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Preface

The expansion of the electronic wavefunction in finite basis sets has been used
ever since the beginning of quantum chemistry in 1929 (J. C. Slater Phys. Rev. 36,
57 (1930)). The approach to use linear combinations of Slater, Gaussian, or plane
wave functions depending on the specific problem has never changed. Despite the
fundamentality and generality of this concept, basis sets are still being developed to
this date and are a matter of active research.

Finding the right basis set can be compared to choosing the right solvent in
synthesis. There is an ever-growing range of basis sets to choose from and while
there is not a unique correct one, in most cases there are better and poorer choices.
Which particular basis sets are appropriate depends on a number of factors such as
the system investigated, the quantum chemical method used, the properties to be
analyzed, and—despite advancing developments in computational hardware—the
available computational resources.

Just as for the choice of the solvent in synthesis, the selection of a suitable basis
set is usually based on the careful considerations of all these factors. To students
who are just entering the field, however, this might at first appear to be based on
intuition, experience, or even habit. The same applies to issues like basis set incom-
pleteness or basis set superposition, which students correctly take into consideration
but sometimes without being aware of their theoretical origin or their implications
in the calculations.

With the incredible development of theoretical chemistry in the past decades,
many advanced methods that go well beyond the Hartree–Fock theory have found
their way into classrooms, and practical courses in computational chemistry have
become a part of most chemistry studies. Today’s graduates are equipped with a very
good overview of computational methods at hand so that most experimental groups
run DFT calculations on their own. At the same time, the knowledge about basis sets
is passed rather sparingly, although they contribute just as much to the quality of a
quantum chemical calculation—or can even render it useless if chosen badly.

The motivation to compile this contribution was to create a textbook which puts
the basis sets first and addresses readers at different levels in their scientific career.
All chapters are designed in such a way that they can be read and understood on
their own, and knowledge from a previous chapter is not required to understand

v



vi Preface

the contents of the current part. Each chapter is written in a didactic fashion, and
illustrative examples from state-of-the-art research are given. Even though an overlap
to some extent is unavoidable, each chapter covers a different aspect of basis sets in
computational chemistry and they complement each other.

Addressing the target audience of this book, I would like to encourage and moti-
vate students: Keep questioning, keep asking! I believe that the topic of basis sets
demonstrates that research—no matter how old-fashioned and established it may
appear—can hardly ever be considered complete. It is you who are going to take the
next steps, make new discoveries, or modify existing theories.

Finally, I am supremely grateful to all authors who contributed to this volume.
Each of them dedicated lots of time and effort to their chapter and I couldn’t be more
satisfied with the product all of you have created.

Irvine, USA
June 2020

Eva Perlt
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Chapter 1
An Introduction and Overview of Basis
Sets for Molecular and Solid-State
Calculations

Jeppe Olsen

1.1 Introduction

One-electron wave functions for electrons, in the form of molecular orbitals for
molecules and bands for solids, form the basis for all the generally applicable com-
putationalmethods for describing the electronic structure ofmolecules and solids. For
density functional methods (DFTs), the single-electron functions are used to obtain
the density, which then determines the energy and all properties. For the other major
group of electronic structuremethods, wave functionmethods, the one-electron func-
tions have a dual purpose, in that they are used to describe the dominating mean-field
Hartree–Fock (HF) wave function as well as the correlation between the electrons.

The molecular orbitals are in general written as a linear expansion of a set of
analytic functions, the basis set. Basis sets are in general developed and optimized
for individual atoms and the basis set for a molecule comprises then the basis sets
of the atoms constituting the molecule. The basis functions are therefore atomic
orbitals, and the standard separation of atomic orbitals into a radial and a spherical
harmonic part allows us to write a basis function as

ψn�mA(rA, θA, φA) = fn(rA)Y
m
� (θA, φA), (1.1)

where n, �, andm are the standard atomic quantum numbers and A indicates a given
atom. The coordinates (rA, θA, φA) are the spherical coordinates in a coordinate
system with nucleus A at the origin.

Inspired by the form of the bound state hydrogenic wave functions, the initially
used radial basis functions were exponential functions of the form of Slater-Type
Orbitals [1] (STOs),
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2 J. Olsen

f STOn (rA) = rn−1
A e−ζrA . (1.2)

The value of the screening constant ζ differs in general for the various basis functions,
but this dependence has for notational convenience been suppressed in the above
equation. Although such basis functions were used in the initial calculations of the
electronic structure of diatomic molecules and still are much used for atoms, it was
early realized that it was very difficult to extend the use of these basis functions to
general molecules, in particular, it is very cumbersome to calculate the three- and
four-center integrals needed to describe the expectation value of Coulomb repulsion
between electrons.

It was early realized [2] that the calculations of integrals of quantum mechanical
operators between basis functions weremuch simpler, whenGaussian- Type Orbitals
(GTOs) are used instead of STOs,

f GTO� (rA) = r �
A e−αr2A , (1.3)

where the coefficient α again usually differs for the various basis functions. Notice
that in addition to the use of a Gaussian form e−αr2 rather than an exponential form,
e−ζr , the GTO uses the monomial r � rather than the general form of the STO, rn−1.
However, single Gaussian functions are very poor approximations to the atomic HF
orbitals. To compensate for this deficiency, it was immediately realized that this
deficiency of the GTOs could be greatly reduced for most practical purposes [3],
if the basis function was a contracted GTO (CGTO), where the basis function is a
linear combination of several GTOs

f CGTO� (rA) = r �
A

∑

i

di e
−αi r2A . (1.4)

To distinguish between the contracted GTO and the individual GTOs of the basis
set expansion, the latter are often called primitive GTOs (PGTOs), especially as it is
standard practice to call the CGTO of Eq. (1.4) a GTO.

The first part of defining a basis set for a given atom involves the definition of
the largest value of � for which basis functions are included and the number of
basis functions for each value of �. For a STO basis set, an energy or another target
function is then minimized with respect to the screening coefficients. For GTO basis
sets, the optimization includes both the number of primitives included in each basis
function, as well as the coefficients di , αi making up a given basis function. Often,
the screening coefficients of the STOs and GTOs are not optimized individually, but
are chosen to constitute a simple, often geometric series, and the few parameters
defining this series is then optimized instead of the individual screening constants.

Since the middle of the sixties, GTO basis sets have become the de facto standard
for calculations on polyatomic molecules, and numerous program packages using
GTO basis sets have been developed and are used by quantum chemists as well as
scientists not specialized in computational chemistry. An important contribution to
this development has been the development and distribution of GTO basis sets. The
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distributed codes include thus GTO basis sets for all the major types of electronic
structure codes, target accuracy, and properties to be calculated. The most important
of these developments are outlined in Sect. 1.4.

The development of methods to calculate integrals over STOs has not been com-
pletely abandoned, and a group of very skilled and competent researchers have devel-
oped improved methods to calculate the various forms of integrals, and significant
progress is still being reported. However, due to the limited number of researchers
devoted to the development of STO-based methods and the inherent complexity of
the task of evaluating the integrals of these basis functions to high precision, the sta-
tus for STO basis sets is much less advanced than for GTOs. Thus, although recent
research on the calculation of multi-center two-electron integrals holds significant
promise, the research is still focused on the calculation of individual integrals at a
given geometry, rather than on the development of general-purpose basis sets.

For some types of calculations, it is possible to completely abandon the calculation
of two-electron integrals per se. In particular, for DFT calculations without exact
exchange, the two-electron integrals occur only in the form of the Coulomb term,
which may be evaluated directly. This was from the onset incorporated in the widely
used ADF program package [4], so the use of STOs for the calculation of polyatomic
molecules have in this sense been with us from the early days of computational
chemistry. We will return to the discussion of this approach as well as the current
status for the use of STO basis sets in Sect. 1.5.

For solids and materials that from an atom’s point of view are of infinite size, the
standard choice of basis functions are plane waves. A plane wave function has the
form

φ(r) = eirk, (1.5)

where k is the reciprocal lattice vector and is required to conform to the translational
symmetry of the unit cell of the solid. If all possible vectors k are included, then
the basis is complete, but in practice the basis set is truncated according to a kinetic
energy criterion, so all k that transform according to the symmetry of the unit cell
and have |k| ≤ Etrunc are included. The plane wave basis functions are orthogonal
to each other and a number of integrals of quantum mechanical operators involving
these basis functions may be reduced to simple analytic expressions. In particular,
the two-electron integrals are trivial to calculate. Although the plane wave basis
without truncation is complete, a truncated basis set reproduces highly localized
orbitals only with low accuracy These localized orbitals, typically core or inner
valence orbitals, are therefore in most solid-state calculations replaced by effective
potentials of various forms. We will not discuss such potentials or basis functions
here in greater detail, but refer to the Chapter by M. Doll in this book for a more
detailed discussion.

The GTOs, STOs, and plane wave basis functions are all global basis functions
in the sense that they extend over the complete space. An alternative approach is
to use basis functions with only local support, that is functions that are only non-
vanishing in a limited region of space. The most prominent of such approaches are
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the Finite Element (FEM), wavelet, and spline approaches, which are related to the
finite difference (FD) approaches of standard numerical analysis. These approaches
are briefly discussed in Sect. 1.6.

In the following sections, the most important concepts and developments will
be discussed for the GTO, STO, and local support basis sets. I will divert from the
historical approach and discuss the developments and uses of GTO basis sets before
the STO basis sets. The main reason for this departure is that it is the current status
of GTO basis sets that the developers of the STO approach must match and perhaps
bypass in order to give the STO basis set a prominent role within electronic structure
modeling. I will naturally be brief, and refer to the various chapters of this book for
a more detailed and in-depth discussions. In particular, a number of important forms
of basis sets have been left out, but the purpose of the present chapter is to provide
a general overview, rather than an exhaustive review. Furthermore, the development
of basis sets is a very extensive effort, resulting in multiple papers. I will, for brevity
again, only reference the paper that introduces a given form of basis set, rather than
the complete series of papers.

1.2 Nomenclature for Basis Sets

There is a common nomenclature for GTO and STO basis sets, which gives the num-
ber of basis functions of the various angularmomenta. This nomenclature is discussed
in detail in the standard textbooks of quantum chemistry, including Refs. [5–7], but
for completeness this will be briefly recapitulated here. In a minimal or single zeta
(SZ) basis set, there is one set of basis functions for each sub-shell occupied in the
ground state of the atom. Aminimal basis set for the carbon atom contains hence two
s-functions and one set of p-functions, shortened as 2s1p. At the next level, double
zeta (DZ) basis sets, there are two sets of basis functions for each occupied sub-shell,
so such a basis contains 4s2p orbitals for the carbon atom. Triple, quadruple, quintu-
ple, and hextuple zeta basis sets are defined in a similar way, and are in abbreviated
forms denoted by TZ, QZ, 5Z, and 6Z. Although the electrons in the core-orbitals
give large contributions to the total energy, these orbitals and energies are in general
rather constant, so they are often described using fewer basis functions, leading to,
for example, valence double zeta (VDZ) basis sets, which for the carbon atom has
the constitution 3s2p.

While s- and p-functions are sufficient for Hartree–Fock calculations on the
ground states of first-row atoms, molecular calculations require polarization func-
tions, i.e. basis functions of higher angular momenta than needed for the atomic
Hartree–Fock calculations, to describe the polarization of the density from the field
of the other atoms. As only the electrons in the valence orbitals are polarized to a
significant degree, polarization functions are included only for these electrons. At
the entry level of basis functions, the VDZ level, a single set of d-functions is added
to first-row atoms like C, resulting in VDZP basis sets, which then have the form
3s2p1d. Basis sets of TZ or QZ quality are usually combined with additional polar-
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ization functions, f-functions for TZ basis sets and f- and g-sets for QZ basis sets.
However, the notation for polarization functions is not in general common across
different basis sets so care must be exercised here. For example, the P used to denote
the presence of polarization basis functions is used to indicate that the basis set con-
tains a single set of polarization functions, independently of whether the basis set is
a double or higher zeta basis set, as well as to label basis sets where the number and
type of the polarization functions are aligned with the number of s- and p-functions.
A VTZP basis for C may therefore have the form 4s3p2d1f as well as 4s3p1d. For
basis sets, where the P denotes a single d-set of polarization functions for first-row
atom, the presence of 2 d- and 1 f-sub-shells is denoted 2P. Most basis sets have
additional and specialized notations, but this will not be covered here.

1.3 The GTO Versus STO Discussion

Although GTO basis sets have become the de facto standard, in particular for cor-
related wave function calculations, research efforts for obtaining improved methods
for calculating integrals over STO functions have continued. This research is moti-
vated by STOs allowing significantly smaller expansions of the occupied orbitals and
their advantages in regions around the nuclei and far away from the molecule. When
the nuclei are approximated as point charges, the exact wave function � fulfills the
nuclear cusp-condition [8] when the coordinates ri of electron i equal the coordinates
of a nuclei A with charge ZA,

∂�ex

∂ri

∣∣∣∣
ri=rA

= −ZA�ex (ri = rA). (1.6)

From Eq. (1.3), it is seen that the only GTO functions that are non-vanishing at the
origin are s-functions, and as these functions here have a vanishing derivative with
respect to r , it is obvious that GTO functions in contrast to the STO functions cannot
fulfill this cusp-condition. Any GTO basis set is therefore incapable of fulfilling the
nuclear cusp condition at the center of this basis set.

For the region far away from the nuclei of the molecule, it can be shown [9] that
the exact density ρex (r) falls exponentially off,

ρex (r) ∝ e−23/2
√
I r for large r, (1.7)

where I is the lowest ionization potential of the molecule. For any finite set of GTOs,
the decay at long distances will inevitably have a Gaussian form, so Eq. (1.7) cannot
be fulfilled in any finite GTO basis set.

The late Jan Almlöf made the counterargument [10] that STOs have two defi-
ciencies: they are incorrect around a nuclei of finite size as the wave function inside
such a charge distribution is known to be Gaussian, and they are not accurate at large
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distances as the above asymptotic cannot be fulfilled whenever too diffuse STOs
are present in the basis set. Although the arguments of Almlöf are correct, they are
perhaps not very relevant for practical use.

From a formal point of view, both the GTOs and STOs are valid basis set expan-
sions. It has thus been proven that the exponents (α in the GTOs and ζ in the STOs)
may be chosen so both types of basis sets are complete both in the standard Hilbert
space of square integrable wave functions [11] and in the first and second Sobolev
spaces [12]. By systematically extending either of these basis sets, it is thus possi-
ble to systematically approach the exact solution to the Schrödinger equation and
the exact energy. However, it is important to be precise about what this complete-
ness implies. On the positive side, the completeness implies that we may formally
devise a sequence of wave functions, �i , i = 1, 2, . . ., expanded in increasing basis
sets that converge toward the exact wave function �ex in the norm-sense that is
‖�i − �ex‖ → 0 for i → ∞ and the energy Ei of�i goes toward the exact energy,
Eex for i → ∞. On the other hand, the completeness of a basis set does not ensure
point-wise convergence toward any function in the Hilbert space. Thus, although a
complete radial basis set may be made up of s-type GTOs, e−αi r2 , i = 1, 2, . . ., it
is not possible to obtain a sequence of wave functions that have a non-vanishing
derivative that fulfills the nuclear cusp-condition, Eq. (1.6), as this equation is the
property of the function in a point, rather than in a interval.

1.4 Gaussian-Type Orbitals

After the introduction of GTOs as basis functions by Boys [2] and Mcweeny [3] for
general use, it was not until the late sixties that the computer hardware and quan-
tum chemical software were ready to perform ab initio calculations on polyatomic
molecules. This development was accompanied by the development of the standard
basis sets, in particular by Pople and coworkers. In the first general available and
used GTO basis sets, the STO-NG basis sets [13], the GTO basis sets were designed
as least square fits to STOs. However, it was quickly realized that it was more useful
to design the GTOs so that they minimize the Hartree–Fock energy and this lead
to the second generation of basis sets, of which the VDZ basis sets 3-21G [14] and
6-31G [15] are still generally used, especially when combined with the polarization
function [16]. A number of other basis sets were developed along the same lines,
and minor additions and modifications were introduced to allow the calculation of
correlation contributions. These basis sets prevailed for more than two decades, not
only for Hartree–Fock calculations, but also for correlation calculations.

Until the late eighties, calculations including correlation in the form of configu-
ration interaction (CI), coupled cluster (CC), and Møller-Plesset perturbation theory
(MPPT) calculations were thus performed using basis sets that fundamentally were
designed for uncorrelated calculations. The state of affair is exemplified by calcu-
lations published in 1985 by Ahlrichs, Scharf, and Jankowski [17] on the ground
states of several diatomic molecules. Using what at that time was a very large basis,
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7s5p3d3f1g CGTOs, and the CPF correlation method, they obtained an electronic
dissociation energy for N2 of 214 kcal/mol which is 14 kcal/mol away from the
experimental dissociation energy of 228 kcal/mol. In some sense, this calculation
exemplified the midlife crisis of quantum chemistry: using the best available basis
set and correlation method, the calculations yielded results that were far away from
chemical accuracy of 4 kcal/mol.

However, quantum chemistry did outlive itsmidlife crisis and regained confidence
and purpose. This was due to developments along three lines: improved correlation
methods, in particular coupled cluster methods with perturbation estimates of triple
corrections (CCSD(T)), basis sets designed for correlation calculations, and system-
atic basis set extrapolation toward the complete basis set limit (CBS). Of these three
developments, the latter two are relevant in the present context. The development
of basis sets better suited to describe correlation started with the ANO basis sets of
Almlöf and Taylor [18]. These basis sets provided several new insights and strate-
gies that radically changed the accuracy that may be achieved by quantum chemical
calculations. Firstly, these basis sets reflect the understanding that higher angular
momenta than previously employed were necessary to obtain accurate correlation
energies. Secondly, the basis functions were the linear combinations (contractions)
of primitive Gaussians with the contraction coefficients being chosen as those of the
various natural orbitals of atomic correlated calculations. Thirdly, basis functions
with similar contributions to correlation energy were added together. Finally, by pro-
viding a hierarchy of basis sets, it was now possible to systematically improve the
accuracy of the calculation.

The ANO basis sets provided a significant advance, but they were in general
considered as too expensive as they employ a large number of primitive as well as
contracted basis functions. More economical basis sets for correlated calculation
were introduced in the form of the correlation consistent basis sets of Dunning and
coworkers [19], and theANObasis set from the Lund group [20]. Correlation orbitals
have in general the same spatial extent as the corresponding Hartree–Fock orbital,
but have additional nodes, so the correlation orbitals for core and valence electrons
differ. Basis sets for the correlation of the valence electrons and basis sets for the
correlation of both core and valence have been devised.

As groups of basis functions with similar contributions to the correlation energy
are added together in the correlation consistent basis sets, the various basis sets have
a very simple structure in terms of the number of contracted basis functions per
angular momentum. Consider as an example basis sets for valence correlation of a
first-row atom. At the Hartree–Fock level, the basis set includes 2s and 1p contracted
sub-shells. The first set of correlation orbitals for the valence electrons includes 1s,
1p, and 1d sub-shells, so the total basis set includes 3s, 2p, and 1d sets of orbitals. The
second correlation shell adds 1s, 1p, 1d, and 1f sets of functions, so the second set of
correlation consistent basis functions includes 4s, 3p, 2d, and 1f sets of orbitals. The
basis set may therefore be defined in terms of a cardinal number X , which describes
the highest � value included in the basis set, so the basis sets is denoted as cc-pVXZ
and includes X+1 s-functions, X set of p-functions,..., and 1 set of functions with
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� = X . Note that the number and distribution over angular momenta of the added
functions for correlation are equal to that introduced above for polarization functions.

With the new basis sets, systematic calculations of geometries of other properties
were made, see for example Ref. [21], and it was amply demonstrated that the com-
bination of the CCSD(T) method and large basis sets provides geometries with an
accuracy that often matches experimentally determined geometries. Energetics are
also significantly improved so the goal of chemical accuracy of about 4 kcal/mol is
achievable for molecules that are small enough to allow the use of the CCSD(T) or
multireference CI methods with large basis sets. The electronic dissociation energy
of the nitrogen molecule could thus be calculated to chemical accuracy [22]. The
combined use of the CCSD(T) correlation method with large correlation consistent
basis functions provided the first gold standard of correlation methods, and the field
of quantum chemistry emerged as amature field with gravitas and confidence—some
would claim over-confidence.

Properties depending on energy differences, such as reaction and atomization
energies, exhibit a very slow convergence toward the basis set limit, and this reduces
the accuracy that may be achieved even using large basis sets. Thus, although the
accuracy of 4 kcal/mol was achieved, it seemed impossible or at least very difficult
to reduce this error by a factor of 10 or more, which would allow theoretical data to
be used for accurate modeling.

The slow convergence of the energies with respect to the size of the basis set
is connected with the non-differentiable behavior of the wave function when two
electrons have the same spatial coordinates. When two singlet-coupled electrons
i and j have the same coordinates, the exact wave function exhibits the cusp

lim
ri j→0

(
∂�

∂ri j

)

ave

= 1

2
�(ri j = 0), (1.8)

where the average is over a small sphere surrounding the point with coalescing
electrons.

These non-differentiable points in wave function space are obviously only very
slow convergent when the wave function as here is expanded as anti-symmetrized
products of differentiable wave function. However, it may be shown that this basis set
error converges toward the basis set limit as a simple function of the cardinal number,(
X + 1

2

)−3
, so the energy E(X) obtained in the basis set with cardinal number X is

related to the basis set limit E∞ as

EX = E∞ + A

(
X + 1

2

)−3

, (1.9)

where A is a constant to be determined. This equation may be used to extrapolate
toward the basis set limit by combining results from two or more calculations. The
simplest and most succesful of these extrapolation schemes [23] use linear interpola-
tion of the energies obtained with cardinal numbers X and X + 1 to obtain the basis
set limit as
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E∞ ≈ EX+1 −
(EX − EX+1)

(
X + 3

2

)−3

(
X + 1

2

)−3

−
(
X + 3

2

)−3 . (1.10)

In general, this simple extrapolation scheme reduces the error of E(X + 1) by an
order of magnitude.

The convergence factor
(
X + 1

2

)−3
is for singlet- coupled electron pairs, whereas

the error connected with triplet- coupled electron pairs is significantly smaller and
converges faster, with a factor proportional to

(
X + 1

2

)−5
. A more elaborate extrap-

olation scheme is thus based on the form

EX = E∞ + A

(
X + 1

2

)−3

+ B

(
X + 1

2

)−5

, (1.11)

with the unknown factors A, B. However, for most basis sets, extrapolation schemes
based on Eq. (1.11) have not proven to be more accurate than Eq. (1.10). The use
of the simple linear extrapolation scheme of Eq. (1.10) and the coupled cluster
wave functions with higher than triple excitations has led to calculations [24] and
protocols [25] for quantum chemistry which give atomization and reaction energies
with errors less than 1 kJ/mol.

It is important to note that the success of the various GTO basis sets and extrap-
olation schemes is an indication that these basis functions give energy contributions
that are close to the expansion of the atomic natural orbitals in a complete basis.
The convergence of the correlation energy toward the complete basis set limit will
therefore not be fundamentally changed by another choice of basis functions, such as
STOs. However, this does not rule out that even more accurate extrapolation results
may be obtained using GTO basis sets with a larger number of primitives or basis
sets based on STOs.

The success of the correlation consistent basis sets and the possibilities for basis
set extrapolation have led to renewed interest in the construction of basis sets that
systematically approach the basis set limit for the Hartree–Fock and Density Func-
tional Theory calculations. Jensen has developed the polarization consistent basis
sets [26], which in agreement with the correlation consistent basis sets are defined
in terms of the basis function with the highest angular momentum, but where the
number basis functions with low �, in particular s- and p-basis functions, are higher
than for the comparable correlation consistent basis set. Basis sets for Hartree–Fock
as well as DFT calculations have been devised. In agreement with an older analysis
of Klopper and Kutzelnigg [27], it was observed [28] that the error compared to the
complete basis set limit exhibited exponential convergence. In particular, the forms

E = E∞ + Ae−BX , (1.12)
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E = E∞ + A(X + 1)e−B
√
Ns (1.13)

were found optimal for extrapolation of the Hartree–Fock energy for correlation con-
sistent and polarization consistent basis sets, respectively. In Eqs. (1.12) and (1.13),
A, B are extrapolation parameters and Ns is the number of primitive s-functions in
the basis set. Jensen argued [28] that the polarization consistent basis sets provided
a more accurate and reliable extrapolation than the correlation consistent basis sets,
but Karton and Martin [29] showed that the single parameter form

E = E∞ + A(X + 1)e−9
√
X (1.14)

provided accurate extrapolation also for the correlation consistent basis sets. Note
that the extrapolation formulas in Eqs. (1.12) and (1.13) involve two parameters
and require therefore energies from three basis sets, whereas the form suggested
by Karton and Martin only requires the energy in two basis sets. The Hartree–Fock
energy is converging significantly faster than the correlation energy, so the Hartree–
Fock extrapolation schemes reduce typically the error of the energy of the largest
basis set by a factor of 2, whereas the extrapolation of the correlation energy typically
reduced the error by a factor of 10.

The current status of the GTO basis sets and the use of GTOs for molecular
calculations may be summarized as follows:

1. Very efficient algorithms have been developed to determine wave functions of
small and large molecules. Often the calculation of individual integrals are com-
pletely bypassed or are re-expressed using Cholesky factorization or resolution of
the identity. Derivative methods allowing the optimization of the geometry and,
for example, vibrational frequencies and intensities have been developed.

2. Basis sets for systematically approaching the complete basis set limit have been
developed for DFT, the HF and correlated wave functions for ground as well as
excited states. Basis sets targeted for specific properties, for example, magnetic
properties have also been developed.

3. The basis sets are so accurate and systematic that extrapolation procedures may
be applied to estimate the full basis set values for the correlation energy, as well
as for HF and DFT energies.

4. Relativistic basis functions aimed at describing the Dirac equation either at the
two- or the four-component level have been developed, allowing systematic pro-
cedures also for the relativistic wave functions.

The developed extrapolation schemes do not only give rise to improved energies
and other properties, but do also provide estimates of the errors of a given basis
set compared to the basis set limit. Although improvements of GTO basis sets, in
particular for calculations with very high accuracy, still are needed, the basis sets
developed in the last three decades have been one of the important ingredients for
developing quantum mechanical calculations into a mature scientific field, where it
is possible to provide estimates of the errors associated with a given calculation.
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1.5 Slater-Type Orbitals

The development of basis sets over STOs and other exponential-type orbitals (ETOs)
has been less extensive than the development of Gaussian basis sets. This is mainly
due to the lack of general and accurate procedures for calculating three- and four-
center two-electron integrals over these basis functions. Although this chapter and
book is devoted to the discussion of basis sets, it is pertinent to first review the current
status and progress in the calculation of such integrals as well as other integrals over
STOs, thereby summarizing the significant technical and algorithmic challenges that
have been overcome in the last few years.

For calculations on atoms, the problem with multi-center integrals is obviously
avoided and the STOs has been extensively used for high-accuracy calculations
for many decades. A recent addition is the development of the integrals relevant for
general calculations involving correlation factors in the form of Hylleraas correlation
functions [30].

For diatomic molecules, the recent developments of Lusiak and Moszinski [31–
34] have led to algorithms and implementations that allow the evaluation of integrals
for STOs with arbitrary angular momentum. In addition to the integrals required for
evaluation matrix elements of the non-relativistic Hamiltonian, they have developed
and programmed algorithms allowing the calculation of integrals for one-body rel-
ativistic operators as well as for effective core potential operators. The integrals are
obtained with very high accuracy, 12 digits or more, thereby allowing calculations
using basis sets having large overlaps, as typically is the case for basis sets for the
accurate calculation of correlation contributions.

For the much-sought generalization to the calculation of three- and four-center
integrals, the expansion introduced by Gill [35] of the Coulomb operator in terms of
products of functions of one-electron functions has led to significant progress. In par-
ticular, Hoggan and coworkers [36, 37] have used the expansion of Gill to devise and
programalgorithms for all types of integrals needed for general polyatomicmolecules
and have demonstrated the usefulness of the approach by performing calculations on
the dimer of H2. The method has also been combined with semi-empirical methods
and applied to study chemical shifts of benzothiazoles [37]. Unfortunately, to the
best of the present author’s knowledge, this development has not been extended to
correlated calculations of general polyatomic molecules.

An obvious way of bypassing the complications with the development of analytic
evaluation ofmulti-center integrals over STOs is to calculate the integrals, or the con-
tributions from the integrals, using numerical integration. This procedure is typically
implemented by first expanding the product of two STOs as a sum over STOs in an
auxiliary basis [4], which leads to the two-electron integrals being reduced to inte-
grals between three STOs and these are then evaluated using numerical techniques.
This approach has been used for more than four decades in the extensively used ADF
program developed of Baerends and coworkers for DFT calculations without exact
exchange [4] and later used by Watson, Handy, and Cohen [38] to calculations using
Hartree–Fock and DFT with exchange.
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In broad terms, there are therefore currently two types of molecular calculations,
where STOs are in general use: high-accuracy calculations on diatomic molecules
andHartree–Fock andDFT calculations on generalmolecules. Startingwith the latter
approach, newbasis sets that systematically approach the full basis set limit have been
developed by Van Lenthe and Baerends [39]. The developed basis sets range from
double zeta up to quadruple zeta basis sets including polarization functions. For the
heavier elements, the basis sets are optimized for a relativistic Hamiltonian. The basis
sets have been extensively tested [39] and the results of the smaller basis sets converge
toward those of the largest basis sets. The convergence has not been compared to the
exponential convergence of Hartree–Fock and DFT energies that were discussed in
the previous section. The triple zeta basis have subsequently been slightly extended
by Watson, Handy, and Cohen [38] and were shown to be comparable in accuracy to
standard triple zeta GTO basis sets. For Hartree–Fock and DFT calculations, there
are thus good and well-tested STO basis sets for all atoms, but these have not been
demonstrated to provide better energies than GTO basis sets with similar numbers of
contracted GTOs. Whether this lack of advantage in the use of STOs is fundamental
or is due to other approximations of the approach, in particular the reexpansion of
products of STOs into single STOs and the numerical quadrature is not presently
known.

For the other current molecular use of STO basis sets, high-accuracy diatomic
calculations, basis sets have been developed for selected atoms in connection with
calculations. Lesiuk andMoszynski have developed hierarchies of STO basis sets for
Be [33], Ca, Sr, and Ba [34]. As there are no general benchmarks available for high-
accuracy calculations on diatomic molecules using STO basis sets, the discussion of
the performance must necessarily be restricted to these case studies, and we will here
focus on the calculation on theBe dimer. For theBe atom, a hierarchy of basis setswas
developed for cardinal numbers up to 6 using the ideas of the correlation- consistent
GTObasis sets. For numerical stability in the basis set optimization, itwas foundmost
convenient to use STO basis with n = � + 1 in Eq. (1.2) in agreement with the choice
for GTO basis sets. The exponents of the primitive functions were not individually
optimized, but were defined in three or four parameters and these parameters were
then optimized. The use of these basis sets for the Be dimer in connection with basis
set extrapolation in the form of Eq. (1.11) was found to provide excellent results
for the complete basis set limit. The use of STO basis sets could thus exploit the
more involved three-parameter extrapolation, and in particular the reliability of the
extrapolation of the contributions from the correlation of the 1s-orbital were found
to give better results than for standard GTO correlation consistent basis sets. The
binding energy of Be dimer was theoretically determined as 929.0 cm−1 with an
estimated accuracy of 1.9 cm−1, which constitutes the best computational estimate
of this energy, both in terms of the agreement with the experimental value of 929.7 ±
2.0 cm−1 and in terms of the estimated error of the calculation.

Taking theBedimer as a prototypical example of the accuracy thatmaybeobtained
for small diatomic molecules using STO basis sets, it is concluded that basis sets
based on STOs provides the highest accuracy at themoment. Although the evaluation
of the integrals over the STO is about an order of magnitude larger than that for GTO
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basis sets of similar size, the integral evaluation time constitutes only a small fraction
of the total time. It is possible that GTO basis sets with similar accuracy may be
developed, but these are presently not around.

Many developments are still required before STO basis sets may become a
choice on par or even superseding GTO basis for general calculations on poly-
atomic molecules. Many of the developments that have allowed quantum chemistry
to become a general useful tool for describing the structure, energy, and spectra are
still missing. For example, the determination of equilibrium structures for molecules
requires the calculation of derivatives of integrals with respect to the position of
nuclear centers. While the development of such integrals for GTO basis sets was
completed about 30 years ago, the corresponding development for STO basis sets
has not yet been initiated.Without a fundamental change in theway that integrals over
STOs are programmed and calculated, it is not likely that the use of STO will take
over the role of GTO basis sets as a general tool for quantum chemical calculations,
but they may become a complement for high-accuracy calculations of energetics at
given geometries.

1.6 Basis Sets With Local Support, Finite Difference,
and Spline Approaches

The various numerical methods that exploit basis functions with local support or
spatial grids not only have many common features, but have also a number of impor-
tant differences. Let us for simplicity restrict our discussion to a single dimension,
where these approaches start by introducing a set of points, ri , spanning the interval
of interest. In the finite element [40] and wavelet [41] approaches, the points are
collected into groups of k points with the final point of one cell also included as the
first point of the following cell. Polynomials of order k − 1 are then introduced in
each of these cells, and it is these polynomials that form the basis functions of the
calculation. The Legendre polynomials [42] are simple and useful examples of such
local polynomials. In quantum chemistry codes, polynomials of order up to 8 are
often used. The polynomials are chosen so that the expansion of the basis functions
is continuous and it is also possible to ensure continuity of the first or higher deriva-
tives. For the B-spline approach [43], the points are not grouped into cells, and the
defined local polynomials span the interval from a given point ri and a few of the
following points with the polynomials chosen so at least the function and the first
derivatives are continuous.

Expansions of orbitals in terms of the basis functions of local polynomials are
in principle completely equivalent to the expansion of orbitals in the standard basis
functions, but there are two aspects that give their quantum chemical implementation
a different flavour: the very large number of basis functions, which may run into
hundreds of thousands or millions, and the locality of the basis functions, which
greatly simplifies the calculation of integrals between these.
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Restricting the discussion to general polyatomic molecules, the extensively used
programOctupus [44] is based on the FEMmethod. The wavelets were introduced in
quantum chemistry by Harrison and coworkers [45], and have recently been applied
to general molecules at theHF andDFT levels by Frediani and coworkers [46], where
they have been used to determine the full basis set limit of energies and magnetic
properties.

Predating the FEM and wavelet approaches is the standard finite difference (FD)
approach [47] of numerical analysis, which was used to calculate approximate
(Hartree) wave functions already in 1927 [48], one year after the papers introducing
and defining quantum mechanics were published. The FD approach for atoms has
been extensively developed by Froese Fischer [49] and coworkers. There have also
been several developments to extend the use of FD methods to molecules and solids.
These developments were started by the two-dimensional FD code for diatomic
molecules developed by Laaksonen, Sundholm, and Pykko [50], and have most
recently been used in the box and boble approach of Sundholm and coworkers [51],
where ideas of FEM and FD approaches are combined. A number of real space meth-
ods for solids have also been developed in the last decades and are in many contexts
giving more predictable accuracy than offered by the plane wave expansions. One
of the most prominent and successful developments along these lines is the GPAW
code of Thygesen et al. [52].

There is a subtle difference between the way the FEM and FD equations are
obtained. Consider, for example, the derivation of the Hartree–Fock equations. In the
FD approach, one first obtains a general expression for the Hartree–Fock equation
using a formally complete expansion of the orbitals, and one subsequently discretizes
this equation on a grid. In the FEM method, one starts by introducing the expansion
of the orbitals in the finite elements in the energy expansion, and one then derives the
variational condition. Thus, in the FD method, one performs the discretization after
having derived the variational condition, whereas in the FEMmethod, the variational
condition is derived for a discretized wave function. This makes the FEM expression
somewhat more complicated to derive and program, but ensures that the procedure
is variational. In a FEM Hartree–Fock calculation, the final optimized energy is thus
the lowest energy that may be obtained with the given set of basis functions, whereas
this does not hold for the FD approach. Whether this variational property of the FEM
approach is sufficient to justify the added complexity compared to the FD approach
depends on the complexity of the problem. For the standardHFwave functions,where
the variational problem in general is rather simple, the added complexity of the FEM
approach is in general not warranted, but for the much more complex optimization
of multi-configurational Hartree–Fock wave functions, the variational aspects of the
FEM approach certainly have their advantages.

The above discussion was restricted to the calculation of bound electronic states.
An important additional use of quantum mechanical methods is the calculation of
cross-sections for scattering, electron detachment, and ionization. Such calculations
are important for problems ranging from the reentrance of space vehicles in the
atmosphere to the behavior of atoms and molecules in intense laser fields. The wave
function of an electron being ionized from amolecule cannot be accurately described
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in terms of GTOs or STOs, so basis sets with local support, FEM polynomial or
splines, are used to describe these. The points of expansion, the grid points, are
typical chosen so the matrix elements of a potential operator become diagonal in this
basis. This is the fundamental idea of the discrete variable representation (DVR) of
FEM [53]. In practice, a molecule is divided into two parts, an inner part where the
standard (GTO) basis set is used to describe the bound electrons, and an outer part
where the outgoing electron is described using the FEM basis functions or splines.

1.7 Conclusion and Outlook

Although significant developments are being made within each of the above-
mentioned forms of basis sets, the most innovative developments within recent years
have arguably been the combined use of several different forms of basis sets. One
may thereby use the various forms of basis set expansions, where they have their
strengths. One of the currently most prominent of such approaches is the combined
use of a GTO and a plane wave basis to describe solids. The GTO basis is used to
describe the core and inner valence electrons, as their highly localized form makes
them difficult to describe using plane waves, whereas the plane waves are used to
describe the outer delocalized and much slower varying part of the wave function.
The abovementioned use of combined GTO and FEM expansions for scattering is
another example of such a combination. It is the firm opinion of the present author
that much progress is still to be obtained by such combinations of different forms
of basis sets. It is the hope that the present book may inspire and facilitate such
advances.
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Abbreviations

ADF Amsterdam density functional code
a0 Bohr radius
ALDA Adiabatic local density approximation
CCSD Coupled cluster singles and doubles
CCSD(T) CCSD including triple excitations
CGTO Contracted GTO
CT Charge transfer
DFT Density functional theory
EOM Equation of motion
F Fock matrix operator
GTO Gaussian-type orbital
h One-electron operator
HOMO Highest occupied molecular orbital
J Coulomb operator
K Exchange operator
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LDA Local density approximation
LCAO Linear combination of atomic orbital
LUMO Lowest unoccupied molecular orbital
M-L Metal–ligand
MO Molecular orbital
NL Nonlocal
PA Polyacetylene
RI Raman intensity
SCF Self-consistent field
SERS Surface-enhanced Raman spectroscopy
SOC Spin–orbit coupling
STO Slater-type orbital
TDDFT Time-dependent density functional theory
VK Vignale–Kohn
VWN Vosko–Wilk–Nausair
XC Exchange–correlation
ZORA Zeroth-order regular approximation
ζ Slater exponent

2.1 Introduction

Molecular orbitals in quantum chemistry arise from the solution of Hartree–Fock
(HF)-type equations and they are used to compute various electronic properties
related to the molecular structure [1]. A few of such properties are dipole moment,
charge density on atoms, Bader characteristics, excited-state properties (which
include transition moment, oscillator strength of the excited states, etc.), vibrational
and Raman spectra of molecules, and so on. These molecular property calculations
are not simply restricted to simple HF equations. They also include density func-
tional theory (DFT) calculations [2], coupled cluster (CCSD, CCSD(T), etc.) [3–7],
and many other single and multireference techniques at various levels of sophisti-
cation [1, 8–10]. For the present purpose, it is easier to consider just HF equations
to introduce the concept of molecular orbitals. If we consider an n-electron closed-
shell molecule, the ground-state wave function � could be written as a single Slater
determinant form as:

� = |ψ1ψ2ψ3 . . . ψn| (2.1)

The molecular orbitals ψ i of the ith eigenstate εi arise as a solution to the HF
equation Fψ i = εiψ i (F: Fock matrix operator) which is an integro-differential
equation. The F is usually written as a combination of one-electron operator h and
two-electron operators J and K as [8],
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Fψi = hψi + (J − K )ψi (2.2)

where

h = −1

2
∇2

1 +
∑ ZA

r1A
(2.3)

Jψi =
[∫

ψ∗
i (r2)ψi (r2)

r12
dr2

]
ψi (2.4)

Kψi =
[∫

ψ∗
j (r2)ψi (r2)

r12
dr2

]
ψi (2.5)

The coulomb operator J (Eq. 2.4) represents the average local potential at r1
arising from an electron in ψ j(at r2), while the exchange operator K in (2.5) is
defined by its effect when operating on spin orbital ψ i(r1). The exchange integrals
computed through (2.5) as Kψ i(r1) should vanish unless the spin function of ψ j(r2)
is the same as ψ i(r1), while the coulomb integrals Jψ i(r1) are non-vanishing. The
integro-differential nature of the HF equation is also revealed through operators h
(the kinetic energy part revealing the differential component), J, and K (providing
an integral part). The solutions of such equations are usually achieved variation-
ally with a starting guess for ψ i. The solutions of HF equations are only feasible
for atoms and linear molecules, where the angular part of ψ i could be precisely
separated from the radial part due to the presence of axial and full rotational group
symmetry. On the other hand, in the case of a nonlinear molecule, the HF equations
cannot be solved by following a similar mathematical approach owing to their three-
dimensional landscape of ψ i as well as the potential energy terms that appeared in
F.

The most commonly used technique is to expand ψ iin terms of basis function
ϕμ according to the LCAO-MO (LCAO: linear combination of atomic orbital; MO:
molecular orbital) procedure:

ψi =
∑

μ

cμiϕμ (2.6)

This reduces HF equation to the form:

∑

ν

Fμνcνi = εi
∑

ν

Sμνcνi (2.7)

Equation (2.7) is generally called the Roothaan–Hall equation. It introduces the
concept of atomic basis functions (or basis sets) to solve the HF equations variation-
ally. The Sμν term is the overlap matrix element between the atomic orbitals (AOs)μ
and v, Fμν is the Fock matrix element and cνi is the LCAO-MO coefficient. It should
be noted that the matrix Fμν has a dimension N equal to the number of atomic basis
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orbitals used in the LCAO-MO expansion, and has N eigenvalues εi and N eigenvec-
tors whose elements are cνi. Thus, there are occupied and virtual molecular orbitals
(MOs), which are described by cνi coefficients through the solution of Eq. (2.7).

2.2 Concept of Basis Sets

As a consequence of atomic symmetry, atomic orbitals are always of the form [1, 8]:

ϕ(r, θ, ϕ) = R(r)Ylm(θ, ϕ) (2.8)

where R(r) is the radial part and Ylm(θ ,ϕ) represents spherical harmonics. Due to the
singularity of the potential at a point nucleus with a charge of Z, the wave function
must have a cusp at the nucleus. More specifically, it is required that

(
dR

dr

)

r=0

= −Z (2.9)

At the other end of the range, an electron far away from any molecule would
see the remainder of the molecule as a positive charge without any particular struc-
ture. Therefore, the wavefunction, like in any single-electron atom (cf . the case of
H-atom), would decay exponentially. The consideration of such ideas led to the
development of atomic basis sets. The basis orbitals (or basis sets) commonly used
in LCAO-MO-SCF (SCF: self-consistent field) calculations fall into two classes, viz.
Slater-type orbitals (STOs) and Gaussian-type orbitals (GTOs). The STOs could be
mathematically represented as:

ϕnlm(r, θ, ϕ) = NnlmζYlm(θ, ϕ)rn−1e−ζr (2.10)

These STOs are characterized by the quantum numbers n, l, and m (principal,
azimuthal, and magnetic, respectively) and the exponent ζ (characterizes the radial
size of the basis function).

GTOs are usually written in terms of quantum numbers a, b, and c and Cartesian
coordinates x, y, and z as:

χabc(r, θ, ϕ) = Nabcαx
a ybzce−αr2 (2.11)

In the Cartesian representation of GTOs in Eq. (2.11), the quantum numbers a, b,
and c represents different atomic orbitals. For example, orbitals with a, b, c values
of 1,0,0, or 0,1,0 or 0,0,1 are px, py, and pz orbitals; the combinations 2,0,0, or 0,2,0,
or 0,0,2 and 1,1,0, or 0,1,1, or 1,0,1 are for five d orbital and one s orbital (the sum
of the 2,0,0, 0,2,0, and 0,0,2 orbitals is an s orbital because x2 + y2 + z2 = r2 is
independent of θ and ϕ). Thus, the quantum numbers a, b, andc describe the angular
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shape and direction of the orbital, while the exponent α governs the radial size of
the basis function. For both STOs and GTOs, the values of r, θ , and ϕ signify the
localization of electron with respect to an array of axes assigned to the center on
which the basis orbital is sited [8].

The 2p, 3d, etc., in the STOs and GTOs are generalizations of Eqs. (2.10) and
(2.11) that have a polynomial in the components r (x, y, etc.) multiplying the same

exponential
(
e−ζr

)
or Gaussian

(
e−αr2

)
fall-off. The orbital exponents, which are

positive numbers larger than zero, determine the diffuseness or size of the basis
function. A large exponent implies a small dense function and a small exponent
implies a large diffuse function. The major differences between the two functions
e−ζr and e−αr2 occur at r = 0 and at large r. At r = 0, the Slater function has a finite
slope and the Gaussian function has a zero slope [1],

[
d

dr

(
e−ζr

)]

r=0

�= 0 (2.12)

[
d

dr

(
e−αr2

)]

r=0

= 0 (2.13)

At large values of r, e−αr2 decays much more rapidly than the Slater function
e−ζr .

All STOsmore correctly describe the quantitative features of themolecular orbital
ψ i than doGTOs, and fewer STOswould be needed in basis function expansion ofψ i

for comparable results. As an example, it is possible to show that at larger distances,
molecular orbital decays as ψ i → exp (-air), which is of the Slater form. For the
sake of simplicity, the molecular orbitals of hydrogen atom have been taken into
consideration. The 1s, 2s, and 2px orbitals could be represented as [8]:

1s : 1

a3/20

π−1/2 exp
(−r

/
a0

)
(2.14)

2s : 1

a3/20

(2π)−1/2
(
1 − r

2a0

2

)
exp

( −r

2a0

)
(2.15)

2px : 1

a3/20

(2π)−1/2 r

4a0
cos θ exp

( −r

2a0

)
(2.16)

(r: radial coordinate of the electron, a0: Bohr radius; nuclear charge = 1) Consid-
ering such properties, STOs could be judged as preferable than GTOs in electronic
wavefunction calculations. The stumbling block for using STOs appears during the
calculations of multicenter multi-electron J and K integrals defined in Eqs. (2.4)
and (2.5). These integrals could be routinely calculated in GTOs, as they have the
advantage of expressing these multicenter integrals in terms of the same center. For
example, the two-center products in GTOs could be expressed as [1, 8]:
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exp
[−αa(r − Ra)

2
]
exp

[−αb(r − Rb)
2
]

= exp
[−(αa + αb)(r − RX )2

]
exp

[−αX (Ra − Rb)
2
] (2.17)

where

RX = αa Ra + αb Rb

αaαb
(2.18)

αX = αaαb

(αa + αb)
(2.19)

Subsequently, a four-center two-electron integral over GTOs can be formu-
lated optimally, like a two-center two-electron integral. Such diminution in centers
is adequate to calculate multicenter multi-electron integrals effectively. Similar
reduction for STO-integrals is not possible in such a straightforward way.

The major drawback of using GTOs over the STOs is prompted by their erratic
comportment close to the nuclear center, as revealed by Eqs. 2.12 and 2.13. The
nuisance could be resolved by coalescing two, three, or additional GTOswithmixing
coefficients, that are not regarded to LCAO-MO parameters, into a different function
defined as contracted GTOs (CGTOs). It could be generally written as [1, 11, 12]:

ϕCGT O
μ (r − RA) =

L∑

p=1

dpμϕGT O
p

(
αpμ, r − RA

)
(2.20)

where L is the length of the contraction and dpμ is the contraction coefficient. The
pth normalized Gaussian ϕGT O

p has a functional dependence on the Gaussian orbital
exponent αpμ. By the proper choice of L, dpμ, and αpμ, the contracted Gaussian
function can be made to assume any functional form consistent with the primitive
functions used. Thus, by proper choice of contraction parameters, one can use basis
functions that are approximate atomicHartree–Fock functions, Slater-type functions,
etc., while evaluating integrals only with primitive Gaussians. The most widely used
procedure, in this respect, is to fit an STO to a linear combination of L= 1, 2, 3…, N
primitive Gaussians functions. These are commonly known as STO-NG procedure.
Figure 2.1 represents a comparison of Slater- and Gaussian-type functions related to
their long-range behavior.

The widely used Gaussian-type basis sets are well documented in regular text-
books [1, 8] and in literature [13]. These types of basis sets are also used inmost of the
available computer codes for calculating the electronic properties of molecules using
quantum chemical techniques. The STOs were used primarily in semi-empirical
calculations, and the procedures at different levels of intricacies are well documented
[8]. Much efforts have been paid to deploy STOs to directly solve HF-type equations
by overcoming the problems of computing molecular integrals, and these techniques
in recent times arewidely used in density functional theory (DFT) approaches to solve
molecular electronic properties in gas-phase, solid-state, and solvated conditions.
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Fig. 2.1 a Comparison of Slater- and Gaussian-type orbitals is shown schematically. The orbital
exponent for both the orbitals is 1.0. b Schematic comparison of the quality of the least-squares fit
of a 1s Slater function (ζ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G levels

Such advancements were achievable by continued efforts to generate appropriate
Slater-type basis sets and solution techniques for molecular integrals.

2.3 STOs in Quantum Chemistry

The development of the use of STOs in quantum-chemical calculations started in
the late 1960s. The main problem was to calculate the multicenter integrals, and a
procedure was developed by Harris and Michels [14]. Later, several authors have
developed efficient mathematical algorithms for solving multicenter multi-electron
integrals in this direction [15–19]. TheHF-STOs techniquewas developed by Ziegler
and Rauk [20] to compute the bonding energies of molecules. The use of STOs in
DFT was developed later in the 1980s [21, 22] and the techniques are routinely used,
in recent times, to predict molecular electronic properties. In the present section,
we will briefly outline the ideas of solving the multicenter integrals in DFT, and
then introduce the different slater-type basis sets that are commonly used in such
calculations.

2.3.1 Multicenter Integrals

The Kohn–Sham DFT [23], which adapts a one-electron formalism, represents a
viable approach to decode a system of N interacting electrons by accounting for an
apposite local potential VXC(r), in addition to any external potentials V ext(r) and the
Coulomb potential of the electron cloud VC(r) Eq. (2.21).
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[
−1

2
∇2 + Vext (r) + VC(r) + VXC(r)

]
ϕi (r) = εiϕi (r) (2.21)

The potential VXC is derived from the functional derivative of the exchange–
correlation energy [EXC(ρ)]with reference to the electron densityρ. The one-electron
molecular orbitals (MOs) ϕi (with corresponding orbital energies εi) define the exact
electronic charge density and give, in principle, access to all properties since they
could be expressed as functional of the density (in particular the energy). They also
provide an intuitive view of the system as being built from independent-electron
orbitals with all ensuing interpretations.

The precise form of the energy density functional EXC(ρ) including the reckoning
of characteristics of inherent exchange and correlation effects is obscured. Several
sophisticated mathematical algorithms have been proposed previously to quantify
EXC(ρ) based on general principles. Their application to real systems has been found
to be quite impressive.

The DFT implementations using STOs commonly employ some sort of numer-
ical integration scheme, since the mathematical expression for any relevant density
functional makes an analytical integration of matrix elements of the XC potential
impossible regardless of the nature of basis functions. The Gaussian-type quadrature
method [24] based on the partitioning of space in atomic cells is commonly used in
the most popular ADF code [24, 25]. The individual atomic cell is described by a
core-region sphere, where the integrands in conjunction with cusps and singularities
at the nucleus are manipulated decently in spherical coordinates:

∫

cell

f (r)dr =
∫

sphere

f (r)dr +
∫

cell - withoutsphere

f (r)dr (2.22)

∫

sphere

f (r)dr =
R∫

0

r2dr

4π∫

0

f (r,
)d
 (2.23)

where r2is the Jacobian factor that eliminates the Coulomb singularity of the inte-
grand at the nuclear position. The cell-without sphere region is described by a Gaus-
sian product theorem in the Cartesian-like coordinates following proper coordinate
transformations. The atomic cells fill all space “inside” the molecule. All integrands
decline exponentially with the distance in the residual “outer” area, distant from the
atoms. Such an integration scheme is literally implemented in the ADF code. In such
a numerical grid approach, the grid can be automatically tuned by varying the number
of points in the different regions (atomic spheres, cells, and the outer region), while
monitoring a series of test integrals such that these are evaluated with an (input-
adjustable) precision. The detailed procedure regarding the geometric manipulations
for the grid base integration scheme is available in references [16] and [17] and need
not be discussed here in detail.
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2.3.2 Coulomb potential and fit function

All terms in the Kohn–Sham operator of Eq. (2.21) are local in the sense that they
can be evaluated readily as functions of r, except for the Coulomb potential VC(r).
Slater-type basis functions yield entangled multicenter integrals in the evaluation
of the Coulomb potential. This problem is resolved by using an auxiliary set of
fit functions. The fit functions can be expressed in terms of prototype of Slater
exponential functions placed on the atoms in the same way as basis functions. The
actual density furnished by a sum of products of basis functions is subsequently
estimated by a linear combination of the fit functions. The combination coefficients
(ci) are called the fit coefficients [24].

ρ(r) =
∑

i

ci fi (r) (2.24)

Approximate Coulomb potential is obtained as an expansion in fit potential func-
tions

(
f ci (r)

)
through the solution of the Poisson equation for the fit functions

(Eqs. 2.25 and 2.26).

f ci (r) =
∫

fi
(
r

′)
∣∣r − r ′ ∣∣dr

′
(2.25)

V f it
C (r) ≈

∑

i

ci f
c
i (r) (2.26)

The generation of V f it
C (r) involves the least-squared solution of Eq. (2.25) under

the constraint that the number of electrons in the fit representation is preserved. For an
STO-type fit function f (r) = Ylm(
)rne−ζr , the corresponding Coulomb potential
function f c(r) [24] is obtained through Eq. (2.25) as given below:

f ci (r) = 4π

2l + 1
ϕlm(
)

⎡

⎢⎢⎢⎣

r∫

0

(
r

′)n+l+2
exp(−ζr

′
dr

′
)

rl+1
+ rl

∞∫

0

(
r

′)n+l+1
exp

(
−ζr

′)
dr

′

⎤

⎥⎥⎥⎦

(2.27)

For the higher values of r, the multipolar term of long-range interactions becomes
a crucial factor, and it disintegrates as q

/
rl+1, where q is the electronic charge

and l represents the angular momentum quantum number for a given STO-type fit
function. q could be considered as the sum of charges enclosed in the fit function on
account of the l = 0 monopole function. Thus, it could be determined by performing
the integration over all space of the fit function itself. On the other hand, the long-
range multipole term is altered by an exponentially decaying small-range term due
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to the smaller values of r, and the function reaches zero when r = 0. For practical
application, the repository of Slater basis function is generated for each atom by
including the details of basis functions, the frozen core orbitals, and the fit functions
centrally located on that specific atom to facilitate the computation.

2.3.3 Slater basis sets

Various types of Slater basis sets are usually available from the computational
chemistry code like ADF [24, 25]. ADF exploits Slater-type functions (STOs)
f (r) = Ylm(
)rne−ζr (
 contains the information of θ and ϕ of Eq. 2.10) as basis
set elements, in terms of which the molecular orbitals (MOs) are expanded. A large
number of basis sets for all elements of the periodic table, ranging from minimum
single-ζ (SZ) to doubly polarized triple-ζ (TZ2P) basis sets, are available (2.25). It
incorporates special extended sets with very diffuse functions for polarizability and
hyperpolarizability calculations [26–30] and others with very contracted deep-core
function sets for relativistic calculations within the ZORA formalism [31, 32]. The
implemented method is based upon even-tempered STO-basis sets [33] developed
by Chong et al. [34]. The implementations were made with a few modifications to
generate proper molecular properties. The details of the basis sets are available in the
ADFmanual [25]. The information required to describe the basis set in ADF code for
a given element includes the Slater-type basis functions, core expansion functions,
core description, and fit functions.

The information about quantum numbers viz. principal and angular together with
the exponential decay factor for a given set of Slater-type basis functions is acquired
by the details of the basis record. The core data looks very much like the basis
functions: a list of Slater-type function descriptions. The parenthetical record of the
core contains four integers viz. ns, np, nd, and nf . They are the numbers, respectively,
of s-, p-, d-, and f - frozen core shells in the atom. For the sake of illustration, let us
examine the numbers of frozen core shells belonging to the Ruthenium atom under
the wing of the frozen core prior to the 4p shell. Therefore, for the Ru atom, the core
comprises four s-frozen core shells (1s, 2s, 3s, 4s), three p-frozen core shells (2p,
3p, 4p), one d-frozen core shell (3d), and no frozen f -shells. The idea behind the
frozen core is to lower the computational time by reducing the size of the variational
basis set. The crucial objective for such reduction is to ensure the least involvement
of the deep-core atomic orbitals upon bond formation and thus save time without
sacrificing the quality. The valence basis set used in the SCF equations is explicitly
orthogonalized to the frozen core to ensure orthogonality between the frozen core
orbitals and the valence basis functions. Each valence function

(
χvalence

υ

)
is replaced

by a linear combination, as shown in Eq. (2.28) [24]:

χvalence
υ ⇒ χvalence

υ +
∑

μ

cμυχ core
υ (2.28)
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The condition that each such modified valence function be orthogonal to each
frozen core orbital determines exactly all the coefficients cμν (these values are actu-
ally in the core data as 1s 24.40…, etc.). The frozen core orbitals are deduced by
performing meticulous single-atom computations in conjunction with substantial
STO-basis sets.

The core description data describes the frozen core shells as linear combinations
of the core expansion functions. All n l frozen shells corresponding to the individual
angular momentum quantum numbers (l = s, p, d, f ) are accounted by expansion
coefficients. To every function set associated with the angular momentum quantum
number l value, there correspond a coefficient in the list of expansion functions.
There cannot be distinct coefficients for all m values since all m values are identical
in a spherically symmetric model atom. The last dataset is based on the fit functions,
and the basis of such data has already been discussed in section 2.3.2.

2.4 Examples on the Use of STOs in Chemistry

The STOs are nowadays used routinely in quantum chemistry as a tool for molec-
ular electronic property calculations. The DFT-STO techniques are used in almost
all spheres of quantum chemical analysis and a huge number of publications, in
this respect, have appeared in various journals. To name a few of such applica-
tions are electronic structure analysis of molecules, spectroscopic properties, reac-
tion path analysis, spin–orbit effect on molecular properties, NMR analysis of
molecules, solid-state structures and properties.Wewill mention about a few specific
applications to complete this present discussion.

2.4.1 Benchmark molecular structure calculations

The initial benchmark calculations using DFT-Slater calculations were directed to
understand themetal–ligand (M-L) bonds [22]. It is, in general, accepted that electron
correlation effects are important in M-L bond description, and the degree of elec-
tron correlation in such bonding varies considerably with the ligand. The synergic
ligands for instanceCO, cyclopropane (CP), andolefins therebynecessitate a substan-
tial amount of correlation because of their intricate bonding characteristic mediated
by electron donation and back donation. Simple two-electron donor ligands such as
halides or phosphines, on the other hand, demand a more modest degree of elec-
tron correlation. As a consequence, it is not uncommon that approximate ab-initio
calculations predict a distorted structure in which bonds involving Cl or PR3 (R: H
or any alkyl group) are close to experimental observations, whereas bonds involving
synergic ligands are misrepresented. Even chemically distinct bonds involving the
same ligand might have different demands on electron correlation. An important
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example is Fe(CO)5, in which Hartree–Fock calculations provide a distorted struc-
ture where the Fe-Cax bonds are too long by 0.24 Å., whereas the Fe-Ceq bonds are
more in line with the experiment.

In this regard, efforts are being made to optimize molecular geometries of metal–
ligand systems such as MnO4 , Cr(CO)6, Mo(CO)6, Fe(CO)5, Ni(CO)4, HMn(CO)5,
HCo(CO)4, Fe(C5H5)2, and C5H5NiNO employing Local Density Approximation
(LDA)-based method together with its nonlocal (NL) extension including Perdew’s
[36] correction to correlation and Becke’s [37] correction to exchange. Uncontracted
triple-ζ quality STO-basis set, augmented by three (n + 1)p STOs, were used for the
transition metals. The main group elements were described by a double-ζ STO-basis
augmented by one 2p function for hydrogen and a single 3d polarization function
for the other elements. A group of auxiliary s, p, d, f, and g STOs placed on each
nucleus were deployed to fit the atomistic density. The computed metal–ligand bond
distances using LDA-based methods are underestimated by about 0.05 Å compared
to the experimental results, while such deviations minimize to 0.01 Å upon nonlocal
corrections [22].

Several other organic molecules containing more than a single heavy atom were
also investigated in this context. They includedH2CO(C2v),C2H2 (D∞h),C2H4 (D2h),
CO2 (D∞h), CH3OH (C1), and oxiran (ethylene oxide, C2v). The results showed
no significant difference between LDA and LDA/NL for bond lengths involving
hydrogen atoms. Single, double, and triple C–C bond lengths in oxiran, ethylene,
and acetylene, respectively, werewell reproduced by either local or nonlocalmethods
and the deviations from experiments were found to be less than 0.02 Å [22]. The
three types of C-O bonds present in CO2 (D∞h), CH3OH (C1), and oxiran (ethylene
oxide, C2v), were somewhat better represented by LDA/NL. The C-O bond in oxiran,
for example, was 1.416 Å according to LDA. It is 0.018 Å shorter than the experi-
mental value of 1.434 Å. This discrepancy between the LDA/NL value of 1.442 Å
and the experiment is only 0.008 Å. It is clear from the results that nonlocal correc-
tions to bond lengths between main group elements are modest, adding little to the
already good agreement between experiment and local results. This is in contrast to
metal–ligand bond lengths where nonlocal corrections are substantial and important
for a quantitative estimate [22]. These benchmark results obtained by the nonlocal
corrections to LDA (LDA/NL) for geometries of transition-metal compounds using
STOs were quite encouraging, especially for metal–ligand bond lengths, and paved
the way for the further development of DFT-STO techniques in quantum chemistry.

2.4.2 Excitation Energy Calculations

In this section, we present a specific example of excitation energy calculations using
Slater orbitals within the framework of time-dependent density functional theory
(TDDFT). The present example reports the π → π∗ singlet excitations of the π -
conjugated oligomers of polyacetylene, polydiacetylene and the lowest singlet excita-
tions of the hydrogen chain. TDDFT calculationswithin theVignale–Kohn (VK) [37]
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and adiabatic local density approximations (ALDA) were used for such studies [38].
The lowest energy structures of these oligomers on the potential energy hypersurface
were determined by exploiting generalized gradient approximation (GGA)-based BP
functional comprising exchange potential proposed by Becke [35] and correlation
counterpart developed by Perdew [36]. The oligomer geometries were forced to be
planar (Cs). A triple-ζ Slater-type basis set augmented with two polarization func-
tions was used in such calculations, and the cores were kept frozen for carbon up to
1s and for sulfur up to 2p.

The excitation energies for polyacetylene and polythiophenemolecules are shown
in Fig. 2.2a, b, respectively. The ground states of the studied molecules were
computed with the local density approximation (LDA) functional in the VWN
(Vosko, Wilk, and Nusair) parametrization [39]. The response calculations were
carried out with the ALDA derived from the ground-state LDA expression and the
VK functional [37].

Figure 2.2a shows the results for the dipole allowed 1Bu excitation energies
and corresponding oscillator strengths of polyacetylene (PA) against the number of
oligomer (C2H2) units. The results are compared with experiment [41] and CCSD-
EOM findings [40]. The predicted 11Bu excitation energies for the shorter chain
segments (3–4 units) employing ALDA-based method are near to the CCSD-EOM-
derived results; however, there are certain discrepancies for the longer chains. For
instance, the calculated excitation energy using ALDA for the longest oligomer
comprising of 15 units is underestimated by 1.39 eVwith respect to the CCSD result.

Fig. 2.2 a Excitation energies and oscillator strengths of polyacetylene oligomers compared with
CCSD-EOM and experimental results [38]. Experiments 1 and 2 are both absorption spectra from
ref. [41]. b Excitation energies and oscillator strengths of polythiophene oligomers compared with
CIS [42] and experimental results (monomer and dimer: ref. [43]; tetramer and seximer: ref. [44];
octamer: ref. [45]). Adapted with permission from Ref. 38 Copyright (2004) (AIP Publishing)
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It is known that ALDA overestimates the polarizability, and thus the reduction of
the static polarizability is yielded by using the VK functional. On the other hand, it
diminishes static polarizability assisted by the diminution of the oscillator strength
of the lowest transitions or surge of the excitation energies, or both. The calculated
excitation energies using VK functional are higher than the ALDA results. The VK
results also coincide with the CCSD results for the small oligomers, although the
computed excitation energy for the longer polymers demonstrates a deviation from
the CCSD results.

Figure 2.2b shows the variation of excitation energies and oscillator strengths of
polythiophene (PT) for the 11Bu (even number of thiophene rings) and 11B2 (odd
number of thiophene rings) transitions as a function of SC4H2 units. The predicted
trends of excitation energies with ALDA and VK functional show the same behavior
as observed for PA. The figure also compares the results with CIS and experimental
results. It is evident that the excitation energies compare quite well with experimental
and CIS calculations. There are many other observations related to these investiga-
tions, which need not be discussed here. The primary objective here is to show that
TDDFT calculations with Slater orbitals can produce information regarding excited
states, which are comparable to the other standard techniques. Interested readers can
consult the original manuscript for further detailed information [38].

2.4.3 Relativistic studies on UO2
2+ spectrum

UO2
2+ was detected in the gas phase by mass spectrometry [46] and pulsed laser

reaction of evaporated uranium and oxygen [47]. Experimental spectroscopic data,
of course, were not available for this ion. A number of molecular orbital calculations
at different levels of theory (including DFT with several functionals and ab-initio
methods at different correlated levels) have reported [48–53] the molecule to be
linear with 1�+

g as the ground state. The computed U–O distances range from 1.65

to 1.78 Å, and symmetric stretching frequencies lie between 740 and 1220 cm−1.
High correlation coupled cluster (CCSD(T)) [51] and CASPT2 [53] computed the
distance to be 1.715 Å and symmetric stretching frequency as 974 cm−1.

The excited-state spectrum of UO2
2+ was also computed at the CASPT2 level

[53], and the results were later used to benchmark DFT-STO calculations [54]. The
DFT results for the excited states of UO2

2+, presented here, were computed using
SAOP functional [55]. This functional was especially designed for the calculation
of response properties. The ALDA has been exploited to evaluate the exchange-
correlation kernel. Scalar relativistic effects were included via the ZORA (zeroth-
order regular approximation) formalism [32] due to the presence of heavy U atom
(spin–orbit free (SOF) calculation). Two-component ZORA-TDDFT formalism was
further used for the inclusion of spin–orbit coupling (SOC) effects. The optimal
QZ4Pae basis sets (quadruple-ζ all electron basis sets including four polarization
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functions) of Slater-type orbitals have been employed within the framework ZORA
formalism [54].

SAOPvertical excitation energies forUO2
2+ including SOC for all states indicated

that except the highest cΔg state, the corresponding SOF-state contributions added
up to 90% or more, and thus pointing to the absence of considerable mixing with
higher-lying SOF states. This is illustrated in Fig. 2.3. The lowest excitations out of
the highest πu-type bonding, in fact, already appear at slightly lower energies than
the highest σ+

u → δu, ϕu state c�g, thus explaining the larger multiconfigurational
character found for this state. There is an overall agreement between the DFT and
CASPT2 [53, 54] results, and all DFT results are somewhat higher than the CASPT2
values, with differences ranging between 339 and 3680 cm−1. The largest differences
are found for the states with predominant 3�g character a�g (3680 cm−1), bΔg

(3110 cm−1), and bΠg (3030 cm−1), close to the difference of 3408 cm−1 found for
the parent 3�g state.

Fig. 2.3 Excited-state
curves of UO2

2+ along the
U–O symmetric stretching
path obtained from
SAOP-TDDFT calculations.
Reprinted with permission
from Ref. [54] Copyright
(2007) (AIP Publishing)
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The differences are smaller for the aΔg, bΦg, and aΓ g states (757–1166 cm−1).
This conforms to the difference of 1225 cm−1 obtained for their parent 3Φg state. For
the twohighest states cΦg and c�g, with predominant singlet character, theDFT-STO
(SAOP functional) andCASPT2 results are very close (within 1000 cm−1), aswas the
case for the corresponding singlet states. The DFT-derived energy gaps between the
singlet and triplet manifolds of the SOF states are found to decrease compared to the
CASPT2 results. There is an extensive mixing of singlet and triplet characters in the
DFT results. The results confirm the experimental interpretation, and the outcomes
of the previous theoretical calculations manifest that this part of the spectrum is built
from excitations out of the HOMO σ+

u orbital into the nonbonding δu or ϕu uranyl
orbitals. The detailed account of the research investigation need not be discussed
here. It is available in the main manuscript [54]. The present discussion is only a
part of the main paper and demonstrates the effective use of DFT-STO formalism
to explain the complicated excited-state spectrum of molecules containing heavy
atoms.

2.4.4 Applications of DFT-STO formalism to Resonance
Raman Spectrum calculations

Resonance Raman (RR) and surface-enhanced resonance Raman spectroscopy
(SERS) are nowadays used routinely in the detection of nanoparticles and many
complexes of nanoparticles (with specific ligands) having Raman-active modes.
Quantum chemistry offers a technique to compute the Raman spectra of molecules
adsorbed on metals and many other surfaces. The enhanced Raman-active modes of
the associated molecules could be used as a finger-print technique for their detection.
DFT-STO technique has been used quite successfully for such Ramanmode analysis.
The Raman intensity (RI) is usually computed as the differential Raman scattering
cross section using the expression [56]:

dσ

d

= π2

ε20

(
ν̃in − ν̃p

)4 h

8π2c̃νp

[
45α

′2
p + 7γ

′2
p

] 1

45
(
1 − exp

(−hc̃νp/kBT
)) (2.29)

where
∼
ν in and

∼
ν p are the frequency of the incident light and of the pth vibrational

mode, respectively. [45α′
p
2 + 7γ

′
p
2] correspond to the scattering factor. The terms

α
′
p andγ

′
p denote the isotropic and anisotropic polarizability derivativeswith respect

to the vibrational mode p, respectively. The polarizability derivatives are computed
by exploiting numerical three-point differentiation with respect to the normal mode
displacements [57]. The other technique uses the following expression (Eq. 2.30),
which is valid within a short time approximation [58] to compute relative RI.
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(2.30)

The left-hand side of Eq. (2.30) represents the intensity ratio of the two vibrations
j and k. ν j and νk are the frequencies of the vibrations j and k and �j and �k

represent displacements of the excited-state minimum along these modes in terms of
dimensionless normal coordinates. In this section, we will present examples related
to both Eqs. (2.29) and (2.30) to demonstrate the use of DFT-STO calculations in
this context.

The first example is related to Eq. (2.29). It unveils the SERSofmolecular junction
involving pyrazine molecule sandwiched between two Ag20 nanoclusters (Fig. 2.4a).
A comprehensive theoretical investigation has been conducted by examining Raman
spectra of the molecular junction [59] followed by simulating absorption spectra
within the framework of TDDFT. All the calculations related to geometry optimiza-
tion, vibrational frequency, excitation energy, and polarizability on and off resonance
have been performed using the BP86 exchange–correlation functional [35, 36] in
conjunction with triple-ζ polarized Slater-type (TZP) basis set [25] considering the
1s-4p frozen core shells forAg. The optimized geometry for the full system, including
both the silver clusters and the pyrazine molecule, was used for the SERS analysis.

Excitation energies were calculated for èω up to 4 eV for the Junction, and the
simulated absorption spectra are displayed in Fig.2.4b. To elucidate the impact of
coupling between the organic moiety and the Ag20 cluster, the absorption spectra of
the pristine Ag20 cluster and the dimer of the Ag20 cluster (symbolized asDimer) are
further compared in Fig. 2.4b. The obtained results clearly demonstrate that theDimer
exhibits the lowest energy absorption band at 370 nmwhich is absent in the case of the
pristine Ag20 cluster. The higher energy peak centered at 359 nm is slightly perturbed
in comparison with the tetrahedral Ag20 cluster. As is immediately manifest from
Fig. 2.4b, the lowest-lying electronic excitations of the Junction centered at 361 nm

Fig. 2.4 a Configuration of the Junction. b Simulated absorption spectra (solid line) of the Junction
with a molar absorption coefficient in units of 10–3 L mol−1 cm−1 and wavelength in nm. For
comparison, absorption spectra for the isolated Ag20 tetrahedron (dashed line) and Dimer (solid
line with squares) are also plotted [59]. Reprinted with permission from Ref. [59] Copyright (2006)
American Chemical Society
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and 378 nm are further red shifted by 2 nm and 8 nm, respectively, when compared
with the characteristic absorption peaks of the Dimer.

The robust coupling between the two Ag-clusters is evident by the presence of
two typical electronic absorptions of the Dimer as well as the Junction material.
An analysis of orbitals involved in the excitations showed that both the absorption
peaks correspond to excitations involving several orbitals from the two Ag20 clusters
(“collective” excitations). Albeit the deviation of energies of the low-lying electronic
excitations is small, the excitation properties of the Dimer bear a resemblance to the
dimers of larger nanoparticles [30, 31, 60]. In such nanoparticles, the shift of plasmon
wavelength toward the higher wavelength takes place due to the electronic excita-
tions which are parallel to the interparticle axis, whereas the excitations which are
perpendicular to the interparticle axis yield a blue-shift of the plasmon wavelength.
These excitations are further characterized by the metal–molecule charge transfer
(MMCT) transitions even though the “collective” excitations contribute immensely
to theAg20-pyrazine-Ag20 junction. The band centered at 360 nm (oscillator strength,
f = 0.425) with a shoulder at 379 nm (oscillator strength, f = 0.622) can be mainly
attributed to theMMCT from orbitals beneath the highest occupied molecular orbital
(HOMO) of the silver nanocage to the lowest unoccupiedmolecular orbital (LUMO)
of pyrazine [59].

Figure 2.5a, b delineates the calculatedRaman spectra (RS) of the pristine pyrazine
and the Junction, respectively, using the BP86 exchange–correlation functional in
combination with triple-ζ polarized Slater-type (TZP) basis set. The polarizability
derivatives for Eq. (2.29) were computed at zero frequency. The Raman differential
cross section

(
dσ

/
d


)
, however, was computed at the wavelength of 514.5 nm. The

enhancement due to the chemical interactions between the molecule and the silver
cluster(s) is only seen here (Chemical (CHEM) enhancement), as the silver clusters
are not excited.

The augmentation of Raman intensities (RIs) for the Junction is estimated to be
~105 in general. This amplification is a bit of surprise since CHEM augmentation
of only a factor of 10 was predicted in the earlier investigation on the pyridine-Ag20
vertex complex [61]. This happens although the pyridine moiety forms a stronger
bonding interactionwith theAg20 cluster (a shorterAg–Nbond length) in comparison
with the Ag20-pyrazine-Ag20 junction. As evident by the computed polarizabilities, a
substantial alteration in the polarizability along the bonding (x) axis for the Junction
system (αxx : 2921.6 a.u. [59]) leads to a higher CHEM enhancement. The onset
of Raman scattering caused by chemical interactions is thus better captured by the
changes in polarizability compared to the modification of bond lengths.

Figure 2.6a, b shows the simulated resonance-enhanced Raman scattering spectra
of the Junction at incident wavelengths of both 361 and 378 nm, respectively, that
come close to the two absorption maxima of the system. Since this is reminiscent of
SERS experiments where the plasmon resonance of the metal is excited, it is usually
designated as SERS spectra. Nonetheless, the model system is radically different
from the experiment because the size of the metal clusters is not enough to possess
tangible plasmon resonance.



2 Slater-Type Orbitals 35

Fig. 2.5 Simulated RS of the isolated pyrazine (a), and the Junction (b) at an incident wavelength
of 514.5 nm based on static polarizability derivatives. Raman differential cross section is in 10–30

cm2/sr and wavenumber in cm−1 [59]. Reprinted with permission from Ref. [59] Copyright (2006)
American Chemical Society

Fig. 2.6 Simulated SERS spectra of the Junction at an incident wavelength of 361 nm (a), and
378 nm (b), respectively. Raman differential cross section is in 10–30 cm2/sr and wavenumbers in
cm−1 [59]. Reprintedwith permission fromRef. [59] Copyright (2006) American Chemical Society

There are a few observations related to the SERS spectra in Fig. 2.6. The total
SERS augmentations for the Ag20-pyrazine-Ag20 junction are of the order of 106.
This is commensurate with the order of enhancement of 105 obtained for isolated
silver nanoparticles. A CHEM enhancement is observed for the Junction, and it
is large as 105. This is further significant than earlier understood specifically for
nanoparticle aggregates.

The next example is related to the use of the DFT-STO technique to compute the
relative resonance Raman intensity using Eq. (2.30). The system chosen is related to
the enhancement of P=O stretchingmode of the nerve agent (NA)DFP (diisopropy-
lfluorophosphate) on the Au20 surface. The NA (DFP) is physisorbed on small MgO
(Mg16O16) and CaO (Ca16O16) clusters through the oxygen of the P = O bond. The
Raman intensity of the P = O stretching mode (RIP=O) due to the surface adsorption
is found to be augmented compared to the isolated DFP [62]. This intensity enhance-
ment is interpreted due to the chemical effect, as oxides are not the materials to cause
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Fig. 2.7 Schematic representation of the Raman spectra and RRS of DFP adsorbed on the Au-
cluster [66]. The RRS spectra shows how the ν(P = O) of DFP could be assigned as a characteristic
of the NA (DFP) (The detailed studies are available in Ref. [63]. Adapted with permission from
Ref. [66] (Advances in In Silico Research on Nerve Agents, Devashis Majumdar, Szczepan Roszak,
Jing Wang et al.), Copyright (2014) Springer

plasmonic resonance. It was further shown through quantum-chemical calculations
that Au andmetal oxide (Mg16O16, Ca16O16, and their single oxygen defect clusters)-
supported Au clusters can trap DFP, and the RIP=O is higher than those of the isolated
metal oxide clusters. This enhancement of intensity due to the chemical effect is the
key factor to select materials to generate effective RIP=O in RRS.When this molecule
is adsorbed on such clusters, the Raman signal regarding the intensity of the P = O
stretching mode could be really enhanced many times with respect to the isolated
DFP molecule. This is usually done by generating Raman spectra using the exci-
tation wavelength around the specific λmax of gold clusters (or the oxide-supported
gold clusters), and such frequency-dependent Raman signal (usually called RRS) is
a typical characteristic of these NAs and could be used for their detection [63]. In
this discussion, we are citing the example highlighting the RRS enhancement of DFP
adsorbed on the Au20 cluster.

The BP86 XC potential has been employed to perform relativistic calculations.
The calculations utilized triple-ζ Slater-type basis sets for all the atoms with a [1s2-
4d10] frozen core for Au, [1s2] frozen core for the first-row elements, and a [1s2-2p6]
frozen core for P [25]. The simulation of the RRS spectra of Au20…DFP cluster
needed the knowledge of the absorption spectra of the system. The experimental
and previously estimated λmax for the Au20 cluster is 516 nm [64]. The estimated
surface plasmon absorption spectra of gold (radius < 25 nm) amounts to 520 nm [65].
The calculated λmax values for Au20 (504 – 668 nm using various DFT functionals
orbitals DFT/B3LYP/GTO,DFT/BP86/GTO, andDFT/BP86/STO)were found to be
quite reasonable (but a bit overestimated) in this respect [63]. The simulated absorp-
tion spectra further showed that the λmax in Au20…DFP cluster is red shifted with
respect to the pure gold clusters. Moreover, all of the calculated spectra using various
strategies as discussed above had broad overlapping zones [63] and thus excitation
wavelengths chosen within this range were safely used for the RRS calculations
using DFT/BP86/STO technique.
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The simulated Raman spectra of Au20…DFP are shown schematically in Fig. 2.7.
The field-free Raman spectra are shown on the left panel. The blue-colored spectrum
is for the Au20…DFP complex. It has also the Raman spectra of other DFP bound
systems and they are not discussed here. The right panel represents the RRS at the
740 nm. The picture clearly shows how the relative Raman intensity could be used
to identify the enhanced P = O stretching mode. It is to be mentioned that it is a
non-ZORA calculation. ZORA-calculations were also used in such analysis and the
results did not show any qualitative change (supplementary section of Ref. [63]).

2.5 Concluding Remarks

Slater-type orbitals (STOs) are nowadays routinely used in quantum-chemical calcu-
lations to solve various problems in chemistry. In this article, we have discussed,
in detail, about the use of Slater-type orbitals. At the outset, a general discussion is
being made to introduce the concept and importance of GTOs and STOs in quantum-
chemical calculations (in the framework ofHartree–Fock equation) and compared the
advantages and disadvantages of such atomic orbital-based calculations, excluding
plane-wave orbitals (mostly used to solve condensed-phase problems), in solving
chemistry-related problems of molecules in gas-phase and solvated condition. The
concept of STOs is then discussed in detail omitting, of course, the details of mathe-
matical technicalities. These discussions are based on the DFT calculations, and the
concept of variousSlater atomic basis sets are being introduced.This concept of Slater
atomic basis sets is an important part in carrying out DFT-STO-type calculations. In
the final part of the article, a few specific examples related to the application of DFT-
STOs for different chemical problems are discussed. These included basic benchmark
calculations on simple molecular structures, excitation energy calculations, excita-
tion energy spectrum of UO2

2+, and examples of SERS spectrum analysis. We have
thus covered with such examples the use of DFT-STOs in a few important fields of
quantum chemistry. The applications of DFT-STOs are quite numerous nowadays,
and our examples covered only a small part of it to introduce the importance of such
an approach in quantum chemistry. Interested researchers can easily find many of
such applications in various high-level journals.
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Chapter 3
Local Orbitals in Quantum Chemistry

Nadia Ben Amor, Stefano Evangelisti, Thierry Leininger, and Dirk Andrae

3.1 Introduction

The formalism of Quantum Mechanics is inseparably connected to the concept of
wave function, which is a non-local object by definition. This fact was already clear
from the very beginning of this theory, and pointed out in the famous debates [1] that
followed the development of the Schrödinger Equation, in 1926 [2].

This aspect leads to difficulties in conciliating Quantum Mechanics with other
branches of Physics or different sciences, like Chemistry or Biology. Things are
particularly evident in the case of Chemistry. Traditionally, Chemistry is associated
with the concept of bond, which is the entity that ties together two neighbor atoms
in a molecule. Quantum Chemistry, and in particular the Electronic Structure branch
of it, has the ambition of deriving the bonding mechanism in a molecule from the
principles of Quantum Mechanics. Therefore, one has to use the wave function of a
molecule, a non-local object, in order to define the bonds of the molecule, which are
essentially local objects. Despite the tremendous success of Quantum Chemistry in
explaining and predicting the behavior of a countless number of molecular systems,
it is not always easy to conciliate the two points of view. The difficulties connected
to the interpretation of Quantum Mechanics are obviously totally beyond the scope
of this work. Nevertheless, we believe that the duality between the non-local nature
of the wave function and the locality of our common everyday experience is at the
root of the localized/delocalized description of the Molecular Orbitals of a system.

Let us consider, for instance, the case of a cyclic polyene, composed of N units
of CH2 type, placed in a regular way on a circle. The situation is particularly evident
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when we are in presence of spatial symmetry, and we assume that the symmetry
of the resulting structure is (at least) CN . At the equilibrium geometry, the usual
chemical intuition tells us that the whole structure is held together by a series of
C-C simple bonds that are established between every pair of neighboring carbon
atoms. However, if we perform a straightforward calculation, for instance at SCF or
DFT level, or even a semi-empirical one, the picture that emerges is totally different.
In a one-electron picture, the electrons occupy orbitals that belong to irreducible
representations of the symmetry group of the system. For this reason, the MOs of
the system will be totally delocalized over the entire chain, regardless of its length.
Notice that this situation is by no means specific to Chemistry. A similar situation
occurs, in fact, in Solid-State Physics, with the two alternative and complementary
approaches of Bloch and Wannier wave functions.

This dichotomy between a localized versus a delocalized philosophy goes back
to the very beginning of Quantum Chemistry. The concept of a bond resulting from
an electron pair shared between two atoms was first proposed by Lewis [3] in 1916,
even before the Schrödinger equation. This concept was reformulated by Heitler and
London [4] in 1927, who used Schrödinger’s wave equation (published just one year
earlier!) to show how two hydrogen-atom wave functions combine themselves to
form the bond. This was the birth to the Valence-Bond (VB) formalism. In VB, each
bond is built by using orbitals that have essentially an atomic character. The resulting
orbitals are therefore strictly localized. On the opposite, the Canonical Orbitals that
emerge from an SCF or CASSCF calculation are often spread out over several atoms
(sometimes the entire system, as was seen in the previous example). Historically, the
canonical description became much more popular than the localized one since it is
possible to associate the difference between two MO energies with a well-defined
measurable quantity, i.e., the frequency of the electronic transition associated with
the two orbitals.

In the present context, we are neither interested in the subtle, and still open,
problems posed by the nonlocality of the wave function nor in the emergence of
locality out of an entangled wave function. From our point of view, it is interesting to
study how the different representations of the orbitals, localized versus delocalized,
are related, and which advantages and/or disadvantages they both have. In fact,
the global many-electron wave function is a tremendously complex object, and the
orbitals are usually the building blocks needed for its description. Since the important
object is the electronic wave function, it turns out that it is possible to perform a
unitary transformation on these orbitals without changing the final wave function,
and this fact is the crucial point that is behind the freedom of using either a localized
or a delocalized description of the system. The type of unitary transformation that can
be applied to the orbitals depends on the wave function we are using to describe our
system. Broadly speaking, in the vast majority of cases, we have to choose from one
of the three following possibilities: Full Configuration Interaction (FCI), Hartree–
Fock Self Consistent Field (HF-SCF), and Complete Active Space SCF (CASSCF).



3 Local Orbitals in Quantum Chemistry 43

1. FCI: the wave function is invariant under any arbitrary unitary transformation of
the orbitals, provided the CI coefficients are accordingly transformed.

2. HF-SCF: the wave function is invariant under any unitary transformation that
does not mix the occupied orbitals with the virtual ones. Under this condition, the
HF determinant remains a single determinant.

3. CASSCF: the wave function is invariant under three separate unitary transfor-
mations, in each of which only orbitals within one of the three classes “doubly
occupied orbitals”, “active orbitals”, and “virtual orbitals” are separately rotated.
Notice that the rotation of active orbitals needs a transformation of related CI
coefficients as well.

In most cases, the localization procedure is aimed at obtaining a set of local orbitals,
that will be subsequently used to express the desired wave function, or to investigate
its nature. Broadly speaking, the existing localization procedures can be divided into
two large classes:

1. A posteriori: The Localized Molecular Orbitals (LMO) are obtained from the
set of “Canonical” Molecular Orbitals (CMO) (HF-SCF, CASSCF, or other) of a
previous calculation by using a suitable localization procedure.

2. A priori: By starting from a guess of LMO, the HF-SCF or CASSCF convergence
procedure is imposed, by taking into account the fact that the orbitals must remain
as local as possible (in practice, they are often required not to be too different
from the guess orbitals [5, 6]).

In the recent past, local orbitals enjoyed a renewed interest, since they have been used
to implement Linear-Scaling (LS) algorithms. LS approaches consist of a reformula-
tion of already existent Quantum Chemistry methods in order that they scale linearly
as a function of the system size. This is possible since the interaction between dif-
ferent fragments goes to zero with increasing distance. In order to take advantage of
these vanishing interactions, it is necessary to work with localized orbitals. LS has
been achieved so far for Single-Reference Approaches (SCF), and for the treatment
of the Dynamical Correlation: Perturbation Theory, Coupled Cluster, Configuration
Interaction, and also for Density Functional Theory. Indeed, using localized orbitals
allows to reduce the size of the determinant or configuration space by restricting
the excitations to neighbor orbitals. However, non-Dynamical Correlation, needed
to deal with Quasi-Degenerate systems, is often very important in chemistry. In these
cases, localized orbitals may be useful for selecting the molecular region where the
physical processes take place. Some examples are as follows:

– Chemical reactions: different determinants can be dominant on the two sides of
the Transition State.

– Electronically excited states: they are often of a Multi-Reference (MR) nature.
– Magnetic systems: there is usually a competition among a large number of Quasi-
Degenerate determinants.

In the following, we will concentrate on the construction of local orbitals with
some widely used localization procedures for typical molecular systems like small
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linear molecules, aromatic compounds, and metal complexes. In Sect. 3.2, the math-
ematical formalism used in the different localization procedures is described. Then
the different techniques are illustrated in Section 3.3 via application to a partic-
ularly straightforward system, two weakly interacting H2 molecules described by
the Hückel approximation. Section 3.4 is dedicated to selected applications: small
molecules (Sects. 3.4.1–3.4.3); coordination complexes (Sect. 3.4.4); and Poly-
cyclic Aromatic Hydrocarbons (Sect. 3.4.5). Finally, some Conclusions are drawn
is Sect. 3.5. The Reference section is split into two parts. The first includes all ref-
erences explicitly quoted in the text. A second part from reference 67 to the end
contains pertinent articles that are not cited in the work, organized in chronological
order.

3.2 Localization Formalism

We start from the usual Born–Oppenheimer (BO) scheme, and we use the non-
relativistic “exact” Hamiltonian. It is composed of zero-, one-, and two-body terms
(H0 is actually a constant, E0):

H = H0 + H1 + H2, (3.1)

where

H0 ≡ E0 =
∑

A<B

ZAZB

‖RA − RB‖ , (3.2)

H1 ≡ T + V = −1

2

∑

a

∇2
a +

∑

A,a

−ZA

‖RA − ra‖ , (3.3)

H2 ≡ W =
∑

a<b

1

‖ra − rb‖ . (3.4)

In the following, atomic units are used; the labels A and B indicate nuclei, while a
and b indicate electrons. The “exact” (in the BO approximation) wave function of
the system is a solution of the electronic Schrödinger Equation

H�(x) = E�(x), (3.5)

whereH is the BO Hamiltonian and E the BO energy. The vector |�〉 belongs to the
complete Hilbert space spanned by all Slater determinants having the given number
of electrons, m, with spatial and spin coordinates, x. The wave function is supposed
to be normalized, i.e., 〈�|�〉 = 1. The total energy E is the sum of the zero-, one-,
and two-body energies:

E = E0 + E1 + E2. (3.6)
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We place ourselves in the Linear Combination of Atomic Orbital (LCAO) formal-
ism and expand the Molecular Orbitals (MO) of the system in terms of a set of (in
general) non-orthogonalAtomicOrbitals (AO).Notice that, however, inwhat follows
the adoption of a LCAO scheme is not really required. In most ab initio approaches,
there is a first step that involves an orbital optimization, in order to obtain the best
MO set according to some criterion. These orbitals are often called the “Canoni-
cal” Molecular Orbitals (CMO) of the system according to a given method. In most
approaches, the CMO are obtained through the diagonalization of a one-electron
Hamiltonian, of which the CMO are eigenvectors. If, as it is, in general, the case, this
Hamiltonian commutes with the operators associated with the symmetry point group
of the system, the CMO will belong to some irreducible representation (irrep) of the
symmetry group. Therefore, corresponding AO placed on atoms that are equivalent
by symmetry will have coefficients that are dictated by the symmetry irrep to which
the CMO belongs. This is, particularly for highly symmetric small molecules, the
main reason of the delocalization of the CMO. Notice that this phenomenon is not
related to the physical interaction between different regions of the molecule, but is
an unavoidable consequence of the structure of Quantum Theory.

In the case of large non-symmetric systems, exact equivalence among different
atoms ismissing. The CMO, however, are still spread over a large number of different
centers. The localization techniques here described are precisely used in order to
minimize the number of centers over which the LMO are significantly different from
zero.

We will indicate by χμ the AO set, by ψi the CMO set, usually obtained via some
SCF (either HF or DFT) or CASSCF calculations, while the set φk is composed of
the localized orbitals:

ψi =
∑

μ

Cμiχμ (3.7)

and
φk =

∑

i

Uikψi . (3.8)

Here, Uik are the elements of a unitary matrix U. The elements Cμi , on the other
hand, define a matrix C that is usually not unitary, since the AO basis set is, with few
exceptions, not orthogonal.

3.2.1 A Posteriori Techniques

Most localization formalisms that have been proposed in Quantum Chemistry are a
posteriori techniques: a set of CMO is transformed into a set of LMO through the
action of a unitary matrix U. In order to define U, several techniques can be used:
in most cases, one searches for a stationary point of a suitably chosen functional
L [7].
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We consider here in detail three among the most popular localization schemes:
Foster–Boys [8], Edmiston–Ruedenberg [9], and Pipek–Mezey [10]. These localiza-
tion methods are used for localizing occupied orbitals while the virtual orbitals can
be obtained from the atomic orbital basis by projecting the atomic basis functions
into the virtual subspace as in the case of the Projected Atomic Orbitals (PAOs).
These virtual orbitals are local and orthogonal to the occupied ones but not to one
another. The computational cost of the localization methods scales differently. The
Foster–Boys, Pipek–Mezey, and Cholesky decomposition [11] procedures scale as
N 3, while the Edmiston–Ruedenberg localization scales formally as N 5, where N is
the number of electrons. However, several numerical techniques have been proposed
to reduce the computational effort of these procedures [12, 13].

3.2.1.1 Foster–Boys

In the Foster–Boys scheme [8, 14] (FB), the functional is based on the spatial position
of the orbitals. See reference [15] for an application of the FB formalism in a Many-
Body Perturbation-Theory context. The FB localization functional is given by

LFB =
∑

k=x,y,z

∑

i∈occ
(〈φi |r2k |φi 〉 − 〈φi |rk |φi 〉2). (3.9)

The local orbitals are obtained by imposing the condition thatLFB is aminumum [16,
17]. As noticed by Resta [18], this is the one-electron part of the trace of the TPS
tensor [19–22].

Let us consider a MO |φ(θ)〉 expanded in terms of two pointlike AO |χ1〉 and
|χ2〉, placed at (1, 0, 0) and (−1, 0, 0), respectively:

|φ(θ)〉 = cos θ |χ1〉 + sin θ |χ2〉. (3.10)

We have

〈x2〉c = 〈φ(θ)|x2|φ(θ)〉 − 〈φ(θ)|x |φ(θ)〉2
= cos2 θ + sin2 θ − (cos2 θ − sin2 θ)2 = 1 − cos2 2θ (3.11)

with similar expressions for y and z. The localization effect is due to fact that 〈x2〉c
takes its minimum for θ = 0 + kπ/2 where k is an integer number. This corresponds
to |φ(θ)〉 being perfectly localized either on |χ1〉 or |χ2〉.

A variant of the FB procedure is obtained by replacing the second moment of the
position by the fourth moment [23, 24]. This procedure has been introduced in order
to obtain orbitals restricted to small volume in space with a thin tail as required in
most of the local correlation methods. We put
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L4M =
∑

k=x,y,z

∑

i∈occ
(〈φi |r4k |φi 〉 − 〈φi |rk |φi 〉4). (3.12)

Since this is not conceptually very different, we will not describe this approach in
detail. We notice that a drawback of this choice is thatL4M, and hence the final result,
is not rotationally invariant.

3.2.1.2 Edmiston–Ruedenberg

The Edmiston–Ruedenberg procedure [9, 25] (ER) is based on the minimization
of interorbital Coulomb repulsions, or, equivalently, on the maximization of the
intraorbital Coulomb repulsion:

LER =
∑

i∈occ
〈φiφi | 1

rμν

|φiφi 〉. (3.13)

Therefore, this method is not suitable, for instance, for Hückel or Tight-Binding
Hamiltonians. For a variant of the ER method, see reference [26].

Let us consider the same orbitals as in the FB case. For pointlike orbitals, the
Coulomb interaction has to be regularized, and we set, as is usually done,

1

rμν

→ 1

1 + rμν

. (3.14)

We have

〈φ(θ)φ(θ)| 1

1 + rμν

|φ(θ)φ(θ)〉 = cos4 θ + sin4 θ + cos2 θ sin2 θ

= (cos2 θ + sin2 θ)2 − cos2 θ sin2 θ

= 1 − cos2 θ sin2 θ. (3.15)

The requirement that self repulsion is a maximum leads again to θ = 0 + kπ/2.

3.2.1.3 Pipek–Mezey

The Pipek–Mezey scheme [10] is based purely on the atomic charges, originallyMul-
liken’s charges. Different other charge definitions [27–30] have also been suggested,
in particular to overcome the problem introduced by unbalanced basis sets. For a
mathematically defined definition of localization, based on Mulliken’s population
analysis, see reference [31]. The Pipek–Mezey scheme preserves the σ -π separation
in linear and planar systems, unlike the schemes introduced by Foster–Boys and
Edmiston–Ruedenberg. The distances between atoms in the molecule do not play
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any direct role, but they act only indirectly by determining the systemwave function,
and hence the charges.

The functional to be maximized is given by the sum of the squares of the partial
charges (orbitals and atoms):

LPM =
∑

A

∑

i∈occ
q2
Ai , (3.16)

where the sum over A runs over all atoms in the molecule. The application to the
example used for the previous methods yields the following charges on atoms 1 and
2:

q1 = cos2 θ (3.17)

and
q2 = sin2 θ. (3.18)

Hence, the contribution to the functional is

LPM = cos4 θ + sin4 θ = 1 − 2 cos2 θ sin2 θ. (3.19)

The requirement that the sum of the squares of the partial charges is a maximum
leads, once again, to the condition θ = 0 + kπ/2.

3.2.1.4 Natural Bond Orbitals and Natural Localized Molecular
Orbitals

Another widely usedmethod in computational chemistry is themethod of theNatural
Bond Orbitals (NBO) or its extension, the Natural Localized Molecular Orbitals
(NLMO) approach, developed by Reed and Weinhold [32–34]. This type of analysis
is very frequently used, as it is a standard tool [35] available inmany popular quantum
chemistry packages.

As indicated above, usual localization procedures use unitary transformations
from the Canonical Molecular Orbitals (CMO) to obtain localized orbitals. In the
NBOapproach, thefirst step consists in obtaining orthogonalNaturalAtomicOrbitals
(NAO). These NAOs are obtained by block diagonalization of the density matrix
[1]
built from the CMOs. The blocks are defined over all angular momenta of each atom,
resulting in NAOswith atomic symmetry. Once the NAOs are obtained, they are used
to get the Natural Hybrid Orbitals (NHO) by diagonalizing atomic and two-center
density matrices in the NAO basis. These NHOs typically look like lone pairs and
usual hybrid orbitals. Finally, the bonding and antibonding NBOs, whose occupation
numbers are, respectively, close to 2 and to 0, are obtained for each bond by a final
diagonalization of the bond density matrix in the basis of the involved NHOs. Once
the NBOs are obtained, they may be efficiently transformed to NLMOs which are
similar to the Boys or Edmiston–Ruedenberg orbitals (see [34]).
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NBOs provide a representation of the many-electron wave function that is very
close to the chemists’ Lewis structure, the deviation of the occupation numbers
to 2 and 0 being an indicator of electronic delocalization. Further decomposition
of the NLMOs over NBOs and complementary atomic hybrids, characterizing the
delocalization tail, brings some additional information.

3.2.1.5 Cholesky Decomposition

It has recently been suggested to use the Cholesky decomposition of the one-body
density matrix 
[1] in the AO basis in order to obtain a set of suitable LMOs [11].
In principle, the Cholesky decomposition does not ensure per se the locality of the
resulting orbitals. It should be noticed, however, that if the system breaks down
into several non-interacting subsystems, the matrix 
[1] is block diagonal. Since the
decomposition of a block-diagonal matrix gives a set of non-overlapping Cholesky
vectors, the orbitals obtained in this way are localized onto each one of the fragments.
In fact, this approach has several appealing properties:

– Once the AO set is defined, the decomposition is unique.
– High numerical efficiency.
– Non-iterative approach.
– Absence of an initial guess as starting orbitals.
– If needed, virtual molecular orbitals can be obtained exactly in the same way as
occupied ones.

Being based on the knowledge of the 
[1] matrix only, this procedure is obviously
particularly attractive for density matrix based approaches.We notice that the knowl-
edge of the CMOs is not needed.

The method scales as N 3, but is faster than the Foster–Boys and the Edmiston–
Ruedenberg schemes due to the non-iterative approach. There are, however, some
drawbacks that should be pointed out. Although the decomposition is unique, it
depends on the order of the orbitals. Moreover, as shown later in this section,
equivalent orbitals are treated in a different way for the simple fact of being placed
in a different position in the orbital list. Finally, as recognized by the authors them-
selves, “the main disadvantage is that the Cholesky MOs are less local than the
localized orbitals obtained by the conventional procedures. The major culprit seems
to be the inability of the Cholesky localization to reproduce two-center MOs, (i.e.,
the common “chemical bond”)” [11].

As a stringent numerical test, we applied the Cholesky decomposition to a cyclic
polyene CnHn , containing an even number n of carbon atoms, and treated the π -
system at the Hückel level. The atomic 2pπ orbitals are assumed to be arranged
in consecutive order, with every center connected to the previous and the following
ones. Since the system is cyclic, the last center is connected to the first one. In absence
of dimerization (a unique value of the hopping parameter β for all the bonds), the
system is gapless and has a metallic character in the limit n → ∞. It is well known
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Fig. 3.1 Cholesky orbitals for cyclic polyene C82H82

that this is a challenging situation since the localized orbitals in this case can have
at most a rational decay [36].

The Cholesky decomposition is applied to the CMOs of π symmetry for the case
n = 82. Notice that this is a closed-shell system since the Hückel 4k + 2 rule is satis-
fied. There are 41 doubly occupied orbitals (a lowest nondegenerate one and twenty
doubly degenerate pairs) and 41 empty ones. In Fig. 3.1, the coefficients of the first
and the last occupied Cholesky orbitals are plotted as a function of the AO number.
The first orbital is well localized and symmetrical, with a peak on χ1, large identical
coefficients on χ2 and χ82, and oscillating coefficients on the remaining atoms that
become smaller and smaller as the topological distance form χ1 is increased. The
following orbitals (not shown in the figure) have a less local character. The last dou-
bly occupied Cholesky orbital φ41, on the other hand, has strictly zero coefficients
on the first 40 atoms (as ensured by the properties of the Cholesky decomposition).
It is peaked on atom 46, and has relatively large coefficients on most of the remain-
ing atoms, up to the last AO of the chain. It is by no means symmetrical, and very
poorly localized. It is clear that for such a highly symmetric system, the Cholesky
decomposition, although perhaps computationally efficient, from a formal point of
view is very unsatisfactory.
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3.2.2 A Priori Localization

A posteriori techniques are very effective, but are difficult to apply in all those
cases where localization is used to identify the physically “interesting” region of
the system. For instance, the region where the Active Space should be placed in a
CASSCF calculation. In such cases, a priori formalisms can be extremely useful.

A set of local orbitals is built, often based on chemical intuition, and then used
as a guess in order to start the iterative SCF or CASSCF procedure. Special care
is needed during this procedure, since the diagonalization step usually destroys the
locality of the orbitals.

The best option in order to obtain local orbitals is through the action of a localizing
unitary operator U which is defined via an exponential expansion,

U = exp(A) , (3.20)

where A is an antihermitian operator, A+ = −A [37]. Notice that in practical calcu-
lationsA is usually a real, antisymmetric matrix.We consider now the case where the
orbital space is split into several subspaces, and we assume that, for the sake of nota-
tional simplicity, the orbitals are ordered in such a way that orbitals belonging to a
given subspace are contiguous. The unitary transformations that leave each subspace
invariant are block diagonal. Without loss of generality, we can restrict ourselves
to the case where only two blocks are present. This is the case, for instance, of HF
description, or a CASSCF in the absence of core orbitals. As already discussed, the
origin of delocalization in HF formalism is connected to diagonalization. This step
is very convenient in order to obtain a well-defined set of orbitals (the canonical
orbitals), but in almost any case leads to a set of orbitals strongly delocalized over
the whole system. This is the case in particular if the system is composed of two or
several equivalent subsystems.

Let us start from a guess of local orbitals. If this set does not satisfy the optimal
conditions, the one-body densitymatrix
[1] will not be block diagonal. The key point
in getting local orbitals is, in the course of the optimization procedure that produces
a block-diagonal density matrix, to avoid as much as possible orbital rotations within
each block (“in-block rotations”), and to concentrate the rotations between orbitals
belonging to different blocks (“out-of-block rotations”). Of course, some in-block
rotations are in general unavoidable in order to maintain the orthogonality of the final
orbital set, but these operations should be reduced as much as possible.

For this purpose, let us consider the density matrix 
[1] at some point of the
iterative procedure. It will be of the form


[1] =
∥∥∥∥

A D+
D B

∥∥∥∥ . (3.21)

The unitary operator U is defined in such a way as to block-diagonalize 
[1] by
setting the off-diagonal blocks D and D+ equal to zero, while leaving as much as
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possible unchanged within the diagonal blocks A and B. A suitable operator for such
an action will be given by

U = exp (X) (3.22)

with the operator X given by

X =
∥∥∥∥

0 −Y+
Y 0

∥∥∥∥ . (3.23)

The 0 diagonal block ensures that, at the lowest order, in-block rotations are absent
in U. We want to impose the block-diagonal condition

U 
[1] U+ = 
[1]′ , (3.24)

which means that 
[1]′ has the form


[1]′ =
∥∥∥∥

A′ 0
0 B′

∥∥∥∥ . (3.25)

Since we introduce this scheme into an iterative procedure, it is enough to impose
Eq. (3.25) at the first order in Y. At this level, U has the form

U =
∥∥∥∥

1 −Y+
Y 1

∥∥∥∥ (3.26)

while U−1 = U+ is given by

U−1 =
∥∥∥∥

1 Y+
−Y 1

∥∥∥∥ . (3.27)

Equation (3.25) implies

YA − BY − YDY+ + D = 0 (3.28)

or, to the first order,
− YA + BY = D. (3.29)

In order to solve this equation and obtain Y in a non-iterative way, it is convenient
to fully diagonalize the two diagonal blocks A and B with the help of two unitary
operators VA and VB , such that

VAAV+
A = �A (3.30)

and
VBBV+

B = �B, (3.31)
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where �A and �B are two diagonal matrices with elements λa and λb, respectively.
Now we multiply Eq. (3.29) by V+

A from the right and VB from the left, and we get

− VBYAV+
A + VBBYV+

A = VBDV+
A . (3.32)

By taking into account thatV+
AVA = 1A andV+

BVB = 1B , the latter can be rewritten
as

− VBYV+
AVAAV+

A + VBBV+
BVBYV+

A = VBDV+
A , (3.33)

and finally, with Eqs. (3.30) and (3.31), as

− VBYV+
A�A + �BVBYV+

A = VBDV+
A . (3.34)

The solution of the equation system (3.34) is now straightforward, because, due to
the diagonal form of the matrices �A and �B , the different equations are decoupled.
Therefore, we have

(VBYV+
A)ab = (VBDV+

A)ab

λb − λa
. (3.35)

Finally, the elements of the rectangular matrix Y can be obtained by transforming the
matrix elements of equation (3.35) back into the original basis set, i.e., bymultiplying
VBYV+

A by VA from the right and V+
B from the left.

In practice, in our previous work [38], we implemented the block-diagonalization
of the density matrix by fully diagonalizing it through a unitary transformation U,
and then avoiding the complete delocalization by multiplying U from the left by the
operator U−1

D , with UD given by

UD =
∥∥∥∥

VA 0
0 VB

∥∥∥∥ . (3.36)

Notice that the two procedures coincide for quasi-diagonal density matrices.
Again, we applied this localization scheme to the π system of the cyclic polyene

C82H82 previously discussed in connection with the Cholesky decomposition. Start-
ing from a guess of localized bonding π orbitals that alternate every two bonds,
1√
2
(χ1 + χ2), 1√

2
(χ3 + χ4), . . ., 1√

2
(χ81 + χ82), the SCF conditions are iteratively

imposed up to convergence. We denote as φi,i+1 the LMO that derives from the
guess orbital 1√

2
(χi + χi+1). Two LMOs at convergence are illustrated in Fig. 3.2.

The orbitals partly respect the symmetry of the system, since they are equivalent
by the D41h subgroup of the full symmetry group of the system, which is D82h .
Notice that the symmetry lowering of the LMOs is due to the half-filled character of
the energy band, and hence the metallic nature of the wave function. An alternative
possibility, showing the same D41h symmetry, would be obtained by starting from
the atomic orbitals χ1, χ3, . . ., χ81 (or, alternatively, χ2, χ4, . . ., χ82), and obtain
SCF orbitals that have somehow an “atomic” character. In any case, since there are
a total of 41 doubly occupied orbitals, it is impossible to completely respect the full



54 N. Ben Amor et al.

Fig. 3.2 A priori orbitals for cyclic polyene C82H82

symmetry of the system. Other, less symmetric, localization would also be possible.
Needless to say, all these choices of orbitals give the same total wave function, that
has the full D82h symmetry of the system.

Finally, one can note that the cost of the a priori localization scales as N 2, N being
the number of electrons.

3.3 A Simple Application: The Hückel Hamiltonian

In this section, we examine a simplified model, composed of two weakly interacting
Hydrogen molecules, (H2)2, described by a Hückel-type Hamiltonian. Because of its
extreme simplicity, and due to the one-electron nature of interactions of the model,
an explicit solution can be found. Moreover, because of the absence of two-electron
interactions, the convergence to theHF solution does not require any iterative process.

Each Hydrogen atom of the two dimers is placed at the vertex of a rectangle, as
shown in Fig. 3.3. We assume that the intramolecular interaction appearing in the
one-electron Hückel-type Hamiltonian is given by the usual Hückel parameter β

while the intermolecular interaction is described by a parameter δ. Both β and δ are
negative quantities, and we have |β| > |δ|.
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Fig. 3.3 A simple
application of the Hückel
Hamiltonian: the (H2)2
dimer

H =

∥∥∥∥∥∥∥∥

0 β δ 0
β 0 0 δ

δ 0 0 β

0 δ β 0

∥∥∥∥∥∥∥∥
. (3.37)

Since the Hückel Hamiltonian does not take into account the electron–electron
interaction, different-spin electrons do not interact in anyway. Electrons having equal
spin, on the other hand, interact indirectly via the Pauli exclusion principle. For this
reason, it is sufficient in this case to consider electrons of one spin type only, say α.

The two lowest eigenvalues of H are

ε+
+ = β + δ (3.38)

and
ε−
+ = β − δ (3.39)

with the corresponding eigenvectors

|ψ+
+ 〉 = 1

2
(|χ A

1 〉 + |χ A
2 〉 + |χ B

1 〉 + |χ B
2 〉) (3.40)

and

|ψ−
+ 〉 = 1

2
(|χ A

1 〉 + |χ A
2 〉 − |χ B

1 〉 − |χ B
2 〉) . (3.41)

These two states form the occupied manifold. For completeness, we give also the
virtual manifold, which is given by the eigenvalues

ε+
− = −β + δ (3.42)

and
ε−
− = −β − δ (3.43)
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with the corresponding eigenvectors

|ψ+
− 〉 = 1

2
(|χ A

1 〉 − |χ A
2 〉 + |χ B

1 〉 − |χ B
2 〉) (3.44)

and

|ψ−
− 〉 = 1

2
(|χ A

1 〉 − |χ A
2 〉 − |χ B

1 〉 + |χ B
2 〉) . (3.45)

We consider in the following subsections the localization of the CMO via a posteriori
or a priori techniques. Within the first group, the Edmiston–Ruedenberg approach
cannot be used, since the electron–electron repulsion is not taken into account within
the Hückel model. The fourth moment procedure, on the other hand, is extremely
similar to the Foster–Boys one, so we will concentrate our attention on Foster–Boys
and Pipek–Mezey schemes.

3.3.1 A Posteriori Approach

We define the two linear combinations

|φcs
+ (θ)〉 = cos θ |ψ+

+ 〉 + sin θ |ψ−
+ 〉

= 1

2
[(cos θ + sin θ)(|χ A

1 〉 + |χ A
2 〉) + (cos θ − sin θ)(|χ B

1 〉 + |χ B
2 〉)] (3.46)

and

|φsc
+ (θ)〉 = − sin θ |ψ+

+ 〉 + cos θ |ψ−
+ 〉

= 1

2
[(− sin θ + cos θ)(|χ A

1 〉 + |χ A
2 〉) + (− sin θ − cos θ)(|χ B

1 〉 + |χ B
2 〉)] .

(3.47)

3.3.1.1 Foster–Boys

In order to localize the occupied orbitals by using the Foster–Boys procedure, we
have to minimize the quantity

�(θ) = 〈x2(θ)〉c + 〈y2(θ)〉c, (3.48)

where

〈x2(θ)〉c = 〈φcs
+ (θ)|x2|φcs

+ (θ)〉 − 〈φcs
+ (θ)|x |φcs

+ (θ)〉2
+ 〈φsc

+ (θ)|x2|φsc
+ (θ)〉 − 〈φsc

+ (θ)|x |φsc
+ (θ)〉2 (3.49)

and a similar expression holds for 〈y2(θ)〉c.
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Since δ is smaller, in absolute value, than β, orbital localization can happen with
respect to the y position. In fact, 〈x2(θ)〉c does not depend on θ , and is a constant
equal to one for each orbital. The spread in the y direction, on the other hand, is
given by two identical contributions for the two orbitals, given by

〈y2(θ)〉c = 1 − 4 sin θ cos θ . (3.50)

The total spread, therefore, becomes

�(θ) = 4 − 2 sin2 2θ . (3.51)

The function �(θ) is bounded between 2 and 4, and its plot as a function of θ is
shown in Fig. 3.4. For θ = 0 or θ = π/2, the function adopts its maximum � = 4.
This corresponds to the situation where the new orbitals coincide with the canonical
ones, |φcs+ 〉 = |ψ+

+ 〉 and |φsc+ 〉 = |ψ−
+ 〉 (or vice versa). For θ = π/4 or θ = 3π/4,

on the other hand, the functional has its minima, that correspond to |φcs+ 〉 = |φA+〉
and |φsc+ 〉 = |φB+〉 (or vice versa), where we have defined |φA+〉 = 1√

2
(|χ A

1 〉 + |χ A
2 〉)

and |φB+〉 = 1√
2
(|χ B

1 〉 + |χ B
2 〉), i.e., localized occupied molecular orbitals on each

hydrogen molecule.
We notice that, while the Hamiltonian is diagonal in its eigenbasis {|ψ±

± 〉}:

Fig. 3.4 A simple application of the Hückel Hamiltonian: the (H2)2 dimer—Foster–Boys localiza-
tion
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Hψ =

∥∥∥∥∥∥∥∥

β + δ 0 0 0
0 β − δ 0 0
0 0 −β + δ 0
0 0 0 −β − δ

∥∥∥∥∥∥∥∥
, (3.52)

it is only block-diagonal in the basis {|φA+〉, |φB+〉, |φA−〉, |φB−〉}:

Hφ =

∥∥∥∥∥∥∥∥

β δ 0 0
δ β 0 0
0 0 −β δ

0 0 δ −β

∥∥∥∥∥∥∥∥
. (3.53)

However, the Slater determinants that describe the HF ground state in the two cases
are the same,

|ψ+
+ψ−

+ 〉 = |φA
+φB

+〉 ≡ |�0〉 , (3.54)

and this shows that the two treatments are equivalent.

3.3.1.2 Pipek–Mezey

We define the Mulliken charges for each occupied orbital and atom (i = 1, 2) as the
sum of the squares of the coefficients of the orbitals. The Mulliken charges for the
|φcs+〉 and |φsc+ 〉 are

QA
i (cs) = 1

2
(cos θ + sin θ)2 = 1

2
(1 + 2 cos θ sin θ) , (3.55)

QB
i (cs) = 1

2
(cos θ − sin θ)2 = 1

2
(1 − 2 cos θ sin θ) , (3.56)

QA
i (sc) = 1

2
(cos θ − sin θ)2 = 1

2
(1 − 2 cos θ sin θ) , (3.57)

QB
i (sc) = 1

2
(cos θ + sin θ)2 = 1

2
(1 + 2 cos θ sin θ) . (3.58)

The sum of charges over the occupied orbitals and the centers gives obviously
2, since two electrons are in the molecule (we remind that only one type of spin is
considered, and hence the charge is to be multiplied by 2).

The Pipek–Mezey localizing functional, LPM, is given by the sum of the squares
of the charges,

LPM = 1 + 4 cos2 θ sin2 θ . (3.59)

The maximum of this functional is reached for θ = π/4 + kπ/2.
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3.3.2 A Priori Local Orbitals

We consider now a priori localization. In this case, one selects the physical nature of
the occupied and virtual localized orbitals and then imposes the HF procedure while
keeping as much as possible of the nature of these localized orbitals. Let us assume
we want for our LMOs something located either on fragment A or on fragment B.
We start from the LMO guess |φX

o 〉 = |χ X
1 〉 and |φX

v 〉 = |χ X
2 〉, for X = A,B. This

corresponds to a one-body Density Matrix given by


[1]
χ =

∥∥∥∥∥∥∥∥

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

∥∥∥∥∥∥∥∥
. (3.60)

The unitary transformation that mixes the occupied and virtual orbitals on each
one of the two fragments, but not between them, has the general form

Uχ =

∥∥∥∥∥∥∥∥

cos ξA sin ξA 0 0
− sin ξA cos ξA 0 0

0 0 cos ξB sin ξB
0 0 − sin ξB cos ξB

∥∥∥∥∥∥∥∥
(3.61)

with ξA, ξB ∈ [0, 2π ].
The transformed density matrix becomes


[1] =

∥∥∥∥∥∥∥∥

cos2 ξA sin ξA cos ξA 0 0
sin ξA cos ξA sin2 ξA 0 0

0 0 cos2 ξB sin ξB cos ξB
0 0 sin ξB cos ξB sin2 ξB

∥∥∥∥∥∥∥∥
. (3.62)

The energy associated with this density matrix is

E = tr(
[1]H) = 2β (sin ξA cos ξA + sin ξB cos ξB) = E(ξA, ξB) .

By differentiating this expression with respect to ξA and ξB and setting the derivatives
equal to zero, one is able to findmaxima,minima, and saddle points of the energy (see
Fig. 3.5). The extrema correspond to ξX = π/4, 3π/4, 5π/4, 7π/4, with X = A,B.
The values ξX = π/4, 5π/4 on both A and B yield minima, while ξX = 3π/4, 7π/4
correspond to maxima (we remind that β is negative). All other combinations give
saddle points.

Notice that the local orbitals obtained via the two procedures are identical. This
is due to the extreme simplicity of the present model, and this property does not hold
in general.



60 N. Ben Amor et al.

Fig. 3.5 A simple application of the Hückel Hamiltonian: the (H2)2 dimer—Energy associated
with the density matrix in the a priori localization

3.4 Selected Applications of Localized Orbitals

We consider now some examples related to small-size molecules. In particular, we
will consider here linear molecules (like C2H2, C2F2) for which several a posteriori
localization schemes are probed and compared to the localized orbitals obtained with
an a priori localization scheme (dubbed DoLo). The aspect of the selection of a suit-
able active space thanks to the localization of the orbitals will also be considered for
the bond dissociation of a linear system (C2HF). Flexibility of the a priori localiza-
tion is illustrated for the planar benzene molecule and trans-stilbene, for both planar
and non-planar conformers. Subsequently, the common Boys localization technique
is successfully applied to two coordination compounds. Finally, localization in large
Polycyclic Aromatic Hydrocarbons (PAH) is investigated with both the Boys and the
DoLo methods.

The a priori local orbitals are obtained thanks to theDoLo program.DoLo requires
an initial guess of non-orthogonal local orbitals. Usually, two steps follow: (i) the
projection of this guess of local orbitals onto the SCF or CASSCF orbitals; the
quality of the guess of local orbitals is then improved (proj_scf code), and (ii)
the Schmidt orthogonalization of the obtained orbitals (separately within the three
subspaces of occupied/active/virtual sets of orbitals, with the schmudort code).
Finally, this multi-step process provides a set of local and orthogonal orbitals, with
SCF or CASSCF quality, i.e., it gives the same total energy. In some cases, the
projection step is not relevant, as for example when a molecule presents several
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resonance structures. In that case, a suitable guess set of local orbitals has to be
built for each structure. The local orbitals are orthogonalized and optimized by iter-
ative procedures keeping their locality (localized CASSCF [39, 40], Monte–Carlo
method [41]).However,most of the time, the local orbitals are used as starting orbitals
of a CASSCF calculation or to introduce dynamical correlation, and the three-step
(DoLo/proj_scf/schmudort) procedure is relevant. All the DoLo orbitals pre-
sented in this chapter are obtained in this way. Input data for the a priori localization
are given in the Appendix 1.

Beyond its role as a tool for analyzing the wave function, orbital localization is
also particularly useful to select the active space, in particular for the new-generation
Multi-Reference Self Consistent Field (MR-SCF) methods like GASSCF [42, 43],
ORMAS [44], FRACCIS [45], etc., or to reduce reference space in the case of
Configuration-Interaction calculations. In addition, localized orbitals are a necessary
ingredient for the development of linear-scaling methods required to treat dynamical
correlation.

The role of symmetry in a localized-orbitals context is particularly important
(see also [46]). In fact, the Canonical Molecular Orbitals transform according to
irreducible representations of the symmetry point group of the considered molecule.
For this reason, the CMOs are intrinsically delocalized, and spread out, in principle,
over all the equivalent centers of the molecule. Generally speaking, Local MOs
break the symmetry of the system. This fact is unpleasant, since the symmetry of
a molecule is extremely useful in order to reduce the computational complexity of
the studied system. This is true, in particular, for highly symmetric small molecules,
while it is usually less crucial in the case of large systems that often belong to the C1

symmetry group (in other words, they do not have any symmetry at all). In presence
of symmetry, one faces an alternative: either use localized orbitals, and renounce to
the symmetry advantages, or keep the Canonical Orbital approach. This fact is well
illustrated by the Boys localization, where even the symmetry distinction between
σ and π orbitals in the case of conjugated systems is lost. It is possible, however,
to use a somehow intermediate approach, and define Symmetry-Adapted LMO, i.e.,
symmetry combinations of strictly localized orbitals. In this way, all the advantages
of localization are essentially kept, while the symmetry information is conserved, in
order to reduce the computational cost. This possibility has been implemented, in
particular, in the EXSCI [47–49] and DoLo [38] chains. EXSCI is a quasi-linear-
scaling MRCI code, which takes into account all the symmetry information at the CI
step, in order to reduce the computational complexity of a calculation.

Computational Details
For the small linear systems C2H2, C2F2, C2HF, we used the Atomic Natural Orbital
(ANO) basis set optimized by Widmark and coworkers [50], taking small contrac-
tions: 2s1p for H, 3s2p1d for the atoms of the second period (C, F). In all cases,
we decided not to use higher-angular-momentum orbitals, like f or g orbitals. The
same basis sets and contractions are used for the trans-stilbene while for the ben-
zene, we used different contractions: 3s2p for H, 4s3p2d for C. For the polycyclic
aromatic hydrocarbons and for the coordination complexes, we used Dunning-type
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basis sets [51], with overall singly-polarized valence double-zeta quality. The basis
set for Ni thus includes f functions.

Different software packages were used, like Molcas [52], Molpro [53], Tur-
bomole [54], DoLo [55], and the figures were generated with GV [52, 56],
Avogadro[57], and Molden [58, 59]. Notice that throughout this article, even if
the orbitals were drawn with different orbital visualization software, we tried to keep
the same contour value to allow fair comparison.

3.4.1 Small Linear Molecules: C2H2, C2F2

As a general choice, in an HF context, we will use the notation On as label for
the n-th Occupied orbital and, conversely, the notation Vn to label the n-th Virtual
orbital (Figs. 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13). At CASSCF level, this
convention, will be augmented by An as label for the n-th Active orbital.

C2H2

In Figs. 3.6 and 3.7, the Boys and DoLo localized orbitals of C2H2 are shown. The
most striking difference between the two sets is the fact that the Boys Orbitals do
not reflect the σ–π separation of this system. This is a well-known defect of the
Boys orbitals: in order to minimize the Boys functional, combinations of orbitals of
different symmetries are generated, so that the resulting orbitals do not belong to
any irreducible representation of the symmetry group of the molecule. In fact, the
obtained orbitals are hybrid orbitals that transform into a corresponding orbital under
the action of some symmetry operation. Notice that this is not related to the non-
Abelian nature of the group (in this case, D∞h). As we can see in Fig. 3.6, the C−H
σ bonds are well represented by O1 and O3 and do not pose particular problems.
The C≡C triple bond, on the other hand, is built with the combination of σ , πx , and
πy C−C bonds. Three equivalent orbitals are obtained that mutually transform under
the action of the C3z symmetry operation. They are O2, O4, and O5 in the figure.

Fig. 3.6 Boys local orbitals of C2H2 (Molpro program)
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Fig. 3.7 DoLo local orbitals of C2H2

Fig. 3.8 Canonical orbitals of C2H2

Fig. 3.9 Boys local orbitals of C2F2 (Molpro program)

The Boys localization procedure is usually applied only to occupied orbitals, and the
virtual ones are left at the canonical level. However, if the procedure is applied to
the virtual orbitals obtained with a small basis set, the same type of behavior would
be observed.



64 N. Ben Amor et al.

Fig. 3.10 Pipek local orbitals of C2F2 (Molpro program)

Fig. 3.11 Natural local orbitals of C2F2 (Molpro program)

Fig. 3.12 DoLo local orbitals of C2F2

In Fig. 3.7, some of the localized orbitals obtained with the DoLo procedure are
shown. The σ–π symmetry separation is respected. Notice that this would be true
for many of the localization procedures, except for the Boys scheme. Moreover,
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Fig. 3.13 DoLo local orbitals of C2HF. The suitable active space CAS(2, 2) for the dissociation of
the H atom corresponds to the O4 and V1 orbitals and for the dissociation of the F atom to O6 and
V3

the virtual orbitals are local. The sigma antibonding orbitals (V1, V2, and V3) are
each one on a bond, with delocalization tails somehow more important than for the
corresponding occupied orbitals. Because of the symmetry property, the virtual π

orbitals are essentially identical to the canonical ones (Fig. 3.8).

C2F2

In Figs. 3.9, 3.10, 3.11, and 3.12, the localized orbitals are shown for the C2F2
molecule. The situation is very much the same as for the C2H2 system, except for the
presence of the lone-pair orbitals on the Fluorine atoms. The Boys orbitals, Fig. 3.9,
mix the σ andπ orbitals. The Pipek orbitals, Fig. 3.10, andNatural orbitals, Fig. 3.11,
keep this separation. They look extremely similar. The DoLo orbitals, Fig. 3.12, as
in the previous example, give local virtual orbitals too.

3.4.2 Bond Dissociation of C2HF

As we already pointed out, one of the most interesting aspects of localization is
the possibility to focus on the description of a part of the electronic structure in a
molecule in that region of space where “the interesting things” happen. We illustrate
this fact by considering the two possible dissociation processes of C2HF, whose
structure is F-C-C-H (Fig. 3.13 shows the structure and the DoLo localized orbitals).
Two possible fragmentation processes considered here are fragmentation either into
F + CCH or into FCC + H. In this particular case, the complete valence space could
be chosen as an active space, and this would not pose any problems. However, this
choice corresponds to an active space of CAS(16/13) type, which is unreasonably
large. Moreover, the addition of just a few more atoms would transform this system
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from a computationally difficult one to a simply unfeasible one. Indeed, it is clear
that the use of such a large active space is completely useless in the present case.
In each of the two bond-breaking processes just mentioned, only two orbitals and
two electrons are involved (this is the case of simple single bonds; if the bond is a
double or triple bond, the number of orbitals and electrons would become four or
six, respectively).

In Figs. 3.14 and 3.15, the energy profiles from short bond distances up to dis-
sociation are reported. In particular, Fig. 3.14 shows the curve for the two different
processes, obtained by using a CAS(2, 2) active space of localized and delocalized
orbitals. Let us consider first the CAS defined on energetic criteria (the “delocalized”
one, obtained by starting from the HOMO-LUMO pair of HF orbitals). The point is
that, while for long distances, the active space is always located, for energetic rea-
sons, on the breaking bond, close to equilibrium, it will be located on C-H, since this
is the bond that has the largest correlation contribution at CAS(2,2) level, as shown
in Fig. 3.15. For this reason, the corresponding energy curve for the C-F dissociation
will be discontinuous (Fig. 3.14, bottom), while it is continuous for C-H (Fig. 3.14,
top). The curves obtained by localizing the active space on the studied bond, on the
other hand, show no sign of discontinuity.

3.4.3 Benzene and Trans-Stilbene

The use of localized orbitals allows the understanding of the electronic structure
of a molecule in terms of chemical concepts such as bonds and lone pairs. In the
case of an aromatic molecule, “delocalized electrons” are not associated with a
bond but with several molecular orbitals. For Edmiston and Ruedenberg [9], the
localized orbitals provide a quantitative basis for the qualitative chemical concepts
of “localized electrons” and “delocalized electrons”. This will be illustrated here
with the benzene and trans-stilbene molecules.

Consider first the benzene molecule (Fig. 3.16). The molecular orbitals coming
from a CAS(6, 6)SCF calculation are localized according to the core of the C atoms,
the occupied and virtual σ bond orbitals as well as the occupied and virtual π ones,
and the remaining atomic orbitals. There are several possibilities to localize the π

bonds. When the π orbitals are localized according to CC bonds, the wave function
of the ground state ψ0

π , expressed hereafter only on the active orbitals of the main
determinants (weight � 0.02), becomes multi-referential:

ψ0
π = 0.34 |222000〉 + 0.05 |221100〉 + 0.05 |221010〉 + 0.05 |212100〉

+ 0.05 |212001〉 + 0.05 |122010〉 + 0.05 |122001〉 + 0.02 |211011〉
+ 0.02 |112110〉 + 0.02 |121101〉 ,

(3.63)
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Fig. 3.14 Dissociation of C2HF along the CH or CF bond. The active space is formed by the
HOMO and LUMO SCF orbitals
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Fig. 3.15 Dissociation of C2HF along the CH or CF bond at CAS(2, 2). The active space is
constituted by the CH or CF localized bond, respectively. At the (common) equilibrium distance,
the active space localized on the C-H bond gives the lowest energy

Fig. 3.16 Structural formulas for the molecules of benzene, C6H6, and of (E)-1,2-diphenylethene
(trans-stilbene), H5C6-CH=CH-C6H5, showing circles representing Robinson–Clar π sextets for
the π -systems in the six-membered rings

where the order of the active orbitals corresponds from left to right to the orbitals
presented in Fig. 3.17b. With this localization scheme, the |222000〉 determinant is
defined on three occupied πCC bonds and their corresponding antibonding orbitals.

Of course, the multi-referential wave function character is then enhanced in order
to reintroduce the conjugation. It is also the case of the excited states of benzene
which are no longer described simply by a few mono-excitations on the |222000〉
determinant as in a delocalized description, but by numerous excitations (mainly
mono- and di-excitations) with small weights. Furthermore, the first excited stateψ1

π

wave function has a very similar weight on the |222000〉 determinant as the ground
state:



3 Local Orbitals in Quantum Chemistry 69

Fig. 3.17 CASSCF and Localized π active orbitals of the benzene molecule

ψ1
π = 0.34 |222000〉 + 0.09 |111111〉 + 0.05 |211011〉 + 0.05 |121101〉

+ 0.05 |112110〉 + 0.02 |220002〉 + 0.02 |202020〉 + 0.02 |022200〉 .
(3.64)

In some cases, the localization can then reduce the understanding of the elec-
tronic structure instead of making it easier. Some solutions have been proposed, as
the intermediate localization of Zimmerman [60], leading to orbitals preserving the
almost diagonal nature of the Fock matrix while maximizing orbital locality.

With the a priori DoLo localization, a different solution is proposed. Indeed, the
π orbitals can be localized on the entire cycle while keeping the locality of all the
other orbitals. The delocalized and localized π orbitals are shown in Fig. 3.17. The
DoLo input file is given in the Appendix, while all the valence localized orbitals are
shown in Fig. 3.18. With this mixed solution, the eigenfunctions of the ground and
the first excited states (weight � 0.02) are as follows:

ψ0
cycle = 0.89 |222000〉 + 0.03 |211110〉 + 0.02 |220020〉 + 0.02 |202200〉 (3.65)

and

ψ1
cycle = 0.40 |212010〉 + 0.40 |221100〉 + 0.05 |112110〉 + 0.04 |211101〉

+ 0.02 |121020〉 + 0.02 |121200〉, (3.66)

where the order of the active orbitals corresponds from left to right to the orbitals
presented in Fig. 3.17a. The weights of these determinants are now similar to those
obtained with a delocalized CASSCF calculation, but the determinants are expressed
on localized doubly occupied orbitals, delocalized active orbitals, and localized vir-
tual orbitals (Fig. 3.18).

Concerning the trans-stilbene (also on Fig. 3.16), two conformers are studied. In
the first one, the two cycles are in the same plane and present a delocalization through
the central πCC bond. This conformer is called “in-plane”. In the second (highly
unstable) conformer, “out-of-plane”, the two cycles are in two parallel planes, but
there is no more delocalization between the two cycles. In both cases, all the orbitals
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Fig. 3.18 Localized valence molecular orbitals of the benzene molecule. The π orbitals are defined
on the whole cycle

are localized on the bonds (or kept atomic for the core and virtual ones) except the
π orbitals which are localized on each cycle, and on the central bond (Fig. 3.19).
The SCF molecular orbitals of the in-plane conformer are completely delocalized
over the two cycles and the double bond connecting them (Occupied π orbitals are
presented in Fig. 3.20), whereas the out-of-plane SCF MOs (Fig. 3.21) present a
break-down of the delocalization at the level of the central bond. In the latter case,
the localized orbitals (Fig. 3.22) on each cycle show a similarity with those found for
the benzene molecule, only slightly distorted by the presence of the first neighbor
carbon of the central bond. This similarity is lost when the two cycles are completely
delocalized (Fig. 3.19).

Similar conclusions are obtainedwhenwe analyze thewave functions. The ground
state wave functions of the two conformers (weight � 0.02) are as follows:

ψin = 0.65 |22222220000000〉 + 0.03 |22202220002000〉
+ 0.02 |22122220001000〉 + 0.02 |22222210001000〉
+ 0.02 |22212220000100〉 + 0.02 |22212221000000〉

(3.67)
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Fig. 3.19 In-plane trans-stilbene: localization on the cycles and on the central bond of the SCF
MOs

Fig. 3.20 In-plane trans-stilbene: Occupied π SCF MOs
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Fig. 3.21 Out-of-plane trans-stilbene: Occupied π SCF MOs

Fig. 3.22 Out-of-plane trans-stilbene: localization on the cycles and on the central bond of the
SCF MOs
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and

ψout = 0.76|22222220000000〉 + 0.03|22202220002000〉
+ 0.02|22222110000110〉 + 0.02|21122221100000〉 (3.68)

Numbers in red refer to one cycle, those in cyan to the other one, and numbers
in black refer to the central bond. First of all, the weight of the main determinant is
larger in the out-of-plane conformer than in the in-plane one, as expected for a lower
delocalization of the electrons. In the two conformers, the double excitation on the
central bond has the same weight while the excitation from one cycle to the central
bond (or from the central bond to one cycle) occurs only in the in-plane conformer
and is representative of the delocalization of the electrons between the two cycles.
The double excitations localized on one cycle have a larger weight in the out-of-
plane conformer than in the in-plane one. This mixed localization, separating the
two cycles, illustrates the possibility to obtain wave functions that have a chemical
meaning.

The flexibility of the a priori DoLo localization allows the description of “delocal-
ized electrons” keeping at the same time all the other orbitals localized, a necessary
feature for the development of linear-scaling methods [47–49].

Orbital localization can be seen as a tool to select different regions of a molecule
in order to choose the relevant active space, as in the example of the dissociation
of C2HF, or to study the approach of an atom or a molecule to one side of another
one [49]. Another example is the description of excited states by limiting the size of
the active space to those orbitals involved in the excitations [61].

3.4.4 Coordination Complexes

Now we lift the restriction to molecules composed exclusively of atoms from light
main-group elements, at least partly, and exemplarily consider two diamagnetic
molecular compounds of metals: tetracarbonylnickel, [Ni(CO)4], and tris(acetyl-
acetonato)aluminium, [Al(C5H7O2)3] or [Al(acac)3] (Hacac is pentane-2,4-dione
or acetylacetone). Under standard ambient conditions, tetracarbonylnickel is a col-
orless transparent liquid, whereas tris(acetylacetonato)aluminium forms a white or
pale yellow crystalline powder. These few experimental facts already suffice as strong
indications for a closed-shell electronic ground state and for the absence of low-lying
excited electronic states. In fact, the electronic ground state of the molecules forming
these two compounds is found to be a totally symmetric singlet state, in both cases.

The structure of a tetracarbonylnickel molecule is shown in Fig. 3.23. The molec-
ular point group is Td . The electron configuration in its electronic ground state can
be derived from the superposition (or combination) of a Ni atom with closed-shell
electron configuration 3d10 and of the filled MOs of the four CO molecules in their
closed-shell electronic ground states (|C≡O|), see the Appendix 2 for the summa-



74 N. Ben Amor et al.

rized final result. The electron configuration of [Ni(CO)4] is built up from seventeen
atomic core orbitals (Ni 1s2 2s2 2p6 3s2 3p6, four C 1s2, and four O 1s2), which
transform as 5a1 ⊕ 4t2, and twenty-five valence orbitals. These latter originate from
the five orbitals of the filled 3d shell of Ni, which transform as e ⊕ t2, and four
sets of valence orbitals of the CO molecules (each containing five filled MOs: σCO,
a πCO pair, lone pairs n on C and O). The twenty valence orbitals of the four CO
molecules transform as 3a1 ⊕ e ⊕ t1 ⊕ 4t2. From these, the e and t1 shells originate
exclusively from the four pairs of πCO MOs of the ligands (which contribute a set of
t2 MOs as well). In the Abelian subgroup D2, the molecular electron configuration
of the electronic ground state of tetracarbonylnickel corresponds to the following
types and numbers of filled shells: 12a ⊕ 10b1 ⊕ 10b2 ⊕ 10b3. After repetition of
the SCF calculation in point group C1, subsequent orbital localization was success-
fully achieved by the iterative algorithm for the Boys localization as implemented in
Molpro (17 iteration steps), but this required the grouping of the canonical valence
MOs into three different disjoint subsets: a set of five MOs of mainly d character
at Ni (e ⊕ t2 in Td ), a set of eight MOs of mainly π character at the CO ligands (e
⊕ t1 ⊕ t2 in Td ), and a set of all remaining valence MOs. A subset of the resulting
Boys localized MOs is shown in Fig. 3.24. In addition to the set of five d orbitals on
Ni, shown in the lower row, one can readily identify in the upper row a nonbonding
orbital on O (at the distant end of the ligand), a set of three bonding orbitals of CO
(σCO and a πCO pair), and an orbital of mainly σ donor character (at the proximal
end of the ligand).

Themolecules of tris(acetylacetonato)aluminiumexist in two enantiomeric forms,
both shown inFig. 3.23. These two forms differ in theway inwhich the three bidentate
anionic acetylacetonate ligands (C5H7O

−
2 ) are arranged around the central Al

3+ ion,
resembling either a right-handed or a left-handed screw. The molecular point group
is D3. For both forms, the electron configuration in their electronic ground state
can be derived from the superposition (or combination) of an Al3+ ion with Ne-
like closed-shell electron configuration and of the filled MOs of the three C5H7O

−
2

Fig. 3.23 Structural formulas for the molecules of tetracarbonylnickel, [Ni(CO)4], and of the two
enantiomeric forms of tris(acetylacetonato)aluminium, [Al(acac)3]
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Fig. 3.24 A full set of localized valence orbitals on one of the four CO ligands (upper row) and
localized orbitals of mainly d character on the central atom (lower row) in tetracarbonylnickel,
[Ni(CO)4] (Td ; view along the S4 axis)

ligands being in closed-shell electron configurations as well, see the Appendix 2 for
the summarized final result. The electron configuration of [Al(acac)3] is built up from
twenty-six atomic core orbitals (Al 1s2 2s2 2p6, fifteen C 1s2, and six O 1s2), which
transform as 6a1 ⊕ 4a2 ⊕ 8e, and sixty valence orbitals. Each of the three C5H7O

−
2

ligands contributes twenty valence orbitals, which exist in the space spanned by seven
σCH orbitals, fourσCC orbitals, twoσCO orbitals, four non-bonding orbitals (n) for free
electron pairs on the O atoms of the carbonyl groups, and three π orbitals delocalized
over the chain of atoms O-C-CH-C-O. These sixty valence orbitals transform as 10a1
⊕ 10a2 ⊕ 20e. In the Abelian subgroup C2, the molecular electron configuration
of the electronic ground state of tris(acetylacetonato)aluminium corresponds to the
following types and numbers of filled shells: 44a ⊕ 42b. After repetition of the
SCF calculation in point group C1, subsequent orbital localization was successfully
achieved by the iterative algorithm for the Boys localization as implemented in
Molpro (23 iteration steps). No grouping of canonical valence orbitals into different
disjoint subsets was necessary. A subset of the resulting Boys localized MOs, the
twenty localized valence MOs on one of the three acetylacetonato ligands, is shown
in Fig. 3.25. Most interesting here are the following four points: (i) all non-hydrogen
atoms in eachof the three ligands are found to lie almost in oneplane (this is also found
in the crystal structures of the different known polymorphs [62]); (ii) the ligand acts
as a bidentate chelating ligand with the two O atoms of the carbonyl groups behaving
as σ donors; (iii) the bonding orbitals of the carbonyl groups (one σ orbital and one
π orbital on each of these groups) are mixed, so that they appear as pairs of banana-
shaped orbitals, as one might have expected (since the Boys localization algorithm
was used without any further restrictions); (iv) a reasonably well-localized π orbital
is found at and in the neighborhood of the central methylidyne group (CH) of each
acetylacetonate ligand.

Wehave shownhere,with twocoordination compounds as examples, that common
orbital localization techniques can be successfully applied also to cases outside the
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Fig. 3.25 A full set of localized valence orbitals on one of the three ligands in tris(acetylacetonato)-
aluminium, [Al(acac)3] (D3; view along the C3 axis)

class of compounds that are built exclusively from covalently linked atoms of light
main-group elements.

3.4.5 Large Systems: Polycyclic Aromatic Hydrocarbons

As seen in a previous subsection, it is well possible to localize not only the occupied
π orbitals, but also the virtual π orbitals in small aromatic hydrocarbon molecules,
e.g., in the case of benzene (see Fig. 3.17). Each of the localized π orbitals thus
obtained can be easily assigned to a particular pair of neighboring carbon nuclei. In
benzene, the resulting complete set of six localized π orbitals may be used even to
study π–π∗ excitations, at least in first approximation, since it spans the same part
of function space as does the complete set of the six canonical π orbitals.

We turn now to Polycyclic Aromatic Hydrocarbons (PAHs), a class of com-
pounds that includes large molecular systems. Well-known families of PAHs are
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the homologous sequences of the [n]acenes and the [n]phenacenes (with a common
chemical formula C4n+2H2n+4, see Figs 3.26 and 3.27) as well as the [n]coronenes
(C6n2H6n , see Fig. 3.28). In the limit n → ∞, the former sequences turn into carbon
nanoribbons of smallest possible width (with limit formula 1∞(C4H2)), whereas the
coronenes approach graphene (two-dimensional infinite hexagonal lattice of carbon
atoms, with two carbon atoms per unit cell, 2∞(C2)). A common feature of the elec-
tronic structure of all PAHs is the presence of carbon p orbitals oriented normal (or
perpendicular) to the surface containing the atomic nuclei, which form the so-called
π orbitals. The surface mentioned, a two-dimensional manifold embedded in three-
dimensional Euclidean space, does not need to be a plane, see, e.g., the [n]cyclacenes,
cyclo-(C4H2)n , where this surface is a part of a right circular cylinder with carbon p
orbitals normal to the surface pointing radially out- and inwards.

It has been properly stated above that orbital localization methods can destroy
orbital symmetry, because these methods form new localized functions by linearly
combining canonical orbitals of different symmetry behavior (too) freely. Mixing of
σ and π orbitals would be a problem in PAHs too, but this problem can be resolved,
as shown below.

However, before we attempt to localize the canonical orbitals in PAHs in such a
way that their symmetry with respect to the surface containing the atomic nuclei is
conserved, we need tomake sure that the correct (or desired) electronic state has been
selected (irrespective of whether the point group of the PAH has been, or is going to
be, fully exploited or not—we remind the reader that the localization process forces
us to use point group C1). As shown in Table 3.1 with three examples taken from
the [n]acene sequence (n = 10 or 20 or 30; point group D2h), an erroneous choice
or selection of the electron configuration for a state as simple as a totally symmetric
closed-shell singlet state (1Ag) easily leads to failure in finding the solution with the
lowest possible total energy. In comparison with the electron configuration selected

Fig. 3.26 Point-group adapted structural formulas for the first six members of the homologous
sequence of the [n]acenes, C4n+2H2n+4, (D2h ; cases where the number of hexagons n is odd
require the use of the single Robinson–Clar π sextet that can be drawn here, being placed in the
central hexagon)
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Fig. 3.27 Point-group adapted structural formulas for the first six members of the homologous
sequence of the [n]phenacenes, C4n+2H2n+4 (n odd: C2v , n even: C2h ; the use of Robinson–Clar
π sextets for the purpose of symmetry adaption is not necessary here)

in some automatized way by the software applied, the correct choice leads to a lower
total energy and to a lower (higher) orbital energy for the HOMO (LUMO), thus
ensuring a larger HOMO-LUMO gap. The two totally symmetric electron configu-
rations involved in each example simply differ in the selection of type and number
of occupied π orbitals. In the cases of [10]- and [20]acene, a simple orbital rotation,
exchanging the role of HOMO and LUMO, corrects the fault. For [30]acene, in con-
trast, the initial guess for the number of fully occupied π orbitals is wrong for all
four irreducible representations (irreps) available for π orbitals.

As it appears now, it may seem to be difficult to select the π orbital part of the
electron configuration in such a way that it gives the totally symmetric closed-shell
singlet state with the lowest total energy for the larger members of the homologous
sequences of PAHs considered here ([n]acenes, [n]phenacenes, and [n]coronenes),
but this is wrong. The sought-after electron configuration can be straightforwardly
calculated from the reducible representation carried by the occupied localized orbitals
(both σ and π ) seen in or represented by the point-group adapted structural formu-
las already shown in Figs. 3.26, 3.27, and 3.28. As shown, these structural formulas
sometimes require the inclusion of Robinson–Clar π sextets. Each such π sextet is to
be understood then as representing three occupied π orbitals (which are well known
from benzene, in point group D6h , as the 1a2u orbital and the 1e1g orbital pair). In
each six-membered ring of the PAH decorated with a Robinson–Clar π sextet, these
three π orbitals then simply contribute to the character of the reducible representa-
tion in the usual way. After reduction of the reducible representation, the electron
configuration for the PAHs considered here in their lowest-energy totally symmet-



3 Local Orbitals in Quantum Chemistry 79

Ta
bl

e
3.

1
E
le
ct
ro
n
co
nfi

gu
ra
tio

n
(n
um

be
r
of

fil
le
d
M
O
s
pe
r
ir
re
p)
,t
ot
al
SC

F
en
er
gy

(s
in
gl
e
po
in
ta
,R

H
F/
cc
-p
V
D
Z
,i
n
H
ar
tr
ee
),
an
d
fr
on

tie
r
or
bi
ta
le
ne
rg
ie
s

(i
n
H
ar
tr
ee
)
fo
r
lo
w
-l
yi
ng

to
ta
lly

sy
m
m
et
ri
c
cl
os
ed
-s
he
ll
si
ng

le
ts
ta
te
s
1 A

g
(D

2h
)
of

th
re
e
la
rg
er

[n
]a
ce
ne
s
(n

=
10

,
20

,
30

)

a
al
ln

uc
le
ii
n
th
e
x
y
pl
an
e,
al
lC

C
bo
nd

le
ng
th
s
eq
ua
lt
o
14
2.
1
pm

,a
ll
C
H
bo
nd

le
ng
th
s
eq
ua
lt
o
10
8.
4
pm

,a
ll
bo
nd

an
gl
es

eq
ua
lt
o
12
0◦
.

b
co
nfi

rm
at
io
n
of

a
co
rr
es
po

nd
in
g
lo
ca
l
m
in
im

um
on

th
e
po

te
nt
ia
l
en
er
gy

hy
pe
rs
ur
fa
ce

w
as

su
bs
eq
ue
nt
ly

ac
hi
ev
ed

by
op

tim
iz
at
io
n
of

m
ol
ec
ul
ar

st
ru
ct
ur
e

fo
llo

w
ed

by
no
rm

al
m
od
e
an
al
ys
is
,s
ee

Fi
g.

3.
29

an
d
te
xt

fo
r
m
or
e
de
ta
ils
.

c o
rb
ita
li
rr
ep
s
gi
ve
n
in

pa
re
nt
he
se
s.

d
ne
ga
tiv

e
va
lu
e
of

ε
L
U
M
O
at
th
is
le
ve
l(
R
H
F-
SC

F)
hi
nt
s
at
po

ss
ib
le
ex
is
te
nc
e
of

ei
th
er

st
ab
le
m
on

o-
an
io
n
or

lo
w
-l
yi
ng

op
en
-s
he
ll
st
at
e(
s)



80 N. Ben Amor et al.

Fig. 3.28 Point-group adapted structural formulas for the first four members of the homologous
sequence of the [n]coronenes, C6n2H6n (D6h ; cases where n is odd require the use of Robinson–Clar
π sextets)

ric closed-shell singlet states is determined (details are given in the Appendix 2).
The group theoretical approach works because it extracts information that is invari-
ant under orthogonal transformation from one set of orbitals (like filled canonical
orbitals) to another, equivalent set (like filled localized orbitals).



3 Local Orbitals in Quantum Chemistry 81

The problem discussed here is the problem of choice of an initial guess for the
electron configuration of a totally symmetric closed-shell singlet state for molecules
from homologous sequences of PAHs.When the HOMO-LUMO gap is small, which
happens quickly upon an increase in PAH size, the typical algorithms and methods
used to accomplish this task (based, e.g., on application of extended Hückel theory
or on superposition of atomic densities) very likely fail sooner or later. Of course, it
is not the software that is to be blamed for such failures.

After having solved the problem of electron configuration and electronic state,
we show in Fig. 3.29 that consistent and converging results are obtained for sev-
eral quantities of interest for the series of members of the homologous sequences
of [n]acenes and [n]phenacenes up to n = 30. Figure 3.29a shows the convergence
of the energy per monomer unit, �E(C4H2), as derived from data obtained both in
single-point calculations at the initially assumed molecular structure (labeled ASP)
and after full optimization of molecular structure (labeled OPT). Convergence of
this quantity to better than 10−6 Hartree (much smaller than the unit shown in the
figure) for the fully optimized molecular structures required to go up to [30]acene
in the acene sequence, while it was achieved in the phenacene sequence already
at [16]phenacene. Figure 3.29b shows corresponding data for the HOMO-LUMO
gap. Upon optimization of molecular structure, the HOMO-LUMO gap opens up
significantly, as expected, and it does so much more strongly for the [n]acenes than
for the [n]phenacenes. Figure 3.29c shows the lowest normal mode frequency found
among the rod-bending out-of-plane modes for the fully optimized molecular struc-
tures of the [n]acenes and [n]phenacenes. As n → ∞, i.e., as the length of these
PAHmolecules tends to infinity, one expects that this frequency approaches zero. To
be sure, normal mode frequencies for a finite-sized system in a local minimum of its
potential energy hypersurface have to be positive. The figure clearly shows that this
criterion is fulfilled. As a final statement on Fig. 3.29, we remark that any incorrect
choice of electronic state made for members in these homologous sequences of PAHs
would have lead to severe “kinks” or “steps” in the curves shown here.

Now that the question of the correct choice of the electronic state of the PAH
molecules has been settled, we can eventually turn to the task of determination of
localized orbitals for them. This orbital localization usually takes place within point-
group symmetry C1, i.e., the symmetry recognition of the software tools is or has
to be switched off. However, one must not forget that the set of nuclear Cartesian
coordinates (frequently dubbed “molecular geometry”) still carries the full point-
group symmetry into the electronic structure calculation even when its use has been
switched off by intention. The check for the correctness of results obtained from a
calculation done without the use of symmetry for a system that does have symmetry
requires the availability of results obtained from a previous calculation where that
symmetry has been fully exploited.

As for all other systems, orbital localization in PAHs can be achieved either by a
posteriori methods or by a priori methods. The usually unwanted mixing of σ and π

orbitals that may occur when a posteriori methods of orbital localization are applied
can be safely avoided by preparation of two disjoint subsets of canonical orbitals, a
subset of σ orbitals and a subset of π orbitals, and subsequent application of orbital
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Fig. 3.29 Results from RHF-SCF calculations (basis set cc-pVDZ) for [n]acenes (in red) and
[n]phenacenes (in blue) at assumed molecular structure (ASP: squares) and after full optimization
(OPT: circles): a energy per monomer unit C4H2; b HOMO-LUMO gap; c lowest frequency of
rod-bending normal modes
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localization separately within each of these two subsets. It has to be emphasized
again that both the SCF calculation, which precedes the orbital localization step and
generates the canonical orbitals, as well as the orbital localization step itself are done
completely without exploitation of point-group symmetry, i.e., they use point group
C1 only.

We first show in Fig. 3.30 two sets of localized π -MOs for the six molecules
representing the first members from the homologous sequences of the [n]acenes and
the [n]phenacenes (n = 1 to 4). Benzene and naphthalene serve as possibly somewhat
untypical first members of both sequences. The group of panels associated with each
molecule shows in its upper half a set of localized π -MOs obtained from the Boys
localization, whereas the lower half presents a set of localized π -MOs obtained by
the DoLo method. In all cases shown, for both the [n]acenes and the [n]phenacenes,
the Boys localized π -MOs are found at those positions where localized π -MOs were
drawn in the point-group adapted structural formulas presented in Figs. 3.26 and
3.27. In the cases of benzene and anthracene, a set of three Boys localized π -MOs
is found to be associated with the (central) six-membered ring, thus representing
the Robinson–Clar π sextet, as expected. It is worth to mention here in passing that
in the case of benzene, C6H6 (point group D6h), the three localized π -MOs can be
rotated continuously around the hexagon [63, 64].

We turn now to the localized π -MOs obtained by the DoLo method. Since
this localization method is an a priori method, the freedom of choice of unitary
(orthogonal) transformation, here within the set of occupied π -orbitals, can be
exploited by the user in order to generate a new set of occupied localized π -orbitals
with user-specified properties. For phenanthrene and chrysene, the localized π -MOs
obtained by the DoLo method are identical to the ones obtained from the Boys local-
ization. However, in the case of the first members of the [n]acene sequence, the
DoLo method offers the possibility to choose (or to enforce) localization of a subset
of n + 1 π -orbitals (out of a total of 2n + 1) at the n + 1 CC σ bonds that connect
the two (upper and lower) zigzag chains of carbon atoms seen in these molecules.
This attempt is successful indeed, and leads (i) to these n + 1 localized π -MOs, as
intended, and (ii) to n π -MOs localized across each of the n six-member rings and
having an additional nodal surface perpendicular to the molecular mirror plane.

The Figs. 3.31 and 3.32 show complete sets of localized π -MOs for coronene
and for circumcoronene, two members of the [n]coronene sequence with n = 2
and n = 3. Comparison with the point-group adapted structural formulas seen in
Fig. 3.28 shows for both molecules a close similarity between the localized π -MOs
and the symbols (lines and circles) used to represent the π -system in these structural
formulas. For all twelve localized π -MOs of coronene, one finds a one-to-one cor-
respondence between a localized π -MO in Fig. 3.31 and a line formally indicating
a double bond in Fig. 3.28. The twenty-seven localized π -MOs of circumcoronene
can be grouped into seven sets, each containing three MOs associated with one six-
membered ring, and six other π -MOs located at the periphery of this disk-shaped
molecule. Figure 3.32 shows these seven three-membered sets of localized π -MOs
in its upper part and the remaining six π -MOs in its lower part. The three-membered
sets of π -MOs correspond in a one-to-one fashion to the circles drawn in the for-
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Fig. 3.30 Two sets of localized π -MOs for the first members of the homologous sequences of the
[n]acenes and of the [n]phenacenes (n = 1 to 4). For each molecule is shown first a set of localized
π -MOs obtained from the Boys localization (upper half of panels) and, second, a set of localized
π -MOs obtained from the DoLo method (lower half of panels)
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Fig. 3.31 Localized π -MOs for coronene ([2]coronene), C24H12, as obtained from the Boys local-
ization applied to the set of occupied canonical π -MOs

mula for circumcoronene in Fig. 3.28. Each of the localized π -MOs at the periphery
corresponds to a line formally indicating a double bond, exactly in the same way as
seen before for coronene.

It has been demonstrated now with the examples considered so far in this sub-
section that the generation of localized occupied σ -MOs (not shown) and π -MOs
in PAHs can be achieved, in more than one way, without problems. In order to be
successful, the Boys localization method requires the identification and specification
of the canonical σ - and π -MOs, in terms of lists to be processed, prior to its appli-
cation. The DoLo method, on the other hand, gives much freedom to the user and
can generate also quite unconventional, but equally valid sets of localized π -MOs,
as shown above for the early members of the acene sequence.

All PAH molecules discussed up to now belong to the class of alternating aro-
matic hydrocarbons. Our last example, the comparative study of π -MO localization
in naphthalene and azulene, includes a non-alternating aromatic hydrocarbon. Struc-
tural formulas for these two isomers of C10H8 are shown in Fig. 3.33. The next
figure, Fig. 3.34, shows the five canonical occupied π -MOs ψi and the five local-
ized occupied π -MOs φk for both molecules. The panels are arranged in a way that
facilitates comparison. In the middle, one sees the canonical π -MOs, those for naph-
thalene in Fig. 3.34b and those for azulene in Fig. 3.34c, arranged from left to right
according to the increase of orbital energy. The localized π -MOs, as obtained from
the Boys localization, are shown in Fig. 3.34a for naphthalene and in Fig. 3.34d for
azulene. As for the canonical π -MOs, there is again a close similarity and correspon-
dence between localized π -MOs for naphthalene and localized π -MOs for azulene.
However, despite the fact that the iterative Boys localization for azulene eventually
converged (to very good quality, but only after 489 iterations), the Boys localized π -
MOs for azulene are less well localized than those for naphthalene: they extend over
three (φ31 to φ34) to four (φ30) carbon nuclei and sometimes exhibit comparatively
large orthogonalization tails (see φ30). In Figs. 3.35 and 3.36, we show two different
sets of localized π -MOs for azulene obtained with the DoLo method. In addition,
both figures include the unoccupied antibonding localized π -MOs in the upper row.
The localized π -MOs in Fig. 3.35 have been generated by imposing that a localized
occupied π -MO is found at the bond common to both rings (this is the fourth π -MO
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Fig. 3.32 Localized π -MOs
for circumcoronene
([3]coronene), C54H18, as
obtained from the Boys
localization applied to the set
of occupied canonical
π -MOs
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Fig. 3.33 Structural
formulas for the molecules
of naphthalene (C10H8, D2h)
and azulene (C10H8, C2v)

from the left in the lower row). As seen before for the Boys localization, some of the
π -MOs in this set extend over the three carbon nuclei (the first and the last in the
lower row). It is worth to point out that the localized π -MOs seen in the last row of
Fig. 3.36 perfectly correspond to the lines drawn in the structural formula for azulene
in Fig. 3.33 as formal indicators of a double bond.

Fig. 3.34 Canonical π -MOs (second and third row) and the Boys localized π -MOs (first and last
row) for naphthalene and azulene
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Fig. 3.35 Localized π orbitals on each cycle of the azulene molecule

Fig. 3.36 Localized π orbitals on bonds of the azulene molecule

As an example demonstrating the usefulness of localized π -MOs in PAH
molecules, we consider the calculation of CCSD correlation energies within the
π -system using either canonical π -MOs or localized π -MOs. The calculation of
correlation energies with CMOs is done as usual, whereas LMOs require the applica-
tion of the method of increments [65, 66]. The relevant data for seven small aromatic
hydrocarbon molecules are shown in Table 3.2. We can draw the following conclu-
sions with respect to the usefulness of localized π -MOs for calculating correlation
energies:

(1) the sum of single electron pair or one-body contributions eπ
1 gives at least 60 %

of the correlation energy of the π -system in alternating PAHs, but only about
56 % in the case of the non-alternating hydrocarbon azulene;

(2) inclusion of the two-body terms (eπ
1 + eπ

2 ) increases this fraction to at least 99 %
in alternating PAHs, and to the slightly smaller value of 98 % in the case of
azulene.

Future studies will show whether these findings can be generalized to larger PAH
molecules or not. Inclusion of localizedσ -MOs and study of the relative contributions
to correlation energy from π -only, σ -only, and mixed π /σ parts also require further
study.

The data in Table 3.2 also allow us to compare total energies between isomers.
For naphthalene and azulene, the two isomers of C10H8, the former is more stable
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than the latter at all levels of calculation, as expected. In the cases of anthracene /
phenanthrene (isomers of C14H10) and tetracene / chrysene (isomers of C18H12), one
finds that the acene compound is less stable than the phenacene compound. This is
well known and had already been stated above with respect to the RHF energies. We
find for all three pairs of isomers that the less stable molecule always exhibits the
larger correlation energy (in all situations studied, i.e., in both π -only correlation
and π -and-σ correlation).

3.5 Conclusion

In the vast majority of quantum chemistry methods, the system is described through
mathematical objects (wave functions, densities, etc.) that are defined with respect to
a set ofMolecular Orbitals. At the end of some (usually iterative) procedure, one ends
up with a set of Molecular Orbitals that are usually strongly delocalized on several
atoms, in some cases even over the entire system. This is true, in particular, every time
the orbitals are obtained via a diagonalization procedure that acts on a Hamiltonian
matrix defined on a global set of Atomic Orbitals. The orbitals obtained in such
a way are often named as “Canonical” for a given method, since in general every
method produces a single set of Canonical Orbitals (usually, they will depend on the
method). The orbitals that are obtained in such a way, however, have little in common
with the orbitals that a chemist would expect to see, since the latter are associated,
with a few exceptions, with the notion of bonds between specific pairs of atoms in
the molecule. This fact leads to some difficulties in the interpretation of the obtained
results, and a difficulty in reading the physical nature of a molecular structure, whose
essence is dispersed among an overwhelming number of contributions coming from
the different orbitals.

For this reason, starting from the very beginning of Quantum Chemistry, a large
number of numerical procedures have been proposed to transform the Canonical
Molecular Orbitals into a set of equivalent Local Molecular Orbitals. We presented
and discussed here some of the different techniques that can be used to obtain these
Local Orbitals. Generally speaking, all these methods present advantages and draw-
backs, and the choice of the method may sometimes crucially depend on the type of
treatment one intends to perform for a given system.

In the more recent years, an additional reason for the use of Localized Orbitals has
emerged, related to computational efficiency. In fact, through the use of Localized
Orbitals, it is possible to take advantage of the locality of the interaction, which is
something almost universal in the physical world. In fact, with the partial exception of
gravity, the interactions between the constituents of matter have a rather short-range
nature. Even the Coulomb force between charged particles at distance R that decays,
in principle, as R−2 like gravitational force, gives rise to effective interactions having
a much weaker and shorter-ranging interaction because of the presence of an equal
number of charges of opposite sign. In order to exploit from a computational point
of view, this locality of the interaction, and to obtain the methods that belong to the
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family of Linear-Scaling methods, it is crucial to approach the study of the system
by using local orbitals.

It should be noticed, however, that the Localization methods that are needed to
implement the Linear-Scaling approaches should essentially concentrate the orbitals
in restricted regions of the space, without an absolute need of obtaining, for instance,
orbitals having a bond nature. In other words, they are somehow less demanding
than the methods that localize the orbitals in order to give a better chemical interpre-
tation. From this point of view, methods that at first sight could seem formally less
satisfactory can be used with good results.

Even though the “perfect localization method” has never been proposed, and
probably it simply does not exist, very efficient and versatile procedures are nowadays
available. In such a way, a larger and larger number of systems have become not only
computationally treatable, but it is also possible to understand the precise nature of
their structure in terms of local entities.
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Appendix 1: A Priori Orbitals: Input Data (DoLo)

The a priori local orbitals are obtained thanks to the DoLo program. DoLo gives a
guess of non-orthogonal local orbitals. Usually, two steps follow: (i) the projection of
this guess of local orbitals onto the SCF or CASSCF orbitals; the quality of the guess
of local orbitals is then improved (proj_scf code) and (ii) the orthogonalization of
the obtained orbitals (schmudort code). Finally, this multi-step process provides a
set of local and orthogonal orbitals, with SCF or CASSCF quality. Input data for the
first step (DoLo) are reported here for several examples presented in the chapter. Some
explanations are given here and more details can be found in the manual. The source
and manual are available on https://github.com/LCPQ/Cost_package (Tables 3.3,
3.4, 3.5 and 3.6).

https://github.com/LCPQ/Cost_package
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Table 3.3 C2H2: Localization of the SCF Orbitals. The core orbitals are defined using CORE_.
In this example, the star character (C*) is used to define the core of all C atoms in the same time.
To define the CH bond orbitals with a distance lower than 1.2 Å, SIGMA_ data is used. BOND_
allows to define the σ CC bond and DELOC_ the π orbitals. In all cases, the atomic orbitals used
to construct the local orbitals are defined. * at the beginning of the line corresponds to a comment

* CORE ORBITALS

CORE_ C* 1S(1)

* σ CH BONDS

SIGMA_ C* 1S(2) 2P(1) : H* 1S(1) DMAX = 1.2 ANGSTROM

* σ CC BONDS

BOND_ chain = ’C1-C2’,bas = 2*’1S(2) 2pz(1)’,noc = 1,nvirt = 1

* π CC BONDS

DELOC_ chain = ’C1-C2’,bas = 2*’2px(1) 2py(1)’,noc = 2,nvirt = 2

Table 3.4 C2F2: Localization of the SCF Orbitals. The core orbitals are defined using CORE_.
The σ CC bond is defined with BOND_. In all cases, the atomic orbitals used to construct the local
orbitals are defined.* at the beginning of the line corresponds to a comment

* CORE ORBITALS

CORE_ C* 1S(1)

CORE_ F* 1S(1)

* σ F-C and CC BONDS and axis Fluorine lone pair (LP1 stands for one lone pair)

BOND_ BASREF = ’C:1S(2) 2PZ(1),F:1S(2) 2PZ(1)’

BOND_ chain = ’F1(LP1)-C1-C2-F2(LP1)

* π CC BONDS

DELOC_ chain = ’C1-C2’,bas = 2*’2px(1) 2py(1)’,noc = 2,nvirt = 2

* Fluorine lone pairs(LP = 2 stands for two lone pairs)

BOND_ chain = ’F1’,BAS = ’2PX(1) 2py(1)’,LP = 2

BOND_ chain = ’F2’,BAS = ’2PX(1) 2py(1)’,LP = 2

Table 3.5 Benzene: Localization of the CAS(6,6)SCFOrbitals. The core orbitals are defined using
CORE_. To define the CH and CC bond orbitals, SIGMA_ data is used. The π bonds are defined
on all the cycles using the DELOC_ data. In all cases, the atomic orbitals used to construct the local
orbitals are defined. LABEL=’A’ means that the local orbitals correspond to active orbitals. * at the
beginning of the line corresponds to a comment. Inside the BOND or the SIGMA data, * is used
when all the occurrence of an atom are considered. For example, C* means all C atoms

* CORE ORBITALS

CORE_ C* 1S(1)

* σ CH BONDS

SIGMA_ C* 1S(2) 2P(1) : H* 1S(1) DMAX = 1.2 ANGSTROM

* σ CC BONDS

SIGMA_ C* 1S(2) 2P(1) : C* 1S(2) 2P(1) dmax = 1.5 ANGSTROM

* π CC BONDS

DELOC_ chain = ’C1-C2-C3-C4-C5-C6’,bas = 6*’2pz(1)’,noc = 3,nvirt = 3,LABEL = ’A’
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Table 3.6 Trans-stilbene: Localization of the π SCF orbitals. The input data of the trans-stilbene
molecule is very similar to the benzene. The π bonds are defined on each cycle and on the central
bond using the DELOC_ data

* CORE ORBITALS

CORE_ C* 1S(1)

* σ CH BONDS

SIGMA_ C* 1S(2) 2P(1) : H* 1S(1) DMAX = 1.2 ANGSTROM

* σ CC BONDS

SIGMA_ c* 1S(2) 2P(1) : c* 1S(2) 2P(1) dmax = 1.5 ANGSTROM

* π CC BONDS

DELOC_ chain = ’C1-C8’,bas = 2*’2pz(1)’,noc = 1,nvirt = 1

DELOC_ chain = ’C2-C3-C4-C5-C6-C7’,bas = 6*’2pz(1)’,noc = 3,nvirt = 3

DELOC_ chain = ’C9-C10-C11-C12-C13-C14,bas = 6*’2pz(1)’,noc = 3,nvirt = 3

Appendix 2: Molecular Electronic States and Electron
Configurations

By intention, all small molecules selected for discussion in this work on orbital
localization have a closed-shell totally symmetric singlet electronic ground state.
For larger molecules (for example, acenes and phenacenes), such an electronic state
can still always be easily defined and fully characterized, so that itmay serve at least as
a reference state for other subsequent purposes. As a consequence, the Configuration
State Function (CSF) of the electronic state is a single Slater determinant. Both the
CSF and the total energy associated with it (that is the expectation value of the
Born–Oppenheimer Hamiltonian taken over the CSF) are invariant with respect to
unitary transformations among the set of doubly occupiedMolecular Orbitals (MOs).
Orbital localization then simply takes advantage of the fact that all observables of
such molecular electronic states, in particular their total energy, are invariant with
respect to a unitary transformation carried out within the space of doubly occupied
MOs (in fact, an orthogonal transformation suffices, as only real-valued quantities
are involved).

The following list provides for each molecule its point group, the symmetry label
of the closed-shell totally symmetric singlet state considered here, and the corre-
sponding electron configuration, i.e., symmetry label and number of all the com-
pletely filled shells (an entry like “e 1-3” is to be understood as 1e4 2e4 3e4).

1. Ethane, C2H6 (18 electrons) X̃ 1A1g (D3d ) /
1A1 (D3) /

1A′
1 (D3h), electron

configuration: a1g 1–3, eg 1, a2u 1–2, eu 1 (D3d ) / a1 1–3, a2 1–2, e 1–2 (D3) / a
′
1

1–3, e′ 1, a′′
2 1–2, e

′′ 1 (D3h)
2. Ethene (ethylene), C2H4 (16 electrons) X̃ 1Ag (D2h), electron configuration: ag

1–3, b1g 1, b1u (π ) 1, b2u 1–2, b3u 1
3. Ethyne (acetylene), C2H2 (14 electrons) X 1�+

g (D∞h), electron configuration:
σg 1–3, σu 1–2, πu 1
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4. Monofluoroethyne, C2HF (22 electrons) X 1�+ (C∞v), electron configuration:
σ 1–7, π 1–2

5. Difluoroethyne, C2F2 (30 electrons) X 1�+
g (D∞h), electron configuration: σg

1–5, σu 1–4, πg 1, πu 1–2
6. Benzene, C6H6 (42 electrons) X̃ 1A1g (D6h), electron configuration: a1g 1–3, e1g

(π ) 1, e2g 1–3, a2u (π ) 1, b1u 1–2, b2u 1, e1u 1–3
7. (E)-1,2-diphenylethene (trans-stilbene), C14H12 (96 electrons) X̃ 1Ag (C2h),

electron configuration (planar conformation): ag 1–21, bg (π ) 1–3, au (π ) 1–4,
bu 1–20

8. Tetracarbonylnickel, [Ni(CO)4] (84 electrons) X̃ 1A1 (Td ), electron configura-
tion: a1 1–8, e 1–2, t1 1, t2 1–9

9. Tris(acetylacetonato)aluminium, [Al(acac)3] (172 electrons) X̃ 1A1 (D3), elec-
tron configuration: a1 1–16, a2 1–14, e 1–28

10. [n]acenes, C4n+2H2n+4 (26n + 16 electrons) 1Ag (D2h ; all nuclei in the plane z =
0, largest molecular extension oriented along the y-axis), electron configuration
for n = 2k + 1 (k = 0: benzene, k = 1: anthracene, . . .): ag 6k + 6, b1g 5k + 3,
b2g (π ) k + 1, b3g (π ) k + 1, au (π ) k, b1u (π ) k + 1, b2u 6k + 4, b3u 5k + 5,
electron configuration for n = 2k (k = 1: naphthalene, k = 2: tetracene, . . .): ag
6k + 3, b1g 5k + 1, b2g (π ) k, b3g (π ) k, au (π ) k, b1u (π ) k + 1, b2u 6k + 1, b3u
5k + 2

11. [n]phenacenes, C4n+2H2n+4 (26n + 16 electrons, all nuclei in the plane z = 0,
largest molecular extension oriented along the y-axis), 1A1 (C2v , n odd) or 1Ag
(C2h , n even), electron configuration for n = 2k + 1 (k = 0: benzene, k = 1:
phenanthrene, . . .): a1 11k + 10, a2 (π ) 2k + 1, b1 11k + 8, b2 (π ) 2k + 2, elec-
tron configuration for n = 2k (k = 1: naphthalene, k = 2: chrysene, . . .): ag
11k + 4, bg (π ) 2k, au (π ) 2k + 1, bu 11k + 3

12. [n]coronenes, C6n2H6n (6n(6n + 1) electrons, number of hexagons Nhex =
3n(n − 1) + 1, all nuclei in the plane z = 0, central hexagon oriented such that
two of its carbon nuclei lie on the y-axis), 1A1g (D6h), electron configuration for
n = 2k + 1 (k = 0: benzene, k = 1: circumcoronene, . . .): a1g (k + 1)(5k + 3),
a2g k(5k + 3), b1g (π ) k(k + 1), b2g (π ) k(k + 1), e1g (π ) 2k2 + 2k + 1,
e2g (2k + 1)(5k + 3), a1u (π ) k2, a2u (π ) k2 + 2k + 1, b1u 5k2 + 5k + 1, b2u
5k2 + 6k + 2, e1u (2k + 1)(5k + 3), e2u (π ) 2k(k + 1), electron configuration
for n = 2k (k = 1: coronene, . . .): a1g k(5k + 3), a2g k(5k − 2), b1g (π ) k

2, b2g
(π ) k2, e1g (π ) 2k

2, e2g k(10k + 1), a1u (π ) k(k − 1), a2u (π ) k(k + 1), b1u 5k
2,

b2u k(5k + 1), e1u k(10k + 1), e2u (π ) 2k
2

13. Azulene, C10H8 (68 electrons) X̃ 1A1 (C2v; all nuclei in the plane y = 0), electron
configuration: a1 1–17, a2 (π ) 1–2, b1 1–12, b2 (π ) 1–3

All results summarized above have been confirmed in several ways. First, the
group theoretical information given above, which is an invariant of the closed-shell
singlet electronic state, is in conformity with (or can be derived from) the molecular
structural formula, if the latter is adapted to the molecular point group (this may
require extension/inclusion of Robinson–Clarπ sextets for some polycyclic aromatic
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hydrocarbons). Examples of such structural formulas are shown in Figs. 3.26, 3.27,
and 3.28.

Second, the molecular structures shown have been confirmed as representing
local minima of the total energy hypersurface at the SCF level of theory, via full
optimization of molecular structure followed by normal mode analysis with full
exploitation of molecular point-group symmetry. In the case of the [n]acenes and
[n]phenacenes, this has been done for all n up to and including n = 30; in the case
of the [n]coronenes for all n up to and including n = 6.

Third, the electron configurations and the corresponding total energieswere vindi-
cated in calculations where the use of molecular symmetry has been completely and
intentionally switched off (so that convergence to a state lower in energy may occur,
but was never observed). Since the geometric structure of the nuclear framework (the
“molecular geometry”) still carries the full point-group symmetry information into
the calculation running now under point group C1, all symmetry information is still
present (and has to be so).

Both types of calculations (those with as well as those without the exploitation of
point-group symmetry) are important, since orbital localization typically and neces-
sarily ignores point-group symmetry. In general, one needs to be able to orient oneself
within the set of occupied CMOs, in order, e.g., to select and sort these orbitals into
different groups prior to localization. An example is provided by the acenes, where
separation of σ CMOs from π CMOs appears to be (an easily achievable) step before
any attempt to localize the orbitals.
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Chapter 4
An Introduction to Discretization Error
Analysis for Computational Chemists

Eric Cancès

4.1 Introduction

Validation and certification of numerical results is a key issue in all fields involving
computer simulation. The error between the exact and computed values of a given
physical quantity of interest (QOI), e.g. the dissociation energy of a molecule, has
several origins [1]: a model error (resulting from the choice of a computationally
tractable, but not extremely accurate, model, e.g. Kohn-Sham with PBE functional),
a discretization error (resulting from the choice of a finite basis set or a grid), an algo-
rithmic error (due to the choice of stopping criteria in self-consistent field and other
iterative algorithms), an implementation error (due to possible bugs or uncontrolled
round-off errors), a computing error (due to random hardware failures). Quantifying
these different sources of errors is of major importance for two reasons. First, guaran-
teed estimates on these five components of the error would allow one to supplement
the computed value of the QOI returned by the numerical simulation with guaranteed
error bars (certification of the result). Second, this would allow one to choose the
parameters of the simulation (approximate model, discretization parameters, algo-
rithm and stopping criteria, data structures) in an optimal way in order to minimize
the computational effort required to reach the target accuracy (error balancing).

In contrastwith the current situation in other fields, such as computationalmechan-
ics and engineering sciences [2], neither fully guaranteed error bounds nor black-box
error balancing schemes are available yet for molecular simulation. However, recent
progress has been made on the analysis of the different sources of errors for var-
ious electronic structure models, see e.g. [1, 3–16] and references therein, and in
particular on discretization error, which is the matter of the present chapter.

For the sake of clarity and brevity, we will restrict ourselves to the analysis of the
plane-wave approximationof the Gross-Pitaevskiimodel. Thismodelwas introduced
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in the early 60s to describe the ground state of Bose-Einstein condensates [17].
From a mathematical point of view, it can be seen as a simplified version of the
Kohn-Shammodel, involving a single orbital and a very simple mean-field potential.
The discretization error cancellation phenomenon, which plays a crucial role in
electronic structure calculation, will be analyzed in Sect. 4.4. Beforehand, we will
introduce in Sect. 4.2 the key concepts of QOI-related a priori and a posteriori error
estimators leading to post-processing methods, and asymptotic expansions leading
to extrapolation methods.

We will omit the proofs of the rigorous mathematical results mentioned in this
contribution, but we will comment on these results in detail.

4.2 Basic Concepts in Discretization Error Analysis

To clarify what error analysis is about, consider a reference model for which the
ground-state energy is obtained by solving a minimization problem of the form

E0 = inf {E (v), v ∈ X , c(v) = 0} , (4.1)

where E : X → R is an energy functional defined on some infinite-dimensional
function space X , and c : X → Y represents the constraints on the admissible
states (Y is a finite- or infinite-dimensional vector space). Hartree-Fock, Kohn-
Sham, multi-configuration self-consistent field (MCSCF), and many other models
are of the generic form (4.1). For instance, the restricted Hartree-Fock problem for
the helium atom can be written, in atomic units, as (4.1) with

E (v) =
∫

R3

|∇v|2 − 4
∫

R3

v(r)2

|r| dr + 2
∫

R3

∫

R3

v(r)2 v(r′)2

|r − r′| dr dr′,

X = H 1(R3), Y = R and c(v) = ∫
R3 v(r)2 dr − 1, where H 1(R3) is the Sobolev

space of real-valued functions of R
3 which are square integrable and whose gradient

is square integrable as well:

H 1(R3) :=
⎧⎨
⎩v : R

3 → R | ‖v‖2H 1 :=
∫

R3

v(r)2 dr +
∫

R3

|∇v(r)|2 dr < ∞
⎫⎬
⎭ . (4.2)

Likewise, the restricted Kohn-Sham LDA model for a non-magnetic molecular sys-
tem with Np electron pairs can be written as (4.1) with X = (H 1(R3))Np , Y
the space of real, symmetric, Np × Np matrices, and for all v = (φ1, · · · , φNp ) ∈
(H 1(R3))Np ,
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E (v) =
Np∑
i=1

∫
R3

|∇φi |2 +
∫
R3

ρvVnuc + 1

2

∫
R3

∫
R3

ρv(r)2 ρv(r′)2

|r − r′| dr dr′ + ELDA
xc (ρv),

with ρv(r) = 2
Np∑
i=1

|φi (r)|2, and [c(v)]i j =
∫
R3

φiφ j − 1.

Here Vnuc is the electrostatic potential generated with the nuclei, and ELDA
xc the local

density approximation of the exchange-correlation functional [18].

4.2.1 Variational Approximations

A variational approximation of (4.1) is obtained by choosing a finite-dimensional
subspace XN ofX and in considering

E0,N = inf {E (vN ), vN ∈ XN , c(vN ) = 0} . (4.3)

Obviously, since XN ⊂ X , we have E0,N ≥ E0: the approximate ground-state
energy E0,N is an upper bound of the exact ground-state energy E0.

A particularly important QOI is the ground-state energy E0. It is, therefore, nat-
ural to try and estimate the error E0,N − E0 and compare it to other characteristic
energies of the problem (e.g. to kBT ) to determine whether the discretization error is
sufficiently small or not. In other cases, the QOI is a function of the minimizer u of
(4.1) (e.g. the dipolar momentum of a neutral molecule is obtained from the ground-
state electronic density, which is itself computed from the Kohn-Sham orbitals). In
such cases, the exact value of the QOI is q(u) while the computed value is q(uN ),
where q : X → R is a given function, u a minimizer of (4.1), and uN a minimizer
of (4.3). The error on the QOI to be estimated then is q(uN ) − q(u).

4.2.2 A Priori Error Analysis

For systematically improvable discretizationmethods, such as plane-waves (PW) [19–
21], finite-elements [22, 23], orwavelets [24], we can construct a sequence of approx-
imation spaces (XN )N >0 such that

1. forN < N ′,XN � XN ′ , that isXN gets larger and larger whenN grows;
2. any function ofX can be approximated arbitrarily well by some function ofXN

provided N is large enough:

∀v ∈ X , min
vN ∈XN

‖v − vN ‖X →
N →∞

0,

where ‖ · ‖X is the norm of the function space X .
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This can be done by refining the mesh in finite-element methods, and by increasing
the resolution in wavelet methods, or the energy cut-off in PWmethods. In the latter
case, N is usually the wave-vector cut-off, which is related to the energy cut-off
Eco,N by the relation Eco,N = N 2

2 (in atomic units).
A priori error estimators are results assessing that the computed value of the QOI

converges to the exact value of the QOI when N goes to infinity, and providing in
addition convergence rates. A typical such result (which holds true [3] for the PW
discretization of the periodic Kohn-Sham LDA model with pseudopotentials [25–
27], for well-chosen minimizers uN of (4.3)) is the existence of positive constants
s, c−, c+ and cs such that for all N ,

c−‖uN − u‖2X ≤ E0,N − E0 ≤ c+‖uN − u‖2X (4.4)

and
‖uN − u‖X ≤ cs

N s
. (4.5)

This result implies that, on the one hand, the error on the energy goes to zero at the
same speed as the square of the error on the orbitals (measured inX -norm), and that,
on the other hand, theX -norm error on the orbitals goes to zero asN −s . Gathering
(4.4) and (4.5), we obtain

0 ≤ E0,N − E0 ≤ c+c2s
N 2s

= c+c2s
2s Es

co,N

. (4.6)

The admissible values of s in (4.5)–(4.6) can usually be obtained explicitly. Typically,
estimate (4.5) will hold true for any s < smax, but not for s > smax, where the value of
smax is an explicit outcome of the mathematical analysis. As a matter of example [3],
smax = 7

2 for PW discretizations of periodic Kohn-Sham LDAmodels with Troullier-
Martins pseudopotentials [26]. Note that −smax is basically the slope of the convex
hull of the log-log plot of the discretization error E0,N − E0 as the function of the
energy cut-off Eco,N . The higher smax, the faster the asymptotic convergence of the
computed ground-state energy towards the exact value for the considered model.

The main interest of a priori error estimators is that they allow to get quantitative
insight on the difficulty of getting an accurate approximation of a given quantity of
interest with a given numerical method. Indeed, the value of smax for which

|q(uN ) − q(u)| ≤ Cs

Es
co,N

(4.7)

for any s < smax, but not for s > smax heavily depends on the QOI q. If smax is “large”
(say smax = 3) doubling the energy cut-off will typically increase the accuracy by a
factor 8, while if smax is “small” (say smax = 1) doubling the energy cut-off will only
double the accuracy. Again for PW discretizations of periodic Kohn-Sham models
with Troullier-Martins pseudopotentials, we have seen that smax = 7

2 if the QOI is
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the energy; on the other hand, smax = 3
2 is the QOI is the value of the ground-state

density at a particular point of the simulation cell, which makes the latter QOI much
more difficult to converge than the former one.

This argument also allows one to clearly understand one of the main roles of
pseudopotentials, namely smoothing out the Coulomb singularities generated by
point nuclei. Indeed, as we have seen before, if the QOI is the ground-state energy,
smax = 7

2 for Troullier-Martins pseudopotentials, while we only have smax = 3
2 for

point-like nuclei.
It is also interesting to reformulate the above results in terms of the computational

time CPUq
ε necessary to reach a given accuracy ε for the QOI q. For PW Kohn-

Sham LDA calculations, the computational time typically scales as E3/2
co,N log Eco,N

(using preconditioned gradient methods and Fast Fourier Transforms, see e.g. [28]
and references therein). A simple calculation shows that if (4.7) is satisfied for any
s < smax, but not for s > smax, then

logCPUq
ε ∼ − 3

2smax
log ε. (4.8)

Wewill see later that a priori error estimates can also be useful to design new, efficient,
numerical schemes.

A priori error estimators, however, suffer from two severe limitations. First, the
optimal value of the constantCs in (4.7) is usually unknown. The constantCs derived
from the mathematical analysis is most often dramatically overestimated, sometimes
by several orders of magnitude. In addition, it usually depends on the exact solution u
to the problem, which is unknown. The constant Cs does not appear in (4.8) because
this relation is in log-log scales, but an estimation of the optimal value of Cs would
of course be of major interest for practical purposes. The second limitation is that an
inequality such as (4.7) is only useful when the right-hand side is small enough, that
is in the asymptotic regime when the cut-off energy Eco,N is large enough.

4.2.3 A Posteriori Error Estimators and Post-Processing

A posteriori estimates are very different in nature from a priori error estimates. An a
posteriori discretization error estimator for the QOI q is a pair of inequalities of the
form

η
q
l.b.(uN ) ≤ q(uN ) − q(u) ≤ η

q
l.b.(uN ) (4.9)

(where we recall that u is a minimizer of (4.1) and uN is a minimizer of (4.3), and
where l.b. and u.b. stand for lower bound and upper bound respectively), which,
ideally, satisfy the following properties:

1. the estimator is guaranteed, in the sense that inequalities (4.9) can be established
with full mathematical rigour;



108 E. Cancès

2. the lower and upper bounds η
q
l.b.(uN ) and η

q
l.b.(uN ) are fully computable from

the approximate solution uN and the data of the problem; in particular, they do
not involve the exact solution u, in contrast with the bounds resulting from a priori
error estimates;

3. η
q
l.b.(uN ) and η

q
l.b.(uN ) are cheap to compute: their numerical values can be

obtained with a negligible, or small enough, computational cost;
4. the estimates are accurate, in the sense that η

q
l.b.(uN ), q(uN ) − q(u), and

η
q
l.b.(uN ) are of the same order of magnitude for generic values of N (note

however that |q(uN ) − q(u)| can be, by chance, much smaller than |ηq
l.b.(uN )|

and |ηq
l.b.(uN )| for some specific values of N );

5. the estimates give insights on what to do to improve the quality of the approxi-
mation.

Let us clarify the last point. Finite-element methods, as well as wavelet or some
hierarchical tensor methods, have more flexibility than PW discretization methods.
While in PWmethod, the user only controls a single discretization parameter, namely
the wave-vector cut-off N , or equivalently, the energy cut-off Eco,N = N 2

2 , the
quality of a finite-element approximation space can be improved by locally refining
themesh in the regions of the simulation cellwhere thefield u strongly varies. Inmany
cases, it is possible to construct lower and upper bounds η

q
l.b.(uN ) and η

q
l.b.(uN ) as a

sum of localized contributions to the error [29], each of them being obtained by solv-
ing a small-size local problem. The advantage of such a decomposition is twofold:
first the computation of these local contributions can be easily parallelized on a large
number of processors; second, it paves the way to adaptive finite-element methods,
where the mesh is refined only in the regions of the simulation cell where the local
error is significant. This can be done with a black-box algorithm and can dramat-
ically reduce the overall computational effort necessary to reach a given accuracy
(compared to brute force, uniform, mesh-refinement methods).

Let us emphasize that the above five properties of ideal a posteriori error estima-
tors are usually not completely fulfilled by most of the a posteriori error estimators
available in practice. Indeed,

1. Inequalities (4.9) are sometimes only satisfied for large enough values of N . In
this case, it is interesting to have at our disposal checkable conditions allowing
one to know whether the bounds are reliable or not. Such conditions can take the
form

if cq(uN ) > 0, then (9) hold true,

where cq(uN ) is a real number computable from the approximate solution uN
at low cost;

2. The lower and upper bounds may not be fully computable in the sense that they
are in fact a function of the (known) approximate solution uN and of the exact
(unknown) solution u, but nevertheless decomposable as

η
q
�.b.(uN , u) = η

q
�.b.,1(uN ) + η

q
�.b.,2(uN , u),
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where η
q
�.b.,1(uN ) is fully computable and η

q
�.b.,2(uN , u) small compared to

η
q
�.b.,1(uN ), at least when N is large enough. A priori error estimates can be

called out to justify the smallness of η
q
�.b.,2(uN , u);

3. Computing η
q
l.b.(uN ) and η

q
l.b.(uN ) may require solving an auxiliary problem of

the same complexity as the original problem (4.1), which may double or triple the
cost of the calculation. In engineering sciences, simulations are more and more
substitutes to experiments and prototypes in the design process; it is then worth
paying a significant extra-cost to guarantee the quality of the simulation results;

4. Quite often, the relative quality of the lower and upper bounds increases withN .
In the case when the QOI is the ground-state energy, a posteriori error estimates
are of the form

0 < ηE
l.b.(uN ) ≤ E(uN ) − E(u) ≤ ηE

l.b.(uN ), (4.10)

and we can define the efficiency factors of the lower and upper bounds as

1 ≤ I l.b.N = E(uN ) − E(u)

ηE
l.b.(uN )

and 1 ≤ I u.b.N = ηE
u.b.(uN )

E(uN ) − E(u)
.

The closer I l.b.N and I u.b.N to 1, the better. The a posteriori estimate (4.10) is called
asymptotically exact if both I l.b.N and I u.b.N converge to 1 whenN goes to infinity.
Note that if, for instance, I l.b.N goes to 1 when N goes to infinity, then for N
large enough, the post-processed approximation of the ground-state energy

Ẽ(uN ) = E(uN ) − ηE
l.b.(uN )

is more accurate than the original one E(uN ).

4.2.4 Asymptotic Expansions and Extrapolation

In some specific cases, it is possible to expand the error q(uN ) − q(u) in terms of
simple functions ofN in the limit whenN goes to infinity, and obtain, as a matter
of illustration—this is just an example—, asymptotic expansions of the form

q(uN ) − q(u) = a1
N 2/3

+ a2
N

+ O

(
1

N 4/3

)
. (4.11)

The main interest of asymptotic expansions is that they allow extrapolations. Indeed,
assuming a result such as (4.11), one can combine the values of q(uN ) for several
correlated values of N , and obtain, for instance,
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(αq(uN ) + βq(u2N ) + γ q(u3N )) − q(u) = O

(
1

N 4/3

)
,

where the weights α, β, γ are obtained by solving the linear system

⎛
⎝1 1 1
1 1

22/3
1

32/3

1 1
22/3

1
32/3

⎞
⎠

⎛
⎝ α

β

γ

⎞
⎠ =

⎛
⎝1
1
1

⎞
⎠ .

In other words, one can obtain amuch better convergence rate by linear combinations
of a few calculations performed with different values of N .

Extrapolation methods are very appealing. Unfortunately, the situations where
the error on the QOI of interest is known to admit an asymptotic expansion are not
so common in the field of electronic structure calculation. An interesting example is
a Makov-Payne correction for computing the energy of charge defects in insulators
and semiconductors [30]. It has indeed been proved in [31] that the Makov-Payne
correction corresponds to the leading term of the asymptotic expansion of the error
on the ground-state energy when the discretization parameter is the size L of the
supercell.

The second limitation of extrapolation methods based on asymptotic expansions
of the error is that they are only efficient forN “large enough”. It is usually not clear
how to check whether the asymptotic regime has been reached without running a
number of calculations with different values ofN covering a large range and check
whether the results match the prediction of the asymptotic expansion.

4.3 Periodic Gross-Pitaevskii and Kohn-Sham Models

We now turn to the analysis of discretization errors for self-consistent quantum
problems. For pedagogical reasons, we will mainly deal with the (relatively simple)
Gross-Pitaevskii model, and the existing results on the Kohn-Sham model will only
be mentioned. Still, for pedagogical results, we will focus on the periodic versions
of these models, and on plane-wave discretization methods.

For simplicity, we assume that the periodic simulation cell is Ω = (0, 2π)d

(d ≤ 3), but all the results below can easily be extended to the generic case of a
d-dimensional periodic cell of any shape. The fundamental Hilbert space for peri-
odic Gross-Pitaevskii and Kohn-Sham models is

L2
#(Ω) := {

u ∈ L2
loc(R

d , R) | u 2πZ
d -periodic

}
, 〈u|v〉L2

#
=

∫

Ω

u v,

where L2
loc(R

d , R) is the space of locally square-integrable real-valued functions
on R

d . We will make extensive use of the periodic Sobolev spaces (see e.g. [32])
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Hs
# (Ω) :=

{
v =

∑
k∈Zd

v̂kek, v real valued, ‖v‖2Hs
#

:=
∑
k∈Zd

(
1 + |k|2)s |̂vk|2 < ∞

}
,

s ∈ R, where ek = |Ω|−1/2eik·r is the Fouriermodewithwave-vector k ∈ Z
d , which,

endowed with the inner product

〈u|v〉L2
#
=

∑
k∈Zd

(
1 + |k|2)s ûk v̂k,

are also Hilbert spaces. Note in particular that H 0
# (Ω) = L2

#(Ω) and that

H 1
# (Ω) = {

v ∈ L2
loc(R

d , R) | ∇v ∈ (L2
loc(R

d , R))d , v 2πZ
d -periodic

}
.

4.3.1 Plane-Wave Discretization of the Gross-Pitaevskii
Model

The d-dimensional periodic Gross-Pitaevskii model is defined as

I = inf

⎧⎨
⎩E(v), v ∈ H 1

# (Ω),

∫

Ω

v2 = 1

⎫⎬
⎭ , (4.12)

where the Gross-Pitaevskii energy functional is given by

E(v) =
∫

Ω

|∇v|2 +
∫

Ω

Vv2 + μ

2

∫

Ω

v4.

Here, the trapping potential V is a 2πZ
d -periodic real-valued continuous function,

and the mean-field interaction parameter μ is chosen positive (repulsive interac-
tion). The mathematical properties of the minimization problem (4.12) are well-
understood:

• Equation (4.12) has exactly two minimizers u (with u > 0 in Ω) and −u;
• There exists a unique real number λ ∈ R such that (λ, u) satisfies the nonlinear
Schrödinger equation

− Δu + Vu + μu3 = λu, ‖u‖L2
#
= 1. (4.13)

Physically, λ is the chemical potential of the condensate. Mathematically, it is the
Lagrange multiplier of the equality constraint

∫
Ω
v2 = 1 in (4.12);

• λ is the lowest eigenvalue of the self-consistent Hamiltonian
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Hu = −Δ + V + μu2.

We refer to the appendix of [4] for detailed proofs of these standard results.
In plane-wave discretization methods, the approximation spaces are defined as

XN =
⎧⎨
⎩vN =

∑
|k|≤N

v̂kek, vN real valued

⎫⎬
⎭ ,

where N is the cut-off parameter. The Galerkin approximation of (4.12) in XN

consists in searching uN ∈ XN satisfying the constraint
∫
Ω

|uN |2 = 1, and such
that

IN = E(uN ) = inf

⎧⎨
⎩E(vN ), vN ∈ XN ,

∫

Ω

|vN |2 = 1

⎫⎬
⎭ , (uN , 1)L2

#
≥ 0.

(4.14)
The additional requirement (uN , 1)L2

#
≥ 0 ensures that uN approximates the posi-

tive solution u to (4.12) (and not the other solution, −u).
Relying on the fact that the operator −Δ commutes with the projection operator

ΠN , we obtain that the function uN satisfies the Euler-Lagrange equation

− ΔuN + ΠN (V + μu2N )ΠN uN = λN uN , (4.15)

where λN is the Lagrange multiplier of the L2
#-normalization constraint. It can be

shown that, except perhaps for very small values ofN , λN is the lowest eigenvalue
of the operator −Δ + ΠN (V + μu2N )ΠN on L2

#(Ω).
From a geometrical point of view, the situation is as depicted in Fig. 4.1. The

positive solution u to (4.12) is not in general in the approximation space XN . The
best approximation of u in XN for a given norm ‖ · ‖Hs

#
is the orthogonal projection

of u on XN for the inner product of Hs
# . An interesting property is that this orthogonal

projector is independent of s: it is simply the Fourier truncation operatorΠN defined
by

ΠN

(∑
k∈Zd

v̂kek

)
=

∑
|k|≤N

v̂kek.

Indeed, for all s ∈ R and all N ∈ N, XN ⊂ Hs
# (Ω), and for all v ∈ Hs

# (Ω),

ΠN v ∈ XN ,

‖v − ΠN v‖Hs
#

= min
wN ∈XN

‖v − wN ‖Hs
#

=
⎛
⎝ ∑

|k|>N

(
1 + |k|2)s |̂vk|2

⎞
⎠

1/2

.
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Fig. 4.1 Graphical
representation of the best
approximation ΠN u in the
discretization space XN of
the exact solution u to (4.12),
and of the approximation
uN obtained by the
variational method (4.14)

Note that the Galerkin approximation uN of u obtained by solving (4.14) is not the
best approximation ΠN u of u in XN (see Fig. 4.1). The best we can hope for is that
uN will be close to ΠN u for the various norms of interest.

4.3.2 A Priori Error Analysis

The following result has been proved in [4]. It is an extension of classical results
for linear eigenvalue problems (see [33] and references therein) to the nonlinear
setting of the Gross-Pitaevskii model. The case of Kohn-Sham LDA models is dealt
with in [3] for PW discretizations and in [7] for other systematically improvable
discretization methods.

Theorem 4.1 Let u be the unique positive minimizer of (4.12) and uN a minimizer
of (4.14), which is unique forN large enough . Then, there exists 0 < c ≤ C < ∞
such that for allN ∈ N,

‖u − ΠN u‖H 1
#

≤ ‖u − uN ‖H 1
#

≤ C‖u − ΠN u‖H 1
#

−→
N →0

0, (4.16)

c‖u − uN ‖2H 1
#

≤ IN − I = E(uN ) − E(u) ≤ C‖u − uN ‖2H 1
#
. (4.17)

Assume that V ∈ Hσ
# (Ω) for some σ > d/2. Then,

• (uN )N ∈N converges to u in Hσ+2
# (Ω);

• there exists positive constants C and Cs such that

∀ − σ ≤ s < σ + 2, ‖u − uN ‖Hs
#

≤ Cs

N σ+2−s
, |λ − λN | ≤ C

N 2(σ+1)
.

(4.18)

According to estimate (4.17), the error on the ground-state energy behaves as the
square of the H 1-norm of the error on the eigenfunction, and according to estimate
(4.16), the latter goes to zero when N goes to infinity.

If, in addition, the external periodic potential V is regular enough, more precisely
if V belongs to the Sobolev space Hσ

# (Ω) for some σ > d/2, then (4.18) provides
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Fig. 4.2 Graphical
representation of the
two-grid method

optimal a priori convergence rates for both the Lagrange multiplier λ and the ground-
state eigenfunction (the optimality has been checked numerically [4]). The estimates
‖u − uN ‖Hs

#
≤ Cs

N σ+2−s are valid for the whole hierarchy of Sobolev spaces Hs
# (Ω),

−σ ≤ s < σ + 2, and therefore allow one to derive optimal convergence rates for
any differentiable observable q : Hs(Ω) → R with −σ ≤ s < σ + 2. For instance,
the value of the ground-state density at some point r0 ∈ R

d is defined as qr0(u) =
u(r0)2. Using Sobolev embedding theorems (see e.g. [32]), we obtain that qr0 is a
differentiable functional on the Sobolev space Hs

# (Ω) for all s > d/2. It follows that
for all s < σ + 2 − d/2, there exists Cs ∈ R+ such that for all N ,

|uN (r0)2 − u(r0)2| = |qr0(uN ) − qr0(u)| ≤ Cs

N s
.

In addition to providing optimal convergence rates for various QOI, a priori error
estimates can also be used to design computational cost reduction methods based
on neglecting terms with higher convergence rates. For instance, two-grid methods
consist in finding in a first stage a solution un to the full problem in a coarse variational
space Xn , and in a second stage a solution un,N to a simpler problem parameterized
by un in a finer approximation space XN (see Fig. 4.2). For a well-chosen value of
n, it is possible to obtain in this way, at a much lower cost, the same accuracy as
if the full problem had been solved in XN . These methods were introduced by Xu
and Zhou to solve nonlinear elliptic problems [34], then adapted to linear eigenvalue
problems in [35, 36], and to nonlinear eigenvalue problems in [37].

Indeed, solving (4.14) in a fine approximation space XN is costly since it requires
about ∼ K N d lnN elementary operations, where K is a constant related to the
structure of problem (4.14). In the two-grid method,

1. un is computed by solving the full problem on the coarse approximation space
Xn , n � N , which requires ∼ K nd ln n elementary operations,

2. un,N can be computed in ∼ κN d lnN elementary operations with κ � K
since the problem to be solved is much simpler.

Typically, in the present case, the simpler problem can be (i) a linear eigenvalue
problem obtained by freezing the mean-field potential to V + μu2n , or (ii) the linear
system

−Δv + (V + μu2n)v = λnun.
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Both strategies have been tested numerically and are quite efficient [37]. Using the a
priori error estimators (4.18), the following theoretical justification of the efficiency
of the first strategy can be given.

Theorem 4.2 Assume that V ∈ Hσ
# (Ω) for some σ > d/2. Let un be a solution

to (4.14) in a coarse approximation space Xn and un,N the variational approxima-
tion in XN to the ground state of the linear eigenvalue problem

−Δv + (V + μu2n)v = μv, ‖v‖L2
#
= 1.

Then, there exists C ∈ R+ such that for all n and N with n ≤ N ,

‖un,N − u‖H 1
#

≤ C
(
n−σ−3 + N −σ−1

)
,

0 ≤ E(un,N ) − E(u) ≤ C
(
n−σ−3 + N −σ−1

)2
.

Choosing n ∼ N
σ+1
σ+3 in order to balance the error contributions in the right-hand

sides of the above inequalities, we obtain same convergence rates as in Theorem 4.1:

‖un,N − u‖H 1
#

≤ CN −(σ+1), 0 ≤ E(un,N ) − E(u) ≤ CN −2(σ+1),

‖uN − u‖H 1
#

≤ CN −(σ+1), 0 ≤ E(uN ) − E(u) ≤ CN −2(σ+1),

with a significant gain in CPU time (see the numerical results in [37]).

4.3.3 A Posteriori Error Analysis and Post-Processing

A posteriori error analysis for linear elliptic eigenvalue problems has been the matter
of a large number of numerical analysis papers (see [38, 39] and references therein).
It turns out that even the simple case of the Laplace operator on a bounded polyhe-
dral domain with Dirichlet boundary conditions is quite challenging (see [38, 40]
and references therein). The case of linear and nonlinear Schrödinger operator has
been considered in [10, 41–45] (see also the references therein and the appendix
in [46]), leading to adaptive discretization procedures with optimal complexity [47–
49]. Some results regarding Hartree-Fock and Kohn-Sham models have also been
established [12, 15, 22].

As far as PW discretizations of Gross-Pitaevskii models are concerned, post-
processing methods can be obtained by a non-standard application of Rayleigh-
Schrödinger perturbation theory (RSPT).

Recall that if we have at hand a simple eigenmode (E0, ψ0) of a reference Hamil-
tonian H0 on L2

#(Ω):
H0ψ0 = E0, ‖ψ0‖L2

#
= 1, (4.19)
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and if W is a small perturbation of H0 (small in a sense made precise by Kato [50]),
then the perturbed Hamiltonian H = H0 + W has a unique eigenvalue E in the
vicinity of E0, which is simple. Using first-order perturbation for the eigenvector
and second-order perturbation for the eigenvalue, we obtain

Hψ = Eψ, with ψ � ψ0 − Π
ψ⊥
0

(H0 − E0)|−1
ψ⊥
0

Π
ψ⊥
0

(Wψ0),

E � E0 + 〈ψ0|W |ψ0〉 − 〈Π
ψ⊥
0

(Wψ0)|(H0 − E0)|−1
ψ⊥
0

|Π
ψ⊥
0

(Wψ0)〉,

where Πψ⊥
0
is the orthogonal projector on the space

ψ⊥
0 =

⎧⎨
⎩φ ∈ L2

#(Ω) | 〈ψ0|φ〉 =
∫

Ω

ψ0φ = 0

⎫⎬
⎭ ,

for the L2
#(Ω) inner product, and where (H0 − E0)|−1

ψ⊥
0
is the inverse of the restriction

of the operator H0 − E0 to the invariant space ψ⊥
0 (this operator is invertible since

E0 is simple).
As shown in [51], RSPT can be used to derive a posteriori error estimators. The

idea is to consider the Euler-Lagrange equation of the variational approximation
of (4.12) in Xn , i.e.

− Δun + Πn(V + μu2n)Πnun = λnun, (4.20)

as the unperturbed eigenvalue problem, and the Euler-Lagrange equation of (4.12),
i.e.

− Δu + (V + μu2)u = λu (4.21)

as the perturbed eigenvalue problem. In other words, we take

H0 = −Δ + Πn(V + μu2n)Πn, ψ0 = un, E0 = λn,

W = (V + μu2) − Πn(V + μu2n)Πn.

Note that 〈ψ0|W |ψ0〉 = 0: the first-order correction to the eigenvalue vanishes; this
is the reason why we need to consider the second-order correction of the eigenvalue.
We then notice that since both un and Δun belong to Xn , (4.20) also reads

Πn
(−Δun + (V + μu2n)un − λnun

) = 0,

which means that the residual rn := −Δun + (V + μu2n)un − λnun is in X⊥
n . Since

un ∈ Xn and rn ∈ X⊥
n , this implies that

Πu⊥
n
rn = rn,
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It follows that

Πψ⊥
0
(Wψ0) = Πu⊥

n

((
(V + μun)

2) − Πn(V + μu2n)Πn
)
un

)
= Πu⊥

n

(
rn + μ(u2 − u2n)un

)
= rn + μΠu⊥

n

(
(u2 − u2n)un

)
.

Next, we observe that the block representation of H0 associated with the decompo-
sition L2

#(Ω) = Xn ⊕ X⊥
n reads

H0 =
(−Δ|Xn + Πn(V + μu2n)Πn 0

0 −ΔX⊥
n

)
.

As a consequence,

(H0 − E0)|−1
ψ⊥
0
Πψ⊥

0
(Wψ0) = u(1)

n + u(2)
n ,

with

u(1)
n = (−Δ − λn)|−1

X⊥
n
rn,

u(2)
n = μ

(−Δ + V + μu2n − λn
) |−1

u⊥
n
Πu⊥

n

(
(u2 − u2n)un

)
.

Since in PW calculations, functions are stored as vectors of Fourier coefficients,
computing a very accurate approximation u(1)

n,N of u(1)
n in a very fine discretization

space XN with N � n is easy. On the other hand, it can be shown using the a
priori error estimates in Theorem 4.1 that ‖u(2)

n ‖H 1
#
is much smaller than ‖u(1)

n ‖H 1
#
.

Introducing
ũn = un + u1n and λ̃n = λn + (u1n,Wun)L2

#
,

we have

‖u − ũn‖H 1
#

≤ Cn−2‖u − un‖H 1
#

and |λ − λ̃n| ≤ Cn−2|λ − λn|,

for a constantC ∈ R+ independent ofn. For large enoughvalues ofn and forN � n,
ũn,N = un + ũ(1)

n,N therefore represent a much better approximation of u than un .
We refer to [4] for an application of this technique to Kohn-Sham LDA models.

4.3.4 Error Balancing

As mentioned in the introduction, discretization error is only one of the various
components of the overall error. In this section, we give an example of a numerical
scheme automatically balancing discretization and algorithmic error for the Gross-
Pitaevskii model. Still for pedagogical reasons, we consider the simplest possible
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self-consistent algorithm for solving the Gross-Pitaevskii equation, defined at the
continuous level by

⎧⎨
⎩

−Δvk + Vvk + μv2k−1vk = λkvk, vk ∈ H 1
# (Ω), ‖vk‖L2

#
= 1, (vk, 1)L2

#
≥ 0,

λk lowest eigenvalue of − Δ + V + μv2k−1.

The initial guess v0 can be chosen, for example, as a normalized ground state of the
operator −Δ + V for small values of μ, and as the Thomas-Fermi approximation of
the ground state for large values of μ, but many other choices are possible. In this
algorithm, the iterate vk is the L2

#-normalized positive ground-state (in theweak sense
(vk, 1)L2

#
≥ 0) of the mean-field operator −Δ + V + μv2k−1 constructed from the

previous iterate vk−1. In theHartree-Fock andKohn-Sham frameworks, this algorithm
is referred to as the Roothaan algorithm, and has been analyzed from a mathematical
point of view in [52, 53]. It is known in particular that the sequence (vk)k≥0

• either converges to the unique positive solution u to the Gross-Pitaevskii equa-
tion (4.13);

• or oscillates between two states in the sense that there exist two functions ve and
vo in H 1

# (Ω), with ve �= vo such that

− Δve + Vve + μv2ove = λeve, ‖ve‖L2
#
= 1, (ve, 1)L2

#
≥ 0,

− Δvo + Vvo + μv2evo = λovo, ‖vo‖L2
#
= 1, (vo, 1)L2

#
≥ 0,

and
v2k −→

k→∞ ve, v2k+1 −→
k→∞ vo in H 1

# (Ω).

Typically, (vk)k≥0 converges ifμ is small and oscillates ifμ is large. Clearly, this is not
an efficient way to solve the Gross-Pitaevskii equation. We focus on this algorithm
for pedagogical reasons only, because it is easier to analyse. Note that the oscillatory
behaviour can be suppressed by using an optimal damping algorithm [54]. At a
discrete level, it is recommended to solve (4.14) using a preconditioned nonlinear
conjugate gradient algorithm [55].

The following scheme is a discretized version of the basic self-consistent field
algorithm, in which the discretization space depends on k (compare with (4.15)):

⎧⎪⎪⎨
⎪⎪⎩

−Δvk + Πnk

(
V + μv2k−1

)
Πnk vk = λk vk , vk ∈ Xnk , ‖vk‖L2

#
= 1, (vk,1)L2

#
≥ 0,

λk = λvk−1,nk , where λv,n is the lowest eigenvalue of − Δ + Πn

(
V + μv2

)
Πn .

Intuitively, it is indeed inefficient to compute the first iterates in a very fine discretiza-
tion space since we are far from convergence. It, therefore, makes sense to increase
the size of the discretization space along the iterations when getting closer to the
exact solution u. To automatize this process, we need to define a criterion allowing
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the algorithm to decide when to refine to discretization space. For this purpose, we
use the following result [51]:

Proposition 4.1 Let u be the unique positive minimizer to (4.12). Let J be the error
criterion defined by

∀v ∈ H 1
# (Ω) such that ‖v‖L2

#
= 1, J (v) = E(v) − E(u) + 1

2
‖v − u‖2L2 .

Let vk ∈ Xnk be the kth iterate of the above algorithm. Then, we have

0 ≤ J (vk) ≤ ηd,k + ηa,k,

where the discretization and algorithmic error estimators ηd,k and ηa,k are, respec-
tively, defined by

ηd,k=1

2

(
λvk ,nk − λvk ,∞

) ≥ 0, ηa,k = 1

2

⎛
⎝μ

∫

Ω

(v2k − v2k−1)v
2
k + λk − λvk ,nk

⎞
⎠ ≥ 0.

Wesee that ηd,k = 0 if nk = ∞, that is, if the problem at iteration k has been solved
in the whole space H 1

# (Ω) (no discretization error), and that ηa,k = 0 if vk−1 =
vk , that is if the SCF iteration has converged in the discretization space Xnk (no
algorithmic error). The numerical experiments reported in [51] show that, in practice,
the inequalities

E(vk) − E(u) ≤ J (vk) ≤ ηd,k + ηa,k

are almost equalities; this observation can be theoretically justified in the asymptotic
regime using a priori error analysis results. As a consequence, ηd,k + ηa,k gives an
accurate estimate of the energy error E(vk) − E(u), which is split into a discretization
error and an algorithmic error. A natural strategy to reach a desired accuracy ε in
an optimal way from a computational point of view then consists in refining the
discretization if ηd,k � ηa,k , and in iterating otherwise in the same discretization
space Xnk , until ηd,k + ηa,k ≤ ε.

Note that at iteration k, vk−1, vk and λk are known, but not λvk ,nk , whose compu-
tation would require solving another eigenvalue problem in Xnk , nor a fortiori λvk ,∞,
which is out of reach of numerical methods. It is, therefore, not possible to compute
exactly ηd,k . On the other hand, it is possible to obtain very accurate approxima-
tions of all these numbers by adapting the approach based on Rayleigh-Schrödinger
perturbation theory detailed in the previous section.

In conclusion, ηd,k and ηa,k therefore provide relatively cheap and sharp estimators
of the discretization and algorithmic errors at iteration k if the quantity of interest is
the energy, allowing adaptive error balancing.

We refer to [4] for an extension of this approach to the periodic Kohn-Sham LDA
setting.
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4.4 Error Cancellation Phenomenon

In many applications in physics, chemistry, materials science, and biology, energy
differences are far more important than absolute energies. Consider for instance a
simple chemical reaction that can be modelled as a transition from a local minimum
of the ground-state Born-Oppenheimer potential energy surface (GS-BO-PES)—the
reactants—to another local minimum of the GS-BO-PES—the products—through a
well-defined saddle point—the transition state (see Fig. 4.3). According to Arrhenius
law, the reaction rate is given by the relation

k = ν0 exp (−Ea/kBT ) ,

where ν0 is a prefactor, Ea the activation energy, that is, the difference between the
energy Ets of the transition state and the energy Ere of the reactants (see Fig. 4.3),
kB the Boltzmann constant, and T the temperature. The relevant QOI, therefore, is
the energy difference Ets − Ere, and not each of the energies Ets and Ere. The same
is true for the reaction energy, defined as the energy difference Epr − Ere, where Epr

is the energy of the products.
Considering two configurations R1 and R2 of the system, our goal is to estimate

the error
(ER1,N − ER2,N )︸ ︷︷ ︸

computable quantity

− (ER1 − ER2)︸ ︷︷ ︸
quantity of interest

where ERj is the exact ground-state energy for the configuration R j and ERj ,N its
variational approximation in the discretization space XN .

It has been observed both in quantum chemistry and computational materials
science, that in general,

|(ER1,N − ER2,N ) − (ER1 − ER2)| � |ER1,N − ER1 | + |ER2,N − ER2 |.

In other words, the error on the energy difference between two configurations is
usually much lower than the error on the energy of each configuration, typically by

Fig. 4.3 Sketch of a
chemical reaction taking
place on the ground-state
potential energy surface. The
activation energy Ea of the
reaction is the difference
between the energy of the
reactants and that of the
transition state
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Fig. 4.4 Two different configurations of a system composed of 2 oxygen atoms and 4 hydrogen
atoms corresponding to the reactants (left) and the products (right) of the chemical reaction (4.22)

one, sometimes two orders of magnitude. This is the so-called error cancellation
phenomenon. Chemists and physicists heavily rely on this phenomenon: obtaining
an accuracy of 1 kcal/mol (or 1 meV) on an energy difference turns out to be much
cheaper in terms of computational effort than obtaining a similar accuracy on a single
point energy.

As a matter of example, consider the two different configurations of a system
composed of 2 oxygen atoms and 4 hydrogen atoms corresponding, respectively, to
the reactants and the products of the chemical reaction (Fig. 4.4).

2H2 + O2 −→ 2H2O. (4.22)

The sum and difference of the energy errors

SN : = (Ereactants,N − Ereactants) + (Eproducts,N − Eproducts), (4.23)

DN : = |(Ereactants,N − Ereactants) − (Eproducts,N − Eproducts)| (4.24)

= | (Ereactants,N − Eproduct,N )︸ ︷︷ ︸
computed value of the QOI

− (Ereactants − Eproducts)︸ ︷︷ ︸
exact value of the QOI

|,

for PW Kohn-Sham LDA calculations with Troullier-Martins pseudopotentials as a
function of the energy cut-off EN = 1

2N
2 are plotted on Fig. 4.5 (top). It can be

observed that DN is indeed smaller than SN by about two orders of magnitude. In
addition, the non-dimensional error cancellation factor

0 ≤ QN := DN

SN
≤ 1 (4.25)

fluctuates about a value close to Q∞ � 5 × 10−3.
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Fig. 4.5 Observed
convergence of the quantities
SN and DN defined
by (4.23)–(4.24) as a
function of N , and
behaviour of the ratio QN

for the two configurations
represented on Fig. 4.4
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In order to unravel the origin of the discretization error cancellation phenomenon,
let us consider a simple linear 1Dmodel for which explicit calculations can be carried
out [1]. In this model, the external potential is periodic (with period a = 1) and is a
sum of Dirac masses:

Vext,R = −
∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R .

For given values of the charges z1 and z2, the configurations are labelled by R ∈
(0, 1). The ground-state energy and wave-function are obtained by computing the
lowest eigenvalue and an associated normalized eigenfunction of the 1D periodic
Schrödinger equation

(
− d2

dx2
−

∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
ψR = ERψR in L2

per(0, 1), (4.26)

1∫

0

ψ2
R(x)dx = 1.
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Fig. 4.6 Exact ground-state
wave-function of (4.26) for
z1 = 1, z2 = 0.5 and
R = 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.9

1

1.1

1.2
Exact solution z1 = 1, z2 = 0.5, R = 0.4

As a matter of illustration, the ground-state wave-function for z1 = 1, z2 = 0.5 and
R = 0.4 is plotted on Fig. 4.6.

The following result is proved in [1].

Theorem 4.3 Let z1, z2 > 0 and R ∈ (0, 1), let ER be the ground-state energy
of (4.26), and ER,N the variational approximation of ER in the Fourier approx-
imation space

Span
{
e2iπkx , k ∈ Z, |k| ≤ N

}
.

Then, we have the asymptotic expansion

ER,N − ER = αR

N
− αR

2N 2
+ β

(1)
R,N

N
+ γR

N
ηR,N + o

(
1

N 3−ε

)
, (4.27)

where

αR := z21uR(0)2 + z22uR(R)2

2π2
, (4.28)

γR := z1z2uR(0)uR(R)

π2
, ηR,N := N

+∞∑
k=N +1

cos(2πkR)

k2
,

β
(1)
R,N := z21uR(0)(uR,N (0) − uR(0)) + z22uR(R)(uR,N (R) − uR(R))

2π2
.

In addition

|ηR,N | ≤ min

⎛
⎝1,

2 + π3

8
| sin(πR)|N

⎞
⎠ and ∀ε > 0, ∃Cε ∈ C+ s.t. |β(1)

R,N | ≤ Cε

N 1−ε
.

This result sheds light on the mechanism of discretization error cancellation for
the PW discretization of (4.26). First, it implies that errors on energies and errors
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Fig. 4.7 Plot of the
function R �→ αR defined
by (4.28) for different sets of
parameters (z1, z2)
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on energy differences all scale in N−1, and that discretization error cancellation is a
matter of prefactors:

ER,N − ER ∼
N →∞

αR

N
while (ER2,N − ER1,N ) − (ER2 − ER1) ∼

N →∞
αR2 − αR1

N
.

Note that αR only depends on the charges z1 and z2 of the Dirac potentials and on
the values of the ground-state densities at the positions of the Dirac potentials. Error
cancellation is due to the fact that, for 0.1 ≤ R1, R2 ≤ 0.9, we have

|αR2 − αR1 | � max(αR1 , αR2) (see Fig. 4.7). (4.29)

We also obtain that the error cancellation factor converges whenN goes to infinity:

lim
N →+∞

QN = |αR1 − αR2 |
αR1 + αR2

.

Numerical simulations show that the convergence is monotonous for R1, R2 away
from the singularities R = 0 and R = 1 (where the two Dirac combs overlap), and
oscillating for R1 or R2 close to the singularities (see Fig. 4.8).

Inequality (4.29), which is at the root of error cancellation, can be rewritten as

∣∣z21 (ρR1(0) − ρR2(0)
) + z22

(
ρR1(R1) − ρR2(R2)

)∣∣
� max(z21ρR1(0) + z22ρR2(0), z

2
1ρR1(R1) + z22ρR2(R2)),

where ρR(x) = uR(x)2 is the ground-state density at point x in configuration R. For
R away from the singularities 0 and 1, the ground-state density at the positions 0 and
R of the Dirac potentials does not change much with R.
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Fig. 4.8 Convergence of
QN to Q∞ for R1 = 1

2 and
three different values of R2
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Another interesting remark reported in [1] is that

∣∣∣∣dER,N

dR
− dER

dR

∣∣∣∣ �
∣∣∣∣∣
dαR
dR

N

∣∣∣∣∣ .

In other words, it is not possible to infer from ER,N − ER ∼N →∞ αR
N a result on

the convergence of the forces. In fact, it is observed that

dER,N

dR
− dER

dR
∼

N →∞
d

dR

( γR

N
ηR,N

)

and that the function R �→ dER,N

dR − dER
dR is oscillating more and more when N

becomes large. As a consequence,

1. It is not a good idea to try and compute the energy difference between two con-
figuration R1 and R2 by integrating the forces along a path of the configuration
space linking R1 and R2;

2. Extrapolation methods based on the asymptotic expansion (4.27) can be used to
improve the accuracy of the energy, but they will not improve the accuracy of the
forces.

4.5 Conclusion

In this chapter, we have introduced basic concepts of mathematically based dis-
cretization error analysis: a priori error estimators, a posteriori error estimators and
post-processing methods, asymptotic expansions and extrapolation methods, and
error cancellation phenomenon. These concepts have been illustrated on the simple
examples of plane-wave discretizations of the Gross-Pitaevskii model, and of a 1D
periodic Schrödinger equation with Dirac potentials.
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Significant progress on discretization error analysis for Kohn-Sham and other
electronic structure models has been made in the past few years, and many ongoing
works in these directions are in progress in several groups around the world. As
witnessed in other fields of science and engineering, rigorously founded error analysis
should play a major role in the design of a new generation of electronic structure
calculation software, generating numerical results supplemented with error bars,
optimizing the available computational resources, and adapted to massively parallel
and heterogeneous architectures.
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Chapter 5
Basis Sets for Correlated Methods

Daniel Claudino and Rodney J. Bartlett

5.1 Introduction

It is an unfortunate fact that virtually all problems of chemical or physical interest
do not have a closed-form solution and, therefore, need to be dealt with by a range
of different approximations. One of the several approximations underlying most
electronic structure efforts is the use of what is commonly known as atomic basis
sets.

Simply put, an atomic basis set, or simply basis set or basis, in the context of
QuantumChemistry is a group of known one-particle functions combined in a certain
fashion to be further employed in approximating the exact N -particle electronic wave
function (or density, in the case of density functional theory)with N being the number
of electrons in the system. Two important considerations arise from such a definition:
the kind of functions to be used and how many of them. Even though many different
classes of functions have been tried to constitute a basis set, none has been more
prevalent than Gaussian functions. Unlike the Slater-type orbitals (STOs), which are
exponential functions inspired by the solution of hydrogen-like atoms that display
the correct cusp and long-range behavior, [1] a Gaussian-type orbital (GTO) suffers
frommuch too rapid decay, meaning that the region spanned by functions’ tails is not
adequately covered. An even more serious drawback is that they do not comply with
Kato’s cusp condition, i.e., the electron density does not form a cusp as it approaches
the nuclei [2]. Nonetheless, the computational efficiency in turning to GTOs over
STOs for polyatomic molecules is so remarkable that it allows for multiple Gaussian
functions to extend the reach of the wave function to farther distances from the
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nuclei as well as ironing out the cusp region, with computational speedups of orders
of magnitude [3].

For the reasons discussed above, basis sets to be used in quantum chemical appli-
cations eventually became a synonym for Gaussian-type orbitals, and these terms
will be used interchangeably throughout this document. The other question brought
up, that is, the number of Gaussians to be employed is rather involved and is closely
related to the reasoning behind the development of each basis set.

Before we delve into the specifics of the most popular basis sets, it seems suitable
to lay down some important theoretical and computational considerations that are
imperative in examining the reasoning adopted as a guide in the construction of such
bases.

5.2 The Structure of Gaussian Basis Sets

Even though there are many different families of GTO basis sets, in all instances
their radial part can be written in the following general form:

φ(α, �, r − RA) = Nr�e−α|r−RA|2 (5.1)

where N is a normalization constant, � is the angular momentum quantum number
associated with the atomic orbital φ, |r − RA| represents the distance of the electron
with coordinates r with respect to the Gaussian function centered at the nucleus with
coordinates RA, and α is the Gaussian exponent.

The general GTO shown in Eq. 5.1 is given in the spherical harmonics space,
meaning it has a Ym

� (θ, ϕ) attached to it, where θ and ϕ are the polar and azimuthal
angles. For reasons of visualization, it is more convenient to consider the so-called
Cartesian Gaussians. They can be easily transformed to and from spherical harmon-
ics in most quantum chemical codes. Cartesian Gaussians fit the following general
formula:

φ(α, a, b, c, x, y, z, r − RA) = Nxa ybzce−α|r−RA|2 (5.2)

with x , y, and z being the Cartesian coordinates, � = a + b + c, and r2 = x2 + y2 +
z2, thereby accounting for the spherical harmonic Ym

� (θ, ϕ) above.
The computational efficiency of resorting to GTOs can be further enhanced by an

approach known as contraction. This idea is so widespread in basis set construction
that, unless stated otherwise, the term basis sets refers to contracted GTOs, or CTGO
for short. In the basis set jargon, a contraction is a basis function formed through a
linear combination of GTOs, and the GTOs used in the contraction expansion are
named primitives. A contraction can be expressed mathematically by

ψ =
∑

n

Cnφn (5.3)



5 Basis Sets for Correlated Methods 131

where the atomic orbital ψ , now a CGTO, is expanded in a linear combination of
the φ primitive Gaussians, weighed by coefficients Cn .

Simply stated, the objective of contracting a set of primitives is to manipulate
fewer functions that incorporate most of the features of the full primitive GTO set.

For a given angular momentum, there are two degrees of freedom in the CGTOs:
the Gaussian exponent, α (Eqs. 5.1 and 5.2), and the contraction coefficients,Cn (Eq.
5.3). Each of these two components are discussed in more detail below.

5.2.1 Gaussian Exponents

The exponent α shown in Eqs. 5.1 and 5.2 can be seen as a scaling factor of the
distance from the atomic center A. In other words, it controls how the Gaussian
functions span the radial space (spherical harmonics are the basis that spans the
angular domain). In the early days of basis set quantum chemistry, Gaussians were
simply fit to best describe a given STO [4]. But it was known to be a very crude
approximation, much constrained by the computational technology of the time and
did not embody any correlation effect. The seminal work of Ruedenberg and co-
workers showed that Gaussian exponents individually optimized with respect to
the minimization of the Hartree-Fock (HF) energy closely followed a series, which
was named an even-tempered expansion. Instead of the optimization of a number
of parameters equal in size to the primitive set for a certain angular momentum,
in turning to an even-tempered expansion all it takes is the determination of two
parameters [5]:

αk = αβk , k = 0, . . . , N (5.4)

where α = α0 and β are the parameters to be optimized, and N determines the size
of the expansion, with a different expansion for each �-shell to be spanned by the
basis set.

This expansion can successfully address sets of primitives of moderate size. As
the basis becomes larger, the even-tempered expansion eventually shows signifi-
cant deviations from the individually optimized exponents. Additionally, the large
primitive set devised from the even-tempered expansion usually suffers from lin-
ear dependencies, meaning that two (or more) functions are too similar. For these
reasons, a number of alternative expansions have been proposed [6–8].

In possession of a primitive set generated from an even-tempered (or other) expan-
sion, it was found that extra flexibility could be attained if the most diffuse functions,
i.e., those with the smallest exponents, were included as primitives without being
contracted, [9, 10] which became a strategy followed in the development of some of
the basis sets discussed below.

With the advance of computational technology and more efficient algorithms
that could perform more extensive calculations in a timely manner, it eventually
became possible to obtain primitives by optimization of the underlying expansions
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(or individual exponents) with respect to the energy of a correlated method (or, less
frequently, some other property), whose exponents are varied until the lowest energy
is achieved.

5.2.2 Contraction Schemes

Given a set of primitive functions, the question is whether there is a way whereby
these functions can be combined so that a set of reduced size can effectively and
efficiently approximate the larger, more computationally costly set. Such a (linear)
combination is commonly referred to as a “contraction”.

There are two main contraction types: segmented, [11] in which each contraction
has its own set of primitives, and general, [12] with the parent Gaussians being shared
by each of the contracted functions. The distinction between the two contraction
schemes is illustrated in Fig. 5.1.

In the early days of Quantum Chemistry, segmented contractions were routine
due to computational efficiency reasons, but nowadays this is hardly an impediment
and many current correlated basis sets are of the general type.

Even though virtually all atomic basis sets fall into one of the two different con-
traction approaches, the contraction coefficients Cn can be obtained in a variety of
ways, which will be discussed in the context of each particular basis set.
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s
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CGTOs
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s s s

p p

d

General
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Fig. 5.1 Pictorial representation of the segmented andgeneral contraction schemes of a hypothetical
set of primitives contracted to [3s2p1d]
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5.3 The Correlation Problem

Even though electrons are in constant motion in matter, the early and simplest
attempts to address electronic structure relied upon independent-particle models,
also known as mean-field theories, where each electron is treated individually as
though it is moving in an average field generated by the remaining electrons. This
idea has been proposed in several different flavors and yields what is commonly
referred to as a reference function. The most famous example is Hartree-Fock, a
term often used interchangeably with Self-Consistent Field (SCF) theory. The deter-
mination of the HF reference function is a routine first step in the vast majority of
quantum chemical calculations, with the notable exception of Density Functional
Theory (DFT). In HF, the instantaneous interaction of electrons is not taken into
account, and even though it constitutes only a small fraction of the energy, the proper
treatment of the so-called “correlation energy” is very often the decisive factor in
achieving high-accuracy results in awide range of problems of chemical and physical
relevance.

As defined by Löwdin, the correlation energy is simply the difference between the
exact energy and the “restricted” Hartree-Fock energy for a given basis set, [13] but
now one usually relaxes the latter to the energy of any mean-field, single determinant
like “unrestricted” HF, or other theory based on a single determinant. In that case,
the energy correction from the mean-field approximation accounts for the other
instantaneous situations absent in the mean field, as can be simply defined as

Ecorrelation = Eexact − EHF (5.5)

That being said, the goal in the development of correlated basis sets is to provide
basis functions that favorably bridge this gap between the reference and the exact
picture, that is, that describe the many-electron interactions in a satisfactory manner.

5.3.1 Choice of Correlated Method

There are quite a few strategies in the treatment of electron correlation, but some
of them became more popular than others over the years, which did not necessarily
translate in being more associated with basis set development. Within the wave
function framework, the correlated wave function, fromwhich the correlation energy
(or any other correlated property, in principle) can be evaluated, is obtained via
excitations from the occupied orbitals to the virtual orbitals as determined by the
reference function, subject to the chosen correlated method. This can be represented
mathematically as
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Fig. 5.2 A pictorial way to represent the excitation manifold according to the orbital occupancy
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where Ĉ is the operator that generates the excitation manifold from the reference
function (excitation operator), i , j , and k label occupied orbitals, a, b, and c are
associated with virtual orbitals, 
S , 
D , and 
T form the space spanned by deter-
minants obtained from single, double, triple, and so on, excitations from the reference
function. The occupation of the orbitals in these determinants can be graphically rep-
resented in Fig. 5.2.

The expansion of thewave function presented in Eq. 5.6 is known asConfiguration
Interaction (CI). This method has the usually desirable property of being variational,
which means that the energy of any truncation of the CI expansion is an upper bound
to the exact energy. The limiting case in which all possible electronic excitations are
included is known as Full CI (FCI), and the exact wave function follows and the
total correlation energy is computed. Unfortunately, FCI calculations can seldom be
done as the difficulty increases approximately exponentially with the number of basis
functions. On the other hand, any truncation of the CI expansion suffers from what
is known as a lack of size-extensivity, the best known defect of the CI formalism,
due to the presence of terms known as “unlinked diagrams.” A method is only size-
extensive if its corresponding energy scales correctly with the number of electrons
in the system [14].
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It is not uncommon that the HF energy is ≈ 99% of the total energy. Given the
small magnitude of the correlation energy, it can be instinctively treated by perturba-
tion theory (PT), thus the mean-field picture is seen as the unperturbed, zeroth-order
problem,while electron correlation is introduced as a perturbation. Due to Brillouin’s
theorem, the first energy correction from electron correlation with an HF reference
is of second order in the correlation correction, commonly known as second order
Møller-Plesset Perturbation Theory (MPPT), or MP2 for short, which is a partic-
ular case of Rayleigh-Schrödinger Perturbation Theory (RSPT) with a HF starting
point [15]. This result can be viewed as MBPT(2), meaning the first linked diagram
approximation given by the Many-Body Perturbation Theory (MBPT) formalism. In
the context of MBPT, the energy expressions are size-extensive in all orders, since
this method is free of the unlinked diagrams by construction, while this aspect does
not arise inMPPT. This approach can be easily applied to non-HF references through
generalized MBPT [16].

MBPT taken to infinite-order gives Coupled-Cluster (CC) theory. In CC, infinite-
order contributions that are evaluated order by order in PT can be achieved by an
exponential excitation operator analogous to the CI operator Ĉ . In the FCI limit, both
CC and CI are equivalent, but the major advantage of CC methods (and also MBPT)
over CI counterparts is that any truncation short of FCI is inherently size-extensive.
As a consequence of the exponential nature of the CC operator, CC methods almost
always provide a better approximation to the exact correlation energy and molec-
ular properties because of the presence of the so-called disconnected clusters. For
example, CC with single and double excitations, CCSD, scales as ∼N 6, where N is
the number of basis functions. It has a term 1/2T̂ 2

2 , which is an effective quadruple
excitation contribution that can only be achieved in CI if one expands the CI wave
function up to Ĉ4, yielding a very computationally expensive approach (∼N 10), and
would still not be size-extensive for any casewithmore than four correlated electrons.
Schemes combining CC and MBPT are very successful in reaching high accuracy
while offering amore affordable alternative. Themost notable of such cases is CCSD
where the effect of triply excited determinants are incorporated perturbatively, in
methods known as CCSD[T], CCSD(T), and �CCSD(T) [17–19].

Readers interested in further considerations of the differences between CI and CC
and the relations of the latter to perturbation theory are referred to Refs. [14, 20, 21].

While CI, MBPT, and CC are all wave function methodologies, another very
common alternative in trying to solve the problem is usingDensity Functional Theory
(DFT) [22]. DFT in its Kohn-Sham form (KS-DFT) is formally an independent-
particle theory, but unlike Hartree-Fock, it has a term that attempts to account for
correlation effects, known as correlation potential (Vc), or more generally, exchange-
correlation potential (Vxc) as it is accompanied by the exchange operator (Vx ) as
well. The functionals that enjoy popularity in Quantum Chemistry, grounded on the
Kohn-Sham (KS) formalism, [23] are very often determined in a somewhat ad hoc
and empirical fashion. Some of interest are the Minnesota functionals, [24, 25], the
B97 family of Becke, [26] and theωB97 series of Head-Gordon and co-workers [27].
Others, like PBE [28, 29] and the QTP family, [30, 31] try to avoid extensive and
arbitrary parameterization.
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5.3.2 Partitioning of the Orbital Space

When considering the excitations from a single determinant, there are other aspects
when it comes to the determinants to be used in correlated calculations. Regardless
of the choice of reference function, they all share in common the fact that their final
product is a set of orbitals. It is instructive to further partition the orbital space beyond
simply occupied and virtual because different orbitals exhibit different requirements
with respect to the correlation problem, as depicted in Fig. 5.3.

Core orbitals tend to be virtually unaffected by the correlation phenomenon. It
does not mean that they have negligible contribution to the correlation energy. Quite
the opposite, the correlation effect in the core is rather large, but such correlation is
nearly constant throughout the potential energy surface for most chemical situations,
and usually cancels out if the end goal is the evaluation of some kind of energy
difference [32]. Since the computational expense of correlated methods scales rather
steeply with the number of orbitals to be taken into account, core orbitals are usually
left out of the correlation calculation, an approach known as the frozen-core approx-
imation. Basis sets developed under and for such conditions are named valence basis
sets, as they target the so-called valence correlation.

However, some cases do require the inclusion of the innermost orbitals, which
are often of higher complexity than the valence counterparts, and the frozen-core
approximation is no longer valid. Correlation contributions arising from both valence
and core orbitals are termed core-valence correlation, while those that are solely from
core orbitals comprise the core (or core-core) correlation energy, and are both treated
by basis sets named accordingly.

Core

Valence

Virtual

Reference
Function

Valence
Correlation

Core-Valence
Correlation

Core
Correlation

Fig. 5.3 A pictorial way to classify the orbitals and the different types of correlation according to
the orbitals that are populated by the correlated electrons
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Due to the orthogonality of the spherical harmonics for atoms, basis functions
associated with different angular momentum quantum numbers do not mix. For
practical purposes, it means that basis functions of higher �-number than those of the
occupied orbitals have very little effect on such orbitals. It does not mean, however,
that higher angular momentum functions are not important. Since the correlation
energy comes from excitations out of the reference function, many such excitations
target unoccupied orbitals pertaining to higher �, and an appropriate treatment of
these orbitals is crucial to proper recovery of the correlation energy. In the basis set
terminology, these functions are termed polarization functions, for they allow the
electronic cloud to be distorted and more easily accommodate different chemical
environments.

5.3.3 The “Zeta” (ζ ) Classification and the Complete Basis
Set Limit

A convenient and systematic approach to name basis sets according to their size
became known as n-tuple-ζ , or, nZ. In principle, the zeta multiplicity refers to the
number of basis functions to be employed in each AO. For instance, in a single zeta
(SZ) basis set, each AO is associated with only one basis function; in a double zeta
(DZ) basis, there are two basis functions per each AO, and so on. Due to the form
that the polarization functions are added in most basis sets, the zeta classification
also became a synonym for how the basis set varies with an increment in the highest
� number that the basis sets spans. So, the zeta multiplicity is closely related to the
function associated with the maximum angular momentum quantum number, �max ,
in the basis set.

In the most general case, a one-particle basis like those in question here would
have to be comprised of an infinite number of functions in order to be an exact
representation of an N -particle full CI wave function. Finite basis sets are devised
aiming at functions that can be taken as suitable truncations of infinite sets.

Even though the answer from an exact basis set is technically inaccessible, it can
still be estimated with excellent accuracy. Fortunately, the increase in the size of a
basis set comes with a consistently diminishing improvement. In practical terms, it
means that finite basis sets can be extended in a way to asymptotically approach the
complete basis set (CBS) limit. Several basis sets discussed below are constructed in
a hierarchical fashion providing smooth convergence to the CBS limit. Studies per-
formed in different contexts have shown that the correlation energy varies as some
inverse function of the �max [33–39]. This dependency is usually �−3

max for typical
correlated methods, but is dramatically improved to �−7

max for explicitly correlated
approaches. Since the energy in SCF and DFT, the most common single determinant
theories, displays an exponential dependence on both �max and the number of func-
tions for a given �, it converges much more rapidly to the CBS limit than correlated
properties with respect to the basis set [40–43]. That being said, it is advised that
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Table 5.1 Some of the most common CBS extrapolation formulas, where E(X) is the correlation
energy for a basis set of X -tuple zeta size, ECBS is the extrapolated energy to the CBS limit to be
determined along with the parameters A and B, and Etotal is the total energy

Extrapolation formula Fitting parameters References

E(X) = ECBS + AX−3 ECBS , A [44]

E(X) = ECBS + Ae−BX ECBS , A, B [41]

E(X) = ECBS + Ae−(X−1) + Be−(X−1)2 ECBS , A, B [46]

E(X) = ECBS + A (X + 1/2)−4 ECBS , A [48]

E(X) = ECBS + AX−B ECBS , A, B [50, 53]

E(X) = ECBS
[
1 + A(1 + B/X)X−3

]
ECBS , A, B [51]

E(X) = ECBS + (X + A)−3 ECBS , A [52]

E(X) = ECBS + AEtotal
X X−3 A [54]

E(X) = ECBS + Ae−a
√
X A [55]

the SCF energy and its associated correlation correction be treated separately when
CBS limit estimates are sought. Several accounts report approaches for extrapolation
of energies and other properties to the CBS limit, [44–55] with some of the most
commonly used reported in Table 5.1.

This is certainly not an extensive list of all extrapolation approaches reported
in the literature. These formulas are usually conceived based on a specific set of
parameters, such as method, basis set family, and molecular property, so they can
display strikingly different behavior from case to case. The specifics of each for-
mula can be found in the corresponding references in Table 5.1 and more involving
discussions regarding performance considerations have been reported by Feller and
co-workers [56, 57].

5.3.4 Diffuse Functions

The plain valence correlation basis sets have been shown to be suitable for a wide
range of applications that can be understood as rising from the valence shell. How-
ever, situations where basis functions limited to just the valence region provide an
insufficient picture are not unusual. One such case is when the phenomenon under
investigation has a long-range nature, which takes place beyond the valence region,
and awell-established approach to addressing this deficiency is the inclusion ofGaus-
sian functions whose exponents are rather small, so that their tail is relatively slowly
decaying. These are usually referred to as diffuse functions, and the respective basis
sets are commonly named augmented, as they are extended sets with added diffuse
functions on pre-existent bases.

One common problemwhere one needs to resort to augmented basis sets would be
anions and the corresponding electron affinities. The extra electron in anionic species
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is usually loosely bound in comparison to the corresponding neutral, and for that
reason, tend to dwell in regions rather distant from the nuclei, with diffuse functions
being required to describe the spatial domain occupied by these electrons. Another
important context where the use of augmented basis sets is crucial is the accurate
determination of Rydberg states, whose distinct characteristic is that electrons are
excited to orbitals located well beyond the valence shell, usually tens or hundreds
of Å away from the nuclei. This is very often spatially inaccessible for Gaussians
obtained from calculations on the neutral atoms, as their tails die off much closer
to the nuclei. Finally, a myriad of problems of central interest in Chemistry rises
from dispersive van der Walls forces. If one is interested in the moments of a charge
distribution, one would expect to needmore diffuse functions. Both constitute classic
examples of the demand for basis sets with additional diffuse functions in order to
achieve high accuracy.

5.4 Correlated Basis Sets

With the most important concepts pertinent to basis sets explained in the previous
sections, we can now delve into the correlated basis sets themselves and be able to
explain their main features and differences.

5.4.1 Pople-Style Basis Sets

The exponents and contraction coefficients in the first incarnation of the basis sets
proposed by Pople and co-workers were initially determined at the HF level, mean-
ing they were not designed in order to include electron correlation [58]. In fact,
they fall into the category of minimal basis sets (MBS), i.e., the number of basis
functions equals the number of occupied orbitals of the corresponding atoms. The
HF energy is dependent only on the occupied orbitals, hence the MBS being unable
to account for correlation effects. However, bond formation in molecules require
a significant charge polarization, an ingredient that is missing in the atomic MBS.
This was remedied through the addition of polarization functions. It turns out that
these extra functions, while obviously not the best functions for correlation purposes,
can capture some electron correlation upon the fact that they extend the determinant
space to include virtual orbitals. In general, the Pople-style basis sets are labeled m-
i jG, meaning that the core orbitals are represented by a contraction of m Gaussians
and that the valence orbitals are comprised of i and j contracted Gaussians (even
though this example suggest two valence orbitals, it can be extended). The versions
of these bases extended by polarization functions are designated by an asterisk or
by the angular momentum of the functions being added, e.g., 6–31G* and 6–31G(d)
refers to the same basis set [59]. For computational purposes, the Pople-style basis
sets assume that the exponents of the 2s and 2p functions are the same, as the inte-
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grals can be computed faster this way. This is a restriction that other basis sets will
not have.

Pople and co-workers eventually proposed a version of these basis sets that were
correlated from the beginning via optimization of Gaussian exponents and con-
traction coefficients at the MP2 level with an unrestricted Hartree-Fock reference
(UMP2) [60]. Very large versions of these bases can be found, with the largest being
6–311++G(3df, 3pd), where “++” means diffuse functions in all atoms, including
hydrogen and helium, and heavy atoms count with three d and one f polarization
functions and hydrogen and helium basis sets are increased by three p and one d
polarization functions.

These basis sets are still used routinely in correlated calculations. Arguably, the
main pitfall of the Pople-style basis sets is the lack of hierarchical design such that the
progression to larger sets is closely connected to the asymptotic behavior to the CBS
limit. On the other hand, two of the most famous composite schemes, the so-called
Gaussian-n (Gn) theories of Pople et al. [61–64] and the CBS methods of Petersson
and co-workers, [65–69] make use of these bases. The former is entirely dependent
on the Pople-style basis sets, while the latter rely on the Pople-style basis sets in
some of its several variants.

5.4.2 Atomic Natural Orbitals

There are several examples of the application of natural orbitals (NO) in the literature.
The NOs are based on the insight that dates back to the seminal work of Löwdin [70].
As a first step toward the generation of a set of NOs, one computes the one-particle
density matrix (1PDM) at a certain correlated level, simply referred to as density
matrix hereafter, on a certain basis. This density matrix is diagonalized and a new
MO basis can be obtained in which the eigenvectors can be viewed as coefficients
of the expansion in terms of the original basis. The NOs have the property that,
in the absence of using all MO functions, they effectively reduce the number of
relevant orbitals for a system in question, improving convergence to the desired
wave function. In other words, for an N -dimensional wave function, the K most
occupied NOs provide the orbitals whose determinant best describes the 1PDM of
the system, with K < N , and also form the K -dimensional determinant that most
rapidly converge to the FCI expansion, limit which exactly solves the correlation
problem, as exposed in Sect. 5.3.

Turning to atomic basis sets, if the basis representing the correlated 1PDM is a set
of atomic primitive Gaussians, the corresponding eigenvectors, which are the atomic
natural orbitals (ANO), provide coefficients through which the primitive set can
be expanded, forming a new atomic basis set. For a primitive basis comprised of N
elements, N ANOs are generated, and both bases span the exact same space, meaning
that keeping the N ANOs leads to no error in contracting the primitive set. However,
the primitive basis can be effectively contracted to K ANOs, K < N , reducing
the associated computational cost relative to the primitive set. The corresponding
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eigenvalues are interpreted as the occupation number of a given ANO and usually
guide the choice of the K most occupied ANOs to be retained in the ANO basis set.

An ANO basis set is naturally of the general contraction type, meaning that each
primitive function contributes to all contractions. However, due to the orthogonality
of the spherical harmonics, there is no mixing of functions associated to different �
numbers, meaning that the density matrix elements that arise from functions with
different angular momentum quantum numbers are zero. For this reason, the ANOs
automatically arrange themselves in the corresponding �-shells. Below, we show
some of the most notable cases of ANO basis sets.

5.4.2.1 NASA Ames

The first application of the ANO approach to the generation of atomic basis sets came
fromAlmlöf and Taylor, labeled as NASAAmes ANO, with the focus on the valence
correlation in atoms of the first row of the periodic table [71, 72]. The s and p shells
are also spanned by the SCF-optimized Gaussians of van Duijneveldt, [73] and the
polarization functions calculated from even-tempered expansions whose parameters
were optimized at the CISD level of theory with predetermined factors between
consecutive �-shells. After the determination of the primitive set, the calculation
of the 1PDMs of the corresponding atoms was also carried out at the CISD level,
yielding the contraction coefficients.

These basis sets are available only in quadruple-zeta size, meaning that, while
being relatively large, they do not follow a hierarchical scheme that allows for extrap-
olations to the CBS limit. Despite this shortcoming, the use of these basis sets has
been reported to provide accurate results in several applications, notably in spec-
troscopic calculations, yielding results with significant accuracy and in cases where
members of the correlation consistent family fail [74, 75]. Atomic and molecular
properties which depend considerably on the outermost regions of space require fur-
ther flexibility, which can be achieved by having the primitives with the smallest
exponents be uncontracted, or even the addition of extra diffuse functions [76].

5.4.2.2 Roos’ ANO

In the pursuit of a general purpose basis set, one can naively keep increasing the
size of the basis set, guided by the hope that an infinite basis is exact and that a
realistic basis large enough will be successful for the problem at hand. Given the
slow convergence of the correlation energy with the size of the basis set, this is
not an advisable strategy. Atomic basis sets tend to be obtained by some sort of
optimization of an atomic property, usually an energetic quantity, and for this reason
are inherently biased toward this quantity. It was seen above Sect. 5.4.2.1 that Almlöf
and Taylor prescribed modifications in their basis set to enhance the performance
in the calculation of certain properties. Roos and co-workers, on the other hand,
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devised a set of ANOs in which the effect of certain features was believed to be
already incorporated into the contraction coefficients [7].

As in the case of theNASAAmesSect. 5.4.2.1 bases, these basis sets also startwith
the SCF-optimized primitives of van Duijneveldt, [73] which are further augmented
by primitives derived from a variant of the even-tempered expansion that depends
on three parameters of the following form:

ln(αk) = c−1/k + c0 + c1k , k = 1, . . . , N (5.7)

where c−1, c0, and c1 are the expansion coefficients to be determined.
To these primitives are also added a diffuse function in all �-shells. Once the

primitives are generated, the distinctive feature of these basis sets come into play.
Instead of straightforward computation of the atomic density matrix and the subse-
quent gathering of the most occupied ANOs, the 1PDMs of several relevant atomic
states, the corresponding anions and cations, and the atom in the presence of an
electric field are averaged and subject to the diagonalization step. This process was
intended to allow for a more balanced performance over a wide variety of chemical
situations for atoms in the first and second row of the periodic table [7, 77].

This framework is slightly modified in regard to the 1PDM to be considered in the
case of transition metal atoms. The three most important electronic configurations in
these atoms, dn , dn−1s1, and dn−2s2 are considered in the density matrix averaging,
along with the anion and cation in an external electric field. These basis sets are
reported to provide very small contraction errors for most of the properties for which
they were tested, such as ionization potentials, dipole moments, and spectroscopic
constants [78].

This prescription for basis set development has also been successfully developed
in the context of capturing relativistic effects [79–83]. Further investigation regarding
the specifics of these basis sets is beyond the scope of the present document.

5.4.2.3 ANO-pVnZ

The distinct characteristic of the ANO basis sets of Neese and Valeev in comparison
to the bases previously discussed is that they are not dependent in any way on the
CISD method. In their take on the ANO procedure, ano-pVnZ, the considerably
large cc-pV6Z primitive sets serve as the basis for the calculation of the 1PDM at the
Multireference Averaged Coupled Pair Functional (MR-ACPF) level of theory, [84]
with a Complete Active Space SCF (CASSCF) reference [85]. Given the extensive
size of the primitive set, basis sets of sizes up to hextuple zeta can be obtained from
a single 1PDM computation.

In the same paper where their constructions are detailed, the ano-pVnZ sets are
tested for a variety of situations and are found to perform better than the cc-pVnZ
bases of the same size and are reported to be superior to basis sets of the def2 and
pc-n families for SCF and CCSD(T) energies as well as in extrapolations to the CBS
limit.
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5.4.2.4 ANO-VT-nZ

The Coupled-Cluster method in which all single and double excitations are consid-
ered as well as the contribution from triple excitations as estimated from perturbation
theoryr, CCSD(T), is nowadays referred to as the “gold standard” of QuantumChem-
istry. Despite the constant enhancement in computational power, allowing CCSD(T)
to be used in an ever-growing number of applications, there had been no basis set
in the literature based on this method, or any version of CC, until recently. The
MR-ACPF method used above and its updated Multireference Averaged Quadratic
Coupled-Cluster (MR-AQCC) [86] version are actually multireference variants of
CI that partly correct for its lack of size-extensivity.

The Atomic Natural Orbital—Virial Theorem—n-tuple Zeta sets, ANO-VT-nZ,
with n = D, T, and Q, of Claudino et al. [87, 88] is an attempt to address this gap,
providing a basis set with all the benefits of CC theory. The highlight of these ANO-
type bases is that they are obtained from the 1PDM calculated at the CCSD(T) level
of theory with the primitives found in the correlation consistent sets of the same size.
Moreover, they satisfy the Virial theorem for the corresponding atoms via scaling
the primitives exponents in the original primitive set by a uniform scale factor [89].

In comparison with the cc-pVnZ counterparts of the same size, the ANO-VT-nZ
bases were shown to provide smaller errors in the contraction of the primitives for
atomic and molecular energies and the density, as probed by the moments of r , e.g.,
〈rn〉,−3 ≤ n ≤ 3.

5.4.3 Segmented Basis Sets Based on Atomic Natural Orbitals

5.4.3.1 Natural Orbital-Based Segmented Contracted Gaussian Basis
Sets

The ANO paradigm relies on the desired physical feature that natural orbitals offer
the fastest orbital convergence to the target wave function, while these basis sets are a
notorious example of the general contraction scheme. Despite the current technology
having made possible efficient integral calculations on generally contracted basis
sets, segmented contractions are naturally more computationally amenable. In order
to take advantage of both of these properties, Noro and co-workers introduced the
Natural Orbital-based Segmented Contracted Gaussian Basis Sets, or NOSeC, for
short [90].

The construction of theNOSeC basis sets starts with the functions of Tatewaki and
Koga (TK) optimized to minimize the error from Numerical Hartree-Fock (NHF)
energies [91–94]. The polarization functions intended to recover correlation energy
are not optimized with the goal of minimizing the CISD energy, but rather exponents
and contraction coefficients are optimized in order to minimize the difference in the
radial distribution from a predetermined subset of the highest occupied CISD NOs.
In other words, the polarization functions are obtained by fitting to CISD ANOs in
a least-squares fashion.
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The different versions of the NOSeC basis sets are reported to cover all 103 atoms
from hydrogen to lawrencium. Valence correlated NOSeC bases are available in dou-
ble, triple, and quadruple sizes for atomsH throughXe, [90, 95–99] and core-valence
functions for alkali and alkaline metals are also provided [100]. Atoms beyond Xe
in the periodic table are very dependent of basis sets specifically design to account
for the high relativistic character of such heavy atoms and have also been addressed
by the NOSeC group, discussion of which can be found elsewhere [100–105].

5.4.3.2 Sapporo Basis Sets

The NOSeC and Sapporo families of basis sets are very closely related. Both share
the same primitive functions, with slightly different contraction patterns in the inner
shells, but have the same basis functions in higher �-shells. This alternative contrac-
tion scheme in the shells of lower � values in the Sapporo sets is able to provide
moderate additional energy improvement over the NOSeC analogs. The polarization
functions are the same as those found in the NOSeC basis sets.

The initial procedure employed in the generation of the basis sets above is refined
to better accommodate core-valence correlation effects. The functions to populate
the shells containing AOs to be occupied are initially the same ones used in the first
record of the Sapporo family. Since these functions are now found in the angular
momentum shells where core correlation takes place, they are recontracted and, in
some cases, it is found that the addition of extra s, p functions to the TK sets is
necessary. The polarization functions are also primarily those found in the NOSeC
sets. With the exception of the atoms in the s block, in which the core-valence
aspect was previously addressed, [100] all other atoms require polarization functions
optimized for a proper description of core-valence correlation. In order to avoid linear
dependencies, the extended TK set and the polarization functions are compared and
similar functions are removed from the final basis. This protocol leads to the Sapporo-
nZP-2012 family, available for basis set of n = D, T, and Q, that is, double, triple,
and quadruple-zeta sizes [106].

The construction of the Sapporo-nZP basis sets is also accompanied by a test
of the percentage of correlation energy recovery in the atoms for which they were
generated and performance in the computational of spectroscopic constants re, ωe,
and De at the CCSD(T) level of theory. As expected, it is shown that the improvement
is consistently achieved as the basis set becomes larger, but convergencemay be slow,
as hinted by the studies on the extrapolation to the CBS limit in the case of HF energy
that shows a large deviation of the former in comparison to Numerical HF results for
a variety of extrapolation schemes [107].

5.4.4 Correlation Consistent Basis Sets

The correlation consistent basis sets were first introduced by Dunning, [108] and are
arguably the most popular and widely used bases in correlated calculations. Part of
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their success can be attributed to the wide range of flavors to accommodate different
chemical demands and the convergence to the CBS limit that is incorporated by
construction.

The starting point in the generation of the correlation consistent polarization
valence n-tuple zeta, more readily identified by the acronym cc-pVnZ, is a set of
primitive Gaussians with exponents optimized in order to provide the lowest SCF
energy, obtained from the work of van Duijneveldt [73]. This primitive set is sub-
sequently contracted using the SCF coefficients of the occupied MOs based on a
restricted open-shell HF (ROHF) reference. This idea guarantees that the SCF energy
of the contracted set reproduces that of the primitive set with no contraction error.
The exponents of the polarization functions to be added are those which minimize
the CI with single and double excitations (CISD), which constitutes a truncation of
the FCI expansion for all atoms with more than two correlated electrons.

This general framework was initially applied in basis sets devised to provide
a satisfactory description of valence correlation [108–113]. The name “correlation
consistent” has its origins in the fact that functions are added on top of the con-
tracted SCF primitive set following a very specific pattern. The addition of the first
polarization function recovers approximately the same amount of correlation energy
that one extra function in each of the angular momentum shells already populated
by the occupied orbitals. The polarization function with angular momentum number
incremented in 1 compared to the first polarization function recovers roughly the
same amount of correlation energy that an extra function added in all lower angular
momentum shells on top of the previously introduced primitives. Using the oxygen
atom as an example to illustrate the process of construction of these sets, as also
done by Dunning, a (9s4p) primitive set optimized at the SCF level is contracted to
[2s1p] with the ROHF vectors as contraction coefficients, which is, in turn, an MBS
for this atom. It is then found that one extra 1d function provides approximately the
same CISD valence correlation energy recovery that additional 1s and 1p functions,
becoming [3s2p1d]. Alternatively, it is also systematically labeled as cc-pVDZ. The
next set on the series, cc-pVTZ, is comprised of extra an (1d1 f ) set as well as one
more function of s and p type, therefore determining the triple-zeta member of the
family.

Once the main idea behind the construction of the correlation consistent basis sets
was established, it was used as the scaffold for the construction of several other varia-
tions suited for different problems. The cc-pCVnZwas designed to treat core-valence
correlation, [114, 115] which was later found to be biased toward core correlation
and was corrected by a weight factor, introducing the cc-pwCVnZ series [116–118].
Concurrently, situations that demand diffuse functions can be treated by an aug-
mented variant of the cc-pVnZ family, aug-cc-pVnZ [110, 112, 119]. These two
distinct features are also combined in the aug-cc-p(w)CVnZ series, as in the case of
transition metals [118].

The rationale underlying the construction of the correlation consistent basis set
naturally leads them to a smooth extrapolation to the CBS limit by several of the
formulas shown in Table 5.1. This feature is extensively explored by Martin and
co-workers in their composite method known as Weizmann-n (Wn), [120–122] by
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the HEAT protocol targeting highly accurate thermochemistry, [123–125] and the
correlation consistent’s own composite scheme, ccCA [126].

The concept that forms the backbone of the correlation consistent family have also
found application in basis sets that target relativistic effects (cc-pVnZ-DK), [117,
118, 127] usage in conjunction with pseudopotentials (cc-pVnZ-PP), [128–132]
and also employed in explicit correlated calculations (cc-pVnZ-F12) [115, 133,
134]. Auxiliary basis sets, which are functions to be used in approximations to the
two-electron, four-center integrals, such as resolution-of-the-identity and density-
fitting, have also been reported to be constructed based on the concept of correlation
consistent basis sets [135, 136]. These cases are beyond the scope of the present
document.

5.4.5 n-tuple-Zeta Augmented Polarized Basis Sets

One common factor in the first basis sets proposed by Dunning 5.4.4, [108] Almlöf
and Taylor Sect. 5.4.2.1, [71] and Roos et al. 5.4.2.2 [7] is that the SCF solution
they provide originates from the SCF-optimized primitives of van Duijneveldt [73].
Full optimization of the primitives can be a lengthy and demanding process, and
depending on the level of accuracy being sought, many primitives may be required,
which adds to the difficulty of the problem. This obstacle can be partially overcome
with a suitable expansion, like the even-tempered one discussed in Sect. 5.2.1. As the
primitive grows, the exponents consistently deviate from the individually optimized
Gaussians and also tend to be so closely spaced that numerical instability rises due
to the presence of linear dependencies in the basis, meaning that two basis functions
are considered numerically identical [137].

In order to generate large primitive sets that do not run into the linear depen-
dency problem and do not demand the amount of effort associated with independent
optimization, Petersson et al. developed a scheme whereby the exponents are given
by an expansion in terms of Legendre polynomials, which can also be viewed as a
generalization of the even-tempered expansion by the inclusion of more terms [8].

lnα j =
kmax∑

k=0

Ak Pk

(
2 j − 2

Nprim − 1
− 1

)
(5.8)

where α j is the exponent of the j-th primitive, 0 ≤ j ≤ Nprim − 1, kmax = 1 reduces
to the even-tempered expansion, and kmax = Nprim is a fully optimized primitive
set, Ak is the kth coefficient of the expansion of the Legendre polynomials Pk with
argument 2 j−2

Nprim−1 − 1.
This new alternative in the construction of the primitive set is the foundation

of the n-tuple-Zeta augmented Polarized basis sets, nZaP. A hierarchy of basis sets,
ranging from2ZaP to 6ZaP, have been reported,with valence primitive sets of varying
sizes obtained from the Legendre polynomial expansion and contracted according
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to the segmented scheme. The criterion in determining the size of these primitive
sets is based on thresholds in how much the SCF energy per electron deviates from
that obtained by Numerical Hartree-Fock. This new requirement allows for sounder
basis sets by accommodating the increasing complexity of atoms in a given row of
the periodic table, as opposed to the correlation consistent bases that exhibit the same
number of functions across a given row of the periodic chart. The split-valence and
polarization functions are subsequently added in the samemanner as in the correlation
consistent series, except that here these functions are derived from an even-tempered
expansion optimized at the UMP2 level (MP2 based on an unrestricted Hartree-
Fock reference) instead of CISD. Given that polarization sets tend to be restricted to
relatively few functions, they are not usually plagued with linear dependencies and
lesser expansions are satisfactory.

In a set of 72 atoms, ions, diatomics, and hydrides containing first- and second-
row atoms, very accurate and reliable MP2 energies followed from extrapolation to
the CBS limit using the nZaP series when compared to high-level numerical atomic
calculations and explicitly correlated (F12, R12-A, and R12-B) results [138]. Similar
investigation of each component of the correlation energy, that is, the convergence of
the MP2, CCSD and (T) energy terms in an extended set is reported with CCSD(T)
energies displaying 0.1% root-mean-square deviation with respect to F12b ener-
gies [139]. Revamping the nZaP basis sets to accommodate core-valence correlation
led to the same level of accuracy (0.1%) for ionization potentials, electron affinities,
and total atomization energies in an even larger test set [140].

5.4.6 Oliveira and Jorge’s nZP

Another take on correlated basis sets that take advantage of the segmented contrac-
tion scheme was formulated by Oliveira, Jorge, and co-workers. In this approach, the
primitive set responsible for the Hartree-Fock solution is rather small, and for this
reason can be fully optimized in a computationally affordable manner. To this end, it
is employed the improved generator coordinate Hartree-Fock technique, which very
successfully approaches NHF results [141]. Once the inner-shell functions are deter-
mined and contracted, polarization functions are added by means of optimization
with respect to the MP2 energy based on a ROHF reference (ROMP2).

Having laid out the basic framework for the construction of such basis sets, Jorge
and co-workers have generated a comprehensive collection of basis sets that cover
the vast majority of elements in the periodic table, from the hydrogen atom to the
actinide series. These functions are available in valence, augmented, and relativistic
versions, which are collectively labeled as (A)nZP-(DKH), where “A’ indicates the
presence of diffuse functions and “DKH”means that the basis sets are recommended
for inclusion of relativistic effects through the Douglas-Kroll-Hess Hamiltonian.

Currently, there are nZP bases for the first- and second-row elements that range
from double to hextuple quality [142–145]. Third-row atoms, e.g, K through Kr, are
also covered by Jorge’s nZP basis sets, but instead limited to n= D, [146] T, [147]



148 D. Claudino and R. J. Bartlett

and Q [148]. For elements in the fourth row of the periodic table, the available nZP
sets are of double- [149] and triple-zeta qualities [150]. These are also the same
sizes that are currently accessible for fifth-row atoms and the lanthanide and actinide
series. These atoms fall into the category of “heavy atoms”, which require basis sets
appropriate for relativistic calculations and will not be discussed here.

One central concern that has motivated Jorge and co-workers in the development
of the augmented versions of the valence nZP bases, which led to the AnZP series,
was the proper description of electric properties. From the beginning, the DZP group
was built including exponents optimized for the anions of corresponding atoms in
order to include diffuse functions [142]. Following this idea, augmented variations
of the initial scheme are also available for atoms H and Li through Ar, [151, 152] K
through Kr, [153, 154], and Rb through Xe [154, 155].

The ability of the (A)nZP in the evaluation of atomic andmolecular properties was
extensively probed and benchmarked, including the convergence to the CBS limit
as the basis set is increased in size via increments in the n number. Jorge et al. have
reported such studies for the convergence of dipole moments and polarizabilities
in nucleic acid bases based on the B3LYP functional, for which the double-zeta
set is believed to provided satisfactory results and [156] nuclear magnetic shielding
constants were investigated at the HF and MP2 levels, requiring larger basis sets and
CBS extrapolations to achieve reliable numbers [157]. The basis convergence toward
the limit of infinite basis is also examined in the case of alkali-metal clusters with
HF, B3LYP, and MP2 methods, and it is found that the AnZP basis sets converge
very slowly to experimental values in this context [158].

5.4.7 Polarization Consistent Basis Sets

So far, we have only dealt with basis sets grounded on wave function methods. In
those cases, one starts with a reference function that (often) lacks correlation, most
commonly HF, but from which a multitude of excited determinants can be accessed,
which are in turn responsible for the inclusion of correlation effects, as in MBPT,
CI, and CC theories. Due to the number of determinants from the reference function
that are usually required to reach a reliable and accurate picture of the correlation in
the system, the computational cost associated with these approaches is remarkably
high, in the range of orders of magnitude higher than that to evaluate the reference
function. Additionally, it is well known that the convergence towards the FCI limit
with respect to the basis set is relatively slow within the wave function paradigm,
currently limiting the scope of applicability of these methods to small-to-medium
size cases.

On the other hand, it is well known that the basis set dependence for a one-particle
operator is quite different from that for amany-particle one, converging rather quickly
to the CBS limit. With that in mind, Jensen proposed a family of basis sets similar in
spirit to the correlation consistent series, and whose distinguishing feature is being
tailored to exploit the faster convergence of the energy of a single determinant with
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respect to the basis set size. In practical terms, it means that relatively small sets are
able to successfully saturate the single determinant space, more rapidly approaching
the CBS limit [159, 160]. This is closely related to the fact that these methods often
emphasize the importance of lower angular momentum functions in comparisonwith
those associated with larger � values, which tend to be cumbersome computationally.

Despite the analogous single determinantal nature of HF and DFT, the exchange
in the latter is replaced by an operator responsible for both exchange and correlation,
Vxc. Its effect on the exponential convergence of DFT seems to be inconsequential
for most functionals, as shown for the BLYP functional [161, 162]. Furthermore,
the exponents optimized for DFT with the BLYP functional exhibit little deviation
from those obtained with HF, even with the presence of electron correlation in the
former, [163] and this is also observed for different choices of functional [164]. Situ-
ations where the accurate description of the wave function tail is required follows the
common procedure of augmenting the basis set with diffuse (small exponent) func-
tions, as in the case of anions and electric properties, giving rise to the aug-pc-n variant
in close resemblance to the augmented correlation consistent series [165]. Addition-
ally, the convergence profile of structural parameters, vibrational frequencies, and
infrared intensities, within the pc-n family is investigated and shown to benefit from
being designed for single determinant methods, as it more rapidly approaches the
KS CBS limit than other functions of similar size [166].

Polarization consistent basis sets have been developed for all atoms H through
Kr, in sizes that vary from n = 0, which has no polarization functions, to n = 4,
comparable in size to cc-pV5Z, but demonstrated to be superior to cc-pV6Z in HF
and DFT calculations. Further discussion on the particular considerations of each
atom can be found in the later papers on the series [167–170]. These sets were at first
generally contracted, and upon evaluation of an alternative segmented scheme, [171]
the segmented variants pcS-n [172] and pcSseg-n [173] have also been proposed,
with the latter aiming at nuclear magnetic shielding constants.

With the proven feature of faster convergence to the CBS limit, in conjunction
with the ever-growing community of DFT users, this feature of the polarization
consistent basis sets has been explored and benchmarked in a variety of different
contexts, such as harmonic frequencies and anharmonic corrections [174–179], zero-
point corrections to nuclear magnetic shielding constants and anisotropies, [180]
spin-spin coupling constants, [181–184], molecular binding energies, [185, 186]
and assessment of functionals [187, 188].

5.5 Conclusion

With the virtually infinite number of combinations of chemical species, correlated
methods, and molecular properties, there is an overwhelmingly large variety of basis
sets currently at one’s disposal. Over the years, some of these bases have received
more attention than others and the list above is by no means comprehensive of all
basis sets currently available. The basis sets that we cover in this manuscript are
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Fig. 5.4 Graphical summary of the discussed basis sets for correlated methods

those which we consider to be extensively used in correlated calculations and have
also brought some novel aspects to basis set development.

Readers interested in other considerations that are important to the develop-
ments of basis sets or more detailed discussion on specifics of a particular type
are referred to some reviews on these topics [72, 137, 189, 190]. Almost all basis
sets presented above can be found on the EMSLBasis Set Exchange website (https://
www.basissetexchange.org/) [191–193], with the exception of ano-pVnZ, nZP, and
NOSeC/Sapporo, for which links are provided in the respective references.

The different varieties and sizes of the basis sets discussed throughout this chapter
are represented in the chart displayed in Fig. 5.4.

Quantum Chemistry has been based on the use of atomic basis sets centered on
each atom in amolecule since its inception. Given that the alternative numerical solu-
tion for electron correlation has never been satisfactorily achieved (see Refs. [194–
198] for some examples), it appears that basis sets of Gaussian type will be a part of
most electronic structure calculations for the indefinite future. Nearly all useful vari-
ants have been considered, but introducing more accurate primitives, and improved
contractions of those primitives, still can offer improvement. We will present such
a new frozen atomic natural orbital (FANO) basis in a future paper [199]. It will be
obtained from CCSD(T) density matrices with consideration of multi-atomic behav-
ior.

https://www.basissetexchange.org/
https://www.basissetexchange.org/
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Nonetheless, the use of atomic basis sets that can be extrapolated to the CBS limit
along with CC theory has solved many problems that could not be solved even ten
years ago. And such applications will continue to multiply in the foreseeable future.
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Chapter 6
Gaussian Basis Sets for Solid State
Calculations

Klaus Doll

6.1 Introduction

The central problem in electronic structure theory is the solution of the Schrödinger
equation. It is a many-body problem, and—with few exceptions such as the hydrogen
atom—numerical solutions have to be computed. For this purpose, the wave function
is expanded in terms of a basis set. Inmolecular quantum chemistry, a natural starting
point is to use basis sets made from atom-centred orbitals. The approximate solution
of the Schrödinger equation is then expressed as a linear combination of atomic
orbitals (LCAO).

In calculations for periodic systems such as bulk and surfaces, the solutions must
fulfill the Bloch condition. This hasmade planewaves very popular as basis functions
for these systems. Nevertheless, also local basis functions are frequently used. In this
latter case, Bloch functions have to be constructed from the local basis functions.

After a brief overview on the basis set types in Sect. 6.2, this chapter on basis sets
for solid-state calculations will have its main focus on using Gaussian basis sets in
Sect. 6.3. The choice of basis sets will be discussed in Sect. 6.4. While many basis
sets are already available in databases, it is still an important issue on how to generate
new basis sets. This is shown in Sect. 6.5, and should be useful not only if there is no
reasonable basis set available. This section also aims at an understanding of where
basis set deficiencies come from, and how they can be identified e.g. by computing
band structures.
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6.2 Basis Set Types

In molecular quantum chemistry, local basis sets are usually used. Most programs
employ Gaussian basis functions, and the topic of Gaussians for molecular calcula-
tions will be discussed in other chapters of this book. Local basis sets can be applied
to periodic systems as well—one has to construct Bloch functions, as will be shown
in Sect. 6.3. Gaussian basis functions have been employed for periodic systems such
as surfaces and bulk systems by various groups: e.g. by Callaway and co-workers [8,
9], Feibelman [19], Boettger and Trickey [5], Harmon and co-workers [26], and is
suggested in the recent periodic implementation in the Gaussian code, see e.g. [32].
Also, systems with one-dimensional periodicity have been studied with codes based
on Gaussian basis sets [2, 43, 45]. The CRYSTAL code [18, 39] has been developed
since the mid-1970s, and is based on Gaussian-type orbitals. This chapter will be
mainly based on the CRYSTAL code, though the concepts are general.

Besides Gaussian-type functions, also Slater functions may be used, as is done
for example in the ADF code and its periodic extension BAND [1].

A different approach is to use plane waves, and variants such as augmented plane
waves. Planewaves are a natural approach to periodic boundary conditions, in order to
fulfill theBloch condition. TheBloch condition states that in a periodic potential,with
V (r) = V (r + R), the Schrödinger equation can be solved by a basis of solutions
which must be of the form

Ψ (r) = exp(ikr) u(r) (6.1)

with u(r) = u(r + R) having the same periodicity as the potential (see, e.g. [3]).
R is a lattice vector of the direct lattice. In the numerical solution, a supercell is
usually generated, with lattice vectors which are multiples of the original primitive
lattice vectors. The corresponding reciprocal lattice with vectors k is referred to as
Pack-Monkhorst [35] net (the Monkhorst-Pack [34] is closely related).

In a plane wave basis set, the crystalline orbitals can be expressed as

Φ(r,k) =
∑

K

ck,K exp(−i(k + K)r) (6.2)

where the sumover reciprocal lattice vectorsK is truncated according to the condition

�
2

2mel
(k + K)2 ≤ Ecutoff (6.3)

with a cutoff energy Ecutoff . In the following, � and electron mass mel are assumed
to be 1, and atomic units are used.

Plane waves are a general basis set independent of the atom to be described.
However, to describe the core region, an enormous number of plane waves would
be required. Thus, plane waves are frequently used in combination with a pseudopo-
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tential. Another approach is to combine atom-centred local basis sets in the region
near the nuclei (with this region being defined by muffin-tin radii), and plane waves
in the interstitial region, as is done in, e.g. the augmented plane wave method.

Widely used codes based on plane waves are CASTEP [36] or VASP [31], or
WIEN [4] in the case of linear augmented plane waves.

Mixed basis sets with combinations of plane waves and local basis sets have also
been suggested, e.g. [33].

Another different approach is the use of numerical basis sets, where the basis
functions are given numerically on a grid, which was pioneered in DMol [11] and
its periodic variant DMol3 [12].

With a local basis set, any periodicity can be implemented: no periodicity (like
in a molecule), periodicity in one dimension (like a polymer with infinite length),
periodicity in two dimensions (surfaces) or periodicity in three dimensions (bulk). In
the case of plane waves, the system is always treated periodic in three dimensions.
For example, surfaces are then treated as periodic in three dimensions with a vacuum
region.

6.3 Gaussian Basis Sets

Gaussian basis sets were introduced in quantum chemistry with the work of Boys
[6]. Gaussian functions are no solutions of the hydrogen atom. Their derivatives
exist everywhere, also at the position of the nucleus, and they do not satisfy the cusp
condition at the nucleus—conditions which the exact solution must fulfill (see, e.g.
Sect. 7.2 in [28]). Nevertheless, they have become very popular because integrals
over Gaussians can be efficiently solved, restricting the numerical evaluation to the
calculation of the error function, see e.g. [40, 44].

The mathematical structure is

φprimitive(r − A) = N (x − Ax )
a(y − Ay)

b(z − Az)
c exp(−ζ(r − A)2) (6.4)

Exponents are traditionally labelled with the letter ζ , and N is a normalisation.
Here, A = (Ax , Ay, Az) is the point where the Gaussian is centred, usually at the
nuclear position A. There are however cases when they are at general places where
no nucleus is situated. For two-dimensional periodic systems, an important case is to
describe the charge density in a region far away from the surface, where additional
Gaussians in the vacuum region are required to converge the work function [15, 20,
23].

Normally, the exponents ζ are given in atomic units, i.e. in 1/a20 with the Bohr
radius a0 ≈ 0.5291772 Å. Large exponents are referred to as ’tight’ (important for
the core region), smaller ones (i.e. roughly the ones below 1), as ’diffuse’. Diffuse
functions are important for the valence region and the chemical bond, and so care
has to be taken that the diffuse functions are appropriate for the system considered.
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The Gaussian in Eq. 6.4 is also called a Gaussian primitive. Usually, the core
region does not change very much when a chemical bond is formed. Therefore, a
linear combination of Gaussians is made, which describes the core region well; this
is called a contraction:

φ(r − A) = N
n∑

i=1

di (x − Ax )
a(y − Ay)

b(z − Az)
c exp(−ζi (r − A)2) (6.5)

The contraction coefficients di can be obtained, for example, by performing a cal-
culation for an atom, and then extracting them from the computed Hartree-Fock (HF)
orbitals: the coefficients which are obtained due to the Hartree-Fock minimisation,
and which describe how the primitive Gaussians have to be combined to obtain the
orbitals, may then be used as contraction coefficients.

By solving the Hartree-Fock or Kohn-Sham equations in the self-consistent field
procedure (SCF), the coefficients aiμ are determined. Themolecular orbitals are then
obtained as linear combinations of the basis functions φμ:

Ψi (r) =
∑

μ

aiμφμ(r) (6.6)

For periodic systems, one constructs basis functionsΦμ(r,k) satisfying the Bloch
condition:

Φμ(r,k) =
∑

g

φμ(r − Aµ − g) exp(ikg) (6.7)

where the summation is over the direct lattice vectors g, and the basis functions now
depend on k. The crystalline orbitals are then obtained as linear combinations:

Ψi (r,k) =
∑

μ

aiμ(k)Φμ(r,k) (6.8)

In Hartree-Fock or density functional calculations, the orbitals are obtained at
the end of the self-consistent field procedure. All basis functions contribute to each
orbital, unless there is a symmetry that makes the contribution of certain basis func-
tions to an orbital vanish.

6.3.1 Angular Part

The angular part is obtained by multiplying a spherical harmonic Ylm(ϑ, ϕ) with a
factor rl . This results in the solid harmonics:

rlYlm(ϑ, ϕ) (6.9)
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These functions are in general complex. However, only in the case of atoms and
linear molecules, Lz is a good quantum number. Therefore, real solid harmonics are
usually used (see, e.g. Sect. 6.4.2 in [28]).

The combinations are as follows, when the Condon-Shortley convention is used
[10] (ignoring normalisation):

l = 0 : Y00 ⇒ ∼ 1 (6.10)

l = 1 : Y11 − Y1−1 ⇒ ∼ x (6.11)

Y11 + Y1−1 ⇒ ∼ y (6.12)

Y10 ⇒ ∼ z (6.13)

l = 2 : Y20 ⇒ 3z2 − r2 = 2z2 − x2 − y2 (6.14)

Y21 − Y2−1 ⇒ xz (6.15)

Y21 + Y2−1 ⇒ yz (6.16)

Y22 + Y2−2 ⇒ x2 − y2 (6.17)

Y22 − Y2−2 ⇒ xy (6.18)

The order depends on how it is implemented in the code. The order is important
to properly interpret data from population analyses and projected densities of states
(i.e. a plot of the density of states, with the density of states projected on one or a set
of basis functions).

In the context of solids, an important application of population analysis is to under-
stand the d-occupancy in the case of metal ions in a crystal field. Typical cases are
ions with partially filled d-shells in a tetrahedral or octahedral surrounding (Fig. 6.1).
Usually, in textbooks, the atoms are arranged along the axes in this case. In a real
solid, this may not be the case, and then the energetically favoured orbitals are not the
same as in a textbook. With CRYSTAL, the keyword ROTREFmay be used to rotate
the eigenvectors and density matrix, and thus to rotate the Cartesian reference frame
[18], and subsequently compute the population in this rotated coordinate system.

6.3.2 Exponents: Even Tempered Basis Sets

The possibly easiest choice is to use even tempered exponents (Sect. 8.2.3 in [28],
[41] and references therein). A number k of exponents is obtained according to the
formula

αβk (6.19)

with the parameters α and β to be optimised. This has been done in [41] for the
atoms in the first three periods. An excerpt is shown in Fig. 6.2. We can see that the
energy converges well, and for hydrogen the limit of −0.5 Eh is practically reached.
From the various values for β, we can derive that they are roughly in the range from
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Fig. 6.1 A nickel ion in an
octahedral surrounding, as in
the case of NiO

2–4. We could thus generate an even tempered basis set by using a factor of 3, and a
suitable value for α and k. This will actually be done in Sect. 6.5.5, to obtain a basis
set for carbon and then compute the band structure of diamond.

6.4 Choice of Basis Sets

6.4.1 Exponents: Choice From Databases

For molecular calculations, large databases exist, especially:

The basis set database of the Environmental Molecular Sciences Laboratory
(EMSL) employing the basis set exchange software [21, 42] at https://www.basisset
exchange.org and the basis set library of the Molpro code at http://www.molpro.net/
info/basis.php?portal=user&choice=Basis+library. For periodic systems, the basis
set library of the CRYSTAL code is at http://www.crystal.unito.it/basis-sets.php

The web addresses were checked on 17 June 2020. Obviously, they may change,
and it may be necessary to use a search engine to find them. For periodic systems,
the corresponding section in the manual should be consulted (chapter ‘Basis set’ in
the CRYSTAL manual [18]).

https://www.basissetexchange.org
https://www.basissetexchange.org
http://www.molpro.net/info/basis.php?portal=user&choice=Basis+library
http://www.molpro.net/info/basis.php?portal=user&choice=Basis+library
http://www.crystal.unito.it/basis-sets.php
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Fig. 6.2 Optimised values for α and β for hydrogen and carbon, and the energy obtained, in atomic
units. Reprinted with permission from: Schmidt, M. W. and Ruedenberg, K., J. Chem. Phys, 71,
3951–3962 (1979) [41], Copyright 1979 AIP Publishing LLC

6.4.1.1 Notes on the Basis Sets From the CRYSTAL Web Page

In the case of the CRYSTAL web page, it is recommended to check the basis sets:
Was the basis set calibrated for the neutral atom, or the negatively/positively

charged atom? What was the coordination of the atom, when the basis set was opti-
mised in a calculation on the bulk?

If the basis set will be used for an atom which will carry a positive charge, are
there diffuse functions which might or should be omitted? This would apply, e.g.
to the case of a basis set that was calibrated for copper metal, and is intended to be
used in a system where Cu is expected to be essentially in a Cu+2 state. One should
however not, in general, remove diffuse exponents. For heavy atoms with large ionic
radius, diffuse functions may still be necessary. For example, for BaS, a diffuse d =
0.15 for Ba was found to be important to obtain the proper band structure [49].

If the basis set will be used for an atom that will carry a negative charge, are there
enough diffuse exponents? Usually, sp shells in the range of 0.1 ... 0.15 should be
present. Otherwise, it should be tested whether diffuse functions can be added and
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the calculation remains numerically stable. The population of an extra diffuse shell
can be inspected, and the energy change when adding such a diffuse function.

If the basis set will be used for a metal, also the diffuse exponents should be
inspected. Usually, sp shells in the range of 0.1 ... 0.15 should be present (see also
the overview in [16]).

Note that the density matrix of a metallic system decays only algebraically in
real space. If an exact exchange is used (or a hybrid functional which includes exact
exchange), then this makes the summation of the exchange problematic, when it is
done in real space as in the case of CRYSTAL. Thus, a finite temperature scheme
should be used, whichmakes the decay exponential (see [24] and references therein).

When huge external pressure is applied, the basis functions may have to be chosen
slightly less diffuse, to avoid numerical instabilities.

A large database is also available on Mike Towler’s web site at https://vallico.
net/mike_towler/crystal.html (accessed June 17, 2020), together with some very
instructive and entertaining notes [46]. Also, basis sets for large parts of the periodic
table have been published recently [37], but these basis sets should be carefully
inspected before using them. Especially, in many cases, diffuse functions must be
added.

6.4.2 Exponents: General Recommendations

The basis set choice depends on the type of calculation. For Hartree-Fock and density
functional calculations, relatively small basis sets can be used, compared to basis sets
required for wave function based correlation (e.g. Møller-Plesset perturbation theory
such as MP2, coupled cluster, configuration interaction ...; and the corresponding
multi-reference methods).

The basis set depends on the charge state of the atom in the periodic system. Neg-
ative ions have a larger radius than positive ions and thus require diffuse exponents
(e.g. oxygen in NiO where O is roughly charged −2). Similarly, in the case of a
positively charged ion, it may be possible to remove diffuse exponents (e.g. Ni in
NiO where Ni is roughly charged +2). However, a metallic system will need diffuse
exponents compared to an insulator (e.g. nickel metal compared to NiO—here we
have the case of neutral Ni versus Ni+2).

It is usually good to include polarisation functions: e.g. is s and p orbitals are
occupied, a d-exponent may be added.

Basis sets with sp shells are computationally more efficient than basis sets where
s and p exponents are different.

Effective core potentials are often advantageous from the first row of the tran-
sition metals onwards. They reduce the computational effort, and scalar-relativistic
effectsmaybe included.Nevertheless, if necessary, even for heavy atoms, all-electron
calculations can be performed. This might be of interest, for example, to compute
core-levels.

https://vallico.net/mike_towler/crystal.html
https://vallico.net/mike_towler/crystal.html
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Adding more basis functions to a basis set will lower the energy because of the
variational principle, if the basis set remains otherwise fixed (i.e. if we add a basis
function, without changing anything else in the basis set). Usually, most care has to
be taken about the diffuse exponents, and it is important that they are appropriate.
Very large exponents may improve the core region, and thus also lead to a lower
energy. However, this will have only little impact in the region where the chemical
bond takes place. Therefore, usually the part of the basis set which describes the core
region can be kept as is, when using a molecular basis set for solid-state calculations.
Diffuse exponents often have to be altered: one may use an educated guess such as
even tempered functions, with a minimum value which is safe enough to keep the
calculations numerically stable (e.g. about 0.1 for sp shells), and possibly re-optimise
these.

A reasonable first guess may be a basis set such as 6-31G for light atoms. For
heavy atoms, one may use, e.g. the Stuttgart-Cologne pseudopotentials, and then
re-optimise the diffuse exponents.

6.4.3 Test of a Basis Set

To test a basis set, one may compare with an enhanced basis set. This can be done by
adding, e.g. extra diffuse functions or polarisation functions. Then, one has to com-
pare properties such as the total energy, band structure, equilibrium geometry. Also, a
population analysis gives usually goodhints on the basis set, e.g. howstrongly the out-
ermost diffuse exponents are occupied. Vice versa, if an outermost diffuse exponent
shows only little occupancy, one may consider to omit it. The Mulliken population
is computationally practically without cost, and may thus always be computed.

It would be very expensive to calibrate a basis set in a system with a large unit
cell. In this case, one may use a basis set from a system with a similar charge state;
or if necessary calibrate the basis set in a system with a similar charge state. For
example, the nickel atom in NiCl2(C4N2H4)2 [30] has a similar charge state as in
NiO, and thus a Ni basis set from the latter system may be chosen.

6.5 Guidelines to Generate a New Basis Sets

In the following, a description will be given on how to generate a new basis set. In
many cases, existing basis sets can be used andwork reasonably well. However, there
may be cases without good basis sets, e.g. because the existing ones were calibrated
for a different charge state. In the following, the cases of generating an all-electron
basis set and a basis set to be used with an effective core potential are discussed.
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6.5.1 Generating An All-Electron Basis Set

As an example, the question of a basis set for diamond is considered. From a library
with basis sets calibrated for molecules (EMSL, see Sect. 6.4.1), we may choose a
6–31G* basis set (6–31G basis from [27], outermost sp-shell rescaled with 1.042

from [13], polarisation function from [25]). The basis set as obtained from EMSL is
displayed in Table 6.1.

When transferring to a basis set for the bulk, the diffuse exponents have to be
inspected. The outermost sp exponent is 0.1687144, and one may try to use it
unchanged, which means, the whole basis set is left as is. Vice versa, if the most
diffuse exponent had been below 0.1, one might have to consider omitting it or using
a less diffuse exponent. When computing the band structure with this basis set on
the level of the local density approximation (LDA), Fig. 6.3 is obtained. This agrees
well with the literature, e.g. [7]. This basis set may thus be used for neutral carbon,
or slightly (positively or negatively) charged carbon.

Deviations in the band structure will always appear with a local basis set for very
high bands (i.e. high above the Fermi energy for metals, or high above the top of
valence bands in the case of insulators). With a local basis set, the number of bands
is equal to the number of basis functions. The basis functions are calibrated in such

Fig. 6.3 Diamond band structure, LDA, with the basis set as in Table 6.1



6 Gaussian Basis Sets for Solid State Calculations 167

Table 6.1 6–31G* basis set for carbon

Shell type Exponent Contraction coefficient Contraction coefficient

s 3047.5249000 0.0018347

457.3695100 0.0140373

103.9486900 0.0688426

29.2101550 0.2321844

9.2866630 0.4679413

3.1639270 0.3623120

sp 7.8682724 −0.1193324 0.0689991

1.8812885 −0.1608542 0.3164240

0.5442493 1.1434564 0.7443083

sp 0.1687144 1.0000000 1.0000000

d 0.8000000 1.0000000

a way that the occupied states are well described, and thus high bands are less well
described, or completely missing.

This is the same as in the molecular case, where the number of orbitals obtained
in the calculation is identical to the number of basis functions. As a trivial example,
one might choose a large basis set consisting of only s-exponents for hydrogen. Such
a basis set might give a nearly perfect description of the ground state and its energy,
but would not be able to describe a hydrogen atom with an electron in the 2p orbital.
In general, a low total energy is no guarantee for a good basis set.

A good test is to compute the band structure, and to compare with band structures
from plane-wave calculations. Especially interesting is the region around the Gamma
point (i.e. k = 0). The region with a small value of k corresponds to large spatial
dimensions. If the band structure does not agree with the literature or e.g. if there
are unusual oscillations, then this may hint at problems with the basis set: typically,
when there are not enough diffuse exponents, this results in problems in the long
range (long range in direct space), and thus deficiencies for k = 0 (short range in
reciprocal space).

Usually, with a good band structure, other properties such as the equilibrium
geometry also agree reasonably well with, e.g. data from plane-wave calculations. In
the case of diamond, the optimised lattice constant is 3.54 Å, which compares well
with the one from [7] (3.52 Å).

As stated, this basis set can be used as is within the LDA. When using the same
basis set within the HF approximation, and standard computational parameters, the
calculation becomes numerically unstable. As will be discussed again in Sect. 6.5.3,
this is in the present case due to a poor accuracy in the treatment of the exchange
series. A remedy is to use stricter tolerances for the integral selection. Tests have
been done for this system and using the same basis set as in the LDA. It is found
that increasing the tolerances ITOL3, ITOL4, ITOL5 (for an explanation of these
parameters, see [18]) for the summation of the exchange series from the default
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values (6, 6, 12) to stricter values (7, 7, 18) is necessary to achieve stability and
convergence. The Coulomb series controlled by the first two parameters could be
evaluated with default tolerances (6, 6), the same ones also used in the LDA. The
instability is thus due to the exchange series. This is also shown in [46] (Sect. 4c).

6.5.2 Generating a Basis Set to be Used With an Effective
Core Potential

The idea of an effective core potential is to reduce the computational effort with
a potential that describes the nucleus and the inner electrons. Instead of, e.g. a Ca
nucleus with a charge of +20, an effective core potential can be used which models
the Ne-like core, and only the remaining charge of +10 is applied on the remaining 10
electrons. Projectors are used to approximate the potential of theNe-like core.Besides
reducing the computational effort, this also gives the possibility to include relativistic
effects. One main variant is shape-consistent potentials, which are calibrated to fit
the shape of the valence orbitals to the shape of the all-electron orbitals. Another
variant is energy-consistent potentials, where the pseudopotentials are fitted to a set
of energies of electronic states of an atom or ion. The following discussion will be
based on the Stuttgart-Cologne energy consistent pseudopotentials by Stoll and co-
workers (e.g. [22] or for a review, see [14]). They are referenced as ECPnXY, where
ECP is for effective core potential, and n is the number of core electrons replaced
with the ECP. X is for S or M, where S means a single-valence-electron ion fit was
used—this should only be used for one- or two-valence electron atoms. M is for
a multi-valence-electron fit, where states of the neutral atom and of ions with low
charge are used for the fit. M should be used if available. Y is for the type of energy
calculation: HF for Hartree-Fock, DF for fully relativistic Dirac-Fock, and WB for
Wood-Boring, a simplification of Dirac-Fock. If available, DF orWB should be used.
For example, ECP10MWB means that a pseudopotential is used which replaces the
1s22s22p6 electrons and the corresponding part of the nuclear charge, i.e. a neon
core is used. The fit is of the type multi-valence-electron, with energies computed
with the Wood-Boring Hamiltonian.

6.5.2.1 An Example: SrO

In the following, SrO is considered as an example of how to optimise a basis set to be
used in combination with an effective core potential. SrO crystallises in a rock salt
structure. For oxygen, the basis set from NiO is used [47], where oxygen is expected
to be similarly charged as in SrO, (−2) due to the six-fold coordination. For Sr,
the pseudopotential labelled with ECP28MWB is used, together with the basis set
labelled with ECP28MWB [29]. The basis set is displayed in Table 6.2.
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Table 6.2 Basis set ECP28MWB for Sr [29]

Shell type Exponent Contraction coefficient

s 5.8791570 0.1967090

3.0924820 −0.6258980

0.6446670 0.7357230

s 0.2988760 1.0

s 0.0572760 1.0

s 0.0238700 1.0

p 2.4324720 −0.3748990

1.6642340 0.3876150

0.5699890 0.6558380

p 0.2207180 1.0

p 0.0676290 1.0

p 0.0267270 1.0

d 3.6180810 −0.0075010

0.9966560 0.1080980

0.3907350 0.2785400

d 0.1227700 0.4773180

0.0366550 0.4481830

A first inspection of the basis set shows that some of the exponents are very
diffuse, e.g. two s exponents are below 0.1. The CRYSTAL code issues a warning
when exponents below 0.06 are used (see Sect. 6.5.3). We may thus remove all
exponents below 0.1 to be sure.

Thiswould leave uswith outermost diffuse exponents of 0.2988760 (s), 0.2207180
(p) and 0.3907350 (d). These are probably not diffuse enough, and we have to
augment with additional exponents. An educated guess may be to use 0.1 for s, p
and d, in accordance with the rule fromSect. 6.3.2, where it was stated that exponents
of an even tempered basis set should be separated by factors in the range from 2–4.

This leaves us with the basis set in Table 6.3. To test this, we may perform a band
structure calculation for SrO and compare with the literature. Of course, it should be
the same level of theory, e.g. in the present case an LDA band structure. The result
of such a band structure calculation is displayed in Fig. 6.4. It agrees well with the
literature [38], and we can thus be confident to have a reasonably chosen basis set.

We can now check the importance of diffuse exponents. For this purpose, we
can omit selected exponents. Figure 6.5 shows the band structure, when the diffuse s
function on Sr is omitted. The green arrows indicate regions where the band structure
particularly deviates, here at the Γ point.

Figure 6.6 shows the band structure, when the diffuse p function on Sr is omitted.
The bands deviate only little from the original ones in Fig. 6.4. Mainly higher bands
are affected. One might thus consider to omit the diffuse p function, if computing
resources are limited, and to speed up calculations.
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Table 6.3 Basis set for Sr of the size [3s3p2d], modified for calculations on bulk SrO, starting
from ECP28MWB in Table 6.2

Shell type Exponent Contraction
coefficient

Changes compared to type the original
basis set

s 5.8791570 0.1967090

3.0924820 −0.6258980

0.6446670 0.7357230

s 0.2988760 1.0

s 0.1 1.0 ← Diffuse s exponents below 0.1
replaced with this

p 2.4324720 −0.3748990

1.6642340 0.3876150

0.5699890 0.6558380

p 0.2207180 1.0

p 0.1 1.0 ← Diffuse p exponents below 0.1
replaced with this

d 3.6180810 −0.0075010

0.9966560 0.1080980

0.3907350 0.2785400

d 0.1 1.0 ← Diffuse d contraction containing an
exponent below 0.1 replaced with this
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Fig. 6.4 SrO band structure, LDA, with the basis set as in Table 6.3
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Fig. 6.5 SrO band structure, LDA, with the basis set as in Table 6.3, but the diffuse s exponent with
value 0.1 is omitted. The arrows indicate where this leads to obvious errors in the band structure

Figure 6.7 shows the band structure, when the diffuse d function on Sr is omitted.
The bands strongly deviate from the original ones in Fig. 6.4, and thus the diffuse d
is mandatory. Especially, the bandgap is wrong: Fig. 6.4 shows an indirect gap with a
maximum of the occupied bands at the Γ point, and the minimum of the unoccupied
bands is at the X point. But when omitting the diffuse d function, the minimum of
the conduction band is at the Γ point, and a direct gap would be obtained.

When looking at the periodic table and the position of Sr, these findings can be
easily explained: in the case of SrO, we have Sr+2, and thus the lowest unoccupied
states are expected to be 5s and 4d. We must thus particularly take into account, that
a diffuse s and diffuse d for Sr will be necessary.

6.5.3 Improve An Existing Basis Set: Re-optimise Exponents

Often, a basis set is already available, but for a system where the respective element
is in a different charge state. An example would be a basis set for Cu in KCuF3 [48],
which describes Cu+2. This basis set is displayed in Table 6.4. If such a basis set is
supposed to be used for neutral Cu metal, then the outermost diffuse exponents with
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Fig. 6.6 SrO band structure, LDA, with the basis set as in Table 6.3, but the diffuse p exponent with
value 0.1 is omitted. The arrows indicate where this leads to obvious errors in the band structure

sp = 0.559 is not sufficiently diffuse. Therefore, the basis set must be improved, and
diffuse shells need to be added.

A simple strategy is to keep the inner exponents fixed, and add new diffuse expo-
nents, and re-optimise these. In the present case, one may keep all exponents larger
than 1 fixed, and remove the more diffuse ones. Then one can start with an educated
guess, again based on the rule from Sect. 6.3.2, and thus separate the exponents by
factors in the range from 2–4. As the outermost diffuse sp exponent is 1.582, one
may, e.g. use 0.6 and 0.2 as an initial guess, and start with 0.43 for the d expo-
nent. The optimisation is then done in an iterative way: one varies the larger of the
two sp-shells, and optimises with respect to the total energy. Then, the diffuse sp-
shell is optimised, while keeping all other exponents fixed. Then, the d-exponent
is optimised. After this first round of optimisations, the next round can be done,
starting again with the larger of the two sp-shells. This iterative procedure usually
converges quickly. This strategy is similar to a geometry optimisation, where a geo-
metrical minimum can be determined in the same way, by iteratively optimising a
set of geometrical parameters. For a small set of parameters, such an approach is still
reasonably efficient.
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Fig. 6.7 SrO band structure, LDA, with the basis set as in Table 6.3, but the diffuse d exponent with
value 0.1 is omitted. The arrows indicate where this leads to obvious errors in the band structure

The finally obtained basis set is displayed in Table 6.5. The equilibrium lattice
constant and band structure as displayed in Fig. 6.8 agree well with the literature,
see the discussion in [17].

As explained in the manual ([18], Sect. 12), a numerical instability and catas-
trophic behaviour can occur for very diffuse exponents. This is argued to be due to
poor accuracy in the treatment of the Coulomb and exchange series. An attempt for a
remedy could be to choose very strict cutoff parameters for the selection of the inte-
grals; together with techniques used in molecular quantum chemistry to avoid linear
dependency of basis functions by using a truncated transformation matrix during the
SCF cycles (Sect. 3.4.5 in [44]). A more pragmatic way is to put lower bounds to the
exponents, and not allow lower values, even though an optimisation would favour
this.

The level of optimisation is recommended to be the same as the level of calculation
for the system to be considered, i.e. the same density functional should be chosen, or
in case of Hartree-Fock, also an optimisation on the Hartree-Fock level is preferable.
The differences may, however, not be huge. The most important point is to have
enough diffuse functions. This can be tested by adding another diffuse function, and
trying to perform an optimisation.
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Table 6.4 Basis set for Cu in KCuF3 [48], where the Cu charge is essentially Cu+2

Shell type Exponent Contraction coefficient Contraction coefficient

s 398000.0 0.000227

56670.0 0.001929

12010.0 0.01114

3139.0 0.05013

947.2 0.17031

327.68 0.3693

128.39 0.4030

53.63 0.1437

sp 1022.0 −0.00487 0.00850

238.9 −0.0674 0.06063

80.00 −0.1242 0.2118

31.86 0.2466 0.3907

13.33 0.672 0.3964

4.442 0.289 0.261

sp 54.7 0.0119 −0.0288

23.26 −0.146 −0.0741

9.92 −0.750 0.182

4.013 1.031 1.280

sp 1.582 1.0 1.0

sp 0.559 1.0 1.0

d 48.54 0.031

13.55 0.162

4.52 0.378

1.47 0.459

d 0.430 1.0

6.5.4 A Basis Set for the Free Atom

In order to compute binding energies, the energies of the free atoms may be required.
However, the basis set for an atomwithin the bulk is usually not sufficient to describe
a free atom. One possible remedy is to build a cluster where the atom is surrounded
by the same neighbours as in the bulk. The neighbouring atoms then have the same
basis functions as in the bulk, but no nuclear charge and no electrons, i.e. similar to
the case of a counterpoise correction calculation. The downside is that this may be
demanding, as many neighbours may be required, if one tries to converge the energy.

An alternative approach is to take a single free atomand addmore diffuse functions
to the bulk basis set, as the problems concerning numerical instability mentioned in
Sect. 6.5.3 are much less severe for a single atom. The inner exponents must be the
same as for the atom in the bulk, in order to be able to compare the energies. For
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Table 6.5 Basis set for Cu, modified for metallic Cu bulk [17], starting from the basis set in Table
6.4

Shell type Exponent Contraction
coefficient

Contraction
coefficient

Changes
compared to the
original basis set
in Table 6.4

s 398000.0 0.000227

56670.0 0.001929

12010.0 0.01114

3139.0 0.05013

947.2 0.17031

327.68 0.3693

128.39 0.4030

53.63 0.1437

sp 1022.0 −0.00487 0.00850

238.9 −0.0674 0.06063

80.00 −0.1242 0.2118

31.86 0.2466 0.3907

13.33 0.672 0.3964

4.442 0.289 0.261

sp 54.7 0.0119 −0.0288

23.26 −0.146 −0.0741

9.92 −0.750 0.182

4.013 1.031 1.280

sp 1.582 1.0 1.0

sp 0.596 1.0 1.0 ← Re-optimised

sp 0.150 1.0 1.0 ← Diffuse sp
shell added

d 48.54 0.031

13.55 0.162

4.52 0.378

1.47 0.459

d 0.392 1.0 ← Re-optimised

the outer exponents, e.g. exponents below 1.0, we may again employ even tempered
exponents. An example of a basis set suitable for a free Cu atom is displayed in
Table 6.6. Here, even tempered basis functions separated by a factor of 2.5 have
been added to describe the free atom. Though the basis set is now much larger, it is
computationally inexpensive, as it is used only for the free atom.
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Fig. 6.8 Cu band structure, PW91 functional, with the basis set as in Table 6.5

6.5.5 A Simple Basis Set From Scratch: Even Tempered
Basis Sets for Solids

If a completely new basis set shall be generated, then a very simple approach is to use
even tempered basis functions. One has to choose parameters α, β and k as described
in Sect. 6.3.2. An example is shown in Table 6.7 where a factor of roughly 3 has
been chosen between the exponents. s-exponents from 100000 to 0.2 are used, and
p-exponents from 1000 to 0.2. The band structure computed with this basis set for
diamond agrees well with that from the 6–31G* basis set in Fig. 6.3, see Fig. 6.9.

6.6 Conclusion

The field of electronic structure calculations has been growing enormously in the
past decades. Numerical solutions of the Schrödinger equation are required, and this
implies that an expansion of the solution in terms of basis functions is required.
There are nowadays many powerful tools available, which complement each other.
Plane waves may be more black-box like, as they are determined by cutoff energy.
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Fig. 6.9 Diamond band structure, LDA, with the even tempered basis set as in Table 6.7

The core region has to be described with, e.g. a pseudopotential. Local basis sets on
the other hand have the advantage that the core region is efficiently described with
few basis functions. The basis functions for the valence region have to be carefully
chosen, which poses some more effort to the user and makes it less black-box like.
However, with a careful choice, the results of both approaches converge well and

Table 6.6 Basis set for a free Cu atom, with inner exponents as in bulk Cu. Even tempered basis
functions separated by a factor of 2.5 have been added to describe the free atom

Shell type Exponent Contraction
coefficient

Contraction
coefficient

Changes compared to the
original basis set in Table 6.5

s 398000.0 0.000227

56670.0 0.001929

12010.0 0.01114

3139.0 0.05013

947.2 0.17031

327.68 0.3693

128.39 0.4030

53.63 0.1437

(continued)
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Table 6.6 (continued)

Shell type Exponent Contraction
coefficient

Contraction
coefficient

Changes compared to the
original basis set in Table 6.5

sp 1022.0 −0.00487 0.00850

238.9 −0.0674 0.06063

80.00 −0.1242 0.2118

31.86 0.2466 0.3907

13.33 0.672 0.3964

4.442 0.289 0.261

sp 54.7 0.0119 −0.0288

23.26 −0.146 −0.0741

9.92 −0.750 0.182

4.013 1.031 1.280

sp 1.582 1.0 1.0

sp 0.596 1.0 1.0

sp 0.250 1.0 1.0 ← New diffuse function,
replaces 0.150

sp 0.100 1.0 1.0 ← New diffuse function

sp 0.040 1.0 1.0 ← New diffuse function

sp 0.016 1.0 1.0 ← New diffuse function

sp 0.0064 1.0 1.0 ← New diffuse function

d 48.54 0.031

13.55 0.162

4.52 0.378

1.47 0.459

d 0.6 1.0 ← New diffuse function,
replaces 0.392

d 0.25 1.0 ← New diffuse function

d 0.10 1.0 ← New diffuse function

d 0.04 1.0 ← New diffuse function

d 0.016 1.0 ← New diffuse function

can be compared for benchmark purposes. As a whole, the choice and calibration of
basis sets for solid-state calculations have become more like routine issues.
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Table 6.7 An even tempered (13s9p) basis set to be used, e.g. for bulk diamond. The basis set is
fully uncontracted

Shell type Exponent Contraction coefficient

s 100000 1.

s 30000 1.

s 10000 1.

s 3000 1.

s 1000 1.

s 300 1.

s 100 1.

s 30 1.

s 10 1.

s 3 1.

s 1 1.

s 0.4 1.

s 0.2 1.

p 1000. 1.

p 300. 1.

p 100. 1.

p 30. 1.

p 10. 1.

p 3. 1.

p 1. 1.

p 0.4 1.

p 0.2 1.
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Chapter 7
Basis Sets for Heavy Atoms

Diego Fernando da Silva Paschoal, Mariana da Silva Gomes,
Larissa Pereira Nogueira Machado, and Hélio Ferreira Dos Santos

7.1 Motivation

The chemistry of heavy atoms plays important roles in various branches of science.
Here, we named as heavy atoms the second- and third-row of the transition elements
(transition d-metal), the lanthanides, and the actinides. The chemistry of transition d-
metal atoms is very rich, with a broad application such as catalysts [1], luminescent
[2], and in medicinal chemistry [3–6]. Lanthanides elements (57La – 71Lu) have
attracted interest because of their unique optical and magnetic properties. The focus
is to find out lanthanide complexes with application in lasers technology, optical
fibers, and in the biomedical field, being used as therapeutic and diagnostic agents
[7–11]. The actinide elements (89Ac – 103Lr) are mostly synthesized and radioactive
andhave a short half-life, consequently, their use is very limited.Among the actinides,
we may highlight uranium and plutonium elements that have been used in nuclear
weapons and nuclear power generation [12, 13]. In the present contribution, we will
focus on the applications of d-transition metals in Medicinal Inorganic Chemistry,
mainly the platinum complexes.

Medicinal Inorganic Chemistry has made great advances since the discovery of
antitumor activity of cis-diamminedichloroplatinum(II), cisplatin, in 1965 [14]. Since
then, there has been a growing interest in the search for transition metal complexes
for the treatment and diagnosis of various diseases [15–17]. When compared with
organic molecules, transition metal complexes offer several therapeutic advantages.
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The coordinated ligands can be modified to tune the steric and electronic proper-
ties, allowing greater selectivity and reactivity of the metal against a specific target.
In addition, metal ions with distinct oxidation states can coordinate with ligands in
different geometries and participate in various biological redox reactions. Transi-
tion metal complexes with labile ligands may also coordinate with potential targets
through the ligand-exchange reaction [2, 18]. Such variety and complexity are an
inexhaustible source of resources with constant challenges to be solved [19].

Metallodrugs can provide unique mechanisms of action based on the choice of
metal, its oxidation state, types and number of coordinated ligands, and coordina-
tion geometry. There are transition metal complexes as agents used in therapy and
diagnostics [16, 17, 19]. In addition to the success of cisplatin, which is used in
approximately 50% of the cancer chemotherapy treatments [6, 19], we can high-
light others successful cases in Medicinal Inorganic Chemistry: the use of gold(I)
complexes as anti-arthritic agents [15], gadolinium(III) complexes as MRI contrast
agent [6, 15, 19, 20] and the Tc-99m radionuclide as an emitter of gamma radiation in
nuclear medicine [6, 15, 19–21]. In Fig. 7.1, we highlight the platinum(II) complexes
in clinical use for cancer therapy.

Lastly, in recent years, it has become common to use quantum chemistry calcula-
tions to assist the experimentalists to interpret data and to provide information that
cannot be obtained experimentally. However, when the interest is on heavy atoms,
a physical problem arises due to the inner shell electrons that must be represented
by relativistic theories. Moreover, based on the standard Hartree–Fock–Roothaan
(HFR) approach, commonly used in quantum chemistry calculations for molecules,
the atomic basis sets must also play a primary role in the description of the electronic
structure of heavy metals compounds. In the current literature, we find effective core
potentials (ECPs), non-relativistic and relativistic basis sets, Slater- and Gaussian-
Type Orbitals (STOs and GTOs, respectively). The basis sets for heavy atoms and
their applications are the central points addressed in this chapter.

Fig. 7.1 Pt(II) complexes approved for clinical use in the cancer treatment. The structures were
obtained with the BIOVIA Draw program [151]
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7.2 The Atomic Basis Sets

In quantum mechanics, we are interested in solving the Schrödinger equation.
However, for practically all chemical systems of interest, an exact solution of the
Schrödinger equation cannot be found, so it is necessary to use approximations to
find their solutions. One of the approximations that are characteristic of basically all
ab initio methods is the HFR method where the introduction of an atomic basis set
is needed [22, 23].

The basis set is a set of mathematical functions from which the wave function
is constructed. The choice of basis set for a quantum chemistry calculation is a key
step, which fundamentally determines the quality of the wave function and properties
derived from it. The molecular orbitals (MOs) are constructed by linear expansion
in a set of basis functions. We expand the MOs φp(r) in a set of simple analytical
one-electron functions [22, 23]:

φp(r) =
∑

μ

Cμpχμ(r) (7.1)

The major problem is to define which atomic functions χμ(r) are suitable for
orbital expansions, once the series in Eq. (7.1) is finite (the Cp are the variational
coefficients). Some requirements are important to be considered when choosing a
basis set:

(a) The basis set should allow a rapid convergence of the system under study;
(b) The resulting integrals should be easy to calculate.

We have two distinct types of basis functions commonly used in quantum chem-
istry calculations: Slater-Type Orbitals (STO) and Gaussian-Type Orbitals (GTO).
The STO function has the form given in Eq. (7.2) in spherical polar coordinates [24]:

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr (7.2)

Where N is a normalization constant and Yl,m are spherical harmonic functions.
The exponential dependence on the distance between the nucleus and electronmirrors
the exact orbitals for the hydrogen atom.

The GTO function has the form given in Eq. (7.3) in spherical polar (7.3a) [25]
and cartesian coordinates (7.3b) [26]:

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−1e−ζr2 (7.3a)

χζ,n,l,m(r, θ, ϕ) = Nxlxylyzlze−ζr2 (7.3b)

The sum of lx, ly, and lz determines the type of orbital (for example, lx+ ly+ lz = 2
is a d-orbital). Despite the apparent similarity, there is a difference between GTO
in the two sets of coordinates. A GTO written in spherical coordinates has five
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components of d-type and seven components of f-type, while a GTO written in
Cartesian coordinates has six and ten components of d- and f-types, respectively
[25].

Analyzing the forms of STO and GTO functions, we observe that the r2 depen-
dence in the exponential makes the GTOs inferior to the STOs in two respects. The
GTO decay very rapidly far from the nucleus, consequently the “tail” of the wave
function is poorly represented and a GTO does not adequately represent the behavior
of atomic orbital near the nucleus. This is because a GTO has a zero slope at the
nucleus, while an STO has a “cusp” (discontinuous derivative) [22, 23, 25, 27].

The GTOs do not reproduce the behavior of the orbitals as well as the STOs, so
a greater number of GTOs are required for achieving the accuracy compared with
STOs. However, the difference in the exponential term gives specific properties for
the GTOs. The product of two or more Gaussians will also be a Gaussian function,
which significantly simplifies the three- and four-center two electrons integrals. This
is the main reason why GTOs are used in electronic structure calculations, since the
greater speed and simplicity to solve the integrals compensates for the high number
of integrals that arise when using Gaussian functions [22, 23, 25, 27].

Another crucial factor to take into account in molecular calculations is the number
of functions to be used. The simplest basis set is called aminimal basis set. Aminimal
basis set has only one set of basis functions for each atomic orbital occupied with
distinct n and l quantum numbers. In the chemical context, an atomic basis set is
not flexible enough to describe the distortions that the orbitals undergo upon the
formation of chemical bonds or as a result of some external perturbation (electric
field, solvent, etc.). For such purposes, larger and more flexible basis sets are needed;
thus, functions of the same type as those already present can be added to improve
the radial flexibility of the wave function. Thereby, a double-zeta (DZ) basis set has
two sets of GTOs for each occupied AO [22, 23, 25, 27].

For molecular calculations, functions of symmetry different from those of the
occupied orbitals can also contribute to the wave function and molecular properties.
These functions of higher angular momentum are called polarization functions and
the introduction of polarization functions improves the flexibility of angular part of
the wave function. The polarization functions describe the polarization of the charge
distribution in a molecular environment [22, 23, 25, 27].

Over the years, many different Gaussian basis sets have been proposed for molec-
ular calculations and the GTOs have been used in most computational packages
such as GAUSSIAN 09 [28], ORCA 4.2.1 [29], and NWCHEM 6.6 [30]. However,
currently, STOs have also been used in softwares such as the Amsterdam Density
Functional (ADF) [31–33]. Although many basis sets are presented as suitable in
the description of the most different systems and properties, it is very difficult to
construct a universal basis set that is good to be applied under any circumstance.
Jorge and Castro [34] generated an accurate Universal Gaussian Basis Set (UGBS)
for all atoms of the Periodic Table. However, the use of UGBS for molecular calcu-
lations is impracticable due to the size of the basis set, which generates a very high
computational cost.
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In themain basis sets database, the Basis Set Exchange [35–37], we found approx-
imately 611 basis sets available. The users must be very careful when choosing a
suitable basis set for their calculations and are strongly recommended to look in the
literature for reviews’ work or to test the chosen basis set on the system of interest or
for smaller models. Moreover, when working with heavy atoms, greater care must
be taken. This is mainly due to the relativistic effects that must be included for heavy
metals [38–40]. Thus, before dealing with the basis sets for heavy elements, a brief
introduction about the relativistic effects will be presented.

7.2.1 Relativistic Effects

The non-relativistic binding energy for a hydrogen-like system (any atomic nucleus
with one electron) is En = − Z2

2n2 . For the 1s-electron in a hydrogen-like system the
energy is given as Eq. (7.4) [41, 42]:

E = −Z2

2
(7.4)

Where Z is the atomic number. According to Bohr´s model, the energy is equal
to minus the kinetic energy, owing to the Virial theorem, Eq. (7.5) [41, 42].

E = −T = −1

2
mv2 (7.5)

In atomic unitsm= 1 and, usingEqs. (7.4) and (7.5), we have the classical velocity
of a 1s-electron, Eq. (7.6) [41, 42].

v1s−electron = Z (7.6)

One of the consequences of the constant speed of light is that themass of a particle,
which moves at a substantial fraction of c, increases over the rest mass m0, Eq. (7.7)
[41, 42].

m = m0

(√
1 − v2

c2

)−1

(7.7)

As a consequence, the effective Bohr radius (a0) decreases, Eq. (7.8) [41, 42].

a0 = �
2

mc2
(7.8)

The speed of light in atomic units is 137.036. So, it is clear that relativistic
effects cannot be neglected in heavy nuclei. For atoms with large Z, the first and
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direct consequence is a relativistic contraction and stabilization of all s and most p
orbitals. This provides a more effective shielding of the nuclear charge for the higher
angular momentum orbitals, which consequently increases in size. So, the second
and indirect effect is the relativistic expansion and destabilization of d- and f-orbitals,
which become larger and more diffuse. The third relativistic effect is the spin–orbit
interaction, important for levels where l > 0 that split into j = l ± 1/2 [41–43].

Then, as the relativistic scalar effects lead to a contraction of orbitals with smaller
angular momentum and expansion of orbitals with larger angular momentum, we
can use scalar relativistic Hamiltonians to deal with these effects properly, such as
the Douglas–Kroll–Hess (DKH) [44–48] and the zeroth-order regular approximation
(ZORA) [49–51] approximations. In the next session, the basis sets effects will be
discussed for heavy atoms.

7.2.2 Basis Sets for Heavy Atoms

7.2.2.1 Effective Core Potentials (ECPs)

In both atomic and molecular systems, the occupied orbitals can be divided into two
classes: the core orbitals and the valence orbitals. The core orbitals are the innermost
orbitals, located close to the atomic nuclei and the valence orbitals are the outermost
orbitals, spatially more extended than the core orbitals. For heavy atoms, there are
many core electrons. These electrons are not generally important for describing
chemical properties; however, to represent them, many basis functions are required.
Besides, for these heavier elements the relativistic effects become important. One
way to solve both problems simultaneously is to fit an effective core potential (ECP) to
describe the core electrons using relativistic calculations, reducing the computational
problem by treating only the valence electrons explicitly [22, 25, 27]. Most ECP
calculations give results comparable to those obtained using an all-electron basis
set with a lower computational cost. Added to this, a fraction of relativistic effects
(scalar effects) can also be recovered, without the need to perform a full relativistic
calculation [24].

We find in the literature a very large number of effective core potentials. Hay and
Wadt [52–54] have developed ECPs for transition metals incorporating the mass–
velocity and one-electron Darwin corrections into their potentials for the heavier
elements (Z > 36). Weigend and Ahlrichs [55] have developed Gaussian basis sets
(def2-basis set) of split valence, triple-zeta valence, and quadruple-zeta valence
quality to be used with ECPs for H to Rn, excluding the lanthanides. Peterson et al.
[56–59] have developed correlation consistent ECPs. Besides, full series of corre-
lation consistent basis sets from double to quintuple-zeta have also been developed
for use with the ECPs. We show in Table 7.1 some ECPs with their corresponding
valence basis sets available inBasis Set Exchange [35–37] for the third-row transition
metal atoms, 72Hf to 80Hg.
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Table 7.1 Some ECPs and valence basis sets available in EMSL Basis Set Exchange for the
third-row transition metal atoms

ECPs Contraction
scheme

CGTO ECPs Contraction
scheme

CGTO

cc-pVDZ-PP [4s4p3d1f] 38 LANL2DZ [3s3p2d] 22

cc-pVTZ-PP [5s5p4d2f1g] 63 LANL2TZ [5s5p3d] 35

cc-pVQZ-PP [6s6p5d3f2g1h] 99 SBKJC-VDZ [4s4p3d] 31

cc-pV5Z-PP [7s7p6d4f3g2h1i] 148 Stuttgart-RSC [6s5p3d] 36

cc-pwCVDZ-PP [5s5p4d2f] 54 CRENBSa [1s1p1d] 9

cc-pwCVTZ-PP [7s7p6d3f2g] 88 CRENBL [5s5p4d] 40

cc-pwCVQZ-PP [8s8p7d4f3g2h] 135 def2-SV [6s3p2d] 25

cc-pwCV5Z-PP [9s9p8d5f4g3h2i] 206 def2-SVP [6s3p2d1f] 32

aug-cc-pVDZ-PP [5s5p4d2f] 54 def2-SVPD [6s4p2d1f] 35

aug-cc-pVTZ-PP [6s6p5d3f2g] 88 def2-TZVP [6s4p3d1f] 40

aug-cc-pVQZ-PP [7s7p6d4f3g2h] 135 def2-TZVPD [6s5p3d1f] 43

aug-cc-pV5Z-PP [8s8p7d5f4g3h2i] 197 def2-TZVPP [6s4p3d2f1g] 56

dhf-SV [6s3p2d] 25 def2-TZVPPD [6s5p3d2f1g] 59

dhf-SVP [6s3p2d1f] 32 def2-QZVP [7s5p4d3f1g] 72

dhf-TZVP [6s5p3d1f] 43 def2-QZVPD [7s5p4d3f1g] 72

dhf-TZVPP [6s5p3d2f1g] 59 def2-QZVPP [7s5p4d4f2g] 88

dhf-QZVP [7s6p4d3f1g] 75 def2-QZVPPD [7s5p4d4f2g] 88

dhf-QZVPP [7s6p4d3f2g] 84

aAll ECPs describe 60 electrons, except the CRENBS ECP which describes 68 electrons. All these
ECPs can be found in https://www.basissetexchange.org/; All contraction schemes and number of
CGTO are relative to the Pt atom

In general, the various papers found in the literature show that ECPs provide
reliable resultsmainly for geometries and relative energies [60]. However, limitations
tend to appear for properties in which the core electrons are important. In these
cases, it is necessary to use an all-electron basis set and to include relativistic effects
explicitly in the Hamiltonian.

7.2.2.2 All-electron basis sets (ABS)

The number of all-electron basis sets (ABS) available for the heavy atoms is sparse
when compared to the quantity available for the light atoms. However, in recent
years, due to the increase of computational resources and availability of scalar rela-
tivistic Hamiltonians implemented in quantum chemistry packages, an increasing
number of ABS appeared in the literature. The use of ABS added to the inclusion
of relativistic effects on the Hamiltonian can provide more accurate results than the
use of ECPs, mainly when we are interested in properties where the core electrons

https://www.basissetexchange.org/
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are important, such as chemical shifts and coupling constants in nuclear magnetic
resonance (NMR) spectroscopy.

We found in the literature non-relativistic and relativistic ABS. Jorge et al. [61–
68] developed non-relativistic and DKH relativistic double-zeta quality all-electron
Gaussian basis set for 1H to 103Lr atoms, named as DZP andDZP-DKH, respectively.
Besides, triple-zeta quality basis set can be found for H to Rn atoms [62, 69–73].
Despite the importance of including relativistic effects when dealing with heavy
atoms, good results can be achieved with non-relativistic ABS for geometries and
relative energies. Successful resultswere obtained by Paschoal et al. [74] based on the
non-relativistic Jorge’s DZP basis set for platinum atom. It was proposed a modified
basis set with the addition of a d-diffuse function, named as mDZP [74]. Besides,
Paschoal et al. [75, 76] developed a set of Gaussian basis sets contracted with DKH2
approximation to predict NMR properties of the H-Ar, K, Ca, Ga-Kr, Rb, Sr, In-Xe,
and Pt atoms. These basis sets were called as NMR-DKH and present a triple-zeta
character with two sets of polarization functions (TZ2P).

Neese et al. [77–80] have developed a segmented all-electron relativistically
contracted (SARC) basis set for third-row transition metal atoms (72Hf – 80Hg),
lanthanides (57La – 71Lu), actinides (89Ac – 103Lr), and 6p elements (81Tl − 86Rn).
The SARC basis sets can be found contracted for the second-order Douglas–Kroll–
Hess (SARC-DKH) and the zeroth-order regular approximation (SARC-ZORA)
scalar relativistic Hamiltonians. The SARC basis set is well-balanced and has an
affordable size for routine density functional theory (DFT) calculations. It is impor-
tant to mention that the contraction coefficients of the ZORA and DKH basis sets are
determined separately. This happens because in these two approaches the behavior
close to the nucleus is different. The authors recommended the use of SARC basis
sets for heavier elements than the Xe and for the light atoms they recommended the
use of re-contracted def-TZVP basis set for DKH2 or ZORA calculations. All these
basis sets are part of the freely available ORCA program [29].

Relativistic segmented contracted basis set forDKHcalculationswere reported by
Koga et al. [81–83] for 1H to 88Rn atoms. Roos et al. [84–86] have been developed
new relativistic atomic natural orbital (ANO) basis sets for the first, second, and
third-row transition metal atoms, lanthanides, and actinides. Watanabe et al. [87]
presented relativistic Gaussian basis sets for molecular calculations for 1H up to
80Hg atoms. Highly accurate relativistic Gaussian basis sets for DKH calculations
were developed for 1H up to 103Lr atoms by Hirao et al. [88, 89].

Relativistic double-, triple- and quadruple-zeta basis sets have also been devel-
oped by Dyall et al. [90–97] and are available from the DIRAC program [98]. It is
worthmentioning the basis sets ofDyall, are constructed for four-component calcula-
tions. Recently, Pollack and Weigend [99] proposed segmented contracted Gaussian
basis sets for elements up to Rn, for calculation within the exact two-component
decoupling, X2C.

It is important to mention the basis sets used in the Amsterdam Density Func-
tional (ADF) software [31–33]. These are commonly known as Slater-Type Orbitals
(STOs), and are different from most other quantum chemistry programs, which
usually employ Gaussian-Type Orbitals (GTOs). We found distinct STOs for all
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Table 7.2 Some non-relativistic and relativistic all-electron Gaussian basis sets found in the
literature for the third-row transition metal atoms

Non-relativistic

Basis set Contraction
scheme

CGTO Basis set Contraction
scheme

CGTO

jorge-DZP [8s7p4d2f] 63 jorge-ADZP [9s8p5d3f] 79

jorge-TZP [9s5p5d3f1g] 79 jorge-ATZP [9s6p6d4f2g] 103

mDZPc [8s7p5d2f] 68 UGBS [32s23p18d13f] 282

Relativistic

jorge-DZP-DKH [8s7p4d2f] 63 Sapporo-DKH3-DZP-2012a [8s6p5d2f] 65

jorge-TZP-DKH [9s5p5d3f1g] 79 Sapporo-DKH3-TZP-2012a [10s8p6d3f1g] 94

SARC-DKH [17s11p8d2f] 104 Sapporo-DKH3-QZP-2012a [11s9p7d4f2g1h] 130

SARC-ZORA [17s11p8d3f] 111 cc-pVTZ-DKb [9s8p6d3f1g] 93

NMR-DKHd [18s12p9d3f2g] 136 cc-pwCVTZ-DKb [11s10p8d4f2g] 127

All these ABS can be found in https://www.basissetexchange.org/, except aSapporo basis sets that can
be found in https://sapporo.center.ims.ac.jp:8080/sapporo/Welcome.do and bCorrelation consistent basis
sets that can be found in https://www.grant-hill.group.shef.ac.uk/ccrepo/. cBasis set available only for Pt
atom. dBasis sets available for H-Ar, K, Ca, Ga-Kr, Rb, Sr, In-Xe, and Pt atoms. All contraction schemes
and number of CGTO are relative to the Pt atom

elements (Z = 1 – 118) ranging from a valence double-zeta to a valence quadruple-
zeta quality. The exponents of these STOs were optimized for the use in the ZORA
approach [100].

Overall, there are available in the literature both non-relativistic and relativistic
atomic basis sets with the latter recommended for heavy elements. Thus, since the
relativistic effects are concentrated largely in the core electrons, good results can
also be obtained with the use of non-relativistic basis sets when valence molecular
properties are concerning. In Table 7.2, we listed someABS available in the literature
for the third-row transition metal atoms. In short, there is a wide variety of ECPs
and ABS for the heavy atoms. In the next section, we will present some case studies
using these basis sets in the calculation of atomic and molecular properties involving
the platinum atom (Z = 78).

7.3 Applications of Basis Sets for Heavy Atoms

Barnett Rosenberg et al. [14] discovered the antitumor properties of cisplatin in 1965.
Since then, cisplatin has been approved for the treatment of some tumors and it has
become one of the most widely used antitumor drugs in the world. However, the
occurrence of side effects motivated researchers to search for new Pt(II) complexes
that exhibited the same activity, but with less side effects [101–103]. Thus, with the
success of cisplatin, new complexes have been synthesized and two important steps
of these studies are the characterization and the reactivity of the Pt(II) complexes.

https://www.basissetexchange.org/
https://sapporo.center.ims.ac.jp:8080/sapporo/Welcome.do
https://www.grant-hill.group.shef.ac.uk/ccrepo/
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So, in this section, we present the importance of the platinum basis set in the study
of the structure, reactivity, and prediction of NMR parameters of Pt(II) complexes
with potential antitumor activity.

7.3.1 Structure and Reactivity of Cisplatin

Cisplatin, cis-[Pt(NH3)2Cl2] is a relatively non-reactive molecule, that is, it does
not react directly with any molecules that are present in the biological environment.
But, in aqueous solution, the chloride ligands are replaced by water, forming the
aqua complexes, cis-[Pt(NH3)2(H2O)Cl]+ and cis-[Pt(NH3)2(H2O)2]2+. The Pt-OH2

bond is more reactive than the Pt-Cl bond. Therefore, the aqua complexes may react
rapidly with N-donor ligands, such as the nitrogenous bases of DNA. Therefore,
the aquation reaction of cisplatin is considered a necessary activation step for its
biological response [101–104]. Besides, we found in the literature some studies that
correlate the rate constant of the aquation reaction with the biological response of
cisplatin derivatives [105]. Within this context, electronic structures and geometries,
as well as the activation barriers for the aquation reaction, are important molecular
descriptors to be considered theoretically in the search for new platinum complexes.

The theoretical study of platinum complexes is not so simple due to the presence of
the platinumatom (Z= 78),which is a heavy element that in computational chemistry
presents difficulties due to the incompleteness of the basis set and the need to include
relativistic effects. Many theoretical studies are available in the literature addressing
the structure and reactivity of cisplatin [74, 106–110]. Among some other studies
[106, 107], Paschoal et al. [74] present a comprehensive analysis of the platinumbasis
sets in the prediction of structure and reactivity of cisplatin. An extensive analysis
of the role of the basis set and the level of theory in the prediction of structure
and reactivity of cisplatin was accomplished. All calculations were performed using
the GAUSSIAN 09 program [28] and the authors concluded that the effective core
potentials (ECPs) for Pt atom are good alternatives to describe the cisplatin structure.
On the other hand, it was shown that to represent satisfactorily the aquation reaction
of cisplatin, the non-relativistic mDZP basis set for Pt atom lead to the best result
in comparison with the experimental data, even though some ECP also produced
good results. A more complete study involving the use of an all-electron Pt basis set
and the influence of the inclusion of relativistic effects on these properties has not
yet been reported. Herein we expand our previous work [74] and present a detailed
study of the role of Pt basis set and the relativistic effects on the prediction of the
geometry and reactivity of cisplatin. The next sections include a brief description of
the computational protocols and a discussion of the results.
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7.3.1.1 Theoretical Methodology

Figure 7.2 represents the reaction process analyzed in the present work. The geom-
etry of cisplatin and all reactive species were fully optimized in the gas phase and
characterized as a stationary point on the potential energy surface (PES) through
harmonic frequency calculation. For the aquation reaction, an initial guess for tran-
sition state (TS) structure was proposed with the entering (H2O) and leaving (Cl−)
groups located on the equatorial plane of a distorted trigonal bipyramidal geom-
etry. The TS structure was further optimized and characterized as saddle point (1st
order) on the PES by having only one imaginary vibrational frequency. From the TS
structure, the intermediates were found using the intrinsic reaction coordinate (IRC)
method. The final points were then optimized and characterized as true minima on
the PES at the same level of theory used for TS structure. The solvent effect was
taken into account using the Conductor-like Polarizable ContinuumModel (C-PCM)
approximation [111].

The activation Gibbs free energy (�G‡) for the aquation reaction was calculated
as in Eq. (7.9) [74–100]:

�G‡ = GTS − GI1 (7.9)

Where the TS is the transition state structure and I1 is the intermediate of the
reaction, Fig. 7.3. The second-order rate constant was obtained from the Eyring-
Polanyi, Eq. (7.10) [74], under normal conditions, namely T = 298, 15 K, p = 1 atm
and c0 = 1 mol L−1.

k2 = kBT

hc0
exp

(
−�G‡

RT

)
(7.10)

Where kB, h, and R are the Boltzmann, Planck, and ideal gas constants,
respectively.

The calculations were performed at the Density Functional Theory (DFT) level
with the B3LYP [112] functional. Non-relativistic and Douglas–Kroll–Hess with
second-order scalar relativistic correction (DKH2) [44–47, 113–115] Hamiltonians

Fig. 7.2 First aquation process of cisplatin. The structures were obtained with the Marvin program
[152]
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Fig. 7.3 Rate-limiting step, I1 → T S, for aquation reaction of cisplatin. The intermediate I1 is
a stable molecular complex. The structures were obtained with the Avogadro 1.2.0 program [148,
149]

were used. In order to assess the role of the Pt basis set, effective core potential
(ECP), non-relativistic all-electron basis set, and relativistic all-electron basis set
listed in Table 7.3 were used. Non-relativistic Hamiltonian was used with ECPs and
non-relativistic ABS, and DKH2 Hamiltonian was used with relativistic ABS. For
ligands’ atoms, the jorge-DZP and the jorge-DZP-DKH basis set were considered
for non-relativistic and DKH2 relativistic calculations, respectively. All calculations
were performed in ORCA 4.2.1 software [29].

7.3.1.2 Results and Discussion

Cisplatin structure

The structure of the cisplatin is discussed first. The structural parameters calculated
for cisplatin are presented in Table 7.4 and compared with the experimental data
available in the solid state [116]. It is important to mention that the comparison
must be made with caution since the matrix effect in the solid state can modify the
structure. The quality of the distinct platinum basis set was assessed through the
relative deviation (δi,j), Eq. (7.11), and mean relative deviation (MRD), Eq. (7.12),
of structural parameters including Pt−N,Pt−Cl bonds and N−Pt−N,Cl−Pt−
Cl,N − Pt − Cl angles.
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Table 7.3 Pt basis set used in
the prediction of structure and
reactivity of cisplatin

Pt basis set Contraction scheme CGTO

ECP

def2-SVP [6s3p2d1f] 32

def2-TZVP [6s4p3d1f] 40

def2-TZVPP [6s4p3d2f1g] 56

Stuttgart-RSC [6s5p3d] 36

LANL2DZ [3s3p2d] 22

LANL2TZ [5s5p3d] 35

LANL2TZ(f) [5s5p3d1f] 42

CRENBS [1s1p1d] 9

CRENBL [5s5p4d] 40

Non-relativistic all-electron

jorge-DZP [8s7p4d2f] 63

mDZP [8s7p5d2f] 68

jorge-TZP [9s5p5d3f1g] 79

Relativistic all-electron

jorge-DZP-DKH [8s7p4d2f] 63

jorge-TZP-DKH [9s5p5d3f1g] 79

Sapporo-DKH3-DZP [8s6p5d2f] 65

Sapporo-DKH3-TZP [10s8p6d3f1g] 94

Sapporo-DKH3-QZP [11s9p7d4f2g1h] 130

SARC-DKH [17s11p8d2f] 104

δi,j = sexptj − scalci,j

sexpti

× 100 (7.11)

MRD = 1

nk

nk∑

k=1

∣∣δi,j
∣∣ (7.12)

Where i corresponds to the structural parameter of interest and j corresponds to
the platinum basis set used. For example, sPt−N,jorge−DZP corresponds to the Pt − N
bond using the non-relativistic all-electron jorge-DZP basis set.

The calculated structural parameters do not changemuchwith the Pt basis set. The
calculated valueswith theECPs andnon-relativisticABSpresented a good agreement
with the calculated values with the relativistic ABS. TheMRDwere less than 8% for
the calculations in gas phase and less than 4% for the calculation with the C-PCM
model. The most pronounced effect in predicting the structure was the solvent effect.
As expected, the bond angles are more sensitive, thus, the largest errors were found
for the calculated angles in gas phase. From the calculated deviations in Fig. 7.4,
we note that the N − Pt − N and Cl − Pt − Cl angles are overestimated, whereas
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Fig. 7.4 Calculated δi, j (%) for N-Pt–N (a), Cl–Pt–Cl (b) and N-Pt-Cl (c) bond angles with distinct
Pt basis sets
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N−Pt−Cl angle is underestimated compared to the experimental. This result is due
to the N−H · · ·−Cl intramolecular hydrogen bond, which is not present in the solid
state. The calculated values in the gas phase for this intramolecular hydrogen bond
ranged from 2.40 to 2.47 Å. When the solvent effect is included, the N−H · · · −Cl
intramolecular hydrogen bond increased, with values ranged from 2.63 to 2.82 Å. As
a consequence, the calculated errors in the angles decreased, improving the agreement
with the experimental data (Fig. 7.4).

For the bond lengths, we note that the relativistic and solvent effects shorten the
Pt − N bond distance, Fig. 7.5, and the solvent effect lengthen the Pt − Cl bond
distance. Considering only the calculated values with the C-PCMmodel, we observe
that the calculated Pt−N and Pt−Cl distances were systematically overestimated at
all levels, except with the jorge-DZP-DKHPt basis set that underestimated the values
with relative deviations of −2.5 and −1.2% for Pt − N and Pt − Cl, respectively.
The largest deviations were found with the non-relativistic jorge-TZP ABS with a
relative deviation of 7.3% (Pt − N) and 3.5% (Pt − Cl).

Fig. 7.5 Calculated δi, j (%) for Pt–N (a) and Pt-Cl (b) bond lengths with distinct Pt basis sets
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Fig. 7.6 Mean relative deviation (MRD) considering all five structural parameters calculated with
distinct Pt basis sets

When we look at all the calculated values for the structural parameters of the
cisplatin (Fig. 7.6), we conclude that the quality of the ECPs is comparable to the
relativistic ABS, indicating that the scalar relativistic corrections included in the
ECPs are sufficient to represent the geometry. Moreover, we also note similar results
for double- and triple-zeta basis set for Pt atom.

In short, despite the calculated values with the relativistic ABS are found in better
agreement with the experimental data, MRD of 2.2, 2.3, and 2.3% with the SARC-
DKH,Sapporo-DKH3-TZP-2012, andSapporo-DKH3-QZP-2012basis sets, respec-
tively, the ECPs and the non-relativistic ABS are also considered alternative basis
sets to predict structural parameters, with the advantage of the lower computational
cost of ECPs.

Aquation reaction

The rate-limiting step of the aquation reaction of cisplatin is shown in Fig. 7.2, repre-
sented by the I1 → TS process in Fig. 7.3. Herein the activation Gibbs free energy
(�G‡, Eq. 7.9) and the second-order rate constant (k2, Eq. 7.10) for the aquation
process is discussed. The experimental values for �G‡ range from 22.55 kcal mol−1

[117] to 23.32 kcal mol−1 [118]. The average value of 22.94 ± 0.39 kcal mol−1 will
be used in the present work as a reference for comparison with the calculated values.
Table 7.5 presents the calculated values using a distinct Pt basis set.

Figure 7.7 shows the calculated values for �G‡ with distinct Pt basis set in gas
phase and including the solvent effect (C-PCMmodel). We can observe that the rela-
tivistic effect increases the energy barrier, when compared with the values obtained
with non-relativistic ABS, and the solvent effect decreases. For the calculations in
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Table 7.5 Activation Gibbs free energy (�G‡, kcal mol−1) and rate constant (k2, M−1 s−1) for
aquation process of cisplatin at B3LYP/Pt basis set/jorge-DZP level for non-relativistic calculations
and B3LYP-DKH2/Pt basis set/jorge-DZP-DKH level for relativistic calculations

Pt basis set �G‡
gas �G‡

CPCM k2−gas k2−CPCM

ECP basis set

def2-SVP 26.20 21.89 3.88 × 10–7 5.60 × 10–4

def2-TZVP 26.69 21.97 1.68 × 10–7 4.88 × 10–4

def2-TZVPP 26.51 22.22 2.31 × 10–7 3.23 × 10–4

Stuttgart-RSC 24.94 21.21 3.25 × 10–6 1.76 × 10–3

LANL2DZ 24.57 20.96 6.03 × 10–6 2.71 × 10–3

LANL2TZ 25.76 22.24 8.21 × 10–7 3.09 × 10–4

LANL2TZ(f) 26.13 22.34 4.34 × 10–7 2.62 × 10–4

CRENBS 18.49 15.66 1.75 × 10–1 2.06 × 101

CRENBL 27.02 23.15 9.72 × 10–8 6.70 × 10–5

Non-relativistic ABS

jorge-DZP 18.01 14.25 3.88 × 10–1 2.22 × 102

mDZP 21.78 17.75 6.72 × 10–4 6.10 × 10–1

jorge-TZP 12.72 9.88 2.95 × 103 3.55 × 105

Relativistic ABS

jorge-DZP-DKH 26.16 21.90 4.17 × 10–7 5.51 × 10–4

jorge-TZP-DKH 20.70 16.63 4.19 × 10–3 4.00 × 100

Sapporo-DKH3-DZP-2012 26.53 23.49 2.22 × 10–7 3.75 × 10–5

Sapporo-DKH3-TZP-2012 26.14 22.10 4.30 × 10–7 3.90 × 10–4

Sapporo-DKH3-QZP-2012 25.91 22.54 6.32 × 10–7 1.87 × 10–4

SARC-DKH 26.02 22.06 5.23 × 10–7 4.19 × 10–4

Experimentala 22.55 – 23.32 1.02 × 10–4 – 5.20 × 10–5

aExperimental values obtained from Bancroft et al. [117] (�G‡ = 22.55 kcal mol−1 and k2 =
1.02 × 10−4 M−1 s−1) and Hindmarsh et al. [118] (�G‡ = 23.32 kcal mol−1 and k2 = 5.20 ×
10−5 M−1 s−1)

gas phase using the ECPs, the barriers are overestimated by 7.1% (Stuttgart-RSC)
and 17.8% (CRENBL), except the value with CRENBS, which is underestimated by
19.4%. However, when the solvent effect is included, the calculated values with the
ECPs presented an excellent agreement with the experimental values, with deviations
between 0.9% (CRENBL) and 8.7% (LANL2DZ), except again the CRENBS value,
underestimated by 31.7%. This behavior presented by ECP CRENBS, different from
that presented by the other ECPs, can be explained by its worse description of the Pt
valence, since it is the only ECP of 68 electrons, presenting a very short valence shell.
The importance of the valence basis set can also be noted by the decrease in the rela-
tive error from 4.6% (def2-SVP) to 4.2% (def2-TZVP) and from 8.7% (LANL2DZ)
to 3.0% (LANL2TZ), which shows the importance of using a triple-zeta basis set
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Fig. 7.7 Activation Gibbs free energy (�G‡) for aquation reaction of cisplatin calculated using
distinct Pt basis sets. The experimental limits are indicated as solid lines

for the valence of heavy atoms. Besides, the decrease from 4.2% (def2-TZVP) to
3.2% (def2-TZVPP) and from 3.0% (LANL2TZ) to 2.6% (LANL2TZ(f)) shows the
importance of adding more polarization functions to heavy atoms.

Considering the all-electron non-relativistic basis sets, the jorge-DZP gave an
energy barrier of 18.01 kcal mol−1 in gas phase (error of 21.5%). Surprisingly, the
addition of a set of d-diffuse functions (mDZP basis set) leads to a satisfactory
agreement with experimental data, for which the energy barrier in gas phase was
21.78 kcal mol−1 (error of 5.0%). This result suggests that the jorge-DZP basis
set is not well-balanced and shows the importance of the d-diffuse function in the
mDZP basis set, these same behaviour between jorge-DZP and mDZP Pt ABS was
also observed in ref. [74]. The calculated barrier in solution (C-PCM) for all non-
relativistic ABS decrease and the relative errors were 37.9% and 56.9% for the jorge-
DZP and jorge-TZP basis set, respectively. The calculated valuewith themDZP basis
set using the C-PCM model also decreases and the relative error was 22.6%. The
importance of d-diffuse functions can be understood based on the fact that platinum
is a d-transition metal and the reaction analyzed involves different structures with
distinct coordination shells that require a great flexibility of the valence shell of metal
atom, therefore the d-functions play a key role in the description of reactivity of Pt
complexes.

When the relativistic all-electron basis sets are used, Fig. 7.7 shows they give
similar barriers as the ECPs. The calculated values with these ABS in gas phase are
overestimated and, when the solvent effect is included, the calculated values present
an excellent agreement with the experimental value for most of them. The calculated
values with the relativistic ABS in gas phase presented errors of ~ 14%, except when
the jorge-TZP-DKH basis set is used, error of 9.8%. Nevertheless, when the solvent
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effect is included, exceptwith the jorge-TZP-DKHbasis set, all other relativisticABS
presented an excellent agreement with the experimental values, with errors less than
5%. Regarding the calculations with the C-PCM model, it is interesting to note the
difference presented when the jorge-DZP and jorge-DZP-DKH basis sets are used.
The energy barrier with the jorge-DZP basis set, 14.25 kcal mol−1 (error of 37.9%),
increased to 21.90 kcal mol−1 with the jorge-DZP-DKH, with a relative error of only
4.5%, stressing the importance of the relativistic effects in the basis set. Besides,
the size of the basis set also plays a role for the activation energy, as noted for the
calculations with the Sapporo-DKH3-QZP-2012 basis set, which relative deviation
was only 1.7%. Then, for standard calculations in the gas phase and without the
inclusion of relativistic effects, the mDZP basis set for Pt is a good choice, given
an error of 5.0%. For calculations with the inclusion of solvent effect, the ECPs
lead to satisfactory results, with errors of 0.9% and 2.6% with the CRENBL and
LANL2TZ(f), respectively. As expected, for the most complete calculations, consid-
ering solvent and relativistic effects, an excellent agreement with the experimental
value was obtained using the DKH basis sets jorge-DZP-DKH, Sapporo-DKH3-
DZP-2012, Sapporo-DKH3-TZP-2012 and Sapporo-DKH3-QZP-2012, for which
the relative deviations were 4.5%, 2.4%, 3.6%, and 1.7%, respectively.

7.3.2 NMR Spectroscopy for Pt(II) Complexes

The Nuclear Magnetic Resonance (NMR) spectroscopy is the main technique for
structural characterization of molecules in solution. Moreover, with the advances
in recent years, the NMR has played a primary role in drug discovery and design
[119]. The nucleus of Pt-195 is the only NMR active isotope of platinum [119] and
it has the necessary properties for use in NMR spectroscopy (spin quantum number,
I = 1/2; natural abundance of 33.8%; relative sensitivity of 9.94× 10−3 (1H: 1.00);
gyromagnetic ratio γ = 5.768 × 107rads−1 T−1; Larmor frequency of 64.5 MHz at
7.05 T) [120–123]. The NMR parameters, chemical shift (δ) and coupling constants,
are particularly sensitive to changes in the metal oxidation state (the most common
oxidation states of Pt are + 2 and + 4), the type of the ligands, and the coordination
mode [123, 124]. The NMR chemical shift of Pt-195 nucleus can be found in a wide
range of values from + 8,000 to −7,000 ppm, relative to [PtCl6]−2 in D2O [120,
124]. The Pt-195 NMR is used in many applications, such as structural elucidations,
kinetics, and mechanistic studies [117, 125].

From a theoretical point of view, the computational prediction of Pt-195 NMR
parameters is still a challenging task. There are several aspects that should be taken
into account for a good calculation, such as the relativistic [126] and the solvent
effects [126], the electronic correlation [127], and the basis sets [75]. Regarding the
basis set, the platinum basis set plays a key role since a good description of the NMR
parameters requires a good description of both core and valence electrons. Thus, an
extended and little contracted basis set with sets of polarization functions is required.
In this context, the use of ECP to describe the Pt atom is not recommended.
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We have found in the literature several papers involving theoretical studies of Pt-
195 NMR spectroscopy [75, 76, 127–141]. Recently, Paschoal et al. [75] presented
a complete study concerning the prediction of NMR chemical shift of Pt-195 for
Pt(II) complexes. The authors showed the importance to include the relativistic
effects in predicting properties such as NMR parameters involving heavy nuclei.
The authors studied the cis-[Pt(NH3)2Cl2], cis-[Pt(NH3)2Br2] and cis-[Pt(NH3)2I2].
The non-relativistic results for the Pt-195 NMR chemical shift showed deviations
greater than 1,300 ppm relative to the experimental values for all complexes. For the
relativistic Spin–Orbit ZORA approach the largest deviation was 117 ppm for cis-
[Pt(NH3)2I2]. Besides, Paschoal et al. proposed the NMR-DKH basis sets for the H–
He, Li-Ne, Na-Ar, K-Ca, Ga-Kr, Rb–Sr, In-Xe, and Pt atoms. Lastly, from an empir-
ical model, the authors calculated the Pt-195 NMR chemical shift for a set of 258
Pt(II) complexes with a mean relative deviation (MRD) of ~ 6% at PBEPBE/NMR-
DKH/IEF-PCM(UFF)// B3LYP/LANL2DZ/def2-SVP/IEF-PCM(UFF) level. These
same protocols were further applied to predict 1J(195Pt-15N) coupling constant in
Pt(II) complexes with an average error of 10.4%, considering 98 coupling constants
[76]. In general, the papers found in the literature do not emphasize the role of the
platinum basis set (heavy element) in the Pt-195 NMR calculations. Therefore, in
this section, we investigate the influence of Pt basis set in the computation of Pt-
195 NMR chemical shift. Relativistic calculations using the Douglas–Kroll–Hess
(DKH2) approximation are employed using a distinct relativistic contracted DKH
all-electron platinum basis set.

7.3.2.1 Theoretical Methodology

DFT non-relativistic calculations were used to predict the structures of the Pt(II)
complexes. Three simple Pt(II) models with available experimental Pt-195 NMR
chemical shift were chosen: cis-[Pt(NH3)2Cl2] [142], cis-[Pt(NH3)2Br2] [143] and
cis-[Pt(NH3)2I2] [144]. The geometries were optimized and characterized as a
minimum point on the PES (all vibrational frequencies found real) at B3LYP level
[112] with the def2-SVP effective core potential (ECP) for Pt atom and def2-SVP
basis set for ligands atoms [35–37]. The solvent effect was accounted for in the
structure and NMR chemical shift calculations, using the Solvation Model Based on
Density (SMD) [145]. The solvent considered in the optimization of structure and
NMR calculations is the same as that used in the experiments.

The gauge-independent atomic orbitals (GIAO) method [146, 147] was used for
calculation of magnetic shielding constant (σ) and the NMR chemical shift was
predicted through Eq. (7.12) [75], in which σref is the shielding constant for the
internal reference, [PtCl6]−2 in D2O.

δcalc = σref − σcalc (7.12)

The NMR calculations were carried at the B3LYP level, using the NMR-
DKH basis set for ligands atoms [75]. The relativistic effect was considered using
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the Douglas–Kroll–Hess (DKH) approach [44–47, 113–115] within the DKFULL
approximation. In order to assess the role of the Pt basis set in the NMR chem-
ical shift, the relativistic ABS presented in Table 7.3 was considered. In addition,
the NMR-DKH basis set for Pt atom [75] found in Table 7.2 was also used. All
calculations were performed in NWCHEM 6.6 program [30] and compared with the
experimental data [142–144].

7.3.2.2 Results and Discussion

The NMR chemical shifts were calculated using Eq. (7.12) at B3LYP-DKFULL/Pt
basis set/NMR-DKH//B3LYP/def2-SVP/def2-SVP. The solvent effect was consid-
ered using the SMD method and the relativistic effects by DKFULL approximation
as implemented in NWCHEM 6.6 program. As previously discussed, the relativistic
effects are of fundamental importance in the prediction of NMR properties of heavy
nuclei, such as Pt nucleus, so only relativistic calculations were performed. The
results are shown in Table 7.6.

From the results, it is clear that the size of the Pt basis set is very important.
When the results obtained with the jorge-DZP-DKH and jorge-TZP-DKH basis
set are compared, the mean relative deviation decreases from 73.0% (jorge-DZP-
DKH) to 9.1% (jorge-TZP-DKH). The Sapporo and NMR-DKH basis sets lead to
the smallest relative deviations, 3.2, 3.4, and 4.4% for Sapporo-DKH3-DZP-2012,
Sapporo-DKH3-TZP-2012, and NMR-DKH, respectively. The calculations with the
SARC-DKH basis set presented a mean relative deviation of 20%. When the indi-
vidual errors are analyzed, we note that the error is of the same order for a specific
basis set, regardless of the complex, suggesting that the ligand basis sets are somehow
well-balanced.

7.4 Concluding Remarks

This chapter has provided a description of the basis sets for heavy atoms and
their importance in the context of computational chemistry. Relevant issues that
should be considered when dealing with systems containing heavy atoms were
discussed. Moreover, unpublished results involving the role of the platinum basis
set in describing the structure and reactivity of cisplatin and NMR chemical
shift of cis-[Pt(NH3)2Cl2], cis-[Pt(NH3)2Br2] and cis-[Pt(NH3)2I2] complexes were
presented.

From the results obtained for the structure and reactivity of cisplatin, we showed
that the solvent and relativistic effects play a very important role in the descrip-
tion of the properties. Moreover, a well-balanced Pt basis set is required for a good
description of the reactivity of cisplatin. The results suggest that for non-relativistic
calculation in the gas phase the mDZP basis set can be considered a good choice.
However, for a more accurate description, taking into account the relativistic and
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solvent effects, the Sapporo-DKH3-XZP-2012 (X=D, T, or Q) basis sets are recom-
mended.Besides, the calculated properties usingECPs presented a satisfactory agree-
ment with the experimental data for both structure and reactivity of cisplatin, which
are good choices for large molecules. Overall, the reactivity of cisplatin is much
more sensitivity then the structure to the atomic basis set.

Considering the results obtained for NMR chemical shift of Pt-195, the calculated
values suggest that a triple-zeta basis set with polarization function should be used,
with theSapporo-DKH3-TZP-2012 andNMR-DKHpresenting good agreementwith
the experimental values.
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Chapter 8
Adaptable Gaussian Bases for Quantum
Dynamics of the Nuclei

Sophya Garashchuk

8.1 Introduction

Classical mechanics often gives an adequate representation of the nuclei in molecu-
lar dynamics simulations. Yet, the nuclear quantum-mechanical effects (NQEs) may
play a significant role in chemical and physical processes in a wide range of molec-
ular environments from the hydrogen storage within the metal-organic frameworks
[1] to photovoltaic or spin-responsive materials [2–4], to enzyme activity [5]. The
NQEs are typically the largest for light nuclei at low temperatures and energies, or
more specifically when the characteristic energy of a process is comparable to the
separation between the vibrational energy levels of chemical bonds.

Themost general description ofNQEcomes from a solution to the time-dependent
Schrödinger equation (TDSE), possibly, with the time-dependent potential,

Ĥψ(x, t) = ı�
∂

∂t
ψ(x, t). (8.1)

The Hamiltonian operator is a sum of the kinetic and potential energy operators, K̂
and V̂ , the latter being a function of coordinates and time:

Ĥ = K̂ + V (x, t), K̂ = −�
2

2
∇TMMM−1∇ = −�

2

2

d∑

n=1

1

mn

∂2

∂x2n
. (8.2)

Throughout this chapter, we consider SE only for the nuclei, evolving on a single
electronic potential energy surface (PES). For simplicity, we will describe the nuclei
inCartesian coordinates (unless indicated otherwise)with the diagonal kinetic energy
operator. In other words,MMM is the diagonal matrix of the particle masses,Mnn = mn,
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where index n enumerates the degrees of freedom (DOFs). Each particle is described
by three coordinates in Cartesian space listed in a single vector x. The total number
of DOFs (and the size of the vectors and matrices) is d = 3× (number of particles).
The atomic unit of the Planck’s constant, � = 1, is used henceforth. We will drop
time as the argument in the external potential, V ≡ V (x), with the understanding
that all methodologies described below, except those based on the diagonalization
of the Hamiltonian matrix of Sect. 8.3, are applicable to time-dependent potentials.

Computational efforts of describing a general quantum system, fully coupled by
anharmonic interactions, scale exponentially with the system size. Therefore, the
efficient basis representation of wavefunctions is essential for the studies of high-
dimensional molecular systems. While the representation of wavefunctions in terms
of standard bases is well established in the electronic structure theory, it remains
an outstanding challenge in quantum mechanics of nuclei. This situation may be
attributed to several factors.

(i) The classical description of nuclei is adequate in many situations (molecular
dynamics is very useful). Therefore, quantum molecular dynamics has not received
as much attention from theorists as the electronic structure.

(ii) The NQE are very sensitive to the quality of the electronic PES on which the
dynamics unfolds. Thus, the development of practical methods (including theory,
hardware, and software) of computing globally accurate PES was necessary before
the NQE could be rigorously included.

(iii) Finally, the forces acting between the quantum nuclei are complicated
many-body interactions and the systems undergo large-amplitude motion (reaction
dynamics, isomerization, diffuse vibrational states, and highly excited vibrational
states). Consequently, most multidimensional quantum dynamics approaches are
fairly system-specific.

While there is a number of standard approaches to solve the time-dependent
Schrodinger equation for the nuclei through explicit time-evolution ofwavefunctions,
such as the split-operator/Fast Fourier Transform and Chebyshev expansion of the
Hamiltonian, or the Hamiltonian diagonalization (iterative schemes) [6–10], there
is no standard approach of generating a wavefunction representation (beyond a few
dimensions), which would remain accurate and practical in the course of dynamics.

The term quantum dynamics is often used to indicate that one is dealing with the
Schrödinger equation for the nuclei as opposed to electrons, regardless of whether
a time-dependent or time-independent wavefunction is required to answer the ques-
tion at hand. Formally, for time-independent interactions, the time-dependent and
time-independent solutions to the SE contain equivalent information, and are related
through the Fourier transform. In other words, if a time-dependent solution ψ(x, t)
to the TDSE (8.1) is available at all times, one can extract all energy eigenstates
χ(x,E) as the Fourier transform of ψ(x, t) into the energy domain,

χ(x,E) = NE

∞∫

−∞
ψ(x, t)eıEtdt, (8.3)
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where NE is the normalization constant. Vice versa, knowing all the eigenstates,

Ĥχ(x,E) = Eχ(x,E), (8.4)

one can reconstruct the time-evolution of any initial wavefunction ψ(x, 0):

ψ(x, t) =
∞∫

0

dE〈χ(x,E)|ψ(x, 0)〉e−ıEt . (8.5)

‘All eigenstates’ above means the ones that overlap with ψ(x, 0); we omit the dis-
cussion of degenerate eigenstates for simplicity. The integral in Eq. (8.5) implies
the integration over the states of the continuum spectrum and summation over the
discrete eigenstates as appropriate for the problem.

The standard ways to represent a wavefunction (as a linear combination of fixed
in time and space functions) are the finite basis representation (FBR) and the dis-
crete variable representation (DVR). The eigenvalues of the Hamiltonian operator
evaluated in FBR, traced to the variational minimization of the energy functional,
give the upper bound on energy levels, a useful feature. The downside to FBR is the
high cost of computing the matrix elements of the potential energy operator, espe-
cially if the basis functions are delocalized, and the dense character of the resulting
Hamiltonian matrices. The DVR approach, introduced by Light in the 1980s [11–13]
and reviewed in Ref. [14], is an elegant way of addressing both deficiencies of FBR.
In DVR, which is equivalent to the evaluation of integrals by quadrature over the
related to it finite basis, the potential energy matrix is diagonal and the high-energy
regions of the coordinate space can be naturally excluded from consideration. Thus,
the number of the PES evaluations is minimized, while the kinetic energy matrix
remains fairly sparse. These two advantages in conjunction with the development of
iterative diagonalization techniques, such as short iterative Lanczos [15–17], made
DVR a method of choice when doing exact quantum dynamics for both vibrational
and scattering calculations. Even to date the state-of-the-art vibrational calculations
of spectroscopic accuracy (of a fewwavenumbers) use DVR, sometimes in combina-
tion with FBR for selected coordinates. One of the most sophisticated calculations,
performedbyViel andLeforestier [18] forHFCO, employed six-dimensionalDVRof
over 107 points, truncated by potential energy to about half a million points, to obtain
about 150 accurate eigenstates. Even with all the advantages of DVR and a modest
10-point DVR per dimension in average, the sheer size of the basis, which scales
exponentially with the number of dimensions d , makes an exact full-dimensional
description of systems of more than five atoms (d ≥ 9) impractical.

The unfavorable scaling of the basis size with d motivates the development of
the quantum dynamics approaches based on the correlated, in other words not on
the direct-product type, bases. While in general the scaling of the wavefunction
complexity is at least exponential with d , the hope is that practical methods of gen-
erating efficient bases might be developed if the questions addressed by calculations
are narrowed in some sense. For example, instead of the accurate calculation of



218 S. Garashchuk

a full wavefunction, one may target convergence of certain expectation values, of
the energy levels within the limited range of energy, or of the correlation functions
yielding spectra of medium resolution.

For high-dimensional problems, the central idea behind a manageable-size basis
is to make it adaptable to the time-evolution of the target quantities. The most
accomplished exact quantum method, used in many high-dimensional applications
[19], is the multiconfiguration time-dependent Hartree method (MCTDH) [20–23],
where multidimensional wavefunctions are built as products of single-particle func-
tions, contracted from a general basis. The MCTDH-like method, closely related
to the scope of this chapter, is the variational multiconfiguration Gaussian (vMCG)
approach [24–26], based on Gaussian basis functions, whose parameters are for-
mally defined by the evolving wavefunction through the time-dependent variational
principle.

As in electronic structure theory, one reason to use Gaussian bases in quantum
dynamics is their mathematical properties, such as ‘the product of two Gaussians is
a Gaussian’, localized functions, analytic integrals, Gaussian quadrature, and Her-
mite polynomials. Another reason is that, unlike in the electronic structure (ES)
theory, a Gaussian wavefunction (also a polynomial× a Gaussian) solves the TDSE
for parabolic, possibly time-dependent, potentials. The harmonic oscillator model is
the foundation for the analysis of molecular vibrations (the normal mode analysis
of ES codes), while a Gaussian function is a standard description of a localized in
space particle, such as a nucleus, moving close to the classical regime. Finally, the
ever-growing efficiency of the ES calculations, enabling molecular dynamics with
on-the-fly or on-the-grid ab initio ES evaluations and advances in the PES construc-
tion (such as the product representation [27, 28] and fitting/interpolation methods
[29, 30]) made the evaluation of the potential matrix elements over a localized
coordinate-space basis practical.

In this chapter,wediscussGaussianbasismethods of solving the time-independent
and time-dependent SE for the nuclei. The same ideas could be used to solve the
SE for electrons, or for both nuclei and electrons. An extension to electrons may
be desirable, for example, in the presence of the time-dependent electric field of a
laser. We limit ourselves to exact quantum methods, though we note that there are
numerous semiclassical methods (thawed [31], frozen [32], cellular [33] dynamics,
the Herman-Kluk propagator [34], and linearized semiclassical initial value repre-
sentation [35]) based on the representation of a wavefunction as a superposition of
Gaussians. Unlike exact QM methods, the semiclassical methods do not yield exact
solutions of the SE in the limit of infinite basis. The remainder of this chapter is
organized as follows. First, we review the Gaussian wavepacket (GWP) solution
to the TDSE and describe a recent application to spectroscopy of NH3 (Sect. 8.2).
Then, we describe the time-independent Gaussian bases tailored to PES (Sect. 8.3)
and the time-dependent Gaussian bases tailored to quantum dynamics of a wave-
function (Sect. 8.4). The concepts are illustrated by examples from our research, i.e.
the quasi-random distributed Gaussian bases (QDGB) for the TISE and the quan-
tum trajectory-guided Gaussian bases (QTGB) for the TDSE. Finally, we survey
the ‘intermediate’ approaches employing the time-independent bases and wavefunc-
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tion reexpansions at finite time intervals, adapted to the temporal changes of the
wavefunction (Sect. 8.5). Finally, Sect. 8.6 concludes.

8.2 Evolution of a Gaussian Wavepacket

To set the stage, first we review an analytic solution to the TDSE with the parabolic
potential, i.e. the Gaussian wavepacket, in d dimensions, as it is a useful model for
molecular vibrations, and an inspiration for a multitude of Gaussian-based exact and
semiclassical methods of quantum dynamics. The solution (see, for example, Ref.
[36]) is given in a compact matrix form for a d -dimensional system described in
Cartesian coordinates,

ψ(x, t) = N exp
(−(x − qt)

TAAAt(x − qt) + ıpTt (x − qt) + ıst + γt
)
, (8.6)

where N is the initial normalization constant, so that γ0 = 0,

N =
(
2N detAAA�|t=0

πN

)1/4

. (8.7)

The wavefunction evolves according to the Hamiltonian,

Ĥ = −1

2
∇TMMM−1∇ + V, V = 1

2
xT VVV 2 x. (8.8)

The matrix MMM is a diagonal matrix of particle masses, while VVV 2 is a real symmet-
ric matrix defining a quadratic potential, whose minimum is at the origin of the
coordinate system and is equal to zero. In Eq. (8.6), the parameters qt,pt are real
d -dimensional vectors, and st and γt are real scalar functions of time, indicated as the
subscript. The wavefunction is defined in terms of a complex symmetric matrix AAAt ,

AAAt = AAA� + ıAAA	.

The subscript t is omitted for clarity when unambiguous. The vector∇ is the gradient
with respect to the particle coordinates, x.

Substituting Eq. (8.6) into the TDSE with the Hamiltonian (8.8), dividing the
result by ψ(x, t) and setting imaginary and real coefficients, multiplying powers of
x, to zeroes, one obtains the following equations determining the time-evolution of
the parameters:

dq
dt

= MMM−1p,
dp
dt

= −∇V (q), (8.9)

ds

dt
= pT MMM−1p

2
− V (q) − Tr(AAA�MMM−1), (8.10)
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ı
dAAA

dt
= 2AAAMMM−1AAA − 1

2
VVV 2,

dγ

dt
= Tr(AAA	MMM−1). (8.11)

Note, that Eqs. (8.9) are simply Newton’s equations of motion for the center of the
Gaussianwavepacket,qt = 〈ψ |x|ψ〉t . Thus, (qt,pt) are the coordinates andmomenta
of a classical trajectory. Equation (8.10) defines the evolution of the classical action
function st for the trajectory (qt,pt), except for the last term on the RHS,

U0 ≡ Tr(AAA�MMM−1).

This term does not affect the expectation values, but it does affect time-correlation
functions and extracted from them spectra. U0 can be interpreted as the zeroth order
quantum effect, a time-dependent version of the ZPE. In a special case of ψ(x, t)
being the ground state of the harmonic oscillator, U0 is equal to the ground state
energy E0, defining the trivial time-dependent phase of the ground state solution,
ψ(x, t) = χ(x,E0) exp(−ıE0t).

Finally, the time-dependence ofAAA defineswhat is referred to as the breathingmode
of the Gaussian, i.e. the change in the localization of |ψ(x, t)|, with accompanying
it quadratic phase. The changes in the real ‘width’ of a Gaussian define the time-
dependence of the function γt , which ensures the constant in the time wavefunction
norm, 〈|ψ(x, t)|2〉 = 1. Because of the ‘breathing’ motion of the wavepacket, super-
imposed on the classical motion of the Gaussian center, this solution to the TDSE
is also known as the thawed Gaussian wavepacket (TGWP). The breathing mode is
the next order quantum effect, specific to non-coherent Gaussian wavepackets. For
a special choice of the initial wavefunction, the width parameter AAA remains constant
in time, while the wavepacket center executes classical motion within the parabolic
well. (This is the so-called coherent wavepacket: in the normal modes coordinate
AAA is diagonal, Ann = mnωn/2, where ωn and mn are the frequency and mass of the
nth normal mode.) An analytic solution to AAA is known for the harmonic oscillator
[36], but in general, the time-dependent V solutions of Eq. (8.11), determining the
complex Gaussian width AAA, are solved numerically using sophisticated propagators,
such as the Poisson propagator [37], to ensure stability. For the wavefunction to be
normalizable, the eigenvalues of AAA� have to be positive.

The total energy of ψ ,

E = 〈ψ |Ĥ |ψ〉 = 1

2
pT MMM−1p + V (q) + 1

2d+1
Tr(AAA−1

� VVV 2) + U , (8.12)

consists of the classical energy of the wavepacket center (first two RHS terms) and,
in addition, of the potential energy term due to the wavepacket delocalization (the
third term in RHS of Eq. (8.12)). The last term, U , is the kinetic energy associated
with the derivatives of the wavefunction amplitude and phase, respectively,

U = 1

2

(
Tr(AAA�MMM−1) + Tr(AAA	AAA−1

� AAA	MMM−1)
)
. (8.13)
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The wavefunction ansatz of Eq. (8.6), approximating a time-dependent solution
to SE for anharmonic potentials, i.e. TGWP [38, 39], found applications in spec-
troscopy. TGWPevolves on the potential, expanded up to the second order inx around
the wavepacket center, which simply means dynamics in a quadratic potential with
time-dependent parameters. Obvious limitations of this approach are the inability to
describe the wavefunction bifurcation and interference effects within a single Gaus-
sian ansatz, and inaccuracy of the quadratic expansion of V , when TGWP spreads in
coordinate space. Amore rigorous version of TGWP is the variational GWP [40]: the
evolution equations for the wavepacket parameters are derived from the McLachlan
variational principle [41]. The resulting equations for the GWP parameters involve
the potential and its first and second derivatives averaged over the wavefunction,
rather than their values at the center of the GWP of the TGWP. Both the variational
and thawed GWP dynamics are valid either at short times or for nearly harmonic
potentials, while the Gaussian function is accurate over the space relevant to the
computed quantity.

The variational GWP has conceptual appeal, but beyond model applications, the
thawed GWP (the local harmonic approximation to V ) has a big advantage that the
PES information is needed only along a single trajectory. The PES can be rather
straightforwardly computed on-the-fly, as demonstrated in recent applications to
spectroscopy of floppy molecules from the Vanicek group [42, 43]. The authors
have used the TGWP dynamics, while computing the PES, its gradient, and the Hes-
sian on-the-fly (needed to solve Eqs. (8.9), (8.10), and (8.11)) to analyze the emission
spectroscopy of oligothiophenes and absorption and photoelectron spectra of ammo-
nia. What is remarkable in these applications is that the ES has to be solved for along
a single trajectory, which enabled the efficient modeling of the oligothiophenes con-
sisting of 2, 3, 4, and 5 rings. The latter system involves dynamics of 105 DOFs,
carried out up to 0.2 ps. The TGWP emission spectra agree with the experimental
ones quite well as shown in Fig. 8.1: the peak structure is reproduced, although there
is an overall shift in peak positions. This shift may be attributed to the theory—local
harmonic approximation of the PES, quality of the electronically excited PES com-
puted using the Density Functional Theory, specifically CAM-B3LYP/6-31+G(d,p),
or to the experimental conditions, i.e. interaction with the solvent.

For ammonia, the TGWPdynamics on the ground electronic PES yieldedmedium
resolution photoelectron and absorption spectra in good agreementwith experiments,
despite the limitations of a Gaussian wavefunction form. This is surprising because
the inversion ofNH3 (the ‘umbrella’mode) is characterized by the double-well poten-
tial, typical for floppy molecules, and the local harmonic representation of the PES is
a big approximation in this case. The TGWP description was reasonably accurate for
up to 0.2 ps, yielding the medium resolution spectra, though the accuracy of dynam-
ics was insufficient for longer times, when the wavepacket bifurcates, to obtain the
higher spectral resolution. The ab initio on-the-fly TGWP setup also enabled use-
ful mode decomposition analysis. For example, for the two thiophene ring system
(system T2 in Fig. 8.1) 8 effective modes, comprised of 42 DOFs in full dimension,
were identified as contributing to the emission spectrum. This type of analysis gives
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(c)(a)

Energy [eV]Energy [eV]

(d)(b)

Fig. 8.1 Emission spectra of the oligothiophene chains Tn for n = {2, 3, 4, 5} shown in panels
(a–d), respectively. The experimental emission spectra (exp., dashed green line) is compared with
the full-dimensional TGWP calculations, which includes all normal modes (solid black line). The
excited electronic energy, its gradient, and Hessian are computed on-the-fly ab initio (OTI-AI) using
CAM-B3LYP density theory functional. Adapted with permission from Ref. [42]. Copyright 2014
American Institute of Physics

insight into the mode coupling and also paves the way for more accurate quantum
dynamics studies in reduced dimensionality.

All in all, a single complexTGWPgives a very efficient description of ‘mild’ quan-
tum effects (before the wavefunction bifurcates and quantum interference becomes
important) and is useful in certain spectroscopic applications. In more challenging
applications, the TGWPs have been used to represent passive (spectator or bath)
modes characterized by the mild quantum effects in combination with more accu-
rate basis representations for the active (reactive or subsystem) modes, such as in
the multilayer Gaussian-MCTHD method [44, 45]. The simplicity and elegance of
TGWP inspired numerous approximate and semiclassical dynamics methods, based
on an expansion of a wavefunction or a propagator in terms of Gaussian functions.
The common feature of these methods is that they are based on classical trajectory
motion with the quantum effects incorporated from additional information, such as
the trajectory action function and monodromy or stability matrix elements related to
the width matrix AAA of TGWP. Some of the most popular semiclassical methods are
based on the representation of a wavefunction or a propagator in terms of integrals
(over the initial trajectory positions, momenta, or both) of Gaussians [33–35, 46–
50]. An interesting recent methodology aims to reduce the semiclassical propagation
error by ‘slicing’ the total propagation into short segments over which the Gaussians
are evolved analytically, and reexpanding the wavefunction in a new set of Gaussians
[51]. Another impact of the TGWP approach on quantum dynamics as a field is in
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the use of classical mechanics arguments, i.e. energy and phase space analyses, to
construct compact efficient basis representations for exact QMdynamics approaches,
including time-independent, time-dependent, and ‘intermediate’ methodologies, dis-
cussed and illustrated below.

8.3 Time-Independent Gaussian Bases Adapted to PES

In this section, we review the construction of efficient basis representation of the
vibrational states employing Gaussian functions whose parameters are tuned to the
features of thePES.Most of Sect. 8.3 is adaptedwith permission from [S.Garashchuk
and J. C. Light, Quasirandom distributed Gaussian bases for bound problems, J.
Chem. Phys., 114:3929–3939, 2001]. Copyright 2001 American Institute of Physics.

The construction of a compact (in a sense of the number of functions) corre-
lated basis for solving the time-independent SE is especially important for studies of
highly excited vibrational states of polyatomic molecules or molecular clusters, cor-
responding to the large amplitude intermolecularmotion. To construct a basis for such
problems, Davis and Heller [52] considered complex Gaussian basis sets distributed
in phase space through theWigner distribution, though later it has been demonstrated
that real distributed Gaussian basis sets (DGBs) [53] performed as well or better.
In the latter approach, the distance between neighboring Gaussians was made pro-
portional to the local de Broglie wavelength, and the exponents adjusted to give a
desired average overlap of the (non-orthogonal) basis functions. The DGB represen-
tation, usually for the radial DOFs in conjunctionwith theDVRs in angles, was found
efficient for a number of triatomic systems [54–59]. A later one-dimensional (1D)
study of the fully optimized variational Gaussian bases [60] has shown that higher
accuracy of the Hamiltonian eigenvalues was observed for very small reciprocal
condition number (RCN) η. Small η, defined as the ratio of the smallest to largest
eigenvalues of the overlap matrix SSS, typically signals the linear dependence in the
basis, but the strongly overlapping functions (responsible for small values of η) give
better description of the wavefunction derivatives. The full basis optimization of Ref.
[60] is a nonlinear problem, which scales as the number of basis functions Nb to the
fifth power, making it impractical for multidimensional systems. In this section, we
review the subsequent development of the quasi-random distributed Gaussian bases
(QTGB) [61], which are not optimized, but incorporate features of the optimal bases
known from the 1D studies, including the small RCN. The QTGB performance is
illustrated on calculations of the rovibrational energy levels of H2O.

8.3.1 Optimized Distributed Gaussian Bases

Our goal here is to construct an efficient basis comprised of real normalized Gaus-
sians, {gi}, i ∈ [1,Nb],
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gi =
(
2αi

π

)1/4

exp
(−αi(x − qi)

2
)
, (8.14)

which can accurately represent the vibrational states whose energies are below a
certain cutoff value, Ecut. For clarity of presentation, we will consider a Cartesian-
space Hamiltonian with separable kinetic energy given by Eq. (8.2), and outline the
procedure in one dimension, x. The Gaussian basis is not orthogonal, thus, to find
the eigenstates of Ĥ we need to compute the overlap matrix SSS with the elements

Sij = 〈gi|gj〉, (8.15)

the Hamiltonian matrixHHH with the elements,

Hij = 〈gi|Ĥ |gj〉, (8.16)

and to solve the generalized eigenvalue problem for the matrix pair (HHH ,SSS):

HHHBBB = SBESBESBE. (8.17)

The diagonal matrix EEE contains the energy eigenvalues, while the columns of the
matrix BBB are the respective eigenvectors. The basis function overlaps and the matrix
elements of the kinetic energy operator are evaluated analytically. The potential
matrix elements,

Vij = 〈gi|V |gj〉, (8.18)

can be efficiently computed using low-order Gauss–Hermite quadrature or local
quadratic approximation to V (x), taking advantage of the product property of Gaus-
sians and provided that the Gaussian basis functions are sufficiently localized.

The kinetic energy associated with each gi is proportional to its width parameter,
Kii = αi/(2m). Thus, given the energy cutoff Ecut, a reasonable expectation is that
the optimal value of αi is related to the ‘residual’ kinetic energy at the basis function
center,

αi ∼ m (Ecut − V (qi)) . (8.19)

As shown in Ref. [53], according to the semiclassical arguments, the density of the
Gaussian centers should be proportional to the particle momentum, while according
to numerical tests, use of the kinetic energy instead,

ρ(qi) = 1

2(qi+1 − qi−1)
∼ (Ecut − V (qi)) (8.20)

gives more accurate results. Both options generate the basis functions that are nar-
rower in the regions of low V (or higher kinetic energy), thus the distribution of {qi}
can be made denser in those regions; in the regions of high V (low kinetic energy),
the basis functions can be broader and placed further apart.
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To develop a cheap procedure of specifying the positions {qi} and width {αi},
as an alternative to the full variational optimization [60], we have analyzed optimal
solutions to the following functional, F̃ ,

F̃ = Tr (HHH ) − λ
∑

ij,i �=j

Sij
1 − Sij

. (8.21)

The functional is minimized with respect to all qi and αi (without assumptions on
their functional forms). The functional includes the energy term as the trace of HHH
and the basis function ‘repulsion’ term controlled by the parameter λ. If the basis
is orthogonal, the second term is equal to zero and F̃ reduces to the trace of the
Hamiltonian matrix. For a non-orthogonal basis, minimization of the Tr(HHH ) term
alone would yield Nb copies of the ground state, Tr(HHH ) = NbE0. The role of the
repulsion term is to prevent large off-diagonal overlaps Sij leading to the linear
dependence in a basis, i.e. the degeneracy of SSS. During the minimization of F̃ , the
parameter λwas set to a fixed value, but we found that the accuracy of the eigenstates
could be further improved by the uniform scaling ofαi , which lowers theHamiltonian
eigenvalues. Thus, the procedure may be viewed as a two-step minimization of F̃ : (i)
optimize theGaussian parameters for fixedλ; (ii) ‘tune’ the basis byuniform rescaling
of {αi} to lower the energy term, Tr(HHH ); the rescaling factor effectively controls the
Gaussian repulsion strength, which is the role of the parameter λ in Eq. (8.21).

The results of the simplified basis optimization above have been analyzed for
several 1D models with the goal of identifying any trends usable in realistic mul-
tidimensional problems. In particular, the two-step minimization has been used to
compute all bound energy levels of a 1D Morse oscillator for a particle of mass
m = 1,

V (x) = D (exp(−wx) − 1)2 , (8.22)

which is ‘potential B’ from Ref. [53]. The parameter values are D = 12.0 Eh and
w = 0.2041241 a−1

0 ; there are 24 energy levels below D. On the far right, the poten-
tial is set to V (x) = 25.0 Eh, x > 70 a0. The nonlinear minimization procedure
converged for the range of repulsion strength λ = [0.5, 1.5], yielding the expected
behavior of the optimal Gaussian density and width, shown in Fig. 8.2. For λ = 1,
the obtained RCN of the overlap matrix was η ≈ 10−5. Thus, we could fully explore
the effect of broadening the basis functions. Scaling of all αi by a constant, toward
η = [10−9, 10−12], increased the accuracy of the energy levels by about three orders
of magnitude. For yet smaller values of η the eigenvalues of HHH increased. Similar
relation of the accuracy on RCN has been seen in other model systems (see Ref. [61]
for more details), leading to a conclusion that there is a sizable optimal range of η

spanning 2–4 orders of magnitude yielding low eigenenergies.
Figure 8.3 compares the highest bound eigenfunction computed in a basis to the

analytic eigenfunction. The agreement is excellent and, given the diffuse nature of this
eigenstate, the basis is highly efficient: all energy levels were obtained within the
relative accuracy of 10−5, using only two basis functions per eigenstate, Nb = 48.
The best accuracy has been achieved by scaling the optimized widths {αi} by 0.13,
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Fig. 8.2 The widths, {αi},
and the density {ρi} of
Gaussians as a function of
their centers, {qi}, for the
Morse oscillator: circles
mark αi found from the
minimization of the
functional F̃ , Eq. (8.21);
solid line is the fit of αi with
the linear function of the
potential; squares mark the
optimized density and the
dashed line is its linear fit.
Adapted with permission
from Ref. [61]. Copyright
2001 American Institute of
Physics

Fig. 8.3 The eigenfunction
of the highest, n = 23,
energy level for the Morse
potential in coordinate space:
dashed line shows the
analytic result and the solid
line shows the numerical
eigenfunction. The centers of
basis functions (circles) are
also shown. Adapted with
permission from Ref. [61].
Copyright 2001 American
Institute of Physics

yielding RCN of η = 1.47 × 10−13. Another important observation is that the opti-
mizedwidths and density could be accurately represented as linear functions of V (x),
as seen in Fig. 8.2.

Overall, according to the model analysis of the nonlinear minimization of F̃ , we
conclude that while the full optimization of the basis parameters is impractical in high
dimensionality, efficient correlatedbasis canbe simply constructedby introducing the
linear dependence of the basis function widths on the kinetic energy, αi = c(Ecut −
V (qi)), followed by the uniform scaling of αi to shift the RCN of the overlap matrix
toward the range η ∼ 10−8 − 10−10. Then, the only two features of the basis, left to
be tested directly, are the width scaling factor c and the basis size.
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8.3.2 Quasi-random Distributed Gaussians

For high-dimensional problems, the full nonlinear optimization of Sect. 8.3.1
becomes expensive, if feasible at all. Thus, to generate a PES-adapted basis, we sim-
ply use the linear in V functional form of the basis function parameters to accomplish
two tasks.

The first task is to place the Gaussian centers achieving the desired distribution
of their centers. We use a quasi-random sequence to generate the Gaussian basis
functions with potential-dependent density and widths within the energy contour
V (xi) < Ecut. A general real Gaussian in d -dimensional coordinate space is

gi(x) = Ni exp
(−(x − qi)

TAAAi(x − qi)
)
, (8.23)

where the normalization constant Ni is given by Eq. (8.7) for AAA = AAAi. The width
parameters are arranged as a real symmetric matrix AAAi, in general, with nonzero off-
diagonal elements and positive eigenvalues. Here, we take AAAi as a diagonal matrix
Ainn = αin, where n enumerates dimensions and i enumerates the basis functions.

The second task is to choose the Gaussian width parameters according to
Eq. (8.19),

αin = cmn
(
Ecut − V (qin) + �

)
, n = 1 . . . d (8.24)

with the same value of c for all basis functions and all dimensions. Guided by the
results of full optimization in 1D of Sect. 8.3.1, the scaling parameter c is adjusted
to have the reciprocal condition number in the range η = [10−6, 10−14]. The density
of centers is also a linear function of the potential

ρ(qi) ∼ Ecut − V (qi) + �. (8.25)

In Eqs. (8.19) and (8.25), we have introduced a parameter�, affecting the ratio of
the largest to smallest width parameter. Thus, � controls the sensitivity of the basis
function to the PES. In the limit of large�,� � Ecut, the Gaussians will have nearly
equal width. Small values of�,� < Ecut, will generate a basis whose center density
and width are sensitive to the potential and mimic the optimal basis of Sect. 8.3.1.
The scaling parameter c is chosen to minimize the sum of the energy eigenvalues.
The value of c can be estimated from the lowest eigenvalue as

c ∼ 2E0

Ecut
∑

n mn
,

or better yet, from the normal modes vibrational analysis at the minimum of V (x).
Another option is to adjust both parameters, c and �, by computing a few eigen-
states for a low Ecut in a small-sized QDGB, and then use those values for the target
energy range (large Ecut). Overall, for a predetermined energy cutoff Ecut, the proce-
dure has two adjustable parameters, c and �, and generates an efficient, correlated
multidimensional basis in the coordinate space.
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Fig. 8.4 The centers of the
non-uniform QDGB 482
functions for the 2D Morse
oscillator. The two sets,
motivated by the 1D
optimization,
ρ ∼ Ecut − V (q) + �, and
by the 1D semiclassical de
Broglie wavelength,
ρ ∼ (Ecut − V (q) + �)1/2,
are shown with open and
filled circles, respectively.
Adapted with permission
from Ref. [61]. Copyright
2001 American Institute of
Physics

Placing Gaussian basis functions according to the desired density of their centers
ρ(x) is accomplished by accepting randomly generated positionswith the probability
proportional to ρ(x). In addition, to avoid excessive linear dependence in the basis,
the new function is rejected if its maximal overlap with previously accepted func-
tions exceeds a certain threshold. In fact, quasi-random or sub-random sequences
of numbers are more efficient for our purposes. The quasi-random sequence has the
advantage that the points qi are generated as far apart as possible given the previ-
ous points in the sequence. For a relatively sparse distribution of points, this feature
significantly reduces the probability that two points are so close to each other that
one of them is rejected according to the Gaussian overlap criterion. The convergence
of the energy eigenvalues with respect to the number of basis functions Nb can be
monitored while the sequence of Gaussian centers qi is being generated.

We use the Sobol sequence to generate the quasi-random points, and their density
is modified according to Eq. (8.25) with the rejection method [62]. The point qi is
accepted if [

Ecut − V (qi) + �

Ecut + �

]
> bi, (8.26)

where numbers bi = [0, 1] belong to an independent sequence of random (not quasi-
random) numbers. This basis is referred to as the non-uniform, i.e. width and density
are adapted to PES, quasi-random distributed Gaussian basis or QDGB. For illus-
tration, the positions of Gaussian centers adapted to a two-dimensional (2D) Morse
oscillator potential are plotted in Fig. 8.4. All 122 energy eigenstates, with the eigen-
values below 95% of the dissociation energy, were computed using 482 functions,
within the relative error of less than 10−4.
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8.3.3 Calculation of the Energy Levels for Triatomic
Molecules

8.3.3.1 Water Molecule

As a chemically relevant demonstration of the QDGB generation scheme and per-
formance, we have calculated the vibrational energy levels of water for the total
angular momentum J = 0 using the potential energy surface of Ref. [63]. The tar-
get convergence of the energy levels below 25118 cm−1 (252 states in all) was the
‘spectroscopic’ accuracy of 0.1 cm−1.

We have used the triatomic vibrational Hamiltonian in Radau coordinates, which
allows the analytic evaluation of the kinetic energy operator,

Ĥ = K2D + Kθ + V (R1,R2, θ). (8.27)

The 2D kinetic energy for the distance variables is

K2D = − �
2

2m1R2
1

∂

∂R1

(
R2
1

∂

∂R

)
− �

2

2m2R2
2

∂

∂R2

(
R2
2

∂

∂R2

)
. (8.28)

The angular part of the Hamiltonian is

Kθ = −�
2

2

(
1

m1R2
1

+ 1

m2R2
2

)
jjj2, (8.29)

where

jjj2 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (8.30)

The volume element is R2
1R

2
2 sin θdR1dR2dθ [56, 64]. The QDGB is used to describe

the distance variables, R1 and R2; the Legendre DVR is used to represent the angle
θ . In DVR, the potential matrix is diagonal with respect to the discretized angle
variable θ . Thus, we construct angle-specific 2D Gaussian bases {g(μ)} for the two-
dimensional Hamiltonians for each value, θμ [54, 64],

H 2D
μ = K2D + V (R1,R2, θμ). (8.31)

The 2DHamiltonians for different θμ are coupled viaKθ terms with the DVR expres-
sion for the jjj2 operator [65, 66]. The kinetic energymatrix elements are integrated on
the range of the distance variables, i.e. R1(2) ∈ [0,∞]. The Gauss–Hermite quadra-
ture of low order (4–7 points) is employed to compute the potential matrix elements.
The 2D bases consist of Gaussians of variable width distributed quasi-randomly
within the energy contour Ecut as described in Sect. 8.3.2. The width parameter of
ith Gaussian centered at (Ri1,Ri2) is scaled by the masses m1 and m2,
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Fig. 8.5 Water molecule
eigenstate calculation: the
size of the 2D basis before
and after truncation
procedure as a function of
the DVR angle. Adapted
with permission from Ref.
[61]. Copyright 2001
American Institute of
Physics

αi1(2) = cm1(2) (Ecut − V (Ri1,Ri2) + �) . (8.32)

The optimal value of c is found from a scan of the trace of H 2D over the values of c.
The convergence of the energy levels below Ecut is monitored during the construction
of the basis. For each angle θμ, the size of the 2D Hamiltonian matrix is reduced by
the number of eigenvalues above the truncation energy, Etr . Then, the appropriately
transformed angular kinetic energyKθ is added to the diagonalizedH 2D

μ ; the resulting
matrix, truncated according to the energy cutoff Etr , forms the μth block of the full
Hamiltonian matrix.

The numerical parameters for ten different QDGB/DVR calculations, performed
to test the convergence and relative importance of various details of the setup, are
listed in Table 8.1. The parameter � of Eq. (8.32) equals 0.01 Eh (≈ 1800 cm−1)
for all calculations. The 2D QDGB sets were constructed by adding 20 functions
at a time and their widths scaled. The smallest tolerated RCN was η = 10−13. The
basis size was fixed once either the target accuracy of the eigenvalues was met (in
2D) or until the number of functions exceeded 300. The number of Gaussian basis
functions and the matrix size after the truncation are shown in Fig. 8.5 for the basis
IV. On average, the truncation procedure reduces the basis size by 60%. For several
angles, the target convergence of the 2D eigenvalues (better than 1 cm−1) is not
met. However, all levels below 32000 cm−1 are converged within 1.3 cm−1, and
those below 30000 cm−1 are converged within < 0.55 cm−1. Since there are few 2D
eigenvalues below Etr at small angles, Ecut was increased for θ < 39◦, so that at least
40 QDGB functions are generated. The total matrix size of the full 3D calculations
varied from 1574 to 3551. The symmetry of the molecule was not taken into account.

The dependence of the energy levels on (i) the initial seed of the random
sequence {bi} of Eq. (8.25), (ii) on the number of the quadrature points for R1

and R2, and (iii) on the eigenvalue truncation energy parameter is illustrated in
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Table 8.1 Convergence of the energy levels for the H2O molecule for various QDGBs. The listed
basis parameters are as follows: Nθ is the number of angular DVR points; Nq is the number of
quadrature points per dimension for radial integrals; Etr (Eh) is the truncation energy for the 2D
eigenvalues; Ecut (Eh) is the cutoff energy for the placement of Gaussians; ε (cm−1) is the conver-
gence criterion for energy levels, used to construct 2D QDGB;Nmax is the total size of the truncated
matrix. The largest deviation for energy levels of water in cm−1 (taking those of the largest QDGB
I as a reference) is listed for the lowest Nl eigenvalues. Adapted with permission from Ref. [61].
Copyright 2001 American Institute of Physics

Basis parameters Maximal deviation (cm−1)

Basis Nθ Nq Etr Ecut ε2D Nmax Nl 400 350 300 250 200

I 43 5 0.23 0.165 1.0 3551 – – – – –

II 39 5 0.23 0.165 1.0 3232 0.43 0.35 0.17 0.08 0.03

III 43 5 0.22 0.16 1.0 3129 1.02 0.33 0.18 0.07 0.02

IV 39 5 0.22 0.16 1.0 2834 0.62 0.42 0.09 0.05 0.03

V 39 5 0.23 0.16 1.0 3198 0.60 0.41 0.09 0.05 0.03

VI 39 7 0.22 0.16 1.0 2838 0.64 0.43 0.11 0.07 0.03

VIIa 39 5 0.22 0.16 1.0 2777 8.38 3.76 1.90 0.50 0.09

VIIIb 39 5 0.22 0.16 1.0 2838 0.73 0.34 0.10 0.06 0.03

IX 39 5 0.20 0.15 2.0 2138 6.02 3.80 1.26 0.31 0.12

X 39 4 0.18 0.145 2.0 1574 12.29 4.70 2.50 0.87 0.24
asmall angles are excluded;
bdifferent seed for the random sequence {bi} in Eq. (8.26) is used

Table 8.2 The number of levels converged to a specified accuracy in calculations with bases II,
III, and IV. The bases are described in Table 8.1. The convergence is defined with respect to the
basis I calculation. Adapted with permission from Ref. [61]. Copyright 2001 American Institute of
Physics

Accuracy (cm−1) 1.02 0.50 0.20 0.10 0.05

Number of levels 413 378 321 292 211

Highest energy
level (cm−1)

29785 28908 27357 26489 23552

Table 8.1. The table shows the maximal deviation among Nl lowest levels from the
energy levels obtained from our largest, most accurate calculation employing basis
I. The number of levels, Nl = {400, 350, 300, 250, 200}, correspond to the energies
of {29520, 28183, 26714, 25069, 23153} cm−1, respectively. The number of levels
obtained with the bases II, III, and IV that differ from the levels of the largest cal-
culation by less than 1.0, 0.5, 0.2, 0.1, and 0.05 cm−1 is shown in Table 8.2: for the
most efficient basis, 7 basis per energy level were required to achieve convergence
below one wavenumber.

To briefly summarize this section, the non-uniformQDGBare found to be accurate
and efficient, with good convergence properties. The obtained energy levels agree
with those of Ref. [63] to sub-wavenumber accuracy; the highest energy reported
in Ref. [63] (n = 252) is higher than its counterpart in the QDGB calculation by
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0.6 cm−1. The non-uniform QDGB, being fully adaptable to the PES, including the
functions’ density and width, is more efficient than the equal-width Gaussian bases
used in Ref. [56]. More challenging applications of the QDGB to the neon and argon
trimers [61] support the overall conclusion on the QDGB performance.

8.4 Time-Dependent Gaussian Bases Adapted
to the Wavefunction Dynamics

We start this section with a review of the basic features of solving the TDSE within a
time-dependent basis representation of a wavefunction, as well as some of the estab-
lished dynamics approaches. Then, the concept of the quantum trajectory dynamics
is outlined and combined with the semiclassical idea of frozen Gaussians [32], to
yield a formally exact dynamics employing the quantum trajectory-guided Gaus-
sian bases (QTGB). Model applications and discussion conclude the section. Most
of Sect. 8.4 is adapted with permission from [B. Gu and S. Garashchuk, Quantum
Dynamics with Gaussian Bases Defined by theQuantumTrajectories, J. Phys. Chem.
A, 19:3023–3031, 2016]. Copyright 2016 American Chemical Society.

8.4.1 The Formalism

A general approach to solving the TDSE (8.1) is to represent a wavefunction in a,
possibly, non-orthogonal basis of Nb functions, {gi(x, t)}, i ∈ [1,Nb]. At time t, a
wavefunction is expressed in terms of these basis function,

ψ(x, t) =
Nb∑

i=1

ci(t)gi(x, t), (8.33)

where {ci(t)} are the expansion coefficients. The positions of all particles are specified
by the vector x of length d (the number of DOFs). Let us assume that the ith basis
function depends on time only through the time-dependent parameters enumerated
by the index μ = 1 . . .Np,

zi = (
zi1(t), . . . , ziNp

(t)
)
, (8.34)

where Np is the number of the parameters specifying each basis function,

gi(x, t) := gi(x, zi1(t), . . . , ziNp
(t)). (8.35)

For simplicity, we assume here that Nb does not change in time, and that Np is the
same for all basis functions. The time-derivative of such a basis function is
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dgi
dt

=
Np∑

μ=1

ziμ
∂gi
∂ziμ

, ż := dz

dt
. (8.36)

Substitution of Eqs. (8.33) and (8.36) into the TDSE (8.1) and the integration
of the resulting expression multiplied by gj over the coordinates space gives the
following matrix equation:

ı�SSS
dc
dt

= (HHH − ıDDD)c. (8.37)

As in Sect. 8.3, SSS is the overlap matrix, Sij = 〈gi|gj〉; HHH denotes the Hamiltonian
matrix, Hij = Kij + Vij,

Kij = −1

2

〈
gi

∣∣∣∣
f∑

n=1

1

mn

∂2

∂x2n

∣∣∣∣gj
〉
, Vij = 〈

gi
∣∣V (x)

∣∣gj
〉
. (8.38)

The new matrixDDD is the non-Hermitian matrix, accounting for the time-dependence
of the basis functions,

Dij =
〈
gi

∣∣∣∣
Np∑

μ=1

d

dt
zjμ

∣∣∣∣
∂gj
∂zjμ

〉
. (8.39)

Equation (8.37) determines the evolution of the expansion coefficients c, defining
ψ(x, t) in a basis influenced by an external, possibly time-dependent potential, V .

The choice of the time-dependence of the basis functions, i.e. of the parame-
ters zi(t) (Eq. (8.34)), determines the accuracy and conservation properties of the
dynamics. As shown, for example, in Ref. [67], the normalization of the wavefunc-
tion determined by Eq. (8.37) is conserved regardless of the quality of the basis
representation or of the basis time-dependence. The total energy of a system,

E = 〈ψ(x, t)|Ĥ |ψ(x, t)〉, (8.40)

is conserved in three cases: (i) for any time-independent basis; (ii) for a time-
dependent basis whose parameters are determined variationally, e.g. by applying
the Dirac–Frenkel variational principle [68]; (iii) for a time-dependent basis which
is complete in a sense of being sufficient to represent the wavefunction for a specific
problem.

We have discussed the time-independent Gaussian bases, i.e. case (i), in Sect. 8.3.
Out of the variational time-dependent basis methods, i.e. case (ii), the most relevant
representative is the Gaussian-based vMCGmethod [69–72]. It has been noted, how-
ever, that the variational equations on the Gaussian parameters are ill-conditioned,
and for general problems, the solutions become physically non-intuitive with time
and are challenging to converge numerically [24, 73]. Limiting the Gaussian basis
to the bath DOFs while using a more conventional description for the active ‘sys-
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tem’ DOFs has been shown a much more practical approach enabling challenging
high-dimensional applications [25, 26, 74].

All in all, time-dependent bases whose parameters are not variational (case (iii)),
but instead come from classical or semiclassical theories of motion, have been
actively explored. As mentioned above, with this type of bases, the energy is not
formally conserved, but this feature may be used as the indicator of the basis com-
pleteness during the dynamics. The parameters of the non-variational Gaussian basis
methods, many of which are developed for non-adiabatic dynamics on multiple cou-
pled PESs, are defined by the positions and momenta of classical or Ehrenfest-type
trajectories, often sampling the phase space of an initial wavefunction. One of such
methods is the ab initio multiple spawning method, involving a GWP basis ‘driven’
by classical molecular dynamics, while additional GWPs are spawned during nona-
diabatic events [75–78]. This method is incorporated into MOLPRO [78] and large
applications include chromophores in complex molecular environments [79]. The
multiconfigurational Ehrenfest method developed by Shalashilin and co-workers on
the basis of coupled coherent states expansions [80–82] utilizes the bases simulta-
neously evolving on multiple electronic states according to the Ehrenfest dynamics.

The advantage of the methods with predefined time-dependence of the Gaussian
basis functions is that the remaining dynamics equations (8.37) for the expansion
coefficients are much easier to implement numerically than the complete set of equa-
tions for the fully variational basis. The usual concern is that defining the basis func-
tions through classical dynamics may miss regions of space, inaccessible to classical
trajectories, yet involved in exact quantum dynamics. Therefore, the quantum trajec-
tories (QTs) representing a time-dependent wavefunction as a correlated ensemble
provides have been considered as ‘guides’ for the Gaussian basis functions.

8.4.1.1 The Quantum Trajectory Dynamics

The Madelung-de Broglie-Bohm, also referred to as the hydrodynamic or the QT,
formulation of the TDSE [83–85] is based on the polar representation of a complex
wavefunction, expressed in terms of real amplitude A (x, t) and phase S (x, t),

ψ(x, t) = A (x, t) exp
( ı

�
S (x, t)

)
. (8.41)

Substitution of the ansatz (8.41) into TDSE (8.1) leads to the following time-
dependence of the wavefunction phase S and probability density ρ,

ρ(x, t) = |ψ(x, t)|2 = A 2, (8.42)

∂S

∂t
= −1

2
∇TSMMM−1∇S − V − U , (8.43)
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∂ρ

dt
= −∇TSMMM−1∇ρ − ρ∇TMMM−1∇S . (8.44)

The time-dependent functionU ≡ U (x, t) denotes the quantum potential, as opposed
to the classical potential V ,

U = − �
2

2A
∇MMM−1∇A . (8.45)

To clarify the meaning of Eqs. (8.43) and (8.44), let us switch to the language of the
trajectory dynamics. The gradient of the wavefunction phase,

p(x, t) = ∇S (x, t), (8.46)

at the position of the quantum trajectory xt defines its momentum,

pt = ∇S |x=xt ,
dxt
dt

= MMM−1pt . (8.47)

Then, in the Lagrangian frame-of-reference,

d

dt
= ∂

∂t
+MMM−1pTt ∇, (8.48)

one obtains the quantum Hamilton–Jacobi equation for the wavefunction phaseSt ,
and the continuity equation for the probability density ρt ,

dSt

dt
= 1

2
pTt MMM

−1pt − (V + U )|x=xt , (8.49)

dρt

dt
= −ρt ∇TMMM−1p(x, t)

∣∣
x=xt

. (8.50)

The equation of motion for pt is obtained by transforming the gradient of Eq. (8.43)
into the moving frame-of-reference defined by Eq. (8.48),

dp(xt)
dt

= − ∇(V + U )|x=xt .

A comparison of the quantum Hamilton–Jacobi equation (8.49) to its classical coun-
terpart shows that all ‘quantumness’ in the time-evolution of ψ(x, t) is expressed
through the potential-like function U = U (x, t) in Eq. (8.45), known as the quan-
tum potential [86]. The exponential scaling of quantum mechanics is traced to this
non-local time-dependent functionwhich, being added to the external classical poten-
tial V , generates the quantum features in dynamics. Certain simplifications, however,
might be expected for heavy particles, such as nuclei: being inversely proportional
to the particle mass, the quantum potential becomes negligible in the classical limit.
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Therefore, nuclear motion may be treated as classical dynamics with quantum cor-
rections due to the quantum potential [87, 88].

The efficiency of the QT description of a wavefunction follows from Eq. (8.50),
according to which ρ within the volume element δx of each trajectory is conserved
[87],

ρ(x, t)δxt = ρ(x, 0)δx0. (8.51)

Thus, a singleQT ensemble, accurately representingψ(x, 0), will remain adequate to
represent ψ(x, t) at all times. The exact QTs may be interpreted as a time-dependent
grid optimized for a specific ψ(x, t). The catch is that the numerical implementa-
tion of Eq. (8.49) is, in general, impractical: U becomes singular as ψ(x, t) → 0.
However, the QT dynamics may be used to define a nearly optimal time-dependent
Gaussian basis,without solving the dynamics equations forQTs,whichwould require
the computation of the quantum potential. Instead, we define the QT momentum, p
from the wavefunction represented in a basis via Eq. (8.33), and use it to update the
trajectory positions, which serve as the centers of the Gaussian basis functions.

8.4.1.2 Quantum Trajectory-Guided Basis of Real Frozen Gaussians

To implement the QT-guided Gaussian bases, we construct an adaptive basis out of
time-dependent multidimensional Gaussians (d is the number of DOFs),

gi = 4

√
detAAA

πd
exp

(
−1

2

d∑

n,n′=1

(xn − qin(t))Ann′(xn′ − qin′(t))

)
. (8.52)

The basis function gi is centered at the position of the ith quantum trajectory qi,
their number defining the size of the basis Nb. For simplicity, let us assume that
the matrices AAA and MMM are diagonal, and their non-zero elements are Ann = αn are
Mnn = mn, respectively.

Note, that theGaussian function ofEq. (8.52) above is different from theGaussians
of the Frozen Gaussian or Herman–Kluk semiclassical propagators [32, 34], which
include linear in x phases, dependent on the momentum of a classical trajectory of
the Gaussian center,

S lin = pi(t) (x − qi(t)) + γi(t).

In the real basis formulation, the time-dependence of the expansions coefficients
ci(t) incorporates the effect of γi(t) associated with the classical action function at
qi. Restriction for the basis functions in Eq. (8.52) to be real simplifies the formalism
and makes implementation more robust: there is no term dp/dt in Eq. (8.36), thus
unstable computation of ∇U is not needed. Omitting time t in the argument of
functions for clarity, the matrix elements of Eqs. (8.39) and (8.38) are



8 Adaptable Gaussian Bases for Quantum Dynamics of the Nuclei 237

Sij =
d∏

n=1

exp
(
−αn

4
(qin − qjn)

2
)

, (8.53)

Dij =
〈
gi

∣∣∣∣ − ı
∂

∂t

∣∣∣∣gj
〉

= ı

2

d∑

n=1

αn

mn
pjn(qin − qjn)Sij. (8.54)

The matrix elements for the kinetic energy operator are

Kij =
d∑

n=1

αn

4mn

(
1 − αn

2
(qin − qjn)

2
)
Sij. (8.55)

The potential energy matrix elements in the examples below are evaluated within the
local harmonic approximation to V at the midpoint q̄ of the Gaussian center qi or qj:

Vij =
(
V (q̄) +

d∑

n=1

1

4αn

∂2V (q̄)

∂x2n

)
Sij, (8.56)

where q̄ = (qi + qj)/2. Some other PES approximations for the evaluation of Vij,
balancing the accuracy and numerical cost are a symmetric combination of the local
harmonic approximations, a cheaper alternative for the ab initio PES evaluated on-
the-fly; the linear local expansion of V (q̄) (no second derivative of V ) as in the
coupled coherent Gaussians method [80]; the product-basis fit of the PES developed
by theMCTDH community [27, 28, 89]; evaluation by quadrature. The QT position,
i.e. theGaussian center of the ith function, is incremented at each time-step according
to the momentum determined from ψ(x, t):

d

dt
qin = pin

mn
, pi = 	

(∇ψ

ψ

)∣∣∣∣
x=qi

. (8.57)

In the frozen Gaussian implementation, outlined here, a QTGB simulation is
started with the expansion of the initial wavefunction in terms of the Gaussian func-
tions of fixed-width α. Their centers are the initial positions of the QTs. The number
of Gaussians, Nb, depends on the target accuracy. For high-dimensional systems, the
sampling of the initial QT positions is random or quasi-random. The initial momenta
of QTs are defined by the initial wavefunction according to Eq. (8.57). The choice of
α will affect the basis size and the accuracy of Vij of Eq. (8.56) through the validity
of the local harmonic (or other) approximation. Analogous to the QTGB approach
of Sect. 8.3, the value of α and the density of the Gaussian centers should be such as
to yield a reasonable condition number of the overlap matrix. Thus, it is necessary to
try several values of α and basis sizes to assess convergence and the accuracy of the
desired output quantities. The dynamics itself is accomplished by solving Eq. (8.37).
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8.4.2 Implementation and Model Problems

In this subsection, we discuss certain aspects of the implementation of the QTGB
dynamics,which are then applied to severalmodels: theMorse oscillator representing
the vibration of H2, scattering on the Eckart barrier, and the 1D and 2D double-
well potentials. The exact quantum-mechanical results come from the split-operator
propagation implemented on a grid [90, 91].

8.4.2.1 Implementation

As discussed in Sect. 8.3, Gaussian bases of strongly overlapping functions may lead
to ill-conditioned overlap matrix SSS, which in the case of QTGB has to be inverted
to solve Eq. (8.37). In dynamics, this situation may emerge in the course of time-
evolution [52]. Formally, the non-crossing property of theQTsmitigates this problem
for QTGBs: exact QTs never cross due to the strongly repulsive quantum potential
developing as the trajectories approach each other. In practice, however, this property
makes the QT dynamics inherently unstable and, moreover, for the Gaussians of
fixed width, may become so close as to generate an ill-conditioned overlap matrix
SSS, indicating redundancy in a basis.

To deal with this problem, following Refs. [92–94], we occasionally ‘restart’ the
basis, by reexpanding ψ(x, t) in a new set of Gaussian basis functions, i.e. ψ(x, t)
is re-sampled in terms of the new QT ensemble. The reexpansion procedure pre-
vents Gaussians from colliding, removes basis functions in the regions of negligible
probability density, and adds more functions in the regions of increasing probability
density. The exact QTs would track such changes in the probability density through
the continuity Eq. (8.51). However, real frozen Gaussians do not have the flexibil-
ity to account for such changes, captured in QTGB by the expansion coefficients.
Therefore, instantaneous adjustments of the basis increase the accuracy and stability
of the dynamics.

In the examples below, we have used a simple reexpansion algorithm to generate
the equidistant distribution of Gaussian centers of the new basis. We identify the
leftmost outlying point q1. If the probability density at q1 exceeds a predefined
threshold ε,

|ψ(q1, t)|2 = |
∑

i

cigi(q1)|2 > ε,

then q1 is taken as a center of a Gaussian included in the new basis (or the next
point q2 is tested and so on). Moving to the right in position in increments of �q,
until the region of negligible density on the right is reached, generates additional
basis functions. In high dimensionality, a new set {q′

i} can be generated through the
random importance sampling, similar to the construction of QDGBs of Sect. 8.3.
The size of the resulting new basis, N ′

b, is generally different from the old Nb, which
adapts the basis to the wavefunction localization. The new expansions coefficients,
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{c′
i}, are determined by minimization of the expansion error in the two bases,

I = ||
∑

i

c′
ig

′
i − ψ(x, t)||2. (8.58)

The resulting matrix equation on {c′
i} is

S′c′ = b′, (8.59)

where
S ′
ij = 〈g′

i|g′
j〉, b′

i = 〈g′
i|ψ〉, (8.60)

and ψ(x, t) is expanded in the old basis, Eq. (8.33). The expansion coefficients are
updated according to the second-order time differencing scheme [90],

c(t + �t) = c(t − �t) + 2�t
dc
dt

, (8.61)

with dc/dt defined by Eq. (8.37).
To start the dynamics in the new basis at time T , we have to assign momenta to

the QTs of a new basis. According to Eq. (8.57), the QT momentum is the gradient
of the phase ofψ(x,T ) evaluated at x = q′

i. To ensure smoothness of the momentum
as a function of position for a sparse set of QTs, we use a convoluted wavefunction
ψ̃β(x, t) as given below in one dimension:

ψ̃β(x, t) =
(

β

2π

)1/2
∞∫

−∞
e− β

2 (x−y)2ψ(y, t)dy. (8.62)

Using ψ̃β of Eq. (8.62) in Eq. (8.57), the momentum of the Gaussian center is

p = −
(

β

π

)1/4

	
⎛

⎝ β

ψ(x, t)

∞∫

−∞
(x − y)e− β

2 (x−y)2ψ(y, t)dy

⎞

⎠ . (8.63)

The integrals above are analytic. As β → ∞, ψ̃β → ψ , and the convolution has no
effect on p. If β → 0, then themomenta of all trajectories approach the average value
of p and deviate significantly from the QT momenta. To generate smooth p(qi), we
select such values of β, so that several Gaussians make significant contribution to
ψ̃β at each qi. Note, that since the trajectory momenta pi are not part of the basis
function definition, the convolution procedure or other choices of the momenta do
not affect the accuracy of the reexpansion. They will affect, however, the quality, i.e.
completeness, of the basis at later times: having momenta closer to the QT values
yields accurate basis representation of the wavefunction for longer times, while
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assigning all momenta equal valueswill, generally, necessitate frequent reexpansions
to attain the desired accuracy.

8.4.2.2 Numerical Examples

The QTGB method is illustrated here for the double-well potentials in one and two
dimensions. Additional model systems are described in Ref. [95].

The double-well potential is a prototypicalmodel of reactions in condensed phase.
It is an important test for any dynamics methods, as it presents a major challenge for
the trajectory-based semiclassical dynamics of light particles due to the population
transfer between thewells via tunneling at low energies: the classical trajectorieswith
energies below the barrier top cannot overcome the barrier. Some of the quantum
trajectories, however, gain energy from the QT ensemble and cross the barrier even if
their initial energies are below the barrier top. The total energy of the QT ensemble,
which fully describes ψ(x, t), is conserved, but the energy of individual QTs is not
and can be exchanged through the time-dependent quantum potential. Thus, ideally,
in a double-well potential, the QT-guided Gaussian basis can be initially localized
in the reactant well, yet describe the wavefunction density in the product well at a
later time as the guiding QTs migrate to the product well. First we consider a 1D
symmetric double-well potential modeling an electron transfer [92]:

V (x) = 1

16ζ
x4 − 1

2
x2, (8.64)

where ζ = 1.3544 a40/Eh. The barrier height is V † = 1.3544 Eh. The initial wave-
function is a Gaussian wavepacket,

ψ(x, 0) = 4

√
2α0

π
exp

(−α0(x − q0)
2 + ıp0(x − q0)

)
, (8.65)

whose parameters are {α0 = 0.5, q0 = −2.5, p0 = 0} in atomic units. The parti-
cle mass is m = 1, and the time-step is 0.001 atomic units. The Gaussian width
parameters are {α = 8, β = 2} a−2

0 . The wavefunction is localized in the left well.
The wavefunction energy is about 2/3 of the barrier height. The barrier is wide:
the distance between the two minima is around 4.7 a0. Thus, tunneling is essential
for population transfer, which presents a challenge for semiclassical methods [92].
The QTGB dynamics begins with Nb = 16 basis functions. The reexpansion is per-
formed every 1500 time-steps resulting in increase in the basis size with time to
Nb = 23. Figure 8.6 shows the wavefunction amplitude at t = {0, 1.5, 3.0, 4.5, 6.0}
a.u. in the process of population transfer with tunneling. The Gaussian centers {qi},
i.e. the QT positions, are plotted in the figure along the x-axis as functions of time
up to t = 6.0 a.u. Thanks to the continuity Eq. (8.51), their behavior along illustrates
the adaptation of the basis and the effect of reexpansions. Around t = 5.4 a.u., one
of the QTs goes around a node, i.e. ψ(x, t) = 0, associated with the interference
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Fig. 8.6 QTGB dynamics in the one-dimensional double well. The blue lines mark the positions
of the basis function centers {q}t . The vertical axis represents the wavefunction amplitude, whose
profiles are shown in red. The wavefunction has been reexpanded at t = {1.5, 3.0, 4.5} a.u. The
nodal pattern of the quantum trajectories going around the node at x ≈ 1.5 a0 is seen for t ≈ 5.4
a.u. Adapted with permission from Ref. [95]. Copyright 2016 American Chemical Society

Fig. 8.7 QTGB dynamics in
the one-dimensional double
well: the absolute value of
the autocorrelation function,
C(t) = 〈ψ2(x, t/2)〉, is
compared to the exact QM
result. Inset: the total energy
is conserved within 2% in
the course of the QTGB
dynamics. Adapted with
permission from Ref. [95].
Copyright 2016 American
Chemical Society
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effect. At the node near x = 1.5 a0 the wavefunction changes sign, leading to sin-
gularities in the quantum potential and a breakdown of the QT dynamics. In QTGB
dynamics, however, the interference pattern is reproduced through the superposition
of the basis functions. To assess the accuracy once again the autocorrelation func-
tion, a phase-sensitive quantity, is calculated for t = [0, 24] a.u. C(t) is computed
using Eq. (8.67), thus, ψ(x, t) was propagated up to t = 12 a.u. |C(t)| is shown in
Fig. 8.7. The reexpansion procedure specified by Eq. (8.58) has been carried out until
the error dropped below 5 × 10−5. The time-dependence of the total energy is given
in Fig. 8.7(inset). As discussed at the beginning of this section, in dynamics with the
time-dependent bases, the energy conservation correlates not only the accuracy of
the numerical solution to Eq. (8.37) but, importantly, with the basis completeness.
In this example, with the energy minimum of V (x) shifted to zero, the wavefunction
energy remains constant within 1 − 2% of its initial value.
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Fig. 8.8 QTGB dynamics in the two-dimensional double-well potential: positions {q1, q2} of the
basis function centers, shown as circles at t = 3.0 a.u., are superimposed on the contour plot of
V (x1, x2) given by Eq. (8.66). The horizontal and vertical axes are the x1 and x2 coordinates/center
positions in atomic units, respectively. Adapted with permission from Ref. [95]. Copyright 2016
American Chemical Society

Table 8.3 The two-dimensional double-well model. The initial wavefunction and propagation
parameters for three QTGB calculations, and the eigenfrequencies of the ground and first excited
states are given in atomic units. The parameters α0, q0, and p0 are defined in Eq. (8.65). Nb and α

are the number and width of the basis functions given in Eq. (8.52)

Wavefunction and propagation parameters

α0 q0 p0 m �t

0.5 −1.4 0.0 1 0.001

QT-guided Gaussian Bases Exact QM

α 16 16 32

Nb 10 × 10 12 × 12 16 × 16 128 × 128

Frequencies [a.u.]

νg 0.4827 0.4822 0.4830 0.4829

νe 0.7110 0.7180 0.7209 0.7163

Next, we examine the QTGB performance for a 2D potential consisting of the
double well linearly coupled to the harmonic oscillator of Ref. [96],

V (x1, x2) = x22(ξ1x
2
2 − ξ2) + 1

2
ξ3(x1 − x2)

2 + ξ 2
2

4ξ1
. (8.66)

The contour plot in Fig. 8.8 corresponds to the parameter values of ξ1 = 1, ξ2 = 4,
and ξ3 = 4. The minima of V are located at (−√

2,−√
2) and (

√
2,

√
2) a.u. The

barrier top is V † = 4 a.u.
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The wavefunction is initialized as the direct product of two Gaussians specified
by Eq. (8.65), centered at the left-hand-side potential minimum. The parameters
are listed in Table 8.3. In this model, we focus on the two lowest energy eigen-
values, extracted from the exact QM and QDGB dynamics from the spectrum of
autocorrelation functions generated on the interval t = [0, 6.0] a.u. Since the initial
wavefunction is real, the correlation function is computed as

C(t) = 〈ψ0|e−ı Ĥ t|ψ0〉 =
∞∫

−∞
ψ2(x, t/2) dx, (8.67)

and transformed into the energy domain using harmonic inversion to enhance the
resolution of the spectral features [97, 98]. The eigenvalues presented in Table 8.3
have been obtained from dynamics performed with 10 × 10, 12 × 12, and 16 × 16
basis functions. The positions of the Gaussian centers at t = 3.0 a.u. (see Fig. 8.8)
illustrate the adaptation of the basis functions, initially centered on a square grid of
positions {qi}. The frequencies of the symmetric ground and the first excited states
are listed in Table 8.3,

ν0(1) ≡ E0(1)

2π
,

and compared to the results from the conventional time-evolution on the spatial
grid of 512 × 512 equidistant points. Calculations are performed with several sets
of parameters listed in Table 8.3. The frequencies, which are very sensitive to the
quality of the correlation function, agree with the QM results quite well.

In the 2D double-well example the wavefunction reexpansion was not necessary,
since the eigenfrequencieswere obtained from short-time dynamics. In general, how-
ever, this procedure gives a practical way of reducing the basis size and of controlling
accuracy of dynamics. The wavefunction reexpansions enable the adaptation of the
stationary Gaussian bases, which can be viewed as ‘intermediate’ between the time-
dependent and time-independent representations. Several promising methods of this
type are outlined in Sect. 8.5.

8.5 Time-Sliced Dynamics With Stationary Gaussian Bases

In quantum dynamics, the algorithms for expansion and reexpansion of wavefunc-
tions in terms of Gaussian basis functions are essential for the practical treatment
of delocalized wavefunctions, as it balances the basis size, accuracy, and stability
of the time-evolution. For several Gaussian basis methods discussed in this section,
the wavefunction reexpansion procedure is central to performing the dynamics. Two
earlier methods, i.e. Matching-Pursuit Split-operator Fourier Transform [92, 99] and
Quantum Wavepacket Ab Initio Molecular Dynamics [100, 101], combine exact
short-time quantum evolution of the Gaussian basis functions with occasional reex-
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pansions of a wavefunction in a new, presumably more efficient and accurate, Gaus-
sian basis. Thematching pursuit strategy is based on growing a ‘new’ basis by adding
one basis function at a time. The functions are chosen, according to a certain algo-
rithm, to minimize the residual difference between the wavefunction representations
in the ‘old’ and the ‘new’ bases under construction, until the desired criterion is ful-
filled. Thus, the basis is adjusted according to the time-evolution of a wavefunction
encoded in the time-dependent expansion coefficients and in the parameters of the
Gaussian basis functions.

More recent adaptable Gaussian-based methods, i.e. the basis expansion leap-
ing multiconfigurational Gaussians (BEL-MCG) of Frankcombe [93] and and the
trajectory-guided time-independent Gaussian basis of Saller and Habershon [94],
forego the time-dependence of the basis functions altogether. In BEL-MCG just the
basis reexpansion, or ‘leaping’, is left. The basis is stationary between the leaps,
and is adjusted at certain intervals of time by constructing a more compact basis
to express the time-evolved wavefunction. The advantage of the approach is that
the Hamiltonian and overlap matrices are evaluated only once per each time-interval
between the leaps. In the work by Habershon and co-workers, the choice of the Gaus-
sian parameters comes from the classically evolved trajectories, sampling theWigner
transform of the initial wavefunction. The classical trajectory dynamics allows one
to anticipate where the basis functions will be needed in the course of quantum
dynamics of the wavefunction, and thus to construct an adequate basis of station-
ary Gaussians, tuned to the upcoming dynamics, though certainly not a ‘minimal’
basis for problems undergoing large amplitude motion. The Hamiltonian and over-
lap matrices are computed just once, which is a very appealing feature if the PES
evaluations are expensive. The downside is that classical trajectories may not cover
certain regions of space, such as those accessed through quantum tunneling. A very
recent development of the trajectory-guided time-independent basis is to apply this
idea to short segments of time to generate a compact adaptive basis [102]. The ‘new’
basis is constructed based on short-time classical trajectories, so the earlier deficiency
of classical versus quantum spaces is mitigated. In addition, the basis functions of
the ‘old’ basis with small expansions coefficients are removed at the reexpansion
step, accomplished using the matching pursuit algorithm, to reduce the basis size.
Figure 8.9 illustrates the method.

This time-sliced propagation schemewith basis adjustments allowed to reduce the
basis size by an order of magnitude (compared to the original method of Ref. [94])
for challenging benchmark applications – for a 4-dimensional model of photoexcited
pyrazine (shown in Fig. 8.10) and for a system tunneling in a double well coupled
to 2–20 harmonic DOFs representing the environment. In the case of pyrazine, the
time-slices are 10 fs, while the total propagation time is 150 fs long.

Another promising combination of short time-evolution and basis reduction is
Time-Sliced Thawed Gaussian Propagation Method of Batista and co-workers [51].
In this method, the basis functions evolve as TGWPs, and the segments are combined
employing the Husimi transform in the limit of highly overlapping Gaussians, at
which step functions with negligible contribution to the wavefunction are removed.
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Fig. 8.9 The trajectory guiding algorithm. a An initial wavefunction is expanded in a basis of
Gaussians (blue circles). Additional Gaussians (dashed circles) come from a sampling of short-
time classical trajectories (gray lines). b Solution of the TDSE within the full basis is followed by c
the basis reduction deploying the matching pursuit method. The cycle closes when a time-evolved
wavefunction is expressed in a new, compact basis of Gaussian functions (red circles). Adapted
with permission from Ref. [102]. Copyright 2017 American Chemical Society

Fig. 8.10 Population of the
lower diabatic S1 state,
P1(t), as a function of time,
calculated using adaptive
basis sets with varying size,
for the 4D pyrazine
Hamiltonian. The basis set
sizes given are
approximately the number of
GWPs which form the
wavefunction during each
short 10 fs propagation
period. Adapted with
permission from Ref. [102].
Copyright 2017 American
Chemical Society

The emerging overall conclusion on the Gaussian basis representation of time-
dependent wavefunctions is as follows: the basis reexpansion is a useful tool for
improving the stability and accuracy of dynamics with the time-independent or time-
dependent Gaussian bases. The basis reexpansion also helps to keep non-variational
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bases compact. The dynamics information, either from the time-dependent wave-
function itself, or from certain relevant exploratory trajectories, is beneficial for
constructing physically meaningful, small yet accurate bases.

8.6 Summary and Outlook

In this chapter, we discussedGaussian basismethods of solving the time-independent
and time-dependent SE for the nuclei. The same ideas could be used to solve the
SE for electrons, or for both nuclei and electrons. An extension to electrons may be
desirable, for example, in the presence of the time-dependent electric field of a laser.
We started by reviewing a time-dependent solution to SE for parabolic potentials,
known as the thawed Gaussian wavepacket (TGWP) [31], when used with the local
harmonic approximation to an arbitrary potential. A single complexTGWP is capable
of describingmild quantum effects, associatedwith thewavepacket delocalization. In
this regime, theTGWP is sufficiently accurate and highly efficient as demonstrated by
recent applications to the spectroscopy of oligothiophenes and ammonium inversion
[42, 43]. It is particularly appealing, when combined with on-the-fly ab initio elec-
tronic structure calculations, as information on the PES and its gradients is needed
along a single classical trajectory. Inmore challenging applications, the TGWPs have
been successfully used to represent environmental DOFs, while more accurate basis
representations are employed for the reactive modes [44, 45]. More generally, the
idea of using classical trajectory information, such as energy and phase space anal-
yses, to construct compact efficient basis representations has been incorporated into
many exact QM dynamics methods, including time-independent, time-dependent,
and in between approaches.

Out of the time-independentmethods, i.e. those based onHamiltonianmatrix diag-
onalization, we have reviewed a quasi-random distributed Gaussian bases (QDGBs).
The advantage of QDGB is that it is correlated and adapted to a given PES. Check-
ing the convergence of eigenvalues, while the basis is constructed, is an advan-
tage for high-dimensional studies whose feasibility is determined by the basis size.
Some other notable developments of the Gaussian basis methodology in time-
independent context include phase space Gaussians on the von Neumann lattice with
periodic boundary conditions [103, 104], and the wavelets representation obtained
through canonical orthogonalization of the coherent state Gaussians [105]. Sub-
sequent advances of the wavelets methodology (the truncation scheme and the
momentum-symmetrized Gaussian basis) [106, 107] culminate in applications to
acetonitrile (CH3CN) and benzene, yielding thousands of eigenenergies [108, 109].
In the study of the benzene molecule, a 30-DOF problem, 500,000 eigenenergies
below 6500 cm−1 were converged within 15 cm−1. The approach is implemented in
a massively parallel code SwitchBLADE, which is available for general use.1

1Interested researchers should send their request to Bill Poirier at Bill.Poirier@ttu.edu.
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Next, we described the construction of compact time-dependent Gaussian bases
(GB), guided by the quantum-like trajectories (QT). From the properties of QTs, it
follows that the basis functions track the flow of the probability density, providing
in a sense the optimal in coordinates space time-dependent grid, and adapt to the
dynamics of a specific wavefunction. Therefore, for problems characterized by large
amplitude motion in selected DOFs, the scaling properties of QTGB with the sys-
tem size should be superior to those of conventional time-independent bases. The
time-evolution of QTs in the exact limit of strongly quantum dynamics is, generally,
unstable, due to singular features in the quantum potential, responsible for the for-
mal exponential scaling of complexity with the system size [86]. Yet the trajectory
framework is useful for quantum dynamics close to the classical regime, appropriate
for the nuclei of polyatomic systems. In the QTGB approach, which is developed for
this regime, the QTsmove according to the momentum reconstructed from the wave-
function expanded in a Gaussian basis. Moreover, for real Gaussian basis functions,
one can use modified QT momenta without making approximations, to improve the
stability of propagation. The ensuing loss of efficiency is compensated by occasional
reexpansions, performed to maintain the completeness of the basis in time. The
total wavefunction energy, which is rigorously conserved in the limit of a complete
time-dependent basis, serves as a convenient measure of the basis completeness and
a criterion for the wavefunction reexpansion. So far, the QTGB method has been
tested on low-dimensional model problems. We plan to extend QTGB to real Gaus-
sians with adjustable width, and to improve the reexpansion procedure using ideas of
matching pursuit and exploratory trajectory dynamics of Refs. [92, 93, 102]. Though
seemingly technical, thewavefunction reexpansion is at the core of the ‘intermediate’
between the time-dependent and time-independent Gaussian bases, i.e. the station-
ary Gaussian bases adapted to the evolving wavefunction at the reexpansion stage.
All in all, non-variational dynamics-guided Gaussian bases, combined with recent
advances in the on-the-fly electronic structure calculation, is a promising practical
approach to perform quantum dynamics of large molecular systems.
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