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Abstract. In this paper, we present a procedure for guaranteed con-
trol synthesis for nonlinear sampled switched systems which relies on
an adaptive state-space tiling procedure. The computational complexity
of the procedure being exponential in the dimension of the system, we
explore the use of cosimulation for improving computation times and
the scalabity of the method. We apply the procedure on a scalable case
study of various dimensions, which is, to our knowledge, a significant step
towards the scalabity of formal control synthesis methods with respect
to the state of the art.
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1 Introduction

Model-based design [20,27] is an effective approach to tackle the increasing com-
plexity of cyber-physical systems. In this approach, physical systems, e.g., plant,
are usually modelled by differential equations while computer parts are described
by transition systems. Combining these models allows to simulate the behaviour
of the whole model of the system in order to predict its behaviour to avoid faults
or to synthesize control algorithms.

Safety critical cyber-physical systems require strong guarantees in their exe-
cution in order to assess the safety of the mission or the users. Formal meth-
ods can produce rigorous evidence for the safety of cyber-physical systems, i.e.,
based on mathematical reasoning. For example, reachability analysis is an effi-
cient technique to compute the set of reachable states of cyber-physical systems.
Once, knowing the set of reachable states, the avoidance of bad states can be
formally proved. The main feature of reachability analysis is its ability to prop-
agate sets of values through dynamical systems instead of performing several
numerical simulations.
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One weakness of formal verification methods, in particular, reachability anal-
ysis, is the scalability with respect to the dimension (number of states) of cyber-
physical systems. Applying a cosimulation approach to reachability analysis is
attractive since it could broaden the class of problems which can be solved with
this technique. A set-based approach of cosimulation to solve differential equa-
tions has been defined [21], we explore here its use in the context of formal
control synthesis.

Contribution. We propose an extension of a controller synthesis algorithm for
a particular class of cyber-physical systems, a.k.a. nonlinear sampled switched
systems, it relies on a cosimulation approach for the required reachability anal-
ysis. A formal definition of the set-based cosimulation is given and then used in
order to compute a safe controller for a model of an apartment with a controlled
heating.

Related Work. Most of the recent work on set-valued integration of nonlinear
ordinary differential equations is based on the upper bounding of the Lagrange
remainders either in the framework of Taylor series or Runge-Kutta schemes
[2,3,5,7,9,10,12,24]. Sets of states are generally represented as vectors of inter-
vals, a.k.a. boxes, and are manipulated through interval arithmetic [25] or affine
arithmetic [11]. Taylor expansions with Lagrange remainders are also used in
the work of [3], which uses polynomial zonotopes for representing sets of states
in addition to interval vectors.

The guaranteed or validated solution of ODEs using interval arithmetic is
studied in the framework of Taylor series in [10,13,22,25,26], and Runge-Kutta
schemes in [2,5,6,14,18]. The former is the oldest method used in interval analy-
sis community because the expression of the remainder of Taylor series is simple
to obtain. Nevertheless, the family of Runge-Kutta methods is very important
in the field of numerical analysis. Indeed, Runge-Kutta methods have several
interesting stability properties which make them suitable for an important class
of problems. The recent work [1] implements Runge-Kutta based methods which
prove their efficiency at low orders and for short simulations.

Cosimulation has been extensively studied in the past years [16,17], and has
been reported in a number of industrial applications (see [16] for an extensive
list domain applications and associated publications). However, most of the uses
and tools developed rely on the FMI/FMU standard [4,8,28], which do not allow
guaranteed simulation. To our knowledge, guaranteed cosimulation of systems
has never been applied on controller synthesis method.

Organization of the Paper. Section 2 presents the mathematical model of sam-
pled switched systems as well as an algorithm to synthesize a safe controller.
Set-based simulation and its extension to cosimulation are presented in Sect. 3.
Experimental results are presented in Sect. 4 before concluding in Sect. 5.
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2 Control Synthesis of Switched Systems

A presentation of the mathematical model of sampled switched systems is given
in Sect. 2.1. An algorithm to synthetize safe controllers is described in Sect. 2.2.

2.1 Switched Systems

Let us consider nonlinear switched systems such that

ẋ(t) = fσ(t)(x(t), d(t)) (1)

is defined for all t ≥ 0, where x(t) ∈ R
n is the state of the system, σ(·) : R

+ −→ U
is the switching rule, and d(t) ∈ R

m is a bounded perturbation. The finite set
U = {1, . . . , N} is the set of switching modes of the system. We focus on sampled
switched systems, given a sampling period τ > 0, switchings will periodically
occur at times τ , 2τ , . . . . Switchings depend only on time, and not on states,
this is the main difference with hybrid systems.

The switching rule σ(·) is thus piecewise constant, we will consider that σ(·)
is constant on the time interval [(k − 1)τ, kτ) for k ≥ 1. We call “pattern” a
finite sequence of modes π = (i1, i2, . . . , ik) ∈ Uk. With such a control pattern,
and under a given perturbation d, we will denote by x(t; t0, x0, d, π) the solution
at time t ≥ t0 of the system

ẋ(t) = fσ(t)(x(t), d(t)),
x(t0) = x0,

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [t0 + (j − 1)τ, t0 + jτ).
(2)

We address the problem of synthesizing a state-dependent switching rule
σ̃(·) for Eq. (2) in order to verify some properties. This important problem is
formalized as follows:

Problem 1 (Control Synthesis Problem). Let us consider a sampled switched
system as defined in Eq. (2). Given three sets R, S, and B, with R ∪ B ⊂ S and
R ∩ B = ∅, find a rule σ̃(·) such that, for any x(0) ∈ R

– τ -stability1: x(t) returns in R infinitely often, at some multiples of sampling
time τ .

– safety : x(t) always stays in S\B.

In this problem, S is a safety set in which the state should always stay. The
set R is a recurrence set, in which the state will return infinitely often, it is used
to make the computation of a safety controller easier. The set B is an optional
obstacle, or avoid set. Under the above-mentioned notation, we propose the main
procedure of our approach which solves this problem by constructing a rule σ̃(·),

1 This definition of stability is different from the stability in the Lyapunov sense.
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such that for all x0 ∈ R, and under the unknown bounded perturbation d, there
exists π = σ̃(·) ∈ Uk for some k such that:

⎧
⎪⎨

⎪⎩

x(t0 + kτ ; t0, x0, d, π) ∈ R

∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) ∈ S

∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) /∈ B.

Such a law permits to perform an infinite-time state-dependent control. The
synthesis algorithm is described in Sect. 2.2 and involves guaranteed set-based
integration presented in Sect. 3, the main underlying tool is interval analysis [25].

2.2 Controller Synthesis Algorithm

Before introducing the algorithms to synthetize controller of sampled switched
systems, some preliminary definitions will be introduced.

Definition 1. Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈

Uk. The successor set of X via π, denoted by Postπ(X), is the image of X
induced by application of the pattern π, i.e., the solution at time t = kτ of

ẋ(t) = fσ(t)(x(t), d(t)),
x(0) = x0 ∈ X,

∀t ≥ 0, d(t) ∈ [d],
∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ).

(3)

Note that Postπ(X) is usually hard to compute so an over-approximation will
be computed instead in order to guarantee rigourous results.

Definition 2. Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈

Uk. We denote by Tubeπ(X) the union of boxes covering the trajectories of
IVP (3), which construction is detailed in Sect. 3.

Principle of the Algorithm. We describe the algorithm solving the con-
trol synthesis problem for nonlinear switched systems (see Problem 1, Sect. 2.1).
Given the input boxes R, S, B, and given two positive integers P and D, the algo-
rithm provides, when it succeeds, a decomposition Δ of R of the form {Vi, πi}i∈I

verifying the properties:

–
⋃

i∈I Vi = R,
– ∀i ∈ I, Postπi

(Vi) ⊆ R,
– ∀i ∈ I, Tubeπi

(Vi) ⊆ S,
– ∀i ∈ I, Tubeπi

(Vi)
⋂

B = ∅.

Decomposition Δ = {Vi, πi}i∈I is thus a set of boxes (Vi) covering R, each
box being associated with a control pattern (πi), and I is a set of indexes used
for listing the covering boxes. The sub-boxes {Vi}i∈I are obtained by repeated



322 A. Le Coënt et al.

bisection to produce a paving of R. At first, function Decomposition calls sub-
function Find Pattern which looks for a pattern π of length at most P such
that Postπ(R) ⊆ R, Tubeπ(R) ⊆ S and Tubeπ(R)

⋂
B = ∅. If such a pattern π

is found, then a uniform control over R is found (see Fig. 1(a)). Otherwise, R is
divided into two sub-boxes V1, V2, by bisecting R w.r.t. its longest dimension.
Patterns are then searched to control these sub-boxes (see Fig. 1(b)). If for each
Vi, function Find Pattern manages to get a pattern πi of length at most P
verifying Postπi

(Vi) ⊆ R, Tubeπi
(Vi) ⊆ S and Tubeπi

(Vi)
⋂

B = ∅, then it
is a success and algorithm stops. If, for some Vj , no such pattern is found, the
procedure is recursively applied to Vj . It ends with success when every sub-box of
R has a pattern verifying the latter conditions, or fails when the maximal depth
of decomposition D is reached. The algorithmic form of functions Decomposition
and Find Pattern are given in Algorithm 1 and Algorithm 2 respectively.

Fig. 1. Principle of the bisection method.

Algorithm 1. Algorithmic form of Function Decomposition.
Function: Decomposition(W, R, S, B, D, P )

Input: A box W , a box R, a box S, a box B, a degree D of bisection, a length P
of input pattern

Output:〈{(Vi, πi)}i, T rue〉 or 〈 , False〉

(π, b) := Find Pattern(W, R, S, B, P )
if b = True then

return 〈{(W, π)}, T rue〉
else

if D = 0 then
return 〈 , False〉

else
Divide equally W into (W1, W2)
for i = 1, 2 do

(Δi, bi) := Decomposition(Wi, R, S, B, D − 1, P )
end for
return (

⋃
i=1,2 Δi,

∧
i=1,2 bi)

end if
end if
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Our control synthesis method being well defined, we introduce the main
algorithm of this paper, stated as follows:

Proposition 1. Algorithm1 with input (R,R, S,B,D, P ) returns, when it suc-
cessfully terminates, a decomposition {Vi, πi}i∈I of R which solves Problem 1.

Proof. Let x0 = x(t0 = 0) be an initial condition belonging to R. If the decom-
position has terminated successfully, we have

⋃
i∈I Vi = R, and x0 thus belongs

to Vi0 for some i0 ∈ I. We can thus apply the pattern πi0 associated to Vi0 . Let
us denote by k0 the length of πi0 . We have:

– x(k0τ ; 0, x0, d, πi0) ∈ R,
– ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) ∈ S,
– ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) /∈ B.

Let x1 = x(k0τ ; 0, x0, d, πi0) ∈ R be the state reached after application of πi0

and let t1 = k0τ . State x1 belongs to R, it thus belongs to Vi1 for some i1 ∈ I,
and we can apply the associated pattern πi1 of length k1, leading to:

– x(t1 + k1τ ; t1, x1, d, πi1) ∈ R,
– ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) ∈ S,
– ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) /∈ B.

We can then iterate this procedure from the new state

x2 = x(t1 + k1τ ; t1, x1, d, πi1) ∈ R.

This can be repeated infinitely, yielding a sequence of points belonging to R
x0, x1, x2, . . . attained at times t0, t1, t2, . . . , when the patterns πi0 , πi1 , πi2 , . . .
are applied.

We furthermore have that all the trajectories stay in S and never cross B:

∀t ∈ R
+,∃k ≥ 0, t ∈ [tk, tk+1]

and
∀t ∈ [tk, tk+1], x(t; tk, xk, d, πik) ∈ S, x(t; tk, xk, d, πik) /∈ B.

The trajectories thus return infinitely often in R, while always staying in S and
never crossing B. �
Remark 1. Note that it is possible to perform reachability from a set R1 to
another set R2 by computing Decomposition(R1, R2, S,B,D, P ). The set R1 is
thus decomposed with the objective to send its sub-boxes into R2, i.e., for a
sub-box V of R1, patterns π are searched with the objective Postπ(V ) ⊆ R2.

Remark 2. The search space of control patterns is the set of patterns of length
at most P , i.e. U ∪U2 ∪ . . . UP . In a practical way, function Find Pattern tests
control patterns of length 1, then control patterns of length 2, iteratively up to
length P . Patterns of length i are generated as combinatorial i-tuples. The set of
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Algorithm 2. Algorithmic form of Function Find Pattern.
Function: Find Pattern(W, R, S, B, P )

Input:A box W , a box R, a box S, a box B, a length P of input pattern
Output:〈π, True〉 or 〈 , False〉

for i = 1 . . . P do
Π := U i (the set of input patterns of length i)
while Π is non empty do

Select π in Π
Π := Π \ {π}
if Postπ(W ) ⊆ R and Tubeπ(W ) ⊆ S and Tubeπ(W )

⋂
B = ∅ then

return 〈π, True〉
end if

end while
end for
return 〈 , False〉

patterns of length i is U i, its size is N i. The complexity of function Find Pattern
is thus exponential with the length of control patterns P . The value of P leading
to successful decompositions is unknown and depends on each system, but in
most cases P = 4 leads to successful control synthesis. Longer sequences might
be required if the dynamics is slow.

3 Set-Based Cosimulation

In this section, we explain how the Post and Tube operators can be computed in
a distributed way through a cosimulation approach. We first explain the principle
of interval analysis and standard guaranteed integration, we then suppose that
the system can be written as the composition of components and explain our
method for guaranteed cosimulation. In order to ease the reading of this section,
we omit the notation of the switched modes σ and control sequences π associated
to the Post and Tube operators.

Before presenting the details of interval analysis and cosimulation, let us
introduce the following time periods:

– τ is the switching period,
– H is the communication period,
– h is the simulation period (or integration time-step).

We suppose that h ≤ H ≤ τ , H is a multiple of h, and τ is a multiple of
H. Consider H = kh and τ = KH with k,K ∈ N>0, and an initial time
t0. On time intervals [t0, t0 + τ), the switching mode is constant. In case of
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cosimulation a model of cyber-physical systems is broken down into different
Simulation Units (SU). Those SUs will exchange information at periodic rate,
i.e., at times t0, t0 + H, . . . , t0 + KH.

3.1 Interval Analysis

In this section, the main set-based tools that are required in this paper are
presented.

Interval Artithmetic. The simplest and most common way to represent and
manipulate sets of values is with intervals, see [25]. An interval [xi] = [xi, xi]
defines the set of reals xi such that xi ≤ xi ≤ xi. IR denotes the set of all
intervals over reals. The size or the width of [xi] is denoted by w([xi]) = xi −xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1]+[x2] = [x1+x2, x1+x2], encloses the image of the sum
function over its arguments. In general, an arithmetic operation � = {+,−,×,÷}
is associated to its interval extension such that:

[a] � [b] ⊂ [min{a � b, a � b, a � b, a � b},max{a � b, a � b, a � b, a � b}].

An interval vector or a box [x] ∈ IR
n, is a Cartesian product of n intervals.

The enclosing property basically defines what is called an interval extension or
an inclusion function.

Definition 3 (Inclusion function). Consider a function f : R
n → R

m, then
[f ] :IRn → IR

m is said to be an extension of f to intervals if

∀[x] ∈ IR
n, [f ]([x]) ⊇ {f(x),x ∈ [x]}.

It is possible to define inclusion functions for all elementary functions such as ×,
÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain: all
occurrences of the real variables are replaced by their interval counterpart and all
arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function
may also be used (see [19] for more details).

Combining the inclusion function and the rectangle rule, integral can be
bounded following:

∫ b

a

f(x) dx ∈ (b − a).[f ]([a, b]).

Set-Based Simulation. Also named validated simulation or reachability, set-
based simulation aims to compute the reachable tube of an Initial Value Problem
with Ordinary Differential Equation (IVP-ODE) with a set-based approach and
validated computations.
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When dealing with validated computation, mathematical representation of
an IVP-ODE is as follows:

⎧
⎪⎨

⎪⎩

ẏ(t) = f(t, y(t), d(t))
y(0) ∈ [y0] ⊆ R

n

d(t) ∈ [d] ⊆ R
m.

(4)

We assume that f : R × R
n → R

n is continuous in t and globally Lipschitz
in y, so Eq. (4) admits a unique solution for a given continuous perturbation
trajectory. We furthermore suppose that d is bounded in the box [d].

The set (expressed as a box) [y0] of initial conditions is usually used to
model some (bounded) uncertainties. The set [d] is used to model (bounded)
perturbations. For a given initial condition y0 ∈ [y0], and a given perturbation
d ∈ [d], the solution at time t > 0 when it exists is denoted y(t; y0, d). The
goal, for validated numerical integration methods, is then to compute the set of
solutions of Eq. (4), i.e., the set of possible solutions at time t given the initial
condition in the set of initial conditions [y0] and the perturbation lying in [d]:

y(t; [y0], [d]) = {y(t; y0) | y0 ∈ [y0], d(t) ∈ [d]}. (5)

Validated numerical integration schemes, exploiting set-membership frame-
work, aims at producing the solution of the IVP-ODE that is the set defined in
Eq. (5). It results in the computation of an over-approximation of y(t; [y0], [d]).

The use of set-membership computation for the problem described above
makes possible the design of an inclusion function for [y](t; [y0], [d]), which is an
over-approximation of y(t; [y0], [d]) defined in Eq. (5). To do so, let us consider a
sequence of time instants t1, . . . , tK with ti+1 = ti +h and a sequences of boxes
[y1], . . . , [yK ] such that y(ti+1; [yi], [d]) ⊆ [yi+1], ∀i ∈ [0,K − 1] are computed.
From [yi], computing the box [yi+1] is a classical 2-step method (see [23]):

– Phase 1: compute an a priori enclosure Ph([yi], [d]) of the set {y(tk; yi, d) | tk ∈
[ti, ti + h], yi ∈ [yi], d ∈ [d]}, such that y(tk; [yi], [d]) is guaranteed to exist;

– Phase 2: compute a tight enclosure of the solution [yi+1] at time ti+1.

The a priori enclosure Ph([yi], [d]) computed in Phase 1 is referred to as a Picard
box, since its computation relies on the Picard-Lindelöf operator and the Picard
theorem (see [2,21] for more details). We omit the theoretical details, but a suc-
cessful computation of this box ensures the existence and uniqueness of solutions
over the time interval [ti, ti + h] for the given box of initial conditions [yi] and
perturbation box [d]. Two main approaches can be used to compute the tight
enclosure in Phase 2. The first one, and the most used, is the Taylor method
[25,26]. The second one, more recently studied, is the validated Runge-Kutta
method [2]. Guaranteed integration or reachability analysis consists in comput-
ing a sequence of boxes that enclose the state of the system on a given time
interval. For a given switched mode (the notation being omitted) and pertur-
bation set [d] on time interval [t, t + τ ], given a time integration period h such
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that τ = Kh, (k = 1), the Tube operator is computed as the union of enclosures
Ph([yi], [d]):

Tube([y0]) =
⋃

i=1,...,K

Ph([yi], [d]).

The post operator is the tight enclosure given at the final time:

Post([y0]) = [yK ].

3.2 Cosimulation of Reachable Sets

The complexity of the computation of the Picard boxes, as well as the tightening
of the solutions, is exponential in the dimension of the differential equation
considered. As a result, reachability analysis lacks scalability with respect to the
dimension of the system. In order to break the exponential complexity of those
computations, a cosimulation approach can be used with the aim of computing
these objects only on parts of the system.

Cosimulation aims at simulating components of a coupled system separately.
In brief, the principle is to enable simulation of the coupled system through
the composition of simulators, or simulation units (SUs) [17], each SU being
dedicated to only a component of the system. SUs exchange information at
some given communication times in order to ensure the simulation error does
not grow uncontrollably.

Let us suppose that the dynamics can be decomposed as follows:

ẋ1 ∈ f1(t, x1, u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2, u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm, um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm, u1, . . . , um) = 0,

where the state x is decomposed in m components x = (x1, . . . , xm), for all
j ∈ {1, . . . , m}, xj ∈ Xj , X1 × · · · × Xm = R

d, and L is a coupling function
between the components. The coupling condition L(x1, . . . , xm, u1, . . . , um) = 0
should hold at all time. From now on, we use index j ∈ {1, . . . , m} to denote
subsystem j, and index i to denote a time interval starting at ti. Note that, in
order to increase the accuracy of the method, the decomposition should be made
so as to minimize the number of shared variables between sub-systems.

In the most general case, coupling L is an algebraic condition. For our appli-
cations, the coupling is supposed to be given explicitly, i.e, uj is given as function
of the other state variables: uj = Kj(x1, . . . , xm). Cosimulation then consists in
computing Post operators for each sub-system separately, and doing a cross
product to obtain the global state. To ensure a guaranteed computation, the
inputs uj can be considered as bounded perturbations. The difficulty lies in the
determination of the size of the set in which the perturbations evolve, since it
has to be determined before performing the simulation of the other sub-systems.
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This can be done using the cross-Picard operator, introduced in [21]. The pur-
pose of the cross-Picard operator is to over-approximate the solutions of all the
sub-systems over a given time interval (the communication period, also called
macro-step), using only local computations.

To compute these sets, we start by guessing a rough over-approximation
[pj ] of the solutions xj over the next macro-step. This gives some rough over-
approximations [rj ] = Kj([p1], . . . , [pm]) of the perturbations uj . We then com-
pute local Picard boxes iteratively, until the proof of validity of the approxima-
tions is obtained for all sub-systems.

More precisely, let us denote by PH
j ([xj ], [uj ]) the enclosure of the set of

solutions of subsystem j over the time-interval [t, t + H]: {xj(tk;xj , uj) | tk ∈
[t, t + H], xj ∈ [xj ], uj ∈ [uj ]}, where [xj ] and [uj ] are the boxes of initial condi-
tions and perturbation for sub-system j. If we can prove that for all sub-systems
j ∈ {1, . . . , m}, PH

j ([xj ],Kj([p1], . . . , [pm])) � [pj ], then, by application of the
Picard theorem, existence and uniqueness of global solutions is ensured for the
time interval [t, t + H]. Fortunately, this condition is in practice easily met by
application of a fixed point algorithm that tightens the rough initial guesses [pj ]
(see [21]). Once the Picard boxes are computed and proved safe, each sub-system
j can, in parallel, compute its own solution safely on the time interval [t, t + H]
by considering uj as a perturbation lying in Kj([p1], . . . , [pm]). We denote the
cross-Picard operator as the computation of the validated Picard boxes, the
result being given as the cross-product of the Picard boxes.

Our approach for guaranteed cosimulation of the Post operator over the
interval [t, t + τ ] is thus summarized as follows:

1. Compute an over-approximation of the solutions on time interval [t, t + H]
(compute the cross-Picard operator),

2. Advance simulation of all subsystems in parallel (using a time step h) until
time t + H, the inputs are considered as bounded perturbations in the sets
returned in Step 1,

3. Update initial conditions and input values,
4. Repeat on interval [t + H, t + 2H] until [t + τ − H, t + τ ].

3.3 Discussion on Meta-parameters

The different time periods involved in the synthesis and cosimulation procedures
(h, H, and τ) play a crucial role in the accuracy of the reachability analysis, and
thus in the success of the control synthesis. In mere words, a reachability analysis
is performed each time a control sequence is tested. Improving the speed of the
reachability analysis drastically improves control synthesis computation times,
provided that the accuracy is high enough to allow control synthesis.

One of the key aspects is that the frequency at which we update the initial
conditions and perturbation sets (the communication frequency 1/H) should be
as small as possible in order to increase the speed of the reachability analy-
sis, but at the cost of the accuracy of cosimulation. The speed increase when
using fewer communications is due to the fact that each communication time
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involves the application of a fixed-point algorithm to validate the perturbation
sets, thus taking a non negligible amount of computation. However, using shorter
communication periods means that the perturbation sets are smaller, and the
cosimulation thus leads to tighter reachable tubes, making the synthesis eas-
ier. The largest communication period we can consider is actually the switching
period H = τ . If such a large communication period allows enough accuracy for
control synthesis purposes, then this would lead to the best computation time
gains. However, in practice, the switching period can be too large to avoid com-
munication between switching times. If a communication is necessary between
switchings, then, in order to maximize the use of the data exchange, communi-
cation frequency should be a multiple of the switching frequency.

We would like to point out that the integration time step h can actually be
different for each simulation unit (for reachability analysis of separate compo-
nents, once the perturbation sets are validated). The integration methods can
be essentially different since we can even consider implicit and explicit methods
in parallel. The only requirement is that the perturbation sets are proved safe
(with the use of Picard operators). This means that complex systems involving
stiff and nonstiff dynamics, or linear and nonlinear dynamics, can be divided in
such a way that the computation power is dedicated to the more difficult parts
to integrate. In our applications, we illustrate the scalability property of the
proposed method, but industrial applications involving more complex dynamics
could show even better improvements.

4 Experiments

4.1 Case Study

This case study is based on a simple model of a two-room apartment, heated
by a heater in one of the rooms (adapted from [15]). Initially of dimension of
the state space is 2, the case study is made scalable by concatenating two-room
apartments in line, so that each room exchanges heat with its neighbouring
rooms, and every other room is equipped with a heater.

In this example, the objective is to control the temperature of all rooms.
There is heat exchange between neighbouring rooms and with the environment.
The continuous dynamics of the system, the temperature, is given by

˙⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

+ Bu.
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The dimension n is supposed to be even n = 2m. The non null coefficients
ai,j of matrix A are:

a1,1 = −αr − αe − αfu1

a2i+1,2i+1 = −2αr − αe i = 1, . . . ,m − 1
a2i,2i = −2αr − αe − αfui i = 1, . . . ,m − 1

a2m,2m = −αr − αe

ai,i+1 = ai+1,i = αr i = 1, . . . , 2m − 1.

The non null coefficients bi,j of the input matrix Bu are:

b2i−1 = αeTe + αfTfui+1 i = 1, . . . ,m

b2i = αeTe i = 1, . . . , m.

Here Ti for i = 1, . . . , 2m is the temperature of room i, and the state of the system
corresponds to T = (T1, . . . , Tn). The control modes are given by variables uj

for j = 1, . . . ,m, each can take the values 0 or 1, depending on whether the
heater in room 2j −1 (for j = 1, . . . ,m) is switched off or on. Hence, the number
of switched modes is 2m. Temperature Te corresponds to the temperature of
the environment, and Tf to the temperature of the heaters. The values of the
different parameters are as follows: αr = 5×10−2, αe = 5×10−3, αf = 8.3×10−3,
Te = 10 and Tf = 50.

The control objective is to ensure τ -stability of the temperature in R =
[19, 21] × · · · × [19, 21], while ensuring safety in S = [18, 22] × · · · × [18, 22], with
a switching period τ = 10. We don’t consider any obstacle B in this example,
the maximal length of patterns is set to P = 4, and the maximum depth of
decomposition is D = 2.

4.2 Experimental Results

In order to validate our approach, we synthetize the control rule for the problem
given in Sect. 4.1 for different number of rooms n = 2, 4, 6, 8. The results are
gathered in Table 1. All the simulations are performed with the classical method
RK4, an explicit Runge-Kutta method with four stages at the fourth order. Our
choice for this method is based on its fame and on the fact that to find a control
for the case study, an order greater than two is needed. Cosimulation consists in
m simulations of systems of dimension two (three with an additional dimension
for time). More precisely, if m ≥ 3, system

˙⎛
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⎜
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for n = 2m, is rewritten as m systems:

˙(
T1

T2

)

= A1

(
T1

T2

)

+ B1
u + D1

(
T3

)
,

˙(
T3

T4

)

= A2

(
T3

T4

)

+ B2
u + D2

(
T2

T5

)

,

. . .
˙(

T2m−1

T2m

)

= Am

(
T2m−1

T2m

)

+ Bm
u + Dm

(
T2m−2

)
,

where Di is a disturbance matrix composed of coefficients of A. One can see that
each subsystem is perturbed by the adjacent rooms (there is one adjacent room
for the first and last system, and two adjacent rooms for the others). There is
one communication per switching period, meaning that H = 5 for τ = 10.

These simulations are also performed in parallel using Open Multi-Processing
API for Linux. Experiments are done on a bi-processor Intel(R) Xeon(R) CPU
E5-2620 v3 @ 2.40 GHz with 12 cores each. A time out (T.O.) is fixed at three
days, i.e., 4320 min. Computation times seem important but the results are guar-
anteed and have to be computed only one time and offline.

Table 1. Results of synthesis for problem given in Sect. 4.1: computation times, in min-
utes, for centralized dynamics, with cosimulation and with parallelized cosimulation.

Number of rooms (n) Centralized Cosimulation Cosimulation in parallel

2 0m43 – –

4 2m28 2m30 1m58

6 185m 80m 42m

8 T.O 3606m 2072m

4.3 Discussion

Our method shows its efficiency, even with only 4 rooms if parallelization is used.
A control rule can be synthetized for 8 rooms with cosimulation while no result
can be obtained without our approach before time out. Cosimulation allows
a very straightforward parallelization which reduces significantly computation
time. Our experiments revealed the necessity of using one communication per
switching period for this case study. Using none (communicating only at the
beginning of a switching period) led to sets too wide for ensuring τ -stability.

5 Conclusion

In this paper, we presented a procedure for control synthesis that relies heavily on
(guaranteed) reachability computations, its scalability being limited by the com-
plexity of set-based integration. We proposed to use a guaranteed cosimulation
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to improve the control synthesis computation times. We illustrate the scalability
of our method on a scalable case-study that shows the efficiency of our approach.
As of now, some expertise is required for choosing a communication frequency
that allows computation time gains as well as successful control synthesis. We
would like to explore the possibility of automating the determination of a good
communication frequency in the context of switching systems.

The current implementation of the procedure allows to simulate subsystems
in parallel, but the cross-Picard computation (involving repeated applications
of Picard operators) is still sequential due to memory management issues. Our
future work will be devoted to the development of a parallel implementation of
the cross-Picard computation. Such an implementation would hopefully mitigate
the cost of communication times in the present procedure.
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