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Abstract A proof of formal incompleteness is spelled-out in relation to ‘bottom-
up’ reductive Logic and three stacked abstract reductive formal system models
composing a three-level hierarchy of complexity. Undecidable reductive proposi-
tions appear at the ‘upper’ boundary of each inter-related formal system model
of ‘sufficient complexity’. The consequence of formal reductive incompleteness
demands necessary meta-consideration in the determination of reductive logical
consistency. The further implications of formal reductive incompleteness predict that
identified undecidable reductive propositions might be decided in adapted reductive
formal system models using modified reductive Logic and slightly different axioms
and rules that can handle undecidable dynamics. The adapted Logic and reductive
formal systemmodelsmust accept the inevitably of reductive incompleteness.Reduc-
tive incompleteness further predicts the exploration of an adjacent possible abstract
domain in which ‘bottom-up’ formal reductive Logic can be preserved as a ‘special
case’; while multiple adapted forms of reductive Logic as well as multiple inter-
related adapted reductive formal system models, develop a deeper understanding
of how to abstractly manage undecidable dynamics and reductive incompleteness.
The insights, outcome and implications arising from the exploration of the abstract
domain, could instigate further scientific work determining whether modified reduc-
tive Logic and reductive formal system models sensitive to undecidable dynamics,
provides a closer approximation of natural incompleteness driven, novelty generating
evolutionary processes. Any abstract or applied, mathematical, computational or
information grounded systemmodel, equivalent to a reductive formal system model,
will predictably be shown to manifest undecidable dynamics and incompleteness
driven novelty generation. The implications of formal reductive incompleteness can
be extended to the study of non-linear systems, Chaos Theory, Cellular Automata,
Complex Physical Systems and Complex Adaptive Systems. Subsequently, future
scientific andmathematical thoughtmay derive incompleteness driven novelty gener-
ating formulations of reductive scientific philosophy, epistemology, methods for
theoretical modeling and experimental methodology; each of which will unravel
the implicit or explicit intention of the Reductive Scientific Paradigm to compose an
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integrated, unified, closed, resolved and complete ‘bottom-up’ Reductive Scientific
Narrative describing our Universe. An encompassing incompleteness driven Meta-
Reductive Scientific Paradigm is a possibly, wherein novel approaches to previ-
ously unresolvable reductive scientific problems may reveal a unique path toward
consilience and integration of the Reductive Sciences and the developing Complexity
Sciences.

Keywords Gödel · Formal incompleteness · Formal reductive logic · Formal
reductive incompleteness · Reductive science · Complexity science

1 Introduction

Slightly less than 400 years ago, RenéDescartes developed the first precepts of reduc-
tive natural science as well as formulating a dualistic philosophy of the human body,
brain, mind and consciousness. Descartes precipitated a deep rift; excluding mind
and consciousness (res cogitans) from reductive natural science and alienating mind
and consciousness from brain (res extensa), rending open the unresolved Cartesian
gap [10].

An unresolved puzzle attributable to Descartes weaves together a Gordian knot
involving ‘bottom-up’ reductive scientific Logic (LR), the residue of Cartesian
dualism, and the historical and modern philosophies of science, mathematics,
consciousness and mind. The riddle is most easily visualized in relation to two
philosophical propositions, both of which employ, strong, rigorous, well-formulated
reductive logic in order to arrive at perplexing statements in the form of reductive
epiphenomenalism of consciousness [32] and eliminative materialism [31]. These
two reductive propositions, and the implications associated with their acceptance as
well-formed reductive arguments, can be reframed as unresolvable self-referencing
paradoxes [3].When composed in the form of self-referencing paradoxes, both argu-
ments reveal a structure similar to the Liar paradox, which is stated: “This statement
is false”. Reductive epiphenomenalism can be stated: “This logically true reductive
epiphenomenal statement says the intentional consciousness that composed it is false,
an epiphenomenal illusion that does not exist”; and, eliminative materialism can be
stated: “This logically true eliminative materialist statement, says the intentional
consciousness that composed it can be fully reduced to brain, declaring intentional
consciousness and mind to be false, unnecessary and invalid concepts”. These two
self-referencing, paradoxical, strong, reductive statements expose potential internal
contradiction and a clear threat to reductive logical consistency. ‘Bottom-up’ reduc-
tive Logic can ‘explode’ into triviality, becoming useless and capable of proving true
anything [34].

Vigorous attempts, to analytically question the logical truth, to find error in the
reductive logic, to logically resolve the epiphenomenal and the eliminative materi-
alist self-referencing paradoxes, have been unsuccessful [35], leaving scientists and
philosophers trying tomake convoluted sense of aUniverse inwhichwillful,mindful,
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subjective consciousness and the adaptive agency of human beings are erased from
existence [11, 12].

The self-referencing paradoxical formulations of the epiphenomenal and elimina-
tivematerialist reductive arguments uncover the possibility that rigorous ‘bottom-up’
reductiveLogic employed in every natural science, could contain unrecognized unde-
cidable reductive propositions, suggesting formal reductive Logic is susceptible to
formal reductive incompleteness. At a minimum this conclusion can metaphorically
be related to Gödel’s two formal incompleteness theorems [34]. More significantly,
formal ‘bottom-up’ reductive Logic may be susceptible to formal reductive incom-
pleteness. Formal proof of undecidable reductive propositions and formal reductive
incompleteness could lead to a very different understanding of ‘bottom-up’ reductive
Logic within every reductive natural science and it could also lead to a significant
transformation of the entire Reductive Scientific Paradigm.

David Hilbert’s 23-problem 1900 Foundations of Mathematics Challenge was
clearly intended to advance both mathematics and natural science [14]. Kurt Gödel
completely solvedHilbert’s secondproblem,which asked for proof of the consistency
of the axioms of arithmetic forming the foundations of mathematics. Gödel solved
it in a completely unanticipated way by demonstrating the incompleteness of the
axioms of arithmetic and the necessity for meta-consideration in order to establish
the consistency of the axiom system. Gödel effectively demonstrated that it is not
possible to prove every true mathematical statement.

KurtGödel [22] provided ameticulous, detailed logical argument in the 1931proof
of his two incompleteness theorems [9]. In the first incompleteness theorem, Gödel
proves that any formal mathematical system employing first-order logic (first-order
predicate calculus) that contains Peano’s axioms of arithmetic [13, 17, 24]; as long as
the system is consistent, i.e. allows no inconsistent contradictions, it will inevitably
contain undecidable propositions or statements revealing the systems fundamental
incompleteness. In his second incompleteness theorem, Gödel proves an implication
that any such formal systemcannot demonstrate its own consistency butmust resort to
externalmeta-mathematical analysis and considerations in order to prove consistency
[27]. Gödel generalized his findings, proving that formal incompleteness impacts
a wide range of abstract formal systems and computational systems of sufficient
complexity [9, 19].

Gödel was deeply committed to the existence of an idealized, abstract Platonic
mathematical realm. He was therefore antagonistic and often angered by attempts to
apply his two abstract proofs of incompleteness to real world problems in applied
mathematics, physics or science [1]. Despite Gödel’s expressed reluctance many
other authors have explored the implications of the incompleteness theorems in close
or distantly related areas of mathematical and scientific interest [7, 9, 20, 24].

Among these explorations, curiously, there are no detailed attempts to apply the
two incompleteness theorems to the formalized logic of reduction in natural science
[36], despite the obvious importance of knowing whether or not the logic of scientific
reduction is susceptible to incompleteness and whether or not reduction as a form
of formal logic is capable of proving its own consistency. The answers to these two
questions bear directly on fundamental concerns, involving whether or not reductive
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natural science is capable of ever creating a closed, resolved, ‘decided’ and complete
scientific model that closely approximates the natural evolutionary logic of Nature
and evolution [8, 21, 23, 27].

In experimental reductive science, Nature always gets the last word. The natural
logic of Nature and evolution may have an unrecognized inherent relationship with
natural undecidable dynamics and natural evolutionary incompleteness. If so, the
natural logic of evolution may ultimately be proven to be open, unresolvable, ‘unde-
cidable’, as well as, forever incomplete. If natural evolutionary incompleteness
permeates Nature and the natural logic of the evolutionary process, then undecidable
dynamics and natural incompleteness may drive a natural interplay between, exis-
tent patterns of order and consistency, ambiguous moments of novelty generating
incompleteness, and emerging patterns of meta-order and meta-consistency.

If this is the way Nature works, then, in order to more closely approximate the
natural logic of the evolutionary system, ‘bottom-up’ reductive Logic, the reductive
sciences and the Reductive Scientific Paradigm will need to be reformulated.

2 Defining a Context for the Question

The reductive scientific experimental methodology (MR) of modern reductive
science proceeds in three steps: (1) Reduction and Analysis: A scientist begins
by selecting a ‘higher-order’ phenomena, then taking apart the phenomena into its
disjoint elements and individually investigating each of these; (2) Theoretical Formu-
lation: By accumulating experimental evidence, using imagination, and trusting luck,
a scientist then formulates a model describing how the disjoint components relate to
each other andhow they interact; (3)Synthesis andConstruction:Using the composed
theory defended by experimental evidence, the scientist again evaluates the theoret-
ical, qualitative and quantitative success of the constructedmodel of the disjoint parts,
their relations and interactions. The scientist again compares the synthesis with the
experimental, qualitative and quantitative behavior of the original selected higher-
level phenomena of interest, in hopes of demonstrating the scientific understanding
of the phenomena is complete [33].

In order to demonstrate the presence of formal reductive incompleteness an
adequate simplification and idealized model of reductive science, epistemology and
the reductive scientific process is necessary (i.e. a ‘sufficiently complex’ context).
The simplifiedmodelmust be sufficiently complex that contradiction, self-referencing
paradox and potentially threatening logical inconsistency are possible. There must
be enough complexity that unresolvable and undecidable concepts and propositions,
undecidable theoretical dynamics and undecidable reductive incompleteness can be
spelled-out.

More profoundly, the simplified, abstract, epistemological model must be suffi-
ciently complex to model theoretical undecidable entities and processes, which may
reveal experimentally accessible examples of ontological, natural, evolutionary,
unresolvable instantiations. Thus, theoretical formal reductive incompleteness may
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reveal the presence of natural undecidable reductive systemic dynamics and natural
reductive evolutionary incompleteness.

3 Mathematization Defines a Reductive Formal System
Model

In order to successfully uncover formal reductive incompleteness, a simplified scien-
tific context and mathematized Reductive Formal System Model (RFSM), must be
sufficiently complex to formulate the Liar’s paradox or a similar self-referencing
paradoxical statement, thereby establishingwhat is necessary to instantiate negation,
formulate diagonalization and finally, support a definition of universality and unde-
cidability. The RFSM used here to model reductive science therefore must conform
to the logical rigor and definition of an abstract mathematical Formal SystemModel
defined by Kurt Gödel in his two 1931 formal incompleteness theorems [30], as
well as the course-grained examination of incompleteness presented by John Casti
in 1995 [5], and the fine-grained explication spelled-out by Prokopenko et al. in
2019 [27]. It must also be consistent with definitions offered for reduction in recent
philosophical explorations of reductive Logic in science [36], reductive Logic in
biology [4]. Finally, the RFSMmust be consistent with the troubling implications of
applied reductive Logic when it underpins work on the brain in the neurosciences [2],
wherein the implications of strong reductive Logic paradoxically reduce and erase
from existence or conceptually invalidate any concept associated with consciousness
and mind [31, 32, 35].

Following the path cleared by Kurt Gödel, Casti and Prokopenko et al., let us
begin:

An abstract formal mathematical system F can be defined with a minimum of
three components:

F = 〈AF , XF , RF 〉 (1)

where

1. AF is a set constructing an alphabet. In the abstract, AF is an ordered and finite
set of symbols, such that A*F can be composed as a set of words or strings of
finite linear sequences of symbols, composed in part from the symbols contained
in AF . The Kleene Star or Operator (*) is an abstract way to form A*F from AF .

2. XF is a finite subset of the set A*F , symbolized, XF ⊆ A∗
F , creating a specific

set of axioms (an established statement or proposition fromwhich further defined
structures can be composed).

3. RF is a finite subset of the setA*F , symbolized, RF ⊆ A∗
F , symbolically defining

possible relations, called rules of inference; from which the alphabet AF and
axioms XF can be composed into the words or strings in the set A*F .
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A similar abstract reductive formal system model (RFSM) can be defined with a
minimum of three components. This general pattern can be used to create a three-
level hierarchy by stacking the RFSM’s, allowing us to capture the abstract simi-
larities shared between the levels. The generalization leaves open conceptual space
for later filling in specific differences and specific events in the sequence of orga-
nization, which might be associated with the self-organization of each ‘bottom-up’
hierarchically organized level.

Therefore, we concentrate first on a general description of any level (L1 through
L3), and any Theory (T1 through T3). The minimal three, similar components of any
level in a general Reductive Formal System Model, are:

FR = 〈AFR , XFR , RFR 〉 (2)

where

1. AFR is an abstract epistemological symbol set, symbolically representing onto-
logical, naturally occurring fundamental entities (known or not yet known) that
can be finitely (or infinitely) ordered or organized, representative of a scientifi-
cally accessible naturally self-organized fundamental alphabet. The set A∗

FR is
the set of words or strings that can be composed from AFR using the abstract
Kleene Star or Operator (*). Words or strings in A∗

FR are symbolic represen-
tations of possible (scientifically theorized or methodologically demonstrated)
combinations of naturally occurring entities (defined in AFR ). Natural words or
strings (entities) are self-organized in evolution, while parallel reductive scien-
tific conceptual and theoretical words or strings are composed statements or
propositions, intended to create a complementary systemmodel closely approxi-
mating the natural system. Scientific words or strings composed in A∗

FR are also
methodologically intended to closely conform to and model naturally evolved
words or strings, resulting in A∗

FR and AFR being components of an effective
Formal SystemModel, FFR , capable of mirroring, reducing, predicting and repli-
cating the natural entities found within Level L1 and Theory T1. The words or
strings, whether finite or infinite, depend on hownatural entities and their possible
relations, modeled as an alphabet in AFR , can be linked, chained together, or
concatenated (*) in A∗

FR .
2. XFR is a finite (or infinite) subset of A

∗
FR , symbolized, XFR ⊆ A∗

FR , creating a
specific set of epistemological abstract axioms modeling what are presumed to
be natural ontological axiomatic entities (abstract axioms and natural axiomatic
entities create established or accepted reductive statements or reductive propo-
sitions from which further defined reductively organized structures can be
composed).

3. RFR is a finite (or infinite) subset of the set A∗
FR , symbolized, RFR ⊆ A∗

FR ,
symbolically defining epistemological defined rules of inference and possible
relations within the abstract model of natural entities. Rules of inference define
possible relations; from which the alphabet AFR and axioms XFR can be further
composed into words and strings, concatenated (*) in the set A∗

FR . The natural
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evolving system has an underlying logic and inherent evolutionary order to how it
self-organizes entities,which reveals howNature instantiates itspossible ontolog-
ical relations. Reductive natural science attempts to mimic and model the natural
system, through scientific epistemology, experimental methodology and theoret-
ical description; creating amodel of possible relations from a blend of identified,
experimentally confirmed natural laws and rules, reductive scientific rules of
inductive and deductive reasoning, and abstract rules of inference synthesized
from various formulations of abstract formal logic or developed within multiple
mathematical system models.

Two broad categories of scientific reduction (Theoretical Reduction and Explana-
tory Reduction) and three further reductive scientific conceptual frameworks with
their associated inter-connections (Ontological reduction, Methodological reduction
and Epistemological reduction), can be defined and embedded in the overall concept
of a general Reductive Formal System Model, FFR = 〈AFR , XFR , RFR 〉.

3.1 Theoretical Reduction

Theoretical reduction refers to a theoretical reduction of specific theories: T3 to T2 to
T1. It captures the intention, to take a fully developed scientific theory describing one
semi-isolated level (T3 for L3; or T2 for L2; or T1 for L1), composed in a hierarchical
model of an evolved hierarchy of complexity (T3 and T2 and T1); to reduce the
selected specific theory to a reductive description using only the concepts derived in
the next lower level down the hierarchy (T3 reduces to T2; T2 reduces to T1; with T1

treated as the most fundamental accessible layer of the evolved hierarchy).
In Theoretical Reduction, as defined here, each layer of the hierarchical descrip-

tion of the evolved hierarchy of complexity, can be defined by its own fully devel-
oped Theory and Reductive Formal System Model: Thus, T3 and T2 and T1 can be
described by:

1. T3 = FFR3
= 〈AFR3

, XFR3
, RFR3

〉 and
2. T2 = FFR2

= 〈AFR2
, XFR2

, RFR2
〉 and

3. T1 = FFR1
= 〈AFR1

, XFR1
, RFR1

〉 (3)

T1 describes the composition and properties of ‘fundamental’ T1 entities and
interactions between T1 entities, leading to the fabrication of the T2 entities. T2

describes the composition and properties of T2 entities and the interactions between
T2 entities, leading to the fabrication of T3 entities. T3 describes the composition and
properties of T3 entities and the interactions of those entities. The expectation and
prediction are that T3 can be fully reduced to T2; T2 can be fully reduced to T1; with
T1 being treated as the most fundamental accessible layer of the evolved hierarchy.
Everything can be deduced from T1.
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3.2 Explanatory Reduction

Explanatory Reduction refers to a restricted reduction providing a reductive explana-
tion for any semi-isolated phenomena x found in level L3 and/or L2 and/or L1, located
within the three-level theoretical hierarchy describing the semi-isolated three-level
evolved hierarchy of complexity. Explanatory Reduction can also refer to any local-
ized reduction producing an explanation for any semi-isolated phenomena x found
in the inter-space of connection between level L3 and/or L2 and/or L1. Thus, theoret-
ical reduction can itself be reduced to a large number of lesser explanatory reductive
explorations.

3.3 Further Subdivision of Theoretical and Explanatory
Reduction

Theoretical and Explanatory Reduction can both be further subdivided, into three
inter-related kinds of reduction. An implicit or explicit three-domain relationship
is interwoven into the work of reductive natural science, based on underpinning
reductive premises associated with ontological reductive assumptions (Theory of
Reductive Ontological Description), accepted reductive assumptions about method-
ological or reductive experimental approaches (Theory of Reductive Observation
and Experimental Technique) and epistemological reductive assumptions (Theory of
Reductive Knowledge). These three sets of underpinning reductive premises inter-
relate by assuming that an epistemology using abstract reductive scientific logic, in
some important sense, can theoretically,methodologically and experimentally create
a sufficiently close enough approximation that it will provide a good-enoughmodel of
natural ontological systemic evolutionary logic. ‘Good-enough’ therefore refers to
an, in principle, assumption of reductive closeness of real-world approximation, and
to an, in practice, acceptance of the usefulness of real-world reductive experimental
methods and application.

The two domains of reductive scientific interest (Theoretical Reduction and
Explanatory Reduction) and the three inter-related kinds of reduction (Ontological
reduction, Methodological reduction and Epistemological reduction), have a rela-
tionship with the Ontology of Nature and the natural evolutionary system On . This
can be symbolized in the following way:

1. Ontological Reduction (ro): involves philosophical ontological commitment to a
meta-physical assumption about the nature of ontology and the nature of being:
There is an underlying ontological assumption that the reality of the universe and
the natural evolving system (On) conforms to ‘bottom-up’ reductive principles
and ‘bottom-up’ reductive logic and therefore science must also conform to
similar reductive principles and logic in order to succeed at the task of modeling
Nature and evolution.
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2. Methodological Reduction (rm): involves philosophical and scientific method-
ological commitment, to a reductive system of methods for investigating and
formulating results in every field of scientific work: There is an underlying
methodological assumption that ‘bottom-up’ reductive principles and logic,
implemented in experimental scientific methods, will effectively and closely
approximate the natural logic of Nature and the natural evolving system (On).

3. Epistemological Reduction (re): involves philosophical scientific epistemolog-
ical commitment, to a reductive theory of knowledge, particularly in regard to
the validity and scope of a reductive approach to theory creation and a reductive
approach to the selection of experimental methods. The epistemological commit-
ment rests upon decisions about what justifies a scientific belief or opinion: i.e.,
there is an underlying epistemological assumption that ‘bottom-up’ reductive
principles, and applications of reductive logic, are justified, and can effectively
and closely approximate the natural logic of Nature and the natural evolving
system (On).

The explicit or implicit reductive premise and hope of reductive natural science, in
examining Nature through the lens of Ontological Reduction (ro), Methodological
Reduction (rm) and Epistemological Reduction (re); states that science has in the
past succeeded and predicts that science will succeed further in the future, where
ro � rm � re and these are found to be synchronous, commensurate and aligned in
a pattern of reductive consilience, closely mimicking the natural logic of Nature and
the natural evolving system (On). Thus:

On
∼= FR(ro�rm�re) (4)

The reductive premise suggests, that the simplified 3-Theory hierarchically
‘stacked’ Reductive Formal System Models, as well as the description of the inter-
level ‘joints’ linking one level to another; should be capable of modeling a simplified
natural 3-level emergent hierarchyof complexity. The reductive account should there-
fore provide a minimal, generalized, fully complete picture of the 3-level hierarchy
of complexity.

Continuing with the exploration, we are particularly interested in finding out
whether, within a single Reductive Formal System Model (RFSM) FR :

F(ro�rm�re) = 〈AF(ro�rm�re )
, XF(ro�rm�re )

, RF(ro�rm�re )
〉 (5)

…is it possible, within the structure of a Reductive Formal System Model (RFSM),
to construct an undecidable reductive proposition declaring formal reductive incom-
pleteness? The structure of the following proof follows Gödel’s incompleteness
theorems [30] and recent work by Prokopenko et al. [27].
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3.4 Mathematization and Proof of Formal Reductive
Incompleteness

A scientific expressionW is derivable or provable in FR , if and only if there is a finite
or infinite sequence of expressionsW1,….,Wn in which the statement W ≡ Wn and
everyWi is either a member of the alphabet, an axiom or results from the application
of an inference rule applied to earlier expressions in the sequence. Where possible or
necessary the statementW must also be fully defined within FR = F(ro�rm�re). Using
a standard notation drawn from logic, FR � W, expresses thatW can be formulated,
derived and proven in the Reductive Formal System FR . This means there is a proof
of W in FR , therefore W is a statement, a proposition, or a theorem of FR .

Proof and truth in reductive natural science are already differentiated by the
necessity of spelling out W in FR = F(ro�rm�re)

∼= On . This differentiation of proof
and truth in reductive science is defined by the complicated dynamics natural science
has with itself and with Nature. Ontological reductive, methodological reduction and
epistemological reduction differentiate proof and truth even before we specifically
seek out an analog of Gödel’s formal incompleteness and before the necessary sepa-
ration of truth and proof specific to formal reductive Logic. In Science, only Nature
and ontology ‘know’ when a scientific statement W is scientifically true. Nature
‘knows’ its truth by naturally instantiating a phenomenon in the realized process of
natural evolution. Reductive natural science ‘knows’ its truth only through successive
theoretical approximations supported by experimental evidence, thus accumulating
proof from the sum of sequential approximation, reduction, replication and predic-
tion in theoretical and experimental contexts, supported by scientific epistemology
(re), scientificmethodology (rm), and a slowly developing understanding of ontology
(ro). Truth in scientific understanding of ontology is never closed; it remains open
and forever susceptible to falsification, whenever theoretical and experimental proof
of a better approximation appears. Truth and proof in formal reductive Logic has so
far been immune to any demonstration that they too are separated by an inevitable
gap defined by formal reductive incompleteness and its implications. I can only
speculate that the absence of any attempt to address this problem directly is in part
based on respect for Gödel’s strong reluctance to go there and in part because of the
complicated and far reaching and difficult to handle consequence and implications of
proving reductive incompleteness and the separation of truth and proof in reductive
Logic.

Continuing now with the development of the proof in relation to reductive Logic:
Just as in the development of a formal or mathematical system, in the Reductive
Formal System Model FR , in order to labelW as a theorem it would be necessary to
define and employ in advance some kind of external reasoning ormeasure that is able
to characterize W as either an intermediate statement, or as a target expression and
theorem. Such a predictive meta-level method must be able to recognize in advance
the importance or salience ofW as a target theorem. It is not yet clear how this might
be achieved in an abstractmathematical Formal System,F, or in theReductive Formal
System Model FR . Existing formal system and mathematical developments are not
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able to formally make this particular predictive decision regarding the salience of
target theorems [27]. In modern Logic and Formal Systems Theory and in modern
mathematical systems theory, there is, however, an awareness of the proof and impli-
cations of both the Halting Problem [6] and Gödel’s incompleteness theorems [30],
both of which provide an explanation for why theorists are not yet able to predictively
define any external meta-level criterion capable of deciding whetherW is or is not a
target theorem.

Nevertheless, the limitations set by the Halting Problem and Formal Incomplete-
ness have not stopped theorists fromdeciding frommeta-level consideration,whether
or not, a ‘completed’ or ‘final’ well-formed formal or mathematical statement and
proof of W, is or is not, a salient target or theorem. It can be decided in relation to
a complete or finished piece of work, it just can’t be decided in advance. This real-
ization is particularly significant in the present argument, in relation to Reductive
Natural Science and the development of a Reductive Formal System Model FR .

Past and present scientific developments have not yet formalized a Reductive
Formal System Model sufficiently so that the implications of the Halting problem
andGödel’s incompleteness theorems can be seen at work in the dynamics of FR .The
implications of proving the Halting problem and Gödel’s incompleteness theorems
are relevant in a Reductive Formal SystemModel, Reductive Science and the Reduc-
tive Scientific Paradigm; includes the realization that, for formal logical reasons, any
scientific theory about a ‘part’ of Nature or the ‘whole’ reductive scientific narrative
describing our Universe, cannot ever be closed, resolved, decided or complete.

Whether or not a statement is intermediate or a target statement cannot be decided
in advance because there is always the possibility that whatever is now considered
true, ‘closed’, ‘complete’, ‘final’, or ‘finished’ in natural science, and thus believed to
be a ‘target’ statement; will be found instead to be an intermediate statement. Contra-
dictory proof and external meta-level consideration may reveal a significant sepa-
ration between truth and proof and a significant relationship may be found between
completeness and incompleteness, as well between consistency and inconsistency.
This may lead to a subsequent encompassing meta-reductive re-formulation.

Because this argument is about reductive Logic and Natural Science; Nature
must get the last word regarding whether or not the natural Logic of the evolu-
tionary process also instantiates a significant separation between naturally instanti-
ated truth and naturally instantiated self-referencing proof . Nature may instantiate a
significant relationship between order and disorder, evolutionary completeness and
incompleteness, as well as evolutionary consistency and inconsistency.

4 FurtherMathematization

At this point, in forming the set of ‘words’ and ‘strings’ of A∗
FR , theReductive Formal

System Model FR does not yet conform to any particular syntactical constraints,
beyond the restrictive ‘bottom-up’ assumption, and the restrictions set by the defini-
tion of axioms (XFR ) and the scientific rules of inference, defined in RFR . In order to
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move further toward a statementmatching the complexity of amodern abstract formal
system, it is necessary to expand the definitions and components of the Reductive
Formal System Model FR , so as to define and then concentrate only on well-formed
formulas (abbreviated as wff’s). Well-formed formulas, wff’s, are fabricated from
the reductive alphabet (AFR ), the reductive axioms (XFR ), the reductive rules of infer-
ence (RFR ), the ‘words’ and ‘strings’ of A

∗
FR and a formalized version of a reductive

grammar (GFR ).
A formalization of a reductive grammar (GFR ) consists of the following

components:

GFR = 〈AFR , NFR , PFR , SFR ,CFR , EFR 〉 (6)

where

1. AFR is an abstract symbol set of ‘terminal’ symbols, symbolically representing
naturally occurring fundamental entities (known or not yet known) that can
be finitely (or infinitely) ordered or organized, scientifically representative of
a naturally self-organized but scientifically accessible fundamental alphabet;

2. NFR is an abstract symbol set (which can include the three start symbols such
that (〈EFR ,CFR , SFR 〉 ∈ NFR ), symbolically representing a finite (or infinite) set
of ‘nonterminal’ symbols, that can define and form relationships between AFR

symbols but are disjoint from A∗
FR , i.e., the ‘words’ and ‘strings’ formed from

AFR ;
3. PFR is a finite (or infinite) set of production rules, generally of the form(

AFR ∪ NFR

)∗
NFR

(
AFR ∪ NFR

)∗ → (
AFR ∪ NFR

)∗
. Each production rule maps

from one ‘word’, or ‘string’ of symbols to another, with the ‘head’ string
containing an arbitrary number of symbols provided that at least one symbol
is ‘non-terminal’;

4. SFR is a start symbol such that SFR ∈ NFR . The start symbol SFR is non-terminal
and is disjoint from A∗

FR . In modeling Nature and the process of evolution from
the presumed point of origin in the dense high-energy state in the Big Bang, SFR

takes the form SFR +CFR = EFR , where EFR is the dense high energy state from
which the entire evolved universe is created through transformations of energy,
into lower, evolving energy states and processes defined by SFR ,and associated
space–time manifestations, represented in CFR . In later, evolved, hierarchically
organized and semi-isolated systems selected fromwithin the ongoing process of
natural evolution (i.e., the three-level hierarchy being explored in the simplified
model of the scientific situation), SFR is definedby the initial stateof thenecessary
transformations of EFR , creating a necessary ‘terminal’ set of members of AFR ,
composed in A∗

FR , along with an initial ‘non-terminal’ process, defined by the
necessary set of production rules in PFR . The set created by the initial state
and process defined by SFR is ‘non-terminal’ setting in motion everything that
subsequently happens, however, it is ‘disjoint’ from any specific subsequent
arrangement of state and process in the system.
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5. CFR is a start symbol such that CFR ∈ NFR . This start symbolCFR is non-terminal
(or unknown as to its limit) in relation to the vastness of space–time but it can be
composed and selected to be terminal in the choice of semi-isolated systemwithin
an experimental context. CFR is also disjoint from A∗

FR . In modeling Nature
and the process of evolution from the presumed point of origin in the original
dense high-energy state in the Big Bang, CFR shares an evolutionary sequence
of relationships EFR → SFR + CFR , where EFR is the dense high energy state
from which the entire universe evolved and from which the expanding energy-
space–timemanifold of the universe, and lower-energy-matter entities are created
through transformations of high-energy states and processes into lower-energy
states and processes, defined by SFR , and associated space–time manifestations
and relationships, represented by CFR . In later, evolved, hierarchically orga-
nized, complex, semi-isolated systems selected from within the ongoing process
of natural evolution (i.e., the three-level hierarchy being explored), CFR repre-
sents both the background bounded or unbounded space–time encompassing the
selected semi-isolated system, or the selected finite manifold of space–time (infi-
nite or unknown if the whole universe is the experimental context), contained
within the bounded domain or container of the semi-isolated system of interest.

6. EFR is the initial evolutionary start symbol such that EFR ∈ NFR , from which
CFR and SFR evolve through transformation of energy in an abstract, in prin-
ciple, reversible relationship, EFR ↔ SFR + CFR . CFR and SFR arise from EFR ,
and they are the start symbols for all further evolution, which is defined in an
abstract, in practice, non-reversible evolutionary relationship EFR → SFR +CFR ,
where energy, space–time and matter transformations, patterns of composition,
interactions and relationships, become the further symbolic representation of all
subsequent evolution.

The ‘complete’ ‘bottom-up’ Reductive Formal System Model FR can thus be
represented:

FR = 〈EFR 〉 (7)

where

〈EFR 〉 = 〈SFR ,CFR 〉 (8)

such that

EFR → 〈SFR ,CFR 〉 (9)

and where

〈EFR , SFR ,CFR 〉 = 〈AFR , NFR , PFR , XFR , RFR 〉 (10)

such that this equation



60 J. R. Scott

〈EFR 〉 → 〈SFR ,CFR 〉 → 〈AFR , NFR , PFR , XFR , RFR 〉 (11)

can be used to formally model the initial start symbols and the sequence of evolution
of the ‘whole’ universe.

For practical reasons, associatedwith formallymodeling local and later sequences
of evolution, involving evolved ‘part’ systemswithin the evolved universe (where the
original, initial, energy, space–time, matter, ‘whole’ start symbols are now implicit;
while the selected ‘part’ start symbols for a selected semi-isolated system of interest,
are explicitly now defined as consisting of some evolved initial organization of state
and process, with an evolved composition and arrangement of energy, space–time,
matter, entities, interactions and relationships), the relationship

〈EFR ,CFR , SFR 〉 ∈ NFR (12)

can be applied. This relationship allows a scientist to visualize a local or later
sequence of interest within the continuous thread and flow of natural evolution, in
which the fundamental relationships associated with the natural system are preserved
in a deep pattern of symmetry and self-similarity.

It is now possible to simplify the reductive formal system to conform to more
recent handlings of formal systems, in which it is conceivable to include components
of the grammar GFR in the definition of the formal system, such that

FR = 〈EFR ,CFR , SFR , AFR , NFR , PFR , XFR , RFR 〉 (13)

can be simplified to the statement

FR = 〈AFR , NFR , PFR , XFR , RFR 〉 (14)

such that:

1. AFR is the alphabet, i.e., is a finite or infinite (known or unknown) ordered set
of symbols, referring to natural diachronically and synchronically self-organized
entities, derived from the start symbols 〈EFR ,CFR , SFR 〉 ∈ NFR , located in each
subsequent self-organized level or layer in the sequence of change, evolution,
emergence, hierarchical organization and complexity;

2. NFR is a finite or infinite (known or unknown) set of non-terminal symbols,
which include the start symbols 〈EFR ,CFR , SFR 〉 ∈ NFR , that are disjoint from
the set A∗

FR . The NFR start symbols are energy EFR , energy-matter SFR and
energy-space–time CFR , as well as the compositional ‘grammatical markers’ for
developing states and processes involving the start symbols; along with symbols
referring to natural and discovered ‘grammatical markers’, which define ‘gram-
matically acceptable’ patterns of ‘alphabet’, ‘words’, ‘strings’ and ‘collections
of strings’, sequentially forming more complicated self-organized ‘grammati-
cally acceptable’ patterns of composition, interaction and relationship, effectively
fabricating and becoming AFR and A∗

FR ;
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3. PFR is a finite or infinite (known or unknown) set of production rules of the
form

(
AFR ∪ NFR

)∗
NFR

(
AFR ∪ NFR

)∗ → (
AFR ∪ NFR

)∗
referring to discovered

naturally emergent laws, rules and constraints, defining admissible patterns of
production, fabrication, evolutionary self-organization and hierarchical emer-
gence, involving AFR , A

∗
FR and NFR , including the encompassing interaction

with evolved states and processes of the start symbols 〈EFR ,CFR , SFR 〉 ∈ NFR ;
4. XFR is a specific set of axioms, each of which must be a wff, referring to ‘self-

evident’, ‘accepted as given’, ‘established’ entities, statements, propositions or
levels of organization in FR , upon which further abstract modeling of diachronic
and synchronic sequences of natural evolution, self-organization, emergence and
hierarchically organized complexity can be developed;

5. RFR is a finite or infinite (known or unknown) set of relations within the wff’s
called rules of inference, referring to the fundamental basis of scientific logic; the
basis supporting ‘acceptable evidence’, the basis defining ‘acceptable inductive
and deductive reasoning’ and the basis of how one can arrive at an ‘acceptable
scientific conclusion’.As well, the rules of inference include the understanding of
any fundamental natural basis for the existence of natural evolutionary logic; the
basis supporting ‘an acceptable understanding that there is evidence of Nature
instantiating an evolutionary pattern of reasoning’, the basis for defining ‘an
acceptable understanding of any natural instantiated evolutionary pattern of
reasoning’ and the basis for an understanding of how Nature and evolution can
arrive at ‘acceptable natural evolutionary conclusions’.

From these general definitions, the specific case of a three-level hierarchy can then
be constructed in more formal detail by duplicating the Reductive Formal System
Model (RFSM = FR) and creating three stacked Reductive Formal System Models,
each one referring specifically to a defined level in the ‘bottom-up’ hierarchy. Thus,

1. Lower Level 1 in the ‘bottom-up’ metaphor can be represented by:

FR(Level 1) = 〈AFR,L1 , NFR,L1 , PFR,L1 , XFR,L1 , RFR,L1〉 (15)

2. Mid-Level 2 in the ‘bottom-up’ metaphor can be represented by:

FR(Level 2) = 〈AFR,L2 , NFR,L2 , PFR,L2 , XFR,L2 , RFR,L2〉 (16)

3. Upper-level 3 in the ‘bottom-up’ metaphor can be represented by:

FR(Level 3) = 〈AFR,L3 , NFR,L3 , PFR,L3 , XFR,L3 , RFR,L3〉 (17)

The ‘joints’ between hierarchical levels and the transformations of entities,
involving the composition (CL1−3) and interactions (IL1−3) occurring at the bound-
aries between hierarchical levels in Levels 1–3, can then be composed:

FR(L1) + (CL1 + IL1) → FR(L2) + (CL2 + IL2) → FR(L3) + (CL3 + IL3) (18)
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such that;
The specific lower level, Level 1, components, properties and composition as

well as the specific lower-level, Level 1, interactions, are sufficient to explain the
appearance of the components, properties and composition of the mid-level, Level
2, as well as, the full potential for that levels specific emergent interactions amongst
its components, such that;

(CL1 + IL1) = 〈AFR,L1 , NFR,L1 , PFR,L1 , XFR,L1 , RFR,L1〉 → FR(L2) + (CL2 + IL2)
(19)

Themid-level 2, Level 2, components, properties and composition of components,
then engages in specific Level 2 interactions that build the component, properties and
composition of the third level, Level 3, as well as the full potential for any interactive
properties of the third level and its components, such that:

(CL2 + IL2) = 〈AFR,L2 , NFR,L2 , PFR,L2 , XFR,L2 , RFR,L2〉 → FR(L3) + (CL3 + IL3)
(20)

and, Level 3 can then be defined;

FR(L3) = (CL3 + IL3) = 〈AFR,L3 , NFR,L3 , PFR,L3 , XFR,L3 , RFR,L3〉 (21)

The construction of three stacked Reductive Formal System Models describing
the three-level evolved hierarchy composed of three levels of specific composition
and interaction of entities, with each level of interaction subsequently defining the
entities in the next level up the hierarchy of composition, can be summarized in this
form:

FR(L1−3) = (CL1−3 + IL1−3) = 〈AFR,L1−3 , NFR,L1−3 , PFR,L1−3 , XFR,L1−3 , RFR,L1−3〉
(22)

The composition and interactions in the third level, Level 3, might still have
the potential to build further complexity but we have decided not to explore this
potential at this point. By definition, in the three-level hierarchy of complexity, any
emergent properties or phenomenon exhibiting complementarity which may appear
in or between each level must be conservatively explained employing rigorous reduc-
tive logic: i.e., in this simplified example, complementarity at an inter-level interface
or any emergent properties must be entirely explained by the composition and inter-
actions described within and between the three levels of the hierarchy. However, as
we shall see the devil is in the details of emergence and complementarity and so is
the formal reductive incompleteness we shall pursue shortly.

As it is now defined, the entire three-level hierarchy can be effectively reduced,
with T3 reducing to T2 and T2 reducing to T1. The Theory T3 of Level 3 can be
fully reduced to the Theory T2 of Level 2, and the Theory T2 of Level 2 can be
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fully reduced to the Theory T1 of Level 1. The ‘whole’ hierarchical system can be
reductively reduced to the lowest ‘fundamental’ level.

The production rules in PFR can be used to produce wff’s, with the rules of
inference also required, in order to derive theorems. Theorems in FR are defined as
the statements and propositions describing the components of a complete scientific
theory modeling selected entities, components, interactions and one or many levels
of hierarchical organization. In the general case, if we decide to consider all ‘words’
and ‘strings’ in A∗

FR as wff’s, then the grammar GFR would not constrain the space
of possible scientific inference.

In the special case of interest here, where the Formal Reductive System must
contain negation in order to formally model formal reductive incompleteness, the
Reductive Formal System Model can be called consistent if and only if there is no
wff W such that both W and ¬W (not W ) can both be logically true and proven in
the system.

Further, it is required that there is a decision procedure or an algorithm (utilizing
PFR ), which can be used for decidingwhether a formula, statement or proposition, is
or is not a well-formed statement (wff). Stated another way, in the modern interpreta-
tion of abstract formal systems, there is an expectation that the production rules will
be found to be decidable: again, an algorithm should be available such that, given
any arbitrarily chosen ‘string’ ‘x’, the decision procedure can decide whether ‘x’ is
or is not a wff. As well, inference rules must be decidable: for every inference rule
R ∈ RFR there must be an algorithm, which can determine whether, given a set of
wff x1, . . . .xn and a wff y, the decision procedure is able to decide whether R can be
applied with input x1, . . . .xn in order to fabricate y.

Further, in the modern understanding of abstract formal systems and recursive
abstract formal systems; algorithmic, decision procedures, employed in the systems,
make the axioms decidable and construct a set of all provable sentences (i.e., the set
of all theorems) that are recursively enumerable or semi-decidable: In recursively
enumerable systems, if you begin with any arbitrarily selected wff, there is an algo-
rithm that can correctly determine whether or not the formula is provable within
the system, but when applied, and the wff is not provable in the formal system, the
algorithm will produce a negative answer or no answer at all. Among the statements
where the algorithm returns no answer at all, there are found to be formulas that are
undecidable or cannot be proven for fear of inconsistency, the hallmark property of
a formula associated with formal incompleteness.

Gödel’s incompleteness theorems specifically refer to formal systems involving
first-order logic or first-order predicate calculus, specifically operating with Peano’s
axioms of arithmetic. This is presented in such a fashion that the results can be
generalized to a very wide class formal systems in which, (1) in order to protect the
consistency of the system from exploding into inconsistency, there must be wff’s that
can neither be proven nor disproven, they must be undecidable, and thus the system
must be incomplete; and (2) again for fear of inconsistency, any such formal system
will not be capable of demonstrating its own consistency from within the system,
consistency must be decided through meta-consideration.
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This completes the construction of a Reductive Formal System Model (RFSM)
and the application of the RFSM to the reductive and conservativemodel of the three-
level hierarchy of complexity investigated by the scientist and his research team. We
cannowdig deeper into anunderstandingof the inevitability of undecidable dynamics
within this simplified but sufficiently complex formal context.

5 The RFSM in the Matrix of Multiple Scientific Languages

The simplification (i.e. restricting the natural situation beingmodeled, to linear, local
causation and ‘bottom-up’ reductive examination and accounting, etc.) andmathema-
tization (i.e., translating the selected natural phenomena being studied, into a simpli-
fied, semi-isolated system contained within an experimental context, described by a
demanding, conservative, restrictive, strong reductive framework, in the form of an
abstractReductive Formal SystemModel that does not constrain the space of possible
scientific inference and interest), brings into focus an unsolved but now manageable
problem. Consider ‘bottom-up’ reductive Logic, reductive formal system models
and the experimental methodology employed within Reductive Science, the whole
ReductiveScientificParadigm, the reductive scientific narrative and the philosophyof
Reductionism: Are all of these complicated conceptual structures impacted by reduc-
tively conceived formal reductive incompleteness? Further, consider Nature and the
natural evolving system, which includes the human brain but may also include the
reductively excluded, evolved, emergent, complex complementarity, associated with,
the self-reflective, self-referencing mind and consciousness: Are all these natural
phenomena prone to, natural instantiations of evolutionary incompleteness?

To determine the answer to these questions, the argument will follow Kurt Gödel
[13] further down the logical path he set out in the proof of his two incompleteness
theorems. In attempting this, it is necessary to translate the detailed Logic of Gödel’s
argument, from the austere World of pure, abstract formal logic and mathematics,
into the subjectively experienced and complicated context of scientists and applied
mathematicians, consciously living in the convoluted and diverse complexity of the
Real-World.

In the complicated modern scientific context, reductive scientific theories are
presented in the formofwritten papers, books or academic presentations, usingPower
Points and other forms of communicative media, which are all helpful in making the
scientist’s theory understandable to an interested audience of philosophers, scientists,
mathematicians and anyone else interested in making the intellectual journey. A
specific Scientific Theory TFR = T1, when placed in the full complexity of modern
natural science, is composed using a number of available ‘languages’ for scientific
communication. These languages include but may not be limited to:

1. Direct observation of a phenomena and its behavior;
2. Scientific narrative or story telling;
3. Scientific ‘bottom-up’ Reductive Logic or other selected forms of scientific logic;
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4. Scientific mathematical languages and models;
5. Computational models and demonstrations;
6. Experimental evidence;
7. Digital information translation.

In this complicated general scientific context, involving a vast community and
convoluted matrix of communicative relationships, we wish to examine one specific
example of a scientist composing his ideas about an evolving three-level hierarchy of
emergent complexity, using ‘bottom-up’ reductive Logic formulated within a Reduc-
tive Formal System Model (RFSM = FR), composed in the form of a reductive
scientific Theory, T1 (TFR = T1). We wish to demonstrate that within this simpli-
fied context, the presence of an undecidable reductive proposition, declaring formal
reductive incompleteness is inevitable. Our next stop is arithmetization.

6 Arithmetization of Reductive Logic

Mathematization created a Reductive Formal System Model (RFSM = FR) that
may be sufficiently complex to be capable of presenting with undecidable reductive
dynamics. Arithmetization of the mathematized Formal Reductive System Model
(RFSM = FR) should now make it possible to reveal the presence of undecidable
reductive dynamics.

To arithmetize an abstract formal system,KurtGödel chosePeano’s arithmetic and
the comprehensive mathematical text, Principia Mathematica, written by Bertrand
Russell and Alfred North Whitehead [24]. Peano’s axioms of arithmetic include:

1. Axiom 1: 0 (zero) is a natural number;
2. Axiom 2: Every natural number has a successor informally stated n + 1, which

is also a natural number;
3. Axiom 3: No natural number has 0 (zero) as a successor;
4. Axiom 4: Different natural numbers have different successors;
5. Axiom 5: If some property P holds for 0 (zero), it also holds for every natural

number n, and then must hold for every natural number n + 1 such that P holds
for all natural numbers.

Gödel’s central insight was to encode the wff’s of a comprehensive formal system
(the comprehensive mathematical text, Principia Mathematica, written by Bertrand
Russell and Alfred North Whitehead) by using ‘Peano’s arithmetic’ and the natural
numbers, thus ‘arithmetizing’, or ‘Gödel numbering’ the wff’s of the entire selected
formal system.

We can follow Gödel’s lead by arithmetizing and encoding the wff’s of a compre-
hensive formal reductive system, purporting to scientifically describe thewhole phys-
ical universe. In an imaginary book entitled, TheComplete Reductive Narrative of the
Universe, the author (an imaginary version ofmyself committed to a closed, resolved,
decided and complete model of the Universe) presents a comprehensive scientific
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history and description of natural evolution involving a ‘bottom-up’ reductive picture
of the entire Universe.Within that imaginary book there is a chapter which presents a
narrative describing a scientist composinghis ideas about an evolving three-level hier-
archy of emergent complexity, using formal ‘bottom-up’ reductive Logic, composed
in a Reductive Formal System Model (RFSM = FR), and spelled-out in a reductive
scientific Theory, T1 (TFR = T1).

In the present context another version of myself is closely aligned with Gödel’s
line of reasoning and is committed to exploring the concept of an open, unresolved,
often undecidable and forever incomplete scientific model of the Universe. Like
Gödel, we can also use Peano’s arithmetic to encode every well-formed English
statement, formal logical argument, mathematical formulation or theoretical state-
ment, in the comprehensive scientific theory and narrative composed in the imaginary
book, including the chapter on the scientist and his theory.Within the specific chapter
containing our scientist and his theory, we can encode every wff of themathematized
Reductive Formal System Model (RFSM = FR), which narratively and mathemati-
cally is used to describe the simplified reductive picture of the three-level evolved
‘bottom-up’ hierarchy of complexity.

More formally stated: for every well-formed statementW in the Theory, T1 (TFR

= T1) and every well-formed wff,W , composed by the mathematized and recursive
Reductive Formal System Model, (RFSM = FR); Gödel’s encoding and numbering
scheme will produce G(W), i.e., the encoded ‘Gödel number’, which can then be
additionally encoded as one of the natural numbers. In such a code, the name of the
‘Gödel number’ G(W) of any statement or formula W , is denoted as W�.

To demonstrate this: first assign a natural number, to each and every primitive
symbol s in Peano’s arithmetic, to each and every primitive symbol s in the English
language used in Theory TFR = T1 and to each and every primitive symbol s used in
the mathematized and recursive Reductive Formal SystemModel, FR . Call these the
‘symbol numbers’ of ‘s’, e.g., to start with Peano’s arithmetic, the symbol ‘0′ is given
the natural number 1 and symbol ‘ = ’ is given the natural number 5. Then consider
the wffW: ‘0 = 0’. The Gödel number for this formulaW is uniquely produced as
the corresponding product of powers of consecutive prime numbers (2, 3, 5, …), as
G(‘0 = 0’) = 21 × 35 × 51 = 2 × 243 × 5 = 2430. The name of the Gödel number
‘0 = 0’� is the numeral 2430. Carry on assigning Gödel numbers to every primitive
symbol s and formula in the mathematized and recursive Reductive Formal System
Model, FR and then to every primitive symbol s and English statement in Theory TFR .
Knowing the Gödel number of any symbol, formula or statement, specifically allows
us to uniquely decode back into the original English statements, the mathematized
formulas and into the elements of Peano’s arithmetic. This is possible because of
Gödel’s unique coding and decoding scheme using the prime-factorization theorem,
which allows us to locate and define the unique sequence of prime factors with their
associated exponents. Most significantly, Gödel numbers are computable and it is
also important to note that it is decidablewhether or not any given number is a Gödel
number [28].

Gödel’s coding scheme produces sufficient complexity to fulfill the necessary
criteria supporting formal incompleteness in the context of an abstract Formal
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System. Undecidability will be produced, and undecidable dynamics will appear
in a formal system description or in a formal system model, (i) if it possible to
generate self-reference; (ii) if it is possible to differentiate program-data duality; (iii)
if the formal system, at a minimum, has the potential to access an infinite compu-
tational medium, and, (iv) if the formal system has the capacity to implement or
instantiate negation. In ‘sufficiently complex’ formal systems, truth and proof are
forever separated by a gap kept open by potential or instantiated undecidability [27].

‘Sufficient complexity’ for formal reductive incompleteness to appear in the
context of ‘bottom-up’ reductive Logic employed in a Reductive Formal System
Model (RFSM = FR) composed in a reductive scientific Theory, T1 (TFR = T1),
will probably involve undecidability, (i) generated by self-reference; (ii) an avail-
able media, which at least in principle, is capable of infinite computation, (iii) the
possibility of differentiating program-data duality; and (iv) the capacity to instan-
tiate negation. As in abstract formal systems, there will be an inevitable logical gulf
inhabited by undecidable reductive dynamics and formal reductive incompleteness
separating reductive logical truth from reductive logical proof . The separation and
gap in reductive Logic, precipitated by formal reductive incompleteness, must be
differentiated from the separation and gap precipitated by the inevitable challenge
posed by the distance between what has been or can be theoretically conceived and
what can be experimentally demonstrated. Reductive theoretical truthmay therefore
be supported by reductive Logic or/and by reductive experimental evidence—the
gap separating truth from proof in reductive science, therefore, will be dual. While
incompleteness and undecidable dynamics can influence reductive Logic, creating
a separation and gap between truth and proof in Logic, there is also a separation
and gap between truth and proof dependent upon the distance between stated reduc-
tive theoretical truth and the available experimental evidence supporting reductive
experimental proof wherein Science must enter into dialogue with Nature.

‘Sufficiently complex’ Reductive Scientific Statements, (1) stated in experimen-
tally falsifiable hypotheses; or (2) stated as notations from direct observation; or; (3)
stated in the form of scientific narrative and story-telling; or, (4) stated in the form
of multiple applied mathematical forms; or; (5) stated in the form of any computa-
tional model or digital information representation, fulfilling the definition of a UTM;
are all scientific representations susceptible to polarizing debates wherein there can
reside theoretical contradictions and potential self-referencing paradoxeswhichmay
herald the presence of undecidable reductive dynamics and formal reductive incom-
pleteness. It is therefore important to do everything possible to reveal this significant
property of reductive Logic and to spell-out its implications. Undecidable reduc-
tive dynamics and formal reductive incompleteness set a limit on the use of formal
reductive Logic but undecidable reductive dynamics and formal reductive incom-
pleteness also instantiate a potential for incompleteness driven novelty generation,
which may play a significant role in creative ‘reductive thought’. The implications
of reductive incompleteness include the possibility of creatively reconstructing the
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Reductive Scientific Paradigm so that its successor encompasses reductive incom-
pleteness associated with ‘bottom-up’ reductive thought in aMeta-Reductive Scien-
tific Paradigm capable of exploring the role in Nature of naturally self-organized
evolutionary incompleteness.

Hypothetically, natural evolutionary undecidable dynamics and natural instanti-
ations of incompleteness in evolution, may play a significant role in defining complex
boundaries and limits in natural systems and may, as well, play an important role in
natural incompleteness driven novelty generation in naturally evolving systems.

The next essential step in Gödel’s proof involves the Self-Reference Lemma. We
must turn this Lemma into an understandable reductive conception.

7 The Self-reference Lemma and Reductive Logic

Gödel first uses the Self-Reference Lemma, in relation to any formal mathematical
system, employing first-order logic (first-order predicate calculus) and containing
Peano’s axioms of arithmetic. The Lemma states:

Let Q( ) be an arbitrary formula of formal system F with only one free variable. Then
there is a sentence (formula without free variables) W such that: F � W ↔ QW�

The Self-Reference Lemma can be restated in a form allowing its relation to
reductive Logic to be stated more clearly:

Let Q( ) be an arbitrary formula of the mathematized and recursive reductive formal
system model FR with only one free variable. Then there is a sentence (formula without free
variables) W such that: FR � W ↔ QW�

Prokopenko notes that “this lemma is sometimes called the Fixed-point lemma
or the Diagonalization lemma…The Self-reference lemma establishes that for any
formula Q( ) that describes a property of a numeral, there exists a sentence W
that is logically equivalent to the sentence QW�. The arithmetical formula Q( )
describes a property of its argument, e.g., a numeral , and hence the expression
QW� describes a property of the numeral W . This is the numeral of the Gödel
number of the formula W itself. Since the formula W is logically equivalent to the
formula QW�, one can say that the formula W is referring to a property of itself
(being an argument of the righthand side).

Strictly speaking…the lemma only provides a (provable) material equivalence
betweenW andQW�, and one should not claim ‘any sort of sameness ofmeaning’”
[27].

In both Gödel’s recursive formal system F , and in our recursive, mathematized,
reductive formal systemmodel, FR , it is possible to compose arithmetical and mathe-
matical self-referencing statements. In the recursive, mathematized, reductive formal
systemmodel, FR , and also in a related scientific Theory TFR , a self-referencing state-
ment in Logic and the specific associatedmeaning of the statement, can be translated
into linguistic and narrative form.
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For instance, the theoretical statement of reductive epiphenomenalism of
consciousness [32] can be stated as W . The statement W postulates or means that:
“Formal reductive Logic can fully reduce Mind to Brain; reducing Mind fully to an
epiphenomenon of Brain and more fundamental physical processes.” The sentence
W is logically and materially equivalent to the sentence QW�. This is derived by
applying the Self-reference lemma, which establishes that for any formula Q( )
describing a property of a numeral , there exists a sentence W that is logically
and materially equivalent to the sentenceQW� describing a property of a numeral
W�. Therefore, a property of the epiphenomenal statement,W , can be captured by
the arithmetical formula QW�, which describes a property of its argument, e.g.,
a numeral W�. Hence, the expression QW� describing a property of the state-
ment W is the numeral of the Gödel number of the formula W itself. Since the
formula W is logically and materially equivalent to the formula QW�, one can
say that the formula W is referring to a property of itself (being an argument of the
righthand side). Thus the epiphenomenal statementW: “Formal reductive Logic can
fully reduce Mind to Brain; reducing Mind fully to an epiphenomena of Brain and
more fundamental physical processes”, is logically and materially equivalent to the
statementQW�: “This statement of reductive epiphenomenalism says of itself that
reductive epiphenomenalism has as one of its properties a numeral that is the Gödel
number of the reductive epiphenomenal statement itself.”

As in Gödel’s argument and the fine-grained examination of Prokopenko et al.,
one should not claim ‘any sort of sameness of meaning’. However, the logical and
material equivalence prepares us for what comes next. Self-reference in the reductive
Logic of a statement within a Reductive Formal System Model does not imply there
will necessarily be found, contradiction and self-referencing paradox threatening to
unravel the usefulness of the underlying Logic. It does however set the stage for this
development.

The next step in the proof involves the provability predicate.

8 The Provability Predicate and Reductive Logic

The provability predicate, ProvableF (x), captures the property of the statement
x that it is provable in the formal system F. The reductive provability predicate,
ProvableFR (x), captures the property of the reductive statement x that it is provable
in the Reductive Formal System Model, FR.

Now let the formula, Proof FR
(y, x) strongly represent a binary relationship in

which y is the Gödel number of a proof of the formula in FR with the Gödel number
x (Prokopenko notes that it is always recursively and algorithmically decidable,
whether a given sequence of formulas y constitutes a proof of a given sentence x,
in conformity with the rules of the mathematized, recursive, Formal System Model,
and in our case, the Reductive Formal System Model, FR).

The property of being provable in FR can then be stated in the form:
∃yProvableFR (y, x). This can then be abbreviated as Provable FR(x).
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9 Negating the Provability Predicate in Reductive Logic

Gödel’s final step in proving the First Incompleteness Theorem involves a second
application of the Self-Reference Lemma to the negated provability predicate.Trans-
lating this step into the rules of themathematized, recursive, ReductiveFormal System
Model, FR , produces:

FR � W ↔ ¬ProvableFR (W�) (23)

This statement formally demonstrates that the system FR can derive a statement:
W is true if and only ifW is not provable in the system FR . Gödel, in his two Formal
Incompleteness Theorems, and Prokopenko et al. in their discussion of Gödel’s work,
and now, also in this application in the context of Reductive Science and reduc-
tive Logic, we can go on to say: if the mathematized, recursive, Reductive Formal
System Model, FR, is consistent, then it is possible to show that a true sentence
W is neither provable nor disprovable in FR , thus proving that the mathematized,
recursive, Reductive Formal System Model, FR, must be incomplete. There are true
statements in FR that are unprovable and undecidable. It is once again important to
state that the sentence W can be composed as a well-formed formula, wff, in the
system FR .

Kurt Gödel wrote less formally in his proof of the two Incompleteness Theorems
that what we “have before us is a proposition that says about itself that it is not
provable.” What we have before us is a well-formed and true proposition that says
about itself that it is not provable in the formal system FR .

10 Strong and Weak Representation in FR

The above demonstrates the presence of undecidability in FR . We can say that a
mathematized, recursive, Reductive Formal System Model, FR, is decidable if the
set of its theorems is strongly representable in FR itself , where there is some formula
P(x) of FR such that:

FR � P(W�) whenever FR � W and FR � ¬P(W�) whenever FR � W (24)

For aweakly representable set of theorems only the first half of the above statement
need apply (FR � P(W�)whenever FR �W). This defines semi-decidabilitywhere
negations are not necessarily ‘attributable’ to non-derivable formulas. However, it
is still possible to construct within the system FR , a Gödel sentence V P relative to
P(x). This can then be stated:

FR � V P ↔ ¬P
(V P�) (25)
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A contradiction must follow. Therefore, at least for this sentence strong repre-
sentability does not hold and therefore FR must be undecidable.

Following the lead of Prokopenko et al. [50] (Prokopenko, p. 7/23), it is important
to clarify that crucially, the Gödel sentence V P can be constructed as V (V (x)�) for
some wff V(x) with one free variable, and so the main expression clearly states…for
the mathematized, recursive, Reductive Formal System Model, FR :

FR � V V (x)�) ↔ ¬P(V (V (x)�)�) (26)

In discussing the related formula associated with a recursive formal system
Prokopenko et al. concludes [29]:

F � V V (x)�) ↔ ¬P(V (V (x)�)�) (27)

This formula would also hold for a Reductive Formal System Model, FR :

FR � V V (x)�) ↔ ¬P(V (V (x)�)�) (28)

Prokopenko et al. state that this evaluationmakes it explicit that the Self-Reference
Lemma or Diagonalization Lemma is used twice in Gödel’s proof. The Self-
ReferenceLemmaorDiagonalizationLemma is also used twice in the related formula
associated with the mathematized, recursive, Reductive Formal System Model, FR .

Self-reference and diagonalization are used first inside and then outside the represen-
tative predicate P(x), which is inserted between the two applications of self-reference
and diagonalization.

We can apply this proof to the construction of complex reductive theoretical
statements. Failure to find any effective logical means of resolving self-referencing
paradoxes in reductive theory, suggests it is necessary to consider whether there
may be no satisfactory exit from the paradoxes stated by certain strong reductive
arguments—theymay be as true in logic as reductive science is capable of stating and
the contradiction and paradoxical threat to reductive logical consistency, is real. This
realization indicates specific ‘unresolvable, self-referencing, paradoxical, reductive
theoretical statements’ may indeed be complex undecidable reductive propositions;
at a minimum metaphorically related to Kurt Gödel’s two formal incompleteness
theorems but at a maximum clear evidence of formal reductive incompleteness.

For instance, the reductive epiphenomenalism of consciousness statement can be
reformulated in conformity with Gödel’s paradoxical statement: “This true state-
ment cannot be proven”. Reductive epiphenomenalism can be stated: “This true
reductive epiphenomenal statement, composed logically to be about a conscious
mind, erases from existence the same conscious mind, and says of itself, it cannot
be proven”. The self-referencing form of reductive epiphenomenalism of conscious-
ness reveals the undecidable nature of this scientific and logically well-defended,
well-formed reductive argument: “This statement of reductive epiphenomenalism
of consciousness, composed by conscious, mindful, intentional human beings with
brains, says of itself that a property of the reductive epiphenomenal statement is
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that the conscious, mindful, intentional human beings with brains, who composed
the strong reductive statement, can be fully reduced to brain, body and more funda-
mental physical processes, leaving intentional mind and consciousness as epiphe-
nomenal, empty, meaningless, unnecessary conceptions that can be erased from the
universe as real phenomena: Reductive epiphenomenalism has as one of its proper-
ties, the paradoxical contradiction that it is and is not composed by brain, mind and
human consciousness, and therefore the reductive epiphenomenal statement cannot
be proven.”

The reductive statement of eliminative materialism provides a further example.
Eliminative materialism can be stated: “This logically true eliminative materialist
statement, composed by a conscious humanmind, reduces the same conscious human
mind to a determined and fundamental physical brain, eliminating the existence of
the mind and consciousness that made the eliminative materialist statement in the
first place, thus in paradoxical contradiction of itself and in response to the threat
of logical inconsistency, the eliminative materialist statement must say of itself, it
cannot be proven”.

11 Proposition XI: Consistency and the Second Theorem

In the final section of his paper, Gödel states: “Proposition XI: If c be a given
recursive, consistent class of formulae, then the propositional formula which states
that c is consistent is not c-provable; in particular, the consistency of P is unprovable
in P, it being assumed that P is consistent (if not, of course, every statement is
provable).” [18].

The Liar paradox focuses on truth: “This statement is false”, which makes it
impossible to avoid the paradox [15]. Gödel’s choice of paradoxical sentence focused
on proof : “This statement is unprovable”, which made it possible to state in a well-
formed sentence a truth but also to avoid proof and the paradox and thus avoid
logical inconsistency.

If the formal arithmetic of Peano and the proof of the first incompleteness theorem
are consistent, which means that only true statements can be proven in the system,
then Gödel’s chosen well-formed statement: (“This statement is unprovable”), must
be true. If Gödel’s statement were false then it would be possible to prove it to be
false but that would be contrary or contradictory to the consistency of the system.
To be thoroughly paradoxical, Gödel’s statement cannot be proven, for that would
demonstrate exactly the opposite of what the statement asserts, which is that it is
unprovable.

In the second incompleteness theorem, Gödel shows that in an abstract formal
system of sufficient complexity, if one attempts to prove the consistency of the formal
system from inside the formal system itself, then the whole argument determining
consistency could be formalized and the statement: “This statement is unprovable”,
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in its formal version, would thus be proven, and this leads to an immediate contra-
diction. The attempt to prove consistency from inside the system demonstrates the
inconsistency of the system, rather than proving the consistency [16].

In sketching out the details of the second incompleteness theorem, Gödel gener-
alized his findings to the axiom system of set theory M and to that of classical
mathematics A “and here to it yields the result that there is no consistency proof for
M or for A, which could be formalized for M or for A respectively, it being assumed
that M or A are consistent. It must be expressly noted that Proposition XI repre-
sents no contradiction of the formalistic standpoint of Hilbert. For this standpoint
presupposes only that the existence of a consistency proof effected by finite means,
and there might conceivably be finite proofs which cannot be stated in P or in M
or in A” [19]. Hilbert was angry and very upset that, by using the very formalism
he had sought, his “grand scheme for securing the foundation of mathematics had
been shown to be impossible” [19]. However, when convinced of the importance of
Gödel’s advance, the mathematics community began the difficult task of trying to
understand Gödel’s proof and its implications.

11.1 Proposition XI (Reductive Science Version)

If c be a given recursive, consistent class of reductive formulae, then the propositional
reductive formula which states that c is consistent is not c-provable; in particular,
the consistency of FR is unprovable in FR , it being assumed that FR is consistent (if
not, of course, then every reductive statement is provable).”

We can now generalize Gödel’s findings to ‘bottom-up’ reductive Logic (LR),
Reductive Science (RS), the Reductive Scientific Paradigm (RP) and the Reductive
Scientific Narrative (RSN) where Proposition XI (Reductive Science Version) yields
the result that there is no consistency proof for ‘bottom-up’ reductive Logic (LR),
a Reductive Formal System Model (FR), Reductive Science (RS), the Reductive
Scientific Paradigm (RP) and the Reductive Scientific Narrative (RSN), which could
be formalized for any of these respectively, it being assumed that they are each
consistent in their application of reductive Logic.

Among the implications of formal reductive incompleteness is the possibility that
what is not finitely provable in LR, FR , RS, RP and the RSN, might be finitely
provable in a related form of reductive Logic, adapted Reductive Formal System
Model, altered structure for Reductive Science, modified Reductive Paradigm or
transformed Reductive Scientific Narrative, in each case using altered axioms or
rules.

I have donemybest to prove thatGödel’s two incompleteness theorems can indeed
be applied to formal ‘bottom-up’ reductive Logic employed in a Reductive Formal
System Model, FR , and further to prove that this application of incompleteness will
follow and flow throughout every scientific context where formal ‘bottom-up’ reduc-
tive Logic is used in the Reductive Scientific Paradigm or the Reductive Scientific
Narrative.
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It follows from Gödel’s comment about “finite proofs which cannot be stated
in P”; for any particular example of a formally undecidable reductive state-
ment declaring formal reductive incompleteness found in the Reductive Paradigm,
there must be, novel adapted Reductive Formal System Models as well as novel
adapted Meta-Reductive Scientific Paradigms in which modified reductive Logic,
the elements of an adapted Reductive Formal System and the frame of an altered
Meta-Reductive Paradigm, will have been transformed in such a fashion that it
becomes possible to prove the previously undecidable statement, by spelling-out
a finite statement in the adapted Logic, System and Paradigm.

When “bottom-up” reductive Logic and the RFSM, FR, are used to model the
‘simplified scientific situation’ concerning a participatory scientist and a selected
‘semi-isolated system of interest’, they can create a three-level, evolved, conser-
vatively emergent hierarchy of complexity; in which each of the three ‘stacked’
RFSM’s, FR(1−3) used to describe the three-level hierarchy, can be shown to contain
undecidable reductive propositions, declaring the recurrent formal reductive
incompleteness of the three-level hierarchical model ( ).

Consequently, in conformity with Gödel’s first incompleteness theorems it
becomes possible to create a definition of sufficient complexity associatedwith formal
reductive incompleteness, in the reductive scientific context. The simplified context
of the three ‘stacked’ RFSM’s, FR(1−3) used to describe the three-level hierarchy are
sufficiently complex to be associated with formal incompleteness. More complex
models will also be capable of undecidable dynamics.

In conformitywithGödel’s second incompleteness theorem, the necessity ofmeta-
consideration in determining reductive logical consistency can also be explained in
the reductive scientific context. The abstract representation and generality of the
‘simplified scientific situation’ described above, implies a need to adapt all RFSM
of sufficient complexity using rigorous reductive Logic, such that they incorporate
within their core structures undecidable reductive propositions ( ) and formal
reductive incompleteness ( ).

Additional implications of formal reductive incompleteness impacting any RFSM
of sufficient complexity can then be spelled-out. These implications include, first,
the possibility that an alternative, adapted, RFSM, can translate an undecidable
reductive proposition into a decidable reductive proposition; and, second, any such
constructed, alternative RFSM will inevitability reveal its own version of and

. Further, formal reductive incompleteness and its implications can be generalized
and carried into any and every aspect of ‘reductive thought’; wherever ‘bottom-
up’ reductive Logic is employed in Reductive Natural Science. Therefore, meta-
consideration of conceivable meta-constructions, which alter the entire Reductive
Scientific Paradigm (RP), offer a novel incompleteness dependent definition, for
narrow intra-domain adaptation of a ‘part’ of natural science, or a global revolution
involving the ‘whole’ Reductive Scientific Paradigm (RP).
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12 Implications for the Reductive Scientific Paradigm

Among the significant conclusions and implications of this work are the following:

1. The Theory T1 (FR) describing the simplified conservatively reductive example
of the three-level hierarchical model of Complexity and the complicated
scientific situation composed within a mathematized and recursive Reductive
Formal SystemModel (FR) are sufficiently complex to demonstrate undecidable
dynamics and formal incompleteness;

2. By analogy with Gödel’s Formal Incompleteness Theorems we also see that
even in this simple reductive model involving Theory T1 (FR), Formal System
FR , and the conservatively reductive three-level hierarchy of complexity; the
situation still presents us with a potential for self-referencing statements and
propositions, in a situation where program/data duality can be differentiated
in a logical framework capable of negation, existing in a mathematical and
computational medium capable of infinite possible universal computation.

3. The situation can be interpreted as implementing program/data duality—such
that the abstraction of Theory T1 (FR), Formal System FR, and the three-level
hierarchy of complexity, become the abstract programwhile the implementation
of specific processes of change defined byparticular propositions and statements
andwff’swithin the sequence of progression and evolution in the abstract system
become the data;

4. Mathematization of Theory T1 (FR) and the Formal System FR serve to explic-
itly reveal a potential for undecidable dynamics and incompleteness.Mathema-
tization also reveals a three-part mathematical equivalence; wherein Formal
System models with their pattern of undecidability and Formal Incompleteness,
are completely equivalent and translatable intoDynamical SystemModelswith
an associated equivalent pattern of Dynamical undecidability and Dynamical
Incompleteness. These two models, can then be equivalently translated again,
into an Information Theoretical System Model based on an abstract Universal
Turing Machine (UTM). This three-system equivalence has previously been
explored in a course-grained examination, by Casti [5], and then very recently,
in a fine-grained demonstration by Prokopenko et al. [27]. The three equivalent
systemmodels share a similar pattern of undecidable dynamics and incomplete-
ness. This three-system equivalence can be further linked to more complex
system models, derived in the study of non-linear systems, Chaos Theory,
Cellular Automata, the Science of Complexity and Complex Adaptive Systems.

5. Through arithmetization, the fine-grained nature of undecidable dynamics
becomes evident. At aminimum, it must be determinedwhether or not the unde-
cidable dynamics found in equivalent system models is associated with or may
closely approximate undecidable evolutionary dynamics in natural evolving
systems and hierarchically organized complexity. The presence and exploration
of undecidable dynamics in natural settingsmay demand re-defining phase tran-
sition, complementarity, and emergence, where these phenomena are found in
association with undecidable dynamics within the evolution of systems and
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hierarchically organized complexity. This may reveal significant and perva-
sive patterns of natural evolutionary undecidable dynamics and evolutionary
incompleteness.

6. Contradiction, paradox and self-referencing paradox in all aspects of Scien-
tific Theory construction and Formal System construction, should be embraced
rather than avoided. This essential refocusing of scientific attention may open
a window on how to effectively compose in a scientific theory an undecidable
reductive proposition, indicating formal reductive incompleteness and how to
explore through theoretical and experimental means, the possibly of natural
evolutionary undecidable dynamics.

7. In conformity with Kurt Gödel’s second Formal Incompleteness Theorem;
formal reductive incompleteness and undecidable dynamics; any future attempt
to demonstrate the consistency of any Reductive Theory T (FR) and any
Reductive Formal System FR , will ultimately need to be addressed through
meta-theoretical-consideration.

8. The space of meta-reductive-theoretical-consideration will eventually lead to
consideration of adapted forms of reductive Logic and meta-construction of
Meta-Reductive Paradigms. In adjacent possible adapted Paradigms, adapted
premises, assumptions and formsof formalized scientific logic,may allowprevi-
ously undecidable reductive propositions (such as reductive epiphenomenalism
of consciousness) composed in the original, historic and modern ‘bottom-up’
logic of the Reductive Paradigm, to be decided in the reformulated and adapted
domain of an imaginedMeta-ReductiveParadigm. Such aMeta-Paradigmmight
be composed specifically in order to deal with an undecidable proposition
located in a T (FR) statement and it might encompass ‘bottom-up’ reductive
Logic in an adapted form of meta-reductive Logic.

9. Consideration of adaptedMeta-Reductive-Paradigmsmay reveal that there exist
manyMeta-ReductiveParadigms,which are capable of solvingmanypreviously
unsolved scientific problems (such as the incommensurability of Relativity
Theory and Quantum Physics or the relentless residue of Descartes Mind/Body
Dualism). A Meta-Reductive Paradigm may be capable of addressing many
remaining reductive scientific anomalies (such as objective demonstrations of
anomalous subjective transpersonal experiences of consciousness).

10. However, we can also expect that any Meta-Reductive Paradigm and adapted
meta-reductive Logic; will ultimately and inevitably reveal its own particular
pattern of formal, dynamical and informational, undecidable dynamics and
incompleteness.

Reductive formal incompleteness represents a kind of scientific ‘unfinished
description’ specifically related to formal reductive Logic [25]. It is worthwhile
beginning a search for other significant inter-related kinds of ‘unfinished description’
in relation to reductive natural science.

Reductive formal incompleteness introduces a novel way to work toward a deeper
consilience of the Reductive Natural Sciences and the Complexity Sciences. As
Reductive Natural Science and the Complexity Sciences explore the implications of
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formal reductive incompleteness there may be imagined adjacent possible Meta-
Reductive Scientific Paradigms in which adapted reductive Logic more closely
approximates the natural Logic of Nature [26]. In such a novel Paradigm, the vast
evolved complexity of the human body/brain/mind and consciousness might finally
be encompassed fully within meta-reductive natural science and fully within the
evolutionary, self-organized, emergent, complex adaptive products of Nature.

Acknowledgements Thank you to Dr. Yakov Shapiro and Patricia G. Scott for their steadfast
support.

References

1. Barrow, J.D.:Mathematical jujitsu: some informal thoughts about Gödel and physics: the limits
ofmathematical systems. In:Morowitz,H. (Editor inChief), Casti, J. (ExecutiveEditor) Special
Issue: Limits in Mathematics and Physics. Complexity 5(5), 30 (2000)

2. Bickle, J., Mandik, P., Landreth, A.: The philosophy of neuroscience. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Stanford Metaphysics Research Laboratory, Stanford
(Fall 2019 Edition). https://plato.stanford.edu/archives/fall2019/entries/neuroscience/

3. Bolander, T.: Self-reference. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.
StanfordMetaphysicsResearchLaboratory, Stanford (Fall 2017Edition). https://plato.stanford.
edu/archives/fall2017/entries/self-reference/

4. Brigandt, I., Love, A.: Reductionism in biology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Stanford Metaphysics Research Laboratory, Stanford (Spring 2017 Edition).
https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/

5. Casti, J.: Complexification: Explaining a Paradoxical World Through the Science of Surprise.
Harper Collins, New York (1994)

6. Casti, J.: The halting theorem (theory of computation). In: Casti, J. (ed.) Five Golden Rules:
Great Theories of 20th Century Mathematics—And Why They Matter, pp. 135–180. Wiley,
New York (1996)

7. Casti, J., DePauli, W.: Gödel: A Life of Logic. Perseus Publishing, Cambridge (2000)
8. Dennett, D.C.: Darwin’s Dangerous Idea: Evolution and theMeaning of Life, pp. 81–81. Simon

and Schuster, New York (1995)
9. Gödel, K.: On formally undecidable propositions of principia mathematica and related systems

(B. Meltzer, Translator). In: Braithwaite, R. (ed.) Hofstadher, D.R. (Introduction), Electronic
reprint edition. Basic Books, New York (1992)

10. Hatfield, G.: René Descartes. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.
Stanford Metaphysics Research Laboratory, Stanford (Summer 2018 Edition). https://plato.sta
nford.edu/archives/sum2018/entries/descartes/

11. Harari, Y.: Homo Deus: A Brief History of Tomorrow. Signal Books, an imprint of McClelland
& Stewart, A Division of Penguin Random House Canada, United Kingdom, Canada (2016)

12. Harris, S.: Free Will. Free Press, A Division of Simon and Schuster Inc., New York, London
(2012)

13. Hawking, S.:KurtGödel (1906–1978): his life andwork. In:Hawking, S. (EditorwithCommen-
tary) God Created the Integers: The Mathematical Breakthroughs That Changed History,
pp. 1255–1284. Running Press, Philadelphia, London (2007)

14. Hawking, p. 1256
15. Hawking, p. 1257
16. Hawking, p. 1258
17. Hawking, p. 1263

https://plato.stanford.edu/archives/fall2019/entries/neuroscience/
https://plato.stanford.edu/archives/fall2017/entries/self-reference/
https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/
https://plato.stanford.edu/archives/sum2018/entries/descartes/


78 J. R. Scott

18. Hawking, p. 1283
19. Hawking, p. 1284
20. Hodges, A.: Alan Turing. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.

Stanford Metaphysics Research Laboratory, Stanford (Winter 2019 Edition). https://plato.sta
nford.edu/archives/win2019/entries/turing/

21. Kauffman, S.A.: A World Beyond Physics: The Emergence & Evolution of Life. Oxford
University Press, Oxford (2019)

22. Kennedy, J.: Kurt Gödel. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stan-
ford Metaphysics Research Laboratory, Stanford (Winter 2018 Edition). https://plato.stanford.
edu/archives/win2018/entries/goedel/

23. Lincoln, D.: The Theory of Everything: TheQuest to ExplainAll of Reality. TheGreat Courses,
The Teaching Company, Chantilly, Virginia (2017)

24. Linsky, B., Irvine, A. D.: Principia Mathematica. In: Zalta, E.N. (ed.) The Stanford Encyclo-
pedia of Philosophy. Stanford Metaphysics Research Laboratory, Stanford (Fall 2019 Edition).
https://plato.stanford.edu/archives/fall2019/entries/principia-mathematica/

25. Morowitz, H. (Editor in Chief) Casti, J. (Executive Editor) Special issue: limits in mathematics
and physics. Complexity 5(5), 11–44 (2000)

26. Nickles, T.: Scientific revolutions. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Stanford Metaphysics Research Laboratory, Stanford (Winter 2017 Edition). https://
plato.stanford.edu/archives/win2017/entries/scientific-revolutions/

27. Prokopenko, M., Harré, M., Lizier, J., Boschetti, F., Peppas, P., Kauffman, S.: Self-referential
basis of undecidable dynamics: from the liar paradox and the halting problem to the edge of
chaos. Rev. Phys. Life Rev. (2019). https://doi.org/10.1016/j.plrev.2018.12.003.ArticleinPress

28. Prokopenko 6/23
29. Prokopenko 7/23
30. Raatikainen, P.: Gödel’s incompleteness theorems. In: Zalta, E.N. (ed.) The Stanford Encyclo-

pedia of Philosophy. Stanford Metaphysics Research Laboratory, Stanford (Fall 2018 Edition).
https://plato.stanford.edu/archives/fall2018/entries/goedel-incompleteness/

31. Ramsey,W.:Eliminativematerialism. In: Zalta, E.N. (ed.) TheStanfordEncyclopedia of Philos-
ophy. StanfordMetaphysicsResearchLaboratory, Stanford (Spring 2019Edition). https://plato.
stanford.edu/archives/spr2019/entries/materialism-eliminative/

32. Robinson, W.: Epiphenomenalism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Stanford Metaphysics Research Laboratory, Stanford (Summer 2019 Edition). https://
plato.stanford.edu/archives/sum2019/entries/epiphenomenalism/

33. Scott, A.C.: The Non-linear Universe: Chaos, Emergence, Life, pp. 277–301. Springer, Berlin,
Heidelberg (2010)

34. Scott, J.R.: Descartes, Gödel, Kuhn: epiphenomenalism defines a limit on reductive logic. In:
Morales, A.J., Gershenson, C., Braha, D., Minai, A., Barr-Yam, Y. (eds.) Unifying Themes in
Complex Systems IX, Proceedings of theNinth International Conference onComplex Systems.
Proceedings in Complexity, pp. 33–52. Springer-Nature, Springer, Switzerland (2018). ISSN
2213-8684, ISSN 2213-8692 (electronic). ISBN 978-3-319-96660-1, ISBN 978-3-319-96661-
8 (eBook)

35. Seager,W.:Natural Fabrications: Science, Emergence andConsciousness. Springer,Heidelberg
(2012)

36. van Riel, R., Van Gulick, R.: Scientific reduction. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy. Stanford Metaphysics Research Laboratory, Stanford (Spring 2019
Edition). https://plato.stanford.edu/archives/spr2019/entries/scientific-reduction/

https://plato.stanford.edu/archives/win2019/entries/turing/
https://plato.stanford.edu/archives/win2018/entries/goedel/
https://plato.stanford.edu/archives/fall2019/entries/principia-mathematica/
https://plato.stanford.edu/archives/win2017/entries/scientific-revolutions/
https://doi.org/10.1016/j.plrev.2018.12.003.ArticleinPress
https://plato.stanford.edu/archives/fall2018/entries/goedel-incompleteness/
https://plato.stanford.edu/archives/spr2019/entries/materialism-eliminative/
https://plato.stanford.edu/archives/sum2019/entries/epiphenomenalism/
https://plato.stanford.edu/archives/spr2019/entries/scientific-reduction/

	 On the Formal Incompleteness of Reductive Logic
	1 Introduction
	2 Defining a Context for the Question
	3 Mathematization Defines a Reductive Formal System Model
	3.1 Theoretical Reduction
	3.2 Explanatory Reduction
	3.3 Further Subdivision of Theoretical and Explanatory Reduction
	3.4 Mathematization and Proof of Formal Reductive Incompleteness

	4 Further Mathematization
	5 The RFSM in the Matrix of Multiple Scientific Languages
	6 Arithmetization of Reductive Logic
	7 The Self-reference Lemma and Reductive Logic
	8 The Provability Predicate and Reductive Logic
	9 Negating the Provability Predicate in Reductive Logic
	10 Strong and Weak Representation in FR
	11 Proposition XI: Consistency and the Second Theorem
	11.1 Proposition XI (Reductive Science Version)

	12 Implications for the Reductive Scientific Paradigm
	References




