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1	 �Introduction

Tuberculosis (TB), predominately caused by the 
bacterium Mycobacterium tuberculosis, remains 
one of the world’s most significant infectious dis-
eases, with a worldwide yearly burden of approx-
imately 8.7 million new cases of active TB, 1.4 
million deaths and a third of the world’s popula-
tion with latent TB infection (LTBI) (WHO 
2019). The major burden for TB disease in still 
bared by developing countries, with Asia (e.g. 
China and India) having the highest  number of 
cases of the disease. The epidemiological trend in 
developed countries continues to be that the 
majority of TB cases have originated from recent 
immigrants that have come from TB endemic 
areas of the world (Zumla et al. 2013; Zaheen and 
Bloom 2020). There are also significant numbers 
of TB patients co-infected with Human immuno-
deficiency virus (HIV), particularly in sub-
Saharan Africa, resulting in the highest rates of 

TB cases per capita (WHO 2019). The outbreak 
of the COVID-19 pandemic may also result in a 
similar dangerous synergy with TB, although the 
impact of co-infection of M. tuberculosis with the 
SARS-CoV-2 virus in patients remains to be 
determined (Ong et al. 2020). The frequency of 
multi-drug resistant tuberculosis (MDR-TB) to 
the main drugs used for treatment (e.g. rifampicin 
and isoniazid) is still worryingly high, particu-
larly in India, Russia, China, Pakistan and South 
Africa (WHO 2019; Zaheen and Bloom 2020). 
Of further concern is the rise of extensively drug 
resistant (XDR-TB) in several countries to all 
current second and third-line therapies (Zaheen 
and Bloom 2020).

There continues to be a strong concerted effort 
to develop new interventions and therapies 
against TB with a particularly important focus on 
understanding innate immunity against TB par-
ticularly in the early stages of infection and the 
granuloma. It is well know that M. tuberculosis is 
able to persist as an intracellular parasite for 
years in the host as LTBI, mainly because of its 
ability to persist in the host macrophage by 
manipulating phagolysosome maturation, pro-
viding a favourable niche for it to be able to 
reside (Russell 2001; Gupta et  al. 2012). M. 
tuberculosis-infected macrophages in LTBI are 
predominantly present within the granuloma, 
which is a complex structure of T cells, B cells, 
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and giant epithelioid cells among others and a re-
sectioning of tissue to contain these infected 
macrophages (Gupta et al. 2012). The formation 
and maintenance of this immune cordon against 
TB infection is crucial in preventing dissemi-
nated disease and transmission of the infection to 
other hosts. It is still not fully understood how the 
granuloma is formed and maintained in TB infec-
tion and the full extent of the contribution played 
by innate immunity. Here, we will discuss the lat-
est advancements in the understanding of innate 
immune recognition of M. tuberculosis and how 
these contribute to both downstream protection 
and pathogenesis of TB.

The primary interactions of M. tuberculosis 
with the host upon inhalation remain to be deter-
mined fully, particularly the targeting and recog-
nition by the innate immune response. The lungs 
are the main route of entry to the host for M. 
tuberculosis and is the main anatomical site for 
infection and pathogenesis, but not entirely as 
extra-pulmonary TB (EPTB) also relatively com-
monly occurs in 10–42% of cases (Caws et  al. 
2008). The establishment and dissemination of 
M. tuberculosis infection is dependent on several 
host and pathogen factors with the pathogen able 
to alter and circumvent facets of both the innate 
and adaptive immune responses. Initially, M. 
tuberculosis bacilli, within aerosol droplet nuclei 
(on average 4–7μm in size), are inhaled into the 
pulmonary alveoli where they come into primary 
contact and are phagocytosed by alveolar macro-
phages (Fennelly et  al. 2004; Fennelly 2020). 
During this interaction, most of the bacilli are 
killed, but some can endure within the macro-
phage (Russell 2001; Gupta et al. 2012). The rec-
ognition and uptake of M. tuberculosis by the 
host is govern by several soluble and cell-bound 
factors such as pattern recognition receptors 
(PRRs) that recognise pathogen-associated 
molecular patterns (PAMPs) that are present on 
the surface of microbes and normally absent on 
host cells. Examples of PAMPs include lipopoly-
saccharide (LPS), porins, peptidoglycan, lipotei-
choic acid (LTA), mannose-rich glycans, 
flagellin, bacterial and viral genomes, mycolic 
acid, and lipoarabinomannan (LAM). PRRs 
include phagocytic PRRs and signalling PRRs. 

Examples of phagocytic PRRs include C-type 
lectins receptors (CTLRs) (e.g. collectins such as 
surfactant protein A (SP-A), surfactant protein D 
(SP-D), mannose receptor (MR), Dectin-1), scav-
enger receptors (e.g. CD-36, CD68, and SRB-1), 
opsonic receptors (e.g. plasma acute phase pro-
teins like mannose binding lectin (MBL), 
C-reactive protein (CRP)) and complement pro-
teins (e.g. C3b, iC3b, factor H and properdin). 
Signalling PRRs are either present on cell surface 
(e.g. Toll-like receptors (TLRs), CD14, on intra-
cellular membranes (e.g. endosomes, lysosomes) 
or in the cytoplasm (e.g. nucleotide-binding 
oligomerization domain (NOD)-like receptors. In 
microbial infection and in particular M. tubercu-
losis infection the  type of interaction of PRRs 
with PAMPs and innate immune cells (e.g. mac-
rophages) also determine the subsequent cell sig-
nalling pathways  (leading to production of 
cytokines/chemokines),  which initiates inflam-
mation and tissue modification (e.g. granuloma 
formation) (Feng et  al. 2006; Lockhart et  al. 
2006; Eum et al. 2010). Furthermore, the forma-
tion of the granuloma occurs without the require-
ment for specific immunity (North and Izzo 1993; 
Hansch et al. 1996; Smith et al. 1997), with both 
tumour necrosis factor alpha (TNF-α) and inter-
feron gamma (IFN-γ) being the foremost signal-
ling cytokines for cell infiltration, although they 
are not needed to begin the process of granuloma 
formation (Flynn et al. 1995; Smith et al. 1997).

After M. tuberculosis enters the alveoli space, 
the bacteria are internalized into alveolar macro-
phages by phagocytosis, a process triggered by 
receptor-ligand engagement. M. tuberculosis 
tends to target binding to macrophages in 
cholesterol-rich regions of the host cell mem-
brane (Gatfield and Pieters 2000). Mycobacteria 
can be targeted via a wide variety of receptors 
that recognise opsonised and non-opsonised 
bacilli. These include collectins (SP-A, SP-D, 
conglutinin), MR (CD207), dendritic-cell-
specific intercellular adhesion molecule-3 grab-
bing non-integrin (DC-SIGN), dectin-1, 
complement receptors (CR), surfactant protein 
(SP) receptors, scavenger receptors, and glyco-
sylphosphatidylinositol (GPI)-anchored recep-
tors such as CD14 (Schlesinger et  al. 1990; 
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Schlesinger 1993; Stokes et  al. 1993; Hirsch 
et  al. 1994; Zimmerli et  al. 1996; Ehlers and 
Daffe 1998; Ernst 1998; Peyron et  al. 2000; 
Rooyakkers and Stokes 2005). Various TLRs 
have also been shown to play important roles in 
M. tuberculosis interactions on the surface and 
within phagocytic cells (Means et  al. 1999). In 
addition, M. tuberculosis can also recruit several 
host cell molecules on its surface that enhance its 
uptake by phagocytes.

2	 �Collectins and Mycobacteria

Collectins are a group of soluble C-type 
(calcium-dependent) lectins, characterised by an 
N-terminal collagen region, an alpha helical coil 
neck motif, and a C-terminal carbohydrate rec-
ognition domain (CRD). Collectins can recog-
nise and bind to PAMPs on variety of microbes 
via their CRD region and have a crucial role in 
their neutralisation and clearance but are also a 
critical bridge between the innate immunity and 
adaptive immunity (Kishore et  al. 2006). The 
mammalian collectin family comprises of SP-A 
and SP-D, MBL, liver collectin (CL-L1), kidney 
collectin (CL-K1), CL-LK (composed of CL-L1 
and Cl-K1) and placenta collectin (CL-P1), con-
glutinin, CL-43 and CL-46, with the latter three 
found in Bovidae (Murugaiah et al. 2020; Tsolaki 
and Kishore 2020). Several of these collectins 
have a role in mycobacterial infection and 
pathogenesis.

Both SP-A and SP-D are the most relevant 
collectins for pulmonary TB as they are impor-
tant components of pulmonary surfactant which 
is essential for the physiology of alveoli 
(Murugaiah et  al. 2020). Furthermore, early 
observations also showed that pulmonary surfac-
tant had anti-microbial properties being able to 
enhance clearance of Staphylococcus aureus by 
alveolar macrophages (AM) (Laforce et  al. 
1973). In fact, both SP-A and SP-D can target 
Gram-negative and Gram-positive bacteria 
enhancing their clearance through phagocytosis 
by AM (Pikaar et al. 1995).

Both SP-A and SP-D can bind and agglutinate 
mycobacteria but seem to have opposing effects 

on the phagocytosis of M. tuberculosis. SP-A tar-
gets the putative surface adhesin Apa glycopro-
tein on M. tuberculosis (Ragas et al. 2007), whilst 
SP-D can also bind to LTA and peptidoglycan 
and to lipoarabinomannan (LAM) from M. tuber-
culosis and Mycobacterium avium (Ferguson 
et al. 1999; Van De Wetering et al. 2001; Kudo 
et  al. 2004). SP-A can facilitate uptake of M. 
tuberculosis and M. avium by enhancing the 
expression of macrophage MR (Gaynor et  al. 
1995; Beharka et  al. 2002; Kudo et  al. 2004) 
(Fig. 9.1). Similarly, SP-A enhances expression 
of scavenger receptor A (SR-A), increasing the 
phagocytosis of Streptococcus pneumoniae by 
AM (Kuronuma et al. 2004). Additionally, bound 
SP-A can also facilitate uptake of Mycobacterium 
bovis bacillus Calmette-Guérin (BCG) by bind-
ing to specific 210-kDa SP-A receptor (SPR210) 
in U937 macrophages and rat AM (Chroneos 
et  al. 1996; Weikert et  al. 1997). Furthermore, 
this interaction led to increased mycobacterial 
killing and production of TNF-α and nitric oxide 
(Weikert et al. 2000). In contrast, SP-D inhibits 
phagocytosis of M. tuberculosis by blocking the 
interaction of LAM with macrophage MR, and is 
independent of agglutination by SP-D (Ferguson 
et al. 1999; Ferguson et al. 2002) (Fig. 9.1). Gene 
knockout mice (SP-A−/−, SP-D−/−, and SP-A/
D−/−) infected with M. tuberculosis, still pro-
cessed the ability for phagocytosis and bacterial 
clearance, suggesting that both SP-A and SP-D 
are not crucial for protection in this animal model 
for TB (Lemos et al. 2011). SP-A and SP-D can 
also influence the intracellular environment post 
phagocytosis, by stimulating and enhancing reac-
tive oxygen and nitrogen species enabling the 
killing of intracellular pathogens such as myco-
bacteria (Fig.  9.1). SP-A enhances the intracel-
lular killing of M. bovis BCG by enhancing nitric 
oxide (NO) levels and releasing TNF-α (Weikert 
et al. 2000). However, in M. tuberculosis and M. 
avium-infected AM primed by IFN-γ, SP-A was 
able to supress intracellular NO levels by inhibit-
ing TNF-α production and nuclear factor-kappa 
B (NF-κB) activation (Pasula et al. 1999; Hussain, 
2003). Thus, SP-A facilitates the intracellular 
survival of M. tuberculosis (Gaynor et al. 1995; 
Pasula et  al. 1999). Moreover, HIV-1 infected 
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patients, who had raised levels of pulmonary 
SP-A, had a significantly greater susceptibility to 
M. tuberculosis infection (Downing et al. 1995). 
Thus, SP-A appears to have pleiotropic effects 
being able to both enhance inflammation in the 

presence of infected macrophages and inhibit 
inflammation in uninfected macrophages, 
thus  possibly acting as a protective molecule 
against lung tissue damage from excessive and 
non-specific inflammation (Gold et al. 2004).

Fig. 9.1  Role of collectins in recognising M. tubercu-
losis and subsequent consequences. SP-A and SP-D can 
bind and agglutinate mycobacteria but have opposing 
effects on phagocytosis. SP-A binds to Apa glycoprotein, 
whilst SP-D binds to lipoteichoic acid, peptidoglycan and 
to lipoarabinomannan (LAM) on M. tuberculosis. SP-A 

enhances the expression of macrophage mannose receptor 
(MR) facilitating uptake of M. tuberculosis, increasing 
mycobacterial killing and production of inflammatory 
components TNF-α and IL-6. SP-D inhibits phagocytosis 
of M. tuberculosis by blocking the interaction of LAM 
with macrophage MR
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A number of genetic polymorphisms in the 
SP-A and SP-D genes are associated with TB 
susceptibility and protection in humans. SP-A is 
secreted as two distinct variants (SP-A1 and 
SP-A2) which are coded for by distinct genes. In 
individuals from Mexico, Ethiopia, India and 
China, mutations within and flanking the SP-A1 
and SP-A2 genes are linked with protection or 
susceptibility toward pulmonary TB (Floros et al. 
2000; Madan et al. 2002; Malik et al. 2006; Vaid 
et al. 2006; Yang et al. 2014). A study of Indian 
individuals identified a single mutation in the 
SP-D gene that was significantly associated with 
TB susceptibility (Vaid et al. 2006).

MBL is a serum protein and has a similar 
overall structure to SP-A and can target PAMPs 
on the surface of several Gram-positive and 
Gram-negative bacteria (Ip et  al. 2009; Lugo-
Villarino et  al. 2011). MBL that is bound to 
microbial surfaces can activate complement via 
MBL-associated serine proteases (MASPs) of the 
lectin complement pathway, resulting in deposi-
tion of complement components (e.g. C3 and C4) 
that facilitates microbial phagocytosis and clear-
ance. MBL also possesses complement-
independent activity, acting directly as an 
opsonin, and an  inhibitor of  bacterial adhesion 
(Kuhlman et al. 1989; Polotsky et al. 1997; Jack 
et al. 2005). MBL can also bind to peptidoglycan 
and LTA from Staphylococcus aureus (Polotsky 
et al. 1996; Nadesalingam et al. 2005). In myco-
bacteria, MBL can bind to LAM from M. avium 
(Polotsky et al. 1997), antigen 85 (Ag85) of M. 
tuberculosis (Swierzko et al. 2016), and manno-
sylated lipoarabinomannan (ManLAM) from 
several mycobacterial species (M. tuberculosis, 
M. bovis, M. kansasii, M. gordonae and M. smeg-
matis) (Bartlomiejczyk et  al. 2014). MBL 
can also enhance the uptake of mycobacteria by 
macrophages (Polotsky et al. 1997). Both normal 
and elevated levels in serum MBL have been 
associated with recurrent infection with M. tuber-
culosis and M. leprae, probably driven 
by  enhanced complement-mediated phagocyto-
sis (Garred et al. 1994, 1997). Genetic polymor-
phisms associated with MBL serum-deficiency 
are common and some of these are linked to sus-

ceptibility to TB and other inflammatory diseases 
in several ethnicities (Takahashi and Ezekowitz 
2005; Thiel et  al. 2006; Goyal et  al. 2016). 
Among the minor collectins, CL-L1, CL-K1 and 
CL-P1 bind to bacteria, with CL-K1 being able to 
bind M. tuberculosis (Troegeler et al. 2015). The 
heteromeric form CL-LK binds to ManLAM of 
M. tuberculosis, but not M. smegmatis because of 
the absence of capped mannose on its LAM 
(Troegeler et al. 2015). Furthermore, serum lev-
els of CL-LK in TB patients are almost depleted, 
compared to normal healthy controls (Troegeler 
et al. 2015).

Of the bovine collectins, conglutinin has pro-
tective activity against several microbes, includ-
ing mycobacteria. Conglutinin has a similar 
structure to SP-D (which targets mycobacterial 
LAM) (Murugaiah et  al. 2020) but is predomi-
nantly a serum protein synthesised by the liver 
(Holmskov et  al. 1998). Conglutinin has anti-
microbial properties; low serum levels of conglu-
tinin are linked with acute infections (e.g. 
pneumonia, metritis and other respiratory infec-
tion (Ingram and Mitchell 1971; Holmskov et al. 
1998). Conglutinin is able to bind to Gram-
positive bacteria such as mycobacteria (Dec et al. 
2012; Mehmood et  al. 2019), and uniquely to 
complement C3 fragment iC3b, via the mannose 
residues  (Laursen et  al. 1994). A recombinant 
truncated form of conglutinin (rfBC), containing 
the α-helical neck region and the CRD of conglu-
tinin (Wang et  al. 1995), is able to bind to M. 
bovis BCG and inhibit phagocytosis of the bacte-
rium both in the presence and absence of comple-
ment deposition (Mehmood et  al. 2019). 
Furthermore, there is a modulation of the inflam-
matory response with the elevation of pro-
inflammatory cytokines (IL-1β, TNF-α, IL-6, 
IL-12) and suppression of anti-inflammatory 
cytokines (TGF-β and IL-10) (Mehmood et  al. 
2019). Thus, it is probable that conglutinin inter-
feres with the phagocytosis of M. bovis BCG by 
macrophages through two separate mechanisms: 
firstly, inhibiting binding of mycobacterial LAM 
(like SP-D) with mannose receptor, and secondly, 
inhibiting binding of iC3b with complement 
receptors CR3 and CR4 (Mehmood et al. 2019).
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3	 �Complement 
and Mycobacteria

The complement system is a major arm of the 
innate immune response and is crucial for clear-
ing microbial infection. The interactions between 
complement system and mycobacteria are not 
fully understood and this is probably more impor-
tant in EPTB and disseminated disease than pul-
monary TB. The complement system is composed 
of nearly 50 different proteins that are involved in 
three distinct pathways for activation: Alternative, 
Classical and Lectin (Carroll and Sim 2011) 
(Figs.  9.2a, b). Complement can be activated 
through several target surfaces including patho-
gens and altered-self cells or indirectly by 
pathogen-bound antibodies and results in the 
covalent binding of C3b component to the tar-
geted cell, and subsequent cell lysis via the 
assembly of the membrane attack complex 
(MAC) (Carroll and Sim 2011). The classical 
pathway is activated by C1q binding to a target 
ligand either directly or to bound IgG/IgM anti-
bodies (Fig. 9.2a). The lectin pathway is activated 
by the binding of MBL or ficolins to a target 
ligand (Matsushita and Fujita 1992; Matsushita 
et  al. 2000; Matsushita and Fujita 2001) 
(Fig. 9.2a). However, the alternative pathway is 
activated differently and does not require an ini-
tiator like C1q or MBL but instead relies on the 
constant spontaneous hydrolysis of C3 to 
C3(H2O). The consequences of complement acti-
vation by any pathway is the formation of C3 
convertase and the deposition of C3b on target 
surfaces to prompt opsonisation, the formation of 
the MAC and several other immunological func-
tions (Carroll and Sim 2011) (Fig. 9.2b). There 
are also other complement regulatory proteins 
such and properdin (CFP) and factor H (CFH), 
where the latter is also a cofactor for factor I that 
is involved in the cleavage of C3b to iC3b 
(Whaley and Ruddy 1976a; Sim et  al. 1993) 
(Fig. 9.2b).

In the classical pathway, C1q seems to bind in 
the presence of IgG and IgM from serum, pre-
sumably because of M. bovis BCG vaccination 
(Carroll et  al. 2009). Experiments using C1q-
deficient serum result in a reduction of C3 bind-

ing to mycobacteria (Ferguson et al. 2004). The 
levels of C1q are significantly elevated in the 
lungs (determined by bronchoalveolar lavage 
(BAL) and sera of active TB patients), compared 
to control patients and those with LTBI, indicat-
ing that C1q is an important biomarker for 
TB (Lubbers et al. 2018). The classical pathway 
may be more relevant in EPTB where C1q is pre-
dominantly a serum protein, however, local pul-
monary synthesis occurs in the lungs during 
active TB accounting for the raised levels of C1q 
observed. Furthermore, systemic and local C1q 
levels are raised significantly upon vaccination 
with BCG in non-human primates (Dijkman 
et al. 2020). Complement receptor CR3 deficient 
mice (CR3−/−), infected with M. tuberculosis, had 
a lower percentage of infected macrophages at 
2 h but not at 4 h post infection, suggesting the 
opsonisation and uptake via complement and 
receptors may be key during the early stages of 
infection (Hu et  al. 2000). Genetic polymor-
phisms in complement receptor CR1 have been 
reported to increase susceptibility to 
Mycobacterium leprae infection and TB disease 
(Fitness et al. 2004a, b; Kretzschmar et al. 2018), 
whilst a congenital deficiency of the classical 
pathway did not seem to affect susceptibility to 
TB (Kumararatne 1997). In contrast, a recent 
study has shown that polymorphisms in the C1q 
gene cluster are significantly associated with TB 
susceptibility and  differing plasma levels of 
C1qA in South African TB patients (Bruiners 
et al. 2020).

The alternative pathway differs from the clas-
sical and lectin pathways because it does not 
need a specific stimulus for activation, since the 
alternative pathway is constantly active at low 
levels and able to target pathogens promptly 
(Kouser et  al. 2013). Properdin (CFP) is a key 
regulatory protein of the alternative pathway and 
contains thrombospondin (TSR) type 1 repeats 
(TSR1-TSR6), which are crucial for its function; 
TSR4 stabilises C3bBb; whilst TSR5 binds to 
C3b (Higgins et  al. 1995; Kouser et  al. 2013). 
Both CFP and recombinant TSR4 + 5 are able to 
bind to M. bovis BCG, inhibiting its uptake by 
macrophages (Al-Mozaini et  al. 2018). In con-
trast, CFH downregulates complement activation 
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Fig. 9.2  Role of complement activation and comple-
ment proteins in recognising M. tuberculosis and subse-
quent consequences. (a) The classical pathway is activated 
by C1q binding to a target ligand either directly or to bound 
or anti-mycobacterial antibodies. The lectin pathway is 
activated by the binding of MBL or ficolins to target myco-

bacterial ligands. (b) The alternative pathway is activated 
via the constant spontaneous hydrolysis of C3 to C3(H2O). 
Properdin and factor H both act as patten recognition recep-
tors (PRR) and have complement independent functions on 
mycobacteria, being able to inhibit phagocytosis and alter 
the subsequent inflammatory response
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but has also been shown to bind to M. bovis BCG 
and inhibit its uptake by macrophages in a similar 
manner (Carroll et  al. 2009; Abdul-Aziz et  al. 
2016). Both CFP and CFH are also able to modu-
late the immune response from the macrophage 
during M. bovis BCG phagocytosis by enhancing 
the pro-inflammatory response (TNF-α, IL-1β, 
IL-6 and IL-12) and dampening the anti-
inflammatory response (TGF-β and IL-10). 
This  suggests consequences for the adaptive 
immune response to follow against M. tuberculo-
sis infection, particularly in the formation and 
maintenance of the protective granuloma.

The lectin pathway is primarily triggered by 
MBL and ficolins that recognise terminal sugar 
residues on the surface of bacteria (e.g. mannose, 
fucose and N-acetyl-glucosamine) and subse-
quently activates MASPs resulting in the cleav-
age of complement components C4 and C2 to 
C4bC2a. There are three human ficolins: L-ficolin 
and H-ficolin, which are synthesised by the liver 
and predominantly circulate in the serum and 
M-ficolin which exist in granules of monocytes, 
neutrophils, and type II alveolar epithelial cells. 
All three human ficolin can associate with 
MASPs and activate the complement cascade 
(Liu et al. 2005). MBL and ficolins can bind to 
several mycobacteria (M. tuberculosis, M. gordo-
nae, M. kansasii and M. smegmatis) 
(Bartlomiejczyk et  al. 2014). Direct binding of 
L-ficolin from human serum to M. bovis BCG 
and subsequent MASP-2 activation has been 
reported, but no binding was detected for 
H-ficolin (Carroll et  al. 2009). L-ficolin is also 
able to bind with higher affinity to M. tuberculo-
sis than to non-virulent mycobacteria and inhibit 
infection of human lung A549 epithelial cells 
(Luo et al. 2013). In mice, exogenously adminis-
tered L-ficolin had a significant protective effect 
against virulent M. tuberculosis infection, whilst 
Ficolin-A (homologous to human L-ficolin in 
mouse) demonstrated increased susceptibility to 
M. tuberculosis infection (Luo et  al. 2013). 
Furthermore, L-ficolin also modulates the 
immune response against M. tuberculosis infec-
tion by partially activating c-Jun N-terminal 
kinase (JNK) phosphorylation, stimulating the 
secretion of IFN-γ, IL-17, IL-6, TNF-α, and NO 

production by macrophages (Luo et  al. 2013). 
Clinically, L-ficolin serum levels in pulmonary 
TB patients are much lower than  compared to 
healthy controls (Luo et al. 2013), suggesting an 
important role for L-ficolin in M. tuberculosis 
infection.

The cell wall of mycobacteria is complex and 
is composed of a thick peptidoglycan layer, 
which covers the bacteria plasma membrane and 
is the scaffold to which various components are 
covalently attached (e.g. LAM, arabinogalactans, 
arabinomannans, glycolipids and mycolic acids) 
(Daffe and Draper 1998). Furthermore, there is 
also a capsule layer surrounding the mycolates 
made up of additional proteins, polysaccharides 
and lipids (e.g. phospholipids and glycolipids) 
(Daffe and Etienne 1999). One of these compo-
nents is trehalose dimycolate (TDM) (also known 
as cord factor), which activates complement 
(Ramanathan et  al. 1980). The complex myco-
bacterial cell wall has evolved to protect the bac-
terium from immunological attack (particularly 
intracellularly), but also plays a major role in 
determining ant-mycobacterial drug efficacy 
(Besra 1998). Several bacteria have evolved strat-
egies to circumvent the immune response by 
interfering and inhibiting complement activation 
by either producing bacterial complement inhibi-
tors, inactivating host complement inhibitors 
(e.g. CFH), or secreting bacterial proteases that 
break-down complement proteins (e.g. 
Salmonella enterica and Porphyromonas gingi-
valis) (Wingrove et al. 1992; Jagels et al. 1996; 
Ramu et  al. 2007). M. tuberculosis is a highly 
evolved intracellular pathogen, being able to per-
sistently reside in the phagosome of macro-
phages. Nevertheless, the interaction of 
complement and mycobacteria and the implica-
tions for pathogenesis and protection against TB 
are not well understood.

M. bovis BCG can activate the classical, lectin 
and alternative pathways (Ramanathan et  al. 
1980; Ferguson et al. 2004; Carroll et al. 2009). 
Activation via the alternative pathway also 
occurred in the absence of antibody, but intrigu-
ingly CFH was also found to bind to the myco-
bacterial surface, possibly indicating a means for 
complement moderation (Carroll et  al. 2009). 
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Although C3b is deposited on the mycobacterial 
surface (Carroll et  al. 2009), it is not clear if 
MAC formation occurs. The fixation of comple-
ment proteins on the mycobacterial surface may 
enhance the phagocytosis of mycobacteria via 
complement receptors. Several studies have 
reported C3b deposition on mycobacteria and its 
role in phagocytosis via complement receptors 
CR1, CR3 or CR4 on macrophages (Hetland and 
Wiker 1994; Schlesinger and Horwitz 1994; 
Cywes et al. 1996; Hetland et al. 1998; Mueller-
Ortiz et al. 2001; Ferguson et al. 2004). However, 
the specific importance of C3b and iC3b deposi-
tion on mycobacteria is not well understood. 
Complement activation by classical and alterna-
tive pathways has been shown on M. tuberculosis 
and M. bovis BCG resulting in C3b and iC3b 
deposition, but the target ligands are not known 
(Ferguson et al. 2004; Carroll et al. 2009). During 
the alternative pathway, CFH plays a major role 
in the cleavage of C3b to iC3b by acting as a 
cofactor of factor I, whilst also controlling the 
formation of the C3 and C5 convertases (Whaley 
and Ruddy 1976b; Whaley et al. 1976). C3b com-
ponent is essential for the complement cascade to 
proceed to the terminal MAC, whilst iC3b is 
unable to facilitate this. Also, both C3b and iC3b 
have different complement receptors (C3b is a 
ligand for CR1; iC3b is a ligand for CR3 and 
CR4) (Ross 1986). iC3b exits as a cleavage prod-
uct from C3b produced by factor I with cofactors 
CFH and CR1 (Figueroa and Densen 1991). 
Thus, both opsonic C3b or iC3b complement 
components may facilitate phagocytosis of host 
cells by mycobacteria, either promoting clear-
ance or intracellular persistence. Indeed, a recent 
study showed enhanced uptake of complement-
deposited M. bovis BCG by THP-1 macrophages 
compared to non-deposited M. bovis BCG 
(Mehmood et  al. 2019).This same study also 
observed that phagocytosis of complement-
deposited M. bovis BCG bacteria are inhibited 
from phagocytosis by THP-1 macrophages by 
rfBC (a recombinant truncated form of bovine 
conglutinin) which uniquely binds to iC3b 
(Mehmood et al. 2019). These observations sug-
gest that the blocking of iC3b by conglutinin may 
be indicative of a protective mechanism against 

mycobacterial infection in the bovine host, by 
inhibiting phagocytosis via macrophage recep-
tors CR3 and CR4 (Mehmood et al. 2019).

Both properdin (CFP) and factor H (CFH) are 
complement components that have also been 
observed to bind to mycobacteria in a in a dose-
dependent manner and independently of C3b 
deposition (Carroll et al. 2009; Abdul-Aziz et al. 
2016; Al-Mozaini et  al. 2018). Both CFP and 
CFH have been shown to be PRRs for mycobac-
teria that have complement-independent func-
tions. M. bovis BCG bound with CFP or CFH are 
inhibited for phagocytosis by THP-1 macro-
phages compared to M. bovis BCG alone 
(Al-Mozaini et al. 2018; Abdul-Aziz et al. 2016). 
Moreover, the subsequent macrophage inflam-
matory response was altered in terms of enhanced 
secretion of TNF-α, IL-1β, IL-6 and IL-12, whilst 
simultaneously dampening anti-inflammatory 
cytokines (TGF-β and IL-10) (Al-Mozaini et al. 
2018 Abdul-Aziz et al. 2016). CFH binding has 
been reported in other bacteria where it serves to 
circumvent complement activation and thus 
opsonisation and killing through MAC (e.g. S. 
pyogenes, Streptococcus pneumoniae, Yersinia 
enterocolitica, Haemophilus influenza, Neisseria 
gonorrhoea and N. meningitidis (China et  al. 
1993; Diaz et al. 1997; Ram et al. 1998a, b; Dave 
et  al. 2001; Meri et  al. 2002; Schneider et  al. 
2006). In the case of mycobacterial infection, the 
ability to bind CFH may serve its immune eva-
sion by activating C3 and using C3b opsonisation 
to enhance phagocytosis by macrophages via 
complement receptors (Schlesinger et  al. 1990; 
Ferguson et  al. 2004). These intriguing results 
describe potentially novel mechanisms in shap-
ing the adaptive immune response against myco-
bacterial infection. For M. tuberculosis, there is a 
fine balance in activating complement to an opti-
mum limited level to allow for enhanced opsoni-
sation and uptake into macrophages, whilst 
avoiding being killed. Thus, the complex interac-
tions between M. tuberculosis and complement is 
a major mechanism through which mycobacteria 
can evade the immune response by persistently 
intracellularly in the macrophage.

CR3 is an integrin (also known as αMβ2; 
CD11b/CD18), commonly expressed on 
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neutrophils, macrophages, NK cells, and mono-
cytes and is involved in both opsonic and non-
opsonic phagocytosis (Le Cabec et  al. 2002; 
Velasco-Velazquez et  al. 2003). CR3 can bind 
iC3b (particularly on complement-deposited 
mycobacteria), mycobacterial LAM, Ag85C, 
PIMs, ICAM-1, several bacterial ligands and 
other carbohydrate residues (e.g. β-glucan, glu-
cose, N-acetylglucosamine (GlcNAc) (Arnaout 
1990; Ehlers and Daffe 1998; Velasco-Velazquez 
et al. 2003; Villeneuve et al. 2005). Elevated lev-
els of CR3  in tuberculosis patients have been 
reported in several studies, particularly in phago-
cytic cells in the peripheral blood and AMs, sug-
gesting a probable role in pathogenesis (Yassin 
and Hamblin 1994; Kuo et al. 1996; Juffermans 
et  al. 2001). Indeed, complement activation via 
classical pathway in the lungs may also be a 
major mechanism for opsonin-mediated uptake 
of M. tuberculosis by AMs (Watford et al. 2000; 
Ferguson et al. 2004). However, CR3 deficiency 
in mice does not appear to affect the intracellular 
killing mechanisms (induction of reactive oxy-
gen and nitrogen intermediates), or on the sur-
vival of the mycobacteria inside the cell, but it 
did result in reduced opsonisation and phagocy-
tosis (Hu et al. 2000; Melo et al. 2000; Rooyakkers 
and Stokes 2005). CR3 has been found associ-
ated with several GPI-anchored proteins local-
ized in cholesterol-rich rafts of the plasma 
membrane in neutrophils and is involved in 
the  uptake of Mycobacterium kansasii (Peyron 
et  al. 2000). Moreover, the existence of host 
plasma membrane cholesterol appears to be criti-
cal for CR3-mediated uptake of M. tuberculosis 
(Gatfield and Pieters 2000; Peyron et al. 2000). 
M. tuberculosis may also use cholesterol as an 
energy source  during intracellular survival in 
macrophages (Van Der Geize et  al. 2007). 
Furthermore, survival of mycobacteria within the 
macrophage may depend on the receptor involved 
in phagocytosis, since pro-inflammatory 
responses and respiratory burst occurs when 
mycobacteria are phagocytosed via Fc receptors 
(Russell 2001), whilst macrophage activation is 
inhibited when mycobacteria are phagocytosed 
via CR3 receptors (Caron and Hall 1998).

CR3 mediates the phagocytosis  of ~80% of 
complement-opsonized M. tuberculosis 
(Schlesinger et  al. 1990). CR3 is also able to 
facilitate phagocytosis of non-opsonized myco-
bacteria (Velasco-Velazquez et al. 2003). CR3 is 
mainly expressed on the cell surface of macro-
phages, neutrophils, monocytes, and natural 
killer cells. In lung alveolar macrophages, expres-
sion of CR3 is relatively low, whilst in vitro, dif-
ferentiated macrophages have increased 
expression of CR3, enhancing their capacity to 
bind mycobacteria (Stokes et  al. 1998). Several 
mycobacterial ligands are recognised by CR3, 
including Ag85C and LAM from M. tuberculo-
sis, with the latter being the main ligand for CR3 
(Velasco-Velazquez et  al. 2003). Whilst CR3 
plays a major role in facilitating the phagocytosis 
of M. tuberculosis, it does not necessarily result 
in the intracellular killing of the pathogen 
(Velasco-Velazquez et al. 2003; Rooyakkers and 
Stokes 2005). Furthermore, it may also not be 
essential in protection against M. tuberculosis 
infection, since CR3-deficient and wild-type 
mice are equally resistant to M. tuberculosis 
infection, suggesting that M. tuberculosis phago-
cytosis may occur efficiently through alternative 
receptors (Hu et al. 2000). Therefore, the role of 
CR3  in TB pathogenesis may be redundant. To 
date, no genetic polymorphisms in the CR3 genes 
have been associated with susceptibility to TB.

4	 �Toll-like Receptors (TLRs) 
and Mycobacteria

TLRs are key signalling PRRs present on several 
immune and non-immune cells (e.g. monocytes/
macrophages, B and T cells, dendritic cells, neu-
trophils, epithelial and endothelial cells). TLRs 
recognise a wide variety of microbial ligands 
(PAMPs) and host danger signals (DAMPs). 
TLRs have key roles in innate immunity and are 
an important bridge to adaptive immunity 
(Fig. 9.3). 13 TLRs have been described in human 
and mouse so far. TLRs are transmembrane pro-
teins that have ligand sensing N-terminal leucine-
rich extracellular domains and a cytoplasmic 
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Toll/IL-1R (TIR) C- terminal domain. The TIR 
domain mediates interactions between TLRs and 
adaptor proteins (e.g. myeloid differentiation pri-
mary response protein (MyD88), TIR domain-
containing adaptor inducing IFN-β (TRIF), 
TIRAP/MAL, and TRAM) (Lim and Staudt 
2013). Several kinases are also activated and 
involved in signalling, e.g. Interleukin-1 receptor-
associated kinases (IRAK4, IRAK1, IRAK2), 
IκB kinase-ε (IKKε) and TANK-binding kinase-1 

(TBK1), and ubiquitin ligases TNF receptor 
associated factor 6 (TRAF6) and Pellino-1. Upon 
ligand recognition, TLR signalling progresses via 
two distinct signalling pathways: either MyD88-
dependent or TRIF-dependent pathway. Of the 
two, MyD88 is the most involved in TLR signal-
ling. The triggering of the MyD88-dependent 
pathways ultimately results in the translocation 
of transcription factors NF-κB (RelA/p50) and 
activator protein 1 (AP1), inducing pro-

Fig. 9.3  C-type lectin receptors (CTLRs) involved in 
the recognition of M. tuberculosis and subsequent con-
sequences. Several mycobacterial ligands are recognised 

by a variety of host CTLR PRRs that can stimulate a mul-
titude of signalling pathways involved in mycobacterial 
phagocytosis, clearance, and inflammatory responses
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inflammatory cytokine production (IL-6, TNF-α, 
and IL-1β). For the TRIF-dependent pathway 
(most relevant for TLR3 and TLR4), its signal-
ling involves either 1) interaction with TRAF6 
which goes on to activate transforming growth 
factor-β-activated kinase (TAK1) complex that in 
turn activates NF-κB and mitogen-activated pro-
tein kinases (MAPKs), or 2) interaction of 
TRAF3 which induces activation of interferon-
regulatory factor 3 (IRF3) transcription factor 
that leads to the production of type I interferon 
(IFN-α and IFN-β) (Kawai and Akira 2010).

In humans, TLR1, 2, 4, 5, 6, and 10 are found 
on the host cell surface and mainly target micro-
bial surface components (e.g. membrane of cell 
wall ligands), whilst TLR3, 7, 8, and 9 are found 
intracellularly in the endolysosomal membrane 
compartments and target nucleic acids (Akira 
et  al. 2006; Triantafilou et  al. 2006; Seo et  al. 
2018). TLRs are key downstream signalling mol-
ecules which can stimulate the production of pro-
inflammatory cytokines, chemokines, and 
interferons (type I IFN) (Kawai and Akira 2010). 
These pathways are sometimes over-activated, in 
an uncontrolled manner, in response to stimuli, 
generating severe immunopathology (Vijay 2018).

TLRs play several important roles in TB.  In 
blood samples from patients with active pulmo-
nary TB, the expression of several TLRs are 
upregulated (Chang et al. 2006). TLRs recognise 
M. tuberculosis or a variety of its components 
and can initiate a set of innate and adaptive 
immune responses (Jo et  al. 2007). The main 
TLRs involved in host-pathogen interaction in 
TB are TLR2, TLR4, TLR9 and TLR1/TLR6 (Jo 
et al. 2007; Kim et al. 2019). The precise nature 
and consequence of the signalling pathways 
induced by mycobacteria remain to be fully 
understood (Berrington and Hawn 2007; 
Holscher et al. 2008). Although TLRs target M. 
tuberculosis, this does not occur directly, but is 
triggered intracellularly by TLR signalling via 
MyD88-dependant pathway (Quesniaux et  al. 
2004). This also results in the activation of pro- 
and anti-inflammatory responses via enhanced 
NF-κB expression and MAPKs activation gener-
ating secretion of TNF-α, IL-1β and IL-12, and 
production of nitric oxide (Yamamoto et al. 2003; 

Jo et al. 2007; Xu et al. 2007; Jo 2008; Garlanda 
et al. 2007).

TLR2 plays a key role in recognising myco-
bacteria PAMPs and is central to activating the 
intracellular signalling that triggers NF-κB and 
MAPKs pathways, inducing secretion of pro-
inflammatory cytokines and chemokines and ini-
tiating phagocytosis, intracellular killing of M. 
tuberculosis, and antigen presentation. TLR2 
also works together with TLR4 and TLR9 during 
M. tuberculosis infection (Jung et  al. 2006). 
TLR2 can bind to several mycobacterial ligands, 
such as LpqH, LprA, LprG, LAM, lipomannan 
(LM), 38-kDa lipoprotein, 19-kDa lipoprotein, 
phosphatidylinositol mannoside (PIMs) 
(Quesniaux et al. 2004; Kawai and Akira 2011; 
Kleinnijenhuis et al. 2011; Basu et al. 2012; Kim 
et al. 2019) (Fig. 9.3). However, TLR2 does not 
seem to be necessary for protection in mice dur-
ing acute M. tuberculosis infection (Reiling et al. 
2002; Sugawara et al. 2003; Mcbride et al. 2011). 
However, TLRs are important for the long-term 
control of the M. tuberculosis infection in mice 
(Abel et  al. 2002; Drennan et  al. 2004). TLR2 
knockout mice (but not TLR6 knockout mice) 
have an impaired ability to clear M. tuberculosis 
infection and form granulomas compared to 
wild-type animals; TLR2-deficient mice have 
significantly lower pro-inflammatory cytokine 
production in response to M. tuberculosis infec-
tion (Reiling et al. 2002; Sugawara et al. 2003; 
Drennan et al. 2004). TLR2 knockout mice also 
exhibit increased M. tuberculosis bacterial load 
and impaired neutrophil inflammation via 
the  downregulation of CXCL5 during infection 
(Gopalakrishnan et al. 2019). During M. tubercu-
losis infection, TLR2 is critical for the expression 
of TNF-α (Underhill et  al. 1999), whilst both 
TLR2 and TLR6 are key in the expression IL-1β 
via MyD88 (Kleinnijenhuis et al. 2009). Another 
key cytokine in TB, IL-12, which is also depen-
dent on TLR2 in macrophages and dendritic cells 
(Pompei et  al. 2007). Indeed, the production of 
TNF-α and IL-12 is mainly dependent on TLR2 
rather than TLR4 signalling during M. tuberculo-
sis infection (Means et al. 2001), with TLR2 and 
TLR9 also being involved in controlling dendritic 
cell-derived IL-12 secretion in mice infected with 
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M. tuberculosis (Bafica et al. 2005). Furthermore, 
in monocytes, reactive oxygen species (ROS) 
production and the expression of CXCL8 and 
CCL2 is also dependant on TLR2 during M. 
tuberculosis infection (Lee et al. 2009a). In den-
dritic cells, TLR2 induces ROS production, facil-
itating dendritic cell maturation and subsequent 
lymphocyte proliferation during M. tuberculosis 
infection (Romero et  al. 2016). M. tuberculosis 
lipoproteins induce significant signalling of 
TLR2 which inhibits macrophage major histo-
compatibility complex (MHC) class II (MHC-II) 
expression and antigen presentation (Fulton et al. 
2004; Pai et al. 2004), resulting in poor activation 
of CD4+ T cell responses (Noss et  al. 2001; Jo 
2008). TLRs gene polymorphisms also  seem to 
have an influence on the immune response in TB 
(Mukherjee et al. 2019; Zhang et al. 2013b; Sun 
et  al. 2015). A single nucleotide polymorphism 
(SNP) in the TLR2 gene resulting in an amino 
acid change (T597C) has been reported to be 
associated with the development of TB meningi-
tis and miliary TB, suggesting that TLR2 may 
have relevance for the dissemination of M. tuber-
culosis infection (Thuong et  al. 2007). Another 
gene polymorphism (rs5743708) in the TLR2 
gene is also associated with higher risk for TB 
(Guo and Xia 2015).

TLR4 is an important sensor for bacterial 
endotoxins, particularly those derived from 
Gram-negative bacteria (e.g. LPS) (Pandey et al. 
2014). In mycobacterial infection, the TLR4 sig-
nalling pathway plays a central role in immune 
response (Sepehri et al. 2019). Blocking interac-
tion of M. tuberculosis with TLR4, using anti-
TLR4 antibody and an endotoxin antagonist, 
inhibits macrophage-dependent killing of intra-
cellular bacteria as well as the pro-inflammatory 
response (Means et  al. 2001; Lv et  al. 2017). 
TLR4 can target several M. tuberculosis ligands, 
such as heat shock proteins GrpE, Hsp65 and 
Resuscitation promoting factor (RpfB) (Kim 
et al. 2019). Additionally, mycobacterial LM can 
modulate macrophages inflammatory response 
via the TLR4 signalling (Doz et al. 2007). Both 
TLR4 and TLR2 expression is significantly 
upregulated in lymphocytes from patients with 
active pulmonary TB compared to healthy con-

trols (Chang et al. 2006). Furthermore, increased 
expression of TLR4, CD14 and MR on mono-
cytes (but not TLR2) was observed in M. bovis 
BCG vaccinated individuals compared to those 
who were not vaccinated; BCG-vaccinated indi-
viduals showed elevated Th1 and Th17 immune 
responses (Kleinnijenhuis et al. 2014). However, 
M. tuberculosis H37Rv strain was able to signifi-
cantly enhance the expression of TLR4, TNF-α, 
and scavenger receptors in neutrophils when 
compared to mycobacterial vaccine strains (Hilda 
et al. 2012). The importance of TLR4 in protect-
ing mice from TB infection is controversial. 
TLR4-mutant mice were observed to be more 
susceptible to pulmonary TB than wild-type 
mice, and had a reduced capacity to produce 
IFN-γ (Branger et al. 2004). After infection with 
M. tuberculosis, TLR4-mutant mice were 
observed to have lower pulmonary expression of 
TNF-α, IL-12p40, and monocyte chemoattrac-
tant protein 1, compared with the wild-type con-
trols (Abel et  al. 2002). In mice, cooperation 
between TLR4- and TLR2-dependent signalling 
is critical in macrophage apoptosis induced by M. 
tuberculosis infection, with the absence of TLR4 
favouring necrosis instead (Sanchez et al. 2010). 
However, there are studies that report no signifi-
cant difference in protection to M. tuberculosis 
infection between wild-type and TLR4-mutant 
mice (Shim et  al. 2003; Gopalakrishnan et  al. 
2019). Thus, the precise role of TLR4  in TB 
remains to be fully determined (Reiling et  al. 
2002; Shim et al. 2003).

It is well known that TLR9 recognizes bacte-
rial DNA, including M. tuberculosis DNA, with 
TLR9 signalling subsequently activating the 
macrophage pro-inflammatory response and 
induction of T-cell differentiation (Hemmi et al. 
2000; Latz et  al. 2004; Jo et  al. 2007; Rahman 
et  al. 2009). Cooperation between TLR9 and 
TLR2 have a protective role against M. tubercu-
losis infection, with TLR2/TLR9 knockout mice 
showing significantly enhanced susceptibility to 
infection, coupled together with supressed levels 
of IL-12p40 and IFN- γ production (Bafica et al. 
2005). Interestingly, TLR9 knockout mice have 
modest susceptibility to M. tuberculosis infection 
compared to the TLR2/TLR9 double knockout 
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mice (Bafica et  al. 2005). Macrophages, pre-
treated with vitamin D, were able to significantly 
up-regulate TLR9 expression, which boosted the 
pro-inflammatory response to DNA from differ-
ent evolutionary lineages of M. tuberculosis 
(Cervantes et al. 2019). TLR9 genetic polymor-
phisms in the human population may be linked to 
susceptibility to TB. In a meta-analysis of 1745 
scientific articles, a single TLR9 polymorphism 
(rs352139) was identified that may be associated 
with decreased TB risk in Indonesians individu-
als, whilst increased risk in Mexican individuals 
(Chen et al. 2015). In a study of Vietnamese indi-
viduals, two further polymorphisms were identi-
fied, with the first (rs352142) strongly associated 
with meningeal TB, and the second (rs352143) 
associated with pulmonary TB (Graustein et  al. 
2015). Another single-nucleotide polymorphism 
(rs187084) has been associated with susceptibil-
ity to pulmonary TB amongst an Indian tribe 
(Bharti et al. 2014).

Other TLRs that may have a significant role in 
TB include TLR7 and TLR8. The upregulation of 
TLR7 was observed to eliminate intracellular M. 
tuberculosis through autophagy (Bao et al. 2017). 
TLR7  in M. tuberculosis infected macrophages 
was upregulated and this also increase viability 
of infected host cells, whilst down-regulation of 
TLR7 decrease cell viability (Bao et  al. 2017). 
Furthermore, the autophagosome was signifi-
cantly increased in the M. tuberculosis-infected 
macrophages after upregulation of TLR7, but in 
contrast, the autophagosome was not observed in 
macrophages following down-regulation of 
TLR7 (Bao et  al. 2017). Interestingly, TLR8 
expression is also upregulated in M. bovis BCG 
infected THP-1 macrophages (Davila et al. 2008), 
whilst TLR8 expression is significantly upregu-
lated in pulmonary TB patients during the acute 
phase of disease (Davila et  al. 2008). Genetic 
polymorphisms in TLR7 and TLR8 genes are 
associated with increased susceptibility to M. 
tuberculosis infection as a result of impaired 
phagocytosis and TLR signalling (Davila et  al. 
2008; Lai et al. 2016).

The overall role of TLRs in TB pathogenesis 
and protection is complex. TLR-mediated signal-
ling in TB results in an inflammatory and protec-
tive immune response, instead of a M. tuberculosis 

LAM-(host receptor)-mediated signalling involv-
ing C-type lectins such as MR and DC-SIGN, 
which tends to result in a more anti-inflammatory 
and suppressive immune response (Kaufmann 
and Schaible 2003). Furthermore, M. tuberculo-
sis ManLAM, which is predominantly recog-
nised by MR and DC-SIGN, results in an 
anti-inflammatory response and is not recognized 
by any TLR, suggesting that the type of cap mod-
ification on the LAM antigen has an important 
effect on the downstream immune response 
against mycobacterial infection (Quesniaux et al. 
2004). An optimum IFN-γ secretion in M. tuber-
culosis infection requires crosstalk between 
TLR2, TLR4 and MR (Mukhopadhyay et  al. 
2004).

5	 �Other PRRs 
and Mycobacteria

5.1	 �Dendritic Cell-Associated 
C-Type Lectin (Dectin)

5.1.1	 �Dectin-1
Dectin-1, coded by the CLEC7 gene, is a non-
TLR PRR and a type II transmembrane receptor 
involved in cellular activation; it is expressed on 
macrophages, dendritic cells, neutrophils, eosin-
ophils, B cells, and mast cells in the lung (Brown 
2006). Dectin-1 tends to target β-glucans on fun-
gal pathogens but can also interact with M. tuber-
culosis, although its specific mycobacterial 
ligands are not known. During the recognition of 
fungal ligands, Dectin-1 can induce production 
of cytokines/chemokines, intracellular killing, 
phagocytosis, and DC maturation (Brown 2006) 
(Fig.  9.3). Downstream signalling by Dectin-1 
occurs via Spleen tyrosine kinase (Syk)-
dependent or -independent mechanisms involv-
ing several transcription factors (e.g. NF-κB, 
MAPK, NFAT, IRF1, IRF5) and the intracellular 
sensor NOD-, LRR- and pyrin domain-containing 
protein 3 (NLRP3), central to the NLRP3 inflam-
masome (Kerrigan and Brown 2011; Dambuza 
and Brown 2015). Dectin-1 can also associate 
with TLR2 when recognising several 
mycobacteria facilitating the production of pro-
inflammatory cytokines (Yadav and Schorey 
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2006; Shin et  al. 2008; Romero et  al. 2016). 
Dectin-1 is necessary for the TLR2-dependent 
production of TNF-α, IL-6, RANTES, and 
GM-CSF by murine macrophages infected with 
non-pathogenic mycobacteria (M. tuberculosis 
H37Ra, M. smegmatis and M. bovis BCG), but 
not for M. tuberculosis H37Rv (Yadav and 
Schorey 2006). In DCs derived from TLR2−/− 
mice, M. tuberculosis-induced IL-12p40 was 
dampened by inhibition of Dectin-1 by laminarin 
and by the inhibition of Syk (Rothfuchs et  al. 
2007). Similarly, enhanced phagocytosis and 
expression of Dectin-1, Src kinase, and induction 
of ROS occurs via TLR2  in M. tuberculosis-
infected human lung epithelial cells (Lee et  al. 
2009b). M. tuberculosis-induced ROS production 
in human DCs occurs via Dectin-1 associating 
with TLR2 (Romero et  al. 2016). M. 
tuberculosis:Dectin-1 interaction also appears to 
be the key in inducing Th1/Th17 responses in 
human monocyte derived DCs, but is inhibited by 
MR and Dendritic Cell-Specific Intercellular 
adhesion molecule-3-Grabbing Non-integrin 
(DC-SIGN) co-expression in the cell (Zenaro 
et al. 2009). In human PBMCs, M. tuberculosis 
induction of Th17 responses is mediated by 
Dectin-1 and TLR4, but not TLR2, with IL-17A 
production requiring the IL-1 pathway (Van De 
Veerdonk et al. 2010). Thus, Dectin-1 plays a role 
in the innate immune response against M. tuber-
culosis. However, in knockout (Dectin-1−/−) 
mice, there does not seem to be a difference in 
survival to M. tuberculosis infection compared to 
wild type animals (Marakalala et  al. 2011). 
Although a genetic deficiency resulting in a trun-
cated Dectin-1 has been associated with suscepti-
bility to several fungal infections (Rosentul et al. 
2011; Sainz et  al. 2012), no polymorphisms in 
the Dectin-1 gene have been reported to be 
involved in TB susceptibility.

5.1.2	 �Dectin-2
Dectin-2, coded by the Clec4n gene, is also a 
CTLR similar in structure to Dectin-1, composed 
of an N-terminal cytoplasmic domain, a trans-
membrane domain, and a C-terminal extracellu-
lar Ca2+- dependant CRD region (Ariizumi et al. 
2000; Kanazawa et  al. 2004; Sato et  al. 2006). 
Dectin-2 is predominantly expressed in the lungs, 

but its expression has also been reported in spleen 
and lymph tissues and on DCs, monocytes, mac-
rophages and B cells (Kanazawa et  al. 2004; 
Sancho et al. 2012). Dectin-2 acts as an adaptor 
molecule recognising the γ-chain of Fc receptor 
triggering the activation of cells (Sato et  al. 
2006). Dectin-2 expression can be influenced by 
different ligands, with its CRD region targeting 
mannose residues (Gavino et  al. 2005; Taylor 
et al. 2005; Mcgreal et al. 2006). Moreover, solu-
ble recombinant Dectin-2 has been reported to 
bind to M. tuberculosis (Mcgreal et al. 2006) via 
ManLAM,  although dectin-2 does not bind 
mycobacteria lacking mannose-capped LAM 
(Yonekawa et  al. 2014; Decout et  al. 2018) 
(Fig.  9.3). Expression of Dectin-2 on macro-
phages is upregulated by TNF (Decout et  al. 
2018). Dectin-2 elicits pro- and anti-inflammatory 
cytokine production (e.g. IL-6, TNF-α, MIP-2, 
IL-2, and IL-10) in bone marrow-derived DCs 
and seems to be important for DC maturation and 
IL-17 secretion (Yonekawa et  al. 2014). This 
effect of ManLAM was completely negated in 
Clec4n−/− bone marrow-derived DCs, whilst 
Clec4n−/− mice infected with M. tuberculosis 
showed significantly greater lung pathology than 
wild-type mice (Yonekawa et al. 2014). To date, 
no polymorphisms in the human population have 
been described in the Clec4n gene that are linked 
to TB susceptibility. Thus, the role of Dectin-2 
receptor in TB pathogenesis remains intriguing.

5.2	 �Macrophage-Inducible C-Type 
Lectin (Mincle)

The Macrophage-inducible C-type lectin 
(Mincle), coded by the CLEC4E gene, is a PRR 
that is found on the surface of macrophages, 
myeloid DCs, monocytes, neutrophils, and cer-
tain B cells and binds to several target PAMPs 
(e.g. mannose and fucose, among others) (Lee 
et  al. 2011; Kerscher et  al. 2013). Mincle is 
an LPS inducible transcriptional target in macro-
phages and is able to stimulate pro-inflammatory 
cytokines via the Syk-CARD9 pathway 
(Matsumoto et  al. 1999; Yamasaki et  al. 2008; 
Schoenen et al. 2010) (Fig. 9.3). Mincle can bind 
to trehalose dimycolate (cord factor), a key com-
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ponent of the mycobacterial cell wall that has 
also been implicated in lung granuloma forma-
tion in mice (Ishikawa et  al. 2009). Trehalose 
dimycolate can inhibit phagosome maturation, 
promoting intracellular persistence and interfer-
ing with antigen presentation (Spargo et al. 1991; 
Actor et  al. 2002; Indrigo et  al. 2003; Hunter 
et al. 2006; Axelrod et al. 2008). Mincle, being a 
key receptor for the trehalose dimycolate, regu-
lates Th1/Th17 responses in mice (Schoenen 
et al. 2010). In neutrophils, trehalose dimycolate-
induced Mincle signalling increased cell adher-
ence (important in early stages of granuloma 
formation), CR3 (CD11b/CD18) expression, 
together with TLR2 activation leading to reactive 
oxygen species and TNF-α production (Lee et al. 
2012). Mincle−/− mice had impaired immune 
responses when challenged by aerosol M. tuber-
culosis, and exhibited increased inflammation 
and mycobacterial load than wild-type mice (Lee 
et  al. 2012). Neutrophil depletion (using anti-
Ly6G antibody) showed inhibition of IL-6 and 
MCP-1 (monocyte chemotactic protein-1) fol-
lowing trehalose dimycolate treatment, thus 
reducing immune cell recruitment (Lee et  al. 
2012). Therefore, Mincle may modulate neutro-
phils during the early stage of mycobacterial 
infection. However, another study concluded that 
Mincle was not essential for controlling M. tuber-
culosis; Mincle−/− mice could still form granulo-
mas, had Th1 and Th17 responses, and a similar 
mycobacterial burden after aerosol infection to 
wild-type mice (Heitmann et al. 2013). Another 
study using Mincle−/− mice found that inocula-
tion of mycobacteria (M. bovis BCG) intrave-
nously, rather than intratracheally, resulted in 
higher mycobacterial burden in the lungs and 
other tissues, suggesting Mincle may play a 
greater role in systemic mycobacterial infection 
(Behler et  al. 2012). Interestingly, in Mincle−/− 
mice, DCs induced Th1 responses in the spleen, 
but not in the liver, suggesting a role in systemic 
mycobacterial infection (Behler et al. 2015). The 
interaction of Mincle with trehalose dimycolate 
and M. bovis BCG can also promote anti-
inflammatory IL-10 but conversely alter pro-
inflammatory IL-12p40 secretion from murine 

bone-derived macrophages in vitro (Patin et  al. 
2016).

Mincle recognises trehalose-6,6-dibehenate 
(TDB) (a synthetic analogue of trehalose dimy-
colate), which is involved in NLRP3 inflamma-
some activation and Myd88-dependent Th1 and 
Th17 responses through IL-1R-signalling in mice 
bone-derived DCs (Desel et al. 2013; Schweneker 
et  al. 2013; Shenderov et  al. 2013). Mincle 
appears to be a crucial switch for macrophages to 
shift from cytokine expression to high nitric 
oxide (NO) production. Mincle can have dual 
functions in mycobacterial infection: 1) having a 
stimulatory role on TLR-mediated transcription, 
and 2) enhancing the translation of key genes 
required for NO synthesis, thus in the promotion 
NO production and subsequent resolution of 
inflammation and the granuloma (Lee et  al. 
2016b). In fact, in resting murine macrophages, 
Mincle is expressed at low levels but is upregu-
lated by LPS (a TLR ligand), leading to Myd88-
dependent NO production (Matsumoto et  al. 
1999; Schoenen et  al. 2014; Kerscher et  al. 
2016a). Together with TLR4, Mincle has been 
reported to induce autophagy through Myd88, 
which facilitates M. tuberculosis intracellular 
growth (Pahari et al. 2020).

Much of the above data on Mincle has come 
from the mouse model of M. tuberculosis infec-
tion, but there are several studies that show simi-
lar immune responses in humans. Human antigen 
presenting cells have a similar response to treha-
lose dimycolate/TDB, inducing various cyto-
kines via Syk-signalling (Ostrop et  al. 2015), 
whilst the CRDs of human and mouse Mincle are 
similar in structure, having comparable affinity to 
trehalose dimycolate, but not other mycobacte-
rial ligands (Rambaruth et al. 2015; Richardson 
et al. 2015; Van Der Peet et al. 2015). The down-
stream signalling resulting from trehalose 
dimycolate-Mincle interaction seems to be more 
complex. A recent study used quantitative phos-
phoproteome analysis and showed substantial 
reprogramming of macrophages by trehalose 
dimycolate and revealed both Mincle-dependent 
and Mincle-independent signalling mechanisms 
(Hansen et al. 2019).
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There have been a few reports of genetic poly-
morphisms in the CLEC4E gene and susceptibil-
ity to TB in the human population. In one study in 
South African, 4 SNPs (rs10841845, rs10841847, 
rs10841856 and rs4620776) were described in the 
CLEC4E gene, but no association was found with 
TB susceptibility (Bowker et al. 2016). However, 
two of the SNPs in CLEC4E (rs10841845 and 
rs10841847) described earlier, were found to be 
associated with increased individual protection 
against pulmonary TB in the northern Chinese 
population (Kabuye et  al. 2019). Furthermore, 
SNP rs10841847  in the CLEC4E gene was also 
associated with pulmonary TB risk in a study 
population from Guinea-Bissau (West Africa) 
(Olvany et al. 2020).

Mincle remains a fascinating PPR and its 
involvement in tuberculosis pathogenesis remains 
to be fully elucidated. Further studies are needed 
on Mincle’s involvement with genetically diverse 
M. tuberculosis strains, other mycobacterial 
ligands and in resolving the complex Mincle-
dependent and Mincle-independent intracellular 
pathways that can be elicited in immune cells.

5.3	 �Macrophage C-Type Lectin 
(MCL)

Macrophage C-type lectin (MCL; also known as 
Clecsf8, Dectin-3 and CD368) is a membrane-
bound PRR coded by the CLEC4D gene. First 
described in mice (Balch et al. 1998), MCL was 
subsequently characterised in humans as a type II 
membrane glycoprotein composed of an 
N-terminal cytoplasmic region lacking the con-
sensus signalling motifs and an extracellular 
C-terminal region with a single CRD (Arce et al. 
2004). MCL is commonly expressed on myeloid 
cells but it is also found on neutrophils, mono-
cytes and DCs (Graham et  al. 2012). MCL 
expression is downregulated upon DC maturation 
or monocyte/macrophage differentiation 
(Graham et al. 2012). The CLEC4D gene is prox-
imal to the CLEC4E gene, and thus, the MCL 
gene may have originated from Mincle gene 
duplication. Like Mincle, MCL can also bind to 
trehalose dimycolate (but with lower affinity) as 

well as some fungal species (Arce et  al. 2004; 
Miyake et al. 2013; Zhu et al. 2013) (Fig. 9.3).

The expression of MCL and Mincle are co-
regulated, induced via Myd88 (Lobato-Pascual 
et  al. 2013; Miyake et  al. 2015; Kerscher et  al. 
2016a). Thus, MCL is closely linked with Mincle 
function, with the FcRγ region of MCL being 
essential for inducing Mincle expression upon 
binding to trehalose dimycolate (Graham et  al. 
2012). Furthermore, MCL cross-linking can lead 
to initiation of phagocytosis, intracellular respi-
ratory burst, and cytokine secretion via Syk-
signalling (Graham et al. 2012). In contrast, MCL 
knockout mice (Clec4d−/−) have compromised 
trehalose dimycolate-induced responses, cyto-
kine production and a reduced ability to form 
granulomas (Miyake et  al. 2013; Zhao et  al. 
2014). An alternative idea is that MCL and 
Mincle do not co-associate, but instead, MCL’s 
function is to induce initial Mincle expression 
(Zhao et al. 2014).

MCL appears to be a key, non-redundant PRR 
in anti-mycobacterial immunity; MCL knockout 
mice (Clec4d−/−) show significantly higher myco-
bacterial loads and increased mortality after M. 
tuberculosis infection (Wilson et al. 2015), con-
comitant with enhanced pulmonary inflammation 
and neutrophil recruitment (Wilson et al. 2015). 
Phagocytes derived from MCL knockout mice 
show impaired phagocytosis of mycobacteria, 
but this defect is restored when MCL-opsonized 
mycobacteria are challenged (Wilson et al. 2015).

A single genetic polymorphism (rs4304840) 
in MCL in humans (Indonesian cohort) has been 
associated with an increased susceptibility to pul-
monary TB (Wilson et al. 2015). MCL seems to 
play a central role, together with Mincle, in the 
protective anti-mycobacterial immune response.

5.4	 �Dendritic Cell-Specific 
Intercellular Adhesion 
Molecule-3-Grabbing Non-
integrin (DC-SIGN)

DC-SIGN (encoded by CD209 gene; Geijtenbeek 
et al. 2000) is a type II transmembrane receptor 
expressed predominantly on some macrophages 
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(alveolar), DCs (myeloid) cells and activated B 
lymphocytes (Rappocciolo et  al. 2006; Lugo-
Villarino et  al. 2011). DC-SIGN recognizes 
PAMPs such as N-linked high-mannose and 
branched fucosylated residues. DC-SIGN has a 
key role in the clearance of microbial infections, 
but conversely, pathogens can also manipulate 
DC-SIGN to alter DCs in their favour for their 
survival. DC-SIGN is made up of four domains: 
the N-terminal cytoplasmic domain, transmem-
brane domain, extracellular domain comprising 
the neck region, and a single C-terminal CRD 
(Garcia-Vallejo and Van Kooyk 2013).

DC-SIGN is a PRR for several microbes, most 
notably HIV-1 (Curtis et  al. 1992; Geijtenbeek 
et  al. 2002), but can also bind to bacterial and 
fungal species (Van Kooyk and Geijtenbeek 
2003). DC-SIGN recognises and binds the 
ManLAM from M. tuberculosis (Appelmelk 
et al. 2003; Maeda et al. 2003), and enhances the 
internalization of both M. bovis BCG and M. 
tuberculosis (Geijtenbeek et  al. 2003; Tailleux 
et al. 2003). Interestingly, mycobacteria are able 
to subvert DC-SIGN function by altering TLR-
mediated activation of DCs. Mycobacteria are 
strong inducers of the Th1 response and can also 
facilitate the expression of downstream co-
stimulatory molecules and cytokines (e.g. IL-12) 
by DCs via TLR2 and TLR4 PRRs (Nigou et al. 
2001). Despite alveolar macrophages being the 
predominate targets of mycobacteria in the lungs, 
the role of DCs is becoming increasingly key in 
understanding the pathogenesis of TB since DCs 
expressing DC-SIGN are present in the airway 
mucosa and interstitial sites of the respiratory 
system (Soilleux et al. 2002; Tailleux et al. 2003).

The importance of DC-SIGN in TB pathogene-
sis is also shown in several studies involving trans-
genic mice. In fact, mice have eight different 
DC-SIGN homologues (SIGNR1-8). Gene knock-
out studies have shown that SIGNR3 (the most 
similar to human DC-SIGN) has a key role in resis-
tance to early M. tuberculosis infection (Tanne et al. 
2009; Tanne and Neyrolles 2010; Lugo-Villarino 
et al. 2011). Furthermore, transgenic mice express-
ing human DC-SIGN showed decreased pathology 
and prolonged survival following mycobacterial 
infection (Schaefer et al. 2008).

Capped ManLAM is the main PAMP for 
DC-SIGN (Geijtenbeek et  al. 2003; Kaufmann 
and Schaible 2003; Maeda et al. 2003). DC-SIGN 
does not bind to non-capped LAM (AraLAM), 
which is present on fast-growing mycobacterial 
species (M. smegmatis, M. fortuitum and M. che-
lonae) (Geijtenbeek et  al. 2003; Tailleux et  al. 
2003). DC-SIGN appears to be the main DC 
receptor for mycobacteria (Geijtenbeek et  al. 
2003); competitive inhibition using anti-DC-
SIGN antibodies inhibited M. bovis BCG and 
ManLAM binding by 80% (Geijtenbeek et  al. 
2003). DC-SIGN also binds to other mycobacte-
rial PAMPs (mannosylated and α-glucan cell 
wall components, and PIMs). However, myco-
bacteria can be phagocytosed by DCs in a non-
DC-SIGN dependent manner, showing a degree 
of redundancy in the host–pathogen interaction 
(Gagliardi et  al. 2005; Pitarque et  al. 2005; 
Appelmelk et  al. 2008; Driessen et  al. 2012; 
Geurtsen 2009 #972).

DC-SIGN-mediated DC responses requires 
prior activation of NF-κB via TLR signalling 
(Geijtenbeek and Gringhuis 2009; Gringhuis 
et  al. 2009; Sancho et  al. 2012; Garcia-Vallejo 
and Van Kooyk 2013), whilst several different 
PAMPs can trigger a variety of intracellular sig-
nalling from DC-SIGN (Gringhuis et  al. 2009; 
Sancho et  al. 2012) (Fig.  9.3). DC-SIGN-
ManLAM interaction results in Raf-1 phosphory-
lation and then phosphorylation of transcription 
factor NF-κB, inducing cytokine production (e.g. 
IL-12, IL-10, IL-6, and CXCL8) and other co-
stimulatory molecules (e.g. CD80, CD83 and 
CD86) (Gringhuis et al. 2007, 2009). Infection of 
immature monocyte-derived DCs by M. tubercu-
losis facilitated the maturation of DCs, producing 
TNF-α, IL-1β, IL-6, and IL-23, and stimulated 
CD4+ T cells to produce IFN-γ and IL-17 (Zenaro 
et  al. 2009). Furthermore, DC-SIGN interferes 
negatively with the pro-inflammatory responses 
and control of M. tuberculosis intracellular 
growth in human macrophages mediated by 
Dectin-1 (Lugo-Villarino et al. 2018).

In immature DCs, internalisation of M. tuber-
culosis via ManLAM-DC-SIGN interaction 
results in the pathogen being directed to the late 
endosomes/lysosomes and suppression of LPS-
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induced IL-12 secretion (Nigou et  al. 2001). 
ManLAM-DC-SIGN interaction on immature 
DCs also interferes with TLR4 signalling, since 
LPS binding and signalling is via TLR4 (Akira 
et  al. 2001). M. tuberculosis interferes between 
the balance of TLR signalling (DC maturation 
and inflammation) and DC-SIGN signalling 
(inhibition of DC maturation and immunosup-
pression) (Nigou et  al. 2001; Engering et  al. 
2002a, b; Geijtenbeek et  al. 2003). Both M. 
tuberculosis-infected DCs and macrophages can 
secrete the ManLAM that can bind to DC-SIGN 
on other proximal DCs (Sada et  al. 1990; 
Chatterjee and Khoo 1998); this interferes with 
the TLR-signalling, inhibiting DC maturation 
and inducing anti-inflammatory IL-10 cytokine 
production (Tsuji et al. 2000; Geijtenbeek et al. 
2003). Thus, M. tuberculosis is able to modulate 
the DC response to immune suppression to facili-
tate its intracellular survival (Fortsch et al. 2000; 
Jiao et al. 2002).

Two genetic polymorphisms have been 
reported in the DC-SIGN promoter region 
(-336A/G and -871A/G) but it is unclear as to 
their effect on TB susceptibility. The polymor-
phism -336G results in reduced expression of 
DC-SIGN, which also correlates with the sever-
ity of dengue disease (Despres et al. 2005). In a 
meta-analysis study, polymorphisms (-336A/G, 
-871A/G) were found not to substantially con-
tribute to TB susceptibility, except that the geno-
type -336G/G might be associated with increased 
TB susceptibility for the Asians population 
(Chang et  al. 2012). In another meta-analysis 
study, the -871A/G polymorphism was associ-
ated with decreased susceptibility to pulmonary 
TB, whilst the -336A/G polymorphism was asso-
ciated with increased susceptibility of pulmonary 
TB in the Asian population (Yi et  al. 2015). 
However, an additional polymorphism (-139G/
A) was not found to be associated with suscepti-
bility to pulmonary TB (Yi et al. 2015). Moreover, 
two other genotypes (-871G and -336A) seem to 
be associated with protection against TB and may 
have an increased frequency in non-African pop-
ulations, possibly due to host genetic adaptation 
as a result of longer history of exposure to M. 
tuberculosis (Barreiro et al. 2006). In the Russian 

population, −336A genotypes were more sensi-
tive to infection with an M. tuberculosis lineage 2 
(Beijing/W) strain, whilst those with the -336G 
genotype and M. tuberculosis lineage 2 genotype 
had increased frequency of death due to pulmo-
nary TB (Ogarkov et al. 2012).

DC-SIGN plays a key role in host-pathogen 
interactions in TB.  Whether DC-SIGN plays a 
protective role for the host, or is manipulated by 
the M. tuberculosis to circumvent immune 
responses needs further  study. Further data is 
needed from GWAS as to the genetic susceptibil-
ity to TB from CD209 polymorphisms in the 
human population. Further studies are  also 
required that investigate the interaction of 
DC-SIGN with different phylogeographic lin-
eages of M. tuberculosis strains.

5.5	 �NOD-like Receptors (NLRs)

NOD-Like Receptors (NLRs) are a large family 
of intracellular PRRs that contain a nucleotide 
binding oligomerization domain (NOD). 
Structurally, NLRs have a variable N-terminal 
interaction domain, a central NACHT domain 
(NTPase domain that is evolutionarily con-
served), and a C-terminal leucine-rich repeat 
domain (Fritz et  al. 2006; Werts et  al. 2006; 
Franchi et  al. 2008) (Fig.  9.3). NLRs are cyto-
solic sensors that tend to target bacterial cell wall 
components such as peptidoglycan (containing 
N-acetylglucosamine and N-acetylmuramic acid) 
and muramyl dipeptide (MDP) (Girardin et  al. 
2003a, b; Chen et al. 2009; Franchi et al. 2009). 
Some NLRs have an amino-terminal caspase 
recruitment domain (CARD), which is critical to 
initiate NF-κB signalling, resulting in the release 
of pro-inflammatory cytokines (e.g. IL-1β, IL-6, 
TNF-α, and IL-8), antimicrobial peptides 
(β-defensin 2), other chemokines, NO and 
upregulation of adhesins (Darcissac et al. 1996; 
Heinzelmann et al. 2000; Chin et al. 2002; Guo 
et  al. 2006; Kramer et  al. 2006; Uehara et  al. 
2007). Some of the most prominent members 
involved in innate immune detection of M. tuber-
culosis in the cytosol are NOD1, NOD2, NLRP3 
and NLR family CARD domain containing 4 
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(NLRC4). This stems from the ability of M. 
tuberculosis to escape from phagosomes into 
macrophage cytosol via the early secretory anti-
genic target-6 (ESAT-6) secretion system-1 
(ESX-1) mechanism (Simeone et  al. 2012). 
NOD2−/− knockout mice have impaired resis-
tance to M. tuberculosis infection because of 
decreased production of type 1 cytokines and 
reduced recruitment of CD8+ and CD4+ T cells; 
there is a higher bacterial burden in the lungs, 
6 months after infection than wild-type controls 
(Divangahi et al. 2008). MDP treatment of AMs 
also activates NOD2, which enhances the control 
of intracellular growth of M. tuberculosis and the 
release of TNF-α, IL-6 and bactericidal LL37 
(Juarez et al. 2012). Furthermore, an increase in 
autophagy proteins (e.g. IRGM, LC3 and 
ATG16L1) was observed in the mycobacteria-
containing autophagosome, suggesting a PRR-
dependent mechanism for autophagy activation 
(Juarez et al. 2012). The CARD9 domain plays a 
central role in NOD2-mediated activation of p38 
and JNK signalling during innate immune 
responses to intracellular pathogens (Hsu et  al. 
2007). NOD2 can act in synergy with TLR2 to 
induce inflammatory cytokines during M. tuber-
culosis infection, and this synergism is lost in 
mononuclear cells defective in either TLR2 or 
NOD2, suggesting a non-redundant recognition 
mechanisms (Ferwerda et  al. 2005). Similarly, 
NOD2 and TLR4 also work synergistically in 
stimulating the activity of DCs, enhancing T cell 
recruitment by inducing autophagy and bolster-
ing IL-12p40/70, IL-6, IFN-γ and CD40, CD80 
and CD86 co-stimulatory molecules (Khan et al. 
2016b). Activating DCs through NOD2 and 
TLR4 restricts M. tuberculosis intracellular sur-
vival through strong release of cytokines, nitric 
oxide, autophagy and enhanced DC migration to 
lymph nodes (Khan et al. 2016a). NOD1 seems 
to co-operate with NOD2 or TLRs to produce 
cytokines (IL-6 and IL-1β) in bone-marrow 
derived macrophages in response to M. tubercu-
losis infection (Lee et  al. 2016a). Similarly, 
NOD1 is involved in AM and MDM innate 
responses, which include pro-inflammatory cyto-
kines (e.g. IL-1β, IL-6, IL-8, and TNF-α) and 

autophagy (Juarez et  al. 2014). Intriguingly, an 
approach using adjunct therapy (with ligands of 
NOD2 and TLR4) to treat M. tuberculosis-
infected mice in conjunction with isoniazid, 
improved drug efficacy against M. tuberculosis 
(Khan et al. 2016a). A therapeutic role for NOD-2 
has also be suggested in augmenting T cells 
responses to M. tuberculosis infection (Pahari 
et al. 2017).

ESAT-6 is a potent activator of the NLRP3/
ASC inflammasome and NLRs and CARD pro-
teins play a central role in IL-1β secretion during 
M. tuberculosis infection, via an NLRP3, ASC 
and caspase-1 infection-inducible inflammasome 
complex (Mishra et  al. 2010). Mycobacterial 
PPE13 triggers the inflammasome-response in 
macrophages, by binding to the LRR and NATCH 
domains of NLRP3 via its MPTR domain (Yang 
et al. 2020). In DCs, PPE60 was observed to acti-
vate the NLRP3 inflammasome, followed by 
caspase-1-dependent IL-1β and IL-18 synthesis 
(Su et  al. 2018). However, NLRP3 may not be 
essential for survival in the early stages of M. 
tuberculosis infection or in granuloma formation 
(Allen et al. 2010; Mcelvania Tekippe et al. 2010; 
Walter et al. 2010).

Mutations in the NLR genes suggest their 
importance in protection against several micro-
bial infections, granulomatous inflammatory dis-
orders and inflammatory bowel disease (e.g. 
Crohn’s disease) (Hugot et  al. 2001; Miceli-
Richard et al. 2001; Ogura et al. 2001). Several 
polymorphisms in NLR genes linked to TB sus-
ceptibility have been reported. Two polymor-
phism in the NOD1 gene (rs751770147 and 
chr7:30477156(T)) are associated with TB pro-
gression in the Ethiopian population (Mekonnen 
et  al. 2018). Three polymorphisms (Pro268Ser, 
Arg702Trp, and Ala725Gly) in the NOD2 gene 
are significantly associated with TB disease in 
African-American subjects in the USA (Austin 
et al. 2008). Another polymorphism (Arg587Arg) 
in the NOD2 gene has been associated with TB 
susceptibility in the Chinese population but not in 
the Uyghur and Kazak populations (Zhao et  al. 
2012). In a recent meta-analysis of NOD2 poly-
morphisms, no significant association was found 
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between the Arg587Arg polymorphisms and TB 
risk; however, Arg702Trp polymorphism was 
found to be likely associated with protection 
against TB (Wang et  al. 2013). For NLRP3, a 
single polymorphism (rs34298354) was associ-
ated with protection against TB (Liu et al. 2020). 
A single polymorphism (Q705K) in the NLRP3 
gene was associated with poor TB treatment out-
come in the Ethiopia population (Abate et  al. 
2019). Interestingly, in TB/HIV patients from 
Botswana, a NLRP3 polymorphism (rs10754558-
G) was associated with an increased risk for early 
mortality after starting initiating anti-retroviral 
therapy (ART), suggesting that these patients 
may benefit from interventions that decrease 
inflammasome-mediated inflammation 
(Ravimohan et al. 2018).

NLRs have given significant insight into the 
innate immune recognition of M. tuberculosis in 
the cytosol. The role of the inflammasome in pro-
tection/pathogenesis is unclear and its activation 
may be triggered by M. tuberculosis as a means 
of latent infection.

5.6	 �Mannose Receptor (MR)

Mannose receptor (MR; CD206), coded for by the 
MRC1 gene, is a type I transmembrane glycopro-
tein of 165 kDa made up of a C-terminal cytoplas-
mic domain containing a tyrosine-based motif 
and three types of extracellular domains (an 
N-terminal cysteine-rich R-type domain, a fibro-
nectin type II repeat (FNII), and eight consecutive 
CRDs) (Taylor et al. 1990; Stahl and Ezekowitz 
1998). MR is mainly expressed on the surface of 
macrophages (particularly AMs), monocyte-
derived DCs and other cells (e.g. non-vascular 
endothelial cells) (Martinez-Pomares 2012). MR 
is also commonly found in intracellular mem-
branes; only 10–30% is constitutively expressed 
at the cell surface, which reflects its role in recy-
cling and internalization (Schweizer et al. 2000). 
MR is unique in that its multiple CRDs recognise 
different PAMPs. The R-type domain can bind to 
glycans (without the need for Ca2+) (Leteux et al. 
2000), whilst the FNII domain binds to collagens 

(Martinez-Pomares et  al. 2006). MR is able to 
bind to mannose via CRDs 4 to 8, with CRD4 
having the primary preference for terminal man-
nose-containing glycoconjugates, fucose, and 
N-acetylglucosamine, but less well to glucose 
(Lennartz et al. 1987; Taylor et al. 1990). In con-
trast, CRD5 and CRD7 are involved in binding to 
mannose-containing glycans, whilst CRDs 1 to 3 
seem to pay less of a role in binding sugars (Kery 
et al. 1992; Taylor and Drickamer 1993).

MR recognises complex glycoproteins or gly-
colipids with multiple sugar moieties endoge-
nously and exogenously. MR may interact with 
an additional receptor, or soluble MR (as a result 
of proteolytic cleavage) to facilitate phagocytosis 
(Le Cabec et al. 2005; Martinez-Pomares 2012) 
(Fig.  9.3). Intriguingly, pulmonary TB patients 
with poor prognosis show significantly higher 
levels of serum soluble MR; pathological analy-
sis revealed enhanced levels of soluble MR in the 
lung and pleural tissues with caseating granulo-
mas (Suzuki et al. 2018).

ManLAM is a major ligand for MR and this 
interaction on DCs initiates uptake of the myco-
bacterium, with probable antigen presentation 
via CD1b and the major histocompatibility com-
plex class II (MHC-II) (Prigozy et al. 1997). In 
addition to ManLAM, MR can also bind to PIM, 
lipomannan (LM), and other mannosylated pro-
teins on M. tuberculosis (Schlesinger et al. 1994; 
Diaz-Silvestre et al. 2005; Torrelles et al. 2006). 
MR is a major macrophage phagocytic receptor 
for virulent M. tuberculosis strains (H37Rv and 
Erdman) but not the attenuated strain H37Ra 
(Schlesinger 1993). Additionally, structural dif-
ferences in LAM from different M. tuberculosis 
strains seem to alter adherence during the initial 
interactions with macrophage MR (Schlesinger 
et al. 1996).

Binding and phagocytosis of ManLAM or 
mannosylated beads via MR can inhibit 
phagosome-lysosome fusion, facilitating intra-
cellular persistence of M. tuberculosis 
(Astarie-Dequeker et al. 1999, 2002; Kang et al. 
2005). In DCs, ManLAM facilitates intracellular 
persistence of M. tuberculosis and M. bovis BCG 
by inhibiting IL-12 responses  via interfering 
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with the LPS-induced signalling from TLR2 
(Nigou et al. 2001). This indicates a cross-link-
ing between MR and TLR2 when binding to 
ManLAM (Nigou et al. 2001). Cross-linking of 
MR using a specific anti-MR monoclonal anti-
body during binding of ManLAM inhibited 
IL-12 production, but also induced the produc-
tion of anti-inflammatory IL-10, IL-1R antago-
nist, and IL-1R type II in DCs (Chieppa et  al. 
2003). A recurring theme during TB host-patho-
gen interaction is the degree of cross-linking 
between various PRR in the recognition of M. 
tuberculosis, via its several PAMPs. In addition 
to TLRs, MR and DC-SIGN co-stimulation 
inhibits Dectin-1-induced Th17 responses, 
whilst enhancing the Th1 responses in M. tuber-
culosis-infected DCs (Zenaro et  al. 2009). In 
macrophages, binding of M. tuberculosis man-
nosylated ligands to MR results in receptor-
mediated signalling mechanisms (modulation of 
cytoskeleton, activation of protein kinases, and 
transcriptional activation by AP-1), leading to 
production of matrix metalloproteinase-9 
(MMP-9) that may contribution to lung tissue 
pathology during TB in vivo (Rivera-Marrero 
et al. 2002). SP-D is able to bind to M. tubercu-
losis and inhibit its MR-mediated uptake by 
macrophages (Ferguson et al. 2002), suggesting 
that SP-D may be masking mycobacterial ligands 
and inhibiting phagocytosis of mycobacteria by 
macrophages. MR may benefit M. tuberculosis 
intracellular persistence; however, in mouse 
models of TB infection, MR does not seem to be 
implicated in determining survival or disease 
severity (Court et al. 2010).

The frequency of a polymorphism of the 
MRC1 gene  (rs34039386), allele G1186A, was 
higher in individuals with pulmonary TB than 
healthy controls (Zhang et  al. 2012), including 
in  the Uygur population (Zhang et  al. 2013a). 
The G1186A polymorphisms (in exon 7 for 
CRD2 of MR) may affect the affinity of MR 
binding to mycobacterial ligands (Zhang et  al. 
2013a). MR is undoubtedly a major phagocytotic 
receptor for M. tuberculosis, but its importance is 
overshadowed by many other PRRs. However, 
entry of M. tuberculosis via MR may be a key 

route for the pathogen to manipulate and circum-
vent the immune response and prolong its intra-
cellular survival.

5.7	 �CD14

CD14 receptor is a lipid-anchored glycan-linked 
protein lacking transmembrane and cytoplasmic 
domains  and is mainly expressed on myeloid 
monocytic cells. CD14 can bind to M. tuberculo-
sis LAM, resulting in the macrophage production 
of IL-8 (Pugin et al. 1994). CD14 binding of bac-
terial ligands (LPS, lipoteichoic acid and pepti-
doglycan) requires co-interaction with other host 
receptor and cell surface components (TLRs) to 
facilitate phagocytosis, cell activation and cyto-
kine secretion (Dziarski et al. 2000; Kaisho and 
Akira 2000). CD14 has also been shown to medi-
ate uptake of non-opsonised M. tuberculosis by 
microglia cells, suggesting that this may be 
important in the pathogenesis of cerebral TB 
(Peterson et  al. 1995). In AMs expressing high 
levels of CD14, the phagocytosis of M. bovis was 
enhanced (Khanna et  al. 1996); however, M. 
tuberculosis merely up-regulates CD14 expres-
sion in macrophages without mediating phagocy-
tosis (Shams et  al. 2003). M. tuberculosis 
molecular chaperone chaperonin 60.1 protein 
partially activates human peripheral blood mono-
nuclear cells via a  CD14-mediated mechanism 
(Lewthwaite et al. 2001).

In mice, CD14 deficiency seems to be protec-
tive against chronic M. tuberculosis infection by 
supressing inflammatory responses. Mouse bone 
marrow derived macrophages deficient in CD14 
exhibited a significant reduction in TNF-α secre-
tion when infected with M. avium compared to 
controls, but infection of CD14-deficient mice 
with M. avium or M. tuberculosis showed no dif-
ference in controlling mycobacterial infection 
compared to controls (Reiling et al. 2001, 2002). 
However, another study found CD14−/− mice sur-
vive chronic M. tuberculosis infection, although 
their wild type counterparts succumbed to 
infection due to reduced pulmonary inflamma-
tion (Wieland et al. 2008).
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Soluble CD14, produced from proteolytic 
cleavage of membrane CD14, seems to be signifi-
cantly elevated in patients with pulmonary TB 
(Hoheisel et  al. 1995). A SNP in the promoter 
region (C(−159)T) of the CD14 gene has been 
found to be associated with high levels of soluble 
CD14 and increased probably of developing pul-
monary TB in the Mexican population (Rosas-
Taraco et al. 2007). In another study, the -159TT 
allele in the CD14 promoter was also signifi-
cantly associated with TB risk in the Korean pop-
ulation, probably from higher promoter activity 
resulting in higher level of soluble CD14, but 
also decreased IFN-γ secretion in individuals 
with this genotype (Kang et al. 2009).

6	 �Concluding Remarks

The nature of host-pathogen interaction is com-
plex in tuberculosis. At the very heart of this is 
the host receptor-mycobacterial ligand interac-
tion, which is the critical molecular dialogue in 
the early stages of M. tuberculosis infection. 
Understanding this molecular dialogue is pro-
foundly important in determining the infection 
outcome. In vitro studies have proven an essen-
tial first step, but they often only involve one 
receptor-ligand interaction. In vivo, the host-
pathogen communication is undoubtedly more 
complex involving an array of mycobacteria 
ligands that interact with several host PRRs, both 
soluble and membrane bound. There is indeed 
redundancy in both the mycobacterial ligands 
and host PRRs. In vivo, internalisation of M. 
tuberculosis involves multiple routes of cellular 
entry and crosstalk and co-operation between dif-
ferent PRRs. There seems to be a balance between 
TLR and CTLR entry with TLR often favouring 
a pro-inflammatory response, whereas CTLR 
favouring an anti-inflammatory response. 
Furthermore, the favoured target cell of M. tuber-
culosis (macrophage  or dendritic cell) adds an 
additional layer of complexity. Fully understand-
ing the host-pathogen dialogue in the early stages 
of infection is the ‘holy grail’ in preventing tuber-
culosis, because only then can we devise strate-
gies to fully block mycobacterial interaction and 
entry into human cells.
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