
Communication of Changes in Continuous
Software Development

Telcio Elui Cardoso(B) , Alan R. Santos , Rafael Chanin ,
and Afonso Sales

School of Technology, PUCRS, Porto Alegre, RS 90619-900, Brazil
telcio.cardoso@edu.pucrs.br, alan.ricardo@acad.pucrs.br,

{rafael.chanin,afonso.sales}@pucrs.br

Abstract. The industry competition has changed the way software
is managed, developed, and delivered over the years. Some of the
approaches that emerged to continuously deliver software to users are
Continuous Delivery (CDE) and Continuous Deployment (CD). CDE is
the ability to get software functionalities, of any kind, into the hands
of users, in small batches, and short cycles. In CD, every change that
passes all stages of the production pipeline is released to customers with-
out human intervention. The agility proposed by the Continuous Deliv-
ery and Continuous Deployment approaches may introduce some chal-
lenges to the software development life-cycle. Some of these challenges
are related to the Software Configuration Management process and the
communication of software changes to relevant stakeholders such as oper-
ations teams. In order to better understand which communication prac-
tices are used to communicate software changes in environments where
Continuous Delivery or Continuous Deployment were adopted, a sys-
tematic literature review and an empirical study with global companies
were performed, which allowed us to consolidate a collection of commu-
nication practices for communicating software changes that could benefit
companies that already adopted or are planning to implement continuous
software delivery practices.

Keywords: Software engineering · Software development · Continuous
integration · Continuous delivery · Continuous deployment ·
Continuous release · DevOps

1 Introduction

The growing demand for faster time to market cycles has shaped the way soft-
ware products were managed, developed and delivered to users over the years.
In order to support the faster pace required by the market, Continuous Soft-
ware Development (ConSD) practices such as Continuous Delivery and Con-
tinuous Deployment have emerged in the recent years. A software release may
introduce changes or new functionalities to an existing application, which may

c© Springer Nature Switzerland AG 2021
E. Klotins and K. Wnuk (Eds.): ICSOB 2020, LNBIP 407, pp. 86–101, 2021.
https://doi.org/10.1007/978-3-030-67292-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67292-8_7&domain=pdf
http://orcid.org/0000-0002-6388-2448
http://orcid.org/0000-0001-8323-3472
http://orcid.org/0000-0002-6293-7419
http://orcid.org/0000-0001-6962-3706
https://doi.org/10.1007/978-3-030-67292-8_7


Communication of Changes in Continuous Software Development 87

require specific communication to help Customer Support Services teams to bet-
ter understand the changes introduced. Therefore, understanding how the speed
of software changes imposed by ConSD practices impact the communication of
software changes is extremely important to ensure Customer Support Services
teams will be able to support end-users properly.

In order to understand this phenomena, this study performed a System-
atic Literature Review (SLR), followed by an empirical study with seven global
companies which then had the results triangulated and consolidated in a set of
communication practices.

2 Methodology

In order to understand the challenges related to communication in continuous
delivery and continuous deployment environments, a systematic literature review
(SLR) has been performed, following Kitchenham [17] guidelines. Moreover, in
order to get an in-depth understanding about the communication practices in
use in the software industry and complement the systematic literature review
results, we performed an empirical study with seven participants from seven
different companies.

3 Literature Review

According to Kitchenham and Charters [4] a systematic review protocol is a
plan that describes the conduct of a proposed systematic literature review. In
the following paragraphs we describe the elements that compose the systematic
review protocol of this research.

Research questions are used to drive a systematic review process. Based on
these questions, a systematic search is performed to identify relevant information,
such as papers and journals, which could contribute to the goal of this study.
Following, the questions we have defined in our research are presented:

– RQ1: How do ConSD practices impact the communication of software
changes?

– RQ2: How do software changes are communicated to customer support ser-
vices teams in environments where ConSD practices were adopted?

A good way to create a search string is to structure them in terms of pop-
ulation, intervention, comparison, and outcome [17]. The search string used in
this study is presented in Table 1. Additionally, Table 2 describes the inclusion
and exclusion criteria applied to our research.

3.1 Data Extraction

Following a systematic literature review protocol, the research questions were
used to search for relevant information on the ACM, IEEE, Scopus online



88 T. E. Cardoso et al.

Table 1. Search string

Type String

Population (Software engineering OR software development
AND)

Intervention (Continuous deployment OR continuous delivery
OR continuous integration OR continuous release OR
devops)

Table 2. Exclusion/Inclusion criteria

Type Description

Exclusion Event keynotes, summaries, extended abstracts

Exclusion Papers with less than 4 pages

Exclusion Language different than English

Inclusion Papers published between 2010 and 2019

Inclusion Papers where CI, CDE or CD practices were mentioned

databases. Our initial search results returned 5,348 studies, which were filtered
resulting on 102 full papers read. After reading carefully 102 papers, 39 papers
were selected based on their relevance. The results of our systematic literature
review process are presented in Sect. 3.2.

3.2 Results

In the following paragraphs, this study answers the research questions initially
formulated as part of the research protocol and provides details about the chal-
lenges and practices identified.

(RQ1) How do ConSD practices impact the communication of soft-
ware changes?

In the study conducted by Klepper et al. [18] the authors argue that many
releases can overwhelm users, especially if they do not understand the difference
between versions being released. The authors still argue that release notes can
help in such situations, however, creating high quality release notes, manually,
requires expressive amount of time and effort.

Shahin et al. [36] argue that a better visualisation of the CDE process would
make a huge difference in the capability of the organisations to release faster and
often. In one of the studies described by Shahin et al. [35], the authors argue that
the status of a project should be visible and transparent to all team members.
Shahin et al. [35] also argue that coordination and collaboration are challenges
for continuous practices. According to their study, as more frequent software
is deployed, more communication and coordination with operations teams is
required. Their study also describes issues related to merge conflicts caused by
the lack of awareness around software changes.



Communication of Changes in Continuous Software Development 89

Brandtner et al. [5] argue that one of the main issues related to CI environ-
ments is the fact that relevant information about the health and quality of the
software is spread across several tools and multiple views.

Stahl et al. [42] argue that traceability is a key challenge in achieving CI and
CDE and describe an industry developed framework named Eiffel, designed to
provide real time traceability for ConSD environments. The authors argue that
agile methodologies, CI and CDE might be challenging for traceability due to
the need of overhead reduction and traceability requirements. Stahl et al. [41]
argue that even though the fundamental aspects of traceability remain the same
regardless of CI and CDE, the nature of faster releases, increased frequencies have
increased the amount of data generated in these processes, created new challenges
in practice. Palihawadana et al. [28] argue that traceability links can be used
by DevOps teams to evaluate software changes and their impact, however, also
argue that maintaining traceability in agile based environments has become a
challenge due to the lack of proper management tools and poor documentation.

Lwakatare et al. [25] highlighted studies which described the negative impact
on project releases, from time to quality, due the lack of poor communication
and lack of early involvement of operations teams in the software development
process.

Yaman et al. [46] argue that one of the challenges related to communication in
CD environments might be the excess of transparency that may lead to customers
interference in developers’ work.

Olsson et al. [27] argue that some of the challenges in such environments
are the communication and coordination with suppliers, difficulties of getting
an overview of the status of the project and the lack of transparency, including
information available to users and other stakeholders who might need them.

Alyahya et al. [2] describes some challenges that affect the development
progress and highlight the difficulties related to communication in distributed
teams in order to maintain an awareness about development progress if they
rely just on ad-hoc communication of changes. Alyahya et al. [3] argue that it is
difficult to keep team members from different sites aware about each one’s work.

Diel et al. [10] argue that some of the challenges faced in such environments
are the lack of training on applications changes and no previous notice of software
releases.

Downs et al. [11] argue that software teams working in agile projects produce
a great deal of information on a daily basis, however, these information are mis-
applied, communicated ineffectively or ignored, which has impact in the results
of these projects. In the study conducted by Shahin et al. [35], several papers
described the lack of team awareness and transparency among team members
as a challenge that may break down transition towards continuous practices.
Table 3 has been created to group challenges categories and sumarize the chal-
lenges around software changes, previously described. Additionally, Table 4 cat-
egorizes papers and their respective communication challenge category.



90 T. E. Cardoso et al.

Table 3. Communication challenges categories

Category Description

Discovery Information regarding software changes are not

available, are not easily accessible or are not properly

communicated

Coordination Software changes require activities coordination

between different teams such as software development

and operations teams

Traceability Tracing software changes from an end-to-end

perspective considering the amount of data generated

by CI and CDE environments

Training Training teams to be up-to-date regarding software

changes represent a challenge in in high frequency

changing environments

Table 4. Papers per category

Challenges Studies

Discovery [2,3,5,8,10,11,18,25,27,32,35,36,46]

Coordination [35]

Traceability [28,41–43]

Training [10]

(RQ2) In environments where Continuous Delivery practices were
adopted, how software changes are communicated to customer sup-
port services team?

In the studies [25,31], the usage of shared Kanban boards has been described
as a practice to communicate software changes. The usage of shared Dashboards
has been described as a practice in the studies [11,16,29,34,38]. The usage of
Ambient Surfaces and Project Radiators have been described by the studies [31,
33,44] as practices to ensure daily progress on projects is completely transparent
and available for all stakeholders. Punjabi et al. [29], also argue that user stories
can be maintained and assigned in such a system and could be integrated with
source control and CI server to obtain issues addressed in a commit or build.

Centralizing and exchanging changes information through Tracking Sys-
tems has been described by the studies [1,2,12–14,19,32,33,39,40,43]. Downs
et al. [11] and Kim et al. [16] mention the usage of issue tracking information
along with dashboards and information radiators in order to provide project
status. Punjabi and Bajaj [29] describe the usage of bug/issue/task tracking
features along with visual boards that support agile development.

In the study conducted by Krusche et al. [19], the authors relate the usage
of release notes, collected automatically by the CI server and linked to issues
in tracking systems to provide visibility about the changes included in a given
software release. Klepper et al. [18] propose a solution that uses a semi-automatic
approach to release notes generation to reduce workload for the development
team and release manager while still allowing them to provide properly targeted



Communication of Changes in Continuous Software Development 91

content depending on the context and recipients of a release. Still according to
the authors, the information that is already produced during the development
process is used to prepare release notes content. Kula et al. [20] relate the impact
of missing release notes on rapid-releases with are delayed in such cases.

In the study performed by Neely et al. [26], the authors described some
process changes required to implement CDE, which included the replacement
of big meetings by crisp emails along with internal wikis and blogs in order to
share knowledge about new features with other teams such as sales and support
teams. Younas et al. [47] describe the usage of email, among other tools for
collaboration in agile development. Brandtner et al. [6] describe the usage of
email as a notification channel for CI-Tools. Krusche et al. [19] describe the
usage of email to send release notes to users with details about solved issues,
which can be also checked through an issue tracking system.

Wiedemann et al. [45] argue that traces are essential for application man-
agement, therefore, everything must be logged. In one of the studies evaluated
by Shahin et al. [35], the authors suggest the practice of recording changes to
a change log and making it visible to customers in order to enable them to
track features changed. According to Shahin et al. [38], et al. [37], organizations
practicing CD need to appropriately record, aggregate and analyse logs and met-
rics as an integral part of their CD environment in order to hypothesise and run
experiments for examining different functionalities of a system. Shahin et al. [38]
still argue that readability of logs for all stakeholders should be taken into con-
sideration due to the fact that developers use to build the logging mechanism
into the source code and there is a chance that such logs might become too tech-
nical for IT operations teams, such as support people, and may not be efficiently
used to their needs. Lai et al. [21] describes the logging of relevant information
such as programmer and change reasons information in the check-in step of CI
processes in order to share this information with relevant stakeholders.

Senapathi et al. [34] describe the usage of Yammer to share software releases
information with others stakeholders and to promote discussion on completed
tasks and lessons learned and Atlassian Confluence to share release plans and
software documentation. Schwarzer et al. [33] describe the usage of Atlassian
Confluence along with ambient surfaces to share build summaries, reports and
errors as well as software architects announcements. Neely et al. [26] describe
the usage of wikis and blogs, replacing big meetings, in order to share informa-
tion about new features. Heesch et al. [43] relate the usage of Atlassian Con-
fluence along with Atlassian Jira to share application design definitions with
team members. Heesch et al. [43] argue that apart from supporting the real-
isation of software artefacts, the information available in the tools also serve
documentation needs, allowing the visualisation of tasks history. Claps et al. [8]
describe Atlassian’s case, a well established software company, where Confluence
and blogs are used for software documentation and customer feature discovery
purposes. Leite et al. [22] describe the usage of the GitLab tool as a wiki system
for knowledge sharing between developers and operators.



92 T. E. Cardoso et al.

In the study performed by Leite et al. [22], the authors mention the usage
of ChatOps (Chat and Operations) tools in DevOps environments as a model
that connects people, tools, processes, and automation through conversation-
driven interactions. Lwakatare et al. [25] mention the HipChat tool usage for
interaction between developers and operators, particularly when setting-up new
environments. In the study performed by Luz et al. [24], the continuous use of
instant messaging tools like Slack and HipChat was cited as the most appro-
priate option for communication between developers and operators in DevOps
environments. In the study performed by Downs et al. [11], Instant Messaging
conversation was the primary form of communication within the team, and for a
wide range of purposes, including on-going status updates and team collabora-
tion. Table 5 summarizes the main communication practices adopted by ConSD
teams in order to ensure software changes are visible by other teams in the
software development life cycle process.

Table 5. Communication practices

Practices Studies

Sharing information through visual boards [5,6,11,15,16,23,25,31,33,34,38,44]

Exchanging information through tracking systems [1,2,11–14,16,19,22,29,32–34,39,40,43]

Communicating changes through release notes [18–20]

Communicating changes through Email [6,19,26,47]

Leveraging Logs to share information [21,32,35,37,38,45]

Communicating changes through collaborative workspaces [8,22,26,33,34,43]

Exchanging information through instant messaging [11,14,22,24,25,30,34]

Based on these results, we performed an empirical study in the industry,
which would complement the SLR results. The empirical study is presented in
details in Sect. 4.

4 Empirical Study

In order to get an in-depth understanding about the communication practices in
use in the ConSD industry and complement the SLR results, we performed an
empirical study with seven participants from seven different companies. In the
following paragraphs we provide details regarding the methods used to perform
this research, from data collection and criteria to select the participants, to the
data analysis method applied and finally the results obtained.

4.1 Data Collection and Analysis

Following Creswell’s [9] recommendation, a questionnaire has been created to
support the empirical study. In order to answer the research questions, we col-
lected information from seven different companies. The interviewees and their



Communication of Changes in Continuous Software Development 93

companies were anonymised due to non-disclosure agreements, where we use
aliases from Company A to Company G. The participants and their companies
are briefly described in Table 6.

Table 6. Companies, practices, roles and experience

Company Employees Approach Role Yrs role

Company A 3,500 CDE Product Manager 2

Company B 6,000 CD Performance Engineer 6

Company C 50,000 CDE Software Architect 3

Company D 2,000 CDE Platform Engineer 1.3

Company E 7,000 CD Project Manager 3

Company F 500 CDE Software Developer 9

Company G 2,000 CDE Support Engineer 9

4.2 Results

At Company A, software development teams and customer support services
teams work apart from each other. The communication between software devel-
opment teams and customer support services teams, in general, occurs through
instant messaging tools or through their issue tracking systems. The Service
Enablement Team (SET) is a specific team that makes a bridge between software
development teams, customer support services teams and customers, mainly
responsible for ensuring major software changes will be properly managed in
order to avoid any impact on customers and customer support services teams.
The SET team organizes bi-weekly meetings with customer support services
teams where the main upcoming product changes are communicated, specially
the bigger ones. Bigger software changes are communicated to customers through
blog posts and built-in modal product banners. Developers and support teams
use to interact using hidden messages through their issue tracking systems in
order to follow-up changes required to fix bugs or features requested by cus-
tomers. Even having daily deploys of product changes to production small
changes are not communicated to customer support services teams on a daily
basis, which represent some challenges to the support teams who sometimes
receive customers complaints about changes in the products that are not reflected
to the public documentation and were not communicated to them. Company A
uses Atlassian Confluence to support the communication of major changes and
releases in their products to customer support services teams.

At Company B, software changes, in general, are not communicated to cus-
tomer support services teams and end-users. Whenever further information is
required regarding a software change, instant messaging, memo pages and emails
are the main channels to share information regarding software changes between



94 T. E. Cardoso et al.

development and customer support services teams. The usage of a change log
database has been described in order to record several types of change logs,
which can be accessed and tracked by the customer support services teams by
using tools developed by internal teams specifically for this purpose.

At Company C, the communication of software changes, between software
development and customer support services teams, occurs mainly through tick-
ets in their issue tracking system, email messages and formal meetings. Formal
meetings with key people in the customer support services teams are performed
once a month to share details about the major changes being released to produc-
tion, being these key people in support responsible for sharing details about the
changes with their support teams. At Company C, customer support services
teams have access to the development teams summarize Boards, therefore, they
can also have visibility about the upcoming software changes being developed
or about to be released. Release notes are used to share changes details and are
available to software development teams and customer support services teams.
End-users are communicated about software changes through a “What’s New”
web page, that is built into the product.

At Company D, most of the communication around software changes is per-
formed through instant messaging and email channels. Projects use to structure
their information using internal wiki pages which are then open to other teams
that can track information about software changes and projects status. Issue
tracking systems are also used to communicate the progress and communicate
the status of software changes, specially bug fixes and feature requests.

At Company E, formal communication of software changes is mainly
restricted to a showcase meeting, organised by the Product Owner. In this meet-
ing, which use to occur every 15 days, the status of new features and bug fixes,
among other project relevant information use to be shared with relevant stake-
holders, such as customer support services teams and other software develop-
ment teams. Additionally, the communication between different teams around
software changes use to occur through instant messaging tools and tickets cre-
ated at their tracking system where comments are added in order to provide
details and status of such software changes.

At Company F, communication of software changes uses to be performed by
Product Owners who share details about the changes with account managers
and customers. There are no specific criteria to define which software changes
will be communicated to the customers and is under the Product Owner the
responsibility to decide which changes should be communicated and which one
should not. Product Owners use to communicate software changes to customers
through email and face-to-face meetings. The communication channel and fre-
quency of these communication varies based on the requests being released.

At Company G, the communication of software changes to customer support
services agents is facilitated by the fact that their software development teams
include the customer support role in the team structure. End-users do not use
to be notified about software changes, mainly because such changes use to have
a minimum impact on the way customers use their software. Additionally, teams



Communication of Changes in Continuous Software Development 95

use to share information about software changes through instant messaging chan-
nels and CI tools are also used as source of information to get status and further
technical details about software changes. The company is working to implement
an issue tracking system in order to better support the flow of requests between
teams.

5 Threats to Validity

Even though we have followed a SLR protocol, some threats to validity might
be identified: (i) the research strategy is not correct; and (ii) the research bias
regarding some of the studies selected. Such threats to validity were minimised
by having this research protocol as well as the results of this work, reviewed by
other two researchers. Regarding our empirical research, even though we have
followed a protocol to conduct the interviews, the number of participants of this
empirical study might represent a threat to the validity. Interviewing additional
participants from other companies or even within the same companies, would
have been useful to complement the results of our study.

6 Discussion

This section presents the main results of this research which were obtained by
triangulating the SLR and the empirical study results. The data triangulation
results are discussed and presented as a set of good practices.

Good Practice 1 - Increasing awareness and transparency around software
changes by sharing information through kanban boards, dashboards and infor-
mation radiators with relevant stakeholders.

Challenges related to the communication and visualization of project status
have been reported in the SLR research by the studies [6,11,27,32,35,38,42].
Shahin et al. [38] argues, based on the studies evaluated as part of their research,
that a better visualisation of the end-to-end software development life-cycle
would allow software teams to release faster and often. In this sense, the usage of
shared electronic Kanban Boards between different teams allows a visual track-
ing of software changes and has been reported as a common practice between
the interviewees in the companies A, C, E and F as well as by the studies
[25,31]. Team members can navigate in the content of User Stories, in order
to better understand details of each change such as feature details, planning
release dates, stakeholders affected and developers responsible for such features.
Such level of transparency improves communication and provides autonomy to
teams, which contributes to organisations in several aspects, from risk reduction
to customer satisfaction. The implementation of this practice should take into
consideration that, in case of customers adoption, the level of transparency may
have negative implications, once customers may interfere in the development
process frequently, as stated by Yaman et al. [46], reducing the release speed.



96 T. E. Cardoso et al.

The traceability of changes could take advantage of shared Dashboards, once, as
electronic Kanban Boards, they provide a visual mechanism to keep other stake-
holders aware about progress and status of software changes, with the advantage
of allowing layout and content modelling according to information needed and
the target audience.

The usage of Information Radiators has been reported in the studies [16,
31,33,44] as an effective practice to increase transparency and awareness around
project status and software changes for all stakeholders. Along with Dashboards,
can be a practice for those teams which work at the same physical, once rely on
infrastructure aspects to be used.

Good Practice 2 - Using tracking systems to provide information around
software changes to relevant stakeholders, from bug fixes to feature requests.

The usage of tracking systems has been reported by the studies as well as
by the companies A, B, C, D, E and G. Tracking systems were described in the
literature and in the industry as tools to centralize information from different
sources and track the software development progress, usually represented by bug-
fixes and customers’ requests. Such systems allow real-time interaction between
different stakeholders and use to provide lower level granularity information,
mainly focusing on operational information. The information exchanged between
software development teams, operations teams, users, among other stakeholders,
occurs through text comments in the tickets or through notifications, which
might be triggered automatically every time there is a change in the status.
Tracking Systems might be also integrated to other CI tools in order to support
the deploy process.

Good Practice 3 - Logging software changes to a central log database and
sharing these information with relevant stakeholders.

The practice of logging software changes to a central change log repository
and sharing this information with relevant stakeholders has been cited in the
studies [32,35,37,38] and by the companies B and D. At Company B, the inter-
viewee has described the usage of a change log database in order to record
software changes performed at the company, which can be used by Customer
Support Services teams to track software changes. Such information might be
used for traceability purposes as well as to report issues related to the deployed
functionalities. The practice of logging software changes may complement the
information provided by Tracking Systems. Additionally, a central source of
changes logs could be integrated with other tools to improve the communica-
tion of changes, such as Kanban Boards and Dashboards as well as be used to
generate automatic notifications and release notes.

Good Practice 4 - Automating the release notes generation process in order
to reduce manual efforts.



Communication of Changes in Continuous Software Development 97

The usage of Release Notes have been reported by the studies [7,18–20] as well
as by the companies C and G. As frequent as software development teams release
changes to users, less is the usage of release notes as a mechanism to communicate
changes, once they require manual intervention to be created. Therefore, the
usage of Release Notes is a recommended practice, however, due to the fact
that its creation requires manual effort, its usage might not be recommended
to development teams where a high volume of software changes and deploys are
performed on a daily basis. The usage of some level of automation to generate
automatic release notes as described in the literature by Krusche et al. [19] and
Klepper et al. [18] might represent an alternative to reduce the effort necessary
to create release notes.

Good Practice 5 - Using email channels to share details about software
changes with relevant stakeholders.

The usage of Email, sometimes as channel and in others as communication
practice, is still recommended in ConSD environments, however, as the practice
of Release Notes, its usage is directly related to the frequency of software releases
deployed in production environments. As the time passes and companies move
from CDE to CD practices, the communication of software changes through
emails tend to be replaced or complemented by other practices such as the usage
of shared virtual boards and tracking systems. Its usage has been described in
the studies [6,19,26,47] as well by the companies B, C, D and F. One of the
main advantages of email over other synchronous communication practices such
as status meetings, is the fact that interested stakeholders can consume relevant
information about software changes whenever they understand is necessary, what
is also something Neely et al. [26] described in their study, where the replacement
of big meetings by crisp emails in order to communicate users about new software
features has been reported.

Good Practice 6 - Using instant messaging rooms to share projects status
and software changes information.

The usage of instant messaging as a communication channel for communi-
cating software changes has been reported in the studies [11,14,22,24,25,30,34]
as well by the companies A, B, E and F. Instant Messaging practices are usu-
ally used by software development and operations teams in order to exchange
additional details around software changes which could not be found in other
sources. Companies such as Company A also use instant messaging channels to
broadcast communication around software changes, what has been also reported
by Downs et al. [11]. Such practice may replace the usage of emails to commu-
nicate software changes, once allow the centralisation of information in specific
chat rooms.

Good Practice 7 - Using wiki pages, blogs and collaborative portals to share
software changes information.



98 T. E. Cardoso et al.

The practice of sharing information related to software changes through wiki
pages, blogs and collaborative portals is described in the literature by the stud-
ies [8,22,26,33,34,43] as well as by the companies A, B and D. The informa-
tion shared through such portals are usually available in a higher granularity of
details. The advantage of this practice over other practices such as the usage of
dashboards is the fact that such portals usually include collaboration features
in a central space, which might be useful for several reasons. Such portals might
also be integrated with Information Radiators and use information stored in
change log databases in order to share relevant information regarding software
changes with relevant stakeholders.

7 Conclusion

This study has assessed the challenges and impacts of ConSD practices on the
communication of software changes and consolidated a set of good practices that
aim to contribute to improve the communication of software changes in such
environments. Initially, a SLR explored the challenges and practices related to
communication of software changes between development and operations teams
in ConSD environments. Additionally, an empirical study has been performed
with professionals from seven global companies, which helped us to understand
additional industry practices.

The overall results of this study indicate that challenges and practices related
to the communication of software changes in ConSD environments vary according
to a set of factors, including frequency of software changes and deploy, teams’
structure and product design. As higher is the frequency of changes released,
higher is the need for automatic and asynchronous communication practices to
communicate software changes such as the usage of shared kanban boards and
tracking systems. In the opposite side, less frequent releases allow the usage of
synchronous or manual communication practices, such as structured meetings,
release notes and emails. Product design is also an important factor in the process
of communicating software changes. As complex is the product design, higher
is the need to communicate software changes that affect its usability, including
public product support documentation.

Finally, creating mechanisms to foster teams’ autonomy and transparency
around the communication of software changes should be a goal for those com-
panies who want to deliver better products and services in the pace required by
ConSD environments.

References

1. Aghajani, E., et al.: Software documentation issues unveiled. In: Proceedings of the
41st International Conference on Software Engineering, ICSE 2019, pp. 1199–1210.
IEEE Press (2019)

2. Alyahya, S., Ivins, W.K., Gray, W.A.: Co-ordination support for managing progress
of distributed agile projects. In: IEEE Sixth International Conference on Global
Software Engineering Workshop, pp. 31–34 (2011)



Communication of Changes in Continuous Software Development 99

3. Alyahya, S., Ivins, W.K., Gray, W.A.: A holistic approach to developing a progress
tracking system for distributed agile teams. In: IEEE/ACIS 11th International
Conference on Computer and Information Science, pp. 503–512 (2012)

4. Ba, K., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering, vol. 2, January 2007

5. Brandtner, M., Giger, E., Gall, H.: Supporting continuous integration by mashing-
up software quality information. In: Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pp. 184–193 (2014)

6. Brandtner, M., Giger, E., Gall, H.: SQA-mashup: a mashup framework for contin-
uous integration. Inf. Softw. Technol. 65, 97–113 (2015)

7. Callanan, M., Spillane, A.: DevOps: making it easy to do the right thing. IEEE
Software 33(3), 53–59 (2016)

8. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. Inf. Softw. Technol. 57, 21–31 (2015)

9. Creswell, J.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications, New York (2009)

10. Diel, E., Marczak, S., Cruzes, D.S.: Communication challenges and strategies in
distributed DevOps. In: IEEE 11th International Conference on Global Software
Engineering (ICGSE), pp. 24–28 (2016)

11. Downs, J., Hosking, J., Plimmer, B.: Status communication in agile software teams:
a case study. In: 2010 Fifth International Conference on Software Engineering
Advances, pp. 82–87 (2010)

12. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
Facebook. IEEE Internet Comput. 17(4), 8–17 (2013)

13. Gupta, R.K., Venkatachalapathy, M., Jeberla, F.K.: Challenges in adopting contin-
uous delivery and devops in a globally distributed product team: a case study of a
healthcare organization. In: ACM/IEEE 14th International Conference on Global
Software Engineering (ICGSE), pp. 30–34 (2019)

14. Itkonen, J., Udd, R., Lassenius, C., Lehtonen, T.: Perceived benefits of adopting
continuous delivery practices. In: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2016.
Association for Computing Machinery, New York (2016)

15. Jurca, G., Hellmann, T.D., Maurer, F.: Agile User-Centered Design, pp. 109–123.
Wiley, New York (2017). Chap. 6

16. Kim, E., Ryoo, S.: Agile adoption story from NHN. In: IEEE 36th Annual Com-
puter Software and Applications Conference, pp. 476–481 (2012)

17. Kitchenham, B.: Procedures for performing systematic reviews, vol. 33. Keele Uni-
versity, Keele, UK, August 2004

18. Klepper, S., Krusche, S., Brügge, B.: Semi-automatic generation of audience-
specific release notes. In: IEEE/ACM International Workshop on Continuous Soft-
ware Evolution and Delivery (CSED), pp. 19–22 (2016)

19. Krusche, S., Alperowitz, L., Bruegge, B., Wagner, M.O.: Rugby: an agile pro-
cess model based on continuous delivery. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, RCoSE 2014, pp. 42–50.
Association for Computing Machinery, New York (2014)

20. Kula, E., Rastogi, A., Huijgens, H., Deursen, A.v., Gousios, G.: Releasing fast and
slow: an exploratory case study at ING. In: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pp. 785–795. Association
for Computing Machinery, New York (2019)



100 T. E. Cardoso et al.

21. Lai, S., Leu, F.: Applying continuous integration for reducing web applications
development risks. In: 10th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA), pp. 386–391 (2015)

22. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of DevOps
concepts and challenges. ACM Comput. Surv. 52(6) (2019)

23. Liechti, O., Pasquier, J., Reis, R.: Beyond dashboards: on the many facets of met-
rics and feedback in agile organizations. In: IEEE/ACM 10th International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE), pp.
16–22 (2017)

24. Luz, W.P., Pinto, G., Bonifácio, R.: Adopting DevOps in the real world: a theory,
a model, and a case study. J. Syst. Softw. 157, 110384 (2019)

25. Lwakatare, L.E., et al.: Devops in practice: a multiple case study of five companies.
Inf. Softw. Technol. 114, 217–230 (2019)

26. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: 2013 Agile Conference, pp. 121–128 (2013)

27. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven” - a
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: 38th Euromicro Conference on
Software Engineering and Advanced Applications, pp. 392–399 (2012)

28. Palihawadana, S., Wijeweera, C.H., Sanjitha, M.G.T.N., Liyanage, V.K., Perera, I.,
Meedeniya, D.A.: Tool support for traceability management of software artefacts
with DevOps practices. In: Moratuwa Engineering Research Conference (MER-
Con), pp. 129–134 (2017)

29. Punjabi, R., Bajaj, R.: User stories to user reality: a DevOps approach for the
cloud. In: IEEE International Conference on Recent Trends in Electronics, Infor-
mation Communication Technology (RTEICT), pp. 658–662 (2016)

30. Rahman, A.A.U., Helms, E., Williams, L., Parnin, C.: Synthesizing continuous
deployment practices used in software development. In: Proceedings of the 2015
Agile Conference, AGILE 2015, pp. 1–10. IEEE Computer Society, USA (2015)

31. Rodŕıguez, P., et al.: Continuous deployment of software intensive products and
services: a systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)

32. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Contin-
uous deployment at Facebook and OANDA. In: IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C), pp. 21–30 (2016)

33. Schwarzer, J., Draheim, S., von Luck, K., Wang, Q., Casaseca, P., Grecos, C.:
Ambient surfaces: interactive displays in the informative workspace of co-located
scrum teams. In: Proceedings of the 9th Nordic Conference on Human-Computer
Interaction, NordiCHI 2016. Association for Computing Machinery, New York
(2016)

34. Senapathi, M., Buchan, J., Osman, H.: Devops capabilities, practices, and chal-
lenges: insights from a case study. In: Proceedings of the 22nd International Con-
ference on Evaluation and Assessment in Software Engineering 2018, EASE 2018,
pp. 57–67. Association for Computing Machinery, New York (2018)

35. Shahin, M., Ali Babar, M., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943 (2017)

36. Shahin, M., Babar, M.A., Zahedi, M., Zhu, L.: Beyond continuous delivery:
an empirical investigation of continuous deployment challenges. In: ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 111–120 (2017)



Communication of Changes in Continuous Software Development 101

37. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment
and architecting process: Practitioners’ perspectives. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2016. Association for Computing Machinery, New York
(2016)

38. Shahin, M., Zahedi, M., Babar, M.A., Zhu, L.: An empirical study of architecting
for continuous delivery and deployment. Empirical Softw. Eng. 24(3), 1061–1108
(2019)

39. Siqueira, R., Camarinha, D., Wen, M., Meirelles, P., Kon, F.: Continuous delivery:
building trust in a large-scale, complex government organization. IEEE Software
35(2), 38–43 (2018)

40. Stettina, C.J., Heijstek, W.: Necessary and neglected? An empirical study of inter-
nal documentation in agile software development teams. In: Proceedings of the
29th ACM International Conference on Design of Communication, SIGDOC 2011,
pp. 159–166. Association for Computing Machinery, New York (2011)

41. St̊ahl, D., Hallén, K., Bosch, J.: Achieving traceability in large scale continuous
integration and delivery deployment, usage and validation of the eiffel framework.
Empirical Softw. Eng. 22(3), 967–995 (2017). https://doi.org/10.1007/s10664-016-
9457-1

42. St̊ahl, D., Hallén, K., Bosch, J.: Continuous integration and delivery traceabil-
ity in industry: needs and practices. In: 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 68–72 (2016)

43. Van Heesch, U., Theunissen, T., Zimmermann, O., Zdun, U.: Software specification
and documentation in continuous software development: a focus group report. In:
Proceedings of the 22nd European Conference on Pattern Languages of Programs,
EuroPLoP 2017. Association for Computing Machinery, New York (2017)

44. Virtanen, A., Kuusinen, K., Leppnen, M., Luoto, A., Kilamo, T., Mikkonen, T.:
On continuous deployment maturity in customer projects. In: Proceedings of the
Symposium on Applied Computing, SAC 2017, pp. 1205–1212. Association for
Computing Machinery, New York (2017)

45. Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., Krcmar, H.: Research for
practice: the DevOps phenomenon. Commun. ACM 62(8), 44–49 (2019)

46. Yaman, S.G.: Customer involvement in continuous deployment: a systematic liter-
ature review. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp.
249–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30282-9 18

47. Younas, M., Jawawi, D.N., Ghani, I., Fries, T., Kazmi, R.: Agile development in
the cloud computing environment: a systematic review. Inf. Softw. Technol. 103,
142–158 (2018)

https://doi.org/10.1007/s10664-016-9457-1
https://doi.org/10.1007/s10664-016-9457-1
https://doi.org/10.1007/978-3-319-30282-9_18

	Communication of Changes in Continuous Software Development
	1 Introduction
	2 Methodology
	3 Literature Review
	3.1 Data Extraction
	3.2 Results

	4 Empirical Study
	4.1 Data Collection and Analysis
	4.2 Results

	5 Threats to Validity
	6 Discussion
	7 Conclusion
	References




