depending on the impact of stenosis on blood flow. Other patient-
dependent variables such as PAG amplitude and the recording location relative to
stenosis must also be accounted for and are described below.
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6.2.2 Localization of Vascular Stenosis
from Phonoangiograms

Bruits are only detectable close to where they are created due to the low acoustic
amplitude and acoustic attenuation of human tissue. Fluid dynamic simulations
have established to a high degree of precision that stenosis induces turbulent
flow at physiologic blood pressures, flow rates, and nominal lumen diameters of
vascular accesses (Gaupp et al. 1999; Gårdhagen n.d.). These simulations have
been confirmed by Doppler ultrasound measurements, which agree that turbulent
flow occurs within 2–5 times the diameter of the unoccluded vessel distal to
stenosis. Therefore, the presence of a bruit indicates stenosis or some other vascular
malformation is nearby.

An important effect is that turbulence and decreased pressure occurs on the
downstream side of the stenosis—for an arteriovenous vascular access, this is closer
to the venous outflow tract. Therefore, bruits recorded proximally and distally to
stenosis have different frequency spectra due to stenosis turbulence (Du et al. 2015).
However, the acoustical influence of biomechanical properties and thickness of
tissue over the vascular access varies between patients. Because tissue acts as a
low-pass filter at auditory frequencies, it is presumed that the most accurate bruit
recordings would be obtained in the 1–3 cm region distal to stenosis (assuming
unoccluded tube diameter to be 6 mm), where turbulent flow is maximal (Gaupp et
al. 1999; Gårdhagen n.d.).

6.3 In Vitro Reproduction of Vascular Bruits

The spectral content of bruits produced by human blood flow is affected by a
wide range of uncontrollable factors such as vascular anatomy, blood pressure,
blood concentration (hematocrit), and flow rate. We developed an in vitro vascular
phantom to reproduce bruits so that relevant acoustic features and classifiers could
be matched with known degree of stenosis. Acoustic recordings from the phantom
system were used to validate the stenosis classification strategies described below.
The reproduction performance of the phantom was validated against 3283 unique
10-s recordings obtained from 24 hemodialysis patients over 18 months (Majerus
et al. 2000). Human and phantom bruits were recorded using the same digital
stethoscope (Littman 3200) and compared based on aggregate power spectral
density. Peak arterial pressure in the phantom was controlled using an adjustable
pressure dampening system. Cardiac stroke volume was varied by changing the
duty factor of a pulsatile pump. The acoustic power spectra of phantom bruits were
validated against reference recordings taken from humans, as previously described
(Chin et al. 2019).

Specific construction details of the vascular phantom were previously described
(Chin et al. 2019; Panda et al. 2020) and are briefly introduced here (Fig. 6.4). The
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Fig. 6.4 (a) Vascular stenosis phantom flow diagram. Two pumping systems produced pulsatile
flows in a vascular access phantom within physiological ranges of flow and pressure. The recording
sites are shown in the stenosis phantom diagram (b). 10–85% stenosis is simulated in the center of
phantom by tying a band around 6-mm silicone tubing (c)

phantom consisted of a 6 mm silicone tube banded by a silk suture at one location
to simulate an abrupt vascular narrowing. Phantoms were produced with DOS from
10% to 85%. The banded tube was then encased below 6 mm of tissue-mimicking
silicone rubber (Ecoflex 00-10). The tissue-mimicking portion also extended at least
10 cm in all directions from the stenosis. The final DOS for each phantom was then
calculated from images slices taken by CT scan.

Each phantom was connected to a pulsatile flow pumping system (Cole Parmer
MasterFlex L/S, Shurflo 4008). Pulsatile pressures and aggregate flow rate were
measured with a pressure sensor (PendoTech N-038 PressureMAT) and flow sensor
(Omega FMG91-PVDF), respectively. Pulsatile waveforms were delivered to one of
the pumps at a rate of 60 beats per minute using a solid-state relay to produce flows
from 600 to 1200 mL/min at peripheral peak blood pressures of 110–200 mmHg.

6.4 Signal Processing: Considerations in the Transduction
of Bruits

While the main focus of this chapter is signal processing of bruits to pro-
duce phonoangiograms for classification, system-level consideration of the signal
processing requirements can help optimize performance and avoid over-design.
Therefore, this section will review the design considerations for a transducer and
front-end interface amplifier to best capture the relevant acoustic signals to the
accuracy needed for classification (Fig. 6.5).
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Fig. 6.5 Signal processing is
required first in the analog
domain to maximize
signal-to-noise ratio and
prevent aliasing in
analog-to-digital conversion.
After digitization, digital
signal processing is used to
extract features for
classification

6.4.1 Skin-Coupled Recording Microphone Array

Fabrication details for recording arrays were detailed previously (Panda et al.
2019a), so this section will introduce new data on the bandwidth considerations
for these sensors. The true spectral bandwidth and dynamic range of vascular
sounds may still be unknown since only stethoscopes have been used to record
these signals previously. Published analyses of PAGs report higher-pitched sounds
associated with vascular stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014;
Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al.
2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang
et al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et
al. 2014; Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), which suggests
that the reduced frequency range of stethoscopes might be insufficient for blood
sounds. Therefore, acoustic recordings from the in vitro phantom were made with
a reference transducer (Tyco Electronics CM-01B) with a flat frequency response
to at least 2 kHz. For each recording, the 95% power bandwidth was calculated by
integrating the power spectral density. To compute the power bandwidth, the power
spectral density was computed using fast Fourier transform and then cumulatively
integrated by frequency bin until the integration met 95% of the total power in
all bins. Because electronic circuits suffer from increased flicker noise at low
frequencies, and because all prior reports of PAGs indicate increased power above
100 Hz associated with vascular stenosis (Sung et al. 2015; Du et al. 2015; Du et al.
2014; Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al.
2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang et
al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014;
Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), we adopted a lower integration
bound of 25 Hz. This had a further benefit of enabling shorter-duration recordings
(e.g., 10 s), which otherwise do not accurately capture extremely low-frequency
signal components. For this analysis 10-s recordings were taken 1 cm before the
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simulated stenosis, at the stenosis, and 1 and 2 cm after the stenosis relative to the
direction of blood flow.

Signal bandwidth was related to the degree of stenosis, as expected, but also
to recording location (Figs. 6.6 and 6.7). Both effects were expected based on
prior measurements and simulations indicating turbulent flow existing up to 1–
2 cm from a typical stenotic lesion (Gaupp et al. 1999; Gårdhagen n.d.). These
results suggest the need to record from multiple locations to accurately detect the
presence and severity of a stenotic lesion. In an analysis of 156 recordings, the
maximum interquartile range for 95% bandwidth was 25 Hz–1.2 kHz; the lower-
frequency bound correlated with phantoms with low DOS producing little turbulent
flow (Fig. 6.8). These data suggest that a signal bandwidth of at least 1.5 kHz
is appropriate for measuring vascular bruits. With a safety factor, we adopted a
bandwidth of 25–2.25 kHz.

The required bandwidth was achieved with a signal-to-noise ratio of 24 dB using
a polyvinylidene fluoride (PVDF) film as a 2-mm diameter circular transducer. This
transducer was developed to be coupled directly to the skin to measure blood sounds
through direct piezoelectric transduction (Panda et al. 2019b). The small size of the
transducer allowed it to be fabricated in recording arrays (M and Panda 2019). In
this work we describe testing from arrays arranged as 1×5 channels spaced by 1 cm
laterally (Fig. 6.4).

6.4.2 Transducer Front-End Interface Amplifier Design

Each PVDF microphone in the recording array must be coupled to an interface
amplifier to amplify the signal amplitude before digital conversion. The analog
performance of the interface amplifier is driven by three constraints: the electrical
impedance of the PVDF transducer, the required signal bandwidth, and the required
dynamic range. In this case, the dynamic range constraint is driven by the minimum
signal accuracy needed for the digital signal processing and classification strategy.
In a retrospective analysis of blood sounds measured from hemodialysis patients and
an in vitro phantom, we determined that a minimum dynamic range of 60.2 dB was
needed for accurate classification of stenosis severity (Panda et al. 2019a), which is
roughly equivalent to 10-bit accuracy after digital conversion. As described in the
previous section, a bandwidth of 2.25 kHz is needed to capture most of the energy
in the PAG signals.

The amplifier input impedance constraint is based on the electrical model for
each 2-mm transducer which was extracted using an impedance analyzer (Hioki
IM3570). The PVDF transducer was modeled electrically as a resistor and capacitor
in parallel (Fig. 6.9). Measured values of the sensor resistance, capacitance, and the
equivalent sensor output current when recording PAGs are shown in Table 6.1.

Because the PVDF transducer has a large impedance with a small signal current,
a transimpedance amplifier (TIA) was designed to convert the piezoelectric sensor
current to a voltage that can be digitized. Each microphone within the array feeds
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Fig. 6.6 Power spectral density recorded at different locations relative to a 75% stenosis show a
site-specific signal bandwidth. In general, sites after stenosis have wider signal bandwidths because
of the local presence of turbulent blood flow

Fig. 6.7 The 95% power bandwidth for 156 PAG recordings for DOS 10-90% were aggregated
based on recording site. Recordings at sites 2 and 3 indicate wider bandwidth independent of
degree of stenosis or flow rate. This forms the basis of the classifier methodology, as there is a
distinct correlation between elevated power and frequency content in the presence of stenosis
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Fig. 6.8 Analysis of interquartile range for PAGs recorded with DOS 10–90% showed a required
bandwidth of at least 1600 Hz to accurately capture signal dynamics in the analog signal processing
section. Including a safety factor, the interface amplifier was designed for 2.25 kHz bandwidth to
limit noise

Fig. 6.9 The PVDF transducer is modeled simply as a resistor (RS) and capacitor (Cs) in parallel
with output current Isignal based on measured impedance at 100 Hz

Table 6.1 Measured
transducer parameters for an
electrical model for the
PVDF sensor

Parameter Nominal value

Current source amplitude (ISignal) 0.63 μA
Current source frequency 100 Hz
Sensor resistance (RS) 12.4 M�

Sensor capacitance (Cs) 100 pF
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Table 6.2 Design specifications for transimpedance interface amplifier

Parameter Nominal value

Nominal input current 0.63 μA (from PVDF transducer)
Required dynamic range 60.2 dB minimum
Nominal output voltage level 30 mV peak
Low-pass signal bandwidth 2.25 kHz

a dedicated TIA. The TIA converts the current produced by the transducer to an
output voltage while minimizing the input referred noise power. The TIA is an
ideal interface to high impedance, current output devices, but certain critical design
considerations must be made to optimize the total signal-to-noise ratio of the output
signal. The most important design consideration, which has a direct impact on the
sensitivity, is the input-referred noise of the TIA. In feedback TIAs built using
general voltage amplifiers such as an op-amp with a shunt-shunt feedback, the
input referred noise is a function of the input-referred voltage and current noise of
the op-Amp (Binkley 2008). Therefore, op-amps with high input-referred voltage
(nV/

√
Hz) and/or current noise (nA/

√
Hz) should be avoided.

The design specifications for the TIA were chosen assuming it would be followed
by a 2nd-stage programmable gain amplifier and a 10-bit analog-to-digital converter.
Therefore, a small-signal output level was chosen to limit harmonic distortion which
can occur with large signal swing. The performance of the TIA dominates the
analog noise floor and linearity, so these later stages are not described here. Design
requirements for the TIA are summarized in Table 6.2 based on measured properties
from PAGs in humans and the vascular phantom (Panda et al. 2019a).

In addition to the inherent noise of the op-amp, the feedback resistor plays a key
role in the overall input-referred noise power of the TIA. Increasing the feedback
resistance not only reduces the noise current associated with the resistance but also
results in higher TIA gain which helps lower the overall input-referred noise of
the TIA. Nevertheless, the requirement imposed on the frequency response of the
TIA when interfacing with the transducer limits the amount of resistance that can
be used in the feedback path. Still, optimizing the feedback resistance will lead to
lower input-referred noise within the required gain bandwidth (GBW) of the TIA
(Fig. 6.10).

The critical performance metrics are important in completing the design process.
Major small-signal TIA performance metrics are the transimpedance gain, the 3-dB
bandwidth, and input-referred noise power. Considering the transimpedance gain
and the bandwidth, the feedback network is the first physical parameter that must
be determined. The feedback network generally consists of a resistor and capacitor
that are connected in parallel. The resistive part helps set the transimpedance gain of
the TIA, while the capacitive component helps with setting the frequency response,
particularly the bandwidth and the stability. The frequency response affects the TIA
noise transfer function, and consequently, the input referred noise of the TIA, too.
Eqs. 5, 6 demonstrate how to optimize feedback capacitor ranges, e.g.,
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Fig. 6.10 Example of
op-amp open loop transfer
function and noise transfer
functions versus frequency.
Ideally, the noise transfer
function will be flatter until
the op-amp gain begins to roll
off (e.g., “B”)
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Another critical consideration for feedback capacitor value is the desired cutoff
frequency. This cutoff frequency determines the TIA’s -3db bandwidth, f−3dB,
expressed as

f−3dB = 1

2π ∗ Rf ∗ Cf

Input referred power is defined by the ratio of the output noise power, divided by
the TIA transfer function. This can be calculated using the SNR of the circuit (Fig.
6.11):

SNR = Powersignal

P owernoise

= Is
2 ∗ Rf

i2
n ∗ Rf

= Is
2

i2
n

The TIA design process is to maximize SNR given constraints on required
bandwidth, available supply voltage/current, and necessary dynamic range. The
transfer function of output voltage level (Vout) and input current (Isignal) is dependent
on the feedback resistance:

Vout = − [Isignal ∗ Rf

]+ Vref.

In this example, Vref is generated by a voltage divider of R1 and R2. Both were
selected to be 10k� to set the reference at half of the supply voltage, i.e.,
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Fig. 6.11 Equivalent transducer and transimpedance amplifier circuit model for input-referred
noise calculations with parallel current source, in, functioning as input noise source

Vref = Vsupply ∗ R2

R1 + R2
(where R2 = R1)

The DC value of the output for this stage of amplification was selected to be
2.1 V. From this parameter, the feedback resistance was calculated as:

Rf = Vout − Vref

Isignal

= 2.1V − 1.65V

0.63μA
= 715k�

The value of the feedback capacitance was determined from the required signal
bandwidth. Rearranging Eq. 7 for Cf , we arrive at:

Cf = 1

2π ∗ Rf ∗ f−3dB

= 1

2π ∗ 715k� ∗ 2.25kHz
= 100ρF

The minimum op-amp bandwidth for this circuit was calculated using the
feedback resistance and capacitance, Rf and Cf , as well as the capacitance of
the input pin of the selected op-amp (Texas Instruments OPA2378). The IN-
pin capacitance is the sum of the sensor capacitance (Cs), common-mode input
capacitance (CCM), and differential mode capacitance (CDiff ) as:

CIN = Cs + CCM + CDiff = 1000ρF + 5ρF + 4pF ∼= 1000ρF

fGBW ≥ Cf + Cin

2π ∗ Rf ∗ C2
f

≥ 24.7 kHz

Therefore, the op-amp must have a minimum bandwidth of roughly 25 kHz. The
OPA2378’s 900 kHz bandwidth satisfies this requirement and is a viable component
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for this application. The OPA2378 has an input voltage noise density of 20nV
Hz1/2 . The

input referred voltage noise was calculated as 183nV
Hz1/2 which meets the 60 dB dynamic

range requirement over the signal bandwidth of 2.25 kHz.

6.5 Signal Processing and Feature Classification Strategies
for Acoustic Detection of Vascular Stenosis

The preceding sections described how phonoangiograms can be efficiently trans-
duced through arrays of flexible microphones and the bandwidth and dynamic range
needed for interface and data conversion electronics. After a bruit is recorded, a
wide range of digital signal processing strategies can be used to extract meaningful
features. Prior examples have reported that autoregressive spectral envelope estima-
tion, wavelet sub-band power ratios, and wavelet-derived acoustic features correlate
to degree of stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al.
2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen
et al. 2013; Akay et al. 1993; Obando and Mandersson 2012; Wang et al. 2011;
Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014; Rousselot
2014; Gaupp et al. 1999; Gårdhagen n.d.). Features can be extracted from multiple
signal processing branches and compared using machine-learning techniques, e.g.,
radial basis functions or random forests. However, feature extraction and model
training must be constrained to prevent over-fitting on limited datasets and to
improve generalized use. In this section we provide an overview of how two derived
time domain signals—acoustic spectral centroid (ASC) and acoustic spectral flux
(ASF)—have unique properties for bruit classification. Importantly, ASC and ASF
are derived directly from the discrete wavelet transform coefficients, which reduce
feature dimensionality and aid scalar feature extraction.

A specific physical system implementation provides constraints on computa-
tional complexity, accuracy, and ease of implementation which can guide the
selection of features. In this section, we review the fundamental approach for
extracting spectral features from a single acoustic recording site. We will then
expand this signal processing into other domains, specifically into time and space,
by leveraging time-synchronized recordings from an array of microphones.

6.5.1 Multi-domain Phonoangiogram Feature Calculation

Because PAGs are time domain waveforms, they can be analyzed in both the
temporal or spectral domains, i.e., as one-dimensional signals in either domain.
Spectral transforms such as discrete cosine transform and continuous wavelet
transform combine these domains to form a two-dimensional waveform along time
and frequency (or scale) axes. However, when PAGs are acquired at multiple sites
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along a vascular access, the spatial distribution of PAG properties provides an
additional analysis domain. If PAGs are also sampled simultaneously, time domain
differences between signals are correlated and can be analyzed. When features
are extracted from different domains, they can be compared to each other using
clustering and classifier techniques as long as they are reduced to scalar form.

In this section we review how features can be extracted from each domain with
dimensional reduction to scalar values. The spectral domain provides scalar features
such as average pitch. The temporospectral (combined time-spectral) domain allows
segmentation of blood sounds in cardiac cycles to provide sample indices for systole
onset. After temporospectral segmentation, spectral features can be separately
calculated in systolic and diastolic phases. Finally, the spatial domain provides
features describing the time delay between PAGs at different recording sites. Spatial
analysis also enables detection of spectral changes between sites to predict where
turbulent blood flow is occurring.

6.5.1.1 Spectral Domain Feature Extraction

Spectral domain feature extraction is likely the most common approach in PAG
signal processing. This is intuitive because humans perceive frequency content with
great sensitivity, and PAG processing seeks to replicate traditional auscultation by
ear. In this section we review spectral domain feature extraction using continuous
wavelet transform (CWT) to describe the spectral variance over time.

CWT over k scales W[k, n] is computed as:

W [k, n] = xPAG [n] ∗ ψ [n/k] ,

where ψ[t/k] is the analyzing wavelet at scale k. We used the complex Morlet
wavelet because it has good mapping from scale to frequency, defined as:

ψ [n] = e−(n/2fc)
2
ej2πfcn,

where fc is the wavelet center frequency. In the limit fc → ∞, the CWT with Morlet
wavelet becomes a Fourier transform. Because of the construction of the Morlet
wavelet as the wavelet ψ[n] is scaled to ψ[n/k], and k is a factor of 2, the wavelet
center frequency will be shifted by one octave. Therefore, CWT analysis with the
Morlet wavelet can be described by the number of octaves (NO) being analyzed
(frequency span) and the number of voices per octave NV (divisions within each
octave, i.e., frequency scales). Mathematically the set of scale factors k can be
expressed as:

k [iO, iV ] = 2(iO+iV /NV ).
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iO = k0, k0 + 1, k0 + 2 . . . NO

iV = k0, k0 + 1, k0 + 2 . . . NV

Where k0 is the starting scale and defines the smallest scale value and the total
number of scales K= NONV . For PAG analysis, we compute CWT with NO = 6
octaves and NV = 12 voices/octave, starting at k0 = 3. After computing the CWT,
pseudofrequencies F[k] across all K scales are calculated as:

F [k] = fc/k.

Because the CWT involves time domain convolution, each discrete sample n has
a paired sequence of k CWT coefficients, i.e., it is a 2-dimensional sequence. In the
context of phonoangiogram classification, features must be extracted from W[k, n]
that are of singular dimension. Dimension reduction of W[k, n] can operate over
all or part of the k scales at each discrete sample n, over a single k scale for all
n samples, over all points of W[k, n], or through a more complex combination of
summation over k and n.

The systolic and diastolic portions of pulsatile blood flow contain differing
spectral information on turbulent flow, so we have chosen to first reduce the
CWT dimensionality to n to produce time domain waveforms. This preserves the
spectral differences between different times in the cardiac flow cycle. Two n-point
waveforms are calculated from W[k, n]: auditory spectral flux (ASF) and auditory
spectral centroid (ASC). From these waveforms, we can compute time-independent
features such as RMS spectral centroid, or we can extract time domain spectral
features as explained in the next section.

ASF describes the rate at which the magnitude of the auditory spectrum changes
and approximates a spectral first-order derivative. It is calculated as the spectral
variation between two adjacent samples, i.e.,

ASF [n] = 1

K

√√√√ K∑
k=1

(|W [k, n]| − |W [k, n − 1]|)2

where W[k, n] is the continuous wavelet transform obtained over k total scales.
To intuitively demonstrate how ASF describes a signal, Fig. 6.12 shows ASF

calculated from a stepped single tone test waveform. The tone changes over [100,
200, 400, 800, 1000] stepping every 2 s. At every tonal change, the spike in the
ASF waveform corresponds to the time of the spectral shift and the magnitude. The
ASF waveform, therefore, describes how when, and how quickly, spectral power is
shifting between bands. This is useful in mapping large variations in a PAG signal,
such as the systole and diastole phases. Segmentation of these phases, therefore,
uses the ASF waveform (described below).
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Fig. 6.12 Spectrogram of artificially generated test waveform with 6 single-tone frequencies from
100-1500 Hz. The ASF curve (lower) shows a spike at every change of frequency, approximating
the spectral first derivative

ASC describes the spectral “center of mass” at each n sample in time. For
Gaussian-distributed white noise, ASC will be constant at pseudofrequency F[K/2].
ASC is commonly used to estimate the average pitch of audio recordings, where a
higher value corresponds to “brighter” acoustics with more high frequency content
(Tzanetakis and Cook 2002). ASC is calculated as:

ASC [n] =
∑K

k=1 (|W [k, n]| .f c [k])∑K
k=1 |W [k, n]|

where W[k, n] is the continuous wavelet transform obtained over K total scales of
the PAG and fC[k] is the center frequency.

ASC for the same test waveform is plotted to intuitively describe how this
waveform describes the time domain spectral energy of a signal (Fig. 6.13). Because
only a single tone is used at each time point, ASC consistently describes the
frequency of the sine wave until it changes. Because F[k] represents pseudofre-
quencies, there is not a perfect mapping between ASC pseudofrequency and real
auditory frequency. The use of the Morlet waveform in the CWT improves the
pseudofrequency accuracy, but for PAG classification, absolute frequency accuracy
is not needed (discussed below).

Example computations of ASC and ASF waveforms, compared to the time
domain and spectral domain PAG recording, demonstrate feature calculation (Fig.
6.14). After the three-dimensional W[k, n] is computed, time domain ASC and
ASF waveforms are calculated. From these waveforms simple, time-invariant scalar
values such as RMS or peak amplitude are calculated and used for stenosis
classification.



6 Determination of Vascular Access Stenosis Location and Severity. . . 179

Fig. 6.13 Spectrogram of artificially generated test waveform with 6 single-tone frequencies from
100-1500 Hz. The ASC curve describes the frequency of the sine wave at each time point

Fig. 6.14 Time-domain bruit (a) and continuous wavelet transform spectral domain (b). The
descriptive signals auditory spectral centroid and flux were extracted from CWT coefficients (c,d).
The RMS value of the descriptive signals is one example of a scalar feature derived from the
time-domain waveform

6.5.1.2 Temporospectral Domain Feature Extraction

For PAG analysis we are primarily interested in identifying the time onset of systolic
and diastolic phases. This allows separate spectral feature extraction in each phase,
ratioed features by comparing spectral changes between phases, and time domain
comparisons such as lengths of cardiac phases, or time shifts between recording
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Fig. 6.15 Auditory spectral centroid (ASC) varies with degree of stenosis but also between
systolic and diastolic phases (a). The auditory spectral flux (ASF) waveform enables segmentation
between pulsatile phases so that the RMS value of ASC (ASCRMS) can be separately calculated
(b)

sites. This analysis is useful because blood flow acceleration occurs in the high-
pressure systolic pulse, which gives rise to turbulence producing high spectral
power. As a spectral derivative, the ASF waveform is well suited to describe the
onset of systolic turbulence and is used for temporospectral segmentation.

Segmentation simply used a thresholding procedure; systolic ASF onset is
defined as the time when the ASF waveform exceeds a threshold in each pulse
cycle (Fig. 6.15). A suitable threshold of 25% of the ASFRMS value was determined
empirically using data recorded from human patients and the vascular phantom
(Panda et al. 2019b). Pulse width is also used to reduce false threshold crossings.
The times between threshold crossings are calculated, and any crossings which
produce pulse widths less than 40% of the mean are discarded (Lázaro et al. 2013).

Temporospectral segmentation produces a set of i indices (nASF,i) describing
systolic and diastolic pulse widths, which themselves can be used as features.
However, the indices can also be used to segment spectral waveforms such as ASF
and ASC to split them into systolic ASFS and ASCS, and diastolic ASFD and ASCD.
Features for each phase can be calculated by combining all segments or by averaging
the feature for each segment. As an example, consider an ASC waveform segmented
into P systolic segments each with length n. The RMS value of ASC in the systolic
phase only is then:

ASCS,RMS = 1

P

P∑
i=1

√
1

n

∑
ASC2

S,P,n
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Fig. 6.16 Features can be derived for each recording site, or based on differences between
sites. Since all features are scalar, they can be combined into the same featureset and used for
classification

In practice, because systolic segments do not all have the same length n, any
derived features are calculated for each segment independently and averaged over P
segments.

Ratiometric features can also be calculated as ratios or differences between
successive systolic/diastolic pairs. This reduces the effect of interference caused
by recording which is correlated between adjacent segments or can be a less
individual-specific feature because the diameter of the blood vessel and absolute
flow rate contribute to ASC and differ between people. For example, ASC and ASF
waveforms show significant differences in systolic and diastolic phases (Fig. 6.15),
especially as DOS increases.

6.5.1.3 Spatial Domain Feature Extraction

The final domain analyzed in this model of PAG signal processing is the spatial
domain. Features are not extracted directly from the spatial domain; rather, new
features are derived as the difference in features between sites (Fig. 6.16). This
is a powerful technique because not only does it accentuate regions of turbulent
flow, but also the proportional feature changes between recording locations are
themselves related to degree of stenosis. Therefore, spatial domain features are
useful for both physical localization of stenosis and classification of degree of
stenosis. Furthermore, ratiometric site-to-site feature comparisons remove some of
the individual variation in features attributed to differences in anatomy. For example,
the dimensionless change in systolic ASC (ASCS) between sites 1 and 2 can be

calculated as ASC2,S
/

ASC1,S
. To obtain a similar comparison in approximate

units of Hertz, a difference is used, i.e., ASC2, S − ASC1, S.
This spatial domain technique can be generalized to produce composite features

for any multi-site measurement with little complications as long as the compared
features are independent scalars. However, any site-to-site calculations relying
on time require synchronization in sample rates between sites, or alignment of
waveforms based on a reference symbol so that relative time differences can be
calculated. For example, composite temporospectral features require time invariance
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Fig. 6.17 ASF calculated at proximal and distal locations showed an inversion in Td . At moderate
and severe DOS, Td became negative, suggesting flow velocity increase

in the calculation. Once this condition is met, composite spatial domain features
based on time shifts are simple to calculate. For example, the time delay in ASF
systolic onset (nASF) between sites 1 and 2 can be calculated as:

td,1−2 = 1
/

Fs

(
nASF,1 − nASF,2

)
.

This calculation is easily performed from feature calculations for each recording
site (Fig. 6.17) and is transformed to a continuous time difference in units of seconds
by dividing by the sample rate FS. Scalar features from multiple domains can be
combined to form a single feature set (Fig. 6.16), especially if a machine-learning
classifier will be used because the scalar features can be analyzed as if they are
unitless.

6.6 Classification of Vascular Access Stenosis Location
and Severity In Vitro

The clinical goal for multi-site recordings of PAGs is to both locate and describe
the severity of stenosis. In our previous work, we showed that binary or ternary
classification using single features was sufficient to classify DOS as mild, moderate,
or severe. Analysis of this method using receiver operating characteristic (ROC)
revealed detection sensitivities as high as 88–92% and specificities as high as 96–
100% (Panda et al. 2020), but classification was only accurate at certain recording
locations. Therefore, feature selection for an array of recording sites is important to
detect differences between recording sites. This section demonstrates comparing
features between sites using hyperdimensional classifiers to greatly improve the
stenosis classification accuracy from PAG recordings.
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Fig. 6.18 As features are
extracted, the dimensionality
of the dataset is reduced to
yield a final set of features.
Since each site has features
extracted from site-specific
features and intra-site feature
differences, a total featureset
of F[S,M] is produced with S
features over M sites

6.6.1 Multi-domain Feature Selection

The previous sections described how phonoangiograms are transduced and pro-
cessed as analog signals, prior to being digitized for digital signal processing.
Features are then extracted from multiple dimensions to yield a final set of M
features F[S.M], which are site-specific to each of S recording sites (Fig. 6.18).
In previous work we and others have described more than 15 features that are
correlated with degree of stenosis in humans and in bench phantoms of vascular
stenosis (Sung et al. 2015; Du et al. 2015; Du et al. 2014; Wu et al. 2015; Mansy et
al. 2005; Shinzato et al. 1993; Hsien-Yi Wang et al. 2014; Chen et al. 2013; Akay
et al. 1993; Obando and Mandersson 2012; Wang et al. 2011; Clausen et al. 2011;
Sato et al. 2006; Gram et al. 2011; Milsom et al. 2014; Rousselot 2014; Gaupp et
al. 1999; Gårdhagen n.d.; Chin et al. 2019; Panda et al. 2020; Panda et al. 2019a).

Machine-learning classifiers require optimized feature selection through numer-
ous methods. Feature selection improves the performance of classifier algorithms
and reduces the likelihood of over-fitting to a data set of limited size. Numerical
methods such as principal component analysis are powerful tools, as is supervised
feature selection which relies on trained experts to select the features describing
most of the variance in the observed effect. In this work we used both automated and
supervised feature selection to select the most appropriate features. In the following
classification examples, we explain the rationale behind feature selection for the
given classification task.
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Fig. 6.19 Stenosis
localization uses spatial
features derived from feature
differences between adjacent
sites. In this example, the
shift in ASCS between sites
is used to detect the presence
of stenosis beneath a specific
recording site

6.6.2 Stenosis Spatial Localization Using Acoustic Features

Because the presence of stenosis produces turbulent flow in blood, a characteristic
high-frequency sound is produced locally within 1–2 cm of the lesion (Gaupp
et al. 1999; Gårdhagen n.d.). Spatial domain feature analysis is ideal to detect
differences between recording sites caused by dramatic changes in blood flow
patterns. To demonstrate the feasibility of detecting the location of stenosis using
acoustic features alone, we tested eight stenosis phantoms on the vascular phantom
previously described over variable blood flow rates of 700–1200 mL/min. This range
of flows was tested at each degree of stenosis to simulate the nominal levels of
human blood flow rates in arteriovenous vascular accesses. DOS for the phantoms
ranged from 10% to 85%.

A vascular access is typically a uniform segment of blood vessel with few
collateral veins, so we simply tested a one-dimensional recording array with five
locations along the path of blood flow (Fig. 6.4). Recording sites were spaced
by 1 cm and used skin-coupled microphones as previously described. While we
analyzed over 15 features for stenosis localization, we found many features were
correlated (Chin et al. 2019) and therefore adopted the site-to-site change in mean
systolic ASC (�ASCS) as the sole feature for localization (Fig. 6.19). This feature
was intuitively selected because it is well documented that the presence of stenosis
causes high-pitched blood sounds. Therefore, we expect that an abrupt stenosis
in an otherwise smooth vessel will produce higher pitch at sites within several
centimeters. Five site-to-site features for each flow rate and DOS were calculated,
and including replications this yielded 370 total samples for statistical analysis.

In this experiment, the actual stenosis was located directly under location 2;
location 1 was recorded 1 cm proximal, and locations 3, 4, and 5 were 1, 2,
and 3 cm distal to stenosis. The interval plot (Fig. 6.20) indicated a positive
shift between �ASCS,differences from proximal to distal locations (p < 0.001 for
30% < DOS < 90%) (Panda et al. 2019a). Confidence intervals and differences
in group means were calculated using ANOVA followed by Tukey’s test with
95% confidence intervals (α = 0.05). Because sample data followed a normal
distribution, Tukey’s test was used to adjust confidence intervals based on the
number of comparisons tested. Statistical analysis was performed in Minitab
software (Minitab, LLC, State College, PA, USA). In general, differences between
locations 3 and 4 and 4 and 5 were positive by 50–70 Hz, while the other site
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Fig. 6.20 Difference in ASCS between adjacent locations showed no significant variation for 0%
DOS (p>0.05) (a). A large spectral shift at locations distal to stenosis (stenosis center at location
2) (b). Data plotted for phantoms with 30%<DOS<90%, p<0.001 for all locations. Analysis of
variance and Tukey’s test were identified statistically significant differences in ASC means at
significance level α=0.05

differences were negative. This suggested that a simple threshold difference of
70 Hz in �ASCS,between adjacent array recording locations could identify stenosis
proximally to the recording sites within 1–2 cm.

6.6.3 Stenosis Severity Classification from Acoustic Features

While the location of stenosis can be estimated by comparing feature shifts between
sites to a threshold, classification of the degree of stenosis is more challenging from
a single feature. This is in part because the degree of stenosis and the nonlinear
properties of blood interact such that DOS nonlinearly impacts overall flow rate and
turbulence pattern (Gaupp et al. 1999; Gårdhagen n.d.), introducing time-dependent
changes to both acoustic spectra and intensity. Many classification strategies have
been proposed and studied for a single recording site (Sung et al. 2015; Du et al.
2015; Du et al. 2014; Wu et al. 2015; Mansy et al. 2005; Shinzato et al. 1993; Hsien-
Yi Wang et al. 2014; Chen et al. 2013; Akay et al. 1993; Obando and Mandersson
2012; Wang et al. 2011; Clausen et al. 2011; Sato et al. 2006; Gram et al. 2011;
Milsom et al. 2014; Rousselot 2014; Gaupp et al. 1999; Gårdhagen n.d.), e.g.,
showing classification accuracy of about 84% using binomial Gaussian modeling
(Sung et al. 2015). Here we extend classification to leverage temporospatial domain
features drawn from multiple recording sites.

We chose to classify PAG data using a quadratic support vector machine (SVM)
(Joachims 1998). The quadratic SVM is widely used in natural language processing
tasks and is suitable for PAGs which have similar autoregressive properties as
speech (Majerus et al. 2018). As a machine-learning algorithm, the SVM defines
a hyperplane which is used to separate clusters of data points in a high-dimensional
space. The hyperplane is used as a decision surface and is optimized to maximize
the separation distance between the classes of data.
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Because the data are not linearly separable, the SVM transforms the input data
points into a higher dimension using a kernel function. For the quadratic SVM, the
kernel K is a polynomial of order 2, i.e.,

K (x1, x2) =
(
x1

Tx2 + 1
)2

.

Expanding this kernel reveals how data are expanded into higher dimension
through interaction terms:

K (x1, x2) =
(

n∑
i=1

x1
Tx2 + 1

)2

=
n∑

i=1

x1,i
2x2,i

2 +
n∑

i=2

i−1∑
j=1

(√
2x1,ix1,j

) (√
2x2,ix2,j

)

+
n∑

i=1

(√
2x1,i

) (√
2x2,i

)
+ 1.

This dimensional expansion changes the distances between data points in the higher-
dimensional space and allows a decision surface to be constructed. The decision
surface is a hyperplane optimized to the distance between the hyperplane and the
nearest data points in each class. Because this quadratic optimization problem
involves significant computation, SVMs are developed using machine-learning
strategies and generally tuned iteratively.

For the case of DOS classification, we trained the SVM in MATLAB using the
same dataset of 370 recordings described above. For each of S recording sites, a set
of M features was calculated giving a total feature array F[S,M]. However, after
detecting the location of stenosis, only recordings from the nearest site need to
be classified, i.e., the SVM was only trained on a single feature vector F[M]. In
our example with 5 recording sites, this reduced the total number of observations
(recordings) to 50.

Training of the SVM was performed in MATLAB in three phases. First, PAG
features were transformed to a high-dimensional space using the polynomial kernel.
Then feature selection was performed to reduce the total number of features
(and hence the dimensionality) of the SVM. This reduced the overall model
complexity, reduced the numerical instability risk inherent to SVMs, and reduced
the risk of over-fitting. Principal component analysis was used to define the three
features which described variance between the data classes: ASC · ASF (mean
ASC multiplied by mean ASF), ASCS (mean value of ASC in systole), and td
(time shift in ASF onset compared to first recording site). The computation of these
features is illustrated in Fig. 6.21. Then, quadratic optimization was performed to fit
an optimal hyperplane between the classes of data. Model validation was performed
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Fig. 6.21 Scalar features are derived from the time-domain ASC and ASF descriptive waveforms,
including interaction features such as ASC · ASF . Temporo-spectral features such as systolic
width can be derived, or compared to adjacent sites to compute spatial features such as td which
describes the time shift at ASF onset in systole between time-synchronous recordings

using fivefold cross-validation such that the model was trained on ten observations
and tested by classifying the remaining 40.

The quadratic SVM was designed to classify PAGs into three output classes for
DOS: mild, moderate, and severe. Because these classes were ordinal (monotonic)
and known a priori, quadratic SVM was selected (versus, e.g., clustering methods).
Further, while DOS is a continuous variable, we chose to bin it into classification
ranges because clinical monitoring does not require precise quantification of DOS;
imaging is then used after a lesion is identified to more precisely determine
treatment options (Sequeira et al. 2017). However, acoustic features can also be used
to continuously estimate the DOS using regression, as described in the following
section. Thresholding after regression can be used to similarly classify estimated
DOS into ranges for clinical action.

Class definitions were chosen to be consistent with our prior work (Panda et al.
2020; Panda et al. 2019a): DOS < 30% (mild), 30% ≤ DOS ≤ 70% (moderate), and
DOS > 70% (severe). Validation accuracy of the quadrative SVM on this data was
100% even though the features were not linearly separable (Fig. 6.22). Importantly,
most of the classification accuracy came from the ASC and ASF features; however,
adding the temporospatial measure td helped prevent misclassifications at high DOS
which occur when the stenosis greatly reduces vascular flow rate (Table 6.3).

However, while td boosts classification accuracy only slightly, multiple recording
locations for stenosis localization are still essential to accurate classification. For
example, Table 6.4 indicates how classification accuracy drops significantly when
applied to PAGs recorded more than 2 cm from the actual site of stenosis and
dropping the spatial feature td. This suggests that accurate PAG classification
requires either a priori knowledge of stenosis location or multi-site recordings to
detect locations for analysis.
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Fig. 6.22 The quadratic SVM classified DOS as mild (< 30%), moderate (30%<DOS<60%), and
severe (DOS>60%) with 100% accuracy. This demonstrates the advantage of SVM as the included
features are not fully separable linearly in the feature space (a, b)

Table 6.3 Performance of Quadratic SVM versus included features

Number of features Included features Average validation accuracy

3 ASC · ASF , ASCS , td 100%
2 ASC · ASF , ASCS 96%

ASCS , td 84%
ASC · ASF , td 88%

1 ASC · ASF 84%
ASCS 82%
td 48%

Table 6.4 Classifier
accuracy of quadratic SVM
versus single recording sites

Recording site ASC · ASF ASCS ASC · ASF , ASCS

1 70% 68% 66%
2 70% 68% 78%
3 60% 54% 86%
4 84% 84% 96%

While this analysis suggested that machine-learning can be used for accurate
classification of PAGs, it must be noted that cross-validation alone is only sufficient
to optimize the hyperplane on the training data. The model was trained using data
from a set of vascular phantoms with variable rates of blood flow, but this does
not account for the wide anatomical variance seen in humans. Therefore, it is still
unclear how accurately this model will function on unseen data. This remains an
opportunity for future work.
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6.6.4 Degree of Stenosis Estimation from Acoustic Features

The previous section discussed using acoustic features from PAGs to classify
stenosis into clinically actionable ranges, but features can also be used to predict
the actual degree of stenosis. Previous work in this area demonstrated that DOS
could be estimated within 6% given a priori knowledge of the stenosis location (Du
et al. 2015). Here, we demonstrate how features from multiple domains can be used
to further improve DOS estimation using Gaussian process regression (GPR).

GPR is a regression modeling method, but unlike linear or nonlinear regression—
which seeks to fit a least-squares model to minimize prediction error to a dataset
f(x)—GPR is a Bayesian process which models f(x)as a Gaussian process (Ras-
mussen and Williams 2006). Thus, the value f(x) at each point x is represented
as a random variable with a Gaussian distribution (Applebaum et al. 2002). The
actual values used to train the model are therefore considered simply as independent
observations drawn from the underlying normal probability distribution at each
point. For example, observation-response pairs (x1, y1) and (x2, y2) are represented
by normal distributions P(y1| x1) and P(y2| x2). Regression of a new response y3
based on a new observation x3 is then calculated as the conditional probability
P(y3| (y1, y2), (x1, x2, x3))

Assuming the mean of the joint distribution of all input features F[M] is zero
(accomplished through normalization without losing information between each
recording), training the GPR involves solving for the unknown covariance matrix
using a radial basis function kernel K(xm, xn), i.e.,

Cov (f (xm) , f (xn)) = K (xm, xn) = α2e
− 1

2l2
(xm−xn)2

.

In this example the parameter α2 is the output variance of the data, while l2

represents the length scale of the data variance. Generally, α2 indicates the average
distance of the function from its mean, while l determines the memory length of
the modeled GPR. For a GPR trained on time-invariant features, e.g., PAG features,
l = 1. Similarly to the quadratic SVM, training data are transformed by the basis
function to a higher-dimensional space. Optimization of the basis function is then
performed iteratively to minimize the RMS predicted error to the input data. Model
training was performed in MATLAB on the same 50 recordings used to train the
quadratic SVM classifier. The RMS error of the optimized GPR was calculated
using fivefold cross-validation.

While the SVM classifier was demonstrated in the previous section, SVM
regression was not used for stenosis estimation. GPR was selected after feature
distribution analysis, which indicated that due to the chaotic nature of turbulent
fluid flow, and the dependency on variable blood flow rate, features measured at
each degree of stenosis spanned a range of observations around a defined central
value. Generally, for DOS > 50% extracted features followed a normal distribution
when pooled across all recording sites and all flow rates. Although GPR would
suffer from finite bounds on confidence intervals because DOS is bounded on the
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Table 6.5 RMS error from exponential GPR model versus features and recording sites included

Features included in model
Sites included in model ASC · ASF ASCS ASC · ASF ,ASCS ASC · ASF ,ASCS,td
Site 1 only 20.0% 16.6% 10.1% 9.4%
Site 2 only 20.0% 19.0% 12.9% 9.2%
Site 3 only 21.3% 22.0% 8.6% 7.5%
Site 4 only 13.8% 16.9% 12.2% 8.0%
All sites included 8.9% 7.9% 5.2% 4.3%

range of 0–100%, because the model was only validated on the range of DOS from
10% to 90%, GPR out-performed other regressions, perhaps due to estimation of
the underlying variance for each feature. For example, using the same features as in
Table 6.5, quadratic SVM regression only achieved a best-case 8.3% RMS error.

As in the quadratic SVM classifier, the addition of more features reduced the
RMS error of the regression. However, unlike the SVM, the regression required
data from sites around the stenosis to improve accuracy. In this example, the actual
stenosis lesion was located under Site 2 with turbulent flow occurring beneath
Site 3 and Site 4 based on established models (Gaupp et al. 1999; Gårdhagen
n.d.). Including features from recordings proximal and distal to the lesion greatly
improved the estimation accuracy. For all tested DOS, error was in the range [−11%
14%], and for DOS>50% error was [−11% 3%] (Fig. 6.23). From this outcome we
conclude two things. First, this in vitro experiment clearly demonstrates the need
for multiple recording sites for accurate phonoangiographic estimation of degree of
stenosis. In humans with more variable vascular anatomy, the need for the multiple
recording sites is likely greater because the location or presence of stenosis is not
known a priori. Second, the achieved accuracy is sufficient for clinical monitoring,
which generally only needs to detect when stenosis exceeds 50% or is rapidly
progressing (Sequeira et al. 2017; Valliant and McComb 2015; Tessitore et al.
2014b). Clinical imaging would still be used, so the objective for phonoangiographic
monitoring is simply to identify which patients to select for imaging.

6.7 Conclusion

This chapter discussed a new technique for point-of-care clinical monitoring of
a vascular access using an array of microphones. Turbulent blood flow produces
bruits that are recorded by each microphone and analyzed as phonoangiograms
to detect the location and severity of stenosis. Signal processing spans several
domains, beginning with the analog signal processing needed to amplify and filter
the PVDF microphone signals before digital conversion. In the digital domain,
continuous wavelet transform was used to produce acoustic spectral centroid and
acoustic spectral flux analytic signals, from which acoustic features were derived.
Systolic-diastolic segmentation provided additional features or the calculation of
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Fig. 6.23 Exponential Gaussian process regression estimated degree of stenosis for each in vitro
vascular stenosis phantom (a). The trained model estimated degree of stenosis with RMS error of
4.3% (b) and error range of [−11% 14%] and [−11% 3%] for all tested stenoses and for stenoses
> 50%, respectively (c)

ratiometric features. Techniques to calculate features from multiple domains—
spectral, temporospectral, and spatial—were feasible because of time-synchronous
recordings from the microphone array.

A 1×5 microphone array was used to record bruits from a vascular phantom
using stenosis models of 10–90% and blood-mimicking fluid at physiologic flow
rates and pressures. This produced a dataset of recordings from which features were
calculated. Stenosis localization was demonstrated using a simple binary classifier
against a pitch-shift threshold to detect which recording site was nearest the stenotic
lesion. A quadratic support vector machine classifier was trained using multi-
domain features from a single recording site and achieved 100% accuracy when
classifying the degree of stenosis as mild, moderate, or severe. Finally, estimation
of the actual degree of stenosis was demonstrated using an exponential Gaussian
process regression. The regression model combined features recorded from four
sites to estimate degree of stenosis with 4.3% RMS error. Because the clinical
threshold for elective surgery for vascular stenosis is 50% (Sequeira et al. 2017;
Valliant and McComb 2015; Tessitore et al. 2014b) (and clinical monitoring for
stenosis does not need to be as accurate as angiographic imaging), this suggests that
phonoangiographic analysis is feasible for point-of-care monitoring.
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Chapter 7
Fast Automatic Artifact Annotator for
EEG Signals Using Deep Learning

Dong Kyu Kim and Sam Keene

7.1 Introduction

The study of the brain, neuroscience, to understand about ourselves better has been
a great research area that combines the efforts of scientists and engineers across
various disciplines. Due to the brain’s complexity, the understanding of the basis
of learning, perception, and consciousness is sometimes described as the “ultimate
challenge” of biological sciences (Aminoff 2001). Currently, many advances in
neuroscience come from analyzing recordings of the brain. However, due to the
overwhelming amount of electrochemical activities in the brain, the collection of
reliable data is still one of the biggest challenges in neuroscience (Louis et al. 2016).

There are two main branches of brain signal acquisition methods: invasive and
non-invasive methods. Invasive methods involve placements of electrodes inside the
brain or insertion of needles through the subject’s head to collect precise and highly
local data. On the other hand, non-invasive methods such as electroencephalogram
(EEG) and magnetic resonance imaging (MRI) suffer from noise and various
artifacts (Louis et al. 2016). Due to the high interest and potential in this area of
research, in addition to relatively cheap and accessible EEG recording machines
(DellaBadia et al. 2002), there are a lot of interesting data available for analysis.
However, a lot of EEG data suffer from artifacts which are unwanted signals present
in the recordings as a result of the procedure of measurements. Artifacts in EEGs
are both physiological and technical, and they require well-trained observers to
be identified well (Louis et al. 2016). If there is a system that can distinguish
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between artifacts, and cerebral data automatically, neuroscience can advance further
as reducing the effect of artifacts will increase the signal-to-noise ratio so that brain
activity can be detected more precisely.

To achieve this goal, Temple University has constructed a large dataset of
EEG signals from various subjects that are specifically labeled for artifacts (Obeid
and Picone 2016) to aid engineers and scientists to build models that detect and
remove the artifacts. Previously, Golmohammadi and colleagues developed a model
that automatically analyzes EEG signals to help physicians diagnose brain-related
disorders such as seizures using hybrid deep learning architectures. This model
integrates hidden Markov models, deep learning models, and statistical language
models to deliver a composite model that has a true positive rate of 90% while
having a false alarm rate of below 5% on events of clinical interests: spike and
sharp waves, periodic lateralized epileptiform discharges, and generalized periodic
epileptiform discharges (Golmohammadi et al. 2019). This model proves the
viability of big data and deep learning methods in detecting events in EEG signals.

The work in Golmohammadi et al. (2019) attempts to classify artifacts as well
as the mentioned events of clinical interest, but the model developed was only able
to distinguish 14.04% of the artifacts correctly from the data. As the goal of that
model was to detect seizures and epilepsy, no further analysis of artifacts was done,
but it was noted that transient pulse-like artifacts such as eye movements and muscle
movements can significantly degrade the performance. In this chapter, a method that
can quickly identify the presence of artifacts and the type of the artifacts during the
data acquisition is proposed so that a clinician can resolve the problem immediately
and ensure the collected data is cleaner. To achieve this goal, multiple deep learning
models with varying model size, inference time, and accuracies were developed
and optimized to compare and contrast between advantages and disadvantages of
different approaches. The key feature of the models is that all the inferences are
done directly on the signals with a minimal preprocessing such as normalizing and
aggregating enough samples to be used for predictions by the model. The system
aims to be memory efficient, and computationally light, while being fast enough to
be implemented on portable systems such as Raspberry Pi. Such portable systems
would be able to detect and classify artifacts in real-time, potentially in a clinical
setting.

7.2 Related Works

There have been numerous efforts to combat the artifact problems in EEG signals.
A lot of research has been done to reduce the effects of artifacts by utilizing prior
knowledge such as how some artifacts behave in the signal. Artifact removal and
detection tools of this nature tend to examine the statistical characteristics of the
signals.
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Nolan, Whelan, and Reilly (Nolan et al. 2010) proposed FASTER, Fully Auto-
mated Statistical Thresholding for EEG artifact Rejection, which uses independent
component analysis (ICA) to separate EEG signals into neural activity and artifacts.
ICA works by separating multivariate signals into additive subcomponents by
assuming that different subcomponents are statistically independent of each other.
The advantage of using ICA is that ICA reduces the statistical dependencies of
different components of the signal, by separating the components (Lee et al. 1999).
After the separation, the model uses a statistical comparison charts to check for
features such as correlation with signal components, mean, variance, spatial, etc.
This model was tested on simulated EEGs and real EEGs and had a true positive rate
of over 90% in detecting artifacts when the model was given data with more than
64 channels. However, the true positive rate drops to 5.88% when the number of
channels provided decreases to 32. Besides, the algorithm takes an hour per 400 s to
yield the results using a machine with a 64-bit dual-core machine. Nevertheless, the
model not only detects the signal quite accurately but also can remove the artifact,
as any separated component of the signal can be extracted. This model can detect
eye movements, EMG artifacts, linear trends, and white noise.

Similarly, Singh and Wagatsuma (2017) used Morphological Component Analy-
sis (MCA), which uses a dictionary of multiple bases to guarantee the reconstruction
of original signals. MCA is applied to the EEG signal so that the signal is
deconstructed into a combination of bases in the dictionary. Singh and Wagatsuma
hypothesized that three dictionaries of bases are dominant, and they are undecimated
wavelet transform (UDWT), discrete sine transform (DST), and DIRAC (standard
unit vector basis). The decomposition was able to show that EEG signals and their
artifacts are represented by different dictionaries of bases, indicating that given the
decomposition result, artifacts can be distinguished from the signals of interest.
Singh and Wagatsuma successfully categorized which dictionary corresponds well
with the signal or the artifact. This research demonstrates that an ensemble of
different signal processing techniques could work well for artifact classification. The
drawback of this method is similar to that of Nolan’s. MCA takes about 6 s on 1024
samples of data that are sampled at 173.61 Hz. This corresponds to spending around
1.01 s of computation time per 1 s of a signal. As a result, this computational time
is not suitable for fast EEG artifact detection. There are numerous other additional
statistical approaches to separate the real EEG signal from the artifacts, such as
canonical correlation analysis, which Clercq used to remove muscle artifacts from
the EEG signals (Clercq et al. 2006).

All of the statistical approaches of the problem require a deconstruction of EEG
signals into multiple components and analyzing each component to determine which
components are responsible for artifacts and which are responsible for the real
signal. Though they are highly interpretive, the separation procedure takes a lot of
computation, and correct prior knowledge, such as the number of artifacts, a set of
orthogonal bases that work well with the time-series data, or the general behavior of
artifacts, is required. Due to the complex nature of the EEG signals, deep learning
with its ability to learn hidden features from the raw data has shown great promises
(Goodfellow et al. 2016).
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According to the review paper by Roy et al. (2019), among the 156 papers about
applying deep learning to EEG signals that the authors reviewed from January
2010 to July 2018, some papers applied data preprocessing techniques and artifact
rejection techniques such as the ICA mentioned above to combat the artifacts, while
some papers just used the raw EEG signals. Given that the majority of the papers did
not use any artifact removal schemes, Roy et al. suggest that using deep learning on
EEG signals directly might avoid the artifact removal step without any performance
degradation. However, all the papers mentioned in Roy’s review paper specifically
target certain applications such as detecting epilepsy, monitoring sleep, and making
a brain-computer interface, and none of the papers mentioned targets the detection of
artifacts specifically. The review paper suggests that convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are the most used networks in this
field; 40% of the studies use CNNS and 14% use RNNs.

Other works relating to deep learning and EEG signals or EEG like signals not
mentioned in the review paper above include Krishnaveni’s work on ocular artifact
removal in EEG signals (Krishnaveni et al. 2007) and Hasasneh’s work on automatic
classification of ocular and cardiac artifacts in magnetoencephalography (MEG)
(Hasasneh et al. 2018). Both of these works include some data preprocessing. Hasas-
neh’s work utilizes ICA, and Krishnaveni’s work utilizes the Joint Approximation
Diagonalisation of Eigen-matrices (JADE) algorithm to separate the real signals
from the artifact signals before using neural networks. The detection rates for the
test data for both of these works are 94.4% and 92%, respectively. However, both
of them only address one or two types of artifacts at the same time, while the model
proposed will include four different artifacts to be classified separately with no
preprocessing such that the model can be applied directly to the raw data.

There have been many attempts and there have been successful attempts in
detecting artifacts and classifying them using statistical machine learning and
inferences, but there are not much done using deep learning. Deep learning
approaches are particularly adept at optimizing an arbitrary large model and
recognizing complex patterns (Goodfellow et al. 2016). The previous methods
require mathematical models for artifact events or seizure events to classify the
signals accurately; hence the performance of the models depends highly on the
accuracy of the proposed mathematical models. However, the usage of deep learning
models can alleviate the incorrect modeling error as no accurate mathematical model
is needed to classify different events. In addition, the statistical analysis of large
temporal data is computationally heavy and takes a long time. While training a deep
learning model to optimize the parameters may take a long time, the inference time
for the completed model is relatively short compared to that of statistical models.
To use these advantages, many works have attempted to classify different aspects of
the EEG signals for monitoring purposes for seizure and sleep disorders using deep
learning. However, not a lot of works have been done in detecting and classifying
artifacts using deep learning, especially classifying multiple artifacts instead of
detecting a small number of artifacts.
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7.3 Method

7.3.1 Resources

The dataset used to develop our model is the Temple University Hospital’s EEG
Artifact Corpus. This dataset was developed to help researchers build models to
reduce the harmful effects of artifacts for EEG event classification algorithms such
as seizure detection algorithms. The version of the dataset is v1.0.0, and the dataset
is derived from the v1.1.0 of the TUH EEG Corpus (Obeid and Picone 2016). The
TUH EEG Corpus is the largest publicly available database of clinical EEG data
that contains over 30,000 EEGs spanning from 2002 to present, and the Artifact
Corpus is a subset of the original corpus that has been specifically labeled to enhance
artifact related research. There are 310 observations with 213 subjects with varying
durations and sampling rates.

The experiments to build our model were done using Python. Specifically, the
version of the python that was used is 3.6.8. Additional libraries used are matplotlib
v3.0.2, numpy v1.16.0, tqdm v4.31.1, scipy v1.2.0, tensorflow v1.12.0, and keras
v2.2.4. matplotlib and tqdm library were used for making plots and monitoring
progress, and numpy, scipy, tensorflow, keras libraries were used to build a deep
learning model and test. All the experiments were done using a machine equipped
with 16GB memory, AMD FX(tm)-6300 Six-Core Processor 3.5GHz, and a Geforce
GTX 1070 8GB graphics card. The data drive in which the corpus was in was a
standard hard drive with 7200RPM. Finally, the environment was a Windows 10
operating system with a virtual environment with all the above libraries created
using conda for the Anaconda Python distribution.

7.3.2 Data Preprocessing

The data corpus contains three different configurations of EEG. The first is the
AR (averaged reference) where the average of a finite number of electrodes is
used as a reference. This means that the average is subtracted from the signals of
each electrode for every time point to account for the common noise. The second
configuration is the LE (linked ears reference) which is based on the assumption that
ears do not have any electrical activity so that ears can be used as reference points
(Lopez et al. 2016). The third configuration is the AR_A which is a modified version
of the AR configuration, where A1_REF and A2_REF are not used. All the data
contain standard measurements that one could expect from the 10–20 International
System. For the AR, and the LE configurations, 22 channels can be derived from the
available channel information, while for the AR_A configuration, only 20 channels
can be derived. This is because the AR_A configuration lacks the EEG A1_REF
and the EEG A2_REF channels. The computations necessary to derive the channels
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Table 7.1 List of channels
with appropriate computation

Channel number Computation

1 FP1-F7
2 F7-T3
3 T3-T5
4 T5-01
5 FP2-F8
6 F8-T4
7 T4-T6
8 T6-02
9 A1-T3
10 T3-C3
11 C3-CZ
12 CZ-C4
13 C4-T4
14 T4-A2
15 FP1-F3
16 F3-C3
17 C3-P3
18 P3-01
19 FP2-F4
20 F4-C4
21 C4-P4
22 P4-02

are tabulated in Table 7.1. The AR_A configuration lacks channel number 9 and 14
from Table 7.1.

There are only seven occurrences of the AR_A configuration with four subjects,
and as this configuration lacks similarity to other configurations, this configuration
was discarded for the experiments. Too few examples of different data would hinder
the model from learning the important aspects of the artifacts, and for deep learning
models, consistent data size is important. The tradeoff is either to give up 2 channels
across all 303 observations or to give up 7 observations, and we have decided to give
up these 7 observations. Hence, for the experiment, there are 303 observations with
209 subjects available.

Another way to alleviate this problem is to fill in the missing channels. Nolan’s
work describes a method to fill in any missing channels using adjacent channels
(Nolan et al. 2010). However, since the missing A1 and A2 electrodes in the AR_A
configuration are reference points that are placed on ears, they cannot be interpolated
from other electrodes, as all the other electrodes are on the head. We decided that
guessing the signals on ears based on signals from the brain would not be accurate
at all. As a result, we decided not to use the interpolation method and thus discard
this configuration.

The original data are in the European Data Format (EDF), which is a standard
file format designed for the storage of medical time series data. All the EDF
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Table 7.2 Possible labels
and corresponding
descriptions

Label Description

eyem Eye movements
chew Chewing
shiv Shivering
elpp Electrode related artifacts such as

electrode
pops, static electrodes, lead artifacts

musc Muscle related artifacts
bckg Background noise
null Undefined annotation

files provided have all the electrode information so that channels defined in the
instruction can be derived easily using the computations tabulated in Table 7.1. In
addition, the corresponding label files contain the artifact class labels for the whole
EEG session and also for each channel.

There are seven possible labels and the labels and the corresponding descriptions
are tabulated in Table 7.2. The label files provide the start time and the stop time
of the existing artifacts in seconds. The files have the confidence level of the label,
which indicates the probability that the artifact is what the label says it is. All the
labels in this data corpus have the confidence levels of 1, and the background noise
label, “bckg,” is not available for this dataset. This is because the corpus is still in
the beginning stage of the development so it does not have a lot of data available
so the “bckg” label seems to be lacking in this version. As a result, the model is
developed to classify five artifacts and a “null” label. The “null” label is defined to
be any undefined annotation, in this corpus; this label is given to signals that do not
seem to have artifacts.

The EEG signals in the dataset have varying sampling frequencies of 250 Hz,
256 Hz, 480 Hz, and 500 Hz. As deep learning models require input features to be
consistent that is input features need to be of the same size and having different
sampling rates for temporal data can harm the performance of the model. For
example, if we were to optimize the model to infer using 500 time points, this is
equivalent to using 2 s if the sampling frequency is 250 Hz, and 1 s if the sampling
frequency is 500 Hz. Then the two samples have different kinds of information
available, as the former sample will have more seconds of information, while the
latter sample will have more detailed information on a smaller time window.

To alleviate this problem, all the signals were resampled to 250 Hz, which is
the lowest sampling rate using a Fourier method. Then the signals were separated
into 1-second segments without overlaps. The separation is done so that the input
signal to the model is kept small. The deep learning model size depends on the
number of layer parameters, which depends on the complexity of the layer and the
input size. Also, the separation allows the model to be able to infer on any instance,
which means we can determine whether the segment of the signal is affected by
artifacts at any time using the small accumulated data around the specific time. The
1-second segment was chosen as the lowest frequency of brain waves is around
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Table 7.3 Occurrences and
the percentage of original
1-second segment samples of
each label

Label Occurrences Percentage (%)

eyem 7471 2.16
chew 2727 0.79
shiv 1338 0.39
elpp 2663 0.77
musc 4892 1.41
null 327,222 94.49
Total: 346,313 100

3 Hz, which allows the segment to have at least three occurrences of the smallest
wave. In addition, all the observations end at a whole second, so that there is no loss
of information when the time window for segments is 1 s.

After the resampling and the separation, 303 observations of varying lengths
turn into 346,313 1-second segments. The breakdown of the number and the
corresponding percentage of samples available for each label are tabulated in
Table 7.3. There is a high imbalance of data due to many examples with the label
“null.” This is due to the nature of the signal as the artifact content in the clinical
EEG waves collected should be ideally low. There are only 1338 observations of
“shiv,” which consists of 0.39% of all the data available. Due to the relatively small
number of occurrences, this label caused problems in developing models. When a
preliminary study was done to investigate possible research directions, the “shiv”
label caused problems by not being able to separate into three sets required for the
development of the models. Since there are too few samples of “shiv” available, and
most of the samples are from the same subject, when the dataset is separated into the
train, the test, and the validation sets, depending on the random state of the machine,
samples with “shiv” label are only found in one or two of the three sets. To illustrate
this problem, a recurrent neural network model was trained for 100 epochs on the
dataset with the “shiv” label. The confusion matrix for this model is shown in Fig.
7.1. The model completely fails to classify the “shiv” label and predicts all the “shiv”
events to be either a “musc” event, an “elpp” event, or a “null” event. In fact, the
model does not predict anything to be the “shiv” event. The reason why the model
failed to do so was because there was no “shiv” label available in the training set,
which caused the model to never be exposed to the label. As a result, we decided
to leave out the “shiv” label from the experiments. The updated numbers and the
updated percentages of samples available for each label are tabulated in Table 7.4.

The data were divided into a train set, a validation set, and a test set. The ratio
among the three was 0.75:0.10:0.15. The ratio was determined arbitrarily while
making sure a good amount of data was available for each of the sets. The data
division was done on the unique patient ID that was provided in the EEG corpus.
The reason why the division was done on the IDs rather than the sessions is that we
wanted to ensure that the training and the testing were not performed on the same
patient as the goal of the models is to generalize to detect artifacts on new subjects.
Out of the 209 subjects, 157 subjects were allocated to the training set, 21 subjects
were allocated to the validation set, and 31 patients were allocated to the test set.
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Fig. 7.1 Confusion matrix of the RNN-based model with all the labels

Table 7.4 Occurrences and
the percentage of 1-second
segment samples of each
label after the removal of
“shiv”

Label Occurrences Percentage (%)

eyem 7471 2.17
chew 2727 0.79
elpp 2663 0.77
musc 4892 1.42
null 327,222 94.85
Total 344,975 100

This translates to 224 sessions in the train set, 23 sessions in the validation set, and
56 sessions in the test set. The order of the patient ID has been shuffled before the
division to remove any lingering pattern.

In addition to the sampling rate change, the signals are normalized. As the neural
network models generally perform better when the data are in the (−1,1) range, the
dynamic range of the EEG signals is modified. All the signals were normalized to
have a 0 mean, and a standard deviation of 1. The statistics of the whole training
set were used for the normalization, and these statistics are used for all the sets
as statistics of the unseen data are assumed to be not available. The mean of the
training set was 1.5977595, and the standard deviation was 219.39517. In order to
normalize, the mean was subtracted from all the signals and the resulting values
were divided by the standard deviation.

All the EDF files are in the 16-bit floating-point format; however as the
Tensorflow library does not work with the 16-bit floating-point format, all the
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data after the preprocessing were all converted to the 64-bit floating-point format.
Converting all the data to the 64-bit floating-point format and saving the data as
numpy array objects increased the size of the whole dataset from 5.39GB to 14.2GB.
From our initial experiments, it was evident that the extra precision degraded the
performance of the training process as the speed of the hard drive reading the data
could not keep up with the speed at which the model was training. In order to combat
this problem, all the data were converted to the 32-bit floating-point format, which
decreased the size of the whole dataset to 7.1GB.

As the goal is to have a fast, online automatic annotator for artifacts, no further
signal processing or artifact removal currently available was applied. All the data
preprocessing steps were done in python.

7.3.3 Preliminary Studies

In order to examine the dataset to learn the general characteristics and the general
behavior, a deep learning model with two fully connected layers was built. The input
layer was flattened to reduce the dimension so that the fully connected layer that
follows can access all the data. Each fully connected layer had 1024 nodes and was
activated by a ReLu (Rectified Linear Unit). The ReLu was chosen as the activation
function as it tends to have a good convergence and is computationally light
compared to other activations such as the sigmoid function. The Adam optimizer
(Kingma and Ba 2015) was used, with the default setting. The default setting is
that the learning rate is 0.001, the beta-1 value is 0.9, and the beta-2 value is
0.999 with no decay. The Adam optimizer was used for all the experiments as it is
computationally efficient and has a small memory requirement. This fully connected
model was trained using the training set for 10 epochs with the batch size of 32. The
model was validated using the validation set created, and this model was never tested
with the test set. The loss function that was used is “categorical_crossentropy,”
which is defined as below:

Li = −
N∑

n=1

(
yi,n log

(
ŷi,n

))
. (7.1)

i denotes the index of the observation, and n denotes the class label. y and ŷ denote
the true label and the estimated probability of the label, respectively. This is a
categorical cross-entropy for N number of classes. The model minimizes this loss
function by maximizing the estimated probability of the class when the true label
for the class matches the estimation. The model trains completely with an accuracy
of 94.4%, which is around the accuracy that one will get with a baseline classifier
that guesses all the signals as “null” that yields an accuracy of around 94.9%. The
relative frequencies of labels other than “null” were so insignificant as shown in
Table 7.4 that the model never attempted to optimize the parameters to account for
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Table 7.5 Occurrences and
the percentage of 1-second
segment samples of each
label after the subsampling of
“null”

Label Occurrences Percentage (%)

eyem 7471 26.20
chew 2727 9.56
elpp 2663 9.34
musc 4892 17.16
null 10,763 37.74
Total 28,516 100

artifact labels. This was evident in the behavior of the test and validation losses and
accuracies which just fluctuated a bit without making a meaningful movement over
the 10 epochs.

In order to combat the label-imbalance problem, another dataset was prepared.
In this dataset, the “null” label is sampled such that every 30th “null” observation is
included in the dataset. The number 30 was chosen with one purpose of making the
“null” label to be not dominating the dataset, but still be the most frequently occur-
ring label. This effectively reduces the number of “null” observations to around
10,000, which still lets this label to be the most dominant, but not overwhelming.
After the sampling, the breakdown of the occurrences and the percentage of each
label are tabulated in Table 7.5.

Using the newly created dataset, the model was retrained for 10 epochs. During
the first two epochs, the validation accuracy increased to 33%, and the accuracy
fluctuated around 33% for the rest of the eight epochs. This indicates that the
model’s complexity is not high enough for this task.

7.3.4 Version 1: Recurrent Neural Network Approach

Using the prior knowledge that EEG signals are temporal, and previous works on
detecting artifacts relied on statistical significances of various signal features such
as mean and standard deviation, the recurrent neural network (RNN) seems to be
a logical choice for the replacement of a network of 2 fully connected layers. The
rationale is that since RNNs have access to the previous outputs as well as the current
inputs, they would be adept at capturing patterns spread across time. After trying out
different combinations of recurrent layers, long short-term memory (LSTM) layer
was found out to be the most successful.

LSTM is a specific architecture of an RNN that was proposed by Hochreiter and
Schmidhuber in 1997 to combat the vanishing or exploding gradient problems that
are common among RNNs (Hochreiter and Schmidhuber 1997). These problems
occur as having access to all the previous outputs essentially leads to a large chain
of connections between the error and the input. Hence the gradient information
could be vanishing or exploding depending on the situation as the information is
propagated back to update the weights.
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Table 7.6 Model structure for the RNN-based classifier

Layer (type) Output shape Number of parameters

Input_1 (InputLayer) (None, 22, 250) 0
LSTM_1 (LSTM) (None, 50) 60,200
Dense_1 (Dense) (None, 1024) 52,224
Dense_2 (Dense) (None, 5) 5125

The success of a model was determined by predicting the behavior of the training
the model from just observing the first few epochs. The different models have been
compared by how much training loss was reduced in three epochs and how much
validation loss was reduced as a result of those three epochs. For the cases in which
the loss function for this dataset did not decrease significantly (by 0.1 or more), the
losses never decreased in a reasonable time, and the model tended to overfit to the
training data. The final model that was decided is organized in Table 7.6. The total
number of trainable parameters is 117,549, and this translates to 225 KB of weights
when the weights are saved.

The LSTM layer is to extract the temporal information embedded in the signal.
The final dense layers are to do the classification tasks at the end. The parameters on
each layer were chosen such that the model is as light as possible without sacrificing
significant performance degradation. For the number of cells in the LSTM layer, a
varying number of cells was tried such as 5, 10, 25, 50, 100, 200, and 250, and
increasing the number of cells decreased the performance by overfitting. However,
having too few cells resulted in degraded performance as well. Hence, the number
of cells in the LSTM layer was chosen to be 50. The “None” is the placeholder for
the batch size. Changing the number of the batch size does not change the number
of parameters.

The model was trained on the training data using categorical cross-entropy as the
loss function. The model was optimized using the Adam optimizer with the default
learning rate and the beta values. The batch size was 32, and the model was trained
for 100 epochs. Each epoch takes about 40 s, and the training roughly took about
half an hour. The result of this model will be given in the section.

7.3.5 Version 2: Convolutional Neural Network Approach

Another approach that we investigate is using convolutional neural networks
(CNNs). As all the channels are available and ordered such that the arrangement
reflects the actual spatial closeness of the electrodes roughly, we hypothesize that
there will be certain localities across different channels that will be visible in certain
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channels. As EEG measures net neural activity, if an area of the brain gets triggered,
all the electrodes that are near that area will be triggered, which makes channels that
are close in the ordered list to have similar activity. As CNNs are known to work
well with image data by using the fact that pixels that are related are close together
in images, it seems possible that convolutional layers will also work well with this
task. As there is only one-dimensional information available per time frame, 1-D
convolutional layers were used instead of 2-D convolutional layers.

While the convolutional layers capture the spatial information, we have added the
max-pooling layers to capture the temporal information by grouping up time frames
together. Extracting spatial information and temporal information is done multiple
times so that any hidden information can be extracted.

Before the max-pooling layers, batch normalization layers are added so that the
values of the latent space representation of the input signals are normalized and
scaled. Parameter changes in layers during the training cause the layers to yield
different outputs each iteration. This forces all the layers to readjust to the new
distribution of the outputs every iteration, which delays the training. The batch
normalization layer normalizes the activations to reduce these internal covariate
shifts to make the training process to be faster, and more stable, especially for
deep and large neural networks (Ioffe and Szegedy 2015). Finally, the model has
a flattening layer to prepare the data shape to be usable by fully connected layers,
and the model uses fully connected layers to do the classification task.

Two versions of the deep convolutional neural network models have been
constructed. One version is “deeper” than the other one to see whether adding
more layers helped with the classification or not. The structures of both versions
are organized in Tables 7.7 and 7.8.

Both versions were optimized using the Adam optimizer with the default setting.
The batch size was 32, and the model was trained for 30 and 100 epochs,
respectively. The first CNN model was highly overfitting to the train set at around
epochs 40, as the validation loss went up by 10 times. The source of this behavior
could not be tracked, so the number of epochs that the shallow CNN model was
trained for was decreased to 30 epochs. The shallow CNN model took about 20 s
per epochs, and the deeper model took about 40 s per epochs.

The hyperparameters used in the model, such as the filter sizes and the output
sizes, for the convolutional layers were optimized based on observations of the first
few epochs during the training phase just as we did in the development of the RNN
based model.

7.3.6 Ensemble Method

In addition to all the methods with different approaches, the final method that
incorporates all the models was created. This model takes in the logit outputs of
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Table 7.7 Model structure for the shallow CNN-based classifier

Layer (type) Output shape Number of parameters

Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072
batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0
conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500
max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208
batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0
conv1d_4 (Conv1D) (None, 128, 32) 24,704
batch_normalization_4 (None, 128, 32) 128
max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98,560
batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0
conv1d_6 (Conv1D) (None, 512, 8) 393,728
batch_normalization_6 (None, 512, 8) 32
flatten_1 (None, 4096) 0
dense_1(Dense) (None, 1024) 4,195,328
dense_2(Dense) (None, 5) 5125

each of the three models and simply adds the logits to do the decision-making by
choosing the label with the highest logit. Different methods of adding up the logits
were tested such as weighing one of the three models higher than the other two or
excluding one of the models, but weighing all the models equally without exclusion
had the highest validation accuracy.

For all the models, binary classification versions were constructed and trained
using the same settings to examine how well models detect artifacts. The binary
classification task for this problem is determining whether a 1-second segment
contains an artifact or not, which will be denoted as either “artifact” or “null.” The
only deviation for these new models from the original models is the last dense layer.
Instead of returning a label of length 5, the binary classification versions return the
output label of length 2 (artifact, null). This causes the parameter numbers to be
multiplied by 2/5 on the last dense layer. The number of total trainable parameters
for the shallow CNN classifier is 4728269, and for the deeper CNN classifier is
11,548,141. When weights are saved, the shallow CNN classifier requires 18.0 MB,
while the deep CNN classifier requires 44.1 MB. The results for both versions are
given in the following chapter. All the construction of the models and the pipelines
for the input and the output for the EEG signals are done in python.
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Table 7.8 Model structure for the deep CNN-based classifier

Layer (type) Output shape Number of parameters

Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072
batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0
conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500
max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208
batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0
conv1d_4 (Conv1D) (None, 128, 32) 24,704
batch_normalization_4 (None, 128, 32) 128
max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98,560
batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0
conv1d_6 (Conv1D) (None, 512, 8) 393,728
batch_normalization_6 (None, 512, 8) 32
max_pooling1d_6 (None, 512, 4) 0
conv1d_7 (Conv1D) (None, 1024, 4) 1,573,888
batch_normalization_7 (None, 1024, 4) 16
max_pooling1d_7 (None, 1024, 2) 0
conv1d_8 (Conv1D) (None, 1024, 2) 3,146,752
batch_normalization_8 (None, 1024, 2) 8
conv1d_9 (Conv1D) (None, 1024, 2) 3,146,752
batch_normalization_9 (None, 1024, 2) 8
flatten_1 (None, 2048) 0
dense_1(Dense) (None, 1024) 2,098,176
dense_2(Dense) (None, 1024) 1,049,600
dense_3(Dense) (None, 5) 5125

7.4 Results and Discussion

After optimizing hyperparameters, and model structures using validation set accu-
racy, each model was tested using the test set. We find in all the models that there
are limitations in precisely predicting labels, and we were interested in whether the
models can act as indicators for artifact presence. So, in addition to being trained to
do multi-class classification, the models were retrained to do binary classification
with the same number of epochs and optimizer settings.

One thing to note for the binary classification is that the evaluation of the binary
classification based on the accuracies depends highly on the threshold that is set for
the detection. For example, when there are many examples of “null,” or no artifacts,
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high accuracy could be achieved by intentionally raising the threshold of detection
for artifacts high so that most of the examples are classified as “null.” Then the
system will have high accuracy while failing to act as a respectable classifier for
artifacts.

To evaluate the performance of the detection systems receiver operating char-
acteristic (ROC) curves are used, which illustrate the ability of the systems to
diagnose with different thresholds. The ROC curve plots the probability of detection
versus the probability of false alarm (Richards 2005). The probability of detection
which is also known as the true positive rate (TPR), sensitivity, or recall denotes
the proportion of actual positives that are correctly identified. Using the problem
of this chapter as an example, the true positive rate is the proportion of segments
that contain the artifacts that are correctly classified by the model among all the
segments that contain the artifacts. The probability of false alarm, which is often
referred to as the fall-out, the Type I error, or the false-positive rate (FPR), denotes
the proportion of negatives that are misidentified as positives. Using this task as an
example again, the false-positive rate would be the proportion of segments that do
not contain artifacts that are classified as containing artifacts by the model.

A perfect classifier has a true positive rate of 1.0 and a false positive rate of 0.0,
which makes the ROC curve to pass the upper left corner. Hence, a ROC curve that
closely approaches the upper left corner indicates a system that discriminates well
(Zweig and Campbell 1993). To numerically compare the performance of different
ROC curves, the area under the curve (AUC) is computed to indicate how close the
ROC curve is to the upper left corner. For example, AUC ranges from 0 to 1, and
AUC value of 1 corresponds to the perfect separation case where the true positive
rate is 1.0 and the false-positive rate is 0.0 (Hand and Till 2001).

For all the ROC curves provided in this chapter, the area under the curve is also
computed and provided.

7.4.1 Recurrent Neural Network-Based Classifier

The recurrent neural network model was trained for 100 epochs. At the end of the
training, the train set accuracy was 0.7168, and the validation accuracy was 0.4262.
However surprisingly, the test set accuracy was 0.5801, and the confusion matrix is
shown in Fig. 7.2.

The model does well on predicting “eyem” and predicting “null.” However, the
model cannot predict the electrode popping “elpp” label and the muscle movement
“musc” label that well. Unfortunately, this pattern persists in all the results. Our
conjecture of the behavior of the model is that eye movement and chewing labels
have certain localities. For example, we expect electrodes located near the mouth to
be more affected by chewing, and electrodes that are far away from mouth to be less
affected. This causes specific channels to be affected while leaving other channels
to be like “null.” As there is a distinguishing feature to be extracted consistently
across all the patients, the model does well on the “eyem” and the “chew” labels.
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Fig. 7.2 Confusion matrix of the RNN-based model on the test

However, for the cases of “elpp,” and “musc”, the region of the channels, which are
affected, is ambiguous. “elpp” causes similar noise pattern to occur when it occurs,
but this can be anywhere, and similar observation could be made regarding “musc.”

To see if the RNN-based model is at least powerful enough to indicate the
presence of artifacts, the model was retrained to do the binary classification. The
RNN-based model trained to the train set accuracy of 0.9885, with the validation
accuracy of 0.6254. When tested on the test set, the highest accuracy was 0.7126.
In Fig. 7.3, the ROC curve for the RNN based model is shown to visualize the
performance of the system. The orange line is the ROC curve, and the dotted blue
line is the straight line connecting the (0,0), and (1,1) points. The straight line
indicates the worst possible detection system. At around the false-positive rate of
0.424, the true positive rate is 0.800. This indicates that the model would work in
a system roughly but would not be recommended in any device that requires high
accuracy. The area under the curve is 0.75.

7.4.2 Convolutional Neural Network-Based Classifier

Similar evaluations were done on the shallow CNN model and the deeper CNN
model. The confusion matrices are shown in Figs. 7.4 and 7.5, and ROC curves are
shown in Figs. 7.6 and 7.7.
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Fig. 7.3 ROC curve for the RNN-based model

Fig. 7.4 Confusion matrix of the shallow CNN-based model

The shallow CNN-based model was trained for 30 epochs, due to its tendency to
overfit when it was trained for more than 40 epochs. The model was trained until
the train accuracy of 0.7409 and the validation accuracy of 0.4203. The final test
accuracy was 0.6515. Given that both the RNN-based model and the CNN-based
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Fig. 7.5 Confusion matrix of the deep CNN-based model

Fig. 7.6 ROC curve for the shallow CNN-based model

model trained until the validation accuracy was around 0.42, the fact that CNN-
based model did about 7% better in predicting the 5-class classification problem was
interesting. One possibility is that the difference in the complexities of both models
causes the difference. Comparing the number of trainable parameters, the CNN-
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Fig. 7.7 ROC curve for the deep CNN-based model

based model is 4 times bigger, and this may have helped the model to generalize
better. However, as evident in Fig. 7.4, this model does significantly better in
predicting “eyem” and “chew” than “elpp,” and “musc”, which is similar to what
we observed for the RNN-based model.

The result for the deep CNN-based model is similar. The model was trained
to the 100th epochs, the train accuracy of 0.9472 was reached, and the validation
accuracy at this epoch was 0.4430. This validation accuracy is slightly higher than
that of the shallow CNN-based model. The final test accuracy was 0.6517, which
is 0.0002 higher than that of the shallow CNN model. This is likely to be from just
noise. The confusion matrix shown in Fig. 7.5 indicates a similar behavior compared
to the other models. Hence, we can conclude that CNN-based models work better
in multi-class models, but RNN-based model is much lighter, and simply making
CNN-based models more complex does not improve the performance of the model
significantly.

The more interesting findings are ROC curves. The same analytic method that
converts a five-class classification task into a binary classification task was applied
to both versions of the CNN-based models just as in the RNN-based model. The
shallow CNN model was retrained for 30 epochs, and the deep CNN based model
was retrained for 100 epochs. The train set accuracies were 0.8108 and 0.9684, the
validation accuracies were 0.5227 0.6008, and the test accuracies were 0.6958 and
0.7499 for the shallow and the deep CNN-based models, respectively. Although
these numbers might be misleading as the accuracy depends on the threshold of
the binary classifier, for the binary classification problem, the more complex and
deeper model has a performance improvement of about 0.05. The receiver operating
characteristic curves of CNN-based models are shown in Figs. 7.6 and 7.7.
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These ROC curves, compared to that of the RNN based model, have a signif-
icantly higher area under the curve, indicating that CNN-based models perform
better. Numerically, the areas under the curve for the shallow CNN-based model and
the deep CNN-based model are 0.82 and 0.80, respectively, which are larger than
that of the RNN-based model which is 0.75. At the true positive rate of 0.800, the
false-positive rates are 0.424, 0.295, and 0.339 for the RNN, the shallow CNN, and
the deep CNN-based models, respectively. This indicates that CNN-based models
can predict the presence of artifact correctly, with fewer false alarms compared to
the RNN-based model.

7.4.3 Ensemble Method

Lastly, the ensemble method was examined in the same procedure. The ensemble
method incorporates all the other methods by adding the logits produced at the
output layers of the other methods. The confusion matrix is shown in Fig. 7.8. The
ensemble method’s accuracy measures are higher compared to all the other methods,
except for the “musc” label. The shallow CNN-based model achieves the accuracy
of 0.33 on the “musc” label, while the ensemble method achieves 0.28. Regardless,
the ensemble method achieves the overall accuracy of 0.6759, which is the highest
among all the methods. In addition to the confusion matrix, the ROC curve for the
binary classification version of the model is produced. The ROC curve is shown in
Fig. 7.9, with all the ROC curves from other models for better comparison.

Interestingly the ROC curve for the shallow CNN-based model has a similar area
under the curve as the ensemble method. The shallow CNN-based model has higher
true positive rates in certain regions than the ensemble method, and the ensemble
method performs superior to the shallow CNN-based model in the regions of lower
thresholds.

For the binary classification problem, as the main purpose is to accurately point
out the artifact events, the time-lapse system was proposed to further enhance the
performance. The idea comes from the fact that artifacts often come in bursts, such
that the previous segment’s label correlates well with the new segment that follows.
This method does not change any of the models but rather works directly on the
logits produced by the models. A sliding window adds all the logits in the window
to produce a new logit that the classifier uses. Different methods of producing the
new logit were tried such as taking the maximum or doing a weighted sum of the
logits, but simply adding all the logits worked the best. Different sizes of sliding
windows were tried, ranging from 1 to 10, but a 2-second window produced the best
result. The ROC curves for the highest performing window setting are shown in Fig.
7.10.

The time-lapse method improves all the ROC curves, especially lifting the
regions in the lower false positive rates. At the true positive rate of 0.800, the new
time-lapse method yields the false-positive rates of 0.310, 0.288, 0.268, and 0.258
for the RNN-based, the shallow CNN-based, the deep CNN-based, and ensemble
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Fig. 7.8 Confusion matrix of the ensemble method

Fig. 7.9 ROC curves for all the models
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Fig. 7.10 ROC curves for all the models with the time-lapse method

methods, respectively. This is a slight improvement from the false-positive rate of
0.295 from the shallow CNN model without the sliding window. The ensemble
method does the best for this method proposed.

In order to see the viability of the model in real-life settings, all the binary
classification models were tested on a test set that contains all the “null” information
without the sampling procedure. The five-class classification accuracies of the
models are 0.7234, 0.7612, 0.7534, and 0.7808, for the RNN based, the shallow
CNN-based, the deep CNN-based, and ensemble methods, respectively. Only one
confusion matrix from the best result is shown as all the confusion matrices behave
similarly. The resulting confusion matrix is shown in Fig. 7.11. The increase in the
accuracy comes from the fact that there are more “null” labels in the dataset; hence
the accuracy converges to the accuracy of predicting the “null” label which is around
0.78 for the ensemble method.

The ROC curves for the binary classification problem using all the models on the
original data are shown in Figs. 7.12 and 7.13. Figure 7.12 shows the ROC curves of
the models without the time-lapse method, and Fig. 7.13 shows the ROC curves of
the models with the time-lapse method. The areas under the curves are significantly
higher than those of the sampled data cases. These curves indicate the viability of
the models in a real clinical setting.

Lastly, the average time elapsed in processing one example was computed for
each model, for each classification problem to see whether the model is feasible
for doing an on-line signal processing task of indicating whether the artifact exists
or not. For the reference, there are 5797 observations in the test set. In addition,
the time elapsed while loading the Tensorflow module and the libraries as well as
loading the data was not accounted for. The results for the accuracy with default
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Fig. 7.11 Confusion matrix of the ensemble method on the original data

Fig. 7.12 ROC curves for all the models on the original data
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Fig. 7.13 ROC curves for all the models with the time-lapse method on the original data

Table 7.9 The Time elapsed, the accuracy, and the size of each model

Average time elapsed

Model (ms/sample) Test set accuracy (%) Size of the model (KB)

RNN 0.707 58.01 476
RNN-binary 0.677 71.26 464
CNN 0.483 65.15 18,526
CNN-binary 0.468 69.58 18,514
DeepCNN 0.595 65.17 45,189
DeepCNN-binary 0.568 74.99 45,177
Ensemble N/A 67.59 64,191

thresholds, which looks at the maximum confidence level of each label, the average
time elapsed, and the size of each model are tabulated in Table 7.9. All the test
results on this table are from the sampled test data.

All the average time elapsed for inference for all the models is less than 1 ms,
for each of the 1-second segment. This indicates that the model is able to predict
the presence and the kind of artifact almost instantaneously. Also, the sizes of
the models are small enough to be implemented in a Raspberry Pi, which could
make this model highly portable. Since the original EEG signals were expressed
in 16-bit floating-point values, the model can be further compressed if all the
parameters are converted to 16-bit floating-points instead of 32-bit floating-points.
This compression is approximately half the size of the model, further improving the
portability. All the evaluations were done in python.
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7.5 Conclusion

The chapter proposes three types of deep learning-based machine learning model
that learns to distinguish artifacts from the real signal and classify artifacts. Three
models, the RNN-based model and the two CNN based models of different depth,
have been constructed and evaluated. In addition, the ensemble model was created
that utilizes all the other methods. The ensemble model, which has the best
overall performance, achieves a 67.59% five-class classification accuracy, and a true
positive rate of 80% at the false positive rate of 25.82% for the binary classification
problem. The models are light and fast enough to be implemented in a portable
device, such as Raspberry Pi. The largest model only has 65 MB of trainable
parameters, and the slowest model only takes about 0.7 ms to predict on a 1-second
long EEG signal. The speed of the ensemble model has not been tested but given
that the slowest component in the model occupies less than 0.1% of the segment
implies we expect it to be fast enough for the goal. We expect the time elapsed to
be slightly more than the three models combined. As this model can successfully
detect whether artifacts are present in the collected signals quickly, and can tell
what type of artifacts they are, physicians can use this device while collecting data
to check whether the data that are being collected are free of artifacts or not. If the
data are being affected by any artifacts, physicians can quickly check which artifact
is present and act in response to that artifact. This work is significant to the research
community as it adds deep learning as one of the tools that the community can use
in recognizing artifacts in EEG signals and potentially removing them also.

Clinicians indicate that a sensitivity, which is the true positive rate, of 95%, and
specificity, the false positive rate, of below 5% to be the minimum requirement
for clinical acceptance (Golmohammadi et al. 2019). As none of the models
achieve that guideline yet, there are many more investigations needed in optimizing
the models. Hence for future works, an investigation into incorporating different
features that can be extracted quickly, and larger and more complex models to reach
the recommended guideline can be done. In addition, since the models were trained,
validated, and tested on the first version of the EEG artifact corpus which only
consists of observations from 310 patients, in the future when there are more data
available, the model could be trained again to see whether the lack of data was part of
the inadequate performance. Also, since classification within the artifacts, excluding
the “null” label, seems to work at high accuracies evident from the confusion matrix,
and the binary classification of artifacts can have arbitrarily high true positive rate,
an investigation on a two-step system seems to be another interesting path to take
on. This research envisioned to have a portable device that can be used during
data acquisition. Building a portable machine that runs these models to predict the
presence of artifacts and to classify the artifacts should be the next step. Finally,
testing this machine in a real-life setting will be beneficial to see if the machine
works and to see if there are additional adjustments and improvements to make.
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Chapter 8
Objective Evaluation Metrics for
Automatic Classification of EEG Events

Vinit Shah, Meysam Golmohammadi, Iyad Obeid, and Joseph Picone

8.1 Introduction

Electroencephalograms (EEGs) are the primary means by which physicians diag-
nose and manage brain-related illnesses such as epilepsy, seizures, and sleep
disorders (Yamada and Meng 2017). Automatic interpretation of EEGs by computer
has been extensively studied for the past 40 years (Roy et al. 2019; Craik et al. 2019;
Wilson and Emerson 2002; Gotman et al. 1997; Gotman 1982) with mixed results.
Even though many published research systems report impressive levels of accuracy,
widespread adoption of commercial technology has yet to happen in clinical settings
primarily due to the high false alarm rates of these systems (Clifford et al. 2016;
Cvach Maria 2014; Bridi et al. 2014). In this chapter, we investigate the gap in
performance between research and commercial technology and discuss how these
perceptions are influenced by a lack of a standardized scoring methodology.

There are in general two ways to evaluate machine learning technology: user
acceptance testing (von Goethem and Hambling 2013; Banchs et al. 2006) and
objective performance metrics based on annotated reference data (Picone et al.
1990; Michel et al. 2017). User acceptance testing is slow, time-consuming, and
expensive. It has never been a practical way to guide technology development
because algorithm developers need rapid turnaround times on evaluations. Hence
evaluations using objective performance metrics, such as sensitivity and specificity,
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are common in the machine learning field (Altman and Bland 1994; Wozencraft
and Jacobs 1965; Martin et al. 1997). When using objective performance metrics,
it is very important to have a rich evaluation dataset and a performance metric that
correlates well with user and application needs. The metric must have a certain
level of granularity so that small differences in algorithms can be investigated
and parameter optimizations can be evaluated. For example, in speech recognition
applications, word error rate has been used for many years because it correlates well
with user acceptance testing and provides the necessary level of granularity to guide
technology development. Despite many years of research focused on finding better
performance metrics (Wang et al. 2003; Mostefa et al. 2006), word error rate remains
a valid metric for technology development and assessment in speech recognition.

Sequential pattern recognition applications, such as speech recognition, keyword
search, or EEG event detection, require additional considerations. Data are not
simply assessed with an overall judgment (e.g., “did a seizure occur somewhere
in this file?”). Instead, the locality of the hypothesis must be considered – to what
extent did the start and end times of the hypothesis match the reference transcription.
This is a complex issue since a hypothesis can partially overlap with the reference
annotation, and a consistent mechanism for scoring such events must be adopted.

Unfortunately, there is no such standardization in the EEG literature. For exam-
ple, Wilson and Emerson (2002) advocates using a term-based metric involving
sensitivity and specificity. A term was defined as a connection of consecutive
decisions of the same type of event. A hypothesis is counted as a true positive when
it overlaps with one or more reference annotations. A false positive corresponds to
an event in which a hypothesis annotation does not overlap with any of the reference
annotations. Kelly et al. (2010) recommends using a metric that measures sensitivity
and false alarms. A hypothesis is considered a true positive when time of detection
is within 2 min of the seizure onset. Otherwise it is considered a false positive.
Baldassano et al. (2016) uses an epoch-based metric that measures false positive
and negative rates as well as latency. The development, evaluation, and ranking of
various machine learning approaches are highly dependent on the choice of a metric.

A large class of bioengineering problems, including seizure detection, involve
prediction as well as classification. In prediction problems, we are often concerned
with how far in advance of an event we can predict an outcome. The accuracy of
a prediction varies with latency. By convention, we refer to negative latency as
prediction before the event has occurred. Positive latency means a system outputs
a hypothesis after an event has occurred. It is not uncommon for machine learning
systems to have significant amounts of latency – often tens of seconds for seizure
detection. Similarly, prediction of a seizure before the seizure has occurred is an
extremely valuable technology with far-reaching clinical implications if the onset
of a seizure can be predicted long in advance (e.g., tens of minutes) of the actual
event. This gives healthcare providers a chance to perform a medical intervention as
well as allows the patient to make necessary preparations for a medical emergency.

Measuring performance as a function of latency adds some complexity to the
process. Winterhalder et al. (2003) have studied this problem extensively and
argue for scoring based on long-term considerations. In this chapter, we are not
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concerned with these types of prediction problems. We are focused mainly on
assessing the accuracy of classification of events and assessing the proximity of
these classifications to the actual event. We refer to this as time-aligned scoring.

Therefore, in this chapter, we analyze several popular scoring metrics and discuss
their strengths and weaknesses on sequential decoding problems. We introduce
several alternatives, such as the actual term-weighted value (ATWV) (Wegmann et
al. 2013; Fiscus et al. 2007) and time-aligned event scoring (TAES), and discuss
their relevance to the seizure detection problem. We present a comparison of
performance for several systems using these metrics and discuss how this correlates
with a proxy for overall user acceptance involving a combination of sensitivity and
false alarm rate.

Comparing systems using a single operating point is, of course, not always
correct. It is quite possible that the systems are simply operating at different points
on what is known as their receiver operating characteristic (ROC) curve. This was
a problem well-studied in the mid-1960s with the emergence of communication
theory (Wozencraft and Jacobs 1965). In machine learning, we often prefer to
analyze systems using a detection error trade-off (DET) curve (Fiscus et al. 2007;
Mason and Graham 2002; Hajian-Tilaki 2013). These curves provide a holistic view
of performance but make it difficult to tune a system at a specific operating point.
We will also briefly discuss holistic measures based on DET analysis.

8.2 Basic Error Measures and Relevant Derived Measures

Researchers in biomedical fields typically report performance in terms of sensitivity
and specificity (Japkowicz and Shah 2014). In a two-class classification problem
such as seizure detection, it is common to characterize performance in terms of four
basic error measures:

• True positives (TP): the number of “positives” detected correctly.
• True negatives (TN): the number of “negatives” detected correctly.
• False positives (FP): the number of “negatives” detected as “positives”.
• False negatives (FN): the number of “positives” detected as “negatives”.

False positives, also known as type I errors, play a very important role in sequential
decoding applications since they tend to dominate performance considerations.
Throughout this chapter, we will quantify, or normalize, false positives by using
the false alarm (FA) rate, which is simply the number of false positives divided by
the total amount of data measured in units of time. We typically compute FAs/24 h –
the number of false alarms per day. This is a useful figure of merit for critical care
applications in healthcare.

There are a large number of measures derived from these four basic quantities
that appear extensively in the sequential decoding literature. These are summarized
concisely in (Confusion matrix 2017). For example, in information retrieval appli-
cations, systems are often evaluated using:
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Sensitivity (Recall) = (T P/ (T P + FN)) , (8.1)

Specificity (Selectivity) = (T N/ (T N + FP)) , (8.2)

Accuracy = ((T P + T N) / (T P + FN + T N + FP)) , (8.3)

Precision = (T P/ (T P + FP)) (8.4)

More recently, integrated measures such as the F1 score and the Matthews correla-
tion coefficient (MCC) (Chicco and Jurman 2020) have become popular for tasks
ranging from information retrieval to binary classification:

F1 = ((2 × Precision × Recall) / (Precision + Recall)) , (8.5)

MCC = ((T P × T N) − (FP × FN))

/
√

((T P + FP) (T P + FN) (T N + FP) (T N + FN))
(8.6)

In the field of machine translation, the bilingual evaluation understudy (BLEU)
metric, which measures the similarity between two strings of text, was one of the
first objective evaluation metrics to claim a high correlation with human judgments
of quality (Papineni et al. 2002).

However, none of these measures address the time scale over which the scoring
must occur, which is critical in the interpretation of these measures for many real-
time bioengineering applications. When the time alignment of the reference event
and the hypothesized event is important, and spurious hypotheses play a critical
role in overall system performance, evaluation metrics must take into account the
accuracy of the start time and end time of these detected events. We refer to this
as the temporal localization problem. Accurate temporal localization is critical if
sequential decoding technology is to be successfully applied in clinical settings.

In some applications, it is preferable to score every unit of time. With mul-
tichannel signals, such as EEGs, scoring for each channel for each unit of time
is appropriate since significant events such as seizures occur on a subset of the
channels present in the signal. However, it is more common in the literature to
simply score a summary decision per unit of time that is based on an aggregation
of the per-channel inputs (e.g., a majority vote). We refer to this type of scoring as
epoch-based (Liu et al. 1992; Navakatikyan et al. 2006).

An alternative, that is more common in speech and image recognition applica-
tions, is term-based (Fiscus et al. 2007; Xiong et al. 2017), in which we consider the
start and stop time of the event, and each event identified in the reference annotation
is counted once. There are fundamental differences between the two conventions.
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Fig. 8.1 A hypothesis (HYP) has a 50% overlap with the reference (REF)

For example, one event containing many epochs will count more heavily in an
epoch-based scoring scenario. Epoch-based scoring generally weights the duration
of an event more heavily since each unit of time is assessed independently.

Time-aligned scoring is essential to the evaluation of sequential decoding
systems. But to implement such scoring in a meaningful way, there needs to
be universal agreement on how to assess overlap between the reference and the
hypothesis. For example, Fig. 8.1 demonstrates a typical issue in scoring. The
machine learning system correctly detected 5 s of an event 10 s in duration.
Essentially 50% of the event is correctly detected, but how that is reflected in the
scoring depends on the specific metric. Epoch-based scoring with an epoch duration
of 1 sec would count 5 FN errors and 5 TP detections. Term-based scoring would
potentially count this as a correct recognition depending on the way overlaps are
scored.

Term-based metrics score on an event basis and do not count individual frames.
A typical approach for calculating errors in term-based scoring is the any-overlap
method (OVLP) (Gotman et al. 1997; Wilson et al. 2003). TPs are counted when
the hypothesis overlaps with the corresponding event in the reference annotation.
FPs correspond to situations in which a hypothesis does not overlap with the
corresponding event in the reference. The metric ignores the duration of the term in
the reference annotation. In Fig. 8.2, we demonstrate two extreme cases for which
the OVLP metric fails. In each case, 90% of the event is incorrectly scored. In
Example 1, the system does not detect approximately 9 s of a seizure event, while
in Example 2, the system incorrectly labels an additional 9 s of time as seizure.
OVLP is considered a very permissive way of scoring, resulting in artificially high
sensitivities. In Fig. 8.2, the OVLP metric will score both examples as 100% TP.
These kinds of significant differences in scoring, and in the interpretation of the
results, necessitate a deeper look at the characteristics of several popular evaluation
metrics and motivate the need for industry-wide standardized scoring. That is the
focus of this book chapter.
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Fig. 8.2 TP scores for the Any-Overlap method are 100% even though large portions of the event
are miss (Example 1) or false alarm (Example 2)

8.3 Evaluation Metrics

The proper balance between sensitivity and FA rate is often application specific and
has been studied extensively in a number of research communities. For example,
evaluation of voice keyword search technology was carefully studied in the Spoken
Term Detection (STD) evaluations conducted by the National of Standards and
Technology (NIST) (Wegmann et al. 2013; Fiscus et al. 2007; Fiscus 2013). These
evaluations resulted in the introduction of a single metric, ATWV, to address
concerns about trade-offs for the different types of errors that occur in voice
keyword search systems. Despite being popular in the voice processing community,
ATWV has not been widely used outside the voice processing community.

Therefore, in this chapter, we present a detailed comparison of five important
scoring metrics popular in a wide range of machine learning communities. These
are briefly described below:

1. NIST Actual Term-Weighted Value (ATWV): based on NIST’s popular scoring
package (F4DE v3.3.1), this metric, originally developed for the NIST 2006
Spoken Term Detection evaluation, uses an objective function that accounts for
temporal overlap between the reference and hypothesis using the detection scores
assigned by the system.

2. Dynamic Programming Alignment (DPALIGN): similar to the NIST package
known as SCLite (Fiscus 2017), this metric uses a dynamic programming
algorithm to align terms. It is most often used in a mode in which the time
alignments produced by the system are ignored.
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3. Epoch-Based Sampling (EPOCH): treats the reference and hypothesis as tempo-
ral signals, samples each at a fixed epoch duration, and counts errors accordingly.

4. Any-Overlap (OVLP): assesses the overlap in time between a reference and
hypothesis event, and counts errors using binary scores for each event.

5. Time-Aligned Event Scoring (TAES): similar to (4) but considers the percentage
overlap between the two events and weights errors accordingly.

It is important to understand that each of these measures estimates TP, TN, FP, and
FN through some sort of error analysis. From these estimated quantities, traditional
measures such as sensitivity and specificity are computed, as shown in Eqs. (8.1)–
(8.6). As a result, we will see that sensitivity is a function of the underlying metric,
and this is why it is important there be community-wide agreement on a specific
metric.

We also include two derived measures in our analysis:

6. Interrater Agreement (IRA): uses EPOCH scoring to estimate errors and calcu-
lates Cohen’s Kappa coefficient (Navakatikyan et al. 2006) using the measured
TP, TN, FP, and FN.

7. Area Under the Curve (AUC): reduces a ROC or DET curve to a single scalar
figure of merit by measuring the area encompassed by the curve.

IRA is popular for comparing the variability in human annotations when manually
annotating reference data. We consider this a derived measure because it relies
on one of the first five measures to estimate errors. Similarly, AUC relies on the
generation of an ROC or DET curve, which in turn depends on one of the first five
measures to estimate errors.

We now briefly describe each of these approaches and provide several examples
that illustrate their strengths and weaknesses. These examples are drawn on a
compressed timescale for illustrative purposes and were carefully selected because
they demonstrate the strengths and weaknesses of the algorithms we are evaluating.

8.3.1 NIST Actual Term-Weighted Value (ATWV)

ATWV is a measure that balances sensitivity and FA rate. ATWV essentially assigns
an application-dependent reward to each correct detection and a penalty to each
incorrect detection. A perfect system results in an ATWV of 1.0, while a system
with no output results in an ATWV of 0.0. It is possible for ATWV to be less than
zero if a system is doing very poorly (for example a high FA rate). Experiments in
voice keyword search have shown that an ATWV greater than 0.5 typically indicates
a promising or usable system for information retrieval by voice applications. We
believe a similar range is applicable to EEG analysis.

The metric accepts as input a list of N-tuples representing the hypotheses for the
system being evaluated. Each of these N-tuples consists of a start time, end time, and
system detection score. These entries are matched to the reference annotations using
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an objective function that accounts for both temporal overlap between the reference
and hypotheses and the detection scores assigned by the system being evaluated.
These detection scores are often likelihoods or confidence scores (Wegmann et al.
2013). The probabilities of errors due to misses and false alarms at a detection
threshold θ are computed using:

PMiss(kw,θ) = 1 − NCorrect(kw,θ)

/
NRef (kw)

, (8.7)

PFA(kw,θ) = NSpurious(kw,θ)
/

NNT (kw)
, (8.8)

where NCorrect(kw, θ) is the number of correct detections of terms with a detection
score greater than or equal to θ , NSpurious(kw, θ) is the number of incorrect detections
of terms with a detection score greater than or equal to θ , and NNT(kw) is the number
of non-target trials for the term kw in the data. The number of non-target trials for
a term is related to the total duration of source signal in seconds, TSource, and is
computed as NNT(kw) = TSource − NRef (kw).

A term-weighted value (TWV) is then computed that quantifies a trade-off
between misses and FAs. ATWV is defined as the value of TWV at the system’s
chosen detection threshold. Using a predefined constant, β, that was optimized
experimentally (β = 999.9) (Fiscus et al. 2007), ATWV is computed using:

T WV (kw,θ) = 1 − PMiss(kw,θ) − β PFA(kw,θ). (8.9)

A standard implementation of this approach is available from NIST via GitHub
(Fiscus 2017).

This metric has been widely used throughout the human language technol-
ogy community for almost 20 years. This is a very important consideration in
standardizing such a metric – researchers are using a common shared software
implementation that ensures there are no subtle implementation differences in
scoring software implementation between sites or researchers. There are always
numerous parameters associated with this type of software and the only ways to
make sure algorithms are producing identical results are (1) the existence of a
common (open source) software package or (2) the distribution of a detailed set of
regression tests that establish the equivalency of the implementations. The former
has been a standard methodology for 40 years in the human language technology
community, but the bioengineering communities have not quite achieved this level
of standardization yet.

To demonstrate the features of this approach, consider the case shown in Fig. 8.3.
The hypothesis for this segment consists of several short seizure events, while the
reference consists of one long event. The ATWV metric will assign a TP score
of 100% because the midpoint of the first event in the hypothesis annotation is
mapped to the long seizure event in the reference annotation. This is somewhat
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Fig. 8.3 ATWV scores this segment as 1 TP and 5 FPs

Fig. 8.4 ATWV scores this segment as 0 TP and 3 FN events

generous given that 50% of the event was not detected. The remaining 5 events in the
hypothesis annotation are counted as false positives. The ATWV metric is relatively
insensitive to the duration of the reference event, though the 5 false positives will
lower the overall performance of the system. The important issue here is that the
hypothesis correctly detected about 70% of the seizure event, and yet because of the
large number of false positives, it will be penalized heavily.

In Fig. 8.4 we demonstrate a similar case in which the metric penalizes the
hypothesis for missing three seizure events in the reference. Approximately 50%
of the segment is correctly identified. Scoring that penalizes repeated events that
are part of a larger event in the reference makes sense in an application like voice
keyword search because in human language, each word hypothesis serves a unique
purpose in the overall understanding of the signal. However, for a two-class event
detection problem such as seizure detection, such scoring too heavily penalizes a
hypothesis for splitting a long event into a series of short events.

8.3.2 Dynamic Programming Alignment (DPALIGN)

The DPALIGN metric essentially performs a minimization of an edit distance (the
Levenshtein distance) (Picone et al. 1990) to map the hypothesis onto the reference.
DPALIGN determines the minimum number of edits required to transform the
hypothesis string into the reference string. Given two strings, the source string
X = [x1, x2, . . . , xn] of length n and target string Y = [y1, y2, . . . , ym] of length m,
we define di, j, which is the edit distance between the substring x1 : xi and y1 : yj, as:
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Ref: bckg seiz SEIZ SEIZ bckg seiz bckg
Hyp: bckg seiz BCKG **** bckg seiz ****

(Hits: 4 Sub: 1 Ins: 0 Del: 2 Total Errors: 3)

Ref: bckg seiz BCKG **** bckg seiz ****
Hyp: bckg seiz SEIZ SEIZ bckg seiz bckg 

(Hits: 4 Sub: 1 Ins: 2 Del: 0 Total Errors: 3)

Fig. 8.5 DPALIGN aligns symbol sequences based on edit distance, ignoring the actual time
alignments present in the reference annotation and the system output

di,j =
⎧⎨
⎩

di−1,j + del

di,j−1 + ins

di−1,j−1 + sub

. (8.10)

The quantities being measured here are often referred to as substitution (sub),
insertion (ins), and deletion (del) penalties. For this study, these three penalties are
assigned equal weights of 1.0. A dynamic programming algorithm is used to find
the optimal alignment between the reference and hypothesis based on these weights.
Though there are versions of this metric that perform time-aligned scoring in which
both the reference and hypothesis must include start and end times, this metric is
most commonly used without time alignment information.

The metric is best demonstrated using the two examples shown in Fig. 8.5. In the
first example, the reference annotation has a series of 7 events, while the hypothesis
contains 5 events. The hypothesis substitutes background for the second seizure
event and omits the third seizure event and the last background event. Hence, there
are a total of three errors: two deletions and one substitution. In the second example,
the reference annotation and hypothesis have been swapped to demonstrate the
symmetry of the error calculations. The hypothesis generated two insertions and
one substitution.

In practice, there are often multiple alignments that make sense based only on the
labels associated with the annotations. As long as the algorithm is consistent about
its choices, scoring will be fine. To accurately resolve such ambiguities, the actual
endpoints of the hypotheses must be compared to the endpoints in the reference
annotations. NIST distributes the ability to score this way, often referred to as
time-aligned scoring, in their open-source package (Fiscus 2017). But this scoring
mode is a little more complicated from a data interface point of view and has not
been as popular. Though this type of scoring might at first seem highly inaccurate
since it ignores time alignments of the hypotheses, it has been surprisingly effective
in scoring machine learning systems in sequential data applications (e.g., speech
recognition) (Picone et al. 1990; Martin et al. 1997; Fiscus et al. 2007).
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Fig. 8.6 EPOCH scoring directly measures the similarity of the time-aligned annotations. TP, FN,
and FP are 5, 2, and 1, respectively

8.3.3 Epoch-Based Sampling (EPOCH)

Epoch-based scoring uses a metric that treats the reference and hypothesis as
signals. These signals are sampled at a fixed frame rate, or epoch, duration. The
corresponding label in the reference is compared to the hypothesis. Similar to
DPALIGN, substitutions, deletions, and insertion errors are tabulated with an equal
weight of 1.0 for each type of error. This process is depicted in Fig. 8.6. Epoch-based
scoring requires that the entire signal be annotated (every second of the signal must
be accounted for in the reference and hypothesis annotations), which is normally
the case for sequential decoding evaluations. It attempts to account for the amount
of time the two annotations overlap, so it directly addresses the inconsistencies
demonstrated in Figs. 8.3 and 8.4.

One important parameter to be tweaked in this algorithm is the frequency with
which we sample the two annotations, which we refer to as the scoring epoch
duration. The scoring epoch duration is ideally set to an amount of time smaller than
the unit of time used by the classification system to make decisions. For example,
the hypothesis in Fig. 8.6 contains decisions made for every 1 sec of data. The
scoring epoch duration should be set less than 1 sec. We set this parameter to 0.25 s
for most of our work because our analysis system epoch duration is typically 1 sec.
We find in situations like this the results are not overly sensitive to the choice of
the scoring epoch duration as long as it is below the frame rate of the classification
system, which is 1 sec in this case. This parameter simply controls the precision
used to assess the accuracy of segment boundaries.

Because EPOCH scoring samples the annotations at fixed time intervals, it is
inherently biased to weigh long seizure events more heavily. For example, if a signal
contains one extremely long seizure event (e.g., 1000 secs) and two short events
(e.g., each 10 secs in duration), the accuracy with which the first event is detected
will dominate the overall scoring. Since seizure events can vary dramatically in
duration, this is a cause for concern.



234 V. Shah et al.

Fig. 8.7 OVLP scoring is very permissive about the degree of overlap between the reference and
hypothesis. The TP score for Example 1 is 1 with no false alarms. In Example 2, the system detects
2 out of 3 seizure events, so the TP and FN scores are 2 and 1, respectively

8.3.4 Any-Overlap Method (OVLP)

In Sect. 8.2, we briefly introduced the OVLP metric and indicated; it was a popular
choice in the neuroengineering community (Gotman et al. 1997; Wilson et al. 2003).
OVLP is a more permissive metric that tends to produce much higher sensitivities.
If an event is detected in close proximity to a reference event, the reference event is
considered correctly detected. If a long event in the reference annotation is detected
as multiple shorter events in the hypothesis, the reference event is also considered
correctly detected. Multiple events in the hypothesis annotation corresponding to
the same event in the reference annotation are not typically counted as FAs. Since
the FA rate is a very important measure of performance in critical care applications,
this is another cause for concern.

The OVLP scoring method is demonstrated in Fig. 8.7. It has one significant
tunable parameter – a guard band that controls the degree to which a misalignment
is still considered as a correct match. In this study, we use a fairly strict setting for
this parameter – 1 ms. This has the effect of requiring some overlap between the two
events in time – essentially a guard band of zero. The guard band needs to be tuned
based on the needs of the application. Sensitivity generally increases as the guard
band is increased.
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8.3.5 Time-Aligned Event Scoring (TAES)

Though EPOCH scoring directly measures the amount of overlap between the
annotations, there is a possibility that this metric also too heavily weighs single
long events. Seizure events can vary in duration from a few seconds to several
minutes (a seizure that lasts longer than 5 min is considered a medical emergency).
In some applications, correctly detecting the number of events is as important as
their duration.

In machine learning, the Jaccard index (Dodge 2008) is widely used for the
analysis of such overlapping events. The Jaccard index is the ratio between the
intersection and the union of two events. However, this metric lacks the ability
to specify the degree of the misses and false alarms separately. Hence, since the
FA rate is of great interest in bioengineering applications, the TAES metric was
designed to tabulate these errors separately. The essential parameters for calculation
of sensitivity and specificity such as TP, TN, and FP for the TAES scoring metric
are defined as follows:

T P = Hstop − Hstart

Refdur

, where Rstart ≤ H ≤ Rstop, (8.11)

T N = 1 − (T Hstop − T Hstart

)
Refdur

, where Rstart ≤ H ≤ Rstop, (8.12)

FP =

⎧⎪⎨
⎪⎩

Hstop−Rstop

Refdur
, if Hstop ≥ Rstop,Hstart ≥ Rstart and Hstop − Rstop ≤ 1,

Rstart−Hstart

Refdur
, if Rstart ≥ Hstart , Rstop ≥ Hstop and Rstart − Hstart ≤ 1,

1, otherwise.

(8.13)

where H and R represent the reference and hypothesis events, respectively, and
Refdur represents the duration of the reference events.

TAES gives equal weight to each event, but it calculates a partial score for
each event based on the amount of overlap. The TP score is the total duration
of a detected term divided by the total duration of the reference term. The FN
score is the fraction of the time the reference term was missed divided by the total
duration of the reference term. The FP score is the total duration of the inserted term
divided by total amount of time this inserted term that was incorrect according to the
reference annotation. FPs are limited to a maximum of 1 per event. Therefore, like
TP and FN, a single FP event contributes only a fractional amount to the overall FP
score if it correctly detects a portion of the same event in the reference annotation
(partial overlap). Moreover, if multiple reference events are detected by a single long
hypothesis event, all but the first detection are considered as FNs. These properties



236 V. Shah et al.

of the metric help manage the trade-off between sensitivity and FAs by balancing
the contributions from short and long duration events. An example of TAES scoring
is depicted in Fig. 8.8.

8.3.6 Interrater Agreement (IRA)

Interrater agreement (IRA) is a popular measure when comparing the relative
similarity of two annotations. We refer to this metric as a derived metric since it
is computed from error counts collected using one of the other five metrics. IRA
is most often measured using Cohen’s Kappa coefficient (McHugh 2012), which
compares the observed accuracy with the expected accuracy. It is computed using:

κ = p0 − pe

1 − pe

, (8.14)

where po is the relative observed agreement among raters and pe is the hypothetical
probability of chance agreement.

The range of the Kappa coefficient is [ − 1, 1] where κ = 1 corresponds to
complete agreement and κ = − 1 which corresponds to no agreement. It has
been used extensively to assess interrater agreement for experts manually annotating
seizures in EEG signals. Values in the range of 0.5 ≤ κ ≤ 0.8 are common for these
types of assessments (Halford et al. 2015). The variability among experts mainly
involves fine details in the annotations, such as the exact onset of a seizure. These
kinds of details are extremely important for machine learning, and hence we need
a metric that is sensitive to small variations in the annotations. For completeness,
we use this measure as a way of evaluating the amount of agreement between two
annotations.

8.3.7 A Brief Comparison of Metrics

A simple example of how these metrics compare on a specific segment of a signal
is shown in Fig. 8.9. A 10 s section of an EEG signal is shown subdivided into
1 s segments. The reference has three isolated events. The system being evaluated
outputs one hypothesis that starts in the middle of the first event and continues
through the remaining two events.

ATWV scores the system as 1 TP and 2 FNs since it assigns the extended
hypothesis event to the center reference event and leaves the other two undetected.
The ATWV score is 0.33 for seizure events and 0.25 for background events,
resulting in an average ATWV of 0.29. The sensitivity and FA rates for seizure
events for this metric are 33% and 0 per 24 hrs., respectively.
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Fig. 8.8 An example that summarizes the differences between scoring metrics

Fig. 8.9 TAES scoring accounts for the amount of overlap between the reference and hypothesis.
TAES scores Example 1 as 0.71 TP, 0.29 FN, and 0.14 FP. Example 2 is scored as 1 TP, 1 FN, and
1 FP

DPALIGN scores the system the same way since time alignments are ignored and
the first event in each annotation is matched together, leaving the other two events
undetected.

The EPOCH method scores the alignment 5 TP, 3 FP, and 1 FN using a 1 sec
epoch duration because there are 4 epochs for which the annotations do not agree
and 5 epochs where they agree. The sensitivity is 83.33%, and the FA rate per 24 hrs
is very high because of the 3 FPs.

The OVLP method scores the segment as 3 TP and 0 FP because the detected
events have partial to full overlap with all the reference events, giving a sensitivity
of 100% with an FA rate of 0. TAES scores this segment as 0.5 TP and 2.5 FN
because the first event is only 50% correct and there are FN errors for the 5th to
7th and 9th epochs (an example of multiple overlapping reference events), giving a
sensitivity of 16.66% and a corresponding high FA rate.

IRA for seizure events evaluated using Cohen’s Kappa statistic is 0.09 for this
example because there are essentially 4 errors for 4 seizure events. IRAs below 0.5
indicate a poor match between the reference and the hypothesis.
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Table 8.1 The TUSZ Corpus
(v1.1.1)

Description Train Eval

Patients 196 50
Sessions 456 230
Files 1505 984
No. seizure events 870 614
Seizure (secs) 51,140 53,930
Non-seizure (secs) 877,821 547,728
Total (secs) 928,962 601,659

It is difficult to conclude from this example which of these measures are most
appropriate for EEG analysis. However, we see that ATWV and DPALIGN gen-
erally produce similar results. The EPOCH metric produces larger counts because
this metric samples time rather than events. OVLP produces a high sensitivity, while
TAES produces a low sensitivity but a relatively higher FA rate. In the next section,
we conduct a more rigorous evaluation of these metrics using the output of several
automatic seizure detection systems.

8.4 Evaluation

In order to evaluate the behavior of our scoring metrics, we analyzed the perfor-
mance of several machine learning systems on a seizure detection task. We briefly
introduce the TUH seizure detection corpus. Next we introduce five different hybrid
machine learning architectures based on deep learning principles. We then conduct
a very detailed statistical analysis of the performance of these systems using the
scoring metrics introduced in Sect. 8.3.

8.4.1 The TUH EEG Seizure Corpus

To demonstrate the differences between these metrics on a realistic task, we have
evaluated a range of machine learning systems on a seizure detection task based on
the TUH EEG Seizure (TUSZ) Corpus (Shah et al. 2018). This is a subset of the
TUH EEG Corpus developed at Temple University (Obeid and Picone 2016) that
has been manually annotated. An overview of the corpus is given in Table 8.1. This
is the largest open-source corpus of its type. It consists of clinical data collected at
Temple University Hospital. TUSZ represents a very challenging machine learning
task because it contains a rich variety of common real-world problems (e.g., patient
movements and artifacts) found in clinical data as well as various types of seizures
(e.g., absence, tonic-clonic). It is worth noting that seizure data represents an
extremely unbalanced dataset – only about 8% of the data are annotated as seizure
events.
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The version of the seizure database used for this study was v1.1.1 which contains
196 patients in the training set and 50 patients in the evaluation set, making it
adequate to accurately assess fine differences in algorithm performance for machine
learning algorithms. Although this database provides event-based as well as term-
based annotations, for our study we only used the term-based annotations: a single
decision is made at each point in time based on examination of all channels. Though
annotations are channel-based (each channel is annotated independently), these
annotations are aggregated to produce a single decision at each point in time. More
information about the annotation process is available in Ochal et al. (Ochal et al.
2020).

8.4.2 Machine Learning Architectures

For EEG signals, it is appropriate to use algorithms which can learn spatial as well as
temporal context efficiently. Sequential algorithms such as hidden Markov models
(HMMs), recurrent neural networks (RNNs), and convolutional neural networks
(CNNs) are perfect candidates as the building blocks of the recognition system. We
developed five different hybrid networks which use these algorithms in their system
design so that we had a variety of classification algorithms represented in our study.
A general architecture for the five machine learning systems evaluated is shown in
Fig. 8.10.

The first step in this architecture is to convert an EEG signal, typically stored
in a European Data Format (EDF) file (Kemp 2013), to a sequence of feature
vectors. Linear frequency cepstral coefficients features (Harati et al. 2015) are
created using a 0.1 sec frame duration and a 0.2 sec analysis window for each
channel. We use the first 7 cepstral coefficients along with their first and second
derivatives. We add several energy terms which bring the total feature vector
dimension to 26. Attempts to circumvent the feature extraction process by using
a deep learning-based approach have not produced significantly better results than
these model-based features.

A group of frames are classified into an event on a per-channel basis using
a combination of deep learning networks. The deep learning system essentially
looks across multiple epochs, which we refer to as temporal context, and multiple
channels, which we refer to as spatial context, since each channel is associated with
a location of an electrode on a patient’s scalp. There are a wide variety of algorithms
that can be used to produce a decision from these inputs. Even though seizures occur
on a subset of the channels input to such a system, we focus on a single decision
made across all channels at each point in time.

The five systems we included in this study were carefully selected because they
represent a range of performance that is representative of state of the art on this
task and because these systems exhibit different error modalities. The performance
of these systems is sufficiently close so that the impact of these different scoring
metrics becomes apparent. The systems selected are briefly described below.



240 V. Shah et al.

Fig. 8.10 A hybrid deep learning architecture that integrates temporal and spatial context

1. HMM/SdA (Golmohammadi et al. 2019): a hybrid system consisting of a hidden
Markov model (HMM) decoder and a postprocessor that uses a stacked denoising
autoencoder (SdA). An N-channel EEG was transformed into N independent
feature streams using a standard sliding window-based approach. The hypotheses
generated by the HMMs were postprocessed using a second stage of processing
that examines the temporal and spatial context. We apply a third pass of
postprocessing that uses a stochastic language model to smooth hypotheses
involving sequences of events so that we can suppress spurious outputs. This
third stage of postprocessing provides a moderate reduction in the false alarm
rate.

Standard three state left-to-right HMMs with eight Gaussian mixture compo-
nents per state were used for sequential decoding. We divide each channel of
an EEG into 1 s epochs and further subdivide these epochs into a sequence of
frames. Each epoch is classified using an HMM trained on the subdivided epoch,
and then these epoch-based decisions are postprocessed by additional statistical
models in a process similar to the language modeling component of a speech
recognizer.

The output of the epoch-based decisions was postprocessed by a deep learning
system. The SdA network has three hidden layers with corruption levels of 0.3 for
each layer. There are 800 nodes in the first layer, 500 nodes in the second layer,
and 300 nodes in the third layer. The parameters for pre-training are learning rate
=0.5, number of epochs =150, and batch size =300. The parameters for fine-
tuning are learning rate =0.1, number of epochs =300, and batch size = 100.
The overall result of the second stage is a probability vector of dimension two
containing a likelihood that each label could have occurred in the epoch. A soft
decision paradigm is used rather than a hard decision paradigm because this
output is smoothed in the third stage of processing.

2. HMM/LSTM (Golmohammadi et al. 2019): an HMM decoder postprocessed by a
long short-term memory (LSTM) network. Like the HMM/SdA hybrid approach
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previously described, the output of the HMM system is a vector of dimension:
number of classes (2) × number of channels (22) × the window length (7) =308.
Therefore, we also use principal components analysis (PCA) before LSTM in
this approach to reduce the dimensionality of the data to 20. For this study, we
used a window length of 41 for LSTM. This layer is composed of one hidden
layer with 32 nodes. The output layer nodes in this LSTM level use a sigmoid
activation function. The parameters of the models are optimized to minimize the
error using a cross-entropy loss function. Adaptive Moment Estimation (Adam)
is used in the optimization process.

3. IPCA/LSTM (Golmohammadi et al. 2019): a preprocessor based on incremental
principal component analysis (IPCA) followed by an LSTM decoder. The
EEG features are delivered to an IPCA layer for spatial context analysis and
dimensionality reduction. A batch size of 50 is used in IPCA and the output
dimension is 25. The output of IPCA is delivered to an LSTM for classification.
We used a one-layer LSTM with a hidden layer size of 128. A batch size of 128
was used along with Adam optimization and a cross-entropy loss function.

4. CNN/MLP (Golmohammadi et al. 2020): a pure deep learning-based approach
that uses a convolutional neural network (CNN) decoder and a multi-layer
perceptron (MLP) postprocessor. The network contains six convolutional layers,
three max pooling layers, and two fully connected layers. A rectified linear unit
(ReLU) nonlinearity is applied to the output of every convolutional and fully
connected layer.

5. CNN/LSTM (Golmohammadi et al. 2020): a pure deep learning-based architec-
ture that uses a combination of CNN and LSTM networks. In this architecture,
we integrate 2D CNNs, 1D CNNs, and LSTM networks to better exploit long-
term dependencies. Exponential linear units (ELU) are used as the activation
functions for the hidden layers. Adam is used in the optimization process along
with a mean squared error loss function.

The details of these systems are not critical to this study. We selected these systems
because we needed a range of typical system performance that would expose the
differences in the scoring metrics. What is more important is how the range of
performance is reflected in these metrics.

A comparison of the performance is presented in Table 8.2. For each scoring
metric, we provide the measured sensitivity, specificity, and FA rate. For the ATWV
metric, we also provide the ATWV score. Though the rankings of these systems
vary as a function of the metric, the overall trends are accurately represented in
Table 8.2. HMM/SdA generally performs the poorest of these systems, delivering a
respectable sensitivity at a high FA rate. CNN/LSTM typically delivers the highest
overall performance because it has a low FA rate, which is very important in this
type of application.
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Table 8.2 Performance vs. scoring metric

Metric Measure HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM

ATWV Sensitivity 30.35% 26.73% 24.73% 29.52% 30.34%
Specificity 61.38% 68.93% 64.51% 65.87% 93.15%
FA/24 h 98.65 75.59 94.41 94.25 12.78
ATWV −0.8392 −0.8469 −0.4628 −0.7971 0.1737

DPALIGN Sensitivity 44.11% 33.77% 35.77% 43.35% 32.46%
Specificity 66.87% 72.99% 69.59% 71.49% 95.17%
FA/24 h 86.15 66.98 81.17 77.67 10.19

EPOCH Sensitivity 20.71% 50.46% 51.02% 65.03% 9.784%
Specificity 98.22% 94.82% 94.09 91.55% 99.84%
FA/24 h 1418.02 4133.34 4711.58 6738.82 125.79

OVLP Sensitivity 35.35% 30.05% 32.97% 39.09% 30.83%
Specificity 73.35% 80.53% 77.57% 76.84% 96.86%
FA/24 h. 77.39 60.92 73.52 77.19 6.75

TAES Sensitivity 17.29% 22.84% 22.12% 31.58% 12.48%
Specificity 66.04% 70.41% 66.64% 64.75% 95.24%
FA/24 h 82.26 68.31 83.01 91.53 7.54

8.5 Derived Measures

Most supervised machine learning algorithms are designed to classify labels with
some type of bounded or unbounded confidence measure such as a posterior
probability or a log-likelihood. Possible exceptions are nonparametric techniques
such K-nearest neighbors and decision trees. These confidence measures allow
algorithm designers to sweep through threshold values for the confidence measures
and observe performance at different operating points. In this section, we analyze
the performance of these systems using DET curves and derived measures such as
AUC and F scores.

8.5.1 Detection Error Trade-off Analysis

Evaluating systems from a single operating point is always a bit tenuous. It is very
difficult to compare the performance of various systems when only two values are
reported (e.g., sensitivity and specificity) because these systems might simply be
designed to balance the four basic error categories differently (e.g., using a different
threshold to reject FPs). For example, in seizure detection, the a priori probability of
a seizure is very low, which means assessment of background events dominate the
error calculations. The degree to which a system is capable of producing a seizure
hypothesis will greatly impact its specificity. Further, sensitivity varies significantly
when the FA rate is very low. Therefore, comparing systems that differ significantly
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Fig. 8.11 A comparison of DET curves

in FA rate can be misleading. Often, we prefer a more holistic view of performance
that is provided by a receiver operating characteristic (ROC) curve or a detection
error trade-off (DET) curve. A ROC curve displays TP as a function of FP while a
DET curve displays FN as a function of FP.

In Fig. 8.11, we provide DET curves for the systems presented in Table 8.2. We
refer to this analysis as a derived measure because these curves require calculations
of the four measures described in Sect. 8.2, which in turn requires the selection of a
scoring metric. The DET curves in Fig. 8.11 were derived from output generated
using the OVLP scoring metric. The shapes of the DET curves do not change
significantly with the scoring metric though the absolute numbers vary similarly
to what we see in Table 8.2.

From this data it is clear that CNN/LSTM performance is significantly different
from the other systems. This is primarily because of its low FA rate. For this
particular application, sensitivity drops rapidly as the FA rate is lowered. Therefore,
comparing a single data point for each system is dangerous because the systems
are most likely operating at different points on a DET curve if the sensitivities are
significantly different. We find tuning these systems to have a comparable FA rate
is important when comparing two systems only based on sensitivity.

The sensitivity for each metric is given in Table 8.2. For example, for HMM/SdA,
we see the lowest sensitivities are produced by the TAES and EPOCH metrics, while
the highest sensitivities are produced by OVLP and DPALIGN. This makes sense
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Table 8.3 AUC comparison Algorithm AUC (OVLP) AUC (TAES)

HMM/SdA 0.44 0.72
HMM/LSTM 0.44 0.71
IPCA/LSTM 0.39 0.72
CNN/MLP 0.38 0.65
CNN/LSTM 0.21 0.56

because OVLP and DPALIGN are very forgiving of time alignment errors, while
TAES and EPOCH penalize time alignment errors heavily. We see similar trends
for CNN/LSTM though the range of differences between the three highest scoring
metrics is smaller. We also see that the five algorithms are ranked similarly by each
scoring metric even though the scale of the numbers varies by metric. HMM/SdA
consistently scores the lowest and CNN/LSTM consistently scores the highest. The
other three systems are very similar in their performance.

The ATWV scores for all algorithms are extremely low. The ATWV scores are
below 0.5 which indicates that overall performance is poor. However, the ATWV
score for CNN/LSTM is significantly higher than the other four systems. ATWV
attempts to reduce the information contained in a DET curve to a single number
and does a good job reflecting the results shown in Fig. 8.11. The DET curves for
HMM/LSTM and HMM/SdA overlap considerably for an FP rate between 0.25 and
1.0, and this is a primary reason why their ATWV scores are similar. However, for
seizure detection we are primarily interested in the low FP rate region, and in that
range, HMM/LSTM and IPCA/LSTM perform similarly.

When a single metric is preferred, the area under a DET or ROC curve (AUC) is
also an effective way of comparing the performance. A random guessing approach
to classification, assuming equal priors for each class, will give an AUC of 0.5,
while a perfect classifier will give an AUC of 1.0. In Table 8.3 we provide AUCs for
these DET curves calculated using OVLP and TAES for comparison. AUC values
in Table 8.3 also follow a similar trend, but the differences are less pronounced than
in Fig. 8.11 or in Table 8.2.

Note that the AUC value for the presumptive best system, CNN/LSTM, is
significantly lower than the other four systems. If we examined the AUC in the
FPR range of [0.0, 0.2], which corresponds to a low FA rate, and is the region of
greatest interest, CNN/LSTM is still significantly better than the other algorithms,
but the margin of difference shrinks slightly. The difference in the FPR range of
[0.2, 0.8] is more pronounced. This is something we often see when evaluating new
machine learning algorithms. They tend to deliver their best performance in the
upper ranges of FPR but are not as impressive when the FPR rate is very low. This
suggests the major issues an algorithm needs to address in the low FPR region are
more related to auxiliary issues such as segmentation and noise rejection rather than
optimal modeling of a complex decision surface. It is not uncommon that in machine
learning applications involving real-world applications, such as clinical data, low-
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Table 8.4 Accuracy vs. metric

Metric HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/|LSTM

ATWV 54.0% 54.0% 52.1% 54.9% 70.7%
DPALIGN 61.5% 60.2% 59.2% 62.9% 73.6%
EPOCH 92.3% 91.5% 90.8% 89.5% 91.5%
OVLP 65.1% 66.5% 65.6% 66.9% 78.9%
TAES 56.6% 57.3% 55.4% 57.2% 69.7%

Table 8.5 F1 vs. metric

Metric HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM

ATWV 0.24 0.28 0.24 0.28 0.42
DPALIGN 0.35 0.36 0.35 0.42 0.45
EPOCH 0.29 0.47 0.46 0.49 0.14
OVLP 0.31 0.33 0.34 0.38 0.45
TAES 0.16 0.26 0.24 0.31 0.19

level issues such as segmentation of the data, and robustness to spurious noises
ultimately limit performance.

8.5.2 Accuracy and Other Derived Scores

A commonly used metric in the machine learning community that is somewhat
intuitive is accuracy. The accuracies of the five systems are shown in Table 8.4.
Accuracy places an equal weight on each type of error (though it is possible to apply
heuristic weights in practice). This is acceptable if the dataset is balanced. However,
for many bioengineering applications, such as seizure detection, the target class,
or class of interest, occurs infrequently. According to the accuracies presented in
Table 8.4, we see that CNN/LSTM is still significantly more accurate than the other
four systems and the differences between the remaining four systems are minimal.

Another popular metric that attempts to aggregate performance into a single data
point, and is popular in the information retrieval communities, is the F1 score. F1
scores for the five systems are shown in Table 8.5. We see there are significant
variations between the systems, and the results don’t completely correlate with
Table 8.4. For example, for the TAES and EPOCH metrics, which emphasize time
alignments, the best performing system is not CNN/LSTM. F1 scores weigh miss
and false alarm errors equally. In our experience, changing the weight of these errors
(e.g., F-score with beta value 0.2) does not adequately emphasize the FA rate for
applications such as seizure detection where the classes are unbalanced.

The Matthews correlation coefficient (MCC) (Chicco and Jurman 2020) is an
effective solution when a significant class imbalance exists. MCC is a contingency
matrix method of calculating the Pearson product-moment correlation coefficient
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Table 8.6 MCC vs. metric

Metric HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM

ATWV −0.07 −0.04 −0.11 −0.05 0.30
DPALIGN 0.01 0.07 0.05 0.15 0.35
EPOCH 0.28 0.43 0.41 0.45 0.23
OVLP 0.08 0.11 0.11 0.16 0.41
TAES −0.16 −0.07 −0.12 −0.04 0.13

Table 8.7 Cohen’s Kappa (κ) vs. metric

Metric HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM

ATWV −0.07 −0.04 −0.11 −0.05 0.26
DPALIGN 0.09 0.07 0.05 0.15 0.31
EPOCH 0.26 0.43 0.41 0.43 0.12
OVLP 0.08 0.11 0.11 0.16 0.35
TAES −0.16 −0.07 −0.11 −0.04 0.09

(Powers 2011) between actual and predicted values. Recall (sensitivity) is the
fraction of relevant samples that are correctly retrieved. Its dual metric, precision
is the fraction of retrieved samples that are relevant. Meaningfully combining
precision and recall generates alternative performance evaluation measures such as
the F1 ratio, which combines these scores using a geometric mean. MCC takes into
account all four values in the confusion matrix. A value close to 1.0 means that both
classes are predicted well, even if one class is disproportionately represented. Since
MCC is a correlation coefficient, it ranges from [−1, 1]. Perfect misclassification
corresponds to a value of −1, perfect classification corresponds to a value of 1.0,
and random guessing with equal priors corresponds to a value of 0.0. Since no class
is more important than the other, MCC is symmetric.

In Table 8.6, we present MCC results for the five systems and the five metrics.
It is interesting to note that for the overall best system CNN/LSTM, MCC produces
higher correlations for the first three metrics (ATWV, DPALIGN, and OVLP). These
metrics are based less on time alignments of the hypotheses. The latter two metrics
(EPOCH and TAES) weigh the time alignments more heavily and generally produce
lower scores because their matching criteria are more stringent.

Interrater agreement (IRA) is an extremely useful measure for the development
of reference annotations. It is not uncommon that a team of annotators will be
involved in the annotation of a large corpus. Individual annotators are evaluated
and compared using IRA (Shah et al. 2020). Though there are numerous ways
to measure IRA, Cohen’s Kappa statistic, as shown in Eq. (8.14), is one of the
most popular ways to compute IRA. In Table 8.7, we show IRA values for the five
systems. Again, we observe that CNN/LSTM has higher IRA values than the other
systems, except for the EPOCH metric. Both MCC and IRA report similar trends
for CNN/LSTM versus the other four systems for the EPOCH metric.
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8.5.3 Additional Insight

We generally prefer operating points where performance in terms of sensitivity,
specificity, and FAs is balanced. The ATWV metric explicitly attempts to encourage
balancing of these by assigning a reward to each correct detection and a penalty to
each incorrect detection. None of the conventional metrics described here consider
the fraction of a detected event that is correct. This is the inspiration behind the
development of TAES scoring. TAES scoring requires the time alignments to match,
which is a more stringent requirement than, for example, OVLP. Consequently, the
sensitivity produced by the TAES and EPOCH metrics tends to be lower.

Comparing results across these five metrics can provide useful diagnostic
information and provide insight into the system’s behavior. For example, the
IPCA/LSTM and HMM/LSTM systems have relatively higher sensitivities accord-
ing to the EPOCH metric, indicating that these systems tend to detect longer seizure
events. Conversely, since the CNN/LSTM system has relatively low sensitivities
according to the TAES and EPOCH metrics, it can be inferred that this system
misses longer seizure events. Similarly, if the sensitivity was relatively high for
TAES and relatively low for EPOCH, it would indicate that the system tends to
detect a majority of smaller to moderate events precisely regardless of the duration
of an event. A comparison of ATWV scores with other metrics gives diagnostic
information such as whether a system accurately detects the onset and end of an
event or whether the system splits long events into multiple short events.

8.6 Statistical Analysis

To understand the pairwise statistical difference between these evaluation metrics
and the hybrid deep learning systems, we have performed three tests: Kolmogorov-
Smirnov (KS), Pearson’s R (correlation coefficient), and z-test (Hammond et al.
2015). These tests were performed to evaluate results of these systems on the basis
of sensitivity and specificity. Each individual patient from the TUSZ dataset was
evaluated separately. Outliers were removed by rejecting all input values collected
from patients which have no seizures and from those for which the systems detected
no seizures.

8.6.1 Kolmogorov-Smirnov and Pearson’s R Tests

Prior to performing statistical significance tests, it must first be determined whether
or not the group sample, which in our case is the individual metric’s score on
per patient basis, is normally distributed. We performed KS tests on each separate
evaluation metric and confirmed that the group distribution is indeed Gaussian. The
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Table 8.8 Correlation of the
scoring metrics based on
sensitivity (p < 0.001)

Metric ATWV DPALIGN EPOCH OVLP TAES

ATWV – 0.87 0.50 0.92 0.71
DPALIGN – 0.48 0.90 0.69
EPOCH – 0.62 0.87
OVLP – 0.78
TAES –

Table 8.9 Correlation of the
scoring metrics based on
specificity (p < 0.001)

Metric ATWV DPALIGN EPOCH OVLP TAES

ATWV – 0.49 0.32 0.45 0.54
DPALIGN – 0.38 0.94 0.89
EPOCH – 0.44 0.56
OVLP – 0.95
TAES –

KS values range from 0.61 to 0.71 for sensitivity and 0.99 – 1.00 for specificity with
the p-values equal to zero. We then evaluated the correlation coefficient (Pearson’s
R) between pairs of metrics.

Correlations for each pair of scoring metrics are shown in Table 8.8 (for sensi-
tivity) and Table 8.9 (for specificity). It can be seen that the pairwise correlations
between OVLP, ATWV, and DPALIGN are highest, while the pairs ATWV-EPOCH
and DPALIGN-EPOCH have the lowest correlation (~0.5). The EPOCH method
has a low correlation with all other metrics but TAES. This makes sense because
the EPOCH method scores events on a constant time scale instead of on individual
events. TAES takes into account the duration of the overlap, so it is the closest
method to EPOCH in this regard.

Since OVLP and TAES both score overlapping events independently, we also
expect these two methods to be correlated (sensitivity: 0.78; specificity: 0.95).
ATWV on the other hand has fairly low correlations with the other metrics for
specificity because of its stringent rules for FPs when there are multiple overlapping
events. The overall highest correlation is between ATWV and OVLP for sensitivity
and OVLP and TAES for specificity. All the correlation values (Pearson’s R)
collected in these tables are statistically significant with p < 0.001.

8.6.2 Z-Tests

To understand the statistical significance of each system, we perform two-tailed z-
tests for sensitivity as shown in Table 8.10 and for specificity as shown in Table
8.11. Cells in these tables contain entries that consist of the sensitivity/specificity
differences between the systems and a binary classification value (Yes/No) based on
extracted p-values from the z-test with 95% confidence. (Due to space constraints,
the five classification systems are represented using the abbreviations M1 to
M5.) The data was prepared by scoring systems on individual patients. Prior to
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performing z-tests, the Gaussianity of each sample was evaluated using a KS test.
All the samples were confirmed as normal with p < 0.001.

From Table 8.10, it can be observed that, aside from the EPOCH and TAES
scoring metrics, the differences between the CNN-LSTM system and all the other
systems are statistically significant (rejecting the null hypothesis with p < 0.05. On
the other hand, the EPOCH and TAES metrics fail to reject the null hypothesis
for CNN-LSTM. According to these metrics, the performance of HMM-SDA is
statistically different from the other systems, confirming its poor performance. This
can also be observed from EPOCH/TAES results shown in Table 8.2.

Table 8.11 shows a different trend than Table 8.10. The EPOCH metric fails to
reject null hypothesis for all the systems. Since specificity is calculated from TN and
FP values, for an evaluation set 167 h in duration and an epoch duration of 0.25 s,
a few thousand seconds of FPs do not make any significant difference in terms of
specificity. This can also be directly observed in Table 8.2, where the specificity of
all systems according to the EPOCH metric is always greater than 90%. The huge
difference between the duration of background and seizure events is the primary
reason for such high specificities. However, the OVLP and TAES metrics completely
agree with each other’s z-test results for specificity.

8.7 Conclusions

Standardization of scoring metrics is an extremely important step for a research
community to take in order to make progress on machine learning problems. There
has been a lack of standardization in most bioengineering fields. Popular metrics
such as sensitivity and specificity do not completely characterize the problem
and neglect the importance that FA rate plays in achieving clinically acceptable
solutions. In this chapter, we have compared several popular scoring metrics and
demonstrated the value of considering the accuracy of time alignments in the overall
assessment of a system. We have proposed the use of a new metric, TAES scoring,
which is consistent with popular scoring approaches such as OVLP but provides
more accurate assessments by producing fractional scores for recognition of events
based on the degree of match in the time alignments. We have also demonstrated
the efficacy of an existing metric, ATWV, that is popular in the speech recognition
community.

We have not discussed the extent to which we can tune these metrics by weighting
various types of errors based on feedback from clinicians and other customers of
the technology. Optimization of the metric is a research problem in itself, since
many considerations, including usability of the technology and a broad range of
applications, must be involved in this process. Our informal attempts to optimize
ATWV and OVLP for seizure detection have not yet produced significantly different
results than what was presented here. Feedback from clinicians has been consistent
that FA rate is perhaps the single most important measure once sensitivity is above
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Table 8.10 Significance calculated using z-tests for α = 0.05 (for sensitivity)

ATWV (Abs. sensitivity difference (%), significant/non-significant)
ML systems
(Sens.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (30.34%) – (00.82%) Y (03.61%) Y (00.01%) Y (05.61%) Y
M2 (29.52%) – (02.79%) N (00.83%) N (04.79%) N
M3 (26.73%) – (03.62%) N (02.00%) N
M4 (30.35%) – (05.62%) N
M5 (24.73%) –
DPALIGN (Abs. Sensitivity difference, significant/non-significant)
ML systems
(Sens.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (32.46%) – (10.89%) Y (01.31%) Y (11.65%) Y (03.31%) Y
M2 (43.35%) – (09.58%) N (00.76%) N (07.58%) N
M3 (33.77%) – (10.34%) N (02.00%) N
M4 (44.11%) – (08.34%) N
M5 (35.77%) –
EPOCH (Abs. Sensitivity difference, significant/non-significant)
ML systems
(Sens.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (09.78%) – (55.25%) N (40.68%) N (10.93%) Y (41.24%) N
M2 (65.03%) – (14.57%) Y (44.32%) Y (14.01%) N
M3 (50.46%) – (29.75%) Y (00.56%) N
M4 (20.71%) – (30.31%) Y
M5 (51.02%) –
OVLP (Abs. Sensitivity difference, significant/non-significant)
ML systems
(Sens.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (30.83%) – (08.26%) Y (02.14%) Y (04.52%) Y (02.14%) Y
M2 (39.09%) – (09.04%) N (03.74%) N (06.12%) N
M3 (30.05%) – (05.30%) N (02.92%) N
M4 (35.35%) – (02.38%) N
M5 (32.97%) –
TAES (Abs. Sensitivity difference, significant/non-significant)
ML systems
(Sens.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (12.48%) – (19.10%) N (10.36%) N (04.81%) Y (09.64%) N
M2 (31.58%) – (08.74%) N (14.29%) Y (09.46%) N
M3 (22.84%) – (05.55%) Y (00.72%) N
M4 (17.29%) – (04.83%) Y
M5 (22.12%) –
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Table 8.11 Significance calculated using z-tests for α = 0.05 (for specificity)

ATWV (Abs. specificity difference (%), significant/non-significant)
ML systems
(Spec.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (93.15%) – (27.28%) Y (24.22%) Y (31.77%) Y (28.64%) Y
M2 (65.87%) – (03.06%) N (04.49%) N (01.36%) N
M3 (68.93%) – (07.55%) Y (04.42%) N
M4 (61.38%) – (03.13%) N
M5 (64.51%) –
DPALIGN (Abs. Specificity difference (%), significant/non-significant)
ML systems
(spec.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (95.17%) – (23.68%) Y (22.18%) Y (28.30%) Y (25.58%) Y
M2 (71.49%) – (01.50%) N (04.62%) Y (01.90%) N
M3 (72.99%) – (06.12%) Y (03.40%) N
M4 (66.87%) – (02.72%) Y
M5 (69.59%) –
EPOCH (Abs. Specificity difference (%), significant/non-significant)
ML systems
(spec.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (99.84%) – (08.29%) N (05.02%) N (01.62%) N (05.75%) N
M2 (91.55%) – (03.27%) N (06.67%) N (02.54%) N
M3 (94.82%) – (03.40%) N (00.73%) N
M4 (98.22%) – (04.13%) N
M5 (94.09%) –
OVLP (Abs. Specificity difference (%), significant/non-significant)
ML systems
(spec.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (96.86%) – (20.02%) Y (16.33%) Y (23.51%) Y (19.29%) Y
M2 (76.84%) – (03.69%) N (03.49%) Y (00.73%) N
M3 (80.53%) – (07.18%) Y (02.96%) N
M4 (73.35%) – (04.22%) Y
M5 (77.57%) –
TAES (Abs. Specificity difference (%), significant/non-significant)
ML systems
(spec.)

CNN-
LSTM
(M1)

CNN-MLP
(M2)

HMM-
LSTM
(M3)

HMM-SDA
(M4)

IPCA-LSTM
(M5)

M1 (95.24%) – (31.21%) Y (24.83%) Y (29.20%) Y (28.60%) Y
M2 (64.03%) – (06.38%) N (02.01%) Y (02.61%) N
M3 (70.41%) – (04.37%) Y (03.77%) N
M4 (66.04%) – (00.60%) Y
M5 (66.64%) –
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approximately 75%. As we move more technology into operational environments,
we expect to have more to contribute to this research topic.

Finally, the Python implementation of these metrics is available at the project web
site: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/nedc_eval_eeg.
This scoring software described here has been publicly available since late 2018. It
has been used for two open-source evaluations (Kiral et al. 2019; Roy et al. 2020).
Readers are encouraged to refer to the software for detailed questions about the
specific implementations of these algorithms and the tunable parameters available.
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