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Abstract. This paper presents a formal model for the representation
of relational information in semantic memory and for its retrieval as a
reaction to triggering questions which are normally used in experimental
psychology. Information is represented using the Behaviour and Reason-
ing Description Language (BRDL), while the engine for its retrieval is
given by the real-time extension of the Maude rewrite language. Maude’s
capability of specifying complex data structures as many sorted algebras
and the time features of Real-Time Maude are essential in providing a
means for formalising alternative human memory models. Furthermore,
using Maude’s object-oriented modelling style, aspects of such alterna-
tive memory models may be implemented in separate, interchangeable
modules, thus providing a way for their comparison through in silico
experiments. Finally, the results of in silico experiments may be con-
trasted with the data produced through lab experiments and natural
observations to yield, on the one hand, a calibration of the emulation
engine underlying BRDL and, on the other hand, important insights
into alternative theories of cognition.

Keywords: Cognitive science · Behaviour and Reasoning Description
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1 Introduction

Since the end of the 1960 s, experimental psychology has shown that semantic
memory has a complex network-like structure and that information is retrieved
by ‘navigating’ such a network while following relationships between the stored
representations of concepts. Collins and Quillian’s experiments [10] have shown
that the time to retrieve information is proportional to how far we need to
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navigate the network to find the requested information and support a hierarchi-
cally organised memory model. Such a hierarchical model allows us to explain
human understanding of simple propositions about class membership and prop-
erty statement as well as the different retrieval times needed to understand a
given proposition or to answer a given question.

After Qullian’s hierarchical network model [21], further work was carried
out in the 1970 s by replacing the hierarchical structure assumption with a gen-
eral network representing concept relatedness [9], for dealing with more formal
propositions involving universal quantification [11,17] and by focusing on the
role of connotative relationships between conceptual components of propositions
[22]. The last approach resulted in set-theoretical models, such as the one devel-
oped by Smith et al. [23]. Although some researchers argued that these two
different classes of models, network-based and set-theoretical, are formally iso-
morphic [13], experiments conducted in the 1980 s on the semantic distance in
the retrieval of conceptual relationships showed that both classes of models may
be fallacious in some contexts that discriminate between them [3].

The strong emphasis on models for the representation of information in
semantic memories continued throughout the 1990 s and 2000 s with little success
in producing convincing computational models of the retrieval of the represented
relations. Even more recent distributed models such as LISA [12], cognitive archi-
tectures such as ATC-R [1] and connectionist models [15] provide only limited
retrieval mechanism, and mostly as part of inferential or analogical reasoning
engines. Holyoak uses the term ‘retrieval gap’ to denote this limitation of the
current computational models and observes that there is no generally accepted
model yet [14].

The purpose of our work is the development of an approach in which differ-
ent models of semantic memory can be formally described, executed to perform
in silico experiments and formally analysed, with the objective of comparing
different alternative models of semantic memory. In previous work, we have
developed modelling languages for this purpose. The Human Behaviour Descrip-
tion Language (HBDL) [5,6] aims at the modelling of automatic and deliberate
human behaviour while interacting with an environment consisting of heteroge-
nous physical components. The Behaviour and Reasoning Description Language
(BRDL) [7] originates from and extends HBDL with the linguistic constructs to
specify reasoning goals, inference rules and unsolved problems.

Recently we have developed a cognitive engine using the Maude rewrite sys-
tem [16,19] and its real-time extension, Real-Time Maude [18,20], to execute
HBDL models of human behaviour [5,6] and BRDL models that emulate human
reasoning [8]. All these implementations are based on direct access to the infor-
mation in semantic memory. Human behaviour is modelled in terms of basic
activities whose representation is stored in semantic memory and which are
directly triggered by the content of short-term memory (STM) and the percep-
tions available in the environment. Human reasoning is modelled in terms of
inference rules whose representation is stored in semantic memory and which
are directly triggered by the presence of its premises in STM.
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A similar approach to ours was developed by Broccia et al. [4], who, driven by
the specific objective of modelling human multitasking, used Real-time Maude
to extend our initial untimed framework [5]. In their work, however, time is
used to model non-cognitive aspects, such as the duration of the task, which is
an interface-dependent outcome of the interaction process, and external aspect,
such as the delay due to the switching from one task to another. In contrast to
Broccia et al. we focus on the human component and model the duration of the
mental process, which is an important aspect of human cognition.

In this paper we consider the subset of BRDL that models, on the one hand,
propositions that express facts of the real world and questions related to such
facts and, on the other hand, the representation of such facts in semantic memory.
We develop a modular implementation of such a subset of BRDL using Real-
Time Maude, thus providing an emulation of the process of information retrieval
from semantic memory to be used to carry out in silico experiments.

The rest of this paper is organised as follows. Section 1.1 provides a brief
highlight of Real-Time Maude and refers to the sections of the paper where the
different aspects of the language are illustrated. Section 2 introduces the BRDL
syntax for facts and questions and shows how they are modelled in Real-Time
Maude. Section 3 presents the implementation of a variant of Quillian’s model,
which is used to illustrate our approach. Section 4 illustrates how to plan and
carry out experiments. Section 5 discusses the timed evolution of the system and
the information retrieval process implementation. Section 6 concludes the paper.

1.1 Real-Time Maude

Real-Time Maude [18,20] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude. Real-Time Maude makes use of

– algebraic equational specifications in a functional programming style to define
data types;

– labeled rewrite rules to define local transitions;
– tick rewrite rules to advance time in the entire system state.

The definition of data types is illustrated in Sect. 2.3. The Full Maude syntax is
illustrated in Sect. 3.3 for classes and in Sect. 4.1 for messages. Labelled rewrite
rules and tick rewrite rules are illustrated in Sect. 4.3 and Sect. 5, respectively.

2 Natural Language Constructs: Facts and Questions

BRDL has a concise, functional-like syntax, which is presented elsewhere [7].
Its conciseness is thought to provide an essential description of the model able
to present the bigger picture of the modelled system, and its functional flavour
makes it suitable for direct mathematical manipulation without computer sup-
port. In this paper we mostly use an alternative, somehow verbose syntax, which
is more similar to the English natural language, although ungrammatical in some
details, and can be directly manipulated by the Maude system.
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2.1 Facts

Humans, throughout their lives, acquire knowledge of the facts of the real world
and are able to refer to them and reason about them using declarative proposi-
tions. Since a declarative proposition is just a natural language description of a
fact, we will often use the word ‘fact’ also to denote the declarative proposition
that describes it.

A fact is modelled using the functional-like BRDL syntax [7] as

type(category, attribute)

where category is an object of our knowledge and attribute is an attribute of
type type associated with that category. For example, the fact that ‘a dog is an
animal’ is represented using the functional-like BRDL syntax as

is a(dog, animal).

The equivalent English-like syntax manipulated by the Maude system is

a "dog" is a "animal".

The article ‘a’ is used for any noun, although this is ungrammatical when
the noun starts with a vowel as in the case of ’animal’. Other examples of facts
are:

a "dog" has "four legs"

a "animal" can "breathe"

a "dog" can "move"

a "dog" can "bark"

a "cat" cannot "bark"

a "cat" is not a "dog"

a "bird" has not "four legs".

In such examples "animal", "dog", "cat" and "bird" are categories, "four
legs", "breathe", "move", "bark" are attributes and is a, has, can, is not
a, has not and cannot are types to be applied to attributes. Categories may
also be used as attributes as in a "dog" is a "animal". The application of a
type to an attribute, such as is a "animal" or has "four legs" is called typed
attribute. The reason why categories and attribute are between double apices will
be explained in Sect. 2.3.

Finally, we also consider declarative propositions that describe the absence
of knowledge about facts, such as

I do not know if a "animal" "bark"

We could also model declarative propositions that describe our knowledge
about facts, but this would not be more interesting that the fact itself. Actually,
if I state that a "dog" has "four legs", it is obvious that I know that a
"dog" has "four legs".
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2.2 Questions

Questions can be of different kinds. Examples are:

what can a "animal" do?

can a "dog" "breathe" ?

is a "dog" a "animal" ?

has a "cat" "four legs"

We can note here that the first question may be answered by a set of declar-
ative propositions, whereas the other three questions, which all have the same
structure, will be answered by one declarative proposition, either the one stating
the fact, negatively or positively, or the one describing the absence of knowledge
about the fact. For example, can a "dog" "breathe" ? will be answered by
one of the following three declarative propositions: a "dog" can "breathe", a
"dog" cannot "breathe" or I do not know if a "dog" can "breathe".

2.3 Modelling Facts and Question in Real-Time Maude

Maude equational logic supports declaration of sorts, with keyword sort for one
sort, or sorts for many. A sort A may be specified as a subsort of a sort B by
subsort A < B. Operators are introduced with the op (for a single definition)
and ops (for multiple definitions) keywords:

op f : s1 . . . sn -> s.
ops f1 f2: s1 . . . sn -> s.

Operators can have user-defined syntax, with underbars ‘_’ marking the argu-
ment positions and ‘‘’ to denote a space. Some operators can have equational
attributes, such as assoc, comm, and id, stating that the operator is associative,
commutative and has a certain identity element, respectively. Such attributes
are used by the Maude engine to match terms modulo the declared axioms. An
operator can also be declared to be a constructor (ctor) that defines the carrier
of a sort. Axioms are introduced as equations using the eq keyword or, if they
can be applied only under a certain condition, using the ceq keyword, with the
condition introduced by the if keyword. Variables used in equations are place-
holders in a mathematical sense and cannot be assigned values. They must be
declared with the keyword var for one variable, or vars for many. The use of
the owise (or otherwise) equational attributes in an equation denotes that the
axiom is used for all cases that are not matched by the previous equations. All
Maude statements are ended by a dot.

The English-like syntax of facts and questions is defined in the Real-Time
Maude module INFORMATION given in Figure 1. The module imports the pre-
defined modules NAT and STRING, which support the specification of natural
numbers and strings, respectively. Sorts Fact and Question model facts and
questions, respectively, and are subsorts of BasicItem, which is in turn subsort
of Item. Only the BasicItem subsort of Item is relevant for the subset of the
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(tomod INFORMATION is

protecting NAT .

protecting STRING .

sorts Fact Question BasicItem Item BasicItemSet ItemSet EmptyItemSet .

subsorts Fact Question < BasicItem < Item .

subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < BasicItemSet < ItemSet .

subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor] .

op _;_ : BasicItemSet BasicItemSet -> BasicItemSet

[ctor assoc comm id: none format (b o n b)] .

op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

op _;_ : EmptyItemSet EmptyItemSet -> EmptyItemSet [ctor ditto] .

sorts Category Attribute TypedAttribute .

subsort String < Category < Attribute .

ops can_ is‘a_ has_ : Attribute -> TypedAttribute [ctor] .

ops cannot_ is‘not‘a_ has‘not_ : Attribute -> TypedAttribute [ctor] .

op what‘can‘a_do? : Category -> Question [ctor] .

ops can‘a__? is‘a_a_? has‘a__? : Category Attribute -> Question [ctor] .

op a__ : Category TypedAttribute -> Fact [ctor] .

ops I‘dont‘know‘if‘a_can_

I‘dont‘know‘if‘a_is_ : Category Attribute -> Fact [ctor] .

op I‘dont‘know‘what‘a_can‘do : Category -> Fact [ctor] .

op _is‘negative‘of_ : TypedAttribute TypedAttribute -> Bool .

var A : Attribute . vars TA1 TA2 : TypedAttribute .

eq (cannot A) is negative of (can A) = true .

eq (is not a A) is negative of (is a A) = true .

eq (has not A) is negative of (has A) = true .

eq TA1 is negative of TA2 = false [owise] .

op isItemIn : Item ItemSet -> Bool .

vars I1 I2 : Item . var IS : ItemSet .

eq isItemIn(I1, I2 ; IS) = if I1 == I2 then true

else isItemIn(I1, IS) fi .

eq isItemIn(I1, none) = false .

endtom)

Fig. 1. Module INFORMATION.

BRDL implementation considered in this paper. Other subsorts, which are not
introduced here, are used in other parts of the BRDL implementation [6,7].

Both BasicItem and Item are organised into sets by defining the two sorts
BasicItemSet and ItemSet using the ; user-defined infix operator, which is
given the appropriate equational attributes for the properties that characterise
sets. The ditto equational attribute is a short form for all attributes of the
previous sort declaration. The format equational attribute is used to format the
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output with spaces, colours and newlines in order to make it more readable. By
declaring BasicItem as a subsort of BasicItemSet and Item as a subsort of
ItemSet we implicitly defined singletons of sorts BasicItemSet and ItemSet.
However, the none empty set needs to be explicitly introduced as the only ele-
ment of sort EmptyItemSet, which is subsort of BasicItemSet, in turn subsort
of ItemSet.

The sorts Category and Attribute include Maude-predefined sort String
as a subsort. This allows us to freely use any string, which is enclosed by double
quotes in Maude syntax, as a category or attribute, while leaving open the
option to use other representations in possible extensions of the module. The
elements of sorts TypedAttribute, Fact and Question are instead defined using
constructors, since they have special relationships between each other and need
to be manipulated in special, distinct ways by the Maude engine.

One of these special relationships is the negation: cannot, is not and has
not are the negations of can, is and has, respectively. Negation is expressed
as an infix boolean operator is negative of characterised by three axioms for
the three pairs of attribute types above which return true. The last axiom has
the owise equational attribute, thus it is applied to all other cases and returns
false.

Finally, the boolean operator isItemIn returns true if an element of sort
Item belongs to an element of sort ItemSet.

3 Human Memory Model

BRDL is based on Atkinson and Shiffrin’s multistore model of human memory
[2]. This model is characterised by three stores between which various forms
of information flow: sensory memory, where information perceived through the
senses persists for a very short time, short-term memory (STM), which has a lim-
ited capacity and where the information that is needed for processing activities
is temporarily stored with rapid access and rapid decay, and long-term memory
(LTM), which has a virtually unlimited capacity and where information is organ-
ised in structured ways, with slow access but little or no decay. We consider a
further decomposition of LTM: semantic memory, which refers to our knowledge
of the world and consists of the facts that can be consciously recalled, and pro-
cedural memory, which refers to our skills and consists of rules and procedures
that we unconsciously use to carry out tasks, particularly at the motor level.

This paper focuses on STM and on the part of semantic memory devoted to
the storage of fact representations, that is, the representations of our knowledge
of the facts of the real world in the form of a hierarchical network, often called a
semantic network, as first introduced by Collins and Quillian [10,21]. In Sect. 2.1
we illustrated how to model facts in a natural-language-like fashion.
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In Sect. 3.1 we present how to model fact representations and their hier-
archical organisation in semantic memory. The hierarchy among categories is
expressed using the is a type applied to the more general category. For exam-
ple, the type attribute is a "animal" denotes a generalisation to category
"animal". The more specific category inherits all attributes of the more generic
category unless the attribute is redefined at the more specific category level.

3.1 Fact Representation in Semantic Memory

A fact representation in semantic memory is modelled using the functional-like
BRDL [7] syntax as

domain : category | delay−→ | type(attribute)

where delay is the mental processing time needed to retrieve the association
between category category and type attribute type(attribute) within the given
knowledge domain domain. The knowledge domain is used to set a boundary
under which the mental processing is retrieving information from the semantic
memory and manipulating it. The role of such a boundary is clarified in Sect. 5.

As an example, the fact that ‘a dog is an animal’ is represented within the
semantic domain dogs as

dogs : dog | 1−→ | is a(animal)

and this generalisation can be retrieved from semantic memory in 1 time unit.
The more specific category of a generalisation inherits all typed attributes of
the more generic category unless the attribute is redefined at the more specific
category level. Therefore,

animals : animal | 1−→ | can(move)

which is an association of a category with a typed attribute rather than a general-
isation, specifies that an animal can move and, since an animal is a generalisation
of a dog, such a typed attribute is inherited by the category dog.

The equivalent English-like syntax manipulated by the Maude system of the
fact representations above is

"dogs" : "dog" |- 1 ->| is a "animal"

"animals" : "animal" |- 1 ->| can "move"

Such an English-like syntax of fact representations is defined in the Real-
Time Maude module SEMANTIC-MEMORY shown in Figure 2. This module imports
the module INFORMATION and the predefined module NAT-TIME-DOMAIN, which
defines the sort Time to model discrete time. Fact representations are defined
as element of the sort FactRepresentetion. The semantic memory is modelled
by the sort SemanticMemory, which is defined as a set of fact representations.
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(tomod SEMANTIC-MEMORY is

protecting NAT-TIME-DOMAIN .

including INFORMATION .

sorts Domain FactRepresentation SemanticMemory .

subsort String < Domain .

subsort FactRepresentation < SemanticMemory .

op emptySemantic : -> SemanticMemory [ctor] .

op _:_|-_->|_ : Domain Category Time TypedAttribute ->

FactRepresentation [ctor format (!r o b o r o b o)] .

op __ : SemanticMemory SemanticMemory -> SemanticMemory

[ctor assoc comm id: emptySemantic format (o n o)] .

op _is‘negated‘in_ : Fact SemanticMemory -> Bool .

var M : Time . var D : Domain .

var C : Category . var A : Attribute .

vars TA1 TA2 : TypedAttribute . var S : SemanticMemory .

eq ( a C TA1 ) is negated in ( ( D : C |- M ->| TA2 ) S ) =

TA2 is negative of TA1 .

eq ( a C TA1 ) is negated in S = false [owise] .

endtom)

Fig. 2. Module SEMANTIC-MEMORY.

The constructor denotes that sets of fact representations are created by justap-
position, with no written operator. The constructor emptySemantic denotes an
empty semantic memory.

Given the "dogs" : "dog" |- 1 ->| can "bark" fact representation, let
us consider the following downward extension of the animal–dog hierarchy:

"dogs" : "hund" |- 1 ->| is a "dog"

"dogs" : "basenji" |- 1 ->| is a "hund"

"dogs" : "basenji" |- 1 ->| cannot "bark"

The category "basenji" has the cannot "bark" typed attribute, which rede-
fines the can "bark" typed attribute of the "dog" category. In fact, a basenji is
an exceptional dog breed that cannot bark.

In order to make sure that the category "basenji" does not inherit the can
"bark" typed attribute from the more general "dog" category, we introduce the
is negated in user-defined infix operator, which returns true only if the fact
passed as the left argument is negated by some fact representation in the seman-
tic memory passed as the right argument. As shown in Sect. 5, this operator is
used by the Maude engine to prevent the retrieval of general information that is
negated for the more specific category we are considering. In this way, given
the fact representations above, (a "basenji" can "bark") is negated in
("dog" : "basenji" |- 1 ->| cannot "bark") equals true, thus the ques-
tion can a "basenji" "bark" ? does not trigger the retrieval of the typed
attribute can "bark".
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(tomod TIMED-INFORMATION is

protecting INFORMATION .

protecting NAT-TIME-DOMAIN-WITH-INF .

sorts TimedItem TimedItemSet TimedBasicItem FutureBasicItem .

subsort TimedItem < TimedItemSet .

op _<‘decay_> : Item TimeInf -> TimedItem [ctor] .

op _for_ : BasicItem TimeInf -> TimedBasicItem [ctor] .

op _in_ : TimedBasicItem Time -> FutureBasicItem [ctor] .

op emptyTIS : -> TimedItemSet [ctor] .

op _;_ : TimedItemSet TimedItemSet -> TimedItemSet

[ctor assoc comm id: emptyTIS format (b o n b)] .

eq ITEM:Item < decay 0 > = emptyTIS .

op removeTime : TimedItemSet -> ItemSet .

var I : Item .

var TIS : TimedItemSet .

var T : TimeInf .

eq removeTime(emptyTIS) = none .

eq removeTime((I < decay T >) ; TIS) = I ; removeTime(TIS) .

ops DECAY-TIME MAX-RETRIEVAL-TIME : -> TimeInf .

endtom)

Fig. 3. Module TIMED-INFORMATION.

3.2 Short-Term Memory (STM) Model

STM is normally used as a buffer where the information that is needed for
processing activities is temporarily stored. In our model the kind of information
stored in the STM belongs to sort Item. However, the limited capacity of STM
requires the presence of a mechanism to empty it when the stored information
is no longer needed. In fact, information in STM decays very quickly, normally
in less than one minute. To implement STM decay, we need to associate a time
with the elements of sort Item.

Module TIMED-INFORMATION in Figure 3 imports the module INFORMATION
and the predefined module NAT-TIME-DOMAIN-WITH-INF, which defines a new
sort TimeInf by extending the sort Time with value INF to model an infinite
time. Sort TimedItem associates a time with the elements of sort Item using
the constructor <‘decay > and sort TimedItemSet define sets of elements of
TimedItem using the constructor ;. The equation on the constructor <‘decay >
ensures that if the time to decay has reached zero, the term is removed. Therefore,
STM is modelled as an element of sort TimedItem. The operator removeTime
removes the time from an element of sort TimedItem and returns the corre-
sponding element of sort TimedItem. Finally, undefined operation DECAY-TIME
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is declared to be used as a constant holding the user-defined STM decay time
as we will see in Sect. 4.3.

3.3 Human Memory as a Maude Class

Full Maude supports the definition of classes. Class objects are elements of the
pre-defined sort Configuration, which defines the state of the overall system.

We model the structure of human memory using the following Real-Time
Maude class.

class HumanMemory | shortTermMem : TimedItemSet,

semanticMem : SemanticMemory .

STM is modelled by the field shortTermMem. Semantic memory is modelled by
the field SemanticMem.

4 Experimental Environment and Its Evolution

We model an environment consisting of perceptions in the form of questions to
which a human subject has to answer. Once they appear in the environment,
questions persist for a certain time before disappearing. In a typical experiment,
questions will be shown to the human subject for a few seconds.

4.1 Modelling Perceptions

We use Full Maude messages to model perceptions. A message is an element
of the pre-defined sort Msg and has the same syntax as an operation but, in
addition, is also an element of the pre-defined sort Configuration.

The persistence of a perception is modelled by the user-defined infix operator
for in module TIMED-INFORMATION given in Fig. 3. Note that the time may be
infinite to denote that the perception persists forever.

Therefore, a perception is modelled by operation perc as follows.

sorts Perception .

subsort Perception < Msg .

op perc : TimedBasicItem -> Perception [ctor] .

var BI : BasicItem .

eq perc(BI for 0) = none .

The equation ensures that if the persistence time has reached zero, the perception
is removed from the configuration (none is the empty configuration).

4.2 Planning Experiments

We call planned experiment any single question presented to a human sub-
ject together with the time that must pass before the question is actually pre-
sented. Such a time is modelled by the user-defined infix operator in in module
TIMED-INFORMATION given in Fig. 3.

Therefore, a planned experiment is modelled by operation exp as follows.
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sorts Experiment .

subsorts Experiment < Msg .

op exp : FutureBasicItem -> Experiment [ctor] .

For example, we can plan an experiment similar to the one by Collins and Quil-
lian [10] to find how response time (RT) may depend on the hierarchical structure
of semantic memory. The subjects are presented with questions on a screen, each
question for 30 s. Within these 30 s the subject has to answer the question. The
experimental setting is as follows.

op init : -> Configuration .

op human : -> Oid .

op initSemanticMem : -> SemanticMemory .

op aHuman : -> Object .

eq aHuman = < human : Human | shortTermMem : emptyTIS,

semanticMem : initSemanticMem > .

eq init = (exp(((can a "dog" "breathe" ?) for 30000) in 0))

(exp(((can a "animal" "move" ?) for 30000) in 30000))

(exp(((has a "dog" "four legs" ?) for 30000) in 60000))

(exp(((can a "hound" "track" ?) for 30000) in 90000))

(exp(((can a "basenji" "bark" ?) for 30000) in 120000))

(exp(((is a "armadillo" a "mammal" ?) for 30000) in 150000))

(exp(((can a "giraffe" "bark" ?) for 30000) in 180000))

(exp(((is a "swallow" a "bird" ?) for 30000) in 210000))

aHuman .

The time is expressed in milliseconds.
The operator initSemanticMem must be defined with an equation whose

right part comprises the content of the semantic memory. The purpose of the
experiment above could be the validation of the following research hypotheses:

1. Higher RTs may be due to the fact that the typed attribute is associated with
a more general category than the one mentioned in the question;

2. In some cases, the RT for a negative answer may be considerably smaller than
the average RT for a positive answer to a similar question;

3. The retrieval of less known or seldom used categories or associations may
result in a higher RT.

Hypothesis 1 can be validated using questions like can a "dog" "breathe" ? and
can a "animal" "move" ?: the RT for the former question is higher if the typed
attribute can "breathe" is associated with the more general category "animal".
Hypothesis 2 can be validated using questions like can a "basenji" "bark" ? and
can a "giraffe" "bark" ?: the RT for the former question is lower if the typed
attribute cannot "bark" is directly associated with category "basenji". Hypoth-
esis 3 can be validated using questions like is a "armadillo" a "mammal" ? and
is a "swallow" a "bird" ?: the RT for the former question is higher if the fact
representation stating that the less known category "armadillo" is a "mammal"
has a higher mental processing time than the fact representation stating that the
well-known category "swallow" is a "bird".
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Initially, in silico experiments can be conducted with no aim at validating
research hypotheses and contrasted to experiments with human subjects to cali-
brate the Maude emulation engine. Once the calibration process is concluded, in
silico experiments and experiments with human subjects aiming at the validation
of research hypothesis can be conducted and contrasted. These kinds of exper-
iment may be used to compare alternative models corresponding to different
models of semantic memory.

As a final remark, we would like to clarify that the experiment above has
been defined for a purely illustrative purpose. In a real experimental context, a
separate set of planned experiments should be considered for each of the research
questions.

4.3 Environment Evolution

Maude models system evolution using rewrite logic. Labeled rewrite rules

rl [l]: t => t′ or crl [l]: t => t′ if cond

define local transitions from state t to state t′.
The following labelled rewrite rule transforms a planned experiments into a

perception when the scheduled time has been reached.

rl [activate-perception] :

(exp((BI for T) in 0))

REST

=>

(perc (BI for T))

REST .

The following labelled rewrite rule make a ‘copy’ of the perception and stores
it in the STM at any time when the perception is available in the environment
and associates the value of the constant operator DECAY-TIME with such a copy,
provided that the untimed version of the STM (IS := removeTime(TIS)) does
not contain the perception yet (not isItemIn(BI, IS)).

crl [perceive] :

(perc(BI for T))

< H : Human | shortTermMem : TIS >

REST

=>

< H : Human | shortTermMem : (BI < decay DECAY-TIME >) ; TIS >

(perc(BI for T))

REST

if IS := removeTime(TIS) /\ not isItemIn(BI, IS) .

5 Tick Rewrite Rules for Information Retrieval

Information retrieval from semantic memory and time passing are modelled using
tick rewrite rules. Tick rewrite rules
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rl [l]: {t} => {t′} in time Δ
crl [l]: {t} => {t′} in time Δ if cond

advance time in the global state t by Δ time units.
We use tick rewrite rules to model the navigation through semantic memory

to retrieve the information needed to answer the question in STM. The RT
is added to the current time and the retrieved information is used to build the
answer and store it in STM together with the associated decay time DECAY-TIME.

The following idle function is used to update all time-related components
of the system:

op idle : Configuration Time -> Configuration [frozen (1)] .

op idle : TimedItemSet Time -> TimedItemSet .

op idle : TimedBasicItem Time -> TimedBasicItem .

op idle : FutureBasicItem Time -> FutureBasicItem .

eq idle(none, T) = none .

eq idle(< H : Human | > REST, T) = < H : Human | > idle(REST, T) .

eq idle(perc(TBI) REST, T) = perc(idle(TBI, T)) idle(REST, T) .

eq idle(exp(FBI) REST, T) = exp(idle(FBI, T)) idle(REST, T) .

eq idle(emptyTIS, T) = emptyTIS .

eq idle((I < decay T1 >) ; TIS , T) =

(I < decay (T1 monus T) >) ; idle(TIS, T) .

eq idle(BI for T1, T) = BI for (T1 monus T) .

eq idle(TBI in FT , T) = TBI in (FT monus T) .

The module TIMED-EVOLUTION contains the tick rewrite rules that implement
a variant of Qullian’s hierarchical network model [21]. As an illustrative example,
we present the conditional tick rule for answering a can-question, such as can a
"dog" "breathe" ?.

crl [can] :

< H : Human | cognitiveLoad : N,

shortTermMem : TIS ; ((can a C A ?) < decay T1 >),

semanticMem : S >

REST

=>

< H : Human | cognitiveLoad : N,

shortTermMem : ((a C can A) < decay DECAY-TIME >) ; idle(TIS, T),

semanticMem : S >

idle(REST,T)

in time T

if IS := removeTime(TIS) /\
not isItemIn(a C can A, IS) /\
T := canRetrievalTime(C, A, S) /\ T <= MAX-RETRIEVAL-TIME /\
not ( ( a C can A ) is negated in S ) .

The retrieval time is calculated using the canRetrievalTime operator, which
searches in the semantic memory S for a fact representation with category C1
and typed attribute can A, where either C1 = C or C1 is a generalisation of C.
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However, an additional condition for the application of the rule is that the RT
T is less than or equal to the MAX-RETRIEVAL-TIME constant value. When the
RT is greater than the MAX-RETRIEVAL-TIME, instead, the application of another
conditional tick rule with complementary condition results in the answer I dont
know if C can A. The use of such a constant as an RT upper bound supports
the modelling of situations in which, although the information is in semantic
memory, the semantic distance is actually too high for retrieval. Two more rules
model the two possible situations in which the answer is C cannot A. The most
explicit situation is when there is a fact representation with category C and typed
attribute cannot A in the semantic memory. An implicit situation occurs when
C is the generalisation of another category C1, such that the fact representation
with category C1 and typed attribute can A is in the semantic memory. As an
example of such an implicit situation, the question can a "animal" "bark" ?
results in the fact a "animal" cannot "bark" ?.

Further rules are used for covering the situations in which we answer is a
and has a questions. The what can question results in the retrieval of a number
of facts. This is achieved by repeated applications of the rule. Moreover, the
answer to this question depends on the knowledge domain on which the human
subject focuses. For example, the question what can a "dog" do? returns only
a "dog" can "bark" if the focus is on the knowledge domain dogs, whereas it
returns also a "dog" can "breathe" and a "dog" can "move" if the focus is
on the knowledge domain animals. This requires the use of two distinct rules,
one for the presence and one for the absence of focus. However, the technical
details concerning these rules are beyond the illustrative purpose of this paper.

Finally, the following conditional tick rule models the time passing.

crl [time-passing] :

< H : Human | shortTermMem : TIS >

REST

=>

< H : Human | shortTermMem : idle(TIS,1) >

idle(REST,1)

in time 1

if not questionFound(TIS) /\ noExperimentStart(REST)

/\ noPerceptionAvailable(REST) .

The condition ensure that time is increased by this rule only when there is no
question in STM (not questionFound(TIS)), there is no planned experiment
at the current time (noExperimentStart(REST)) and there is no perception
available in the environment (noPerceptionAvailable(REST)). In this way the
time-passing rule may be applied only if no other rule can be applied.

6 Conclusion and Future Work

We have developed an approach for formally modelling fact representations in
semantic memory and carrying out the in silico emulation of experiments aiming
at the comparison of different models of semantic memory. This comparison is
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an essential part of our future work. The code illustrated in this paper can be
downloaded at

http://github.com/AntonioCerone/Pubblications/tree/master/2020/CIFMA

Although the code refers to the Quillian’s hierarchical network model [21]
and Collins and Quillian’s experiments [10], the module TIMED-EVOLUTION can
be replaced with a module that implements another semantic memory model.

This code is also simplified for illustrative purposes. It does not include the
mechanisms that allow to output the outcome of the in silico experiments in
a form suitable to carry out the comparison of alternative semantic memory
models.
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4. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190 (2019)

5. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
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