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Darwin was unfortunate when he wrote the Origin of Species not to be able 
to draw on a modern understanding of how the immune system recognizes 
and deals with pathogens. He never knew any of the fascinating stories of 
how organisms evolve both to defend themselves from infectious agents and 
to become more adept at bypassing their host’s defences. It is possible to see 
written into immune system the result of millions of years of many Red 
Queen races, with host and pathogen continually evolving and adapting to 
ensure survival. Darwin would have found more to inspire him in the immune 
system than all the finches and animals that he studied in the Galapagos 
Islands.

In this book, Uday Kishore has pulled together contributions that show us 
some of the complexity and intricacy of the interactions between microbes 
and the immune system. This book covers a range of pathogens, which is 
important—the immune system must deal with viruses, bacteria, fungi, and 
parasites. This diversity of pathogens has shaped the immune system that we 
have.

At the time of writing this foreword, the world is battling with the SARS- 
CoV-2 pandemic. This is a very simple RNA virus with just four structural 
proteins and a genome of 30 kb. However, it has been able to wreak havoc 
across the world, locking down nations and disrupting economies. The world-
wide death toll in August 2020 is around 750,000 and will rise to millions. 
This shows just how we need to increase our understanding of viruses to deal 
with newly emerging pathogens. There are contributions that cover SARS- 
CoV-2 and related viruses, which may be the first chapters that many readers 
turn to.

However, familiarity can breed contempt. There are many pathogens that 
humans have co-existed with for many millennia which continue to kill 
humans. Malaria has probably been an important human pathogen for around 
10,000 years, once humans started to make settlements. It is a sobering statis-
tic that probably around 400,000 people a year die from malaria (down from 
1 million 20 years ago), about two thirds of whom are infants. This is happen-
ing year in, year out. The recent experience of developed countries with 
SARS-CoV-2 should make us more empathic to the impact of malaria on the 
health and economy of some of the poorest countries in the world. The chap-
ter outlining our current understanding of malaria immunity and vaccine 
development describes a critical endeavour.

Foreword
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This book is going to be useful for all those who want to understand how 
microbes and the immune system interact, and how to use this knowledge to 
prevent and treat disease. I urge you to read chapters covering different patho-
gens, even those that you think you are not interested in. An understanding of 
immunity requires the breadth of scope contained in this book.

 Andrew J. T. George Twickenham, UK

Foreword
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I am delighted to present to you the Second Edition of the book Microbial 
Pathogenesis: Infection and Immunity. The first edition was published nearly 
7 years ago; the current edition is aimed at updating and complementing the 
first volume.

Understanding the pathogenic mechanisms used by a diverse range of 
infectious microorganisms, together with host’s innate and adaptive immune 
responses, is so crucial for the development of effective chemotherapy as well 
as vaccination strategies and overcoming the concerning issue of drug resis-
tance. Thus, it is important to investigate microbiological and clinical aspects 
of a pathogen with an eye on the host immune response against it and the 
escape mechanisms that can potentially be used to subvert anti-microbial 
immunity. Pathogens have co-evolved with us and, thus, they have been per-
fecting the art of avoiding, nullifying, and aggressively combating our immu-
nity. This volume is going to the press at a time that is unprecedent in our 
recent memory due to Coronavirus Disease 2019 (COVID-19) pandemic. In 
less than one year, the scientific community has gone on from sequencing the 
viral genome, crystalizing the spike protein, discovering entry receptors/core-
ceptors, cracking pathogenic mechanisms, repurposing a range of drugs for 
treatment, developing several dozens’ vaccine candidates, and finally, setting 
up promising clinical trials. Mass vaccination programme against Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has gone ahead 
at full speed paving a way forward for life to attain some degree of normalcy. 
This whole exercise highlights why it is pertinent to appreciate a discipline 
that amalgamates microbiology and immunology.

This volume has a wide variety of chapters categorized, as expected, into 
the themes of viruses, bacteria, fungi, and parasites. At the outset, Alhamlan 
et  al. describe various cancers caused by human papilloma virus, a great 
example of conquering the cancer by anti-viral vaccination. This is followed 
by Chapter 2 that addresses immune deviations orchestrated by Ebola virus. 
Chapter 3 examines the roles of innate immune cell surface and humoral pat-
tern recognition receptors against human immunodeficiency virus-1 (HIV-1). 
This chapter highlights the importance of mucosal innate immune factors in 
the development of prophylaxis against HIV-1 infection. Chapter 4 assesses 
the diverse range of the innate and adaptive immune responses that shape 
infectivity as well as protection against respiratory viruses including respira-
tory syncytial virus and influenza viruses. Chapter 5 recaptures the nature of 
the host–pathogen interaction against the Middle-Eastern Respiratory 

Preface
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Syndrome (MERS) virus, a journey that offers a great insight and prelude to 
follow in terms of SARS-CoV-2. In Chapter 6, Yasmin et al. elaborate on 
almost all aspects of COVID-19, including receptor–ligand interaction, dis-
tribution of SARS-CoV-2 receptor/co-receptor in the host tissues, life cycle 
of the pathogen, innate and adaptive immune responses against the virus, 
various drugs repurposed for the treatment, and a range of vaccination strate-
gies. It is largely expected that this chapter will act as a good primer for those 
readers who are keen on further understanding and researching about the 
SARS- CoV-2 and COVID-19.

McCarthy et al. in Chapter 7 allude to a major healthcare concern, i.e. 
antibiotic resistance in a range of bacterial pathogens. They take up the exam-
ple of an opportunistic bacterial pathogen, Acinetobacter baumannii, which 
has a number of characteristics endowed within genomic resistance clusters, 
transposons, and integrons that facilitate acquisition of antibiotic resistance, 
in addition to modulation of enzymatic and transporter machineries. Chapter 
8 dissects a classical, type IV hypersensitivity reaction-driven bacterial 
pathogenesis by Mycobacterium leprae, the causative agent of debilitating 
leprosy. This is also an excellent model to study granuloma formation, one of 
the finest examples of in vivo host–pathogen interaction, especially in lepro-
matous leprosy lesions. A largely ignored disease, leprosy, remains a major 
cause of morbidity in the developing countries. Chapter 9 evaluates the 
importance of pattern recognition receptors and their interaction with a range 
of ligands of Mycobacterium tuberculosis. Our longstanding efforts to 
enhance adaptive immunity, especially type 1 helper T cell response 
(interferon- gamma production), via various anti-tuberculosis vaccines, have 
fueled the growing realization that the innate immune components may have 
a bigger role to play in the anti-tuberculosis protective response. Given an 
intrinsic molecular dialogue between various innate and adaptive immune 
players, it is becoming evident that membrane, cytosolic and soluble pattern 
recognition receptors are likely to be important decision-makers in the latent 
tuberculosis. Ferluga et al. in Chapter 10 provide a detailed account of vari-
ous vaccination strategies that have been trialed clinically against 
Mycobacterium tuberculosis, while expanding on larger-than-life virtues of 
the BCG vaccine.

Valand and Girija in Chapter 11 cover virulence factors of Candida, anti- 
Candida innate and adaptive immune responses, and most importantly, the 
immune escape strategies this fungal pathogen uses to thrive within the host. 
The last chapter in this volume (Chapter 12) examines immune response 
against the malaria parasite, in addition to critically evaluating various vac-
cination trials and outcomes.

We sincerely hope that this book provides an insight into the diversity and 
complexity of host–pathogen interactions. I am grateful to all the contributing 
authors who have taken time out of their busy schedule to write such well- 
crafted, well-illustrated, and stimulating chapters. I would also like to thank 
Alison Ball and Sofia Valsendur (Springer Nature) for their patience while I 
was editing this book during the COVID-19 lockdown period.

London, UK Uday Kishore 

Preface
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Human Papillomavirus-Associated 
Cancers

Fatimah S. Alhamlan, Mohamed B. Alfageeh, 
Mona A. Al Mushait, Ismail A. Al-Badawi, 
and Mohammed N. Al-Ahdal

1  Introduction

Human papillomavirus (HPV) infection is now 
the most common sexually transmitted infection 
worldwide, including in the United States. An 
infected individual can directly spread these 
viruses to others through vaginal, anal, or oral 
sexual contact. The presence of HPV is associ-
ated with many types of subclinical and clinical 
infections, including anogenital, head and neck, 
and cutaneous infections. Of the more than 182 
HPV genotypes that have been sequenced to 
date, 40 genotypes can infect the mucosa, 
including the mucosa of the anogenital tract. 
Although many of these are considered low-risk 

HPVs, that is they are associated with less 
severe disease, such as non-genital warts, there 
are currently 12 HPVs (HPV-16, 18, 31, 33, 35, 
39, 45, 51, 52, 56, 58, and 59) that are consid-
ered by the World Health Organization (WHO) 
to be high-risk cancer- causing types, with sev-
eral additional types including HPV-68 and 
HPV-73 identified as “possibly” causing cancer 
(Schiffman et  al. 2009). More than 95% of all 
cervical cancer cases worldwide are caused by 
high-risk HPV types; thus, the epidemiology of 
anogenital HPV infection, especially cervical 
HPV infection, is well documented (Bosch et al. 
2002). Fortunately, many, if not most, HPV 
infections are transient, and an individual’s 
immune system may clear the infection before 
he or she becomes aware of its presence. Perhaps 
owing to this, HPV infection has received little 
attention from clinicians, the general public, or 
policy makers. However, this lack of attention 
may underpin a deadly and increasing problem 
because each newly acquired infection has the 
potential to persist. Persistent HPV infection 
may become an incurable, lifelong affliction 
that significantly increases the long-term risk of 
cancer not only for the afflicted individuals but 
also for their sexual partners (Shanmugasundaram 
and You 2017). Such HPV- related cancers may 
not manifest for decades, making successful 
treatment more difficult and costly, imposing a 
significant burden on the health care system 
(Workowski et al. 2002).
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Approximately, 4.5% of all cancers world-
wide (630,000 new cancer cases per year) are 
attributable to HPV, with 8.6% of these occurring 
in women and 0.8% in men. One study by Martel 
et al. assessing the worldwide burden of cancer 
attributable to HPV by site, country, and HPV 
type showed that cervical cancer accounts for 
most of the HPV-attributable cancer, and two- 
thirds of those cervical cancer cases were found 
in less developed countries. The study also found 
numerous other HPV-attributable anogenital can-
cers, including 8500 cases of vulvar cancer, 
12,000 cases of vaginal cancer, 35,000 cases of 
anal cancer (half occurring in men), and 13,000 
cases of penile cancer. The HPV-attributable can-
cers of the head and neck included 38,000 cases, 
of which 21,000 cases were oropharyngeal can-
cers occurring in persons residing in more devel-
oped countries. The relative contribution of the 
high-risk types HPV-16 and HPV-18 to these 
cancers is 73% and that of other high-risk types 
(31, 33, 45, 52, and 58) is 90% (de Martel et al. 
2017). Given these startling high percentages of 
likely preventable HPV-attributable cancers, a 
comprehensive strategy, based on HPV vaccina-
tion and screening, should be immediately imple-
mented in both developed and developing 
countries.

2  HPV Genome

Human papillomaviruses are double-stranded 
circular DNA, composed of approximately 8000 
base pairs. The HPV genome has a non-coding 
region, called a long control region, that contains 
the replication origin as well as post- 
transcriptional control sequences that contribute 
to viral gene expression. This non-coding region, 
which occupies approximately 10% of the HPV 
genome (about 850 base pairs), contains binding 
sites for cellular transcription factors and for the 
viral E1 and E2 proteins, which control viral rep-
lication and gene expression. Most HPV genomes 
also encode eight proteins. Six of these (E1, E2, 
E4, E5, E6, and E7) are genes located in the early 
gene region, which occupies just over half of the 
5′ end of the viral genome (Florin et  al. 2002). 

The early proteins are regulatory rather than 
structural in function. Their roles primarily 
involve the control of HPV genome replication 
and transcription, cell cycle, cell signaling, and 
apoptosis as well as immune modulation and 
structural modification of the infected cell. The 
E1 gene encodes an origin recognition and heli-
case protein, and the E2 gene promotes the 
assembly of E1 complexes. In a productive infec-
tion, the expressed E4 protein associates with 
cytokeratin filament collapse. Expressed E5, E6, 
and E7 are viral oncogenes, inducing cell immor-
talization and transformation. Expressed E6 and 
E7 proteins inactivate two cellular tumor sup-
pressor genes, namely p53 and pRb, respectively 
(Zheng and Baker 2006). Most of these early pro-
teins are expressed throughout the infectious 
cycle although their expression is decreased at 
later stages. The remaining two of the eight HPV 
genes (L1 and L2) are located in the late gene 
region, which occupies almost 40% of the virus 
genome downstream to the early region. These 
L1 and L2 open reading frames encode two struc-
tural proteins, a major (L1) and a minor (L2) cap-
sid protein; the capsid enables the transmission, 
spread, and survival of the virus in the environ-
ment (Zheng and Baker 2006; Florin et al. 2002). 
Except for the above-mentioned roles of the E1 
and E2 genes, none of the remaining six genes 
encode for polymerases or other replication fac-
tors. Thus, viral replication relies primarily on 
host cell proteins to maintain viral genomes in 
undifferentiated cells and to enable replication or 
amplification in differentiated cells (Doorbar 
et al. 2012).

3  HPV Infection

HPVs can be grouped phylogenetically into five 
genera, α, β, γ, μ, υ with the α and β genera being 
the most studied, and can be further classified 
into species (Bernard et al. 2010). α HPV genus 
members infect genital epithelia and are the caus-
ative agents of many anogenital cancers. β HPV 
genus members infect cutaneous epithelia and 
are thought to be cofactors in the development of 
non-melanoma skin cancers (Galloway and 
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Laimins 2015). HPV infections are observed 
within specific regions of host transitional 
 epithelial cells (e.g., the squamocolumnar junc-
tion). The up-regulation of these regions is com-
plex and may leave host cells vulnerable to viral 
transformation (Herfs et al. 2012).

The mechanism of HPV infection is unique, 
occurring only in the basal cells of the stratified 
epithelium, which is the only tissue in which the 
virus replicates (Bernard et  al. 2010). The life 
cycle of the virus is distinguished by the differen-
tiation of these infected cells. The virus enters 
basal epithelial cells through epithelial micro-
abrasions and attaches to these cells using com-
mon cell surface molecules, such as heparan 
sulfate proteoglycans. HPVs can also use α6- 
integrin as a virus receptor, with virus entry 
through either caveolae- or clathrin-mediated 
endocytosis (Shafti-Keramat et al. 2003; Evander 
et  al. 1997; McMillan et  al. 1999; Smith et  al. 
2007a; Kines et  al. 2009). When these infected 
cells divide, the daughter cells are pushed out-
ward toward the epithelial surface. During this 
migration, various stages of the virus life cycle 
are triggered.

After a cell is infected, the virus is uncoated, 
and the circular viral genome is transported to the 
nucleus. When the infected cell divides, the 
nuclear episomal genome is replicated to 20–100 
copies. These copies are maintained in the daugh-
ter cells during segregation by the attachment of 
the viral genome through the virus replication/
transcription factor E2 to the host chromosome. 
During this first phase of basal layer cell infec-
tion, the expression of E1 and E2 genes maintain 
a low genome copy number (Ozbun 2002; Hamid 
et al. 2009).

Cells in the lower layers that are infected with 
HPV high-risk types express E6 and E7 genes. 
These cells are pushed through the cell cycle and 
are stimulated to divide. The E6 and E7 expression 
levels between high-risk and low-risk HPV types 
contribute to differences in carcinogenicity. In 
addition, differences in the regulation of host pro-
tein interactions have also been observed among 
high-risk types, and these differences may also 
contribute to carcinogenicity variability (Boon and 
Banks 2013; Egawa et  al. 2015; Schiffman and 

Wentzensen 2013). In low-risk HPV type infec-
tions, basal cell proliferation is regulated primarily 
by the presence of growth factors, and the main 
role of the HPV E6 and E7 proteins in lesions of 
this type is to drive cell cycle entry above the basal 
layer, promoting HPV genome amplification 
(McLaughlin-Drubin et al. 2011). Proteins neces-
sary for genome amplification increase in cells 
located in middle layers. These cells express viral 
E4 protein and are generally in the S or G2 phases 
of the cell cycle. However, the cells leave the cell 
cycle when they reach the upper epithelial layers. 
The E4-positive cells make viral L2 and L1 struc-
tural proteins, enabling packaging of the amplified 
viral genomes.

Persistent HPV infection is considered the 
major risk factor underlying cervical tumor pro-
gression. Infection may persist for up to several 
years in infected stem and daughter cells in the 
basal layer of the epithelium. While low-level 
viral genome replication occurs in the basal layer, 
the infected cells undergo terminal differentia-
tion in the upper epithelial layers. The expression 
of E6 and E7 in those layers affects cell division, 
inhibits apoptosis, and abrogates epithelial differ-
entiation. Thus, productive replication occurs 
during suprabasal layer differentiation. Once dif-
ferentiation of suprabasal cells occurs, replica-
tion of the viral genome occurs at a high level. 
This amplification takes place in concert with the 
synthesis of the capsid proteins, followed by 
virion assembly and release (Doorbar et al. 2012; 
Galloway and Laimins 2015; Middleton et  al. 
2003; Klingelhutz and Roman 2012).

This ordered expression of viral gene products 
leading to virus particle production is disrupted 
in HPV-associated neoplasia. In cervical dyspla-
sia, expression levels of E6 and E7, genes which 
are generally considered viral oncogenes, 
increase from cervical intraepithelial neoplasia 
grade 1 (CIN1) to CIN3. These changes in gene 
expression are thought to underlie the neoplastic 
phenotype. CIN1 lesions, with relatively low lev-
els of E6 and E7, appear to retain the ability to 
complete the HPV life cycle and produce virus 
particles. Such lesions resemble flat warts, which 
have a low level of cell proliferation in the basal 
and parabasal layers (Bodelon et al. 2016). The 
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low E6 and E7 levels do not appear to  compromise 
their cellular targets sufficiently to facilitate  
cancer progression. However, the higher E6 and 
E7 expression levels observed in high-risk HPV 
infection are associated with CIN grade 2 or 
higher phenotype. These cells accumulate genetic 
changes that over time contribute to cancer pro-
gression. The viral dysregulation seen in CIN2, 
CIN3, or higher grade also appears to facilitate 
integration of the viral episome into the host cell 
chromosome, which can further deregulate 
expression of E6 and E7.

HPV replication is transient and depends on 
host cell differentiation. Once the virus enters 
basal epithelial cells, HPV genomes are estab-
lished as autonomous replicating extrachromo-
somal elements. Thus, a low level of HPV 
expression is established. Once the infected cells 
differentiate, productive replication and expres-
sion of capsid genes is induced. This leads to the 
synthesis of progeny virions. Data obtained from 
immunosuppressed patients or patients with 
recurring laryngeal papillomatosis indicate that 
certain HPV types can exist in a latent state, 
wherein HPV DNA is present but no 
differentiation- dependent virion synthesis is 
observed. The presence of an HPV latent state 
may determine the effectiveness for treatment of 
infections (Stubenrauch and Laimins 1999). HPV 
DNA integrates into the host genome in most but 
not all cervical cancers (Vinokurova et al. 2008), 
and the mechanisms underlying this integration 
and promotion of carcinogenesis are not well 
understood. HPV DNA integration reportedly 
occurs in regions of genomic instability, or in 
short genome sequences, where the HPV and 
host are homologous. This latter observation sug-
gests that DNA repair processes may contribute 
to HPV integrating into host cell genomes based 
on nucleotide sequence similarities (Akagi et al. 
2014; Bodelon et al. 2016).

4  HPV Transmission

HPV is transmitted to an individual through 
direct contact with infected skin or mucosa. A 
strong and consistent association has been shown 

between mucosal HPV infection and sexual 
activity, with the number of infections increasing 
in proportion to the number of sexual partners 
(Winer et al. 2008; Alhamlan et al. 2016). HPV 
detection in the anal canal has been associated 
with anal intercourse for male having sex with 
male (i.e., MSM) and to a lesser degree for 
women (Dunne et  al. 2006). However, HPV 
transmission is also associated with other sexual 
practices, including oral sex or the sharing of sex 
toys that penetrate the body despite standard 
cleaning of the toy (Gervaz et al. 2003; Anderson 
et  al. 2014). Several HPVs genotypes can also 
infect the cutaneous epithelium. Transient skin 
lesions, such as common warts on the hands or 
verrucas on the feet, are generally benign. Such 
lesions may be embarrassing or unsightly to an 
individual, but if the lesion rapidly spreads, per-
sists, or is in a site prone to injury, it may also 
become clinically relevant. Such lesions in 
patients who are immunosuppressed or who have 
received a diagnosis of epidermodysplasia verru-
ciformis, an inherited recessive genetic disorder, 
may cause cancer (Howley and Pfister 2015; 
Patel et al. 2010).

HPV may also be vertically transmitted from 
mother to child, especially in utero, during deliv-
ery, or through contact after birth with the mother 
or relatives. Although the most likely route of 
transmission is from mother to child during a 
vaginal delivery when the child passes through 
the infected birth canal (Hahn et al. 2013; Freitas 
et al. 2013), HPV-induced lesions, such as laryn-
geal and anogenital lesions, have been observed 
at birth, suggesting intrauterine HPV transmis-
sion (Marcoux et al. 2006).

5  HPV Detection

Accurate molecular techniques for HPV detec-
tion and identification are of great importance 
for determining and diagnosing at-risk patients. 
There is currently no universal HPV detection 
assay. Instead, HPV types are detected based on 
pairwise nucleotide sequence identity within the 
highly conserved L1 gene. Distinct HPV types 
are identified when nucleotides show a differ-
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ence with other HPV types of at least 10% 
(Bernard et al. 2010; Schiller et al. 2010). Given 
the causal relationship between a persistent 
high-risk human papillomavirus (HR-HPV) 
infection and the possibility of developing can-
cer, HPV DNA-based testing has been advocated 
for the detection of clinically relevant cases 
especially lesions. Because of the confirmed the 
role of HR-HPV in over 70% of cervical cancer 
cases, HPV testing is necessary to determine 
whether a patient has an HPV infection. DNA 
testing has been used as a primary screening in 
conjunction with a Papanicolaou test, or has 
even been used alone because of its high sensi-
tivity. Therefore, HPV testing is well-established 
in cervical-related research.

To date, the late gene (L1) region has been the 
most commonly used target for HPV detection 
assays. Indeed, the sequence of the L1 region 
from different HPV types is conserved enough to 
be utilized for primer design (Chan et al. 2012). 
However, HPV E6 and E7 genes are strong can-
didates for HPV detection and genotyping and 
have become the newly proposed targets for HPV 
detection in cancer (Fig. 1.1). E6 and E7 genes 

are oncoproteins in high-risk HPVs and have the 
ability to alter the function of cell cycle regula-
tors. These two primary oncoproteins inactivate 
the two tumor suppressor proteins, p53 (inacti-
vated by E6) and pRb (inactivated by E7) leading 
to cell cycle disruption (Narisawa-Saito and 
Kiyono 2007; Munger et al. 2004). They are pro-
posed to be a candidate for detection and geno-
typing because they have the ability to be present 
in the episomal and in the integrated states of the 
virus, and are retained in the tumor. Therefore, 
these genes are strong candidates for HPV detec-
tion and viral load quantification. In fact, relying 
only on L1 primers could be unfortunately mis-
leading because the L1 region is lost during HPV 
integration into human genome.

The best screening tests are practical, easy for 
the clinician to administer, safe for the patient 
and clinician, and accurate, which is generally 
measured by the sensitivity and specificity of the 
test. Culturing and in vitro propagation of HPV 
are impractical, and serological detection meth-
ods are insufficiently sensitive (Molijn et  al. 
2005). Thus, molecular biological methods, 
including DNA-based assays (e.g., polymerase 

Fig. 1.1 Diagram of a linearized HPV 16 genome. Schematic diagram depicting the DNA and RNA target sequences 
for PCR, qPCR, qRT-PCR and genotyping. Arrows represent primers while the black dashed lines represent probes. F 
forward primer, P probe, R reverse primer, LCR long control region. (Figure is modified from Wang-Johanning et al. 
(2002))
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chain reaction, in situ hybridization, reverse line 
plot, and Hybrid Capture 2) and RNA-based 
assays (e.g., mRNA gene or protein expression), 
have become the primary approaches for detec-
tion of HPV (Chan et al. 2012). At early stages, 
the best techniques for HPV detection and typing 
appear to be DNA based, whereas once disease 
progresses, greater accuracy is achievable via 
RNA based methods. Thus, for clinically relevant 
infections, both direct and indirect viral gene 
transcript detection methods are more specific 
approaches than DNA-based assays. In addition, 
HPV oncogene expression and deregulation evi-
dence can be collected through direct detection 
of viral mRNA transcripts (Cuschieri and 
Wentzensen 2008). Figure  1.1 illustrates the 
assay (DNA vs. RNA) most accurate for detec-
tion of all HPV types at each stage of disease. 
Through the use of this suggested approach, 
HPV-16 and HPV-18 have been found to be 
responsible for over 70% of all invasive cervical 
cancers (Smith et al. 2007b). HPV-16 is the most 
carcinogenic of all the HPV types, causing about 
half of all cervical cancers, most of the other 
HPV-related anogenital cancers, and more than 
80% of HPV-positive head and neck cancers (de 
Sanjose et al. 2010; Serrano et al. 2015; Mirabello 
et al. 2016). Advances in high-throughput next- 
generation sequencing, which have enabled 
large-scale studies examining HPV genome vari-
ability, have led to discoveries in HPV genomic 
research (Cullen et al. 2015; Cornet et al. 2013). 
Further empirical population-based studies will 
enable investigation at the intersection of molec-
ular biology and epidemiology to markedly 
increase the knowledge and underlying mecha-
nisms associated with HPV-related carcinogene-
sis (Jeantet et al. 2009).

6  HPV-Related Cancers

The National Program of Cancer Registries and 
the Surveillance, Epidemiology, and End Results 
program have reported an average of 33,369 HPV-
associated cancers diagnosed annually in USA, 
with 21,290 of these detected in females (13.2 per 
100,000) (Viens et  al. 2016). Of all diagnosed 

human malignant neoplasms, approximately 4.5% 
are attributable to HPV, including 96% of cervical 
cancers, 93% of anal cancers, 64% of vaginal can-
cers, 51% of vulvar cancer, 36% of penile cancers, 
and 63% of oropharyngeal carcinomas. According 
to the Centers for Disease Control and Prevention, 
the annual incidence in the United States of new 
HPV-associated cancers is 26,800 (Brianti et  al. 
2017). The various HPV types infect specific tis-
sue sites, that is, they display tissue tropism; thus, 
specific HPV types are associated with specific 
diseases. For example, HPV-16 is detected in 
squamous intraepithelial lesions, such as those of 
the cervix, vagina, vulva, anus, penis, and orophar-
ynx; HPV-6 and -HPV-11 are detected in condylo-
mata acuminate and respiratory papillomatosis; 
and HPV-1, 2, 4, 3, 10, and 7 are detected in cuta-
neous warts (Insinga et al. 2008). Mortality from 
HPV is caused by persistent infections with onco-
genic HPV types that lead to dysplasia and 
cancer.

6.1  Cervical Cancer

Although cervical cancer is the fourth most fre-
quent cancer among all women worldwide, it is 
the second most common cancer among those 
aged 15–44 (Serrano et  al. 2018). Currently, 
527,624 women worldwide receive a diagnosis of 
cervical cancer annually, and 265,672 die of this 
disease every year. A report assessing the inci-
dence of cervical cancer by region found that of 
these 527,624 women, the vast majority, 444,546 
or approximately 85%, reside in less developed 
countries, indicating that poorer countries bear 
most of this disease burden (Bruni et al. 2017). 
Cervical cancer in less developed regions 
accounts for nearly 12% of all female cancers. 
Globally, the annual number of newly detected 
cervical cancer cases continues to increase, but 
within developed countries, the number has fallen 
from its peak in 1975 of being the second most 
common cancer. This decrease has been attrib-
uted to early screening and vaccination programs 
(Parkin et  al. 1984). Because cervical cancer is 
caused mainly by HPV, WHO issued a cervical 
cancer screening guideline in 2014, 
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 recommending at least one screening for women 
who were between 39 and 49 years of age. The 
guideline further recommended extending 
screening to those women who were younger 
than 30 and at high risk of high-grade CIN (grade 
2 or higher) (WHO 2014; Santesso et al. 2016). 
Resent research has shown that a negative HPV 
test result is more reassuring than a negative 
cytological test result because the latter has a 
greater chance of being falsely negative, leading 
to treatment delays (Koliopoulos et al. 2017). In 
addition, a recent randomized clinical study of 
19,009 women, which investigated cervical can-
cer screening comparing primary cervical HPV 
testing with cytology testing, found that screen-
ing with primary HPV testing resulted in signifi-
cantly lower likelihood of CIN grade 3 or higher 
(2.3 cases per 1000 women) than cytology testing 
(5.5 cases per 1000 women) at 48 months’ fol-
low- up (Ogilvie et  al. 2018). Therefore, the 
majority of more developed countries use both 
HPV screening assays and cytology testing, a 
practice proven to be best for earlier diagnosis of 
high-grade CIN and more effective in prevention 
of invasive cervical cancer. However, cervical 
cancer screening or any clinical care found to be 
needed based on the screening is little used in low 
and middle income countries (LMICs) in which 
infrastructure and personnel requirements strain 
is existing health systems (Denny et  al. 2006). 
Thus, LMICs have the highest burden of cervical 
cancer, about 85% according to a recent WHO 
report (Bray et  al. 2015). Although cytology- 
based screening programs have improved cervi-
cal cancer control in developed countries, such 
programs in LMICs are constrained by cost, lack 
of infrastructure and trained staff, and the amount 
of time required between sample collection and 
test result, which is associated with treatment 
delays or management losses. Thus, trained mid-
wives or nurses in low-resource settings fre-
quently resort to conducting a visual inspection 
of the cervix using acetic acid or Lugol’s iodine 
and simple tools (a speculum and a lamp). 
However, frequent training and supervision is 
required, and test interpretation is subjective, 
leading to variability in results accuracy. Still, 
one important advantage gained by using visual 

cervical inspection is that the results are quickly 
obtained; thus, any recommended treatment can 
be started immediately (Arbyn et al. 2008).

6.2  Anal Cancer

Anal cancer accounts for 27,000 new cancer 
cases worldwide where 90% have been estimated 
to be caused by HPV (de Martel et al. 2017; de 
Martel et al. 2012). Although there are many sim-
ilarities, the natural history of HPV infection in 
the anus is less understood than the cervix. 
However, the recent studies found striking 
increase in the incidence of HPV-associated anal 
cancer especially among HIV-positive individu-
als. Indeed, the incidence of anal cancer has 
increased since the introduction of highly active 
antiretroviral therapy in HIV infected individuals 
(Palefsky 2009). Other studies have shown that 
five females are affected for every male, and the 
rates of anus, anal canal, and anorectal cancers 
among females of all races and ages has more 
than doubled in recent years (Galloway and 
Laimins 2015). Moreover, white woman show 
higher rates than black woman of anal squamous 
cell carcinomas, whereas black males have a sig-
nificantly higher incident rate than white males 
(Joseph et al. 2008). Incidence of anal cancer is 
higher among men participating in male to male 
sexual (i.e., MSM) contact, women having a his-
tory of cervical or vulvar cancer, and patients 
with immunosuppression, which includes 
patients with HIV or a history of organ transplan-
tation. These anal cancers are predominantly 
squamous cell carcinoma, adenocarcinomas, or 
basaloid (previously called cloacogenic) carcino-
mas (Crooms and Kovalcik 1985; Tougeron et al. 
2009).

6.3  Vulvar and Vaginal Cancers

Despite the high numbers of all HPV-related 
cancers, vulvar and vaginal cancer are relatively 
uncommon globally, and HPV infection is not 
associated with all cancers of the external geni-
talia. It has been estimated that HPV-related 
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 infections are responsible for 29–43% of vulvar 
cancer, 87% of vulvar intraepithelial neoplasia, 
70% of vaginal cancer, and 69–100% of vaginal 
intraepithelial neoplasia (Forman et al. 2012; de 
Sanjose et al. 2013). Of the HPV-positive can-
cers, HPV-16 and HPV-18 are responsible for 
35–77% of vulvar cancer, 75–80% of precancer-
ous vulvar lesions, and 60% of vaginal cancer 
and precancerous vaginal lesions (De Vuyst 
et al. 2009). Compared with HPV-negative can-
cers of the external genitalia, HPV-associated 
vulvar cancers are detected in younger women. 
These cancers display basaloid, rather than the 
keratinizing pathology, which is observed in 
HPV- negative vulvar cancers. HPV-positive vul-
var cancers are not associated with p53 muta-
tions but are associated with sexual risk factors, 
unlike HPV-negative vulvar cancer (Hoevenaars 
et al. 2008). HPV-associated vaginal and vulvar 
cancers share many features although vaginal 
cancer is more likely than vulvar cancer to be 
associated with HPV infection (Smith et  al. 
2009).

6.4  Head and Neck Cancers

Squamous cell carcinoma of the head and neck is 
also HPV-associated (Mork et al. 2001; Villa and 
Hanna 2018; Li et al. 2013). The worldwide inci-
dence of HPV-positive oropharyngeal cancer, 
which is found in the oropharynx and base of the 
tongue, tonsil and larynx, was 29,000 cases in 
2012 and is on the rise, especially among 
younger men in Western countries, including the 
United States (Chaturvedi et al. 2013). Similar to 
HPV- positive vulvar cancer, HPV-positive oro-
pharyngeal cancer is detected in a younger popu-
lation than non-HPV-associated cancer. 
HPV-positive oropharyngeal cancer is also asso-
ciated with sexual risk factors (Chaturvedi et al. 
2011). According to 2011–2014 US National 
Health and Nutritional Examination Survey data, 
the prevalence in adults aged 18–69 years of any 
oral HPV infection is 7.3% and 4% for high-risk 
HPV subtypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 
56, 58, 59, 66, or 68) (McQuillan et  al. 2017). 
Persistent high-risk oral HPV infection, espe-

cially with HPV-16, is associated with progres-
sion to HPV- positive oropharyngeal cancers 
(Steinau et al. 2014).

6.5  Penile Cancer

Penile cancer is a globally rare malignant  
neoplasm although it comprises up to 10% of all 
male cancers in Africa, South America, and Asia 
(Mackenzie-Wood et al. 2001). The incidence of 
penile cancer has been associated with a number 
of risk factors, including history of phimosis, 
balanitis, chronic inflammation, penile trauma, 
lack of neonatal circumcision, tobacco use, lichen 
sclerosus, poor hygiene, and history of sexually 
transmitted diseases, especially HIV and HPV 
(Engelsgjerd and LaGrange 2018). Persistent 
HPV infection in men is associated with HIV 
infection, current and past sexual behavior, num-
ber of sex partners, absence of condom use, prior 
sexually transmitted infection, race, ethnicity, 
and circumcision status (Nyitray et  al. 2011; 
Hernandez et al. 2010). Although HPV infection 
in not associated with all cancers of the external 
genitalia, HPV-16 and HPV-18 cause nearly 
35–40% of penile cancers overall and cause 
70–80% of HPV-positive penile cancers (Santesso 
et al. 2016). Compared with patients with HPV- 
negative cancers, HPV-positive penile cancers 
occur in younger patients and are associated with 
sexual risk factors.

6.6  Recurrent Respiratory 
Papillomatosis

Recurrent respiratory papillomatosis (RRP), a 
benign laryngeal tumor more common in chil-
dren but also presents in young adults, is charac-
terized by papillomatous lesions present along 
the aero-digestive tract. The incidence of RRP is 
2 per 100,000 adults and 4 per 100,000 children 
(Carifi et al. 2015; Fusconi et al. 2014). RRP is 
thought to be caused by the transmission of, most 
commonly, HPV-6 or HPV-11 through sexual 
contact (oral sex) with infected external genitalia 
in adults or from a mother with genital warts to 
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her infant prior to birth through the placenta in 
about 12% of cases (Venkatesan et al. 2012) or 
during the infant’s passage through the birth 
canal (Derkay and Wiatrak 2008; Fortes et  al. 
2017). A primary risk factor for RRP in adults is 
sexual activity with multiple partners (Fortes 
et al. 2017). The primary risk factor for juvenile- 
onset RRP is maternal anogenital warts, with the 
risk of RRP increasing approximately 230 times 
in the presence compared with the absence of 
maternal anogenital papillomatous lesions during 
pregnancy or birth. Approximately 0.7% of 
infants exposed to maternal anogenital warts 
develop the disease. Although RRP is benign, the 
warts can obstruct the larynx, requiring multiple 
ablative treatments, and is thus associated with 
considerable morbidity in children.

6.7  HPV-Induced Warts

Common, plantar, or flat warts are cutaneous 
HPV infections common throughout the general 
population, especially in children and adoles-
cents; 10% of children have warts, with the inci-
dence peaking between 12 and 16  years old 
(Beutner 2000). These nongenital HPV- associated 
warts spread through skin to skin contact. Not all 
nongenital warts are benign. For example, 
Bowen’s disease, also called squamous cell carci-
noma in situ, is a nonmelanocytic intraepidermal 
malignant neoplasia that transforms into invasive 
squamous cell cancer in approximately 3–5% of 
cases (Wozniak-Rito and Rudnicka 2018). 
Multiple HPV types, including HPV-16, 18, 31, 
32, and 34, have been detected in finger, toe, 
palm, and foot skin lesions and from genital 
mucosa (Mackenzie-Wood et al. 2001).

6.8  Epidermodyplasia 
verruciformis

Epidermodyplasia verruciformis (EV) is a heri-
table defect in the cell-mediated immune 
response to HPV infection that leads to an 
increased susceptibility to infections of specific 
HPV types. EV is characterized by wart-like 

lesions and pityriasis versicolor-like spots cover-
ing parts of the body. Individuals with EV are at 
increased risk of developing cutaneous malignant 
neoplasms, Bowen’s disease, or squamous cell 
carcinoma in particular (Shruti et  al. 2017). 
Although several HPV types have been detected 
in these lesions, HPV-5 and HPV-8 are associated 
with the highest malignant potential (Karrer et al. 
1999). Table 1.1 summarizes the most common 
HPV types in each cancer site.

7  Conclusions 
and Perspectives

Considerable progress has been made toward 
reducing HPV-mediated cervical carcinoma. The 
use of routine Papanicolaou testing and the pro-
phylactic vaccines, Gardasil and Cervarix, have 
led to documented progress in decreasing the 
burden of this disease. More widespread use of 
currently available HPV vaccines among adoles-
cent girls would further reduce the incidence and 
mortality of cervical cancer by two-thirds while 
establishment of cost-effective screening pro-
grams among adult women would more rapidly 
reduce cervical cancer mortality rates. However, 
the incidence of some noncervical HPV-related 
cancers, especially oropharyngeal, is rapidly 
increasing in more developed countries toward 
that of cervical cancer. Given this accelerated 
increase and that no approved screening pro-
grams for HPV-associated noncervical cancers 
currently exist, implementation of HPV vaccina-
tion programs is crucial. Reducing or preventing 

Table 1.1 HPV-associated cancer with the most com-
mon HPV types

Cancer site
HPV-associated 
disease HPV types

Cervix Cervical cancer HPV16, 18, 33, 35, 
45, 52, 58, 59 and 
73

Vaginal Vaginal cancer Mainly HPV 16
Vulva Vulvar cancer Mainly HPV 16
Penis Penile cancer Mainly HPV 16
Anus Anal cancer Mainly HPV 16
Oropharynx Oropharyngeal 

cancer
Mainly HPV 16
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male HPV cancers would require either male 
vaccination against HPV types or the develop-
ment of “herd” immunity through high rates of 
HPV vaccinations among females. Such HPV 
vaccination would initially complement cervical 
screening in the fight against cervical cancer. 
Improved vaccines as well as better methods for 
early detection are being developed. Second- 
generation HPV vaccines against cervical can-
cer–related HPV types would prevent an even 
higher proportion of cervical precancer and may 
permit a safe reduction of screening intensity in 
more developed countries, reducing the HPV dis-
ease burden for future generations.

Information about the HPV life cycle, viral 
infection, and immune clearance have provided 
valuable insight emphasizing the biological and 
behavioral risk factors linked to cancer. However, 
there remains a distinct lack of awareness among 
those populations at greatest risk in both more 
and less developed countries. Because high-risk 
individuals belong to diverse ethnic groups and 
socioeconomic statuses, no single educational or 
interventional approach would benefit all of 
them. Thus, future initiatives for the prevention 
of cancer must aim to decrease existing inequali-
ties, with a strong emphasis on providing targeted 
education about HPV transmission and screening 
for all ages of women, including adolescent girls, 
particularly in those groups in less developed 
countries where incidence and death rates are 
disproportionately high. Innovations in preven-
tion must continue alongside development of bet-
ter treatment options for populations that will not 
directly benefit from vaccine-associated thera-
pies, including women who are currently infected 
with HPV, individuals who are immunocompro-
mised, such as those co-infected with HPV and 
HIV, or organ transplant recipients. The treat-
ment of cancer and patient prognosis depends on 
the ability to accurately diagnose and assign a 
clinical stage. Diagnostic imaging, surgery, radi-
ation therapy, and chemotherapy are improving, 
allowing women to have more options and to 
make better-informed decisions. Molecular ther-
apies are anticipated to reduce cancer cases as 
research on HPV early proteins reveal the viral 
mechanisms used to take control over cellular 

processes. Of these viral components, the E6 and 
E7 oncoproteins have long been recognized as 
the main mediators of the HPV-associated trans-
formation to malignant neoplasms. Therefore, 
approaches targeting these two oncoproteins are 
likely to be anti-oncogenic.
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Mechanisms of Immune Evasion 
by Ebola Virus

Suchita Bhattacharyya

1  Introduction

Ebola virus, Marburg virus and Cueva virus con-
stitute the Filoviridae family (Kuhn et al. 2013). 
Ebola virus causes hemorrhagic fever, with very 
high mortality rates (Feldmann et  al. 2003). 
While Marburg and Cueva viruses have no known 
subtypes, Ebola virus has six species; Zaire, 
Sudan, Reston, Bundibugyo, Tai Forrest and 
Bombali. Out of the six species of Ebola virus, 
Zaire is the most virulent (Feldmann et al. 1994), 
while Reston is non-pathogenic in humans 
(Miranda and Miranda 2011).

Ebola is a zoonotic pathogen and its natural 
reservoir(s) remains a research hotspot. Fruit bats 
were earlier thought to act as a reservoir for Ebola 
virus (Leroy et al. 2005) and recent evidence has 
confirmed that bats are a natural reservoir for this 
virus (Goldstein et al. 2018). Devising strategies 
to eliminate these reservoirs would help to pre-
vent viral transmission to humans.

Filoviruses are transmitted through contact 
with the blood or body fluids of infected patients 
or animals (Dowell et al. 1999). The first filovirus 
emerged in 1967 in Europe (Kissling et al. 1968) 
and the virus was designated Marburg after the 

city in Germany where it was first characterized. 
The first Ebola virus outbreak occurred in Africa 
in 1976, first in Sudan with a fatality rate of 53% 
and then in Zaire with a fatality rate of 88%. 
Subsequent outbreaks of Ebola virus occurred in 
Cynomolgus monkeys in 1989  in Reston where 
no human infection was reported and in 1994 in 
Ivory Coast where one patient was infected who 
subsequently recovered from the infection 
(Feldmann et al. 2003). Re-emergence of Ebola 
virus Zaire subtype in 1995  in Kitwit, 
the  Democratic Republic of the Congo with a 
fatality rate of 92% drew the world’s attention to 
this deadly pathogen. The 2013–2016 outbreak 
of Ebola virus in West Africa was the largest 
reported till date (World Health Organization. 
2016). Meanwhile, the World Health Organization 
(WHO) had declared the recent Ebola outbreak 
in the Democratic Republic of the  Congo as a 
“public health emergency of international con-
cern” in order to draw worldwide attention to the 
disease and improve the health systems (World 
Health Organization. 2019. https://www.who.int/
news/ i tem/17-07-2019-ebola-outbreak- 
in-the-democratic-epublic-of-the-congo-
declared-a-public-health-emergency-of-interna-
tional-concern).

The lethal nature of Ebola virus infection 
makes it necessary to study the virus in a 
Biosafety Level 4 (BSL4) containment facility. 
Moreover, filoviruses have been classified as 
‘List A agents’ and are considered as potential 
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weapons for bioterrorism (Borio et  al. 2002). 
Given the severity of the recent outbreaks, sev-
eral researchers worldwide are actively investi-
gating potential vaccine and therapeutic 
candidates against Ebola virus.

This chapter discusses the morphology, entry, 
replication, assembly, budding and pathogenesis 
of Ebola virus. The various mechanisms by 
which Ebola virus evades the host immune sys-
tem and the specific viral proteins involved in 
these processes are also discussed. Further 
research focussing on targeting these mecha-
nisms is needed to develop additional  interven-
tions against this deadly virus.

2  Morphology of Ebola Virus

Ebola virus is enveloped, non-segmented and fil-
amentous in appearance. It is pleomorphic and 
can be either six-shaped, U-shaped or circular. Its 
length is highly variable and can extend up to 
14 μm. The typical length of Ebola virus associ-
ated with maximum infectivity is 970  nm 
(Regnery et al. 1980). Ebola virus has a uniform 
diameter of 80  nm and density of 1.14  g/
mL.  Virions are composed of a helical nucleo-
capsid 50  nm in diameter, a closely apposed 
envelope derived from host cell plasma mem-
brane and 5–10 nm long surface projection spikes 
composed of homotrimers of viral glycoprotein 
(GP) (Geisbert and Jahrling 1995). Virions con-
tain a single molecule of RNA, which constitutes 
1.1% of the virion mass (Regnery et al. 1980).

Virus infectivity is stable at room temperature 
(20 °C), but is completely lost within 1 h at 60 °C 
(Mitchell and McCormick 1984). Infectivity is also 
destroyed by ultraviolet and γ irradiation (Elliott 
et  al. 1982), β-propiolactone, lipid solvents, com-
mercial hypochlorite and phenolic disinfectants.

3  Endocytic Pathways Involved 
in Ebola Virus Entry

Ebola virus is known to enter host cells via pH- 
dependent endocytosis (Chan et  al. 2000; 
Chazal et  al. 2001). Treatment with microtu-

bule disrupting agents impaired Ebola virus 
entry, while microtubule stabilizing agents 
enhanced entry. Also, disrupting the integrity 
of the actin cytoskeleton inhibited Ebola virus 
entry (Yonezawa et  al. 2005). The endocytic 
pathways involved in Ebola virus entry have 
been extensively studied. Both clathrin-medi-
ated endocytosis and macropinocytosis are 
known to be involved in Ebola virus entry 
(Bhattacharyya 2007; Bhattacharyya et  al. 
2010, 2011, 2012; Bhattacharyya and Hope 
2013). The role of caveolae in Ebola virus 
entry has been supported (Empig and 
Goldsmith 2002) and refuted (Simmons et  al. 
2003) in different studies. Ebola virus was also 
suggested to simultaneously use multiple 
endocytic pathways for entry (Aleksandrowicz 
et al. 2011).

4  Replication, Assembly 
and Budding of Ebola Virus

Viral entry is followed by release of the genome 
and associated proteins into the cytoplasm. 
Transcription and genome replication takes place 
in the cytoplasm of host cells. Viral replication 
leads to the synthesis of seven viral proteins. 
Additionally, a non-structural, soluble glycopro-
tein (sGP) is expressed as a primary product of 
the glycoprotein (GP) gene in Ebola virus and 
RNA editing leads to the expression of mem-
brane bound GP (Sanchez et al. 1996). Four pro-
teins constitute the ribonucleoprotein complex: 
NP, VP35, VP30 and L, which are necessary for 
transcription and replication of the virus. The 
ribonucleoprotein complex generates positive- 
sense anti-genome, which serves as a template 
for transcription of messenger RNA (mRNA) 
encoding the viral proteins.

Electron microscopy studies have demon-
strated that early filoviral infection is marked by 
the presence of viral precursor material in the 
host cell cytoplasm. The infection progresses 
with the formation of inclusion bodies, which 
increase in size and eventually occupy the entire 
host cell cytoplasm. The Ebola virus inclusion 
bodies contain preformed nucleocapsids that 
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mature and migrate to the plasma membrane 
and then exit the inclusion bodies. New virions 
are formed when the nucleocapsids associate 
with viral matrix proteins and GP molecules 
implanted in the cell membrane (Geisbert and 
Jahrling 1995).

Filoviruses are released by tearing away from 
the plasma membrane as opposed to gradual 
expulsion. Protracted formation of inclusion bod-
ies leads to disruption of cellular organelles. The 
infected cells clear the degenerated cellular com-
ponents by autophagosomal activity. The bud-
ding of nascent virions gradually declines and 
finally both the plasma and nuclear membranes 
rupture causing host cell death by necrosis 
(Geisbert and Jahrling 1995).

5  Pathogenesis of Ebola Virus

Ebola virus can infect several cell types across 
different species, with the exception of T and B 
lymphocytes (Wool-Lewis and Bates 1998). 
Numerous studies have examined the pathogen-
esis of Ebola virus infection using non-human 
primates as animal models because the symp-
toms of disease progression are similar to humans 
(Ryabchikova et al. 1999). Guinea pigs were not 
considered to be a suitable model for studying 
viral pathogenesis since they do not develop 
hemorrhagic syndrome (Ryabchikova et  al. 
1996).

Ebola virus causes an acute and often fatal 
infection, which usually lasts for 1–2  weeks 
after the onset of initial symptoms (Sanchez 
et al. 2004). Early infection is characterized by 
nonspecific flu-like symptoms such as fever, 
myalgia, diarrhea and fatigue. Often, patients 
develop maculopapular rash around day 5, 
which is an important diagnostic feature of the 
disease (Gear 1989). As the infection pro-
gresses, patients develop abnormalities in fluid 
distribution, hypotension and massive viremia 
that leads to disseminated intravascular coagu-
lation (DIC) and hemorrhage. Serum enzyme 
levels, especially liver enzymes such as aspar-
tate aminotransferase (AST) and alanine amino-
transferase (ALT) are elevated, indicative of 

liver damage. The liver damage, hemorrhage 
and vascular permeability are caused by the 
release of tissue factor, mediators and overt 
cytokine production (Feldmann and Geisbert 
2010). Fall in blood pressure ultimately leads to 
onset of severe systemic shock (Colebunders 
and Borchert 2000).

Monocytes and macrophages are the first 
cells to be infected by Ebola virus. Secondary 
target cells include hepatocytes and endothelial 
cells (Ryabchikova et  al. 1999; Zaki and 
Goldsmith 1999). Infected monocytes and mac-
rophages release cytokines and chemokines 
such as tumor- necrosis factor alpha (TNF-α) 
and interferon gamma (IFN-γ). TNF-α increases 
endothelial cell permeability (Feldmann et  al. 
1996), and decreases anticoagulant activity 
(Schleef et al. 1988), which could lead to DIC 
and systemic shock. TNF-α, Fas, Fas ligand, 
TNF-α related apoptosis inducing ligand 
(TRAIL) and nitric oxide released by infected 
macrophages are suggested to cause lympho-
cyte apoptosis (Hensley et al. 2002; Baize et al. 
1999). Macrophages synthesize cell-surface tis-
sue factor, which interacts with circulating fac-
tors VIIa and X, causing deposition of fibrin on 
the surface of infected cells, which also initiates 
DIC.  Infected macrophages and dendritic cells 
(DCs) help the virus to spread throughout the 
body resulting in multifocal tissue necrosis. 
Additionally, infected DCs lack the ability to 
express co-stimulatory molecules, upregulate 
major histocompatibility complex (MHC) mol-
ecules or induce lymphocyte differentiation, 
thereby preventing an early immune response to 
the virus (Bosio et al. 2003).

The differential expression of cytokines has 
been linked to the viral disease outcome. The 
presence of interleukin-1β (IL-1β) and elevated 
levels of IL-6 following infection are associ-
ated with survival, while release of IL-10 and 
high levels of neopterin and IL-1 receptor A in 
the symptomatic phase are thought to be mark-
ers of fatal outcome. Survival has also been 
correlated with the development of antigen-
specific immune response and appearance of 
specific antibodies against viral antigens 
(Hensley et al. 2002).

2 Mechanisms of Immune Evasion by Ebola Virus
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6  Genome Organization 
of Ebola Virus

Ebola virus contains a single molecule of non- 
infectious, linear, negative-sense, single-stranded 
RNA (Regnery et  al. 1980; Kiley et  al. 1982). 
The 19  kb Ebola genome is the largest known 
genome among all the negative-sense RNA 
viruses (Feldmann et al. 2003). Ebola virus genes 
have long non-coding regions at their 3′ and 5′ 
ends, which contribute to the increased length of 
their genome. The 3′ and 5′ ends of the transcripts 
are suggested to form stable hairpin structures 
that could enhance stability of the transcripts 
(Sanchez et al. 1993; Kiley et al. 1986).

7  Ebola Virus Proteins

Ebola virus is composed of six structural and one 
non-structural protein. The VP40, VP24, VP30 
and VP35 proteins are named according to their 
molecular weights.

The envelope glycoprotein (GP) forms spikes 
on the virion surface and mediates viral entry 
into target cells. Ebola virus GP gene encodes 
different proteins by transcriptional editing. The 
edited transcript encodes the membrane bound 
GP.  Ebola virus GP is known to cause cell 
rounding and cytotoxicity (Yang et  al. 2000; 
Simmons et al. 2002; Sullivan et al. 2005). Full-
length Ebola GP was found to accumulate in the 
endoplasmic reticulum in very close proximity 
to the nuclear membrane, which may be respon-
sible for its cytotoxic effect (Bhattacharyya and 
Hope 2011).

The most abundant protein VP40 is also the 
major matrix protein of Ebola virus. VP40 is 
known to possess several key functions in the 
viral life cycle. Expression of VP40 alone in 
mammalian cells leads to the production of virus- 
like particles (VLPs), which exhibit the typical 
filamentous morphology of wild-type filoviruses 
(Noda et  al. 2002), suggesting that VP40 pos-
sesses all the necessary attributes for particle 
assembly and budding. However, VP40 contain-
ing VLPs show a variable diameter of 50–70 nm 
as compared to the diameter of 80 nm for Ebola 

virus, and this shorter diameter is suggested to be 
due to lack of ribonucleoprotein complex (Bavari 
et al. 2002). Ebola VP40 was shown to oligomer-
ize and bind to RNA, thereby suggesting that 
VP40 was essential for viral replication (Hoenen 
et al. 2005). VP40 recruits some cellular proteins 
such as the mammalian tumor susceptibility gene 
101 protein (Tsg101), which is required for endo-
somal protein sorting and transport (Babst et al. 
2000) and the neuronal precursor cell-expressed 
developmentally down-regulated 4 (Nedd4), 
which is a E3 ubiquitin ligase, to sites of virion 
budding at the plasma membrane, and this pro-
cess is believed to facilitate viral egress (Martin- 
Serrano et al. 2001; Yasuda et al. 2003).

The membrane associated protein VP24 is 
suggested to be a minor matrix protein (Elliott 
et al. 1985). VP24 was detected in VLPs indicat-
ing that it may be involved in virus budding. 
VP24 associates with lipid bilayers and can 
oligomerize under physiological conditions, 
thereby suggesting a role in virus assembly (Han 
et al. 2003). Ebola VP24 was found to be essen-
tial for the assembly of functional nucleocapsids 
(Hoenen et al. 2006).

Ebola VP30 protein is phosphorylated and is 
closely associated with the virion RNA. It is sug-
gested to play a role in transcription initiation of 
Ebola virus (Elliott et  al. 1985). VP30 is also 
involved in virus assembly.

VP35 is a cofactor for polymerase L 
(Muhlberger et al. 1999). VP35, NP, VP30 and L 
constitute the active RNA-dependent RNA poly-
merase replication complex. VP35 is synthesized 
prior to VP40  (Elliott et  al. 1985), and is thus 
believed to play a role in early events of viral rep-
lication. Along with NP and VP24, VP35 is 
involved in nucleocapsid formation.

The nucleoprotein (NP) self-assembles into 
large intracytoplasmic aggregates that contain 
nucleocapsid-like structures and are closely asso-
ciated with the rough endoplasmic reticulum. 
Hence, NP is the principal determinant of the 
nucleocapsid structure. NP forms complexes 
with VP30 and VP35, and recruits them to the 
inclusion bodies. Ebola NP is phosphorylated 
(Elliott et al. 1985), and its size ranges from 96 to 
104 kD. Interaction between Ebola VP30 and NP 
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is suggested to regulate viral RNA synthesis 
(Kirchdoerfer et al. 2016).

The non-structural protein RNA polymerase L 
is the largest (267 kD) and least abundant viral 
protein in the virion as well as infected cells. L is 
involved in transcription and regulation of viral 
genome. It is also known to play a role in mRNA 
editing. VP35, VP30 and L are essential for viral 
RNA synthesis.

Ebola virus produces another non-structural 
protein, which is the soluble glycoprotein (sGP). 
The 50–70 kD sGP is abundantly produced dur-
ing the early stage of infection and secreted into 
the extracellular space.

8  Host Immune Evasion by 
Ebola Virus

Several proteins of the Ebola virus are known to 
participate in host immune evasion strategies to 
facilitate viral replication and pathogenesis. 
Ebola virus interferes with the cellular antiviral 
response by targeting the interferon pathway, 
thereby causing a decrease in secretion of IFN-α 
(Harcourt et  al. 1999). Enveloped viruses that 
display phosphatidylserine on their membranes 
can activate Tyro3-Axl-Mer (TAM) receptors on 
DCs to inhibit type I interferon signaling and 
thereby evade the host innate immune response 
(Bhattacharyya et al. 2013; Bhattacharyya 2013). 
Phosphatidylserine expressed on the envelope of 
Ebola virus was shown to be responsible for entry 
(Moller-Tank et al. 2013; Yuan et al. 2015). Also, 
Axl was shown to enhance macropinocytic 
uptake of Ebola virus (Hunt et  al. 2011). Thus, 
Ebola virus may also activate the TAM receptors 
on host cells to inhibit the innate immune 
response.

Ebola VP35 is known to suppress type I inter-
feron production. VP35 can bind to dsRNA 
(Kimberlin et  al. 2010), which suppresses the 
host innate immune response and promotes viru-
lence. Moreover, VP35 competitively blocks 
PACT interaction with retinoic acid-inducible 
gene I (RIG-I), which impairs RIG-I activation to 
suppress the type I interferon response (Luthra 
et  al. 2013). Furthermore, VP35 can block the 

interactions of inhibitor of nuclear factor kappa-
 B kinase subunit epsilon (IKKe) and TANK- 
binding kinase 1 (TBK-1) with interferon 
regulatory transcription factor (IRF)-3 and 
IRF-7  (Prins et  al. 2009), which inhibits their 
activation. VP35 can also block the antiviral 
activity of protein kinase R (PKR)  (Schümann 
et  al. 2009). VP35 impairs maturation of DCs, 
which hinders the production of type I interfer-
ons and pro-inflammatory cytokines, resulting in 
failure of activation of naive T cells. Additionally, 
VP35 also blocks melanoma differentiation- 
associated protein 5 (MDA5)-mediated induction 
of type I interferon responses (Yen et al. 2014). 
Animal model studies have shown that mutant 
VP35 viruses had lower replication rates and 
were non-lethal at tested doses suggesting that 
VP35 was involved in Ebola pathogenesis 
(Hartman et al. 2008).

Ebola VP24 can bind the phosphorylated sig-
nal transducer and activator of transcription 1 
(STAT1) binding site on some karyopherin alpha 
(KPNA) proteins, thereby functioning as a com-
petitive inhibitor of phosphorylated 
STAT1  (Mateo et  al. 2010). Hence, VP24 pre-
vents nuclear trafficking of STAT1 to block inter-
feron signaling (Reid et al. 2006). VP24 can also 
bind STAT1 directly, which is another innate 
immune suppression mechanism of this viral pro-
tein (Zhang et  al. 2012). Moreover, VP24 was 
found to inhibit type III interferon-λ1 gene 
expression, and thereby hamper activation of the 
RIG-I-mediated antiviral pathway (He et  al. 
2017).

The cellular protein tetherin (also known as 
BST-2 and CD317) can prevent budding and 
release of enveloped viruses by tethering them 
to the cell surface. Tetherin is also responsible 
for activating the NF-kB pathway. Ebola GP is 
suggested to block tetherin function by affect-
ing its stability. Ebola GP can also block VP40 
interaction with tetherin and thus promote viral 
egress (Gustin et  al. 2015). Moreover, Ebola 
GP was found to alter antiviral response of NK 
cells (Edri et al. 2018). Additionally, Ebola GP 
caused cytotoxicity of human endothelial cells 
and increased vascular permeability (Yang 
et al. 2000).

2 Mechanisms of Immune Evasion by Ebola Virus
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Large amount of sGP is found in the blood of 
Ebola virus infected patients. sGP is suggested to 
interfere with the host immune response by 
inhibiting the production of pro-inflammatory 
cytokines such as TNF-α and IL-6 by macro-
phages, and also preventing macrophage migra-
tion (Bradley et al. 2018). sGP may also prevent 
effective neutralization of Ebola virus during 
infection by a process termed as ‘antigenic sub-
version’; which has negative implications for 
vaccine design (Mohan et al. 2012).

Ebola VP40, GP and NP are packaged into 
host cell exosomes. These exosomes contain pro- 
inflammatory cytokines and  were suspected to 
increase apoptosis of bystander T-cells, thereby 
hindering adaptive immune response (Pleet et al. 
2016; Pleet et  al. 2019). Additionally, VP35, 
VP30 and VP40 act as suppressors of cellular 
RNA silencing system against Ebola virus infec-
tion (Fabozzi et al. 2011).

9  Conclusions

Several mechanisms by which Ebola virus evades 
the host immune system have been described. 
These diverse mechanisms facilitate viral replica-
tion, pathogenesis and virulence. Hence, devising 
effective strategies to block these immune evasion 
mechanisms of Ebola virus will help to prevent 
the  spread of infection. The global public health 
and economic burden of Ebola virus disease is 
enormous, and extensive improvements are 
urgently needed in the public health systems of the 
affected countries. Future studies should focus on 
the development of additional novel drug and vac-
cine candidates to prevent Ebola virus disease as 
well as eliminating reservoirs of this lethal virus.

References

Aleksandrowicz P et  al (2011) Ebola virus enters host 
cells by macropinocytosis and clathrin-mediated 
endocytosis. J Infect Dis 204(suppl 3):S957–S967

Babst M et  al (2000) Mammalian tumor susceptibil-
ity gene 101 (TSG101) and the yeast homologue, 
Vps23p, both function in late endosomal trafficking. 
Traffic 1(3):248–258

Baize S et  al (1999) Defective humoral responses and 
extensive intravascular apoptosis are associated with 
fatal outcome in Ebola virus-infected patients. Nat 
Med 5(4):423–426

Bavari S et  al (2002) Lipid raft microdomains: a gate-
way for compartmentalized trafficking of Ebola and 
Marburg viruses. J Exp Med 195(5):593–602

Bhattacharyya S (2013) Modulation of type I interferon 
response by RNA viruses. In: Microbial pathogenesis: 
infection and immunity, 1st edn. Landes Bioscience 
and Springer Science, Berlin. http://www.landesbio-
science.com/curie/chapter/5424/

Bhattacharyya S (2007) Exploring filoviral entry. http://
hdl.handle.net/10027/13048

Bhattacharyya S, Hope TJ (2011) Full-length Ebola gly-
coprotein accumulates in the endoplasmic reticulum. 
Virol J 8:11

Bhattacharyya S, Hope TJ (2013) Cellular factors impli-
cated in filovirus entry. Adv Virol 2013:487585

Bhattacharyya S et  al (2010) Ebola virus uses clathrin- 
mediated endocytosis as an entry pathway. Virology 
401(1):18–28

Bhattacharyya S et  al (2011) Differential requirements 
for clathrin endocytic pathway components in cellular 
entry by Ebola and Marburg glycoprotein pseudoviri-
ons. Virology 419(1):1–9

Bhattacharyya S et al (2012) Endocytic pathways involved 
in filovirus entry: advances, implications and future 
directions. Viruses 4(12):3647–3664

Bhattacharyya S et  al (2013) Enveloped viruses disable 
innate immune responses in dendritic cells by direct 
activation of TAM receptors. Cell Host Microbe 
14(2):136–147

Borio L et al (2002) Hemorrhagic fever viruses as biologi-
cal weapons: medical and public health management. 
JAMA 287(18):2391–2405

Bosio CM et  al (2003) Ebola and Marburg viruses rep-
licate in monocyte-derived dendritic cells without 
inducing the production of cytokines and full matura-
tion. J Infect Dis 188(11):1630–1638

Bradley JH et  al (2018) Ebola virus secreted glycopro-
tein decreases the anti-viral immunity of macrophages 
in early inflammatory responses. Cell Immunol 
324:24–32

Chan SY et  al (2000) Distinct mechanisms of entry by 
envelope glycoproteins of Marburg and Ebola (Zaire) 
viruses. J Virol 74(10):4933–4937

Chazal N et  al (2001) Human immunodeficiency virus 
type 1 particles pseudotyped with envelope proteins 
that fuse at low pH no longer require Nef for optimal 
infectivity. J Virol 75(8):4014–4018

Colebunders R, Borchert M (2000) Ebola haemorrhagic 
fever—a review. J Infect 40(1):16–20

Dowell SF et  al (1999) Transmission of Ebola hemor-
rhagic fever: a study of risk factors in family members, 
Kikwit, Democratic Republic of the Congo, 1995. 
Commission de Lutte contre les Epidémies à Kikwit. J 
Infect Dis 179(Suppl 1):S87–S91

Dyall J et  al (2018) Identification of combina-
tions of approved drugs with synergistic activity 

S. Bhattacharyya

http://www.landesbioscience.com/curie/chapter/5424/
http://www.landesbioscience.com/curie/chapter/5424/
http://hdl.handle.net/10027/13048
http://hdl.handle.net/10027/13048


21

against Ebola virus in cell cultures. J Infect Dis 
218(suppl_5):S672–S678

Edri A et al (2018) The Ebola-glycoprotein modulates the 
function of natural killer cells. Front Immunol 9:1428

Elliott LH et al (1982) Inactivation of Lassa, Marburg, and 
Ebola viruses by gamma irradiation. J Clin Microbiol 
16(4):704–708

Elliott LH et al (1985) Descriptive analysis of Ebola virus 
proteins. Virology 147(1):169–176

Empig CJ, Goldsmith MA (2002) Association of the cave-
ola vesicular system with cellular entry by filoviruses. 
J Virol 76(10):5266–5270

Fabozzi G et al (2011) Ebolavirus proteins suppress the 
effects of small interfering RNA by direct interaction 
with the mammalian RNA interference pathway. J 
Virol 85(6):2512–2523

Feldmann H, Geisbert TW (2010) Ebola haemorrhagic 
fever. Lancet 377:849–862

Feldmann H et  al (1994) Characterization of filoviruses 
based on differences in structure and antigenicity of 
the virion glycoprotein. Virology 199(2):469–473

Feldmann H et  al (1996) Filovirus-induced endothelial 
leakage triggered by infected monocytes/macro-
phages. J Virol 70(4):2208–2214

Feldmann H et al (2003) Ebola virus: from discovery to 
vaccine. Nat Rev Immunol 3(8):677–685

Gear JH (1989) Clinical aspects of African viral hemor-
rhagic fevers. Rev Infect Dis 11(Suppl 4):S777–S782

Geisbert TW, Jahrling PB (1995) Differentiation of 
filoviruses by electron microscopy. Virus Res 
39(2–3):129–150

Goldstein T et al (2018) The discovery of Bombali virus 
adds further support for bats as hosts of ebolaviruses. 
Nat Microbiol 3:1084–1089

Gustin JK et al (2015) Ebola virus glycoprotein promotes 
enhanced viral egress by preventing Ebola VP40 from 
associating with the host restriction factor BST2/teth-
erin. J Infect Dis 212(Suppl 2):S181–S190

Han Z et  al (2003) Biochemical and functional charac-
terization of the Ebola virus VP24 protein: implica-
tions for a role in virus assembly and budding. J Virol 
77(3):1793–1800

Harcourt BH et al (1999) Ebola virus selectively inhibits 
responses to interferons, but not to interleukin-1beta, 
in endothelial cells. J Virol 73(4):3491–3496

Hartman AL et al (2008) Inhibition of IRF-3 activation by 
VP35 is critical for the high level of virulence of Ebola 
virus. J Virol 82:2699–2704

Hayden EC (2018) Experimental drugs poised for use in 
Ebola outbreak. Nature 557:475–476

He F et al (2017) Ebolavirus protein VP24 interferes with 
innate immune responses by inhibiting interferon-λ1 
gene expression. Virology 509:23–34

Henao-Restrepo AM et al (2017) Efficacy and effective-
ness of an rVSV-vectored vaccine in preventing Ebola 
virus disease: final results from the Guinea ring vac-
cination, open-label, cluster-randomised trial. Lancet 
389:505–518

Hensley LE et al (2002) Proinflammatory response dur-
ing Ebola virus infection of primate models: possible 

involvement of the tumor necrosis factor receptor 
superfamily. Immunol Lett 80(3):169–179

Hoenen T et  al (2005) VP40 octamers are essential for 
Ebola virus replication. J Virol 79(3):1898–1905

Hoenen T et al (2006) Infection of naive target cells with 
virus-like particles: implications for the function of 
Ebola virus VP24. J Virol 80(14):7260–7264

Hunt CL et  al (2011) The Tyro3 receptor kinase Axl 
enhances macropinocytosis of Zaire ebolavirus. J 
Virol 85(1):334–347

Kiley MP et  al (1982) Filoviridae: a taxonomic home for 
Marburg and Ebola viruses? Intervirology 18(1–2):24–32

Kiley MP et  al (1986) Conservation of the 3′ terminal 
nucleotide sequences of Ebola and Marburg virus. 
Virology 149(2):251–254

Kimberlin CR et al (2010) Ebolavirus VP35 uses a bimodal 
strategy to bind dsRNA for innate immune suppres-
sion. Proc Natl Acad Sci U S A 107(1):314–319

Kirchdoerfer RN et al (2016) The Ebola virus VP30-NP 
interaction is a regulator of viral RNA synthesis. PLoS 
Pathog 12(10):e1005937

Kissling RE et al (1968) Agent of disease contracted from 
green monkeys. Science 160(3830):888–890

Kuhn JH et al (2013) Virus nomenclature below the spe-
cies level: a standardized nomenclature for filovirus 
strains and variants rescued from cDNA. Arch Virol 
159:1229–1237

Leroy EM et al (2005) Fruit bats as reservoirs of Ebola 
virus. Nature 438:575–576

Luthra P et  al (2013) Mutual antagonism between the 
Ebola virus VP35 protein and the RIG-I activa-
tor PACT determines infection outcome. Cell Host 
Microbe 14(1):74–84

Martin-Serrano J et  al (2001) HIV-1 and Ebola virus 
encode small peptide motifs that recruit Tsg101 to 
sites of particle assembly to facilitate egress. Nat Med 
7(12):1313–1319

Mateo M et al (2010) Ebolavirus VP24 binding to karyo-
pherins is required for inhibition of interferon signal-
ing. J Virol 84(2):1169–1175

Miranda ME, Miranda NL (2011) Reston ebolavirus in 
humans and animals in the Philippines: a review. J 
Infect Dis 204(Suppl 3):S757–S760

Mitchell SW, McCormick JB (1984) Physicochemical 
inactivation of Lassa, Ebola, and Marburg viruses and 
effect on clinical laboratory analyses. J Clin Microbiol 
20(3):486–489

Mohan GS et  al (2012) Antigenic subversion: a novel 
mechanism of host immune evasion by Ebola virus. 
PLoS Pathog 8(12):e1003065

Moller-Tank S et al (2013) Role of the Phosphatidylserine 
receptor TIM-1  in enveloped-virus entry. J Virol 
87(15):8327–8341

Muhlberger E et al (1999) Comparison of the transcrip-
tion and replication strategies of Marburg virus and 
Ebola virus by using artificial replication systems. J 
Virol 73(3):2333–2342

Noda T et al (2002) Ebola virus VP40 drives the forma-
tion of virus-like filamentous particles along with 
GP. J Virol 76(10):4855–4865

2 Mechanisms of Immune Evasion by Ebola Virus



22

Pleet ML et al (2016) Ebola VP40 in exosomes can cause 
immune cell dysfunction. Front Microbiol 7:1765

Pleet ML et  al (2019) Extracellular Vesicles and Ebola 
Virus: A New Mechanism of Immune Evasion. Viruses 
11(5):410

Prins KC et  al (2009) Ebola virus protein VP35 
impairs the function of interferon regulatory factor- 
activating kinases IKKepsilon and TBK-1. J Virol 
83(7):3069–3077

Regnery RL et  al (1980) Virion nucleic acid of Ebola 
virus. J Virol 36(2):465–469

Reid SP et al (2006) Ebola virus VP24 binds karyopherin 
alpha1 and blocks STAT1 nuclear accumulation. J 
Virol 80(11):5156–5167

Ryabchikova E et al (1996) Ebola virus infection in Guinea 
pigs: presumable role of granulomatous inflammation 
in pathogenesis. Arch Virol 141(5):909–921

Ryabchikova EI et  al (1999) An analysis of features of 
pathogenesis in two animal models of Ebola virus 
infection. J Infect Dis 179(Suppl 1):S199–S202

Sanchez A et  al (1993) Sequence analysis of the Ebola 
virus genome: organization, genetic elements, and 
comparison with the genome of Marburg virus. Virus 
Res 29(3):215–240

Sanchez A et al (1996) The virion glycoproteins of Ebola 
viruses are encoded in two reading frames and are 
expressed through transcriptional editing. Proc Natl 
Acad Sci U S A 93(8):3602–3607

Sanchez A et  al (2004) Analysis of human periph-
eral blood samples from fatal and nonfatal cases 
of Ebola (Sudan) hemorrhagic fever: cellular 
responses, virus load, and nitric oxide levels. J Virol 
78(19):10370–10377

Schleef RR et al (1988) Cytokine activation of vascular 
endothelium. Effects on tissue-type plasminogen acti-
vator and type 1 plasminogen activator inhibitor. J 
Biol Chem 263(12):5797–5803

Schümann M et al (2009) Ebola virus VP35 antagonizes 
PKR activity through its C-terminal interferon inhibi-
tory domain. J Virol 83(17):8993–8997

Simmons G et al (2002) Ebola virus glycoproteins induce 
global surface protein down-modulation and loss of 
cell adherence. J Virol 76(5):2518–2528

Simmons G et al (2003) Folate receptor alpha and caveo-
lae are not required for Ebola virus glycoprotein- 
mediated viral infection. J Virol 77(24):13433–13438

Sullivan NJ et  al (2005) Ebola virus glycoprotein tox-
icity is mediated by a dynamin-dependent protein- 
trafficking pathway. J Virol 79(1):547–553

Wool-Lewis RJ, Bates P (1998) Characterization of 
Ebola virus entry by using pseudotyped viruses: 
identification of receptor-deficient cell lines. J Virol 
72(4):3155–3160

World Health Organization (2016) Situation report, Ebola 
virus disease. https://apps.who.int/iris/bitstream/han-
dle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;js
essionid=8B7D74BC9D82D2BE1B110BAFFAD3A6
E6?sequence=1

World Health Organization (2016) Final trial results con-
firm Ebola vaccine provides high protection against 
disease. https://www.who.int/en/news- room/detail/23- 
12- 2016- final- trial- results- confirm- ebola- vaccine- -
provides- high- protection- against- disease

World Health Organization (2019) https://www.who.int/
news- room/detail/17- 07- 2019- ebola- outbreak- in- the- 
democratic- republic- of- the- congo- declared- a- public- 
health- emergency- of- international- concern

Yang ZY et  al (2000) Identification of the Ebola virus 
glycoprotein as the main viral determinant of vascular 
cell cytotoxicity and injury. Nat Med 6(8):886–889

Yasuda J et  al (2003) Nedd4 regulates egress of 
Ebola virus-like particles from host cells. J Virol 
77(18):9987–9992

Yen B et al (2014) Molecular basis for ebolavirus VP35 
suppression of human dendritic cell maturation. J 
Virol 88(21):12500–12510

Yonezawa A et  al (2005) Studies of Ebola virus 
glycoprotein- mediated entry and fusion by using pseu-
dotyped human immunodeficiency virus type 1 virions: 
involvement of cytoskeletal proteins and enhancement 
by tumor necrosis factor alpha. J Virol 79(2):918–926

Yuan S et al (2015) TIM-1 acts a dual-attachment recep-
tor for Ebolavirus by interacting directly with viral 
GP and the PS on the viral envelope. Protein Cell 
6(11):814–824

Zaki SR, Goldsmith CS (1999) Pathologic features of 
filovirus infections in humans. Curr Top Microbiol 
Immunol 235:97–116

Zhang AP et al (2012) The ebola virus interferon antago-
nist VP24 directly binds STAT1 and has a novel, pyra-
midal fold. PLoS Pathog 8(2):e1002550

S. Bhattacharyya

https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1
https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease
https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease
https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease
https://www.who.int/news-room/detail/17-07-2019-ebola-outbreak-in-the-democratic-republic-of-the-congo-declared-a-public-health-emergency-of-international-concern
https://www.who.int/news-room/detail/17-07-2019-ebola-outbreak-in-the-democratic-republic-of-the-congo-declared-a-public-health-emergency-of-international-concern
https://www.who.int/news-room/detail/17-07-2019-ebola-outbreak-in-the-democratic-republic-of-the-congo-declared-a-public-health-emergency-of-international-concern
https://www.who.int/news-room/detail/17-07-2019-ebola-outbreak-in-the-democratic-republic-of-the-congo-declared-a-public-health-emergency-of-international-concern


23© Springer Nature Switzerland AG 2021 
U. Kishore (ed.), Microbial Pathogenesis, Advances in Experimental Medicine and Biology 1313, 
https://doi.org/10.1007/978-3-030-67452-6_3

Innate Immune Response Against 
HIV-1

Valarmathy Murugaiah, Hadida Yasmin, 
Hrishikesh Pandit, Kasturi Ganguly, 
Rambhadur Subedi, Maha Al-Mozaini, 
Taruna Madan, and Uday Kishore

1  Introduction

The human immunodeficiency virus-1 (HIV-1) is 
a lentivirus. The HIV-1 infection is characterised 
by the depletion of CD4+ helper T lymphocytes, 
leading to loss of cell-mediated immunity (Okoye  
et al. 2013). Activated CD4+ T lymphocytes are the 
principal target of HIV-1 infection via interactions 
with several cell surface receptors, including CD4 
and chemokine co-receptors to trigger viral fusion 
and facilitate viral entry into host cells (Okoye 
et  al. 2013). The entry of HIV-1 is mediated by 
HIV-1 envelope (env) protein, which is comprised 
of heterodimeric gp120 and gp41 glycoproteins, 

organised as trimeric spikes (Checkley et al. 2011). 
Binding of CD4 to viral gp120 causes reposition-
ing of variable loops, including V1-V3 and, 
thereby, exposing co-receptor binding sites (Trkola 
et  al. 1996; Wu et  al. 1996). The α-chemokine 
receptor, CXCR4, and β-chemokine receptor 
CCR5, are the two key secondary cellular recep-
tors identified for T cell line-tropic and macro-
phage-tropic HIV-1 isolates; they belong to the 
members of the G protein-coupled receptor super-
family (GPCRs) (Allen et  al. 2007). Upon co-
receptor binding, conformational changes within 
trimeric gp120/gp41 complex leads to an insertion 
of gp41-mediated fusion peptide into the cell 
membrane (Kwong et  al. 2000). As a result, 
uncoating steps occur through disassembling the 
viral capsid core, leading to entry of viral RNA 
into the cytosol, and then synthesis of the comple-
mentary DNA (Fig. 3.1).

The innate immune sytem of the female repro-
ductive tract (FRT) offers resistance to HIV-1 
transmission via both innate immune cells and 
non-cellular immune mediators. The innate 
immune recognition and activation upon HIV-1 
(Shen et al. 2014) infection plays a critical role in 
the control of viral infection. The entry of 
HIV-1 in the FRT occurs across gential mucosal 
epithelium (Shen et al. 2014), and thereby, HIV-1 
may translocate in the FRT via vagina, ectocer-
vix, endocervix, uterus, and area with distinctive 
genital epithelial architecture. The innate effector 
mechanisms that contribute to the control of 
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HIV-1 infection include innate barriers such as 
epithium, mucus, pH, the complement system, 
and cells of the innate immune system. However, 
the virus can overcome these barriers to facilitate 
its entry and replication in target cells. The mucus 
in the endocervical epithelium is comprised of 
mucins that forms a physical barrier to pathogens 
and shields FRT tissues from ascending infec-
tions (Gipson et al. 1997; Vigil et al. 2009). The 

mucin is also produced by the stratified epithe-
lium of the vagina and ectocervix, which may 
function as a barrier to provide protection for the 
upper tract against invading pathogens. The aque-
ous part of the mucin is rich in immunoglobulins 
as well as antimicrobial peptides (AMPs) (Ming 
et al. 2007). In addition, pH has also been estab-
lished as a key innate component of the mucus 
that affects transmission of microorganisms. The 

Fig. 3.1 A schematic representation of HIV-1 entry and capture. (a) HIV-1 entry is mediated by attachment of HIV-1 
Env protein, composed of gp120 and gp41 structured as trimeric spikes on the viral surface. The viral glycoprotein 
gp120 binds to CD4 receptor, followed by repositioning of the variable loops V1, V2, and V3, which form a site for 
co-receptor binding, either with CCR5 or CXCR4. (b) This induces a subtle conformational changes in gp41 and leads 
to the insertion of gp41-mediated hydrophobic fusion peptide into the target cell membrane. HIV-1 virions and cell 
membrane become in close apposition to trigger viral fusion, (c) This facilitates the entry of viral nucleocapsid contain-
ing the RNA and other viral proteins into the target cell, (d) Nucleocapsid is degraded and the viral RNA is released into 
the cytosol, which further gets converted into double stranded DNA with the help of viral reverse transcriptase enzyme, 
(e) Viral DNA gets incorporated into the host DNA, (f) Upon incorporation it starts transcribing viral RNAs that is 
incorporated into the nucleocapsid for the formation of new virions and viral mRNAs get translated into necessary viral 
proteins, (g) Viral proteins are assembled to form capsid, spike and other necessary proteins required to produce a com-
plete virion, (h) Immature HIV is formed with nucleocapsid containing viral RNA and outer capsid with envelope 
protein gp120 being incorporated into the host membrane, i) Complete mature virion buds off from the host membrane 
ready to infect other cells
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local presence of bacterium keeps the pH in the 
acidic form through lactic acid and hydrogen per-
oxide production, which provides anti-microbial 
environment (Martin et  al. 2008; Ravel et  al. 
2011). Thus, an interplay of epithelial cells of 
FRT, mucus and lactic acid, together with com-
plement proteins, forms a primary innate barrier 
that prevent progression of HIV-1 infection.

2  Mucosal Immunity and HIV-1

Mucosal immunity plays a central role in the 
pathophysiology of HIV-1 infection as well as 
sexual transmission. The most common route for 
HIV-1 infection is through sexual transmission 
across genital mucosa; over 90% of HIV-1 trans-
missions occur across the mucosal barrier. HIV-1 
infection by a single virus variant/strain termed 
as transmitted/founder (T/F) virus have been 
found to be capable of establishing host infection 
upon mucosal exposure (Derdeyn et  al. 2004; 
Keele et  al. 2008; Pang et  al. 1992; Wolinsky 
et al. 1992; Zhang et al. 1993; Zhu et al. 1993). 
By replicating within the exposed mucosal tissue 
for about a week or 10 days, they migrate to the 
draining lymph node and then into the blood 
stream. Once infection spreads and establishes at 
multiple sites, viral eradication becomes quite 
challenging. Thus, early events within the genital 
mucosa represent a vulnerable stage in the pro-
cess of HIV transmission (Fig. 3.2).

2.1  Dual Roles of Dendritic Cells 
and Langerhans’ Cells: 
DC-SIGN and Langerin

The HIV-1 transmission across mucosal barrier 
involves the interaction of the virus with den-
dritic cells (DCs) and/or CD4+ CCR5+ T cells. 
DCs have been established to be among the key 
cells that perform a pivotal role in encountering 
HIV-1 at the mucosa and regulating both innate 
and adaptive immune responses during HIV-1 
infection. FRT mucosa consists of myeloid DCs, 
plasmacytoid DCs, and Langerhans’ cells, which 
have distinct roles in encountering HIV-1 virions. 

In vitro studies have revealed the efficient capture 
and transfer of HIV-1 to T cells by DCs (Dopper 
et al. 2003; Yu et al. 2008). Thus, in vivo, HIV-1 
utilizes mucosal DCs and causes HIV-1 transfer 
to T cells in lymph nodes. This early innate 
response favours DC maturation and its migra-
tion to secondary lymphoid tissues by creating an 
inflammatory microenvironment. During this 
process, DCs express co-stimulatory molecules 
on its surface required for efficient T cell 
priming.

HIV-1 is transmited to T cells by sub- epithelial 
DCs. In mucosal tissues, DC subsets can be dis-
tinguished by their expression of C-type lectins. 
DCs express dendritic cell-specific intercellular 
adhesion molecule-3-Grabbing non-integrin 
(DC-SIGN), also called CD209 (Geijtenbeek 
et al. 2000); Langerhans cells (LCs) specifically 
express Langerin (de Witte et  al. 2007a, b). 
DC-SIGN is a type II C-type lectin receptor 
expressed on the surfaces of both DCs and mac-
rophages; it binds gp120 (Curtis et al. 1992) and 
enhances HIV-1 infection of T cells (Geijtenbeek 
et al. 2000). The expression of DC-SIGN on DC 
cells highlights contrasting roles of DCs which 
includes immunostimulatory events that mediate 
the binding and transfer of HIV-1 to T cells. 
Several studies have revealed the role of 
DC-SIGN in the pathogenesis of HIV- 1. 
DC-SIGN induction on activated B-lymphocytes 
can lead to an enhancement of HIV-1 transmis-
sion to CD4+ T cells (Rappocciolo et al. 2006). 
The binding of gp120 to DC-SIGN also inhibits 
the anti-apoptotic activity of Nef and apoptosis 
induction in immature DCs (iDCs) (Sarkar et al. 
2013).

HIV-1-DC-SIGN binding on DCs can activate 
and initiate signalling cascade that can induce 
HIV-1 replication and entry in DCs (Gringhuis 
et  al. 2010). Blockade of DC-SIGN in iDCs 
(Wang et  al. 2007) and in activated B lympho-
cytes (Rappocciolo et al. 2006) can lead to signifi-
cant reduction of HIV-1 transfer to CD4+ T cells. 
Over-expression of DC-SIGN correlates with an 
enhanced transmission of HIV-1 to CD4+ T cells 
(Wu et al. 2004). However, low levels of DC-SIGN 
is expressed by LPS-matured DCs when com-
pared to iDCs (Geijtenbeek et  al. 2000a); 
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DC-SIGN blockade on LPS-matured DCs does 
not show any significant effect on HIV-1 trans-
mission to CD4+ T cells (Wang et al. 2007), since 
uptake of HIV-1 by mature DCs does not occur 
(Izquierdo-Useros et  al. 2007). Complement-

opsonised HIV-1 was shown to increase DC 
infection compared to non-opsonised virons, 
which further served as an endogenous adjuvant 
for DC-induced virus specific cytotoxic T lym-
phocytes (CTLs) (Dopper et al. 2003). Therefore, 

Fig. 3.2 Acquisition of HIV infection through vagina. (a) Cell free HIV-1 virions penetrate through the vaginal epithelium 
composed of multi-layered stratified squamous epithelial cells. There they get access to CD4+/CCR5+ Langerhans cells. 
TLR, Langerin, Singlec-1 cell surface receptors also facilitate HIV binding with Langerhan cells. Viruses get internalized by 
LCs, proliferate and then bud off as new virions. HIV through Langerhans cells then passes on to the mucosal subepithelium 
to infect other cells (dendritic cells, macrophages (Mϕs), CD4+ T cells, NK cells). After exposure to HIV-1, cells start secret-
ing several cytokines and chemokines that initiate an inflammatory response. (b) HIV-1-DC- SIGN binding on DCs activates 
and initiates signalling cascade that induces HIV-1 replication and entry in DCs. In mDCs, viral capture is enhanced and 
HIV-1 virions are stored in nonclassical endosomes enriched in tetraspanins or at invaginations of plasma membrane which 
protects them from endosomal or cytosolic degradation. C3 fragments, C3b/C3d attached to gp120, can bind to C3 receptor 
bearing cells such as DCs and Mϕs thus increasing the infectivity. TLRs and Singlec-1 present on DC membrane are also 
capable of binding to gp120 of HIV and can also present HIV to CD4+ T cells. HIV can also directly infect CD4+ T cells, (c) 
Macrophages expressing mannose- binding C-type lectins become infected with HIV. HIV infection also induces immuno-
logical dysfunction in mononuclear phagocytic cells, which also act as reservoirs of actively replicating virus, (d) Antibody 
recognizing HIV gp120 binds to NK cell via CD16 (FcγRIII), stimulating degranulation, mounting cytotoxic response 
towards infected cells. Stress related ligands such as ULBP-1, 2 and 3 are expressed on HIV-infected cells to which NKG2D 
receptor of NK cell binds for cell mediated killing. All the above mentioned events further cause the HIV-1 virions to pene-
trate into nearby lymphoid tissues for further infection
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DCs function in combination with complement-
coated HIV-1  in mediating adaptive T cell 
responses. Yu et al. have proposed that the interac-
tion between DCs and T cells promotes HIV-1 
transmission by locally active receptors and che-
mokine-co-receptors during infectious synapse 
(Yu et al. 2008). Thus, dermal DCs do not only 
transfer HIV-1 from mucosal sites to the lym-
phatic tissue but also effectively shuttle HIV-1 to 
CD4+ T cells.

Despite expressing HIV-1 receptor CD4 and 
coreceptors on their surface, the number of HIV-1 
infected DCs are always low compared to acti-
vated CD4+ T cells or macrophages (Granelli- 
Piperno et al. 1998; 1999; Cameron et al. 1992; 
Pope et al. 1995). The limited HIV-1 infection of 
DCs is possibly due to the host restriction factor 
SAMHD1 (sterile alpha motif domain–and HD 
domain–containing protein) which restricts 
infection by reducing the nucleotide pool avail-
able for reverse transcription (Lahouassa et  al. 
2012). In mature DCs (mDCs), viral capture is 
enhanced and HIV-1 virions are stored in non-
classical endosomes enriched in tetraspanins 
(Garcia et al. 2005), or at invaginations of plasma 
membrane (Yu et al. 2008) which protects them 
from endosomal or cytosolic degradation (Kwon 
et  al. 2002). HIV-1-infected macrophages also 
have budding compartments as invaginations of 
plasma membrane facilitating rapid transfer of 
HIV-1 through T cell contact zone (Welsch et al. 
2007; Deneka et al. 2007).

In lymphoid tissues, compared to iDC, mDCs 
can effectively transfer HIV-1 to T cells through 
virological synapse which is also a major mode 
of transmission in the densely populated lym-
phoid tissue (Fig.  3.3). It has been found that 
sialyllactose-containing gangliosides in the viral 
membrane and the cellular lectin Siglec-1 are 
important for HIV-1 capture and storage by 
mDCs (Izquierdo-Useros et al. 2014). The HIV 
entry portals- CD4, CCR5, and CXCR4, on CD4+ 
T cells are concentrated in the contact zone once 
interacting with mDCs, providing a suitable con-
dition for viral entry and rapid infection 
(McDonald et  al. 2003). The transmission of 
HIV-1 through synapse is potentially 10–1000 
fold more efficient. Virological synapses contain 

interdigitated membrane surfaces, where the T 
cell extends its filopodia to make contact with the 
virions present inside the membrane invagina-
tions on the DC membrane (Fig. 3.3) (Jolly et al. 
2004; Martin et al. 2010; Sattentau 2008; Martin 
and Sattentau 2009; Sourisseau et  al. 2007; 
Dimitrov et  al. 1993; McDonald et  al. 2003). 
These synapses are cytoskeleton-dependent and 
also act as a means to hide from immune response, 
thus, providing a potential mechanism to shield 
the virus, at least partially, from the immune sys-
tem (Jolly and Sattentau 2004; Thao et al. 2014). 
Suppression of DC-SIGN can result in an irregu-
lar formation of the infectious synapse between 
DCs and T cells, leading to inhibiton of X4 HIV-1 
trasmission to T cells (Arrighi et al. 2004a, b).

Binding of gp120 to DC-SIGN triggers Raf-1 
via phosphorylation of p65 subunit of nuclear 
factor kappa B (NF-κB), causing elongated tran-
scripts of HIV-1. This further results in HIV-1 
transfer to CD4+ T cells (Gringhuis and 
Geijtenbeek 2010). HIV-1 endocytosis by DCs 
and trafficking target HIV-1 for lysomal degrada-
tion via endosomal pathway (Yu et  al. 2008). 
Despite the role of DCs during HIV-1 transfer, 
DCs are also shown to produce high levels of 
IL-12 other cytokines, aiding in the first line of 
host defense against invading pathogens. Thus, 
they activate natural killer (NK) cells through 
secretion of IL-12, IL-15, IL-18 and other factors 
(Fig. 3.2).

Mucosal substes of DCs have distinct roles 
during HIV-1 transmission. Epithelial 
Langerhans cells (LCs) and DC-SIGN+-DCs are 
found in the genital tissues. LCs are the first 
type of DC  subset, which are known to play a 
vital innate immune role in encounting HIV-1 
(Cameron et  al. 1996; Knight and Patterson 
1997; Miller and Hu 1999). LCs reside in the 
epidermis of the skin and also in most of the 
mucosal epithelia, such as the ectocervix, vagina 
and foreskin; due to their location, they are 
among the first immune cells that encounter 
HIV-1 in genital tissue (Patterson et al. 2002; de 
Witte et al. 2007a, b). The maturation of LCs is 
represented by an enhancement of CCR7 and 
co-stimualtory molecules, such as CD80/CD86/
CD40/CD83, and by down-regulation of 
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Langerin and E-cadherin (Merad et  al. 2008). 
Thus, matured LCs (mLCs) induce an effective 
immune response by presenting the captured 
HIV-1 to T cells (Merad et al. 2008). LCs induce 
innate immune reponses (de Witte et al. 2007a, 
b) by expressing Toll Like receptors (TLRs), 
such as TLR-2,-3, and -5, and increased levels 
of CD1a, Langerin and intracellular Birbeck 
granules (BGs) (Valladeau et al. 2000; Flacher 
et al. 2006; Fahrbach et al. 2007; Romani et al. 
2010). LCs bring about HIV-1  trasmission to T 

cells through Langerin at the cell surface, simi-
lar to transmission by DC-SIGN.

Cell lines expressing Langerin bind HIV-1 
gp120 (Kedzierska et al. 2003). LCs expressing 
high levels of Langerin do not significantly 
transfer HIV-1, but LCs pre-incubated with 
10E2 blocking antibody bring about increased 
HIV-1 transmission (de Witte et  al. 2007a, b). 
However, internalization of HIV-1 through 
Langerin leads to inhibion of viral transmission 
and degradation of the virus (de Witte et  al. 

Fig. 3.3 T cell priming by DC and macrophages inside the lymph node. The early innate immune response inside the 
mucosa favours DC maturation and its migration to secondary lymphoid tissues by creating an inflammatory microen-
vironment; (a) During this process, DCs express co-stimulatory molecules on its surface required for efficient T cell 
priming. (b) In lymphoid tissues, mDCs can effectively transfer HIV-1 to T cells through virological synapse which is 
also a major mode of transmission. Cellular lectin Siglec-1 is important for HIV-1 capture and storage by mDCs. The 
HIV entry receptors CD4, CCR5, and CXCR4 on CD4+ T cells get accumulated in the contact zone once in contact with 
mDCs. T cell extends its filopodia to make contact with the virions present inside the membrane invaginations on the 
DC membrane. Virological synapses contain interdigitated membrane surfaces facilitating HIV transmission; (c) HIV 
infection also induces immunological dysfunction in mononuclear phagocytic cells, which act as reservoirs of actively 
replicating viruses in its vesicular compartments. Macrophages engulf HIV-infected CD4+T cells which further incor-
porate HIVs that proliferate and get released as new virions infecting other CD4+ T cells
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2007a, b). Thus, Langerin acts as a natural 
innate barrier against HIV-1 transmission by 
transporting endocytosed HIV-1 virons to 
Birbeck granules (BGs) for subsequent degrada-
tion (de Witte et al. 2007a, b). BGs are langerin-
positive organelles exclusively present in LCs, 
where they originate at the cell membrane as 
langerin+caveolin-1+ caveolae, and subsequently 
develop into caveolin-1-positive BGs. BGs 
belong to caveolar endocytosis pathway and 
caveolin-1 mediated HIV-1 uptake is an intrin-
sic restriction mechanism limiting HIV-1 infec-
tion in LCs (van den Berg et al. 2014). Ribeiro 
et al. (2016) have shown that HIV-1 restriction 
in LCs is mediated through human E3-ubiquitin 
ligase tri-partite-containing motif 5α (TRIM5α). 
TRIM5α is capable of binding incoming retro-
viral capsid restricting retroviruses after fusion, 
and thus, interfers with the uncoating and 
reverse-transcription processes. TRIM5α pro-
motes the assembly of an autophagy- activating 
scaffold to langerin, which further targets HIV-1 
for autophagic degradation. Interestingly, HIV-1 
binding to DC-SIGN+ DCs abrogates TRIM5α 
restriction due to disassociation of TRIM5α 
from DC-SIGN (Ribeiro et  al. 2016). Thus, 
binding of langerin with HIV-1 is possibly for 
the routing of HIV-1 into the human TRIM5α-
mediated restriction pathway by LCs.

LCs have also been shown to inhibit T-cell 
infection via viral clearance by Langerin. 
However, anti-HIV-1 barrier of LCs are abro-
gated when sexually transmitted infections (STIs) 
are present, which promote HIV-1 transfer to 
CD4+ T cells (Ogawa et  al. 2009). In contrast, 
vaginal LCs do not seem to express langerin, sug-
gesting that HIV-1 virions may bypass a langerin- 
mediated degradation pathway (Ballweber et al. 
2011). Certain T/F viruses are also capable of 
infecting immature LCs, which are also found to 
retain these viruses. Not all T/F viruses are effi-
cient in infecting LCs; this difference in infectiv-
ity possibly allows certain T/F viruses to escape 
LC restriction. Thus, HIV-1 potentially increases 
the range of available transmission routes 
(Hertoghs et al. 2019).

X4-tropic HIV-1 replicates vigorously in LCs 
and DCs ex vivo when compared to R5-tropic 

viruses (Cameron et al. 1996; Ganesh et al. 2004; 
Piguet and Steinman, 2007). HIV-1 virions are 
also known to interact with intercellular adhesion 
molecules (ICAMs) and their ligands which may 
promote DC-T cell intraction and HIV-1 transmis-
sion. Up-regulation of ICAM-1 by mDC is corre-
lated with an enhanced mDC-mediated HIV-1 
transmission (Sanders et  al. 2002); inhibiting 
ICAM-1 on DCs causes impaired HIV-1 transmis-
sion (Sanders et  al. 2002). HIV-1 incorporated 
ICAM-1 has been shown to enhance viral infec-
tion of cells expressing leukocyte function- 
associated molecule 1 (LFA-1) by promoting viral 
attachment and internalisation (Fortin et al. 1998; 
Tardif and Tremblay 2003). Therefore, ICAM-
1:LFA-1 interaction is considered as a pivotal 
mechanism for HIV-1 infection (Sanders et  al. 
2002). In addition, interaction of cytoplasmic 
domain of ICAM-1 with immauture HIV-1 Gag 
(Beausejour and Tremblay 2004) results in 
ICAM-1 recruitment of HIV-1 particles.Virus 
incorporated ICAM-1 also results in low activity 
of neutralising antibodies against Env protein 
(Rizzuto and Sodroski 1997) and capability of 
ICAM-1 antibodies to block viral entry (Rizzuto 
and Sodroski 1997).

DC-SIGN interacts with ICAM-2 to mediate 
the transendothelial migration of DCs to the 
lymph nodes, or site of inflammation in periph-
eral tissue (Wang et al. 2003). Blocking ICAM-2 
on DCs or CD4+ T cells does not elicit any effect 
on DC-mediated HIV-1 transmission to CD4+ T 
cells (Wang et  al. 2009). In addition, 
DC-SIGN:ICAM-3 interaction has been shown 
to stabilise effective DC-T cell receptor engage-
ment, further resulting in the internalization of 
soluble antigen ligands and antigentic peptide 
presentation to T cells (Halary et  al. 2002; Yu 
Kimata et  al. 2002). It is also known that the 
interaction between DC-SIGN and ICAM-2 reg-
ulates chemokine-induced DC transmigration 
across activated and resting endothelium. An 
increased replication of HIV-1 has been shown in 
ICAM-3 negative CD4+ T cells, which may indi-
cate that ICAM-3 plays an essential role in pro-
moting replication of HIV-1 cis-infection 
(Biggins et  al. 2007). Conversely, blocking 
ICAM-3 interaction with DC-SIGN does not 
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show any effect on HIV-1 cell to cell transmis-
sion (Wu et al. 2002; Wang et al. 2009).

DCs express TLRs that play a central role in 
innate immunity as they recognise and detect 
PAMPs on invading pathogens and trigger 
immune responses. Apart from TLRs, several 
other host proteins have also been identified as 
PRRs for HIV-1 PAMPs. Interferon inducible 
protein 16 (IFI16) and cyclic GMP-AMP syn-
thase (cGAS) are intracellular PRRs capable of 
recognizing viral reverse transcriptase products 
early in the viral replication cycle in HIV-1 
infected cells (Altfeld and Gale Jr. 2015). HIV-1 
infection of DCs leads to up-regulation of TLRs 
in DCs (Hernandez et al. 2011), thus promoting 
viral replication and cell-to-cell transmission 
(Gringhuis et al. 2010) via TLR signalling path-
way. TLR2 and TLR4 are up-regulated during 
HIV-1 infection in DCs and monocytes from indi-
viduals co-infected with HIV-1 and 
Mycobacterium tuberculosis (Hernandez et  al. 
2011). The expression of TLR2/TLR4 has been 
positively correlated with an enhanced HIV-1 
viral load in these individuals, which may indicate 
that increased levels of these TLRs may promote 
HIV-1 transmission to CD4+ T cells (Hernandez 
et al. 2011). However, a direct correlation between 
HIV-1 and TLR2/TLR4 on replication of HIV-1 
and DC-mediated cell to cell transmission is not 
been understood. Co-infection of HIV-1 with M. 
tuberculosis or Candida albicans stimulates lev-
els of TLR2 homo- or heterodimers, resulting in 
an increased replication of HIV-1 involving kinase 
raf-1 through phosphorylation of the p65 subunit 
of NF-κB (Gringhuis and Geijtenbeek 2010). 
TLR2 signalling may thus endorse HIV-1 infec-
tion of DCs as well as DC-induced HIV-1 trans-
mission. However, other studies have suggested 
that PAMPs recognition through TLR initiates 
anti- viral signalling cascades via NF-κB activa-
tion, further resulting in the downstream produc-
tion of pro-inflammatory and anti-viral cytokines 
and chemokines (Kawai et al. 2007). Thus, activa-
tion of NF-κB serves as a vital innate factor dur-
ing HIV-1 infection by facilitating replication of 
viruses via long terminal repeat (LTR) engage-
ment (Barbeau et  al. 1997). Soluble TLR2 
(sTLR2) found in mucosal fluids has also been 

suggested to inhibit the production of pro- 
inflammatory cytokines (LeBouder et  al. 2003; 
Kuroishi et  al. 2007; Dulay et  al. 2009) and to 
direct inhibition of cell-free HIV-1 infection in 
vitro (Henrick et al. 2014; Henrick et al. 2012). 
Furthermore, direct interaction of p17, gp41 and 
p24 of HIV-1 with sTLR2 leads to inhibition of 
viral protein induced activation of NF-κB and 
inflammation (Henrick et  al. 2014). Therefore, 
HIV-1 structural proteins may act as PAMPs for 
cellular heterodimers of TLR2.

Treatment of DCs with fungus Penicillium 
marneffei has been shown to cause increased 
DC-mediated HIV-1 transmission to target cells 
(Qin et  al. 2011). Stimulation of TLR2 dimers 
can activate DCs to induce DC-mediated HIV-1-
transmission by recognising fungal PAMPs, 
either by direct signalling or up-regualtion of 
ICAM-1 (Qin et al. 2011). Carbohydrate-binding 
agents (CBAs) have been shown to prevent 
HIV-1 infection by targeting glycans of gp120 
and inhibit DC-SIGN-mediated HIV-1 capture 
by DCs and transfer to CD4+ T cells (Pollicita 
et al. 2008).

Plasmacytoid dentritic cells (pDCs) also 
have innate immune roles against invading 
pathogens. HIV-1 restricts pDCs-induced 
innate immune response by decreasing cell 
counts of pDCs in peripheral blood. Individuals 
infected with HIV-1 have lower pDC levels 
when compared to uninfected inviduals 
(Muller-Trutwin and Hosmalin 2005). 
Exposure of HIV-1 gp120 leads to suppression 
of pDC activation and TLR9-mediated inhibi-
tion of pro-inflammatory cytokines, thus, influ-
encing expression levels of CD83 (a marker for 
DC-activation) (Muller- Trutwin and Hosmalin 
2005). HIV-1 inhibits pDC function by TLR7/
TLR8-mediated suppression (Martinson et  al. 
2007) and IFN-α restriction (Tilton et al. 2008). 
Prior to HIV-1 induced cell death, pDCs 
enhance the regulation of CCR7 production, 
leading to an increased production of IFN 
(Lehmann et  al. 2010). HIV-1 virions induce 
pDCs into TRAIL-expressing killer pDCs and 
down-regulate HIV-1 mediated co-receptor 
binding by TLR7-induced IFN-α (Hardy et al. 
2007).
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2.2  Role of Monocytes 
and Macrophages

HIV-1 is capable of infecting a variety of myeloid 
cells. Monocytes are mononuclear phagocytic 
cell that are derived from CD34+ myeloid pro-
genitor cells within the bone marrow and act as 
common precursors of macrophages and myeloid 
DCs. HIV-1 infection also induces immunologi-
cal dysfunction in mononuclear phagocytic cells, 
which also act as reservoirs of actively replicat-
ing virus. Phenotypic and functional changes 
have been found in monocyte population follow-
ing HIV-1 infection, which includes expansion of 
CD16+ monocytes (Trial et  al. 1995; Nockher 
et al. 1994; Pulliam et al. 1997; Abel et al. 1992; 
van der Kuyl et al. 2007). Mococytes act as carri-
ers of HIV-1  in semen, vaginal and cervical 
secretions (Mostad and Kreiss 1996) and 
DC-mediated transfer of virus to regional lymph 
nodes (Spira et  al. 1996). Thus, these cells can 
accumulate large numbers of virions without cell 
death, and infected macrophage populations are 
preserved despite progressive T-cell depletion 
(Fig.  3.3) (Gendelman et  al. 1989). Circulating 
monocytes in HIV-1 infection display marked 
alterations in surface markers and in their mode 
of functioning that is associated with progression 
to AIDS (Bender et al. 1988; Braun et al. 1988; 
Rich et al. 1988; Dudhane et al. 1996; Noursadeghi 
et al. 2006).

Macrophages are differentiated immune cells, 
which play an important role in the clearance of 
pathogens and cellular debris via phagocytosis; 
thus, macrophages are one of the important target 
cells for HIV-1 infection. Macrophages can also 
act as antigen presenting cells (APC) to CD4+ T 
cells via major histocompatibility complex 
(MHC) class II pathway (Ackerman and 
Cresswell 2004; Koppensteiner et al. 2012), and 
trigger CD8+ cytotoxic T cells (CTL) by cross- 
presentation of HIV-1 antigens (Ackerman and 
Cresswell 2004). Therefore, the interaction 
between macrophages and CD4+ T cells is of 
paramount importance in HIV-1 transmission 
and immune response (Crowe et al. 1990; Groot 
et al. 2008). On the other hand, HIV-1 infected 
macrophages and monocytes exhibit a range of 

aberrant roles, inducing persistence of HIV-1 
virions or delaying the adaptive immune 
responses, such as impaired T cell activation 
(Ennen et  al. 1990; Twigg 3rd et  al. 1991) and 
antigen presentation (Blauvelt et  al. 1995), 
diminished expressions of Fc receptors (Dugast 
et al. 2011; Tyler et al. 1990) and surface mole-
cules, e.g. CD36 (Olivetta et al. 2014), as well as 
impaired TLR response (Zhu et al. 2011).

In acute and chronic phases of HIV-1 infec-
tion, proliferation of CD16+ monocytes were 
observed along with high plasma viral load (Kim 
et al. 2009). In the cases of terminal AIDS, deple-
tion of CD16+ monocytes were observed. CD14+ 
monocytes, expressing CD16, expand during 
HIV-1 infection (Nockher et  al. 1994; 
Thieblemont et al. 1995; Dunne et al. 1996). The 
expression of FcγR on the surface of monocytes 
(and other immune cells) may play a critical role 
in the immunopathogenesis of HIV-1 infection. A 
significant increase in the FcγRIII (CD16) 
expression whereas decrease in FcγRI (CD64) 
expression on blood monocytes were observed in 
HIV-1-infected patients (Allen et al. 1991; Miller 
et  al. 2001) FcγRIII on monocytes may also 
mediate antibody-dependent enhancement of 
HIV-1 infectivity (Allen et  al. 1991). Increased 
monocyte FcγRII (CD23) expression was also 
observed in AIDS patients (Miller et al. 2001).

Macrophages, infected with HIV-1 virus, 
transfer the virus to other target cells, for 
instance, CD4+ lymphocytes, through T cell 
fusion (Crowe et al. 1990) and via the formation 
of viral synapse between HIV-1 Gag and Env on 
macrophages and CD4 on T cell (Groot, Welsch 
& Sattentau 2008; Gousset et  al. 2008). 
Macrophage-mediated HIV-1 transfer to T cells 
may promote  subsequent CD4+ T-cell infection 
and their depletion (Garaci et  al. 2003). 
Furthermore, mannose receptor (MR), expressed 
by monocyte- derived macrophage (MDM), was 
shown to capture both R5 and HIV-1 strains, 
which can be abrogated by manose-binding lec-
tin (MBL) and MR antibody (Pollicita et  al. 
2008). Blood monocytes and lymph node mac-
rophages have been implicated in the persis-
tence and pathogenesis of HIV-1 infection 
(Kedzierska et al. 2003; Zhu et al. 2011; Crowe 
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et al. 2003; Sharova et al. 2005; Montaner et al. 
2006). Both macrophages and monocytes cause 
HIV-1-mediated neuroinvasion and contribute 
to HIV-1 infection in the brain and neuronal 
injury (Soulas et al. 2011; Gras and Kaul 2010; 
Schnell et al. 2009). HIV-1 variants and macro-
phage-tropic HIV-1 env genes have been 
detected from brain tissues from individuals 
infected with HIV-1 (Gonzalez-Perez et  al. 
2012). HIV-1-mediated pro-inflammatory cyto-
kine profiles of macrophages/monocytes 
increase viral replication and persistence in acti-
vated macrophages in vitro. Thus, up-regulation 
of IFN and NF-κB responses were found to be 
enhanced upon HIV-1 infection, which is possi-
bly to promote viral spread by recruiting mac-
ropages and CD4+ T cells to the site of infection 
(Woelk et al. 2004).

The roles of macrophages and monocytes 
have also been described in the neuropathogene-
sis due to HIV-1 infection. Thus, they are reported 
to contribute to HIV-1 mediated dementia as a 
result of pro-inflammtory cytokines and neuro-
toxin production (Kedzierska and Crowe 2002; 
Chakrabarti et  al. 1991). Conversely, impaired 
effector functions of both monocytes and macro-
phages have been reported, including intracellu-
lar killing, phagocytosis, chemotaxis and 
production of cytokines and chemokines. In this 
regard, such malfunctions may contribute to the 
pathophysiology of AIDS through re-activation 
and expansion of other opportunistic infections 
(Kedzierska and Crowe 2002).

2.3  Role of Natural Killer Cells

Anti-viral effector functions of NK cells are 
critical in the innate immunity (Biron et  al. 
1989; Fleisher et  al. 1982). NK cell- mediated 
anti-viral activity has been highlighted in HIV-1 
infection (Orange 2006). Infection, activation 
and proliferation of NK cells result in both kill-
ing of infected cells as well as secretion of IFN-
γ, TNF-α and chemokines, which drive 
Th1-antigen specific T and B cell mediated spe-
cific responses (Mocikat et  al. 2003). IL-2, 
IL-12 and IL-15 produced during the initial 

phase of HIV-1 infection can also activate NK 
cells (Stacey et al. 2009a, b).

Killer immunoglobulin-like receptors (KIRs) 
play an important role in modulating the activity 
of NK cells against HIV-1-infected cells 
(Bashirova et  al. 2001). Binding of inhibitory 
KIRs to their respective HLA class I ligands is 
necessary for NK cell licensing. Licensed NK 
cells are functionally active and capable of stron-
ger anti-viral effector functions against HIV-1 
through ADCC-mediated killing (and even direct 
killing of infected cells) (Kamya et  al. 2011; 
Parsons et  al. 2012, 2014; Song et  al. 2014). 
Populations of licensed NK cells expressing 
KIR2DL1, KIR2DL2 or KIR2DL3 are preferen-
tially expanded during primary HIV-1 infection as 
compared to unlicensed NK cells (Korner et  al. 
2014). Significant changes in NK cell subsets are 
associated with acute HIV-1 infection (Alter et al. 
2005).

An impaired activity of CD56− NK cell sub-
set in HIV-1-viremic individuals is associated 
with dysfunctional NK cell population (Mavilio 
et  al. 2005). NK cells isolated from HIV-1-
infected patients have been found to be dys-
functional in their ability to lyse HIV-1 infected 
cells (Ullum et al. 1995; Bonaparte and Barker 
2003). Recently, the effects of HIV-1 viremia 
on NK cell phenotype and functions have been 
examined. The levels of both expression and 
acitivty of most inhibitory NK cell receptors 
(iNKRs) on the NK cell surface are signifi-
cantly increased in viremic patients (Mavilio 
et  al. 2003; Ahmad et  al. 2001); a direct rela-
tionship with the levels of HIV-1 viremia has 
also been reported (Kottilil et al. 2004). Specific 
stress-related ligands such as ULBP-1, 2, and 3 
by Vpr accessory protein, which are specific 
ligands for NKG2D receptor, are also upregu-
lated due to HIV-1 infection that further aggre-
vates NK cell-mediated killing of infected cells 
(Richard et al. 2010) (Fig. 3.2).

Reduced surface expression of natural cyto-
toxicity receptors (NCRs), such as NKp44, 
NKp46 and NKp30, has also been seen in HIV-1 
viremic patients, along with a reduction in 
NK-mediated cytolytic activity (Mavilio et  al. 
2003; De Maria et  al. 2003). Direct correlation 
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between unusal expansion of NK cell subsets 
including CD56−/CD16+ (CD56−) and enhanced 
HIV viral loads has also been reported (Mavilio 
et al. 2003; Scott-Algara et al. 2002). Furthermore, 
the ability of NK cells to secrete CC-chemokines 
is affected by HIV-1 viremia, these chemokines 
are well known supressors of HIV-1 replication 
in vitro (Kottilil et  al. 2004; Oliva et  al. 1998). 
Suppression of HIV-1 replication after treatment 
with anti-retroviral therapy (ART) results in a 
significant improvement in NK cell-mediated 
cytotoxicity, secretion of cytokines and NK cell 
receptor activity (Mavilio et al. 2003), as well as 
restoration of CD56 expression levels 
(Sondergaard et  al. 1999). Activated NK cells 
secrete CCL3–5 chemokines, which are known 
ligands for CCR5 (HIV-1 co-receptor), and thus, 
block viral entry through binding to CCR5 
(Kottilil et al. 2004).

3  Complement and HIV-1 
Infection

Early defence against virus by the innate immune 
system is crucial in limiting viral invasion. The 
presence of complement in blood and other body 
fluids plays a significant role in virus infectivity 
and pathogenesis. Following the initial mucosal 
penetration, the complement system confers the 
foremost defence barrier to control HIV-1 propa-
gation that relies on the recognition of patterns on 
the surface of invading pathogens and triggering 
complement activating effector functions via 
three pathways: classical, alternative and lectin. 
The complement system plays a central role in 
neutralising IgG and IgM-bound viruses and pro-
moting phagoctytosis of HIV-1 virions.

The classical pathway is triggered by the bind-
ing of C1q to Fc regions of antigen bound IgG or 
IgM. The classical pathway can also be activated 
by the direct binding of C1q to the glycoproteins 
of certain viruses in the absence of specific  
antibodies; human cytomegalovirus (Spiller and 
Morgan 1998) and some retroviruses (Cooper 
et al. 1976; Solder et al. 1989) such as human T 
cell lymphotropic virus (Ikeda et  al. 1998). 
However, HIV-1 defeats complement mediated 

inhibition via binding to C1q with HIV-gp41 
envelope protein (Marschang et  al. 1994). C1q 
and globular head receptor, gC1qR, are known to 
interact with gp41 of HIV-1 (Ebenbichler et  al. 
1991; Fausther-Bovendo et al. 2010). In addition, 
C1q has been shown to associate with ectodo-
main of gp41 via gC1q domain (Thielens et al. 
1993) particularly via ghA chain (Kishore et al. 
2003) (Thielens et al. 2002; Pinter et al. 1995). 
Recently, C1q was shown to suppress DC-SIGN- 
mediated HIV-1 transfer to activated pooled 
peripheral blood mononuclear cells (Pednekar 
et al. 2016). gC1qR on its own suppresses HIV-1 
production in MT-4 and H9 human T cell lines, as 
well as HIV-1IIIB and HIV-1Ba-L infected macro-
phages (Szabó et al. 2001).

In vivo studies have demonstrated 
complement- dependent viral lysis (Sullivan 
et al. 1996; Sullivan et al. 1998). Complement 
can promote the effect of neutralising antibod-
ies in vivo and in vitro (Posner et  al. 1992; 
Gauduin et al. 1997). Binding of gp41 and/or 
gp120 to C1q (or MBL) leads to an enhance-
ment of antibody- mediated complement acti-
vation (Ebenbichler et al. 1991; Thielens et al. 
2002; Spear et  al. 1991; Haurum et  al. 1993; 
Thielens et al. 2002; Stoiber et al. 1994; Stoiber 
et  al. 1995a, b; Susal et  al. 1996) (Fig.  3.4). 
C1q- or C3-deficient serum from uninfected 
individuals as a source of complement show 
non-anti-HIV-1 activity. Thus, the classical 
pathways mainly contributes to anti- HIV- 1 
activity through anti-HIV-1 antibodies (Aasa-
Chapman et al. 2005). HIV-1 infected patients 
demonstrate accumulation of C3 on the surface 
of the HIV-1 virions (Stoiber et al. 2001). The 
binding of gp120/gp41 of HIV-1 to MBL has 
also been shown to trigger complement activa-
tion via the lectin pathway (Haurum et  al. 
1993; Ezekowitz et  al. 1989; Saifuddin et  al. 
2000). Purified MBL also inhbits HIV-1 infec-
tion of CD4+ H9 lymphoblasts in vitro 
(Ezekowitz et al. 1989). Binding of MBL was 
seen in the case of U937 and H9 cells infected 
with HIV-1; MBL likely recognises high man-
nose glycans present on HIV-1 gp120, and 
thereby prevents viral entry to susceptible cells 
(Ezekowitz et al. 1989).
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Complement-mediated lysis of cells infected 
with HIV-1 is an important innate defence in 
clearing and neutralising HIV-1 virions. HIV-1 
infected patients mount an effective anti-viral 
immunity, producing both neutralizing and non-
neutralising antibodies. These antibodies contrib-
ute to anti-viral actitivity in four ways: direct 
neutralization of free residing virions, comple-
ment-mediated lysis through complement activa-

tion and antibody-antigen engagement, 
opsonisation and phagocytosis of virions by mac-
rophages and other target cells, and viral destruc-
tion via antibody-dependent cellular cytotoxicity 
(ADCC) (Huber and Trkola 2007). Neutralising 
antibodies bind HIV-1 env sites, restricting bind-
ing of HIV-1 virions to target cells. However, non-
neutralising antibody binding to either 
non-specific sites of HIV-1 proteins or env does 

Fig. 3.4 Role of complement in HIV infection. (a) The binding of gp120/gp41 of HIV-1 to C1q or mannose- binding 
lectin (MBL) triggers complement activation, leading to an enhancement of Ab-mediated complement activation and 
opsonization. HIV-1 is also capable of defeating complement mediated inhibition via binding to C1q with HIV-gp41 
envelope protein, (b) Binding of factor H to both gp41 and gp120 protects from complement mediated lysis, HIV-1 
gp120 and gp41 can also bind to properdin; (c) HIV-1 mediated complement activation also leads to deposition of C3 
fragments (C3b, C3d, iC3b) to gp120 and increases infectivity of C3-receptor (CR1, CR2, CR3) bearing cells. Factor I 
aids in the cleavage of C3b (iC3b or C3d) attached to HIV, thus can attenuate pathogenesis by inactivating HIV-
conjugated C3b and C4b; (d) HIV gp120 and gp41 can also bind to C3b and C4b; (e) Complement regulator proteins 
such CD46, CD55 and CD59 are widely expressed on T lymphocytes, monocytes and macrophages that are incorpo-
rated into the budding HIV-1 enhancing resistance to complement-mediated lysis
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not have the abilitity to stop the virions from 
enaging with target receptor/co- receptor. 
However, non-neutralising antibodies can also 
block viral replication by restricting uncoating of 
virions or budding later in the HIV-1 life cycle 
(Huber and Trkola 2007). The antibodies specifi-
cally against gp120, gp41, core Gag and matrix 
p17 are detectable in the plasma from HIV-1 posi-
tive patients (Pincus et al. 1994; Belec et al. 1995; 
Binley et al. 1997; Pellegrin et al. 1996; Richman 
et  al. 2003). However, HIV-1 virions can esape 
neutralizing antibodies by rapid mutations in viral 
env genes, mediating stumps of monomeric HIV-1 
gp120 and gp41, and shedding neutralising epit-
opes and repositioning of the glycan-mediated 
shield (Wyatt and Sodroski 1998; Pantophlet and 
Burton 2006; Parren et  al. 1999; Stoiber et  al. 
2008; Wei et al. 2003; Parren et al. 1997; Moore 
et al. 1990). Furthermore, the expression levels of 
host complement receptors are down-regulated by 
HIV-1, leading to an impaired monocyte-medi-
ated chemotactic response to inflammatory stim-
uli; HIV-1 gp120 glycoportein exposure 
diminishes C5a (Speth and Dierich 1999). C3 and 
C5a deposition aids in HIV-1 interaction with 
cells containing complement receptors CR3 and 
CR4, including DCs and macrophages.

The binding of antibody and complement or 
complement alone to the viral surface leads to the 
loss of viral infectivity (Fig.  3.4). Complement 
receptors (CRs) present on macrophages or DCs 
can further opsonise viral particles with comple-
ment components present in blood or other body 
fluids. CR3 interaction with gp41 results in the 
enhancement of viral entry as well as spread in 
the cells (Stoiber et al. 1997). In addition, com-
plement mediates the binding of HIV-1 to CR1 
on erythrocytes and CR2 on B cells, exploiting 
these cells to produce C3d opsonised HIV-1 
infectious reservoirs in order to infect other non- 
infected cells (Horakova et  al. 2004). HIV-1-
mediated complement activation leads to C3 
fragment binding to gp120 complex and an 
increased infectivity of C3-receptor bearing cells. 
CR1 (CD35) and CR2 (CD21) contribute in an 
independent manner to facilitate infection of 
human T cells with complement-oponised HIV-1 
virus (Delibrias et  al. 1993). Furthermore, 

C3d-CR2 and CD4-gp120 interactions may 
enhance viral adhesion to target cells, an impor-
tant step in viral entry (Lund et al. 1995).

Both HIV-1 envelope proteins, gp41 and 
gp120, recruit complement factor H, which has a 
role in protecting self-cells from complement 
mediated lysis (particularly alternative pathway) 
to various binding sites (Pinter et al. 1995; Stoiber 
et  al. 1995a, b). This leads to reduction in 
complement- dependent lysis of virus and infected 
cells in vitro (Stoiber et al. 1996). Factor I aids in 
the cleavage of C3b (iC3b or C3d) attached to 
HIV-1, thus can attenuate HIV-1 pathogenesis by 
inactivating HIV-1-conjugated C3b and C4b 
(Banki et al. 2006). iC3b coated HIV-1 displays 
enhanced infection of macrophages and DCs 
expressing CR3 and CR4. Complement is capa-
ble of efficiently inducing CTL responses against 
different viral infections (Masaki et  al. 1992; 
Banki et al. 2010) (Fig. 3.4). Complement opso-
nized retroviral particles can stimulate DCs to 
induce CTL responses both in vitro and in vivo 
(Bánki et  al. 2010). DCs exposed to IgG- 
opsonized HIV-1 significantly decreases the 
HIV-1-specific CD8+ T-cell response compared 
to DCs bound to complement-opsonized HIV-1 
(Posch et  al. 2012). Complement coating of 
HIV-1 can strongly influence intracellular trans-
mission of the virus in DCs compared to 
 non- opsonized HIV-1. At the same time, comple-
ment-opsonized HIV-1 can fruitfully bypass the 
SAMHD1 (Posch et al. 2015).

A number of host cell proteins are incorpo-
rated into virions of HIV-1 while budding out 
from the host cell. Complement regulatory pro-
teins such as CD46, CD55 and CD59 are widely 
expressed on T lymphocytes, monocytes and 
macrophages (Terstappen et  al. 1992) that are 
also incorporated into the budding HIV-1 enhanc-
ing their resistance to complement-mediated 
lysis (Saifuddin et al. 1997). Several pathogenic 
enveloped viruses, including HIV-1, influenza, 
herpes, Ebola and cytomegalovirus, are known to 
escape antibody-dependent complement medi-
ated lysis by incorporating certain complement 
regulators such as CD59 and CD55 into their 
envelope, which may explain why some patho-
genic human viruses are not neutralised by com-
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plement in human fluids even when they induce a 
strong antibody response (Saifuddin et al. 1995). 
CD59, which can be found on the HIV-1 enve-
lope, prevents complement mediated neutralisa-
tion of IgG bound viruses (Schmitz et al. 1995). 
HIV-1 infected patients have a low expression 
levels of both CD59 and CD55 on the membranes 
of lymphocytes (Lederman et  al. 1989; Weiss 
et al. 1992). Thus, incorporation of these comple-
ment regulators in the HIV-1 envelope is to pro-
tect the virus against the complement attack.

4  Protective Role of Surfactant 
Protein D Against HIV-1

Surfactant Protein D (SP-D) is a pattern recogni-
tion innate immune molecule. SP-D is known to 
play a key role in the clearance of various patho-
gens via agglutination, enhanced phagocytosis 
and killing. SP-D structure mainly consists of 
N-terminal triple-helical collagen region, an 
α-helical coiled-coil neck region, and carbohy-
drate recognition domain (CRD). The trimeric 
CRD domain interacts with glycosylated moi-
eties on the pathogen surface that brings about 
agglutination and inhibition of infection. The 
CRD and collagen domains in SP-D interacts 
with various receptors such as calreticulin/CD91, 
SIRPα, and CD14 on the cell surface of immune 
cells and regulate effector functions (Gardai et al. 
2003). Human SP-D in its native form and also 
the recombinant fragment of human SP-D (rhSP-
 D containing neck and CRD) bind to gp120 of 
HIV-1 and inhibit viral replication in vitro in a 
calcium and dose-dependent manner (Pandit 
et al. 2014). SP-D also inhibits viral replication in 
U937 monocytes (Meschi et al. 2005) and PM1 T 
(Madsen et al. 2013) cells by binding to gp120. 
The increased serum SP-D levels has been 
reported in the AIDS patients, but not during 
early stages of HIV-1 infection (Jambo et  al. 
2007), which decreases following ART (Kunisaki 
et al. 2011). SP-D (and rfhSP-D) has been shown 
to reduce DC-SIGN-mediated transfer of HIV-1 
to PBMCs (Dodagatta-Marri et al. 2017). Sensing 
of HIV-1 infection by PRRs such as SP-D results 
in the innate immune activation of both infected 

cells and bystander cells. This in turn causes pro-
duction of proinflammatory cytokines and che-
mokines (Altfeld and Gale Jr. 2015), leading to 
activation of innate immune cells, such as macro-
phages, dendritic cells, and NK cells. Previous 
pre- clinical safety studies on SP-D coupled with 
its efficacy in restricting viral passage in the vagi-
nal barrier through reversal of virus-induced gene 
expression also indicates possible application of 
SP-D as a topical anti-HIV microbicide (Pandit 
et al. 2019).

5  Innate Cytokines 
and Chemokines in HIV-1 
Infection

Expression profiles of cytokines, chemokines 
and their respective receptors in HIV-1 infection 
are of great significance, which may influence 
HIV-1 pathogenesis and infection susceptibility. 
They contribute to the induction or inhibition of 
viral entry and replication. Altered activation of 
HIV-1-induced immune cells, such as macro-
phages, NK cells,  DCs, and B cells leads to an 
increased production of both pro- and anti- 
inflammatory cytokines and chemokines, includ-
ing interferons (IFNs), TNF-α, IL-1, IL-2, IL-4, 
IL-6, IL-8, IL-10, IL-15, MCP-1 and interferon 
gamma-induced protein (IP) -10 (Stacey et  al. 
2009a, b; Rychert et al. 2010).

HIV-1-gp120 attachment triggers production 
of CC chemokines, including CCL2, CCL3, 
CCL4 and CCL5, which serve as a chemoattrac-
tants for macrophages, DCs and lymphocytes. 
The expression levels of these CC chemokines 
are regulated by TNF-α, IL-6, IL-10 and IL-1β, 
which are also modulated by HIV-1 infection 
(Fantuzzi et  al. 2003). Interaction between the 
negative regulatory factor (Nef) of HIV-1 and 
DCs results in an increased production of IL-12, 
IL-15, IL-1β, TNF-α and chemokines, including 
MIP-1α, MIP-1β and IL-8 (Quaranta et al. 2002; 
Guha et al. 2012). Human uterine epithelial cells 
up-regulate secretion of IL-6, IL-10, IL-1β and 
TNF-α in response to R5-induced HIV-1 infec-
tion (Nazli et al. 2010). The natural ligands for 
CCR5, including MIP-1α, MIP-1β, RANTES 
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(Combadiere et al. 1996) and monocyte chemo-
tactic protein 2 (MCP-2) (Gong et  al. 1998; 
Ruffing et al. 1998) suppress the entry of HIV-1 
into target cells. In addition, CCR5 homozogous 
mutations in humans seem to confer resistance to 
HIV-1 infection (Deng et  al. 1996). MIP-1α, 
MIP-1β and RANTES inhbit CD4/CRR5-HIV-1 
mediated cell fusion, MCP-2 being a potent 
inhibitor of CD4/CRR5 induced HIV-1 entry and 
replication (Gong et al. 1998). Activated cervical 
CD4+ T-cell subsets that express CCR5, IL-17A, 
IFN-γ and α4β7 bind gp120 of HIV-1 in vitro 
(McKinnon et al. 2011); the levels of these cells 
are depleted during HIV-1 infection from the cer-
vix, suggesting their role as HIV-1 targets during 
sexual transmission.

Innate type I IFNs, including IFN-α, IFN-β, 
IFN-ε, IFN-κ, and IFN-ω, are known to confer 
protection against virus infection via induction of 
immune activation, enhanced antigen presenta-
tion and anti-viral activity (Yamamoto et  al. 
1986). IFN-α-mediated inhibitory effects on 
HIV-1 replication in macrophages and monocyes 
are documented (Mace and Gazzolo 1991). 
During acute and late phases of HIV-1 infection, 
high level of plasma IFN has been observed; curi-
ously, it correlates with an enhanced disease pro-
gression to AIDS (Herbeuval et al. 2007). 
Interferons stimulated genes (ISGs), which are 
triggered by type I IFNs, induce signalling events 
that restrict HIV-1 replication (Pitha 1994; Hou 
et  al. 2009 ). Tripartite motif (TRIM) proteins 
also inhibit viral replication. For example, in 
Rhesus macaque, TRIM5α interferes with HIV-1 
and other retroviral infections by restricting early 
stage of viral replication (Dutrieux et al. 2015).

In addition to pDCs-indced IFN activation, 
HIV-1 virions stimulate production of CXCL10, 
CCL4, CCL5, IL-6 and TNF-α (Megjugorac 
et  al. 2004; Penna et  al. 2002). Induction of 
TRIM22 by IFN-β blocks replication of HIV-1 
(Barr et  al. 2008). TRIM22 over-expression 
restricts HIV-1 replication in 293  T HEK cells 
and human macrophages (Bouazzaoui et  al. 
2006). Moreover, gp120 of HIV-1 can block 
IFN-α secretion and TLR9-mediated activation 
in pDCs (Martinelli et  al. 2007). HIV-1 gp120 
leads to suppression of pDC-induced cytolytic 

activity of NK cells. Thefore, the direct interac-
tion between gp120 and pDCs may interfere with 
TLR9 activation, leading to reduced ability of 
pDCs to produce anti-viral inflammatory factors.

6  Anti-HIV-1 Innate Immunity 
by Peptide Antibiotics 
in Female Reproductive 
Tracts

The mucosal system of both male and female 
reproductive tracts utilizes a wide range of 
immune mechanisms to provide a protective 
environment against invading pathogens. The 
epithelial cells that line up FRT express innate 
immune sensors such as TLRs; endogenous 
secretions from these cells have anti-HIV-1 prop-
erties (Cole 2006; Keller et al. 2007; Fahey and 
Wira 2002; Schaefer et  al. 2005; Ghosh et  al. 
2008). Human α- and β-defensins are the most 
well- characterised and abundunt anti-microbial 
peptides (AMPs), secreted by epithelial cells and 
neutrophils in the FRT (Wira et al. 2005; Klotman 
and Chang 2006).

Replication of HIV-1 was first shown to be 
inhibited by synthetic guinea pig, rat and rabbit 
α- defensins, which can block HIV-1 following 
viral load into transformed CD4+ T cells 
(Nakashima et al. 1993). Similar anti-viral activi-
ties of human neutrophil peptide 1 (HNP1), HNP2 
and HNP3, have been reported against HIV-1 pri-
mary isolates (Wu et al. 2005), HNP4 being more 
effective than HNP1–3  in preventing human 
PBMCs from X4 and R5 HIV-infection. HNP1–3 
can restrict HIV-1 replication through direct inter-
action with the virus, or affect the target cells 
(Chang et al. 2005; Chang et al. 2003; Wang et al. 
2004; Mackewicz et al. 2003). HNP1 can inacti-
vate the virus directly before it infects target cells 
in the absence of serum at a low MOI (Chang 
et al. 2005). However, in the presence of serum, 
the direct effect of HNP1 was observed on 
infected cells which inhibited HIV-1 infection 
during nuclear import and transcription phase. 
HNP1 also interferes with protein kinase C (PKC) 
signalling in primary CD4+ T cells. Furthermore, 
expression levels of CC-chemokines are up-regu-
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lated by HNP1–2  in macrophages, which may 
contribute to HIV-1 blockade through receptor 
competition (Guo et  al. 2004). CC-chemokines 
can also mediate HNP release from neutrophils 
via degranulation (Jan et al. 2006).

HNP1–3 can function as lectins; they bind to 
gp120 of HIV-1 and CD4 with greater affinity 
(Wang et al. 2004). HNP4 acts in a lectin inde-
pendent manner and binding of HNP4 to CD4 or 
gp120 is not evident (Wu et al. 2005; Wang et al. 
2004). The role of other α-defensins and their 
ability to inhbit HIV-1 capture and replication 
has been investigated. Rhesus macaque myeloid 
α-defensins-3 (RMAD3) can block HIV-1 infec-
tion at a high concentration associated with cyto-
toxicity. However, enhancement of viral 
replication is observed with mouse cryptdin-3 
(Tanabe et  al. 2004). Studies carried out using 
primary CD4+ T cells and macrophages revealed 
that HNP1 caused a post-entry HIV infection, but 
not in some transformed T cell lines (Chang et al. 
2005; Chang et al. 2003).

Anti-HIV-1 activities of human β-defensin 2 
(HBD2) and HBD3 have been examined (Sun 
et al. 2005; Quinones-Mateu et al. 2003). HBD2 
and HBD3 interact with HIV-1 virons (Quinones- 
Mateu et al. 2003). HBD2 blocks early stages of 
HIV-1 Bal and IIIB strains, but does not have any 
effect on cell-cell fusion and cellular proliferation 
(Sun et al. 2005). HBD1 and HBD2 do not modu-
late the expression of HIV-1 co-receptors in pri-
mary CD4+ T cells. However, another study has 
indicated that both HBD1 and HBD2 mediate 
down-regulation of CXCR4 but not CCR5  in 
PBMCs and T lymphocytic cell line (Quinones- 
Mateu et  al. 2003). HBD2 is expressed constitu-
tively in healthy adult oral mucosa; HIV-1-infected 
individuals seem to show decreased expression lev-
els of HBD2 (Sun et al. 2005).

Retrocyclins and θ-defensins from rhesus 
macaques including θ-defensin-1 (RTD1), RTD2 
and RTD3 also act as lectins and induce anti-viral 
effects against primary isolates of HIV-1 (Wang 
et al. 2004; Munk et al. 2003; Wang et al. 2003; 
Cole et  al. 2002). Retrocyclins seem to bind to 
CD4 and gp120 of HIV-1 with high affinity, 
instead of directly inactivating the virus (Munk 
et al. 2003). High affinity binding of Retrocyclins 

to gp120 (glycosylated) and CD4 is mediated 
through O- and N-linked sugar interaction (Wang 
et al. 1998). Thus, defensins can contribute to a 
novel anti-retroviral-mediated mechanism that 
can induce mucosal prevention of HIV-1 
transmission.

Protease inhibitors are the second class of 
well-identified AMPs, including elafins, serine 
protease inhibitors (serpins), Secretory leukocyte 
protease inhibitors (SLPI) and cystatins (Wiesner 
and Vilcinskas 2010). Protease inhibitors exert 
anti-inflammatory properties by preventing pro-
teases secreted by immune cells. Thus, they can 
activate the complement system and trigger pro-
duction of other inflammatory mediators, leading 
to severe inflammation and inhibiton of proteo-
lytic cleavage of protein precursors that are 
essential for production of virions. Epithelial 
cells of both upper and lower FRT produce 
Trappin-2/Elafin messenger RNA; recombinant 
form of Trappin-2/Elafin has been shown to 
inhibit both R5-M-tropic BaL and X4-T-tropic 
IIIB strain of HIV-1 in a dose-dependent manner 
(Ghosh et  al. 2010). Vaginal fluid confers anti-
HIV-1 properties against both R5 and X4 HIV-1 
strains, thus, providing a protective barrier 
against HIV-1 infection as well as reducing inte-
gration of pro- viral genome in human cervico-
vaginal tissue derived organotypic cultures 
(Venkataraman et al. 2005).

Human apolipoprotein L1 (APOL1) as a key 
component of innate immunity has been reported 
to restrict HIV-1 transcription and cause degrada-
tion of HIV-1 Gag in the endolysomal compart-
ment (Taylor et  al. 2014), in addition to 
degradation of viral accessory proteins involved 
in targeting host restriction factors. For instance, 
APOL1-mediated viral degradation results in 
restoring levels of APOBEC3G (A3G) and 
reduced progeny virion infectivity. Endogenous 
APOL1 expression levels in differentiated U937 
monocytic cells result in decreased production of 
HIV-1 virions. Other proteases such as cystatins 
and serpins exert anti-viral effects by blocking 
HIV-1 binding and viral replication (Aboud et al. 
2014).

Lactoferrin, lysozyme and calthelicidin LL37 
are the other anti-microbial products secreted by 
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neutrophils and lower FRT epithelium (Wira 
et  al. 2005; Wiesner and Vilcinskas 2010). 
Lactoferrin, a well known conserved multi- 
functional protein of transferrin family, enhances 
the activity of NK cells (Damiens et  al. 1998; 
Shau et al. 1992), further promoting neutrophil- 
mediated phagocytosis and production of reac-
tive oxygen species (Kawai et al. 2007; Miyauchi 
et  al. 1998; Ward et  al. 2008). Lactoferrin also 
triggers macrophage activation (Wakabayashi 
et al. 2003) via enhanced production of cytokines 
and nitric oxide (NO) (Sorimachi et al. 1997) and 
regulation of the proliferation of intracellular 
pathogens (Actor et al. 2002).

Lactoferrin shows a potent anti-viral activity 
against HIV-1 replication (Harmsen et al. 1995); 
it inhbits HIV-1 infection of target cells through 
interference with viral fusion via V3 loop of 
gp120 (Harmsen et al. 1995; Cole and Cole 2008). 
Lactoferrin can restrict the replication of HIV-1 
and formation of syncytium in a dose- dependent 
manner (Puddu et  al. 1998). Glycolactin and 
angiogenin-1 proteins isolated from bovine milk 
suppress activity of HIV-1 reverse transcriptase, 
but weakly inhibit proteases and integrases of 
HIV-1 (Ng et  al. 2001). Bovine lactoferrin pre-
vents DC-SIGN-mediated HIV-1 capture and 
transmission through blockade of 
DC-SIGN-gp120 interaction (Groot et al. 2005). 
Decreased levels of lactoferrin correlate with an 
enhanced risk of HIV-1 transmission through 
breast milk from infected mother to her infant as 
they grow older (Ekpini et al. 1997). Therefore, 
supplement of lactoferrin may reduce the risk of 
HIV-1 transmission during this period. Moreover, 
both human and bovine lactoferrin have an effec-
tive anti-HIV-1 property when combined with 
zidovudine, suggesting synergism against syncy-
tium-inducing and non-syncytium- inducing clini-
cal isolates of HIV-1(Viani et al. 1999).

In addition, the binding ability of lactoferrin 
to larger quantities of iron has also been sug-
gested to initiate protection against micro-
organisims and their metabolities by enhancing 
phagocytosis, cell adherence as well as regulat-
ing the release of pro-inflammatory cytokines 
and chemokines. In vitro studies have suggested 

the effective role of iron in HIV-1 replication. 
Thus, clinical studies also define an important 
correlation between the status of host iron and 
progression of HIV-1. For example, anemia has 
been reported as a consequence of HIV-1 that 
poorly impacts survival (Lundgren and Mocroft 
2003; Moore 1999). Additionally, recombinant 
form of human erythropoietin (r-HuEPO) has 
been suggested to be an effective factor in 
enhancing levels of hematocrit and diminishing 
requirements of transfusion in HIV-1 infected 
individuals with < or  =  500  IU/L levels of 
endogenous erythropoietin (Moore 1999). As a 
result, therapy in combination with r-HuEPO 
has been reported to be safe and well tolerated. 
Conversely, enhanced iron levels is positively 
correlated with viral load (Friis et al. 2003) and 
mortality (Gordeuk et al. 2006; McDermid et al. 
2007). Furthermore, the role of iron metabolism 
in HIV-1 infection is supported by the gentic 
polymorphisms in iron  regulatory genes, includ-
ing Nramp1 and haptoglobin, thus these are 
effective predictors of mortality (McDermid 
et  al. 2009). Anti-HIV activity of calthelicidin 
LL37, highly expressed by neutrophils and sev-
eral mucosal epithelial cell types, has been 
explored. LL37 blocks the replication of 
HIV-1 in PBMC and CD+T cells (Bergman et al. 
2007).

7  Feto-Maternal Vertical 
Transmission of HIV-1

About 40% of HIV-1 infections in children (Hong 
et al. 2009; Luzuriaga 2007) occur through verti-
cal transmission from mother-to-child either 
through transplacental or intra-uterine transmis-
sion, intrapartum transmission during delivery or 
during breastfeeding (Smith et al. 2003; Naarding 
et  al. 2005; Boily-Larouche et  al. 2009). 
DC-SIGN and DC-SIGN-related C-type lectin 
domain family 4, member M (L-SIGN) receptors 
are involved in HIV-1 transmission from mother 
to child (Baribaud et al. 2001).

Both DC-SIGN and L-SIGN are capable of 
binding to the gp120 of HIV-1 (Feinberg et  al. 
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2001; Geijtenbeek et  al. 2000a, b; Pöhlmann 
et al. 2001; Baribaud et al. 2001). Extracellular 
domain of DC-SIGN and L-SIGN receptors is 
divided into two structures: the neck repeat 
region and the CRD (Khoo et al. 2008). The neck 
repeats region plays a crucial role in tetrameriza-
tion and supports carbohydrates’ recognition, 
thus directly influencing the receptor’s binding 
affinity to pathogens. The CRD region, both in 
DC-SIGN and L-SIGN, is flexibly connected to 
the neck repeat region (Wu and KewalRamani 
2006). L-SIGN can bind to ICAM-3 in addition 
to other cell surface receptors, facilitating inter-
actions between T cells and the endothelial cell 
surface. This helps in transmitting the virus to 
secondary lymphoid organs rich in T cells and 
increasing the infection of target CD4+ cells 
(Geijtenbeek et al. 2000a, b). L-SIGN is capable 
of internalizing the virus and promoting virus 
degradation in a proteasome-dependent manner 
(Boily-Larouche et al. 2009).

Human placenta plays an important role in the 
transmission of HIV-1 infection exposing the 
virus to the fetus especially during the third tri-
mester of pregnancy (Geijtenbeek et  al. 2001). 
Hofbauer cells in the chorionic villi show high 
expression of DC-SIGN during pregnancy, thus 
enhancing the binding of HIV-1 on the surface 
(Soilleux et  al. 2001). Hofbauer cells infected 
with HIV-1 may enter the fetus through the 
umbilical vein (Soilleux et al. 2001; Soilleux and 
Coleman 2003) or may release infectious viral 
particles, which further bind with the adjacent 
placental capillary endothelium through L-SIGN 
and to circulating lymphocytes travelling between 
the placenta and the fetus in umbilical cord blood 
(Soilleux et  al. 2001; Soilleux and Coleman 
2003).

Mammary epithelial cells and macrophages 
aid in transmission of HIV-1 to the newly born 
via breastfeeding. Breast milk contains huge 
number of macrophages (about 80% of total cells 
present in colostrum), which express CCR5 to 
which HIV-1 binds (Naarding et  al. 2005; 
Ichikawa et al. 2003). Virus then reaches to the 
mucosal layer of upper intestine which contains 
large number of lymphocytes expressing CCR5 
and CXCR4 that further helps in viral prolifera-

tion; this leads to depletion of CD4+ T cells. The 
mucosal environment of gut also contains DCs 
expressing CD4/CCR5, DC-SIGN, and DC206 
(Shen et al. 2010). HIV-1 inside the DCs are pro-
tected from gastrointestinal juice, they lose their 
infectivity once exposed to the acidic environ-
ment. HIV-1 can also attach to L-SIGN receptor 
to increase its infectivity (Naarding et al. 2005).

8  Mucosal Defence Factors 
in Clinical Trials

Several anti-HIV-1 agents have been identified 
and developed via clinical trials, specifically to 
target and block viral entry processes. ART is 
used to delay immune system-mediated destruc-
tion, lower severity and rates of opportunistic 
infections as well as progression of 
AIDS. Successful ART involves combination of 
nucleoside/nucleotide reverse transcriptase 
inhibitors (NRTIs), non-nucleoside reverse tran-
scriptase inhibitors (NNRTIs), and protease 
inhibitors (PIs) (Gulick et al. 2003). These inhibi-
tors reduce viral load below measurable levels in 
the plasma of HIV-1 infected patients, leading to 
reduced mortality and morbidity (Gulick et  al. 
2003; Barbaro et al. 2005; Hammer et al. 1996). 
However, the use of ART in patients only sup-
presses the virus, but do not eradicate it. In addi-
tion, multiple drug therapies using ART regimen 
lead to an adverse toxicities including drug-drug 
interaction (Piscitelli et  al. 1996; Louie and 
Markowitz 2002).

Soluble polyanions, such as heparin, cyclodex-
trin sulphate and dextran sulphate, have been 
developed to block the non-specific adsorption and 
attachment between HIV-1 virions and cell mem-
brane (Callahan et  al. 1991). Cyanovirin-N, iso-
lated from cyanobacterium Nostocellipsosporum, 
has been suggested to bind HIV-1-gp120 and 
potently inhibit HIV-1 attachment to target cells 
(Boyd et al. 1997; Botos et al. 2002). Additionally, 
PRO 2000, a naphthalene sulfonate polymer, binds 
non-specifically to CD4 receptor. Thus, vaginal 
PRO 2000 gel is well tolerated in phase I/II clinical 
trials (Van Damme et al. 2000; Smita et al. 2006). 
Furthermore, licorice root- isolated glycyrrhizin 
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has been shown to inhbit replication of HIV-1 
through blocking viral absorption of CD4+ cells 
(Huang and Chen 2002).

Besides ART, each step in the HIV-1 entry 
process provides several targets for chemothera-
peutic attack, including pathways of viral entry, 
viral transcription, nuclear export and maturation 
(Pereira and Paridaen 2004; Yu et  al. 2005). 
Among these potential targets, entry of the virus 
is one of the major effective target for the devel-
opment of HIV inhibitors/drug. Enfuvirtide has 
been indentified as the first novel class of antiret-
roviral drugs to inhibit HIV fusion, which is 
approved by US FDA(Poveda et  al. 2005). 
Recombinant forms of soluble CD4 (rsCD4) 
molecules were designed to target HIV-1 entry 
and rsCD4 has been reported to lack both trans-
membrane and cytoplasmic domain of CD4. 
However, these molecules were suggested to 
retain the ability of gp120 binding, thus, function 
as molecular decoys. In vitro studies have high-
lighted that these molecules have shown good 
anti-viral activity against tissue culture-adapted 
HIV-1 strains, but its activity in early phase of 
clinical trials was not effective (Schooley et  al. 
1990; Daar et al. 1990; Turner et al. 1992).

CD4-gp120 binding inhibitors have been 
developed. Expression and characterization of 
recombinant tetrameric CD4-IgG2, also known 
asPRO 542, was designed to replace both the 
heavy and light chain of Fv portions of human 
IgG2 by the human CD4 domains, including D1 
and D2 (Allaway et al. 1995). It targets the bind-
ing site of CD4 on gp120 and mimicks CD4 
receptor. Data from phase I-II clinical trials have 
demonstarted that PRO542 diminishes HIV-1 
RNA levels after single intravenous dose in addi-
tion to being well tolerated and effective in 
HIV-1 infected individuals (Jacobson et al. 2004; 
Jacobson et al. 2000). Furthermore, human IgG4 
monoclonal antibody, ibalizumab (TNX 355), 
was developed against CD4, which binds to D2 
domain and blocks soluble post- binding of 
CD-4-induced conformational changes in the 
HIV-1 envelope glycoproteins (Moore et  al. 
1992). Ibalizumab has been effective in reducing 
up to a 1.5-log10HIV-1 RNA levels in plasma 
after a single dose for 14–21  days (Kuritzkes 

et al. 2004), but resistance was seen after 9 weeks 
administration (Jacobson et al. 2004). TNX 355 
was effective in reducing plasma HIV-1 viral 
load and resulted in an increased levels of CD4+ 
T cells (Kuritzkes et al. 2004). Combination of 
Ibalizumab and an optimised background regi-
men has been shown to result in decreased levels 
of plasma HIV-1 RNA than background regimen 
alone (Norris et al., 2006).

Small molecule inhibitors, including BMS- 
378806 and BMS-488043, have shown great 
promise in blocking gp120-CD4 interactions 
(Guo et al. 2003; Lin et al. 2003). BMS-378806 
inhibitor is promising against HIV-1 subtype B 
and blocks CD4 receptor binding in vitro (Lin 
et al. 2003). However, BMS- 378806 drug devel-
opment was discontinued after phase I clinical 
trails due to poor target exposure was achieved. 
Development of BMS-488043 is being success-
fully studied in phase II clinical trials, which 
shows 1-log10 reductions of HIV-1 RNA levels 
in the plasma in treated individuals (Hanna et al. 
2004.). NBD-556 (8) and NBD-557 (9) com-
pounds have shown potent micromolar anti- 
HIV- 1 activity (Zhao et  al. 2005). In addition, 
Zintevir (AR177) was reported as an effective 
HIV integrase inhibitor but later its role was sug-
gested to block the binding of CD4 to gp120 at a 
sub-micromolar concentration. However, studies 
of acute toxicity in mice demonstrated that 
AR177 to be toxic as evident from and histologic 
vacuolization in several organs (Wallace et  al. 
2000; Este et al. 1998). On the other hand, exper-
iments using cynomolgus monkeys demonstrated 
that AR177 did not show any major hemody-
namic toxicity (Wallace et al. 1996).

A range of approaches have been developed to 
block the interaction between HIV-1 and co-recep-
tors, CCR5, CXCR4. The strategies to prevent 
CCR5 co-receptor binding includes CCR5 small 
molecule antagonists, mAbs and covently modi-
fied non-agonostic natural CCR5 ligands, such as 
AOP- RANTES. RANTES, MIP-1- α and MIP-1- 
β were identified as HIV-supressive factors to limit 
HIV infection. N-terminus modification of 
RANTES, AOP- RANTES and NNY-RANTES, 
are nanomolar inhibitors of HIV-R5 starins 
(Simmons et al. 1997). PRO 140 is  another prom-
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ising inhibitor of CCR5 that blocks gp120 interac-
tion to CCR5, although it does not prevent 
CC-chemokine signalling. Anti-HIV activity of 
PRO 140 was shown to be potent and effective 
during phase II clinical trials (Trkola et al. 2001).

CCR5 small molecule antagonists, including 
maraviroc, aplaviroc, vicriviroc and 
INCB009471, exhibit significant inhibition of 
HIV-1 replication. Maraviroc as an antagonist of 
CCR5 has an anti-viral property against all 
CCR5- tropic HIV strains. Maraviroc also inhib-
its MIP-1- α as well as RANTES- induced sin-
galling at lower nanomolar concentrations (Dorr 
et  al. 2005). HIV-1 infected subjects achieve 
≥1.6 log10 plasma HIV-1 reduction following 
600  mg maraviroc daily doses (Fatkenheuer 
et al. 2005). Aplaviroc is another class of CCR5 
antagonist that blocks MIP-1α (Watson et  al. 
2005), achieving 1.6- log10 reduction levels of 
plasma HIV- RNA during 10 day administration 
(Lalezari et  al. 2005a, b). However, Aplaviroc 
has failed in phase II clical trials, because of 
drug-mediated hepatitis and severe hepatotoxic-
ity (Nichols et al. 2008). Like maraviroc, vicrivi-
roc exerts its anti- viral activity by blocking 
CC-chemokine signalling at nanomolar concen-
trations (Strizki et  al. 2005). Fourteen-day 
administration of vicriviroc resulted in lower 
levels of HIV-1 RNA, down to 1.0–1.5 log10 cop-
ies/mL  (Schurmann et al. 2007).

CXCR4 antagonists block entry of HIV-1 
without affecting the downstream signalling 
pathway or causing internalization of CXCR4. 
Enfuvirtide and T-1249 are two well established 
fusion inhibitors designed to prevent gp41-medi-
ated fusogenic conformation. Enfuvirtide (T-20) 
binds heptad repeat 1 (HR1) and mimics HR3 
fragment of gp41, thereby, blocking viral fusion 
and entry (Wild et  al. 1994). Phase III clinical 
trial studies have demonstrated the efficacy of 
enfuvirtide when combined with an optimized 
background regimen (Lalezari et  al. 2003; 
Lazzarin et  al. 2003). Additionally, co-adminis-
tration of enfuvirtide with other agents such as 
darunavir, maraviroc, or tirapanavir significantly 

improved response rates in highly treatment-
experienced HIV-1 patients in clinical trials 
(Hicks et al. 2006; Fatkenheuer et al. 2008; Clotet 
et al. 2007).

T-1249, is a second generation fusion inhibi-
tor, which has ten-fold more anti-HIV activity 
(Lalezari et  al. 2005a, b). T-1249 was also 
reported to be significantly active against HIV-1 
enfuvirtide- resistant isolates as well as against 
HIV-2 and SIV (Briz et  al. 2006; Melby et  al. 
2007). However, clinical development of T-1249 
was discontinued due to formulation challenges 
(Martin-Carbonero 2004). Additional oligomeric 
HIV-1 fusion inhibitor peptides such as TRI-999 
and TRI-1144, show better pharmacokinetic pro-
files. A series of oligomeric HR2 peptides, 
including T-2635, T-267221, T-267227, have 
been reported to be 3600 fold more active com-
pared to compound 42 and T-1249, targeted 
against HR2-resistant viral isolates. Thus, studies 
using these peptides in cynomolgus monkeys 
have revealed 100-fold improved pharmacokinet-
ics (Dwyer et al. 2007). The broadly neutralizing 
antibodies (bnAbs) are another new emerging 
class of therapeutics for HIV-1, which also par-
ticipate in clearing viral reservoir cells through 
activation of host immune system (Grobben et al. 
2019) Some of the promising candidates include 
3BNC117, VRC01 that resulted in decrease of 
0.8–2.5 Log10  copies/mL in responsive partici-
pants (Caskey et al. 2015; Lynch et al. 2015). The 
bnAbs have been shown to delay viral rebound in 
HIV-1 infected individuals post ART (Bar et al. 
2016). However, de novo resistance to HIV-1 is 
one of the serious drawback for the bnAbs based 
therapy. 

Recently, bnAbs 1-18, VH1-46-derived CD4 
binders, have been explored (Schommers et al. 
2020). These bnAbs have better potency than most 
of the classical VH1-46- and VH1-2-derived 
bnAbs. The bnAbs 1-18 effectively restrict viral 
escape and maintain both neutralizing activity 
against VRC01-class escape variants and full viral 
suppression in HIV-1YU2-infected humanized 
mice (Schommers et al. 2020). 
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9  Conclusions

The ability of innate immune system to recog-
nise and respond to HIV-1 is a noteworthy 
approach to control HIV-1 transmission and dis-
ease progression. Complement system is recog-
nised as a key mediator of innate immunity, 
which plays a number of roles in the pathogen-
esis of HIV-1, either contributing towards anti-
HIV-1 activity or enhancement of infection. 
HIV-1 can directly activate the complement sys-
tem; conversely, HIV-1 virions can also be resis-
tant to complement-mediates lysis. After initial 
mucosal penetration, the direct binding of HIV-
1-gp41 to C1q triggers activation of the classical 
pathway. Thus, HIV-1gp120 interaction also 
activates the classical pathway in an antibody 
dependent manner. However, HIV-1 utilises 
complement regulators such as CD59, CD55 as 
well as factor H, to overcome complement 
attack, leading to HIV-1 transmission and pro-
gression. The interaction between gp41 and 
CR3 enhances both viral entry as well as viral 
spread in the cells.

Innate immune response by mucosal epithelial 
cells lining up the FRT contributes to viral con-
trol, but the virus has multiple strategies to escape 
and overcome anti-viral resistance. Innate 
immune cells such as macropahges, DCs, NKs, 
and neutrophils play a significant role against 
invading HIV-1 virions. Langerhans cells and 
plasmacytoid dendritic cells have an important 
anti-viral role through virus degradation via 
Birbeck granules (BGs) or increased secretion of 
type I interferons. Type I and II-generated inter-
feron stimulated genes (ISGs) induce signalling 
events that contribute to the inhibition of HIV-1 
replication. TLR7/8 stimulation induces the pro-
duction of multiple immunomodulatory and anti- 
viral cytokines. Inhibitory effects of IFN-α on 
replication of HIV-1 in macropahges and mono-
cytes are well-documented.

ART has emerged as an effective anti-viral 
therapeutics with protective immune responses in 
HIV-1 individuals. ART, in combination with 
anti-microbial peptides (AMPs), including defen-
sins and cathelicidins, suppress HIV-1 replication 
(Piscitelli et  al. 1996; Louie and Markowitz 

2002). Moreover, inhibitors that block the bind-
ing of HIV-1 gp120-CD4 and co- receptor related 
enagagment (including CXCR4 and CCR5 
antagonists) have also been developed as an 
effective anti-HIV-1 measure, with improved the 
morbidity and mortality.
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1  Background

Respiratory viral infections are the leading cause of 
morbidity globally (Mizgerd 2006). In young chil-
dren, they are responsible for 60% visits to the pedi-
atricians and a leading cause of more than one 
quarter of hospitalizations (Tregoning and Schwarze 
2010). For instance, respiratory viral infections lead 
to more than 400,000 hospitalizations per year in 
children less than 18  years of age in the United 
States (Miller et  al. 2014). Common respiratory 
viral pathogens including the respiratory syncytial 
virus (RSV), rhinovirus (RV), influenza virus, para-
influenza virus (PIV), human coronavirus (hCoV), 
adenovirus and human metapneumovirus often 
cause acute infections localized to the upper respi-
ratory tract. For most respiratory viral infections, 
the disease is characterized by usual annual winter 
or spring outbreaks except for PIV infection that 

can be prevalent throughout the year. Major factors 
that affect prevalence and severity of disease include 
age group and immune susceptibility of individual. 
From the epidemiological point of view, of all the 
respiratory viral infections, most studies have 
focused on RSV, RV and influenza as these are the 
major viral infections causing most of the hospital-
ization and illness worldwide. For example, RSV in 
newborns and infants can affect the lower airways 
along with the upper airways, resulting in wheeze, 
shortness of breath, bronchiolitis or pneumonia 
(Olenec et al. 2010). Rhinovirus is responsible for 
near about two thirds of asthma exacerbations 
besides causing the colds (Gern 2015). Influenza is 
the leading cause of respiratory illness and pneumo-
nia related deaths in both developing as well as 
developed countries (Newton et  al. 2016; Kumar 
et al. 2018; Khanna et al. 2008). It is ranked amongst 
the top ten causes of death in the USA (Newton 
et al. 2016). Influenza viruses, since time immemo-
rial, have been in the spotlight due to genetic drift 
and genetic shift, that enables it escape the vaccine 
strategies, which works for most other viruses 
(Kumar et  al. 2018) Similarly, the Severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV2), 
first reported in China in December 2019, spread 
across the globe with an unprecedented speed caus-
ing pandemic coronavirus disease 2019 (COVID-
19) with more than 4 milion deaths reported till date 
(WHO, 2021).

In spite of considerable efforts towards vac-
cine research, we still do not have it for all respi-
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ratory viruses. Hence alternative approaches 
must be explored to be able to manage these 
respiratory infections, some of which often prove 
fatal to specific category and age group of 
patients. The human body is well equipped to 
face any viral infection generating a robust 
immune response as soon as the specific pattern 
associated with the pathogens is identified. The 
respiratory tract is the most important area of the 
pulmonary system that encounters and serves as 
the port of entry for a wide range of the environ-
mental and pathogenic insults. It is very often 
invaded by some of the major respiratory viruses 
leading to a controlled and coordinated immune 
response. As soon as a virus infects, the human 
body activates the innate immune response which 
is the first line of defense, comprising of physical 
barriers (mucus and collectins), phagocytic cells, 
cytokines, interferons (IFNs), and IFN-stimulated 
genes (ISGs), that collectively defends against 
the invading virus and clear the infection. These 
rapid responses subsequently activate the adap-
tive wing of the host immune system that is 
mainly comprised of the B cells and T cells that 
helps in capturing and neutralizing the pathogen.

In summary, the host innate immune system 
provides the rapid, first line of defense and gener-
ates robust pro-inflammatory responses, while the 
adaptive immune system plays a critical role during 
the later stages of infection, by specifically clearing 
the viral pathogens. Both the wings of immunity 
work in coordination, in order to generate efficient 
antiviral responses, and a misbalance in any of the 
immune mechanisms may be detrimental for the 
host. In this chapter, we reviewed and highlighted 
the innate and adaptive immune response gener-
ated during major respiratory viral infections with 
an intention to provide more in-depth mechanistic 
details of host immune response to viral infections 
and opportunities of therapeutic interventions.

2  Innate Immunity Against 
Respiratory Viral Infection

The innate immune response, although nonspe-
cific, is the rapid and first line of defense against 
invading viral pathogens which subsequently 
activates the adaptive arm of immunity. The host 

cells recognize the viral components through 
pattern-recognition receptors (PRRs) (Akira 
et  al. 2006; Medzhitov 2007; Medzhitov and 
Janeway Jr. 2002). These PRRs then identify the 
pathogen-associated molecular patterns (PAMPs) 
(Janeway Jr. and Medzhitov 2002) and danger- 
associated molecular patterns (DAMPs) to acti-
vate the host immune system ultimately leading 
to secretion of cytokines and chemokines 
(Wilkins and Gale Jr 2010). Currently, four 
classes of PRRs, namely the Toll-like receptors 
(TLRs) (Kawai and Akira 2007), the retinoic acid 
inducible gene-I (RIG-I)-like receptors (RLRs) 
(Kato et  al. 2005), NOD-like receptors (NLRs) 
(Ting et  al. 2008) and AIM2-like receptors 
(ALRs) (Roberts et  al. 2009), are known to be 
involved in detection of viral components such as 
the single-stranded RNA (ssRNA), double- 
stranded RNA (dsRNA), genomic DNA, viral 
replicative intermediates and viral proteins 
(Pichlmair and Reis e Sousa 2007). While the 
TLRs are primarily expressed by the macro-
phages and dendritic cells (DCs) and sense the 
viral nucleic acid in the endosomes, the RLRs, 
NLRs and ALRs are ubiquitously expressed and 
sense PAMPS in the cytoplasm of infected cells 
(Kanneganti 2010). Several viruses induce the 
inflammatory response upon infection. The TLRs 
(TLR3/7, TLR8/9) and RLRs (RIG-I) senses the 
viral components and induces the production of 
inflammatory mediators and type I interferons 
(IFNs). In monocytes, macrophages and non- 
immune cells (endothelial cells and epithelial 
cells), RIG-I and/or TLR3 helps in the sensing of 
dsRNA; while in the plasmacytoid dendritic cells 
(pDCs), the TLR7 is highly expressed and acts as 
the major ssRNA sensor (Kato et al. 2005; Sun 
et al. 2009; Tsai et al. 2009; Diebold et al. 2004).

2.1  Toll-like Receptors (TLRs)

The TLRs are the key players of innate immunity 
to viruses by recognizing their PAMPs. The 
TLR2 and TLR4 senses the viral components 
such as the envelope glycoproteins /lipoproteins 
on the cell surface while the TLR3, TLR7, TLR8, 
and TLR9 are mainly endosomal and senses the 
viral nucleic acids (Fig. 4.1) (Finberg et al. 2007; 
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Kawai and Akira 2011). These TLRs are known 
to recruit specific sets of adaptor proteins such as 
myeloid differentiation primary response protein 
88 (MyD88), TIRAP, TIR-domain-containing 
adapter-inducing interferon-β (TRIF), or TRIF- 
related adaptor molecule (TRAM). These adap-
tor proteins further aid in the signaling pathways 
that activate NF-κB, interferon regulatory factor7 
(IRF7) or IRF3, resulting in induction of antiviral 
response and secretion of cytokines. During IV 
infection, the TLRs often cooperate with the 
NLRs and RLRs to induce the innate immunity 
(Kawai and Akira 2011). The TLR7/8 binds to 
the ssRNA while TLR3 senses the dsRNA in the 
endosomes. A study showed that pretreatment of 
human monocyte-derived DCs with TLR3 ligand 

(poly I:C) conferred resistance to infection with 
highly pathogenic avian H5N1 influenza virus 
(Thitithanyanont et  al. 2007). Another study 
demonstrated that a lethal dose of influenza virus 
in mice showed an enhancement of inflammatory 
reaction and CD8+ T cell response that was 
mediated by the TLR3. This event was associated 
with augmented viral clearance, in wild type 
mice compared to TLR3−/− mice (Le Goffic 
et  al. 2006). The same study, however showed 
that TLR3−/− mice survived longer than wild-
type mice thereby suggesting that the continued 
adaptive immunity is detrimental to the host (Le 
Goffic et al. 2006). There are other studies which 
show that TLR7-and MyD88 induce the high 
 levels of IFN-α, and also inflammatory cytokines 

Fig. 4.1 Mechanism of immune response generation following viral infection. Infection with viruses leads to activa-
tion of several signaling cascades. TLRs located on either plasma membrane (TLR2, TLR6 and TLR4) or endosomes 
(TLR3, TLR7/8 and TLR9), sense the PAMPs/DAMPs and activate cellular pathways leading to the production of type 
I IFNs and proinflammatory cytokines. The viral nucleic acids are also sensed by the PRRs leading to the activation and 
assembly of different types of inflammasome. The NLRP3 and RIG-I senses the viral RNA while the AIM2 senses the 
viral DNA and form inflammasome complex with the adaptor ASC and effector caspase-1. An activated inflammasome 
leads to the production and secretion of proinflammatory cytokines that ultimately causes inflammation. The innate 
immune response subsequently activates the adaptive immune response where the T cells and B cells play vital roles in 
elimination of virus
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in response to the live or inactivated influenza 
infection to pDC due to recognition of viral 
ssRNA (Diebold et al. 2004; Koyama et al. 2007). 
This TLR7 sensing in the pDC is required to con-
fer protective primary adaptive immune response 
in mice (Koyama et al. 2007). However, another 
study by same group revealed that TLR7-induced 
type I IFN in pDCs was dispensable for induction 
of protective response to influenza virus in mice 
that were vaccinated with live-virus vaccine 
(Koyama et al. 2010). Also the IFN-α secretion in 
response to influenza virus infection in murine 
mDC/BMDCs was found to be dependent on live 
virus replication, but not on TLR7/MyD88- sig-
naling (Koyama et al. 2007; Barchet et al. 2005). 
The murine BMDCs however, required the 
TLR7-signaling for the induction of pro- 
interleukin- 1beta (IL-1β) and secretion of mature 
IL-1β after influenza virus infection (Ichinohe 
et  al. 2010), thereby suggesting that there is a 
cell-specific role of TLR7 in the influenza virus 
infection as well as vaccination induced innate 
immune response. The ligand for TLR4 in influ-
enza virus is not known, however, activation of 
TLR4-signaling has been shown to release a 
DAMP molecule (S100A9) in influenza virus- 
infected lungs that triggers TLR4-MyD88- 
signaling pathway in macrophages to induce 
exaggerated inflammatory response, cell-death, 
and virus pathogenesis following lethal infection 
(Tsai et al. 2014).

A number of TLRs such as the TLR2, TLR3, 
TLR4, and TLR7 have also been linked to the 
RSV infection. A study suggested that TLR2 is a 
functional receptor for RSV and further demon-
strated that TLR2 and TLR6 signaling in leuko-
cytes could activate innate immune response to 
RSV by promoting proinflammatory cytokines 
and chemokine production and DCs activation 
(Murawski et  al. 2009). The TLR3 senses the 
dsRNA generated during the RSV replication 
cycle (Aeffner et al. 2011). Rudd et al. showed 
that TLR3 signaling pathways is activated upon 
RSV infection and regulate the expression of 
MyD88-independent chemokines, such as IP-10/
CXCL10 and CCL5. The same group subse-
quently showed that upon RSV infection, the 
TLR3 activated a predominant Th1-type 

response, whereas the deletion of TLR3 led to 
increased pathogenic Th2-biased responses that 
resulted in the production of IL-13 and IL-5 
along with accumulation of eosinophils in air-
ways of TLR3−/− mice (Rudd et  al. 2006). 
Another study in the same year showed that the 
TLR3 expression was enhanced upon RSV infec-
tion in the respiratory epithelial cells that further 
sensitized the cells to subsequent extracellular 
dsRNA exposure through NF-κB and IL-8 pro-
duction (Groskreutz et  al. 2006). The involve-
ment of TLR4 has also been shown to have effect 
on RSV infection through its interaction with the 
RSV F protein using CD14 as a co-receptor 
(Kurt-Jones et  al. 2000). The same study also 
showed that TLR4 null mice, compared to the 
TLR4-positive mice, demonstrated reduced pul-
monary NK and CD14+ cell trafficking, deficient 
NK cell function, impaired IL-12 expression and 
delayed viral clearance in mice challenged with 
RSV (Kurt-Jones et al. 2000). Later studies dem-
onstrated that the inhibition of the RSV-TLR4/
CD14 interaction, suppressed the RSV-elicited 
production of proinflammatory cytokines IL-6 
and IL-8 in epithelial cells (Numata et al. 2010). 
There are mixed reports for TLR4 expression and 
its effect on RSV disease severity. While one epi-
demiological study revealed that two single 
nucleotide polymorphisms (SNPs) encoding 
Asp299Gly and Thr399Ile substitutions in the 
TLR4 ectodomain lead to an increase in the 
severity of RSV bronchiolitis and subsequent risk 
for hospitalization (Mandelberg et al. 2006; Tal 
et al. 2004), another clinical study reported that 
upregulated TLR4 expression on blood mono-
cytes in infants was found to be linked closely to 
the disease severity (Gagro et al. 2004). Similarly, 
the TLR7 can also recognize the RSV infection 
and regulate DC activation resulting in reduced 
IL-12 expression while promoting IL-23, that 
determine Th1 versus Th17 development, respec-
tively (Lindell et al. 2011). The study also showed 
that TLR7 deficiency is associated with an altera-
tion in T-cell responses.

Similarly, the adenovirus infection is also 
known to be associated with induction of inflam-
matory cytokines and the levels correlate with 
severity of the disease (Mistchenko et al. 1994). 
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The host inflammatory mediators are majorly 
enhanced by the adenovirus Early Region 1A 
(E1A) gene through NF-κB activation. Studies 
show that the immune response against adenovi-
rus is generated post capsid detection by the PRRs 
followed by induction of chemokines (Liu and 
Muruve 2003). Another study conducted on the 
murine antigen presenting cells and lung fibro-
blasts demonstrated that adenovirus infection led 
to the production of type I IFN, IL-6 and TNF-α 
in an IRF3-dependent but MyD88- independent 
and TRIF independent manner (Nociari et  al. 
2007). Similarly the TLR9 also helps in adenovi-
rus recognition. A study showed that the murine 
pDCs, produced high levels of type I IFN in 
response to adenoviral vectors in a MyD88 and 
TLR9-dependent manner (Zhu et  al. 2007a). 
Another study further showed the role of TLR9 in 
IFN-α induction in the human pDCs (Iacobelli-
Martinez and Nemerow 2007). Another support-
ing study showed the potential role for TLRs in 
inflammatory disease during adenovirus infec-
tion. The study revealed that the MyD88 knock-
out mice had lower amounts of inflammatory 
cytokines in their plasma during acute adenovirus 
infection compared to the wild- type mice 
(Hartman et al. 2007). Studies have showed that 
the adenovirus B is sensed by TLR9 in peripheral 
blood mononuclear cells and pDCs (Iacobelli-
Martinez and Nemerow 2007; Sirena et al. 2004). 
In addition to TLR9, the TLR2 also contributes to 
the innate immune response against adenovirus as 
revealed by the reduced NF-κB activation and 
humoral responses to adenovirus vectors in TLR2 
knockout mice (Appledorn et al. 2008). The ade-
novirus C, along with the coagulation factor X 
(FX), activates the TLR4 mediated innate immu-
nity and initiates an IL1β inflammatory response 
(Doronin et al. 2012).

2.2  Retinoic Acid Inducible Gene-I 
(RIG-I)-like Receptors (RLRs)

The interferon (IFN) system comprises of a broad 
spectrum of sensors that recognize virus associ-
ated molecular patterns. The RLR family has 2 
PRRs, MDA5 and RIG-I. The MDA5 recognizes 

dsRNA while the RIG-I recognize 5′-triphos-
phate ssRNA (Hornung et al. 2006). RIG-I func-
tions as cytoplasmic sensors for viral RNA to 
initiate antiviral responses and is the most potent 
inducer of type I IFN. As soon as the RNA ligand 
is recognized, the RIG-I switches conformation 
and associates with the mitochondria based adap-
tor MAVS to initiate signaling events leading to 
activation of the transcription factors IRF3 and 
NF-κB, thereby stimulating the induction of IFNs 
(Yoneyama et al. 2015).

During influenza virus infection, the RIG-I 
senses the viral genome bearing 5′-triphosphate- 
RNA sequence that triggers the cellular innate 
immune responses during infection (Fig.  4.1) 
(Rehwinkel et  al. 2010; Pichlmair et  al. 2006). 
An interesting study revealed that during influ-
enza virus infection the viral RNA, the antiviral 
proteins-protein kinase R (PKR) along with the 
RLRs are localized in stress granules (Onomoto 
et  al. 2012). These stress granules serve as the 
site for 5′ ppp RNA-induced activation of RIG-I- 
signaling. The study further showed that influ-
enza virus lacking non-structural protein 1 (NS1) 
efficiently generated much more of these antivi-
ral stress granules and IFNs compared to the 
virus encoding NS1 (Onomoto et al. 2012). The 
authors also observed that the transfection of 
dsRNA resulted in IFN production in an antiviral 
stress granule-dependent manner (Onomoto et al. 
2012). Similarly other studies also reported the 
influenza virus induced transient activation of 
RIG-I in bone marrow-derived DCs (BMDCs) 
(Koyama et al. 2007), respiratory epithelial cells 
(Le Goffic et al. 2007; Crotta et al. 2013), macro-
phages (Ohman et  al. 2009; Wang et  al. 2012) 
and mast cells (Graham et al. 2013). The RIG-I 
has also been shown to be activated by the avian- 
adapted strains of the PB2-627E genotypes. They 
show reduced PB2-NP affinity and thus better 
accessibility of the 5′ ppp-dsRNA panhandle. 
The study further documented that the avian 
adapted PB2-627E-type viruses exhibit an 
enhanced onset of infection in RIG-I knockout 
cells as well as in chicken cells (Lacks RIG-I) 
while the mammalian adapted PB2-627K-type 
viruses showed no difference in replication in 
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presence or absence of RIG-I (Weber et al. 2015). 
This could be possible because the PB2-627K- 
type viruses are less efficient activators of RIG-I 
due to their higher PB2-NP affinity (Weber et al. 
2015).

Similarly the RSV infections have also been 
shown to upregulate both MDA5 and RIG-I and a 
strong correlation of RSV viral load and RIG-I 
mRNA levels have been observed (Scagnolari 
et al. 2009). The in vitro studies also showed that 
RIG-I mediated detection of the RSV infection 
leads to downstream NF-κB and IRF3 pathways 
by complexing with the adaptor MAVS, thereby 
generating the IFNβ, IP-10, and CCL5 expres-
sion in airway epithelial cells (Liu et al. 2007). 
The silencing of RIG-I also significantly inhib-
ited the activation of NFkB, IRF3, and cytokine 
expression early during infection (Liu et  al. 
2007). Later studies also demonstrated that RSV 
proteins- NS1 and NS2 that directly decreases 
the RIG-I interaction with MAVS thereby poorly 
inducing the type I IFNs (Ling et  al. 2009). A 
study further revealed the some strains of RSV 
are better inducers of IFN (Wright et  al. 2006) 
and this variation in the RSV virulence could be 
attributed to the expression of the NS2 gene, a 
major inhibitor of IFN activity (Wright et  al. 
2006; Ramaswamy et al. 2006), however accord-
ing to another study, the NS1 gene may also have 
a role in inhibiting IFN activity (Spann et  al. 
2004). Thus multiple parameters have been 
shown to be involved in shaping the innate 
immune response to RSV infections.

Adenoviruses encode two noncoding small 
RNAs, virus-associated (VA)-RNA I and VA-RNA 
II which are transcribed by RNA polymerase III at 
high levels during adenovirus replication 
(Mathews and Shenk 1991). In a study, these 
VA-RNAs have been reported to induce the pro-
duction of type I IFN (IFN-α and IFN-β) but not 
the inflammatory cytokines (IL-6 and IL-12), in 
mouse embryonic fibroblasts (MEFs) and granu-
locyte-macrophage colony-stimulating factor–
generated bone marrow-derived dendritic cells 
(GM-DCs). The study revealed that the IFN-β 
promoter stimulator-1 is involved in VA-RNA–
dependent IFN-β production in the MEFs and is 
partially involved in the production of type I IFN 
in the GM-DCs (Yamaguchi et al. 2010).

2.3  Virus-Induced Inflammasomes

An inflammasome is a multi-protein complex 
comprised of a sensor, an adaptor and an effec-
tor molecule that have been shown to mature the 
proinflammatory cytokines, IL-1β and IL-18 via 
the caspase1 activity (Thomas et  al. 2009). 
Among the various NLR family members, the 
nucleotide and oligomerization domain, leu-
cine-rich repeat- containing protein family, pyrin 
domain containing 3 (NLRP3) is a key protein 
that is known to assemble a large protein com-
plex comprised of ASC and caspase-1, called 
the inflammasome (Lupfer and Kanneganti 
2013). Similarly the RIG-I and AIM2 can inter-
act with ASC and caspase- 1 to form the RIG-I 
and AIM2 inflammasomes respectively during 
viral infection. Several respiratory viruses such 
as the influenza virus, RSV, the adenovirus and 
the coronavirus have been known to induce 
inflammation and activate the inflammasomes 
(Table 4.1).

In addition, they are also reported to induce 
the gasdermin D-mediated pyroptotic cell death 
driven by the enzymatic activity of caspase-1. 
The detailed mechanism and signaling cascades 
required to activate an inflammasome leading to 
innate immune response has been shown in 
Fig. 4.1.

2.3.1  NLRP3 Inflammasome 
and Respiratory Viruses

NLRP3 inflammasome is one of the best char-
acterized inflammasome and is comprised of a 
C-terminal leucine-rich repeats (LRRs), a cen-
tral nucleotide-binding and oligomerization 
domain (NACHT) or the nucleotide binding 
oligomerization domain (NOD) with an ATPase 
activity, and a N-terminal pyrin domain (PYD) 
that recruits apoptosis-associated speck-like 
protein containing a C-terminal caspase recruit-
ment domain (ASC) (Kufer et  al. 2005). The 
activation of a NLRP3 inflammasome is regu-
lated at both transcriptional and post-transla-
tional levels. A  priming signal induced by the 
TLR/ nuclear factor (NF)-κB pathway upregu-
lates the pro-IL-1β and NLRP3 expression. A 
second signal from the PAMPs and DAMPs fur-
ther initiates the assembly of the multiprotein 
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complex containing the NLRP3, the adaptor 
protein ASC and the inactive zymogen form of 
cysteine protease casepase-1 that collectively 
activates the caspase-1 that executes the matu-
ration and secretion of IL-1β and IL-18 cyto-
kines (Fig. 4.1) (Martinon and Tschopp 2007). 
Several events, such as the ATP mediated efflux 
of PAMPs (He et al. 2016), lysosomal destabili-
zation (Okada et  al. 2014) and mitochondrial 
reactive oxygen species (ROS) generation 
(Sorbara and Girardin 2011), have been 
reported to activate the NLRP3 inflammasome. 
In addition to TLRs, the RIG-I-MAVS signal-
ing has also shown to be the initiating step in 
the upregulating Nlrp3 expression subsequently 
leading to inflammatory condition (Pothlichet 
et al. 2013).

The NLRP3 inflammasome has also been 
shown to be activated and modulated by viruses 
belonging to different families. Influenza viruses 
are the most common activators of NLRP3 inflam-
masome. Soon after the identification of cas-
pase-1 as the IL-1β processing enzyme, Pirhonen 
et al. showed that influenza virus infection induced 
the cleavage of caspase-1, caspase-3 and caspase-
dependent secretion of IL-1 and IL-18 in human 
macrophages (Pirhonen et  al. 1999; Pirhonen 
et al. 2001), however the mechanism of caspase-1 
activation was identified only after the discovery 
of NLRP3 inflammasome (Martinon et al. 2002; 
Mariathasan et al. 2006). A study by Kanneganti 
et al. showed that influenza virus infection induced 
the NLRP3 mediated processing of caspase-1 and 
secretion of IL-1β and IL-18 in the bone marrow 
derived macrophages (BMDMs) (Kanneganti 
et  al. 2006). They further showed that the syn-
thetic RNA analogues also induced the NLRP3 
activation in mouse and human cells (Kanneganti 
et al. 2006). Although several studies have shown 

the viral RNA as inducer of NLRP3 assembly, yet 
the molecular mechanism behind this event is still 
not clear. Further studies however, have shown a 
possibility of viral RNA interaction with RNA 
sensors such as the TLRs and RIG-I leading to the 
inflammasome assembly and release of 
inflammasome- dependent cytokines (Kuriakose 
et al. 2016; Pothlichet et al. 2013; Ichinohe et al. 
2009). In addition, the influenza virus infection-
induced activation of NLRP3 inflammasome has 
also been demonstrated in non-immune cells such 
as the primary bronchial epithelial cells, lung 
fibroblasts, and few other epithelial cells (Allen 
et al. 2009; Pothlichet et al. 2013; Ichinohe et al. 
2009). Three crucial in vivo studies further 
strengthened the previous findings and identified 
the critical role of the NLRP3 inflammasome in 
the innate immune response to influenza virus 
infection (Thomas et al. 2009; Allen et al. 2009; 
Ichinohe et  al. 2009). The studies collectively 
showed that influenza virus infection increased 
the expression of IL-1β in the bronchoalveolar 
lavage fluid (BALF) from wildtype mice but not 
in Nlrp3−/−, Casp1−/−, or Asc−/− mice thereby 
showing the requirement of inflammasome com-
plex proteins in eliciting an antiviral response 
(Thomas et al. 2009; Allen et al. 2009). Further 
the mice deficient in inflammasome components 
also had reduced inflammatory cytokines (TNF, 
IL-6 and the chemokines KC and CXCL2) in their 
BALF 3 days post infection (Thomas et al. 2009; 
Allen et al. 2009). The study also showed that the 
Nlrp3−/−, Casp1−/−, or Asc−/− mice were more 
susceptible to infection with mouse- adapted 
pathogenic H1N1 A/PR/8/1934 strain of influenza 
virus and the viral sensing by the inflammasome 
mechanistically induced the inflammation 
(Thomas et  al. 2009; Allen et  al. 2009).  
Other related studies utilized a specific and potent 

Table 4.1 Respiratory viruses that activate inflammasomes

Inflammasome Respiratory virus
PAMPs 
recognized Refs.

NLRP3 Influenza virus, 
RSV, Adenovirus, 
SARS-CoV2

RNA Allen et al. (2009), Kuriakose et al. (2016), Kanneganti 
et al. (2006), Triantafilou et al. (2013), Segovia et al. 
(2012), Barlan et al. (2011a), Rodrigues et al. (2021)

RIG-I Influenza virus RNA Graham et al. (2013), Pothlichet et al. (2013)
AIM2 Influenza virus, 

Adenovirus
Not 
determined, 
DNA

Zhang et al. (2017), Schulte et al. (2013), Eichholz et al. 
(2016)
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inhibitor of NLRP3, MCC950, and showed the 
importance of NLRP3 inflammasome in protec-
tion against influenza virus infection. The authors 
gave an intranasal treatment with MCC950 on 
day 1 post influenza virus infection and observed 
a significant decrease in the mice survival rate, 
however the same treatment on day 7 conferred 
protection against influenza virus and increased 
survival rate possibly due to decrease in the levels 
of proinflammatory cytokines including IL-1, 
IL18, IL-6, TNF and reduction in the recruitment 
of inflammatory cells into the airways, thereby 
demonstrating a detrimental role of NLRP3 
inflammasome activation later during influenza 
virus infection (Tate et al. 2016). This is one of the 
major factors playing role in the influenza associ-
ated mortality. More recent studies also demon-
strated the formation of ASC specks, representative 
of an inflammasome assembly, specifically in the 
influenza virus infected cells as observed by the 
co-staining of ASC with influenza virus nucleo-
protein in the mice lung fibroblasts (Tzeng et al. 
2016). Another interesting study performed on 
mice with old and young age groups infected with 
influenza virus, demonstrated that the DCs from 
elderly mice showed reduced expression of 
NLRP3 components (NLRP3, ACS, Caspase-1) 
and thus decreased IL-1β secretion, compared to 
young mice; which was rescued by the treatment 
with nigericin that augments inflammasome acti-
vation and thereby reduced the morbidity and 
mortality in elderly mice (Stout-Delgado et  al. 
2012). Similar studies have also been conducted 
on primate models to show that infection with the 
reconstructed 1918 pandemic influenza virus 
markedly enhanced the expression of both Nlrp3 
and Il1b along with other genes associated with 
inflammation in the macaques (Cillóniz et  al. 
2009). This study also showed the detrimental 
effect of inflammasome activation leading the 
excessive recruitment of inflammatory cells into 
the lungs resulting in a cytokine storm (Cillóniz 
et  al. 2009). A similar study conducted on 
macaques also reported enhanced levels of IL-1β 
upon infection with the highly pathogenic avian 
influenza virus (H5N1 strain) (Baskin et al. 2009). 
Recent studies have also shown that patients  
hospitalized with avian origin H7N9 influenza 
pneumonia demonstrated increased IL-18 medi-
ated IFN-γ production in CD161+Vα7.2+ muco-

sal-associated invariant T cells (Loh et al. 2016). 
Another similar study reported a consistent find-
ing that the BAL specimens obtained from 
patients infected with the H7N9 virus had 1000 
fold increase in several proinflammatory cyto-
kines including the IL-1β leading consequently 
leading to severe lung damage in those patients 
(Wang et  al. 2014). A group of authors also 
showed that children infected with the H1N1 
influenza virus had elevated levels of IL-1β 
(Chiaretti et al. 2013). Although the exact molec-
ular mechanisms behind activation of NLRP3 
inflammasome by the influenza virus need more 
detailed investigations, several studies do provid-
ing significant information related to this event. A 
study conducted on the primed macrophages and 
DCs showed that the strain specific M2 protein of 
influenza virus, that has channel activity, activates 
the NLRP3 inflammasome and its ion channel 
activity was required for the event (Ichinohe et al. 
2010). Another study on DCs demonstrated that 
the activation of inflammasome could be blocked 
by inhibiting the activity of the M2 ion channel by 
amantadine, a known M2 ion channel blocker 
(Fernandez et al. 2016). Another potential patho-
gen-associated molecular pattern is the PB1-F2 
protein found in several strains of influenza A 
virus, including the 1918 H1N1, 1957 H2N2, and 
1968 H3N2 pandemic strains, along with avian 
H5N1 and H7N9 subtypes. A study conducted on 
the human peripheral blood mononuclear cells 
(PBMCs) and mice BMDMs demonstrated an 
enhanced NLRP3 inflammasome activation in 
vitro as well as in mice challenged with the influ-
enza A virus and recombinant PB1-F2 (McAuley 
et al. 2013; Pinar et al. 2017). More recent studies 
have shown that the RNA and the TRIM-25 
domain of the NS1 protein of influenza virus can 
aid in binding with NLRP3 directly and inhibit 
the assembly of the NLRP3-ASC-caspase-1 com-
plex and secretion of IL-1β fir its own survival 
and advantage (Moriyama et al. 2016). Influenza 
viruses have simultaneously evolved to utilize the 
inflammasome and they manipulate the host 
innate immune response for their own survival 
and advantage. Several studies have documented 
both protective as well as detrimental effect of the 
NLRP3 inflammasome activation upon influenza 
virus infection in both murine and primate mod-
els, including humans infected with influenza 
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virus. Thus, the therapeutic management of the 
inflammasome activation at different steps can 
provide protection against the excessive inflam-
matory response generated during infection. For 
example the therapeutically targeting TLR2 and 
TLR4 has been shown to provide protection 
against influenza A virus (IAV) infection. The 
studies showed that mice treated with TLR4 
antagonist (Eritoran) or anti-TLR4 or anti-TLR2 
IgG post influenza infection, reduced the pro-
inflammatory cytokine production and overall 
mortality (Shirey et al. 2016; Shirey et al. 2013).

Similarly, the RSV, a leading cause of respira-
tory infections in infants and young children, has 
been shown to activate NLRP3 inflammasome 
(Triantafilou et  al. 2013; Takeuchi et  al. 1998). 
The study showed that RSV activated the IL-1β- 
converting enzyme (caspase-1) gene and its pro-
tein due to an increase in the IRF1 induction in the 
human alveolar epithelial cells (Takeuchi et  al. 
1998). Another study conducted on bone marrow 
derived macrophages revealed that reactive oxy-
gen species (ROS)/potassium efflux (second sig-
nal) as well as the TLR2/MyD88/NF-κB pathway 
(first signal) was essential for the induction of 
NLRP3/ASC inflammasome assembly subse-
quently leading to the activation of caspase- 1 and 
processing of IL-1β during the RSV infection 
(Segovia et al. 2012). Another study revealed the 
role of the RSV-Viroporin, SH, in triggering the 
signal for inflammasome activation (Triantafilou 
et al. 2013). Another interesting study evaluated 
the role of the TRIM33, a member of the tripartite 
motif (TRIM) family, in inflammasome activation 
during RSV generated dsRNA intermediates pro-
duction (Weng et al. 2014). The study showed that 
upon RSV infection in THP-1–derived macro-
phages and human monocyte-derived macro-
phages, the TRIM33 binds to DHX33, which is a 
cytosolic dsRNA sensor for the NLRP3 inflam-
masome, and induces caspase-1–dependent pro-
duction of IL-1b and IL-18 (Weng et al. 2014). A 
recent study also showed that inhibition of the 
inflammasome pathway shows better therapeutic 
effects on lung inflammation (Shen et al. 2018). 
The study showed the benefits of Jinxin oral liq-
uid (JOL), derived from traditional Chinese medi-
cine, to reduce the RSV induced excessive 
inflammation in BALB/c mice. The treatment 
with JOL also reduced the release of IL-1β, IL-18 

and IL-33, in the serum and lung homogenate of 
the RSV-infected mice mainly through blocking 
the NLRP3/ASC/Caspase-1 signaling pathway 
(Shen et  al. 2018). Thus the existing evidences 
show that the inflammasome plays an important 
role in viral recognition and the initiation of anti-
viral responses during RSV infection.

The human adenovirus also activates inflam-
masome upon infection. Studies have shown the 
sensing of viral DNA and subsequent assembly of 
the NALP3-ASC-caspase-1 complex upon infec-
tion of macrophages (Muruve et  al. 2008). The 
study also demonstrated reduced innate inflamma-
tory responses to adenovirus particles in NALP3- 
and ASC-deficient mice and that the sensing was 
due to ASC and not NLRP3 (Muruve et al. 2008). 
Barlan et al. showed that the adenovirus C5 acti-
vated NLRP3 inflammasome in THP1 cells condi-
tioned with phorbol esters leading to production of 
IL1β and the release of lysosomal cathepsin B to 
the cytosol (Barlan et  al. 2011a; Barlan et  al. 
2011b). A similar finding was revealed with ade-
novirus C5_dE1 vector or liposome-mediated 
transfection of purified adenovirus- C5_dE1 DNA 
to skin or HKT cells led to the expression of 
inflammatory cytokines and type 1 IFN-β (Schulte 
et  al. 2013; Steinstraesser et  al. 2011). SARS-
CoV2 enters the target cells utilizing the hACE2 
receptor (Kumar et al. 2021) and injuries caused to 
the alveolar epithelial cells have been reported to 
activate the NLRP3 inflammasome (Chen et al. 
2019). Recent studies have also demonstrated the 
activation of NLRP3 inflammasomes in COVID-
19 patients thereby suggesting its role in the patho-
physiology of the disease (Rodrigues et al. 2021; 
Freeman and Swartz. 2020).

2.3.2  RIG-I Inflammasome
The RLR family member, RIG-I, is known to 
induce the type I IFN production collectively 
through its two N-terminal CARDs (recruits sev-
eral adaptor proteins), a central RNA helicase 
domain (has ATPase activity) and C-terminal reg-
ulatory domain (CTD) that binds to the dsRNA 
(Kolakofsky et al. 2012). The dsRNA replication 
intermediates of several RNA viruses have been 
shown to be recognized by the RIG-I leading to 
inflammatory response (Yoneyama et  al. 2004). 
Among the respiratory viruses, influenza virus is 
well known to activate the RIG- I. RIG-I, which is 
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a cytosolic sensor, detects influenza virus through 
recognition of 5′-triphosphates on genomic single 
stranded RNA (ssRNA), which is revealed after 
viral fusion and replication (Pichlmair et  al. 
2006). The RIG-I can either assemble into an 
active inflammasome or induce the type I IFNs to 
indirectly regulate the inflammasome assembly 
(Fig.  4.1) (Pothlichet et  al. 2013; Poeck et  al. 
2009). The study for the first time demonstrated 
the relative roles of the RIG-I (DDX58), TLR3, 
and NLRP3 in the IL-1β response to influenza A 
virus infection in primary lung epithelial cells 
(Pothlichet et al. 2013). The influenza virus infec-
tion strongly demonstrated the RIG-I mediated 
type I IFN signaling and also activated the RIG-I 
inflammasome by interacting with ASC and cas-
pase-1 (Pothlichet et  al. 2013). The authors fur-
ther demonstrated that influenza virus infection to 
normal human bronchial epithelial cells leads to 
formation of RIG-I/ASC and RIG-I/Caspase-1 
complexes subsequently leading to IL-1 secre-
tion, thereby also suggesting the assembly of 
inflammasome independent of NLRP3 (Pothlichet 
et al. 2013).

2.3.3  AIM2 Inflammasome
The AIM2-like receptors (ALR) senses the 
double- stranded DNA via the HIN200 domain of 
absent in melanoma 2 (AIM2) proteins, and 
interact with the caspase-1 protein via a PYD 
domain (Fig. 4.1) (Hornung et al. 2009). Influenza 
viruses have recently been shown to activate the 
AIM2 dependent inflammasome (Zhang et  al. 
2017). The study utilized the lethal dose of A/
PR8/34 and A/California/07/09 strains of influ-
enza A virus to infect the mice. The study 
revealed that influenza virus infection in wildtype 
mice significantly enhanced the AIM2 expres-
sion, induced the dsDNA release and further 
stimulated the caspase-1 activation and release of 
processed IL-1β in the lung, compared to the 
mice deficient in AIM2 (Zhang et al. 2017). The 
study also provides an interesting observation 
that AIM2 deficiency did not affect the transcrip-
tion of caspase-1 and IL-1β, in fact the AIM2 
deficient mice exhibited attenuated lung injury 
and significantly improved survival against influ-

enza A virus challenges (Zhang et  al. 2017).  
The AIM2 generates an efficient innate immune 
response, and it can be detrimental to influenza- 
induced lung injury and mortality.

The human adenovirus also activates the 
AIM2 inflammasome upon infection (Schulte 
et al. 2013). A recent study performed utilizing 
the immune-complexed human adenovirus 
revealed that protein VI-dependent endosomal 
escape is required for the adenovirus genome to 
be sensed by AIM2  in mDCs (Eichholz et  al. 
2016). The AIM2 then induces pyroptotic MoDC 
death via ASC aggregation, inflammasome 
assembly, caspase-1 activation and and IL-1β and 
gasdermin D cleavage (Eichholz et al. 2016).

2.4  Cyclic GMP-AMP Synthase 
(cGAS) Sensing of Virus

cGAS is a nucleotidyl-transferase that senses 
cytosolic DNA via the sugar backbone to pro-
duce a cyclic guanine-adenine dinucleotide 
(cGAMP) that binds to the adaptor protein 
STING (Sun et al. 2013) ultimately and leading 
to the activation of TBK1 and IRF3 and the pro-
duction of IFN-β (Ablasser et  al. 2013; Zhang 
et al. 2013). The human adenoviral DNA is also 
sensed by the cGAS triggering the IFN response 
in murine RAW 264.7 macrophage-like cells 
(Lam et  al. 2014). In a more detailed study 
involving replication-defective adenovirus vec-
tors and replication-competent wild-type adeno-
virus, a group of authors utilized permissive 
human cell lines (A549, HeLa, ARPE19, and 
THP1) to silence cGAS/STING and observed a 
loss of TBK1 and IRF3 activation, a lack of IFN- 
beta transcript induction, loss of IFN-dependent 
STAT1 activation, and reduced induction of 
interferon- stimulated genes (ISGs) (Lam and 
Falck-Pedersen 2014). A recent study utilized the 
murine model to understand how the cGAS/
STING cascade influences the antiviral innate 
and adaptive immune responses (Anghelina et al. 
2016). The authors observed that cGAS and 
STING were essential for the induction of the 
antiadenovirus response in the knockout BMDCs 
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and BMDMs (Anghelina et al. 2016). The study 
further demonstrated that the infection of 
cGAS−/− and STING−/− mice showed signifi-
cantly lower levels IFN-β secretion and low lev-
els of proinflammatory chemokine induction 
(Anghelina et al. 2016).

3  Adaptive Immunity Against 
Respiratory Viral Infection

The pathogenesis of respiratory viral infections is 
thought to be determined by cell tropism for 
human airway and alveolar epithelial cells, viral 
replication rate and the intensity and dynamics of 
the inflammatory response (Herold et al. 2015). 
Although a robust innate immune response 
becomes activated, it is not able to control the 
virus, often resulting in death due to direct viral 
damage to the airways (Korth et al. 2013). Thus a 
second wing of the immune system takes over the 
charge to manage the prevailing infection and 
deal with it more specifically and also make sure 
to have memory recalls for these viral infections. 
Lymphocytes are the key players during the 
induction and expression of adaptive immunity. 
They comprise of 2 classes of lymphocytes, the B 
cells and T cells, each bearing molecules on their 
surface that arm them to discharge their special-
ized role in the immune response. Host responses 
to viral infection in the lung are highly dynamic 
and comprise multiple sequential waves of gene 
expression (Pommerenke et al. 2012; Zhai et al. 
2015). The first wave peaks around 2–5 days post 
infection, and is characterized by upregulation of 
innate immune networks, interferon and NK cell 
responses, and proinflammatory cytokines and 
chemokines. The next wave spikes on day 8 post 
infection and this is defined by upregulation of T 
cell activation and induction of apoptosis. This is 
followed by upregulation of B cell activation and 
proliferation, which is maximal around day 14. 
Around 30  days post infection, differentiation 
and tissue repair processes are upregulated, and 
these responses persist out to 60 days post infec-
tion, suggesting long term or permanent altera-
tions to the lung in case of some viral infections 
(Pommerenke et al. 2012).

3.1  T Cell Responses

T cells are mainly of two types, CD4+ T and 
CD8+ T cells. Cytotoxic T lymphocytes (CTLs) 
differentiated from CD8+ T cells, produce cyto-
kines and effector molecules to control viral repli-
cation and destroy virus-infected cells. Influenza 
viruses (IV) have also been shown to utilize the T 
cells and B cells as key players to activate adap-
tive immunity. Upon infection with IV, the 
infected respiratory tract becomes the primary site 
of initiation of adaptive immune T cell responses. 
The capture of viral antigen by resident respira-
tory DCs traveled from lungs to the T-cell region 
of the draining lymph nodes activates naïve CD8+ 
T cells leading to T-cell proliferation and differen-
tiation into CTLs (Kreijtz et  al. 2011; Ho et  al. 
2011). Type I IFNs, IFN-γ, IL-2, and IL-12 also 
assist CD8+ T cells to differentiate into CTLs 
(Pipkin et  al. 2010; Whitmire et  al. 2005). Not 
only this, but IFN-λs also enhances the T-cell pro-
liferation during influenza virus vaccination (Egli 
et al. 2014). The migration of CTLs from lymph 
nodes to the lungs where they effectively kill 
influenza infected cells is aided by the decrease in 
expression of CCR7 and an upregulated expres-
sion of CXCR3 and CCR4. Once the CTLs reach 
the targeted infected cells they produce cytotoxic 
granules containing molecules like perforin and 
granzymes (e.g., GrA and GrB). Perforin forms 
pores on the cell membrane of infected cells and 
thereby facilitates passive diffusion of granzymes 
to induce successful apoptosis. Besides above 
stated mechanism, granzymes are also capable of 
restricting virus replication through cleavage of 
both, viral and host cell proteins involved in the 
process of protein synthesis (van Domselaar and 
Bovenschen 2011; Andrade 2010). Apoptosis can 
also be induced by recruitment of death receptors 
by cytokines (FASL, TNF, and TRAIL) produced 
by CTLs (Allie and Randall 2017).Once formed 
after the primary infection, these virus-specific 
CTLs and DCs circulate at the site of infection, in 
the blood and lymphoid organs (Rangel-Moreno 
et  al. 2011). In case of secondary infection, the 
memory CTL cells are quick to response and the 
entire process of activation and differentiation 
completed during the first infection enhances the 
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overall proficiency and efficiency of CTLs alto-
gether (van Gisbergen et al. 2011). The serotype 
cross-reactive cytotoxic T lymphocytes (CTL) 
recognizing the conserved epitopes of structural 
proteins, such as NP, M1, and PA contributes to 
heterosubtypic immunity to influenza A virus 
(Grant et  al. 2016). Most recent studies suggest 
that antibodies (Abs) may make a significant con-
tribution to these heterosubtypic immunity. 
Studies have suggested that the cytotoxicity of the 
memory CD8+ T cells decreases significantly due 
to decrease in cytolytic molecule expression lead-
ing to deteriorated target competence (Grant et al. 
2016). This may be one of the reasons why influ-
enza A virus -specific CD8+ T cells only lasts for 
2 years in murine models (Valkenburg et al. 2012). 
Atg7-deficient mice are shown to be incapable of 
forming CD8+ T cell memory against influenza A 
virus infection making autophagy a critical factor 
for the establishment of memory CD8+ T cells 
(Puleston et  al. 2014). Remarkably, influenza A 
virus—specific memory CD8+ T cells in the nasal 
epithelia stops the spread of the virus from the 
upper respiratory tract to the lung, consequently 
blocking the development of pulmonary disease 
(Pizzolla et al. 2017). Also, lung-resident memory 
CD8+ T cells restrain viral replication and facili-
tate viral elimination thereby defending against 
heterologous influenza A virus infection (Van 
Braeckel- Budimir and Harty 2017). During influ-
enza A virus infection, lung-resident monocytes 
help upkeep lung-resident CD8+ T cell (Dunbar 
et al. 2016). CD4+ T cell is another component of 
adaptive immunity that targets influenza A  
virus-infected epithelial cells through MHC class 
II.  Studies have shown expression of induced 
MHC class II in epithelial cells of infected cells in 
murine models (Brown et  al. 2012; McKinstry 
et  al. 2012). Numerous co-stimulatory ligands 
expressed by CD4+ T cells, including CD40 
ligand (CD40L) activates B cell and stimulate 
antibody production (Swain et al. 2012). CD40L 
in particular has been shown to increase immune 
response against the highly mutated HA protein 
of influenza A virus (Yao et al. 2010). In influenza 
A virus infected cells, CD4+ T cells also get acti-
vated in a similar manner to CD8+ T cells. In 
short, the activation takes place by DCs migrating 

from the lung to the draining lymph nodes (Ingulli 
et  al. 1997; Lukens et  al. 2009). CD4+ T cells 
mature into Th1 cells in response to infection. 
This differentiation of CD4+ is decided by either 
stimulators, co-stimulatory molecules, or cyto-
kines secreted by epithelial cells, DCs, and 
inflammatory cells (Magram et  al. 1996; Pape 
et al. 1997). Th1 effector CD4+ T cells expressing 
antiviral cytokine, such as IFN-γ, TNF, and IL-2 
(Szabo et  al. 2000), activates alveolar macro-
phages (Liu et al. 2012). Differentiation of CD8+ 
is regulated by the IL-2 and IFN-γ produced by 
Th1 cells to clear the viral infection (Shu et  al. 
1995; Stuber et  al. 1996). Recent findings have 
suggested that IL-2, produced by CD4 T along 
with IL-27 produced by innate cells in the lung, 
may induce IL-10 production by virus- specific 
CD4 and CD8 T cells, during acute influenza 
virus infection (Sun et al. 2011a). CD4+ T cells 
also differentiate into Th2, regulatory T cells 
(Treg cells), Th17, and sometimes as killer cells 
(Zhu et al. 2010; Lamb et al. 1982). Studies have 
shown that both Th17 and Treg cells are involved 
in regulating cellular immunity against influenza 
A virus infection (Mukherjee et al. 2011). Though 
studies have shown that CD4+ T cells can direct 
CD8+ T cell responses through secretion of vari-
ous cytokines, studies in mice model has shown 
that primary CD8+ T cell response against influ-
enza A virus infection could be initiated indepen-
dently of CD4+ T cells (La Gruta and Turner 
2014).

Similarly in case of a primary RSV infection, 
the host needs induction of an appropriate cellular 
immune response to clear the viral infection. The 
role of adaptive cellular immunity in reducing RSV 
viral titers is especially evident in children with 
defective T-cell responses that demonstrate pro-
longed virus shedding and experience increased 
disease severity (Fishaut et  al. 1980; Hall et  al. 
1986). However, despite their critical role in viral 
clearance, CD8 T cells may also contribute to dis-
ease. In vivo depletion of CD8 T cells prior to acute 
RSV infection results in a significant reduction in 
weight loss in mice (Graham et al. 1991a). In con-
trast to the histological analysis of fatal RSV cases 
that indicated few CD4 and CD8 T cells could be 
observed in the lung as described above, virus-spe-
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cific CD8 T cells can be readily detected in the 
bronchial alveolar lavage and peripheral blood of 
RSV- infected infants (Heidema et  al. 2007). 
However, no comprehensive human studies to date 
have evaluated the relationship between the magni-
tude of the virus-specific CD8 T-cell response dur-
ing a primary RSV infection and disease severity. 
Increased CD8 T cells in young children contribute 
to protective immunity against secondary infection 
with RSV (Mbawuike et al. 2001). Previous work 
in mice models have indicated that depletion of 
CD8 T cells delays viral clearance (Graham et al. 
1991b). RSV M282–90-specific CD8 T cells have 
been known to mediate viral clearance, in BALB/c 
mice (Chang and Braciale 2002). IFN-c production 
by RSV-specific CD8 T cells is a critical determi-
nant for their ability to eliminate virus. Data from 
recent studies suggested that during acute RSV 
infection FasL may also play a role in viral clear-
ance. FasL-deficient mice exhibit delayed clear-
ance of RSV as compared to wild-type controls 
(Rutigliano and Graham 2004).

Asthma yet another infection of airways 
shares some characteristics with RSV-induced 
pulmonary pathology such as the induction of 
airway hyper responsiveness and mucus produc-
tion. Asthma and RSV, both diseases are charac-
terized by the morphologic changes in the lung 
and production of cytokine such as IL-4, IL-5, 
and IL-13 along with development of pulmonary 
eosinophilia identifying Th2 responses in both 
diseases.

RSV peaks between 2 and 6 months of age in 
young children. At such young stage there are 
insufficient DCs signals to activate naïve T cells. 
There have been reports establishing a correla-
tion between the levels of Th2 cytokines and 
RSV-induced disease severity in young children 
(Legg et al. 2003; Roman et al. 1997). However, 
other studies proved otherwise (Brandenburg 
et al. 2000; Garofalo et al. 2001). Many factors 
including the source/timing of the samples ana-
lyzed, age and time following initial infection, 
along with the role of Th1 and Th2 cells in RSV- 
induced disease may be reasoned for these 
observed differences. Recent data have indicated 
that Th17 cells may also affect RSV-induced  

disease severity (Mukherjee et al. 2011; Lukacs 
et al. 2010; Kallal et al. 2010). IL-17 and related 
family of cytokines have been shown to play 
pro- inflammatory role in various autoimmune 
diseases. IL-17A plays a crucial role in host 
defense against bacterial and fungal infections 
whereas IL-17F is involved in the development 
of asthma and airway inflammation. Tracheal 
aspirate samples obtained from RSV-infected 
infants have shown elevated levels of IL-17A 
protein (Mukherjee et  al. 2011) in mice with 
acute RSV infection, neutralization of IL-17A 
results in a significant decrease in mucus pro-
duction (Mukherjee et  al. 2011). Thus, IL-17 
may play an important role in RSV-induced dis-
ease. Acute RSV infection also results in an 
increase in the number of Tregs in the lung 
(Fulton et al. 2010; Ruckwardt et al. 2009). The 
kinetics of the Treg response in the lung seems to 
match with the kinetics of the RSV-specific CD4 
and CD8 T-cell response (Fulton et  al. 2010). 
Abolition of Tregs subsequent to acute RSV 
infection affects multiple aspects of the adaptive 
immune response by increasing secretion of the 
pro-inflammatory cytokine IL-6 and cellular 
infiltrate into the lungs (Fulton et  al. 2010; 
Ruckwardt et al. 2009; Lee et al. 2010). Recent 
study has suggested that Tregs can prevent 
immunopathology via granzyme B without com-
promising host defense (Ruckwardt et al. 2009; 
Lee et  al. 2010; Loebbermann et  al. 2012a). 
Several works have established production of 
IL-10 by Tregs and RSV-specific CD4 and CD8 
T cells during acute RSV infection (Loebbermann 
et al. 2012b; Sun et al. 2011b; Weiss et al. 2011). 
CD4 T cells make up the majority of the IL-10- 
producing cells in the lung following acute RSV 
infection (Loebbermann et al. 2012b; Sun et al. 
2011b; Weiss et  al. 2011). IL-10 produced by 
CD4 T cells, plays a significant role in limiting 
the development of pulmonary immunopathol-
ogy in case of acute RSV infection. Recent find-
ings, have suggested IL-2 produced by CD4 T 
along with IL-27 produced by innate cells in the 
lung may induce IL-10 production by virus-spe-
cific CD4 and CD8 T cells, during acute influ-
enza virus infection (Sun et al. 2011a).
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Similarly, the adenovirus is also reported to 
cause nonlethal disease in humans; however the 
infection may prove fatal in case of immunocom-
promised patients (Lynch 3rd and Kajon 2016). 
The infection by an adenovirus is sensed by the 
immune system as soon as it is in bloodstream. 
The viral infection triggers the proinflammatory 
signaling cascade followed by the attraction of 
cytotoxic immune cells to the site of infection 
(Atasheva and Shayakhmetov 2016). After few 
infections by adenoviruses, the immune system 
generates a long term humoral and T-cell 
responses reported to provide subsequent virus- 
induced morbidity (Flomenberg et al. 1995). Not 
many studies have focused on the adenovirus 
specific cellular immunity due to the limited per-
missiveness of infection in the murine models. 
The cellular immune responses, however, are 
consequently dominated by the CD8+ cytotoxic 
T cells (CTLs) specific for early proteins 
(Mullbacher et  al. 1989; Rawle et  al. 1991). A 
recent study conducted on primary human blood 
cells found that healthy adults harbor the 
adenovirus- specific Tregs (Tran et al. 2018). The 
study revealed that the adenovirus–antibody 
complexes are taken up by the DCs and favor the 
bystander DCs to become tolerogenic which sub-
sequently helps in the formation of adenovirus- 
specific Tregs (Tran et al. 2018). The study also 
proposed that this mechanism likely favors the 
pathogen survival; however the same may be 
advantageous to the host too (Tran et al. 2018).

3.2  B Cell Responses

Antibodies play a vital role in preventing reinfec-
tion with viruses by either directly neutralizing or 
assisting in the opsonization of extracellular virus 
particles. Naïve B cells along with memory T 
cells are crucial for preparing the defense against 
heterosubtypic influenza virus strains (Rangel- 
Moreno et al. 2008). Non-neutralizing antibodies 
produced by B cells assist in viral elimination 
and fastens the expansion of memory CD8+ T 
cell after heterosubtypic infection (Rangel- 
Moreno et  al. 2008). In addition, influenza 

 specific antibody-dependent cell-mediated cyto-
toxicity (ADCC) also participates in the cross-
reaction against different HA subtypes 
(Jegaskanda et  al. 2014). IgG along with IgA 
plays important role in protecting against influ-
enza A virus infection in the respiratory tract. 
IgG plays crucial role in inhibiting pathogenesis 
while IgA keeps a check on transmission of influ-
enza A viruses (Seibert et  al. 2013). Both, the 
lifespan and response time of memory B cells 
and plasma cells are crucial for the protective 
antibody response of influenza A virus vaccines. 
In elderly population, the memory B cells are 
maintained, but still multiple influenza A virus 
immunizations also fails to establish the antibody 
response. This may be caused due to a potential 
defect in the development of plasma cells, after 
certain age (Frasca et al. 2016).

The RSV infection also provokes antibody 
responses. The RSV attachment (G) and fusion 
(F) proteins are the major targets of RSV-specific 
neutralizing antibodies. Both IgA and IgG play 
important roles in protecting infection against 
upper respiratory tract infection. However, B cell 
depletion does not play significant role in viral 
clearance during primary RSV infection but sig-
nificantly affects the rate of viral clearance after 
secondary infection (Graham et  al. 1991a). 
Following acute RSV infection, the frequency of 
antibody-secreting plasma cells rapidly declines 
in the upper respiratory tract (Singleton et  al. 
2003). In case of acute RSV infection in young 
children, both the IgA and IgG titers decrease rap-
idly. In children, the immaturity of the immune 
system and the presence of maternal antibodies 
contributes to diminished antibody responses 
induced by acute RSV infection (Kasel et  al. 
1987). Since neutralizing RSV-specific antibody 
responses could only been detected in 50–75% of 
infants (Brandenburg et  al. 1997; Murphy et  al. 
1986) population, thus antibody response gener-
ated after RSV infection fails to establish long- 
lasting immunity and prevent periodic reinfections 
throughout life. Several RSV- encoded proteins 
have been shown to modulate the innate and adap-
tive immune responses. For example, the two 
nonstructural proteins NS1 and NS2 have been 
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shown to act individually as well as simultane-
ously to inhibit type I IFN production as well as 
signaling (Ramaswamy et al. 2006; Spann et al. 
2004). Inhibition of the type I IFN response by 
these structural proteins also negatively affects 
the CD8 T-cell response (Kotelkin et  al. 2006). 
Naïve CD8 T cells require three signals: antigen, 
co-stimulation, and cytokines to become acti-
vated, proliferate and differentiate into effector 
cytotoxic lymphocytes. Thus, the inhibition of 
type I IFN by NS1 and NS2 may provide critical 
cell-survival signals to the CD8 T cell. The RSV 
G protein, available as both a membrane anchored 
as well as a soluble secreted protein has been 
shown to contain a number of structural features 
that serve to modulate the adaptive immune 
response. The soluble form of G protein acts as a 
decoy to bind neutralizing antibodies and prevent 
neutralization and/or opsonization of the viral 
particles. Purified RSV G protein has been shown 
to bind cells expressing the receptor and mediate 
their chemotaxis (Tripp et al. 2001) thereby mod-
ulating the local inflammatory environment in the 
lung by altering the infiltrating inflammatory 
cells. The presence of the G protein reduces 
expression of various chemokines thereby reduc-
ing Th1 and CD8 T-cell response and increasing 
Th2 responses (Mukherjee et  al. 2011; Lukacs 
et al. 2010).

Recombinant adenoviruses have been known 
to be used as vehicles for gene therapy. A study 
showed that adenovirus infection induced the 
type I IFNs that was critically required for the 
multiple stages of adaptive B cell response 
including the B cell activation, germinal center 
formation, Ig isotype switching as well as plasma 
cell differentiation. The study also showed the 
importance of type I IFNs in the generation of 
protective neutralizing antibodies on both CD4 T 
and B cells (Zhu et al. 2007b).

4  Conclusion

Several past and recent studies have documented 
the activation of immune response to several 
viruses, including those that cause the major 

respiratory diseases. Influenza virus, RSV, adeno-
virus and few others have been a significant cause 
of public health concern and needs continuous 
worldwide surveillance. Over the past decade, 
considerable mechanistic observations have been 
made regarding the immune system’s machinery 
to identify and eliminate acute respiratory viruses. 
These viruses are not only known to generate the 
innate immune response but also subsequently 
activate the adaptive wing of the host immune 
response during infections. Accumulating evi-
dences have suggested the crucial role of inflam-
masome activation and generation of inflammatory 
response upon several respiratory viral infections. 
There is a balance between the beneficial and det-
rimental activation of this immune response that 
often becomes the deciding factor for a host sur-
vival during infection.

The discovery about the PRRs and how they 
distinguish between host and pathogen, show the 
complexity of the host immune system. The 
TLRs and IRFs play critical roles during the ini-
tiation of immune responses. Later the RNA heli-
cases and DNA sensors were also shown to play 
crucial roles. The knockout mice models for 
MAVS, IRFs and MyD88-TRIF have provided 
potentials to elucidate these pathways in details 
and their contribution to both pathogenesis and 
immunity to these human respiratory pathogens. 
The advancements made in the area of T cell and 
B cell subsets have provided an in-depth knowl-
edge about how a host is protected from a sec-
ondary challenge and memories are generated for 
a recall response during respiratory viral infec-
tions. Novel therapeutic antiviral agents as well 
as target host proteins need to be identified in 
order to efficiently manage these viral infections. 
The better understanding of the virus-host inter-
actions, host immune response and the ability of 
the viruses to exploit host signaling mechanism 
will provide a comprehensive picture of antiviral 
immunity and further facilitate the development 
and implementation of new treatment strategies 
for pathogenic respiratory viruses.
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1  MERS-CoV

Middle East Respiratory Syndrome Coronavirus 
(MERS-CoV) is a group C betacoronavirus, with 
a positive stranded RNA genome of around 30 kb 
in length (van Boheemen et al. 2012). Its genome 
encodes structural proteins such as spike (S), 
envelope (E), membrane (M), and nucleocapsid 
(N) as well as non-structural proteins (van 
Boheemen et al. 2012). The virus was first identi-
fied in 2012 from a pneumonic patient in the 
Kingdom of Saudi Arabia (KSA) and subse-
quently has been introduced into 27 countries 
and caused numerous outbreaks, mainly in the 
Arabian Peninsula in large crowded hospitals, 
with one large outbreak in the Republic of Korea 
in 2015.

The origin of the virus is not known, but it 
may have come from bats because it shares 

genetic similarity with bat coronaviruses (van 
Boheemen et  al. 2012). Dromedary camels 
(Camelus dromedarius) are the only confirmed 
animal intermediate host (Alagaili et  al. 2014; 
Haagmans et  al. 2014). More than 54% of pri-
mary human cases have reported contact with 
camels (Conzade et  al. 2018); and the index 
patient in the Korean outbreak travelled back 
from the Arabian Gulf countries where MERS- 
CoV is endemic in dromedary camels (Korea 
Centers for Disease Control and Prevention 2015; 
Kasem et  al. 2018a). Dromedaries have been 
infected with MERS-CoV by as early as 1983 
according to serological testing of archived camel 
sera (Alagaili et  al. 2014; Muller et  al. 2014; 
Corman et al. 2014; Reusken et al. 2014; Hemida 
et  al. 2014a; Kasem et  al. 2018b; Meyer et  al. 
2014), indicating that MERS-CoV could have 
been circulating in camels for decades. In addi-
tion, several recent studies on camels confirmed 
that between 70 and 100% of dromedaries are 
seropositive for MERS-CoV in both Africa and 
the Arabian Peninsula; furthermore, the virus 
and/or its RNA have been isolated from drome-
daries, confirming that these animals are a source 
for human infections (Kasem et  al. 2018a; 
Reusken et  al. 2013; Falzarano et  al. 2017; 
Miguel et al. 2017; Deem et al. 2015; Perera et al. 
2013).

In humans, MERS-CoV infects epithelial cells 
in the trachea, bronchi, and lungs and causes a 
respiratory illness with symptoms that may 
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include fever, cough and shortness of breath. 
Pneumonia is common, but not always present. 
Gastrointestinal symptoms, including diarrhoea, 
have also been reported. At the cellular level, the 
virus enters the mammalian epithelial cells by 
binding to the receptor, dipeptidyl peptidase 4 
(DPP4) (Raj et  al. 2013a). In camels, the virus 
replicates and can be isolated from the upper 
respiratory track whereas in humans the virus is 
primarily found in the lower respiratory track. 
This is in part due to differential expression of 
DPP4 in different tissues in camels and humans 
(Widagdo et al. 2017; Eckerle et al. 2014).

Some laboratory-confirmed cases of MERS- 
CoV infection are reported as asymptomatic, 
meaning that they do not have any clinical symp-
toms. Most asymptomatic cases have been 
detected following aggressive contact tracing of a 
laboratory-confirmed case (WHO 2019). The 
infection has an unusually high case-fatality rate 
of around 35% but is not considered to pose an 
epidemic threat because the reproductive rate of 
the virus transmission (R0 rate) is below 1, 
although super spreader events have occurred. 
There is currently no approved specific treat-
ment, nor vaccines for MERS-CoV; and the cases 
are usually treated with supportive palliative 
care.

Both innate or adaptive responses against 
MERS-CoV occur following infection. While 
adaptive cell-mediated immunity can be initiated 
against any MHC-I or MHC-II presented epit-
opes, neutralising antibodies mainly target epit-
opes within the spike protein of MERS-CoV. The 
spike protein consists of 1353 amino acid (aa); 
with two subunits the S1 (aa 18–751), which con-
tains the receptor-binding domain (RBD; aa 367–
606); and S2 (aa 752–1353), which contains the 
fusion domain (Fig.  5.1). The RBD binds to 
DPP4 on epithelial cells in the respiratory tract of 
mammals such as humans and nonhuman pri-
mates, dromedaries and other camelids, rabbits 
and swine. Some mammals, such as the rodent 
family (mice and hamsters) have genetic sequence 
difference in their DPP4, that do not permit infec-
tion with MERS-CoV (Eckerle et  al. 2014; Du 
et al. 2017; Wang et al. 2013; Raj et al. 2013b). 
Overall, the S protein is a main target for neutral-

ising antibodies and several monoclonal antibod-
ies against epitopes in the spike protein have been 
developed (Tang et  al. 2014; Corti et  al. 2015; 
Pascal et al. 2015; Chen et al. 2017; Jiang et al. 
2014; Niu et al. 2018; Stalin Raj et al. 2018; Zhao 
et al. 2018). This chapter presents what is known, 
to date, on the immune responses to MERS-CoV 
infections in humans, camels, and experimental 
animal models.

2  Adaptive Immune Responses 
to MERS-CoV in Camels

2.1  Antibodies Against MERS-CoV 
in Camels

Camelid species produce three isotypes of immu-
noglobulin G antibodies: IgG1, IgG2, and IgG3. 
IgG2 and 3 are structurally unique, lacking light 
chains in the Fab region of the antibody. This 
results in the heavy chain domain of the Fab 
region being responsible for antigen specificity 
(Daley-Bauer et al. 2010). Most studies on camel 
immune responses to MERS-CoV have focused 
on evaluating the presence of MERS-CoV spe-
cific antibodies (seroprevalence studies); and the 
kinetics of antibody responses in camels have not 
been clearly defined. Antibodies against MERS- 
CoV can be elicited in dromedaries although the 
infection in these animals is usually asymptom-
atic. Anti-spike antibodies are usually detected 
from 1 month post-infection and continue to be 
detectable in the serum for more than a year 
(Meyer et al. 2016). Induction of antibodies fol-
lowing primary infection in young calves may 
require at least 1–2  months unlike older calves 
and adult dromedaries. A 1-year old calf mounted 
low neutralising antibody titre of 1/160 3 months 
after a MERS-CoV outbreak in a herd and this 
titre increased to 1/640 in the following (fourth) 
month post-outbreak (Hemida et al. 2017). When 
2  year-old calves, were housed with many 
MERS-CoV shedding camels, the calves were 
infected within 4 days and mounted a detectable 
antibody response 1–2  months post-infection. 
However, in an experimental infection, naive 
camels challenged with a high dose of 
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 MERS- CoV, mounted a detectable neutralising 
antibodies 1  week post-infection (Haagmans 
et al. 2016). Therefore, the induction of antibod-
ies may take weeks to months, and would appear 
to depend on the infectious dose.

The antibodies decline rapidly 4–5  months 
following a single incident of infection (Hemida 
et  al. 2017); therefore multiple re-infections 
enhance the antibody levels in camel sera that can 
be detected for longer time for more than a year 
(Ali et al. 2017).

2.2  Camelid Maternal Antibodies 
Against MERS-CoV

Newly born calves acquire maternal antibodies 
from their seropositive mothers and continue to 

possess these antibodies for 5  months (Meyer 
et  al. 2016). Maternal antibody levels in calves 
are usually similar to their levels in the mothers, 
although this is not always the case, and these 
antibodies decline rapidly over the first 5 months 
post-parturition (Meyer et  al. 2016; Ali et  al. 
2017). Infection of MERS-CoV is usually more 
predominant in immunologically naive calves 
than adult camels (that are usually seropositive). 
Infection in the calves generally results in higher 
virus replication than in seropositive adult cam-
els. The antibodies in seropositive camels do not 
protect from the infection, but they may play a 
role in reducing virus replication and the magni-
tude of infectious viruses shed (Alagaili et  al. 
2014; Meyer et al. 2016; Hemida et al. 2014b). 
Therefore, re-infection of MERS-CoV occurs in 
seropositive camels as well as in naive calves or 

Fig. 5.1 A schematic representation of MERS-CoV spike protein, cited from Han et al. (2018) Viruses (Han et al. 
2018)
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calves with maternal antibodies (Meyer et  al. 
2016; Ali et al. 2017; Wernery et al. 2015).

2.3  Re-infection and Protection

Anti-S1 antibodies in serum that are induced 
following a natural infection do not completely 
protect camels from re-infection with MERS-
CoV. It is suspected that either the level of these 
antibody is not sufficient for protection or that 
other immune responses, such as cell-mediated 
immunity, antibodies against other epitopes 
(such as the S2) and proteins (such as structural 
proteins), or mucosal antibody in the upper 
respiratory tract are required to achieve protec-
tion. One camel in a herd-based study was found 
to be re-infected despite having a high nAb titre 
of 1/40960 (Hemida et al. 2017). Although anti-
bodies against MERS-CoV spike protein do not 
completely protect camels, they could signifi-
cantly contribute to reducing virus presence in 
the camel respiratory tract. Seropositive camels 
that were co-housed with infected camels in one 
pen were infected, but the infection was tran-
sient and resolved significantly quicker than 
camels with no pre- existing anti-MERS-CoV 
antibodies (Alharbi et  al., submitted manu-
script). However, induction of protective immu-
nity seemed possible when one seropositive 
camel with a defined anti-S Ab titre was vacci-
nated with a potent spike based vaccine and 
showed complete protection. Although this pro-
tection might be partially attributed to the pre-
exisiting cellular immunity or antibodies against 
non-spike proteins, this finding could support 
establishing a protective titre based on anti-S1 
antibodies level in camels (Alharbi et  al., sub-
mitted manuscript).

2.4  Cellular Immune Responses

The lack of reagents specific to Old world camels 
has hampered the research in evaluating cellular 
immune responses in dromedaries. Currently, 
there is no data indicating what role cellular 
immunity might play in protection from infec-

tion. Although some reagents are available for 
New World camelids (e.g. Llama), these do not 
necessarily work in dromedaries.

3  Immunity of MERS-CoV 
in Other Animal Models

Several animal models for MERS-CoV have 
been developed including various mice models 
that express human DPP4, rabbits and non- 
human primates. Some of these animal models 
recapitulate the lower respiratory tract infection 
that is observed in humans.

3.1  Mouse Models

Several mouse models have been developed for 
MERS-CoV using a number of different strate-
gies including transient expression of human 
DPP4, knock in, or substitution of mouse DDP4 
with human or humanized versions of DPP4 
(Agrawal et  al. 2015; Zhao et  al. 2014). The 
drawback of these models is they either do not 
results in consistent lethal disease (making patho-
genesis and vaccine or treatment efficacy studies 
more difficult) or lethal disease is not consistent 
with the pathogenesis that is observed in humans.

3.2  Transduced Mice

Zhou et  al. (2014) developed the first small 
animal model of mice for MERS-CoV by tran-
sient transduction of an adenoviral vector 
expressing human DPP4 and showed that the 
mice developed severe pneumonia with inflam-
mation in the lower respiratory tract with 
extensive cell infiltration, comparable to that 
found in humans—but this model did not show 
any lethality. Virus clearance occurred 6–8 days 
post infection (Zhao et al. 2014). In transgenic 
mice with defective interferon signalling 
responses and infected with MERS-CoV, the 
disease was more severe. Absence of myD88 
and MAVS pathways showed mild to severe 
outcomes, respectively following the infection. 
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In addition, in T cell and B cell deficient trans-
genic mice, infected with  MERS- CoV, the 
virus was not cleared while passive transfer 
with immune sera raised against MERS- CoV 
showed that neutralizing antibodies were able 
to accelerate viral clearance. These findings 
indicate the importance of both nAb and T 
cells in viral clearance and potential protec-
tion. Several studies testing vaccine candidates 
were conducted in these models. For example, 
a study with vaccine using replication compe-
tent measles virus expressing spike in the 
transgenic mouse model showed induction of 
MERS- specific nAb and cytotoxic T cell 
responses (Malczyk et  al. 2015). The Ad5-
transduced rodent model was used to study 
MERS-CoV replication, vaccines and thera-
peutics as a small animal model (Zhao et  al. 
2014). However, uncontrolled expression lev-
els of hDPP4 and tissue distribution limited 
their use in pathogenesis and immunology 
studies.

3.3  Transgenic Mice

Multiple transgenic (Tg+) mouse models have 
been developed. In one study a murine model by 
codon optimization with expression of hDPP4 
(Zhao et  al. 2015). Upon intranasal infection, 
virus replication was detected up to day 5 post 
infection with severe inflammation infiltration 
and lung damage. However, global distribution 
of human DPP4 receptor resulted in virus repli-
cation in the brain and kidney until day 9 after 
the initial replication in the lungs. While this 
model is very lethal at day 10 post challenge, it 
is not consistent with human disease, as virus 
dissemination to the brain occurs and is respon-
sible for the lethal outcome. It has, however, 
proved suitable for vaccine and antiviral studies 
(Zhao et al. 2015).

Another hDPP4 Tg+ mouse model was gener-
ated by incorporating a CD26 cassette under the 
control of a CMV promoter. After infection with 
MERS-CoV, active replication and viral RNA 
was detected in lungs and brain at 2 and 4 days 
post infection, respectively (Agrawal et al. 2015). 

All mice in the study developed severe pneumo-
nia and perivascular cuffing. Furthermore, this 
model showed activation of antivirals genes. 
Vaccine studies in these Tg+ mice with a single 
dose of recombinant adenovirus based S1 vac-
cine elicited specific IgG neutralizing antibodies 
and showed complete protection upon challenge 
infection of MERS-CoV and undetectable viral 
loads in lungs (Malczyk et al. 2015). Other trans-
genic mice, expressing hDPP4 under the control 
of cytokeratin 18, developed high virus titer in 
the brain and lungs at 2 and 6 days after infection. 
Vaccine studies with a Venezuelan equine 
encephalitis replicon particle expressing the S 
protein showed protection upon challenge with 
high antibody titers when compared to control 
mice (Li et al. 2016).

Additionally, knock-in (KI) mice with hDPP4 
insertion by CRISPR-Cas9  in the Rosa26 locus 
of KI mice were generated (Fan et  al. 2018). 
hDPP4 was expressed in lung tissues while 
expression was low in brain and other organs. 
Five days after infection with MERS-CoV, 
approximately 10^3 PFU virus was detected in 
the lungs of R26-hDPP4 mice. Serum neutraliza-
tion antibodies were detected and correlated with 
protection in this model.

Li and colleagues developed several KI mouse 
models by replacing human exon 10–12  in the 
DPP4 locus of the mouse, which upon inocula-
tion with MERS-CoV resulted in infection of 
lungs with absence of disease in mice (Li et al. 
2017). After 30 passages in lungs of these KI 
mice, mouse–adapted MERS-CoV (MERS-MA) 
was developed which grew to high titres in the 
lungs of these mouse. Virus replication was evi-
dent in lung epithelia and macrophages. 
Histopathological studies showed alveolar dam-
age with pulmonary edema with activated inflam-
matory monocyte derived macrophages and 
neutrophils in lungs. 13–22 mutations in spike 
protein conferred more rapid entry into host cells 
and were more virulent than the parental MERS- 
CoV. This mouse model showed severe signs of 
inflammation with activation of neutrophils. So 
far, this is the best mouse model for MERS-CoV 
in terms of pathogenesis (van Doremalen and 
Munster 2015).

5 Immune Responses to MERS-CoV in Humans and Animals
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3.4  Non-human Primates

Rhesus macaques and common marmosets have 
been developed as animal models for MERS- 
CoV. Viral replication occurs in the lungs of both 
models, but disease severity was different (Yu 
et al. 2017).

3.5  Rhesus Macaques

Rhesus macaques were described as the first ani-
mal model that supports MERS-CoV infection. 
Disease outcome was studied by inoculating 
MERS-CoV at mucosal surfaces including oral, 
tracheal, nasal and ocular routes, resulted in a 
lower respiratory tract infection (Yao et al. 2014). 
Elevation in body temperature was observed 
from 1 to 2 days post infection (dpi), but no sig-
nificant change in body weight was recorded. All 
animals did not shed virus in upper respiratory 
tract. Imaging data in lungs showed immune cells 
filtration. All animals showed mild signs of dis-
ease within 24 h with resolution of signs between 
3 and 6 dpi. Nasal and oropharyngeal swabs and 
bronchoalveolar lavage were positive for MERS- 
CoV RNA, in contrast to urogenital and fecal 
swabs (Yao et al. 2014).

A neutralizing antibody response was 
observed at 7  days post infection (dpi), but 
decreased eventually after 28 dpi. Transcriptome 
analysis showed that proinflammatory cytokines 
and inflammatory cells were upregulated in early 
infection and decreased in later stage of infec-
tion. Mild disease outcome in rhesus macaques 
recapitulates the disease observed in MERS 
patients with mild to moderate symptoms; and 
this model can be used as an infection model to 
study antivirals and vaccines.

A synthetic consensus anti-spike DNA vac-
cine induced protective innate and adaptive 
immunity in rhesus macaques when adminis-
trated intramuscularly (Muthumani et  al. 
2015). ELISPot analysis for IFN-γ showed 
robust T cell responses in vaccinated and pro-
tected (Muthumani et  al. 2015). Dose depen-
dent studies showed no significant difference 
in neutralizing antibody response between low 

and high dose. However, seroconversion 
appeared after first immunization in high dose 
group and protected animals from challenge 
whilst other group required multiple immuni-
sations to seroconvert. High dose regimen of 
the vaccine was also successful to induce 
higher percentage of CD8+ and CD4+ response 
(Muthumani et al. 2015).

3.6  Common Marmosets

The common marmoset model was first devel-
oped with in silico analysis and confirmed that 
marmoset DPP4/S binding kinetics were pre-
dicted to be similar to human (Raj et al. 2013a; 
Lu et  al. 2013). To establish marmosets as an 
animal model for MERS-CoV, 9 male marmo-
sets were infected by intranasally, intraorally, 
intraoccularaly (Falzarano et  al. 2014). The 
marmosets developed moderate to severe dis-
ease; and in contrast to rhesus macaques, a 
slower disease progression towards severity 
level was observed, with 2 animals being eutha-
nized at 4 dpi due to clinical score. MERS-CoV 
RNA was found in nasal and oral swabs up to 13 
dpi and was 3 logs higher than observed in rhe-
sus macaques.

Viral RNA was also detected in blood sam-
ples as well as all investigated tissues (respira-
tory tract, conjunctiva, lymph nodes, 
gastrointestinal tract, kidney, heart, adrenal 
gland, liver, spleen and brain) in at least one ani-
mal. The highest viral load was found in the 
lungs, and did not significantly differ at 3, 4, and 
6 dpi (Falzarano et al. 2014).

Although, the number of animals in this study 
was limited, the marmoset recapitulates the 
severe disease that can be observed in humans 
and therefore can be a better model to understand 
disease outcome and MERS-CoV pathogenesis. 
A marmoset treatment study with hyper-immune 
sera from seropositive marmosets showed 
decrease in viral load and reduced gross pathol-
ogy. This suggests that antibodies play an impor-
tant role in protection against MERS-CoV (van 
Doremalen et al. 2017) although no difference in 
lung pathology was observed.
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3.7  Rabbits

Rabbit tissues can be infected in  vitro with 
MERS-CoV indicating that rabbits can be animal 
models for MERS-CoV (Haagmans et al. 2015). 
Female rabbits inoculated via the intranasal and 
intratracheal route did not develop clinical dis-
ease (Haagmans et  al. 2015). Further, New 
Zealand rabbits were described as a model of 
infection for MERS-CoV (Houser et  al. 2017). 
They were inoculated via the same routes as pre-
vious models and were re-challenged on day 57. 
Virus replication was mild to moderate with RNA 
being detected in lungs but not in kidney. The 
serum IgG antibodies were detected but without 
neutralizing activity. These antibodies failed to 
protect upon re-infection (Houser et al. 2017). It 
seemed that the rabbit model is the only model to 
show exclusively non-neutralizing antibodies fol-
lowing the primary infection. In contrast to 
humans, viral antigens were predominant in the 
upper respiratory tract. Thus, rabbits may be con-
sidered as an asymptomatic animal model with 
upper respiratory infection of MERS-CoV.

3.8  Alpacas

MERS-CoV infects the upper respiratory tract in 
camels and other camelids including alpacas, in 
contrast to the infection in humans, which is pri-
marily in the lower respiratory tract (Adney et al. 
2016). Signs of disease in camels and alpacas 
range from asymptomatic to minor nasal dis-
charge (Adney et al. 2016). Therefore, these ani-
mals cannot be used as animal models as they do 
not mimic the disease in humans. However, 
alpacas are useful for studying camelid immunol-
ogy as a smaller model for camel infection. 
Infection challenge studies in alpacas showed 
that the infection occurs and both viral particles 
and viral RNA were detected through the first 
week post infection; virus nAb responses were 
also detected in alpacas (Adney et  al. 2016; 
Adney et al. 2014).

A subunit vaccine with S1 showed reduced 
and delayed viral shedding in upper respiratory 
tract of alpacas and camels (Adney et al. 2019). 

High neutralizing antibodies induced by the vac-
cine were correlated with decreased viral shed-
ding and protection, indicating the importance of 
nAb in protection from MERS-CoV in camelids. 
However, in this study, low nAb levels were 
detected in camels as compared to alpacas 
(Adney et  al. 2019). This would suggest that 
although alpacas are potential animal models to 
study camel vaccines, vaccine efficacy has to be 
confirmed in camels.

4  Immune Response to MERS- 
CoV Infection in Humans

The spectrum of disease outcome and immune 
responses in humans is similar to other respira-
tory coronaviruses such as SARS-CoV. Current 
findings confirm that the neutralizing antibody 
response against spike protein along with cell- 
mediated immunity are required for virus clear-
ance from host tissues.

4.1  Innate Immune Response

MERS-CoV has evolved a strategy to conquer 
innate arms of immune response by blocking IFN 
response and this may contribute to high fatality 
rate especially among immunocompromised 
individual (Balachandran et  al. 2000). MERS- 
CoV downregulates downstream pathways of 
MDA-5 and RIG-1, important mediators of 
innate immune response (de Wit et  al. 2016). 
Upon recognition of PRR (pattern recognition 
receptors) such as MDA-5 and RIG-1 by viral 
RNA, these receptors activate MyD88 following 
interferon response and NF-κB transcription fac-
tor (Siu et al. 2014). IFN-1 and MyD88 deficient 
mice showed severe outcome compared to MAVS 
(mitochondrial antiviral signaling protein) defi-
cient mice (Zhao et al. 2014), indicating the criti-
cal role of these innate immune pathways in 
reducing the MERS-CoV infection. Accessory 
proteins like ORF4a, ORF4b, and ORF5 are 
responsible for downregulation of these path-
ways and therefore preventing synthesis of inter-
feron beta, contributing to the viral pathogenesis 
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(Yang et  al. 2013) as the interferon production 
leads to activation of JAK-STAT pathway, which 
leads to expression of IRF9 and further antiviral 
pathways. ORF4a and ORF4b also inhibit the 
downstream pathways of ISRE (interferon stimu-
lated response element) by invading STAT com-
plex and ISG (Interferon stimulated gene) (Yang 
et al. 2013). Therefore, among all accessory pro-
teins, the ORF4a is considered a potent inhibitor 
of pathways including IRF3, ISRE and NF-κB 
(Yang et al. 2013). The MERS-CoV M protein is 
also known to block IFN promoter and IFN pro-
duction, but the exact mechanism is not yet clear. 
In conclusion, structural proteins along with 
accessory proteins interfere with interferon sig-
nalling pathways and lead to severe inflammation 
responses which result into severe disease 
outcome.

4.2  Antibody Responses

Neutralizing antibodies are known to block infec-
tion of host cells by interfering with the interac-
tion between antigens and receptors. Anti-MERS 
neutralizing antibody response occurs in sera at 
day 14 post-exposure to the virus and increase 
over time. Analysis using human immune sera 
confirmed that neutralizing antibodies binds to 
the receptor binding domain in the S protein and 
prevents binding to human DPP4. Serological 
studies in camel handlers indicated that more 
than 50% of camel workers had neutralizing anti-
bodies against S1 protein. In a plaque reduction 
neutralization assay, antibody responses in those 
with mild disease was substantially lower than 
individuals with severe disease. In a study of 37 
patients infected with MERS-CoV, seroconver-
sion was observed after 2 weeks following onset 
of disease and was inversely proportional to viral 
RNA and had little role in virus clearance 
(Corman et al. 2015); and neutralizing antibodies 
did not correlate with the outcome of disease 
(Chafekar and Fielding 2018). Additionally, IgA 
levels were high in mucosal secretions with sug-
gested late onset of IgA in serum. Another study 
on 9 healthcare workers showed that an antibody 
response was maintained 18  months following 

infection. However, patients with milder MERS- 
CoV disease showed variable antibody responses 
that either increased or decreased over time 
(Alshukairi et  al. 2016). A study of antibody 
responses and neutralizing activity showed that 
anti-S antibodies were mounted 3  weeks post 
infection, and was sustained in survivors to a 
higher levels than patients with severe disease 
(Park et al. 2015). Delayed IgG neutralizing anti-
body response was correlated with severity of the 
disease; and viral shedding was detected with 
antibody response suggesting weak protection 
against MERS-CoV infection (Park et al. 2015).

4.3  Cell Mediated Immunity

Cell-mediated immunity (including CD4+ and 
CD8+ T cell responses) is a potent arm of adap-
tive immunity which is involved in antibody pro-
duction and direct killing of infected cells. 
Current findings suggest that T cell responses 
along with antibody responses are important to 
clear viral infection from lungs. Apoptotic path-
way in T cells can be induced upon MERS-CoV 
infection; however, this activation is stage- 
dependent and various at different stages of T cell 
development (Ying et al. 2016; Chu et al. 2016). 
By screening for MERS-CoV specific T cell 
responses in human sample, CD8+ T cells were 
observed in many patients with mild infection 
prior to the detection of antibody responses in the 
acute phase of the infection. Convalescent sam-
ples showed moderate levels of CD8+ T cells that 
did not change over time (Shin et al. 2019) while 
CD4+ T cell responses were directed more 
towards E, M, and N proteins than S protein; and 
the same pattern was observed 1  year post- 
infection (Shin et al. 2019).

Patients with higher CD4+ T cell response 
resulted in severe outcome than those with high 
CD8+ T cell response (Zhao et al. 2017). Although 
antibody responses were absent in some patients, 
CD8+ T cell response was detected and it may 
lead to early viral clearance from lungs. Overall, 
as CD8+ T cell magnitudes are prominent during 
the acute phase, it might be important for disease 
prognosis (Fig. 5.2 and Table 5.1).
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Fig. 5.2 Representative diagram on MERS-CoV proteins interaction with signalling pathways for innate immune 
responses

Table 5.1 Immune responses and vaccines evaluated in various animal models for MERS-CoV

Model Disease outcome
Immune response to 
vaccination and infection Vaccine tested References

Ad5-hDPP4 
transduced 
mice

Developed clinical 
disease and pneumonia, 
but no lethality

Induction of humoral 
and cell mediated 
responses

Replication 
competent measles 
expressing spike

Malczyk et al. 
(2015)

Transgenic 
mice (Tg+) 
model

hDPP4 expressed 
globally. Developed 
severe clinical disease 
with mortality

Induction of 
neutralizing antibody 
responses

Virus replicon 
expressing spike 
protein

Agrawal et al. 
(2015), Malczyk 
et al. (2015), Zhao 
et al. (2015)

Transgenic 
mice Rosa26- 
hDDP4 mice

Virus replicates in lungs Induction of 
neutralizing antibody 
responses

Fan et al. (2018)

Transgenic 
mice hDPP4 
under 
cytokeratin 18

High virus titer in brain 
and lungs

Induction of 
neutralizing antibody 
responses

Venezuela encephalitis 
replicon expressing 
spike protein

Li et al. (2016)

Rhesus 
macaques

Developed lower 
respiratory infection, 
mild to moderate clinical 
disease, virus replication 
in pneumocytes

Dose dependant in 
vaccine studies, 
induction of neutralizing 
antibody responses and 
CD4 and CD8 responses

Recombinant DNA 
and protein vaccines, 
expressing synthetic 
consensus spike 
protein

van Doremalen and 
Munster (2015), 
Yao et al. (2014), 
Muthumani et al. 
(2015)

Common 
marmosets

Developed severe 
pneumonia, showed 
partial lethality, viral 
RNA detected in lungs

Induction of 
neutralizing antibody 
responses to infection

Not studied for 
vaccines

van Doremalen 
and Munster 
(2015), Falzarano 
et al. (2014)

Rabbits Developed asymptomatic 
disease, upper 
respiratory infection

Undetectable 
neutralizing antibodies

Not studied for 
vaccines

Haagmans et al. 
(2015), Houser 
et al. (2017)

Alpacas Developed upper 
respiratory tract infection, 
viral shedding in nasal 
secretion, asymptomatic 
clinical disease

Induction of 
neutralizing IgG 
antibody responses and 
T cell based responses

Subunit vaccine Adney et al. (2016, 
2019), Crameri 
et al. (2016)
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1  Introduction

Coronavirus disease 2019 (COVID-19) caused 
by SARS-CoV-2 was first reported in Wuhan and 
related regions in Hubei province, People’s 
Republic of China in December 2019 and subse-
quently spreading to most countries across the 
world. The infection clinically presents as atypi-
cal pneumonia which can progress to acute lung 
injury and acute respiratory distress syndrome 
(ARDS). SARS-CoV-2 was found highly homol-
ogous to the coronavirus (CoV) that caused the 
SARS (Severe acute respiratory syndrome) out-
break in 2003 in China (Zhu et al. 2020; National 
Health Commission of People’s Republic of 
China, 2020). On 11 February 2020, The 

International Committee on Taxonomy of Viruses 
(ICTV) named it Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Simultaneously, 
the WHO named the disease caused by this virus 
COVID-19 (WHO report, 2020). This is the sev-
enth coronavirus known to infect humans: SARS-
CoV, Middle east respiratory syndrome 
coronavirus (MERS-CoV) and SARS-CoV-2 can 
cause severe disease. The other four, HKU1, 
NL63, OC43 and 229E, are endemic in the popu-
lation accounting for up to 30% of annual respi-
ratory infections and are associated with mild 
symptoms that are typically self-limiting. These 
cause seasonal infections in temperate climate 
during winter months (Charlton et  al. 2018; 
Monto et  al. 2020; Chan et  al. 2020). CoV are 
associated with an increased risk of lower respi-
ratory tract infections that are particularly debili-
tating in neonates, the elderly and in individuals 
with comorbidities (van der Hoek et  al. 2005). 
Major symptoms of CoV infection include fever, 
sore throat and swollen adenoids (Liu et al. 2017) 
as well as viral or bacterial pneumonia or bron-
chitis (Forgie and Marrie 2009). NL-63 has been 
associated with onset of acute laryngotracheitis 
(van der Hoek et  al. 2005). SARS-CoV-2 dis-
seminates via asymptomatically infected indi-
viduals (Rothe et al. 2020; Ling et al. 2020; Pan 
et al. 2020b; Ghinai et al. 2020; Mazumder et al. 
2020). The overall mortality rate is 0.5–3.5% 
(Guan et  al. 2020; Wolfel et  al. 2020; Wu and 
McGoogan 2020).
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2  Structural Organization 
of SARS-CoV-2

SARS-CoV-2, a β-coronavirus, is a non- 
segmented positive single-stranded RNA virus 
with a genome size of 29.9 kb (Wu et al. 2020a, 
b). The one-third of the viral genome encodes for 
structural proteins: Spike glycoprotein (S), 
Envelope protein (E), Membrane glycoprotein 
(M) and Nucleocapsid Protein (N). The remain-
ing two-third of the genome is comprised of two 
open reading frames ORF1a and ORF1b that 
encode for non-structural proteins (nsps), which 
form the replication transcription complex 
(RTC); this controls the viral multiplication 
within host (Kim et al. 2020). The non-structural 
proteins that are translated include papain-like 
protease (PLpro), 3C-like protease (3CLpro), 
RNA dependent RNA polymerase (RdRp), heli-
case (Hel), and exonuclease (ExoN) (Tang et al. 
2020a, b). The S genes of 2019-nCoV and 
RaTG13 (BatCoV) are longer than other SARS- 
CoV mainly found in bats (Zhou et al. 2020).

The most prominent viral envelope protein is 
the S-protein (Cavanagh 1995). It is heavily gly-
cosylated to form large transmembrane homotri-
meric spikes; this bulbous crown-like structure 
is what gives the name coronavirus. The 
S-protein is cleaved during viral internalization 
in endocytic vesicles to form two sub-units, S1 
and S2, by host furin-like protease and assists 
viral integration into the host (Coutard et  al. 
2020; Walls et al. 2020a, b; Wrapp et al. 2020). 
The S1 sub- unit accommodating the receptor 
binding domain (RBD) determines the cellular 
tropism, while the S2 subunit containing the 
membrane binding domain (MBD) mediates 
fusion between cell and viral membranes for 
cell entry. The S1 subunit contains a signal pep-
tide and two subdomains, the N-terminal domain 
(NTD) and the C-terminal domain (CTD), both 
domains can serve as the RBD (Tang et  al. 
2020a, b). RBD is a twisted five-stranded anti-
parallel β-sheet (β1, β2, β3, β4 and β7) structure 
with an extended insertion region containing β5 
and β6 strands, α4 and α5 helices and loops 
forming the receptor binding motif (RBM) (Lan 
et  al. 2020). SARS- CoV- 2 utilizes the CTD to 

bind angiotensin converting enzyme-2 (ACE2) 
for entry into the host cell (Zhou et  al. 2020). 
The S2 subunit contains other regions; the 
fusion peptide (FP), HR1 (heptad repeat 1), 
HR2 (heptad repeat 2), transmembrane (TM) 
and cytoplasmic region (CP).

The E-protein and M-protein are conserved 
across the β-coronavirus (Bianchi et  al. 2020). 
The E-protein is a small integral membrane poly-
peptide which can oligomerize and form ion 
channels-fundamental in the release of viral par-
ticles (Verdia-Baguena et  al. 2012). The 
M-protein is prevalent within the viral membrane 
and maintains structural integrity of the virion 
envelope. It is important for budding process 
(Bianchi et al. 2020). It is a multi-spanning mem-
brane protein with three trans-membrane seg-
ments with the major domain of the molecule 
being a large carboxy terminus situated in the 
interior of the virion (Rottier 1995). The 
M-protein is capable of interacting with other M, 
N, E and S proteins during the process of viral 
assembly (Alsaadi and Jones 2019; Neuman 
et  al. 2011). The N-protein binds the RNA 
genome, continuously packaging it into the viral 
particle during assembly and also providing sta-
bility to the viral RNA. Moreover, it can antago-
nize antiviral RNAi and inhibit the activity of 
cyclin-dependent kinase (cyclin-CDK) complex, 
which results in the hypophosphorylation of reti-
noblastoma protein (pRB), inhibiting the genome 
replication (S-Phase) of the cell.

RNA dependent RNA polymerase (RdRp) is 
paramount in viral genome replication. It is a 
highly conserved protein between RNA viruses, 
hence a promising candidate for an antiviral drug 
development. Targeting the RdRp active site may 
inhibit viral replication (Aftab et al. 2020).

3  Transmission of SARS-CoV-2

Statistically, by the beginning of September 
2020, there were an estimated 22,602,665 posi-
tive cases of COVID-19, with 852,758 confirmed 
deaths across 190 countries. This number 
increased to 127 million affected people with 2.7 
million deaths globally by 31 March 2020. 
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SARS-CoV was the causative agent of the 2002–
2003 SARS outbreak that originated in Guandong 
province, China and resulted in approximately 
8098 cases and 774 deaths during a nine-month 
period, with an average mortality rate of 9%. In 
the elderly population, mortality peaked at almost 
50% (Drosten et  al. 2003). In 2012, a novel 
β-coronavirus emerged in Saudi Arabia, MERS- 
CoV, the causative agent in a number of highly 
virulent respiratory tract infections across the 
Middle East (Zaki et  al. 2012). From 2012 to 
January 2020, there were 2506 cases with a 35% 
fatality rate, approximately four times higher 
than SARS-CoV (Killerby et al. 2020). The num-
ber of patients infected with SARS-CoV-2 is 
notably higher than SARS-CoV and MERS-CoV, 
suggesting a higher rate of infection per exposure 
for SARS CoV-2.

SARS CoV-2 is highly contagious and effi-
cient at spreading. In nature, the lipid bilayer of 
the virion protects the virus from denaturation for 
a short time during which it can bind to a suitable 
target receptor. Transmission can occur from an 
infected individual through respiratory droplets 
in direct transmission, where they are expelled as 
aerosols while coughing, sneezing or talking in 
close contact, or saliva during intimate contact. 
Indirect transmission following deposition of the 
virus on fomites (surfaces) has also been observed 
(Chan et  al. 2020; Li et  al. 2020a, b, c; Ghinai 
et  al. 2020). It has been suggested that airway 
secretions may protect the virus, enhancing its 
persistence and transmission via contaminated 
fomites (Pastorino et al. 2020). Aerosol suspen-
sion studies suggest that SARS- CoV- 2 can per-
sist for long periods in the aerosol form, with 
viral bioaerosols retaining infectivity and virion 
integrity for up to 16  h (Fears et  al. 2020). 
Airborne transmission potentially occurs by 
inhaling aerosols containing a critical titre of the 
virus sufficient enough to cause infection, though 
the optimum and basal infectious doses of SARS-
CoV-2 are yet to be ascertained. Droplets con-
taining the coronavirus are heavy due to their 
large diameter, and therefore, are incapable of 
travelling long distances through air. Van 
Doremalen et al. (2020) have studied the stability 
of SARS CoV-2 in aerosols and various surfaces; 

it can remain viable in aerosols for 3  h, being 
more stable on plastic (for up to 72 h) and stain-
less steel (for up to 48 h) compared to copper (no 
viable virus after 4 h) and cardboard (no viable 
virus after 8 h). SARS CoV-2 RNA can also be 
detected in the urine and feces of some patients; 
however, due to low titres in plasma and serum, 
the potential of bloodborne transmission remains 
uncertain.

Hao et  al. (2020) analyzed the transmission 
dynamics of the COVID-19 outbreak in Wuhan, 
and highlighted two key features: high covertness 
and high transmissibility. These features syner-
gistically propelled the COVID-19 pandemic 
(Hao et al. 2020). In 40% of cases, the virus has 
been reported to spread via asymptomatically-
infected individuals worldwide (Rothe et  al. 
2020; Ling et al. 2020; Pan et al. 2020b; Ghinai 
et al. 2020; Mazumder et al. 2020). Various sta-
tistical analyses were undertaken to ascertain the 
role of asymptomatic individuals in transmitting 
SARS-CoV-2. In a study involving cruise ship 
passengers off the coast of Japan carrying 3711 
passengers and crew members, there were 634 
confirmed infection cases: 306 symptomatic and 
328 asymptomatic (Mizumoto et  al. 2020). 
Similarly, a study on passengers flying from 
Wuhan to Japan up to the 6 February 2020, sug-
gested half of the  infected individuals were 
asymptomatic (Nishiura et al. 2020). Tong et al. 
(2020) identified two symptomatic COVID-19 
cases after their exposure to a pre-symptomatic 
individual who was later diagnosed with 
laboratory- confirmed COVID-19. These two 
individuals later transmitted SARS-CoV-2 to 
three other family members, who also remained 
asymptomatic (Tong et al. 2020).

At the New York–Presbyterian Allen Hospital 
and Columbia University Irving Medical Center 
between March 22 and April 4, 2020, a total of 
215 pregnant women who delivered infants were 
screened on admission for symptoms of 
COVID- 19. Four women had SARS-CoV-2 
related symptoms on admission while the 
remaining 211 women were asymptomatic and 
afebrile. Nasopharyngeal swabs indicated 33 
patients were positive for SARS-CoV-2 at admis-
sion, 29 had no symptoms of COVID-19 (Sutton 
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et  al. 2020). Similarly, in another study, 55 
asymptomatic cases were identified with SARS- 
CoV- 2 infection, their ages ranged from 30 to 
49  years asymptomatic cases occurred more 
often in middle aged people in Shenzhen, China 
(Wang et  al. 2020a, b, c, d, e, f, g). Although 
COVID-19 was found to have lower severity and 
mortality than SARS, it is highly contagious and 
affects comparatively more men than women 
(Jin et  al. 2020; Huang et  al. 2020; Mazumder 
et al. 2020).

A quantitative RT-PCR study showed that the 
viral load of SARS-CoV-2  in throat samples 
peaked around 5–6 days after the onset of symp-
toms (Pan et al. 2020a). SARS-CoV-2 can also be 
detected in deep throat saliva samples for 20 days 
or longer (To et  al. 2020). In fecal samples, 
SARS-CoV-2 can be traced after 28  days from 
the first onset while the respiratory samples 
remained positive for around 17 days (Wu et al. 
2020a, b). This possibly suggests that the virus 
may be actively replicating in the gastrointestinal 
tract, even when it is absent in the respiratory 
tract (Wu et  al. 2020a, b). Viral RNA has also 
been detected in urine on 42 days post infection 
in very low quantities (Sun et al. 2020a, b). In a 
study involving 71 COVID-19 patients (68 cases 
were above 18 years) who were in the convales-
cence period, 32.5% patients were positive for 
viral RNA (results turned from negative to posi-
tive) and the longest RNA reversal phase time 
was 7  days (Liu et  al. 2020a, b). In the same 
study, 52.9% of adults showed no obvious clini-
cal symptoms, whereas the remainder exhibited 
mild and non-specific clinical symptoms (Liu 
et al. 2020a, b).

4  Epidemiology of SARS-CoV-2

Epidemiological studies have revealed that CoV 
are epizootic to bats; in particular, Chinese horse-
shoe bats harbor viral genomic sequences and 
serological evidence of prior infection with 
SARS-related CoV (Lau et  al. 2005; Li et  al. 
2005). The coronavirus subfamily is genotypi-
cally and serologically divided into four genera; 
α, β, γ, and δ coronaviruses. The α- and 
β-coronaviruses both originate from bats and are 

mainly found in mammals such as bats, rodents, 
civets, and humans. Several exotic animals have 
tested positive for antibodies to SARS-related 
CoV, including hog badgers and raccoon dogs in 
Chinese wet wildlife markets. Moreover, masked 
palm civets inoculated with SARS-CoV develop 
lung pathology (Wu et al. 2005). Repetitive viral 
genome sequencing of SARS patients and sus-
pected intermediary hosts produced a dendro-
gram suggesting that the first human SARS-CoV 
was related to a civet-derived virus; after several 
transmissions between human hosts, the virus 
had acquired point mutations augmenting its 
pathogenicity in humans (Song et al. 2005).

SARS-CoV-2 caused severe respiratory 
pathology in hosts, its symptomatology and incu-
bation period resemble SARS-CoV and MERS- 
CoV. There are two notable features of the SARS 
CoV-2 genome: mutations in the contact residues 
of SARS-CoV-2 S-protein, and the inherent poly-
basic cleavage site at the two subunits of the 
S-protein. Genetic analyses of SARS-CoV-2 
patient samples confirmed an 88% sequence sim-
ilarity to bat SARS-related CoV, with a 79% sim-
ilarity to SARS-CoV and 50% to MERS-CoV 
(Liu et  al. 2020a, b). The similarity exhibited 
between SARS-CoV-2 and bat SARS-CoV sug-
gested bats to be the possible reservoir. Zoonotic 
reservoirs are well maintained due to their popu-
lation structure, migration patterns and life span 
(Calisher et al. 2006). They are capable of trans-
mitting CoV, which has seen the re-emergence of 
this infectious disease globally. These findings 
corroborate that SARS-CoV-2 is a novel corona-
virus with significant tolerance to genetic vari-
ability and is unlike previously known CoVs.

SARS-CoV-2 is a rapidly evolving RNA virus 
which is continually exhibiting genomic muta-
tions as its transmits. Thus, the mutational land-
scape has been under constant global scrutiny to 
understand the infectivity and antigenicity of the 
new variants. 

United Kingdom, on December 14, 2020, 
reported a SARS-CoV-2 variant of concern (VOC 
202012/01), B.1.1.7 lineage. This B.1.1.7 variant 
became the dominant circulating SARS-CoV-2 
variant in England since its emergence in 
September 2020. It has also been detected in 
other 30 countries including the United States. 
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Compared to ancestral viruses containing the 
D614G mutation, the B.1.1.7 variant has accu-
mulated several other mutations where six nucle-
otide deletions in the S-gene resulted in the loss 
of two amino acids, H69 and V90 (Kemp et al. 
2021; McCarthy et.al. 2020; Galloway et al. 
2021). Several mathematical modelling and epi-
demiological studies predicted that variant can 
spread 56% faster than other lineages resulting in 
higher nasopharyngeal viral loads compared to 
the wild-type strain (Davies et al. 2020).

On 18 December 2020, another highly trans-
missible variant of SARS-CoV-2 named B.1.351 
was reported by the authorities from Republic of 
South Africa. Compared to the Wuhan reference 
strain, the B.1.351 variant has 12 non-synony-
mous mutations and one deletion (Gómez et al. 
2021). This variant has three mutations in the 
S-protein: K417N (a lysine to asparagine substi-
tution at amino acid position 417), E484K (a 
Glutamic acid to lysine substitution at amino acid 
position 484) and N501Y (an asparagine to tyro-
sine substitution at amino acid position 501). The 
N501Y mutation is common in both B.1.1.7 and 
B.1.351 variant (Gómez et al. 2021).

P.1 (B.1.1.28.1) is the third variant of SARS-
CoV-2 that was detected by Japan’s National 
Institute of Infectious Diseases on 6 January 
2021, which was isolated from the four travellers 
who arrived in Tokyo from Brazil. Later on, P.1 
variant was identified in Brazil, as the widely 
transmitted variant (Candido et al. 2020; Gómez 
et al. 2021). The patient samples collected during 
October 2020 form the municipal region of Reo 
De Janeiro State identified the first variant indi-
vidual with the S-Protein mutation E484K. This 
484K.V2 variant has been transmitted to various 
other countries such as England, Norway, 
Singapore, Denmark, Ireland and Canada 
(Gómez et al. 2021; Resende et al. 2021; Vasques  
et al. 2021). The B.1.617.2 (Delta) variant of 
SARS-CoV-2 was identified in India in late 2020 
and has subsequently been detected in around 60 
countries (CDC. 2021). The B.1.617.2 variant 
has a potentially higher rate of transmission than 
other variants and currently account for approxi-
mately 95% of sequenced and 92% genotyped 
cases from 7 to 21 June 2021 in the UK (Public 

Health England, 2021) and became the dominant 
variant in the UK. 

The rapid establishment of a national sequenc-
ing collaboration by the United Kingdom, the 
COVID-19 Genomics UK consortium (COG-UK, 
2020) facilitated the robust systematic sampling 
of the viral genome. A considerable attention has 
been drawn on the D614G mutation, becoming 
the dominant form worldwide as the virus spreads 
from Asia into Europe and USA (Volz et al. 
2021). D614G mutation in SARS-CoV-2 is a 
non-synonymous mutation resulting in a replace-
ment of aspartic acid with glycine at position 614 
of the virus spike protein. D614G has been found 
to be associated with higher viral load and with 
younger age of patient and not with higher mor-
tality or clinical severity of the disease (Volz et al. 
2021). Different demographic events such as 
population growth, random genetic drift, founder 
effects, positive selection and several other fac-
tors can be the reason for the spread of viral 
mutation that need to be monitored globally.

5  Clinical Aspects of COVID-19

COVID-19 typically begins with a mild, self-
limiting respiratory tract illness, progressing to 
severe ARDS, and then leading to multiple organ 
failure in some cases. Within approximately 
5.2  days of incubation, SARS-CoV-2 infection 
presents its first symptoms (Li et al. 2020a, b, c). 
The period from initial symptoms to potential 
fatality ranges from 6 to 41 days with a median 
of 14 days (Wang et al. 2020a, b, c, d, e, f, g). 
This variable time span is contingent on a num-
ber of co-factors, sex and immune status being 
the main issues. At the onset of the disease, most 
patients exhibit common symptoms such as 
headache, fever and dry cough. Other symptoms 
include muscle pain/fatigue, chest pain, diar-
rhoea, nausea, vomiting, and less often haemop-
tysis and anosmia (Huang et al. 2020; Chen et al. 
2020a, b, c, d; Wang et al. 2020a, b, c, d, e, f, g; 
D’Amico et  al. 2020; Kerslake et  al. 2020). It 
was also observed that diabetes, hypertension, 
and cholesterol levels possess an apparent rela-
tion to COVID-19 severity (Wang et al. 2020a, b, 
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c, d, e, f, g) (Fig. 6.1); these patients also show 
high levels of IL-6, IL-10, TNF-α, and lactate 
dehydrogenase (LDH) in serum (Li et al. 2020a, 
b, c).

Mortality is higher in adults above the age of 
65 years (approximately 6.4%) (WHO situation 
report, 127, 2020). Amongst the elderly popula-
tion, the virus spreads rapidly into the gas 
exchange regions of lung possibly due to reduced 
muco-ciliary clearance (Ho et  al. 2001). 
Pathological features of COVID-19 resemble 
those of SARS and MERS. While the virus is in 
the airway, it may also present symptoms such as 
hoarseness, ulceration and edema in the epiglottis 

and subglottis (Oliver et al. 2020). In the lungs, 
viral infection shows as multiple infrahilar air-
space opacities on chest X rays (Lei et al. 2020); 
chest CT scans reveal ground-glass opacities, 
bilateral multifocal infiltrates, lymphadenopathy 
and invasive lung lesions with thoracic tissue 
injury (Ghinai et al. 2020; Ren et al. 2020) and 
may even lead to fibrosis (Mason 2020). Elevated 
D-dimers that are associated with inflammation 
suggest high risk of ARDS as observed in 
COVID-19 patients (Tang et  al. 2020a, b). The 
risk of developing a lethal form of COVID-19 
increases in the elderly, amongst adults with 
underlying health conditions and in individuals 

Fig. 6.1 Pulmonary and extrapulmonary manifestations of COVID-19
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with compromised immunity (Gralinski and 
Menachery 2020).

The neutrophil-to-lymphocyte ratio (NLR) 
can be a predictive factor for identifying those at 
risk of critical illness following COVID-19, 
patients aged ≥ 50 and with NLR ≥ 3.13 being at 
high risk (Liu et al. 2020a, b). Out of the first 41 
patients diagnosed with COVID-19 in Wuhan, 5 
had myocardial injury, which mainly manifested 
as an increase in high- sensitivity cardiac troponin 
I (Wang et al. 2020a, b, c, d, e, f, g). Laboratory 
tests showed elevated C-reactive protein (CRP), 
transaminases and LDH, and lymphopenia 
(Bonomi et al. 2020). The myocardial zymogram 
showed high levels of creatine kinase in several 
patients (Wang et  al. 2020a, b, c, d, e, f, g). 
COVID-19 patients may predispose to thrombo-
embolic disease due to excessive inflammation, 
hypoxia and diffuse intravascular coagulation 
(Wang et  al. 2020a, b, c, d, e, f, g; Chen et  al. 
2020a, b, c, d; Guan et al. 2020). The majority of 
the ICU patients admitted with COVID-19 exhib-
ited thrombotic complications, such as symptom-
atic acute pulmonary embolism, deep vein 
thrombosis, ischemic stroke and myocardial 
infarction (concomitant with high plasma levels 
of IL-2, IL-7, IL-10, GSCF, IP-10, MCP-1, 
MIP-1A, and TNF-α) (Klok et al. 2020). Kidney 
damage in COVID-19 patients was observed 
mainly due to sepsis, hypovolaemia, and nephro-
toxins. Cardiorenal syndrome may also lead to 
acute kidney injury in COVID- 19 patients (Wang 
et al. 2020a, b, c, d, e, f, g). Abnormal liver func-
tion was further documented in COVID-19 
patients with alanine aminotransferase (ALT) or 
aspartate aminotransferase (AST) above the nor-
mal range (Wang et  al. 2020a, b, c, d, e, f, g). 
Symptoms such as olfactory and gustatory dys-
functions were also found (Vaira et  al. 2020). 
Moderate conjunctivitis could be the first sign of 
severe respiratory distress in COVID-19 patients 
(Daruich et al. 2020). A case of brain damage by 
SARS-CoV-2  in Beijing Ditan Hospital (Xiang 
et al. 2020) and a another case of SARS-CoV-2 
infection-related encephalitis were also reported 
(Ye et al. 2020).

Cancer patients are particularly susceptible to 
severe form of the disease (Xia et al. 2020; Onder 

et al. 2020; Wang and Zhang 2020) and are sig-
nificantly at higher risk of death from COVID-19 
(Deng et  al. 2020). An Italian population-wide 
study showed that out of 430 cancer patients, 118 
had prostate cancer in a total of 4532 COVID-19 
patients; the study also highlighted that male can-
cer patients were 79% more likely to test positive 
for SARS-CoV-2 (Montopoli et al. 2020). Studies 
on COVID-19 patients from a New York Health 
System revealed that the mortality rates were 
55% for lung cancer, 14% for breast cancer, 20% 
for prostate cancer, and 38% for colorectal cancer 
(Mehta et al. 2020). Thus, cancer patients accom-
panying COVID-19 infection were recommended 
to avoid treatments causing immunosuppression 
(Zhang et al. 2020a, b). What is interesting is that 
the new data from UK and Italy seems to show 
that chemotherapy is not particularly a risk fac-
tor. It is suspected that there is a metabolic issue 
involved, consistent with susceptibility in cancer 
patients, elderly and male sex.

6  Pathogenesis of COVID-19

6.1  SARS-CoV-2 Attachment 
and Entry

SARS-CoV-2 infection ensues when the S-protein 
binds to ACE2 for cellular entry into the target 
host cell. The internalization of the virus is facili-
tated by TMPRSS2 protease activity and cathep-
sin B/L (cat B/L) activity which may substitute 
for TMPRSS2 (Hoffmann et  al. 2020). ACE2 
receptors contain two lobes at their N-terminal 
peptidase domain which is the peptide substrate 
binding site. The extended receptor binding motif 
(RBM) in the RBD of S1 attaches with the lower 
side on the small lobe of ACE2 accommodating 
its N-terminal helix. RBM contains most of the 
contact residues of SARS-CoV-2 that bind with 
ACE2, an estimated 17 residues of RBD interact 
with 20 residues of ACE2. The upper side of the 
RBM is capable of forming salt-bridge interac-
tions with ACE2, which is unique to SARS- 
CoV- 2 (Lan et  al. 2020). S-protein of 
SARS- CoV-2 is capable of binding ACE2 with 
10–20 times greater affinity than SARS-CoV 
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(Wrapp et al. 2020). The ACE2- binding ridge in 
SARS-CoV-2 RBD has a more compact confor-
mation with two virus-binding hotspots at the 
RBD–ACE2 interface compared to SARS-CoV 
RBD (Shang et al. 2020a).

SARS-CoV-2 uses two different pathways for 
its entry, depending on the protease availability; 
it can either fuse with the plasma membrane 
(early pathway), or with the endosomal mem-
brane (late pathway). Upon binding with the 
S-protein of SARS-CoV-2, the S2 subunit is 
primed by type 2 transmembrane protease 
TMPRSS2 that expedites coalescence enabling 
entry at the plasma membrane surface (Hoffmann 
et al. 2020; Matsuyama et al. 2010). This leads to 
cleavage of the ACE2 receptor, thereby facilitat-
ing viral entry into the target cell. A recent study 
on gene expression of ACE2 in multiple scRNA- 
seq datasets suggested that it is expressed in mul-
tiple tissues, such as the airways, oesophagus, 
ileum, colon, liver, cornea, heart, kidney and tes-

tis (Sungnak et al. 2020). A study of single cell 
gene expression matrices revealed that ACE2 is 
mainly expressed in alveolar lung type II cells 
(AT2), oesophagal keratinocytes, liver cholangio-
cytes, colon colonocytes, ileum endothelial cells 
(EC), rectum EC, stomach epithelial cells and 
renal proximal tubules (Qi et  al. 2020). Across 
the airway, ACE2 was expressed in multiple epi-
thelial cells, including alveolar epithelial type II 
cells in the parenchyma, where nasal epithelium 
clusters of goblet cells and ciliated cells indicated 
the highest expression. TMPRSS2 was also 
highly expressed in nasal goblet and ciliated cells 
which suggests that these cells may act as loci of 
original infection and possible reservoirs for dis-
semination within and between individuals 
(Sungnak et  al. 2020) (Fig.  6.2). In single-cell 
RNA-sequence datasets of adult human testis, 
ACE2 was found to be expressed in both germ 
cells and somatic cells; Sertoli cells, spermato-
genic stem cells, and Leydig cells showed ACE 

Fig. 6.2 Cells co-expressing ACE2 and TMPRSS2. Cells present in respiratory as well as non-respiratory systems can 
bind SARS-CoV-2 through its ACE2 and TMPRSS2. In the respiratory system, their co-expression is observed in cili-
ated and secretory cells of nasal and bronchial airways; in the distal lungs, they are co-expressed in alveolar type-2 cells 
(AT2). Different cell types present in the cornea, oesophagus, Ileum, colon, liver, gall bladder, prostate, testis and fetal 
thymus have been found to co-express ACE2 and TMPRSS2 necessary for SARS-CoV-2 infection
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abundance (Shen et al. 2020). Co-expression of 
ACE2 and TMPRSS2 in superficial conjunctival 
cells suggests the possibility of the spread of 
SARS-CoV-2 through the nasolacrimal duct 
(Sungnak et  al. 2020) (Fig.  6.2). Other type II 
transmembrane serine proteases (TTSP) have 
also been found to play a role in CoV infection, 
such as TMPRSS11a that can cleave and activate 
SARS-CoV S-protein for fusion (Kam et  al. 
2009) and TMPRSS11d, also known as a human 
airway trypsin-like protease (HAT) that can acti-
vate MERS-CoV infection (Bertram et al. 2011; 
Zmora et al. 2018).

The S1/S2 cleavage site of SARS-CoV-2 
S-protein possesses several arginine residues ren-
dering it susceptible to cleavage (Hoffmann et al. 
2020). The S-protein trimer is cleaved into S1, 
containing the RBD and S2 subunit, S2 is further 
cleaved into S2′ to form the viral membrane 
fusion peptide which is inserted into the host cell 
membrane (Walls et al. 2020a, b). Heptad repeat 
(HR1 and HR2) of the S2 unit adopts a hydropho-
bic interface to drive membrane fusion and the 
TM region located next to HR2 anchors the 
S-protein in the viral membrane (Tang et  al. 
2020a, b). In TMPRSS2− cells, the low pH envi-

Fig. 6.3 Proposed model for SARS-CoV-2 entry and release from the host cell. (a) SARS-CoV-2 spike protein binds 
ACE2 by the amino terminal region (S1 portion) for cellular entry; (b1) Upon binding with the S-protein of SARS CoV-2, 
it is primed by type 2 transmembrane protease TMPRSS2 that enables entry at the plasma membrane surface, the 
S2-portion of the S-protein fuses with the TMPRSS2; (b2) The fusion peptide (FP) is inserted into the host cell mem-
brane to trigger the fusion event with the host cell. The HR (HR1 and HR2) of the S2 unit adopts a hydrophobic interface 
to drive membrane fusion and the TM region next to HR2 anchors the S-protein in the viral membrane, (c1) For 
TMPRSS2− cells, SARS-CoV-2 enters the host cell via CatB/L endosomal pathway. In case of cells with lower expres-
sion of TMPRSS2 and CatB/L proteases, furin pre-activation can facilitate SARS-CoV-2 entry. (c2) A low pH environ-
ment activates CatB/L cleaving S2′ site, thus triggering the fusion pathway, (d) SARS-CoV-2 genome is released inside 
the host cytoplasm, (e) Once the genomic RNA, which is a positive sense strand enters the cell, its two ORFs (ORF1a 
and ORF1b) translate into several nsps, (f) Coronavirus replication and transcription are mediated by a replication-
transcription complex (RTC) which is virus- encoded, (g) RNA positive strand generates negative RNA intermediates 
that act as a template for the synthesis of a new positive sense RNA (gRNA) and sub-genomic RNAs (sgRNA). (h) The 
S glycoprotein oligomerizes in the endoplasmic reticulum and is incorporated into budding virions in a pre-Golgi com-
partment. The structural protein helps in packing the gRNA during virion assembly. (i) Eventually, the vesicles contain-
ing the virion fuse with the plasma membrane releasing them to infect other cells
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ronment activates cathepsin L cleavage of the S2′ 
site, thus triggering the fusion pathway and is 
responsible for viral egress from endosomes in 
SARS-CoV-2 (Tang et  al. 2020a, b). Therefore, 
protease activity possibly encourages virus infil-
tration by one of the two pathways. The first mode 
is direct fusion of the S-protein through proteo-
lytic cleavage by the host cell surface TMPRSS2 
serine protease. The second route of entry is endo-
cytosis; cleavage results in a conformational 
change and promotes fusion of the viral envelope 
with the endosome.

In cells with low expression of TMPRSS2 and 
pH-dependent CatB/L proteases, furin pre- 
activation can facilitate SARS-CoV-2 entry by 
acting on furin-like cleavage sites at the S2 
domain proximal to the fusion peptide site (Shang 
et al. 2020b; Coutard et al. 2020) (Fig. 6.3). The 
proprotein convertase (PPC) motif is also present 
at the S1/S2 boundary which is critical for SARS-
CoV-2 entry into the host cell (as shown in Hela, 
Calu-3 and MRC-5 cells). Both TMPRSS2 and 
cathepsin have cumulative effects with furin 
favoring SARS-CoV-2 entry (Shang et al. 2020a, 
b) (Fig. 6.3).

6.2  SARS-CoV-2 Genome 
Translation, Replication, 
Assembly and Release

Following entry into the host, the SARS-CoV-2 
genome is released into the cytoplasm of the host 
cell. The 5′ methylated cap and 3′ polyadenyl-
ated tail in the coronavirus RNA genome aid 
attachment of the viral replicase gene to host cell 
ribosomes where two-thirds are translated. 
ORF1a and ORF1b employ papain-like protease 
(PLpro) and 3C-like protease (3CLpro) to act on 
the polyprotein structures and cleave them at 
specific sites to produce several non-structural 
proteins (nsps). ORF1a translates into a 440–
500 kDa polypeptide which gets cleaved into 11 
nsps, whereas ORF1b translates into a large 
740–810 kDa polypeptide which is cleaved into 

15 nsps (Kim et  al. 2020). The nsps assemble 
into the replication transcription complex (RTC) 
to upregulate RNA synthesis (Fig. 6.3). The viral 
RTC stimulates RNA synthesis of genomic and 
sub-genomic RNAs, which are required for 
accessory genes of the replicase polypeptides. 
RNA-dependent RNA polymerase (RdRp), also 
known as nsp12, is the main protein facilitating 
replication and transcription of viral RNA (Gao 
et  al. 2020a, b, c, d). Papain-like protease 
(PLpro) and 3C-like protease (3CLpro) perform 
the proteolytic cleavage. RNA positive strand 
generates negative RNA intermediates that act as 
a template for synthesis of new positive sense 
RNA (gRNA) and subgenomic RNAs (sgRNA). 
RdRp, also known as nsp12, catalyzes the syn-
thesis of viral RNA, possibly with the involve-
ment of nsp7 and nsp8 as cofactors (Gao et al. 
2020a, b, c, d). SARS-CoV-2 expresses nine 
canonical sgRNA (S, 3a, E, M, 6, 7a, 7b, 8 and 
N) along with gRNA.  The structural protein 
helps in packing the gRNA during virion assem-
bly. Like other coronavirus, SARS-CoV-2 RNAs 
also carry poly (A) tails (Kim et al. 2020). The S 
glycoprotein oligomerizes in the endoplasmic 
reticulum and is incorporated into budding viri-
ons in a pre-golgi compartment (Tooze et al. 
1984). Eventually, the vesicles containing the 
virions fuse with the plasma membrane releasing 
them to infect other cells (Fig. 6.3).

7  Host Immune Response 
Against SARS-CoV-2

The time between exposure to SARS-CoV-2 and 
appearance of noticeable symptoms is the incu-
bation period, which ranges between 2 and 
14 days (median 4–5 days) (Guan et al. 2020; Li 
et al. 2020a, b, c; Backer et al. 2020; Wang et al. 
2020a, b, c, d, e, f, g). The inhaled SARS-CoV-2 
virus most likely first binds to the epithelial cells 
(ciliated and goblet cells) of the nasal airway 
through ACE2 receptors that are primed by 
TMPRSS2 protease. At this time, the virus can be 
found in nasal samples. Once inside the cell, the 
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virus starts replicating and activates the innate 
immune arm of the host.

7.1  Innate Immune Response

The innate immune response is most likely initi-
ated when the virus reaches the airways where it is 
detected by toll-like receptors (TLRs), this induces 
expression of type I interferon (IFN). ACE2 is 
known to regulate the Renin-Angiotensin System 
(RAS), thus, a reduction in ACE2 expression due to 
viral infection results in RAS dysfunction. This 
potentially modulates blood pressure and induces 
inflammation and vascular permeability in respira-
tory airways. In approximately 80% of infected 
patients, the virus remains restricted to the upper 
and conducting airways exhibiting mild symptoms 
(Wu and McGoogan 2020).

The virus goes on to reach the alveoli, infect-
ing alveolar type II cells (AT2) in the lungs. The 
viral infected AT2 cells undergo apoptosis and/or 
pyroptosis leading to vascular leakage and alveo-
lar damage releasing the virus (Huang et al. 2020; 
Yang 2020). IL-1β is elevated during SARS-
CoV-2 which is a pivotal cytokine released during 
pyroptosis (Huang et al. 2020). Pyroptosis leads 
to the release of damage associated molecular pat-
terns (DAMPs), which are recognized by nearby 
epithelial cells, endothelial cells and alveolar 
macrophages, triggering production of pro-
inflammatory cytokines and chemokines. This 
sudden increase in the local and circulating levels 
of pro-inflammatory cytokines leads to a cytokine 
storm. A severe inflammatory response can result 
in mass macrophage death within the lungs 
(accounting for more than 95% of the leukocytes) 
due to pyroptosis, necroptosis and necrosis lead-
ing to advanced lung damage (Vincent et al. 2005; 
Huang et al. 2020) (Fig. 6.4).

7.2  Cytokine Storm

Cytokine storm is an aggravated inflammatory 
response, which causes significant immunopa-
thology involving widespread tissue damage. 

Cytokine storm has been reported in several viral 
infections including influenza (Kalaiyarasu et al. 
2016), SARS-CoV and MERS-CoV 
(Channappanavar and Perlman 2017). In alveoli, 
the cytokine storm leads to acute lung injury and 
may set up ARDS, a major cause of morbidity in 
SARS-CoV-2 infection. Along with IL-1β, sev-
eral other cytokines and chemokines such as 
IL-7, IL-8, IL-9, IL-10, basic fibroblast growth 
factor (FGF), granulocyte colony- stimulating 
factor (GCSF), GM-CSF, IFN-γ, interferon-γ-
inducible protein-10 (IP-10) (also known as 
CXCL10), monocyte chemoattractant protein-1 
(MCP-1), macrophage inflammatory protein-1A 
and 1B (MIP-1A, MIP-1B), platelet derived 
growth factor (PDGF), TNF-α, and VEGF, have 
been identified as constituents of this rogue 
response. IL-6 and IFN-γ levels are significantly 
higher in both ICU and non-ICU cases of 
COVID-19 patients compared to healthy adults 
(Huang et  al. 2020). Plasma concentrations of 
IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-1, 
MIP-1A, and TNF-α are higher in ICU patients 
than non-ICU patients, suggesting the severity of 
COVID-19 and its associated morbidity is 
 possibly due to virally driven hyperinflammation. 
IL-6 is one of the frequently reported cytokines 
elevated in COVID-19 patients  whose level is 
significantly higher in severe cases than in mild 
cases (Ruan et al. 2020; Gao et al. 2020a, b, c, d; 
Chen et  al. 2020a, b, c, d). In addition to IL-6, 
IL-10 and TNF-α are also linked with severe 
COVID-19 cases (Chen et al. 2020a, b, c, d). This 
uncontrolled and overwhelming systemic inflam-
matory response leads to vascular permeability, 
pneumocyte desquamation, plasma leakage into 
interstitial and alveolar spaces, and pulmonary 
infiltration of leukocytes such as macrophages 
and neutrophils (Martines et  al. 2020). At this 
stage, chest CT scans exhibit bilateral glass opac-
ities with multifocal infiltrates due to alveolar 
collapse and edema (Ghinai et al. 2020). Alveolar 
collapse causing hypoxemia and dyspnea is initi-
ated potentially due to increase in alveoli surface 
tension as the level of surfactant protein in lungs 
drops. Lung autopsies in severe cases of COVID-
19 show bilateral alveolar damage with cellular 
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fibromyxoid exudates and mononuclear inflam-
matory lymphocytes (Xu et  al. 2020a, b, c; 
Bonomi et al. 2020) (Fig. 6.4).

Surfactant proteins, SP-A and SP-D, are 
involved in innate immune responses at the 
mucosal surfaces, especially in the lungs, against 
various pathogens including viruses (Yasmin and 
Kishore 2021). In case of SARS-type pneumo-

nia, SP-D levels were significantly elevated 
(Leth-Larsen et al. 2007; Wu et al. 2009). HCoV-
229E, a common non-SARS human CoV binds 
with SP-A and SP-D; pre-treatment of HCoV-
229E with SP-A or SP-D inhibits viral infection. 
SP-D is more effective in inhibiting 16HBE cells 
infection whereas SP-A is more in inhibiting 
infection of alveolar macrophages (Funk et al. 

Fig. 6.4 Innate Immune response (proposed). (a) SARS- CoV- 2 reaches the alveolar airways and infects the alveolar 
type II cells (AT2). (b) The infected AT2 cells undergo apoptosis and/or pyroptosis leading to alveolar damage releasing 
the virus. Damage Associated Molecular Patterns (DAMPs) released from the damaged cells are recognized by nearby 
epithelial cells, endothelial cells and alveolar macrophages triggering production of pro-inflammatory cytokines and 
chemokines, (c) This sudden acute increase in the levels of pro- inflammatory cytokines and chemokines leads to a 
cytokine storm and is the main cause of ARDS. Several cytokines and chemokines such as IL-1β, IL-7, IL-8, IL-9, 
IL-10, FGF, GCSF, GMCSF, IFN-γ, IP-10, MCP-1, MIP1A, MIP1B, PDGF, TNFα, VEGF, IL-6 and IFN-γ contribute 
to the cytokine storm, (d) This uncontrolled systemic inflammatory response leads to vascular permeability, pneumo-
cyte desquamation, plasma leakage into interstitial and alveolar spaces, and pulmonary infiltration of leukocytes such 
as macrophages, neutrophils and lymphocytes. Neutrophils and macrophages release enormous amounts of reactive 
oxygen species (ROS), (e) Excessive inflammatory reactions lead to several pathological changes, such as coagulation 
pathway activation as well as disseminated intravascular coagulation (DIC), (f) Activation of platelets is often linked 
with elevation of complement activation products, leading to systemic inflammatory response syndrome (SIRS), (g) 
Cellular apoptosis/pyroptosis of virus infected cells leads to endothelial destruction and enables plasma flooding into 
alveoli; (h) Neutrophil extracellular traps (NETs) are produced in response to infection where extracellular DNA fibers 
are extruded by neutrophils allowing them to trap and kill extracellular microorganisms
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2012). A recent work showed recombinant SP-D 
(rfhSP-D) was capable of competing with ACE-2 
for binding to the S1 spike protein of SARS-
CoV-2. rfhSP-D treatment inhibited viral replica-
tion by ~5.5 fold and a 2-fold reduction in viral 
infectivity was also observed in SARS-CoV-2 
positive clinical samples (Madan et al. 2021). In 
an another study, rfhSP-D showed a dose-respon-
sive binding to S1 spike protein and its receptor 
binding domain of SARS-CoV-2. rfhSP-D was 
capable in inhibiting interaction of S1 protein 
with the HEK293T cells overexpressing ACE-2 
(Hsieh et al. 2021). These results highlight the 
possible therapeutic potential of rfhSP-D in 
SARS-CoV-2 infection.

Severe COVID-19 patients show symptoms 
related to secondary haemophagocytic lympho-
histiocytosis (SHLH), which is typically charac-
terized by sudden fatal hypercytokinaemia with 
multiorgan failure (Ramos-Casals et  al. 2014). 
Approximately 50% of SHLH patients show 
clinical features similar to ARDS (Seguin et al. 
2016). The cytokine profile (IL-2, IL-7, MIP-1A, 
G-CSF, TNF-α) elevated in severe COVID-19 
also draws parallels with SHLH (Huang et  al. 
2020). The host repair system in many cases 
restores normal function but excessive tissue 
damage can often trigger wound healing through 
fibrosis that can eventually result in persistent 
organ dysfunction. The pulmonary cytokine 
storm circulates to other organs (systemic inflam-
matory response syndrome) causing increased 
capillary permeability in systemic circulation 
leading to decreased blood pressure (hypoten-
sion). This hypotension reduces the organ perfu-
sion pressure causing multi-organ failure. 
SARS-CoV-2 infection often becomes life-
threatening by inducing multi-organ injury 
involving the heart, liver, kidney, brain, intestine, 
and eyes (Li et al. 2020a, b, c; Klok et al. 2020).

7.3  Complement Associated 
Pathogenesis

Excessive inflammation precipitates several path-
ological changes, such as coagulation pathway 
activation, disseminated intravascular coagulation 

(DIC), cellular apoptosis/pyroptosis, increased 
vasopermeability and hypermetabolism, which 
finally proceeds into a septic pro- inflammatory 
microenvironment. Cardiovascular complications 
in COVID-19 patients such as acute thrombosis of 
the abdominal aorta and pulmonary embolism 
have been observed (Le Berre et  al. 2020). 
Coagulation and complement, though being two 
distinct systems, are similar in how they are con-
trolled and interact with each other. These con-
trols occur at two basic levels, either by inhibiting 
the enzyme activity or by blocking the binding of 
a cascade component (Oikonomopoulou 2012). 
In critical COVID-19 cases, there is an increasing 
recognition of a hypercoagulable condition with 
possible complement activation noted in some 
patients (Magro et al. 2020).

Activation of the complement cascade is cor-
related with thrombosis and the development of 
multiple organ failure. Both C3 and C5 can be 
proteolytically activated by several components 
of the coagulation cascade in addition to throm-
bin. C5a, exhibiting chemotactic activity towards 
neutrophils, is produced by the enzymatic action 
of thrombin. Activation of complement compo-
nents both upstream and downstream of C3 and 
C5 convertases can also be initiated by the coagu-
lation cascade (Ghebrehiwet et  al. 1981). For 
example, coagulation factor XIIa can activate C1 
initiating the classical pathway; C1q as well as 
C1 inhibitors, C4b-binding protein and factor H 
can bind to platelet surfaces (Ghebrehiwet et al. 
1983; Hamad et  al. 2010). Further hyper- 
activation of complement can also be linked to 
excessive septic inflammation leading to sys-
temic inflammatory response syndrome (SIRS). 
Activation of platelets is a common event during 
sepsis along with elevation of complement acti-
vation products, such as C3a, C4a, and C5a 
(Younger et al. 2010; Hack et al. 1989). C5a is a 
major player in the pathogenesis of several dis-
eases and is capable of activating the coagulation 
and TLR pathways (Hajishengallis and Lambris 
2010; Rittirsch et al. 2008; Hawlisch et al. 2005). 
Activated platelets can release a serine/ threonine 
protein kinase that is able to phosphorylate C3 
(Ekdahl and Nilsson 1995; Gulla et  al. 2010). 
This modification can result in the generation of 
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a phosphorylated C3b fragment that is resistant 
to further proteolytic processing into iC3b by fac-
tor I.  Complement Factor H has an inhibitory 
effect on the Hageman FXII contact plasma acti-
vation by acidic phospholipids (Ferluga et  al. 
2014). Factor H can downregulate the comple-
ment classical pathway, by competing with C1q 
binding to anionic phospholipid surface (Tan 
et al. 2010; Kishore and Sim 2012). Endothelial 
cell injury in tissue factor-dependent thrombosis, 
where activated platelets were found to secrete 
granular polyphosphates can further activate 
FXII inducing occlusive thrombosis (Muller 
et al. 2009; Renne et al. 2012).

Severe COVID-19 patients show a pro- 
coagulant profile characterized by increased clot 
strength, elevated D-dimer levels, hyper- 
fibrinogenemia, and increase in CRP, factor-VIII 
and von Willebrand factor (Panigada et al. 2020; 
Ranucci et al. 2020). AMY-101, a C3 inhibitor, 
has been evaluated for its anti-inflammatory 
response in severe cases of COVID-19 infection. 
Intravenous administration of AMY-101 showed 
a dramatic improvement with CRP and LDH get-
ting normalized progressively, while leukocyto-
sis and lymphocytopenia improved more 
gradually. A significant improvement in the 
respiratory performance was also observed. 
Treatment with AMY-101 was found to be safe 
with no side effects and with no further worsen-
ing of renal and hepatic function (Mastaglio et al. 
2020). High fibrinogen levels are also associated 
with IL-6. With increased thromboprophylaxis, 
the pro-coagulant profile attained normalization 
and depreciated the D-dimer levels in COVID-19 
patients (Ranucci et al. 2020).

A thin layer of endothelial-epithelial septum 
separates the alveolar cavity from blood. 
Endothelial destruction due to pyroptosis/apop-
tosis allows large amounts of plasma and cells to 
flood into alveoli causing ARDS (Fig.  6.4). 
Endothelial injury can also cause microvascular 
angiopathy and thrombosis, this damage can acti-
vate the complement lectin pathway. The lectin 
pathway effector enzyme, mannan-binding 
lectin- associated serine protease-2 (MASP-2), 
aids in the activation of thrombin (Krarup et al. 
2007; Gulla et  al. 2010). SARS-CoV-2 nucleo-

capsid protein can activate MASP-2; it has also 
been traced in the lung tissue of COVID-19 
patients along with C4d and the membrane attack 
complex, C5b-9 (Gao et al. 2020a, b, c, d; Magro 
et  al. 2020). Narsoplimab is a high-affinity 
humanised monoclonal antibody, which is capa-
ble of binding with MASP-2 and blocking the 
lectin pathway, was found to be effective in treat-
ing COVID-19 patients with no adverse drug 
reactions (Rambaldi et al. 2020).

Neutrophil infiltration in capillaries with fibrin 
deposition is observed in COVID-19 patients 
(Zuo et al. 2020). Neutrophil extracellular traps 
(NETs) are produced in response to infection 
where extracellular DNA fibers are extruded by 
neutrophils allowing them to trap and kill extra-
cellular microorganisms. NETs cause platelet 
adhesion (often associated with deep vein throm-
bosis) (Costanzo et al. 2020). Sera of COVID-19 
patients showed elevated levels of 
myeloperoxidase- DNA (MPO-DNA) and citrul-
linated histone H3 (Cit-H3), which are specific 
markers of NETs (Zuo et al. 2020). COVID-19 
patient’s plasma showed spontaneous formation 
of NETs expressing functional tissue factor (TF) 
and considerable increase in plasma level of 
sC5b-9 (terminal complement component). 
Thrombin or NETosis inhibition or C5aR1 block-
ade could attenuate platelet-mediated NET- 
driven thrombogenicity in COVID-19 patients. 
Cp40-mediated C3 inhibition was capable of dis-
rupting TF expression in neutrophils, thus pre-
venting complement activation and impairing 
thrombogenicity (Skendros et  al. 2020). Thus, 
complement activation during SARS-CoV-2 
infection can possibly influence the platelet- 
NETs- TF-thrombin axis.

7.4  Adaptive Immune Response

COVID-19 patients show high level of SARS- 
CoV- 2 specific IgM at early time points which 
decline over time while the IgG antibodies remain 
relatively stable (Sun et al. 2020a, b). However, 
antibody responses is not detectable in all 
patients, especially those with less severe forms 
of COVID-19 (Long et  al. 2020a, b; Mallapaty 
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2020; Woloshin et al. 2020). COVID- 19 patients 
have anti-viral IgG within 19 days of symptom 
onset, however both IgM and IgG titres reach pla-
teau within 6 days of seroconversion (Long et al. 
2020a, b). Zhou et  al. (2020) reported that 
COVID-19 patients exhibited nucleocapsid pro-
tein (NP)-specific antibody responses, with IgM 
peaking at the ninth day post disease onset and 
then switching to IgG by week 2. Sera from 
COVID-19 patients were capable of inhibiting 
SARS-CoV-2 entry in target cells (Zhou et  al. 
2020). In another study, the median seroconver-
sion time for IgM and IgG were day 11, 12 and 
14 post symptom onset. Within 1 week of onset, 
the presence of antibodies was low but increased 
considerably from 15  day onwards (more IgG 
than IgM) (Zhao et al. 2020). COVID-19 patients 
mounted IgG and IgM responses to N-protein 
and spike- RBD proteins, and infected patients 
could maintain IgG levels for at least 2 weeks (Ni 
et al. 2020). Most COVID-19 convalescent indi-
viduals have a detectable level of neutralizing 
antibodies, as judged using the pseudovirus parti-
cle-based neutralization assay. The anti-S-RBD 
IgG might be predictive of serum neutralization 
capabilities in COVID-19 patients (Ni et  al. 
2020). In a recent study, antibody responses to 15 
different SARS- CoV- 2 antigens in COVID-19 
patients was assessed with a luciferase immuno-
precipitation system (LIPS) (Hachim et al. 2020). 
Antibodies representing the structural and non-
structural viral proteins [four structural proteins 
(S, N, M and E), three S subunits (S1, S2 and 
S2′), the seven available ORFs (ORF3a, ORF3b, 
ORF6, ORF7a, ORF7b, ORF8 and ORF10) and 
one relevant NSP within ORF1ab (NSP1)] were 
considered for the LIPS assay. Elevated antibody 
responses were seen against 11 antigens (the 
structural proteins full S, S1, S2′, N and M and 
the ORFs: NSP1, ORF3a, ORF3b, ORF7a, 
ORF7b and ORF10), with nucleocapsid, open 
reading frame (ORF)-8 and ORF3b eliciting the 
strongest specific antibody responses. ORF8 and 
ORF3b antibodies are therefore potential sero-
logical markers for SARS-CoV-2 infection, iden-
tified in 96.5% of COVID-19 samples at early 
and late time points of disease with 99.5% speci-
ficity (Hachim et al. 2020). Anti-RBD IgM and 

IgA were also detected in the majority of recov-
ered COVID-19 patients (Grifoni et al. 2020).

A recent detailed study has sought to charac-
terize humoral and circulating follicular helper T 
cell (cTFH) immunity against the S-protein in 
COVID-19 recovered patients (Juno et al. 2020). 
Comparatively low frequencies of B cells and 
cTFH specific cells for the RBD of the S-protein 
were found. The frequency and specificity of 
class-switched (CD19+IgD−) B cells were exam-
ined using an S or RBD flow cytometric probe, 
where populations of B cells binding spike 
(S+RBD−), spike and RBD (S+RBD+) or RBD 
alone (S−RBD+) in convalescent COVID-19 
patients were compared to a healthy control. The 
majority of S+RBD− B cells were IgG+ with 
smaller proportions of IgM+ and IgA+. The acti-
vation phenotype of antigen-specific B cells was 
examined using CD21 and CD27. The S+RBD− 
or S+RBD+ B cells were found predominantly in 
the resting memory phenotype (CD21+CD27+), 
consistent with the median time since infection. 
A considerable population of activated memory 
B cells (CD21−CD27+) was observed for both 
S+RBD− and S+RBD+ populations. Thus, 
S-specific antibodies, memory B cells and cTFH 
are consistently elicited after SARS-CoV-2 infec-
tion, exhibiting robust humoral immunity that 
positively correlates with plasma neutralizing 
activity (Juno et al. 2020) (Fig. 6.5).

A flow cytometry study of peripheral blood 
monocytic cells (PBMCs) showed an increased 
frequency of NK cells in discharged patients 
while the percentage of T cells remained 
unchanged. An S-RBD induced T cell immune 
response was identified with a higher percentage 
of IFN-γ-secreting S-RBD specific T cells com-
pared with healthy donors (Ni et al. 2020). Patients 
with acute, moderate or severe COVID- 19 showed 
low frequencies of CD4+ and CD8+ T cells (Liu 
et al. 2020a, b). A study was carried out involving 
unexposed individuals, exposed family members, 
and individuals with acute or convalescent 
COVID-19 to understand the functional and 
 phenotypic landscape of SARS-CoV-2-specific T 
cell responses. Memory CD8+ T cells from 
patients with acute, moderate or severe COVID- 19 
were found to express CD38, HLA-DR, Ki-67, 
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and PD-1, markers that are associated with activa-
tion and cell division. This suggests that T cells 
may establish a more robust early SARS-COV-2- 
specific adaptive immune response in COVID-19 
patients (Sekine et  al. 2020). The results also 
revealed a clear segregation between memory T 
cells from patients with acute, moderate or severe 
COVID-19 and those from convalescent individu-
als and healthy blood donors and more impor-
tantly T cell activation, characterized by the 
expression of CD38. SARS-CoV-2-specific T 
cells displayed a highly activated cytotoxic phe-
notype in the acute phase of the disease that cor-
related well with various clinical markers of 
disease severity such as age, hemoglobin concen-
tration, platelet count, and plasma levels of ala-

nine aminotransferase, albumin, D-dimer, 
fibrinogen, and myoglobin (Sekine et al. 2020).

CD4 and CD8 T cell responses were recog-
nized against multiple regions of the N proteins 
of SARS-CoV-2  in patients convalescing from 
COVID-19 (Le Bert et al. 2020) (Fig. 6.5). In a 
group of individuals who recovered from SARS 
(2003), the data illustrated long-lasting memory 
T cells and displayed robust cross-reactivity 
towards the N-protein of SARS-CoV-2. Notably, 
ORF1-specific T cells were traced in a few indi-
viduals who were not exposed to SARS-CoV-2, 
at the same time T cells from individuals who 
recovered from COVID-19 could preferentially 
recognize structural proteins. ORF1-encoded 
proteins are produced as soon as viral RNA enters 

Fig. 6.5 Adaptive Immune response against SARS- CoV- 2. SARS-CoV-2 viruses are engulfed by phagocytic cells such 
as macrophages (MΦ). These phagocytic cells further express the viral peptide on their surface to present CD4+T cells. 
This binding activates CD4+T cells, which secrete cytokines to further activate (a) CD8+T cells which mount a cytotoxic 
response towards virally infected macrophages or other cells by secreting perforin and granzymes (b) B cells which 
undergo Ig class switching and secrete virus specific antibodies which are capable of neutralizing the virus. Antibodies 
secreted by these activated B cells can also mount a response through ADCC by activating NK cells and complement 
pathways leading to MAC formation that eventually destroys the virally infected cells. Antibodies can also enhance 
opsonization by binding with the Fc portion of macrophages, and/or clearance from circulation by Kupffer cells
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the host cells and are essential for formation of 
the RTC, thus, it can be assumed that ORF1- 
specific T cells can potentially mount a cytotoxic 
response towards SARS-CoV-2 infected cells 
prior to the formation of mature virions (Le Bert 
et al. 2020). The presence of SARS-CoV-2 cross 
reactive CD4+ T cells specific to S-protein were 
also observed in unexposed healthy individuals, 
suggesting some degree of cross-reactive pre- 
existing immunity to SARS-CoV-2 in the human 
population (Grifoni et al. 2020).

8  Increased Susceptibility 
to SARS-COV-2 in Men

Recent studies with single-cell RNA-sequence 
datasets of adult human testes appear to suggest 
that SARS-CoV-2 may also infect the testis. 
ACE2 receptors are expressed in both germ cells 
and somatic cells, among which major clusters 
are found in Sertoli cells, spermatogenic stem 
cells, and Leydig cells. The difference in fatality 
rate between males and females is underscored  
by the fact that ACE2 is located on the X chromo-
some; oestrogen and testosterone sex hormones 
have different immunoregulatory functions that 
may contribute to protection or severity of the 
disease (Taneja 2018; Tay et al. 2020). In a study 
with 9280 SARS-CoV-2-positive patients, males 
developed more severe complications and had a 
worse clinical outcome than females (Montopoli 
et al. 2020). It is known that androgen receptor 
(AR) mediates the effects of male sex steroids 
and simultaneously AR regulates TMPRSS2 
expression in non-prostatic tissues (Mikkonen 
et  al. 2010), which is a vital component for 
SARS-CoV-2 entry in host cells and possibly 
explains the increased susceptibility of men to 
developing severe infections.

Innate immune recognition markers are 
encoded by genes belonging to a family of TLRs 
located on the X-chromosome. SARS-CoV-2 
contains a host of proteins/peptides that can be 
recognized by TLR7/8 (Moreno-Eutimio et  al. 
2020). Several other immune regulatory genes 
located on the X chromosome include TLR8, 
FOXP3, CXCR3, and CD40L that usually con-
tribute to a stronger immune response against 

viruses in women (Kritas et  al. 2020; Flanagan 
et  al. 2017; Klein 2012; Klein and Flanagan 
2016). Detection by TLRs leads to the expression 
of Type I IFN (Heil et  al. 2004) which are 
expressed in high levels by females (Klein 2012, 
Klein and Flanagan 2016). Female COVID-19 
patients clear SARS-CoV-2 significantly earlier 
compared to infected male patients (Xu et  al. 
2020a, b, c). A meta-analysis of COVID-19 
patients demonstrated a prevalence of immune 
mediators that are associated with adverse out-
comes of SARS-CoV-2  in men, including 
TNFSF13B, CCL14, CCL23, IL-7, IL-16, and 
IL-18 (Wei et  al. 2020). Males with moderate 
COVID-19 disease demonstrated higher level of 
IL-8 and IL-18 compared to female counterparts. 
At the same time, more robust activation of non-
classical monocytes was observed in males 
whereas female patients mounted significantly 
more robust T cell activation during SARS- 
CoV- 2 infection, suggesting the possible expla-
nation of worse disease outcome in males. This 
sex bias in COVID-19 can possibly be considered 
as a vital factor for remedial approaches in future 
(Takahashi et al. 2020).

9  Repurposing Drugs 
in COVID-19

Developing a vaccine is time consuming and may 
take a substantial amount of time to become 
available globally. Thus, repurposing an existing 
drug is a more viable route, which can expedite 
COVID-19 treatment. Several pre-existing drugs 
have now been tested for COVID-19 (Table 6.1). 
Further details of drug repurposing have been 
recently reviewed (Varghese et al. 2020).

10  Neutralizing Antibodies 
and Passive Immunization 
(Convalescent Plasma 
Therapy)

In patients with SARS-CoV-2 infections, severe 
respiratory symptoms may develop after a week 
of symptom onset; this is associated with the 
release of several pro-inflammatory cytokines. 
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Table 6.1 Mode of action and the present use of existing drugs that have been repurposed for COVID-19 treatment

Drug Mode of action and its use in COVID-19 Reference
Remdesivir • An adenosine analogue prodrug designed 

specifically to improve cell permeability
• It inhibits viral RNA polymerase
• In vitro efficacy against SARS-CoV-2 infected 
Vero E6 cells have been studied
• It is converted into nucleoside monophosphate 
by intracellular hydrolases leading to the formation 
of active negatively charged nucleoside 
triphosphate which is incorporated into nascent 
viral RNA chain, causing pre-mature termination
• Administered intravenously (200 mg on day 1 
followed by daily dose of 100 mg for 5–9 days)

Grein et al. (2020); Beigel et al. 
(2020); Wang et al. (a, b, c, d, e, f, 
g); Warren et al. (2016); Sun 
(2020); Gordon et al. (2020); 
https://clinicaltrials.gov/

Favipiravir • A purine nucleoside analogue prodrug 
(pyrazinecarboxamide derivative)
• Acts as a competitive inhibitor of RNA- 
dependent RNA polymerase (RdRp) causing lethal 
mutagenesis when incorporated into viral RNA
• Effective in treating influenza, oseltamivir, 
zanamivir-resistant influenza and Ebola virus
• Capable of inhibiting SARS-CoV-2 but duration 
is twice as long as that used for treating influenza 
(tablets of 200 mg available)
• Exhibits better efficacy in anti-viral activity and 
with lower adverse reactions compared to lopinavir/
ritonavir drug combination

Cai (2020); Furuta et al. (2013); 
Oestereich et al. (2014); Shiraki 
and Daikoku (2020); Dong et al. 
(2020)

Ribavirin • A guanosine analogue
• Converts intracellularly into triphosphorylated 
(RTP) forms by cellular kinases. RTP binds to the 
nucleotide binding site of viral RNA polymerase 
and DNA polymerase, it is incorporated into the 
viral genome, leading to a reduction in viral 
replication
• Inhibits inosine monophosphate dehydrogenase 
by mimicking ribavirin monophosphate and acts as 
a competitive inhibitor and reduces de novo 
synthesis of guanine
• It was approved only for the treatment of severe 
respiratory syncytial virus (RSV) infection in 
minors, it has also been used in the treatment of 
Lassa fever viral infection, influenza A and B and 
other viruses
• Triple combination of ribavirin and lopinavir- 
ritonavir given orally and interferon beta-1b as an 
injection can effectively suppress the shedding of 
SARS-CoV-2 within 7 days

Graci and Cameron (2006); 
Kristina et al. (2020); Krilov 
(2001); Andrei and De Clercq 
(1993); Van Voris and Newell 
(1993); Hung et al. (2020); Miller 
et al. (1997); Eriksson et al. (1977)

Lopinavir and ritonavir 
(combination drug)

• A viral 3CL protease inhibitor used specifically 
in the treatment of HIV-I infection
• Lopinavir is marketed in combination with 
ritonavir to increase the plasma half-life by 
inhibition of cytochrome P450
• Combination treatment including Lopinavir- 
ritonavir, ribavirin (an oral hepatitis C virus drug) 
and IFN-β1b showed effective response in reducing 
COVID-19 symptoms with faster viral shedding

Sheahan et al. (2020); Cao et al. 
(2020); Hung et al. (2020)

(continued)
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Table 6.1 (continued)

Drug Mode of action and its use in COVID-19 Reference
Dexamethasone • An immunosuppressive drug (corticosteroid)

• Possibly capable of modulating a dysregulated 
immune system
• 6 mg of dexamethasone (orally or 
intravenously) for 10 days, reduces the progression 
to respiratory failure and death
• As per the updates by WHO, 26 March, 2021, 
dexamethasone provides no improvement for 
patients with mild symptoms and is only 
recommended (dose 6mg) for COVID-19 patients 
on ventilators for their health improvement.

Horby et al. (2020); National 
Institute for Health Research 
(2020); WHO Report 2021a

Chloroquine and 
Hydroxychloroquine

• An aminoquinoline derived drug specifically 
used as an anti-malarial drug
• In vitro studies have shown that chloroquine 
increases endosomal and lysosomal pH which 
blocks SARS-CoV-2 fusion
• Its derivative, like Hydroxychloroquine is 
capable of decreasing IL-1, IL-2, IL-6, IL-17, 
IL-22, IFN-α and tumor necrosis factor which is 
aggressively upregulated by SARS-CoV-2
• Chloroquine can affect heart rhythms, like QT 
interval prolongation, ventricular tachycardia and 
has shown other side effects including headache, 
rashes, nausea and abdominal pain in COVID-19 
patients
• As per the updates by WHO, 17 March, 2021, 
clinical trials confirm that chloroquine or 
hydroxychloroquine does not prevent illness or 
death from COVID-19. It shows little to no impact 
on illness, hospitalization or death

Vincent et al. (2005); Silva et al. 
(2013); Wang et al. (a, b, c, d, e, f, 
g); WHO Report 2021b

Anakinra • A recombinant IL-1 receptor antagonist that has 
shown promise in treating severe COVID-19 
disease
• Beneficial in COVID-19 patients with cytokine 
storm syndrome and acute hypoxic respiratory 
failure (AHRF) preventing them from mechanical 
ventilation

Navarro-Millan et al. (2020)

Ivermectin • A broad-spectrum anti-parasitic and antiviral 
drug
• In invertebrate parasites it can bind to specific 
neurotransmitter receptors blocking chemical 
transmission across the nerve synapses that use 
glutamate-gated anion channels or γ-aminobutyric 
acid-gated chloride channels
• It can also inhibit the proliferation of cancer 
cells
• It is likely to inhibit IMPα/β1- meditated 
nuclear import of viral proteins and is capable of 
controlling SARS-CoV-2 replication within 
24–48 h

Caly et al. (2020); Chhaiya et al. 
(2012)

(continued)
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Table 6.1 (continued)

Drug Mode of action and its use in COVID-19 Reference
Pirfenidone • It is a pyridone derived (5-methy-1-phenyl-2-

[1H]-pyridone) anti-fibrotic drug available in oral 
form to treat idiopathic pulmonary fibrosis
• Can also downregulate the effects of cytokines 
and chemokines such as TNF-α, TGF-β1, 
connective tissue growth factor (CTGF) and 
platelet-derived growth factor (PDGF)
• Has been found to downregulate ACE-2 
receptors. Possibly can reduce fibrotic lung lesions 
caused by SARS-CoV-2
• An inhaled formulation is under evaluation for 
patients of COVID-19
• This drug is restricted if the patient has an 
estimated glomerular filtration rate less than 
30 mL/min per 1.73 m3

Chung et al. (2020); Ferrara et al. 
(2020)

Nintedanib • An anti-fibrotic drug available in oral form, 
capable of inhibiting tyrosine kinase
• It reduces the time to first acute exacerbation in 
COVID-19 patients. Due to its oral formulation it is 
restricted for use in patients with COVID-19 at 
ICU

George et al. (2020)

Azithromycin • Upregulates production of type I and type III 
interferons, specially interferon-β and interferon-λ 
and genes involved in virus recognition such as 
MDA5 and RIG-I
• It regulates/decreases several cytokines involved 
in COVID-19 pathogenesis like IL-1β, IL-6, IL-8, 
IL-10, IL-12, and IFN-α

Bleyzac et al. (2020)

Heparin 
(low-molecular- 
weight)

• An anticoagulant, with anti-inflammatory 
properties, inhibition of neutrophil chemotaxis, and 
protection of endothelial cells, and a potential 
antiviral effect
• Used as an adjunctive therapeutic drug for the 
treatment of COVID-19 pneumopathy

Costanzo et al. (2020)

Umifenovir • Derivative of indole carboxylic acids
• Incorporates into cell membrane, can block viral 
fusion with the host cell membrane and endosome
• Used in the treatment of influenza A and B
• Treatment has not shown improvement in 
clinical prognosis or in accelerating viral clearance 
as of yet

Boriskin et al. (2008); Villalaín 
(2010); Liang et al. (2020)

Tocilizumab • A recombinant humanized IL-6 receptor 
antagonist
• Used in the treatment of rheumatoid arthritis, 
juvenile idiopathic arthritis, giant cell arteritis, 
effective in treating cytokine storm triggered by 
CAR-T cell therapy (hematological malignancies)
• The US Food and Drug Administration (FDA) 
has approved Roche’s phase III clinical trial of the 
use of tocilizumab for severe COVID-19 
pneumonia
• Intravenously or subcutaneously administered it 
can reduce the risk of mechanical ventilation and 
death in COVID-19 patients

Chen et al. (2019); Xu et al. 
(2020a, b, c); Barbulescu et al. 
(2020); Guaraldi et al. (2020)
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This can often be related to low avidity and poor 
neutralizing antibodies and can be compensated 
by passive administration of antibodies to the 
patient. Antibodies show their anti-viral activity 
by inhibiting entry of infectious viral particles 
into host through neutralization. Antibodies func-
tion by triggering simultaneous binding of its Fab 
portion with the viral epitope or with the infected 
cells and Fc portion with immunocompetent cells 
such as macrophages and NK cells. The comple-
ment pathway is also activated by the Fc region 
binding to C1q, resulting in opsonization of 
viruses or infected cells.

The passive transfer of neutralizing antibody 
has been shown to confer protection in hamsters 
against a high-dose of SARS-CoV-2 (Rogers 
et al. 2020). Hamsters immunized with recombi-
nant SARS-CoV S-protein trimer could also 
induce the development of neutralizing antibod-
ies and were protected against a viral challenge 
(Kam et al. 2007). In an experiment with rhesus 
macaques, SARS-CoV-2 immunity associated 
with neutralizing antibodies and antibody-medi-
ated effector functions and provided protection 
upon viral re-challenge at 35 days (Chandrashekar 
et al. 2020).

For several infectious diseases involving 
SARS, MERS and H1N1, convalescent plasma 
(CP) therapy, a classic passive immunotherapy, 
has been applied for its prevention and treat-
ment. Patients recovered from COVID-19 with 
a high neutralizing antibody titer may become 
valuable donors for CP.  In a study with ten 
severe SARS- CoV- 2 patients, plasma (200 mL) 
at a median of 16.5 days after onset was admin-
istered, the presence of viruses in the blood was 
no longer detected and clinical parameters 
improved within 3  days (Duan et  al. 2020). 
Several clinical trials are currently being under-
taken to understand the potential clinical benefit 
and risk of convalescent blood products in 
COVID-19 (clinicaltrials.gov). In other studies, 
patients with severe or life-threatening COVID-
19 who had undergone CP therapy did not result 
in a statistically significant improvement (Li 
et al. 2020a, b, c).

11  Type 1 Interferon Treatment 
Against COVID-19

Type I IFNs constitute a group of low-molecular 
glycoproteins and are among the first cytokines 
produced during a viral infection. This group of 
cytokines is recognized by the IFN-α receptor 
present at the plasma membrane in most cell 
types (Samuel 2001). Due to its immunomodula-
tory properties, it has been used for the treatment 
of numerous diseases including MERS-CoV and 
SARS-CoV, often in combination with lopinavir/
ritonavir (Chan et al. 2015; Sheahan et al. 2020), 
ribavirin (Chen et  al. 2004; Morgenstern et  al. 
2005; Omrani et al. 2014), and/or remdesivir, or 
corticosteroids (Loutfy et al. 2003).

Clinical studies in children from China revealed 
that IFN-α is capable of reducing viral load and 
shortening the disease duration for viral pneumonia, 
bronchiolitis and acute respiratory tract infections 
(Chen et  al. 2005; Shang et  al. 2014; Shen et  al. 
2018; 2020). Recombinant human IFN-α2b spray 
prevents SARS- CoV- 2 infection by inhibiting viral 
replication in rhesus monkeys (Gao et al. 2005). A 
clinical study has suggested that IFN-α can be used 
as a prophylaxis against SARS-CoV-2 (Lokugamage 
et al. 2020). Clinical trials have been recently regis-
tered to evaluate a combination of lopinavir/ritona-
vir and IFN-α2b (ChiCTR2000029387) or a 
combination of lopinavir/ritonavir with ribavirin 
and IFN-β1b administered subcutaneously 
(NCT04276688) (Sallard et al. 2020). In an open 
clinical trial safety and efficacy trials of COVID- 19 
(NCT04315948), hospitalized adults were assessed 
in which subcutaneous IFN- β1a in combination 
with lopinavir/ritonavir is being compared to lopi-
navir/ritonavir alone, hydroxychloroquine, and 
remdesivir (Clinicaltrials.gov 2020).

12  Vaccination Strategies 
for COVID-19

Most of the vaccines under development against 
COVID-19 target the S-protein to elicit robust T 
and B cell responses, along with high viral neu-
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tralizing antibody production. Researchers have 
been in a race to develop ways to selectively tar-
get the most potent neutralizing epitopes likely to 
be critical for effective vaccines against 
SARS-CoV-2.

12.1  Viral Vector Vaccines

Adenovirus is an attractive vector candidate for 
the transfer of foreign genes because it is well 
characterized and comparatively easier to manip-
ulate. Most adenoviruses are well tolerated and 
cause mild effects in immunocompetent human 
adults. Deletion of some crucial regions results in 
a replication-defective vector, which increases 
efficiency and reduces side-effects. For clinical 
use, they can be applied systemically as well as 
through the mucosal surface (Tatsis and Ertl 
2004). Recombinant viruses can be used as vehi-
cles for delivery of vaccines as the viral protein 
can act as potent adjuvants and can directly infect 
antigen-presenting cells (Rocha et al. 2004). The 
first report of using a chimpanzee adenovirus as a 
viral vectored vaccine demonstrated that chim-
panzee adenovirus serotype 68 can express rabies 
glycoprotein and induce an immune response 
(Xiang et al. 2002). Viral vector vaccines induce 
cellular immune responses better than subunit 
vaccines (Draper and Heeney 2010).

12.1.1  Ad5-nCoV Vaccine
Ad5-nCoV vaccine is a genetically engineered 
vaccine which is delivered by a type-5 replica-
tion-defective adenovirus expressing the spike 
glycoprotein of SARS-CoV-2 (Sha et al. 2016). It 
contains the full length spike glycoprotein gene 
based on SARS-CoV-2 isolate Wuhan-Hu-1 with 
tissue plasminogen activator signal peptide into 
an E1 and E3 deleted Ad5 Vector. For phase 1 
clinical trials, the vaccine contained 5 × 1010 viral 
particles per 0.5 mL/vial as a liquid formulation, 
injected intramuscularly into the arms of partici-
pants in three different dose groups (low/moder-
ate/high). Systematic adverse reactions like fever, 
fatigue, headache and muscle pain or joint pain 

were observed which may be associated with 
viremia caused by Ad5 vector infection. RBD 
antibodies were observed from day 14 with a 
single dose eliciting a four-fold increase and 
showed higher antibody geometric titre based on 
infection assay using 1  ×  1011 viral particles. 
Neutralizing antibodies against spike protein 
were found to be moderately at day 14. TNF-α 
was significantly lower in the low dose group and 
was higher in the high dose group. The vaccine 
was able to induce humoral and cellular response 
rapidly in most candidates; T-cell response 
peaked at day 14 and antibodies at day 28 after 
the vaccination. For phase 2 of the clinical trial, 
an intermediate dose was chosen and the trial is 
expected to be completed by 31 January 2021 
(Zhu et al. 2020a, b).

12.1.2  ChAdOx1 nCoV-19
ChAdOx1 is a viral vector engineered as a 
replication- incompetent virus by Oxford 
University, UK. Previously, ChAdOx1 Chik has 
been tested for Chikungunya virus (CHIKV) 
which causes Chikungunya fever (CHIKF), an 
acute febrile illness leading to long- term arthral-
gia, especially in distal joints of the extremities 
(Kroon Campos et al. 2019). ChAdOx viral vec-
tor has previously been assessed for its safety and 
immunogenicity against a wide range of diseases 
such as influenza virus, plague, zika virus, tuber-
culosis, malaria, meningococcal group B bacteria 
(MenB) and MERS-CoV.

ChAdOx1 nCoV-19 vaccine is a chimpan-
zee derived adenovirus-vectored novel 
COVID-19 vaccine with replication deficient 
simian adenovirus expressing the full-length 
spike gene with a tissue plasminogen activator 
leader sequence inserted in to its genome. 
ChAdOx1 nCoV-19 vaccine was found to be 
immunogenic that elicited a robust anti-viral 
response in a murine model (van Doremalen 
et al. 2020). The vaccine has already completed 
phase 1 and 2 in a single-blinded, randomized 
controlled trial at six sites in the UK. Healthy 
adult participants aged 18–55  years with no 
exposure history of COVID- 19 infection were 
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chosen for the trial. No serious adverse effects 
related to ChAdOx1 nCoV-19 were observed 
and exhibited S-specific effector T-cell as early 
as day 7 which peaked on day 14. Anti-S IgG 
increased by day 28 capable of neutralizing the 
live SARS-CoV-2 virus. The booster dose 
resulted in the induction of both humoral as 
well as cellular immune responses. In rhesus 
macaques, this vaccine was capable of protect-
ing against lower respiratory tract infection in 
primates. Clinical trial results thus far suggest 
ChAdOx1 nCoV-19 vaccine to be safe, tolerant 
and immunogenic (Folegatti 2020).

During April 23 and Nov 4, 2020, 53 848 par-
ticipants were enrolled for Phase 3 trial and 
11636 participants (7548 in UK and 4088 in 
Brazil) were included in the interim primary effi-
cacy study. The results show significant vaccine 
efficacy of 70.4% after two doses and protection 
of 64.1% after at least one dose against symp-
tomatic disease. ChAdOx1 nCoV-19 showed 
acceptable safety profile and is efficacious against 
symptomatic COVID-19 patients. Vaccine is suit-
able for distribution as it can be stored and dis-
tributed in 2-8˚C (Voysey et al. 2021).

12.1.3  Sputnik V 
Russia announced the launch of Sputnik V, heter-
ologous COVID-19 vaccine consisting of two 
components, a recombinant adenovirus type 26 
(rAd26) vector and a recombinant adenovirus 
type 5 (rAd5) vector, both carrying the gene for 
SARS-CoV-2 spike glycoprotein (rAd26-S and 
rAd5-S). The first interim analysis of Phase III 
trials of the Sputnik V vaccine revealed 92% effi-
cacy in Covid-19 patients on 20 confirmed 
Covid-19 cases (Logunov et al. 2020). The 
interim data is based on the double-blind, ran-
domised, placebo-controlled trials and is being 
conducted on 40,000 participants in Russia. Most 
adverse events were mild (pain at injection site, 
hyperthermia, headache, and muscle and joint 
pain) and no serious adverse events were detected. 
All participants produced antibodies to SARS-
CoV-2 glycoprotein (Logunov et al. 2020). 
During September 2000, around 10,000 medics 

and other high-risk groups were administered 
Sputnik V under the civil use of the vaccine out 
of clinical trials. The III clinical trials of Sputnik 
V Phase are undergoing in Belarus, UAE, 
Venezuela and other countries, as well as Phase 
II-III in India (https://www.clinicaltrialsarena.
com/news/russia-sputnik-v-efficacy). The pre-
liminary results on the efficacy and safety of 
Gam-COVID-Vac (Sputnik V) of phase III trial 
shows that the vaccine is 91·6% (95% CI 85·6–
95·2) efficacious against COVID-19 from the day 
of receiving second dose (day 21 after first dose). 
There were reports of serious adverse events in 
45 (0·3%) of 16 427 participants, all of which 
were considered not due to the vaccine (Logunov 
et al. 2021).

12.2  Inactivated Vaccine 
Candidates

12.2.1  BBIBP-CorV
The strain 19nCoV-CDC-Tan-HB02 was consid-
ered for developing the inactivated SARS- CoV- 2 
vaccine, BBIBP-CorV.  HB02 strain is homolo-
gous to other viral strains and the spike protein 
has 100% identity. BBIBP-CorV was capable of 
inducing high levels of neutralizing antibody in 
rats, mice, guinea pigs, rabbits, cynomolgus 
monkeys, and rhesus macaques, and found to be 
protective against SARS-CoV-2 infection. A 
lower two-dose immunization regime (2  mg/
dose) provided highly efficient protection against 
SARS-CoV-2 in rhesus macaques with no immu-
nopathological effects (Wang et al. 2020a, b, c, d, 
e, f, g).

12.2.2  PiCoVacc
PiCoVacc is a purified inactivated SARS-CoV-2 
vaccine candidate developed from CN2 strains in 
conjunction with CN1, CN3-CN5, and OS1-OS6, 
which were used as pre-clinical challenge strains. 
PiCoVacc was able to induce SARS-CoV-2 spe-
cific neutralizing antibodies in mice, rats, and 
non-human primates. To assess the immunoge-
nicity of PiCoVacc, BALB/c mice were injected 
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with various doses of PiCoVacc mixed with an 
alum adjuvant. No inflammation or other adverse 
effects were observed. SARS-CoV-2  S-specific 
and RBD-specific IgG antibodies were generated 
and the titer peaked at week 6 accounting for half 
of the S-induced antibody responses. Two immu-
nization doses, 3 μg and 6 μg, provided partial or 
complete protection in macaques against a 
SARS-CoV-2 challenge without demonstrating 
any observable antibody dependent enhancement 
of the infection (Gao et al. 2020a, b, c, d).

12.3  Nucleic Acid Vaccine 
Candidates

12.3.1  mRNA 1273 (RNA Vaccine 
Candidate)

This is an mRNA vaccine that encodes for 
S-2P antigen which is a SARS-CoV-2 spike 
glycoprotein trimer with a transmembrane 
anchor and an intact S1-S2 cleavage site. S-2P 
is stabilized by two consecutive proline sub-
stitutions at amino acid positions 986 and 
987, at the top of heptad repeat 1, which pre-
vent structural rearrangements of the fusion 
S2 subunit and retain its prefusion conforma-
tion. The nucleoside-modified messenger 
RNA (mRNA) is encapsulated in a lipid 
nanoparticle capsule, formulated in a fixed 
ratio of mRNA and lipid. The mRNA is sus-
pended in a sterile liquid for injection at a 
concentration of 0.5 mg per mL. This vaccine 
is developed by Moderna in collaboration 
with the National Institute of Allergy and 
Infectious Disease Vaccine Research Centre. 
The vaccine underwent an open-label phase 1 
clinical trial which started for 6  weeks in 
three dose cohorts (25 μg, 100 μg and 250 μg) 
via intramuscular injection in the upper arm. 
A Phase II trial with 600 healthy participants 
in two cohorts treated with a placebo, a 50 μg 
or a 250  μg dose also started recently. The 
vaccine was found to be immunogenic in 
murine models, capable of inducing IgG2a 
and IgG1 antibodies. It could also stimulate 
higher secretions of IFN-γ than IL-4, IL-5 or 
IL-3 upon re- stimulation with peptide pools 
and induce robust CD8+T cell response to the 

S1 peptide pool with balanced Th1/Th2 anti-
body isotype (Corbett et al. 2020).

On 26 January, 2021 WHO announced  
Moderna mRNA 1273 vaccine to have an efficacy 
of approximately 92 % in protecting against 
COVID-19, 14 days after the first dose. The vac-
cine has been found to be safe and effective in 
people with medical conditions associated with 
increased risk of hypertension, diabetes, asthma, 
pulmonary, liver or kidney disease, as well as 
chronic infections that are stable and controlled. 
The new variants of SARS-CoV-2, including the 
B.1.1.7 and the 501Y.V2, do not alter the effective-
ness of the Moderna mRNA vaccine (WHO Report 
2021c).

12.3.2  BNT162 (RNA Vaccine 
Candidate)

BNT162 is a Pfizer licensed BioN Tech  mRNA 
vaccine candidate: there are four vaccine candi-
dates under this program, two for coding the 
SARS-CoV-2 S-protein and two for the RBD of 
the S-protein made up of three different mRNA 
formats. During the preclinical studies among the 
four BNT162 mRNA vaccine candidates, 
BNT162b1 and BNT162b2 emerged as strong 
candidates on the basis of their immune response 
and safety. In clinical phase 1 and 2 trials, results 
conducted on up to 120 patients exhibited that 
BNT162b2 had a favorable tolerability profile 
over BNT162b1 and also showed high CD4+ and 
CD8+ T cell responses. BNT162b2 has been cho-
sen for phase 2 and 3 trials where participants 
were chosen between the age of 18 to 85 years 
(BioNTech n.d.).

BNT162b2 is a lipid nanoparticle formulated 
nucleoside modified RNA vaccine. In phase 2/3, 
two-dose regimen of BNT162b2 given at an inter-
val of 21 days to 43,548 participants, of whom 
43,448 received injections (21,720 with BNT162b2 
and 21,728 with placebo). A two-dose regimen of 
BNT162b2 conferred 95% protection against 
Covid-19 in persons 16 years of age or older. 
Systematic reactogenicity was more common and 
severe after the second dose. Severe fatigue was 
also observed in 4% of BNT162b2 recipient. These 
reactogenicity events (short-term, mild-to-moderate 
pain at the injection site, fatigue, and headache) 
were transient and resolved within a couple of days. 
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(Polack F. 2020). Children, pregnant women and 
immunocompromised persons were not included in 
this 2/3 phase trial.

12.3.3  DNA Vaccine
A prototype DNA vaccine expressing six variants 
of the SARS-CoV-2 spike protein: (a) full-length, 
(b) cytoplasmic tail deleted, (c) transmembrane 
domain deleted and cytoplasmic tail reflecting 
the soluble ectodomain, (d) S1 domain with a 
foldon trimerization tag, (e) RBD with a fold-on 
trimerization tag, and (f) a prefusion stabilized 
soluble ectodomain with furin cleavage site 
deleted, was constructed. The vaccine was tested 
on rhesus macaques which developed humoral 
and cellular immune responses, including neu-
tralizing antibody titers that were comparable to 
macaques infected with SARS-CoV-2. The vac-
cine elicited neutralizing antibody inducing pro-
tection (Yu et al. 2020).

12.3.4  INO-4800
INO-4800, is an optimized S- protein of SARS- 
CoV- 2 viral DNA plasmids developed by Inovio 
(Pharmaceuticals 2020). Phase I trial started on 
April 3, 2020 to evaluate the safety, tolerability 
and immunogenicity of the vaccine. INO- 4800 
with a regime of three different doses are being 
administered intradermally followed by electro-
poration in healthy volunteers (120 participants).

12.4  Protein-based vaccines

SCB-2019 is a protein subunit vaccine candidate 
containing a stabilised trimeric form of the spike 
(S)-protein (S-Trimer) combined with two differ-
ent adjuvants. The difference of SCB-2019 with 
other vaccine is that it uses a stabilised protein tri-
mer as the antigen. The Trimer-Tag is a protein, 
derived from the C-terminus of human type I pro-
collagen which preserves the trimeric conforma-
tion of the SARS-CoV-2 spike protein (Blakney 
and McKay 2021). The efficacy and safety of 
SCB-2019 was assessed as the S-Trimer protein 
alone (non-adjuvanted), or as one of two adju-
vanted formulations with either AS03 or CpG/
Alum. The Phase I trial suggested non-adjuvanted 
SCB-2019 to be poorly immunogenic, but in com-

bination with the adjuvant system (AS03 or CpG/
Alum) robust increase in functional immune 
responses were observed with SARS-CoV-2 neu-
tralising activity that correlated well with IgG anti-
bodies against SCB-2019 or ACE2-competitive 
blocking antibodies (Richmond et al. 2021).

13  Perspectives

Last 18 months have seen an explosion of infor-
mation about SARS-CoV-2 genome, virulence 
factors, mode of entry into the target cells, recep-
tors and co-receptors/proteases, and host immune 
response. The fact that a large proportion of indi-
viduals can be infected and remain asymptomatic 
bodes well for the role of the innate immunity in 
engineering a host-pathogen stand-off. Whether 
this reflects on the threshold of virus latency 
remains to be understood. Whether the comple-
ment system has a protective role is yet to be estab-
lished: there are viral proteins other that Spike 
protein that can activate complement, specifically 
the lectin pathway. What is remarkably clear is 
that the complement activation contributes con-
siderably in microangiopathy and coagulopathy 
in severe COVID-19 patients. Complement acti-
vation also seems to contribute to coagulopathy 
seen in very few individuals who were adminis-
tered AstraGeneca (Oxford) vaccines. The roles 
that T cells, NK cells and DCs play in mounting 
a protective response against SARS-CoV-2 are 
being recognized as well. The presence of spe-
cific antibodies, some of them being neutralizing, 
is also well-documented. Vaccine trials have 
relied mostly on the use of Spike protein: results 
have been promising and several countries have 
double vaccinated a vast majority of their adult 
population. However, levels of neutralizing anti-
bodies and persistence of B cell response remain 
a concern. These limitations apply to infection as 
well as vaccination trials. To continue to assess 
likely alterations in the viral genome (with or 
without a fitness cost), uncertaintly of neutraliz-
ing antibody titres, and human- to- human trans-
mission rates, are going to be major issues in 
short- and medium-terms However, like other 
vaccines, one would expect that SARS-CoV-2 
vaccines will also work following the principle of 
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immunology, i.e. after two doses of vaccinations, 
subsequent virus exposure should recall memory 
cells and hence swift protective immune response. 
There are discussions about giving third dose of 
the vaccine in winter that may coincide  with rise 
in flu.

There is a terrible beauty about how viruses 
such as SARS-CoV-2 have evolved to be so effi-
cient at causing infection. The intricate molecular 
interactions between the viral and host cellular 
molecules and the tango between the immune 
response and the viral mechanisms that seek to 
subvert it are complex and fascinating. It is also 
truly amazing that in such a short period of time, 
we have learnt so much about the both SARS- 
CoV- 2 and COVID-19. An understanding of 
COVID-19 requires us to look at the molecular 
level (for example during replication of the 
virus), the cellular (internalization of the virus), 
at the level of the tissue or organ (local inflamma-
tory response) and the organism (adaptive 
immune responses). We also need to understand 
interactions between people, and between people 
and their environment, and social issues such as a 
flow of people across the world and the impact of 
socioeconomic factors on viral propagation. 
Interventions on all these levels are needed—
there will not be a single ‘magic bullet’.

Some will argue that this is pessimistic. 
Vaccination will allow us to deal with SARS- 
CoV- 2. However, while development of an effec-
tive vaccination is an incredibly useful tool in 
helping us cope with the virus, we should not rely 
on it. In part, because it may be more difficult 
than we hope to produce an effective vaccine that 
results in long term immunity (the failure to pro-
duce effective vaccines to other forms of CoV 
should give us cause for concern). However, even 
with an effective vaccine, it took many years for 
us to eradicate smallpox. Salk developed the first 
effective polio vaccine in 1952, and despite a 
worldwide effort, there are still some pockets of 
polio in Asia. These are diseases with no animal 
reservoirs of infection.

This is not a message of gloom. We will be able 
to control the virus, but it will need a multi- pronged 
approach to do so. We also need to develop our 
science base and understanding so that when the 

next pandemic strikes (which it will do), we can 
rapidly mobilise to contain and control it. We need 
to develop public understanding of the science (for 
example, to counter the ant- vaccination move-
ment) so we learn from SARS-CoV-2 to be more 
resilient to future threats.
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1  Introduction

The discovery of penicillin over 90  years ago, 
and its subsequent uptake by healthcare systems 
around the world revolutionised the treatment of 
bacterial infections. It marked the beginning of a 
golden age in antibiotic discovery with new 
classes of antibiotics being routinely discovered 
and saving millions of lives globally. However, 
towards the end of the last century the rate of dis-
covery slowed significantly. This decline in dis-
covery coincided with the rapid emergence and 
spread of bacterial pathogens that exhibit resis-
tance to multiple antibiotics. Research into anti-
biotic discovery is now a global priority in order 
to maintain sustainable access to effective treat-
ments for bacterial infections. The rise of antibi-
otic resistance is closely linked to their 
indiscriminate use. Antibiotics can be acquired 
without the need for a prescription or clinical 

advice in many parts of the world. The Infectious 
Diseases Society of America (IDSA) have 
grouped the most problematic antibiotic-resistant 
pathogens and called them the ESKAPE patho-
gens (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa and 
Enterobacter spp) (Pendleton et  al. 2013; 
Boucher et al. 2009) So-called due to their abili-
ties to ‘escape’ the biocidal actions of antimicro-
bial treatment (Pendleton et  al. 2013). A 2018 
report from the World Health Organisation 
(WHO) placed carbapenem resistant A. bauman-
nii (CRAB) at the top of a global priority list of 
bacteria in urgent need of novel therapeutic inter-
vention strategies whilst the CDC has catego-
rized multidrug resistant A. baumannii as a 
serious threat (Tacconelli et  al. 2018; Harding 
et al. 2018).

A. baumannii is a Gram-negative, aerobic coc-
cobacillus that is ubiquitous in nature. It is an 
opportunistic pathogen that can colonise a range 
of anatomical sites in usually immunocompro-
mised individuals leading to a variety of life- 
threatening clinical complications (Harding et al. 
2018). Prior to the 2000s, A. baumannii infections 
were relatively infrequent and typically suscepti-
ble to front line antibiotics. However, there has 
been a rapid increase in the number of these infec-
tions, initially due to the high rates of MDR strains 
recovered from veterans or soldiers from the Iraq 
and Afghanistan conflicts in the 2000s (Weintrob 
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et al. 2018; Camp and Tatum 2010). The clinical 
impact of A. baumannii has continued to grow, 
with studies suggesting that up to 10% of all noso-
comial infections in the United States, and 2% in 
Europe, are due to this organism. The rates of hos-
pital associated infections due to this pathogen in 
Asia and the Middle East are reported as almost 
twice as high (Harding et al. 2018; Kröger et al. 
2016; Karlowsky et al. 2017; Badave and Kulkarni 
2015). The associated clinical manifestations 
include ventilator- associated pneumonia (VAP), 
bacteraemia, meningitis, urinary tract infections, 
septic shock and surgical wound infections 
(Kröger et al. 2016; Karlowsky et al. 2017; Peleg 
et  al. 2008; García-Quintanilla et  al. 2013). The 
greatest concern associated with this pathogen 
however is that between 44 and 70% of isolates 
exhibit multidrug resistance (MDR) (resistant to at 
least 3 classes of antibiotic); rates that are nearly 4 
times higher than those observed for other prob-
lematic Gram-negative pathogens in these set-
tings, such as Pseudomonas aeruginosa 
(Giammanco et al. 2017). Cases have also emerged 
of extremely drug-resistant (XDR) A. baumannii, 
isolates that cannot be treated by any antimicrobial 
agents currently approved by the US Food and 
Drug Administration (FDA) (Viehman et al. 2014). 
Cases of XDR A. baumannii are no longer con-
fined to densely populated areas, specialist hospi-
tal units or patient populations but have been 
reported in rural health care centres worldwide 
(Fonseca et al. 2019). The molecular mechanisms 
and coordinated behaviours (biofilm formation) 
that allow this pathogen to resist antibiotic therapy 
within each of these niche areas are a considerable 
area of research focus. In this chapter, we will 
detail some of the primary mechanisms A. bau-
mannii utilizes to become recalcitrant to antibiotic 
therapy and discuss some of the new approaches 
for tackling XDR and MDR A. baumannii.

2  Mechanisms of Resistance 
Acquisition

A. baumannii is particularly adept at developing 
resistance due to its large repertoire of antibiotic 
resistance genes, some of which have been criti-

cal to the establishment of clonal outbreaks. A. 
baumannii are naturally transformable bacteria 
with an elevated genomic plasticity. This has 
allowed the acquisition and accumulation of 
many antibiotic resistance determinants. A. bau-
mannii achieves this through overcoming selec-
tive pressures and stresses via the acquisition of 
foreign material via gene transfer, transforma-
tion, conjugation and transduction. Indeed, A. 
baumannii has displayed a high level of natural 
competency; incorporating exogenous DNA in 
its genome at high frequencies. Remarkably, this 
natural competency is increased upon exposure 
to many host factors such as serum albumin, sug-
gesting that even during infection it is capable of 
acquiring new genetic elements (Traglia et  al. 
2016). This ability drives the evolution towards 
MDR in bacteria. Mobile genetic elements 
(MGEs) such as plasmids, resistance islands, 
insertion sequences, transposons and integrons 
have played a key role in the emergence and suc-
cess of MDR and XDR in A. baumannii 
(Table  7.1) (Almasaudi 2018; Fournier and 
Richet 2006; Pagano et al. 2016).

2.1  Resistance Islands

The AbaR type genomic islands are an important 
group of MGEs that consist of huge clusters of 
antimicrobial resistance genes involved in MDR 
in A. baumannii. More than 66% of the 3148 
publicly available A. baumannii genome 
sequences contain AbaRs with a much lower fre-
quency of occurrence in other species of 
Acinetobacter (Bi et al. 2019). This is likely due 
to the majority of AbaR islands being localised to 
the chromosome stabilising resistance in the spe-
cies but reducing opportunities for interspecies 
transfer. Most AbaRs are known to site- 
specifically disrupt the chromosomal comM 
gene. The first AbaR found in A. baumannii was 
an 86 kb resistance island from a MDR strain, 
AYE, isolated in France (Fournier and Richet 
2006). This genomic island, termed AbaR1, like 
the majority of AbaRs is located on the chromo-
some rather than on a plasmid and encodes 45 
resistance genes conferring resistance to most 
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classes of antibiotics (Fournier and Richet 2006; 
Hamidian and Hall 2018a). Over 40 AbaRs have 
since been identified in A. baumannii and the 
resistomic consequences of each varies. However, 
the resistance gene profiles of AbaRs typically 
follow specific patterns allowing the correlation 
of resistance gene profiles with specific clonal 
lineages (Bi et al. 2019).

2.2  Insertion Sequences 
and Transposons

Acquisition and movement of new or foreign 
DNA can be determined by analysis of the 
sequence surrounding the insertion site. 
Bacterial Insertional Sequences (IS) are usually 
short in size typically ranging from 0.5 to 2 kb. 
Two copies of the same IS flanking an antibiotic 
resistance gene can lead to transposition of 
resistance genes between strains. IS's also have 
a role in acting as a promoter sequence, elevat-
ing the levels of expression of a resistance gene. 
It has been demonstrated that many genes 

encoding β-lactamases in A. baumannii are only 
capable of conferring resistance when they are 
expressed under a promoter within an upstream 
IS element (Turton et al. 2006). Relevant IS ele-
ments identified in A. baumannii so far include 
ISAba1, ISAba2, ISAba3, ISAba4, ISAba125 
and ISAba825 all linked to carbapenem resis-
tance. Of these the most common is ISAba1, 
which has been identified upstream of OXA-23-
like, OXA- 51- like, OXA-58-like, eptA and ampC 
genes (Potron et al. 2019). As well as increasing 
the expression of resistance genes, ISAba1 has 
been shown to impact global regulators of viru-
lence such as the TetR type transcriptional regu-
lator AdeN and the histone like nucleoid 
structuring (H-NS) protein. Disruption of these 
regulators was shown to lead to an enhanced 
adherence to human pneumocytes and elevated 
levels of lethality in a Caenorhabditis elegans—
A. baumannii nematode pathogenicity model 
(Eijkelkamp et al. 2013; Saranathan et al. 2017; 
Adams and Brown 2019).

Transposons (Tn) are more complex genetic 
structures with a role in the spread of resistance 

Table 7.1 Prevalent mobile genetic elements associated with the transmission of resistance mechanisms

Mobile genetic element Resistance profile References
Resistance 
Islands

AbaR0, AbaR1, AbaR2, AbaR3, 
AbaR4, AbaR5, AbaR6, AbaR7, 
AbaR8, AbaR9, AbaR10, 
AbaR11, AbaR12, AbaR13, 
AbaR14, AbaR15, AbaR16, 
AbaR17, AbaR18, AbaR19, 
AbaR20, AbaR21, AbaR22, 
AbaR23, AbaR24, AbaR25, 
AbaR26, AbaR27, AbaR28, 
AbaR29, AbaR30, AbGRI1-0, 
AbGRI1-1, AbGRI1-2, 
AbGRI1- 3, AbGRI1-4, 
AbGRI1-5

Most antibiotic classes including 
aminoglycosides, aminocyclitols, 
sulphonamides, tetracycline, 
minocycline, chloramphenicol

(Fournier and Richet 
2006; Bi et al. 2019; Holt 
et al. 2016; Hamidian and 
Hall 2017; Hamidian and 
Hall 2018b; Nigro et al. 
2019)

Insertion 
sequences

ISaba1, ISaba2, ISaba3, ISaba4, 
ISaba10, ISaba124, ISaba125, 
ISaba825

Carbapenems, Aminoglycosides, 
Cephalosporins

(Turton et al. 2006; Potron 
et al. 2019; Lopes et al. 
2012; Lopes and Amyes 
2012)

Transposons Tn2006, Tn2007, Tn2008, 
Tn2009

Carbapenems (Chen et al. 2017; Zhou 
et al. 2011; Espinal et al. 
2013; Guerrero-Lozano 
et al. 2015)

Integrons Int1, Int2 Aminoglycosides, Carbapenems (Pagano et al. 2016; 
Martins et al. 2015; Turton 
et al. 2005)
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genes that has been extensively documented. 
Four transposons harbouring the blaOXA-23 gene 
have been reported: Tn2006, Tn2007, Tn2008, 
and Tn2009 (Chen et al. 2017; Zhou et al. 2011; 
Espinal et al. 2013; Guerrero-Lozano et al. 2015). 
Tn2006, Tn2007 and Tn2008 are globally dis-
seminated, while up until recently Tn2009 was 
thought to be confined only to China (Zhou et al. 
2011; Kumburu et al. 2019). However, in a study 
of over 350 South Korean isolates of A. bauman-
nii, 88% of which displayed carbapenem resis-
tance, the blaOXA-23 gene was primarily carried 
either by Tn2006 (44%) or Tn2009 (54%), with a 
few exceptions carried by Tn2008 (1.6%) (Yoon 
et al. 2016a).

2.3  Integrons

Integrons are genetic elements that incorporate 
ORFs by site-specific recombination and express 
them as functional genes due to the presence of 
an effective promoter sequence. All known inte-
gron cassettes have 3 core components, a gene 
encoding an integrase (intI), a promoter sequence 
and a primary recombination site. It is now well 
established that these mobile elements are a 
major factor in the acquisition of antibiotic resis-
tance in Gram-negative and, to a lesser extent, in 
Gram-positive bacteria (Pagano et al. 2016). Five 
different classes of mobile integrons have been 
defined to date, based on the sequence of the 
encoded integrase gene. Multidrug resistance in 
A. baumannii has been primarily associated with 
Class 1 and Class 2 integrons (Martins et  al. 
2015). Class 1 integrons in particular are com-
monly associated with clonal outbreaks (Turton 
et al. 2005). Together these MGEs play a critical 
role in allowing A. baumannii to adapt to, to tol-
erate and to resist antibiotic exposure by facilitat-
ing the transfer of genes capable of conferring 
resistance, the upregulation of native genes capa-
ble of conferring resistance and/or through the 
disruption of global regulators of virulence, 
pathogenicity and membrane potential. Recently 
evidence has emerged that prophages play a role 
in the transfer antimicrobial resistance genes in 
vitro with intercellular prophages mediating the 

transfer of chromosomal antibiotic resistance 
genes between resistant and sensitive strains of A. 
baumannii without the need for direct cell-to-cell 
contact. This suggests they may play a role in the 
transfer of acquired resistance mechanisms in 
vivo also (Wachino et al. 2019).

3  Molecular Mechanisms 
of Resistance

Bacteria possess a wide range of mechanisms 
that they can utilize to become recalcitrant to 
antibiotic therapy. These include the expression 
of antibiotic inactivating enzymes such as 
β-lactamases, the upregulation of efflux pumps, 
target modification and changes to the surface of 
the cell such as the alteration of porins or Lipid A 
modifications. These mechanisms can often act 
synergistically to prevent an antibiotic reaching 
its molecular target (Fig. 7.1, Table 7.1).

4  Molecular Mechanisms 
of Resistance: β-Lactamases

Β-lactams account for 65% of all prescriptions 
for injectable antibiotics in the United States, 
they are well tolerated and efficacious (Bush and 
Bradford 2016). β- Lactams are a class of antibi-
otic that covalently bind to penicillin-binding 
proteins (PBPs). PBPs are enzymes responsible 
for the formation of peptidoglycan in the bacte-
rial cell wall. Inhibition of PBPs by β- lactams 
disrupts bacterial cell wall biosynthesis, weaken-
ing the cell membrane and ultimately causing the 
cell to burst due to osmotic pressure (Tehrani and 
Martin 2018; Nowak and Paluchowska 2016). 
This mode of treatment is however rendered inef-
fective in many pathogens particularly A. bau-
mannii, that possess enzymes that are capable of 
degrading β- lactams. These enzymes inactivate 
the antibiotic by hydrolysis of the β-lactam ring 
(Bush and Bradford 2016). Resistance to a wide 
range of different groups of β-lactam antibiotics, 
such as penicillins, cephalosporins, mono-
bactams and carbapenems is mediated by 
β-lactamases. β-lactamases can be structurally 
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classified into 4 molecular groups. These include 
class A, C, and D serine-β-lactamases (SBLs) 
with no significant structural similarities between 
classes, and the class B metallo-β-lactamases 
(MBLs) (Ambler 1980; Gordon et  al. 2009; 
Silveira et  al. 2018). While some native 
β-lactamases are encoded in the A. baumannii 
genome such as blaOXA-51 and ampC, their capac-
ity to confer resistance is limited except in the 
case of insertion of upstream promoter sequences. 
However, the ability of A. baumannii to acquire 
new β-lactamases particularly class B metallo-β- 
lactamases (MBL) and class D oxacillinases 
(OXA) has resulted in the widespread dissemina-
tion of CRAB (Gordon et  al. 2009; Hsu et  al. 
2017).

Class A β-lactamases are found in many 
Gram-negative species and mediate resistance to 
penicillins and narrow spectrum cephalosporins 
(cephalothin). Extended spectrum β- Lactamases 
(ESBL) that confer resistance to expanded- 
spectrum cephalosporins (cefotaxime, ceftazi-
dime) are of greater concern. The first ESBL 
identified in A. baumannii was PER-1 which was 
initially identified in Turkey but has since been 

shown to be widespread (Nordmann and Naas 
1994; Potron et al. 2015). Numerous other class 
A ESBLs have since been identified including 
TEM, SHV, CTX-M, GES, SCO, PER and VEB 
variants (Gordon et al. 2009; Tada et al. 2017).

Class B MBLs enzymes are capable of hydro-
lysing all β- lactams antibiotics including car-
bapenems, with the exception of aztreonam 
(Almasaudi 2018; Fournier and Richet 2006). 
Class B enzymes require a metal ion in their 
active site to be functional, mostly zinc or other 
heavy metals. This zinc-dependent activity can 
be inhibited by EDTA, but not by conventional 
β-lactamase inhibitor molecules such as clavu-
lanic acid, tazobactam, and sulbactam (Jain and 
Danziger 2004). Verona integron-encoded 
metallo-β-lactamases (VIM), Imipenem hydro-
lyzing β-lactamase (IMP), Seoul Imipenemase 
(SIM-1) and New Delhi metallo-β-lactamase 
(NDM) have all been identified in A. baumannii. 
IMP was initially identified in a strain of 
Pseudomonas aeruginosa in Japan in the early 
1990s but has since been shown to have dissemi-
nated globally and has now been acquired by A. 
baumannii. The VIM enzyme has a <40% amino 

Fig. 7.1 A schematic diagram on various antimicrobial resistance mechanisms. (1) Overexpression. (2) Resistance 
mutations. (3) Impermeable barrier. (4) Efflux pumps. (5) Drug inactivation
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acid identity to IMP and like VIM was initially 
described in P. aeruginosa before being later 
identified in A. baumannii. SIM-1 was identified 
first in a Korean University Hospital in 2003 and 
has been shown to share a high sequence amino 
acid identity with IMP but a limited prevalence 
beyond Korea (Kim et  al. 2013). NDM-1 was 
first reported in Klebsiella pneumonia in 2009 
and identified in Indian clinical strains of A. bau-
mannii the following year (Yong et  al. 2009; 
Karthikeyan et al. 2010). In the intervening time 
since its original identification, NDM-1 has dis-
seminated at an alarming rate with metagenomic 
sampling recently identifying the NDM-1 
sequence in Arctic soil samples (McCann et  al. 
2019). Twenty-eight further variants of NDM-1 
have been identified, typically differing in one to 
two amino acids however, not all of these variants 
have been identified in A. baumannii (Khan et al. 
2017). The spread of the NDM-1 in A. baumannii 
strains has been attributed at least in part to its 
association with the Tn125 composite transposon 
that can integrate on the chromosome or on plas-
mids (Bontron et al. 2016).

Class C and D β-Lactamases have been identi-
fied in a large proportion of A. baumannii isolates 
and confer resistance to cephamycins and cepha-
losporins which include cefoxitin, cefotetan and 
penicillin type β-Lactams antibiotics. Class C 
β-Lactamases produce AmpC-type cephalospori-
nases. At basal levels of expression the poor effi-
cacy of AmpC-type cephalosporinases does not 
reduce the overall efficiency of β-Lactams such 
as penicillin and extended spectrum cephalospo-
rins (Almasaudi 2018; Gordon et  al. 2009; 
Corvec et al. 2003). However, in several clinical 
isolates an ISAba1 type insertion has been identi-
fied upstream of a number of AmpC type enzymes 
which enhances their expression (Poirel and 
Nordmann 2006; Hamidian and Hall 2013). This 
then enables hydrolysis of β-lactams such as pen-
icillin and extended spectrum cephalosporins at 
levels high enough to confer resistance (Corvec 
et  al. 2003). Class D (OXA) oxacillinases, are 
able to efficiently hydrolyze isoxazolyl-type 
β-lactams like oxacillin. More than 700 different 
OXA- type enzymes have been identified. The 
presence of Class D β-Lactamases is considered 

the leading cause of carbapenem resistance in A. 
baumannii. Four groups of class D carbapenem- 
hydrolysing enzymes (CHDL) can be found 
within A. baumannii, usually classified into 
OXA-23-like, OXA-24-like, OXA-51-like and 
OXA-58-like enzymes (Evans and Amyes 2014; 
Lin and Lan 2014). The blaOXA-23 gene in particu-
lar has disseminated worldwide and is considered 
a major determinant in the emergence of 
CRAB.  IS have been routinely identified 
upstream of these OXA genes, again leading to 
increased expression and phenotypic resistance. 
Studies from both India and China have identi-
fied the blaOXA-23 gene in 80–100% of clinical iso-
lates with the ISAba1 sequence identified 
upstream of blaOXA-23 in 80% of cases. In Greece, 
emerging CRAB strains that produce both blaOXA-

 23 and blaOXA-58 strains have recently been identi-
fied and shown to predominate in paediatric 
intensive care units (Karampatakis et  al. 2019; 
Huang et  al. 2019; Vijayakumar et  al. 2016; 
Hadjadj et al. 2018).

5  Multidrug Efflux Systems

Efflux pumps are transmembrane transporter 
protein complexes that are crucial to the 
removal of toxic substances and metabolic end 
products, regulating the internal environment 
of the cell (Chitsaz and Brown 2017; Soto 
2013; Fernandez- Recio et al. 2004). They have 
a broad substrate specificity and their acquisi-
tion or changes in their expression, has been 
shown to confer resistance to a wide array of 
antibiotics (Soto 2013; Sun et al. 2014). Efflux 
pumps associated with conferring resistance 
can be categorised into 5 families, the resis-
tance-nodulation-cell division (RND) family, 
the ATP-binding cassette (ABC) transporters, 
the major facilitator superfamily (MFS), small 
multidrug resistance (SMR) family, and the 
recently identified multidrug and toxic com-
pound extrusion (MATE) family. Among the 5 
MFS, RND efflux pumps are most commonly 
associated with A. baumannii. They consist of 
a tripartite structure composed of an outer- 
membrane (OM) channel, an inner-membrane 
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transporter (IM) and a periplasmic membrane 
fusion protein (MFP) that connects all these 
components together (Fernandez-Recio et  al. 
2004; Zgurskaya and Nikaido 2000; Poole 
2004). Three specific RND efflux systems 
AdeABC, AdeFHG and AdeIJK, have been 
characterised in A. baumannii and are associ-
ated with a broad range substrate specificity 
(Coyne et  al. 2010a; Magnet et  al. 2001; 
Damier-Piolle et al. 2008) . As well as the pres-
ence or absence of these efflux pumps, the lev-
els of expression also plays a significant role in 
their capacity to confer resistance. Specifically, 
it has been shown in clinical isolates that the 
level of resistance is associated with the upreg-
ulation of adeB, adeJ and adeG (D'Souza et al. 
2019; Lin et al. 2017a). In naïve conditions, the 
expression of each pump is tightly regulated. 
The AdeABC efflux system which confers 
resistance to aminoglycosides, tetracyclines, 
erythromycin, chloramphenicol, trimethoprim, 
fluoroquinolones, some β-lactams, and tigecy-
cline is regulated by two-component regula-
tory system adeRS, with adeR a response 
regulator and adeS a sensory kinase. Mutations 
within adeRS can result in the over expression 
of adeABC genes (Marchand et  al. 2004; 
Wieczorek et  al. 2008). AdeS ISAba1 inser-
tions have also been linked to elevated expres-
sion of this efflux pump (Sun et al. 2012). The 
BaeRS two component system, which is 
involved in sensing envelope damage, has also 
been shown to regulate the expression of this 
efflux pump (Lin et al. 2015). AdeIJK is com-
mon among all A. baumannii isolates and is 
capable of expelling the broadest range of sub-
strates. It is constitutively expressed in labora-
tory conditions but has also been shown to be 
under the control of the TetR transcriptional 
regulator AdeN.  Mutations and ISAba1 inser-
tions have been identified in this regulator in 
clinical isolates, leading to increased adeIJK 
expression (Saranathan et al. 2017; Rosenfeld 
et  al. 2012; Geisinger et  al. 2019). AdeIJK 
works in accordance with AdeABC to confer 
tigecycline resistance (Gordon et  al. 2009; 
Sugawara and Nikaido 2014). Compared to 
AdeIJK and AdeABC, AdeFGH has the nar-

rowest substrate range, however, over expres-
sion has been identified in clinical isolates. 
This over expression is associated with 
increased resistance to fluoroquinolones and 
chloramphenicol. AdeL, a lysR type transcrip-
tional regulator can regulate the expression of 
this efflux pump (Geisinger et  al. 2019; Yoon 
et al. 2015; Coyne et al. 2010b; Gerson et al. 
2018). MATE Efflux pump family members 
AbeM, AbeM2, and AbeM4 have also been 
associated with drug extrusion. Over expres-
sion has been linked to a decreased susceptibil-
ity to quinolones, gentamicin, kanamycin, 
erythromycin, chloramphenicol and trime-
thoprim (Gordon et  al. 2009; Su et  al. 2005). 
SMR family member AbeS was shown to 
decrease susceptibility to novobiocin and 
erythromycin but also to a range of disinfec-
tants, dyes and detergents (Srinivasan et  al. 
2009). A range of MFS family transporters, 
with a role in antibiotic efflux, have been iden-
tified in A. baumannii including AmvA, TetAB, 
CraA, FloR, CmlA, AbaF, EmrAB and 
AedC.  These primarily confer resistance to 
chloramphenicol. EmrAB in particular is one 
of the few efflux systems shown to be capable 
of increasing resistance to the last resort antibi-
otic, colistin. However, the precise mechanism 
of action is not known and as colistin exerts its 
activity extracellularly, this may not be a direct 
effect (Lin et  al. 2017b). AbaQ was recently 
functionally characterised in A. baumannii and 
shown to be involved in the extrusion of quino-
lones (Pérez-Varela et  al. 2018). The breadth 
and substrate diversity of efflux pumps encoded 
within the genome of A. baumannii is integral 
to its emergence as a millennial pathogen of 
major clinical significance.

6  Porins

Porins are β-barrel proteins that are found in the 
outer membrane of Gram-negative bacteria and 
facilitate the transport of molecules across the 
membrane. They play a central role in membrane 
permeability and represent a major nutrient entry 
portal. They also enable the transport of many 
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antimicrobial molecules into the cell and as such 
mutations affecting their conduction properties 
have a major role to play in antibiotic resistance. 
OmpAab is a major component of the outer mem-
brane of A. baumannii and plays a key role in 
pathogenesis influencing phenotypes such as 
twitching motility, desiccation resistance, serum- 
induced killing and epithelial cell adhesion 
(Geisinger et  al. 2019; Iyer et  al. 2018; 
Skerniškytė et al. 2019). Thus loss or mutation of 
OmpAab has a significant impact on fitness but it 
also reduces susceptibility to chloramphenicol, 
aztreonam, nalidixic acid and imipenem (Iyer 
et al. 2018; Smani et al. 2014). OmpAab is also 
thought to play a role in the localisation of β- lac-
tamases to the periplasm, with a direct interaction 
between OXA-23 and OmpAab demonstrated 
through cross-linking experiments (Wu et  al. 
2016). OXA-23 has also been shown to interact 
with CarO, another porin that has frequently been 
shown to be downregulated in CRABs (Wu et al. 
2016). A disruption in the expression of 
Omp22- 23, OMp33-36, Omp37, Omp43-44 and 
Omp47 has also been linked to carbapenem resis-
tance. As with OmpAab the decreased expression 
of these porins often impacts fitness (Novović 
et al. 2018; Lee et al. 2017; Rumbo et al. 2014; 
Smani et al. 2013; Mostachio et al. 2012; Quale 
et al. 2003).

7  Target Modification: PBPs

As described previously, PBPs are penicillin- 
binding proteins that are crucial for the synthesis 
of peptidoglycan, which is a necessary compo-
nent of the bacterial cell wall (Vashist et al. 2011). 
β-lactams target PBPs, disrupting their role in 
peptidoglycan biosynthesis. It has been well 
established that mutations in PBPs, in particular 
PBP-2 and PBP-6b, have been directly associated 
with carbapenem resistance within A. baumannii 
(Cayô et  al. 2011). Several studies have also 
demonstrated alterations in the expression pat-
terns of PBPs among resistant isolates, in particu-
lar reduced expression of PBP-2 suggesting that 
this is a viable mechanism of carbapenem resis-
tance or at the very least can synergistically con-

fer resistance in combination with other 
mechanisms (Vashist et al. 2011; Gehrlein et al. 
1991; Fernández-Cuenca et al. 2003).

8  Target Modification: 
Ribosomes

Aminoglycosides are bactericidal antibiotics that 
target ribosomes and bind specifically to the 
A-site of the 30S ribosome, disrupting the func-
tion of the 16s ribosomal subunit and inhibiting 
protein synthesis (Krause et al. 2016). High lev-
els of resistance to individual aminoglycosides in 
A. baumannii is conferred by aminoglycoside- 
modifying enzymes (AME). They are typically 
located on plasmids, transposons or in associa-
tion with class 1 integrons. This association with 
MGEs has facilitated the global dissemination of 
AMEs (Lin and Lan 2014; Lee et  al. 2017; 
Gillings et al. 2008). These enzymes can be cat-
egorised according to their mode of action as 
acetyltransferases, adenyltransferases and phos-
photransferases with the latter two categories 
being the most common in A. baumannii (Lin 
and Lan 2014; Lee et al. 2017). These enzymes 
modify the aminoglycosides through the addition 
of amino- or hydroxyl- groups altering binding of 
the aminoglycoside to the ribosome (Aliakbarzade 
2014). Although less frequent, genes encoding 
16S rRNA methyltransferases such as armA and 
rmtA-F, have also been identified in A. bauman-
nii and lead to elevated resistance levels to virtu-
ally all aminoglycosides and the neoglycoside 
plazomycin. In the case of ArmA it has been 
shown to be exclusively in strains that also pro-
duce OXA- type carbapenemases (Hasani et  al. 
2016; Costello et  al. 2019). Aminoglycoside 
resistance due to amplification of regions con-
taining AMEs has also been reported and shown 
to be responsible for heteroresistance among sub-
populations of an isogenic A. baumannii strain 
(Anderson et  al. 2018; McGann et  al. 2014). 
TetM has also been linked to ribosomal protec-
tion from tetracyclines, a class of antibiotics that 
inhibit protein synthesis by preventing attach-
ment of the aminoacyl-tRNA to the ribosome 
(Ribera et al. 2003).
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9  Target Modification: DNA 
Replication Enzymes

Quinolones such as ciprofloxacin are broad- 
spectrum antibiotics and are one of the most 
widely prescribed classes of antibiotic. They 
target two bacterial type IIA topoisomerases, 
gyrase and topoisomerase IV, inhibiting their 
action and resulting in impaired DNA replica-
tion (Drlica et  al. 2008). Quinolone resistance 
has been identified in A. baumannii and is usu-
ally a result of mutations occurring within the 
gyrA and parC genes. Mutations in specific 
regions termed the Quinolone Resistance-
Determining Regions in these genes prevent 
quinolone binding, thus rendering the antibiotic 
ineffective. A recent study of 140 ciprofloxacin 
and levofloxacin resistant clinical isolates 
revealed that >85% of these isolates had muta-
tions in both genes demonstrating the preva-
lence of this double mutant resistotype (Peleg 
et al. 2008; Zaki et al. 2018; Aldred et al. 2014).

10  Target Modification: Lipid A

Polymyxins B and polymyxin E (colistin), are cat-
ionic antimicrobial peptides that target the lipid A 
component of lipopolysaccharide (LPS) on the 
outer membrane of bacteria and are used as antibi-
otics of last resort for many CRAB infections. LPS 
plays a key role in the pathogenicity of bacteria 
and modifications to its structure typically come at 

a fitness cost to the cell (McCarthy et al. 2017). In 
Gram-negative bacteria, acquired resistance to 
polymyxins results mostly from modifications of 
the drug target, i.e. the lipopolysaccharide (LPS). 
These modifications correspond to addition(s) of 
cationic groups such as 4-amino-L-arabinose 
(L-Ara4N) and/or phosphoethanolamine (pETN) 
on the lipid A, the anchor of the LPS.  Unlike 
Enterobacteriaceae, A. baumannii lacks all the 
genes required for L-Ara4N biosynthesis. 
Accordingly, colistin resistance is caused by the 
addition of pETN to the lipid A on position 1 or 4′ 
by an EptA-like phosphoethanolamine transferase 
chromosomally- encoded by the pmrC gene 
(Jeannot et al. 2017; Cai et al. 2012; Adams et al. 
2009). Mutations in the chromosome-encoded 
pmrA and pmrB genes result in a constitutive acti-
vation of the PmrA/PmrB two-component system, 
which in turn upregulates the expression of pmrC. 
In polymyxin susceptible strains, the lipid A mol-
ecules consist of bis-phosphorylated hexa-acyl 
and bis-phosphorylated hepta-acyl lipid A, with 
acyl chain ranging from 12 to 14 carbons in length, 
respectively (Fig.  7.2a, b). In colistin resistant 
strains, the lipid A molecules are pETN-modified-
bis-phosphorylated hepta-acyl lipid A with acyl 
chain of 12 carbons in length (Fig. 7.2) (Arroyo 
et al. 2011; Beceiro et al. 2011; Larrouy-Maumus 
et al. 2016). Heteroresistance to colistin is readily 
observed at high frequency in laboratory studies 
when susceptibility is determined using kinetic or 
population analysis profiling (Charretier et  al. 
2018). However, the importance of colistin hetero-

Fig. 7.2 Structures of lipid A from Acinetobacter baumannii susceptible to polymyxins (a and b) and resistant to 
polymyxins (c)
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resistance to clinical outcome and therapeutic fail-
ure is uncertain (Li et al. 2006) (Table 7.2).

11  Future Treatment 
Perspectives: Combination 
Therapies and Resistance 
Inhibitors

One emergent strategy to tackle XDR and MDR 
strains of A. baumannii is combination therapies, 
this strategy attempts to achieve synergy, improve 
overall efficacy and decrease the probability of 
resistance (Lutsar et al. 2014). Synergistic combi-
nations typically include at least two different 
classes of antibiotic. The use of combination ther-
apy to tackle A. baumannii has been explored 
extensively in vitro and in vivo with mixed results 
(Shin and Park 2017). Unorthodox combinations 

which use the cell permeabiliszing properties of 
colistin have been shown to have very marked syn-
ergistic effects in vitro. These include polymyxins 
in combinations with many hydrophobic and 
Gram-positive agents including glycopeptides 
(Gordon et al. 2010), macrolides, rifampicin and 
fusidic acid (Phee et al. 2015) which have little or 
no activity alone. Focusing on in vivo data, a com-
bination of colistin with a  carbapenem has been 
shown to improve clinical responses and survival 
compared to other therapies such as colistin-tige-
cycline in solid organ transplant patients (Shields 
et al. 2012). However, in CRAB isolates that also 
displayed colistin resistance, the use of a colistin-
meropenem combination therapy was associated 
with a significantly higher mortality compared to 
colistin monotherapy (Dickstein et al. 2019). The 
combination of colistin and rifampicin in the treat-
ment of VAP and bacteraemia has also demon-

Table 7.2 Summary of A. baumannii resistance mechanisms

Resistance 
mechanism Class/Group

Associated protein 
groups Reference

β-lactamases Class A
Class B
Class C
Class D

TEM, GES, PER, 
CTX-M, SCO,VEB, 
SHV, KPC, CARB
IMP, VIM, SIM, NDM
AmpC
OXA

(Fournier and Richet 2006; Nordmann and Naas 
1994; Potron et al. 2015; Tada et al. 2017; Poirel and 
Nordmann 2006)
(Kim et al. 2013; Karthikeyan et al. 2010; Khan 
et al. 2017; Bontron et al. 2016; Lee et al. 2017)
(Corvec et al. 2003; Poirel and Nordmann 2006; 
Hamidian and Hall 2013; Evans and Amyes 2014)
(Karampatakis et al. 2019; Huang et al. 2019; 
Vijayakumar et al. 2016; Hadjadj et al. 2018)

Efflux Pumps RND
MFS
MATE
SMR

AdeABC, AdeFGH, 
AdeIJK
TetAB, CraA, FloR, 
CmlA, AbaF, AedC, 
EmrAB
AbeM
AbeS

(Chitsaz and Brown 2017; Soto 2013; Coyne et al. 
2010a; Damier-Piolle et al. 2008; Marchand et al. 
2004; Wieczorek et al. 2008; Rosenfeld et al. 2012; 
Sugawara and Nikaido 2014; Yoon et al. 2016b)
(Lin et al. 2017b; Coyne et al. 2011; Vilacoba et al. 
2013)
(Lin et al. 2017a; Su et al. 2005)
(Srinivasan et al. 2009; Coyne et al. 2011)

Permeability Porin CarO, OmpAab, 
Omp22-23, 
OMp33- 36, Omp37, 
Omp43-44 and Omp47

(Iyer et al. 2018; Smani et al. 2014; Novović et al. 
2018; Rumbo et al. 2014; Smani et al. 2013)

Alteration of 
antibiotic or 
target sites

PBPs
AMEs
Ribosomal 
protection
DNA 
replication 
enzymes
Lipid A 
modifiers

PBP-2, PBP-6b
AAC, ANT, APH
ArmA, RmtA-F
GyrA, ParC
PmrC, PmrA, PmrB, 
LpxC, LpxD, LpxA

(Cayô et al. 2011; Gehrlein et al. 1991; Fernández- 
Cuenca et al. 2003)
(Nemec et al. 2004; Cho et al. 2009)
(Hasani et al. 2016; Costello et al. 2019; McGann 
et al. 2014)
(Drlica et al. 2008; Zaki et al. 2018; Aldred et al. 
2014)
(Adams et al. 2009; Arroyo et al. 2011; Beceiro et al. 
2011)
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strated improved clinical outcomes (Bassetti et al. 
2008; Aydemir et  al. 2013; Motaouakkil et  al. 
2006). However, neither 30-day mortality nor 
length of hospitalization was reduced by the addi-
tion of rifampicin to colistin despite a decrease in 
pathogen numbers at the primary site of infection 
(Durante- Mangoni et  al. 2013). A randomised 
control trial investigating colistin-meropenem 
combination therapy versus colistin monotherapy 
did not show a significant improvement in sur-
vival, clinical cure, microbiological cure, or devel-
opment of resistance (Paul et  al. 2018). These 
studies are likely impacted by the primary infec-
tion site and the immunological status of the 
patient cohort. They highlight however, that while 
combination therapies can be effective in vitro this 
synergy does always translate to the clinic. They 
also highlight the need to interrogate the effective-
ness of combination therapies in randomised trials 
before clinical use.

11.1  β-Lactam/β-Lactamase 
Inhibitor Combinations (BL/
BLI)

One means to overcome resistance to β-lactams 
is to combine a β-lactam with a β-lactamase 
inhibitor (BLI). Although classified as inhibitors, 
many of these compounds are β-lactams them-
selves (clavulanic acid, tazobactam, sulbactam) 
and therefore, act as suicide substrates, preserv-
ing the activity of the partner drug within the 
combination. Those licensed, and most widely 
used in the United Kingdom, are fixed dose com-
binations of amoxicillin/clavulanate (2:1), ticar-
cillin/clavulanate (15:1), piperacillin/tazobactam 
(4:1), ceftolozane/tazobactam (2:1) and ampicil-
lin/sulbactam (2:1). Non-β-lactam inhibitors 
include diazabicyclooctanes; avibactam, relebac-
tam, zidebactam, nacubactam, durlobactam and 
boronic acid based derivatives such as vaborbac-
tam. These are all in the later stages of develop-
ment as treatments for MDR Gram-negative 
infections yet none provide functional inhibition 
of all clinically relevant classes of β-lactamase 
(Table  7.3). Activity of existing and the novel 
BL/BLI combinations versus A. baumannii are 

compromised by efflux pumps, porin lesions and 
their intrinsic ability to induce the production of 
β-lactamase on a strain by strain basis. Due to a 
heightened affinity for PBP2, sulbactam retains 
some intrinsic activity against MDR A. bauman-
nii. Enhanced activity of sulbactam / cephalospo-
rin combinations has been shown 
in-vitro,  but  usually only at high dosing ratios 
(Lai et  al. 2018) which is compromised by the 
action of OXA-23 (Yang et al. 2019). Sulbactam 
combined with durlobactam is undergoing evalu-
ation as an A. baumannii specific therapy 
(O’Donnell et al. 2019).Other novel attempts to 
improve the efficacy of β-lactams have involved 
the addition of catechol groups to the β-lactam 
ring. This facilitates uptake of the drug by bacte-
rial iron acquisition systems and vast reductions 
in MIC and bacterial killing are observed when 
used in combinations (BAL 30072) (Hornsey 
et  al. 2013). Cefiderocol has broad spectrum 
activity against Gram-negative bacteria and is 
highly active against CRAB including strains that 
produce multiple OXA and metallo-β-lactamases 
(Zhanel et al. 2019).

12  Future Treatment 
Perspectives: Vaccines, 
Bacteriophage 
and Phytochemicals

A wide range of alternative strategies to tackle 
XDR and MDR A. baumannii infections have 
been proposed, such as blue light therapy, aug-

Table 7.3 β-lactam/β-lactamase Inhibitor combinations 
(BL/BLI) (Tehrani and Martin 2018; Karaiskos et  al. 
2019)

BLI/BLI
β-lactamase (Class)
A B C D

Aztreonam/avibactam + + + +/−
Ceftazidime/avibactam + − + +/−
Ceftaroline/avibactam + − + +

Ceftolozane/tazobactam +/− − +

Cefepime/zidebactam + + +
Imipenem/relebactam + − + +/−
Meropenem/vaborbactam + − + +/−
Meropenem/nacubactam + − + –
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mented nanoparticles, probiotics, phytochemi-
cals, phage therapy and vaccines (Zhang et  al. 
2014; Mihu et al. 2010; Chan et al. 2018; Asahara 
et al. 2016). Of these vaccines and phage therapy 
currently, show the most promising clinical 
potential. Vaccines have the potential to confer 
long-term protection while phage therapy has 
shown success in particularly recalcitrant clinical 
cases.

A wide range of different vaccine candidates 
have shown efficacy in mammalian models, these 
include vaccines using antibodies raised to spe-
cific proteins such as the surface autotransporter 
Ata and OmpA (Bentancor et al. 2012), to poly-
saccharides such as beta-(1→6)-Poly-N-acetyl- 
d-glucosamine (PNAG) and K1 (Gening et  al. 
2010; Russo et al. 2008), inactivated whole cell 
vaccines (McConnell and Pachón 2010) and 
outer membrane vesicles based vaccines 
(McConnell et al. 2011). A recent report of a live 
attenuated vaccine that utilizes A. baumannii 
lacking the gene (trxA) encoding thioredoxin was 
shown to be protective against A. baumannii sep-
sis in mouse models of infection (Ainsworth 
et al. 2017). A vaccine based on the hollowed out 
shell of A. baumannii termed a bacterial ghost, 
has also shown high levels of protection in rat 
models (Sheweita et al. 2019). Recent strategies 
have focused on utilizing emerging technologies 
such as reverse vaccinology, protein network 
analysis, immunoproteomics and generating 
multi-epitope vaccines (Mujawar et  al. 2019; 
Ahmad et  al. 2019; Chen 2015; Shahid et  al. 
1946). However, despite the progress made on 
vaccine development for A. baumannii, signifi-
cant scientific and technical challenges remain 
before an A. baumannii vaccine is ready for clini-
cal use. These include deciphering the underlying 
mechanisms of protection, profiling antigen- 
specific antibody responses, understanding tem-
poral protection kinetics and evaluating the level 
of species and sub-species coverage. There is 
also the timing of administration as the cohort 
most at risk of A. baumannii infection are typi-
cally immunocompromised thus the effective-
ness of any vaccine must be determined among 
patients with varying degrees of immune 
function.

Phage are bacteria specific viruses that have a 
lytic life cycle. This life cycle involves the attach-
ment of phage to receptors on the bacterial cell 
surface, the injection of genetic material into the 
cytosol, viral replication and the formation of 
new phage particles. This life cycle culminates in 
the lysis of the bacterial cell typical through the 
production of a phage-encoded endolysin. Prior 
to the emergence of the antibiotic era, phage 
were extensively explored for their therapeutic 
potential with remarkable success seen in clini-
cal trials treating cholera in India (Dherelle 
1929). Interest in phage and phage therapy waned 
with the discovery of penicillin and the subse-
quent golden of antibiotic discovery. However, 
with the emergent antibiotic resistance crisis and 
the frequency with which MDR and XDR iso-
lates are being identified, the exploration of 
phage as potential therapeutics is undergoing a 
renaissance (Kortright et  al. 2019). Numerous 
studies have isolated bacteriophage active against 
MDR and XDR A. baumannii from sewage, 
waste water and clinical waste. The phage are 
primarily from the Myoviridae, Siphoviridae and 
Podoviridae families with many showing prom-
ising activity in animal models (Hua et al. 2018; 
Bagińska et  al. 2019; Wintachai et  al. 2019; 
Leshkasheli et al. 2019; Regeimbal et al. 2016). 
Significantly, however, a number of human case 
reports have shown remarkable success with 
phage cocktails. In one study, a 68-year-old 
patient with necrotizing pancreatitis complicated 
by a MDR A. baumannii infected pseudocyst was 
treated with a bespoke combination of 9 different 
bacteriophages leading to resolution of the infec-
tion and a subsequent return to health (Schooley 
et  al. 2017). A second less successful study 
administered a bespoke 5-phage cocktail to a 
patient with a post- craniotomy associated A. 
baumannii infection. This study highlighted 
some important concerns about the viability of 
phage in the blood as 10  min after administra-
tion, phage were undetectable in the blood. The 
lack of any significant improvement in this 
patient ultimately lead to a withdrawal of care 
(LaVergne et al. 2018). While there is significant 
potential for phage therapy to stem the tide of 
MDR and XDR A. baumannii infections and act 
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as a viable alternative to antibiotics many ques-
tions remain to be addressed before full clinical 
uptake can be considered. These include greater 
insights in the pharmacokinetics and pharmaco-
dynamics of phage, the capacity for resistance 
and the threat that as mentioned previously phage 
can be vectors for antibiotic resistance genes. 
More insights are also required into the capacity 
of phages to disrupt preformed biofilms, as this 
mode of growth is one of the primary phenotypes 
associated with clinical manifestations of A. bau-
mannii infection.

Phytochemicals are also being explored in 
combination with traditional antibiotic therapies 
with some evidence that specific plant extracts 
can potentiate antibiotic activity; however the 
underlying mechanisms of action remains to be 
identified for many of these phytochemicals. 
Recently, the plant-derived antimicrobials 
trans- cinnamaldehyde (TC) and eugenol (EG) 
were shown to increase A. baumannii sensitivity 
to a range of different β-lactams (Karumathil 
et  al. 2018). While extracts from Eucalyptus 
camaldulensis have been shown to increase the 
efficacy of Polymyxin B against MDR A. bau-
mannii (Knezevic et al. 2016). Phytochemicals 
such as coumarin have also been shown to dis-
play antibiofilm activity at levels that are non-
bactericidal. This compound is thought to 
inhibit biofilm formation through the disruption 
of quorum-sensing pathways in a wide range of 
pathogens. As biofilm formation plays a key 
role in antibiotic tolerance, using phytochemi-
cals to disrupt this behaviour may be a viable 
strategy to augment the efficacy of front line 
antibiotic therapies (Shin and Park 2017; 
McCarthy and O’Gara 2015).

As recognised by the WHO, A. baumannii 
represents a significant threat to global health due 
to its intrinsic antimicrobial factors and its capac-
ity to acquire genetic elements capable of confer-
ring resistance. New insights at a molecular level 
are needed to better understand the mechanisms 
through which this pathogen can subvert the host 
immune system and antimicrobial therapy. These 
insights will play a significant role in spearhead-
ing the next wave of targeted anti-A. baumannii 
therapeutics.
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1  Introduction

Leprosy or Hansen’s disease is a chronic granu-
lomatous infection of skin and peripheral nerves 
caused by the unique bacterial pathogen, 
Mycobacterium leprae. Leprosy is an ancient, 
insidious disease characterized by tissue damage 
and demyelinating lesions in the peripheral 
nerves (Graham et  al. 2010; Britton and 
Lockwood 2004). The damage to the peripheral 
nerves results in sensory and motor impairment 
with characteristic deformities and disability. The 
degenerative changes associated with infection of 
the peripheral sensory nerves are crucial events 
for the establishment of the Hansen’s disease 
(Rambukkana 2010). Depending on the individu-

al’s immune response, leprosy can remain a mild 
disease with no apparent physical changes and 
can spontaneously cure in rare cases. M. leprae 
bacilli can proliferate in the body causing exten-
sive peripheral nerve damage, which in turn, can 
result in changes in physical appearance and 
morbidity (White and Franco-Paredes 2015).

Leprosy, although curable, continues to be a 
significant health problem in many parts of the 
world, primarily due to the development of anti-
biotic resistance in the existing multi-drug ther-
apy (Cambau et  al. 2018; Williams and Gills 
2012). Leprosy once existed in Europe and Asia, 
but now disproportionately occurs mainly in 
developing as well as poor countries in tropical 
and warm temperate regions. An effective antimi-
crobial treatment for leprosy, Sulfone, was first 
introduced in 1943, heralding a major clinical 
development of the twentieth century (Faget 
et  al. 1943). Sulfone drugs target the dihydrop-
teroate synthase (DHPS), a key enzyme in the 
folate biosynthesis pathway in bacteria and its 
inability to synthesize folate leads to depletion of 
adenosine, guanosine, and thymidine pools 
(Richey and Brown 1969; Seydel et al. 1980). It 
has been suggested that dapsone, a 4,4-diamino-
diphenylsulfone, may contribute to tuberculoid 
reactions by enhancing lymphocyte responsive-
ness by inhibiting production of suppressor pros-
taglandins (Anderson 1983). As early as the 
1950s, it was observed that lepromatous leprosy 
patients treated with  dapsone for several years, 
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relapsed if treatment was stopped. The resistance 
to dapsone was due to mutation in folp1 gene 
encoding DHPS1, which resulted in decreased 
dapsone binding (Williams et al. 2000). Till 1975, 
dapsone monotherapy remained the only treat-
ment for all forms of leprosy (Gelber and Grosse 
2012). In 1982, multi- drug therapy (MDT) was 
introduced, which overcame problems associated 
with monotherapy and the development of drug 
resistance in case of non-compliance by patients, 
such as interruption in the medication.

MDT involved an effective combination of 
antibiotics (rifampin, clofazimine and dapsone) 
in experimental leprosy infection (World Health 
Organization Study Group 1982; WHO Scientific 
Working Group, 2002). In 1985, there were an 
estimated 12 million people with leprosy world-
wide; a prevalence of 12 per 10,000 had come 
down to 1 per 10,000  by 2002 (World Health 
Organisation 2016). Fifteen endemic countries 
still have a prevalence of more than 1 per 10,000, 
mainly in Asia, Africa, and South America, but 
107 of the 122 countries endemic for leprosy in 
1985 have achieved the elimination target 
(Britton and Lockwood 2004). Between 2005 
and 2015, there was an overall gradual decline 
from 265,661 to 210,758 of leprosy cases. The 
prevalence of leprosy is gradually decreasing in 
many countries; however, rates of new cases 
being detected remain at almost the same level 
globally (World Health Organisation 2016), indi-
cating active transmission. The MDT regimens 
have been very effective, by curing more than 11 
million patients. Many patients complete MDT in 
a year or less. However, there are many experi-
encing long-term physical and societal complica-
tions of the disease, including temporary and 
permanent disability, deformity and social 
stigma.

2  Classification and Clinical 
Features of Leprosy

Leprosy represents a multi-factorial and complex 
disease in which the bacilli modulate the host 
immune response that reflects on the clinical 
presentations.

2.1  Classification Based 
on Clinical Prognosis

Depending on the clinical prognosis, leprosy is 
classified into two types: paucibacillary leprosy 
(PB) and multibacillary leprosy (MB) (Walker 
and Lockwood 2007; Ridley 1974). Based on the 
visual symptoms and the presence or absence of 
bacilli, the World Health Organization (WHO 
1998) recommended that patients containing 1 to 
5 diagnostic skin patches in the absence of bacilli 
in slit-skin smears should be considered pauci-
bacillary; for 1 lesion it is often termed as pauci-
bacillary single lesion leprosy. Those with more 
than 5 skin patches and bacilli visible by micro-
scopic analysis of skin smears were termed as 
multi-bacillary. It occurs due to sudden alteration 
in the immunological response of the host against 
the living or dead bacilli. In the case of pauci-
bacillary leprosy, skin and nerve lesions have 
characteristics of Th1-mediated immune 
response, whereas in multibacillary leprosy, Th2-
type cellular response predominates (Legendre 
et al. 2012).

2.2  Five Group Classification 
System by Ridley and Jopling

Leprosy presents a spectrum of clinical manifes-
tations; at one end, tuberculoid leprosy represents 
the resistant response restricting the growth of 
the mycobacteria while at the other end, leproma-
tous leprosy represents extreme susceptibility to 
bacilli infection. Ridley and Jopling (Ridley and 
Jopling 1966) suggested a five-group classifica-
tion system according to the patient’s immune 
status, highlighting the regions of the poles 
(tuberculoid and lepromatous) and also the inter-
mediate zone between them (Borderline).

The five forms namely, tuberculoid polar form 
(TT), borderline tuberculoid (BT), mid- 
borderline (BB), borderline lepromatous (BL) 
and lepromatous polar leprosy (LL), were 
 classified on the basis of bacteriological, immu-
nological, histopathological and clinical features 
of leprosy (Table 8.1). In the case of TT, the num-
ber of lesions is less but tissue and nerve damage 
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Table 8.1 Overview of Ridley-Jopling classification of leprosy according to host’s immunity (Ridley and Jopling 
1966)

Types Criteria Observations
TT Clinical • Large erythematous plaque showing sharply raised outer edge which 

slopes down toward a flattened center
• Dry, hairless, and sometimes scaly lesion with rough surface
• A gross and irregular thickened peripheral nerve usually palpable in the 
vicinity of a lesion

Histological • Well-developed epithelioid cells foci surrounded by a zone of dense 
lymphocyte infiltration
• Presence or absence of Langhans giant cells
• Granuloma extends up to the epidermis
• Absence of acid-fast bacilli
• Nerve bundles rarely found within the granuloma
• Caseous necrosis is rare (only in granulomas involving nerves)

BT Clinical • Resemble tuberculoid leprosy in its sensory loss and appearance but are 
more numerous
• Hair growth is less affected
• Presence of numerous thickened nerves (not glossy or irregularly 
thickened)

Histological • Focalization of the epithelioid cells by a peripheral zone of lymphocytes
• Langhans giant cells present, sometimes numerous
• Nerve bundles if found are generally swollen and infiltrated
• Acid fast bacilli range from 0 to 2 in the granuloma and 1 to 3 in nerve 
bundles

BB Clinical • Lesions are intermediate in number
• Erythematous plaques found can be of two types- irregular shape with 
oval hypopigmented center or a raised oval or circular band with well 
demarcated outer and inner edges

Histological • Granuloma shows diffusely spread well developed epithelioid cells
• Langhans giant cells absent
• Lymphocytes if present are diffusely spread
• Acid fast bacilli ranges from 3 to 4

BL Clinical • Lesions with superficial impression of lepromatous leprosy with 
irregular distribution over affected regions
• Lesions are not so shiny and succulent in appearance
• Thickened peripheral nerves are seen during the onset of the lesion
• Patients may exhibit macules (flat skin lesions), plaques, papules (raised 
skin lesions) and nodules by the time of reporting

Histological • Granuloma is composed of histiocytic cells with or without foamy 
changes, large globi (bacterial micro-colonies) are absent
• Lymphocytes occupy a whole segment of granuloma or found near at 
the perineural cuffs
• Acid fast bacilli are usually more than 5

LL Clinical • Lesions are multiple, distributed bilaterally and symmetrically and the 
first manifestations are dermal
• Always erythematous irrespective of skin color
• Common appearance of edema on feet and lower legs and skin gets 
shiny and waxy
• Symptoms of a pure neuritic phase do not occur
• Peripheral nerves undergo hyaline degradation or fibrosis in later stages 
leading to anesthesia and muscle wasting in hands and feet

Histological • Granuloma composed of histiocytes showing varying degree of foamy 
changes
• Multinucleate globi are observed
• Lymphocytes few and diffusely arranged
• Nerves do not show cellular infiltration or cuffing
• Acid fast bacilli are usually more than 5
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are frequent, whereas in LL, skin lesions are 
numerous with many viable M. lepare through-
out the skin lesions (Modlin 1994). The TT 
patients may undergo immunological reactions 
resulting in rapid healing, but certainly the most 
severe reactions occur in the middle of the lep-
rosy spectrum, the forms nearer the poles remain 
more stable (Ridley and Radia 1981). The well-
characterized epithelioid granulomatous infil-
trates in polar tuberculoid (TT) lesions gradually 
get disorganized during each increment- border-
line tuberculoid (BT), mid-borderline (BB), and 
borderline lepromatous (BL), until they become 
completely disorganized aggregates of foamy 
(high lipid content) histiocytes, with only occa-
sional lymphocytes in lepromatous (LL) lesions 
(Scollard et al. 2006a, b, c).

The immunopathological reactions within the 
nerves are vital from the prognostic point of view. 
Inflammation within the nerve sheath causes func-
tional impairment and nerve pain (neuritis). 
Sensory motor impairment leads to acute paralysis 
and may progress through fibrosis. The common 
peroneal (lateral popliteal), the ulnar and the facial 
nerves are affected mostly leading to foot drop, 
claw hand and facial palsy, with poor chance of 
recovery (Klenerman 1987). Sweat and sebaceous 
glands are destroyed, resulting in dryness of skin 
and hair follicles destruction leads to loss of hair. 
Leprosy rarely involves the scalp, because it is rea-
sonably warmer than the optimal growth tempera-
ture of M. leprae (Scollard et al. 2006a, b, c).

2.3  Classification Based 
on Leprosy Reactions

The dynamic nature of the immune response to 
M. leprae leads to spontaneous fluctuations in the 
clinical state, which are termed leprosy reactions. 
Two types of acute inflammatory reactions occur: 
Type 1 (Reversal reaction) and Type 2 (Erythema 
Nodosum Leprosum). These reactions may be a 
presenting feature of the disease affecting 30 to 
50% of patients and often appearing during or 
after MDT (Legendre et  al. 2012). Most of the 
deformity and disability in leprosy results from 
these leprosy reactions.

2.3.1  Type 1 Reaction
It is a delayed hypersensitive response (DTH), 
occurring mainly in the borderline groups (BT, 
BB and BL). It may also occur with TT and also 
with pure neural leprosy. Type 1 reaction is a 
state of immunological instability, in which 
immune response alters the clinical manifesta-
tions to shift towards polar states (TT and LL).

Reversal reactions are considered to be DTH 
reactions against M. leprae antigens due to its 
marked lymphocyte response towards the bacil-
lus (Sielin and Modlin 1992). These have histo-
logical characteristics similar to DTH with an 
influx of monocytes and lymphocytes, with early 
disturbance of collagen fibers through edema and 
subsequent giant cell formation (Dugan et  al. 
1985). Patients with type 1 reactions show higher 
T cell reactivity to mycobacterial antigen, and 
thus, have fewer bacilli (Britton 1998). Type 1 
reactions are characterized by a shift to Th 1 type 
immune responses in the host with elevated lev-
els of IFN-γ, TNF-α, IL-12 and iNOS (Little 
et al. 2001). CXCL10 is suggested as a potential 
immunological marker for identifying type 1 
reactions (Oliveira et al. 1999).

In type 1 reaction, edema and painful inflam-
mation are due to infiltration of CD4+ lympho-
cytes with high levels of IFN-γ, IL-12 and 
TNF-α in skin lesions and nerves (Little et  al. 
2001; Khanolkar-Young et al. 1995). Increased 
intraneural pressure resulting from edema and 
increased cellular infiltration leads to neural 
pains. In addition, patients may present with 
edema of hands and feet, sensory or motor nerve 
impairment, leading to permanent disability 
(Walker and Lockwood 2007; van Brakel et al. 
2005). Skin lesions become larger, more erythe-
matosus and may ulcerate. The presence of der-
mal edema, plasma cells and giant cells in 
biopsy specimen is a good indicator of type 1 
reaction (Britton and Lockwood 2004). This 
type of reaction typically establishes within the 
first 6 months after the start of MDT, although 
in some cases, they can happen at any stage of 
the disease (Graham et al. 2010; Franco-Paredes 
et al. 2009; Kumar et al. 2004). As type 1 reac-
tion subsides, there is a reduction in edema 
(Massone et al. 2015).
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2.3.2  Type 2 Reaction
It is also called Erythema Nodosum Leprosum 
(ENL). ENL occurs only in BL and LL. Type 2 
reactions are distinguished clinically by fever, 
malaise and rapid appearance of new subcuta-
neous nodules that are erythromatosus and 
quite painful (Britton 2010). These reactions 
exhibit infiltration of polymorphonuclear cells 
accompanied by vasculitis and/or inflamma-
tion of subcutaneous layer of fatty tissue (pan-
niculitis) (Scollard et al. 2006a, b, c; Kahawita 
and Lockwood 2008). Fragmented bacilli 
within macrophages, neutrophils and lympho-
cytes may be apparent in an ENL reaction. Lee 
et al. showed enhanced expression of E-selectin 
and IL-1β through microarray, leading to neu-
trophil recruitment in ENL and its adhesion to 
endothelial cells (Lee et al. 2010).

Type 2 reactions tend to be more complicated 
to treat because of its systemic nature and recur-
rent episodes (Pocaterra et al. 2006; Kumar et al. 
2004). During the course of treatment, large num-
bers of leprosy bacilli are killed. The released anti-
gens combine with the existing antibodies in the 
tissues and blood, forming immune complexes, 
activate the complement system, resulting in 
immune complex mediated type-III hypersensitiv-
ity reaction. The deposition of extravascular 
immune complexes leads to neutrophil infiltration 
and activation of complement in many locations 
such as eyes, testes, lymph nodes, kidney, liver, 
nerve, endocardium and joints (Lockwood 1996). 
This further can lead to polyarthritis, iridocyclitis 
(inflammation of iris), orchitis (inflammation of 
testicle), lymphadentitis (inflammation of lymph 
node) and glomerulonephritis (Britton 2010).

3  Pathogenesis

3.1  Cellular Morphology 
and Genome of  M. leprae

M. leprae was discovered by G.H.  Armauer 
Hansen in Norway in 1873, making it the first 
bacterium to be identified as causing disease in 
humans (Hansen 1874; Irgens 2002; Bhat and 
Prakash 2012). It is a non-motile, non-spore 

forming microaerophilic, acid-fast-staining rod- 
shaped bacterium. The cell wall of M. leprae has 
covalently linked peptidoglycan- arabinogalactan- 
mycolic acid complex similar to other mycobac-
terial cell walls (Daffe et al. 1993; Draper et al. 
1987; Vissa and Brennan 2001).

M. leprae bacilli are slow growing obligate 
intracellular organisms trophic for macrophages, 
dendritic cells (DC) and Schwann cells in periph-
eral nerves. The bacilli show preference of 
growth in colder regions of the body. M. leprae 
has an evolutionarily minimized genome that 
constrains its growth to the intracellular niche. 
The genome size of M. leprae is 3,268,203 bp; a 
total of 2770 genes compared to M tuberculosis, 
which has a genome size of 4411,532 bp. Leprosy 
bacilli has undergone extensive reductive evolu-
tion, resulting in the functional loss of approxi-
mately half of its genes, leaving 1614 (revised 
number from http://genolist.pasteur.fr/Leproma/) 
genes encoding proteins (M tuberculosis has 
3993 genes encoding proteins) and 50 genes for 
stable RNA molecules (Cole et  al. 2001). The 
remaining M. leprae genes help to define the 
minimal genes necessary for its survival, infec-
tion and pathogenesis. For instance, the genes 
essential for the formation of a mycobacterial 
cell wall, including peptidoglycan biosynthesis 
and targets for ß-lactam drugs (Mahapatra et al. 
2000), have been retained but the genes involved 
in catabolism are removed (Brennam and Vissa 
2001). Downsizing of the genome has resulted in 
the elimination of several metabolic pathways, 
leaving this pathogen with very specific growth 
requirements. This could possibly explain its 
long generation time and inability to grow in cul-
ture. M. leprae can survive up to 8 months within 
cysts of common environmental free-living 
amoeba (Acanthamoeba sp.) These protozoa 
likely provide an intracellular refuge for M. 
leprae in the environment for which they would 
otherwise seem ill suited (William et al. 2014).

A notable feature of M. leprae genome is an 
exceptionally large number of pseudogenes, 
about 1133 compared to M. tuberculosis, which 
has 6 pseudogenes (Cole 1998). These pseudo-
genes in M. leprae are highly expressed as RNA 
and their expression levels seem to change fol-
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lowing macrophage infection. Suzuki and co-
workers (Suzuki et  al. 2006) have identified 12 
highly expressed gene regions in M. leprae show-
ing alteration in expression levels upon infection, 
and among them, 6 were pseudogenes. Three of 
these pseudogenes were oxidoreductase, which 
are essential for generating energy needed for 
metabolic processes. The M. leprae genome 
includes several novel open reading frames, not 
present in M tuberculosis (Cole et  al. 2001). 
These proteins restricted to M. leprae might pro-
vide the basis for specific skin tests and other 
diagnostic assays to detect infection (Dockrell 
et al. 2000; Brennan 2000).

3.2  Incubation Period 
and Susceptibility

The incubation period between infection and 
overt disease varies widely from months to 
30 years, and the mean is estimated to be 4 years 
for tuberculoid and 10 years for lepromatous lep-
rosy (Noordeen 1994). This makes epidemiologi-
cal assessments of incidence and mechanism of 
transmission difficult. Leprosy shows a male pre-
dominance after the age of puberty, with a male 
to female ratio of 1.5–2.0 to 1 (Peters and Eshiet 
2002). As leprosy prevalence falls in a commu-
nity, the relative importance of household trans-
mission increases; however, it is difficult to 
measure the rate of infection with M. leprae in a 
community.

It has been found that most people are not 
genetically susceptible to the disease. Variation 
among population groups exists that may be 
related to both genetic factors and ancestral expo-
sure to the bacillus. Studies involving HLAs and 
proteins encoded by MHC-linked genes have 
revealed an association of MHC Class II: 
HLA-DR3  with tuberculoid leprosy, and of 
HLA-DQ1  with lepromatous leprosy (Abulafia 
and Vignale 1999). However, most of the clinical 
phenotypes may be due to genetic variability 
determined by different biological pathways 
modulated by M. leprae, reprogramming of adult 
Schwann cells, and interaction of innate and 
adaptive immunity (Polycarpou et  al. 2013; 

Masaki et al. 2013). The presence of the Parkin 
gene (PARK2)/Parkin co- regulated gene 
(PACRG), located on chromosome 6q25-q27, 
and the presence of the NRAMP1 (Natural-
resistance-associated macrophage protein 1) 
gene on chromosome 2q35 are associated with 
susceptibility to leprosy (Scollard et al. 2006a, b, 
c). Single nucleotide polymorphism- association 
studies showed a low lymphotoxin-α (LTA) allele 
as a major risk factor for early onset of leprosy 
(Alter et  al. 2008). Transporter associated with 
antigen processing gene; TAP1 and TAP2, TNF-α 
and the Vitamin D receptor gene (VDR) have 
also been found to be associated with susceptibil-
ity to the disease (Rajalingam et  al. 1997; 
Dennehy et  al. 2008; Shaw et  al. 2001; Misch 
et al. 2008; Zhang et al. 2009).

Innate immunity plays an important role in 
determining susceptibility to leprosy and its 
states (Type-1 and Type-2). Genetic variability 
associated with Toll-like receptors (TLRs) plays 
a vital role in a dysregulated inflammatory 
response. A TLR1 polymorphism, T1805G, 
encodes a non-synonymous SNP in the trans-
membrane domain of TLR1 that regulates signal-
ing in response to Pam3Cysk4, a synthetic ligand 
of TLR1 (Hawn et al. 2007; Tapping et al. 2007; 
Wurfel et al. 2008). Polymorphism in TLRs and 
the extreme variability of its frequency among 
different populations worldwide suggests its 
impacts on susceptibility to leprosy. At the same 
time, 1805G SNP has been found to be signifi-
cantly associated with protection against type 1 
reactions (Barreiro et  al. 2009; Dennehy et  al. 
2008; Polycarpou et  al. 2013). A genome wide 
 association study conducted on 706 patients and 
1225 controls in China, has identified 6 genes to 
be associated with leprosy: CCDC122, C13orf31, 
NOD2, TNFSF15, HLA-DR and RIPK2 (Zhang 
et al. 2009).

3.3  M. laprae Transmission 
and Interaction with the Host

Humans are the primary reservoirs of M. leprae. 
Besides man, only wild nine banded armadillos 
(Dasypus novemcintus) are known to be natural 

H. Yasmin et al.



161

host of M. leprae (Rojas-Espinosa and Løvik 
2001; Scollard 2016). Several cases of suspected 
zoonotic transmission from armadillos to human 
have been reported. M. leprae can replicate in the 
mouse footpad (Shepard 1960a, b) and the nine-
banded armadillo (Rambukkana et  al. 1997) 
which have provided opportunity to study the 
pathogenesis.

The principal mode of transmission of M. lep-
rae is probably by aerosol spread of nasal secre-
tions and uptake through nasal or respiratory 
mucosa. Nasal secretions collected through 
blowing the nose can show up to 10 million via-
ble organisms per day in majority of the patients 
(Pedley 1973; Davey and Rees 1974). The skin 
and the upper respiratory tract are most likely the 
route of entry; however, recent research increas-
ingly favors the respiratory route (Rees and 
McDougall 1977; Chehl et  al. 1985). Two exit 
routes of M. leprae are the skin and nasal mucosa. 
Large numbers of M. leprae were found in the 
superficial keratin layer of the skin of leproma-
tous leprosy patients, suggesting the exit along 
with sebaceous secretions (Job et al. 1999).

M. leprae shows prominent tropism for 
Schwann cells of the peripheral nervous system 
(PNS) and uses the regeneration properties of the 
PNS for expansion of bacterial niche within 
Schwann cells (Rambukkana 2010; Rambukkana 
et al. 2002; Tapinos et al. 2006).The cell wall of 
M. leprae is similar to that of most Mycobacterium 
species. Phenol glycolipid-1 (PGL-1) is the domi-
nant lipid in the cell wall which gives immuno-
logical specificity to M. leprae that binds on the 
Schwann cells. As shown in Fig. 8.1, the uptake of 
M. leprae into Schwann cells occurs when the 
PGL-laminin-2 complex interacts with α–dystro-
glycan (α-DG), the laminin-2 receptor located on 
the Schwann cell membrane (Ng et  al. 2000). 
α-DG is a component of the DG complex 
involved in the pathogenesis of muscular dystro-
phy. M. leprae specifically binds to α-DG in the 
presence of the G domain of the α2 chain of lam-
inin-2 (Rambukkana et al. 1997; Rambukkana et 
al. 1998). PGL-1 present in the M. leprae cell wall 
interacts with the α2 chain of laminin- 2 (LAMA2) 
and α-dystroglycan on the Schwann cell mem-
brane (Misch et al. 2010). M. leprae also makes 

intracellular entry into the Schwann cell through 
laminin binding protein 21 (LBP21), one of its 
major surface antigen.

α-DG and LAMA2 interact with PGL-1 and 
LBP21 of M. leprae. These interactions mediate 
intracellular entry of M. leprae into the Schwann 
cell.

The interaction between M. leprae and the 
host cell is mediated by pattern recognition 
receptors (PRRs) that detect pathogen-associ-
ated molecular patterns (PAMPs). Toll-like 
receptors (TLRs) are primarily expressed on 
macrophages and DCs and recognize PAMPs. 
TLR2 forms a heterodimer with TLR1 to medi-
ate the recognition of several bacterial motifs. 
M. leprae predominately activates TLR2/1 het-
erodimer (Bochud et  al. 2003; Krutzik et  al. 
2003). Several other signaling receptors are also 
involved in M. leprae recognition, such as 
TLR4, TLR6, TLR8, TLR9, NOD2, DC-SIGN 
(CD90), Dectin-1 and Mincle (Misch et  al. 

Fig. 8.1 Cellular and molecular interaction of Schwann 
cell with M. laprae 
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2010). A 19-kDa protein of M. leprae, which is 
recognized by the TLR2/1 heterodimer, elicits a 
strong pro- inflammatory cytokine response 
(Krutzik et  al. 2003) and induces apoptosis in 
Schwann cells (Oliveira et al. 2003). Proteasome 
function has been found to play an important 
role in this apoptosis; treating M. leprae stimu-
lated peripheral blood mononuclear cells 
(PBMC) with the proteasome inhibitor MG132 
revealed modulation of ubiquitin-protease path-
way. (Fulco et al. 2007). M. leprae induced cell 
death is also characterized by an increased 
expression of the pro- apoptotic factors Bax-α 
and Bak, which are dependent on TNF-α bio-
synthesis (Hershko and Ciechanover 1998).

DCs are very effective presenters of M. leprae 
antigens (Maeda et  al. 2003; Marlowe et  al. 
2004). DC-specific ICAM-3 grabbing non-
myeloid integrin (DC-SIGN) is a C-type lectin 
expressed by immature myeloid DCs and has 
been associated with Th2 response (Soilleux 
et  al. 2002). A more prominent expression of 
DC-SIGN-positive cells was noted in LL lesions 
and CD1b+ cells in tuberculoid leprosy (Krutzik 
et al. 2005). It has also been proposed that viru-
lent mycobacteria may downregulate DC func-
tion by suppressing DC maturation via DC-SIGN, 
possibly through the inhibition of IL-12 produc-
tion (Nigou et al. 2001) and induction of IL-10 
(Geijtenbeek et al. 2003).

Neutrophils are commonly found in ENL or 
type 2 reactions and may contribute to the major-
ity of TNF production that is associated with tis-
sue damage in leprosy. Microarray analysis has 
demonstrated that the mechanism of neutrophil 
recruitment in ENL involves the enhanced 
expression of E-selectin and IL-1β, leading to 
neutrophil adhesion to endothelial cells (Lee 
et al. 2010).

4  Host Immune Response to M. 
leprae

Immune response to M. leprae operates at two 
levels. First is the manifestation of innate immune 
resistance mediated by cells of the monocyte lin-
eage. If innate immune resistance is insufficient 

and infection becomes established, genetic influ-
ence operates at the second level, i.e. the degree 
of specific cellular immunity and delayed type 
hypersensitivity generated by the infected indi-
viduals (Scollard et al. 2006a, b, c).

Once M. leprae invades the body, it migrates 
towards the neural tissue and enters Schwann 
cells. Invading M. leprae has three main targets: 
Schwann cells, small endothelial vessels and 
monocyte-macrophage system. The mycobacte-
rium takes 12–14 days to divide into two within 
the cells. Once the bacilli reach the interstitium 
of the fascicle, it may be ingested by the resident 
macrophages or they may get attached to the 
basal lamina of Schwann cells.

Schwann cells synthesize myelin sheath 
around axons and provide external milieu 
needed for neuronal survival (Pereira et  al. 
2012). Terminally differentiated Schwann cells 
show plasticity in switching off the myelin 
program and attain a dedifferentiated state 
(Chen et  al. 2007; Jessen and Mirsky 2008), 
contributing to a remarkable regenerative capa-
bility of peripheral nerves following injury 
(Fancy et  al. 2011). M. leprae causes demye-
lination to establish the infection and subse-
quently reprograms them to attain 
dedifferentitation stage. As PNS blood-brain 
barrier protects M. leprae from host immune 
attack, Schwann cells also serve as a safe niche 
(Job 1989, Stoner 1979, Masaki et al. 2013).

M. leprae induced demyelination is a result of 
direct bacterial ligation to neuregulin receptor, 
ErbB2 and Erk 1/2 activation and subsequent MAP 
kinase signaling and proliferation. MEK- dependent 
Erk1 and Erk2 signaling is a downstream target of 
M. leprae induced ErbB2 activation and mediates 
demyelination (Tapinos et al. 2006). Matrix metal-
loproteinases (MMPs) mediating demyelination 
and breakdown of the blood brain barrier in periph-
eral neuropathies are also upregulated in leprosy 
(Teles et al. 2007; Oliveira et al. 2010). M. leprae 
induced upregulation of MMP-2 and MMP-9  in 
cultured Schwann cell line, derived from a malig-
nant peripheral nerve sheath tumor, ST88-14, has 
also been found to induce NK-κB-dependent pro-
duction of TNF-α (Pereira et al. 2005).
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Soon after demyelination, M. leprae repro-
grams Schwann cells to dedifferentiate into stem 
cell-like stage to spread infection, creating a suit-
able environment for the mycobacterium to pro-
liferate (Rambukkana 2010). This reprogramming 
allows redifferentiation into mesenchymal cells 
with the ability to spread infection or attracting 
macrophages and lymphocytes forming a granu-
loma (Polycarpou et  al. 2013; Masaki et  al. 
2013). Masaki and collaborators have suggested 
the role of chemokines, CCL2, CCL7, CXCL10 
and receptor tyrosine kinase protein, KIT 1,  in 
this reprogramming (Masaki et  al. 2014). As 
Schwann cells do not have lysosomal enzymes 
capable of degrading the mycobacterium, bacilli 
may survive for a long time. The presence of M. 
leprae in the endoneural macrophages and the 
rupture of Schwann cells due to excessive bacte-
rial load triggers a perineural inflammatory 
response, liberating the bacilli to infect other 
cells.

CD4+ and CD8+ T cells play a crucial role in 
orchestrating the adaptive immune response in 
leprosy, so do CD1-restricted T cells and γδ T 
cells (Modlin et  al. 1988; Sieling et  al. 1999; 
Modlin et al. 1989a, b). It has been observed that 
macrophages remain inactivated if M. leprae spe-
cific T cell immune response is not being gener-
ated. Thus, the growth of the bacilli proceeds 
indefinitely in lepromatous leprosy (Hagge et al. 
2004). In paucibacillary leprosy, CD4+ T, cyto-
toxic CD8+ T or NK cells destroy the infected and 
incapacitated macrophages or Schwann cells, 
and release the intracellular bacilli (Chiplunkar 
et  al. 1986; Kaleab et  al. 1990; Spierings et  al. 
2001; Gu and Krahenbuhl 1995; Kimura et al. 
2004). Upon killing of infected macrophages by 
CTLs, the bacilli get released into the extracellu-
lar space where they get phagocytosed again by 
activated macrophages providing them a fresh 
habitat (Kaufmann 1988). Lysis of target cells by 
CD8+ CTLs involves perforin and cytotoxic gran-
ules such as granzyme B. Granulysin, a defensive 
antimicrobial protein used by CTLs is found to 
be over- expressed in leprosy (Ochoa et al. 2001). 
There is also evidence to suggest that M. leprae-
specific CTLs, generated at the tuberculoid end 
of the spectrum, lyse M. leprae-infected macro-

phages and Schwann cells (Chiplunkar et  al. 
1986: Kaleab et al. 1990; Spierings et al. 2001). 
Interstitial macrophages may also cause mechan-
ical injury (Abulafia and Vignale 1999).

In the absence of an effective adaptive immune 
response, over 100 bacilli can multiply within 
one macrophage (Hagge et al. 2004). In case of 
resting macrophages, phagosome-lysosome 
fusion is blocked by live M. leprae; in activated 
macrophages, phagosomes harboring M. leprae 
get fused with secondary lysosomes (Sibley et al. 
1987). Monocyte derived macrophages induce 
phagocytosis of M. leprae via complement recep-
tors CR1 (CD35), CR3 (CD11b/CD18) and CR4 
(CD11c/CD18), regulated by protein kinase 
(Prabhakaran et  al. 2000). M. leprae is well 
equipped to handle anti-microbial reactive oxy-
gen intermediates generated by the host macro-
phages, possibly due to downregulation of 
superoxide generation by PGL-1 (Chan et  al. 
1989), possessing superoxide dismutase 
(Thangaraj et al. 1990) and expressing SodC and 
SodA (Williams et al. 2004).

Downregulation of macrophage function 
seems to be a characteristic pathogenic mecha-
nism induced by the mycobacteria. In leprosy, 
both TNF-α and IFN-γ have been shown to bind 
to the cellular receptors of macrophages, thereby 
changing the behavior of M0 macrophages, 
which undergo phenotypic modification to 
become M1 pro-inflammatory macrophages (de 
Sousa et al. 2017). The fate of macrophage acti-
vation, be it pro-inflammatory (M1) or anti-
inflammatory (M2), influences the type of T cell 
activation and differentiation (Mills 2012). M1 
macrophages induce killing of M. leprae through 
nitric oxide release and promote Th1 immunity 
(Verreck et al. 2004), while IL-10 producing M2 
macrophages contribute to immunosuppressive 
response in lepromatous leprosy lesions 
(Montoya et  al. 2009; Mège et  al. 2011). 
Polarization towards the regulatory M2 pheno-
type in live M. leprae infected macrophages is 
preferentially primed by Treg cells, which down-
regulate Th1 and CTL immune responses (Yang 
et al. 2016). M2 macrophages express the scav-
enger receptor, CD163, which may contribute to 
entry of the bacillus, thus playing an important 
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role in the immunopathology of the lepromatous 
form of the disease (Sousa et  al. 2016; Moura 
et al. 2012). It is clear that macrophages play a 
pivotal role in the induction of various pro-
inflammatory modulators and activation of spe-
cific lymphocyte subpopulations that influence 
the fate of the disease pathogenesis.

As mentioned earlier, the incubation period, or 
the lag phase, before the manifestation of specific 
immunity may be quite prolonged, probably years, 
following initial exposure in case of leprosy. 
During this time, innate immunity is presumably 
active and gradually establishes an immune 
response that determines a subsequent path into 
clinical leprosy. One of the hallmarks of clinical 
leprosy is the formation of granuloma, on the basis 
of which histopathological discrimination between 
tuberculoid and lepromatous leprosy is based.

4.1  Microenvironment 
of the Granuloma

A granuloma consists of macrophages turned 
epithelioid cells that are accumulated in small, 
nodular entities surrounded by varying numbers 
of lymphocytes and multinucleated giant cells, 
usually of the Langhans type.

In case of leprosy, immunopathological spec-
trum encompasses classical epithelioid cell gran-
uloma formation in tuberculoid leprosy and no 
organized granuloma and epithelioid cells in lep-
romatous leprosy, with a broad, interconnecting 
spectrum of intermixed inflammatory manifesta-
tions in intermediate (borderline) disease 
(Skinsnes 1970).

In case of Type1 reactions, ganuloma is 
observed in superficial dermis with appearance 
of giant cells, epidermal erosion with spongiosis 
and fibroplasias in the dermis (Massone et  al. 
2015). Epithelioid cells fuse to form giant cells 
characterized by large mass of cytoplasm with 
several nuclei, 20 or more (Chattopadhyay 1994; 
James 2000). These giant cells can be formed by 
cell fusion and nuclear division without cytoplas-
mic separation (Macfarlane et  al. 2000). 
Macrophages also get converted into epithelioid 
and multinucleated giant cells (MGC) by cell–

cell fusion induced by different cytokines, such 
as IFN-γ, IL-1, IL-3, IL-4, IL-6, and GM-CSF 
(Hernandez-Pando et al. 2000).

Type 2 reactions or ENL appear as two dis-
tinct types histopathologically: Pink node type or 
Classic ENL (mild form) and Necrotizing ENL 
(severe form) (Job 1994; Soler & Bernaudin 
1993). In Pink node type, as reported by Ridley, 
the infiltrate is centered around small granulomas 
in the subcutis with clusters of neutrophils around 
foamy macrophages. Plasma cells, mast cells and 
eosinophils are also present. Necrotizing ENL 
shows neutropilic infiltrate, hemorrhages, and 
thrombi and may produce degeneration of colla-
gen with necrosis of both dermis and epidermis, 
even leading to dermal fibrosis. This rare, but 
potentially life-threatening reaction to M. leprae, 
is also known as Lucio’s phenomenon (Ang et al. 
2003), characterized by necrotizing vasculitis 
with diffuse infiltration of Virchow cells (Chan & 
Smoller 2016).

4.2  Tuberculoid Granuloma

As seen in Fig. 8.2, the tuberculoid form is char-
acterized by a well- demarcated granuloma, infil-
trated by CD4+ T lymphocytes (Yamamura et al. 
1992), containing epitheloid and multinucleated 
giant cells and with a small number of bacilli or 
without bacilli. The decrease in bacillary load is 
associated with a Th1 response where TNF-α and 
IFN-γ activate macrophages and induce the pro-
duction of iNOS that destroys the bacillus due to 
the release of free radicals (De Sousa et al. 2017; 
Sibley & Krahenbuhl 1987). Active macrophages 
continue bacterial killing until epithelioid and 
Langerhans cells develop. The cytoplasm of the 
epithelioid cells shows normal lysosomes and 
numerous swollen, degenerated mitochondria, 
some of them partially phagocytosed (autopha-
gosomes) (Abulafia and Vignale 1999).

Tuberculoid leprosy shows vigorous cellular 
immune response to M. leprae, which limits the 
disease to a few well-defined skin patches or 
nerve trunks (Britton 2004). CD4+ T cells are in 
abundance and remain scattered inside the granu-
loma in the form of a ring. The presence of mem-
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ory CD4+ T cells as well as macrophages in the 
granuloma shows an active immune interaction, 
leading to M. leprae killing (Narayanan et  al. 
1983; Modlin et al. 1982). In tuberculoid leprosy, 
IL-2 and IFN-γ production is evident; antibody 
responses to M. leprae are absent or weak.

4.3  Lepromatous Granuloma

In the lepromatous leprosy (Fig. 8.3), there is no 
characteristic granuloma but only unstructured 
accumulation of ineffective macrophages con-
taining engulfed pathogens and degradation 
debris. Lepromatous leprosy (ENL; subcutane-
ous nodules), is characterized by Th2 cytokine 
profile with poorly developed cell-mediated 
immune response. It is an acute inflammatory 
condition with high TNF-α levels. CD8+ T cell 
population is higher than CD4+ T (mostly naïve T 
subset) (Modlin et al. 1989a, b). It has also been 
noted that the CD4+/CD8+ T cell ratio in the 
lesions are independent of those found in the 
blood of patients, indicating selective migration, 
proliferation and homing of these cells in the 
granuloma (Modlin et al. 1986).

The pathological form of LL skin lesions are 
characterized by a high number of foamy macro-
phages containing a very large number of bacilli, 

and disorganized lymphocyte infiltration (Kumar 
et al. 1989). Skin biopsies of polar lepromatous 
patients reveal sheets of foamy macrophages in 
the dermis containing a large number of bacilli 
and microcolonies called globi. Infiltration of 
neutrophils, plasma cells and deposition of anti-
gen-antibody complexes are also observed 
(Abulafia and Vignale 1999).

During leprosy infection, lipid homeostasis 
plays a vital role in host–pathogen interaction 
(Wenk 2006; van der Meer-Janssen et al. 2010), 
as evident from the heavily infected macrophages 
with a typically ‘foamy’ appearance (also referred 
to as Virchow cells) in LL dermal lesions 
(Virchow 1863; Scollard et  al. 2006a, b, c). M. 
leprae are found to reside and replicate within 
enlarged, lipid-filled phagosomes (Chatterjee 
et al. 1959), suggesting an important lipid metab-
olism alteration during infection. Initially, these 
lipids were believed to be derived from mycobac-
terium (Sakurai and Skinsnes 1970; Kaplan et al. 
1983; Brennan 1984) but recent reports indicated 
it to be host-derived (Cruz et  al. 2008.; Mattos 
et al. 2010).

Foamy macrophages found in dermal lesions 
are highly positive for adipose 
 differentiation- related protein (ADRP), a classi-
cal lipid droplet (LD) marker, indicating accu-
mulation of LDs contributing to their foamy 

Fig. 8.2 Tuberculoid Granuloma is characterized by a Th1 cell immune response. CD4+T cells predominates and are 
located centrally along with the giant cells (Langhans cells) and epithelioid cells. CD8+T cells are very few in number 
and are located at the periphery of the granuloma. Mycobacterium is not found inside the granuloma due to active CMI 
response
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nature (Tanigawa et  al. 2008; Mattos et  al. 
2010). M. leprae has been shown to suppress 
lipid degradation through inhibition of hormone 
sensitive lipase (HSL) expression (Tanigawa 
et  al. 2012). Foamy degeneration of the LL 
nerves is also related to LD biogenesis induced 
by M. leprae infection and this process plays a 
central role in bacterial survival (Mattos et  al. 
2011). Similar to M. leprae, Mycobacterium 
bovis and M. tuberculosis also mediate foamy 
cell formation and depend on host lipid acquisi-
tion for survival and successful infection 
(D’Avila et al. 2006; Pandey and Sassetti 2008; 
Kim et al. 2010). Cholesterol is one of the host 
lipid molecules that accumulate in M. leprae-
infected macrophages by stimulating the de 
novo Cholesterol synthesis pathway (Mattos 
et  al. 2014). Besides increasing endogenous 
Cholesterol synthesis, ML relies on another 

mechanism to induce intracellular Cholesterol 
accumulation by increasing the uptake of exog-
enous sources of Cholesterol via upregulation of 
LDL receptors.

4.4  Role of Cytokines in Th1/Th2 
Paradigm

The Th1/Th2 paradigm, based on functional dis-
crimination of T-helper cells according to their 
pattern of cytokine production, asserts that Th1 
and Th2 cells promote a cellular and humoral 
immune response, respectively (Mosmann et al. 
1986). This functional differentiation has offered 
an attractive hypothesis to explain the differences 
between tuberculoid and lepromatous response to 
M. leprae (Scollard et al. 2006a, b, c). Therefore, 
it appears that the nature of the host immune 

Fig. 8.3 Lepromatous Leprosy Lesion (Erythema nodosum leprosum) is characterized by a Th2 -cell immune response. 
Lymphocytes are diffusely spread throughout the lesion predominated by CD8+T cells, located centrally. The lesion 
shows large proportion of histiocytes with varying degree of fatty change producing foam cells. Infiltration of macro-
phages, neutrophils, CD4+T cells, plasma cells and deposition of antigen-antibody complexes (immune complex) are 
also observed within the non-definite granuloma formation. Large amount of antibody formation occurs which is usu-
ally non-protective. M. leprae seemed to be thriving well inside the lesion leading to its intense growth inside the foamy 
macrophages. Presence of large number of CD8+T cells inside the lesion indicates generation of a suppressive function, 
where CMI has been compromised
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responses dictate the clinical outcome of M. lep-
rae infections (Yang et al. 2016).

In leprosy, Th0 lymphocyte differentiates to 
Th1and Th2, and the main cytokines involved in 
the process are IL-2, IL-12 (Th1), and IL-4 (Th2). 
Th1 cells often express CCR5 and CXCR3 che-
mokine receptors, whereas Th2 lymphocytes 
express CCR4, CCR8, and CCR3 to a lesser 
extent (Zhou et al. 2003; Quaresma et al. 2012). 
Th1 response is marked by IFN-γ and IL-2 pro-
duction, which activates macrophages in killing 
intracellular pathogens (Mosmann and Coffman 
1989). IL-12 and IL-18 promote resistance to 
M.  leprae and are highly expressed in tubercu-
loid leprosy (Garcia et al. 1999; Mosmann et al. 
1986; Sieling and Modlin 1994). Conversely, a 
Th2 response is characterized by the production 
of IL-4, IL-5 and IL-13 which helps in antibody 
production and consequently downregulates the  
Th1 response (Mosmann and Coffman 1989). A 
large number of IL-2, IFN-γ, TNF-α, LT and 
GM-CSF producing T cells were documented 
using in-situ hybridization in case of tuberculoid 
leprosy (Arnoldi et  al. 1990; Modlin et  al. 
1986c). In lepromatous form, anti-inflammatory 
cytokines such as IL-4, IL-10 and IL-13 and 
growth factors such as TGF-β and FGF-β con-
tribute to the development of immunosuppres-
sive mechanism and tissue repair (Sousa et  al. 
2016; Fachin et  al. 2017; Mège et  al. 2011; 
Oliveira Fulco et al. 2014).

5  Animal Models in Leprosy

One of the major hurdles in leprosy research is 
the lack of suitable animal models. This hindered 
the development of our understanding and treat-
ment of the disease for almost a century. Initial 
attempts to identify suitable animals included, 
but were not limited to rabbits, saltwater fishes 
rainbow perch, goldfish, turtles, pigs, cats, tad-
poles, guinea chipmunks, dogs, parrots, pigeons, 
frogs, chickens, toads, snakes (including rattle-
snakes), gerbils, lovebirds, black mice, white 
mice, rats, paddy birds, albino hamsters, golden 
hamsters, canaries, eels and non- human primates 
(Johnstone 1987). In addition to the natural 

resistance against M. leprae seen in most animals, a 
major issue was the poor quality of M. leprae 
inoculum. This was because most of the isolated 
bacilli were from fresh or frozen homogenates of 
nodules and lesions from untreated human lepro-
mas (Scollard et al. 2006a, b, c). In 1956, Binford 
postulated that M. leprae preferred less warmer 
anatomic sites for growth (Binford 1956). This 
revelation, combined with the knowledge of the 
prolonged growth cycle of the bacteria, allowed 
the development of the Shepard mouse footpad 
(~32 °C) model in 1960 (Shepard 1960a, b), and 
the subsequent nine-banded armadillo model 
(32–35 °C) (Kirchheimer and Storrs 1971).

Leprosy research also was severely affected 
by the bacilli inability to grow via in vitro and in 
vivo models. A major breakthrough in leprosy 
research came in with the ability to cultivate M. 
leprae using the footpads of immunocompetent 
white mice (Shepard 1960a, b). An inoculation of 
5000–50,000 bacteria into the plantar space of 
the hind footpad yielded up to 1 × 106 bacteria/
footpad in 6 months (Rees 1988). It was found 
that certain strains of mice like BALB/c, CBA 
and CFW produced a higher level of infection. 
This enabled study into the immunological 
mechanisms involved in the infection. It also 
allowed for the screening of anti-leprosy drugs 
and identification of drug resistant strains of M. 
leprae. Host pathogen studies revealed that T 
lymphocytes played a crucial role in host resis-
tance (Colston and Hilson 1976; Katoch 1999; 
Rees et al. 1967). This led to the development of 
the athymic nu/nu mice model, which produced 
1  ×  1010 or more bacilli per footpad. This was 
considered a major milestone in leprosy research 
as it allowed the cultivation of a large amount of 
highly viable M. leprae acid-fast bacilli (Scollard 
et al. 2006a, b, c).

An ideal animal model should present similar 
bacteriological and histopathological characteris-
tics of humans following infection of a healthy 
host (Blake et al. 1987). The infection in immu-
nocompetent mice was much more emphatic in 
the footpad but lacked nerve involvement (de 
Medeiros Oliveira et al. 2019). Hence, the natural 
susceptibility of the nine- banded armadillo 
(Dasypus novemcinctus) and its ability to mimic 
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histopathological changes in tissues and nerves, 
as seen in a human infection, made it the best 
experimental model (Sharma et  al. 2013). The 
disease manifests as a systemically disseminated 
infection, especially in reticulo- endothelial tis-
sues, with intermittent bacteraemia in all organs. 
The effect is more pronounced in regions with 
lower temperatures, like the extremities (de 
Medeiros Oliveira et  al. 2019; Sharma et  al. 
2013). Infection of nine- banded armadillo 
through the intravenous route produced the best 
model 18 months post infection (Balamayooran 
et al. 2015). It was found that armadillos yielded 
109 to 1010 M. leprae bacteria per gram of liver, 
spleen or lymph node with an inoculum of as low 
as 1000 bacilli (Job 2000; Truman et al. 2008).

Although armadillos can exhibit the full spec-
trum of the disease, approximately 70% exhibit 
LL form (Job and Truman 1999). Abrasions 
around eyes, nose, feet are common signs and 
typical plantar ulceration is observed at later 
stages of infection (Sharma et al. 2013). In addi-
tion, these armadillos also exhibit severe anemia 
and compromised liver and renal function 
(Truman and Sanchez 1993). Unlike the mouse 
model, armadillos develop extensive neurologi-
cal involvement and they can be examined for 
rare neurological events over time (de Medeiros 
Oliveira et al. 2019; Truman et al. 2014). Infected 
armadillos are known to exhibit clinical signs of 
focal anaesthesia, impaired sensation, nerve 
thickening and motor dysfunction (Sharma et al. 
2013). Studies have revealed that the lower 
extremities of armadillos exhibit several abnor-
malities observed in human patients. For exam-
ple, the flexor and lumbrical muscles are found 
to be atrophied in infected armadillos due to 
damage to the medial and lateral plantar nerves 
that innervate these muscles (Truman et  al. 
2014). Histopathological studies also revealed 
that the skeletal muscles of infected armadillos 
resembled muscular pathology as in patients 
with LL leprosy (Werneck et  al. 1999). 
Electrophysiological analysis, used to assess 
functional characteristics of the peripheral 
nerves, demonstrated that 75% of experimen-
tally infected armadillos develop a demonstrable 

conduction deficiency in the posterior tibial 
nerve. The manifestation of this reduced conduc-
tion coincides with the development of immuno-
logical responses. These mostly include 
detectable IgM antibodies against PGL-1 
(Sharma et al. 2013). A heavy infiltration of  M. 
leprae loaded nucleated cells in many fascicles 
of nerve trunks and invasion of progressively 
demyelinating Schwann cells by M. leprae was 
observed in infected armadillos (Scollard 2008; 
Sharma et al. 2013). Histopathological examina-
tion revealed characteristic interstitial neuritis, 
with the infiltration of inflammatory cells such 
as macrophages, and bacilli in the perineurium, 
epineurium, and endoneurium (Scollard et  al. 
2006a, b, c). As leprosy can only be clinically 
diagnosed at the later stages of the disease, the 
shorter interval between infection and disease 
development in experimentally infected armadil-
los provides a unique window to evaluate patho-
genesis in preclinical stages and develop 
therapeutic interventions. Gene expression pro-
files show a constant state of degeneration in 
armadillo nerve segments via down-regulation 
of growth factors such as Delta Like Non-
Canonical Notch Ligand 1 (DLK-1) and Nerve 
Growth Factor Beta (NGF-β). In addition, pro-
inflammatory cytokines such as IFN-γ and 
TNF-α show enhanced expression along with 
constitutively expressed neural proteins such as 
Ubiquitin carboxy-terminal hydrolase L1, neu-
rofilament and β-tubulin (Sharma et  al. 2013). 
Development of a viable vaccine against leprosy 
has also used armadillos extensively as a pre-
clinical model. Unfortunately, the number of 
armadillos and time required (up to 1140 days) 
for effective challenge studies limit the use of 
armadillo as a vaccine model (Scollard et  al. 
2006a, b, c).

The natural susceptibility of the nine banded 
armadillos to M. leprae infection, their lower 
body temperature and similarity in clinical man-
ifestation of leprosy, has made the animal the 
best source of highly pure and viable of M. lep-
rae bacilli, a clinical and immunological model 
to study host pathogen interactions of leprosy 
like neuropathies, myopathies and gene expres-
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sion, and develop vaccines and other therapeutic 
interventions.

6  Conclusion and Perspectives

The current treatment against leprosy is an MDT 
regimen using clofazimine, dapsone, rifampicin, 
ofloxacin and minocycline (Duthie et al. 2011a). 
While this has been proven to highly effective 
against the global prevalence of leprosy, multiple 
indicators have hinted that a larger effort would 
be required to thwart the re-emergence of leprosy 
and achieve the goal of total disease eradication. 
The MDT approach has many complications. 
The long time period required by the rigorous 
drug regime is often shortened in patients who 
are either misdiagnosed on the severity of the dis-
ease or due to poor compliance by the patient 
(Duthie et  al. 2011b). This has led to either 
relapse or re-infection in patients treated with a 
truncated MDT regimen (Ellard et  al. 1988; 
Roche et  al. 2000). Ineffective MDT treatment 
has created a conducive environment for the 
development of multidrug resistant M. leprae 
(Emmanuelle et al. 2002; Ji et al. 1997; Maeda 
et  al. 2001; Matsuoka et  al. 2000, 2003). In 
response, the WHO initiated a sentinel surveil-
lance network in 2008. The analysis of 213 
relapse cases by the network revealed the existing 
resistance against dapsone, rifampicin, and oflox-
acin (World Health Organization 2011a, b). The 
emergence of these multidrug resistant strains 
seriously undermines the efficiency of the MDT 
and exponentially increases the risk of leprosy 
incidence. The MDT approach relies on a passive 
case detection system. This strategy lacks a pro-
vision for the prevention of leprosy instead focus-
ing on reducing the number of cases identified as 
carriers. This relies on self- reporting and early 
treatment, which are often compromised due to 
the social stigma present around the disease and 
the delay between the onset of the first symptom 
and clinical diagnosis (Chen et  al. 2000; De 
Rojas et al. 1994; Deps et al. 2006). Another risk 
against the total eradication of the disease is the 
erosion of leprosy clinics, specialists, and 
research caused by the success of the MDT pro-

gram. This shows that the eradication and treat-
ment of leprosy will require a multipronged 
approach that deals with eradicating the social 
stigma surrounding the  disease, improving the 
lifestyle of at-risk population, and developing a 
new vaccine that would provide long lasting 
immunity.

Currently, vaccine used against leprosy is the 
same as the one used against tuberculosis, the 
BCG vaccine. The efficiency of the vaccine has 
been reported as 26–41% in experimental studies 
and 61% in observational studies. The recent 
drastic difference in the degree of protection 
offered by the vaccination has been attributed to 
the use of different BCG strains, the innate diver-
sity in the genetic fingerprints of the mycobacte-
rium present in various geographic areas, the 
immune, nutritional and socio- economic status 
of the patients, viral or helminthal co-infection 
and induction of immunity by environmental 
mycobacteria that masks the effect of BCG vac-
cination (Abebe and Bjune 2006; Andersen and 
Doherty 2005; Brosch et al. 2007; Comas et al. 
2013; Elias et al. 2008; Hagge et al. 2017; Hoang 
et  al. 2015; Lavania et  al. 2015; Moliva et  al. 
2015). Studies have revealed that, BCG vaccina-
tion offers a higher protection efficiency when 
offered to younger individuals (<15 years of age) 
(Rodrigues et al. 2007; Zodpey et al. 1999, 2005). 
The use of heat killed M. leprae has been shown 
to offer protection against subsequent infections 
in mice (Shepard et al. 1983). The use of other 
species of mycobacteria such as M. vaccae, M. 
haban and Mycobacterium indicus pranii, have 
been explored and found to offer protection 
(Duthie et  al. 2018; Singh et  al. 1989, 1991; 
Truoc et  al. 2001). Vaccines containing both 
BCG and heat killed M. leprae or other mycobac-
teria were found to have no significant effect in 
terms of protection against leprosy when com-
pared against the regular BCG vaccination (Singh 
et al. 1991; Truoc et al. 2001). One of the draw-
backs of the BCG vaccination is that it loses its 
protective efficiency after a period of 10–20 years. 
Hence, it was found that a booster of the BCG 
vaccination afforded better protection against 
leprosy (Mangtani et al. 2018). Vaccines contain-
ing individual components of M. leprae, such as 
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the cell wall, cell membrane, and cytosol when 
combined with a suitable adjuvant were found to 
offer protection prior to infection (Gelber et  al. 
1990; Ngamying et  al. 2003). The use of Ag85 
proteins, purified from BCG culture filtrate, 
along with Freund’s incomplete adjuvant, was 
found to inhibit M. leprae growth. Immunisation 
with recombinant BCG strain engineered to over-
express the Ag85 complex was found to signifi-
cantly reduce the multiplication of the pathogen 
when compared to non-recombinant BCG 
(Matsuoka et al. 1997; Naito et al. 1999; Ohara 
et  al. 2000; Roche et  al. 2001). Additionally, 
another recombinant BCG strain engineered to 
secrete M. leprae major membrane protein-II was 
found to induce a more potent Th1 response 
when compared to non-recombinant BCG 
(Maeda et  al. 2005). One major drawback of 
using recombinant live bacteria is its inability to 
boost antigen-specific responses for individuals 
who have already been vaccinated with BCG 
(Duthie et al. 2011a). The use of a defined sub-
unit vaccine would provide long lasting protec-
tion. It would also help overcome the issues faced 
with live whole or recombinant bacteria as a vac-
cination in the immunocompromised population. 
LepVax, A subunit vaccine, which comprises a 
hybrid recombinant protein, linking four M. lep-
rae antigens: ML2531, ML2380, ML2055, and 
ML2028 (LEP-F1), was formulated in a stable 
emulsion with a synthetic, TLR4 agonist 
(GLA-SE) as adjuvant; its pre-clinical testing has 
been completed. In addition to offering protec-
tion, the vaccine was found to alleviate and delay 
neurological damage caused by the infection 
(Duthie et al. 2018).
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1  Introduction

Tuberculosis (TB), predominately caused by the 
bacterium Mycobacterium tuberculosis, remains 
one of the world’s most significant infectious dis-
eases, with a worldwide yearly burden of approx-
imately 8.7 million new cases of active TB, 1.4 
million deaths and a third of the world’s popula-
tion with latent TB infection (LTBI) (WHO 
2019). The major burden for TB disease in still 
bared by developing countries, with Asia (e.g. 
China and India) having the highest  number of 
cases of the disease. The epidemiological trend in 
developed countries continues to be that the 
majority of TB cases have originated from recent 
immigrants that have come from TB endemic 
areas of the world (Zumla et al. 2013; Zaheen and 
Bloom 2020). There are also significant numbers 
of TB patients co-infected with Human immuno-
deficiency virus (HIV), particularly in sub- 
Saharan Africa, resulting in the highest rates of 

TB cases per capita (WHO 2019). The outbreak 
of the COVID-19 pandemic may also result in a 
similar dangerous synergy with TB, although the 
impact of co-infection of M. tuberculosis with the 
SARS-CoV-2 virus in patients remains to be 
determined (Ong et al. 2020). The frequency of 
multi-drug resistant tuberculosis (MDR-TB) to 
the main drugs used for treatment (e.g. rifampicin 
and isoniazid) is still worryingly high, particu-
larly in India, Russia, China, Pakistan and South 
Africa (WHO 2019; Zaheen and Bloom 2020). 
Of further concern is the rise of extensively drug 
resistant (XDR-TB) in several countries to all 
current second and third-line therapies (Zaheen 
and Bloom 2020).

There continues to be a strong concerted effort 
to develop new interventions and therapies 
against TB with a particularly important focus on 
understanding innate immunity against TB par-
ticularly in the early stages of infection and the 
granuloma. It is well know that M. tuberculosis is 
able to persist as an intracellular parasite for 
years in the host as LTBI, mainly because of its 
ability to persist in the host macrophage by 
manipulating phagolysosome maturation, pro-
viding a favourable niche for it to be able to 
reside (Russell 2001; Gupta et  al. 2012). M. 
tuberculosis-infected macrophages in LTBI are 
predominantly present within the granuloma, 
which is a complex structure of T cells, B cells, 
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and giant epithelioid cells among others and a re- 
sectioning of tissue to contain these infected 
macrophages (Gupta et al. 2012). The formation 
and maintenance of this immune cordon against 
TB infection is crucial in preventing dissemi-
nated disease and transmission of the infection to 
other hosts. It is still not fully understood how the 
granuloma is formed and maintained in TB infec-
tion and the full extent of the contribution played 
by innate immunity. Here, we will discuss the lat-
est advancements in the understanding of innate 
immune recognition of M. tuberculosis and how 
these contribute to both downstream protection 
and pathogenesis of TB.

The primary interactions of M. tuberculosis 
with the host upon inhalation remain to be deter-
mined fully, particularly the targeting and recog-
nition by the innate immune response. The lungs 
are the main route of entry to the host for M. 
tuberculosis and is the main anatomical site for 
infection and pathogenesis, but not entirely as 
extra-pulmonary TB (EPTB) also relatively com-
monly occurs in 10–42% of cases (Caws et  al. 
2008). The establishment and dissemination of 
M. tuberculosis infection is dependent on several 
host and pathogen factors with the pathogen able 
to alter and circumvent facets of both the innate 
and adaptive immune responses. Initially, M. 
tuberculosis bacilli, within aerosol droplet nuclei 
(on average 4–7μm in size), are inhaled into the 
pulmonary alveoli where they come into primary 
contact and are phagocytosed by alveolar macro-
phages (Fennelly et  al. 2004; Fennelly 2020). 
During this interaction, most of the bacilli are 
killed, but some can endure within the macro-
phage (Russell 2001; Gupta et al. 2012). The rec-
ognition and uptake of M. tuberculosis by the 
host is govern by several soluble and cell-bound 
factors such as pattern recognition receptors 
(PRRs) that recognise pathogen-associated 
molecular patterns (PAMPs) that are present on 
the surface of microbes and normally absent on 
host cells. Examples of PAMPs include lipopoly-
saccharide (LPS), porins, peptidoglycan, lipotei-
choic acid (LTA), mannose-rich glycans, 
flagellin, bacterial and viral genomes, mycolic 
acid, and lipoarabinomannan (LAM). PRRs 
include phagocytic PRRs and signalling PRRs. 

Examples of phagocytic PRRs include C-type 
lectins receptors (CTLRs) (e.g. collectins such as 
surfactant protein A (SP-A), surfactant protein D 
(SP-D), mannose receptor (MR), Dectin-1), scav-
enger receptors (e.g. CD-36, CD68, and SRB-1), 
opsonic receptors (e.g. plasma acute phase pro-
teins like mannose binding lectin (MBL), 
C-reactive protein (CRP)) and complement pro-
teins (e.g. C3b, iC3b, factor H and properdin). 
Signalling PRRs are either present on cell surface 
(e.g. Toll-like receptors (TLRs), CD14, on intra-
cellular membranes (e.g. endosomes, lysosomes) 
or in the cytoplasm (e.g. nucleotide-binding 
oligomerization domain (NOD)-like receptors. In 
microbial infection and in particular M. tubercu-
losis infection the  type of interaction of PRRs 
with PAMPs and innate immune cells (e.g. mac-
rophages) also determine the subsequent cell sig-
nalling pathways  (leading to production of 
cytokines/chemokines),  which initiates inflam-
mation and tissue modification (e.g. granuloma 
formation) (Feng et  al. 2006; Lockhart et  al. 
2006; Eum et al. 2010). Furthermore, the forma-
tion of the granuloma occurs without the require-
ment for specific immunity (North and Izzo 1993; 
Hansch et al. 1996; Smith et al. 1997), with both 
tumour necrosis factor alpha (TNF-α) and inter-
feron gamma (IFN-γ) being the foremost signal-
ling cytokines for cell infiltration, although they 
are not needed to begin the process of granuloma 
formation (Flynn et al. 1995; Smith et al. 1997).

After M. tuberculosis enters the alveoli space, 
the bacteria are internalized into alveolar macro-
phages by phagocytosis, a process triggered by 
receptor-ligand engagement. M. tuberculosis 
tends to target binding to macrophages in 
cholesterol- rich regions of the host cell mem-
brane (Gatfield and Pieters 2000). Mycobacteria 
can be targeted via a wide variety of receptors 
that recognise opsonised and non-opsonised 
bacilli. These include collectins (SP-A, SP-D, 
conglutinin), MR (CD207), dendritic-cell- 
specific intercellular adhesion molecule-3 grab-
bing non-integrin (DC-SIGN), dectin-1, 
complement receptors (CR), surfactant protein 
(SP) receptors, scavenger receptors, and glyco-
sylphosphatidylinositol (GPI)-anchored recep-
tors such as CD14 (Schlesinger et  al. 1990; 
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Schlesinger 1993; Stokes et  al. 1993; Hirsch 
et  al. 1994; Zimmerli et  al. 1996; Ehlers and 
Daffe 1998; Ernst 1998; Peyron et  al. 2000; 
Rooyakkers and Stokes 2005). Various TLRs 
have also been shown to play important roles in 
M. tuberculosis interactions on the surface and 
within phagocytic cells (Means et  al. 1999). In 
addition, M. tuberculosis can also recruit several 
host cell molecules on its surface that enhance its 
uptake by phagocytes.

2  Collectins and Mycobacteria

Collectins are a group of soluble C-type 
(calcium- dependent) lectins, characterised by an 
N-terminal collagen region, an alpha helical coil 
neck motif, and a C-terminal carbohydrate rec-
ognition domain (CRD). Collectins can recog-
nise and bind to PAMPs on variety of microbes 
via their CRD region and have a crucial role in 
their neutralisation and clearance but are also a 
critical bridge between the innate immunity and 
adaptive immunity (Kishore et  al. 2006). The 
mammalian collectin family comprises of SP-A 
and SP-D, MBL, liver collectin (CL-L1), kidney 
collectin (CL-K1), CL-LK (composed of CL-L1 
and Cl-K1) and placenta collectin (CL-P1), con-
glutinin, CL-43 and CL-46, with the latter three 
found in Bovidae (Murugaiah et al. 2020; Tsolaki 
and Kishore 2020). Several of these collectins 
have a role in mycobacterial infection and 
pathogenesis.

Both SP-A and SP-D are the most relevant 
collectins for pulmonary TB as they are impor-
tant components of pulmonary surfactant which 
is essential for the physiology of alveoli 
(Murugaiah et  al. 2020). Furthermore, early 
observations also showed that pulmonary surfac-
tant had anti-microbial properties being able to 
enhance clearance of Staphylococcus aureus by 
alveolar macrophages (AM) (Laforce et  al. 
1973). In fact, both SP-A and SP-D can target 
Gram-negative and Gram-positive bacteria 
enhancing their clearance through phagocytosis 
by AM (Pikaar et al. 1995).

Both SP-A and SP-D can bind and agglutinate 
mycobacteria but seem to have opposing effects 

on the phagocytosis of M. tuberculosis. SP-A tar-
gets the putative surface adhesin Apa glycopro-
tein on M. tuberculosis (Ragas et al. 2007), whilst 
SP-D can also bind to LTA and peptidoglycan 
and to lipoarabinomannan (LAM) from M. tuber-
culosis and Mycobacterium avium (Ferguson 
et al. 1999; Van De Wetering et al. 2001; Kudo 
et  al. 2004). SP-A can facilitate uptake of M. 
tuberculosis and M. avium by enhancing the 
expression of macrophage MR (Gaynor et  al. 
1995; Beharka et  al. 2002; Kudo et  al. 2004) 
(Fig. 9.1). Similarly, SP-A enhances expression 
of scavenger receptor A (SR-A), increasing the 
phagocytosis of Streptococcus pneumoniae by 
AM (Kuronuma et al. 2004). Additionally, bound 
SP-A can also facilitate uptake of Mycobacterium 
bovis bacillus Calmette-Guérin (BCG) by bind-
ing to specific 210-kDa SP-A receptor (SPR210) 
in U937 macrophages and rat AM (Chroneos 
et  al. 1996; Weikert et  al. 1997). Furthermore, 
this interaction led to increased mycobacterial 
killing and production of TNF-α and nitric oxide 
(Weikert et al. 2000). In contrast, SP-D inhibits 
phagocytosis of M. tuberculosis by blocking the 
interaction of LAM with macrophage MR, and is 
independent of agglutination by SP-D (Ferguson 
et al. 1999; Ferguson et al. 2002) (Fig. 9.1). Gene 
knockout mice (SP-A−/−, SP-D−/−, and SP-A/
D−/−) infected with M. tuberculosis, still pro-
cessed the ability for phagocytosis and bacterial 
clearance, suggesting that both SP-A and SP-D 
are not crucial for protection in this animal model 
for TB (Lemos et al. 2011). SP-A and SP-D can 
also influence the intracellular environment post 
phagocytosis, by stimulating and enhancing reac-
tive oxygen and nitrogen species enabling the 
killing of intracellular pathogens such as myco-
bacteria (Fig.  9.1). SP-A enhances the intracel-
lular killing of M. bovis BCG by enhancing nitric 
oxide (NO) levels and releasing TNF-α (Weikert 
et al. 2000). However, in M. tuberculosis and M. 
avium-infected AM primed by IFN-γ, SP-A was 
able to supress intracellular NO levels by inhibit-
ing TNF-α production and nuclear factor-kappa 
B (NF-κB) activation (Pasula et al. 1999; Hussain, 
2003). Thus, SP-A facilitates the intracellular 
survival of M. tuberculosis (Gaynor et al. 1995; 
Pasula et  al. 1999). Moreover, HIV-1 infected 
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patients, who had raised levels of pulmonary 
SP-A, had a significantly greater susceptibility to 
M. tuberculosis infection (Downing et al. 1995). 
Thus, SP-A appears to have pleiotropic effects 
being able to both enhance inflammation in the 

presence of infected macrophages and inhibit 
inflammation in uninfected macrophages, 
thus  possibly acting as a protective molecule 
against lung tissue damage from excessive and 
non-specific inflammation (Gold et al. 2004).

Fig. 9.1 Role of collectins in recognising M. tubercu-
losis and subsequent consequences. SP-A and SP-D can 
bind and agglutinate mycobacteria but have opposing 
effects on phagocytosis. SP-A binds to Apa glycoprotein, 
whilst SP-D binds to lipoteichoic acid, peptidoglycan and 
to lipoarabinomannan (LAM) on M. tuberculosis. SP-A 

enhances the expression of macrophage mannose receptor 
(MR) facilitating uptake of M. tuberculosis, increasing 
mycobacterial killing and production of inflammatory 
components TNF-α and IL-6. SP-D inhibits phagocytosis 
of M. tuberculosis by blocking the interaction of LAM 
with macrophage MR
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A number of genetic polymorphisms in the 
SP-A and SP-D genes are associated with TB 
susceptibility and protection in humans. SP-A is 
secreted as two distinct variants (SP-A1 and 
SP-A2) which are coded for by distinct genes. In 
individuals from Mexico, Ethiopia, India and 
China, mutations within and flanking the SP-A1 
and SP-A2 genes are linked with protection or 
susceptibility toward pulmonary TB (Floros et al. 
2000; Madan et al. 2002; Malik et al. 2006; Vaid 
et al. 2006; Yang et al. 2014). A study of Indian 
individuals identified a single mutation in the 
SP-D gene that was significantly associated with 
TB susceptibility (Vaid et al. 2006).

MBL is a serum protein and has a similar 
overall structure to SP-A and can target PAMPs 
on the surface of several Gram-positive and 
Gram-negative bacteria (Ip et  al. 2009; Lugo- 
Villarino et  al. 2011). MBL that is bound to 
microbial surfaces can activate complement via 
MBL-associated serine proteases (MASPs) of the 
lectin complement pathway, resulting in deposi-
tion of complement components (e.g. C3 and C4) 
that facilitates microbial phagocytosis and clear-
ance. MBL also possesses complement- 
independent activity, acting directly as an 
opsonin, and an  inhibitor of  bacterial adhesion 
(Kuhlman et al. 1989; Polotsky et al. 1997; Jack 
et al. 2005). MBL can also bind to peptidoglycan 
and LTA from Staphylococcus aureus (Polotsky 
et al. 1996; Nadesalingam et al. 2005). In myco-
bacteria, MBL can bind to LAM from M. avium 
(Polotsky et al. 1997), antigen 85 (Ag85) of M. 
tuberculosis (Swierzko et al. 2016), and manno-
sylated lipoarabinomannan (ManLAM) from 
several mycobacterial species (M. tuberculosis, 
M. bovis, M. kansasii, M. gordonae and M. smeg-
matis) (Bartlomiejczyk et  al. 2014). MBL 
can also enhance the uptake of mycobacteria by 
macrophages (Polotsky et al. 1997). Both normal 
and elevated levels in serum MBL have been 
associated with recurrent infection with M. tuber-
culosis and M. leprae, probably driven 
by  enhanced complement-mediated phagocyto-
sis (Garred et al. 1994, 1997). Genetic polymor-
phisms associated with MBL serum-deficiency 
are common and some of these are linked to sus-

ceptibility to TB and other inflammatory diseases 
in several ethnicities (Takahashi and Ezekowitz 
2005; Thiel et  al. 2006; Goyal et  al. 2016). 
Among the minor collectins, CL-L1, CL-K1 and 
CL-P1 bind to bacteria, with CL-K1 being able to 
bind M. tuberculosis (Troegeler et al. 2015). The 
heteromeric form CL-LK binds to ManLAM of 
M. tuberculosis, but not M. smegmatis because of 
the absence of capped mannose on its LAM 
(Troegeler et al. 2015). Furthermore, serum lev-
els of CL-LK in TB patients are almost depleted, 
compared to normal healthy controls (Troegeler 
et al. 2015).

Of the bovine collectins, conglutinin has pro-
tective activity against several microbes, includ-
ing mycobacteria. Conglutinin has a similar 
structure to SP-D (which targets mycobacterial 
LAM) (Murugaiah et  al. 2020) but is predomi-
nantly a serum protein synthesised by the liver 
(Holmskov et  al. 1998). Conglutinin has anti- 
microbial properties; low serum levels of conglu-
tinin are linked with acute infections (e.g. 
pneumonia, metritis and other respiratory infec-
tion (Ingram and Mitchell 1971; Holmskov et al. 
1998). Conglutinin is able to bind to Gram- 
positive bacteria such as mycobacteria (Dec et al. 
2012; Mehmood et  al. 2019), and uniquely to 
complement C3 fragment iC3b, via the mannose 
residues  (Laursen et  al. 1994). A recombinant 
truncated form of conglutinin (rfBC), containing 
the α-helical neck region and the CRD of conglu-
tinin (Wang et  al. 1995), is able to bind to M. 
bovis BCG and inhibit phagocytosis of the bacte-
rium both in the presence and absence of comple-
ment deposition (Mehmood et  al. 2019). 
Furthermore, there is a modulation of the inflam-
matory response with the elevation of pro- 
inflammatory cytokines (IL-1β, TNF-α, IL-6, 
IL-12) and suppression of anti-inflammatory 
cytokines (TGF-β and IL-10) (Mehmood et  al. 
2019). Thus, it is probable that conglutinin inter-
feres with the phagocytosis of M. bovis BCG by 
macrophages through two separate mechanisms: 
firstly, inhibiting binding of mycobacterial LAM 
(like SP-D) with mannose receptor, and secondly, 
inhibiting binding of iC3b with complement 
receptors CR3 and CR4 (Mehmood et al. 2019).
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3  Complement 
and Mycobacteria

The complement system is a major arm of the 
innate immune response and is crucial for clear-
ing microbial infection. The interactions between 
complement system and mycobacteria are not 
fully understood and this is probably more impor-
tant in EPTB and disseminated disease than pul-
monary TB. The complement system is composed 
of nearly 50 different proteins that are involved in 
three distinct pathways for activation: Alternative, 
Classical and Lectin (Carroll and Sim 2011) 
(Figs.  9.2a, b). Complement can be activated 
through several target surfaces including patho-
gens and altered-self cells or indirectly by 
pathogen- bound antibodies and results in the 
covalent binding of C3b component to the tar-
geted cell, and subsequent cell lysis via the 
assembly of the membrane attack complex 
(MAC) (Carroll and Sim 2011). The classical 
pathway is activated by C1q binding to a target 
ligand either directly or to bound IgG/IgM anti-
bodies (Fig. 9.2a). The lectin pathway is activated 
by the binding of MBL or ficolins to a target 
ligand (Matsushita and Fujita 1992; Matsushita 
et  al. 2000; Matsushita and Fujita 2001) 
(Fig. 9.2a). However, the alternative pathway is 
activated differently and does not require an ini-
tiator like C1q or MBL but instead relies on the 
constant spontaneous hydrolysis of C3 to 
C3(H2O). The consequences of complement acti-
vation by any pathway is the formation of C3 
convertase and the deposition of C3b on target 
surfaces to prompt opsonisation, the formation of 
the MAC and several other immunological func-
tions (Carroll and Sim 2011) (Fig. 9.2b). There 
are also other complement regulatory proteins 
such and properdin (CFP) and factor H (CFH), 
where the latter is also a cofactor for factor I that 
is involved in the cleavage of C3b to iC3b 
(Whaley and Ruddy 1976a; Sim et  al. 1993) 
(Fig. 9.2b).

In the classical pathway, C1q seems to bind in 
the presence of IgG and IgM from serum, pre-
sumably because of M. bovis BCG vaccination 
(Carroll et  al. 2009). Experiments using C1q- 
deficient serum result in a reduction of C3 bind-

ing to mycobacteria (Ferguson et al. 2004). The 
levels of C1q are significantly elevated in the 
lungs (determined by bronchoalveolar lavage 
(BAL) and sera of active TB patients), compared 
to control patients and those with LTBI, indicat-
ing that C1q is an important biomarker for 
TB (Lubbers et al. 2018). The classical pathway 
may be more relevant in EPTB where C1q is pre-
dominantly a serum protein, however, local pul-
monary synthesis occurs in the lungs during 
active TB accounting for the raised levels of C1q 
observed. Furthermore, systemic and local C1q 
levels are raised significantly upon vaccination 
with BCG in non-human primates (Dijkman 
et al. 2020). Complement receptor CR3 deficient 
mice (CR3−/−), infected with M. tuberculosis, had 
a lower percentage of infected macrophages at 
2 h but not at 4 h post infection, suggesting the 
opsonisation and uptake via complement and 
receptors may be key during the early stages of 
infection (Hu et  al. 2000). Genetic polymor-
phisms in complement receptor CR1 have been 
reported to increase susceptibility to 
Mycobacterium leprae infection and TB disease 
(Fitness et al. 2004a, b; Kretzschmar et al. 2018), 
whilst a congenital deficiency of the classical 
pathway did not seem to affect susceptibility to 
TB (Kumararatne 1997). In contrast, a recent 
study has shown that polymorphisms in the C1q 
gene cluster are significantly associated with TB 
susceptibility and  differing plasma levels of 
C1qA in South African TB patients (Bruiners 
et al. 2020).

The alternative pathway differs from the clas-
sical and lectin pathways because it does not 
need a specific stimulus for activation, since the 
alternative pathway is constantly active at low 
levels and able to target pathogens promptly 
(Kouser et  al. 2013). Properdin (CFP) is a key 
regulatory protein of the alternative pathway and 
contains thrombospondin (TSR) type 1 repeats 
(TSR1-TSR6), which are crucial for its function; 
TSR4 stabilises C3bBb; whilst TSR5 binds to 
C3b (Higgins et  al. 1995; Kouser et  al. 2013). 
Both CFP and recombinant TSR4 + 5 are able to 
bind to M. bovis BCG, inhibiting its uptake by 
macrophages (Al-Mozaini et  al. 2018). In con-
trast, CFH downregulates complement activation 
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Fig. 9.2 Role of complement activation and comple-
ment proteins in recognising M. tuberculosis and subse-
quent consequences. (a) The classical pathway is activated 
by C1q binding to a target ligand either directly or to bound 
or anti-mycobacterial antibodies. The lectin pathway is 
activated by the binding of MBL or ficolins to target myco-

bacterial ligands. (b) The alternative pathway is activated 
via the constant spontaneous hydrolysis of C3 to C3(H2O). 
Properdin and factor H both act as patten recognition recep-
tors (PRR) and have complement independent functions on 
mycobacteria, being able to inhibit phagocytosis and alter 
the subsequent inflammatory response
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but has also been shown to bind to M. bovis BCG 
and inhibit its uptake by macrophages in a similar 
manner (Carroll et  al. 2009; Abdul-Aziz et  al. 
2016). Both CFP and CFH are also able to modu-
late the immune response from the macrophage 
during M. bovis BCG phagocytosis by enhancing 
the pro-inflammatory response (TNF-α, IL-1β, 
IL-6 and IL-12) and dampening the anti- 
inflammatory response (TGF-β and IL-10). 
This  suggests consequences for the adaptive 
immune response to follow against M. tuberculo-
sis infection, particularly in the formation and 
maintenance of the protective granuloma.

The lectin pathway is primarily triggered by 
MBL and ficolins that recognise terminal sugar 
residues on the surface of bacteria (e.g. mannose, 
fucose and N-acetyl-glucosamine) and subse-
quently activates MASPs resulting in the cleav-
age of complement components C4 and C2 to 
C4bC2a. There are three human ficolins: L-ficolin 
and H-ficolin, which are synthesised by the liver 
and predominantly circulate in the serum and 
M-ficolin which exist in granules of monocytes, 
neutrophils, and type II alveolar epithelial cells. 
All three human ficolin can associate with 
MASPs and activate the complement cascade 
(Liu et al. 2005). MBL and ficolins can bind to 
several mycobacteria (M. tuberculosis, M. gordo-
nae, M. kansasii and M. smegmatis) 
(Bartlomiejczyk et  al. 2014). Direct binding of 
L-ficolin from human serum to M. bovis BCG 
and subsequent MASP-2 activation has been 
reported, but no binding was detected for 
H-ficolin (Carroll et  al. 2009). L-ficolin is also 
able to bind with higher affinity to M. tuberculo-
sis than to non-virulent mycobacteria and inhibit 
infection of human lung A549 epithelial cells 
(Luo et al. 2013). In mice, exogenously adminis-
tered L-ficolin had a significant protective effect 
against virulent M. tuberculosis infection, whilst 
Ficolin-A (homologous to human L-ficolin in 
mouse) demonstrated increased susceptibility to 
M. tuberculosis infection (Luo et  al. 2013). 
Furthermore, L-ficolin also modulates the 
immune response against M. tuberculosis infec-
tion by partially activating c-Jun N-terminal 
kinase (JNK) phosphorylation, stimulating the 
secretion of IFN-γ, IL-17, IL-6, TNF-α, and NO 

production by macrophages (Luo et  al. 2013). 
Clinically, L-ficolin serum levels in pulmonary 
TB patients are much lower than  compared to 
healthy controls (Luo et al. 2013), suggesting an 
important role for L-ficolin in M. tuberculosis 
infection.

The cell wall of mycobacteria is complex and 
is composed of a thick peptidoglycan layer, 
which covers the bacteria plasma membrane and 
is the scaffold to which various components are 
covalently attached (e.g. LAM, arabinogalactans, 
arabinomannans, glycolipids and mycolic acids) 
(Daffe and Draper 1998). Furthermore, there is 
also a capsule layer surrounding the mycolates 
made up of additional proteins, polysaccharides 
and lipids (e.g. phospholipids and glycolipids) 
(Daffe and Etienne 1999). One of these compo-
nents is trehalose dimycolate (TDM) (also known 
as cord factor), which activates complement 
(Ramanathan et  al. 1980). The complex myco-
bacterial cell wall has evolved to protect the bac-
terium from immunological attack (particularly 
intracellularly), but also plays a major role in 
determining ant-mycobacterial drug efficacy 
(Besra 1998). Several bacteria have evolved strat-
egies to circumvent the immune response by 
interfering and inhibiting complement activation 
by either producing bacterial complement inhibi-
tors, inactivating host complement inhibitors 
(e.g. CFH), or secreting bacterial proteases that 
break-down complement proteins (e.g. 
Salmonella enterica and Porphyromonas gingi-
valis) (Wingrove et al. 1992; Jagels et al. 1996; 
Ramu et  al. 2007). M. tuberculosis is a highly 
evolved intracellular pathogen, being able to per-
sistently reside in the phagosome of macro-
phages. Nevertheless, the interaction of 
complement and mycobacteria and the implica-
tions for pathogenesis and protection against TB 
are not well understood.

M. bovis BCG can activate the classical, lectin 
and alternative pathways (Ramanathan et  al. 
1980; Ferguson et al. 2004; Carroll et al. 2009). 
Activation via the alternative pathway also 
occurred in the absence of antibody, but intrigu-
ingly CFH was also found to bind to the myco-
bacterial surface, possibly indicating a means for 
complement moderation (Carroll et  al. 2009). 
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Although C3b is deposited on the mycobacterial 
surface (Carroll et  al. 2009), it is not clear if 
MAC formation occurs. The fixation of comple-
ment proteins on the mycobacterial surface may 
enhance the phagocytosis of mycobacteria via 
complement receptors. Several studies have 
reported C3b deposition on mycobacteria and its 
role in phagocytosis via complement receptors 
CR1, CR3 or CR4 on macrophages (Hetland and 
Wiker 1994; Schlesinger and Horwitz 1994; 
Cywes et al. 1996; Hetland et al. 1998; Mueller- 
Ortiz et al. 2001; Ferguson et al. 2004). However, 
the specific importance of C3b and iC3b deposi-
tion on mycobacteria is not well understood. 
Complement activation by classical and alterna-
tive pathways has been shown on M. tuberculosis 
and M. bovis BCG resulting in C3b and iC3b 
deposition, but the target ligands are not known 
(Ferguson et al. 2004; Carroll et al. 2009). During 
the alternative pathway, CFH plays a major role 
in the cleavage of C3b to iC3b by acting as a 
cofactor of factor I, whilst also controlling the 
formation of the C3 and C5 convertases (Whaley 
and Ruddy 1976b; Whaley et al. 1976). C3b com-
ponent is essential for the complement cascade to 
proceed to the terminal MAC, whilst iC3b is 
unable to facilitate this. Also, both C3b and iC3b 
have different complement receptors (C3b is a 
ligand for CR1; iC3b is a ligand for CR3 and 
CR4) (Ross 1986). iC3b exits as a cleavage prod-
uct from C3b produced by factor I with cofactors 
CFH and CR1 (Figueroa and Densen 1991). 
Thus, both opsonic C3b or iC3b complement 
components may facilitate phagocytosis of host 
cells by mycobacteria, either promoting clear-
ance or intracellular persistence. Indeed, a recent 
study showed enhanced uptake of complement- 
deposited M. bovis BCG by THP-1 macrophages 
compared to non-deposited M. bovis BCG 
(Mehmood et  al. 2019).This same study also 
observed that phagocytosis of complement- 
deposited M. bovis BCG bacteria are inhibited 
from phagocytosis by THP-1 macrophages by 
rfBC (a recombinant truncated form of bovine 
conglutinin) which uniquely binds to iC3b 
(Mehmood et al. 2019). These observations sug-
gest that the blocking of iC3b by conglutinin may 
be indicative of a protective mechanism against 

mycobacterial infection in the bovine host, by 
inhibiting phagocytosis via macrophage recep-
tors CR3 and CR4 (Mehmood et al. 2019).

Both properdin (CFP) and factor H (CFH) are 
complement components that have also been 
observed to bind to mycobacteria in a in a dose- 
dependent manner and independently of C3b 
deposition (Carroll et al. 2009; Abdul-Aziz et al. 
2016; Al-Mozaini et  al. 2018). Both CFP and 
CFH have been shown to be PRRs for mycobac-
teria that have complement-independent func-
tions. M. bovis BCG bound with CFP or CFH are 
inhibited for phagocytosis by THP-1 macro-
phages compared to M. bovis BCG alone 
(Al-Mozaini et al. 2018; Abdul-Aziz et al. 2016). 
Moreover, the subsequent macrophage inflam-
matory response was altered in terms of enhanced 
secretion of TNF-α, IL-1β, IL-6 and IL-12, whilst 
simultaneously dampening anti-inflammatory 
cytokines (TGF-β and IL-10) (Al-Mozaini et al. 
2018 Abdul-Aziz et al. 2016). CFH binding has 
been reported in other bacteria where it serves to 
circumvent complement activation and thus 
opsonisation and killing through MAC (e.g. S. 
pyogenes, Streptococcus pneumoniae, Yersinia 
enterocolitica, Haemophilus influenza, Neisseria 
gonorrhoea and N. meningitidis (China et  al. 
1993; Diaz et al. 1997; Ram et al. 1998a, b; Dave 
et  al. 2001; Meri et  al. 2002; Schneider et  al. 
2006). In the case of mycobacterial infection, the 
ability to bind CFH may serve its immune eva-
sion by activating C3 and using C3b opsonisation 
to enhance phagocytosis by macrophages via 
complement receptors (Schlesinger et  al. 1990; 
Ferguson et  al. 2004). These intriguing results 
describe potentially novel mechanisms in shap-
ing the adaptive immune response against myco-
bacterial infection. For M. tuberculosis, there is a 
fine balance in activating complement to an opti-
mum limited level to allow for enhanced opsoni-
sation and uptake into macrophages, whilst 
avoiding being killed. Thus, the complex interac-
tions between M. tuberculosis and complement is 
a major mechanism through which mycobacteria 
can evade the immune response by persistently 
intracellularly in the macrophage.

CR3 is an integrin (also known as αMβ2; 
CD11b/CD18), commonly expressed on 
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 neutrophils, macrophages, NK cells, and mono-
cytes and is involved in both opsonic and non-
opsonic phagocytosis (Le Cabec et  al. 2002; 
Velasco- Velazquez et  al. 2003). CR3 can bind 
iC3b (particularly on complement-deposited 
mycobacteria), mycobacterial LAM, Ag85C, 
PIMs, ICAM-1, several bacterial ligands and 
other carbohydrate residues (e.g. β-glucan, glu-
cose, N-acetylglucosamine (GlcNAc) (Arnaout 
1990; Ehlers and Daffe 1998; Velasco-Velazquez 
et al. 2003; Villeneuve et al. 2005). Elevated lev-
els of CR3  in tuberculosis patients have been 
reported in several studies, particularly in phago-
cytic cells in the peripheral blood and AMs, sug-
gesting a probable role in pathogenesis (Yassin 
and Hamblin 1994; Kuo et al. 1996; Juffermans 
et  al. 2001). Indeed, complement activation via 
classical pathway in the lungs may also be a 
major mechanism for opsonin-mediated uptake 
of M. tuberculosis by AMs (Watford et al. 2000; 
Ferguson et al. 2004). However, CR3 deficiency 
in mice does not appear to affect the intracellular 
killing mechanisms (induction of reactive oxy-
gen and nitrogen intermediates), or on the sur-
vival of the mycobacteria inside the cell, but it 
did result in reduced opsonisation and phagocy-
tosis (Hu et al. 2000; Melo et al. 2000; Rooyakkers 
and Stokes 2005). CR3 has been found associ-
ated with several GPI-anchored proteins local-
ized in cholesterol-rich rafts of the plasma 
membrane in neutrophils and is involved in 
the  uptake of Mycobacterium kansasii (Peyron 
et  al. 2000). Moreover, the existence of host 
plasma membrane cholesterol appears to be criti-
cal for CR3-mediated uptake of M. tuberculosis 
(Gatfield and Pieters 2000; Peyron et al. 2000). 
M. tuberculosis may also use cholesterol as an 
energy source  during intracellular survival in 
macrophages (Van Der Geize et  al. 2007). 
Furthermore, survival of mycobacteria within the 
macrophage may depend on the receptor involved 
in phagocytosis, since pro-inflammatory 
responses and respiratory burst occurs when 
mycobacteria are phagocytosed via Fc receptors 
(Russell 2001), whilst macrophage activation is 
inhibited when mycobacteria are phagocytosed 
via CR3 receptors (Caron and Hall 1998).

CR3 mediates the phagocytosis  of ~80% of 
complement-opsonized M. tuberculosis 
(Schlesinger et  al. 1990). CR3 is also able to 
facilitate phagocytosis of non-opsonized myco-
bacteria (Velasco-Velazquez et al. 2003). CR3 is 
mainly expressed on the cell surface of macro-
phages, neutrophils, monocytes, and natural 
killer cells. In lung alveolar macrophages, expres-
sion of CR3 is relatively low, whilst in vitro, dif-
ferentiated macrophages have increased 
expression of CR3, enhancing their capacity to 
bind mycobacteria (Stokes et  al. 1998). Several 
mycobacterial ligands are recognised by CR3, 
including Ag85C and LAM from M. tuberculo-
sis, with the latter being the main ligand for CR3 
(Velasco-Velazquez et  al. 2003). Whilst CR3 
plays a major role in facilitating the phagocytosis 
of M. tuberculosis, it does not necessarily result 
in the intracellular killing of the pathogen 
(Velasco-Velazquez et al. 2003; Rooyakkers and 
Stokes 2005). Furthermore, it may also not be 
essential in protection against M. tuberculosis 
infection, since CR3-deficient and wild-type 
mice are equally resistant to M. tuberculosis 
infection, suggesting that M. tuberculosis phago-
cytosis may occur efficiently through alternative 
receptors (Hu et al. 2000). Therefore, the role of 
CR3  in TB pathogenesis may be redundant. To 
date, no genetic polymorphisms in the CR3 genes 
have been associated with susceptibility to TB.

4  Toll-like Receptors (TLRs) 
and Mycobacteria

TLRs are key signalling PRRs present on several 
immune and non-immune cells (e.g. monocytes/
macrophages, B and T cells, dendritic cells, neu-
trophils, epithelial and endothelial cells). TLRs 
recognise a wide variety of microbial ligands 
(PAMPs) and host danger signals (DAMPs). 
TLRs have key roles in innate immunity and are 
an important bridge to adaptive immunity 
(Fig. 9.3). 13 TLRs have been described in human 
and mouse so far. TLRs are transmembrane pro-
teins that have ligand sensing N-terminal leucine- 
rich extracellular domains and a cytoplasmic 
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Toll/IL-1R (TIR) C- terminal domain. The TIR 
domain mediates interactions between TLRs and 
adaptor proteins (e.g. myeloid differentiation pri-
mary response protein (MyD88), TIR domain- 
containing adaptor inducing IFN-β (TRIF), 
TIRAP/MAL, and TRAM) (Lim and Staudt 
2013). Several kinases are also activated and 
involved in signalling, e.g. Interleukin-1 receptor- 
associated kinases (IRAK4, IRAK1, IRAK2), 
IκB kinase-ε (IKKε) and TANK-binding kinase-1 

(TBK1), and ubiquitin ligases TNF receptor 
associated factor 6 (TRAF6) and Pellino-1. Upon 
ligand recognition, TLR signalling progresses via 
two distinct signalling pathways: either MyD88- 
dependent or TRIF-dependent pathway. Of the 
two, MyD88 is the most involved in TLR signal-
ling. The triggering of the MyD88-dependent 
pathways ultimately results in the translocation 
of transcription factors NF-κB (RelA/p50) and 
activator protein 1 (AP1), inducing pro- 

Fig. 9.3 C-type lectin receptors (CTLRs) involved in 
the recognition of M. tuberculosis and subsequent con-
sequences. Several mycobacterial ligands are recognised 

by a variety of host CTLR PRRs that can stimulate a mul-
titude of signalling pathways involved in mycobacterial 
phagocytosis, clearance, and inflammatory responses
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inflammatory cytokine production (IL-6, TNF-α, 
and IL-1β). For the TRIF-dependent pathway 
(most relevant for TLR3 and TLR4), its signal-
ling involves either 1) interaction with TRAF6 
which goes on to activate transforming growth 
factor-β-activated kinase (TAK1) complex that in 
turn activates NF-κB and mitogen-activated pro-
tein kinases (MAPKs), or 2) interaction of 
TRAF3 which induces activation of interferon- 
regulatory factor 3 (IRF3) transcription factor 
that leads to the production of type I interferon 
(IFN-α and IFN-β) (Kawai and Akira 2010).

In humans, TLR1, 2, 4, 5, 6, and 10 are found 
on the host cell surface and mainly target micro-
bial surface components (e.g. membrane of cell 
wall ligands), whilst TLR3, 7, 8, and 9 are found 
intracellularly in the endolysosomal membrane 
compartments and target nucleic acids (Akira 
et  al. 2006; Triantafilou et  al. 2006; Seo et  al. 
2018). TLRs are key downstream signalling mol-
ecules which can stimulate the production of pro- 
inflammatory cytokines, chemokines, and 
interferons (type I IFN) (Kawai and Akira 2010). 
These pathways are sometimes over-activated, in 
an uncontrolled manner, in response to stimuli, 
generating severe immunopathology (Vijay 2018).

TLRs play several important roles in TB.  In 
blood samples from patients with active pulmo-
nary TB, the expression of several TLRs are 
upregulated (Chang et al. 2006). TLRs recognise 
M. tuberculosis or a variety of its components 
and can initiate a set of innate and adaptive 
immune responses (Jo et  al. 2007). The main 
TLRs involved in host-pathogen interaction in 
TB are TLR2, TLR4, TLR9 and TLR1/TLR6 (Jo 
et al. 2007; Kim et al. 2019). The precise nature 
and consequence of the signalling pathways 
induced by mycobacteria remain to be fully 
understood (Berrington and Hawn 2007; 
Holscher et al. 2008). Although TLRs target M. 
tuberculosis, this does not occur directly, but is 
triggered intracellularly by TLR signalling via 
MyD88-dependant pathway (Quesniaux et  al. 
2004). This also results in the activation of pro- 
and anti-inflammatory responses via enhanced 
NF-κB expression and MAPKs activation gener-
ating secretion of TNF-α, IL-1β and IL-12, and 
production of nitric oxide (Yamamoto et al. 2003; 

Jo et al. 2007; Xu et al. 2007; Jo 2008; Garlanda 
et al. 2007).

TLR2 plays a key role in recognising myco-
bacteria PAMPs and is central to activating the 
intracellular signalling that triggers NF-κB and 
MAPKs pathways, inducing secretion of pro- 
inflammatory cytokines and chemokines and ini-
tiating phagocytosis, intracellular killing of M. 
tuberculosis, and antigen presentation. TLR2 
also works together with TLR4 and TLR9 during 
M. tuberculosis infection (Jung et  al. 2006). 
TLR2 can bind to several mycobacterial ligands, 
such as LpqH, LprA, LprG, LAM, lipomannan 
(LM), 38-kDa lipoprotein, 19-kDa lipoprotein, 
phosphatidylinositol mannoside (PIMs) 
(Quesniaux et al. 2004; Kawai and Akira 2011; 
Kleinnijenhuis et al. 2011; Basu et al. 2012; Kim 
et al. 2019) (Fig. 9.3). However, TLR2 does not 
seem to be necessary for protection in mice dur-
ing acute M. tuberculosis infection (Reiling et al. 
2002; Sugawara et al. 2003; Mcbride et al. 2011). 
However, TLRs are important for the long-term 
control of the M. tuberculosis infection in mice 
(Abel et  al. 2002; Drennan et  al. 2004). TLR2 
knockout mice (but not TLR6 knockout mice) 
have an impaired ability to clear M. tuberculosis 
infection and form granulomas compared to 
wild-type animals; TLR2-deficient mice have 
significantly lower pro-inflammatory cytokine 
production in response to M. tuberculosis infec-
tion (Reiling et al. 2002; Sugawara et al. 2003; 
Drennan et al. 2004). TLR2 knockout mice also 
exhibit increased M. tuberculosis bacterial load 
and impaired neutrophil inflammation via 
the  downregulation of CXCL5 during infection 
(Gopalakrishnan et al. 2019). During M. tubercu-
losis infection, TLR2 is critical for the expression 
of TNF-α (Underhill et  al. 1999), whilst both 
TLR2 and TLR6 are key in the expression IL-1β 
via MyD88 (Kleinnijenhuis et al. 2009). Another 
key cytokine in TB, IL-12, which is also depen-
dent on TLR2 in macrophages and dendritic cells 
(Pompei et  al. 2007). Indeed, the production of 
TNF-α and IL-12 is mainly dependent on TLR2 
rather than TLR4 signalling during M. tuberculo-
sis infection (Means et al. 2001), with TLR2 and 
TLR9 also being involved in controlling dendritic 
cell-derived IL-12 secretion in mice infected with 
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M. tuberculosis (Bafica et al. 2005). Furthermore, 
in monocytes, reactive oxygen species (ROS) 
production and the expression of CXCL8 and 
CCL2 is also dependant on TLR2 during M. 
tuberculosis infection (Lee et al. 2009a). In den-
dritic cells, TLR2 induces ROS production, facil-
itating dendritic cell maturation and subsequent 
lymphocyte proliferation during M. tuberculosis 
infection (Romero et  al. 2016). M. tuberculosis 
lipoproteins induce significant signalling of 
TLR2 which inhibits macrophage major histo-
compatibility complex (MHC) class II (MHC-II) 
expression and antigen presentation (Fulton et al. 
2004; Pai et al. 2004), resulting in poor activation 
of CD4+ T cell responses (Noss et  al. 2001; Jo 
2008). TLRs gene polymorphisms also  seem to 
have an influence on the immune response in TB 
(Mukherjee et al. 2019; Zhang et al. 2013b; Sun 
et  al. 2015). A single nucleotide polymorphism 
(SNP) in the TLR2 gene resulting in an amino 
acid change (T597C) has been reported to be 
associated with the development of TB meningi-
tis and miliary TB, suggesting that TLR2 may 
have relevance for the dissemination of M. tuber-
culosis infection (Thuong et  al. 2007). Another 
gene polymorphism (rs5743708) in the TLR2 
gene is also associated with higher risk for TB 
(Guo and Xia 2015).

TLR4 is an important sensor for bacterial 
endotoxins, particularly those derived from 
Gram-negative bacteria (e.g. LPS) (Pandey et al. 
2014). In mycobacterial infection, the TLR4 sig-
nalling pathway plays a central role in immune 
response (Sepehri et al. 2019). Blocking interac-
tion of M. tuberculosis with TLR4, using anti- 
TLR4 antibody and an endotoxin antagonist, 
inhibits macrophage-dependent killing of intra-
cellular bacteria as well as the pro-inflammatory 
response (Means et  al. 2001; Lv et  al. 2017). 
TLR4 can target several M. tuberculosis ligands, 
such as heat shock proteins GrpE, Hsp65 and 
Resuscitation promoting factor (RpfB) (Kim 
et al. 2019). Additionally, mycobacterial LM can 
modulate macrophages inflammatory response 
via the TLR4 signalling (Doz et al. 2007). Both 
TLR4 and TLR2 expression is significantly 
upregulated in lymphocytes from patients with 
active pulmonary TB compared to healthy con-

trols (Chang et al. 2006). Furthermore, increased 
expression of TLR4, CD14 and MR on mono-
cytes (but not TLR2) was observed in M. bovis 
BCG vaccinated individuals compared to those 
who were not vaccinated; BCG-vaccinated indi-
viduals showed elevated Th1 and Th17 immune 
responses (Kleinnijenhuis et al. 2014). However, 
M. tuberculosis H37Rv strain was able to signifi-
cantly enhance the expression of TLR4, TNF-α, 
and scavenger receptors in neutrophils when 
compared to mycobacterial vaccine strains (Hilda 
et al. 2012). The importance of TLR4 in protect-
ing mice from TB infection is controversial. 
TLR4-mutant mice were observed to be more 
susceptible to pulmonary TB than wild-type 
mice, and had a reduced capacity to produce 
IFN-γ (Branger et al. 2004). After infection with 
M. tuberculosis, TLR4-mutant mice were 
observed to have lower pulmonary expression of 
TNF-α, IL-12p40, and monocyte chemoattrac-
tant protein 1, compared with the wild-type con-
trols (Abel et  al. 2002). In mice, cooperation 
between TLR4- and TLR2-dependent signalling 
is critical in macrophage apoptosis induced by M. 
tuberculosis infection, with the absence of TLR4 
favouring necrosis instead (Sanchez et al. 2010). 
However, there are studies that report no signifi-
cant difference in protection to M. tuberculosis 
infection between wild-type and TLR4-mutant 
mice (Shim et  al. 2003; Gopalakrishnan et  al. 
2019). Thus, the precise role of TLR4  in TB 
remains to be fully determined (Reiling et  al. 
2002; Shim et al. 2003).

It is well known that TLR9 recognizes bacte-
rial DNA, including M. tuberculosis DNA, with 
TLR9 signalling subsequently activating the 
macrophage pro-inflammatory response and 
induction of T-cell differentiation (Hemmi et al. 
2000; Latz et  al. 2004; Jo et  al. 2007; Rahman 
et  al. 2009). Cooperation between TLR9 and 
TLR2 have a protective role against M. tubercu-
losis infection, with TLR2/TLR9 knockout mice 
showing significantly enhanced susceptibility to 
infection, coupled together with supressed levels 
of IL-12p40 and IFN- γ production (Bafica et al. 
2005). Interestingly, TLR9 knockout mice have 
modest susceptibility to M. tuberculosis infection 
compared to the TLR2/TLR9 double knockout 
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mice (Bafica et  al. 2005). Macrophages, pre- 
treated with vitamin D, were able to significantly 
up-regulate TLR9 expression, which boosted the 
pro-inflammatory response to DNA from differ-
ent evolutionary lineages of M. tuberculosis 
(Cervantes et al. 2019). TLR9 genetic polymor-
phisms in the human population may be linked to 
susceptibility to TB. In a meta-analysis of 1745 
scientific articles, a single TLR9 polymorphism 
(rs352139) was identified that may be associated 
with decreased TB risk in Indonesians individu-
als, whilst increased risk in Mexican individuals 
(Chen et al. 2015). In a study of Vietnamese indi-
viduals, two further polymorphisms were identi-
fied, with the first (rs352142) strongly associated 
with meningeal TB, and the second (rs352143) 
associated with pulmonary TB (Graustein et  al. 
2015). Another single-nucleotide polymorphism 
(rs187084) has been associated with susceptibil-
ity to pulmonary TB amongst an Indian tribe 
(Bharti et al. 2014).

Other TLRs that may have a significant role in 
TB include TLR7 and TLR8. The upregulation of 
TLR7 was observed to eliminate intracellular M. 
tuberculosis through autophagy (Bao et al. 2017). 
TLR7  in M. tuberculosis infected macrophages 
was upregulated and this also increase viability 
of infected host cells, whilst down-regulation of 
TLR7 decrease cell viability (Bao et  al. 2017). 
Furthermore, the autophagosome was signifi-
cantly increased in the M. tuberculosis-infected 
macrophages after upregulation of TLR7, but in 
contrast, the autophagosome was not observed in 
macrophages following down-regulation of 
TLR7 (Bao et  al. 2017). Interestingly, TLR8 
expression is also upregulated in M. bovis BCG 
infected THP-1 macrophages (Davila et al. 2008), 
whilst TLR8 expression is significantly upregu-
lated in pulmonary TB patients during the acute 
phase of disease (Davila et  al. 2008). Genetic 
polymorphisms in TLR7 and TLR8 genes are 
associated with increased susceptibility to M. 
tuberculosis infection as a result of impaired 
phagocytosis and TLR signalling (Davila et  al. 
2008; Lai et al. 2016).

The overall role of TLRs in TB pathogenesis 
and protection is complex. TLR-mediated signal-
ling in TB results in an inflammatory and protec-
tive immune response, instead of a M. tuberculosis 

LAM-(host receptor)-mediated signalling involv-
ing C-type lectins such as MR and DC-SIGN, 
which tends to result in a more anti-inflammatory 
and suppressive immune response (Kaufmann 
and Schaible 2003). Furthermore, M. tuberculo-
sis ManLAM, which is predominantly recog-
nised by MR and DC-SIGN, results in an 
anti-inflammatory response and is not recognized 
by any TLR, suggesting that the type of cap mod-
ification on the LAM antigen has an important 
effect on the downstream immune response 
against mycobacterial infection (Quesniaux et al. 
2004). An optimum IFN-γ secretion in M. tuber-
culosis infection requires crosstalk between 
TLR2, TLR4 and MR (Mukhopadhyay et  al. 
2004).

5  Other PRRs 
and Mycobacteria

5.1  Dendritic Cell-Associated 
C-Type Lectin (Dectin)

5.1.1  Dectin-1
Dectin-1, coded by the CLEC7 gene, is a non- 
TLR PRR and a type II transmembrane receptor 
involved in cellular activation; it is expressed on 
macrophages, dendritic cells, neutrophils, eosin-
ophils, B cells, and mast cells in the lung (Brown 
2006). Dectin-1 tends to target β-glucans on fun-
gal pathogens but can also interact with M. tuber-
culosis, although its specific mycobacterial 
ligands are not known. During the recognition of 
fungal ligands, Dectin-1 can induce production 
of cytokines/chemokines, intracellular killing, 
phagocytosis, and DC maturation (Brown 2006) 
(Fig.  9.3). Downstream signalling by Dectin-1 
occurs via Spleen tyrosine kinase (Syk)-
dependent or -independent mechanisms involv-
ing several transcription factors (e.g. NF-κB, 
MAPK, NFAT, IRF1, IRF5) and the intracellular 
sensor NOD-, LRR- and pyrin domain- containing 
protein 3 (NLRP3), central to the NLRP3 inflam-
masome (Kerrigan and Brown 2011; Dambuza 
and Brown 2015). Dectin-1 can also associate 
with TLR2 when recognising several 
 mycobacteria facilitating the production of pro- 
inflammatory cytokines (Yadav and Schorey 
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2006; Shin et  al. 2008; Romero et  al. 2016). 
Dectin-1 is necessary for the TLR2-dependent 
production of TNF-α, IL-6, RANTES, and 
GM-CSF by murine macrophages infected with 
non-pathogenic mycobacteria (M. tuberculosis 
H37Ra, M. smegmatis and M. bovis BCG), but 
not for M. tuberculosis H37Rv (Yadav and 
Schorey 2006). In DCs derived from TLR2−/− 
mice, M. tuberculosis- induced IL-12p40 was 
dampened by inhibition of Dectin-1 by laminarin 
and by the inhibition of Syk (Rothfuchs et  al. 
2007). Similarly, enhanced phagocytosis and 
expression of Dectin-1, Src kinase, and induction 
of ROS occurs via TLR2  in M. tuberculosis-
infected human lung epithelial cells (Lee et  al. 
2009b). M. tuberculosis-induced ROS production 
in human DCs occurs via Dectin-1 associating 
with TLR2 (Romero et  al. 2016). M. 
tuberculosis:Dectin-1 interaction also appears to 
be the key in inducing Th1/Th17 responses in 
human monocyte derived DCs, but is inhibited by 
MR and Dendritic Cell-Specific Intercellular 
adhesion molecule-3-Grabbing Non-integrin 
(DC-SIGN) co-expression in the cell (Zenaro 
et al. 2009). In human PBMCs, M. tuberculosis 
induction of Th17 responses is mediated by 
Dectin-1 and TLR4, but not TLR2, with IL-17A 
production requiring the IL-1 pathway (Van De 
Veerdonk et al. 2010). Thus, Dectin-1 plays a role 
in the innate immune response against M. tuber-
culosis. However, in knockout (Dectin-1−/−) 
mice, there does not seem to be a difference in 
survival to M. tuberculosis infection compared to 
wild type animals (Marakalala et  al. 2011). 
Although a genetic deficiency resulting in a trun-
cated Dectin-1 has been associated with suscepti-
bility to several fungal infections (Rosentul et al. 
2011; Sainz et  al. 2012), no polymorphisms in 
the Dectin-1 gene have been reported to be 
involved in TB susceptibility.

5.1.2  Dectin-2
Dectin-2, coded by the Clec4n gene, is also a 
CTLR similar in structure to Dectin-1, composed 
of an N-terminal cytoplasmic domain, a trans-
membrane domain, and a C-terminal extracellu-
lar Ca2+- dependant CRD region (Ariizumi et al. 
2000; Kanazawa et  al. 2004; Sato et  al. 2006). 
Dectin-2 is predominantly expressed in the lungs, 

but its expression has also been reported in spleen 
and lymph tissues and on DCs, monocytes, mac-
rophages and B cells (Kanazawa et  al. 2004; 
Sancho et al. 2012). Dectin-2 acts as an adaptor 
molecule recognising the γ-chain of Fc receptor 
triggering the activation of cells (Sato et  al. 
2006). Dectin-2 expression can be influenced by 
different ligands, with its CRD region targeting 
mannose residues (Gavino et  al. 2005; Taylor 
et al. 2005; Mcgreal et al. 2006). Moreover, solu-
ble recombinant Dectin-2 has been reported to 
bind to M. tuberculosis (Mcgreal et al. 2006) via 
ManLAM,  although dectin-2 does not bind 
mycobacteria lacking mannose-capped LAM 
(Yonekawa et  al. 2014; Decout et  al. 2018) 
(Fig.  9.3). Expression of Dectin-2 on macro-
phages is upregulated by TNF (Decout et  al. 
2018). Dectin-2 elicits pro- and anti- inflammatory 
cytokine production (e.g. IL-6, TNF-α, MIP-2, 
IL-2, and IL-10) in bone marrow-derived DCs 
and seems to be important for DC maturation and 
IL-17 secretion (Yonekawa et  al. 2014). This 
effect of ManLAM was completely negated in 
Clec4n−/− bone marrow-derived DCs, whilst 
Clec4n−/− mice infected with M. tuberculosis 
showed significantly greater lung pathology than 
wild-type mice (Yonekawa et al. 2014). To date, 
no polymorphisms in the human population have 
been described in the Clec4n gene that are linked 
to TB susceptibility. Thus, the role of Dectin-2 
receptor in TB pathogenesis remains intriguing.

5.2  Macrophage-Inducible C-Type 
Lectin (Mincle)

The Macrophage-inducible C-type lectin 
(Mincle), coded by the CLEC4E gene, is a PRR 
that is found on the surface of macrophages, 
myeloid DCs, monocytes, neutrophils, and cer-
tain B cells and binds to several target PAMPs 
(e.g. mannose and fucose, among others) (Lee 
et  al. 2011; Kerscher et  al. 2013). Mincle is 
an LPS inducible transcriptional target in macro-
phages and is able to stimulate pro-inflammatory 
cytokines via the Syk-CARD9 pathway 
(Matsumoto et  al. 1999; Yamasaki et  al. 2008; 
Schoenen et al. 2010) (Fig. 9.3). Mincle can bind 
to trehalose dimycolate (cord factor), a key com-
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ponent of the mycobacterial cell wall that has 
also been implicated in lung granuloma forma-
tion in mice (Ishikawa et  al. 2009). Trehalose 
dimycolate can inhibit phagosome maturation, 
promoting intracellular persistence and interfer-
ing with antigen presentation (Spargo et al. 1991; 
Actor et  al. 2002; Indrigo et  al. 2003; Hunter 
et al. 2006; Axelrod et al. 2008). Mincle, being a 
key receptor for the trehalose dimycolate, regu-
lates Th1/Th17 responses in mice (Schoenen 
et al. 2010). In neutrophils, trehalose dimycolate- 
induced Mincle signalling increased cell adher-
ence (important in early stages of granuloma 
formation), CR3 (CD11b/CD18) expression, 
together with TLR2 activation leading to reactive 
oxygen species and TNF-α production (Lee et al. 
2012). Mincle−/− mice had impaired immune 
responses when challenged by aerosol M. tuber-
culosis, and exhibited increased inflammation 
and mycobacterial load than wild-type mice (Lee 
et  al. 2012). Neutrophil depletion (using anti- 
Ly6G antibody) showed inhibition of IL-6 and 
MCP-1 (monocyte chemotactic protein-1) fol-
lowing trehalose dimycolate treatment, thus 
reducing immune cell recruitment (Lee et  al. 
2012). Therefore, Mincle may modulate neutro-
phils during the early stage of mycobacterial 
infection. However, another study concluded that 
Mincle was not essential for controlling M. tuber-
culosis; Mincle−/− mice could still form granulo-
mas, had Th1 and Th17 responses, and a similar 
mycobacterial burden after aerosol infection to 
wild-type mice (Heitmann et al. 2013). Another 
study using Mincle−/− mice found that inocula-
tion of mycobacteria (M. bovis BCG) intrave-
nously, rather than intratracheally, resulted in 
higher mycobacterial burden in the lungs and 
other tissues, suggesting Mincle may play a 
greater role in systemic mycobacterial infection 
(Behler et  al. 2012). Interestingly, in Mincle−/− 
mice, DCs induced Th1 responses in the spleen, 
but not in the liver, suggesting a role in systemic 
mycobacterial infection (Behler et al. 2015). The 
interaction of Mincle with trehalose dimycolate 
and M. bovis BCG can also promote anti- 
inflammatory IL-10 but conversely alter pro- 
inflammatory IL-12p40 secretion from murine 

bone-derived macrophages in vitro (Patin et  al. 
2016).

Mincle recognises trehalose-6,6-dibehenate 
(TDB) (a synthetic analogue of trehalose dimy-
colate), which is involved in NLRP3 inflamma-
some activation and Myd88-dependent Th1 and 
Th17 responses through IL-1R-signalling in mice 
bone-derived DCs (Desel et al. 2013; Schweneker 
et  al. 2013; Shenderov et  al. 2013). Mincle 
appears to be a crucial switch for macrophages to 
shift from cytokine expression to high nitric 
oxide (NO) production. Mincle can have dual 
functions in mycobacterial infection: 1) having a 
stimulatory role on TLR-mediated transcription, 
and 2) enhancing the translation of key genes 
required for NO synthesis, thus in the promotion 
NO production and subsequent resolution of 
inflammation and the granuloma (Lee et  al. 
2016b). In fact, in resting murine macrophages, 
Mincle is expressed at low levels but is upregu-
lated by LPS (a TLR ligand), leading to Myd88- 
dependent NO production (Matsumoto et  al. 
1999; Schoenen et  al. 2014; Kerscher et  al. 
2016a). Together with TLR4, Mincle has been 
reported to induce autophagy through Myd88, 
which facilitates M. tuberculosis intracellular 
growth (Pahari et al. 2020).

Much of the above data on Mincle has come 
from the mouse model of M. tuberculosis infec-
tion, but there are several studies that show simi-
lar immune responses in humans. Human antigen 
presenting cells have a similar response to treha-
lose dimycolate/TDB, inducing various cyto-
kines via Syk-signalling (Ostrop et  al. 2015), 
whilst the CRDs of human and mouse Mincle are 
similar in structure, having comparable affinity to 
trehalose dimycolate, but not other mycobacte-
rial ligands (Rambaruth et al. 2015; Richardson 
et al. 2015; Van Der Peet et al. 2015). The down-
stream signalling resulting from trehalose 
dimycolate- Mincle interaction seems to be more 
complex. A recent study used quantitative phos-
phoproteome analysis and showed substantial 
reprogramming of macrophages by trehalose 
dimycolate and revealed both Mincle-dependent 
and Mincle-independent signalling mechanisms 
(Hansen et al. 2019).
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There have been a few reports of genetic poly-
morphisms in the CLEC4E gene and susceptibil-
ity to TB in the human population. In one study in 
South African, 4 SNPs (rs10841845, rs10841847, 
rs10841856 and rs4620776) were described in the 
CLEC4E gene, but no association was found with 
TB susceptibility (Bowker et al. 2016). However, 
two of the SNPs in CLEC4E (rs10841845 and 
rs10841847) described earlier, were found to be 
associated with increased individual protection 
against pulmonary TB in the northern Chinese 
population (Kabuye et  al. 2019). Furthermore, 
SNP rs10841847  in the CLEC4E gene was also 
associated with pulmonary TB risk in a study 
population from Guinea-Bissau (West Africa) 
(Olvany et al. 2020).

Mincle remains a fascinating PPR and its 
involvement in tuberculosis pathogenesis remains 
to be fully elucidated. Further studies are needed 
on Mincle’s involvement with genetically diverse 
M. tuberculosis strains, other mycobacterial 
ligands and in resolving the complex Mincle- 
dependent and Mincle-independent intracellular 
pathways that can be elicited in immune cells.

5.3  Macrophage C-Type Lectin 
(MCL)

Macrophage C-type lectin (MCL; also known as 
Clecsf8, Dectin-3 and CD368) is a membrane- 
bound PRR coded by the CLEC4D gene. First 
described in mice (Balch et al. 1998), MCL was 
subsequently characterised in humans as a type II 
membrane glycoprotein composed of an 
N-terminal cytoplasmic region lacking the con-
sensus signalling motifs and an extracellular 
C-terminal region with a single CRD (Arce et al. 
2004). MCL is commonly expressed on myeloid 
cells but it is also found on neutrophils, mono-
cytes and DCs (Graham et  al. 2012). MCL 
expression is downregulated upon DC maturation 
or monocyte/macrophage differentiation 
(Graham et al. 2012). The CLEC4D gene is prox-
imal to the CLEC4E gene, and thus, the MCL 
gene may have originated from Mincle gene 
duplication. Like Mincle, MCL can also bind to 
trehalose dimycolate (but with lower affinity) as 

well as some fungal species (Arce et  al. 2004; 
Miyake et al. 2013; Zhu et al. 2013) (Fig. 9.3).

The expression of MCL and Mincle are co- 
regulated, induced via Myd88 (Lobato-Pascual 
et  al. 2013; Miyake et  al. 2015; Kerscher et  al. 
2016a). Thus, MCL is closely linked with Mincle 
function, with the FcRγ region of MCL being 
essential for inducing Mincle expression upon 
binding to trehalose dimycolate (Graham et  al. 
2012). Furthermore, MCL cross-linking can lead 
to initiation of phagocytosis, intracellular respi-
ratory burst, and cytokine secretion via Syk- 
signalling (Graham et al. 2012). In contrast, MCL 
knockout mice (Clec4d−/−) have compromised 
trehalose dimycolate-induced responses, cyto-
kine production and a reduced ability to form 
granulomas (Miyake et  al. 2013; Zhao et  al. 
2014). An alternative idea is that MCL and 
Mincle do not co-associate, but instead, MCL’s 
function is to induce initial Mincle expression 
(Zhao et al. 2014).

MCL appears to be a key, non-redundant PRR 
in anti-mycobacterial immunity; MCL knockout 
mice (Clec4d−/−) show significantly higher myco-
bacterial loads and increased mortality after M. 
tuberculosis infection (Wilson et al. 2015), con-
comitant with enhanced pulmonary inflammation 
and neutrophil recruitment (Wilson et al. 2015). 
Phagocytes derived from MCL knockout mice 
show impaired phagocytosis of mycobacteria, 
but this defect is restored when MCL-opsonized 
mycobacteria are challenged (Wilson et al. 2015).

A single genetic polymorphism (rs4304840) 
in MCL in humans (Indonesian cohort) has been 
associated with an increased susceptibility to pul-
monary TB (Wilson et al. 2015). MCL seems to 
play a central role, together with Mincle, in the 
protective anti-mycobacterial immune response.

5.4  Dendritic Cell-Specific 
Intercellular Adhesion 
Molecule-3-Grabbing Non- 
integrin (DC-SIGN)

DC-SIGN (encoded by CD209 gene; Geijtenbeek 
et al. 2000) is a type II transmembrane receptor 
expressed predominantly on some macrophages 
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(alveolar), DCs (myeloid) cells and activated B 
lymphocytes (Rappocciolo et  al. 2006; Lugo- 
Villarino et  al. 2011). DC-SIGN recognizes 
PAMPs such as N-linked high-mannose and 
branched fucosylated residues. DC-SIGN has a 
key role in the clearance of microbial infections, 
but conversely, pathogens can also manipulate 
DC-SIGN to alter DCs in their favour for their 
survival. DC-SIGN is made up of four domains: 
the N-terminal cytoplasmic domain, transmem-
brane domain, extracellular domain comprising 
the neck region, and a single C-terminal CRD 
(Garcia-Vallejo and Van Kooyk 2013).

DC-SIGN is a PRR for several microbes, most 
notably HIV-1 (Curtis et  al. 1992; Geijtenbeek 
et  al. 2002), but can also bind to bacterial and 
fungal species (Van Kooyk and Geijtenbeek 
2003). DC-SIGN recognises and binds the 
ManLAM from M. tuberculosis (Appelmelk 
et al. 2003; Maeda et al. 2003), and enhances the 
internalization of both M. bovis BCG and M. 
tuberculosis (Geijtenbeek et  al. 2003; Tailleux 
et al. 2003). Interestingly, mycobacteria are able 
to subvert DC-SIGN function by altering TLR- 
mediated activation of DCs. Mycobacteria are 
strong inducers of the Th1 response and can also 
facilitate the expression of downstream co- 
stimulatory molecules and cytokines (e.g. IL-12) 
by DCs via TLR2 and TLR4 PRRs (Nigou et al. 
2001). Despite alveolar macrophages being the 
predominate targets of mycobacteria in the lungs, 
the role of DCs is becoming increasingly key in 
understanding the pathogenesis of TB since DCs 
expressing DC-SIGN are present in the airway 
mucosa and interstitial sites of the respiratory 
system (Soilleux et al. 2002; Tailleux et al. 2003).

The importance of DC-SIGN in TB pathogene-
sis is also shown in several studies involving trans-
genic mice. In fact, mice have eight different 
DC-SIGN homologues (SIGNR1-8). Gene knock-
out studies have shown that SIGNR3 (the most 
similar to human DC-SIGN) has a key role in resis-
tance to early M. tuberculosis infection (Tanne et al. 
2009; Tanne and Neyrolles 2010; Lugo-Villarino 
et al. 2011). Furthermore, transgenic mice express-
ing human DC-SIGN showed decreased pathology 
and prolonged survival following mycobacterial 
infection (Schaefer et al. 2008).

Capped ManLAM is the main PAMP for 
DC-SIGN (Geijtenbeek et  al. 2003; Kaufmann 
and Schaible 2003; Maeda et al. 2003). DC-SIGN 
does not bind to non-capped LAM (AraLAM), 
which is present on fast-growing mycobacterial 
species (M. smegmatis, M. fortuitum and M. che-
lonae) (Geijtenbeek et  al. 2003; Tailleux et  al. 
2003). DC-SIGN appears to be the main DC 
receptor for mycobacteria (Geijtenbeek et  al. 
2003); competitive inhibition using anti-DC- 
SIGN antibodies inhibited M. bovis BCG and 
ManLAM binding by 80% (Geijtenbeek et  al. 
2003). DC-SIGN also binds to other mycobacte-
rial PAMPs (mannosylated and α-glucan cell 
wall components, and PIMs). However, myco-
bacteria can be phagocytosed by DCs in a non- 
DC- SIGN dependent manner, showing a degree 
of redundancy in the host–pathogen interaction 
(Gagliardi et  al. 2005; Pitarque et  al. 2005; 
Appelmelk et  al. 2008; Driessen et  al. 2012; 
Geurtsen 2009 #972).

DC-SIGN-mediated DC responses requires 
prior activation of NF-κB via TLR signalling 
(Geijtenbeek and Gringhuis 2009; Gringhuis 
et  al. 2009; Sancho et  al. 2012; Garcia-Vallejo 
and Van Kooyk 2013), whilst several different 
PAMPs can trigger a variety of intracellular sig-
nalling from DC-SIGN (Gringhuis et  al. 2009; 
Sancho et  al. 2012) (Fig.  9.3). DC-SIGN- 
ManLAM interaction results in Raf-1 phosphory-
lation and then phosphorylation of transcription 
factor NF-κB, inducing cytokine production (e.g. 
IL-12, IL-10, IL-6, and CXCL8) and other co- 
stimulatory molecules (e.g. CD80, CD83 and 
CD86) (Gringhuis et al. 2007, 2009). Infection of 
immature monocyte-derived DCs by M. tubercu-
losis facilitated the maturation of DCs, producing 
TNF-α, IL-1β, IL-6, and IL-23, and stimulated 
CD4+ T cells to produce IFN-γ and IL-17 (Zenaro 
et  al. 2009). Furthermore, DC-SIGN interferes 
negatively with the pro-inflammatory responses 
and control of M. tuberculosis intracellular 
growth in human macrophages mediated by 
Dectin-1 (Lugo-Villarino et al. 2018).

In immature DCs, internalisation of M. tuber-
culosis via ManLAM-DC-SIGN interaction 
results in the pathogen being directed to the late 
endosomes/lysosomes and suppression of LPS- 
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induced IL-12 secretion (Nigou et  al. 2001). 
ManLAM-DC-SIGN interaction on immature 
DCs also interferes with TLR4 signalling, since 
LPS binding and signalling is via TLR4 (Akira 
et  al. 2001). M. tuberculosis interferes between 
the balance of TLR signalling (DC maturation 
and inflammation) and DC-SIGN signalling 
(inhibition of DC maturation and immunosup-
pression) (Nigou et  al. 2001; Engering et  al. 
2002a, b; Geijtenbeek et  al. 2003). Both M. 
tuberculosis-infected DCs and macrophages can 
secrete the ManLAM that can bind to DC-SIGN 
on other proximal DCs (Sada et  al. 1990; 
Chatterjee and Khoo 1998); this interferes with 
the TLR-signalling, inhibiting DC maturation 
and inducing anti-inflammatory IL-10 cytokine 
production (Tsuji et al. 2000; Geijtenbeek et al. 
2003). Thus, M. tuberculosis is able to modulate 
the DC response to immune suppression to facili-
tate its intracellular survival (Fortsch et al. 2000; 
Jiao et al. 2002).

Two genetic polymorphisms have been 
reported in the DC-SIGN promoter region 
(-336A/G and -871A/G) but it is unclear as to 
their effect on TB susceptibility. The polymor-
phism -336G results in reduced expression of 
DC-SIGN, which also correlates with the sever-
ity of dengue disease (Despres et al. 2005). In a 
meta-analysis study, polymorphisms (-336A/G, 
-871A/G) were found not to substantially con-
tribute to TB susceptibility, except that the geno-
type -336G/G might be associated with increased 
TB susceptibility for the Asians population 
(Chang et  al. 2012). In another meta-analysis 
study, the -871A/G polymorphism was associ-
ated with decreased susceptibility to pulmonary 
TB, whilst the -336A/G polymorphism was asso-
ciated with increased susceptibility of pulmonary 
TB in the Asian population (Yi et  al. 2015). 
However, an additional polymorphism (-139G/
A) was not found to be associated with suscepti-
bility to pulmonary TB (Yi et al. 2015). Moreover, 
two other genotypes (-871G and -336A) seem to 
be associated with protection against TB and may 
have an increased frequency in non-African pop-
ulations, possibly due to host genetic adaptation 
as a result of longer history of exposure to M. 
tuberculosis (Barreiro et al. 2006). In the Russian 

population, −336A genotypes were more sensi-
tive to infection with an M. tuberculosis lineage 2 
(Beijing/W) strain, whilst those with the -336G 
genotype and M. tuberculosis lineage 2 genotype 
had increased frequency of death due to pulmo-
nary TB (Ogarkov et al. 2012).

DC-SIGN plays a key role in host-pathogen 
interactions in TB.  Whether DC-SIGN plays a 
protective role for the host, or is manipulated by 
the M. tuberculosis to circumvent immune 
responses needs further  study. Further data is 
needed from GWAS as to the genetic susceptibil-
ity to TB from CD209 polymorphisms in the 
human population. Further studies are  also 
required that investigate the interaction of 
DC-SIGN with different phylogeographic lin-
eages of M. tuberculosis strains.

5.5  NOD-like Receptors (NLRs)

NOD-Like Receptors (NLRs) are a large family 
of intracellular PRRs that contain a nucleotide 
binding oligomerization domain (NOD). 
Structurally, NLRs have a variable N-terminal 
interaction domain, a central NACHT domain 
(NTPase domain that is evolutionarily con-
served), and a C-terminal leucine-rich repeat 
domain (Fritz et  al. 2006; Werts et  al. 2006; 
Franchi et  al. 2008) (Fig.  9.3). NLRs are cyto-
solic sensors that tend to target bacterial cell wall 
components such as peptidoglycan (containing 
N-acetylglucosamine and N-acetylmuramic acid) 
and muramyl dipeptide (MDP) (Girardin et  al. 
2003a, b; Chen et al. 2009; Franchi et al. 2009). 
Some NLRs have an amino-terminal caspase 
recruitment domain (CARD), which is critical to 
initiate NF-κB signalling, resulting in the release 
of pro-inflammatory cytokines (e.g. IL-1β, IL-6, 
TNF-α, and IL-8), antimicrobial peptides 
(β-defensin 2), other chemokines, NO and 
 upregulation of adhesins (Darcissac et al. 1996; 
Heinzelmann et al. 2000; Chin et al. 2002; Guo 
et  al. 2006; Kramer et  al. 2006; Uehara et  al. 
2007). Some of the most prominent members 
involved in innate immune detection of M. tuber-
culosis in the cytosol are NOD1, NOD2, NLRP3 
and NLR family CARD domain containing 4 
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(NLRC4). This stems from the ability of M. 
tuberculosis to escape from phagosomes into 
macrophage cytosol via the early secretory anti-
genic target-6 (ESAT-6) secretion system-1 
(ESX-1) mechanism (Simeone et  al. 2012). 
NOD2−/− knockout mice have impaired resis-
tance to M. tuberculosis infection because of 
decreased production of type 1 cytokines and 
reduced recruitment of CD8+ and CD4+ T cells; 
there is a higher bacterial burden in the lungs, 
6 months after infection than wild-type controls 
(Divangahi et al. 2008). MDP treatment of AMs 
also activates NOD2, which enhances the control 
of intracellular growth of M. tuberculosis and the 
release of TNF-α, IL-6 and bactericidal LL37 
(Juarez et al. 2012). Furthermore, an increase in 
autophagy proteins (e.g. IRGM, LC3 and 
ATG16L1) was observed in the mycobacteria- 
containing autophagosome, suggesting a PRR- 
dependent mechanism for autophagy activation 
(Juarez et al. 2012). The CARD9 domain plays a 
central role in NOD2-mediated activation of p38 
and JNK signalling during innate immune 
responses to intracellular pathogens (Hsu et  al. 
2007). NOD2 can act in synergy with TLR2 to 
induce inflammatory cytokines during M. tuber-
culosis infection, and this synergism is lost in 
mononuclear cells defective in either TLR2 or 
NOD2, suggesting a non-redundant recognition 
mechanisms (Ferwerda et  al. 2005). Similarly, 
NOD2 and TLR4 also work synergistically in 
stimulating the activity of DCs, enhancing T cell 
recruitment by inducing autophagy and bolster-
ing IL-12p40/70, IL-6, IFN-γ and CD40, CD80 
and CD86 co-stimulatory molecules (Khan et al. 
2016b). Activating DCs through NOD2 and 
TLR4 restricts M. tuberculosis intracellular sur-
vival through strong release of cytokines, nitric 
oxide, autophagy and enhanced DC migration to 
lymph nodes (Khan et al. 2016a). NOD1 seems 
to co-operate with NOD2 or TLRs to produce 
cytokines (IL-6 and IL-1β) in bone-marrow 
derived macrophages in response to M. tubercu-
losis infection (Lee et  al. 2016a). Similarly, 
NOD1 is involved in AM and MDM innate 
responses, which include pro-inflammatory cyto-
kines (e.g. IL-1β, IL-6, IL-8, and TNF-α) and 

autophagy (Juarez et  al. 2014). Intriguingly, an 
approach using adjunct therapy (with ligands of 
NOD2 and TLR4) to treat M. tuberculosis- 
infected mice in conjunction with isoniazid, 
improved drug efficacy against M. tuberculosis 
(Khan et al. 2016a). A therapeutic role for NOD-2 
has also be suggested in augmenting T cells 
responses to M. tuberculosis infection (Pahari 
et al. 2017).

ESAT-6 is a potent activator of the NLRP3/
ASC inflammasome and NLRs and CARD pro-
teins play a central role in IL-1β secretion during 
M. tuberculosis infection, via an NLRP3, ASC 
and caspase-1 infection-inducible inflammasome 
complex (Mishra et  al. 2010). Mycobacterial 
PPE13 triggers the inflammasome-response in 
macrophages, by binding to the LRR and NATCH 
domains of NLRP3 via its MPTR domain (Yang 
et al. 2020). In DCs, PPE60 was observed to acti-
vate the NLRP3 inflammasome, followed by 
caspase-1-dependent IL-1β and IL-18 synthesis 
(Su et  al. 2018). However, NLRP3 may not be 
essential for survival in the early stages of M. 
tuberculosis infection or in granuloma formation 
(Allen et al. 2010; Mcelvania Tekippe et al. 2010; 
Walter et al. 2010).

Mutations in the NLR genes suggest their 
importance in protection against several micro-
bial infections, granulomatous inflammatory dis-
orders and inflammatory bowel disease (e.g. 
Crohn’s disease) (Hugot et  al. 2001; Miceli- 
Richard et al. 2001; Ogura et al. 2001). Several 
polymorphisms in NLR genes linked to TB sus-
ceptibility have been reported. Two polymor-
phism in the NOD1 gene (rs751770147 and 
chr7:30477156(T)) are associated with TB pro-
gression in the Ethiopian population (Mekonnen 
et  al. 2018). Three polymorphisms (Pro268Ser, 
Arg702Trp, and Ala725Gly) in the NOD2 gene 
are significantly associated with TB disease in 
African-American subjects in the USA (Austin 
et al. 2008). Another polymorphism (Arg587Arg) 
in the NOD2 gene has been associated with TB 
susceptibility in the Chinese population but not in 
the Uyghur and Kazak populations (Zhao et  al. 
2012). In a recent meta-analysis of NOD2 poly-
morphisms, no significant association was found 
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between the Arg587Arg polymorphisms and TB 
risk; however, Arg702Trp polymorphism was 
found to be likely associated with protection 
against TB (Wang et  al. 2013). For NLRP3, a 
single polymorphism (rs34298354) was associ-
ated with protection against TB (Liu et al. 2020). 
A single polymorphism (Q705K) in the NLRP3 
gene was associated with poor TB treatment out-
come in the Ethiopia population (Abate et  al. 
2019). Interestingly, in TB/HIV patients from 
Botswana, a NLRP3 polymorphism (rs10754558-
 G) was associated with an increased risk for early 
mortality after starting initiating anti-retroviral 
therapy (ART), suggesting that these patients 
may benefit from interventions that decrease 
inflammasome-mediated inflammation 
(Ravimohan et al. 2018).

NLRs have given significant insight into the 
innate immune recognition of M. tuberculosis in 
the cytosol. The role of the inflammasome in pro-
tection/pathogenesis is unclear and its activation 
may be triggered by M. tuberculosis as a means 
of latent infection.

5.6  Mannose Receptor (MR)

Mannose receptor (MR; CD206), coded for by the 
MRC1 gene, is a type I transmembrane glycopro-
tein of 165 kDa made up of a C-terminal cytoplas-
mic domain containing a tyrosine-based motif 
and three types of extracellular domains (an 
N-terminal cysteine-rich R-type domain, a fibro-
nectin type II repeat (FNII), and eight consecutive 
CRDs) (Taylor et al. 1990; Stahl and Ezekowitz 
1998). MR is mainly expressed on the surface of 
macrophages (particularly AMs), monocyte-
derived DCs and other cells (e.g. non- vascular 
endothelial cells) (Martinez-Pomares 2012). MR 
is also commonly found in intracellular mem-
branes; only 10–30% is constitutively expressed 
at the cell surface, which reflects its role in recy-
cling and internalization (Schweizer et al. 2000). 
MR is unique in that its multiple CRDs recognise 
different PAMPs. The R-type domain can bind to 
glycans (without the need for Ca2+) (Leteux et al. 
2000), whilst the FNII domain binds to collagens 

(Martinez-Pomares et  al. 2006). MR is able to 
bind to mannose via CRDs 4 to 8, with CRD4 
having the primary preference for terminal man-
nose-containing glycoconjugates, fucose, and 
N-acetylglucosamine, but less well to glucose 
(Lennartz et al. 1987; Taylor et al. 1990). In con-
trast, CRD5 and CRD7 are involved in binding to 
mannose-containing glycans, whilst CRDs 1 to 3 
seem to pay less of a role in binding sugars (Kery 
et al. 1992; Taylor and Drickamer 1993).

MR recognises complex glycoproteins or gly-
colipids with multiple sugar moieties endoge-
nously and exogenously. MR may interact with 
an additional receptor, or soluble MR (as a result 
of proteolytic cleavage) to facilitate phagocytosis 
(Le Cabec et al. 2005; Martinez-Pomares 2012) 
(Fig.  9.3). Intriguingly, pulmonary TB patients 
with poor prognosis show significantly higher 
levels of serum soluble MR; pathological analy-
sis revealed enhanced levels of soluble MR in the 
lung and pleural tissues with caseating granulo-
mas (Suzuki et al. 2018).

ManLAM is a major ligand for MR and this 
interaction on DCs initiates uptake of the myco-
bacterium, with probable antigen presentation 
via CD1b and the major histocompatibility com-
plex class II (MHC-II) (Prigozy et al. 1997). In 
addition to ManLAM, MR can also bind to PIM, 
lipomannan (LM), and other mannosylated pro-
teins on M. tuberculosis (Schlesinger et al. 1994; 
Diaz-Silvestre et al. 2005; Torrelles et al. 2006). 
MR is a major macrophage phagocytic receptor 
for virulent M. tuberculosis strains (H37Rv and 
Erdman) but not the attenuated strain H37Ra 
(Schlesinger 1993). Additionally, structural dif-
ferences in LAM from different M. tuberculosis 
strains seem to alter adherence during the initial 
interactions with macrophage MR (Schlesinger 
et al. 1996).

Binding and phagocytosis of ManLAM or 
mannosylated beads via MR can inhibit 
phagosome- lysosome fusion, facilitating intra-
cellular persistence of M. tuberculosis 
 (Astarie- Dequeker et al. 1999, 2002; Kang et al. 
2005). In DCs, ManLAM facilitates intracellular 
persistence of M. tuberculosis and M. bovis BCG 
by inhibiting IL-12 responses  via interfering 
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with the LPS-induced signalling from TLR2 
(Nigou et al. 2001). This indicates a cross-link-
ing between MR and TLR2 when binding to 
ManLAM (Nigou et al. 2001). Cross-linking of 
MR using a specific anti-MR monoclonal anti-
body during binding of ManLAM inhibited 
IL-12 production, but also induced the produc-
tion of anti-inflammatory IL-10, IL-1R antago-
nist, and IL-1R type II in DCs (Chieppa et  al. 
2003). A recurring theme during TB host-patho-
gen interaction is the degree of cross-linking 
between various PRR in the recognition of M. 
tuberculosis, via its several PAMPs. In addition 
to TLRs, MR and DC-SIGN co-stimulation 
inhibits Dectin-1-induced Th17 responses, 
whilst enhancing the Th1 responses in M. tuber-
culosis-infected DCs (Zenaro et  al. 2009). In 
macrophages, binding of M. tuberculosis man-
nosylated ligands to MR results in receptor-
mediated signalling mechanisms (modulation of 
cytoskeleton, activation of protein kinases, and 
transcriptional activation by AP-1), leading to 
production of matrix metalloproteinase-9 
(MMP-9) that may contribution to lung tissue 
pathology during TB in vivo (Rivera-Marrero 
et al. 2002). SP-D is able to bind to M. tubercu-
losis and inhibit its MR-mediated uptake by 
macrophages (Ferguson et al. 2002), suggesting 
that SP-D may be masking mycobacterial ligands 
and inhibiting phagocytosis of mycobacteria by 
macrophages. MR may benefit M. tuberculosis 
intracellular persistence; however, in mouse 
models of TB infection, MR does not seem to be 
implicated in determining survival or disease 
severity (Court et al. 2010).

The frequency of a polymorphism of the 
MRC1 gene  (rs34039386), allele G1186A, was 
higher in individuals with pulmonary TB than 
healthy controls (Zhang et  al. 2012), including 
in  the Uygur population (Zhang et  al. 2013a). 
The G1186A polymorphisms (in exon 7 for 
CRD2 of MR) may affect the affinity of MR 
binding to mycobacterial ligands (Zhang et  al. 
2013a). MR is undoubtedly a major phagocytotic 
receptor for M. tuberculosis, but its importance is 
overshadowed by many other PRRs. However, 
entry of M. tuberculosis via MR may be a key 

route for the pathogen to manipulate and circum-
vent the immune response and prolong its intra-
cellular survival.

5.7  CD14

CD14 receptor is a lipid-anchored glycan-linked 
protein lacking transmembrane and cytoplasmic 
domains  and is mainly expressed on myeloid 
monocytic cells. CD14 can bind to M. tuberculo-
sis LAM, resulting in the macrophage production 
of IL-8 (Pugin et al. 1994). CD14 binding of bac-
terial ligands (LPS, lipoteichoic acid and pepti-
doglycan) requires co-interaction with other host 
receptor and cell surface components (TLRs) to 
facilitate phagocytosis, cell activation and cyto-
kine secretion (Dziarski et al. 2000; Kaisho and 
Akira 2000). CD14 has also been shown to medi-
ate uptake of non-opsonised M. tuberculosis by 
microglia cells, suggesting that this may be 
important in the pathogenesis of cerebral TB 
(Peterson et  al. 1995). In AMs expressing high 
levels of CD14, the phagocytosis of M. bovis was 
enhanced (Khanna et  al. 1996); however, M. 
tuberculosis merely up-regulates CD14 expres-
sion in macrophages without mediating phagocy-
tosis (Shams et  al. 2003). M. tuberculosis 
molecular chaperone chaperonin 60.1 protein 
partially activates human peripheral blood mono-
nuclear cells via a  CD14-mediated mechanism 
(Lewthwaite et al. 2001).

In mice, CD14 deficiency seems to be protec-
tive against chronic M. tuberculosis infection by 
supressing inflammatory responses. Mouse bone 
marrow derived macrophages deficient in CD14 
exhibited a significant reduction in TNF-α secre-
tion when infected with M. avium compared to 
controls, but infection of CD14-deficient mice 
with M. avium or M. tuberculosis showed no dif-
ference in controlling mycobacterial infection 
compared to controls (Reiling et al. 2001, 2002). 
However, another study found CD14−/− mice sur-
vive chronic M. tuberculosis infection, although 
their wild type counterparts succumbed to 
 infection due to reduced pulmonary inflamma-
tion (Wieland et al. 2008).
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Soluble CD14, produced from proteolytic 
cleavage of membrane CD14, seems to be signifi-
cantly elevated in patients with pulmonary TB 
(Hoheisel et  al. 1995). A SNP in the promoter 
region (C(−159)T) of the CD14 gene has been 
found to be associated with high levels of soluble 
CD14 and increased probably of developing pul-
monary TB in the Mexican population (Rosas- 
Taraco et al. 2007). In another study, the -159TT 
allele in the CD14 promoter was also signifi-
cantly associated with TB risk in the Korean pop-
ulation, probably from higher promoter activity 
resulting in higher level of soluble CD14, but 
also decreased IFN-γ secretion in individuals 
with this genotype (Kang et al. 2009).

6  Concluding Remarks

The nature of host-pathogen interaction is com-
plex in tuberculosis. At the very heart of this is 
the host receptor-mycobacterial ligand interac-
tion, which is the critical molecular dialogue in 
the early stages of M. tuberculosis infection. 
Understanding this molecular dialogue is pro-
foundly important in determining the infection 
outcome. In vitro studies have proven an essen-
tial first step, but they often only involve one 
receptor-ligand interaction. In vivo, the host- 
pathogen communication is undoubtedly more 
complex involving an array of mycobacteria 
ligands that interact with several host PRRs, both 
soluble and membrane bound. There is indeed 
redundancy in both the mycobacterial ligands 
and host PRRs. In vivo, internalisation of M. 
tuberculosis involves multiple routes of cellular 
entry and crosstalk and co-operation between dif-
ferent PRRs. There seems to be a balance between 
TLR and CTLR entry with TLR often favouring 
a pro-inflammatory response, whereas CTLR 
favouring an anti-inflammatory response. 
Furthermore, the favoured target cell of M. tuber-
culosis (macrophage  or dendritic cell) adds an 
additional layer of complexity. Fully understand-
ing the host-pathogen dialogue in the early stages 
of infection is the ‘holy grail’ in preventing tuber-
culosis, because only then can we devise strate-
gies to fully block mycobacterial interaction and 
entry into human cells.
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1  Introduction

Tuberculosis (TB) remains the major global 
health concern where an estimated 1.7 billion 
people are latently infected with M tuberculosis 
(Mtb) globally, and thus, are at a regular risk of 
developing the disease (World Health 
Organisation (WHO) 2019). For almost a cen-
tury, Mycobacterium bovis bacillus Calmette-
Guerin (BCG) is the only licensed vaccine against 
the world’s leading cause of mortality for TB 
(Kroesen et al. 2019). BCG is an attenuated form 
of M. bovis obtained by 13 years of in vitro serial 
passage before making it capable of providing 
protective immunity to challenge with virulent 
Mtb. As per WHO report, BCG is administered to 
over 100 million people every year. Despite the 
widespread use of BCG, there are an estimated 
ten million cases of TB and 1.5 million deaths 
globally in 2018 (World Health Organisation 

(WHO) 2019). This is due to the inability of BCG 
to induce long term protection, poor efficacy in 
adults and in latent TB infection in spite of its 
booster doses.

Estimates of protection imparted by BCG 
against pulmonary TB vary between 0 and 80%; 
this variability is due to strain variation in BCG 
preparations, host genetic, nutritional and envi-
ronmental aspects (Fine 1995). The burden of this 
communicable disease varies enormously among 
countries; populations and racial groups vary in 
their resistance to TB. Host genetic factors play 
an important role in determining inter-individual 
differences in susceptibility or resistance to TB 
infection. While considering the susceptibility of 
Mtb and establishment of the disease, the anti-
genic virulence of the pathogen is also equally 
relevant acting as a potent immunogen.

BCG often has been found to protect animals 
against secondary infections with Candida albi-
cans and Schistosoma mansoni (Quintin et  al. 
2012; Cheng et al. 2016; Arts et al. 2016). It has 
been suggested that sometimes re-infections as 
well as exposure to microorganisms acting as an 
adjuvant can not only induce specific secondary 
immune response, but also mount non-specific 
response against the same antigen as well as 
another antigen or pathogen. This state of long-
term functional reprogramming of innate immune 
cells due to secondary antigenic challenge is 
termed as ‘trained immunity’ and can be a prom-
ising tool for vaccine development (Netea et al. 
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2020). Innate immune cells were found to 
respond to secondary non-specific diverse anti-
genic challenges such as pathogen-associated 
molecular patterns (PAMPs) and damage-associ-
ated molecular patterns (DAMPs) as if they had a 
memory of it. Trained immunity induces meta-
bolic reprogramming which further influences 
the epigenetic reprogramming of the innate 
immune cells activating cytokine production. A 
future vaccine if designed with proper formula-
tion of microbial antigen with suitable antigenic 
virulence factor to evoke, trained immunity can 
be a promising tool to confer broad protection 
against TB (Ferluga et al. 2020).

This chapter highlights the important factors 
related to susceptibility of TB, antigenic viru-
lence and its importance in vaccine development. 
We also discuss the current status of TB vaccine 
and the recent developments from the existing 
traditional BCG vaccine.

2  Host Genetic Makeup in TB 
Resistance and Susceptibility

Different populations across the globe are at dif-
ferent stages in the pandemic of TB, and thus, the 
implications of genetic and geographical factors 
in determining the prevalence of TB overtime are 
of paramount importance. Host genetic makeup 
plays an important role in determining the differ-
ences in susceptibility among individuals with 
TB in different populations as revealed by studies 
involving twins, candidate gene approaches, 
family-based and genome-wide association 
studies (GWAS) (Hill 2006; Bellamy 2006; 
Takiff 2007; Thye et al. 2010; Thye et al. 2012; 
Mahasirimongkol et  al. 2012; van Tong et  al. 
2017).

Human leukocyte antigen (HLA) alleles and 
differential HLA allele frequencies in distinct 
populations were found to be linked with TB 
susceptibility for HLA–I (A2, B8, B17,B27,B35) 
and HLA-II {DQ β57, DQA1∗0101, DQB1∗ 
0301, -0303, -0304, DQB1∗04 (-0401, -0402), 
DQB1∗0503, -0502, DQB1∗0601, -0602, -0603, 
DR2, DRB1∗04-DQB1∗03, DRB1∗-07,-09,-
12,-13, DRB1∗1302, DRB1∗14-DQB1∗05, 

DRB1∗1501 (DR2), DRB1∗1501-DRB5∗0101 
DQA1∗0103-DQB1∗0601, DRB1∗16, 
DQB1∗05} (Cai et al. 2019). Several HLA class-
II alleles, particularly HLA-DRB1, were found 
to be associated with TB susceptibility in Asian 
population (Harishankar et  al. 2018). Various 
non- HLA genetic markers were also associated 
with TB susceptibility such as toll-like receptors 
(TLR1, TLR2, TLR4, TLR8 and TLR9), killer 
immunoglobulin-like receptor (KIR), vitamin D 
receptor (VDR), solute carrier family 11 mem-
ber 1 (SLC11A1) gene system, mannose recep-
tor (CD206), the nitric oxide synthase 2A 
(NOS2A) gene, the speckled 110 (SP110) gene, 
and the P2X7 receptor (P2X7) gene (Schurr 
2007; Harishankar et al. 2018; Cai et al. 2019).

Polymorphisms in the cytokine gene coding 
region are also the host factors affecting susceptibil-
ity to TB (Cai et al. 2019). Type I interferon have 
been implicated in promoting progressive infection 
with Mtb to some extent by suppressing expression 
of the pro-inflammatory cytokine, IL-1 (Mayer-
Barber et al. 2011). Intron polymorphism of IFN-γ 
+874A/T, “T” allele and “TT” genotype were asso-
ciated with susceptibility with Pakistani population 
but rendered protection to TB in Sicilian and South 
Africa populations (Lio et al. 2002; Rossouw et al. 
2003; Ansari et al. 2009). Polymorphism in cyto-
kine genes for IL-2, IL-4, IL-6, IL-10, IL-12 and 
IL-17 were also associated with TB susceptibility in 
some populations (Harishankar et al. 2018). TNF-α 
playing an important role in the recruitment of 
immune cells during granuloma formation have 
also been found to be associated with TB risk. 
Analyses among ethnicity showed that TNF- 
α -308G/A variant was associated with Asians  
and -238G/A variant in African individuals with 
pulmonary TB (Yi et  al. 2015); in Sicilian and 
Colombian populations protective associations 
were found in TNF-α -308(G/A) and haplotype 
combination of -308A -238G polymprphisms 
(Scola et al. 2003; Correa et al. 2005). Consistent 
with this, in Mtb-infected mice in conjunction with 
IFN-γ, their Mtb lung burden was much reduced, 
suggesting Mtb elimination (Brightbill et al. 1999; 
Aliprantis et al. 1999). IFN-γ produced by T cells or 
NK cells, also induced in macrophages guanosine 
triphosphatases (LRG-47), controlling phagosome 
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maturation and vesicular trafficking of Mtb and 
other microbes, for their disposal (MacMicking 
et al. 2003).

3  Malnutrition, 
Immunometabolism 
and Susceptibility to TB

The host susceptibility to TB is always at a much 
higher risk in disease prevalent areas, owing to 
malnutrition, host genetic makeup, and gender. 
As studied on trained immune memory, gener-
ally, there is a link between energy metabolism 
and epigenetic states which may be perturbed by 
Mtb antigens. Energy metabolism is mainly regu-
lated through aerobic glycolysis, connected to 
intermediates of tricarboxylic cycle, such as ace-
tyl- coA and NAD+/NADH, based on oxidative 
phosphorylation (van der Heijden et  al. 2017; 
Jaenisch and Bird 2003). Acetyl-coA metabolism 
regulation has been linked to histone acetylation, 
through ATP-citrate lyase (Wellen et  al. 2009). 
Studies are now correlating cellular metabolism 
with the functional state of the immune cells 
(Ganeshan and Chawla 2014). The source of 
energy used for metabolic activities varied 
between activated, memory and regulatory T 
lymphocytes (Netea 2011; Netea et al. 2016a 
Arts et al. 2016a). Activated T lymphocytes were 
more dependent on glycolysis and oxidative 
phosphorylation, metabolising glucose to lactate; 
memory T cells on lipid synthesis via mitochon-
drial citrate production and regulatory T lympho-
cytes were dependent mostly on β-oxidation of 
fatty acid (Netea 2011; Netea 2016a Wang et al. 
2011; Donnelly and Finlay 2015; van der Windt 
et  al. 2013; Michalek et  al. 2011; Loftus and 
Finlay 2015; Gerriets and Rathmell 2012). Netea 
et al. have shown Akt/mTOR pathway plays an 
important role in initiating trained immunity cor-
responding with high rate of glycolysis (Netea 
et  al. 2016b*). In a separate study involving 
β-glucan-induced trained immunity, a long-term 
increase in glycolysis was observed which was 
dependent on mTOR/HIF-1α pathway (Cheng 
et al. 2014); at the same time, sirtuin 1 expression 
also decreased in trained monocytes (Netea et al. 

2016a; Cheng et al. 2014). BCG trained immu-
nity exhibited enhanced responsiveness of mono-
cytes and macrophages and a shift of glucose 
metabolism towards glycolysis, found to be cru-
cial for histone modifications and functional 
changes (Arts et al. 2016).

TB has been associated with undernourish-
ment, especially with a shortage of protein 
energy. There is a vicious circle, in that malnutri-
tion raises susceptibility to TB in endemic popu-
lation. Consequently, Mtb infection can reduce 
innate and adaptive immunity effects, and energy 
metabolism, for a secondary immunodeficiency, 
fuelling TB patient consumption state. However, 
such disease spiralling may be reversed in 
patients, suffering with active lung TB, or pre-
ventively, by nutrients supplements. Such treat-
ment may restore their drug sensitivity, and most 
likely, efficacy of clinical BCG and TB vaccine 
(Kant et al. 2015). Adipose tissue versatile hor-
mone leptin, regulating energy metabolism, 
which is low in TB, could also be endogenously 
boosted, or perhaps added to TB therapy (Kant 
et al. 2015).

Normally, neonates are protected from 
pathogens by type 1 innate phagocyte immu-
nity, which overpowers their type 2 tolerance 
in utero against maternal allogeneic antigens. 
Maternal colostrum contains immune activator 
proteins which are important, besides antibod-
ies against pathogen. However, infant suscepti-
bility to TB infection and progression is also 
increased owing to their immunity decline, as a 
consequence of malnutrition. Paediatric TB 
defence mechanism on nutrient-dependence, 
has not been sufficiently studied for a certain 
prediction, and apparently for efficacy of BCG 
as well as other vaccines (Jaganath and Mupere 
2012).

A historic long population cohort study 
linked starvation during development stages in 
utero, and post-partum, with metabolic disor-
ders, and a high diabetes type 2 risk in young 
adulthood, with rural Bangladesh people. This 
was based on genome wide analysis of whole 
blood extracted epigenetic DNA methylation-
changes. Differences were shown in metastable 
epi-alleles, prone to peri-conceptual shortage of 
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food. These findings are in accord with Gambian 
children studies, identifying epithelial tumour 
suppressor VTRNA2-1 gene, as contributor to 
metabolic disease (Finer et al. 2016; Silver et al. 
2015; Tobi et al. 2009).

Nutrient deficiency such as of Vitamin D has 
also been linked with TB susceptibility. 
Monocytes exposed to Mtb show a strong induc-
tion of the 1α-hydroxylase (CYP27B1), an 
enzyme which activates the inactive form 
25-hydroxyvitamin D into circulating biologi-
cally active compound calcitriol (Liu et al. 2006). 
Vitamin D receptor (VDR) polymorphisms 
showed strong relationship with TB in several 
populations. In a study with Han Taiwanese pop-
ulation restriction endonuclease sites for TaqI, 
BsmI variants in VDR and polymorphisms 
rs7041G/T (Asp416Glu) in Vitamin D binding 
protein (VDBP) were significantly associated 
with susceptibility to TB infection (Lee et  al. 
2016). Another study involving Iranian popula-
tion showed strong relationship between vitamin 
D deficiency and TB; in contrast, VDR polymor-
phisms were not associated with susceptibility 
(Rashedi et al. 2014). Association of VDR FokI 
polymorphism with susceptibility to TB was 
found in Asian, but not in African and Caucasian 
populations (Huang et al. 2015). In some cases, 
VDR gene variants such as Cdx-2 and 30UTR 
TaqI which are regulated by vitamin D can pos-
sibly modulate the levels of chemokines, sug-
gesting the role of VDR gene variants in 
inflammatory response during active infection 
(Harishankar et al. 2018).

4  Mtb Antigenic Virulence 
Factors and Vaccine 
Strategies

Mtb cell wall is a lipid-rich envelope (about 40%); 
a large portion of bacterial genome is used for 
lipid biosynthesis and degradation. The microbial 
lipids such as lipoarabinomannan (LAM), lipo-
mannan (LM), phosphatidylinositol mannosides 
(PIMs), trehalose-6,6′-dimycolate (TDM), phthi-
ocerol dimycocerosate (PDIM) and phenolic gly-
colipids (PGL) are important virulence factors 

(Daffe and Etienne 1999; Echeverria-Valencia 
et al. 2018). Differential expression of these cell 
wall lipids determines the sustenance of the Mtb 
infection. During the earlier stage of Mtb infec-
tion, PAMPs in the form of different lipoproteins 
(LAM, LM, PDIM, TDM) are recognized by 
macrophages and DCs through pattern recogni-
tion receptors (PRRs) such as Toll-like receptors 
(TLRs), Nod-like receptors (NLRs), and C-type 
lectin-like receptors (CLRs). TLR2 and TLR4 
present on the surface of macrophages can recog-
nize mycobacterial lipoproteins and also whole 
live Mtb to mediate innate immune responses 
(Harishankar and Selvaraj 2016).

Mtb reduces recruitment of macrophages by 
masking of bacterial TLR agonist molecules by 
the lipoglycan and pthiocerol dimycoceroserate 
(Cambier et al. 2014). Mtb can also induce expres-
sion of type I interferon, a regulatory cytokine for 
its own benefit, by involving cyclic GMP-AMP 
synthase (cGAS) and its downstream signalling 
molecule, stimulator of interferon genes, STING 
(Watson et  al. 2015; Wiens and Ernst 2016). 
Mannose receptor (MRC1) expressed on macro-
phages and dendritic cells is a type I transmem-
brane C-type lectin, which can recognize 
lipoglycan and mannose-capped lipoarabinoman-
nan (ManLAM), leading to the stimulation of a 
nuclear receptor peroxisome proliferator-acti-
vated receptor gamma (PPAR-γ) that further acti-
vates anti-inflammatory immune response 
(Torrelles et al. 2008). Lack of O-mannosylation 
is associated with increase in LAM production 
and higher release of LAM/LprG protein, leading 
to reduction in the virulence of Mtb 
O-mannosylated deficient mice (Alonso et  al. 
2017). Mycolic acid (MA), a major lipid compo-
nent of Mtb cell wall, can also be a potential sub-
unit vaccine candidate for TB as MA-specific 
CD1b-restricted T cells were found to be cyto-
toxic, produced Th1 cytokines, and form memory 
populations (Shang et al. 2018). Several lipid anti-
gens derived from Mtb are non-polymorphic to 
which CD1 molecules may bind. These CD1-
restricted Mtb lipid antigens are likely to be rec-
ognized making them potential vaccine targets 
(Barral and Brenner 2007). Nucleotide-binding 
oligomerization domain-containing protein 2 
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(NOD2), a caspase-recruitment domain (CARD)-
containing NLR, recognizes the peptidoglycan 
muramyl dipeptide (MDP), which is an essential 
component of mycobacterial cell walls. In a study 
involving stimulation with Mtb of cells of patients 
with a defective NOD2 showed marked reduction 
in cytokine production, suggesting NOD2 as a 
key sensor of Mtb (Ferwerda et al, 2005).

Mtb genome exhibits high degree of polymor-
phism with repetitive DNA sequences and inser-
tion elements that relates to its virulence and 
infectivity. Mtb consists of several virulence-
associated genes; a study of transposon mutants 
of Mtb strains in murine infection models showed 
about 200–500 genes involved that were essential 
for growth of Mtb in  vivo (Sassetti and Rubin 
2003; Zhang et  al. 2013; Kroesen et  al. 2019). 
The important virulent determinants include 
genes encoding proteins involved in secretion 
systems and the mycobacterial lipids. There are 
several specialized protein systems, which con-
trol the molecular movement and the secretion of 
virulence substances, such as ESX/ESAT-6/type 
VII secretion systems, Twin-arginine transporter 
(TAT transporter), PE/PPE (proteins whose 
N-termini contain the characteristic motifs Pro–
Glu/Pro–Pro–Glu), protein families and lipopro-
teins (Echeverria-Valencia et  al. 2018; Kroesen 
et al. 2019).

PE/PPE gene family members represent about 
10% of coding capacity of Mtb genome and also 
account for antigenic variability of Mtb strains 
(Bottai and Brosch 2009; Cole et  al. 1998a, b; 
Sampson et al. 2001; Delogu and Brennan 2001; 
Delogu et  al. 2008). Members of PE_PGRS 
(polymorphic GC-rich repetitive-sequence) fam-
ily are found to be involved in the regulation of 
macrophage signalling and in modulating secre-
tion of TNF-α in infected macrophages. ESX-1 
system confers its virulence via the secretion of 
early secreted antigenic target ESAT-6 (6  kDa) 
and its protein partner, culture filtrate protein 
CFP-10 (10 kDa). Both of these proteins are not 
produced by the attenuated BCG as the region of 
difference 1′ (RD1) genes responsible for their 
production is deleted from BCG (Bottai and 
Brosch 2009). Mtb utilizes a twin-arginine trans-
location system (TAT transporter) located in the 

cytoplasmic membrane for transporting folded 
proteins (Echeverria-Valencia et al. 2018) and are 
frequently responsible for exporting virulence 
factors, and thus, contribute to pathogenesis (De 
Buck et al. 2008). Mycobacterial phospholipases, 
virulence-related molecules encoding plcA, plcB, 
plcC and plcD genes, are secreted by the TAT 
transporters (Posey et  al. 2006). Among the 
secretory proteins, the Ag85 complex members 
(Ag85A, Ag85B and Ag85C) are the most com-
mon proteins of Mtb secreted into culture fluids 
transported through the TAT transporter. 
Although the major component of Ag85 is 
secreted, a small amount of the antigen remains 
on the bacterial surface. This Ag85 complex 
plays a vital role in Mtb virulence as it is required 
for intracellular survival of Mtb within macro-
phages (Karbalaei Zadeh Babaki et al. 2017).

Mtb can withstand quite adverse host environ-
mental conditions including high pH and ROS 
generation. Thus, it needs constant coordinated 
regulation of gene expression that mimics the 
macrophage environment (Timm et al. 2003; Betts 
et  al. 2002). Sulfate-assimilation pathway (SAP) 
of Mtb represents major immunogenic targets of 
the bacillus, as it mounts strong T-cell recognition 
by both mice and humans infected with M. tuber-
culosis. Enzymes of SAP were required for the 
reduction of sulphur in Mtb. Sulphur in its reduced 
form (SO4

−) is used in biosynthesis of cysteine 
which is considered as the prime targets of NO 
intermediates that is being encountered by Mtb 
while inside the macrophage, and disabling bio-
synthesis of cysteine attenuates bacterial virulence 
(Buchmeier and Fahey 2006; Newton and Fahey 
2002; Sareen et al. 2003). Therefore, availability 
of cysteine is linked with Mtb defence while inside 
the host, and thus, SAP pathway is very much cru-
cial for its survival (Pinto et al. 2012).

In mycobacteria, there are several virulence 
genes inhibiting phagocyte apoptosis. Recombinant 
BCG vaccines are largely devoid of such genes, 
including urease-ureC and nuoG, which are able to 
substantially reduce such anti-apoptosis blockade 
(Velmurugan et  al. 2007; Hinchey et  al. 2007; 
Kaufmann et al. 2017a, b). Another Mtb virulence 
gene is secA2 coding for bacillus superoxide dis-
mutase. The secA2 deletion mutant strongly 
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induced in mice apoptosis of infected macrophages 
and priming of CD8+ T-cells (Hinchey et al. 2007). 
Apoptosis of macrophages infected with Mtb relied 
on multiplicity of infection (MOI) number. Two to 
four bacillus per cell induces classical intrinsic 
apoptosis in infected macrophages. On the con-
trary, a delayed macrophage infection with 20/cell 
MOI, over a short time induced apoptosis, which 
may switch to infected macrophage necrosis, inde-
pendently from caspases pathway, dissipating TB 
infection, as in case of vascular granulomas in 
acute lung TB (Lee et  al. 2006). BCG may also 
induce innate apoptosis of tumours.

Thus, both Mtb cell wall antigenic compo-
nents as well as secreted proteins are important 
source of immunogenic antigens, which encoun-
ter the innate as well as the adaptive immune 
response (Figs. 10.1 and 10.2). Their immunoge-
nicity, mode of regulated expression and their 
localization in the bacterial cell envelope make 
them suitable targets for vaccine design. Targeting 
these antigens to macrophages, dendritic cells 
and lymphocytes to tackle the infection can be a 
promising vaccine strategy, and thus, new strate-
gies using suitable adjuvants, immunodominant 
antigens involving lipoprotein-based immuniza-
tion need to be efficiently exploited to come up 
with a new generation vaccine for TB.

4.1  Mtb Sulphate Assimilation 
Pathway Immunogen in  
Pre-Clinical Vaccines

Mtb antigens include non-secreted microbe sul-
phate assimilation pathway (SAP) enzymes, con-
taining adenosine-5′-triphosphate (ATP) 
sulfurylase, guanosine triphosphate (GTP) hydro-
lase, and adenylyl sulphate-kinase, designated as 
cysD, cysN and cysC, respectively. SAP proteins 
are critical for the intra-macrophage phagosome 
Mtb survival, by maintaining an adequate cellular 
redox potential in conjunction with bacterial 
Mycothiol. These proteins are sulphate reducing 
agents, which are able to detoxify IFN-γ mediated 
iNO-synthase- NO intermediates bactericidal radi-
cals. This function applies also to Mtb granuloma 
redox potential conditioning (Pinto et  al. 2013; 

Buchmeier et al. 2003). Mtb SAP vaccine compo-
nents were also found to be very strongly immuno-
genic in upregulating CD4+ T helper cells type 1 
response involving IFN-γ, TNF-α and IL-2, in pro-
tection of mice lungs. SAP vaccination substan-
tially boosted Mtb killing in their lungs, afforded 
by their BCG vaccination, upon their aerosol Mtb 
infection. Similarly, TB patient peripheral blood 
CD4+Th cells were hyper-activated (Pinto et  al. 
2013; Fan et  al. 2009). In vaccine experiments, 
C57BL/6 mice were sub-cutaneously BCG vacci-

Fig. 10.1 Representation of Mtb cell wall lipoproteins 
that bind with array of receptors expressed on macro-
phages. Man-LAM can interact with Mannose receptor 
(MR) and DC-SIGN.  TLRs interacts with lipoproteins, 
peptidoglycan, and cell-wall glycolipids including LAM, 
LM, PIM and Man-LAM. TLRs on macrophages and den-
dritic cells stimulates the production of proinflammatory 
cytokines such as IL-1β, TNF, and IL-6 via activation of 
the NF-κB and MAPK signalling pathways
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nated, and later in intervals immunized intramus-
cularly with SAP proteins, i.e. cysDNC, as their 
locus operon complex. These antigens were co-
administered with adjuvants dimethyl dioctadecyl 
ammonium bromide (DDAB), and with mono-
phosphoryl lipid A (MPL), or with mixed locus 
coded DNA vaccine. They were then challenged 
with 100 viable Mtb infective dose in cytosol/per 
mouse. Killing of Mtb was detected in the lungs 
and spleen by decline in colony forming units 
(CFUs), producing IFN-γ. These results are inter-
esting, since in clinical vaccine trials with infants, 
BCG, even in connection with other subunit vac-
cines, insufficiently protected their lungs (Pinto 
et al. 2013). In contrast to early secreted antigenic 
target ESAT-6, SAP-Cys DNC system operates 
intracellularly, when the bacillus is resident in 
macrophages. SAP antigens could be sensed by 
intracellular NOD-like receptors, and by cytosol 
TLR5, TLR7and TLR9 proteins (Wang et al. 2009; 

Pinto et al. 2013; Akira and Hemmi 2003). These 
preclinical vaccine findings may foretell a better 
protection in clinical vaccine trials against lung 
TB in infants, and potentially also in adults (Pinto 
et al. 2012; Akira and Hemmi 2003). Apparently, 
the vaccine antigens, together with its adjuvants, 
could overcome pathogen immune evasion, by 
polarising the infected macrophage type 2 (M2), 
into type 1 phenotype (M1), expressing -inflam-
matory cytokines and the NO reactive radicals 
(Fig. 10.3).

4.2  Mtb Subdominant-Weak 
Antigens as TB Protective 
Vaccine Candidates

It has been suggested that immunodominant viru-
lent antigens such as ESAT-6 of Mtb may have a 
co-evolutionary advantage, by evading host 

Fig. 10.2 Role of protein secretion and transport system of Mtb relating to its virulence and infectivity: ESX1 secrets 
ESAT-6 and CFP10, which are highly immunogenic proteins encoded by members of the esx family of genes and are 
exported together as a 1:1 complex where each protein depends on the other for its export. ESX5 exports PE/PPE pro-
teins containing N-terminal Pro-Glu or Pro-Pro-Glu repeats, are surface exposed and account for antigenic variability 
of Mtb strains. TAT transporter system present on the bacterial cell wall is responsible for exporting virulence factors 
such as Ag85 complex. SAP enzymes plays an important role in the survival of Mtb by catalysing the synthesis of cys-
teine required for balancing the ROS generation by the macrophage
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focused immune responses. However, a vaccine 
against Mtb subdominant-weak antigens may 
boost their immunogenicity, protective against 
TB, as studied with mice in their prophylactic 
lung protection (Orr et al. 2014). In vaccine con-
struction, from a large number of Mtb antigens as 
a hierarchy, subdominant antigens were selected 
for fusion vaccine proteins, in combination with 
Th1 augmenting glucopyranosyl lipid adjuvant. 
Such combination proteins were highly immuno-
genic. They induced Th cell type 1 polarisation 
with IFN-γ, TNF-α and IL-2 production; in the 
absence of BCG vaccination, mice were immu-
nized with recombinant vaccines intra-muscu-
larly, one, two or three times, in three weekly 
intervals. After 4 weeks, they were infected with 
a low number of ‘multiplicity of infection’ (MOI) 
Mtb strain M37Rv aerosol. After 3–6  weeks, it 
was shown that their viable Mtb lung burden was 
substantially reduced, as detected by ELISPOT 
analysis. It was comparable to that of virulent 
dominant antigen vaccines. This study also sug-
gested engaging several vaccine combined com-
plexes for vaccine efficacy to cover for immune 
cell variation by host, and for Mtb strain antigen 

variation. These findings may broaden prospec-
tive adaptive anti-TB vaccine repertoire also in 
humans, instead of being focused on immuno-
dominant specific antigens (Orr et  al. 2014). 
However, the protection against Mtb infection in 
mice also suggests that innate macrophage-
unique mycobacterial immunity was also aug-
mented. It is also reminiscent of recombinant 
BCG vaccines lacking virulence genes, overcom-
ing Mtb virulence proteins. Apparently, adaptive 
immune cells are unable to enhance TB immu-
nity via apoptosis induction (Divangahi and Behr 
2018).

4.3  M. smegmatis Pre-clinical 
Vaccine

A recombinant M. smegmatis is also a promising 
preclinical candidate vaccine against TB.  
M. smegmatis is a saprophytic, fast-growing 
mycobacteria, but can be pathogenic due to its 
conserved virulence esx-3 locus, as found with 
M. smegmatis infected C57BL/6 mice strain. The 
M. smegmatis esx-3 deletion mutant, Δesx-3, 

Fig. 10.3 Production of Pre-clinical vaccine with Mtb SAP immunogen: C57B/6 mice were first BCG vaccinated, and 
then in intervals immunized with SAP proteins, co-administered with adjuvants dimethyl dioctadecyl ammonium bro-
mide (DDAB), and with monophosphoryl lipid A (MPL), or with mixed locus coded DNA vaccine. Mice were again 
challenged with 100 viable Mtb infective dose/per mouse (Pinto et al. 2013). ATP sulfurylase conferred significant 
protection against murine TB and boosted BCG-induced protective immunity in the lungs by polarising the infected M2 
into M1 phenotype, expressing pro-inflammatory cytokines and NO
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named IKE strain vaccine, afforded an innate 
immune protection of mice, in their prolongation 
and survival after Mtb infection. Moreover, IKE 
strain, transgenic with Mtb esx-3-orthologue, 
designated IKEPLUS strain, upon vaccination, 
induced in mice a potent adaptive Th1 cytokine 
bactericidal protection from Mtb infection, 
including IFN-γ, IL-12 p40 and p70. This robust 
type 1 response was dependent on CD4 memory 
cells. At the same time, IKEPLUS strain retained 
its capacity to augment innate immune cell 
responses in killing Mtb, when residing within 
macrophages. Accessory innate cells may be 
recruited by type 1 cytokines, including NK-cells, 
NKT-cells and γδ T-cells. Mice were vaccinated 
intravenously with IKE, IKEPLUS or subcutane-
ously with BCG for comparison. They were chal-
lenged with a high dose of Mtb aerosol and 
intravenous infection. Mice survival rate, and 
their Mtb lung and other organ burden, were 
monitored. It was shown that IKEPLUS vaccine 
strain was superior to BCG and to paternal M. 
smegmatis in clearing Mtb infection in lungs and 
spleen, and in mice survival (Sweeny et al. 2011) 
(Fig. 10.4).

A prospective clinical vaccine candidate is the 
M. smegmatis derived, recombinant fusion pro-
tein Hybrid 1 (H1). H1 contains insertion of two 
dominant Mtb genes, Ag85B and ESAT-6. H1 is 
strongly immunogenic; it induces in mice Th1 
potent cytokine responses, as measured by IFN-γ 
production. Mice were vaccinated with H1 fused 
DDA-TDB adjuvant CAF01, a mycobacterial 
specific adjuvant, subcutaneously at 3  weeks 
intervals. After 3  weeks, mice were culled and 
their spleen cells re-stimulated in culture with 
H1. After 3  days, their IFN-γ released into 
medium was analysed by ELISA test. For com-
parison, E. coli expression system derived H1, 
likewise purified by various procedures, was 
included, which was of similar immunogenic 
efficacy. M. smegmatis-based vaccines seem to 
have an advantage over that of BCG, perhaps by 
their faster replication, in addition to their attenu-
ated virulence nature (Tsolaki et al. 2013).

Another prospective TB vaccine candidate tar-
get is the Mtb mammalian cell entry1A gene (mce 
1A) expression, which is specific for macrophages. 

Mtb Beijing strain isolate from Indonesia was  
utilized for mce1A vaccine construction, where 
this strain is prevalent in causing TB. mce1A was 
cloned and expressed in E. coli system, for prepa-
ration as a subset of TB vaccine, based on BCG. 
mce1A protein facilitates the pathogen’s in entry 
to the macrophage and their intracellular survival. 
Other family gene members the operon may con-
tribute, suggesting a requirement of multiple 
sources for Mtb evasion of host immunity, targeted 
by multiple vaccines (Indriarini et al. 2018; Harboe 
et  al. 1999; Srivastava et  al. 2007; Saini et  al. 
2008).

In a murine TB model, three various strains of 
recombinant BCG vaccines were generated, to 
assess their protection of mice against Mtb  infec-
tion. These virulent antigen vaccines were 
rBCG:85A, rBCG:85B and rBCG:85X, which 
became expressed separately with TB stage pro-
gression, but have been tested also as combined 
complex cocktail ABX. ABX strongly promoted 
CD4+ Th type 1 responses with a higher cell 
number secreting IFN-γ, IL -12, of CD8+ T cells 
proliferation, and protection of mice against Mtb. 
This property of ABX vaccine in mice suggested 
a promising vaccine candidate for clinical trials 
against active and latent TB forms (Liang et al. 
2015).

4.4  Dendritic Cell Immune Vaccine 
Candidate

As a basic link of innate immunity with adaptive 
immunity, are dendritic cells (DCs) are responsi-
ble for microbial antigen-specific priming of 
naïve T cell precursor differentiation in lymph 
node germinal centres. DCs, via their own migra-
tion, are also chaperons for Mtb transmission to 
lymph nodes, where it is able to replicate in endo-
thelial cells, but not in DCs (Lerner et al. 2006).

Previously, a study on human DC specific 
type-1 lectin receptor, the ICAM3-grabbing-
nonintegrin (DC-SIGN), ligating with Mtb-cell 
wall component ManLAM, revealed that serine 
and threonine Raf- kinase upregulated DC- 
type-2 (DC2)-IL-10 expression. This effect was 
mediated by NF-κB subunit p65, inducing epi-
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genetic remodelling via gene acetylation silenc-
ing. On the other hand, p65 could also transmit 
pro-inflammatory transcription signalling, gener-
ated by DCs, via TLR2 and TLR4 upon their acti-
vation by ManLAM or other bacterial components 
such as LPS.  DC-TLR pro-inflammatory path-
way activation, mediated by MyD88C or TRAF 
transmitters, is the prerequisite for Raf-1 kinase 
modulation balance of both pathways at the tran-
scription level. Such Mtb-DC interaction may 
diminish type 1 cytokine polarisation, which is 
critical for DC maturation and in specific bacte-
rial antigen presentation, MHC II dependently, to 
naïve Th and B cell differentiation. Immature 
DCs bactericidal capacity and their antigen pro-
cessing may be weakened. DC-SIGN interacts, 
besides Mtb, with M. leprae, M. bovis, Candida 
albicans, and measles virus or with HIV, associ-
ated with chronic disease. These pathogens 
exploit different TLRs, which are modulated by 
DC-SIGN/Raf-1 kinase pathway. Immature DC 
intracellular bactericidal phagosome/lysosome 
fusion function may be also affected by this path-
way (Akira et al. 2006).

However, human DC-SIGN receptor can be 
employed as a potent activator of CD4+ Th1 phe-
notype in association with Th17 cells, in 
responses to Mtb antigens, as shown in the recep-
tor transgenic mice (Velasquez et al. 2018). The 
vaccine is based on human anti-DC-SIGN recep-
tor antibodies, conjugated with Mtb antigen 
Ag85B protein, i.e. DC-SIGN:Ag85B, or its pep-
tide P25, which is a major Th1 epitope. As such, 
the vaccine targeted Mtb antigens to DC-SIGN 
for their engulfment to induce in DC a magnified 
type 1 phenotype to prime the antigen to Th1, 
secreting IFN-γ, IL-2 and TNF-α. Ag85B is a 
sub-dominant, but a very potent immunogen. The 
Th1 phenotype only occurred in conjunction with 
adjuvants such as CD40, fungal wall zymosan, 
and/or cholera detoxified fusion protein 
CTA1-DD, which can apparently override DC 
and Th2 phenotype. Experiments were also car-
ried out in vitro, where these adjuvants were able 
to induce the activation of DCs and the secretion 
of IL-6, IL-23, and IL-1β, all important cytokines 
necessary for the induction of Th17 responses 
(Fig. 10.5).

Fig. 10.4 Production of Mycobacterium smegmatis pre-clinical vaccine: IKE strain vaccine (M. smegmatis esx-3 dele-
tion mutant, Δesx-3) transgenic with Mtb esx-3–orthologue, is designated as IKEPLUS strain. Mice were vaccinated 
intravenously with IKEPLUS strain vaccine (efficacy compared with IKE strain and BCG vaccine) and were also chal-
lenged with high dose Mtb aerosol. IKEPLUS induced better protective bactericidal immunity that was dependent on 
CD4+ memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4+ T cells

J. Ferluga et al.



227

Thus, there may be various Mtb vaccine pos-
sibilities, which can reduce pulmonary load, 
eradicate the pathogen, or keep Mtb at bay in 
granulomas (McShane and Williams 2014; 
Kaufmann et al. 2017a).

4.5  TB Vaccine, Innate Immune 
Adjuvants, and TLR Control 
of the Adaptive Immunity

Anti-mycobacterial protective innate immunity, 
augmented by BCG vaccination, is apparently 
distinct from that by other pathogens, in recog-
nizing through its receptors including TLRs and 
NOD-like receptors, unique mycobacterial 
molecular pattern signature (Schnare et  al. 
2001). Such innate specificity is also valid for 
targeting TB vaccine adjuvants, augmenting 
phagocyte’s capacity for killing intracellular 
Mtb. This host protective efficacy has been dem-
onstrated in a mouse model (Coffman et  al. 
2010). For example, mice were immunized three 
times subcutaneously with recombinant antigen 
H56 (Ag85B-ESAT6-Rv2660c), in conjunction 
with adjuvants CAF01, GLA-SE, or IC31R, 

which are based on mycobacterial Core factor. 
Such adjuvant vaccinated mice were subse-
quently challenged with aerosol Mtb Erdman. 
Their Mtb lung burden was reduced five-fold, 
obtained with CAF01 adjuvant, as compared 
with vaccination without adjuvant, and from 
Alum vaccine. Their PBMCs in culture upregu-
lated secretion of IFN-γ, IL-6, IL-17 and TNF-α 
(Knudsen et al. 2016). Hybrid BCG- subset clin-
ical vaccines also utilize these adjuvants. A study 
on DC responses to other pathogens, including 
influenza A virus, Salmonella enteritidis and 
Staphylococcus aureus unveiled that specific DC 
subsets for particular pathogen adaptive signa-
ture are unique in response to vaccine-adjuvants 
by employing distinct gene transcription cluster 
profiling. This strategy may improve an adaptive 
immune antigen specific vaccine-adjuvant for-
mulation for efficacy, such as of Influenza A vac-
cine, Fluzone 09-10. In general, adaptive 
immunity is controlled by TLRs (Schnare et al. 
2001; Banchereau et  al. 2014). BCG vaccine 
itself appears to possess adjuvant properties, 
owing to its Core and other cell wall protein, 
which is sustained with its growth. It helps innate 
trained immunity-memory, and in augmenting 

Fig. 10.5 Targeting DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) vaccine against TB.  Transgenic mouse 
model that expresses human DC-SIGN under the control of the murine CD11c promoter were used. Both in vitro and 
in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-
CD40, fungal zymosan, and CTA1-DD, was able to induce strong Ag-specific CD4+ T-cell responses. Improved anti-
mycobacterial immunity was observed with increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional 
CD4+ T cells and further activating Th17 cells
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adaptive antigen-specific T helper cell immunity 
in pathogen response. This property may be seen 
in most BCG vaccinated individuals, on which 
subset vaccines rely (Kleinnijenhuis et al. 2012; 
Knudsen et  al. 2016; Kaufmann et  al. 2017b). 
Other chronic disease-causing pathogens such as 
malaria, HIV-1, and hepatitis C virus, based on 
adjuvant principles are also in clinical trials 
(Kaufmann et  al. 2017b; Quattara et  al. 2015; 
Richert et al. 2015; Pierce et al. 2016).

5  TB Vaccines in Clinical Trials, 
BCG and Recombinant BCG 
Neonate Immunity

5.1  Clinical TB Vaccine 
Development

A vaccine improvement against TB is regarded as 
the only affordable means to eradicate the disease 
worldwide. Drug cocktail treatment is beyond the 
reach of low-income population, living in TB 
endemic areas. Mtb strain drug resistance in vari-
ous demographic areas hampers the success. 
There are several promising types of TB vaccines 
based on BCG, which are ongoing in clinical tri-
als (Parkash 2014; Tang et  al. 2016; Kaufmann 
et al. 2017a). BCG has been in practice since the 
1920s, but is still the only licensed TB vaccine. It 
affords a partial protection of neonates/infants 
from a severe TB, such as meningitis and Mtb 
disseminated miliary TB, but is less efficient 
against pulmonary disease. Its prophylactic 
effects wane towards adulthood (Triccas and 
Counoupas 2016; Kaufmann et  al. 2017a). To 
improve BCG vaccination, various types of sub-
set Mtb antigen-specific vaccines have been 
included, based on BCG pre-vaccination. There 
have been successes with infants in boosting 
adaptive Th-cell anti-bacterial protein secretion, 
which is critical in Mtb safe containment, but 
were less protective in neonates/infants.

BCG vaccination-dependent subset antigen-
specific vaccines have been mostly constructed to 
target dominant immunogenic Mtb virulence 
antigens including ESAT-6, which prevailed in 
vaccine clinical candidates, based on adaptive 

immunity. Some examples of such TB subset 
vaccines are recombinant viral vectors, fused 
with Mtb antigens, such as Ag85A, incorporated 
in recombinant modified vaccinia Ankara vector 
(MVA85A). Ag85A is a mycolyl transferase, 
involved in formation of mycobacterial cell wall 
(McShane et  al. 2004). Further examples are, 
Ag85B subset vaccine, which is a fused adenos-
ine viral vector with Ag85B, and the TB-FLU-
04K replication-deficient Influenza virus vaccine, 
also fused with Ag85A. Further subset vaccines 
are hybrid/BCG vaccines.

5.2  Hybrid/BCG Vaccines for Adult 
Population

Hybrid fusion subset vaccines are mycobacterial 
signature distinct commercial adjuvants, fused 
with various Mtb virulent antigens such as 
ESAT-6 and TB10.4. For example, hybrid H1, 
H4, and H56 vaccines entail the adjuvant IC31R 
fused with ESAT-6, or Ag85B; TB10.4 or Ag85B; 
and H1+ RV2660v- bacillus dormancy antigen, 
respectively. H1 also covers H1-CAF01 adjuvant 
system. IC31 is a cationic mycobacterial peptide, 
an agonist for phagocyte intracellular TLR7 and 
TLR9, as it is also the cationic liposome-immuno-
regulatory CAF01. Their effects were apparently 
independent from specific antigen Th cell 
responses, which may also activate innate phago-
cytes for lung protective responses against  Mtb  
infection, as indicated by such TB distinctive 
adjuvants in murine model. These commercial 
adjuvant effects were based on mycobacterial 
adjuvants (Knudsen et  al. 2016). Other vaccine 
adjuvants GLA-SE and ASO1E engage TLR4 
(Kaufmann et  al. 2017a). Thus, BCG subset 
hybrid vaccines strongly augment adaptive Th 
cell anti-bacterial cytokine secretion such as 
IFN-γ, TNF-α and IL-β, which are vital in Mtb 
containment and latency regulation. 
Concomitantly, the hybrid vaccines may appar-
ently can also strongly activate innate immunity, 
which may be lung protective in infants and 
adult, pre-vaccinated with BCG.  C31R and 
CAF01 recombinant antigen vaccination were 
first tested in volunteers vaccinated previously 
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with BCG, or without BCG, respectively, or hav-
ing latent TB, which responded with a robust 
adaptive cell immunity (van Dissel et  al. 2011, 
2014). In a separate role, these adjuvants also 
improved immune function in elderly subjects 
(Knudsen et al. 2016).

5.3  Next Generation Vaccine 
Candidates for Neonate 
Protection

Next generation of TB vaccines have been intro-
duced with the aim to immediately protect neo-
nates and adults against Mtb infection via innate 
immunity, in addition to adaptive immunity. Such 
requisites are apparently met by the BCG- recom-
binant live vaccines such as BCGΔureC::hly/
VPM2001, expressing Listeria monocytogenes 
spore forming protein, listeriolysin O (LLO), 
instead of urease, catalysing urea-ammonia con-
version, favouring intracellular pathogens 
(Kaufmann et  al. 2017b; Nieuwenhuizen and 
Kaufmann 2018). VPM1002 is a prominent clini-
cal trial candidate. It has fulfilled phase-I criteria 
for neonate-infant safety and its immunogenicity, 
and has now passed phase IIb stage in new-born-
infant immune requirements, ahead of BCG sub-
unit vaccines, and that of live Mtb attenuated 
recombinant vaccine MTBVAC.  VPM1002 is 
expected to substantially reduce neonate-infant 
and adult lung Mtb burden, judging by its pre-
clinical studies. It may eradicate Mtb in some 
individuals living in TB endemic areas, as it is 
apparently naturally acquired and maintained in 
TB resistant infants and adults. Neonate genetic 
resistance may be influential (Nieuwenhuizen 
and Kaufmann 2018; Kowalewicz-Kulbat and 
Locht 2017). In pre-clinical studies, VPM1002 
strongly reduced Mtb pulmonary burden in mice 
lung infection over that by BCG.  These effects 
also occurred in adaptive immunity deficient 
SCID mice, demonstrating an all innate cell mac-
rophage immunity protection, consistent with 
clinical trial findings (discussed below). There 
are other pre-clinical-animal BCG-recombinant 
vaccines, some with TB protective efficacy, but 
apparently none seem to have been chosen yet for 

clinical trials (Nieuwenhuizen and Kaufmann 
2018).

An inactivated whole cell non-TB mycobacte-
rial protective vaccine (DAR-901) in adults, has 
also passed phase IIa clinical trial (Kaufmann 
et  al. 2017a; Nieuwenhuizen and Kaufmann 
2018). Therapeutic inactivated whole cell vac-
cines include M. indicus pranii (Mw), M. vaccae 
(Vaccae) and Mtb (RUTI) (Groschel et al. 2014; 
Tang et al. 2016).

6  Progress and Challenge 
of TB Vaccines

In a recent international statement on progress 
and challenge of TB vaccines, it has been recom-
mended that viable or inactivated whole-cell 
mycobacterial vaccines remain central in TB vac-
cine development (Voss et al. 2018). In addition, 
a search for biomarker profiles is needed, which 
may detect in people TB infection, its stages, and 
may predict progression to pulmonary active dis-
ease, i.e., evaluate people who are at risk to con-
tract TB infection, or to develop a clinical 
TB. Knowledge of TB biomarkers may acceler-
ate TB vaccine trials (Petruccioli et  al. 2016; 
Kaufmann et al. 2017b; Voss et al. 2018). In order 
to detect and evaluate some biomarker profiles, 
whole blood QuantiFERON analysis has been 
used in a wide evaluation study with African pop-
ulation as classified for TB disease, and other 
respiratory disease (ORD). It comprises bio-
marker signature of un-stimulated levels of 12 
biomarkers, including IFN-γ, macrophage 
inflammatory protein (MIP-1β), and TNF-α, lev-
els of antigen specific TGF-α, and VEGF (Chegou 
et al. 2018). Some biomarkers can predict in TB 
latent people risk to their progression into active 
TB, spreading the disease through cough aerosol 
inhalation. Between these stages, there is a con-
tinuum pathogen/host activity, requiring different 
markers and treatment. For example, blood RNA 
sequence profile signature can predict in people 
at risk for a year ahead of clinical TB (Petruccioli 
et  al. 2016). In a case-control study in South 
Africa with infants and adolescents, which were 
pre-BCG vaccinated post-partum, and subse-
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quently vaccinated with MVA85A vaccine, it was 
revealed that Th cells activated by the vaccine 
were important immune collateral, prognostic 
biomarkers in predicting the outcome of TB 
infection. Expression of their ex-vivo blood lym-
phocyte non-specific HLA-DR+CD4+ T cells was 
an increased risk marker for clinical TB. On the 
contrary, induction of antigen-specific Th cells 
expressing INF-γ, by MVA85A vaccine, was 
associated with a decreased risk for active 
TB.  These collateral effects have been recom-
mended for inclusion in TB vaccines (McShane 
et al. 2014; Fletcher et al. 2016).

Large cohort studies, independently with 
South African and Gambian healthy adolescents, 
but infected with latent TB, found that persons at 
risk to progress into clinical disease can be iden-
tified by sequencing whole blood RNA.  In this 
analysis, 16 gene expression signature profile 
specifically corresponded to “progressors” over a 
period of 2 years. It has been suggested that such 
people, known to be at risk of clinical disease, 
may be then treated with drugs against TB. It was 
a percentage wise low number of people at clini-
cal TB risk, but with a specificity of 80.6%, pre-
ceding in 12-month clinical TB. By closing the 
circle of TB spreading, such selection may 
strongly contribute towards decline of TB in pop-
ulation, even in endemic TB regions, together 
with TB vaccines (Zak et al. 2016). A further rec-
ommended prerequisite is the inclusion of Mtb 
challenge, and host protection in preclinical vac-
cine studies, which is likely to foretell their bac-
terium killing efficacy (Kaufmann et al. 2017b; 
Voss et al. 2018).

Apparently, the route of BCG vaccination 
matters. Current BCG based vaccines are 
administered by intradermal route, but other 
vaccination routes may be more host protective. 
For example, mice vaccinated with BCG intra-
tracheally, induced mucosal infiltration of mem-
ory T cells, which strongly protected their lungs 
against Mtb infection. It reduced their Mtb bur-
den upon aerosol Mtb challenge. This was com-
parable with their reduced lung pathology, in 
contrast with subcutaneous vaccination and 
control. Perhaps mucosal innate immune mac-
rophage-mediated BCG ingestion, and Natural 

Killer (NK) cell activation were also engaged as 
effectors. A parallel study indicated that such 
BCG vaccination-driven host protection 
depended on IL-17 expression (Aguilo et  al. 
2016). Finally, intravenous BCG vaccination 
targeting haematopoietic stem cell system in 
C57BL/6J wild-type mice seems to be a com-
pelling candidate for clinical trials. This system 
is connected to primordial protective immunity 
for its functional persistence, and for its sub-
stantial pulmonary protection as well as reduc-
tion of Mtb burden following Mtb aerosol 
challenge. This protection also occurred in mice 
with T cell-depleted bone marrow (Kaufmann 
et al. 2018).

Here, as examples, a hybrid subset vaccine, 
and two recombinant live TB vaccines, are 
discussed.

6.1  H4:IC31 Hybrid Subunit 
Fusion Vaccine for Adults

The fusion subunit vaccine H4:IC31 (AERAS-
404) is composed of Mtb antigens Ag85B pro-
tein fused with TB10.4 protein (a member of 
virulent ESAT-6) in combination with immuno-
logical adjuvant IC31®. Safety and immunoge-
nicity randomised trials were conducted on 
healthy male and female individuals in Sweden 
and Finland, which were previously vaccinated 
with BCG, as compared with persons which did 
not receive BCG vaccine. H4 vaccine was 
administered by intramuscular injection in esca-
lated doses for the optimal safety and immuno-
genicity vaccine-adjuvant dosage. 
Immunogenicity was assessed by IFN-γ produc-
tion by participant PBMCs and by antigen-spe-
cific Th cell expansion which lasted for 
18 weeks. Participants experienced mainly mild 
adverse reactions. Such an optimized vaccine is 
needed for the potential TB prevention, or ame-
lioration in clinical trials in TB endemic areas. It 
has been registered under NCT01861730 (phase 
I and phase II, infants and adults, respectively; 
Norrby et al. 2017). Previously, in phase I vac-
cine trial, the authors showed that the subset 
Ag85B-ESAT-6 antigen fusion vaccine together 
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withIC31R adjuvant promoted a powerful long-
lived Mtb antigen specific T cell responses 
which in naive volunteers, after they had been 
vaccinated with BCG, or harbouring a latent 
TB.  H4-IC31R was administered at (O) and in 
2- month time. After second vaccination, the 
immune response was augmented, suggesting 
immunological T cell antigen-specific memory. 
Anti-H4 vaccine antibodies increased sharply 
after the second 2  months vaccination, and 
declined gradually after 15 weeks, which could 
agree with a humoral B cell memory (van Dissel 
et al. 2011). The adjuvant IC31® is composed of 
a leucine rich peptide KLK, and a synthetic bac-
terial DNA analogue (Winslow et  al. 2008). 
H4-IC31R promoted Th1 responses by produc-
ing IFN-γ, TNF-α and IL-2, which are vital in 
anti-Mtb adaptive immunity. For this effect, 
H4-IC31R may involve intracellular TLR7 and 
TLR9 signalling pathways, including NF-κB 
activator of pro-inflammatory cytokines 
(Schellack et al. 2006).

6.2  Recombinant MTBVAC

A new promising candidate live vaccine is the 
recombinant Mtb, which is a genetically attenu-
ated Mtb lineage-4 clinical isolate, MTBVAC. It 
has fulfilled in a randomised double blind con-
trolled clinical phase I trial as per Geneva con-
sensus requirements in terms of human safety 
and immunogenicity comparable to BCG. In pre-
clinical studies with mice, MTBVAC exhibited 
an augmented reactogenicity and protective 
immunity, improving upon BCG, in killing Mtb 
in their lung infection (Aguilo et al. 2017). It also 
retains virulence gene region of difference-1 
(RD-1), coding for ESAT-6. However, it has two 
engineered independent, stable gene deletions, 
lacking antibiotic-resistant markers, i.e., coding 
for phoP and fadD26 genes. phoP is a critical 
transcription factor for Mtb antigen expression. 
fadD26 regulates synthesis of cell wall complex 
lipids, phthiocerol dimycocerosates (PDIM), 
which are major mycobacterial virulence factors 
(Arbues et al. 2013; Spertini et al. 2015; Triccas 
and Counoupas 2016).

MTBVAC is based on the Mtb strain 4 clinical 
isolates, since Mtb lineage 4 is most widespread 
globally, apart from geographically restricted 
sub-lineages. Such distribution may make 
MTBVAC isolate 4 strain more universal. 
Lineage 2 (Beijing strains) are also widely dis-
tributed, which may add to lineage 4-based vac-
cines efficacy (Stucki et  al. 2016). Similar to 
BCG, in vaccinated neonates, MTBVAC-
lipoproteins may induce M1 macrophage protec-
tive response against primary Mtb infection 
(Brightbill et al. 1999). If not cleared, their innate 
delayed reactogenicity may further reduce their 
lung burden, together with adaptive Th1 antigen 
immunity. MTBVAC is expected to be more host 
protective than the BCG-subset vaccines, by 
potentially targeting most of the parental Mtb 
virulence strain antigens. MTBVAC is undergo-
ing clinical phase I trial in children, and phase IIa 
trial in adults (Clinical identifier NCT02729571).

6.3  Recombinant BCG VPM1002 
Vaccine

Listeria monocytogenes phagosome-lysosomal 
escape mechanism into macrophage cytosol is a 
role model, of which TB vaccines have taken 
advantage in building a recombinant BCG vac-
cine candidate against Mtb, designated VPM1002 
(Farinacci et  al. 2012; Grode et  al. 2013). 
VPM1002 (rBCG) vaccine is a BCG recombi-
nant re-construct, expressing listeriolysin protein 
(LLO; encoded by inserted hly) gene, but is 
devoid of urease C, and contains a hygromycin 
resistance marker, designated rBCG ΔureC: hly 
HMR. In pre-clinical mice evaluation, rBCG 
upgraded efficacy of BCG in apoptotic and 
infected macrophage cross-priming by DCs of 
CD4 and CD8 Th cells (Farinacci et  al. 2012). 
Similarly, rBCG mice vaccination improved five-
fold over that by pBCG in terms of their lung pro-
tection against aerosol Mtb infection (Saiga et al. 
2015). LLO is a cholesterol binding pore forming 
protein of phagosome membrane, allowing 
escape of mycobacterium and its constituent, 
including the bacillus DNA and antigen release 
into cytosol. rBCG-DNA, in turn, activated the 
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cytosolic inflammasome, inducing in BCG/Mtb 
infected macrophage expression of caspase 3 and 
7 to induce their apoptosis. For these LLO effects, 
an acidic pH of phagosome is needed, hence, the 
deletion of urease C (ΔureC) gene of paternal 
BCG. Urease C catalyses conversion of urea into 
ammonia, which favours Mtb intra-macrophage 
habitat. rBCG vaccination upregulated Mtb-
infected macrophage apoptosis, and strongly 
augmented IL-12 and cofactor expression in DCs 
for antigen cross-presentation to Th cells, secret-
ing antibacterial cytokines such as IFN-γ, IFN-β 
and TNF-α. IFNs and TNF-α appear to be pre-
ferred effectors against intracellular pathogens. 
Invariant innate T cells and innate γδ T cells pro-
ducing IFN-γ were also observed. rBCG also 
substantially improved in mice their lung protec-
tion from TB as compared with paternal BCG, 
suggesting that innate phagocyte immunity rec-
ognising bacterial molecular signature was also 
potently augmented. Thus, rBCG improved 
innate and adaptive immune efficacy against TB, 
making it a compelling candidate for clinical trial 
(Farinacci et al. 2012; Grode et al. 2013).

VPM1002 was evaluated in randomised clini-
cal trial for safety, immunogenicity and reactoge-
nicity. Healthy male volunteers were enrolled 
into phase 1 open dose escalation trial (Grode 
et al. 2013). They were vaccinated with a single 
intradermal dose of rBCG in arm deltoid area. 
Like with paternal BCG, intradermal rBCG vac-
cination may mount an immunogenic skin pustu-
lar-blister response in BCG naïve uninfected 
individuals (Hoft et al. 1999). The participants to 
be vaccinated with rBCG were divided into BCG 
naïve group, i.e. non-responders to PPD skin 
reaction, and into group vaccinated with BCG, 
PPD-reactive individuals. In each group, there 
were dose escalated subgroups to optimize their 
safety and reactogenicity. Participants were 
assessed for IFN-γ and TNF-α production for 
their immune cell marker responses, and for 
serum antigen-specific anti-mycobacterial anti-
bodies. VPM1002 was found to be well-tolerated, 
with some adverse effect, being more pronounced 
in BCG-naïve group. rBCG vaccine was substan-
tially immunogenic regarding adaptive cell 
responses, as assayed on post-vaccination day 

29, 57, and 180 by IFN-γ, TNF-α and IL-2 pro-
duction and blood monocyte ELIspot parameters, 
including differentiation of oligo-functional Th 
cells (Grode et al. 2013). At the time, VPM1002 
vaccine was undergoing clinical trials with chil-
dren and adults. Its clinical identifiers are 
NCT01479972 (Phase I) and NCT02391415 
(phase IIa), respectively, available on www.clini-
caltrials.gov. Presently, the vaccine has passed 
phase IIb clinical trial (Nieuwenhuizen and 
Kaufmann 2018).

In parallel, VPM1002 pre-clinical studies 
included its host protective efficacy in murine 
model, even after Mtb H37Bv strain lung aerosol 
infection, in simulated chronic infection latency, 
reduced by antibiotic treatment to a low basal 
level. In both models, rBCG subcutaneous vac-
cination was superior five-fold, over that by 
paternal BCG vaccination, as measured by their 
substantial reduction in lung and spleen Mtb bur-
den. These findings are seen as encouraging for 
protection of people in TB latency in vaccination 
with rBCG (Gengenbacher et al. 2016a).

6.4  rBCGΔureC::hly ΔnuoG rBCG 
Vaccine

The protective capacity of the rBCG vaccine 
against TB was further strongly augmented in 
mice (five-fold over rBCG, and altogether ten-
fold over BCG) by deletion of BCG’s another 
virulence gene, the nuoG gene, designated rBCG 
ΔureC::hly ΔnuoG vaccine. NuoG gene encodes 
for subunit G in respiratory NADH complex 
dehydrogenase I, which as a virulence gene, 
inhibited apoptosis of Mtb-infected phagocyte 
via TNF-α pathway. Its deletion in rBCG further 
activated AIM2 inflammasome for induction of 
autophagy and apoptosis for Mtb/rBCG degrada-
tion in proteasome (Saiga et al. 2015). A lack of 
NuoG rBCG strongly promoted DC-mediated 
antigen presentation via MHC-1 and CD1 to T 
cells against TB (Gengenbacher et  al. 2016b; 
Schaible et  al. 2003). Expression of autophagy 
marker, LC3, was upregulated by this rBCG vac-
cine, which is a new finding of nuoG effects, 
known to be affected by ESAT-6. The vaccine 

J. Ferluga et al.

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov


233

upgraded clearing of cytosol BCG-Mtb apoptotic 
debris including DNA, may activate together 
AIM2 inflammasome and GTPases, dependent 
on INF-γ pathway. Owing to further attenuation, 
it also improved mice safety. Thus, BCG 
ΔureC::hly ΔnuoG vaccine is considered to be a 
promising candidate in next generation vaccines 
for clinical trials, with improved protection of 
neonates-infants against pulmonary TB 
(Farinacci et  al. 2012; Saiga et  al. 2015; 
Nieuwenhuizen and Kaufman 2018). Attenuated 
rBCG vaccine may be tolerated by immunocom-
promised individuals e.g. those who are HIV-1 
infected, as simulated by T cell-depleted mice.

6.5  BCG Vaccine as an Adjuvant 
Model

BCG attenuated vaccine appears to be a general, 
primordial, potent innate immunity-potentiating 
adjuvant, through its mycobacterial cell wall core 
factors, lipoglycans, lipomannans and DNA 
molecular pattern, recognized by various innate 
immune PRRs. For example, TLR signalling via 
MyD88 adaptor protein induced in macrophages 
an immediate M1 polarization, producing inflam-
matory bactericidal cytokine such as IL-1β, 
IL-18, IL-6, TNF-α and IFN-γ, in response to 
microbial infection (Schnare et  al. 2001). M1 
macrophage polarisation is opposed by intracel-
lular Mtb infection shifting to anti-inflammatory 
M2 phenotype, secreting IL-4, TGF-β and IL-10 
for its survival. M2 polarisation is accompanied 
by expression of Mtb ESX-1 and its substrates 
ESAT-6, CFP-10, and EspB.  ESAT-6 disrupts 
infected phagosome membrane to translocate 
Mtb material to cytosol, a process considered to 
be a key mechanism in pathogenicity (Wong 
2017; Houben et  al. 2012). In cytosol, ESAT-6 
and EspD proteins interfere with innate immune 
mechanisms mediated by receptor signalling via 
TLRs and inflammasome-AIM2-NOD like 
receptors (Man and Kanneganti 2015). ESAT-6 
inhibits TLR signalling via MyD88 and other 
adaptors, and via NF-κB gene transcription regu-
lator. For the pathogenic effects of ESAT-6 on 
macrophages, TLR2 and Akt-phosphoinositide 

3-kinase pathway are strictly required, making 
them a pharmacological target (Pathak et  al. 
2007; Cantley 2002). EspB blocks efferocytosis 
of infected macrophages and their autophagy, 
likely through binding phospholipids. Apparently, 
phagosome membrane disruption also impairs its 
maturation and lysosome fusion (Wong 2017). 
Another distortion in Mtb-infected macrophage 
is pathogenic IFN type-1 mediated necrosis, 
instead of IFN-γ induced apoptosis. Necrosis 
occurs in active lung TB rupturing granulomas-
damaging for host tissue, but sparing Mtb dissi-
pation and proliferation. This pathogenic event 
may depend on a high MOI number (Wong and 
Jacobs Jr 2013). Most of Mtb cytosolic transloca-
tions occur on 2nd -3rd day after infection. BCG 
live vaccines may be able to forestall these patho-
genic events in most of susceptible individuals. 
Nearly a half of new-born and adult population, 
are already naturally protected against TB, living 
in endemic community.

As mentioned above, rBCG live vaccines are 
deleted of one or two virulence genes. These are 
rBCG ΔureC::hly HMR and rBCG ΔureC::hly 
ΔnuoG vaccines, coding for urease C catalysing 
urea conversion into ammonia, and coding for an 
inhibitor for phagocyte apoptosis, respectively. 
Interestingly, in mice, such vaccines have strongly 
augmented paternal BCG adjuvant immunity. 
This property may suggest a vaccine’s numerical 
addition against Mtb virulence factors. Both vac-
cines possess genome inserted gene of LLO. As 
such they may forestall and outcompete numeri-
cally and time-wise the Mtb ESAT-6 primary 
infection or re-infection. They may, in many 
cases, augment their translocation of various 
exposed adjuvant molecular pattern to activate 
cytosol innate immune receptors, and to polarise 
M1. They may mount an immediate strong con-
served immunity, to eradicate the Mtb. These 
effects may be elicited through apoptosis of 
infected macrophage, their efferocytosis and 
autophagy by non-Mtb infected macrophages and 
DCs. The intra-macrophage infection level of 
BCG vaccine is continuous compared to Mtb, 
which may oscillate at very low levels (Wong 
2017). Such upgraded BCG vaccines may also 
non-specifically confer protection against pneu-
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monia in infants from various microbes and viral 
infection in TB endemic areas (also reported in 
France).

7  Concluding Remarks

TB continues to be a major pandemic world-
wide, but its conquest is on the horizon. It has 
emerged that protective innate immunity against 
intra-macrophage-dwelling mycobacteria, 
including Mtb, is unique. Mtb distinct molecular 
pattern/signature is recognised by macrophage 
flexible TLRs in conjunction with IL-1βR, as 
well as intracellular TLR7, TLR9, NOD-like 
receptors and AIM2 inflammasome receptors. 
They transmit signalling through NF-κB for Mtb 
signature to be epigenetically imprinted in chro-
matin. They may be augmented by innate trained 
immunity and memory. A deciding battle ground 
appears to be apoptosis of infected macrophages, 
to be taken up through efferocytosis by non-
infected macrophages for their autophagy, to be 
degraded in proteasomes together with cellular 
debris pyrocytosis. These processes are opposed/
blocked by phagosome-resident Mtb. Next gen-
eration of prophylactic TB vaccines, based on 
recombinant attenuated BCG, have been con-
structed to overcome the Mtb blockade.

There are several recombinant (rBCG) vac-
cines in pre-clinical murine model stage candi-
dates, but BCG ΔureC::hly live vaccine is 
currently the only candidate vaccine in clinics, 
which has passed phase IIb criteria in clinical tri-
als with neonates and adults in TB endemic areas 
in South Africa. It is supported by pre-clinical 
trials in mice showing strong lung protection, 
five-fold over paternal BCG, as evaluated by 
parallel reduction in lung Mtb burden upon Mtb 
aerosol infection. It is also safer as compared 
with paternal BCG vaccine. An advanced rBCG 
vaccine in pre-clinical trials is regarded to be 
BCG ΔureC::hly ΔnuoG TB vaccine, in which 
two virulence genes have been deleted. Urease C 
converts urea into ammonia which is compatible 
with intercellular microbes. nuoG is an anti-
apoptotic gene. It is remarkable that such gene 
deletion in BCG went in steps with reduction of 

Mtb burden in mice lungs, now ten-fold over 
BCG. Interesting is the insertion into BCG of hly 
gene, encoding pore-forming LL0. LL0 allows 
mycobacteria and their proteins, lipids and DNA 
leakage into cytosol, sensed by activated AIM2 
inflammasome receptors, which in turn, may 
induce apoptosis and autophagy in infected mac-
rophages. In this way, these vaccines may sub-
stantially upgrade neonates-infants lung 
protection, which is only partial in comparison 
with paternal BCG vaccination. These vaccines 
also strongly upregulated adaptive Th1 immu-
nity by secreting IFN-γ, TNF-α and IL-2, owing 
to an improved DC-mediated cross priming of 
naïve T cell.

It has been recommended in F1000Reseach 
2018 report that vaccine candidates should be 
viable, possessing the Mtb killing capacity in pre-
clinical tests. Apart from rBCG-VPM1002, sev-
eral pre-clinical vaccines also have the pathogen 
killing capacity. These include intravenous BCG 
vaccination to target bone marrow haematopoi-
etic stem cells. It was tolerated by non-human 
primates, and is likely to fulfil human safety 
requirements. Another candidate is saprophytic, 
fast replicating M. smegmatis recombinant live 
vaccine, providing it is safe for neonates in clini-
cal trials. From such candidate collection, other 
most effective neonate and adult lung protective 
vaccines against TB can be selected for clinical 
trials.

There is a requirement for better TB disease 
markers in discerning from other lung diseases of 
people living in TB environments, such as in clin-
ical studies using whole blood QuantiFERON 
analysis. Further, TB disease stage marker corre-
lates could be employed. This is achieved by 
selecting a number of immune distinct gene pro-
filing (more than 12), which could correlate as a 
marker with a particular TB stage. For example, 
one marker could predict in a minority of people 
in latency at risk, a year ahead, to develop pulmo-
nary active disease, i.e. in 5–10% of infected 
people living with non-clinical TB latency. Such 
people may be cured with antibiotics, thus clos-
ing the cycle of disease propagation in a TB 
endemic community. The recombinant modified 
vaccinia Ankara vector MVA85A vaccine in clin-
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ical trials was able (McShane et al, 2014), as a 
prognostic marker, to distinguish people at higher 
risk for TB, from those with lower risk for the 
disease. Such marker studies may include infants 
and adults who are naturally resistant to TB 
infection. Perhaps in such resistant individuals, 
besides their genetics, such augmented conserved 
innate immunity owes to their constant challeng-
ing by various microbes, including Mtb. Various 
pathogens may act as natural adjuvants to upgrade 
constantly a certain level of conserved innate 
immunity, which is non-specific in such individu-
als (Sanchez-Ramon et al, 2018).

Thus, the likelihood of a protective vaccine 
against TB for children and adults has sharply 
increased, owing to a better understanding of the 
unique innate immunity of phagocytic cells 
against intracellular mycobacteria. New genera-
tion of recombinant BCG vaccines possesses a 
potent bactericidal capacity for protection of peo-
ple living in TB endemic areas, as indicated in 
pre-clinical and clinical trials. TB vaccines, har-
nessing innate and adaptive immunity, are 
equipped to accelerate TB decline, so that with 
help of nutrient complementation to children, 
WHO projected TB incidence rate and death 
reduction by 2020–2030 can be met.
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1  Introduction

Candida species are opportunistic fungal patho-
gens that are part of the normal human microbi-
ota and usually acquired at birth through direct 
transmission. Candida, as a symbiont, resides on 
various sites including the skin, gastrointestinal 
and urogenital tracts as part of the large diverse 
microflora (Brogden and Guthmiller 2002). 
However, dysbiosis of microbiome including 
Candida causes infections in immunocompro-
mised patients. Candida infections can vary in 
severity from superficial mucosal candidiasis to 
life threatening blood stream infection candi-
demia and invasive candidiasis, affecting multi-
ple organs (Bertolini et  al. 2019). Dysbiosis of 
the gut microbiota has also been associated with 
inflammatory bowel diseases and neurological 
disorders (Knox et al. 2019). The army of immune 
cells and molecules within a host are recruited 
upon infection, but a better understanding of 
pathogenesis and virulence factors of Candida 
spp. and the role play of immune system during 
infection is emerging. Though the host utilises a 
sophisticated and tightly regulated immune sens-
ing system against Candida sp., the pathogen has 

cleverly adapted and evolved immune evasion 
strategies that are not yet fully understood. 
Candida albicans is the most prevalent species 
known to be the leading cause of fungal opportu-
nistic infections. However, emerging Candida 
spp. such as Candida tropicalis, Candida auris, 
Candida parapsilosis and Candida glabrata are 
leading to higher morbidity (Gonzalez-Lara and 
Ostrosky-Zeichner 2020). Higher mortality rates 
are also seen with Candida infections as they are 
becoming increasingly difficult to treat. 
Antifungal treatment is available, however, 
emerging antifungal resistance and a global shift 
in Candida spp. pose challenges for successful 
treatment (Ksiezopolska and Gabaldón 2018). 
Therefore, a deeper insight of pathogenesis, viru-
lent factors and mapping out of immune evasion 
strategies of various Candida spp. are required 
for formulating novel therapeutics to combat 
Candida infections.

1.1  Candida Infections

Candida spp. are the most common cause of fun-
gal opportunistic infections causing candidiasis. 
They are found as part of the human normal flora, 
residing on various body sites such as mouth, 
skin, throat, gastrointestinal (GI) tract and vagina. 
Overgrowth of Candida causes infection, where 
candidiasis of the mouth and throat is referred to 
as oropharyngeal candidiasis, vaginal candidiasis 
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as vaginal thrush and deep penetration into the 
internal organs such as heart, kidney, brain and 
eye is referred to as invasive candidiasis, of which 
bloodstream infections are known as candidemia 
(Calderone and Clancy 2012). C. albicans is the 
predominant cause of invasive candidiasis. 
However, epidemiology of Candida infections 
has changed over the years and a shift in clinical 
important Candida spp. towards non-albicans 
species has been reported by several studies. C. 
albicans still remains the most well-studied 
Candida species. C. albicans is a polymorphic 
fungus that has many virulent factors contribut-
ing to its pathogenesis in Candida infections. 
Factors such as adhesion to the host, formation of 
biofilm and secretion of hydrolytic enzymes 
allow the pathogenic fungus to penetrate and 
invade humans as hosts (Mayer et al. 2013).

Candidiasis causes a wide range of symptoms 
from white/red itchy patches at the site of infec-
tion to life threatening and fatal situations 
depending of the infection severity. 
Immunocompromised individuals such as HIV 
patients and patients undergoing chemotherapy 
for cancer or transplant surgeries are more prone 
to infections due to Candida being an opportu-
nistic pathogen. Invasive candidiasis and candi-
demia in particular has a high mortality rate. 
Invasive candidiasis affects more than 250,000 
people worldwide and causes more than 50,000 
deaths every year (Kullberg and Arendrup 2015) 
of which Candidemia has mortality rates of 
30–40% depending on various factors including 
the treatment, the types of Candida spp. involved 
and severity of the infection (Arendrup 2010). In 
the UK, the number of candidemia cases reported 
were 3.6 per 10,000 from laboratory surveillance 
carried out by Public Health England in 2017. 
During this surveillance it was also found that 
candidemia rates were higher in females and 
elderly population (Public Health England 2017). 
Candida spp. are also the main cause of nosoco-
mial infections with several studies carried out 
across the world stating higher incidence rates in 
intensive care unit wards (Eyre et  al. 2018; 
Chakrabarti et  al. 2014; Aldardeer et  al. 2020). 
Currently, there are 3 main antifungal treatments 
used which are azoles, polyene and echinocan-

dins. They work by destroying the cell mem-
brane, leaking out amino acids, water-soluble 
substances and preventing chitin and glucan 
crosslinking, that strengthen the cell wall 
(Campoy and Adrio 2017). Furthermore, emer-
gence of Candida spp., increased rates of infec-
tion and antifungal resistance has a huge 
socio-economic impact due to longer hospital 
stays and increased health care costs.

Less fatal but more common vulvovaginal 
candidiasis (VVC) is also a global issue. In 
healthy females VVC affects between 70 and 
75% of women of childbearing age, and it is esti-
mated that 40–50% will experience a recurrence 
(Rodríguez-Cerdeira et al. 2019). Recurrence of 
4 or more episodes a year is defined as recurrent 
vulvovaginal candidiasis (RVVC) and effects 
2–10% females round the world (Cassone and 
Sobel 2016; Matheson and Mazza 2017). 
Candida found at the vaginal mucosa is a com-
mensal species of the microbiota, living symbi-
otically with bacterial species including those 
that commonly cause urinary tract infections 
(UTI). However, factors such as pregnancy, usage 
of antibiotics and changes in the host environ-
ment could lead to dysbiosis. One reason for such 
high incident rates in females (Foxman 2002) is 
the complex microbial colonisation of the lower 
female genital tract (Larsen and Monif 2001) 
along with the anatomy and physiology female 
urinary tracts in comparison to males which also 
makes females prone to UTIs (Finer and Landau 
2004).

1.2  Inflammatory Diseases

Candida spp. are found in the gastrointestinal 
(GI) tract in a friendly yeast form (Böhm et al. 
2017). Studies using animal models suggest col-
onisation of Candida spp. in the gut prolongs 
inflammatory healing. Candida gut commensal-
ism is mediated by multiple factors, either intrin-
sic such as fungal gene regulation, morphology 
and host immune status or extrinsic such as host 
diet, usage of antibiotics, stress and presence of 
other diseases (Nobile and Johnson 2015). From 
studies carried out in mice, it is thought that 
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imbalance in homeostasis of the normal intestinal 
flora leads to aberrant immune response. There is 
emerging evidence that such dysbiosis and over-
growth of Candida in the intestine can be associ-
ated with inflammatory bowel diseases such as 
Crohn’s disease (CD) (Hoarau et al. 2016). There 
is increasing evidence of genetic similarity 
between C. albicans isolates from the blood-
stream and rectal isolates, suggesting gut coloni-
sation increases the risk of disseminated 
candidiasis in mice (Prieto and Pla 2015; Miranda 
et al. 2009). Biofilms comprising either C. albi-
cans or C. tropicalis in association with other 
microbial species have been observed in patients 
suffering from CD (Richard et al. 2015). As CD 
is a multifactorial disorder and exact cause is 
unknown, with the present evidence, it can be 
hypothesised that constant activation of the 
immune system is one of the factors. The patho-
genic fungi promote or maintain inflammation, 
leading to the onset of CD. One way in which the 
inflammatory response is thought to be main-
tained is C. albicans mimicking epitopes of anti- 
glycan antibodies to generate aberrant immune 
response (Standaert-Vitse et al. 2006).

Candida also plays a role in neurological dis-
orders, for example, a strong link has been found 
between the gut microbiota, neurodevelopment 
and behaviour. Dysbiosis of the gut microflora 
has been found in patients with neurological dis-
orders such as autism spectrum disorder (ASD), 
schizophrenia and bipolar disorder. Such disor-
ders cause impairments in social interactions, 
communication and behaviour. Research evi-
dence reveal the association of fungal overgrowth 
to such neurological disorders. When probiotics 
were used to modulate the gut microbiota to 
reduce the over growth of Candida, it was shown 
to correlate with decreased incidents of neuro-
logical disorders (Romeo et al. 2011). The myco-
biome gut-brain axis (GBA) model could help 
explain this but has not yet been well studied. In 
patients with ASD, increased Candida abundance 
due to alteration in the gut mycobiome has been 
noticed. Candida here plays a major role as alter-
ation in the microbiome and blood brain barrier 
permeability which triggers an immune response 
causing systemic inflammation (Enaud et  al. 

2018). Candida species are also associated with 
increased chances of developing multiple sclero-
sis (MS) (Benito-León et  al. 2010). MS is a 
chronic inflammatory disease of the central ner-
vous system and has strong correlation with fun-
gal infection (Pisa et al. 2011). Patients with MS 
are found to have fungal infection and higher 
titres of anti-Candida antibodies (Ramos et  al. 
2008). Medically important C. albicans can 
cause demyelinated lesions in MS patients, sug-
gesting fungal infections playing a role in 
immune disorders for development of MS (Amri 
Saroukolaei et al. 2016). One suggested theory is 
secretion of fungal proteases that damage the sur-
rounding tissues, causing inflammation (Amri 
Saroukolaei et al. 2016).

2  Candida Species

The genus Candida includes about 154 species. 
Though C. albicans is believed to be the most 
common clinical isolate, there has been a global 
shift in the Candida species. Several non- albicans 
species have recently been found to be emerging 
Candida pathogens. Common non-albicans spe-
cies reported are C. glabrata, C. tropicalis, C. 
auris, C. parapsilosis and Candida krusei, and 
less frequently reported; Candida guilliermondii, 
Candida lusitaniae, C. kefyr, C. inconspicua, C. 
rugosa and C. dubliniensis (Sanguinetti et  al. 
2015; Vitális et  al. 2020; Peremalo et  al. 2019; 
Heaney et al. 2020; Mäkinen et al. 2018). Some 
of the clinically important Candida spp. are dis-
cussed here.

2.1  Candida albicans

C. albicans is the most common cause of 
Candida infections in immunocompromised 
patients around the world (Berman 2012). C. 
albicans lacks a complete sexual cycle but exists 
as yeast, hyphal, and pseudohyphal form. It can 
go through morphological switching when form-
ing pseudohyphal or true hyphae by cell elon-
gation and budding (Whiteway and Bachewich 
2007). This shift is initiated by changes in the 
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environment such as pH, temperature, CO2 
level and nutrients (Sudbery 2011). The hyphal 
form is known for penetrating and damaging 
the host epithelial cells to establish an infec-
tion in different organs such as kidney, brain 
and spleen (Zuza-Alves et  al. 2017). Another 
unique morphological characteristic of C. albi-
cans is ‘white-to-opaque epigenetic switching’ 
(Ramírez-Zavala et al. 2008; Zordan et al. 2006). 
The two types of cells, ‘white’ and ‘opaque’ vary 
in morphology, mating behaviour, metabolic 
state and most interestingly interactions with 
host immune system. The switching happens 
stochastically and allows C. albicans to escape 
from specific host defence mechanisms (Sasse 
et al. 2013; Lohse and Johnson 2009).

Phenotypic switching causes changes in 
the cell wall of the fungi which allow the 
hyphal form of C. albicans to express numer-
ous hydrolases for adhesion onto the host such 
as Secreted aspartyl proteases (Saps), lipases 
and phospholipases (discussed in Sect. 3.3) 
(Moyes et  al. 2015; Jain et  al. 2008). These 
proteins contribute to adhesion and colonisa-
tion to multiple types of host tissue to cause an 
infection. The most commonly used diagnostic 
method to detect Candida is by growing culture 
from patients’ samples along with microscopic 
examination. However, this is not suitable when 
accurate rapid diagnosis is required for serious 
infections such as systemic or bloodstream 
candidemia. As C. albicans is a commensal 
coloniser, diagnosis using antibody detection 
is complex in such cases due to the presence 
of pre-existing antibodies, the levels of which 
can vary between individuals. Also, antigens 
derived from C. albicans are rapidly removed 
by the host and thus minimising the scope of 
detection. Molecular techniques such as poly-
merase chain reaction (PCR) to diagnose a 
larger number of patients with invasive candi-
diasis have been useful. Development of novel 
diagnostic method is still needed as even molec-
ular techniques with high sensitivity and speci-
ficity sometimes lack reproducibility and have 
not yet proven to be ideal for large scale clinical 
implementation. Standardisation and reliabil-
ity of molecular methods for  identification of 

 fungal pathogens requires further improvement 
for large scale clinical diagnostic use (Arvanitis 
et al. 2014).

2.2  Candida tropicalis

C. tropicalis in known as one of the commensal 
non-albicans emerging opportunistic pathogen. 
It is commonly isolated in tropical countries and 
with India having a tropical climate, C. tropicalis 
is the most common cause of nosocomial candi-
demia (Kothari and Sagar 2009; Kothavade et al. 
2010; Mathews et al. 2001). C. tropicalis is found 
as part of various candidiasis including vaginal, 
mucosal and invasive. Some studies show C. 
tropicalis is more invasive than C. albicans in the 
human intestines of some individuals, especially 
oncology patients (Yesudhason and Mohanram 
2015; Walsh and Merz 1986). Previously, C. neo-
formans was the only Candida species found 
associated with chronic mucocutaneous candidi-
asis but now C. tropicalis isolates have also been 
reported (Dixon et al. 2004). Bone marrow and 
acute leukaemia immunocompromised patients 
with GI infections are more prone to invasive 
candidiasis and many clinical isolates from these 
patients were found to have high abundance of C. 
tropicalis (Sandford et al. 1980). C. tropicalis is a 
diploid dimorphic yeast, often found as budding 
cells or in short chains and clusters as it is very 
rarely found as true hyphae. As it is difficult to 
distinguish between colonies of different Candida 
species by macroscopic morphology or growth 
rate, commercial chromogenic agars are avail-
able that allow Candida spp. to be distinguish 
based on colour. Currently, in-house PCR is the 
diagnostic method of identification. Antifungal 
drugs such as amphotericin B, fluconazole and 
echinocandins are used as treatment option. 
However, treating C. tropicalis abundant infec-
tions are becoming more challenging due to 
resistance of some strains to these antifungal 
drugs (De Barros et al. 2018). Many factors are 
contributing to C. tropicalis emergence and 
increase in antifungal resistance. For example, 
immunocompromised patients at risk for invasive 
fungal infections are also at risk for serious 
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 bacterial infections for which, antifungal drugs 
and antibiotics are used as treatment for synergis-
tic effects. In addition, long term catheter users 
are prone to bacterial and Candida infections, to 
whom antibiotics and antifungals are frequently 
prescribed. Such overexposure can lead to genetic 
changes in Candida resulting in development of 
antifungal resistance (Kojic and Darouiche 
2004).

2.3  Candida auris

C. auris was first found in 2009 from a sus-
pected ear infection in Japan. Since then, out-
breaks have been reported in numerous hospitals 
around the world (Schelenz et al. 2016; Rhodes 
and Fisher 2019). Unlike C. albicans, C. auris 
can colonise on the skin as normal flora and can 
cause invasive candidiasis, in which the blood 
stream, the central nervous system, kidneys, 
liver, spleen, bones, muscles, joints, or eyes are 
invaded (Yue et al. 2018). C. auris demonstrates 
thermotolerance by growing optimally at 37 °C, 
but can maintain viability up to 42 °C allowing 
it to tolerate the fever response. Salt tolerant 
property of C. auris suggests hypersaline rivers 
and oceans as possible reservoirs but, so far, no 
reservoir of C. auris has been identified and 
hence further studies are required (Chowdhary 
et al. 2017). The thermotolerance is believed to 
be acquired through effects of global tempera-
ture changes. Increase in the global temperature 
narrows the temperature difference between the 
environment and mammalian body temperature, 
allowing the emergence of new fungal patho-
gens such as C. auris (Jackson et  al. 2019). It 
also forms cell aggregation into large clusters 
(Rossato and Colombo 2018), which is an 
advantageous factor for some strains to persist 
in the hospital environment (Cortegiani et  al. 
2018). C. auris isolates do not produce hyphae, 
they only produce pseudo-hyphae. Collectively, 
multiple evidence suggests transmission of 
C. auris in healthcare settings and multiple body 
sites are likely to be high due to persistent colo-
nization, leading to possible outbreaks (Schelenz 
et  al. 2016). Although different biochemical 

systems are used in microbiology laboratories, 
it is evident from several published studies that 
C. auris in routine microbiology laboratories 
remains an unnoticed pathogen, as 90% of the 
isolates characterized by commercial biochemi-
cal identification systems are misidentified pri-
marily due to lack of the yeast in their databases 
(Mizusawa et al. 2016). C. auris is the only spe-
cies in which several isolates have been identi-
fied with resistance to all 3 classes of human 
antifungal drug and hence becoming more of a 
clinically important pathogen (Ben-Ami et  al. 
2017; Sarma and Upadhyay 2017). Multidrug 
resistant characteristic of C. auris is the main 
reason for the large number of nosocomial 
infections across the globe.

2.4  Candida parapsilosis

C. parapsilosis is also a commensal coloniser 
on the human skin, usually isolated from subun-
gual areas. Studies carried out on C. parapsilo-
sis reveal that it proliferates and forms biofilm 
in response to medium containing high glucose 
level. C. parapsilosis can also adhere to medi-
cal devices and colonise on human hands, which 
allows nosocomial spread of disease through the 
hands of health care workers (Rossignol et  al. 
2009). However, it is less adhesive and invasive 
to the vascular and mucosal epithelium when 
compared to C. albicans (Levy et  al. 1998). It 
only exists in two forms, yeast and pseudohy-
phal as it cannot form true-hyphal state (Laffey 
2005). Low birth weight infants are at greatest 
risk of C. parapsilosis infection. Neonates are 
more prone to C. parapsilosis infections as they 
have compromised skin integrity, susceptible to 
GI infections and prolonged endotracheal intu-
bation allows easier invasion of the pathogen 
(Trofa et  al. 2008). Although various methods 
of molecular diagnostics are available to identify 
clinical isolates, species identification through 
microbiological phenotyping is still a commonly 
applied method. Azoles and echinocandins are 
used as treatment as they are still found suscep-
tible, though several clinical isolates of C. parap-
silosis have been reported to be less susceptible 
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to echinocandins, which limits treatment options 
(Tóth et al. 2019).

2.5  Candida glabrata

C. glabrata is frequently co-isolated with C. albi-
cans from patients with oropharyngeal candidia-
sis. Both the Candida spp. work together causing 
tissue damage and pathogenesis but lack viru-
lence factors of hyphal growth and protease 
secretion (Silva et al. 2010; Kaur et al. 2005). C. 
glabrata has invasive properties on gastric epi-
thelium (Westwater et  al. 2007). However, it 
lacks the ability to switch from yeast cell to true 
hyphae which is a disadvantage at the invasion 
stage, but still has the ability to form pseudohy-
phae and biofilm (Rodrigues et  al. 2013). 
Expression of adhesins are known to overcome 
this disadvantage for C. glabrata colonisation 
and invasion into the host tissue (Timmermans 
et al. 2018). Thus, microscopic diagnosis alone is 
not sufficient since C. glabrata can only form 
pseudo-hyphae but not true- hyphae. Hence, both 
fungal culture and microscopy are required. On 
CHROMagar, C. glabrata colonies appear white, 
pink or purple in contrast to C. albicans that form 
blue-green colonies (Fidel et  al. 1999). Azoles 
and echinocandins are used as treatment, how-
ever, C. glabrata is intrinsically resistance to 
some azoles such as fluconazole (Chew et  al. 
2019). Also, decreased susceptibility to more 
than one echinocandins is seen in clinical isolates 
of C. glabrata (Pristov and Ghannoum 2019).

3  Candida Infections: 
Pathogenesis and Virulence 
Factors

3.1  Morphological Changes 
and Host Invasion

As C. albicans is the most well-studied organism 
of Candida spp. this chapter is based primarily 
on C. albicans unless stated. The pathogenic 
yeast C. albicans is a polymorphic fungus found 
in yeast, hyphal and pseudo-hyphae forms. The 

hyphal form is the most clinically relevant mor-
phological state (Desai 2018). The morphology 
affects pathogenicity in multiple ways; host  
recognition, adhesion, invasion, tissue damage, 
biofilm formation and immune evasion (Jacobsen 
et  al. 2012). The hyphal form is of anisotropic 
growth where non-uniform cellular expansion 
occurs over polarised axis. Following this, devel-
opment of the germ tube occurs for hyphal 
growth initiation, the germ tube extends, and 
growth is enhanced by the cell wall and the tip 
that is forcefully expanded by hydrostatic pres-
sure driven by cytoplasmic forces. During hyphal 
invasion, distribution of hypostatic pressure in all 
directions causes hyphal tip swelling. Hyphal 
form is strongly associated with invasion (Yang 
et al. 2014).

C. albicans interacts with human host epithe-
lial and endothelial layers. Invasion occurs via 2 
routes, induced endocytosis and active penetra-
tion through the epithelial layer. During endo-
cytosis, C. albicans expresses multiple invasins 
such as Agglutinin-like sequence 3 (Als3) and 
heat shock protein Ssa1 (Liu and Filler 2010). 
These cause binding of hyphal surface proteins 
to ligands such as E-cadherins and N-cadherins 
on endothelial cells, to induce endocytosis by 
mimicking host cell cadherins (Phan et al. 2007). 
Cadherins normally regulate the formation of 
cell-to-cell junctions in a calcium dependant 
manner (Gumbiner 2000). Als3 gene encodes 
for glycosylphosphatidylinositol (GPI) anchored 
cell surface proteins that express only in the 
hyphal form of C. albicans. Ssa1 are members 
of the heat shock proteins expressed on the cell 
surface of C. albicans to act as receptors for anti-
microbial peptides such as histatins (Sun et  al. 
2010). These interactions lead to activation of 
endocytosis of hyphal C. albicans to enter the 
host using epithelial cells. When the endocyto-
sis route is blocked, C. albicans takes the route 
of active penetration through oral epithelial 
cells and is known as the more dominant route 
of C. albicans invasion (Wächtler et  al. 2012). 
Several fungal factors that play a role in active 
penetration and elongation of hyphae form, such 
as Als3 and secretory proteins such as Saps, 
phospholipases and lipase proteins (Nikou et al. 
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2019; Wächtler et al. 2011). There are many dif-
ferent isoforms of Saps that have been identified 
in Candida and are encoded by 10 Sap genes 
in C. albicans, which exhibit different virulent 
and invasive properties (Li et al. 2014). Sap5 has 
been identified to degrade E-cadherin in epithe-
lial junctions (Villar et al. 2007), Sap2 to degrade 
host protection proteins (Colina et  al. 1996) 
and Saps4–6 for hyphae formation (Staib et al. 
2000). Phospholipases also play a similar role 
by degrading the major cell component, phos-
pholipids and proteins, forming blastopores and 
causing hyphae elongation (Ghannoum 2000).

The switch between yeast and hyphal growth 
affect the morphology-dependent cell wall adhes-
ins, proteases and other phenotypic and biochem-
ical properties, affecting penetration through the 
host epithelial layer. Mutants trapped in either the 
yeast or hyphal form are avirulent, suggesting the 
switch to be virulent. The morphological switch 
is not independently regulated by single fungi 
species, various Candida species in the presence 
of bacterial cells play a role (Sudbery et al. 2004). 
Pseudo-hyphae are a distinct growth form that 
differs from both yeast cells and hyphae and are 
characterized by dividing elongated yeast cells at 
the same time, however, very little is known 
about the immune response to pseudo- hyphae 
(Gow et al. 2002).

3.2  Biofilm Formation

It is now widely accepted that biofilm forma-
tion is one of the main virulence traits associated 
with Candida pathogenesis (Hasan et al. 2009). 
The process of biofilm formation is divided into 
4 stages: adherence, proliferation, maturation 
and dispersal (Crouzet et  al. 2014). During the 
adherence stage, the fungal cells form a basal 
layer by attaching to the host surface to anchor 
the biofilm. During the proliferation phase 
the filamentation is initiated by hyphal forma-
tion and anchor the basal layer. During the 
maturation phase, the hyphal scaffold becomes 
enclosed in a blanket of self-produced extracel-
lular polymeric substances (EPS). The EPS acts 
as a glue to hold together the biofilm structure 

(Cavalheiro and Teixeira 2018). The biofilm 
continuously releases elongated yeast cells that 
infect new sites to ensure that in the dispersal 
stage the biofilm life cycle can be repeated. The 
process of biofilm formation is known to take 
24–48 h under experimental conditions and can 
be several hundred micrometres thick (Gulati and 
Nobile 2016). Building a network in the form of 
a biofilm allows the cells to have the optimised 
space and nutrients along with efficient removal 
of waste products (Rajendran et al. 2016). A spe-
cial characteristic possessed by Candida biofilm 
that allows protection against host immunity 
and antifungal agents is formation of extracel-
lular matrix (ECM) (Silva et al. 2012). However, 
composition of ECM varies between species of 
Candida and very little is known about ECM of 
non-albicans Candida species (Al-Fattani 2006). 
Another characteristic is emerging dormant vari-
ant cells called persister cells, which are located 
deep within the biofilm and have been shown to 
be related to multiple antifungal drug resistance, 
though the mechanisms of resistance are yet to 
be investigated (LaFleur et al. 2006).

C. albicans cells within a biofilm display high 
levels of resistance to two out of the three main 
classes for antifungal drugs, azoles and polyenes. 
Biofilms are intrinsically resistant to fluconazole 
and other azole derivatives. Also, anti-biofilm 
activity of polyenes occurs at such a high concen-
tration which is considered toxic and unsafe to be 
used as treatment (Pierce et  al. 2013). On the 
other hand, echinocandins, the newest class of 
antifungal agents targeting the cell wall compo-
nent β (1,3)-glucan, display excellent activity 
against C. albicans biofilms at therapeutic con-
centrations (Kuhn et al. 2002), and are used as a 
first line therapy against these infections (Sobel 
and Revankar 2007). However, due to the emer-
gence of anti-fungal resistance, further insight 
into novel therapeutics is needed.

Studies through chemical screening to 
assess the inhibition of biofilm formation have 
identified several molecules belonging to a 
series of diazaspiro-decane structural analogs 
(Wu et al. 2017a). These, unlike conventional 
antifungal drugs, exhibit anti-biofilm charac-
teristics and inhibit the ability of C. albicans to 
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form biofilms. These anti-biofilm compounds 
were effective against both oral and systemic 
candidiasis using animal models of infection,  
demonstrating the role of biofilms in the 
pathogenesis of C. albicans infections (Romo 
et al. 2017).

3.3  Virulent Molecules of C. 
albicans

Secreted and cell surface molecules are known to 
be another key virulence factor in Candida infec-
tions (Deena et al. 2015). One of the main groups 
of hydrolytic enzymes known to facilitate inva-
sion and colonization of mucosal membrane and 
degrade immune components, are Saps (Pietrella 
et al. 2012). Other cell surface and secreted pro-
teins expressed by C. albicans that interact with 
human immune system are pH related antigen 1 
(Pra1), High affinity glucose transporter (HGT1), 
Phosphoglycerate mutase 1 (Gpm1) and lipases 
(Hernández-Chávez et al. 2017).

Proteolytic activity of C. albicans enables the 
pathogen to utilise proteins as the sole nitrogen 
source, such activity is known to be carried out 
by Saps (Morschhäuser 2011). Expression of 
Sap antigens has been detected within cell wall 
of yeast and hyphal cells in multiple organs of 
immunocompromised patients with dissemi-
nated candidiasis (Calderone and San-Blas 
2004). Gene expression of Sap is known to be a 
major virulence factor of Candida adhesion to 
host epithelial as its activity is associated with 
tissue invasion (Yang 2003; Monod et al. 2002). 
The C. albicans Sap isoenzymes take advantage 
of varying pH (2.0 to 7.0) at multiple locations 
relevant to the site of infection, such as the 
vagina having low pH and neutral pH at the oral 
cavity which regulates enzymatic activity (Li 
et al. 2014). All 10 Sap proteases contain a pro-
peptide and a signal sequence at the N-terminal 
of the mature sequence which is required for 
protein folding and secretion (Carvalho-Pereira 
et al. 2015). The mature enzyme ranges from 35 
to 50 kDa in size and both signal and pro-peptide 
sequences are cleaved upon expression. Saps are 
known to have two active sites conserved of 
highly reactive aspartic residues. Though named 

within the family of secreted proteases, Sap9 and 
Sap10 are membrane-bound depending on the 
type of infection and the stage. Each Sap protein 
has its own distinct role to play (Hornbach et al. 
2009). Expression is induced upon infection and 
also varies. Sap1 and Sap3 are expressed upon 
phenotype switching and are found on yeast and 
hyphal cells while Sap9 and Sap10 express in all 
growth forms, Sap4 and Sap6 are exclusively 
expressed in the hyphal form at neutral pH 
(Schild et  al. 2010). Saps1–3 contribute more 
significantly to C. albicans infections in com-
parison to Saps4–6 suggesting their importance 
in the pathogenesis (Dabiri et al. 2016; Borg-von 
Zepelin et al. 1998). In-vivo study of Sap2 shows 
it was the most abundant and overexpressed anti-
gen in the presence of protein as the sole source 
of nitrogen.

pH related antigen 1 (Pra1), a surface and 
secreted protein of C. albicans,  is a multifunc-
tional virulence factor of C. albicans that inter-
acts with several human immune regulators. Pra1 
is involved in the pathogen-host interaction as it 
sequesters zinc from human tissue to mediate 
leukocyte adhesion and migration. In-vitro stud-
ies show Pra1 expression at alkaline pH, regu-
lated by the Rim101 transcription factor. Has 
been detected on hyphal and yeast cells of 
Candida, and depending on the Candida strain, 
The expression is found to be induced upon 
hyphal induction, which is initially favoured by 
alkaline pH (Losse et al. 2011). Expression anal-
ysis via Western blotting resulted in intense bands 
at 68 kDa and 130 kDa, higher than the predicted 
molecular mass of 31 kDa due to N-glycosylation 
properties of Pra1 (Luo et al. 2009). Glycosylation 
moieties on fungal cell wall are essential to trig-
ger epithelium innate response and induce both 
cell cycle arrest and apoptosis mechanisms in 
mucosal epithelial cells (Wagener et  al. 2012). 
Pra1 localisation is primarily at the tip of the cell 
highlighting role of Pra1 upon contact with host 
tissue and surface during infection (Marcil et al. 
2008). As a cell surface and secreted protein Pra1 
plays many roles in immune evasion (discussed 
in Sect. 5).

High Affinity Glucose Transporter (HGT1) is a 
transmembrane protein that spans the membrane 
12 times, where it carries out its function of 
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 transporting glucose for metabolism. The pre-
dicted molecular mass of the protein is 60.67 kDa 
(Varma et al. 2000). The highest expression level 
has been found in the presence of low glucose con-
centration, similar to human’s physiological glu-
cose level. This could assist the formation of 
hyphal form and promote expression other inva-
sion facilitating proteins such as Sap (Buu and 
Chen 2014). Twenty genes of C. albicans HGT 
have been identified (HGT1-HGT20). They share 
10–93% of sequence identity and the expression 
of the HGTs genes is related to the glucose con-
centration in the growth medium (Fan et al. 2002). 
Hgt1 protein was initially identified from the 
cDNA library expression as the Factor H (FH) 
binding protein which allows the pathogen to 
escape the immune system by preventing comple-
ment regulation and inhibiting complement sys-
tem on C. albicans. HGT1 is also found in 
non-albicans species such as C. glabrata, and C. 
parapsilosis (Kenno et  al. 2019; Kotyk and 
Michaljaničová 1978; Ng et al. 2015).

Phosphoglycerate Mutase 1 (Gpm1) was the 
first fungal complement binding protein of C. 
albicans to be identified. It is a 27 kDa cytoplas-
mic and cell surface protein, found at the tip on 
the cell wall of both yeast and hyphal form ini-
tially known to be part of the glycolysis and glu-
coneogenesis process (Poltermann et  al. 2007; 
Sharif et al. 2019). Cytoplasmic Gpm1 converts 
3-phosphoglycerate to 2-phosphoglycerate but 
during infection, it helps fungal to attach human 
endothelial cells and keratinocytes via comple-
ment regulator exposed on host cell surface 
(Karkowska-Kuleta and Kozik 2014). Gpm1 is a 
vital protein for fungal adherence as knock-out 
mutants have shown to lower the binding affinity 
to endothelial cells (Lopez et al. 2014). The abil-
ity of fungi to adhere to host cells leads to 
increased chances of tissue invasion and there-
fore infection.

Phospholipases are a group of enzymes that 
hydrolyse ester bonds of glycolipids. C. albicans 
phospholipases are found in both the yeast and 
hyphal form (Vakhlu and Kour 2006). C. albi-
cans phospholipases have both intracellular and 
extracellular activity at optimal pH of ~3.6 to 
5.0 in 5 different subclasses, PLA1, PLA2, PLB, 
PLC and PLD with molecular mass varying from 

~33 to ~65 kDa (Vakhlu and Kour 2006; Niewerth 
and Korting 2001; Park et al. 2013). The differen-
tiation of the subclasses is dependent on its mode 
of action and target within the phospholipid 
bilayer. PLA, hydrolyse carboxylic esters, PLA2 
cleaves fatty acids and PLB cleaves the acyl 
chains of the phospholipid. PLC and PLD are 
phosphodiesterase where PLC hydrolysis the 
bonds between the glycerol backbone and PLD 
acts in a similar manner to hydrolyse the head 
group. Phospholipases contribute to C. albicans 
infections by host cell penetration, adhesion to 
epithelial cells and interrupting host signal trans-
duction pathways (Ghannoum 2000). Non- 
albicans species known to also secrete 
phospholipases are C. tropicalis, C. parapsilosis, 
C. glabrata, C. krusei and C. lusitanie, though 
secreted at a much lower level in comparison to 
C. albicans (Haynes 2001).

Lipases are a group of secreted hydrolytic 
enzymes that catalyse hydrolysis of triglycerides 
into fatty acids and glycerol (Roustan et  al. 
2005). They differ from phospholipases as they 
have the ability to act on soluble substrates. 
Similar to the family of Sap proteins, 10 lipase 
genes are found in C. albicans (LIP1 to LIP10) 
and each lipase sequence contains four con-
served cysteine residues and N-glycosylation 
sites, which are known to be lipase motifs (Hube 
et  al. 2000). These lipases digest lipids which 
then facilitate C. albicans for nutrients acquisi-
tion, along with playing a role in Candida patho-
genesis by releasing hydrophobic free fatty acids 
that are essential for adhesion of the fungus to 
the host (Gacser et  al. 2007). The lipase gene 
expression is dependent on the stage of infection 
rather than infection site on the host (Stehr et al. 
2004). Lipase expression has also been observed 
in non-albicans species including C. tropicalis 
(Jiang et al. 2016), C, krusei, C. glabrata (Barros 
et  al. 2016), and C. parapsilosis (Tóth et  al. 
2015).

4  Immune Sensing of Candida

The symbiotic environment is tightly controlled 
and regulated by the complex host defence sys-
tem. This involves innate, adaptive (humoral and 
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cell mediated) and nutritional immunity to 
 prevent or eliminate Candida infection. As dif-
ferent Candida spp. affect different locations, 
the immune response is tailored dependant on 
the infection. For example, antigen presenting 
cells (macrophages, neutrophils and dendritic 
cells) dominate protection against candidemia, 
whereas adaptive immunity T-lymphocytes and 
cytokines dominate at the mucosal level for pro-
tection. The involvement of humoral immunity 
in Candida infections is still controversial (Fidel 
2002).

Activation of an immune response leads to 
phagocytosis of C. albicans during innate immu-
nity for production of pro-inflammatory cyto-
kines, which signal and recruit immune cells to 
prevent or combat against candidiasis (over-
viewed in Fig. 11.1). Pattern recognition recep-
tors (PRR) are part of the first line defence in 
antifungal immunity. PRR—pathogen-associ-
ated molecular pattern molecules (PAMPs) 
interaction initiates an immune response. The 
response is driven by phagocytotic cells to pro-

duce signalling molecules for T-cell expansion 
and neutrophil recruitment (Nur et  al. 2019). 
Failure in such mechanisms leads to life threat-
ening infections by opportunistic pathogens in 
immunocompromised patients.

4.1  Innate Immunity

Interaction between the fungus and immune cells 
occurs via PRR and PAMPs to activate an 
immune response. The cell wall of C. albicans is 
comprised of inner and outer layer made of chitin 
β (1, 3 glucans) and mannans to which PAMPS 
are found covalently bound. The fungal cell wall 
components are recognised by complementary 
PRR expressed on various immune cells. The 
main groups of PRR involved in C. albicans 
sensing are C-type lectins (dectin-1, dectin-2, 
galectin-3, DC-SIGN), Toll like receptors (TLR), 
mannose receptors, complement receptors (CR1, 
CR2 and CR3) and Fc receptors (FcγR) as seen in 
Fig.  11.2. Recognition of pathogen by these 

Fig. 11.1 A schematic diagram of Candida immune sensing mechanism in the gastrointestinal system. Epithelial cells 
act as first line of defence to produce pro- inflammatory cytokines, but pathogenic yeast can invade host tissue via endo-
cytosis and active penetration. Upon invasion, patrolling macrophages phagocytose the cells and produce signalling 
molecules. This recruits neutrophils to produce reactive oxygen species (ROS) and neutrophil extracellular trap forma-
tion (NET) for clearance of the pathogens. Cytokines also activate adaptive immunity for differentiation of T-lymphocytes 
into their subsets Th1, Th2, Th17, Treg and nTh17
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receptor leads to activation of an immune 
response; phagocytosis, cytokine production, 
chemokine production, reactive oxygen species 
(ROS) and neutrophil extracellular trap forma-
tion (NET) (Urban et al. 2006).

4.1.1  Anti-Microbial Peptides (AMPs)
Upon C. albicans colonisation, epithelial cells 
lead to the production of proinflammatory cyto-
kines such as IL-6, IL-8 and IL-1β. PAMP-PRR 
interactions between O-mannan on C. albicans 
cell wall and TLRs 2 and 4 on epithelial cells, 
activate TLR signalling pathways for transcrip-
tion of AMP coding genes (Lai and Gallo 2009). 
AMPs are peptides or protein molecules that are 
part of the first line defence. In healthy individu-
als, expression of AMPs is regulated at low levels 
to maintain homeostasis. However, during infec-
tion, the secretion of IL-6, IL-8 and IL-1β by epi-
thelial cells, induces Th17 differentiation. Th17 
cells produce IL-17, IL-22 and TNF-α which sig-
nal immune cells to increase AMPs expression. 
AMPs gene expression is drastically increased 
through activation of signalling pathways such as 
Nuclear Factor kappa-light-chain-enhancer of 
activated B cells (NF-kB) and Signal transducer 
and activator of transcription 3 (STAT3). Once 
expressed, AMPs are stored and released from 
immune cells such as neutrophils and paneth 
cells of the epidermis. The three main AMPs 

against C. albicans are cathelicidin LL-37, 
β-defensins and histatins. Cathelicidin LL-37 is 
secreted by epithelial cells of oral and urogenital 
tract, and neutrophils (Tsai et al. 2011). They can 
bind fungal mannan and alter the membrane mor-
phology of C. albicans by preventing adhesion to 
host surface and disintegrating the cell mem-
brane, causing content and proteins up to 40 kDa 
to leak out and breakdown the cell membrane 
(Den Hertog et  al. 2005). Defensins are small 
proteins (29–35 amino acids) that have antimi-
crobial activity against bacteria viruses and fungi. 
The 140 different defensins found in mammalian 
species are classified into 3 mains groups; α−, 
β−, and θ− defensins depending on their struc-
tural differences (Yacoub et  al. 2015). Six 
α-defensins and three β-defensins have been 
identified in humans (Schneider et  al. 2005). 
α-defensins are found in immune cells of the 
intestine such as neutrophils, macrophages and 
paneth cells, whereas β-defensins are secreted by 
leukocytes and epithelial cells of the gut, lung, 
kidney, oral cavity, and also found in body fluids 
that play a role in mucosal and surface defence 
(Kastin 2013; Diamond et al. 2001). Histatins are 
histidine-rich human proteins produced in the 
human parotid and salivary gland (Oppenheirn 
et al. 1988). They exhibit antifungal activity and 
histatin-5  in particular, can cause disruption of 
membrane morphology by binding to ATPase 

Fig. 11.2 An overview of the main immune receptors expressed by dendritic cells, macrophages and neutrophils
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and other cell wall transporters for histatin uptake 
by C. albicans. They accumulate within the cell 
to produce ROS and create pores, inducing ATP 
and nucleotide efflux for C. albicans cell death 
(Den Hertog et al. 2005).

4.1.2  Dendritic Cells (DC)
Another way in which the host recognises C. 
albicans is via DC, which are a form of antigen 
presenting cells that patrol the peripheral tissues 
under the mucosal surface (Cutler and Jotwani 
2006). These immune cells are recruited at the 
site of infection by interleukins, chemokines and 
AMPs secreted by epithelial cells in response to 
microbial infection (Medzhitov and Janeway 
2000). DCs express TLR, lectin receptors, FcγR 
and CR3 (Romani 2004a), of which TLR and 
CLR are predominantly expressed (Diebold 
2009). DCs are important for sensing microbes 
and signalling for differentiation of lymphocytes 
leading to adaptive immunity.

Dectin-1 is one of the extensively studied lec-
tin receptor that recognises β-glucans on many 
fungal species including C. albicans. On the sur-
face of C. albicans, β-glucans are shielded by 
outer wall components but yeast budding and cell 
separations causes deformation of the cell wall in 
which enough β-glucans is exposed to trigger an 
immune response (Chen et al. 2019). Therefore, 
dectin-1 recognises β (1, 3 glucans) present on 
yeast cells only, as cell separation does not occur 
during filament growth (Gantner et  al. 2005). 
Dectin-1 induces intracellular signals and col-
laborates with TLRs for inflammatory activation 
(Goodridge et al. 2007). Dectin- 1 is a tyrosine 
based immunoreceptor that multimerises upon 
extracellular interactions and results in phosphor-
ylation of the cytoplasmic domain of the receptor 
for binding of spleen tyrosine kinase (SYK). The 
recruited SYK activates caspase activation 
recruitment domain-containing protein 9 
(CARD9) to initiate the NF-κB pathway (Takano 
et  al. 2017). Through the SYK-CARD9 and 
NF-κB signalling pathways produces; IL-2. IL-6, 
IL-10, IL-23, IL-1β TNF and INF-β (Sancho, and 
Reis e Sousa, C. 2012; Del Fresno et al. 2013). 
Overall role of dectin-1 leads to phagocytosis, 
respiratory burst and production of ROS 

(Drummond and Brown 2011). Dectin-2 differs 
from Dectin-1 as it recognises α-mannan on the 
surface of hyphal filaments (Alt et  al. 2011). It 
associates with FcγR for phosphorylation of 
tyrosine residues to activate the SYK-CARD9 
signalling pathway and stimulate production of 
ROS (Saijo and Iwakura 2011). Dectin-2 present 
on DC also assist fungal phagocytosis and signal 
production of proinflammatory cytokines such as 
IL-1β, IL-6, IL-10 and TNF-α (Ifrim et al. 2016).

Interaction of host receptors and C. albicans is 
a complex process as TLR can function as both 
homo- and heterodimers as well as interacting 
with other host receptors such as C-type lectins to 
recognise or initiate intracellular signalling 
(Bourgeois and Kuchler 2012). Collaboration of 
both CLRs and TLRs are required for best protec-
tion against candidiasis. Ten functional TLRs 
identified in humans, the transmembrane recep-
tors found on the cell surface membrane or intra-
cellular membrane; TLR1, -6 and 10 are expressed 
on the surface and TLR3, 7-9 are expressed on the 
intracellular membranes (Chaturvedi and Pierce 
2009). They recognise lipopolysaccharides and 
peptidoglycans to initiate an immune response via 
myeloid differentiation factor 88 (MyD88) signal-
ling pathway (Kawai and Akira 2007). Upon 
ligand recognition, the signalling pathway is 
induced by intracellular domain MyD88 which 
interacts with the cytoplasmic domains of all TLR 
except TLR3 (Brown et al. 2010). MyD88 signal-
ling pathways is crucial for optimal Th1 response 
to C. albicans (De Luca et al. 2007). It activates 
the NF-κB signalling pathway for production of 
pro- inflammatory cytokines. Activation of TLR 
induces expression of proinflammatory cytokines 
such as TNF-α, IL-1β, IL-6 and IL-12 (Zheng 
et al. 2015). The two main TLRs involved in C. 
albicans infections are TLR2 and TLR4. They 
recognise O-linked mannans on fungal cell wall 
which activates the NF-κB signalling pathway for 
production of IL-8 and TNF-α. However, the role 
of TLR4 in candidiasis remains controversial sug-
gesting the role of TLR4 only contributing to 
minor protection (Gil and Gozalbo 2009)or hav-
ing no role in host protection (Gil and Gozalbo 
2006). Though TLRs are not the central dominant 
PRRs in humans, polymorphism of TLR gene in 
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immunocompromised patients results in predis-
position of fungal infection (Plato et al. 2014).

Other receptors such as DC-specific intercel-
lular adhesion molecule-3-grabbing non-integrin 
(DC-SIGN) and mannose receptor (MR) are also 
expressed on DCs. They recognise N-linked 
mannan on C. albicans cell wall to induce expres-
sion of proinflammatory cytokines such as IL-17, 
TNF, IL-1β, IL-10 which in turn play a role in 
signalling Th17 response (Gringhuis et al. 2007; 
Poulain and Jouault 2004). DC-SIGN contain 
conserved cytoplasmic tail motifs that include 
tyrosine-based, dileucine, and triacidic cluster, 
which are believed to regulate ligand binding, 
uptake, and trafficking (Azad et  al. 2008). DCs 
also have the capability of sensing and respond-
ing to different morphological forms of Candida 
morphology to initiate an immune response. DCs 
can phagocytose both yeast and hyphal forms. 
The yeast form is detected within the phagosome, 
whereas the hyphal form escapes to the cyto-
plasm (d’Ostiani et al. 2000).

4.1.3  Macrophages
Macrophages cause direct killing of C. albicans 
and trigger an immune response. C. albicans cell 
wall glycosylation is important for macrophage 
TLR to recognise and phagocytose β -glucans, 
leading to activation of ROS (Brown 2011). 
TLRs of macrophages recognise O-linked man-
nans and β-glucans on the fungal cell wall, except 
TLR9 which is an endosomal receptor and medi-
ates sensing of unmethylated DNA of C. albicans 
(Ramirez-Ortiz and Means 2012; Miyazato et al. 
2009). Mannose receptors recognise N-linked 
mannan present on C. albicans surface to initiate 
pro-inflammatory cytokine response (Cheng 
et al. 2012). MR are C-type lectin receptors found 
on macrophages that interact with pathogen cell 
wall for IL-17, TNF-α and IL-1β production (Van 
de Veerdonk et  al. 2009; Geraldino et  al. 2010; 
Goyal et al. 2018). Interleukins such as IL-17 is 
essential in antifungal activity through the IL-17 
receptors. IL-17 activates signalling cascade to 
induce other proinflammatory cytokines, AMPs 
and recruitment of neutrophils, especially in dis-
seminated candidiasis (Mengesha and Conti 
2017). Cytokine TNF-α stimulates leukocyte 

adhesion molecules that lead to recruitment of 
polymorphonuclear leukocytes, and enhanced 
phagocytosis for fungus killing. Importance of 
IL-1β in candidiasis is for polymorphonuclear 
leukocytes recruitment and generation of super-
oxide production along with bridging into adap-
tive immunity by stimulating Th1 response (Le 
et al. 2019).

In addition to expression by DCs, dectin-1 is 
also expressed by macrophages and neutrophils 
(Brown et al. 2003). Dectin-1 and galectin-3 of 
macrophages are required to recognise and pro-
duce proinflammatory cytokine TNF-α (Esteban 
et al. 2011). Galectin binds to β -galactoside to 
induce chemokines, cytokines and ROS and 
essential for C. albicans recognition in the gut 
(Wu et  al. 2017b). Galectin is important for 
phagocytosis of C. albicans hyphae but not the 
yeast form (Linden et al. 2013). Dectin-2 inter-
acts with α-glucans but cannot recognise 
β-glucans to carry out a pro-inflammatory 
response. It is mainly involved in the recognition 
of C. albicans hyphae and uses FcγR to induce 
intracellular signal (Kottom et  al. 2018). 
Macrophage-inducible C-type lectin (Mincle) is 
another C-type lectin receptor predominantly 
expressed on macrophages and its expression is 
upregulated upon C. albicans stimulus. It is a 
transmembrane receptor containing short intra-
cellular tail and extracellular domain. Cell signal-
ling via Mincle is induced upon α-mannan 
binding in association with FcγR to initiate an 
immune response via SYK and NF-kB mediated 
cytokines (Yamasaki et  al. 2008). Mincle is 
required for TNF-α production by macrophages 
against C. albicans infection (Wells et al. 2008).

4.1.4  Neutrophils
Neutrophils are form of antigen presenting cells 
that are important for both mucosal and systemic 
C. albicans infections (Archambault et al. 2019) 
and primarily the most potent for fungus killing 
(Zhang et al. 2017). They are recruited at the site 
of infection by chemokines released by epithelial 
cells and macrophages. Along with ROS oxidative 
C. albicans killing, they can induce non- oxidative 
killing by producing AMPs such as lactoferrin and 
β-defensins. Neutrophils aggressively ingest and 
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destroy fungal particles through phagocytosis, ini-
tiated by cell surface receptors. Neutrophils 
express CLRs, phagocytotic receptors such as 
CR3 and less commonly TLRs. Killing of unop-
sonised C. albicans by neutrophils relies on the 
CR3 ligation as it recognises inactive form of 
opsonin C3b (iC3b) for CARD9 recruitment. CR3 
is a widely expressed β-intergrin, and mediates 
recognition of both yeast and hyphal form of C. 
albicans for phagocytosis by polymorphonuclear 
cells. FcγR differs from CR3 as it clears opsonised 
C. albicans using proteins kinase C and this mech-
anism is ROS dependant, unlike CR3 which is 
ROS independent (Verma et  al. 2017). Smaller 
fungal forms such as yeast form can be destroyed 
via phagocytotic but larger yeast require NETosis. 
NET traps and kills microbial pathogens in the 
presence of ROS (Small et al. 2018) and has been 
associated with only larger forms of Candida, 
such as the hyphae form (Branzk et  al. 2014). 
NETosis also allows exposure of fungal PAMPs 
i.e. exposure of β-glucans to allow recognition by 
immune cells via dectin-1. Also, like DCs, neutro-
phils can also discriminate between yeast and 
hyphal morphology of C. albicans as IL-12 
(Romani et  al. 1997) is produced in response to 
yeast form and IL-10 in response to hyphal form 
(Brown 2011).

Neutrophils produce autocrine IL-17 that 
induces innate immunity in response to IL-6 and 
IL-23 production. IL-17 is important as it is 
needed for activation of cytokines required for 
neutrophils in antifungal activity such as ROS 
production and controlling systemic Candida 
infections (Taylor et  al. 2013). Neutrophils are 
also required to maintain immunity during muco-
sal C. albicans infections and furthermore pre-
vent disseminated infection in the gut. Individuals 
with low neutrophil count have a higher risk of 
all types of Candida infections and strong evi-
dence suggests disruption of GI mucosal in neu-
tropenia patients leads to disseminated candidiasis 
with 100% mortality (Koh et al. 2008).

4.1.5  The Complement System
The complement system is a central part of the 
innate immunity which consists of 40 different 
plasma and cell membrane surface proteins 

(Mayilyan et al. 2008). Complement proteins are 
abundant in the serum, an ideal location for the 
host as fungus can live and survive in the blood-
stream and can lead to disseminated infections. 
Opsonic serum proteins bind to the pathogen cell 
surface and activate the complement system for 
recruiting immune cells to the site of infection, 
facilitate phagocytosis by macrophages and neu-
trophils and activate cascade of proteins for for-
mation of membrane attack complex 
(MAC)—pore like structure. Fungus cell walls 
consists of thick carbohydrates making comple-
ment mediated killing difficult. However, opsoni-
sation and stimulation of inflammatory response 
still allows host resistance against pathogens.

Complement component 3 (C3) convertase 
(C3bBb or C4bC2a) cleaves C3, central compo-
nent of the complement system, to form C3a and 
C3b. C3b is in turn, part of C5 convertase 
(C4b2b3b or C3bBbC3b) that cleaves C5 leading 
to MAC formation. MAC produces a pore in the 
cell membrane and causes disbalance in osmolal-
ity for pathogen cell lysis and can enhance 
inflammation in aim to destroy pathogens (Tegla 
et al. 2011). The complement system is well reg-
ulated, and cascade of events occur for MAC for-
mation. Complement system can be mediated by 
three different routes, classical, lectin and alter-
native pathways which differ at the initiation 
stage. Classical pathway is initiated by C1 com-
plex recognising antibodies bound to fungal sur-
face. In Candida infected individuals, it is 
activated by anti-mannan IgG and anti-mannan 
IgM antibodies, which are also present in the 
human serum of most adults (Merle et al. 2015a). 
Whereas the lectin pathway is initiated by man-
nose binding lectin (MBL) binding to mannose 
residues on the pathogen surface. It is activated 
by MBL recognising and binding to mannose 
residues. C. albicans contains 40% of mannan in 
its cell wall (López-Ribot et al. 2004). Evidence 
from studies highlights the importance of MBL, 
as MBL deficient patients are more prone to fun-
gal infections (Fidel and Huffnagle 2005). The 
alternative pathway is activated upon spontane-
ous hydrolysis of complement protein (Merle 
et al. 2015b). Alternative pathway is activated by 
C3b directly depositing on C. albicans surface. 
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C. albicans has the ability to activate all three 
complement pathways (Blom et  al. 2009; Meri 
et al. 2004).

4.2  Adaptive Immunity

4.2.1  T-Lymphocytes
Following innate immunity, differentiation of 
T-lymphocytes is an important part of the adap-
tive immune response to C. albicans infections. 
Differentiation into CD4+ (Naive T-cells) and 
CD8+ (cytotoxic T-cells) is activated by DC that 
drive T-cell response in anti-fungal immunity. 
The degraded products produced by antigen pre-
senting cells releasing exogenous proteins are 
processed into antigenic peptides within acidified 
vesicles and assembled onto major histocompat-
ibility complex (MHC) presented to CD4+ and 
CD8+. Interaction to MHC II causes differentia-
tion of CD4+ into Th1, Th2, Th17, Treg, nTh17 
and γδ T-cells, driven by different interleukins 
such as IL-10 and IL-12 produced during innate 
immunity (Zhou et al. 2009). Adaptive Th1 and 
Th17 cellular response are considered as most 
successful immune defence against C. albicans 
infections and allows maintenance of tissue 
homeostasis (Richardson and Moyes 2015). 
Antigenic peptides are also presented by MHC I 
to CD8+ cells, but direct killing by cytotoxic 
T-cells has not yet been widely explored as part 
of anti-fungal immune therapy (Kumaresan et al. 
2018). T-cells mediate immunity, especially Th1 
is required against C. albicans. TLRs of innate 
immune system have a critical role in mediating 
the signalling for development on Th1 response. 
Phagocytosis of yeast form produces IL-12 and 
activate Th1 whereas hyphae form is found in the 
cytoplasm of the cell and produces IL-4 which 
initiates Th2 response (Brown 2011). On the 
other hand, Treg cells prevent excess proinflam-
matory response and tissue damage by maintain-
ing the peripheral immune tolerance. They have 
the ability to suppress both CD4+ and CD8+ cells.

Differentiation of CD4+ into Th17 cells secrete 
numerous cytokines including family of 6 differ-
ent IL-17 (IL-17A to IL-17F) and IL-22 which 
are critically important for immune protection by 

causing pro-inflammatory response against C. 
albicans on mucosal sites of human host (Pietrella 
et  al. 2011). They do this by binding to IL-17 
receptor for producing proinflammatory cyto-
kines that recruit neutrophils and macrophages to 
the site of infection. Th17 response is maintained 
in the presence of IL-23, induced upon IL-17, 
IL-23, IL-6 and inhibited by IL-12. Here, CLRs 
dectin-1 and 2 play a central role by producing 
cytokines that induced Th17 polarisation. IL-6 
and IL-23 are produced by epithelial cells in 
response to C. albicans mannan recognition via 
antigen presenting cells (Conti and Gaffen 2015). 
Natural Th17 (nTh17) cells are patrolling guards 
of the innate system that protect the oral mucosa 
together with  Gamma delta T-cells  (γδ T-cells) 
which also secrete IL-17 in response to C. albi-
cans (Conti et  al. 2014). Th17 provides protec-
tion against cutaneous, whereas Th1 provides 
protection against systemic candidiasis (Kashem 
et al. 2015). Th17 are important antifungal cells 
as defect in Th17 cells leads to recurring fungal 
infections and autoimmune diseases (Hernández- 
Santos and Gaffen 2012). Importance of T-cells 
in C. albicans infection have been shown by 
studies carried out in patients with inherited dis-
orders in Th17-mediated anti-fungal immunity, 
frequently present with chronic mucocutaneous 
candidiasis (CMC), which manifests as severe 
infection of the nails, skin and upper GI tract 
(McDonald 2012). Th17 immunity is also associ-
ated with vaccine response and protection against 
oral (Conti et  al. 2009) and systemic infection 
(Kumar et al. 2013). The importance of this cel-
lular response is observed in immunocompro-
mised HIV/AIDS patients that are known to have 
depleted T-cell count are more prevalent to oro-
pharyngeal candidiasis (Patil et al. 2018).

4.2.2  B-Lymphocytes
Antibody response plays a minor role in immu-
nity against candidiasis (Richardson and Moyes 
2015). Antibodies produced target the cell wall 
of fungi due to the accessibility of cell wall mol-
ecules. The main target for antibodies is O-linked 
and N-linked mannan on the C. albicans cell 
wall. Interaction of antibody to cell wall mannan 
would prevent C. albicans carrying out functions 
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to cause infection such as adhesion to the host 
and germ tube formation (Sendid et  al. 2008). 
Antibody against 58  kDa fibrinogen binding 
mannoproteins on the fungus cell surface has 
been shown to selectively cause an immune 
response to systemic candidiasis, whereas 
patients with superficial infection did not react, 
suggesting this could be a possible diagnostic 
marker (Martínez et al. 1998). Als3 binding anti-
body found on the surface of C. albicans germ 
tube interfered with adhesion to host epithelial 
surfaces. Antibodies against C. albicans secreted 
molecules are also produced, for example, 
against SAP which was shown to increase pro-
tection against vaginal candidiasis in mice (De 
Bernardis et  al. 2002). Antibody against heat 
shock protein also showed protection against 
systemic candidiasis in mice (Kumar et al. 2013). 
In spite of observations found so far, B-cell defi-
cient mice did not show increased susceptibility 
to C. albicans infections, suggesting its insig-
nificance in immune sensing (Wagner et  al. 
1996).

4.3  Nutritional Immunity

Biological systems are complicated with multiple 
complex networks and pathways. These need to 
be well controlled and regulated in a logical man-
ner. Transitional metals are one of many factors 
required for operating biological system. 
Properties such as stabilising substrate at the 
active sites of enzymes and acting as cofactors 
make transitional metals a critical component. 
However, the presence of high levels of metal 
ions can prove to be toxic and hence is tightly 
regulated. Pathogenic yeast has to regulate essen-
tial metals to fulfil their physiological needs and 
during host-pathogen interactions, but the host 
exploits this during infections. This is referred to 
as ‘nutritional immunity’ where host depletes 
micronutrients such as iron, zinc, copper and 
manganese away from pathogens (Lopez and 
Skaar 2018). The role of iron and zinc are briefly 
discussed here.

Iron is the most abundant transition metal of 
the human body, commonly found in ferric (Fe2+) 

or ferrous (Fe3+) form. It is a valuable component 
for cytochromes and oxygen binding molecules 
but circulating levels are found to be low due to 
the counter activity of converting hydrogen per-
oxide into free radical ions which damages tis-
sues (Andrews 1999). Low limits are maintained 
by increasing the level of ferritin and haemoglo-
bin. This has been shown on renal cortex lesions 
caused by candidiasis, having increased ferritin 
and haemoglobin as a mechanism of systemic 
nutritional immunity against fungal pathogens 
(Potrykus et al. 2013). In order to prevent infec-
tion, the host maintains low circulating levels and 
limits availability of metal ions from pathogenic 
microbes. Limitation of such nutrients from C. 
albicans starves the cells to prevent prolonged 
survival and colonisation to establish an infec-
tion. Pathogenic yeast would have to lyse eryth-
rocytes to gain access to iron, as it is bound and 
locked away within haemoglobin and erythro-
cytes (Fourie et al. 2018).

Zinc is an important co-factor in many 
enzymes and thus a requirement for yeast growth 
(North et  al. 2012). The known mechanism of 
limiting zinc is via antimicrobial peptide calpro-
tectin. Calprotectin is a calcium (Ca2+) and zinc 
binding protein. The high binding affinity prop-
erty to zinc can limit the amount available to 
pathogens by trapping the zinc from the local 
environment (Besold et al. 2017). Calprotectin is 
present in large amounts in human neutrophils 
for which neutrophil recruitment to the site of 
Candida infections helps limiting nutrients to 
fungal pathogens such as Candida. Calprotectin 
is released as part of NET during NETosis upon 
neutrophils recognition of C. albicans hyphae for 
depleting zinc from the fungus and inhibiting its 
growth (Urban et al. 2009).

5  Immune Evasion by Candida

Immune evasion mechanisms adapted by patho-
gens include acquiring human complement, 
expression of endogenous complement inhibitors 
and secretion of proteases such as Saps that 
degrade host complement proteins (Meiller et al. 
2009). Candida species express virulence factors 
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such as hydrolytic extracellular enzyme, heat 
shock proteins and formation of biofilm (Cauchie 
et al. 2017). These mechanisms are used in order 
to strategies host immune evasion and cause life 
threatening diseases. The well evolved micro- 
organisms cleverly find ways to dysfunction the 
immune system, particularly the complement sys-
tem (Fig.  11.3). As the complement system is 
such a complex system, tight regulation is required 
to ensure the system is activated and act upon 
pathogenic organisms rather than self. To prevent 
this, complement regulators are in place to control 
the system. Most of the regulators act as inhibitors 
by cleaving the complement convertases or accel-
erating their decay. Examples of some regulators 
are Decay regulator -accelerating factor (DAF), 
Membrane cofactor protein (MCP), C1 inhibitor, 
Factor H (FH) and C4b- binding protein (C4BP) 
of which, FH and C4BP mainly are associated 
with Candida evasion strategies.

5.1  Proteolytic Activity 
on Immune Molecules

Complement protein C3 plays a central in activa-
tion of the complement pathways. Cleavage of 
C3 by C3 convertase produces anaphylatoxin 
C3a. C3a required for binding to complement 
receptor 3 (C3aR) for consequent migration of 
neutrophils to the site of infection and adhesion 
to the filamentous C. albicans for phagocytosis. 
Immune evasion molecule Pra1 cleaves C3 at a 
unique site, 6 C-terminal residues upstream C3 
convertase site, producing α-chain like fragment 
(C3α’L). Pra1 cleaving C3 to produce a C3a like 
residue which causes inhibition of proinflamma-
tory activity. Analysis of Pra1 protein sequence 
displays the presence of metalloprotease motif, 
however studies using protease inhibitors sug-
gests Pra1 is not a typical metalloprotease 
(Loboda and Rowińska-Żyrek 2017).

Fig. 11.3 Proteins expressed by C. albicans (Pra1, Gpm1 and Saps) help to evade the host immune system. Pra1 binds 
to C3, C3a and C3b. It also has the ability to cleave C3 and produce C3a like and C3b like molecules, which are inactive. 
Sap proteins can bind and cleave C3b, C4b and C5. This inhibits proinflammatory cytokines, signalling via C3aR, 
opsonisation and phagocytosis. Pra1 and Gpm1 binds to the alternative pathway regulator Factor H and classical path-
way regulator C4BP and with cofactor I, inactivate complement C3b to iC3b and C4b to iC4b, inhibiting the comple-
ment pathways. Pra1 also binds to plasminogen to activate plasmin for initiating tissue invasion
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Saps1–3 of C. albicans have been shown to 
have both binding properties and proteolytic 
activity on crucial complement cascade proteins; 
C3b, C4b and C5, to suppress the activation of 
complement pathways. As a result, these prote-
ases have shown to inhibit both, alternative and 
classical pathway. Saps play a significant role in 
immune evasion as they act on many other 
immune molecules such as AMPs, lactoferrin of 
the saliva and immunoglobulins such as IgA, 
which is cleaved to manipulate mucosal and sys-
temic immune response (Naglik et  al. 2004). 
Sap2  in particular has been well studied as an 
evasion molecule and is known to cleave FH, 
which is a vital fluid phase regulator of the alter-
native pathway and functions to facilitate Factor-I 
to cleave C3b into inactive form iC3b (Svoboda 
et al. 2015). By doing so, it blocks the formation 
the of C3 convertase and such hindrance in this 
mechanism leads to upregulation of C3b opsoni-
sation and activation of the alternative pathways 
(Pangburn 2000).

5.2  Hijacking Complement 
Regulators

The complement system is a crucial part of 
immunity required for clearing pathogens and is 
highly regulated with fluid phase and cell bound 
complement regulators. Pathogens have learnt to 
hinder with the complement pathways by hijack-
ing complement regulators to prevent any dam-
age by trying to protect from host complement 
killing and prolong survival (Hovingh et  al. 
2016). This approach is used by C. albicans 
which recruits host regulators FH and FHL-1 to 
surface to carry out regulatory activity, by doing 
so, pathogenic yeast control and regulate the 
complement pathway on the pathogen surface 
(Meri et al. 2002). The interaction enhances co- 
factor activity of FH for Factor I mediated cleav-
age of C3b in fluid phase and enhances C3b 
inactivation in solution. FH and FHL-1 serve as 
cofactors of C3b cleavage into iC3b, therefore 
inhibiting activation of the alternative pathway 
on the cell surface. This provides additional pro-
tective layer and limits and prevents complement 

attack at the yeast surface. The intermediate 
molecules of C. albicans binding to immune 
regulators are: Pra1, Gpm1, HGT, Sap2. All 4 
proteins expressed by C. albicans have been 
shown to bind FH (Gropp et al. 2009).

Pra1 and HGT1 of C. albicans are also C4BP 
binding proteins. C4BP is a 570 kDa multimeric 
protein found in the plasma. It binds to cofactor, 
Factor I and degrades C4b to prevent the forma-
tion of C3 convertase of the classical pathway to 
inhibit the activation of the complement pathway. 
C4BP also binds C3b to prevent the activation of 
the alternative pathway (Okrój and Blom 2018). 
C4BP acts as a cofactor in Factor I mediated 
cleavage for C4b and C3b. On the surface of C. 
albicans, the complement inhibitory activity is 
maintained to control the activation of classical 
pathway (Luo et al. 2011). Pra1 and Gpm1 binds 
serine proteases plasminogen present in the 
blood. The interaction mediated by lysine resi-
dues converts plasminogen into active plasmin 
which breaks down ECM components such as 
fibrin to initiate invasion and degrades comple-
ment molecule C3b (Luo et al. 2015). Victronectin 
is multifunctional protein found to be a serum 
regulator of terminal complement pathway and in 
the ECM, it plays a part in cell proliferation, 
adhesions and angiogenesis (Preissner and 
Reuning 2011). It is present on endothelial cells 
and keratinocytes, and acts as a surface ligand for 
Gpm1. C. albicans Gpm1 binds to vitronectin to 
evade the host immunity and attaches to the 
human endothelial cells for tissue invasion 
(Lopez et al. 2014).

5.3  Blocking Immune Receptors 
and Chemotactic Effects

C3a and C5a are chemotactic factors that attract 
immune cells such as neutrophils to the site of 
infection. Pra1 binds to C3, anaphylatoxins C3a 
and C3b, as well as iC3b and C3d, blocking the 
direct anti- fungal effect. Generally, C3a induces 
intracellular Ca2+ release for recruiting neutro-
phils via Ca2+ signalling. However, Pra1 com-
plexing with C3a, inhibits binding to C3aR on 
myeloid cells and consequently prevents C3aR 
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mediated calcium signalling (Krause et al. 1990). 
Fortunately, Pra1 suppresses C3a mediated but 
not C5a induced IL-8 secretion that recruit and 
activate phagocytes (Luo et  al. 2018). On the 
other hand, C. albicans Saps have been shown to 
block activation of complement effector C5a 
generation, as a result, obstructing recruitment of 
inflammatory cells (Gropp et al. 2009).

Pattern recognition receptor CR3, also known 
as integrin αMβ2, Macrophage-1 antigen and Mac- 
1, is found on polymorphonuclear cells that bind 
to the surface of pathogens. The main CR3 ligand 
is iC3b, but many others such as C3b can also 
bind (Bennett et al. 2015). HGT of C. albicans 
has been found to be an analog of CR3. As CR3 
plays a major role in adhesion to human phago-
cytotic cells, HGT1 and CR3 interaction prevents 
recognition and phagocytosis by neutrophils 
(Lesiak-Markowicz et al. 2011). Another immune 
evasion molecule of C. albicans is Sap2 that also 
has the ability to inactivate CR3.

Another strategy used by fungal pathogens is 
by masking cell wall components that are recog-
nised by PAMPs. Immune receptor dectin-1 
binds to β (1, 3 glucans) on the fungal cell wall to 
initiate strong inflammatory response. Yeasts 
such as Candida have evolved to shield away β 
(1, 3 glucans) under mannoproteins and to pre-
vent recognition by dectin-1 on immune cells 
such as macrophages to initiate an innate immune 
response. This usually happens at the hyphal 
form where the glucans are masked by the man-
nans and β-glucans are exposed during yeast 
budding.

5.4  Candida Mediated Lysis 
of Macrophages

Macrophages are important for limiting Candida 
burden during infection and recruiting other 
immune effector cells. They produce multiple 
pro- and anti- inflammatory cytokines upon C. 
albicans recognition. They have ability to readily 
digest round yeast form of C. albicans and short 
filaments (Keppler-Ross et  al. 2010). Herein, 
some C. albicans are destroyed and some go 
through fungal dimorphism induced upon change 
in the environmental condition of CO2 production 

within the cell to switch from yeast to hyphal 
form within the macrophage (Wartenberg et  al. 
2014). A reverse cytotoxic effect has been found 
where engulfed filament and hyphal formation of 
C. albicans can lyse the macrophage. However, 
this is based on the fungal morphology as only 
hyphal growth allows the C. albicans to escape 
macrophages. While this process would destroy 
some macrophages, other macrophages would 
withstand the pressure (Krysan et al. 2014).

5.5  Host Immune Evasion by 
Candida Biofilms

Morphology of C. albicans plays a significant role 
as a commensal and pathogenic organism. 
Biofilms are associated with invasive infections 
rather than yeast cells as healthy individuals are 
capable of clearing yeast cell, but formation of 
biofilms adapt to evade host immunity and estab-
lish an infection (Nett and Andes 2020). During 
infections, to prevent activation of host immunity, 
C. albicans illustrate immune silencing by pre-
venting immune sensing. The biofilm matrix pre-
vents the release of PAMPs to prevent penetration 
of leukocytes. Biofilm also evades clearance as 
they are ineffective in eliciting a strong immune 
response (Dühring et  al. 2015). Candida biofilm 
also induces the expression of IL-10 which signals 
the function of Th2 response, resulting in activa-
tion of B-cells, rather than activation of Th17 cells 
for an inflammatory response and activation of 
neutrophils. Deviation into Th2 response allows 
biofilm to evade direct clearance due to ineffective 
Th17 immune response. The changes in morphol-
ogy also allow prolonged survival of Candida 
within the host, this itself is a mechanism of eva-
sion as many factors of biofilm are resistant to 
toxic immune mediators for prolonged survival 
(Garcia-Perez et al. 2018). Asteroid bodies, crown 
like structure, are formed around the central yeast 
to provide protection. This plays a part in evasion 
as antigen-antibody complexes and parts of anti-
bodies IgG and IgM can be trapped in the external 
crown, interfering with the immune system. The 
asteroid is resistant to phagocytosis and allows 
proliferation of yeast cells without any interrup-
tions (Hernández- Chávez et al. 2017).
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5.6  Modulation of Nutritional 
Immunity

C. albicans uses multiple ways in attempt to 
acquire micronutrient from the host. As men-
tioned above, iron is one of the essential nutrient 
requirements for C. albicans and is usually 
found locked away in haemoglobin and within 
erythrocytes. However, C. albicans has evolved 
to obtain these micronutrients for cellular func-
tion. To obtain access, the fungus lysis erythro-
cytes using receptors present on the hyphae 
surface, binds to iron binding molecules and 
uses siderophores to obtain the iron (Hernández-
Chávez et al. 2017). Micronutrients transporters 
such as Als3 are expressed by C. albicans to 
attain micronutrients.

Pra1, Zrt1 and Zrt2 are zinc micronutrient 
transporters of C. albicans. Zinc is one of the 
most abundant metals in humans (Tapiero and 
Tew 2003) and C. albicans secreted protein Pra1 
has been recognised as a zinc sequester during 
infections as zinc levels are tightly regulated by 
the host, approximating iron. Secreted Pra1 hunts 
and binds up to 3 atoms of host zinc to then re- 
associate to a co-expressed zinc receptor (Zrt1) 
on the fungal cell wall. C. albicans use this route 
to assimilate zinc from human endothelial cells 
(Citiulo et al. 2012). C. albicans expresses 2 zinc 
transports Zrt1 and Zrt2 of which Zrt2 if found to 
be overexpressed during invasive candidiasis 
(Crawford et al. 2018).

6  Treatment and Antifungal 
Resistance

There are relatively few classes of antifungal 
drugs (Cannon et al. 2007). Main three antifungal 
treatment used are azoles, polyene and echinocan-
dins. Azoles are inhibitors of Lanosterol 
14-α-Demethylase and used for treating both topi-
cal and invasive candidiasis. Azoles allow accu-
mulation of toxic sterols (14α-methyl 3,6 diol) 
within a cell causing disruption of fungal cell 
growth. Many azoles-resistant Candida species 
have been reported, in particular, C. auris 
(Kanafani and Perfect 2008). One of the major 

reasons for azole resistance is overexpression of 
efflux pump on the cell membrane of Candida 
species, that prevent azoles staying inside the cell. 
The clinical consequences of antifungal resis-
tance can be seen in treatment failures in patients 
and changes in the prevalence of Candida spp. 
causing disease (Sanglard and Odds 2002). 
Another reason for azole resistance by Candida is 
mutation and overexpression of ERG11 gene cod-
ing for membrane protein that provides cell integ-
rity. Studies carried on C. albicans have reported 
multiple mutations of this gene (Sohaib Shahzan 
et  al. 2019; Fan et  al. 2019). Echinocandins are 
glycan inhibitors and used for oesophageal and 
invasive candidiasis. Echinocandins are also fun-
gicidal, as they inhibit β (1,3)-glucan synthesis 
required for cross linking chitin and β (1,3)-glu-
can that provides strength and rigidity to the fungi 
cell wall (Aruanno et al. 2019). Echinocandins are 
the first line antifungal therapeutic agents against 
C. glabrata strains due to their low susceptibility 
to azole drugs (Rivero-Menendez et  al. 2019). 
Emerging resistance to echinocandins has been 
reported with C. glabrata, C. tropicalis and C. 
auris isolates (Kordalewska et  al. 2018; Khan 
et  al. 2018; Dellière et  al. 2016). Echinocandin 
resistance has been attributed to the mutation of 
Fks subunits in the glucan synthase enzyme, pre-
venting the formation of a strong cell wall (Patil 
and Majumdar 2017). Polyene have high binding 
affinity to ergosterol in the plasma membrane to 
create a pore and interfere with proton gradient 
across the membrane. They form a micropore 
through the membrane from which amino acids, 
potassium and other water- soluble components 
of the cell outflow from the cytoplasm. Minimal 
resistance has been reported for common polyene 
and amphotericin B antifungal drugs. C. albicans 
is the most resistant to polyenes followed by 
amphotericin B. Emerging Candida species such 
as C. krusei and C. glabrata show more resistance 
to amphotericin B compared to C. albicans which 
makes infections caused by emerging  non- albicans 
species more challenging to treat (Rodrigues et al. 
2018). Apart from the 3 main groups of antifungal 
drugs mentioned above, nucleoside analogues are 
another group which are RNA/DNA inhibitors 
such as 5-flurocytosine, which inhibits fungal 
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protein and nucleic acid synthesis. However, 10% 
of C. albicans clinical isolates show resistance to 
this drug (Scorzoni et  al. 2017). Another novel 
and recent peptide- nucleoside drug produced 
against C. albicans is Nikkomycin Z (NIK) which 
works by being a competitor inhibitor of chitin-
synthase and disrupts the fungal cell wall. 
Targeting the cell wall of the pathogen is an ideal 
strategy for therapeutic purposes as human cells 
do not have a cell wall, making fungal cell an 
ideal target (Shields et al. 2011).

Overtime, increase in antifungal resistance 
has been widely reported. One possible reason 
for the emergence of antifungal resistance could 
be tackling Candida infections without specific 
species confirmation. Majority of C. albicans 
strains are susceptible to fluconazole, but inva-
sive candidiasis is currently treated without spe-
cies confirmation, for which the current 
international guidelines recommends echinocan-
dins as treatment. Echinocandins are more effec-
tive anti-fungal drugs than fluconazole (De Rosa 
et al. 2015). Echinocandins resistance is uncom-
mon, they exhibit fungicidal activity and display 
a better clinical outcome in comparison to fluco-
nazole and amphotericin B (Ou et  al. 2017). 
Early recognition of Candida spp. could switch 
the treatment to fluconazole which would impact 
treatment costs and reserve drugs for the future. 
However, Candida Spp. such as C. glabrata is 
widely resistant to fluconazole for which echino-
candins treatment is recommended. Similarly, C. 
auris isolates are resistant to both fluconazole 
and amphotericin B for which information such 
as species specificity is required for changes in 
the treatment (Sears and Schwartz 2017). 
Candida spp. developing resistance to flucon-
azole is very likely as a common and consistent 
trend has been seen in clinical isolates over the 
decades. It is already an inactive drug against 
biofilm formation which makes it a common 
antifungal drug failing to treat Candida infec-
tions (Pappas et  al. 2015). On the other hand, 
echinocandins have so far had low resistance 
rate and higher success in treating Candida 
infections in comparison to fluconazole, for 
which it remains as the first line treatment 
(Reboli et al. 2007).

7  Vaccines 
and Immunotherapy 
for Candida

Emergence of antifungal treatment require novel 
therapeutic strategy to combat candidiasis of 
which vaginal candidiasis is of particular interest 
due to recurrent episodes. Seventy-five percent of 
females suffer from vaginal candidiasis at least 
once in their lifetime, followed by many suffer-
ing from recurrent vulvovaginal candidiasis. C. 
albicans causes 85% of VC. Closely related spe-
cies, C. glabrata, C. tropicalis and C. parapsilo-
sis cause 5% or less of the infection (Sobel 2002). 
Initiation of candidiasis by C. albicans is due to 
defective host cellular response and disruption in 
the balance between the fungal virulence at the 
vaginal mucosa and host immunity (Höfs et  al. 
2016). Saps of C. albicans exhibit enzymatic 
activity at the mucosal site and adhere to host 
cells for fungal cell evasion. From the family of 
proteins, recombinant Sap2 tested in a rat model 
show increase in anti-Sap2 immunoglobulins 
IgA and IgG shielded from challenged intravagi-
nal C. albicans upon immunisation (De Bernardis 
et  al. 2012). Collection of other similar studies 
lead onto construction of r-Sap2 virosome vac-
cine named PEV7. Vaccine PEV7 by Pevion 
Biotech is in clinical trials for recurrent vulvo-
vaginal candidiasis against C. albicans. Injecting 
high-dose PEV7 has shown strong immune 
response with no adverse effect with 100% 
mucosal immune response shown during clinical 
trials (Sandini et  al. 2011). The vaccine works 
using virosomes which are envelopes of the 
Influenza-virus carrying the antigen, they work 
by displaying specific antigen on the surface and 
act as antigen presenting molecule (Mak et  al. 
2014). In this case Sap2 is an ideal candidate as it 
is known to be one of the virulent factors of C. 
albicans (De Bernardis et al. 2018). Independent 
to the enzymatic activity, Sap2 also possesses 
pro-inflammatory activity (Pietrella et  al. 
2010). Immunisation of mice with Sap2 also pro-
vides immunity against systemic infection by C. 
albicans (Vilanova et al. 2004). Antibodies pro-
duced by the PEV7 vaccine also cross-react with 
Sap1 and Sap3 along with Sap2, which have been 
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shown as highly expressive proteases of C. albi-
cans during Candida infection in both humans 
and animal models (Pericolini et  al. 2015). 
Another possible vaccine candidate called NDV-3 
contains the N-terminal portion of C. albicans 
Agglutinin-like sequence 3 (Als3) protein (Segal 
2017; Brena et  al. 2007). Als3 expressed on 
Candida cell surface plays a key role in many 
processes, such as attachment to the host surface, 
biofilm formation and iron acquisition during 
infection (Richardson et al. 2018). Als3 so far is 
the best studied candidate for vaccines against C. 
albicans (Lin et al. 2009). Studies carried out on 
both mice and humans reveal that NDV-3 exhib-
its antifungal activity and induces a Th17 
response (Bär et  al. 2012).The NDV-3 vaccine 
has successfully proved protection for different 
types of candidiasis. Observations show protec-
tive efficacy of the vaccine in preclinical animal 
models for oral, vaginal and hematogenous can-
didiasis (Schmidt et al. 2012; ClinicalTrials.gov 
2018). Despite this evidence is present, the 
involvement of antibody response remains con-
troversial as B-cell deficiency in mice did not 
have increased susceptibility to C. albicans infec-
tion (Carrow et al. 1984). This shows that anti-
body mediated protection is not the dominant 
adaptive cellular response against C. albicans. At 
present, the choice of anti-fungal drugs are lim-
ited as they can induce toxicity, acquire resis-
tance and target unaffected organs. Also, 
treatment to fungal infections has been challeng-
ing due to the cell wall of pathogens that consist 
of complex polysaccharides (Romani 2004b). 
New antifungal treatment is required as immuno-
compromised patients fail to restore their immune 
system to combat fungal infections and hence 
high mortality rates are associated with these 
patients.

8  Conclusion

Candidiasis is a global issue. Though antifungal 
drugs are available, candidiasis is still one a com-
mon infection in immunocompromised patients. 
The elderly population, neonates HIV/AIDS and 
immune suppressed patient i.e. those undergoing 

chemotherapy and under a broad-spectrum of 
antibiotics are the most susceptible. Outbreaks 
and high incidence rates are often reported in 
hospitals and especially ICU wards, placing a 
burden on hospitals, longer stays and health care 
costs. Emerging non-albicans Candida spp. is 
another factor making treatment challenging as 
the organisms have adapted and evolved to evade 
the host immunity and prolong survival to initiate 
an infection. More studies are required on emerg-
ing pathogens due to their adapted behaviour of 
immune evasion and antifungal drug resistance. 
Development of new therapeutics and better 
understanding of pathogenesis, virulence factors 
and evasion strategies are required. This would 
then lead onto molecular and structural studies 
for the discovery of novel therapeutics.
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1  Introduction

Plasmodium species include deadly P. falci-
parum, and less pathogenic P. vivax, P. ovale and 
P. malariae. P. falciparum is mainly restricted to 
sub-Saharan countries, whereas the others are 
more globally spread in temperate Africa, in 
Asian countries, and Latin America (WHO 
report, summary 2016). Ever since P. falciparum 
co-evolved, people have been under natural pres-
sure for selection of sickle cell anaemia trait for 
their protection and survival (Killing and Rayner 
2015). It is a recessive disease trait, with which 
heterozygous people are afforded with a strong 
protection from malaria, e.g. adults of Gabon are 

naturally immunised in endemic environment 
(Lell et  al. 2018). Unfortunately, children, who 
inherit both disease haplotypes, i.e. to be homo-
zygous to the mutant gene, at a haemoglobin 
chain single amino acid residue exchange, are not 
protected from either anaemia or malaria. Hence, 
the sickle cell trait is predominant in sub-Saharan 
countries (Allison 1954). An organisation has 
been founded to detect such young children for 
help (Hsu et al. 2018).

WHO 2016 Malaria Report quotes a reduction 
of endemic marginal malaria countries, down to 
91 from 108, since 2000. In 2015, there were reg-
istered 212 million new malaria cases, and 
429,000 people mortality, largely among children 
in sub-Saharan African region (McCall et  al. 
2018) (Geneva WHO Report 2017). By 2020, 
40% reduction in malaria incident and morbidity 
is projected, and by 2030, 40% more, towards 
malaria eradication. P. falciparum infection is the 
cause of more than 90% of global malaria deaths, 
P. vivax malaria is largely excluded in Sub-Sahara 
countries, because of the lack of Duffy antigen 
expression on blood stage red cells, on which 
P. vivax infection depends. P. ovale is indepen-
dent of Duffy red cell antigen and is also found in 
Africa.

P. falciparum life-cycle consists of female 
Anopheles mosquito vector-based sporogony 
stage, human host pre-erythrocytic liver stage, 
and asexual blood cell stage (Fig. 12.1). Sexual 
cycle gametocytes are generated at mature 

J. Ferluga () · U. Kishore 
Biosciences, College of Health, Medicine and Life 
Sciences, Brunel University London, Uxbridge, UK
e-mail: janez.ferluga@gmail.com 

I. Singh 
National Heart and Lung Institute, Imperial College 
London, London, UK 

S. Rout 
Department of Physiology, All-India Institute of 
Medical Sciences, Bhubaneswar, India 

A. Al-Qahtani 
Department of Infection and Immunity, King Faisal 
Specialist Hospital and Research Centre,  
Riyadh, Saudi Arabia 

H. Yasmin 
Immunology and Cell Biology Laboratory, 
Department of Zoology, Cooch Behar Panchanan 
Barma University, Cooch Behar, West Bengal, India

12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67452-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-67452-6_12#DOI
mailto:janez.ferluga@gmail.com


274

 trophozoite stage of blood cycle. These are 
engulfed with blood meal by female mosquitos. 
In their gut, male microgametocytes and female 
macrogametocytes undergo fusion, becoming 
zygotes. These are transformed into motile elon-
gated ookinetes, which in midgut develop into 
oocysts. Oocysts mature into a number of sporo-
zoites, which on rupture reach the vector salivary 
gland, producing anti-coagulants. On taking a 
meal, mosquito releases a number of sporozoites 
onto host skin and venous blood (Fig. 12.2). By 
being motile, sporozoites migrate to liver in min-
utes. There they actively traverse hepatic paren-
chymal cells via transient non-replicative vacuole 
to invade obligatory hepatocytes, in which they 
can replicate (Risco-Castillo et al. 2017). Further, 
the sporozoites transform into very large number 
of hepatic stage merozoites which are packed 

into schizonts. Some sporozoites become hypno-
cytes for storage, to be evoked in long time, espe-
cially in P. vivax and P. ovale, perpetuating 
malaria. Liver schizonts on rupture, discharge 
numerous merozoites, which infect red blood 
cells, in starting immature trophozoite ring form 
cycle, ending with merozoites. Daughter merozo-
ites rupture and kill red cells to discharge patho-
genic and symptomatic parasite debris and 
parasitaemia, and to invade further uninfected 
erythrocytes (Fig.  12.3). This febrile infection 
episode is repeated every 2  days in tertian 
malaria. P. malariae is unique in having quartan 
3-day cycle. It can cause chronic disease (Centre 
for Disease Control and Prevention, 2018). P. fal-
ciparum possesses more than 5400 genes, includ-
ing those involved in  its stage variability, as well 

Fig. 12.1 Life cycle of the malaria parasite and its effect on host immune response. In skin, antibodies trap sporozoites, 
which are injected by mosquito bite, preventing invasion of liver cells. Inside liver, CD4+ and CD8+ T cells produce 
IFN-γ inhibiting development of parasite into merozoites. Frequently, this immune response is inadequate and merozo-
ites emerge from liver and attack red blood cells followed by replication, burst out of infected erythrocytes and invasion 
of new erythrocytes. Antibodies specific for merozoites opsonize the parasite by blocking the receptor, which inhibits 
the RBC invasion. Furthermore, antibodies to surface variant proteins also agglutinate and opsonize the infected red 
blood cells and prevent their entry into the blood vessels.
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as escape host immune system (Hoffman et  al. 
2015).

2  Malaria Immunity 
and Vaccines

Malaria vaccine-driven immunity relies mainly 
on innate phagocytes, antigen-specific CD8+ and, 
CD4+ T cells, antibody-producing B cells, and 
their specific memory phenotypes. Two leading 
vaccine candidates have emerged after long clini-
cal trials to protect young children and adults, 
both based on P. falciparum circumsporozoite 

protein specific antigen (CS) at liver stage. The 
RTS, S recombinant CS safety and efficacy was 
evaluated in clinical trials mainly with children 
for their protection against malaria in endemic 
regions (White et  al. 2015). The Pf sporozoite 
SanariaR live, radiation- attenuated (motile, non-
replicative and metabolically active) vaccine was 
tested in clinical trials predominantly with volun-
teers in malaria endemic and non-malaria coun-
tries (Hoffman et al. 2015). Both vaccines induce 
specific  antibodies against liver stage PfSPZ anti-
gens, preventing the parasite migration to liver 
hepatocyte, their obligatory habitat, and draining 
lymph nodes. The live vaccine can also activate 

Fig. 12.2 The non-pathogenic sexual stages. Gametocytes fuse in the Anopheles mid gut to form the diploid zygote; 
this transforms into a motile ookinete and commences the mosquito phase of the Plasmodium life cycle. Antibody-
mediated immunity to gametocytes and ookinetes reduces transmission to the mosquito vector. The approximate timing 
of malaria parasite development in the mosquito, from the ingestion of parasites by the mosquito to the end of sporog-
ony, when sporozoites reach the salivary glands can be over 2 weeks. The changes in parasite density in the mosquito 
that occur within the time scale of complete sporogonic development can dictate parasite densities that are variable. 
Sporozoites are the most versatile invasive stages of Plasmodium life-cycle in their passage from mosquito vector to 
human host. They invade hepatocytes and transform into exo-erythrocytic stages. Sporozoites can be deposited into the 
skin by a probing mosquito, or they can be deposited into a blood pool created when the mosquito damages the blood 
capillaries during probing. Sporozoites deposited into the tissue transmigrate via its gliding motility
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antigen-specific effector cytotoxic CD8+ T cells to 
recognise and induce apoptosis of parasite-
infected hepatocytes.

In most malarial vaccines (Fig. 12.4), antigenic 
breadth is required, such as in attenuated live vac-
cines involving PfSPZ, around hundred antigens 
on their surface are required for a potent protection 
of children and adults. In addition, vaccine dose, 
number and timing of vaccination is the deciding 
factor (Weiss et  al. 1988; Weiss and Jiang 2012; 
Hoffman et al. 2002; Lyke et al. 2017; Cockburn 

and Seder 2018). This is in contrast to most bacte-
rial and viral vaccines, targeting successfully one, 
or few antigens with the aid of adjuvants. Adjusted 
adjuvants such as in RTS, S vaccine are required 
for elevated antigen- specific antibody titre, in 
safety and efficacy trials in children, as indicated in 
randomised clinical trial (White et al. 2015). The 
SanariaR live vaccine also underwent years of clini-
cal trials with volunteers, including young children. 
For strong SanariaR-induced immune responses, 
intravenous vaccination is needed, whereas RTS, S 

Fig. 12.3 Parasite invasion and differentiation in the two hosts. Infected mosquito bite injects sporozoites into blood-
stream, which migrate to liver and infect hepatocytes. The hepatocytes display microvilli and are separated from the 
sinusoids by a layer of endothelium and Kupffer cells. Heparan sulfate Proteoglycans on the hepatocyte membrane bind 
sporozoites, leading through to endothelial cells, invading hepatocytes and commencing exo-erythrocytic forms. 
Sporozoites could move along the endothelial cells by gliding motility and invade Kupffer cells. They then exit the 
Kupffer cell and invade hepatocytes. In next 5–10 days, parasites differentiate and multiply within hepatocytes. Between 
20,000 and 40,000 merozoites are released into blood that invade RBC. During intraerythrocytic stage, parasites develop 
and multiply over 48 h. When iRBC burst, 15–32 merozoites per iRBC are released, which invade RBC to begin a new 
cycle. A small proportion of iRBCs have parasites undergoing differentiation into either male or female gametocytes 
(which can be taken up by blood meal by mosquitoes). In insect mid gut, male and female gametes are released leading 
to fusion (zygote), which then undergoes a series of complicated differentiation and growth stages, resulting in the 
production of infective sporozoites in the salivary gland of mosquitoes
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vaccine is intra-muscularly administered. RTS,S 
trials were conducted mainly with children (as 
described below).

2.1  Blood Stage Malaria Vaccines

A blood stage malaria vaccine GMZ2 large ran-
domised trial with children in Burkina-Faso, 
Gabon, Ghana and Uganda was conducted. The 

vaccine was well tolerated. The risk of clinical 
malaria decreased with IgG antibody level aug-
mentation, making the vaccine a good candidate 
for improvement. The antigens are P. falciparum 
glutamate rich protein and merozoite surface pro-
tein 3 (Sirima et al. 2016). A later FMZ2 vaccine 
trial with Gabonese healthy volunteers was per-
formed. Base-line antigen specific antibody level 
was protective against symptomatic malaria, 
which is regarded a strong tool against endemic 

Fig. 12.4 Options for Vaccines strategies for infected stage of malarial infection. Vaccines and antigens discussed in 
this chapter are presented according to their targeted stage of the parasitic life cycle. Sporozoites specifically invade a 
hepatocyte and transform into clinically silent liver stages that generate tens of thousands of pathogenic merozoites. 
Intracellular liver stages reside in a replication-competent compartment-the parasitophorous vacuole. Secretory proteins 
might be processed and presented in association with MHC I molecules on infected hepatocytes where they are recog-
nized by CD8+ T cells. Attenuation of liver stage development by irradiation or targeted gene deletion confers sterile 
protection against natural malaria transmission. Following female Anopheles mosquito, sporozoites are injected into the 
skin, actively enter a nearby blood vessel and reach the liver. Successful transmission can be reduced by anti- sporozoite 
antibodies, which inhibit parasite motility and transmigration. Inhibition needs to be completed without allowing a 
single living sporozoite. At this stage, sporozoites might also interact with local regulatory T cells in the skin or in drain-
ing lymph nodes to induce tolerance. Merozoites specifically invade RBCs and transform into trophozoites. After sev-
eral rounds of replication merozoites are formed, that invade new RBCs. Invasion, intracellular growth, replication and 
egress are synchronised (fever–chill cycles). During the few sec. of erythrocyte rupture and re-invasion, merozoites can 
be blocked by antibodies to result in overall reduction of the parasite load. In addition, toxic components that elicit 
inflammation can be targeted by anti-disease vaccines. During first- time pregnancies, parasites target a unique adhesin 
of the PfEMP1 family, termed VAR2CSA, to the RBC surface; this results in massive sequestration of infected RBCs in 
the placenta. Antibodies from multigravid women protect against pregnancy-associated malaria, suggesting that devel-
opment of an exclusive vaccine against placenta-associated malaria is realistic
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malaria (Dejon-Agobe et  al. 2019). An asexual 
blood stage vaccine approach involves chemically 
attenuated parasite with tafuramycin. Naïve 
Australian volunteers were engaged in a pilot clin-
ical study. They were immunized via a single vac-
cination. In response, their antigen-specific T cells 
produced potent bactericidal cytokines including 
IFN-γ and TNF-α, and induction of CD3+CD45RO+ 
memory cells, but specific antibodies were not 
detected. It is the first whole blood stage vaccine, 
which warrants further development. Trial regis-
tration: ACTRN12614000228604. 4 March 2014 
(Stanisic et al. 2018).

Pioneering research by Nussenzweig et al. in 
1967 discovered that radiation-attenuated sporo-
zoite vaccine of P. berghei protected mice against 
this malaria species, not only at hepatic cell stage, 
but also by inhibiting development of sporozoite 
at oocysts form, at mosquito vector stage (Menard 
et al. 1997). This vaccine property is also valid in 
human P. falciparum attenuated live vaccine 
SanariaR, and in recombinant RTS,S vaccine in 
children and adult. They are both targeting major 
Pf circumsporozoite protein specific antigen 
(Clyde 1990; Hoffman et al. 2002; Epstein et al. 
2011, 2017; Triller et al. 2017).

2.2  RTS,S Malaria Vaccine

RTS,S/AS01 adjuvant vaccine (RTS, S) is a 
recombinant Pf CSP protein vaccine, which can 
induce in infants, and toddlers and adults protec-
tive titres of specific anti-CSP antibodies, at 
hepatic malaria stage. It is also able to reduce in 
malaria-susceptible children, clinical symptoms 
and severity of malaria disease at blood stage. 
The vaccine did not interfere with children vac-
cination (like DTP- diphtheria, tetanus and per-
tussis, and Haemophilus influenza type b virus) 
(Casares et  al. 2012; White et  al. 2015). There 
have been several clinical randomised trials with 
children and infants in Africa, and with adults 
naïve volunteers, which established antibody 
mediated reduction of clinical disease (Casares 
et al. 2012). The last major phase III RTS,S trial 
was conducted between 2009 and 2014, 8922 

toddlers, and with 6537 infants in 11 sub Saharan 
countries (White et al. 2015). The trial data have 
been analysed in terms of safety, immunogenicity 
and efficacy.

RTS,S vaccination was administered by intra-
muscular injection in 3 intervals. Children anti-
body titres against CSP antigen were very elevated; 
higher in 5–17  month old toddlers than in 6 to 
12-week old infants (White et al. 2015). However, 
the antibody levels waned until after 1 year, and 
further towards 5-year duration. An additional 
boosting dose vaccination at 18 months strongly 
prolonged a higher titre of anti-CSP antibodies, 
and that of specific memory B cell-plasmablast 
clones. RTS,S vaccine has passed phase 3 in trials 
for safety and efficacy. It has been estimated that 
the vaccine will prevent 50% malaria infection in 
children and adults, living in malaria endemic 
countries (White et al. 2015; Cockburn and Seder 
2018). Presently, the RTS.S vaccination is admin-
istered 4 times at appropriate intervals for a higher 
and prolonged antibody titre RTS,S has recently 
been authorized, but not yet licensed, by 
Government of Malawi and WHO to begin a rou-
tine vaccination pilot program in children aged up 
to 2 years. Ghana and Kenya are to follow. This is 
the first vaccine against malaria and parasites gen-
erally (WHO report 2019).

Recently, additional data from the same ran-
domised RTS,S vaccine phase III trials with chil-
dren and infants in Africa are focused on patients. 
Children/infant safety from serious adverse events 
(SAE) and vaccine reactogenicity are estimated in 
detail. These include children mortality, anaemia, 
febrile convulsions, pneumonia, gastro- enteritis, 
meningitis, cerebral malaria, preterm low weight 
infants, and gender-specific mortality. Some may 
be co- morbidities with other  infections, including 
acquired immunodeficiency syndrome (AIDS) 
and hepatitis virus B type, which was inhibited by 
the vaccine. On the whole, RTS,S vaccine contrib-
uted to reduction of malaria clinical burden in 
children. There remain some uncertainties about 
the immune mechanisms, reducing clinical 
malaria at blood stage malaria, and potential cere-
bral malaria, which was not clinically examined 
during the trials. These issues may be clarified in 
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the next phase IV trial of RTS,S vaccine, and in 
WHO authorized vaccine pilot program with 
Malawian children (Mendoza et al. 2019).

The specific anti-CSP antibodies target the par-
asite during its migration from skin following mos-
quito bites to draining lymphatics, and on a short 
way in venous blood to liver (Flores-Garcia et al. 
2018). PfSPZs may be also for a moment exposed 
to specific antibodies, during its journey, and on 
leaving apoptotic hepatocytes, to infect uninfected 
hepatocytes. This process occurs after just at a low 
multiplication number. Coated with specific IgG, 
they are arrested and opsonised for phagocytes 
such as macrophages and liver resident Kupffer 
cells for their engulfment. The Pf SPZ proliferation 
and form changes at liver stage and are of short 
duration, usually 5–6 days in humans.

For an explanation of reduction, in malaria 
cases, RTS,S vaccine induced antibodies may 
possibly also target merozoites, which may still 
express some dominant Pf CSP antigens which 
may inhibit their transition to blood for red cell 
stage invasion. The Pf CSP protein, a major anti-
gen targeted by RTS,S vaccine, was found to be 
expressed also on liver stage schizonts. These 
features are regarded a legacy of Ruth 
Nussenzweig discovery (Cohen et  al. 2010; 
Casares et al. 2012).

CSP protein regions were analysed for their 
dominant epitope as RTS,S targets, which appear 
to be of several antigenic breadth at the epitope 
level. CSP is of 58 KDa, and embodies central 41 
repeats of sequence NANA (Asn-Pro-Asn-Ala)6 
amino acid residues, and 2 flanking regions 
(Good et  al. 1988). The N-terminus has a 5 
amino-acid motif 93KLKQP97 common with other 
Plasmodium species to invade hepatocytes and 
mosquito salivary gland (Dame et al. 1984; Enea 
et al. 1984). Central repeat region of CSP mole-
cule contains dominant B cell epitopes, which 
might be amplified by their number. C- flanking 
region is highly polymorphic, perhaps providing 
a bigger ground for epitope-antibody target diver-
sity. It harbours immunodominant parasite epit-
opes, targeted by B cells as well as T cell 
recognition, named Th2R and Th3R, e.g., as 
shown in an Iranian population study (Good et al. 
1988; Zakeri et  al. 2007; Casares et  al. 2012). 

Such strong immune responses may be achieved 
through appropriate adjuvants, serving for cross-
priming, via dendritic cells, a specific antigen in 
naive T or B cell differentiation. This includes 
their specific antigens and memory B cells 
against malaria (Casares et al. 2012).

The reduced clinical malaria at asexual blood 
stage is regarded as a remarkable achievement in 
children and adults, who are not naturally resis-
tant to malaria burden, living in endemic coun-
tries. The clinical case reduction by vaccine may 
be more important for public, than protection 
against malaria infection in lucky individuals 
(Casares et al. 2012). It may help people who are 
unable to eradicate malaria at pre-blood stage. 
Putatively, the vaccine may reduce parasitaemia, 
lower than the threshold for clinical disease. It 
may thus also help natural immunity for children 
and adults to fortify such under-threshold parasi-
taemia, and for those children who could not 
resist pathogenic malaria infection naturally 
(Casares et al. 2012; White et al. 2015). Pf CSP is 
essential for mosquito stage development at 
oocyst form (Menard et al. 1997). It has been a 
long road from early 1980s in generating a safe 
and efficacious recombinant vaccine, with ade-
quate adjuvants, especially for infants and chil-
dren against malaria. It has been suggested that 
the efficacy of RTS, S may be augmented by 
implementing PfSPZ live X-ray attenuated, non- 
replicating, and metabolically functional vacci-
nation developed by Steven L Hoffman and 
colleagues. Hepatocyte infection is obligatory for 
parasite replication. PfCSP promotes sporozoite 
attachment to hepatocytes for their invasion 
(Menard et al. 1997; Hoffman et al. 2015; Casares 
et al. 2012; White et al. 2015).

3  PfSPZ SanariaR Vaccine

Clinical trials have been undertaken on naïve 
male volunteers for assessing safety, tolerance, 
immunogenicity, and protective efficacy of atten-
uated live PfSPZ vaccine. They were vaccinated 
by intravenous route, and then challenged intra-
venously by controlled human malaria infection 
(CHMI), with virulent live non-attenuated PfSPZ, 
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which were cryo-preserved. They are both pro-
duced by SanariaM Inc., based on NF54 strain 
(Hoffman et al. 2002; Epstein et al. 2017).

Randomised double-blind trials with SanariaR 
PfSPZ attenuated live vaccine were conducted with 
U.S.A., Tanzanian, and Malian young men as vol-
unteers (Jongo et al. 2018). Various groups of vol-
unteers were vaccinated intravenously with 
increasing radiation-attenuated PfSPZ vaccine 
doses (highest dose of 2.7 × 105 at 4-week interval). 
Other groups for immunogenicity and efficacy uti-
lised this attenuated PfSPZ vaccine dose at 0, 4, 8, 
12, and 20-week intervals. After 24 weeks of the 
last vaccination, men were challenged i.v. with 
CHMI 3.2 × 103 of virulent SanariaR PfSPZ infec-
tion, for protective efficacy of the vaccine against 
malaria, as compared with placebo controls, as 
monitored by reduction of parasitemia, and by 
thick blood smears (TBS). In a group, parasitaemia 
was not detected, suggesting a sterile protection. 
Antibody sera were assessed by ELISA, 
Immunofluorescence, and Inhibition of sporozoite- 
mediated hepatocyte invasion assay.

PfSPZ vaccine of 2.7 × 105 bites was optimal 
to induce vaccine efficacy of 65% against CHMI 
challenge in American men, of 52% in 
Tanzanians, and of 29% in Malians, which are 
naturally infected during the intense malaria 
transmission season. Pf CSP antibody titre 
induction against PfSPZ antigens were of similar 
proportions, the highest in naïve immunized 
American men. On the whole, the vaccine was 
found to be safe, well tolerated, immunogenic, 
and protective against Pf malaria infections up to 
90% in Africa and up to 100% in USA.  An 
explanation of a lower cellular and humoral 
response to PfSPZ vaccination in Malian volun-
teers was due to heterogeneity of parasite 
 antigenic variation, or to natural immune equili-
bration in dense malaria endemic exposure. The 
trial is registered at Clinical Trials.gov 
(NCT02132299) (Jongo et al. 2018). Previously, 
it was important to know whether the NF54 vac-
cine strain would be effective against various 
PfSPZ strains in different countries.

3.1  PfSPZ Vaccine Against 
Heterogeneous Malaria

In a randomised trial with people of various eth-
nicity and of both genders, it was established that 
the PfSPZ vaccine was protective, not only 
against homologous strain of PfSPZ-CHMI, but 
also against heterologous strains, that is, people 
who have been vaccinated i.v. with the SanariaR 
PfSPZ-strain NF54 vaccine, and challenged 
against homologous (NF54 strain) PfSPZ-CHMI 
infection. The vaccine was well-tolerated, safe, 
immunogenic and protective against malaria. In 
comparison, genetically different (heterologous) 
PfSPZ strains in CHMI infection were included 
in the clinical trial, challenging the SanariaR 
PfSPZ vaccine. These included Pf7G8 poly-
morphs selected from genome search, and 19 
clinical isolates from Africa. In a group of naïve 
subjects, the PfSPZ vaccine yielded protective 
efficacy against homologous CHMI of 87%, and 
that of heterologous CHMI of 57%. The Vaccine 
strain cross- protection against heterologous 
PfSPZ infection is regarded of paramount impor-
tance for a global vaccine (Lyke et al. 2017).

3.2  PfSPZ Vaccine Mediated 
Protection Against Malaria 
during Transmission Seasons 
in Endemic Regions

A preceding randomised trial with Sanaria vaccine 
in malaria was conducted with Malian healthy vol-
unteers for the first time in an endemic malaria 
region. It was found to be safe, and protective via 
cellular immunity at a low, but significant, level 
against malaria during the transmission seasons. 
The five-dose vaccination schedule took place dur-
ing dry season from January to July. Antibody pro-
duction against several malaria antigens was 
monitored before and after vaccination, but it was 
at a low level nearly down to- controls. Trial regis-
tration is: ClinicalTrials.gov, NCT01988636. 
(Sissoko et al. 2017). The PfSPZ vaccine, and het-

J. Ferluga et al.

http://trials.gov
http://clinicaltrials.gov


281

erologous CHMI challenge against Pf malaria, 
may serve as a model towards eradication program 
of malaria in other counties. It requires clinical trial 
partnerships on a large scale. A parallel randomised 
placebo, doubled blind controlled clinical trial has 
been initiated with Equatorial Guinean (EG) 
Authorities on Bioko Island, where malaria is 
endemic. There they never had any clinical anti-
malaria vaccination trials (Olotu et al. 2018). After 
the vaccine ethics requirements, men and children 
have been selected for clinical trials, 135 in num-
ber, ranging from 6-month infants to 55-year indi-
vidual. The same vaccine of 2.7  ×  105 PfSPZ 
schedule, and surface Pf-CSP protein (CVac) was 
utilized, except children receiving only 3 vaccine 
doses. The vaccine tolerability and protective effi-
cacy were adequate. However, IgG antibody titre 
again was insignificant (Olotu et  al. 2018). The 
vaccine is registered: Clinical Trials.gov identifier: 
NCT02418962. However, while clinical trials with 
Sanaria PfSPZ vaccine were usually analysing IgG 
antibodies, in a recent trial with volunteers, the 
IgM assessment was included. Antigen-specific 
high titre IgM was found for long-duration, appar-
ently preventing sporozoite entry into hepatocytes 
via complement fixation on their membrane.

3.3  IgM-Mediated Inhibition 
of PfSPZ Hepatocyte Invasion

Recently, sera of pre-exposed volunteers in a pre-
vious PfSPZ vaccine trial in Tanzania have been 
evaluated for IgG and IgM antibody titres against 
CSP (Zenklusen et al. 2018; Richie et al. 2015). 
These antibody classes were found in significant 
amounts, after they were vaccinated with PfSPZ 
vaccination schedule, and challenged with 
CHMI-PfSPZ. The IgG and IgM antibody titres 
against CSP antigen were detected by ELISA, 
and antibody binding to the whole sporozoite 
surface also visualized via immunofluorescence 
microscopy. Inhibition of Pf sporozoite via hepa-
tocyte invasion assay was included. It was shown 
that IgM fraction significantly inhibited hepato-
cyte invasion in vitro, by binding to the parasite 
surface membrane antigens. These are of various 
specificity, expressed all along the parasite. Such 

humoral immunity was long-lasting. Moreover, 
IgM antibody fixed complement on the parasite 
surface, leading to generation of C5a anaphila-
toxin and C5b down to membrane attack com-
plex (MAC) mediating parasite lysis. Clinical 
Trials Registration is: NCT02132299. It was rec-
ommended that these tests should be included in 
future trials in the liver stage anti-malarial vac-
cines. Perhaps, a significant inhibition of PfSPZ 
hepatocyte invasion in clinical malaria is itself a 
good indication that IgM was involved. It has 
been reported that on mosquito biting site, some 
sporozoites are retained in the host dermis, and 
are immobilized by antibodies in mice model 
(Flores-Garcia et  al. 2018). A very promising 
candidate is the chemo-attenuated live vaccine in 
host protection (PfSPZ-CVac).

3.4  A Sterile Protective Chemo- 
Attenuated PfSPZ-Based 
Malaria Vaccine

A study with naïve volunteers revealed that they 
were protected against malaria, only when they 
were vaccinated with non-attenuated PfSPZ, 
while on prophylactic chloroquine treatment. 
Production of their antibody titres against PfSPZ 
CSP and other liver stage parasite forms, and that 
of blood stage, were evaluated. Antibodies 
against sporozoite and pre-erythrocyte stage 
were mostly correlated with protection, in spite 
of the fact that chloroquine only targets red blood 
stages. This includes inhibition of merozoite 
development to repeat the red blood cell cycle, 
hence the transient increase of parasitaemia. This 
event may in malaria- infected individuals give 
rise to a broad range of antibodies against CSP 
protein, liver stage of which some may be shared 
or be cross-reactive (Bijker et  al. 2013; 
Mordmuller et al. 2017).

In later-randomised trials with naïve volun-
teers undergoing chloroquine prophylaxis, it was  
demonstrated that PfSPZ-CHMI (Sanaria  
non-irradiated), i.e. acting as a vaccine in this 
combination with the drug, was obligatory for a 
long-lasting protection against malaria, beyond 
that of drug protection alone. This was evident in 
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comparison with the placebo that was given i.v. 
normal saline. The vaccine was named PfSPZ-
CVac. Its host protective efficacy is at par with 
that of Sanaria PfSPZ vaccine, capable of eradi-
cating PfSPZ infection in naïve volunteers. 
Mefloquine was also similarly effective. The 
vaccine-chemo treatment of individuals was 
found to be safe, well tolerated, and protective. 
Out of 3 dose volunteer groups in the trials, group 
III was most protected, reaching 100%. It con-
sisted of 5.12 × 104 live PfSPZ number per dose 
(i.v.), 3 times at 28-day intervals, while receiving 
chloroquine treatment. Ten weeks after the last 
vaccination, they were challenged with con-
trolled CHMI once or twice. Lower dose in vol-
unteers I and II had protective efficacy of 33% 
and 67%, respectively. The vaccine was found 
safe, well tolerated, and host protective, even in 
the case of severe malaria. It also augmented 
CD4+ Th cells and cytotoxic CD8+ T cells, stimu-
lating IFN-γ, TNF-α and IL-4 secretion which 
are parasiticidal. Memory CD38 positive γδ T 
cells were also augmented. Antibody titres were 
analysed in volunteers at pre- and post- 
vaccination stage against several sporozoite epit-
opes, mainly for IgG isotypes. All vaccine groups 
induced antibodies, but only in vaccinees, anti-
bodies correlated with host protection. This cor-
relation also applies to inhibition of PfSPZ 
hepatocyte invasion. Blood stage was not tar-
geted. 100% protected vaccines did not experi-
ence transient parasitaemia of blood cycle, in 
contrast to non-fully protected volunteers, caused 
by chloroquine. Presumably, this was because 
they eradicated the parasite at liver stage. These 
results may suggest a close interdependence of 
the vaccine with chloroquine prophylaxis. 
PfSPZ-CVac, in combination with chloroquine, 
is projected to be able to eradicate malaria on 
large scale in endemic regions. It is also open to 
improvement such as in vaccine dose regime, 
drugs, and inclusion of heterogeneous Pf strains 
in the vaccine (Mordmuller et al. 2017; Sissoko 
et al. 2017). Such vaccination regime may not be 
suitable for children against malaria protection. 
Putatively, eradication of adult malaria as a reser-
voir may reduce malaria incidence in dense 
malaria endemic areas.

3.5  Vaccine Dose and Origin of 
PfSPZ Vaccine

In a separate trial, naïve adult volunteers were 
vaccinated with a higher dose of radiation attenu-
ated (9.0  ×  105) Sanaria-PfSPZ-NF54 vaccine, 
which is of African origin. Efficacy of PfSPZ 
host protection and durability between homolo-
gous and heterologous strains of Brazil were 
comparable, as measured by their parasitaemia 
(Lyke et  al. 2017). The US army and traveller 
volunteers received 3 doses of PfSPZ-NF54 vac-
cine i.v. in 6-week interval. Upon their challenge 
with CHMI infection, more than 60% of volun-
teers showed sterile protection against homolo-
gous Sanaria CHMI challenge, but equally 
against heterologous PfSPZ 7G8 strain CHMI of 
Brazilian origin. All non- vaccinated individuals 
developed parasitaemia. PfSPZ specific antibod-
ies increased in non- parasitaemia individuals 
over that of controls in 49  weeks. However, 
memory CD8+ and CD4+ T cells peaked at 
4 weeks, much more in control groups, and level-
ling later. Parasiticidal cytokine secretion by 
these T cells, including γδ T cells, such as of 
IFN-γ, TNF-α, and IL-2, was also much elevated 
in PfSPZ vaccinated volunteer group (Zaidi et al. 
2017). This study showed that Pf SPZ live vac-
cine of various origins is capable of  substantially 
eradicating malaria in volunteers at liver stage, 
and prospectively also in people living in malaria 
endemic countries (Lyke et al. 2017). The trial is 
registered at ClinicalTrials.gov (NCT02015091). 
Such individuals might also be protected by mac-
rophage type 2 innate immune tolerance and 
regulatory T cells, in balance with TLRs, recog-
nizing malarial glycosylphosphatidylinositol 
molecular pattern in mediating pro- inflammatory 
cytokine responses, which may damage host tis-
sue (Gowda and Wu 2018).

3.6  P. vivax Malaria Vaccine

P. vivax is associated with blood stage malaria, 
and with natural humoral immunity for protec-
tion. However, a naturally modified cellular 
immunity has been introduced in recent studies. P. 
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vivax sporozoites prefer engaging a distinct subset 
of circulatory, P. vivax primed, antigen specific 
cytotoxic CD8+ T cells that recognize HLA-1, 
together with P. vivax CSP on infected reticulo-
cytes, for their granzyme-mediated apoptosis. 
This subset of CD8+ T cells expand upon CSP 
priming. Reticulocyte red cell progenitors still 
possess nucleus and immune gene transcription 
apparatus for responding to P. vivax infection 
(Burel et al. 2016; Junqueira et al. 2018; Anstey 
et al. 2009; Bassat and Alonso 2011). Similar to 
liver stage malaria, P. vivax granulocyte infection 
antigen is recognized by specific cytotoxic CD8 T 
cell receptor to release pro-apoptotic granzyme E, 
A and B.  Granzymes are delivered into the 
infected target cells by cell membrane pore- 
forming proteins. These include granulolysin, 
which normally makes pores in the parasite mem-
brane. After apoptotic cell death, the freed para-
site is also subject to killing by granulolysin 
against reinfection. The clinical trials with 
malaria-infected volunteers and patients were 
conducted in Australia and Brazil (Burel et  al. 
2016; Junqueira et al. 2018). The malaria patients 
and un-infected subjects were analysed as donors 
of their circulating activated cytotoxic T cell and 
of target cell apoptosis ex-vivo, who were recruited 
from the same malaria region in Brazil. For 
instance, their circulating activated cytotoxic T 
cell activation markers CD69, HLA-DR and Ki57 
associated with cell proliferation were elevated in 
malaria patients, and they decreased after 
30–40 days to normal level upon their cure with 
chloroquine and primaquine therapy. It has been 
suggested that reticulocyte malaria infection, tar-
geted by cytocidal CD8+ T cells, may be incorpo-
rated in P. vivax vaccines, like P. falciparum liver 
stage (Weiss et  al. 1988, 2012; Schofield et  al. 
1987). Perhaps, antibodies against merozoite 
Duffy binding protein vaccine may help in such 
combination (Junqueira et al. 2018).

P. vivax causes a major pandemic worldwide, 
with approximately 100 million clinical cases per 
year, although in large majority of people, the 
disease remains asymptomatic for years, but is 
prone to relapses. P. vivax can cause serious dis-
ease and fatality in some people, such as in chil-
dren cerebral malaria, acute respiratory distress 

syndrome, hepatitis, intravascular disseminated 
thrombosis, foetal low weight birth, infant mor-
tality, severe anaemia and thrombocytopenia. 
The parasite biomass and fragile uninfected red 
blood cells may make P. vivax pyrogenic (Anstey 
et  al. 2009). However, in contrast with P. falci-
parum, P. vivax infects up to 2% of young eryth-
rocytes in circulation, but is not related to severity 
of the disease. P. vivax malaria is evolutionarily 
better co-equilibrated than P. falciparum, so as to 
spare the host for its own survival. On the other 
hand, it may be more difficult to obtain a protec-
tive P. vivax vaccine (Burel et  al. 2016; Bassat 
and Alonso 2011).

Recently, a cohort study was conducted with 
Papua New Guinean children aged 1–3  years, 
with their naturally acquired P. vivax IgG anti-
bodies against malaria in endemic regions. The 
aim was to boost their natural humoral immunity, 
to identify P. vivax antigen combination for their 
highly protective IgG antibodies from clinical 
malaria, as prospective vaccine candidates. 
Thirty-eight P. vivax antigens were selected, of 
which combination of EBP, DBPII, RBP1a, 
CyRPA and PVX 081550 antigens were most fre-
quently found. Their antibodies protected chil-
dren with more than 90% efficacy. The antibodies 
were mainly against late-schizont stage, prevent-
ing their erythrocyte adhesion and invasion. 
Here, in young children, breadth of P. vivax 
antigen- IgG antibody was appreciated. During 
their 16-month life, some children experienced 
elevated risk for febrile episode, or a higher para-
sitaemia in combination with other antigens. 
Synergistic and additive effects were observed in 
the five-antigen combination and with other of 38 
proteins. Included are also thresholds for IgG 
level with different antigen dose responses to 
reduce risk of clinical malaria, and cross-reactiv-
ity of antibodies to different antigens (Franca 
et al. 2017).

However, natural protective immunity against 
P. vivax can be acquired, which is specific for a 
particular endemic community. People upon 
migration to another endemic region are not pro-
tected. Such immunity was first demonstrated by 
bacteriologist Robert Koch, researching malaria 
in Papua New Guinea more than 100 years ago, 
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where P. vivax is predominant. Later studies indi-
cated that the number of malaria exposure in 
close endemic community is optimal to develop 
and sustain a balanced natural immunity (Barry 
and Hansen 2016; Offeddu et al. 2012). 
Interestingly, there is a decline of P. vivax malaria 
transmission across south-west Pacific due to 
inbreeding of the parasite (Waltmann et al. 2018).

4  Cytotoxic CD8+ T Cellular 
Immunity and Malaria 
Vaccine

CD8+ T cells are considered to be pivotal in 
immunity against intracellular P. falciparum para-
site in humans, aided by IFN-γ also from CD4+ T 
cells. Such unique CD8+ T cell property has been 
demonstrated in mice and primate studies, in 
which their sporozoite immunity was reversed by 
monoclonal antibodies against CD8+ T cells, but 
not by monoclonal antibody that depleted CD4+ T 
cells (Weiss et  al. 1988, 2012; Schofield et  al. 
1987; Good and Engwerda 2011; Cockburn et al, 
2008). Live attenuated malaria vaccine was 
designed to promote CD8+ T cell immunity 
(Epstein et al. 2011). Activated cytotoxic CD8+ T 
cells induce apoptosis of parasite-infected cells.

In malaria, PfSPZ specific antigen/MHC-
antigen complex on infected hepatocyte surface 
may be likewise restricted by antigen specific 
CD8+ T cells for apoptosis in individuals. Those 
naturally exposed individuals may have been pre-
viously cross primed by dendritic cells with PfSPZ 
specific epitope, elicited through PfSPZ vaccina-
tion. Putatively, a low immune response to recom-
binant subset vaccines may be ascribed to a 
diminished MHC class 1 specific antigen restric-
tion, while dealing also with unrelated bacterial 
antigens. Apoptosis of infected hepatocytes may 
have an advantage for the host protection. It 
induces in  local phagocytes anti-inflammatory 
cytokines such as IL-10 via phosphatidylserine 
ligation, exposed on outer cell membrane layer. 
This may be a reason why hepatic malaria stage is 
not a clinically pathogenic event in infected people 
(Weiss et  al. 1988, 2012; Schofield et  al. 1987; 
Good and Engwerda 2011).

A detailed analysis of liver stage malaria 
revealed that disease outcome depended on the 
number of sporozoite-infected hepatocytes, versus 
that of local liver infiltration of antigen- specific 
CD8+ T cells. For host protection, cytotoxic T cells 
may outweigh the infection. The study involved 
mice, infected with Plasmodium berghei. It took 
3 days for replicative antigen-specific cytotoxic T 
cell liver migration, which have been produced by 
infected donor mice, as a titration model (Spencer 
et al. 2017).

5  Malaria Vaccination 
in Pregnancy

Cellular cytotoxic T cell specific immunity is 
also subject to down-regulation of serine prote-
ases by non-classic human leukocyte antigen G 
(HLA-G) for the maintenance of placental 
maternal- foetal tolerance, as a semi-allograft. 
HLA-G is a dimer of class-Ib protein, which 
inhibits Granzyme B expression. HLA-G soluble 
level was increased in patients tolerating their 
kidney transplant, whereas in patients rejecting 
renal transplant, the level was significantly lower. 
HLA-G expression is found distinctly on cells/
tissues such as blood reticulocytes, placenta tro-
phoblasts, thymus medulla, cornea and pancre-
atic islet cells, in protection from auto-immune 
type 1 diabetes in children (Ajith et al. 2019). In 
placenta, foetal placenta produces HLA- G, 
which protects foetus from maternal uterus NK 
cell cytolysis. Such NK cells also produce gran-
zymes. NK cells express receptor for HLA-G 
protein ligation (Rouas-Freiss et al. 1997, 2007). 
There has been a delay with candidate vaccines 
in pregnancy trials. There are, however, studies 
on malaria impact in pregnant women, foetal life 
and infants in natural malaria infection in 
endemic condition.

5.1  Pf Malaria Vaccine Candidate 
in Pregnancy

It is imperative to protect expecting mothers from 
malaria. Clinical trials are being conducted with 

J. Ferluga et al.



285

pregnant women in Mali, utilizing Sanaria Inc. 
vaccine which is in phase 2 trial (Healy et  al. 
2019). A strong promising vaccine candidate, first 
of its kind, which is pregnancy-associated malaria 
vaccine (PAMVAC) to protect expecting mothers 
and foetuses against malaria, has been introduced 
in clinical trials. PAMVAC has passed, in adult 
volunteer randomised double blind trial for safety, 
tolerogenicity, immunogenicity, and efficacy 
requirement, and is now preparing for clinical tri-
als with gravid mothers (Mordmuller et al. 2019; 
McCall et al. 2018). PAMVAC is a recombinant 
protein vaccine (VAR2CSA), composed of P. fal-
ciparum blood stage conserved VAR2 antigen, 
and of distinct type of placental chondroitin sul-
phate A (CSA) antigen, which binds infected 
erythrocytes for their virulent inflammatory pla-
cental sequestration (Pereira et al. 2016). They are 
both potent antigens to induce IgG response in 
vaccination of naïve volunteers, and are very 
likely to be also in expecting mothers in malaria 
regions. PAMVAC- induced antibodies inhibited 
infected red blood cell ligation to placental CSA, 
thus strongly preventing their placental sequestra-
tion. In healthy volunteer trial, adjuvants 
employed were glucopyranosyl lipid adjuvant in 
stable emulsion (GLA-SE), GLA-LSQ, or alhy-
drogel, of which GLA-SE was most helpful 
towards the vaccine efficacy. This feature was 
measured by specific antibody titres by ELISA, in 
preventing live malaria asexual stage-infected red 
cell ligation to CSA. CSA was on adherent plates, 
a test, simulating their sequestration. Naïve indi-
viduals were immunized by 3 intramuscular injec-
tions, every 4 weeks apart. After last vaccination, 
such protective immunity was followed for 
6  months. Registration: ClinicalTrials.gov 
NCT02647489 (Mordmuller et al. 2019).

5.2  Embryonic Effector T Cells 
Primed with Placenta Malaria

Recently, in Ugandan endemic area, a clinical 
trial with 182 neonates/infants, born to mothers 
with prenatal placental malaria, has been studied 
for their protection, as compared with those of 
non-infected mothers (Odorizzi et  al. 2018). It 

was discovered that neonates and infants could 
be primed in utero with malaria-specific antigen 
already in their foetal life. This neonate property 
was assessed with their umbilical cord blood 
mononuclear cell responses to P. falciparum 
schizont extract (PfSE), and for their memory. 
Specific CD8+ T memory cells were stimulated to 
a high frequency expansion. Effector CD8+ as 
well as CD4+ T cells also showed proliferative 
response, and pro-inflammatory cytokine secre-
tion. Malaria antigens were found in foetal pla-
centa of active malaria infected expecting 
mothers. Memory CD8+ and CD4+ T cells were 
shown to be from foetal origin. Parasite antigen 
specific- activated/differentiated memory and 
effector CD4+ T cells were detected ex vivo in 
neonate cord blood. Regulatory tolerogenic T 
cells (Tregs) and γδ T cells were not noticed to 
affect CD4+ and CD8+ proliferation.

In Ugandan cohort clinical trial, all infants 
underwent intermittent preventative treatment 
with dihydroartemisinin-piperaquine (DP) every 
12  weeks, and monitored for their parasitemia 
and clinical symptoms. High level of antigen- 
specific CD4+ T cell proliferation correlated with 
new-born/infant protective immunity against 
malaria. With a group with low PfSE, more than 
70% of infants were protected from clinical 
malaria. Such a robust protection was only 
induced in utero in expecting mothers, suffering 
from active placental malaria. Apparently, such 
robust CD4 Th1 cell proliferation outbalanced 
Treg tolerance in mother and infant. It provides at 
birth a continuum transition of protective adap-
tive cell immunity to specific malaria antigens, 
while most of the T cells are at a naïve stage. 
There may be a collaboration with innate immu-
nity, including dendritic cell antigen cross pre-
sentation, constantly needed through childhood 
years together with malaria-specific memory T 
and B cells (Odorizzi et al. 2018).

Knowledge of such mother-infant placenta 
malaria immunity and history, which grossly 
changes their innate immunity profile against 
malaria, are considered to be very important for 
individual infants, for their mothers help with 
medication and nutrition. Some mothers may not 
exhibit the parasite in peripheral blood. It may 
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contribute to more efficacy in vaccine construc-
tion. TLRs signalling mediate, via NF-κB regula-
tor, anti-parasite cytokine gene transcription. 
There is a counter balance which may be explored 
for host safety (Natama et al. 2018; Jagannathan 
2018).

5.3  Prenatal Malaria Exposure 
and Infant Malaria Risk

Other studies with gravid women, exposed to 
malaria in endemic regions, demonstrated the 
malaria impact of prenatal exposure on new born 
and infants, in first year of their life. It has nega-
tive consequences for infant immunity against 
malaria infection. Some malaria-exposed infants 
have an elevated risk of developing clinical 
malaria. At perinatal stage, infants rely solely on 
innate immune protection against microbes while 
adaptive immunity is still naïve. Clinical trials 
with 303 cluster cohort of gravid mothers and 
paired infants have been conducted in African 
Burkina Faso malaria endemic region (Natama 
et  al. 2018; Jagannathan 2018). It is registered 
under COSMIC trial (NCT01941264).

Umbilical cord whole blood baseline cyto-
kines, and those of TLR stimulation- dependent 
mononuclear cell cytokine, chemokines and 
growth factors as biomarker, have been analysed 
in unexposed malaria infants, as compared with 
malaria-exposed infants. Baseline immune factors 
included intracellular agonists TLR 3, 7/8 and 9, 
and cord blood levels of IFN-α, IL-1β, IL-1RA, 
TNF-α, IFN-γ and tolerogenic IL-10, chemokine 
RANTES, and growth- factors G-CSF, GM-CSF 
and FGF as biomarkers. Their levels were signifi-
cantly lower in mother with placental malaria, as 
compared with unexposed mothers. In such situa-
tion, TLRs may differentially skew monocytes 
and dendritic cells in infants towards acute clini-
cal malaria. Infants of mothers with malaria his-
tory were over- responsive to TLR 7/8 activation, 
and prone to chronic malaria pathology. A marker 
of such infection is pro-inflammatory placental 
malaria pigment, hemozoin deposit. Several 
immune factor combinations may modulate an 
overt malaria risk in infancy. TLR 7/8 stimulation 

augmented GM-CSF and eotaxin, and TLR9 acti-
vation, which induced higher level of IL-1 β, and 
stimulation of IL-3 induced IL-7, which rose the 
likelihood of infant malaria. On the other hand, an 
elevation of IL-10, mediated by TLR3 or TLR9, 
reduced risk for infant malaria. There are differ-
ences in immune factors for susceptibility of 
mothers and infants to develop clinical malaria, 
between African malaria endemic states (Natama 
et al. 2018).

6  Trained Innate Immunity 
and Malaria Vaccine

TLR activation apparently extends into innate 
memory (trained) immunity (Schrum et al. 2018). 
In healthy volunteers primed with malaria infected 
red blood cells, or with hemozoin crystal, adher-
ent to PBMC on re- challenge through TLR2 stim-
ulation, induced in mononuclear cells an elevated 
pro-inflammatory cytokine response. 
Alternatively, malaria parasite molecular pattern 
may, through TLR9, induce in humans, tolerance 
response to malaria infection, engaging innate 
cell memory. This switch may depend on parasit-
emia burden. Both phenotypes are imprinted via 
nuclear chromatin epigenetic changes, which can 
be recalled by TLR signalling. Such imprints 
were also found in children of Mali, living in 
endemic region. Between Malian healthy individ-
uals, 50% had parasitemia, but were lacking 
symptoms. This may mean that their parasitemia 
level was kept below the pyrogenic threshold, 
associated with fever and pathology. Pyrogenic 
threshold was higher in individuals upon re-infec-
tion. Such innate tolerance memory may occur 
months after primary malaria infection. However, 
children are at risk for cerebral malaria showing 
enhanced susceptibility to febrile malaria, where 
tolerance pathway may not be matured. Such chil-
dren may need medication (Schrum et al. 2018). 
A murine model demonstrated that the deadly 
cerebral malaria is mediated by pathogenic CD8+ 
T cell responses, which can be suppressed by 
antigen- specific IgG antibodies. However, resis-
tance to the cerebral condition can be acquired 
gradually after 3-round of malaria infection, stim-
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ulation of anti-CD8+ T cell IgG antibodies, pro-
duced and maintained by memory and effector B 
cells, at a high level (Shaw et al. 2019). Cerebral 
malaria pathology in children is sequestration of 
P. falciparum infected red blood cells in micro-
vasculature endothelia, through their protein C 
receptor and ICAM1, differentially binding P. fal-
ciparum red blood cell var protein 1. Here also, a 
recombinant vaccine may induce strong antibod-
ies to both antigens, in prevention of children 
against cerebral malaria (Storm et  al. 2019). 
Prenatal malaria exposure of embryo is also asso-
ciated with low-birth weight (Jagannathan 2018).

7  Unconventional Adaptive 
Cellular and Humoral 
Immunity Against Endemic 
Malaria in Children

Interestingly, children exposed to repeated high 
P. falciparum burden can develop a natural atypi-
cal innate-like cytokine expression profile by 
effector cytotoxic CD3+ CD8+ T cells (dim), and 
their memory. This phenotype tends to be tolero-
genic, allowing with time, some more resistant 
children to become malaria asymptomatic, 
although on initial encounters they respond with 
an acute clinical malaria. Hence, such immunity 
is heterogeneous in a population. In low malaria 
burden countries, children may overcome an 
acute malaria response and develop a CD3+ CD8+ 
T cells (bright) memory. However, atypical T cell 
response is associated with chronic diseases such 
as hepatitis C and HIV-1 infections (Falanga 
et al. 2017). Two paediatric longitudinal studies 
with toddlers and school children in Kenyan 
western endemic region of Kosumi compared 
them with low burden area of Nandi. Their ex- 
vivo PfCSZ antigen stimulation of PBMCs, and 
that of peripheral T cells, as well as their plasma 
cytokines, chemokines, and PfCPZ specific anti-
bodies, were analysed. The atypical CD3+ 
CD8+dim T cells expressed Granzyme Bhi, IFN-
γlow, TNF- αlow, PLFZhi, ID2hi, and IKZF2hi, simi-
lar to that of NK cells. In comparison, children 
living in low malaria infection region, their 
CD3+CD8bright T cells expressed effector pro-

inflammatory factors including IFN-γ, TNF-α, 
CCL4, and INF-α, NF-κB, I and L-6. IgG titres 
increased against PfSRZ antigen. Cytotoxic 
CD8+ T cell cytokine profile was correlated with 
school children, and not that with toddlers. This 
difference might suggest prevalence of an innate 
protective immunity over an immature adaptive 
immunity. A repeated exposure of children and 
adults expand anti-parasite adaptive immune 
memory through unconventional cytotoxic CD8+ 
T cells. Such stage-immunity changes did not 
occur with CD4+ T cell subset (Falanga et  al. 
2017). CD8+ T cell immunity appears to contrast 
that of CD4+ T helper cell long lived memory, 
against malaria antigens, in tandem with that of 
Schistosoma haematobium co-infection, in 
Malian children (Lyke et al. 2018).

Unconventional CD8+ T cell’s innate immune 
feature is regarded as a distinct dynamic adapta-
tion towards protection against repetitive patho-
gen infection, rather than a fixed cell subset. 
Asymptomatic low malaria infection of such 
individuals may result from liver tissue sinusoid 
resident CD8+ T cells, mediating apoptotic death 
of infected hepatocytes, which is a silent event. 
Freed sporozoites are targets of specific PfCSP 
antibodies, and of liver phagocytic Kupffer cells, 
which line sinusoid wall cells. Liver tissue resid-
ing CD3+CD8+ T cells are pivotal for antigen-
specific memory (Falanga et al. 2017; Cockburn 
and Seder 2018). A study with malaria asymp-
tomatic children, their immune regulation in 
response to malaria endemic condition has been 
conducted.

In a school children cohort studies in West 
African Mbita, a malaria endemic region, more 
subdued CD8+ T cell effects for children protec-
tion against P. falciparum, combined with 
Schistosoma mansoni infection, have been 
reported (Kijogi et  al. 2018). In P. falciparum 
positive asymptomatic children, their ex-vivo 
PBMC-CD8+ T cells, CD4+ T helper cell, NK 
cells, NKT cells, and B cells were stimulated by 
PfCSP antigens. Their number, their cytokine in 
humoral functional responses to parasite specific 
antigens and unrelated pathogen antigen, have 
been analysed, as compared with Pf negative 
children. On the whole, in Pf positive children, 
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their immune cells upon Pf antigen stimulation, 
downregulated acute immune responses includ-
ing of IFN-γ, TNF-α and IL-6, by inducing natu-
rally acquired opposing regulatory cells and 
cytokines. These include IL-2, IL-10, IL-27, 
TGF-β, and regulatory T cell Foxp3. This toler-
ance was dependent on CD8+ T cell receptors, but 
independent from children’s measles vaccina-
tion, except for chronicity of viral disease such as 
hepatitis C virus and AIDS, including cancer. In 
Pf positive children, the immune cell number was 
reduced, except of B cell memory cytoblasts and 
NKT cells. Such immunity seems to be a balance 
against clinical acute malaria. Although unavoid-
ably instructive, ex vivo PBMC studies are diffi-
cult to completely mirror tissue resident T cell 
effector function and memory in humans, such as 
liver CD3+CD8+ T memory cells and B cells, 
apart from tissue allografts. Such memory is par-
amount in malaria for protection (Falanga et al. 
2017; Kijogi et al. 2018; Gebhardt et al. 2018).

Natural acquired immunity can foster a rare, 
potent and specific long-lasting memory B cell 
clonal accumulation in response to mosquito vec-
tor/PfCSP infection (Murugan et al. 2018). This 
event was revealed in a study with 80 healthy vol-
unteers in Gabon, a malaria endemic country 
(Triller et al. 2017). Such specific B cell immu-
nity involved two distinct dominant conforma-
tional epitopes, located on mid CSP repetitive 
NANP sequence of the parasite. The epitope 
specificity was generated by conformational 
changes of germline-encoded amino acid resi-
dues. Here, somatic permutation gene specific 
antibodies served as stabilizers of germline con-
formation. This natural anti-malaria B cell mem-
ory, confirmed in vivo, may serve in the design of 
next generation malaria vaccine (Triller et  al. 
2017). Presumably, in some children, this natural 
immune response to malaria may be more fre-
quent, who are naturally resistant to malaria.

8  Concluding Remarks

Malaria is still with us as a major pandemic, 
endangering almost half of the population in the 
world. It is reassuring that safe and effective vac-

cines in clinical trials against deadly Plasmodium 
falciparum malaria have been developed to pro-
tect young children, who are most vulnerable. 
This includes vaccine protection during their foe-
tal life, in placental malaria infected expecting 
mothers, living in endemic malaria African sub- 
Saharan countries. The vaccines also potently 
protect adult population. For protection from 
Plasmodium vivax malaria which is predomi-
nantly globally spread, clinical studies with chil-
dren have selected highly protective antigenic 
combinations, to be utilised in recombinant vac-
cine construction. The WHO authorised malaria 
recombinant vaccine RTS, S, inducing specific 
antibodies and B cell memory, are substantially 
protective for children against clinical severe 
malaria. Likewise, live attenuated Pf sporozoite 
vaccine at liver malaria stage affords a strong cel-
lular immune protection for people living in 
malaria endemic countries. Together with drug, 
the vaccines may substantially contribute to 
WHO projection of malaria reduction globally, 
supported by mosquito nets and other measures.
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