
Chapter 4
An Introduction to Discretization Error
Analysis for Computational Chemists

Eric Cancès

4.1 Introduction

Validation and certification of numerical results is a key issue in all fields involving
computer simulation. The error between the exact and computed values of a given
physical quantity of interest (QOI), e.g. the dissociation energy of a molecule, has
several origins [1]: a model error (resulting from the choice of a computationally
tractable, but not extremely accurate, model, e.g. Kohn-Sham with PBE functional),
a discretization error (resulting from the choice of a finite basis set or a grid), an algo-
rithmic error (due to the choice of stopping criteria in self-consistent field and other
iterative algorithms), an implementation error (due to possible bugs or uncontrolled
round-off errors), a computing error (due to random hardware failures). Quantifying
these different sources of errors is of major importance for two reasons. First, guaran-
teed estimates on these five components of the error would allow one to supplement
the computed value of the QOI returned by the numerical simulation with guaranteed
error bars (certification of the result). Second, this would allow one to choose the
parameters of the simulation (approximate model, discretization parameters, algo-
rithm and stopping criteria, data structures) in an optimal way in order to minimize
the computational effort required to reach the target accuracy (error balancing).

In contrastwith the current situation in other fields, such as computationalmechan-
ics and engineering sciences [2], neither fully guaranteed error bounds nor black-box
error balancing schemes are available yet for molecular simulation. However, recent
progress has been made on the analysis of the different sources of errors for var-
ious electronic structure models, see e.g. [1, 3–16] and references therein, and in
particular on discretization error, which is the matter of the present chapter.

For the sake of clarity and brevity, we will restrict ourselves to the analysis of the
plane-wave approximationof the Gross-Pitaevskiimodel. Thismodelwas introduced
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in the early 60s to describe the ground state of Bose-Einstein condensates [17].
From a mathematical point of view, it can be seen as a simplified version of the
Kohn-Shammodel, involving a single orbital and a very simple mean-field potential.
The discretization error cancellation phenomenon, which plays a crucial role in
electronic structure calculation, will be analyzed in Sect. 4.4. Beforehand, we will
introduce in Sect. 4.2 the key concepts of QOI-related a priori and a posteriori error
estimators leading to post-processing methods, and asymptotic expansions leading
to extrapolation methods.

We will omit the proofs of the rigorous mathematical results mentioned in this
contribution, but we will comment on these results in detail.

4.2 Basic Concepts in Discretization Error Analysis

To clarify what error analysis is about, consider a reference model for which the
ground-state energy is obtained by solving a minimization problem of the form

E0 = inf {E (v), v ∈ X , c(v) = 0} , (4.1)

where E : X → R is an energy functional defined on some infinite-dimensional
function space X , and c : X → Y represents the constraints on the admissible
states (Y is a finite- or infinite-dimensional vector space). Hartree-Fock, Kohn-
Sham, multi-configuration self-consistent field (MCSCF), and many other models
are of the generic form (4.1). For instance, the restricted Hartree-Fock problem for
the helium atom can be written, in atomic units, as (4.1) with

E (v) =
∫

R3

|∇v|2 − 4
∫

R3

v(r)2

|r| dr + 2
∫

R3

∫

R3

v(r)2 v(r′)2

|r − r′| dr dr′,

X = H 1(R3), Y = R and c(v) = ∫
R3 v(r)2 dr − 1, where H 1(R3) is the Sobolev

space of real-valued functions of R
3 which are square integrable and whose gradient

is square integrable as well:

H 1(R3) :=
⎧⎨
⎩v : R

3 → R | ‖v‖2H 1 :=
∫

R3

v(r)2 dr +
∫

R3

|∇v(r)|2 dr < ∞
⎫⎬
⎭ . (4.2)

Likewise, the restricted Kohn-Sham LDA model for a non-magnetic molecular sys-
tem with Np electron pairs can be written as (4.1) with X = (H 1(R3))Np , Y
the space of real, symmetric, Np × Np matrices, and for all v = (φ1, · · · , φNp ) ∈
(H 1(R3))Np ,
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E (v) =
Np∑
i=1

∫
R3

|∇φi |2 +
∫
R3

ρvVnuc + 1

2

∫
R3

∫
R3

ρv(r)2 ρv(r′)2

|r − r′| dr dr′ + ELDA
xc (ρv),

with ρv(r) = 2
Np∑
i=1

|φi (r)|2, and [c(v)]i j =
∫
R3

φiφ j − 1.

Here Vnuc is the electrostatic potential generated with the nuclei, and ELDA
xc the local

density approximation of the exchange-correlation functional [18].

4.2.1 Variational Approximations

A variational approximation of (4.1) is obtained by choosing a finite-dimensional
subspace XN ofX and in considering

E0,N = inf {E (vN ), vN ∈ XN , c(vN ) = 0} . (4.3)

Obviously, since XN ⊂ X , we have E0,N ≥ E0: the approximate ground-state
energy E0,N is an upper bound of the exact ground-state energy E0.

A particularly important QOI is the ground-state energy E0. It is, therefore, nat-
ural to try and estimate the error E0,N − E0 and compare it to other characteristic
energies of the problem (e.g. to kBT ) to determine whether the discretization error is
sufficiently small or not. In other cases, the QOI is a function of the minimizer u of
(4.1) (e.g. the dipolar momentum of a neutral molecule is obtained from the ground-
state electronic density, which is itself computed from the Kohn-Sham orbitals). In
such cases, the exact value of the QOI is q(u) while the computed value is q(uN ),
where q : X → R is a given function, u a minimizer of (4.1), and uN a minimizer
of (4.3). The error on the QOI to be estimated then is q(uN ) − q(u).

4.2.2 A Priori Error Analysis

For systematically improvable discretizationmethods, such as plane-waves (PW) [19–
21], finite-elements [22, 23], orwavelets [24], we can construct a sequence of approx-
imation spaces (XN )N >0 such that

1. forN < N ′,XN � XN ′ , that isXN gets larger and larger whenN grows;
2. any function ofX can be approximated arbitrarily well by some function ofXN

provided N is large enough:

∀v ∈ X , min
vN ∈XN

‖v − vN ‖X →
N →∞

0,

where ‖ · ‖X is the norm of the function space X .
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This can be done by refining the mesh in finite-element methods, and by increasing
the resolution in wavelet methods, or the energy cut-off in PWmethods. In the latter
case, N is usually the wave-vector cut-off, which is related to the energy cut-off
Eco,N by the relation Eco,N = N 2

2 (in atomic units).
A priori error estimators are results assessing that the computed value of the QOI

converges to the exact value of the QOI when N goes to infinity, and providing in
addition convergence rates. A typical such result (which holds true [3] for the PW
discretization of the periodic Kohn-Sham LDA model with pseudopotentials [25–
27], for well-chosen minimizers uN of (4.3)) is the existence of positive constants
s, c−, c+ and cs such that for all N ,

c−‖uN − u‖2X ≤ E0,N − E0 ≤ c+‖uN − u‖2X (4.4)

and
‖uN − u‖X ≤ cs

N s
. (4.5)

This result implies that, on the one hand, the error on the energy goes to zero at the
same speed as the square of the error on the orbitals (measured inX -norm), and that,
on the other hand, theX -norm error on the orbitals goes to zero asN −s . Gathering
(4.4) and (4.5), we obtain

0 ≤ E0,N − E0 ≤ c+c2s
N 2s

= c+c2s
2s Es

co,N

. (4.6)

The admissible values of s in (4.5)–(4.6) can usually be obtained explicitly. Typically,
estimate (4.5) will hold true for any s < smax, but not for s > smax, where the value of
smax is an explicit outcome of the mathematical analysis. As a matter of example [3],
smax = 7

2 for PW discretizations of periodic Kohn-Sham LDAmodels with Troullier-
Martins pseudopotentials [26]. Note that −smax is basically the slope of the convex
hull of the log-log plot of the discretization error E0,N − E0 as the function of the
energy cut-off Eco,N . The higher smax, the faster the asymptotic convergence of the
computed ground-state energy towards the exact value for the considered model.

The main interest of a priori error estimators is that they allow to get quantitative
insight on the difficulty of getting an accurate approximation of a given quantity of
interest with a given numerical method. Indeed, the value of smax for which

|q(uN ) − q(u)| ≤ Cs

Es
co,N

(4.7)

for any s < smax, but not for s > smax heavily depends on the QOI q. If smax is “large”
(say smax = 3) doubling the energy cut-off will typically increase the accuracy by a
factor 8, while if smax is “small” (say smax = 1) doubling the energy cut-off will only
double the accuracy. Again for PW discretizations of periodic Kohn-Sham models
with Troullier-Martins pseudopotentials, we have seen that smax = 7

2 if the QOI is
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the energy; on the other hand, smax = 3
2 is the QOI is the value of the ground-state

density at a particular point of the simulation cell, which makes the latter QOI much
more difficult to converge than the former one.

This argument also allows one to clearly understand one of the main roles of
pseudopotentials, namely smoothing out the Coulomb singularities generated by
point nuclei. Indeed, as we have seen before, if the QOI is the ground-state energy,
smax = 7

2 for Troullier-Martins pseudopotentials, while we only have smax = 3
2 for

point-like nuclei.
It is also interesting to reformulate the above results in terms of the computational

time CPUq
ε necessary to reach a given accuracy ε for the QOI q. For PW Kohn-

Sham LDA calculations, the computational time typically scales as E3/2
co,N log Eco,N

(using preconditioned gradient methods and Fast Fourier Transforms, see e.g. [28]
and references therein). A simple calculation shows that if (4.7) is satisfied for any
s < smax, but not for s > smax, then

logCPUq
ε ∼ − 3

2smax
log ε. (4.8)

Wewill see later that a priori error estimates can also be useful to design new, efficient,
numerical schemes.

A priori error estimators, however, suffer from two severe limitations. First, the
optimal value of the constantCs in (4.7) is usually unknown. The constantCs derived
from the mathematical analysis is most often dramatically overestimated, sometimes
by several orders of magnitude. In addition, it usually depends on the exact solution u
to the problem, which is unknown. The constant Cs does not appear in (4.8) because
this relation is in log-log scales, but an estimation of the optimal value of Cs would
of course be of major interest for practical purposes. The second limitation is that an
inequality such as (4.7) is only useful when the right-hand side is small enough, that
is in the asymptotic regime when the cut-off energy Eco,N is large enough.

4.2.3 A Posteriori Error Estimators and Post-Processing

A posteriori estimates are very different in nature from a priori error estimates. An a
posteriori discretization error estimator for the QOI q is a pair of inequalities of the
form

η
q
l.b.(uN ) ≤ q(uN ) − q(u) ≤ η

q
l.b.(uN ) (4.9)

(where we recall that u is a minimizer of (4.1) and uN is a minimizer of (4.3), and
where l.b. and u.b. stand for lower bound and upper bound respectively), which,
ideally, satisfy the following properties:

1. the estimator is guaranteed, in the sense that inequalities (4.9) can be established
with full mathematical rigour;
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2. the lower and upper bounds η
q
l.b.(uN ) and η

q
l.b.(uN ) are fully computable from

the approximate solution uN and the data of the problem; in particular, they do
not involve the exact solution u, in contrast with the bounds resulting from a priori
error estimates;

3. η
q
l.b.(uN ) and η

q
l.b.(uN ) are cheap to compute: their numerical values can be

obtained with a negligible, or small enough, computational cost;
4. the estimates are accurate, in the sense that η

q
l.b.(uN ), q(uN ) − q(u), and

η
q
l.b.(uN ) are of the same order of magnitude for generic values of N (note

however that |q(uN ) − q(u)| can be, by chance, much smaller than |ηq
l.b.(uN )|

and |ηq
l.b.(uN )| for some specific values of N );

5. the estimates give insights on what to do to improve the quality of the approxi-
mation.

Let us clarify the last point. Finite-element methods, as well as wavelet or some
hierarchical tensor methods, have more flexibility than PW discretization methods.
While in PWmethod, the user only controls a single discretization parameter, namely
the wave-vector cut-off N , or equivalently, the energy cut-off Eco,N = N 2

2 , the
quality of a finite-element approximation space can be improved by locally refining
themesh in the regions of the simulation cellwhere thefield u strongly varies. Inmany
cases, it is possible to construct lower and upper bounds η

q
l.b.(uN ) and η

q
l.b.(uN ) as a

sum of localized contributions to the error [29], each of them being obtained by solv-
ing a small-size local problem. The advantage of such a decomposition is twofold:
first the computation of these local contributions can be easily parallelized on a large
number of processors; second, it paves the way to adaptive finite-element methods,
where the mesh is refined only in the regions of the simulation cell where the local
error is significant. This can be done with a black-box algorithm and can dramat-
ically reduce the overall computational effort necessary to reach a given accuracy
(compared to brute force, uniform, mesh-refinement methods).

Let us emphasize that the above five properties of ideal a posteriori error estima-
tors are usually not completely fulfilled by most of the a posteriori error estimators
available in practice. Indeed,

1. Inequalities (4.9) are sometimes only satisfied for large enough values of N . In
this case, it is interesting to have at our disposal checkable conditions allowing
one to know whether the bounds are reliable or not. Such conditions can take the
form

if cq(uN ) > 0, then (9) hold true,

where cq(uN ) is a real number computable from the approximate solution uN
at low cost;

2. The lower and upper bounds may not be fully computable in the sense that they
are in fact a function of the (known) approximate solution uN and of the exact
(unknown) solution u, but nevertheless decomposable as

η
q
�.b.(uN , u) = η

q
�.b.,1(uN ) + η

q
�.b.,2(uN , u),
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where η
q
�.b.,1(uN ) is fully computable and η

q
�.b.,2(uN , u) small compared to

η
q
�.b.,1(uN ), at least when N is large enough. A priori error estimates can be

called out to justify the smallness of η
q
�.b.,2(uN , u);

3. Computing η
q
l.b.(uN ) and η

q
l.b.(uN ) may require solving an auxiliary problem of

the same complexity as the original problem (4.1), which may double or triple the
cost of the calculation. In engineering sciences, simulations are more and more
substitutes to experiments and prototypes in the design process; it is then worth
paying a significant extra-cost to guarantee the quality of the simulation results;

4. Quite often, the relative quality of the lower and upper bounds increases withN .
In the case when the QOI is the ground-state energy, a posteriori error estimates
are of the form

0 < ηE
l.b.(uN ) ≤ E(uN ) − E(u) ≤ ηE

l.b.(uN ), (4.10)

and we can define the efficiency factors of the lower and upper bounds as

1 ≤ I l.b.N = E(uN ) − E(u)

ηE
l.b.(uN )

and 1 ≤ I u.b.N = ηE
u.b.(uN )

E(uN ) − E(u)
.

The closer I l.b.N and I u.b.N to 1, the better. The a posteriori estimate (4.10) is called
asymptotically exact if both I l.b.N and I u.b.N converge to 1 whenN goes to infinity.
Note that if, for instance, I l.b.N goes to 1 when N goes to infinity, then for N
large enough, the post-processed approximation of the ground-state energy

Ẽ(uN ) = E(uN ) − ηE
l.b.(uN )

is more accurate than the original one E(uN ).

4.2.4 Asymptotic Expansions and Extrapolation

In some specific cases, it is possible to expand the error q(uN ) − q(u) in terms of
simple functions ofN in the limit whenN goes to infinity, and obtain, as a matter
of illustration—this is just an example—, asymptotic expansions of the form

q(uN ) − q(u) = a1
N 2/3

+ a2
N

+ O

(
1

N 4/3

)
. (4.11)

The main interest of asymptotic expansions is that they allow extrapolations. Indeed,
assuming a result such as (4.11), one can combine the values of q(uN ) for several
correlated values of N , and obtain, for instance,
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(αq(uN ) + βq(u2N ) + γ q(u3N )) − q(u) = O

(
1

N 4/3

)
,

where the weights α, β, γ are obtained by solving the linear system

⎛
⎝1 1 1
1 1

22/3
1

32/3

1 1
22/3

1
32/3

⎞
⎠

⎛
⎝ α

β

γ

⎞
⎠ =

⎛
⎝1
1
1

⎞
⎠ .

In other words, one can obtain amuch better convergence rate by linear combinations
of a few calculations performed with different values of N .

Extrapolation methods are very appealing. Unfortunately, the situations where
the error on the QOI of interest is known to admit an asymptotic expansion are not
so common in the field of electronic structure calculation. An interesting example is
a Makov-Payne correction for computing the energy of charge defects in insulators
and semiconductors [30]. It has indeed been proved in [31] that the Makov-Payne
correction corresponds to the leading term of the asymptotic expansion of the error
on the ground-state energy when the discretization parameter is the size L of the
supercell.

The second limitation of extrapolation methods based on asymptotic expansions
of the error is that they are only efficient forN “large enough”. It is usually not clear
how to check whether the asymptotic regime has been reached without running a
number of calculations with different values ofN covering a large range and check
whether the results match the prediction of the asymptotic expansion.

4.3 Periodic Gross-Pitaevskii and Kohn-Sham Models

We now turn to the analysis of discretization errors for self-consistent quantum
problems. For pedagogical reasons, we will mainly deal with the (relatively simple)
Gross-Pitaevskii model, and the existing results on the Kohn-Sham model will only
be mentioned. Still, for pedagogical results, we will focus on the periodic versions
of these models, and on plane-wave discretization methods.

For simplicity, we assume that the periodic simulation cell is Ω = (0, 2π)d

(d ≤ 3), but all the results below can easily be extended to the generic case of a
d-dimensional periodic cell of any shape. The fundamental Hilbert space for peri-
odic Gross-Pitaevskii and Kohn-Sham models is

L2
#(Ω) := {

u ∈ L2
loc(R

d , R) | u 2πZ
d -periodic

}
, 〈u|v〉L2

#
=

∫

Ω

u v,

where L2
loc(R

d , R) is the space of locally square-integrable real-valued functions
on R

d . We will make extensive use of the periodic Sobolev spaces (see e.g. [32])
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Hs
# (Ω) :=

{
v =

∑
k∈Zd

v̂kek, v real valued, ‖v‖2Hs
#

:=
∑
k∈Zd

(
1 + |k|2)s |̂vk|2 < ∞

}
,

s ∈ R, where ek = |Ω|−1/2eik·r is the Fouriermodewithwave-vector k ∈ Z
d , which,

endowed with the inner product

〈u|v〉L2
#
=

∑
k∈Zd

(
1 + |k|2)s ûk v̂k,

are also Hilbert spaces. Note in particular that H 0
# (Ω) = L2

#(Ω) and that

H 1
# (Ω) = {

v ∈ L2
loc(R

d , R) | ∇v ∈ (L2
loc(R

d , R))d , v 2πZ
d -periodic

}
.

4.3.1 Plane-Wave Discretization of the Gross-Pitaevskii
Model

The d-dimensional periodic Gross-Pitaevskii model is defined as

I = inf

⎧⎨
⎩E(v), v ∈ H 1

# (Ω),

∫

Ω

v2 = 1

⎫⎬
⎭ , (4.12)

where the Gross-Pitaevskii energy functional is given by

E(v) =
∫

Ω

|∇v|2 +
∫

Ω

Vv2 + μ

2

∫

Ω

v4.

Here, the trapping potential V is a 2πZ
d -periodic real-valued continuous function,

and the mean-field interaction parameter μ is chosen positive (repulsive interac-
tion). The mathematical properties of the minimization problem (4.12) are well-
understood:

• Equation (4.12) has exactly two minimizers u (with u > 0 in Ω) and −u;
• There exists a unique real number λ ∈ R such that (λ, u) satisfies the nonlinear
Schrödinger equation

− Δu + Vu + μu3 = λu, ‖u‖L2
#
= 1. (4.13)

Physically, λ is the chemical potential of the condensate. Mathematically, it is the
Lagrange multiplier of the equality constraint

∫
Ω
v2 = 1 in (4.12);

• λ is the lowest eigenvalue of the self-consistent Hamiltonian
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Hu = −Δ + V + μu2.

We refer to the appendix of [4] for detailed proofs of these standard results.
In plane-wave discretization methods, the approximation spaces are defined as

XN =
⎧⎨
⎩vN =

∑
|k|≤N

v̂kek, vN real valued

⎫⎬
⎭ ,

where N is the cut-off parameter. The Galerkin approximation of (4.12) in XN

consists in searching uN ∈ XN satisfying the constraint
∫
Ω

|uN |2 = 1, and such
that

IN = E(uN ) = inf

⎧⎨
⎩E(vN ), vN ∈ XN ,

∫

Ω

|vN |2 = 1

⎫⎬
⎭ , (uN , 1)L2

#
≥ 0.

(4.14)
The additional requirement (uN , 1)L2

#
≥ 0 ensures that uN approximates the posi-

tive solution u to (4.12) (and not the other solution, −u).
Relying on the fact that the operator −Δ commutes with the projection operator

ΠN , we obtain that the function uN satisfies the Euler-Lagrange equation

− ΔuN + ΠN (V + μu2N )ΠN uN = λN uN , (4.15)

where λN is the Lagrange multiplier of the L2
#-normalization constraint. It can be

shown that, except perhaps for very small values ofN , λN is the lowest eigenvalue
of the operator −Δ + ΠN (V + μu2N )ΠN on L2

#(Ω).
From a geometrical point of view, the situation is as depicted in Fig. 4.1. The

positive solution u to (4.12) is not in general in the approximation space XN . The
best approximation of u in XN for a given norm ‖ · ‖Hs

#
is the orthogonal projection

of u on XN for the inner product of Hs
# . An interesting property is that this orthogonal

projector is independent of s: it is simply the Fourier truncation operatorΠN defined
by

ΠN

(∑
k∈Zd

v̂kek

)
=

∑
|k|≤N

v̂kek.

Indeed, for all s ∈ R and all N ∈ N, XN ⊂ Hs
# (Ω), and for all v ∈ Hs

# (Ω),

ΠN v ∈ XN ,

‖v − ΠN v‖Hs
#

= min
wN ∈XN

‖v − wN ‖Hs
#

=
⎛
⎝ ∑

|k|>N

(
1 + |k|2)s |̂vk|2

⎞
⎠

1/2

.
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Fig. 4.1 Graphical
representation of the best
approximation ΠN u in the
discretization space XN of
the exact solution u to (4.12),
and of the approximation
uN obtained by the
variational method (4.14)

Note that the Galerkin approximation uN of u obtained by solving (4.14) is not the
best approximation ΠN u of u in XN (see Fig. 4.1). The best we can hope for is that
uN will be close to ΠN u for the various norms of interest.

4.3.2 A Priori Error Analysis

The following result has been proved in [4]. It is an extension of classical results
for linear eigenvalue problems (see [33] and references therein) to the nonlinear
setting of the Gross-Pitaevskii model. The case of Kohn-Sham LDA models is dealt
with in [3] for PW discretizations and in [7] for other systematically improvable
discretization methods.

Theorem 4.1 Let u be the unique positive minimizer of (4.12) and uN a minimizer
of (4.14), which is unique forN large enough . Then, there exists 0 < c ≤ C < ∞
such that for allN ∈ N,

‖u − ΠN u‖H 1
#

≤ ‖u − uN ‖H 1
#

≤ C‖u − ΠN u‖H 1
#

−→
N →0

0, (4.16)

c‖u − uN ‖2H 1
#

≤ IN − I = E(uN ) − E(u) ≤ C‖u − uN ‖2H 1
#
. (4.17)

Assume that V ∈ Hσ
# (Ω) for some σ > d/2. Then,

• (uN )N ∈N converges to u in Hσ+2
# (Ω);

• there exists positive constants C and Cs such that

∀ − σ ≤ s < σ + 2, ‖u − uN ‖Hs
#

≤ Cs

N σ+2−s
, |λ − λN | ≤ C

N 2(σ+1)
.

(4.18)

According to estimate (4.17), the error on the ground-state energy behaves as the
square of the H 1-norm of the error on the eigenfunction, and according to estimate
(4.16), the latter goes to zero when N goes to infinity.

If, in addition, the external periodic potential V is regular enough, more precisely
if V belongs to the Sobolev space Hσ

# (Ω) for some σ > d/2, then (4.18) provides
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Fig. 4.2 Graphical
representation of the
two-grid method

optimal a priori convergence rates for both the Lagrange multiplier λ and the ground-
state eigenfunction (the optimality has been checked numerically [4]). The estimates
‖u − uN ‖Hs

#
≤ Cs

N σ+2−s are valid for the whole hierarchy of Sobolev spaces Hs
# (Ω),

−σ ≤ s < σ + 2, and therefore allow one to derive optimal convergence rates for
any differentiable observable q : Hs(Ω) → R with −σ ≤ s < σ + 2. For instance,
the value of the ground-state density at some point r0 ∈ R

d is defined as qr0(u) =
u(r0)2. Using Sobolev embedding theorems (see e.g. [32]), we obtain that qr0 is a
differentiable functional on the Sobolev space Hs

# (Ω) for all s > d/2. It follows that
for all s < σ + 2 − d/2, there exists Cs ∈ R+ such that for all N ,

|uN (r0)2 − u(r0)2| = |qr0(uN ) − qr0(u)| ≤ Cs

N s
.

In addition to providing optimal convergence rates for various QOI, a priori error
estimates can also be used to design computational cost reduction methods based
on neglecting terms with higher convergence rates. For instance, two-grid methods
consist in finding in a first stage a solution un to the full problem in a coarse variational
space Xn , and in a second stage a solution un,N to a simpler problem parameterized
by un in a finer approximation space XN (see Fig. 4.2). For a well-chosen value of
n, it is possible to obtain in this way, at a much lower cost, the same accuracy as
if the full problem had been solved in XN . These methods were introduced by Xu
and Zhou to solve nonlinear elliptic problems [34], then adapted to linear eigenvalue
problems in [35, 36], and to nonlinear eigenvalue problems in [37].

Indeed, solving (4.14) in a fine approximation space XN is costly since it requires
about ∼ K N d lnN elementary operations, where K is a constant related to the
structure of problem (4.14). In the two-grid method,

1. un is computed by solving the full problem on the coarse approximation space
Xn , n � N , which requires ∼ K nd ln n elementary operations,

2. un,N can be computed in ∼ κN d lnN elementary operations with κ � K
since the problem to be solved is much simpler.

Typically, in the present case, the simpler problem can be (i) a linear eigenvalue
problem obtained by freezing the mean-field potential to V + μu2n , or (ii) the linear
system

−Δv + (V + μu2n)v = λnun.
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Both strategies have been tested numerically and are quite efficient [37]. Using the a
priori error estimators (4.18), the following theoretical justification of the efficiency
of the first strategy can be given.

Theorem 4.2 Assume that V ∈ Hσ
# (Ω) for some σ > d/2. Let un be a solution

to (4.14) in a coarse approximation space Xn and un,N the variational approxima-
tion in XN to the ground state of the linear eigenvalue problem

−Δv + (V + μu2n)v = μv, ‖v‖L2
#
= 1.

Then, there exists C ∈ R+ such that for all n and N with n ≤ N ,

‖un,N − u‖H 1
#

≤ C
(
n−σ−3 + N −σ−1

)
,

0 ≤ E(un,N ) − E(u) ≤ C
(
n−σ−3 + N −σ−1

)2
.

Choosing n ∼ N
σ+1
σ+3 in order to balance the error contributions in the right-hand

sides of the above inequalities, we obtain same convergence rates as in Theorem 4.1:

‖un,N − u‖H 1
#

≤ CN −(σ+1), 0 ≤ E(un,N ) − E(u) ≤ CN −2(σ+1),

‖uN − u‖H 1
#

≤ CN −(σ+1), 0 ≤ E(uN ) − E(u) ≤ CN −2(σ+1),

with a significant gain in CPU time (see the numerical results in [37]).

4.3.3 A Posteriori Error Analysis and Post-Processing

A posteriori error analysis for linear elliptic eigenvalue problems has been the matter
of a large number of numerical analysis papers (see [38, 39] and references therein).
It turns out that even the simple case of the Laplace operator on a bounded polyhe-
dral domain with Dirichlet boundary conditions is quite challenging (see [38, 40]
and references therein). The case of linear and nonlinear Schrödinger operator has
been considered in [10, 41–45] (see also the references therein and the appendix
in [46]), leading to adaptive discretization procedures with optimal complexity [47–
49]. Some results regarding Hartree-Fock and Kohn-Sham models have also been
established [12, 15, 22].

As far as PW discretizations of Gross-Pitaevskii models are concerned, post-
processing methods can be obtained by a non-standard application of Rayleigh-
Schrödinger perturbation theory (RSPT).

Recall that if we have at hand a simple eigenmode (E0, ψ0) of a reference Hamil-
tonian H0 on L2

#(Ω):
H0ψ0 = E0, ‖ψ0‖L2

#
= 1, (4.19)
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and if W is a small perturbation of H0 (small in a sense made precise by Kato [50]),
then the perturbed Hamiltonian H = H0 + W has a unique eigenvalue E in the
vicinity of E0, which is simple. Using first-order perturbation for the eigenvector
and second-order perturbation for the eigenvalue, we obtain

Hψ = Eψ, with ψ � ψ0 − Π
ψ⊥
0

(H0 − E0)|−1
ψ⊥
0

Π
ψ⊥
0

(Wψ0),

E � E0 + 〈ψ0|W |ψ0〉 − 〈Π
ψ⊥
0

(Wψ0)|(H0 − E0)|−1
ψ⊥
0

|Π
ψ⊥
0

(Wψ0)〉,

where Πψ⊥
0
is the orthogonal projector on the space

ψ⊥
0 =

⎧⎨
⎩φ ∈ L2

#(Ω) | 〈ψ0|φ〉 =
∫

Ω

ψ0φ = 0

⎫⎬
⎭ ,

for the L2
#(Ω) inner product, and where (H0 − E0)|−1

ψ⊥
0
is the inverse of the restriction

of the operator H0 − E0 to the invariant space ψ⊥
0 (this operator is invertible since

E0 is simple).
As shown in [51], RSPT can be used to derive a posteriori error estimators. The

idea is to consider the Euler-Lagrange equation of the variational approximation
of (4.12) in Xn , i.e.

− Δun + Πn(V + μu2n)Πnun = λnun, (4.20)

as the unperturbed eigenvalue problem, and the Euler-Lagrange equation of (4.12),
i.e.

− Δu + (V + μu2)u = λu (4.21)

as the perturbed eigenvalue problem. In other words, we take

H0 = −Δ + Πn(V + μu2n)Πn, ψ0 = un, E0 = λn,

W = (V + μu2) − Πn(V + μu2n)Πn.

Note that 〈ψ0|W |ψ0〉 = 0: the first-order correction to the eigenvalue vanishes; this
is the reason why we need to consider the second-order correction of the eigenvalue.
We then notice that since both un and Δun belong to Xn , (4.20) also reads

Πn
(−Δun + (V + μu2n)un − λnun

) = 0,

which means that the residual rn := −Δun + (V + μu2n)un − λnun is in X⊥
n . Since

un ∈ Xn and rn ∈ X⊥
n , this implies that

Πu⊥
n
rn = rn,



4 An Introduction to Discretization Error Analysis for Computational Chemists 117

It follows that

Πψ⊥
0
(Wψ0) = Πu⊥

n

((
(V + μun)

2) − Πn(V + μu2n)Πn
)
un

)
= Πu⊥

n

(
rn + μ(u2 − u2n)un

)
= rn + μΠu⊥

n

(
(u2 − u2n)un

)
.

Next, we observe that the block representation of H0 associated with the decompo-
sition L2

#(Ω) = Xn ⊕ X⊥
n reads

H0 =
(−Δ|Xn + Πn(V + μu2n)Πn 0

0 −ΔX⊥
n

)
.

As a consequence,

(H0 − E0)|−1
ψ⊥
0
Πψ⊥

0
(Wψ0) = u(1)

n + u(2)
n ,

with

u(1)
n = (−Δ − λn)|−1

X⊥
n
rn,

u(2)
n = μ

(−Δ + V + μu2n − λn
) |−1

u⊥
n
Πu⊥

n

(
(u2 − u2n)un

)
.

Since in PW calculations, functions are stored as vectors of Fourier coefficients,
computing a very accurate approximation u(1)

n,N of u(1)
n in a very fine discretization

space XN with N � n is easy. On the other hand, it can be shown using the a
priori error estimates in Theorem 4.1 that ‖u(2)

n ‖H 1
#
is much smaller than ‖u(1)

n ‖H 1
#
.

Introducing
ũn = un + u1n and λ̃n = λn + (u1n,Wun)L2

#
,

we have

‖u − ũn‖H 1
#

≤ Cn−2‖u − un‖H 1
#

and |λ − λ̃n| ≤ Cn−2|λ − λn|,

for a constantC ∈ R+ independent ofn. For large enoughvalues ofn and forN � n,
ũn,N = un + ũ(1)

n,N therefore represent a much better approximation of u than un .
We refer to [4] for an application of this technique to Kohn-Sham LDA models.

4.3.4 Error Balancing

As mentioned in the introduction, discretization error is only one of the various
components of the overall error. In this section, we give an example of a numerical
scheme automatically balancing discretization and algorithmic error for the Gross-
Pitaevskii model. Still for pedagogical reasons, we consider the simplest possible
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self-consistent algorithm for solving the Gross-Pitaevskii equation, defined at the
continuous level by

⎧⎨
⎩

−Δvk + Vvk + μv2k−1vk = λkvk, vk ∈ H 1
# (Ω), ‖vk‖L2

#
= 1, (vk, 1)L2

#
≥ 0,

λk lowest eigenvalue of − Δ + V + μv2k−1.

The initial guess v0 can be chosen, for example, as a normalized ground state of the
operator −Δ + V for small values of μ, and as the Thomas-Fermi approximation of
the ground state for large values of μ, but many other choices are possible. In this
algorithm, the iterate vk is the L2

#-normalized positive ground-state (in theweak sense
(vk, 1)L2

#
≥ 0) of the mean-field operator −Δ + V + μv2k−1 constructed from the

previous iterate vk−1. In theHartree-Fock andKohn-Sham frameworks, this algorithm
is referred to as the Roothaan algorithm, and has been analyzed from a mathematical
point of view in [52, 53]. It is known in particular that the sequence (vk)k≥0

• either converges to the unique positive solution u to the Gross-Pitaevskii equa-
tion (4.13);

• or oscillates between two states in the sense that there exist two functions ve and
vo in H 1

# (Ω), with ve �= vo such that

− Δve + Vve + μv2ove = λeve, ‖ve‖L2
#
= 1, (ve, 1)L2

#
≥ 0,

− Δvo + Vvo + μv2evo = λovo, ‖vo‖L2
#
= 1, (vo, 1)L2

#
≥ 0,

and
v2k −→

k→∞ ve, v2k+1 −→
k→∞ vo in H 1

# (Ω).

Typically, (vk)k≥0 converges ifμ is small and oscillates ifμ is large. Clearly, this is not
an efficient way to solve the Gross-Pitaevskii equation. We focus on this algorithm
for pedagogical reasons only, because it is easier to analyse. Note that the oscillatory
behaviour can be suppressed by using an optimal damping algorithm [54]. At a
discrete level, it is recommended to solve (4.14) using a preconditioned nonlinear
conjugate gradient algorithm [55].

The following scheme is a discretized version of the basic self-consistent field
algorithm, in which the discretization space depends on k (compare with (4.15)):

⎧⎪⎪⎨
⎪⎪⎩

−Δvk + Πnk

(
V + μv2k−1

)
Πnk vk = λk vk , vk ∈ Xnk , ‖vk‖L2

#
= 1, (vk,1)L2

#
≥ 0,

λk = λvk−1,nk , where λv,n is the lowest eigenvalue of − Δ + Πn

(
V + μv2

)
Πn .

Intuitively, it is indeed inefficient to compute the first iterates in a very fine discretiza-
tion space since we are far from convergence. It, therefore, makes sense to increase
the size of the discretization space along the iterations when getting closer to the
exact solution u. To automatize this process, we need to define a criterion allowing
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the algorithm to decide when to refine to discretization space. For this purpose, we
use the following result [51]:

Proposition 4.1 Let u be the unique positive minimizer to (4.12). Let J be the error
criterion defined by

∀v ∈ H 1
# (Ω) such that ‖v‖L2

#
= 1, J (v) = E(v) − E(u) + 1

2
‖v − u‖2L2 .

Let vk ∈ Xnk be the kth iterate of the above algorithm. Then, we have

0 ≤ J (vk) ≤ ηd,k + ηa,k,

where the discretization and algorithmic error estimators ηd,k and ηa,k are, respec-
tively, defined by

ηd,k=1

2

(
λvk ,nk − λvk ,∞

) ≥ 0, ηa,k = 1

2

⎛
⎝μ

∫

Ω

(v2k − v2k−1)v
2
k + λk − λvk ,nk

⎞
⎠ ≥ 0.

Wesee that ηd,k = 0 if nk = ∞, that is, if the problem at iteration k has been solved
in the whole space H 1

# (Ω) (no discretization error), and that ηa,k = 0 if vk−1 =
vk , that is if the SCF iteration has converged in the discretization space Xnk (no
algorithmic error). The numerical experiments reported in [51] show that, in practice,
the inequalities

E(vk) − E(u) ≤ J (vk) ≤ ηd,k + ηa,k

are almost equalities; this observation can be theoretically justified in the asymptotic
regime using a priori error analysis results. As a consequence, ηd,k + ηa,k gives an
accurate estimate of the energy error E(vk) − E(u), which is split into a discretization
error and an algorithmic error. A natural strategy to reach a desired accuracy ε in
an optimal way from a computational point of view then consists in refining the
discretization if ηd,k � ηa,k , and in iterating otherwise in the same discretization
space Xnk , until ηd,k + ηa,k ≤ ε.

Note that at iteration k, vk−1, vk and λk are known, but not λvk ,nk , whose compu-
tation would require solving another eigenvalue problem in Xnk , nor a fortiori λvk ,∞,
which is out of reach of numerical methods. It is, therefore, not possible to compute
exactly ηd,k . On the other hand, it is possible to obtain very accurate approxima-
tions of all these numbers by adapting the approach based on Rayleigh-Schrödinger
perturbation theory detailed in the previous section.

In conclusion, ηd,k and ηa,k therefore provide relatively cheap and sharp estimators
of the discretization and algorithmic errors at iteration k if the quantity of interest is
the energy, allowing adaptive error balancing.

We refer to [4] for an extension of this approach to the periodic Kohn-Sham LDA
setting.
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4.4 Error Cancellation Phenomenon

In many applications in physics, chemistry, materials science, and biology, energy
differences are far more important than absolute energies. Consider for instance a
simple chemical reaction that can be modelled as a transition from a local minimum
of the ground-state Born-Oppenheimer potential energy surface (GS-BO-PES)—the
reactants—to another local minimum of the GS-BO-PES—the products—through a
well-defined saddle point—the transition state (see Fig. 4.3). According to Arrhenius
law, the reaction rate is given by the relation

k = ν0 exp (−Ea/kBT ) ,

where ν0 is a prefactor, Ea the activation energy, that is, the difference between the
energy Ets of the transition state and the energy Ere of the reactants (see Fig. 4.3),
kB the Boltzmann constant, and T the temperature. The relevant QOI, therefore, is
the energy difference Ets − Ere, and not each of the energies Ets and Ere. The same
is true for the reaction energy, defined as the energy difference Epr − Ere, where Epr

is the energy of the products.
Considering two configurations R1 and R2 of the system, our goal is to estimate

the error
(ER1,N − ER2,N )︸ ︷︷ ︸

computable quantity

− (ER1 − ER2)︸ ︷︷ ︸
quantity of interest

where ERj is the exact ground-state energy for the configuration R j and ERj ,N its
variational approximation in the discretization space XN .

It has been observed both in quantum chemistry and computational materials
science, that in general,

|(ER1,N − ER2,N ) − (ER1 − ER2)| � |ER1,N − ER1 | + |ER2,N − ER2 |.

In other words, the error on the energy difference between two configurations is
usually much lower than the error on the energy of each configuration, typically by

Fig. 4.3 Sketch of a
chemical reaction taking
place on the ground-state
potential energy surface. The
activation energy Ea of the
reaction is the difference
between the energy of the
reactants and that of the
transition state
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Fig. 4.4 Two different configurations of a system composed of 2 oxygen atoms and 4 hydrogen
atoms corresponding to the reactants (left) and the products (right) of the chemical reaction (4.22)

one, sometimes two orders of magnitude. This is the so-called error cancellation
phenomenon. Chemists and physicists heavily rely on this phenomenon: obtaining
an accuracy of 1 kcal/mol (or 1 meV) on an energy difference turns out to be much
cheaper in terms of computational effort than obtaining a similar accuracy on a single
point energy.

As a matter of example, consider the two different configurations of a system
composed of 2 oxygen atoms and 4 hydrogen atoms corresponding, respectively, to
the reactants and the products of the chemical reaction (Fig. 4.4).

2H2 + O2 −→ 2H2O. (4.22)

The sum and difference of the energy errors

SN : = (Ereactants,N − Ereactants) + (Eproducts,N − Eproducts), (4.23)

DN : = |(Ereactants,N − Ereactants) − (Eproducts,N − Eproducts)| (4.24)

= | (Ereactants,N − Eproduct,N )︸ ︷︷ ︸
computed value of the QOI

− (Ereactants − Eproducts)︸ ︷︷ ︸
exact value of the QOI

|,

for PW Kohn-Sham LDA calculations with Troullier-Martins pseudopotentials as a
function of the energy cut-off EN = 1

2N
2 are plotted on Fig. 4.5 (top). It can be

observed that DN is indeed smaller than SN by about two orders of magnitude. In
addition, the non-dimensional error cancellation factor

0 ≤ QN := DN

SN
≤ 1 (4.25)

fluctuates about a value close to Q∞ � 5 × 10−3.
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Fig. 4.5 Observed
convergence of the quantities
SN and DN defined
by (4.23)–(4.24) as a
function of N , and
behaviour of the ratio QN

for the two configurations
represented on Fig. 4.4
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In order to unravel the origin of the discretization error cancellation phenomenon,
let us consider a simple linear 1Dmodel for which explicit calculations can be carried
out [1]. In this model, the external potential is periodic (with period a = 1) and is a
sum of Dirac masses:

Vext,R = −
∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R .

For given values of the charges z1 and z2, the configurations are labelled by R ∈
(0, 1). The ground-state energy and wave-function are obtained by computing the
lowest eigenvalue and an associated normalized eigenfunction of the 1D periodic
Schrödinger equation

(
− d2

dx2
−

∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
ψR = ERψR in L2

per(0, 1), (4.26)

1∫

0

ψ2
R(x)dx = 1.
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Fig. 4.6 Exact ground-state
wave-function of (4.26) for
z1 = 1, z2 = 0.5 and
R = 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.9

1

1.1

1.2
Exact solution z1 = 1, z2 = 0.5, R = 0.4

As a matter of illustration, the ground-state wave-function for z1 = 1, z2 = 0.5 and
R = 0.4 is plotted on Fig. 4.6.

The following result is proved in [1].

Theorem 4.3 Let z1, z2 > 0 and R ∈ (0, 1), let ER be the ground-state energy
of (4.26), and ER,N the variational approximation of ER in the Fourier approx-
imation space

Span
{
e2iπkx , k ∈ Z, |k| ≤ N

}
.

Then, we have the asymptotic expansion

ER,N − ER = αR

N
− αR

2N 2
+ β

(1)
R,N

N
+ γR

N
ηR,N + o

(
1

N 3−ε

)
, (4.27)

where

αR := z21uR(0)2 + z22uR(R)2

2π2
, (4.28)

γR := z1z2uR(0)uR(R)

π2
, ηR,N := N

+∞∑
k=N +1

cos(2πkR)

k2
,

β
(1)
R,N := z21uR(0)(uR,N (0) − uR(0)) + z22uR(R)(uR,N (R) − uR(R))

2π2
.

In addition

|ηR,N | ≤ min

⎛
⎝1,

2 + π3

8
| sin(πR)|N

⎞
⎠ and ∀ε > 0, ∃Cε ∈ C+ s.t. |β(1)

R,N | ≤ Cε

N 1−ε
.

This result sheds light on the mechanism of discretization error cancellation for
the PW discretization of (4.26). First, it implies that errors on energies and errors
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Fig. 4.7 Plot of the
function R �→ αR defined
by (4.28) for different sets of
parameters (z1, z2)
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on energy differences all scale in N−1, and that discretization error cancellation is a
matter of prefactors:

ER,N − ER ∼
N →∞

αR

N
while (ER2,N − ER1,N ) − (ER2 − ER1) ∼

N →∞
αR2 − αR1

N
.

Note that αR only depends on the charges z1 and z2 of the Dirac potentials and on
the values of the ground-state densities at the positions of the Dirac potentials. Error
cancellation is due to the fact that, for 0.1 ≤ R1, R2 ≤ 0.9, we have

|αR2 − αR1 | � max(αR1 , αR2) (see Fig. 4.7). (4.29)

We also obtain that the error cancellation factor converges whenN goes to infinity:

lim
N →+∞

QN = |αR1 − αR2 |
αR1 + αR2

.

Numerical simulations show that the convergence is monotonous for R1, R2 away
from the singularities R = 0 and R = 1 (where the two Dirac combs overlap), and
oscillating for R1 or R2 close to the singularities (see Fig. 4.8).

Inequality (4.29), which is at the root of error cancellation, can be rewritten as

∣∣z21 (ρR1(0) − ρR2(0)
) + z22

(
ρR1(R1) − ρR2(R2)

)∣∣
� max(z21ρR1(0) + z22ρR2(0), z

2
1ρR1(R1) + z22ρR2(R2)),

where ρR(x) = uR(x)2 is the ground-state density at point x in configuration R. For
R away from the singularities 0 and 1, the ground-state density at the positions 0 and
R of the Dirac potentials does not change much with R.
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Fig. 4.8 Convergence of
QN to Q∞ for R1 = 1

2 and
three different values of R2
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Another interesting remark reported in [1] is that

∣∣∣∣dER,N

dR
− dER

dR

∣∣∣∣ �
∣∣∣∣∣
dαR
dR

N

∣∣∣∣∣ .

In other words, it is not possible to infer from ER,N − ER ∼N →∞ αR
N a result on

the convergence of the forces. In fact, it is observed that

dER,N

dR
− dER

dR
∼

N →∞
d

dR

( γR

N
ηR,N

)

and that the function R �→ dER,N

dR − dER
dR is oscillating more and more when N

becomes large. As a consequence,

1. It is not a good idea to try and compute the energy difference between two con-
figuration R1 and R2 by integrating the forces along a path of the configuration
space linking R1 and R2;

2. Extrapolation methods based on the asymptotic expansion (4.27) can be used to
improve the accuracy of the energy, but they will not improve the accuracy of the
forces.

4.5 Conclusion

In this chapter, we have introduced basic concepts of mathematically based dis-
cretization error analysis: a priori error estimators, a posteriori error estimators and
post-processing methods, asymptotic expansions and extrapolation methods, and
error cancellation phenomenon. These concepts have been illustrated on the simple
examples of plane-wave discretizations of the Gross-Pitaevskii model, and of a 1D
periodic Schrödinger equation with Dirac potentials.
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Significant progress on discretization error analysis for Kohn-Sham and other
electronic structure models has been made in the past few years, and many ongoing
works in these directions are in progress in several groups around the world. As
witnessed in other fields of science and engineering, rigorously founded error analysis
should play a major role in the design of a new generation of electronic structure
calculation software, generating numerical results supplemented with error bars,
optimizing the available computational resources, and adapted to massively parallel
and heterogeneous architectures.
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