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Abstract. Unmanned Aerial Vehicles (UAVs) have been extensively utilized
to provide wireless connectivity in rural and under-developed areas, enhance
network capacity and provide support for peaks or unexpected surges in user
demand, mainly due to their fast deployment, cost-efficiency and superior com-
munication performance resulting from Line of Sight (LoS)-dominated wireless
channels. In order to exploit the benefits of UAVs as base stations or relays in a
mobile network, a major challenge is to determine the optimal UAV placement
and relocation strategy with respect to the mobility and traffic patterns of the
ground network nodes. Moreover, considering that the UAVs form a multi-hop
aerial network, capacity and connectivity constraints have significant impacts on
the end-to-end network performance. To this end, we formulate the joint UAV
placement and routing problem as a Mixed Integer Linear Program (MILP) and
propose an approximation that leads to a LP rounding algorithm and achieves a
balance between time-complexity and optimality.

Keywords: Unmanned Aerial Vehicle (UAV) · UAV-aided mobile
communications · UAV placement and relocation · Multi-hop relaying · Route
optimization

1 Introduction

Over the past decade, UAVs have been adopted in a broad range of application domains,
due to their autonomy, high mobility and low cost. Historically, UAVs have been primar-
ily used in the military, usually deployed in hostile territory to reduce risk for aircrew.
Recent advances in UAV technologies have made them more affordable and accessi-
ble to civilian and commercial applications such as cargo transport, emergency search
and rescue, precision agriculture, commercial package deliveries, etc. Moreover, UAVs
are seen as a promising solution for next generation wireless networks because of their
inherent advantages, including flexible and fast deployment and reconfiguration, as well
as a higher chance of having Line-of-Sight (LoS) links leading to less impaired com-
munication channels compared to terrestrial wireless communication systems.
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Fig. 1. The architecture and application scenarios of a multi-UAV relay system

According to [28], UAV-aided wireless communications can fall into three repre-
sentative categories of use cases; (i) UAV-aided ubiquitous coverage, (ii) UAV-aided
information dissemination and data collection and (iii) UAV-aided relaying. Focusing
on the latter, communication relaying is an effective technique for network coverage
extension and throughput maximization. However, a number of key challenges should
be addressed in order to use UAVs as mobile relaying nodes, providing broadband com-
munication to users (or user groups) without direct and/or reliable communication links
(e.g., in disaster-hit or rural areas [6]). First, efficient algorithms should be devised
to place UAVs in a 3D space. The mobility of the UAVs introduces new challenges
to the network design problem compared to the traditional static relaying and fixed-
infrastructure schemes (e.g. WiFi access-points). Moreover, in order to cover large geo-
graphical areas and because of the limited transmission range of UAVs, a swarm of
UAVs is needed to route users’ traffic demands through wireless multi-hop path(s). Due
to the intermittent wireless links and frequent topology changes in such mobile ad hoc
networks (MANETs), the traffic routing decision should be considered together with the
UAVs placement and relocation. More importantly, such decisions should be adaptive
to the topology and traffic pattern changes in a timely manner.

In this study, we consider an aerial platform consisting of multiple UAVs that sup-
ports the traffic demand of a ground network. Multi-hop relaying in the next gener-
ation of wireless networks will not only facilitate the coverage of more UEs and the
support of long-distance communications, but also will be able to handle overloaded
networks. Figure 1 illustrates the architecture and application scenarios of such sys-
tems. In contrast to the majority of existing studies such as [31] and [27] that solely
focus on a single UAV relay and the air-to-ground (A2G) access links with one-hop
communication or at most two-hop communications considering also the UAV-to-BS
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links in UAV-aided cellular networks (e.g. [14]), we exploit a multi-hop aerial relaying
platform. Moreover, the rate-constrained UAV-to-UAV (or Air-to-Air, A2A) communi-
cations and the connectivity between UAVs are considered in the proposed framework.
Although facility placement and traffic routing are usually addressed sequentially as
two separate problems, the meaningful interrelation between the two, as discussed in
[22] makes it more reasonable to approach them in a single model. Thus, another con-
tribution of this manuscript is jointly optimizing the UAV placement and the routing
decisions, when the ground network is quasi-static. We also extend our approach to the
case of a mobile ground network and consider the impact of the UAVs’ speed, while
most of the existing relaying schemes utilize static relay nodes due to the practical
constraints on relay mobility and the need for high-throughput links [27]. In order to
reduce the system energy consumption and since the propulsion energy consumption
of UAVs is typically significantly greater than the energy consumption for communica-
tions [16], we avoid unnecessary UAVs’ relocation in subsequent snapshots in our solu-
tion. The problem is formulated as a mixed-integer linear program (MILP). To reduce
the time-complexity and enable real time re-positioning of the mobile relays and rout-
ing decision, we propose an approximation algorithm using linear programming (LP)
relaxation and a rounding procedure. The proposed approach assumes logically central-
ized network control i.e., software defined networking (SDN). The controller’s global
network view in an SDN architecture, renders centralized UAVs placement and adap-
tive routing strategies feasible [12]. The controller may be placed at a remote ground
center, inside the ad hoc network devices as in [20] or at UAVs as shown in Fig. 1.

The paper is organized as follows. Section 2 describes the problem and the system
model. In Sect. 3, we introduce a MILP formulation for the optimal UAV placement in
the case of a quasi-static ground network and then extend our approach, considering
mobility of the nodes, as well as provide our LP-based approximation method. Perfor-
mance evaluation is presented in Sect. 4, while we provide the overview of the related
work in Sect. 5. Finally, in Sect. 6, we highlight our conclusions and discuss our future
work.

2 System Model and Problem Description

2.1 Radio Propagation Model

We adopt the model proposed in [1] for the A2G propagation model, where two sig-
nal propagation groups are considered; Line-of-Sight (LoS) and Non-Line-of-Sight
(NLoS). The latter corresponds to receivers with no Line-of-Sight but still having cov-
erage via strong reflections and diffraction. Additional impairments to the radio channel
are caused by scattering and shadowing from the man-made structures in the environ-
ment. The occurrence probability of LoS is given by:

pLoS =
1

1+aexp(−b( 180π tan−1( h
rn,l

)−a))
(1)

where a and b are constants depending on the environment, h is the UAV altitude and
rn,l is the horizontal euclidean distance between the UAV l and the user equipment (UE)



58 A. Gholami et al.

n. The probability of NLoS is pNLoS = 1− pLoS and the total A2G path loss (in dB) as
a function of rn,l and h is:

L(h,rn,l) = pLoSLLoS+ pNLoSLNLoS, (2)

LLoS = 20log(
4π fcdn,l

c
)+ηLoS,

LNLoS = 20log(
4π fcdn,l

c
)+ηNLoS

where fc is the carrier frequency, dn,l =
√

h2+ r2n,l is the distance between UAV l and

UE n, ηLoS and ηNLoS are respectively the average additional losses due to the environ-
ment.

We assume that the A2A links are dominated by LoS components resulting in the
following free space path loss model:

L(ru,v) = 20log(
4π fcru,v

c
) (3)

where ru,v is the distance between UAV u and UAV v. Assuming that an interference-
coordination mechanism among adjacent UAVs and users is available, the interference
is negligible and the received signal at a node is only affected by Additive White Gaus-
sian Noise (AWGN). Consequently, the coverage radii for the A2G and A2A channels,
denoted by R1 and R2, satisfy:

PUE = L(h,R1)+γmin+σ2n (4)

PUAV = 20log(
4π fcR2

c
)+γmin+σ2n (5)

The QoS requirement is expressed in terms of the minimum received SNR at the
receiver (γmin), noise power (σn) and maximum transmission power of UAVs (PUAV )
and users (PUE ), where PUE ≤ PUAV .

2.2 Problem Description

We discretize time and consider a directed graph G t = (V t ,E t) representing the topol-
ogy of the ground network at snapshot t. The vertex setV t represents the network nodes
and the edge set E t represents the wireless links, i.e. (u,v) ∈ E t if and only if node v
can receive data packets directly from node u. We assume that all node-to-node com-
munication is unicast, i.e. each packet transmitted by a node u ∈ V t is intended for a
unique v∈V t where (u,v)∈E t . Moreover, each wireless link has a maximum capacity
cuv. For the sake of simplicity, the superscript t is dropped in the following.

There are traffic demands between UEs given by a traffic demand matrix D, where
the element Duv denotes the amount of demand from the source UE u to the destina-
tion UE v. The demand profile can be estimated using existing MANET traffic pattern
inference (if a central controller is not available) or the schemes proposed for cellular
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networks (e.g., [25,29]) which are also applicable here in the presence of the UAV or
ground control stations. Due to the limited transmission power of the UEs and in order
to reduce the control traffic overhead required for traffic routing, the ground network is
partitioned into M clusters, denoted by Ci, i = 1, ...,M. Each cluster has a cluster head
(CH) which functions as a gateway, relaying the cluster total traffic to the aerial plat-
form. Let CHi, i= 1, ...,M denote the ith cluster head. Given D, the inter-cluster traffic
demand for a pair of clusters and from CHi to CHj is calculated by:

TDi j = ∑
u∈Ci,v∈Cj

Duv, ∀i, j ∈ {CH1, ...,CHM}

We denote by i→ j, a traffic flow originated fromCHi and destined toCHj. The problem
considered in this paper entails the optimal placement of at most Nmax available UAVs
as relay nodes to support the traffic demand of the ground origin destination (OD) flows.
For each OD flow i → j, a collection of aerial multi-hop paths can be used to route the
traffic demand of the flow.

LetU = {ui, i= 1, ..., |U|} denote the set of potential locations for UAV placement,
where vi stands for the ith location. Here, we assume that all UAVs are placed at the
same altitude h; however, it is easy to extend the formulation to a 3D UAV placement
where the setU includes locations at different heights. The following graphs are defined
for the problem formulation:

Demand Graph: We model the connectivity and traffic requirements of the ground
clusters by a directed graph GD = (VD,ED) where, VD = {CH1, ...,CHM} is the set of
all CHs, and (i, j) ∈ ED if and only if the OD flow i → j exists for i, j ∈ VD.

Network Graph: We introduce a directed graph GP = (VP,EP) where VP = VD ∪U
and (u,v) ∈ EP if and only if du,v ≤ R2 for A2A links, and du,v ≤ R1 for A2G links.

3 Problem Formulation

In this section, the MILP formulations for the optimal UAV placement and traffic rout-
ing in both static and mobile ground networks are presented and the proposed LP-based
approximation solution is discussed.

3.1 MILP Formulation

Given the network and demand graphs GP,GD, we formulate the problem at hand con-
sidering the following decision variables:

– A set of binary variables x, where xu is set to 1 if a UAV is deployed at position
u ∈U and 0 otherwise.

– A set of continuous variables f , where f i juv is the amount of traffic from OD flow
i −→ j assigned to the link (u,v) ∈ EP.

– A set of continuous variables y, where yi j denotes the traffic amount of the OD flow
i −→ j that is not supported (not delivered).
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Table 1. System model parameters and variables

Variables Description

xu Binary decision variable of UAV placement at position u

f uvi j The amount of (i, j) traffic d assigned to (u,v)
yi j Total unsupported traffic of the OD pair (i, j)

Parameters Description

GP = (VP,EP) The network graph of UAVs and ground cluster heads

GD = (VD,ED) The demand graph

M Number of ground cluster heads

U The set of UAV potential locations

Nmax Available number of UAVs

h UAVs height

D Traffic demand matrix of the ground network

TDi j Traffic demand between the CHs i and j

cuv Capacity of the link (u,v)

A summary of the system model parameters and variables is given in Table 1. The pro-
posed MILP formulation for the joint UAV placement and traffic routing (UPR MILP)
is as follows:

minimize φ
∑u∈U xu
Nmax

+(1−φ)
∑(i, j)∈ED

yi j

∑(i, j)∈ED
TDi j

(6)

FeasibilityConstraints:

f i juv ≤ xucuv ∀(i, j) ∈ ED,u ∈U,v ∈ Vp (7)

f i juv ≤ xvcuv ∀(i, j) ∈ ED,v ∈U,u ∈ Vp (8)

∑
u∈U

xu ≤ Nmax (9)

FlowConstraints:

∑
v∈VP

( f i juv − f i jvu) =

⎧
⎨
⎩
0 ∀u ∈ VP\{i, j},(i, j) ∈ VD

TDi j − yi j u= i,∀(i, j) ∈ ED

−(TDi j − yi j) u= j,∀(i, j) ∈ ED

(10)

CapacityConstraints:

∑
(i, j)∈ED

f i juv ≤ cuv ∀(u,v) ∈ EP (11)
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DomainConstrains:

0 ≤ f i juv ∀i, j ∈ VD,u,v ∈ Vp (12)

0 ≤ yi j ∀(i, j) ∈ ED (13)

xu ∈ {0,1} ∀u ∈U (14)

The objective function (6) aims at jointly minimizing the cost of UAV deployment
(reflected as the number of deployed UAVs) and the total amount of requested traffic
that can not be supported by the network (the total unsupported traffic). We normalize
both metrics to be between 0 and 1 in order to avoid the known problem of differ-
ent range values in Pareto Analysis (i.e. one metric having large value and the other
one having small value). Since we have in our formulation two performance objectives
(minimizing the number of deployed UAVs and minimizing the unsupported traffic), a
full solution of the problem requires the complete tradeoff analysis between these two
metrics and finding the Pareto Points or Pareto Frontier of this tradeoff problem. To
arrive at Eq. (6), we employed what is known as the “scalarization method” for tradeoff
analysis. This method is less computationally intensive. To fully understand the tradeoff
between these two metrics using the scalarization method, we need to vary φ between 0
and 1. In this way we can compute the convexified Pareto Frontier. Indeed in our exper-
iments, we tested different values for φ and selected a relatively small value to promote
a solution that primarily enhances the performance of the network by minimizing the
unsupported traffic.

Constraints (7) and (8) guarantee that the amount of traffic assigned to an A2G link
is nonzero only if an UAV is placed at the aerial end of the link. Constraint (9) limits the
maximum number of deployed UAVs, while constraints (10) enforce flow conservation,
i.e. the sum of all inbound and outbound traffic for the UAV relays should be zero.
Moreover this constraint ensures that for each OD flow i → j, the inbound (outbound)
traffic to j (from i) is TDi j − yi j (the amount of supported traffic). Constraints (11)
ensure that the total traffic assigned to a link does not exceed its capacity. Finally, (12),
(13) and (14) express the domain constraints.

3.2 MILP Formulation with UAV Mobility Constraints

In the case of mobile UEs or dynamic traffic patterns, UPR MILP can be reapplied
periodically in order to update the UAV positions [19]. This update rate can be in the
order of seconds [8]. To consider the effect of UAVs maximum speed in a dynamic
environment, we add mobility constraints to the optimization problem discussed in the
previous section. The maximum speed of UAVs is represented by vmax and the time
duration of a snapshot is denoted by ΔT . For each ui ∈ U, let Bi ⊂ U denote the set of
potential locations that the UAV deployed in ui can reach in one snapshot, i.e. u j ∈ Bi

if di, j ≤ vmaxΔT .
Given Bi and the UAV placement decision variables at snapshot t − 1 (xt−1), the

UAV mobility constraints at snapshot t can be expressed as:

∑
u j∈Bi

xtj ≥ 1l{xt−1
i = 1} (15)
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Moreover, in order to reduce the propulsion energy consumption of UAVs by avoid-
ing unnecessary and less-effective UAV relocations in consecutive snapshots, we add
another term to the objective function (6). The new objective function is:

(φ∑u∈U xu
Nmax

+(1−φ)
∑(i, j)∈ED

yi j

∑(i, j)∈ED
TDi j

)+α(maxu|xtu − xt−1
u |) (16)

where α is a constant factor determining the balance between the two terms of the
objective function. Instead of the maximum function in the new objective and in order
to get rid of the absolute value, we define a scalar variable z and add it to the objective
function as follows:

(φ∑u∈U xu
Nmax

+(1−φ)
∑(i, j)∈ED

yi j

∑(i, j)∈ED
TDi j

)+αz (17)

and we add the following set of constraints to the optimization problem:

xtu − xt−1
u ≤ z ∀u ∈U (18)

xt−1
u − xtu ≤ z ∀u ∈U (19)

The resulting MILP is referred to as MUPR MILP and is an NP-hard problem. How-
ever, the decision variables have to be determined in real-time, in response to the net-
work changes. In the subsequent section we employ an LP-relaxation to deal with the
time-complexity of the MUPR MILP. A greedy rounding approach is used to obtain
the binary solution of the original problem.

3.3 LP Relaxation and Rounding Algorithm

We derive the Linear Programming (LP) model ofMUPR MILP by relaxing the binary
variables xtu or replacing the constraint sets (14) by:

xtu ∈ [0,1],∀u ∈U (20)

The resulting LP is represented by UPR LP. We also define the set X ⊆ U based on
which the following LP denoted by UPR LP reduced(X ) is defined:

minimize (φ∑u∈U xtu
Nmax

+(1−φ)
∑(i, j)∈ED yi j

∑(i, j)∈ED TDi j
)+αz (21)

s.t (7)− (12),(18),(19) (22)

xtu = 1, ∀u ∈ X (23)

xtu ∈ [0,1] ∀u /∈ X (24)

We introduce a rounding-based decision-making process (DM-LP) to retrieve the
binary decision variables of MUPR MILP at each snapshot by solving a sequence of
UPR LP reduced(X ) problems iteratively. Similar approach has been used for solving
MILPs in resource allocation problems such as [23]. The proposed solution is shown
in Algorithm 1. The set X represents the locations chosen for UAV placement and is
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updated within each iteration (line (4)). The final X reflects the UAV placement deci-
sion. As explained in lines (7)-(9), UAVs are placed deterministically with the prior-
ity given to the neighboring locations of the deployed UAVs at the previous snapshot
(reflected in the definition of the set S which is constructed by the union of the sets Bv

for v ∈ U : xt−1
v = 1) in order to not violate the mobility constraints. For example, if

two UAVs are placed at locations u1,u2 at snapshot t − 1, the set B1 ∪B2 is first con-
sidered for UAV placement at snapshot t so that at least one UAV is placed at one of
the locations of B1 (similarly for B2). Once all mobility constraints are satisfied, all the
remaining potential UAV locations are considered for the placement of new UAVs. In
both cases, a UAV is deployed at the position with maximum x value within each itera-
tion (line (9) and (11)). The algorithm terminates when the addition of a new UAV does
not reduce the objective function or makes the problem infeasible, i.e. xtu = 0,∀u∈ X or
equivalently, xtu∗ = 0. Finally, the routing decisions are automatically obtained from the
f solution of the last iteration. Moreover, the input x is 0 in the first snapshot meaning
that any location in U can initially be considered for UAV placement.

Algorithm 1. DM-LP

Input: G t
p, G t

D, TD
t , xt−1

Output: xt , f
1: Initialize X ← /0, Terminate ← False
2: repeat
3: if not first iteration then
4: X ← X ∪{u∗}
5: end if
6: {xtu, f i juv} ←−Solve UPR LP reduced(X )
7: S ← ∪{v:xt−1

v =1,v/∈X }{argmaxk∈Bv
xtk}

8: if S �= /0 then � Mobility constraints are not satisfied
9: u∗ = argmaxu∈S xtu
10: else � Mobility constraints are satisfied
11: u∗ = argmaxu/∈X xtu
12: end if
13: if xtu∗ > 0 then
14: xtu∗ = 1
15: else
16: Terminate ← True
17: end if
18: until Terminate== False
19: return xt , f

It is important to note that compared toMUPR MILP which is intractable for large
networks, the proposed approximation algorithm calls the LP solver at most |Nmax|+1
times. In the next section, we provide numerical results to evaluate the performance of
the proposed approach.
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4 Performance Evaluation

In this section, we benchmark out proposed decision-making process, DM-LP, against
the exact solution, denoted as DM-MILP and the connectivity-based approach proposed
in [19], namely DM-Conn. We also compare the performance of the mobile and static
UAV deployment approaches. We use the CPLEX commercial solver for solving our
MILP model using the branch-and-bound method, while the method used to solve the
LP is primal-dual SIMPLEX. All experiments are carried out on an Intel Xeon pro-
cessor at 2.3 GHz with 8GB memory. We consider 10 km × 10 km square region and
CHs are distributed according to a Matern cluster process [7] with the number of clus-
ters changing between 2− 11. The cluster density mean and cluster radius are 10 and
1000m. We use the Reference Point Group Mobility (RPGM) model introduced in [9].
In this model, GUs in a cluster tend to coordinate their movement and the movement
of each CH determines the behavior of the entire group. One example of such mobility
is the movement of rescue teams during disaster relief. In our experiments, CHs move
according to RWPM and their speed is distributed uniformly according toU(5,40)m/s.
We consider a grid with the total number of 100 points at height h as the potential UAV
positions. The ground network flows are generated according to a Bernoulli distribution
with the parameter λ = 0.04 while the traffic demand for each pair is chosen with equal
probability among the values 0.2, 0.4, and 0.6 Mbps. Unless stated otherwise, simula-
tion parameters are provided in Table 2. Based on the simulation parameters, the A2G
communication range R1 = 2214m and the corresponding A2A communication range

Fig. 2. DM-MILP UAV placement Fig. 3. DM-LP UAV placement

Fig. 4. DM-Conn UAV placement [19]
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is R2 = 3774m calculated from Eqs. (4) and (5). In the following, the numerical results
are provided for two experiments.

Static Ground Network. In this experiment, we consider a fixed network with 9 clus-
ters and a 10× 10 UAV location grid. Figure 2, 3 and 4 illustrate the UAV placement
solution of DM-MILP, DM-LP, DM-Conn strategies. It can be observed that all the
clusters are covered by UAVs in all three cases. The number of deployed UAVs in DM-
Conn is less than the other two approaches, since D-Conn only ensures the A2G, A2A
connectivity and A2G link capacity constraints, not the end-to-end traffic delivery. As
a result, the supported traffic of DM-Conn is 67%, while both DM-MILP and DM-LP
fully support the traffic demands in this example. This experiment highlights the need
for joint UAV placement and traffic routing in multi-hop UAV relaying systems.

Fig. 5. Number of UAVs: DM-LP vs. DM-
MILP

Fig. 6. Solver runtime: DM-LP vs DM-
MILP

Fig. 7. Average percentage of supported
traffic

Fig. 8. Average percentage of supported
traffic profile

Mobile Ground Network. In this experiment, the proposed DM-LP is benchmarked
against DM-MILP and a static UAV deployment in a dynamic ground network. Figure 5
depicts the number of relays deployed based on DM-MILP and DM-LP, as an indica-
tor of the deployment cost. The results are averaged over 20 snapshots. There are no
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hard limits imposed on the maximum number of UAVs, i.e. their number is only con-
strained by the number of potential UAV positions on the grid (|U|). As a result, traffic
demands are fully supported, while the difference in the average number of deployed
UAVs is at most 2 more for the approximation algorithm. With regards to time complex-
ity, as depicted in Fig. 6, DM-MILP follows an exponential growth, whereas the DM-LP
method has an approximately linear time growth with respect to the number of clusters.
Under the current evaluation environment, the real time operation of a network com-
prised of up to 6 clusters can be supported. However, DM-LP’s linear time-complexity
would guarantee real time support for larger network instances with a more powerful
system.

Figure 7 shows the average total supported traffic per snapshot for a ground net-
work of 10 clusters, following DM-LP, DM-MILP and a static UAV deployment where
the UAVs locations are obtained from the solution of DM-MILP for the first snapshot.
Figure 8 depicts the profile of the average supported traffic for the same scenarios over
snapshots. The results are averaged over 5 random networks. Overall, the deviation of
the DM-LP from the optimal solution is on average 7% and 5% when Nmax = 5 and
Nmax = 6 respectively. Note that 6 UAVs are enough to fully support the traffic demand
of the generated network instances as DM-MILP achieves 100% traffic support in this
experiment. This demonstrates the ability of the proposed LP-based scheme to gener-
ate good solutions, for a limited number of available UAVs. Moreover, a static UAV
deployment with even an optimal initial deployment resulted in a maximum of 40%
unsupported traffic, highlighting the need for a dynamic UAV deployment solution.

The four figures together shows how the mobility capability of UAVs can be
exploited to achieve higher traffic delivery in a mobile ground network and demon-
strates that the proposed DM-LP approach trades only a small degree of optimality for
fast retrievable solutions.

5 Related Work

Deployment of UAVs has extensively been a topic of research with different objectives,
such as the maximization of the downlink (DL) throughput [15,24] and DL received
signal strength (RSS) [5]. In contrast, we explore a UAV-assisted communication sys-
tem considering both uplink (UL) and DL traffic streams. Authors in [1,2,17] investi-
gate the usage of UAVs to maximize the covered area with respect to the UAV altitude,
antenna gain and minimum received power of users. In [21], the coverage probability of
a reference ground user is evaluated for a 3D UAV movement process characterized by
the RWPM and uniform mobility models. In [3], authors propose a UAV-assisted cel-
lular network and maximize the revenue, that is proportional to the number of covered
users. However, in order to fully satisfy the QoS requirement of the users in a multi-hop
wireless network, the end-to-end traffic delivery should be considered which is more
challenging than a coverage problem. Regarding energy efficiency, Mozaffari et al. [18]
applied optimal transport theory to minimize total DL transmission power. Optimizing
the flight radius and speed to improve energy efficiency is also addressed in [26].

The required number of aerial UAVs is minimized in [10,19]. Authors in [19] pro-
pose a UAV placement algorithm taking into account the connectivity between UAVs
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Table 2. Simulation parameters

Parameters Description

(a,b,ηLoS,ηNLoS) (9.61,0.16,1.0,20.0) for urban environment

UAVs altitude h 2000 m

Carrier frequency fc 2 GHz

Thermal noise power σ2 −90 dBm

SNR threshold γmin −4 dBm

EGU ,EUAV 20 dBm, 110 dBm

vmax 55 m/s

Snapshot duration ΔT 25 s

and the clusters demands; however, the constraints on the UAVs mobility and the A2A
links capacity are ignored. Authors in [4] and [13] considered multi-hop wireless back-
hauling in UAV-aided networks. In [4], U. Challita andW. Saad seek to form amulti-hop
backhaul network in the sky connecting small ground base station through formation of
a bidirectional tree structure. Different from [4], we consider both A2A and A2G links
and jointly optimize the UAV placement and routing. In [13], the authors optimized the
UAV placement, power and bandwidth allocation in an UAV-enabled multihop back-
haul with fixed number of UAVs. In our case, we minimize the number of deployed
UAVs in addition to imposing a constraint on the maximum number of UAVs. In con-
trast to [30] which investigates the trajectory design and power allocation strategies for
a single fixed ground source-destination, we consider a general mobile ground network
consisting of multiple traffic flows which makes the UAV relays trajectory design and
traffic routing more challenging and out of the scope of the set-up in [30]. Authors in
[11] consider the placement and resource allocation problem of multi UAV relays for
a ground network with multiple traffic flows; however they ignore the mobility of the
ground nodes and how it affects the UAV locations and other decision variables.

6 Conclusion

In this article, we propose a framework for joint UAV placement and route optimization
in a multi-hop UAV relaying communications system, taking into account the mobility
of the ground nodes, the capacity of A2A and A2G links, UAVs mobility constraints
and UAVs propulsion energy consumption. We model the problem as a MILP, and then
propose an efficient LP-based approximation algorithm to effectively reduce the time-
complexity of our model, achieving a near-optimal solution. The numerical simulations
provide insights on the effect the users’ mobility and the dynamic relocation of UAVs
on the decision making process and the service degradation. Among our future direc-
tions are to consider the control/management layer resource allocation problem and
investigate the computation offloading and service placement problem together with
the resource allocation in a mobile edge computing setup.
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