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Abstract. In automotive embedded software, functions have several perfor-
mance requirements such as timing, energy, safety and reliability. For such com-
plex software architectures, an early evaluation and decision on the best set of
performance configuration (e.g. timing vs energy trade-offs) could save costly
corrections of potential errors in the design. For example, appropriate perfor-
mance analysis workflows and frameworks if employed already during early
design stages, allow us to understand the performance aspects and behavior of
the system depending on software and hardware characteristics. The main input
required for such analysis is the performance-analysis model based on the under-
lying design model. In this context, this chapter presents a workflow for synthesis
of energy-aware timing analysis models for AUTOSAR-based embedded soft-
ware systems developed using the Unified Modeling Language (UML)/Systems
Modeling Language (SysML) domains. A prototype of the model transforma-
tions for the synthesis of the energy-aware timing models and its evaluation in an
automotive use case is presented.

Keywords: Energy-aware timing model · AUTOSAR · Unified modeling
language (UML) · Synthesis · Meta-model · Model transformation

1 Introduction

The Automotive Open System ARchitecture (AUTOSAR) [3] has been created as
a worldwide development partnership of vehicle manufacturers, suppliers, service
providers and companies from the automotive electronics, semiconductor and soft-
ware industry. To achieve the technical goals of modularity, scalability, transferability,
and function reusability, AUTOSAR provides a common software infrastructure based
on standardized interfaces for the different layers [37]. While doing so, AUTOSAR
employs component-based software architecture, for the design and implementation of
automotive software systems. With the standardized layer between application software
and the hardware of an Electronic Control Unit (ECU)1, the software is largely inde-
pendent from any chosen micro controller and car manufacturer, making it reusable for
several individual ECU systems.

1 An embedded system that controls one or more of the electrical systems or subsystems in a
vehicle.
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At this juncture, the automotive industry not only continues to expand rapidly but
also is becoming increasingly complex and heterogeneous with the adoption of multi
and many-core processors systems. Further, in automotive embedded architectures,
functions have several performance requirements such as timing and energy. For such
complex software/system architectures, an early evaluation and decision on the best
set of performance configuration (e.g. timing, timing vs energy trade-offs), could save
costly corrections of potential errors in the design. For example, appropriate perfor-
mance analysis workflows and frameworks if employed already during early design
stages, allow us to understand the performance aspects and behavior of the system
depending on software and hardware characteristics. Further, they help to explore differ-
ent design architectural choices and quantitatively evaluate their implications on system
performance.

On the other hand, the scientific effort provided by academic institutions often
does not match the needs of the industry as the proposed solutions fail to consider
the state-of-the-practice challenges [36]. Some emerging challenges in the context of
performance analysis are, integrating (specification/modeling) performance aspects in
the early design stage, an automated synthesis of performance models (e.g. timing, reli-
ability, safety, energy) and early model-based performance analyses in modeling tools
or specialized performance analyses tools. In this context, this chapter contributes to
the particular aspect of early model-based synthesis of energy-aware timing models in
AUTOSAR-based embedded software systems modeled using UML/SysML domain.

1.1 State-of-the Practice by Automotive Organizations

In the race to provide model-based tool support (e.g. architecture design, automatic
code generation) for AUTOSAR-based Embedded Software Engineering (ESE) in the
Unified Modeling language (UML) [44]/Systems Modeling Language (SysML) [41]
domain, UML tools such as Enterprise architect (EA) [8] and IBM Rhapsody Developer
[17] emerged as front runners. For instance, AUTOSAR-related UML/SysML profiles
for the architectural description of an AUTOSAR model that uses the native AUTOSAR
concepts is supported by Rhapsody and EA. At this juncture, a majority of the state-of-
the-practice in the automotive industry is that, UML is used at higher abstraction levels,
for instance, to create descriptive UML models that describe the overall software and
system architecture.

The descriptive models produced in the UML/SysML domain, are then used for var-
ious purposes such as (a) to produce more fine grained architecture of the prescriptive
models (e.g. using Simulink) and (b) debugging using model execution frameworks2 in
the context of realistic mock-ups of the intended user interface. On the other hand, the
automotive software is loaded with numerous non-functional requirements. During the
software architecture design of such systems, several non-functional parameters need
to be taken into consideration, optimized and fine tuned. Some examples are, studying
timing versus energy trade-offs and minimizing CPU load vs meeting safety goals. To
achieve this, the non-functional properties such as timing, energy and safety need to
be specified in the UML/SysML-based early design model. With this annotated design

2 https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit.

https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
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model as input, a performance analysis model (such as timing/energy/safety model)
needs to be synthesized. Such an analysis model can then be used for early perfor-
mance validation (such as timing analysis in specialized timing analysis tool [11]) and
trade-off studies.

1.2 Relation to Author’s Previous Work and Novel Contributions

In the above context, a systematic series of steps towards extraction and synthesis of
timing analysis models in AUTOSAR-based embedded system design models which
are developed in UML tools has been presented in [22]. In this book chapter, the work
in [22] is extended and the following novel contributions are presented.

– Extension of the framework introduced in [22] to include energy properties in the
AUTOSAR-design model (developed in UML/SysML tools) with the help of stereo-
types from the MARTE profile [26].

– Mapping of the energy properties to a generic timing-energy meta model.
– A prototype implementation of the model transformations using Atlas Transforma-

tion Language (ATL) [2] in Eclipse Modeling Framework (EMF) [7] for synthesis
of energy-aware timing analysis model from AUTOSAR-based design model.

– Evaluation of the above prototype in a practical automotive use case (introduced in
[22]).

In the remainder of this paper, background and related work is presented in
Sect. 2. The proposed approach for synthesis of energy-aware timing analysis model
for AUTOSAR-based design model developed in UML/SysML domain is presented in
Sect. 3. An experimental evaluation in an automotive case study is presented in Sect. 4.
Section 5 concludes the paper.

2 Background and Related Work

In this section, background and related work pertaining to general modeling options for
automotive embedded software systems is presented in Sect. 2.1. In Sect. 2.2, related
work on model-based timing and energy specifications and a brief background on
AUTOSAR-TE and the MARTE profile are provided. In Sect. 2.3, related work and
background on model-based timing and energy analysis is presented.

2.1 Modeling Automotive Embedded Software Systems

Automotive embedded software applications are different than typical embedded soft-
ware applications that we find on smart devices such as phones, gadgets, etc. In the
automotive applications, real-time complex interactions across multiple-systems such
as braking, steering, suspension, power-train, body-electronics, etc. are extremely cru-
cial. A single feature might need interactions across 20 or more automotive embedded
software applications spread across multiple ECU connected over multiple networking
protocols. No single automotive embedded software application performs on its own, it
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is always part of a much bigger system of systems [27]. To address the increasing com-
plexity in development of such systems, Model Driven Development (MDD) [31], is
considered as the next paradigm shift. In MDD, the requirements are specified as mod-
els at a higher abstraction level (e.g. using UML diagrams). They are then refined, start-
ing from higher and moving to lower levels of abstraction, via model transformations.

Further, MDD methodology also provides support for analysis of non-functional
properties such as timing and reliability parameters. For instance, UML supports
generic system and software modeling and also UML profiles for specific aspects such
as quality analysis. Some examples of employing UML for MDD and examining quality
properties such as timing, energy and reliability are available in [21,23,35].

Matlab/Simulink (M/S) [28] is a popular example for a modeling tool with non-
UML modeling language, which is established in the industry, including the automotive
domain [10]. It is primarily employed for simulation studies and model-based develop-
ment of control loops. Further, the Rubus Component Model (RCM) [5] and EAST-
ADL are among other established solutions used within the vehicular domain.

AUTOSAR Framework. A promising approach is the standardization of the software
architecture used in ECU development [29]. A comprehensive and well- established
solution used in the automotive sector is the AUTOSAR standard [3]. It emphasizes
to shift the ECU development from an ECU-centric approach to a functionality-based
approach. AUTOSAR uses a component-based software architecture, with central mod-
eling elements called Software Components (SWCs or SW-Cs). The SWCs describe a
completed, self-contained set of functionality. The AUTOSAR methodology describes
various steps, namely, System configuration, ECU configuration and component imple-
mentation involved in the development process. It also describes the artifacts created
and interchanged between the steps. In between these steps, the ARXML file format [3]
is used for the exchange of development artifacts, which is an XML-based file format.
The functionality-based approach aims to specify the functions of the complete vehicle
first in the so-called system configuration, and afterwards extract specifications for the
suppliers to implement an ECU. This way, the automotive software can be interchanged
on a function level instead of the ECU level, which increases its reusability.

The various components of the AUTOSAR framework are illustrated together with
the mapping of software components to ECUs, in the system configuration step, in
Fig. 1. The software components (seen at the top of Fig. 1, e.g., SW-C1) are used to
structure the AUTOSAR model and group functionality into individual components.
These components can be connected together, oblivious of the hardware they will be
running on. This is handled by the Virtual Function Bus (VFB), which provides an
abstraction layer for the SWC to SWC communication. Components distributed over
different ECUs however, may use the network bus for communication. This is deter-
mined automatically by the Run-Time Environment (RTE), which is a communication
interface for the software components. The lower part of the Fig. 1 represents the map-
ping of ECUs to SW-Cs in the system configuration step. Here, the ECUs 1, 2..n are
seen communicating over a network bus (e.g. FlexRay, CAN). In each ECU (e.g. ECU
1 in lower part of Fig. 1), the RTE provides interfaces between SW-Cs (e.g. AUTOSAR
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Fig. 1. Mapping of software components to ECUs [3,22].

SW-C 1 and AUTOSAR SW-C 2 in ECU 1) and between SW-C and basic software
(BSW). Further it provides the BSW services (as API abstraction) to SW-C.

The underlying software functions which implement the given requirements are
contained inside the SW-Cs. These are later on implemented manually by the software
developers. The RTE and Basic Software (BSW) which are provided by third-party
AUTOSAR software vendors are at the disposal of the developer for communication
and hardware abstraction. The inner functionality of the application and sensor/actuator
SWCs is defined in Internal Behavior elements. They encapsulate Runnable Entities,
which correspond to atomic functions on the code level that are implemented later in
the development process. The communication between the SWCs is modeled by using
communication ports. In this paper, we deal with the system configuration step and
specification of timing and energy properties in the SW-Cs.

2.2 Model-Based Timing Specification

Alternatives for specifying timing behavior in the UML domain have been introduced
more than a decade ago [31]. Modeling and Analysis of Real-Time and Embedded Sys-
tems (MARTE) [26] is a standardized UML profile, which extends UML and provides
support for modeling the platform, software and hardware aspects of an application.
There are several approaches in the direction of model-based timing specification in
the literature [1,20,33]. But, modeling constraints using AUTOSAR-TE and an auto-
mated extraction of timing parameters, synthesis of an analysis model and analysis of
the timing analysis model in a state-of-the-art timing analysis tool [11], is missing. In
this direction, a workflow for early synthesis of timing models in AUTOSAR-based
automotive embedded software systems has been proposed by the author in [22]. In
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this book chapter, the work in [22] is extended. Thereby, a workflow for synthesis of
energy-aware timing models in AUTOSAR-based embedded software developed using
UML/SysML domains is presented in this paper along with experimental evaluation.

There are also several modeling alternatives in non-UML domains such as SystemC
[4], Event-B3 and Matlab/Simulink [28] to name a few. Unlike UML-based profiles,
support for specification and analysis of timing properties is very limited in SystemC
and Event-B. The newly introduced System Composer toolbox in M/S [42] provides
system engineering capabilities in M/S. It supports creation of custom-defined profiles
and custom-defined scripts to analyze the models based on the stereotype values as in
the case of UML profile mechanisms and tools. However, there are no studies avail-
able yet on the usage of the new features in M/S for energy-aware timing analysis of
automotive embedded software models.

Further, several modeling languages, domain-specific languages and a number of
generic approaches have emerged that include timing behavior. PTIDES [6,45] and
Giotto [15] provide a good basis for defining an approach to model timing requirements.
However, these are often used to analyze system behavior rather than specification of
timing properties. In the following a brief background on AUTOSAR-TE and MARTE
are provided as they are used in this paper to annotate the AUTOSAR design model
with timing and energy properties respectively.

AUTOSAR-Timing Extensions (TE). The AUTOSAR-Timing Extensions (TE) meta-
model is separate from the AUTOSAR metamodel, in order to leave the option whether
to provide timing specifications or not. They feature an event-based model for the
description of the software’s temporal behavior and can be defined on top of a system
architecture. The AUTOSAR release with timing extensions and own timing model,
finds extensive usage in the automotive industry. This is supported by studies including
[9,13,34].

The TE metamodel (Fig. 2) provides five different views for timing specification,
depending on what kind of timing behavior of the AUTOSAR model is described [3].
The five views are VfbTiming, SwcTiming, SystemTiming, BswModuleTiming and Ecu-
Timing. In the experimental evaluation, the SwcTiming view is employed, as in the
system configuration step and timing specification step the SWCs are employed (cf.
Sect. 2.1). SwcTiming view describes the internal behavior timing of software compo-
nents. Further explanation of AUTOSAR methodology and AUTOSAR-TE are not pro-
vided here because of space limitations (interested readers are referred to [3]).

MARTE Profile. The MARTE profile [26] standardized by the OMG [31] is primarily
aimed at modeling and analysis of real time and embedded systems. It is a popular
standard which introduces a domain view for time modeling and defines standard UML
elements to express timing concepts of real time and embedded systems. MARTE also
enhances the UML to support value units with the aid of a Value Specification Language
(VSL). Further, the profile extends the UML to be able to model a platform, on which a
software application is executed and how the deployment of the software to the platform

3 http://www.event-b.org/index.html.

http://www.event-b.org/index.html
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Fig. 2. Overview of AUTOSAR Timing Extensions (TE) metamodel [3].

is made. When modeling a platform, there are (among others) elements for defining
processors, schedulers and threads.

In the context of the work presented in this paper, a decision on the usage of stan-
dardized profiles such as MARTE for practical scenarios relies on important aspects,
among others, such as (1) ease of use of standardized mechanisms (2) support for mod-
eling data, using a specific mechanism, which is required for a basic analysis (e.g.
timing, energy) and (3) support for employing a standardized mechanism in a UML
modeling tool. But, MARTE is an exhaustive profile with hundreds of stereotypes for
annotating aspects pertaining to real-time and embedded software and hardware. There-
fore an alternative is to make use of a custom-defined UML with only a handful of ele-
ments for defining time and energy properties, which may be required for a first-hand
energy-aware scheduling analysis.

Within the scope of this work, on investigating the available alternatives for model-
ing the energy properties in UML/SysML tools, it was found that this can be achieved
with the existing stereotypes of the MARTE profile. Moreover, the MARTE profile is
readily available as a profile-plug-in in UML/SysML modeling tools such as Rhap-
sody [17], EA [8] and Papyrus [32]. Therefore, it is decided to use the existing features
in standardized profiles such as MARTE, rather than reinventing the wheel for non-
functional properties specification employing UML (e.g. by developing a new custom-
defined profile). Further, the new proposals for UML profiles in related work (such as
[12]) indicate that, they are neither open source nor available as a model-based plug-in.
It is clear that such new proposals have negligible reuse potential.
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2.3 Model-Based Timing and Energy Analysis

The specified timing behavior in the design model can be analyzed using dedicated
timing analysis tools. There are several open source tools such as Cheddar [40] and
MAST [14]. Some popular proprietary timing analysis tools include chronSIM [19],
Gliwa T1. timing suite [11] and Timing Architect [43]. These tools are independent of
the modeling languages used. Therefore, they require the timing specifications to be
in a particular format, although some provide import functions for common modeling
languages. However, the timing analysis carried out in such tools are very late it in the
development process. It is imperative to note that the design errors realised from such
late timing analysis would be costly to fix at a later development stage. Hence, an early
model-based timing analysis is necessary to overcome this drawback.

On the other hand, there is no tool support for automated synthesis and export of
AUTOSAR-based timing analysis model (from AUTOSAR-based application design
model in UML tools) to these timing analysis tools. In the literature, AUTOSAR-TE
were used for a model-based timing analysis in works such as [24] and [38]. Further,
a review of the literature shows that there is no systematic model-based approach for
timing or energy analysis of AUTOSAR-based systems. Except for [22], there exists no
related work on early synthesis of timing models for model-based timing analysis of
AUTOSAR-based systems.

Further, a related work in [21] deals with a model-driven workflow for energy-aware
scheduling analysis of IoT enabled use cases. It carries out energy-aware timing analysis
(of UML models) of IoT use cases in state-of-the-art (timing) analysis tools. However,
ready made support for energy-aware timing analysis is not available in any of the state-
of-the-art timing analysis tools. Hence, in [21], an additional tool-plugin is implemented
in a timing analysis tool to include the energy properties and carry out energy-aware
timing analysis. Note that the workflow in [21] deals with the synthesis and analysis
of energy-aware timing models from hand-written IoT code. Thus, in the literature,
there is no published work dealing with the synthesis of energy-aware timing models in
AUTOSAR-based embedded software systems developed using UML/SysML domain.

Addressing this gap and in line with the novelties outlined in Sect. 1.2, in the remain-
der of this paper, the proposed workflow for synthesis of energy-aware timing models
in AUTOSAR-based systems and an experimental evaluation are presented in Sect. 3
and 4 respectively.

3 Workflow for Synthesis of Energy-Aware Timing Models

The proposed workflow for a systematic integration of the energy and timing perfor-
mance requirements in the AUTOSAR-design model and the automated synthesis of
an AUTOSAR-based energy-aware timing analysis model is presented in this section.
A series of steps involved in this systematic synthesis of energy-aware timing analysis
models incorporated in the AUTOSAR development process shown in Fig. 3. The steps
involved in the workflow are described in Sect. 3.1. The custom-defined generic timing-
energy metamodel used in the workflow is described in Sect. 3.2. The mapping among
elements in the AUTOSAR metamodel and the custom metamodel (from Sect. 3.2) w.r.t
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Fig. 3. Steps involved in synthesis of energy-aware timing analysis model incorporated in
AUTOSAR development process.

timing properties is described in Sect. 3.3. Similarly, mapping between MARTE stereo-
types and custom-defined metamodel (from Sect. 3.2) for energy properties is described
in Sect. 3.4. An overview of the M2M transformations used in the workflow is provided
in Sect. 3.5.

3.1 Steps Involved in the Synthesis of an Energy-Aware Timing Analysis Model

The proposed workflow for integrating the energy and timing performance requirements
in the AUTOSAR-design model and the automated synthesis of an AUTOSAR-based
energy-aware timing analysis model is shown in Fig. 3. It comprises of the following
steps:

1. In the first step (step (a) in Fig. 3), it is considered that an initial AUTOSAR-based
design model of the automotive embedded software application under consideration
is already modeled in an UML/SysML tool [8,17]. Note that step-(a) in Fig. 3 is
applied in an early stage of development process. It involves the specification of
the timing and energy requirements in the AUTOSAR-based design model using
AUTOSAR-TE and MARTE profile respectively. The output of this step is a timing
and energy-annotated AUTOSAR-based design model.

2. In line with the main scope of this paper, an AUTOSAR-based energy-aware timing
analysis model needs to be synthesised based on the inputs from step-(a) in Fig. 3.
For this purpose, given the energy-aware timing annotated design model as input,
Model-to-Model (M2M) transformations are implemented for extracting the timing
and energy properties. This results in the synthesis of the AUTOSAR-based energy-
aware timing analysis model (conforming to a generic metamodel, cf. Sect. 3.2).
Thus, the output of step-(b) in Fig. 3 is the synthesized energy-aware timing analysis
model.

Note that this resulting model from step (b) can be used for performance validation
such as energy-aware timing analysis and trade-off studies. Thus the output (model)
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from step (b) may be exported (cf. step (c) in Fig. 3), for instance in XML format, to
industry standard analysis tools [11,43].

3.2 Generic Timing-Energy Metamodel

A metamodel comprising a set of timing and energy properties is required for the
Model-to-Model (M2M) transformations in step-(b) in Fig. 3. A generic, custom-
defined metamodel for energy-aware timing analysis introduced in [21], for energy-
aware timing analysis of IoT-compliant use cases, is employed in this paper to syn-
thesize an energy-aware timing analysis model for AUTOSAR-based embedded soft-
ware systems developed using UML/SysML tools. This metamodel bears similarity to
the AUTOSAR metamodel with respect to the software and hardware architecture ele-
ments. It can be termed as a generic metamodel, as it closely adheres with timing models
used in several timing validation tools [11,43]. A simplified view of the custom-defined
timing-energy metamodel is shown in Fig. 4.

Fig. 4. Excerpt of the timing-energy metamodel [21].

From Fig. 4, it can be seen that the metamodel comprises a package with the ele-
ments required for an energy-aware timing evaluation of a software system, in a hierar-
chy. It consists of elements such as Packages, containing the different model elements
such as Runnables (e.g. an operation), SoftwareComponents, Tasks, Cores, ECUs and
ExecutionPaths. A task may or may not have a trigger, depending on its activation.
Each task and runnable comprises an attribute to store the execution time. This is used
as an input for timing analysis. A result of timing validation, namely the response time
is an attribute for tasks.
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Similarly, the power consumption modes (along with their average power rating)
specified in the UML design model can be mapped to the attribute PowerValue for
a core. Please note that only a simplified (yet sufficient) view of the timing-energy
analysis model is presented here, because of space limitations. Interested readers are
referred to [22] for a detailed description of the timing elements in the metamodel.

3.3 Mapping Among Metamodels for Timing Properties

In this section, the relevant metamodel elements from the custom-defined intermedi-
ate timing-energy metamodel (cf. Sect. 3.2, Fig. 4) are mapped to their counterparts in
the AUTOSAR-TE metamodel [3]. The AUTOSAR Tool Platform4 provides an EMF
model, which contains the element names as per specification. An evaluation version
of this AUTOSAR EMF model is used in this paper for mapping the timing metamodel
elements to the AUTOSAR metamodel elements. It is also used as an input metamodel
for the automated model transformations (cf. Sect. 3.5). A summary of relevant map-
pings of elements is shown in Table 1. In the following, these mappings are described
in more detail.

Table 1. Mapping of timing-related elements in proposed generic metamodel (in Fig. 4) to
AUTOSAR elements.

Nr Timing element in Fig. 4 AUTOSAR element Description

1 Model AUTOSAR Top-level model element

2 Package ARPackage Structuring element

3 SoftwareComponent AtomicSwComponentType Encapsulates functionality

4 Runnable RunnableEntity Executable operation

period Period of TimingEvent Period of operation

coreExecutionTime LatencyTimingConstraint Execution time of runnable

order RtePositionInTask Execution order of runnable

baseCycle RteActivationOffset First runnable execution

repetitionFactor runnable period/task period How often it is executed

5 ECU EcuInstance Electronic control unit

6 Core HwElement Processing core

period OsSecondsPerTick Seconds per clock tick

7 System System Network of ECUs

8 Task OsTask Schedulable unit

priority OsTaskPriority Fixed priority of task

taskType OsTaskSchedule Preemptability of task

synchronizationMechanism OsAlarmCounterRef Reference clock

synchronizationOffset OsAlarmAlarmTime Offset for the reference clock

activation OsAlarmCycleTime Periodic task activation

9 ExecutionPath TimingDescriptionEventChain End-to-end path

4 https://www.artop.org/.

https://www.artop.org/
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1. The top-most element of every AUTOSAR model is the AUTOSAR element. It
denotes the AUTOSAR revision and links to the corresponding XML schema def-
inition. This element is mapped to the Model element, as it represents a dedicated
model. Note that this element in Table 1 is not shown in the Fig. 4.

2. The ARPackage element gets mapped to the Package timing element, as it structures
the different AUTOSAR elements in packages and subpackages.

3. The mapping of software components is straightforward, because these elements
exist similarly as central modeling elements in the AUTOSAR standard. Every
AtomicSwComponentType of the AUTOSAR application model is mapped to a Soft
wareComponent in the timing metamodel. This includes SensorActuatorSwCom-
ponentTypes and ApplicationSwComponentTypes, as they inherit from the atomic
software component type.

4. The Runnable timing elements exist in AUTOSAR inside the InternalBehavior of an
AtomicSwComponentType as RunnableEntities. They represent the executable oper-
ations of the software components.

5. The ECU elements can be mapped to the AUTOSAR EcuInstance. This is used for
linking the software components, and therefore runnables, to their dedicated ECUs,
on which they are later on implemented and executed.

6. The Core elements are mapped to HwElements in the AUTOSAR model. They need
to be linked to a HwCategory of the type ProcessingCore. Each core belongs to an
ECU and is linked to it in the system mapping.

7. The System element in timing metamodel corresponds to a System element
AUTOSAR model. Overall, they represent a top-level element corresponding to a
network of ECUs.

8. Task elements are created in the AUTOSAR Os configuration as OsTasks. A task is
defined as a schedulable unit in timing analysis.

9. The end-to-end ExecutionPaths in the timing metamodel can be represented in the
AUTOSAR model as TimingDescriptionEventChains. These event chains group a
set of events belonging to the activation and termination of runnable entities.

Note that in place of the custom-defined but generic metamodel used in this paper,
an open source metamodel namely, AMALTHEA5, may be employed for M2M related
to timing properties. However, it does not provide ready made support (i.e., elements)
for modeling energy characteristics. Hence, in this paper we have employed our custom-
defined generic metamodel.

3.4 Mapping Between MARTE Stereotypes and Custom-Defined Timing-Energy
Metamodel for Energy Properties

For annotating the energy properties, the underlying CPU configuration modes (with
power consumption values of the microcontroller) are taken into consideration. This
can be obtained from measurements or from data sheets, for instance in the case
of Commercial Off-the-shelf (COTS) products. The mapping between the power
configuration modes for the CPU core can be added using the HWComponent
stereotype from MARTE profile (with tagged value staticConsumption) [26]. The

5 https://www.eclipse.org/app4mc/.

https://www.eclipse.org/app4mc/
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HWComputingResource stereotype (with tagged value resMult) indicating multiplic-
ity of the processing modes, can be additionaly used to link the processing modes to the
cores with the tag value processingUnits of SaExecHost stereotype. Please note that,
the aforementioned stereotypes are selected based on an analysis of support for energy
modeling in MARTE profile and the requirements for a first hand energy-aware timing
analysis of the AUTOSAR-based design models, proposed in this paper.

Table 2. Stereotypes used from MARTE profile for energy/power annotations in the design model
and their mapping to elements in Fig. 4.

MARTE Stereotype Tagged Values Description Mapping to element in Fig. 4

SaExecHost mainScheduler, schedPolicy,
utilization, isSched

CPU core and related
configuration

Core (also HWElement in
AUTOSAR), runnable, task

HwComponent staticConsumption Average power consumption
per processing mode

PowerValue

HwComputingResource resMult Linking various core
configurations

powerConsumptions in
PowerValue

The mapping between the MARTE stereotypes mentioned above and the corre-
sponding elements in the custom-defined timing-energy metamodel in Fig. 4 are shown
in Table 2. Each core element in Fig. 4 may comprise of a PowerValue denoting the
power consumption values of the underlying microcontroller. Thus, the power con-
sumption values specified using the HWComponent stereotype from MARTE profile
with tagged value staticConsumption, are mapped to the PowerValue element denoted
in Fig. 4. The various core configurations and their power values from HWCompo-
nent stereotype represented by the HWComputingResource stereotype correspond to
the multiplicity powerConsumptions in PowerValue element in the metamodel in Fig. 4.
These are required to link the various core configurations (e.g., power configuration
modes). Note that, for a first hand energy-aware timing analysis, the power configu-
ration models of the underlying hardware element (one or more cores) are taken into
consideration.

3.5 Model-to-Model (M2M) Transformations

As seen in Fig. 3, after step (a), a timing and energy annotated AUTOSAR-based design
model is now available in the UML/SysML tool under consideration. It can be exported
from the tool as an ARXML file [3] as input for step (b) in Fig. 3. Note that while employ-
ing Model-to-Model (M2M) transformations, both source and target models must con-
form with their respective metamodels. Here the source model is the timing and energy
annotated AUTOSAR design model obtained from the system description specification
in the UML/SysML tool in ARXML format. This conforms with the AUTOSAR meta-
model [3]. The target metamodel is the custom-defined generic timing-energy meta-
model introduced in Sect. 3.2. During the M2M transformations the timing and energy
properties are extracted from the annotated AUTOSAR-based design model (source
model) and a corresponding instance of the energy-aware timing analysis target meta-
model is synthesized. Note that here both the metamodels are available in EMF format.
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The synthesized analysis model is also available in EMF and XML formats. This model
may now be used for performance validation such as energy-aware scheduling.

In this work, the ATLAS transformation language (ATL) [2] is used for implement-
ing the M2M transformations. ATL is a widely used M2M transformation language
and readily available as a plug-in for Eclipse development environment. Thus, using
ATL a set of rules can be written to transform the AUTOSAR-based design model
to an instance of the intermediate timing-energy meta model, based on the mappings
listed in Table 1 and 2. The ATL implementation of the transformations in the proto-
type implementation of the workflow follows the regular structure of ATL transforma-
tions [2]. As stated earlier, the source model, M2M transformation and target models
each have their own separate metamodels, which are each based on a common meta-
metamodel (ECORE) [7]. The model transformations are implemented as an ATL mod-
ule, AUTOSARinUML2TimingEnergy.atl. These are generic implementations which can
be applied across any use case satisfying the source and target models used in the ATL
implementations. The implementation specifics of this module are explained in detail
in the next section along with examples from the use case.

4 Autonomous Emergency Braking System (AEBS)

This AEBS use case is introduced already in [22]. Since this book chapter is an exten-
sion of the work done in [22], only a brief introduction about the AEBS use case is
provided here. The main purpose of AEBSs is to warn the driver in case of an imminent
frontal collision. This happens through visual and acoustic warning signals as a first
step, followed by a tactile warning as the next level. The AEBS in cars use the Time-
To-Collision (TTC) value [16,25] to estimate the danger of the situation. It is defined
as the time left until a collision happens, if every object continues to move at the same
speed. To calculate TTC, AEBS needs data such as the distance to frontal objects (e.g.
from rador sensors) and wheel speed sensor input at certain speed ranges.

Fig. 5. Control flow and modules of the AEBS.
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The control flow and modules of the AEBS are showin in Fig. 5. The AEBS is
connected to sensors such as speed and radar sensors and actuators such as the warn-
ing LED, speaker and brakes via a software interface. Thus information such as the
speed of the car in ms−1 (from wheel speed sensor), distance in m and relative speed in
ms−1 (from radar sensor) are provided as inputs to the AEBS system. The output from
AEBS system can be referenced using port interfaces, which must be processed by the
corresponding actuator and issue a corresponding output (e.g. applying brakes, issuing
warning signal).

4.1 AUTOSAR Design Model

The AUTOSAR system description of the AEBS is modeled using the IBM Rational
Rhapsody Developer modeling tool [18]. Rhapsody is among the most popular UML
modeling tool with AUTOSAR support used in the automotive industry. It also supports
straight forward usage of the MARTE profile for energy annotations required for the
workflow in Fig. 3. The MARTE profile can be added to the model and its stereotypes
can be applied to the model elements directly, hence the choice of the tool.

CollisionDetection
«ApplicationSwComponentType»

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

obsPort:IfObstacles

speedPort:IfSpeed
TTCPort:IfTTC

ObstacleLocation
«ApplicationSwComponentType»

distPort:IfDistance

obsPort:IfObstacles

distPort:IfDistance

obsPort:IfObstacles

DriverWarning
«ApplicationSwComponentType»

brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC
brakePort:IfBrake

speakerPort:IfSpeaker

ledPort:IfLED

TTCPort:IfTTC

SpeedFilter
«SensorActuatorSwComponentType»

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

speedSensorPort:IfSpeedSensor

speedPort:IfSpeed

DistanceFilter
«SensorActuatorSwComponentType»

radarSensorPort:IfRadarSensor

distPort:IfDistance

radarSensorPort:IfRadarSensor

distPort:IfDistance

IfTTC
«SenderReceiverInterface»

«dataElement» ttc:int

IfLED
«ClientServerInterface»

«ClientServerOperation» setLight(on:Boolean):void

IfSpeaker
«ClientServerInterface»

«ClientServerOperation» playWarningSound():void

IfBrake
«ClientServerInterface»

«ClientServerOperation» emergencyBrake():void
«ClientServerOperation» prepareBrake():void
«ClientServerOperation» releaseBrake():void
«ClientServerOperation» warningBrake():void

IfSpeedSensor
«ClientServerInterface»

«ClientServerOperation» getSensorValue():int

IfRadarSensor
«ClientServerInterface»

«ClientServerOperation» getSensorValue():int

IfSpeed
«SenderReceiverInterface»

«dataElement» speed:int

IfDistance
«SenderReceiverInterface»

«dataElement» distance:int

IfObstacles
«SenderReceiverInterface»

«dataElement» obstacles:list

Fig. 6. Software components of AEBS in software component diagram modeled in Rhapsody.

The first step in implementing the AUTOSAR design model is to define the software
components, of which the system is composed of as shown in Fig. 6.

– The sensor filter modules on the left-hand side are modeled as SensorActuator-
SwComponentTypes. They have client ports (speedSensorPort, radarSensorPort)
to be able to connect to the corresponding sensors. These ports are typed by
ClientServerInterfaces that provide an operation for retrieving the sensor value. This
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is illustrated by the association between the ports and the interfaces, which is stereo-
typed as a portType. The rest of the modules are modeled as ApplicationSwCompo-
nentTypes, as they do not directly represent a sensor or an actuator.

– The communication between the sensor filters and the CollisionDetection and
ObstacleLocation components happens through sender/receiver ports. The filtered
dataElements get sent to the processing components. Equally, the ObstacleLocation
sends a list of obstacles (comprising of distance and relative speed) to the Collision-
Detection. The communication between CollisionDetection and DriverWarning is
also typed as sender/receiver and the corresponding dataElement is the TTC value.

– In the end, the DriverWarning component is connected by client ports (ledPort,
speakerPort and brakePort) to the three actuators. The corresponding interfaces pro-
vide the necessary operations for the different levels of driver warning, e.g., setting
the warning LED light status (setLight), playing a warning sound (playWarning-
Sound) or performing an emergency brake (emergencyBrake).

Thus, the modules for the AEBS use case shown in Fig. 5 are modeled as AUTOSAR
software components in the UML tool [17], as seen in Fig. 6.

4.2 Timing Specification

The timing constraints of the AEBS are added to the model in Fig. 6 with the help of
AUTOSAR-TE in the UML tool Rhapsody. Figure 7 shows a latency constraint for the
checkTTC runnable entity of the DriverWarning software component (seen at top-right
of Fig. 6). An SwcTiming is created for each software component in the AEBS, which
link to the component’s internal behavior with the l behavior association. Inside these
elements, two TDEventSwcInternalBehaviors are defined for each runnable entity (in
this case, checkTTC of IBDriverWarning). The first event highlights the activation of
the runnable, while the second highlights the termination. This is defined by setting the

DriverWarningTiming
«SwcTiming»

checkTTCActivated
«TDEventSwcInternalBehavior»

checkTTCTerminated
«TDEventSwcInternalBehavior»checkTTCLatencyConstraint

«LatencyTimingConstraint,role_timingGuarantee»

minLatency
«minimum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=3

maxLatency
«maximum»

cseCode:CseCodeType=3
cseCodeFactor:RhpInteger=5

checkTTCEventChain
«TimingDescriptionEventChain»

«l_response»«l_stimulus»

«l_scope»

Application::SoftwareComponents::DriverWarning::IBDriverWarning
1 «SwcInternalBehavior»

checkTTC
1 «RunnableEntity»

«l_runnable» «l_runnable»

«l_behavior»

Fig. 7. Timing attributes for the checkTTC runnable entity.
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tag tdEventSwcInternalBehaviorType of the timing event to either runnableEntityActi-
vated or runnableEntityTerminated. Both these events are now used to form a Timing-
DescriptionEventChain, in which the event chain stimulus is the runnable activation
and the event chain response is the runnable termination.

Finally, the core execution time of the runnable checkTTC is specified by the
checkTTCLatencyConstraint that links to its event chain with l scope. The role timing-
Guarantee stereotype declares that this constraint is the expected execution time instead
of a requirement (role timingRequirement). The related timing information can be given
as maximum and minimum execution time and is specified by ASAM CSE codes [39].
The cseCode specifies the time base (e.g., 2 = 100µs, 3 = 1 ms and 4 = 10 ms) and the
cseCodeFactor determines an integer scaling factor. Thus, in this case, the execution
time of the checkTTC runnable entity lies between 3 ms and 5 ms.

Fig. 8. System diagram containing the system mapping, root software composition and energy
annotations for the hardware elements with processing modes for AEBS use case.

4.3 Specification of Energy Properties

In the custom-defined generic metamodel in Fig. 4, each core may comprise of a power
value denoting the power consumption values of the underlying microcontroller. Based
on the data sheet of the target, the various power ratings for different processor clock
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rates can be obtained. These power consumption values are specified in the design
model using the staticConsumption tagged value of HWComponent, as per the map-
ping introduced in Table 2. For the AEBS use case example in this paper, the power
consumption modes of an ARM processor [30] is taken into consideration (cf. Table 3).
Note that a simple example is used here to demonstrate the direct usage of power con-
sumption values from a COTS product data sheet. For instance, the power consumption
during three active power modes shown in Table 3 namely, 23.1 mW, 76.59 mW and
138.6 mW (corresponding to 12 MHz, 48 MHz and 100 MHz clock frequencies) are
specified in the design model as shown in Fig. 8.

Table 3. Power consumption modes for an ARM single core processor [30].

Processing Mode Clock Frequency Power

1 100 MHz 138.6 mW

2 48 MHz 76.59 mW

3 12 MHz 23.1 mW

4.4 Model Transformations

The generic M2M transformations are implemented in an ATL module, AUTOSAR-
inUML2TimingEnergy.atl. It can be applied to any use case (e.g. AEBS) which satis-
fies the source and target model criteria as in the workflow in Fig. 3. In this module,
there are 9 matched rules for all conditional mappings and 8 lazy rules for all uncondi-
tional mappings. In addition, 15 helpers are implemented which may be invoked by the
transformation rules. Th helpers are often used as getter() and setter() methods. In the
prototype, the helpers are implemented, for instance to resolve computation units (e.g.
nano/milli seconds and milli/micro watts) and to provide assertions for type of model
and timing elements (e.g. a softwareComponent and a runnable). An example for each
type of rule (matched and lazy) and helper, from the prototype implementation of the
M2M transformations in AUTOSARinUML2TimingEnergy.atl is described below.

Matched Rule. The rules consist of a source pattern in the from section and a target
pattern in the to section. The source pattern specifies the type of the source model ele-
ment to be matched and the target pattern contains the output model element that will be
created by the transformation for each source element. In the ATL module AUTOSAR-
inUML2TimingEnergy.atl, for synthesis of energy-aware timing analysis models, the
matched rules are used for source elements such as model, package, classes and for the
elements with applied stereotypes from AUTOSAR profile shown in Table 1.
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Listing 1.1. An example of an ATL matched rule.

1 -- @atlcompiler emftvm
2 -- @path TimingEnergy=/de.uos.te.model/model/timingEnergy.ecore
3 -- @nsURI UML=http://www.eclipse.org/uml2/5.0.0/UML
4 -- @nsURI MARTE=http://www.eclipse.org/papyrus/MARTE/1
5 -- @nsURI AR=http://autosar.org/schema/r4.0/autosar40
6
7 module AUTOSARinUML2TimingEnergy;
8 create OUT: TimingEnergy, from IN : AR
9 rule AtomicSWC2SWComponent extends

10 Identifiable2ICATObject{
11 from
12 input : AR!AtomicSwComponentType
13 to
14 output : TimingEnergy!SoftwareComponent(
15 runnables <- input.internalBehaviors
16 ->collect(ib | ib.runnables)
17 -> flatten())}

A simple example of an ATL matched rule is shown in Listing 1.1. Note that in lines
2–5 the various paths of the metamodels invoked in the ATL module are specified
(either local or at URI-repository resource). The AtomicSWC2SWComponent rule
extends the parent rule Identifiable2ICATObject and thus, its target pattern
is inherited. This means that, the target element SoftwareComponent automatically
receives the name and description attributes from parent rule (i.e., Identifiable-
2ICATObject-not listed here).

In this matched rule, as seen in lines 11–14, a software component in the source
AUTOSAR (meta) model (AR!AtomicSwComponentType) is matched to a tar-
get software component element (TimingEnergy!SoftwareComponent) in the
timing-energy (meta) model. Thereby, an instance of the target element (i.e., a software
component corresponding to the timing-energy analysis meta-model) is created.

Additionally, it receives the runnables (lines 15–17) attribute specified in the
new target pattern, to link to the software component’s runnables. The collect opera-
tion iterates through all internal behavior elements (ib) and returns the list of runnables
for each. As this statement returns a two-dimensional list, the flatten operation
ensures that a list directly containing the runnables is returned and assigned to the
runnables attribute. Use an example to describe here all the rules or later on.

Lazy Rule. Lazy rules are used for source elements that satisfy specific conditions
and must be called explicitly for creating target elements. Listing 1.2 shows an example
of an ATL lazy rule which is used to create a powerValue from a String. It may
be recalled that the power consumption values are specified in the tag values of the
respective MARTE stereotype (as a string). The ATL rule in Listing 1.2 converts this
specified power value as a string to a corresponding model element powerValue in
the generic metamodel (cf. Fig. 4, Sect. 3.3, Table 3, Sect. 4.3 & Fig. 8).
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Listing 1.2. An example of an ATL Lazy rule.

1 lazy rule StringToPowerValue {
2 from
3 string: String
4 using {
5 splitted : Sequence(String) = string.splitPowerConsumption();
6 value: Real = thisModule.valueFromSplitPowerConsumption(splitted);
7 unit: TimingEnergy!PowerUnit =
8 thisModule.unitFromSplitPowerConsumption(splitted);
9 }

10 to
11 timingEneryElement: TimingEnergy!PowerValue (
12 unit <- unit,
13 value <- if value.oclIsUndefined() then
14 OclUndefined
15 else
16 value
17 endif
18 )
19 }

Let us consider an example of power value of processing mode 1, namely 138.6mw
(cf. Table 3). This is specified in the design model using the tagged value static-
Consumption of the HWComponent MARTE stereotype (cf. Table 2 & Fig. 8). The lazy
rule StringToPowerValue in Listing 1.2, splits the above input string 138.6mw
employing the using keyword and expressions in ATL (lines 5–9). The using
keyword and expression can be used to define complex target pattern elements, thus
employed in this lazy rule. Thus, the resulting variables namely unit and value
are assigned to the corresponding target elements in powerValue (cf. powerValue in
Fig. 4) in lines 11–17 of Listing 1.2.

Thus in the example in Fig. 8, the lazy rule StringToPowerValue returns the
power value from a string specified in the tagged value in the stereotypes in model
elements. Thus, the power rating for each processing mode such as 138.6mW, 76.59mW
and 23.1mW specified in Fig. 8 are returned as output for further calculations.

Helpers. Helpers can be used to define (global) variables and functions. Some exam-
ples of include setter(), getter() methods and functions to resolve attributes involving
repetitive pieces of code in one place (e.g. resolving metric units). Helper functions
are Object Constraint Language (OCL) [31] expressions. They can call each other by
recursion or they can be called from within rules.

Listing 1.3. An example of an ATL Helper.

1 helper def: resolveStaticConsumptionFromElement(processingUnit:
2 UML!Element): String = let hwComponent : UML!Stereotype =
3 processingUnit.getHwComponentStereotype() in
4 if not hwComponent.oclIsUndefined() then
5 processingUnit.getValue(hwComponent, ’staticConsumption’)
6 else
7 OclUndefined
8 endif;
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In Listing 1.3, an example of a helper to resolve the tag value staticConsumption
from the MARTE stereotype element HWComponent (cf. Table 2) is presented.
In the example in Fig. 8, this helper reads the input value of the tagged value
staticConsumption, which is highlighted in Fig. 8 in Hardware::Core1 element
and returns the corresponding value of the processing unit.

Similar to the above rules, for the remaining elements in Table 1, a total of 17
ATL rules (9 matched and 8 lazy) and 15 helpers are implemented in the AUTOSAR-
inUML2TimingEnergy.atl module.

4.5 Synthesis of Energy-Aware Timing Analysis Model of AEBS

In the above steps, the AUTOSAR-based design model and its corresponding timing
and energy annotated AUTOSAR-based design model are created in the UML model-
ing tool Rhapsody (cf. step(a) in Fig. 3). This model is exported from the UML tool
in the interchangeable AUTOSAR ARXML format for M2M transformations (cf. step
(b) in Fig. 3). The M2M transformations in AUTOSARinUML2TimingEnergy.atl mod-
ule are invoked in the experimental evaluation directly from the Eclipse development
environment. The synthesized AUTOSAR-based energy-aware timing analysis model
of the AEBS use case is shown in Fig. 9.

Fig. 9. Synthesized energy-aware timing model of AEBS use case.
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The necessary elements for a timing analysis were extracted from the AUTOSAR
design model annotated with timing properties (cf. Fig. 6, 7) according to the mapping
in Table 1. As seen in Fig. 9, the AEBS model is structured by different Packages and the
System element contains the complete software and hardware elements in a hierarchy.
For example, the runnable timeToCollision with its corresponding execution time [5 ms,
7 ms] can be seen highlighted in Fig. 9. This runnable is allocated to the SystemTask,
which is in turn allocated to Core1 of the ECU. Further, the power consumption modes
of the hardware cores are also created corresponding to the annotations in design model.
This is highlighted for core1 and core2 in Fig. 9 with the respective power values (138.6,
76.59, 23.1) for each processing mode.

4.6 Performance Analysis

A quantitative performance analysis of the prototype implementation of the workflow
in Fig. 3 has been carried out by invoking the transformations for the AEBS use case
with varying number of SWCs in the AUTOSAR-based UML design model. This is
because, the number of software components (apart from tasks) may be considered
as a primary factor for computing complexities involved in schedulability analysis of
systems. Further, the number of cores and power consumption modes were also varied
to invoke respective M2M transformations for resolving the power consumption modes.

For varying input sizes namely, SWCs and hardware cores in annotated design
model), time and memory requirement of the ATL module to synthesize the respec-
tive instance of the AUTOSAR-based energy-aware timing analysis model is deter-
mined (cf. Table 4). For varying inputs of SWCs, the number of cores were set to two,
each having three power consumption modes as described in Sect. 4.3. This is because,
the number of SWCs in an AUTOSAR design model can be up to several hundreds.
Whereas, the number of cores and their power consumption modes would not scale
to such values, hence not provided as a separate set of input in Table 4. The aforesaid
experiments were carried out on a standard X-86 based host with Windows-XP OS. The
results indicate that the ATL transformations terminate once the generation of the timing
analysis model is completed. The generation time and memory requirement is bounded
for varying input sizes. This demonstrates the applicability and suitability of the steps
involved in the proposed approach for early model-based synthesis of AUTOSAR-based
energy-aware timing analysis model from AUTOSAR-based design models developed
in UML/SysML tools.

Table 4. Set of inputs, time & memory requirement on a standard X-86 based host for the
AUTOSARinUML2TimingEnergy.atl ATL module.

SWCs Time (s) Memory (MB)

10 26.3 4.1

18 54.2 6.3

23 66.34 8.7

43 136.4 20.7
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5 Conclusion

In this book chapter, a systematic workflow for integration of energy and timing require-
ments in the AUTOSAR-based design model in UML/SysML tools has been presented.
Thereby, employing a series of steps, an automated and early synthesis of energy-aware
timing analysis models is incorporated in the automotive embedded software devel-
opment process. These performance analysis models may be employed for an early
evaluation and decision on the best set of performance configuration and trade-off anal-
ysis (e.g. timing vs energy). Thus, employing such performance analysis workflows not
only allow us to understand the performance aspects and behavior of the systems during
early design stages, but also help to explore different design architectural choices and
quantitatively evaluate their implications on system performance. Fine tuning the mod-
eling of energy and timing parameters, such as specification of energy consumption and
timing budget per function call is one among the items for future work.
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