
Loek Cleophas
Mieke Massink (Eds.)

LN
CS

 1
25

24

ASYDE, CIFMA, and CoSim-CPS
Amsterdam, The Netherlands, September 14–15, 2020
Revised Selected Papers

Software Engineering
and Formal Methods
SEFM 2020 Collocated Workshops

Lecture Notes in Computer Science 12524

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Loek Cleophas • Mieke Massink (Eds.)

Software Engineering
and Formal Methods
SEFM 2020 Collocated Workshops

ASYDE, CIFMA, and CoSim-CPS
Amsterdam, The Netherlands, September 14–15, 2020
Revised Selected Papers

123

Editors
Loek Cleophas
Eindhoven University of Technology
Eindhoven, The Netherlands

Mieke Massink
CNR-ISTI
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-67219-5 ISBN 978-3-030-67220-1 (eBook)
https://doi.org/10.1007/978-3-030-67220-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7221-3676
https://orcid.org/0000-0001-5089-002X
https://doi.org/10.1007/978-3-030-67220-1

Preface

This volume contains the selected and revised versions of papers that have been
presented at three international workshops co-located with the 18th edition of the
International Conference on Software Engineering and Formal Methods (SEFM 2020).
Because of the COVID-19 pandemic, both the conference and the workshops were held
virtually. They were hosted by the Centre for Mathematics and Informatics (CWI) in
Amsterdam, The Netherlands, and took place on September 14–17, 2020.

The SEFM 2020 international conference offered a virtual interactive platform for
leading researchers and practitioners from academia, industry, and government to
advance the state of the art in formal methods, to facilitate their uptake in the software
industry, and to encourage their integration within practical software engineering
methods and tools.

The work presented at the three international workshops focused on emerging areas
of software engineering, software technologies, model-driven engineering, and formal
methods and on interdisciplinary topics on the border of software and cognition. In
particular, the contributions that are collected in this volume have been selected from
the presentations at the following workshops:

– ASYDE 2020 – Second International Workshop on Automated and verifiable
Software sYstem DEvelopment. Organised by: Marco Autili, University of
L’Aquila, Italy; Federico Ciccozzi, Mälardalen University, Västerås, Sweden;
Francesco Gallo, University of L’Aquila, Italy; Marjan Sirjani, Mälardalen
University, Västerås, Sweden. The ASYDE workshop series is the result of a
follow-up action, thanks to the work of the Steering Committee members, bringing
together and consolidating the following previous events: OrChor’14, SCFI’15,
SCART’15, VeryComp’16. The review procedure consisted of a single round of
peer review, single blind, with 3 reviews per submission.

– CIFMA 2020 – Second International Workshop on Cognition: Interdisciplinary
Foundations, Models and Applications. Organised by: Pierluigi Graziani, Univer-
sity of Urbino, Italy; Pedro Quaresma, University of Coimbra, Portugal. The review
procedure consisted of two rounds of peer review, single blind, with 4 reviews per
submission.

– CoSim-CPS 2020 – Fourth International Workshop on Formal Co-Simulation of
Cyber-Physical Systems. Organised by: Cinzia Bernardeschi, University of Pisa,
Italy; Cláudio Gomes, Aarhus University, Denmark; Paolo Masci, National Institute
of Aerospace (NIA), USA; and Peter Gorm Larsen, Aarhus University, Denmark.
The review procedure consisted of a single round of peer review, single blind, with
3 reviews per submission.

We are grateful to all organisers of the workshops at SEFM 2020 for their selection
of interesting topics and presentations, despite the difficult circumstances due to the
pandemic. We would also like to thank the members of the respective Programme

Committees and reviewers for their thorough and careful reviews, for organising the
programme for each workshop, and for making the compilation of this volume
possible.

We thank all authors of contributions and all attendees of the workshops, as well as
the Keynote Speakers for adapting their excellent presentations and discussions to the
new virtual setting. Special thanks go the hosting institution CWI in Amsterdam, its
organising team, and, in particular, the general chairs of the SEFM 2020 conference,
Frank de Boer and Antonio Cerone, for their incredible work to make this event
possible under the continuously changing circumstances and uncertainties created by
the pandemic.

November 2020 Loek Cleophas
Mieke Massink

vi Preface

Contents

ASYDE 2020

Model Translation from Papyrus-RT into the NUXMV Model Checker. 3
Sneha Sahu, Ruth Schorr, Inmaculada Medina-Bulo,
and Matthias Wagner

Modeling and Verification of Temporal Constraints for Web Service
Composition . 21

Maya Souilah Benabdelhafid, Houda Boubaker,
and Mahmoud Boufaida

Modeling Attack-Defense Trees’ Countermeasures Using Continuous Time
Markov Chains . 30

Karim Lounis and Samir Ouchani

Automated Validation of State-Based Client-Centric Isolation with TLAþ . . . 43
Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Code Coverage Aware Test Generation Using Constraint Solver 58
Krystof Sykora, Bestoun S. Ahmed, and Miroslav Bures

From Requirements to Verifiable Executable Models Using Rebeca 67
Marjan Sirjani, Luciana Provenzano, Sara Abbaspour Asadollah,
and Mahshid Helali Moghadam

CIFMA 2020

A Pragmatic Model of Justification for Social Epistemology. 89
Raffaela Giovagnoli

Personal Identity and False Memories . 100
Danil Razeev

Against the Illusory Will Hypothesis: A Reinterpretation of the Test Results
from Daniel Wegner and Thalia Wheatley’s I Spy Experiment 108

Robert Reimer

Understanding Responses of Individuals with ASD in Syllogistic
and Decision-Making Tasks: A Formal Study . 118

Torben Braüner, Aishwarya Ghosh, and Sujata Ghosh

Symbolic and Statistical Theories of Cognition: Towards Integrated
Artificial Intelligence . 129

Yoshihiro Maruyama

An Interdisciplinary Model for Graphical Representation 147
G. Antonio Pierro, Alexandre Bergel, Roberto Tonelli,
and Stéphane Ducasse

Information Retrieval from Semantic Memory: BRDL-Based Knowledge
Representation and Maude-Based Computer Emulation 159

Antonio Cerone and Diana Murzagaliyeva

A Multi-Agent Depth Bounded Boolean Logic . 176
Giorgio Cignarale and Giuseppe Primiero

The Intensional Structure of Epistemic Convictions 192
Reinhard Kahle

Short-Circuiting the Definition of Mathematical Knowledge
for an Artificial General Intelligence . 201

Samuel Allen Alexander

Reasoning About Ignorance and Beliefs . 214
Alessandro Aldini, Pierluigi Graziani, and Mirko Tagliaferri

CoSIM-CPS 2020

A Case Study on Formally Validating Motion Rules
for Autonomous Cars . 233

Mario Henrique Cruz Torres, Jean-Pierre Giacalone,
and Joelle Abou Faysal

Modelling Train Driver Behaviour in Railway Co-simulations 249
Tomas Hotzel Escardo, Ken Pierce, David Golightly,
and Roberto Palacin

Cross-level Co-simulation and Verification of an Automatic Transmission
Control on Embedded Processor . 263

Cinzia Bernardeschi, Andrea Domenici, Maurizio Palmieri,
Sergio Saponara, Tanguy Sassolas, Arief Wicaksana, and Lilia Zaourar

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation
of CPS . 280

Giovanni Liboni and Julien Deantoni

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2. 295
Simon Thrane Hansen, Casper Thule, and Cláudio Gomes

viii Contents

Introducing Regression Tests and Upgrades to the INTO-CPS Application . . . 311
Prasad Talasila, Armine Sanjari, Kristoffer Villadsen, Casper Thule,
Peter Gorm Larsen, and Hugo Daniel Macedo

Cosimulation-Based Control Synthesis . 318
Adrien Le Coënt, Julien Alexandre dit Sandretto,
and Alexandre Chapoutot

Author Index . 335

Contents ix

ASYDE 2020

Organization

ASYDE 2020 – Workshop Chairs

Marco Autili University of L’Aquila, Italy
Federico Ciccozzi Mälardalen University, Sweden
Francesco Gallo University of L’Aquila, Italy
Marjan Sirjani Mälardalen University, Sweden

ASYDE 2020 – Programme Committee

Luciano Baresi Politecnico di Milano, Italy
Steffen Becker University of Stuttgart, Germany
Domenico Bianculli University of Luxembourg, Luxembourg
Antonio Brogi University of Pisa, Italy
Giovanni Denaro University of Milano-Bicocca, Italy
Antinisca Di Marco University of L’Aquila, Italy
Amleto Di Salle University of L’Aquila, Italy
Ehsan Khamespanah University of Tehran, Iran
Marina Mongiello Polytechnic University of Bari, Italy
Cristina Seceleanu Mälardalen University, Sweden
Meng Sun Peking University, China
Apostolos Zarras University of Ioannina, Greece

ASYDE 2020 – Steering Committee

Farhad Arbab CWI, The Netherlands
Marco Autili University of L’Aquila, Italy
Federico Ciccozzi Mälardalen University, Sweden
Dimitra Giannakopoulou NASA, USA
Pascal Poizat Sorbonne University, France
Massimo Tivoli University of L’Aquila, Italy

Model Translation from Papyrus-RT
into the nuXmv Model Checker

Sneha Sahu1(B) , Ruth Schorr1, Inmaculada Medina-Bulo2 ,
and Matthias Wagner1

1 Frankfurt University of Applied Sciences, 60318 Frankfurt am Main, Germany
{sneha.sahu,rschorr,mfwagner}@fb2.fra-uas.de

2 Departamento de Ingeniería Informática, Universidad de Cádiz, Puerto Real, Spain
inmaculada.medina@uca.es

Abstract. Papyrus-RT is an eclipse based modelling tool for embedded
systems that makes use of the Model-Driven Engineering approach to
generate executable C++ code from UML-RT models. The UML-RT
state diagrams are very similar to Finite State Machines used in the
nuXmv model checker (an extension of the NuSMV symbolic model
checker). In this paper we present an approach for automated verification
of the UML-RT models by exporting them mechanically into equivalent
nuXmv models with positive results.

Keywords: Model translation · UML-RT · State transition diagrams ·
Model-checking · Finite State Machines (FSM) ·
Symbolic Model Verification (SMV) · nuXmv

1 Introduction

Papyrus-RT [2] is an industrial-grade modelling tool based on the concept of
Model Driven Engineering (MDE) [11]. It makes use of the UML-RT [23] graph-
ical representations for describing model behaviour. Interaction between com-
ponents, referred to as capsules in Papyrus-RT, takes place through connected
ports and trigger controls, the semantics of which are described with the help
of state-transition diagrams. The designed model serves as the key artifact for
generating an executable C/C++ project [22,24]. Each system model consists
of one ‘Top Capsule’, which is used to define the overall system connections.
The sub-components further have their own hierarchical system of elements and
corresponding state-diagram to describe its semantics. Papyrus-RT offers inbuilt
protocols for logging and timer functionalities and also allows users to define cus-
tom protocols for their individual system design. These protocols are basically a
set of rules in terms of incoming and outgoing messages to be followed by ports
for communication.

The correctness of the semantics of the executable code, generated from the
Papyrus-RT model, relies completely upon the designer, who can choose to go
through the simulation logs. However, the possibility to introduce automated
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-67220-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_1&domain=pdf
http://orcid.org/0000-0002-6143-6153
http://orcid.org/0000-0002-7543-2671
http://orcid.org/0000-0002-8702-9257
https://doi.org/10.1007/978-3-030-67220-1_1

4 S. Sahu et al.

verification techniques to a model-driven development tool would be an achieve-
ment in the domain of model based development, as it can ensure the correct
system behaviour against a set of formal properties defined out of the system
requirements. With this as the motivation, this paper discusses an approach for
possible automation.

Papyrus-RT state-diagrams resemble very closely to finite-state machines
(FSMs), thereby making the nuXmv Model Checker [3,6] a perfect candidate
for the desired translation. nuXmv is an extension of the NuSMV Symbolic
Model Checker [7,8] which allows verification of infinite-state systems based on
algorithms from Satisfiability Modulo Theory (SMT) [1].

In the following sections, we start with briefly introducing the selected case
studies, followed by a detailed explanation of our approach and its outcome.
Then some of the existing works in this direction are discussed, followed by
conclusions and future work.

2 Case Studies

For the study of this research work, we selected three sample models, cover-
ing multi-threading, multiplicity, hierarchical state-diagrams and asynchronous
communications with or without payload.

The first case study is the classical ‘ping-pong’ model consisting of two units
communicating over one connection. The details of the model design can be
studied from the Papyrus-RT tutorial [25].

The second case study, is the classical ‘Rock-Paper-Scissor’ game, played
between two players and judged by one ‘Referee’. The players are created as two
instances of the same capsule definition in the UML-RT model and there is no
direct communication between them. The referee controls all communications
and also decides about the winner based on certain rules provided as C++ code
snippets in the UML-RT state diagram. The model for this case study was taken
from the resources for Papyrus-RT provided in the MODLES’17 conference [12].
The system translation becomes moderately complex in this case because of
the introduction of capsule and port multiplicity, payload along connections,
hierarchical state diagrams and the use of logical C++ codes for computations
in addition to the normal send and logging code blocks. Also, the asynchronous
mode of communication is clearly visible with this example.

The third case study, the Insulin Pump System, is a real world example
and also a safety critical medical device. The model was designed referring to
Ian Sommervielle’s overview and requirement specifications [26]. Here, we also
introduced Papyrus-RT’s multi-threading functionality along with all the other
previously mentioned features.

Figure 1 shows an overview of the modified version of the Insulin Pump,
consisting of three main units − a power-supply unit referred to as the battery ;
a reservoir for storing insulin; and a bgController for dosage computation. The
tasks of the sensor (to read current blood glucose (BG) level), needle assembly
(to take blood sample as well as inject insulin) and the pump (to pass insulin

Papyrus-RT Model Translation 5

Fig. 1. Simplified insulin pump system

from reservoir to needle) have been integrated within the ‘bgController’. A button
in the main system maintains communication between all components and helps
decide about the overall system status – ‘Running’ or ‘Stopped’. There is also a
communication channel between the ‘bgController’ and the ‘reservoir’ in order
to exchange information about insulin injection.

3 Translation Approach

The Papyrus-RT system model is basically a set of capsules, communicating in
real-time. Each capsule comprises of a hierarchy of sub-components, namely -
attributes, capsules, ports, connections, and state-diagrams.

Various capsules within a system communicate based on message triggers on
the incoming ports. By default every capsule is assigned to one default controller,
which maintains a message queue of all outgoing messages from its capsules.
These messages get further directed to the target capsule in FIFO order. Mes-
sages are handled sequentially within each controller and for parallel processing
multi-threading is possible using separate controllers [22,24].

The translation is achieved in two stages—in first stage an intermediate FSM
[18] is created corresponding to each capsule’s state diagram and in the next stage
an SMV model is designed out of the FSMs and UML-RT model elements. Any
non-trivial C++ action code in the state machine is handled as an abstraction
of what is being done.

3.1 UML-RT State-Diagrams to Finite-State-Machines

Each state machine in the UML-RT model is converted into a finite-state machine
M = (Q,Q0, Σ, δ, F), where Q is the set of all states, Q0 is the set of initial states,
Σ is the set of state variables or attributes, δ represents the transition function
and F is the set of final states.

Dealing with ‘pseudo States’. UML-RT models can have two kinds of states
– ‘stable’ states and ‘pseudo’ states. A transition in UML-RT state diagrams
stops only at a ‘stable state’, while in case of a ‘pseudo state’ it continues to run

6 S. Sahu et al.

until the next ‘stable state’ is reached. The symbols marked as ‘initial’, ‘decision’,
‘entry point’ and ‘exit point’ in Fig. 2 represent ‘pseudo states’. For the FSM
creation, we treat all states alike, but preserve their behavioural differences with
the help of guards along the corresponding outgoing transitions. Also, in case
there are any outgoing transitions from the previous ‘stable’ state, having a
different set of triggers, then this is replicated as an outgoing transition of the
current ‘pseudo’ state as well.

Handling of Multi-layered State Diagram. Papyrus-RT allows multiple
layers of state-diagrams, thereby creating a hierarchical state-diagram, which is
removed by merging states into the parent state-machine.

(a) State Diagram for a capsule (b) State Diagram for sub-state Round1

Fig. 2. Sample state diagram from Papyrus-RT

Transitions. Every transition in Papyrus-RT is associated with a set of ’Trig-
ger’, ‘Effect’ and ‘Guard’ as can be seen in Fig. 3. Triggers act like checks that
initiate any transition and hence are added as guard to the transition in the FSM.
An ‘Effect’ is a set of instructions to be performed during the transition and is
therefore noted as actions for the transition. Any non-port related code-snippets
is noted as abstraction in the FSM.

Fig. 3. State Diagram along with corresponding Transition Trigger and Effect.

Papyrus-RT Model Translation 7

Message Synchronization. In Papyrus-RT state-diagram, it is possible not
to have a visible time gap between received and sent messages, even though in
reality there may be some delay. This becomes significant in case the following
transition actions are not just internal, but also communicate with other capsules
of the system. Hence, in the intermediate FSM model it must be ensured that a
receive and a send operation is never performed around the same state—

– a new waiting state is created to split the sync messages into two transitions
‘ta’ and ‘tb’.

– guards of the original transitions stay with ‘ta’ while a new guard to check
for the turn of current capsule is added to ‘tb’.

– the set of actions of the actual transition is moved to ‘tb’.

For example, in Fig. 3, the transition ‘picking’ is triggered based on incoming
message ‘go’ and at the same time also sends out message ‘picked’ with parame-
ter. The two actions here are split by introducing a new state ‘wait_1’ as shown
in figure Fig. 4 and the corresponding outgoing transitions would be triggered
when controller is either free or gives control to this capsule.

Figure 4 shows how an intermediate FSM would appear for the ‘Player-
StateMachine’ in Fig. 3.

Fig. 4. FSM corresponding to the State Diagram from Fig. 3.

RTState entry/exit Behaviours. Papyrus-RT also allows to define certain
behavioural logic within each ‘RT state’ in the form of state-entry and state-exit
behaviours. After introduction of the ‘wait_*’ states, the actions from the entry
behaviour are added to the incoming state transition, while those of the exit
behaviour are included as part of the outgoing transition. So, if there were any
exit behaviour for the ‘Idle’ ‘RTstate’ from Fig. 3a, then those actions would be
a part of the transition ‘t2a’ in Fig. 4 and not ‘t2b’.

Thus, each capsule in the model is mathematically expressed as a finite-state
machine M = (Q,Q0, Σ, δ, F), where—

– Q = Qs ∪ Qp ∪ Qw is a finite set of states, where Qs is a set of stable states,
Qp is a set of pseudo states and Qw is the set of new wait states introduced
for separating incoming and outgoing messages.

– Q0 ⊆ Q is a set of non-empty initial states (the pseudo state called ‘initial’).

8 S. Sahu et al.

– Σ is the set of attributes including ports and timer.
– δ : Qi × Σ → Qj is a deterministic transition function. Each transition is

associated with a set of guards and actions depending on their UML-RT
counterparts.

– F ⊆ Q is the set of final or accepted states.

3.2 Translation into SMV Model

SMV (Symbolic Model Verifier) system was the first model-checking tool, devel-
oped by CMU (Carnegie Mellon University, Pittsburgh). It was used for verifi-
cation of finite state systems against specifications in temporal logic based on
Binary Decision Diagrams (BDDs) [10,21].

The set of FSMs together with the UML-RT model, is then mapped into a
nuXmv model as follows—

Timing Protocol. Papyrus-RT supports an inbuilt timer in the form of a
‘Timing Protocol’. The only practically usable information we could obtain from
the eclipse forum and published articles on Papyrus-RT was its usage around
setting a timeout value and using that as a trigger for transitions [13,22]. The
logic for the ‘Timing’ protocol was implemented by introducing a corresponding
Module called protocol_timing in nuXmv, such that it continues to stay at ‘−1’
unless explicitly set to a higher value, from where it is then decremented by 1
unit at each run until ‘−1’ is reached again. The ‘timeout’ is set at ‘0’ unit.

User Defined Protocols. Users can define their own protocols in Papyrus-RT
with multiple unidirectional or bidirectional messages. The Capsule ports make
use of these protocols for communication. In order for the ports to be connected,
it is mandatory that they follow the same protocol and one of them is conjugated.

For each user defined protocol in Papyrus-RT, a new MODULE ‘protocol_*’
is introduced in nuXmv following these guidelines—

– Module must have three associated parameters, one each for conjugation prop-
erty, message name and message payload. The payload is restricted to at most
one parameter per message and only integers. It could also be possible to use
enumerations or booleans, but this has not yet been explored.

– The message name, prefixed with its direction, is translated into a DEFINE
expression that uses the conjugation property and the message name as shown
in Listing 1.1. When conjugation is true, an incoming message becomes out-
going (line #10) and vice-versa (lines #3 and #8). There should be no
behavioural change for a bidirectional message with change in conjugation
and is therefore always TRUE when the relevant message is passed (line #4).

– The message payload, prefixed with the carrying message name, is also trans-
lated into a DEFINE expression that holds the parameter value. This should
be ‘0’ when the corresponding message is FALSE (line #9 in Listing 1.1).

Papyrus-RT Model Translation 9

Figure 5 shows a couple of user defined protocols in Papyrus-RT and Listing 1.1
is their corresponding translations following the above rules.

Listing 1.1. Modules in nuXmv for user defined protocols.

1 MODULE protocol_commands(conjugated , msg , param)
2 DEFINE
3 out_start := (conjugated = FALSE & msg = start);
4 inout_stop := (msg = stop);
5
6 MODULE protocol_insulin(conjugated , msg , param)
7 DEFINE
8 out_ask := (conjugated = FALSE & msg = ask);
9 out_ask_dose := (out_ask ? param : 0);

10 in_inject := (conjugated = TRUE & msg = inject);

Fig. 5. Sample of user defined protocols in Papyrus-RT.

Capsules. Each Module in the system represents a FSM, having a set of initial
states, next states and transitions. The ‘Top Capsule’ is translated into the
‘Module Main’, while every other capsule is translated into an equivalent Module
of its own in nuXmv.

For each ‘CapsulePart’, which is an instance of another Capsule in the system,
a VARiable of the corresponding Module type is created in the parent Module.
The inputs to these VARiable instances is based on the ‘Connectors’ as in the
layout of the parent Capsule.

– An input parameter ‘myTurn’ is introduced for every Capsule except the ‘Top
Capsule’. See lines #6 and #11 of Listing 1.2.

– For every incoming connection on an external port, one input parameter
‘in_*’ is added. This means that for the ‘power’ capsule in Fig. 6, the corre-
sponding module declaration should have 3 input parameters, one for each of
the three incoming connections as can be seen in line #6 of Listing 1.2.

– For each internal or external port, except ‘log’, a new ‘port_*’ VARiable of
its corresponding protocol type (Module) is added.
Refer lines #8,#13 and #15 in Listing 1.2.

10 S. Sahu et al.

Fig. 6. Layout of a sample ‘Top Capsule’ showing capsulePart.

– In case a port uses the ‘timing protocol’, then this is supported in nuXmv
with two additional VARiables – timerResetFlag of boolean type INITialized
as ‘FALSE’, and timerResetValue of bounded integer type INITialized to
‘−1’, as shown in lines #16 and #17 of Listing 1.2. This approach for timer
handling is only relevant with the implementation discussed under “Timing
Protocol” above.

– For every type of outgoing port messages, a ‘msg_*’ VARiable of enum type
is declared, composed of a ‘null’ and all possible outgoing message options.
For example, we see that in line #9 of Listing 1.2, both the message options
are include along with null, but in line #14, only stop message is added. This
is because in Fig. 6 port Bat is conjugated and thus has only one outgoing
message unlike non-conjugated port Button. (refer protocol ‘commands’ from
Fig. 5.) The message VARiables are INITialized with ‘null’.

– For every parameter associated with any outgoing port message, a new
‘param_*’ VARiable of integer type The parameter range could be provided
in the Papyrus-RT model as comments as shown in Fig. 5. The parameter
VARiables are INITialized with 0.

– A state VARiable of enum type is introduced and consists of a set of all
‘RTstates’ along with the other states as explained earlier in Sect. 3.1 – stable
states, pseudo states, newly created wait states and the merged-states to
remove hierarchical state structure.

Listing 1.2. Modules in nuXmv corresponding to Capsules from Papyrus-RT Model.

1 MODULE main
2 VAR
3 power : capsule_Power(TURN_P , battery.port_Bat ,

reservoir.port_Res , bgC.port_Ctr);
4 battery : capsule_Battery(TURN_B , power.port_Button);
5 ...
6 MODULE capsule_Power(myTurn , in_Bat , in_Res , in_Ctr)
7 VAR
8 port_Button : protocol_commands(FALSE , msg_Button , 0)

;
9 msg_Button : {null , start , stop};

10 ...

Papyrus-RT Model Translation 11

11 MODULE capsule_Battery(myTurn , in_Button)
12 VAR
13 port_Bat : protocol_commands(TRUE , msg_Bat , 0);
14 msg_Bat : {null , stop};
15 port_Timer: protocol_timing(timerResetValue ,

timerResetFlag);
16 timerResetValue: -1..100;
17 timerResetFlag : boolean;
18 bLvl : 0..100;
19 state : {sInit , sMid_1 , sFinal };
20 ...

Capsule Attributes. Every attribute in the Papyrus-RT model the domain
must be clearly defined. Our research is limited to the use of only integers,
booleans and enum—

– For boolean, the domain is always a set of ‘null’, ‘true’ and ‘false’.
– For integers, the domain-range can be defined by a pair of read-only attributes

marking the max and min values.
– For enumerations, the set of elements as defined.

In the nuXmv translation, a VARiable is declared for each writable attribute and
a DEFINE expression ‘const_*’ is added for each of the accompanying read only
attributes, set to their default values. The VARiable itself is added to INITialize
section with its default value.

Controller Message Queue. For each controller ‘x’ used in the Papyrus-
RT system, a VARiable ‘msgPtr_x’ of integer type is introduced in the ‘Main
Module’ which acts as a pointer to the message Queue Head. DEFINE variables
‘TURN_C*’, one for every CapsulePart, is introduced and used as input param-
eters to the capsules. This serves the role of ‘Connectors’. Another DEFINE
variable ‘FREE_x’ is introduced for each controller. These definitions together
with corresponding NEXT assignments ensure that only one ‘capsulePart’ per
controller as a valid turn at a time, thus maintaining a sequential processing of
the sync messages within each controller.

Line #5 onwards in Listing 1.3 shows the nuXmv code related to controller
for a system consisting of two capsules and only the default controller. The count
of capsules is set as the upper bound for the controller’s message pointer.

Listing 1.3. Controller logic in nuXmv for message queue handling.

1 MODULE main
2 VAR
3 c1 : capsule_1(TURN_C1 , c1.outPort);
4 c2 : capsule_2(TURN_C2 , c2.outPort);
5 msgPtr_x: 0..2;
6 INIT msgPtr_x = 0

12 S. Sahu et al.

7 ASSIGN
8 next(msgPtr_x) := case
9 c1.WAITING & FREE_x : 1;

10 c2.WAITING & FREE_x : 2;
11 TRUE : 0;
12 esac;
13 DEFINE
14 FREE_x := (msgPtr_x = 0);
15 TURN_C1 := (msgPtr_x = 1);
16 TURN_C2 := (msgPtr_x = 2);

The DEFINE variables are fed as input to the corresponding capsule module
and helps to determine if it is their turn for the next transition. On the indi-
vidual capsule side, i.e. in the corresponding Modules, DEFINE expression for
‘WAITING’ (relevant for lines #9 and #10 from Listing 1.3) is set to become
TRUE whenever the capsules land in one of the ‘wait_*’ states. In case there
are no such states then it is set to FALSE.

RTStateMachine Transitions. For every transition in the intermediate FSM,
a DEFINE expression is declared as conjunction of the starting state and the cor-
responding guards. Additional DEFINE expressions are also included for guards
in the form of triggers.

An additional transition ‘t_none’ is also defined, which becomes true when
none of the actual FSM transitions are valid. This is required in nuXmv to
prevent the ‘Empty FSM’ warning in absence of valid next transitions in the
state machine. As an effect of this transition, all VARiables except those being
used as input to other modules, preserve their present values. This implies that
under the TRANSition section for ‘t_none’ the NEXT of outgoing messages and
parameters as well as variables associated with the ‘timer’ and any other such
fields are assigned back to their default INITial values. The same rules are also
followed when dealing with transitions that are silent about the change of values
for such VARiables, i.e. reset to initial default values.

Actions of a Transition. At this point all functional code blocks of Papyrus-
RT – Transition Effect, RTState entry and RTState exit, have been moved into
the action of some transition in the intermediate FSM. These are translated into
NEXT assignments for each local variable either in the TRANSition Section or
ASSINGment section. TRANSition section was preferred for the local ‘state’
variable as well as any integer type variable undergoing mathematical computa-
tions. In case, any new variable is introduced as a part of any transition action,
then it is expressed in the DEFINE section as ‘newVar_t*_*’, to be modified
accordingly when the corresponding start state is valid. However, it is better to
avoid such introductions.

Papyrus-RT Model Translation 13

In the translated model, it is important that there exists exactly one NEXT
definition for every local variable and any avoid ambiguity. For example, the
actions for the transitions in the FSM from Fig. 4 could be translated as shown
in Listing 1.4.

Listing 1.4. Translation of transition actions in nuXmv.

1 TRANS t_none -> next(state) = state;
2 TRANS t1 -> next(state) = s_idle;
3 TRANS t2 -> next(state) = wait_1;
4 TRANS t3 -> next(state) = s_idle;
5 ASSIGN
6 next(msgPlay):= case
7 t_none: null;
8 t1 | t2: msgPlay;
9 t3: picked; -- send picked(random)

10 esac;
11 next(paramPlay):= case
12 t_none: 0;
13 t1 | t2: paramPlay;
14 t3: {1,2,3}; -- rand()%3
15 esac;

While modelling the NEXT assignments for code snippets from Papyrus-RT –
Effects, Entry and Exit, it is important be careful about when to use the present
value of a variable and when to use its next value. If the value of any variable is
changed within a transition’s action and reused at another point post the changes
in the same set of actions, then the new value must be referred in the nuXmv
model. For example, in Fig. 7, the highlighted value are updated and reused
within the same transition action. In the corresponding nuXmv translation—

– ‘this→firstPlayerChoice’ is an attribute to the capsule and hence already a
VARiable exists. So, its NEXT assigment can be simply updated with ‘choice’
which is received with an incoming message.

– ‘result’ is a new variable, and hence a new DEFINE expression is created for it.
But since it is using the recently updated value of ‘this → firstPlayerChoice’,
the expression in nuXmv would have to use ‘next(this → firstPlayerChoice)’
and not the direct value.

– Again it can be seen that the value for already existing attribute ‘this →
firstPlayerScore’ is changed based on the updated value of ‘result’. However,
since ‘result’ was a new addition to the transition and a DEFINE expression
was created, its value will be computed in run-time with every reference. So
here, although it is modified recently, using its direct value will still give the
desired outcome.

14 S. Sahu et al.

Fig. 7. Code Snippet from Papyrus-RT showing multiple computations.

Exactly One Active TRANSition. During the translation of the Papyrus-
RT model into nuXmv, we have included an additional ‘t_none’ transition into
the model to ensure that the system does not run into an ‘Empty FSM’ state,
when none of the actual FSM transitions are valid (the less than one case).

Similarly, with the usage of the TRANS sections, it is required that not
more than one TRANSition becomes valid at any point. Otherwise the nuXmv
compiler cannot handle the ambiguity. Hence, an INVARiant is defined to check
the property that of all the TRANSitions in the Module, exactly one is valid at
any instance.

3.3 Model Restrictions

During the formulation of the above approach, certain challenges were identified
with modelling methods in Papyrus-RT that could hinder with a correct trans-
lation into nuXmv. In order to avoid any unnecessary complications a set of
restrictions have been adopted for Papyrus-RT model design—
1. the behavioural logic, in the form of C++ code snippets along Transition

Effects and State Entry/Exit, should be kept short and simple. Better if pos-
sible with only the port related instructions and direct attribute assignments.
Basic mathematical computations in if-else format is also a workable option.

2. preference to using UML-RT design elements over code-snippets.
3. messages within user-defined Protocols to be limited to carry at max one

parameter of integer type only with clear information on the possible value
range. The value ‘0’ usually should imply an empty payload.

4. any incoming payload should not be directly used, but instead read into a
designated local attribute, which in turn can be used for computations.

5. a single attribute should be updated only ones along the complete transition
set between two stable states.

6. every integer type attribute to be accompanied with a pair of read-only integer
attributes to indicate the domain maximum and minimum values.

Papyrus-RT Model Translation 15

4 Evaluation

The system behaviour for the models in Papyrus-RT was checked through sim-
ulation of specific test scenarios. The corresponding trace from translations
in nuXmv were then compared to ensure behavioural similarities with their
Papyrus-RT versions and then later the nuXmv versions were verified using a
set of formalised temporal properties.

Fig. 8. Trace comparison - Ping Pong model

The Ping Pong Example was a very straight forward model without any
complication and with only one executable message in the controller queue at any
given instance. The behavioral order in the simulation of the translated nuXmv
version matched with that of the Papyrus-RT model, as can be seen from Fig. 8.
In both cases system initiates with a ‘ping’ message, followed by a ‘pong’ and
then alternating one after the other. This behaviour was then also verified using
temporal specifications satisfying the properties – “never directly should a ‘ping’
be followed by another ‘ping’ and a ‘pong’ by another ‘pong’ message in the
overall system” and “a ‘ping’ should always eventually be responded by a ‘pong’
and vice-versa”.

For the Rock Paper Scissors Model as well, we were able to get a nuXmv
translation with similar structure and simulation. Here, we did also make use
of behaviour abstraction on some parts of the code snippet. For instance, the
combined use of ‘srand(time(0))’ and ‘intx = rand()%3’ in C++, basically
assigns a randomly chosen value between 1–3 to the variable ‘x’. This had to be
replaced with a ‘set’ assignment in nuXmv.

Figure 9 shows a simulation from Papyrus-RT as well as the relevant sections
from an equivalent nuXmv translation. In the particular execution, the two

16 S. Sahu et al.

rounds from Papyrus-RT simulation were computed in 24 nuXmv states or runs.
States 3.10–3.12 correspond to picking of choices by the players in round 1, while
states 3.20–3.22 correspond to that of round 2, with the final judgement after
round 2 in State 3.24.

Fig. 9. Simulations for Rock Paper Scissors model

The behavioural similarities of the simulation traces were compared for 3
main test scenarios,—Test 1, a ‘tie’ case; Test 2, winner is found in two out of
three rounds, as shown in Fig. 9; Test 3, all three rounds are played.

As for the behavioural verification of the model, a set of temporal specifica-
tions corresponding to the below properties were used

– Each ‘player’ always has to wait for a signal from the ‘referee’ to be able to
play its round.

– A ‘player’s’ choice can never be outside of the given domain of choices.
– Whenever the score of a ‘player’ is incremented by the ‘referee’, it must always

comply with the game rules, i.e. ‘Rock wins over Scissor’, ‘Scissor wins over
Paper’ and ‘Paper wins over Rock’.

In the Insulin Pump Case also a similar approach for trace comparison
and property verification was adopted. Most of the system properties verified
were related to correct dose computation, dose injection and maintenance of
a synchronised communication between the sub-parts. In addition, it was also

Papyrus-RT Model Translation 17

verified that “a running system is always able to maintain a normal blood glucose
level eventually”. Tests for trace comparison included the scenarios – Test 1,
system stops due to battery failure; Test 2, insufficient level of insulin in reservoir
causes system failure; Test 3, simulation is able to bring down high blood glucose
within the normal range.

Fig. 10. Simulation states for Insulin Pump model

Although it was possible to achieve equivalence with respect to the model
structure and semantics of the Papyrus-RT version, slight behavioural variations
between the non-communicating units ‘battery’ and ‘bgc’ was observed in case
of nuXmv. For instance, let us consider the section of the simulation traces
in Fig. 10, which shows the start and stop situation from the two versions. In
both simulations the system stops functioning because of limited insulin level in
reservoir, i.e. at 19 units and manages to bring down blood glucose to 125 units.
However, the ‘battery’ level at this point drops to 16 in the Papyrus-RT version,
while in nuXmv, the drop is further down to 11. In other words, the ‘bgC’
unit in Papyrus-RT version seems to function at a faster pace compared to its
counterpart in nuXmv. On a deeper analysis of the simulation trace, it was found
that this mismatch in behaviour was due to the variation in implementation of
the timing protocol. The one inbuilt in Papyrus-RT queues up the timer reset
requests and hence is designed to process each one of them, whereas the one
in our approach works by overwriting. This implies that the translation model
will behave differently whenever multiple timer reset actions lead into the same

18 S. Sahu et al.

state of the FSM. This could be handled by either implementing a different timer
logic, or by restricting the model design to not use another timer reset unless
the first one is exited.

5 Related Work

In [19] and [20], the researchers present a translation for a subset of the UML
state diagrams, while [5] and [27] focus on those of UML-RT. Except [20], where
the researchers have developed a self-contained model checking tool for their app-
roach, the other three are targeted towards using PROMELA (SPIN) [14,15] as
the language for model checking with implementations based on IBM’s RSARTE
tool [16]. In our approach, we focus on creating a SMV model that can be used
with the nuXmv model checker. As far as we could make out from [5], UML-
RT constructs such as hierarchical states, signal payloads, multiplicity of model
elements, pseudostates and guard conditions are not considered in their trans-
lation, unlike ours. In case of Zrowska and Dingel’s work [27], they also use an
intermediate Functional FSM somewhat similar to that in our approach, which
they say separates state machine behaviour from its actions and therefore can
support different action languages. However, when describing the implementa-
tion only a subset of C++ comprising of basic variable operations, if statements
and while loops is included.

A work that supports formal verification of its models using the nuXmv
model checker is found in the model-based development tool called AutoFocus3
(AF3) [17]. The tool uses nuXmv together with another command-line veri-
fication tool called OCRA [9]. Modelling in the tool is based on the FOCUS
model of computation [4] with a global clock and a synchronous execution of all
components. This is different from the UML-RT models of Papyrus-RT, where
each capsule has its own local timer and inter-capsule communications are asyn-
chronous, controlled by global message queue systems.

6 Conclusion and Future Work

In this paper, we have talked about a detailed approach on translation of UML-
RT models of Papyrus-RT along with its implications on three example models,
ranging from very simple to moderate complexities. After multiple attempts
with Papyrus-RT modelling and the corresponding translations into nuXmv, we
were able to come up with a refined translation methodology that is applica-
ble in coordination with the modelling requisites listed in Sect. 3.3. Based on
our experience with the above discussed case studies and a few others like the
Conveyer Belt System and the Traffic Light system for a 4-way crossing, we can
say that UML-RT translation into equivalent nuXmv models for well designed
using our approach. As for multi-threaded systems, the present approach for
timer handling could be an issue and needs enhancement. Another aspects that
can be looked up is the handling of enumerations as payload for communication.

Papyrus-RT Model Translation 19

Backward translation of the nuXmv counter examples to be usable for rec-
tification of design flaws and automation of the translation approach are two of
the long term future aspects of this research work.

References

1. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_11

2. Beaton, W.: Eclipse Papyrus for Real Time (Papyrus-RT). projects.eclipse.org,
July 2017. https://www.eclipse.org/papyrus-rt/. Accessed 31 Aug 2020

3. Bozzano, M., et al.: nuXmv 1.1. 1 User Manual. FBK-Via Sommarive 18, 38055
(2016). https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.
Home. Accessed 31 Aug 2020

4. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2012). https://doi.
org/10.1007/978-1-4613-0091-5

5. Carlsson, M.G., Johansson, L.G.: Formal verification of UML-RT capsules using
model checking. Master’s thesis, Chalmers University of Technology (2009)

6. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_22

7. Cavada, R., Cimatti, A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.:
NuSMV 2.6 Tutorial. FBK-irst-Via Sommarive 18, 38055 (2010)

8. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

9. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: Othello Contracts Refinement
Analysis Versions 1, 3 (2015)

10. Clarke, E., McMillan, K., Campos, S., Hartonas-Garmhausen, V.: Symbolic model
checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
419–422. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_93

11. Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd
Workshop in Software Model Engineering, WiSME, pp. 262–271. Citeseer (2004)

12. Hili, N., Posse, E., Dingel, U., Beaulieu, A.: Supporting Material For EclipseCon’17
Unconference - Modeling & Analysis In Software Engineering. School of Com-
puting, Queen’s University (2017). https://flux.cs.queensu.ca/mase/papyrus-rt-
resources/supporting-material-for-eclipsecon17-unconference/. Accessed May 2020

13. Hili, N., Posse, E., Dingel, J.: Calur: an action language for UML-RT. In: 9th
European Congress on Embedded Real Time Software and Systems (ERTS 2018),
Toulouse, France, January 2018. https://hal.archives-ouvertes.fr/hal-01739675

14. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

15. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual, vol.
1003. Addison-Wesley, Reading (2004)

16. IBM Knowledge Center: IBM Rational Software Architect RealTime Edition.
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/com.ibm.xtools.
rsarte.legal.doc/helpindex_rsarte.html. Accessed July 2020

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://www.eclipse.org/papyrus-rt/
https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home
https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-61474-5_93
https://flux.cs.queensu.ca/mase/papyrus-rt-resources/supporting-material-for-eclipsecon17-unconference/
https://flux.cs.queensu.ca/mase/papyrus-rt-resources/supporting-material-for-eclipsecon17-unconference/
https://hal.archives-ouvertes.fr/hal-01739675
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/com.ibm.xtools.rsarte.legal.doc/helpindex_rsarte.html
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/com.ibm.xtools.rsarte.legal.doc/helpindex_rsarte.html

20 S. Sahu et al.

17. Kanav, S., Aravantinos, V.: Modular transformation from AF3 to nuXmv. In:
MODELS (Satellite Events), pp. 300–306 (2017)

18. Koshy, T.: Finite-State-Machines. In: Discrete Mathematics with Applications, pp.
771–802. Elsevier (2004)

19. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural sub-
set of UML statechart diagrams using the SPIN model-checker. Formal Aspects
Comput. 11(6), 637–664 (1999)

20. Liu, S., et al.: A formal semantics for complete UML state machines with com-
munications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-
8_23

21. McMillan, K.L.: The SMV system. In: Symbolic Model Checking, pp. 61–85.
Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3190-6_4

22. Posse, E.: PapyrusRT: modelling and code generation. In: Workshop on Open
Source for Model Driven Engineering (OSS4MDE 2015) (2015)

23. Posse, E., Dingel, J.: An executable formal semantics for UML-RT. Softw. Syst.
Model. 15(1), 179–217 (2016)

24. Posse, E., Rivet, C.: Papyrus-RT: high-level view of the general transforma-
tion architecture. Survey of Requirements Management Standards - Eclipsepe-
dia, February 2017. http://wiki.eclipse.org/Papyrus-RT/Developer/Design/0.8/
Codegen_High_Level_Overview. Accessed 24 Apr 2019

25. Rivet, C., Posse, E., Toolan, D.: Getting Started with Papyrus for Real
Time v1.0. Survey of Requirements Management Standards - Eclipsepe-
dia, September 2017. https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/
Getting_Started. Accessed 24 Apr 2019

26. Sommerville, I.: An Insulin Pump Control System. Software Engineering 10th Edi-
tion, December 2014

27. Zurowska, K., Dingel, J.: Symbolic execution of UML-RT state machines. In: Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC 2012,
pp. 1292–1299. Association for Computing Machinery, New York (2012). https://
doi.org/10.1145/2245276.2231981

https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-1-4615-3190-6_4
http://wiki.eclipse.org/Papyrus-RT/Developer/Design/0.8/Codegen_High_Level_Overview
http://wiki.eclipse.org/Papyrus-RT/Developer/Design/0.8/Codegen_High_Level_Overview
https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/Getting_Started
https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/Getting_Started
https://doi.org/10.1145/2245276.2231981
https://doi.org/10.1145/2245276.2231981

Modeling and Verification of Temporal
Constraints for Web Service Composition

Maya Souilah Benabdelhafid1,2(B), Houda Boubaker2, and Mahmoud Boufaida2

1 Ecole Supérieure de Comptabilité et Finances, 5 Chemin Forestier, SMK, Constantine, Algeria
mbenabdelhafid@escf-constantine.dz

2 LIRE Laboratory, Abdelhamid Mehri Constantine 2 University, Constantine, Algeria

Abstract. This paper aims to verify temporal constraints for Web service com-
position. The expected deployment of such verification when composing services
strongly depends on the development of an adequate solution that guarantees a high
level of service quality to the system users. Given the importance of e-commerce
solutions forAlgerian citizens that are favorable to it due to the current confinement
situation during the Covid-19 pandemic, we develop a Web service composition
that studies the speed distribution of Every Consumer Goods in Algeria by using
the Timed Colored Petri Nets formalism. Once the temporal constraints are identi-
fied and the formal model is developed, we analyze the performance by creating a
monitor on which multiple simulations are performed by using the software CPN
Tools allowing the collection of several time data, which are evaluated thereafter
using the Java Framework.

Keywords: Service composition · Temporal constraints · Timed Colored Petri
Nets · Formal verification ·Monitoring · CPN tools · Covid-19

1 Introduction

As a core technique of Service Oriented Architecture (SOA) [1], service composition
is a powerful approach to enhance the flexibility of the system as a whole in a way
that new components and functionality pieces, that can be easily integrated. It combines
a series of services, and at run-time, for each service, components are integrated and
invoked. Temporal constraints [2] are seen as an important quality criterion in Business
to Business Web service compositions, since lead time is a key performance indicator
reflecting the competitiveness of enterprises [3]. One of the major benefits of applying
formal approaches is the possibility of verifying whether service compositions meet
specific requirements and properties [4]. Particularly, this mechanism has been identified
as a prospective area where the modeling power of Petri Nets (PN) can be used in the
dynamic representation and online monitoring of activities and resources, which have
been proven very helpful.

PN, which represent a formal conceptual tool to specify concurrent systems, are
used to formally model and verify services, making them easy to specify and model
message exchange between services, service composition, and other aspects. Colored

© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 21–29, 2021.
https://doi.org/10.1007/978-3-030-67220-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_2

22 M. Souilah Benabdelhafid et al.

PNs (CPN) offer many advantages to compose services because they are able to model
a system where many activities take place concurrently and asynchronously. Jensen
and Kristensen [5] introduced Timed CPN (TCPN) to verify discretely timed systems.
Let us notice that TCPN is the same language of CPN with the addition of a stamp
t statement that terminates successfully t time units after it has started. The powerful
simulation software CPNTools [6] can directly collect and analyze experiment data from
the CPN based model for performance analysis. Therefore, TCPN and CPN Tools are
widely used in the performance analysis of a large and complex service composition. For
instance, Franceschetti and Eder [7] proposed a technique for the providers of composed
services with temporal parameters to compute the broadest ranges for the temporal input
parameters such that all service invocations where the parameters are within these ranges
are dynamically controllable. Also, in [8], the authors proposed a TCPN based approach
for modeling and evaluating the business processes from temporal viewpoints. They
first model the business processes without time constraints, including various business
and legal regulations along with resource based constraints. They added the temporal
modules to themwithminimalmodification of the original models. However, the authors
have given a brief description on how the evaluation should be done whereas in [9], we
have already proposed a detailed approach in which CPN are used to model the behavior
of the system. Our previous efforts were concentrated to show the passage from CPN to
TCPN when modeling Web service composition.

In order to handle temporal constraints, we propose in this paper a temporal
constraints-aware service composition by using TCPN formalism, which is supported by
the software CPN Tools. First, an e-commerce application is discussed where we high-
light the importance of temporal constraints and e-commerce applications for Algerian
citizens that suffer in this moment from COVID 19 pandemic. Then, we make use of
TCPN for modeling these constraints that will be after verified. The verification process
is based on the monitor creation on which several simulations are performed allowing
collecting time data that will be transmitted to Java framework in order to be analyzed.

The remainder of this paper is organized as follows. Section 2 illustrates our moti-
vation through a real scenario. Section 3 introduces the temporal constraint concept by
making use of the scenario and describes the temporal constraints modeling and veri-
fication approach. Section 4 defines the first step of the approach based on the TCPN
modeling. Section 5 talks about the created monitor and Sect. 6 reveals the third step
which is about the results visualization. Finally, Sect. 7 concludes this research work
and discusses future directions.

2 Motivation Scenario

Despite thewidespread use of e-commerce, shopping EverydayConsumerGoods (ECG)
[10] online remains so far limited in Algeria. COVID-19 confinement in Algeria shows
that households are still committed to traditional forms of retail, for which going out
home remains necessary. Substantial efforts are being made by the commerce ministry
in order to control delivery supply chains, both in terms of time span and correct pricing.
The online sale has just started in many parts of the country, and various items are
ordered, mostly via social networks and delivered on time. These actions are helping

Modeling and Verification of Temporal Constraints 23

to enforce the confinement but still insufficient and poorly organized. Consequently,
the Algerian Government needs to raise the general awareness of e-commerce. In this
context, the present paper examines an e-commerce scenario that considers temporal
constraints. The proposed application allows a client to send two messages: the order
to the Customer Web Service (CWS) and the payment order to the Bank Web Service
(BWS). Then, the BWS returns to the client a payment verification, which is a security
code number for verifying the client identity within 15 to 30 s. The client must respond
by sending a payment confirmation that will be checked by the BWS within 15 to 18 s.
If the verification is unsuccessful, then the BWS must address an error confirmation
notification to the client. Otherwise, it must check the balance within 30 to 60 s. If
the payment transaction fails, then the BWS must return an error payment notification.
Otherwise, it contacts the CWS by sending a payment notification in within 24 to 30 s,
which indicates that the payment operation is completed successfully. Eventually, the
CWS sends an electronic bill to the client. After 27 to 32 min, the CWS must transmit
the order to the Warehouse Web Service (WWS) in order to check its availability. The
WWS responds by Exist Notification message, which means that the order is available
or by Not Exist Notification otherwise. The availability check operation takes within 2
to 3 min. If the order is available, then the CWS sends a delivery order to the Delivery
Web Service (DWS), so as to deliver the goods to the client within 2 to 4 days. When
the DWS terminates, it confirms its performing by sending the delivery confirmation to
the CWS. In the other case (the order is not available), the CWS must transmit a supply
order to the Provider Web Service (PWS) for providing the missing items and sending
them to distribution centers within 2 to 3.30 h. When the WWS receives the supply, it
confirms the supplying operation by sending a supply notification to the CWS. Once in
a while, the order can have shipping damaged. Consequently, the client reports the CWS
by addressing an item in which he explains the reason for return. After that, he receives
a mailing label which is an electronic sticker that must be printed by the client and stuck
on the outside of the order package. The CWS must send a return order to the DWS for
returning the damaged order to the distribution center and receives a confirmation. The
return process takes within 5 to 10 days of the receipt of shipment by the client. Finally,
a refund order with the same items that the original order will be created, so the CWS
must restart the process another time.

3 Temporal Constraints Modeling and Verification

For the above ECG example, we define the following temporal constraints by assuming
that a minute as a basic time unit (Table) 1.

• TC1:TheBWSmust send the payment verification to the client within (15–30 s). This
is a local temporal constraint, which defines the estimated execution of the activity
“send the payment verification” of the BWS.

• TC2: The BWS must verify the confirmation within (15–18 s). This local temporal
constraint defines the execution time of the activity “verify confirmation”.

• TC3: The BWS must verify the payment within (30–60 s). It is a local constraint,
which specifies the operating time of the activity “verify payment”.

24 M. Souilah Benabdelhafid et al.

Table 1. Some temporal constraints.

Temporal
constraint

Web service Type Time Unit (TU)

TC1 BWS Local 0.25–0.5 TU

TC2 BWS Local 0.25–0.3 TU

TC3 BWS Local 0.5–1.0 TU

TC4 BWS Local 0.4–0.5 TU

TC5 CWS Local 27–32 TU

TC6 CWS/WWS Global 2–3 TU

TC7 CWS/PWS/WWS Global 120–210 TU

TC8 CWS/DWS Global 2880–5760 TU

TC9 CWS/DWS Global 7200–14400 TU

• TC4: The BWS sends a payment notification to the CWS that must be per- formed
within (24–30 s). This local temporal constraint defines the execution time of the
activity “send payment notification to CWS”.

• TC5: The CWSmust transmit the order to theWWS after 27 to 32 min of sending the
bill to the client. This is also a local temporal constraint but it is used to specify the
expected delay between two activities which are “send the bill to client” and “send
the order to the WWS”.

• TC6: The availability check operation takes within 2–3 min. It determines the delay
between sending the order to the WWS and the receipt of the Exist or Not Exist
Notification. Here, we are referring to a global temporal constraint, which represents
the time required for the CWS to invoke the operations of the WWS.

• TC7: The supply process, which takes within (2–3.30 h) between sending the supply
order to PWS and the receipt of supply notification. It is also a global temporal
constraint, which represents the time required for the CWS to invoke the operations
related to both of PWS and WWS.

• TC8: The delivery process determinates within (2–4 days) forming a delay between
sending the order to the DWS and the receipt of the delivery confirmation.

• TC9: The return process of the damaged order specifies (5–10 days) as the delay
between the sending of the item to the CWS and the receiving the confirmation.

For handling the temporal violations, we propose a process that includes three steps:

1 TCPN-based Modeling: The formal modeling of each Web service is performed by
making use of the TCPN semantics based on the color set and the time step concepts.
The set local temporal constraints are first modeled. Then, the TCPN composition
model is performed and the global temporal constraints are next considered. Multiple
simulations are performed frequently to check whether the formal model behaves as
expected.

Modeling and Verification of Temporal Constraints 25

2 CPN Tools-based Monitoring: We make use of the “User defined” component in
the software CPN Tools. This monitor is associated to all TCPN transitions forming
our ECG application.

3 Java Framework-based Evaluation:We run a simulation at the CPN Tools. Mean-
while, Java receives the transmitted data through the monitor in order to visualize a
clear simulation. It uses the transferred model of the transitions in order to compute
the execution time of each temporal constraint during the simulation and compar-
ing them with those added during the modeling. Finally, a Java library is used for
generating a graph, which shows the execution time for the transitions associated to
temporal constraints over steps. If some constraints are not verified, then we should
return towards the model for correct it.

4 TCPN-Based Modeling

First, several color sets are defined in order to construct the TCPN of each Web Service;
� = {DATA, BOOL, REAL, STK, T1, T2, T3, T4, T5, T6, T7, T8, T9}, where:

• DATA: is the color set that represents the exchanged messages;
• BOOL: is the color set which represents the declaration of Booleans;
• REAL: is the color set which represents a declaration of real values;
• STK: is the color set which represents the percentage decrease of the stock;
• The real color set T1 (respectively T2, T3, T4, T5, T6, T7, T8, T9) representing a
duration between [0.25, 0.5] TU (respectively [0.25, 0.3] TU, [0.5, 1.0] TU, [0.4, 0.5]
TU, [27.0, 32.0] TU, [2.0, 3.0] TU, [120.0, 210.0] TU, [2880.0, 5760.0] TU, [7200.0,
14400.0] TU).

We also define the set of functions which are related the local temporal constraints that
must be assigned to the individual TCPN transitions:

• The function fun delayPayVer() = T1.ran(), which is assigned to the transition
S_Verification_t_C of the BWS;

• The function fun delayConf() = T2.ran(), which is assigned to the transition
Verify_Confirmation of the BWS;

• The function fun delayVerPayment() = T3.ran(), which is assigned to the transition
Verify_Payment of the BWS;

• The function fun delayPayNot() = T4.ran(), which is assigned to the transition
S_PayNotification_T_CWS of the BWS;

• We add a local constraint to the output arc of the transition “S_Bill_T_C” of the CWS
by assigning the function fun delaySendOrder() = T5. ran(), which means that the
order will not be confirmed until after 27 to 32 min.

Next, we join the TCPN of each Web Service to obtain a formal model dedicated to the
composition. In addition, we define the functions which are related to global temporal
constraints. They are dedicated to the latter that are set between two activities:

26 M. Souilah Benabdelhafid et al.

• The function fun delayExt() = T6.ran() is assigned to the transition
S_ExistNotification_T_CWS and the transition S_NotExistNotification_T_CWS. It
determines the time between the sending of the Order to the WWS and the receipt of
the Exist Notification or the Not Exist Notification;

• The function fun delaySupp() = T7.ran() is assigned to the transition
S_SuppNotification_T_CWS. It determines the time between the sending of the
Supply Order to the PWW and the receipt of the Supply Notification;

• The function fun delayOrder()= T8.ran() is assigned to the transition S_Order_T_C.
It determines how long it takes for the DWS to deliver the order to the customer;

• The function fun delayReturn() = T9.ran() is assigned to the transition
S_RetConfirmation_T_CWS. It is a temporal constraint related to the return of a
damaged order.

As a result, we obtain a TCPN model of the ECG application, which considers the
nine set temporal constraints (see Fig. 1). As it is shown, the initial marking consists
primary on three tokens: Order message in the place Order_received, Payment Order
message in the place Pay_Order_received and true Boolean in the place damaged. They
are associated to timestamp (see @ given in green boxes) equal to 0.0.

Pay_order_received

DATA

1`PaymentOrder

Verification_request_sent

DATA
Payment_Confirmation_received

DATA

PayConfirmation_sent

DATA

Error_Confirmation_sent

DATA

order_received
DATA

1`Order

Bill_sent
DATA

Order_sent
DATA

Notification_Sent
DATA

SuppOrder_Sent

DATA

DeliveryOrder_Sent

DATA

DeliveryConf_Sent

DATA

Order-delivered

DATA

Supply_Sent
DATA

Notificaion_Supp_received

DATA

RetItem_received

DATA

MailingLabel_sent
DATA

OrderRet_sent
DATA

ReturnConfirmation_sent
DATA

damaged
BOOL

1`true

Error_Payment_Sent
DATA

item_damaged
DATA

delivey_done
BOOL

S_number_T_BWS

verify_Order

BWS

BWSBWS

WWS
WWSWWS

DWS
DWSDWS

PWS

PWSPWS

CWS

CWSCWS

S_RetItem_T_CWS PaymentVerification

PaymentConfirmation
Goods

damaged if damaged=true
then 1`Item
else empty

Item

Item

1`true

1

1`PaymentOrder@0.0

1
1`Order@0.0

1
1`true@0.0

Fig. 1. TCPN model of the ECG application (Color figure online)

5 CPN Tools-Based Monitoring

Once the system is modeled, we use the monitoring palette of CPN Tools 4.0 in order to
create a monitor “User defined”. As we can see in Fig. 2, we define firstly the function
“init ()”, which establishes the connection communication between CPN Tools and the
Java Framework.

Then, we make use of two well-known functions: Observer and Predicate. The
Observer function returns the Web Service, the transition name, the temporal values

Modeling and Verification of Temporal Constraints 27

Fig. 2. User defined monitor of the ECG application

and the step number when the transition is fired. It uses Time and Step functions. Con-
cerning the Predicate function, each time it returns true, the data is extracted by the
Observer function and transmitted to the defined Action function, which checks the
connection to the application for transferring the collected data.

Finally, the Stop function is called when the simulation is finished. Once it is exe-
cuted, the connectionwith the Java framework is closed.We note that theAction function
invokes Send_to_Java function. This latter uses another function called ConnManage-
mentLayer.send, which is available in the Comms/CPN functions. It allows the sending
of the data (the Web service it belongs to, the transition name, the time model and the
step number when the transition is fired) that are related to each transition to Java.

6 Java Framework-Based Evaluation

This evaluation consists of receiving the transmitted data through the created monitor.
It contains three essential parts as follow:

Simulations. Once the collected data are received by Java, they are used for visualizing
TCPN model simulations at Java application in the run-time. When a transition is fired
on the CPN Tools level, it will be transmitted in real time and displayed.

Time Computing. Here, the execution times of transitions that are associated to local or
global temporal constraints are computed during the simulation. They are then compared
to the set constraints. Let us compare the set temporal constraints and the computed time
data. Table 2 reveals that the returned data are in the interval of the time that is associated
to the set temporal constraints (see columns 2 and 3).

Temporal Constraints Visualization: At this level, we use the “JFreeChart” library
for creating a line graph, which depicts the execution time of each transition associated
to local or global temporal constraints over steps. Figure 3 represents the obtained graph

28 M. Souilah Benabdelhafid et al.

Table 2. Comparison of the set temporal constraints with the computed ones.

Temporal constraint Time Unit (TU) Computed time using Java

TC1 0.25–0.5 TU 0.397006354829 TU

TC2 0.25–0.3 TU 0.297161121642 TU

TC3 0.5–1.0 TU 0.869714341759 TU

TC4 0.4–0.5 TU 0.45778840620 TU

TC5 27–32 TU 29.48714989867 TU

TC6 2–3 TU 2.3845970725 TU/2.1641991 TU

TC7 120–210 TU 203.0698617334 TU

TC8 2880–5760 TU 5285.316646771TU/4880.0243730 TU

TC9 7200–14400 TU 13392.2057475 TU

containing three line charts. The red line chart shows the execution time of the tran-
sitions during the simulation whereas the blue (respectively the green) line represents
the execution time in the case when the transition is associated to the set temporal con-
straints but with minimum (respectively maximum) values. For instance, we notice that
the TC8, which is related to the delivery process is defined by between 40 and 44 that
takes around 5000 TU during the simulation. This value is between the minimum value
2880 TU and the maximum value 5760 TU, which are defined by the blue and green
lines chart respectively. For the other constraints, it is shown plainly that the red curve
of simulation is always between the blue and the green curves. That is to say that the
temporal constraints are verified in this step another time. Hence, the Java framework
based evaluation allows analyzing successfully the temporal accuracy and reliability of
the Web service composition.

Fig. 3. Temporal constraints visualization (Color figure online)

7 Conclusion

The importance of an adequate management of temporal aspects of process aware infor-
mation systems is beyond dispute [11]. This paper proposes a development process able

Modeling and Verification of Temporal Constraints 29

to model and verify temporal constraints for Web service composition by using TCPN
formalism, CPN Tools software and Java Framework. In doing so, and by an illustrative
example, this work reveals that TCPNmodels based composition can be transferred into
Java framework able to allow the developer to verify several temporal constraints. In
future, the performance challenge will be discussed for the same case study but for other
criteria such as security.

References

1. Wu, Z.: Service Computing: Concept, Method and Technology. Academic Press, Cambridge
(2014)

2. Deng, S., Huang, L., Wu, H., Wu, Z.: Constraints-driven service composition in mobile cloud
computing. In: 2016 IEEE Inter Conference on Web Services, pp. 228–235. IEEE (2016)

3. Song, W., Ma, X., Cheung, S.C., Dou, W., Lu, J.: A public-view approach to timed properties
verification for B2B web service compositions. In: 2009 IEEE International Conference on
Services Computing, pp. 427–434. IEEE (2009)

4. Zhu, M., Li, J., Fan, G., Zhao, K.: Modeling and verification of response time of QoS-aware
web service composition by timed CSP. Proc. Comput. Sci. 141, 48–55 (2018)

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

6. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for modelling
and validation of concurrent systems. Int. J. Softw. Tools Technol. Transfer 9(3–4), 213–254
(2007)

7. Franceschetti, M., Eder, J.: Checking temporal service level agreements for web service
compositions with temporal parameters. In: 2019 IEEE International Conference on Web
Services (ICWS), pp. 443–445. IEEE (2019)

8. Shinkawa, Y., Shiraki, R.: Temporal evaluation of business processes using timed colored
Petri Nets. In: FedCSIS Position Papers, pp. 161–168 (2017)

9. Benabdelhafid,M.S., Bérard, B., Boufaida,M.: Analysing timed compatibility of web service
choreography. Inter J. Crit. Comput.-Based Syst. 7(3), 253–278 (2017)

10. Pernot, D.: Internet shopping for Everyday Consumer Goods: an examination of the purchas-
ing and travel practices of click and pickup outlet customers. Res. Transp. Econ., 100817
(2020)

11. Eder, J.: Computing history-dependent schedules for processes with temporal constraints.
In: Dang, T.K., Küng, J., Takizawa, M., Bui, S.H. (eds.) FDSE 2019. LNCS, vol. 11814,
pp. 145–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35653-8_11

https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-030-35653-8_11

Modeling Attack-Defense Trees’
Countermeasures Using Continuous Time

Markov Chains

Karim Lounis1(B) and Samir Ouchani2

1 QRST, School of Computing, Queen’s University, Kingston, ON, Canada
lounis@cs.queensu.ca

2 LINEACT, École d’Ingénieur CESI, Aix-en-Provence, France
souchani@cesi.fr

Abstract. ADTrees (Attack-Defense Trees) are graphical security mod-
eling tools used to logically represent attack scenarios along with their
corresponding countermeasures in a user-friendly way. Many researchers
nowadays use ADTrees to represent attack scenarios and perform quan-
titative as well as qualitative security assessment. Among all differ-
ent existing quantitative security assessment techniques, CTMCs (Con-
tinuous Time Markov Chains) have been attractively adopted for
ADTrees. ADTrees are usually transformed into CTMCs, where tradi-
tional stochastic quantitative analysis approaches can be applied. For
that end, the correct transformation of an ADTree to a CTMC requires
that each individual element of an ADTree should have its correct and
complete representation in the corresponding CTMC. In this paper, we
mainly focus on modeling countermeasures in ADTrees using CTMCs.
The existing CTMC-model does not provide a precise and complete mod-
eling capability, in particular, when cascaded-countermeasures are used.
Cascaded-countermeasures occur when an attacker and a defender in a
given ADTree recursively counter each other more than one time in a
given branch of the tree. We propose the notion of tokenized-CTMC to
construct a new CTMC-model that can precisely model and represent
countermeasures in ADTrees. This new CTMC-model allows to handle
cascaded-countermeasure scenarios in a more comprehensive way.

Keywords: Attack-defense trees · CTMCs · Security graphical
models · Stochastic models · Quantitative security assessment

1 Introduction

ADTrees (Attack-Defense Trees) [1] are defined as a graphical methodology used
to represent attack scenarios by systematically representing the different actions

QRST (Queen’s Reliable Software Technology) Laboratory.
LINEACT (Laboratoire d’Innovation Numérique pour les Entreprises et les Apprentis-
sages au service de la Compétitivité des Territoires).

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 30–42, 2021.
https://doi.org/10.1007/978-3-030-67220-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_3

Modeling Attack-Defense Trees’ Countermeasures 31

that an attacker may undertake to realize a security breach, and the different
actions that a defender may apply to mitigate the attacker’s actions. ADTrees
can be interpreted using different types of semantics, generally classified into
stochastic (e.g., continuous time Markov chains (CTMCs) [2] and stochastic
Petri-nets (SPNs) [3]) and non stochastic (e.g., propositional, multiset, equa-
tional, and De Morgan [1]). They have proven to be simple, easy to use, and
yet powerful in their modeling capability. Also, they can be automatically gen-
erated [4] and applied for security assessment using a publicly available tool,
called ADTool [5].

Disconnect
a Bluetooth
device from
a piconet

Establish a
pairing-free
connection

Spoof target
Bluetooth
device

Use SDP-
tool for

pairing-free
connection

Use L2Ping
tool for

pairing-free
connection

Bruteforce
Bluetooth
BD ADDR
address

Adopt Blue-
tooth non-
discoverable

mode

Fig. 1. ADTree for disconnecting a legit-
imate Bluetooth device from a Bluetooth
piconet, a.k.a., Bluecutting attack. (Color
figure online)

Figure 1 illustrates a simple
ADTree that can be followed to
generate a Bluecutting attack1. In
an ADTree, attacks are shown by
red circles (©), whereas defenses
are depicted in green squares (�).
Attack and defense refinements are
depicted by solid lines (©−© and
�−�), whereas attack and defense
mitigations (counterattacks) are rep-
resented by dashed lines (©· · ·�
and �· · ·©). The root node in
an attack-defense tree represents the
final goal of the attacker. The inter-
mediary nodes show subgoals. Finally,
leaf nodes represent basic “atomic”
attacks or defenses. Attack as well
as defense nodes can be refined fur-
ther into more detailed attack or
defense actions. The refinement can
be either conjunctive (i.e., all actions
must occur), disjunctive (i.e., one out
of many actions occur), sequentially conjunctive (i.e., all actions must occur fol-
lowing an order), or parallel disjunctive (i.e., a combination of optional actions
occur). For example, in the ADTree of Fig. 1, the attack node “Disconnect a
Bluetooth device from a piconet”, i.e., the root node, is refined using the sequen-
tial conjunctive refinement (represented by an arrow linking the refinements).
Such a refinement enforces that the attack action “Establishing a pairing-free
connection” can be performed if and only if the attack action “Spoof target
Bluetooth device” is conducted and completed. The attack node “Establishing
a pairing-free connection” is further disjunctively refined into two other attack
actions. This refinement allows the attacker to either perform the attack node

1 Bluecutting attack is a denial of service attack on Bluetooth wireless technology. In
this attack the attacker creates a new connection (pairing-free connection) with a
remote device to force the latter to disconnect from another device [6–8].

32 K. Lounis and S. Ouchani

“Use L2Ping tool for pairing-free connection” or the attack node “Use SDPtool
for pairing-free connection”.

Among the modeling capabilities of ADTrees that make them favorable over
other existing graphical models, the ability to model cascaded-countermeasures.
Cascaded-countermeasures occur when an attacker and a defender in a given
ADTree recursively counter each other more than one time in a given branch of
the tree. For example, in the ADTree of Fig. 1, the branch composed of attack
nodes “Spoof target Bluetooth device” and “Bruteforce Bluetooth BD ADDR
address”, and the defense node “Adopt Bluetooth non-discoverable mode” con-
stitutes an example of a cascaded-countermeasure (viz., Fig. 2).

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode

Bruteforce
Bluetooth
BD ADDR
address

Fig. 2. ADTree tree for spoofing a legiti-
mate Bluetooth device. The initial attack
“Spoof target Bluetooth device” is miti-
gated with a countermeasure “Adopt Blue-
tooth non-discoverable mode”, which is in
turn countered by the attacker with another
attack “Bruteforce Bluetooth BD ADDR
address”.

We note that there is no restric-
tion on the number of cascaded-
countermeasures’ levels that can be
created in one branch of the tree.
In [2], we have developed a stochas-
tic framework for quantitative analy-
sis of ADTrees. The framework adopts
ADTree methodology to represent
attack scenarios in a simple graphical
representation, and performs security
quantitative assessment using CTMC
analytical approach. We have per-
formed a security quantitative anal-
ysis on a case study to validate
the framework. Nevertheless, when
cascading-countermeasures appear in
a given attack scenario, the CTMC-
based model used in the framework
does not precisely and completely rep-
resent the cascaded-countermeasures
scenario as we will see in the next
sections. Such a limitation leads to
an incorrect and incomplete security
assessment. Thus, in this paper, we
enrich the old CTMC-model with new
items to represent countermeasures,
in general, and cascading-countermeasures scenarios, in particular, in a more
precise and complete way using the notion of tokenized-CTMC.

The remainder of the paper is organized as follows: Sect. 2 briefly provides
a background of ADTrees, CTMCs, and introduces the notion of tokenized-
CTMC. In Sect. 3 we define a new CTMC-model for countermeasures in terms
of tokenized-CTMC. We conclude the paper in Sect. 4.

Modeling Attack-Defense Trees’ Countermeasures 33

2 ADTrees and CTMCs

2.1 ADTrees

ADTrees (Attack-Defense Trees), viz., Fig. 1, is a graphical methodology used
to systematically represent security scenarios gathering both attacker actions
and defender actions in one graphical tree-based layout. Recall that in ADTrees,
attacks are shown by red circles (©), whereas defenses are depicted in green
squares (�). Attack and defense refinements are depicted by solid lines (©−©
and �−�), whereas attack and defense mitigations (counterattacks) are rep-
resented by dashed lines (©. . .� and �. . .©). In the case of a cascaded-
countermeasure, an attacker could counterattack a countermeasure. The coun-
terattack is attached to the countermeasure with dashed lines (©. . .�. . .©). The
root node in an attack-defense tree represents the final goal of the attacker. The
intermediary nodes show subgoals. Finally, leaf nodes represent basic “atomic”
attacks and defenses. The attacker and the defender are commonly referred to
as the proponent/opponent depending on the scenario. Also, due to the possi-
bility for an attacker to counterattack a countermeasure and for a defender to
mitigate the counterattack, the attacker and the defender are sometimes called
players [1].

Each action performed by a player can be refined into more detailed actions,
called refinements. These refinements can be of four types: (1) Conjunctive, rep-
resenting necessary actions to be performed. (2) Disjunctive, which represents
exclusive optional actions to be performed. (3) Sequential conjunctive, represent-
ing necessary actions to be performed in a particular order. (4) Parallel disjunc-
tive, which represents combination of optional actions [3]. This latter refinement
can be interpreted as a generalized form of Refinement 2.

Formally, ADTrees are defined as closed-terms, called ADTerms, over a sig-
nature Σ = (S, F), where S = {p, o} represents the set of player types, and
F = {(∧s∈S

k)k∈N, (∨s∈S

k)k∈N, (−→∧ s∈S

k)k∈N, (˜∨s∈S

k)k∈N, cs∈S}⋃

B is a set of function
symbols union the set of basic actions (i.e., B) for both players. The unranked
functions (∧s

k)k∈N, (∨s
k)k∈N, (−→∧ s

k)k∈N, and (˜∨s
k)k∈N, where s ∈ S, represent the

conjunctive refinement (∧), the disjunctive refinement (∨), the sequential con-
junctive refinement (−→∧), and the parallel disjunctive refinement (˜∨) for the pro-
ponent and the opponent, respectively. The binary functions cs∈S connect an
action of a given type s ∈ S with an action of the opposite type s ∈ S. Con-
ventionally p = o and o = p. Therefore, we can write any ADTree using the
following recursive definition:

t ::= bs | ∨s (t, . . . , t) | ∧s(t, . . . , t) | −→∧ s(t, . . . , t) | ˜∨(t, . . . , t) | cs(t, t)

If we consider the ADTree of Fig. 2, then by denoting the atomic actions
“Spoof target Bluetooth device” by bp

0, “Bruteforce Bluetooth BD ADDR
address” by bp

1, and the countermeasure “Adopt Bluetooth non-discoverable
mode” by bo

0, the corresponding ADTerm of the ADTree will be expressed as
follows:

34 K. Lounis and S. Ouchani

t = cp(bp
0, c

o(bo
0, b

p
1))

2.2 Enumerated Continuous Time Markov Chains

Markov chains are stochastic processes used to model systems’ behavior where
probabilistic events may occur. They are called Markovian since the predictions
are based only on the current state of the system, and not on any previous state.
A Markov process that transits from one state to another via an exponential rate
is called a CTMC (Continuous Time Markov Chain). In [2], we have introduced
the notion of enumerated-CTMC, which is a standard CTMC with an explicit
distinction between the different states of a given CTMC (i.e., the initial, inter-
mediate, and final states). We have used the enumerated-CTMC to develop a
stochastic framework that transforms ADTrees into CTMCs for security quan-
titative analysis. Furthermore, in [3], Lounis et al., extended the framework to
adopt Petri-Nets and to perform qualitative security analysis of ADTrees.

Definition 1. An enumerated continuous time Markov chain M is a tuple
(S, S0, S∗, G), where:

– S is a finite set of states,
– S0 ⊂ S is a finite set of initial states,
– S∗ ⊂ S is a finite set of final states,
– G : S × S → R is the infinitesimal generator matrix which gives the rate of

transition between two given states s and s′.

We note that there exists a set of intermediate states that we denote by
Sm ⊂ S, where S = S0 ∪ Sm ∪ S∗ and S0 ∩ Sm ∩ S∗ = ∅.

2.3 Countermeasures in ADTrees

For a better clarification, we present the concept of countermeasure in ADTree
methodology. We explain how this term can be interchanged with attacks and
defenses, in particular, when cascaded-countermeasures are used.

Definition 2. A countermeasure can be seen as an action bs ∈ B undertaken
by a player s ∈ S to prevent another action bs ∈ B performed by the opposite
player s ∈ S from occurring.

Example 1. If we consider the ADTree in Fig. 2, then the action “Adopt Blue-
tooth non-discoverable mode” is a countermeasure for the attacker’s action
“Spoof a target Bluetooth device”. At the same time, the action “Bruteforce
Bluetooth BD ADDR address” is respectively a countermeasure (in the sense
of a counterattack) for the action “Adopt Bluetooth non-discoverable mode”,
which is performed by the defender. Therefore, a countermeasure is any action
performed by a given player (proponent/opponent) against his opposite player
(opponent/proponent) in an ADTree.

Modeling Attack-Defense Trees’ Countermeasures 35

As there are many types of defensive countermeasures (see the classification
in [3]), for the sake of simplicity, in this paper, we only consider the delayed-
type countermeasure introduced in [2]. In fact, this type of countermeasures
is actually the type that leads to an incorrect representation of the cascaded-
countermeasures scenario when the old CTMC-model is adopted for ADTrees,
i.e., the enumerated CTMC-model [2].

2.4 CTMC Model for Countermeasures

In [2], we developed a CTMC-based model for ADTrees. In that model, we rep-
resented each action, whether it was an attack or a defense, by a single-transition
CTMC (viz., CTMC in Row 1 and 2 of Fig. 3), and represented the (delayed-
type) countermeasure function with a birth–death process (viz., CTMC in Row 3
of Fig. 3). With such representation, a delayed-type countermeasure action mit-
igates the attack action once the attack is executed. For instance, assuming that
an attacker has cracked a password and is currently connected through telnet2 to
a server (attack), then if the administrator modifies the password (countermea-
sure), the attacker will be disconnected from the server. This forces the attacker
to restart the attack from scratch, which includes cracking the new password to
reconnect to the server through telnet.

To clarify the modeling limitation in the old CTMC-model, let us first con-
sider the upper part ADTree of Fig. 2 (i.e., without the attack node “Bruteforce
Bluetooth BD ADDR address”). The resulting ADTerms and CTMCs repre-
sentation are illustrated in the first three rows of Fig. 3. We can see that the
adopted model is straightforward, not hard to understand, and easy to evaluate
using CTMC analytical approach. In fact, the interpretation of the birth-death
process in this case is: the attacker starts performing the attack (birth), once
done, the countermeasure can be executed (death), canceling the success of the
attack. Of course, the attacker would move forward over the CTMC if the coun-
termeasure is not executed. Nevertheless, if we try to model the whole ADTree
of Fig. 2 using the same CTMC-model (viz., Row 4 of Fig. 3), we lose track of
certain executed actions. As can be seen in the last row of Fig. 3, the two attack
actions “Spoof target Bluetooth device” and “Bruteforce Bluetooth BD ADDR
address” are both represented by a single-transition. Also, their execution rate
(i.e., exponential rate in CTMCs) has been aggregated. This consequently pre-
vents us from keeping complete track of attack scenarios that occur, in particu-
lar, during the security assessment process. If that single attacker’s transition is
executed, we cannot determine exactly which atomic action was executed, i.e.,
was it the bp

0 or bp
1. This would unfortunately result in a less precise quantita-

tive analysis. Hence, we need to enrich the CTMC-model with more information
to be able to handle such type of scenarios and have a more precise modeling
capability and complete security assessment.

2 Telnet is an application-layer protocol that allows remote access to computer systems
over a network. The telnet service runs on the communication port 23.

36 K. Lounis and S. Ouchani

ADTerm ADTree CTMC

bp0 ∈ B
p Spoof target

Bluetooth
device

λbp0

bo0 ∈ B
o

Adopt Blue-
tooth non-
discoverable

mode

λbo0

t = cp(bp0, b
o
0)

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode
λbp0

λbo0

t =
cp(bp0, c

o(bo0, b
p
1))

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode

Bruteforce
Bluetooth
BD ADDR
address

λbp0
+ λbp1

λbo0

Fig. 3. Formal (Column 1), graphical (Column 2), and CTMC-representation (Column
3) for a basic attack (Row 1) and countermeasure (Row 2), countermeasure application
(Row 3), and cascaded-countermeasure (Row 4) in the old CTMC-model, where �
represents the initial state, and • represents the final states. Also, the red transition �

represents an attack transition in a CTMC, whereas the green transition � represents
a countermeasure transition in a CTMC. (Color figure online)

2.5 Tokenized Continuous Time Markov Chain

To precisely handle the modeling limitation discussed in the previous subsection,
we extend the old CTMC-model [2] with a new notion of colored indexed-tokens.
Throughout the rest of the paper, we arbitrarily and interchangeably refer to
the attacker as the proponent and the defender as the opponent.

Definition 3. Colored indexed-tokens are indexed elements of a set C =
C

p
⋃

C
o that can take one of the two colors: Red (•) or Green (•). Arbitrar-

ily, we use the red color (•) to refer to the proponent and the green color (•) for
the opponent.

Definition 4. Let B be the set of basic actions and let C =
{•0, . . . , •n, •0, . . . , •m} be the set of colored indexed-tokens, for n,m ∈ N. Then,
an action-coloring is a function σ : B → C, which associates for each basic action
b ∈ B a singleton of a colored indexed-token, i.e., {•} or {•}.

Modeling Attack-Defense Trees’ Countermeasures 37

Example 2. If we consider the ADTree t = cp(bp
0, c

o(bo
0, b

p
1)), where the attacker

is the proponent and the defender is the opponent, we can write: σ(bp
0) =

{•0}, σ(bp
1) = {•1}, and σ(bo

0) = {•0}.

Finally, we associate to each state in a given enumerated-CTMC an ordered
set of colored indexed-tokens to indicate which action/actions has/have been
successfully achieved at that state. This will determine whether the proponent
or the opponent is the vanquisher at a specific state of the system. Note that
these tokens are stored within an ordered set in order to keep track of the order
of achievement of the actions, which is necessary to determine the vanquisher.

Definition 5. Let S be the set of states of a given enumerated-CTMC, and
let C be a set of colored indexed-tokens. Then, a state-coloring is a function
τ : S → P(C), which associates for each state s ∈ S an ordered set of colored
indexed-tokens from P(C).

Example 3. If we consider the first row in Fig. 3, which represents the attack
action bp

0 ∈ B
p, then the colored indexed-token associated to the states of its

CTMC is τ(Sbp0
0) = {} = ∅ and τ(Sbp0∗) = σ(bp

0) = {•0}.

An enumerated-CTMC associated with a states-coloring function is called a
tokenized-CTMC, or T-CTMC for short.

Definition 6. A tokenized continuous time Markov chain M ′ is a tuple (M, τ),
where M is an enumerated-CTMC and τ is a states-coloring function.

3 Tokenized-CTMC for Countermeasure Modeling

To have a more precise and complete model to represent countermeasures, we
slightly modify the existing CTMC-model for the countermeasure in such a way
so that we allow the countermeasure and the countered action to evolve in par-
allel. This means that at the initial state, both the countered action and the
countermeasure can be executed, which is not the case in the birth-death pro-
cess representation, where the countermeasure could only be executed when the
countered action is performed. The new CTMC-model for countermeasure appli-
cation is depicted in Row 1 of Fig. 4.

Using the tokenized-CTMC model, we formally express the countermeasure
function using a new unranked function rs : M

′ × M
′ → M

′ (note that, here we
use a different symbol rs for the countermeasure so that it does not get con-
fused with the classical countermeasure function cs). This new function takes
two tokenized-CTMCs (Ms,Ms) ∈ M

′ ×M
′ as inputs, one representing the pro-

ponent/opponent action and the other one representing the opponent/proponent
action, where Ms ∈ M

′ is a tokenized-CTMC. Then, it links them in such a way
so that the attack and the countermeasure can evolve in parallel (both actions
can occur at the same time) and at the same time takes care of the order of

38 K. Lounis and S. Ouchani

ADTerm ADTree CTMC

t = rp(bp0, b
o
0)

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode
λbp0

λbo0

λbo0

λbp0

t =
rp(bp0, r

o(bo0, b
p
1))

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode

Bruteforce
Bluetooth
BD ADDR
address

λbp0

λbp1

λbp1
λbo0

λbo0
λbp0

λbp0
λbo0

λbo0
λbp1

λbp1
λbp0

λbo0

λbp0

λbp1

t =
rp(bp0, r

o(bo0, b
p
1))

Spoof target
Bluetooth
device

Adopt Blue-
tooth non-
discoverable

mode

Bruteforce
Bluetooth
BD ADDR
address

λbp0 λbp1

λbp1

λbo0
λbo0

λbp0

λbo0
λbo0

λbp1
λbp0

λbo0

Fig. 4. Formal (Column 1), graphical (Column 2), and CTMC-representation (Col-
umn 3), for the new countermeasure function (Row 1), the cascaded-countermeasure
function application (Row 2), and the optimized cascaded-countermeasure function
application (Row 3), where � represents the initial state, • represents the final states,◦ represents the intermediary states, and represents the dump states. Also, the red
transition � represents an attack transition in a CTMC, whereas the green transition
� represents a countermeasure transition in a CTMC. (Color figure online)

Modeling Attack-Defense Trees’ Countermeasures 39

execution (keeping track using the colored indexed-tokens). Therefore, the con-
structed tokenized-CTMC after applying function κ = rs(Ms,Ms), is defined as
M=(Sκ, Sκ

0 , Sκ
∗ , Gκ, τκ) where the set of states Sκ is generated by:

SMs

0 × SMs

0

⋃

SMs

m × SMs

0

⋃

SMs

0 × SMs

m

⋃

SMs

∗ × SMs

0
⋃

SMs

0 × SMs

∗
⋃

SMs

m � SMs

m

⋃

SMs

∗ � SMs

m

⋃

SMs

∗ � SMs

∗

and � is a kind of sequential Cartesian product operator, such that:

{a} � {(b, c)} = {(a, b, c), (b, a, c), (b, c, a)}
The generator matrix Gκ is given as follows, where S∅ is a particular set of

states, called dump states, which we will explain later on, and Δ is the asym-
metric difference between two sets:

Gκ(si, sj) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∑

i�=j Gκ(si, sj) if i = j

−1 if (si, sj) ∈ Sκ
0 × Sκ

∅
0 if i �= j and |siΔsj | > 2
Gidf (Sidf ∩ {si}, Sidf ∩ {sj}) Otherwise

Overall, this formulation consists of determining which transition goes from
state si to state sj . Since every transition tidfi belongs to only one CTMC Midf ,
the execution of tidfi will only affect the states of Midf . Thus, in general, there
will be only one transition (one rate). Notwithstanding, the rate Gidf (Sidf ∩
{si}, Sidf ∩{sj}) �= 0 of the identified transition tidfi exists only if |τ(sj)\τ(si)|=
1, i.e., the destination state sj contains all the colored indexed-tokens of si in
addition to one new colored indexed-token representing the transition itself.

Definition 7. A colored-indexed token evaluator is a function ξ : P(C) → P(C),
which selects a subset of colored indexed-tokens from a larger set of colored
indexed-tokens w.r.t. the following rules, where ci∈N, cj∈N, ck∈N ∈ C are colored
indexed-tokens, and ci∈N the selected ones:

– �j, k ∈ N | rs(σ−1(ci), σ−1(cj)) ∧ rs(σ−1(cj), σ−1(ck)).
– ∃j, k ∈ N, j > k > i | rs(σ−1(ci), σ−1(cj)) ∧ rs(σ−1(cj), σ−1(ck)).
– ∃j, k ∈ N, k > i > j | rs(σ−1(ci), σ−1(cj)) ∧ rs(σ−1(cj), σ−1(ck)).
– ∃j, k ∈ N, i > j, i > k | rs(σ−1(ci), σ−1(cj)) ∧ rs(σ−1(cj), σ−1(ck)).

Example 4. If we consider the ADTree t = rp(bp
0, r

o(bo
0, b

p
1)), from Row 2 of Fig. 4,

where the attacker is the proponent and the defender is the opponent, then for a
given set of colored indexed-tokens {•0, •1, •0} associated to a given state s′ ∈ S
and by applying Rule 3 and Rule 4, we obtain ξ({•0, •1, •0}) = {•1, •0}. Using
Rule 3, we obtain {•1}, and using Rule 4, we obtain {•0}.

40 K. Lounis and S. Ouchani

Therefore, to determine the initial state, the intermediate states, and the
final states, we use the colored indexed-tokens associated to each state along
with the colored indexed-token evaluator.

– Sκ
0 = {s′ ∈ Sκ | ξ(τ(s′)) = ∅}.

– Sκ
∗ = {s′ ∈ Sκ | ∀c ∈ ξ(τ(s′)), c ∈ C

s}.
– Sκ

m = {s′ ∈ Sκ | s′ /∈ Sκ
0

⋃

Sκ
∗ }.

The colored indexed-tokens of a given set s ∈ Sκ are generated by the union
of the colored-indexed tokens of the sets involved in the generation of the set s.
For example, if we consider the ADTree t = rp(bp

0, b
o
0), where the attacker is the

proponent and the defender is the opponent, we have:

– τ(Sκ
0) = τ(SMs

0)
⋃

τ(SMs

0) = {}⋃{} = ∅.
– τ(Sκ

∗) = τ(SMs

∗)
⋃

τ(SMs

0) = {•0}
⋃{} = {•0}.

– τ(Sκ
2) = τ(SMs

0)
⋃

τ(SMs

∗) = {}⋃{•0} = {•0}.
– τ(Sκ

3) = τ(SMs

∗)
⋃

τ(SMs

∗) = {•0}
⋃{•0} = {•0, •0}.

– τ(Sκ
4) = τ(SMs

∗)
⋃

τ(SMs

∗) = {•0}
⋃{•0} = {•0, •0}.

The set Sκ is composed of the initial state, which contains both the initial
state of the proponent and the opponent. The final state however, consists of
states where the main player (proponent/opponent) is the vanquisher. These
states are identified using the colored indexed-tokens of the main player. The
remaining states are the intermediate states where neither the proponent nor the
opponent is the vanquisher. Therefore, if we consider the ADTree t = rp(bp

0, b
o
0),

where the attacker is the proponent and the defender is the opponent, then we
can observe that: if the proponent (attacker), executes its action bp

0 ∈ B
p, it tries

to spoof a target Bluetooth device by for example scanning for its Bluetooth
device address (i.e., BD ADDR). Then, if it does not find the Bluetooth device
address before the countermeasure (defense: turn device into non-discoverable
mode) is executed, the attacker will not be able to find the device address.
Similarly, if the countermeasure (defense) is executed before the attack, then
the execution of the attack will certainly fail (as the target Bluetooth device is
in non-discoverable mode).

Although the proponent has planned to counter the countermeasure as in
Row 2 of Fig. 4 (i.e., t = rp(bp

0, r
o(bo

0, b
p
1))), the execution of the second attack

(bp
1) may not succeed as the target device may use a different BD ADDR address

when set on non-discoverable mode. Therefore, the previously used BD ADDR
address is useless. We represent the stages where generally the assets (e.g., dis-
covered BD ADDR address) become useless as gray states, which we call dump
states. They are elements of the dump set, which is denoted as S∅. All dump
states are linked to the initial state using an immediate transition (viz., dashed
arcs in Row 2 of Fig. 4). These states are merged afterwards to obtain the final
CTMC (viz., Row 3 of Fig. 4). We define the set of dump state as follows, where
κ = rs(Ms,Ms), and Λ = [rp(τ−1(c), τ−1(c′)) ∨ ro(τ−1(c′), τ−1(c))]:

Sκ
∅ = {s′ ∈ Sκ | ∃(c, c′) ∈ C

p × C
o, c, c′ ∈ τ(s′) ∧ Λ}

Modeling Attack-Defense Trees’ Countermeasures 41

Finally, at the end of the composition, the states linked with a rate ε will be
merged together, and their outgoing chains will be deleted, as shown in Row 3,
Column 3, of Fig. 4.

4 Conclusion

Attack-Defense Trees (ADTrees) are graphical security modeling tools that are
largely adopted by the security research community [7,8]. They allow to repre-
sent attack scenarios in a logical, user-friendly, and easy to understand graphical
layout. Also, they allow to perform qualitative as well as quantitative security
assessment. For quantitative security assessment, CTMCs (Continuous Time
Markov Chains) are generally adopted, where an ADTree is transformed into
a CTMC so that classical analytical analysis can be performed. To that end,
a CTMC-based framework has been developed for ADTrees in [2]. Neverthe-
less, certain ADTrees, in particular, those containing cascaded-countermeasures,
introduce a limitation in the framework. This limitation results in an incomplete
CTMC-model and an incorrect security assessment of ADTrees.

In this paper, we have proposed a new CTMC-model to represent counter-
measures in ADTrees. We have introduced the notion of tokenized-CTMC to
precisely represent countermeasures and handle the order in which actions are
occurring, allowing a correct and complete modeling and evaluation of ADTrees
that contain cascaded-countermeasures.

We emphasize that the proposed solution is still subject to state explosion
problem. In fact, in the old CTMC-model, modeling a coutermeasure function
required two Markovian states, whereas in the proposed T-CTMC model, the
modeling of a countermeasure requires four states. We plan to address this issue
in a future work. Also, we plan to study the possibility of combining our frame-
work with the frameworks presented in [9,10], for automatic vulnerability dis-
covery and attacks generation.

References

1. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

2. Jhawar, R., Lounis, K., Mauw, S.: A stochastic framework for quantitative analysis
of attack-defense trees. In: Barthe, G., Markatos, E., Samarati, P. (eds.) STM 2016.
LNCS, vol. 9871, pp. 138–153. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46598-2 10

3. Lounis, K.: Stochastic-based semantics of attack-defense trees for security assess-
ment. In: The proceedings of the 9th International Workshop on Practical Appli-
cations of Stochastic Modeling, vol. 337, pp. 135–154. Elsevier (2018)

4. Jhawar, R., Lounis, K., Mauw, S., Ramı́rez-Cruz, Y.: Semi-automatically augment-
ing attack trees using an annotated attack tree library. In: Katsikas, S.K., Alcaraz,
C. (eds.) STM 2018. LNCS, vol. 11091, pp. 85–101. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01141-3 6

https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-319-46598-2_10
https://doi.org/10.1007/978-3-319-46598-2_10
https://doi.org/10.1007/978-3-030-01141-3_6
https://doi.org/10.1007/978-3-030-01141-3_6

42 K. Lounis and S. Ouchani

5. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 10

6. Lounis, K., Zulkernine, M.: Connection dumping vulnerability affecting bluetooth
availability. In: Zemmari, A., Mosbah, M., Cuppens-Boulahia, N., Cuppens, F.
(eds.) CRiSIS 2018. LNCS, vol. 11391, pp. 188–204. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12143-3 16

7. Lounis, K., Zulkernine, M.: Bluetooth low energy makes just works not work. In:
The 3rd Cyber Security and Networking Conference, pp. 99–106 (2019)

8. Lounis, K., Zulkernine, M.: Attacks and defenses in short-range wireless technolo-
gies for IoT. IEEE Access J. 8, 88892–88932 (2020)

9. Ouchani, S.: Ensuring the functional correctness of IoT through formal modeling
and verification. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D.,
Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 401–417. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00856-7 27

10. Ouchani, S., Lenzini, G.: Generating attacks in SysML activity diagrams by detect-
ing attack surfaces. J. Ambient Intell. Human. Comput. 6(3), 361–373 (2015).
https://doi.org/10.1007/s12652-015-0269-8

https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-030-12143-3_16
https://doi.org/10.1007/978-3-030-00856-7_27
https://doi.org/10.1007/s12652-015-0269-8

Automated Validation of State-Based
Client-Centric Isolation with TLA+

Tim Soethout1,2(B) , Tijs van der Storm2,3, and Jurgen J. Vinju2,4

1 ING Bank, Amsterdam, The Netherlands
tim.soethout@ing.com

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
tim.soethout@cwi.nl

3 University of Groningen, Groningen, The Netherlands
4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Clear consistency guarantees on data are paramount for the
design and implementation of distributed systems. When implementing
distributed applications, developers require approaches to verify the data
consistency guarantees of an implementation choice. Crooks et al. define
a state-based and client-centric model of database isolation. This paper
formalizes this state-based model in tla+, reproduces their examples and
shows how to model check runtime traces and algorithms with this for-
malization. The formalized model in tla+ enables semi-automatic model
checking for different implementation alternatives for transactional oper-
ations and allows checking of conformance to isolation levels. We repro-
duce examples of the original paper and confirm the isolation guarantees
of the combination of the well-known 2-phase locking and 2-phase com-
mit algorithms. Using model checking this formalization can also help
finding bugs in incorrect specifications. This improves feasibility of auto-
mated checking of isolation guarantees in synthesized synchronization
implementations and it provides an environment for experimenting with
new designs.

Keywords: Distributed systems · Model checking · Isolation
guarantees

1 Introduction

Automatically generating correct and performant implementations from high-
level specifications is an important challenge in computer science and soft-
ware engineering. Ideally one makes high-level specifications, which completely
describe the functional and relevant parts of an application, without having to
bother with low-level implementation details at the same time. Implementation
is left to specialized tools and approaches that benefit from automated model
checking and other debugging tools.

A benefit of high-level specifications is that they enable more specialized
and fine-tuned implementations than general purpose implementation strategies,
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 43–57, 2021.
https://doi.org/10.1007/978-3-030-67220-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_4&domain=pdf
http://orcid.org/0000-0001-7477-9967
http://orcid.org/0000-0002-2686-7409
https://doi.org/10.1007/978-3-030-67220-1_4

44 T. Soethout et al.

which in essence have to take into account all possible variations of operations
users can define. High-level domain knowledge offers the potential to automati-
cally generate and optimize code, e.g. removing locks and blocking for improved
performance when it can derive that this is never necessary the specific situation.

Such optimizations often involve managing concurrency and parallelism on
accessing data. These optimizations of course need to be correct w.r.t. the spec-
ification: data consistency needs to be guaranteed. Application logic defines
the functional consistency and transaction isolation manages the consistency
of concurrent operations. Historically, isolation concerns have been outsourced
to database systems, using general purpose transactions and similar constructs.
These databases generally support acid transactions, with a variety of isolation
guarantees [2,7], where Serializability is the strongest guarantee.

In order to optimize the performance of specialized implementations, some
parts of the general purpose transaction mechanism incorporated either in the
application itself or in the database implementation. When developing these
specialized implementations of higher-level specifications, we need to be sure
that they guarantee the acid properties, or, if not, to what extent. The seminal
definition of isolation levels is given by Adya [1]. Adya uses transaction histo-
ries, where transactions have dependencies on each other based on accessing the
same data. If a cycle can be found in the graph of these dependencies, an isola-
tion anomaly is present. Crooks et al. [6] model a state-based and client-centric
approach to isolation and prove that it is equivalent to Adya’s formalization.

Various tools are available which try to find or visualize isolation anoma-
lies [14,16,18]. Many rely on specific scripted error scenarios to show anomalies.
The elle tool [14] can be used to validate of traces of implementations using
Adya’s formalization, but still required careful setup and tuning of a test setup.
It infers the histories Adya requires from client-centric observed transactions.
Crooks’ formalization is defined from a client-centric perspective and is directly
defined in terms of observed transactions. The state-based and client-centric
isolation definitions of Crooks et al. are referenced as Crooks’ Isolation (ci)
throughout this paper.

This paper describes an approach using formal methods to (semi-)
automatically validate the isolation level of observed transactions using ci. First,
we give an introduction to ci and a formalization of it in tla+. Next we discuss
how this formalization is used to validate the consistency guarantees of a trans-
action algorithm using two-phase commit (2pc) with two-phase locking (2pl),
and use it to find a specification bug.

The formalization of ci and the tla+ model checker enable rapid checking of
multiple isolation levels of different synchronization algorithms. This technique
can be used to both validate observed transactions from run-time systems and
of formalizations of algorithms.

The main contributions of this paper are:

1. Formalization of the core of ci in tla+ and updated definitions to allow
incremental model checking (Sect. 3).

2. Reproduction of the claims and properties [6] using model checking (Sect. 4).

Automated Validation of State-Based Client-Centric Isolation with TLA+ 45

S0{
A �→ 100
B �→ 100

}
T1−→

S1{
A �→ 150
B �→ 50

}
T2−→

S2{
A �→ 165
B �→ 55

}

Fig. 1. Example execution with initial state S0 for transactions T1 = 〈r(A, 100),
r(B, 100), w(A, 150), w(B, 50)〉 and T2 = 〈r(A, 150), r(B, 50), w(A, 165), w(B, 55)〉.

3. Formalization of 2pl/2pc in tla+ and validation of Serializability using
model checking of the ci tla+ formalization (Sect. 5).

4. An example of finding isolation bugs in the algorithm specification of 2pl/2pc
(Sect. 5.3).

Section 6 discusses results, limitations and future work based on this approach.
We conclude in Sect. 7. All source code can be found on Zenodo [24].

2 Background: State-Based Client-Centric Consistency

Crooks et al. [6] define a state-based and client centric consistency model (ci) for
reasoning about isolation levels. It defines predicates to state if a set of observed
transactions occurs under a given isolation level. The main concepts of ci are
transactions and executions. A transaction is a sequence of operations, consisting
of reads and writes which includes observed keys and values: r(k, v)/w(k, v). An
execution represents a possible ordering of a set of transactions with the resulting
intermediate database states. A state is a mapping from all database keys to a
specific value. Within an execution each following state only differs in the values
written by the intermediate transaction on the previous or parent state.

Figure 1 shows an example execution of two bank accounts A and B, which
both have a balance of e100 in the initial state S0. Transaction T1 is money
transfer: e50 is deposited from account A and withdrawn from account B, real-
ized using two reads and two writes. Transaction T2 is paying of interest: 10% of
the balance is added to both accounts; this transaction also involves two reads
and two writes. Note that from a starting state and an ordering of transactions
the other states can be derived by applying the intermediate transaction’s writes.

For a set of observed transactions T to satisfy an isolation level I, a commit
test CT for I should hold for a possible execution e of T : ∃e : ∀t ∈ T : CTI (t, e).
The commit test for serializability, for example, is that all reads in a transaction
must be able to have read their value from the direct parent state. In our example
all the values of T1’s and T2’s read operations are the same as their parent state’s
values for each corresponding key, e.g. T1’s r(A, 100) can read from T1’s parent
S0’s A �→ 100.

Another isolation level is Snapshot Isolation, where the commit test requires
that all reads of a single transaction can be read from the same earlier, not
necessarily parent, state, which represents the database snapshot.

46 T. Soethout et al.

3 Formalizing CI in TLA+

tla+ [20] is a formal specification language for action-based modeling of pro-
grams and systems. PlusCal [19] is an abstraction on top of tla+ for concurrent
and distributed algorithms and compiles to tla+. In practice tla+ is used to
model distributed algorithms and systems [5,9,11,21,22]. tla+ models states
and transitions. A specification defines an initial state and atomic steps to a
next state. Complex state machines and their transitions can be represented
this way. Multiple concurrently-running state machine define their local steps
and the global next step non-deterministically picks one machine to progress
each step. This captures all possible interleavings of these multiple machines.

ci is formalized as properties that hold on a tla+ state. This
enables querying the system if an initial database state together with
an a set of observed transactions satisfies an isolation level, e.g.,

. When using tla+ to formally
specify an algorithm, this isolation property is added as an invariant during
model checking. tla+’s model checker tlc can then check the isolation guaran-
tees at every state in the algorithm’s execution and produce a counter example
if the invariant is violated.

To formalize ci, we assume the following tla+ definitions:

The system is modeled as a mapping from keys to values. and
are left abstract on purpose here, since they differ per concrete model. In

tla+ sets and set membership are often used. represents the
set of possible tuples of and , we bind this to to easily reference
this later in the specification. are a read or write of a value on a key
and a is a sequence of these operations. An is represented
as a sequence of transactions with their parent state.

As intuitively sketched earlier ci checks if values could have been read from
earlier states. The following definition of RS (“read states”) captures this for an
execution e and an operation o = r(k, v):

RSe(o) =

{
s ∈ Se

∣∣∣∣ s
∗→ sp

a

∧ (
(k, v) ∈ s

b1

∨ (∃w(k, v) ∈ ΣT : w(k, v)
to→ r(k, v))

b2

)}

Read states are a subset of the states in the execution Se, which are: (a)
up to and including the parent state sp in the execution; (b1) have the same
key and value as the operation o = r(k, v); or (b2) there exists a write operation
w(k, v) with the same key and value earlier in the same transaction’s operations
(ΣT).

Automated Validation of State-Based Client-Centric Isolation with TLA+ 47

The tla+ version of this definition is shown in Listing 1. These read states
are defined for each operation given an execution. tla+’s syntax allows group-
ing of conjunctions (∧) and disjunctions (∨) by vertical indentation. The func-
tion denote the sequence of states in an .
extracts the parent state of a given an . has the
standard semantics. The rest of (Lines 4 to 5) follows the ci defini-
tion quite literally, except that the third alternative (Line 13) is not captured
in the ci definition for RS above, but represents the “convention [that] write
operations have read states too” [6] to include all states up until the parent state
for writes.

A state is complete when all reads of a transaction could have read their
values from it. It is the intersection of the states in which each operation of the
transaction could read from. The following definition is extended to take into
account transactions without operations to support the iterative construction of
transactions, starting with the empty ones:

completee,T (s) ≡ s ∈
(⋂

o∈ΣT

RSe(o) ∩
{

s′ ∈ Se|s′ ∗→ sp

})

We omit the tla+ version () for the sake of brevity, but it closely follows
the mathematical definition, just like did compared to RS.

A commit test CT I(T, e) determines if a set of transactions T is valid under
an isolation level I and execution e. For a set of transactions to satisfy an isolation
level, there needs to exist at least one possible ordering, for which the commit test
holds for all transactions. Transactions describe the values that a client observes
including the actual values read and written. The values observed by the client
are compatible with an ordering of the transactions that satisfies the isolation
level. This is why it is sufficient for a single possible execution ordering to satisfy
the commit test. The specific commit test for an isolation level I abstracts over
which reads are valid for I.

48 T. Soethout et al.

Different isolation-level commit tests are shown in Table 1, both mathe-
matically and in tla+. Note that the ci definitions and their tla+ counter-
parts are very similar. The definitions of and

can be found in Listing 2.

4 CI Examples

The static examples of the ci-paper are reproduced using tla+’s model checker
tlc and the operator. The model checker checks if the assumed property
is valid. Figure 2 shows a minimal example of transactions to , which are
checked for four different isolation levels given initial state . tlc checks the
assumptions and all evaluate to . The source code [24] reproduces more
checks on this example.

Bank Transfer Example. The bank transfer example introduced by Crooks et al.,
shows the difference between Snapshot Isolation and Serializability. Alice and
Bob simultaneously take money out of their joint current and savings accounts,
both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactions
Talice = 〈r(S, 30), r(C, 30), w(C,−10)〉 and Tbob = 〈r(S, 30), r(C,−10),

abort〉. A serializable implementation requires Tbob to abort. Talice reads both
balances of C and S and withdraws e40 from C. Tbob reads the result and aborts
because not enough balance is available for his withdraw of e40 from S:

S1{
C �→ 30
S �→ 30

}
Talice−→

S2{
C �→ −10
S �→ 30

}
Tbob−→

S3{
C �→ −10
S �→ 30

}

The tla+ code to check this is shown on the right of Fig. 2.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 49

Table 1. Commit tests and corresponding tla+ definitions.

Fig. 2. Running example (left) and serializable bank account example (right) from
Crooks et al. [6] in tla+.

The same example is considered under Snapshot Isolation with transac-
tions Talice = 〈r(S, 30), r(C, 30), w(C,−10)〉 and Tbob = 〈r(S, 30), r(C, 30),
w(S,−10)〉. Both Talice and Tbob read from S1 and find that there is enough
total balance available. They both withdraw e40 from respectively C and S:

50 T. Soethout et al.

S1{
C �→ 30
S �→ 30

}
Talice−→

S2{
C �→ −10
S �→ 30

}
Tbob−→

S3{
C �→ −10
S �→ −10

}

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the
sum of the balances should remain positive. This is the write skew isolation
anomaly [1]. This can be checked by using a specification similar to the right-
hand side of Fig. 2, with modified transactions, and assuming Serializability is

.

5 Model Checking Algorithms Using CI

In contrast to the previous, static examples, where tla+’s state steps are not
used, we now look at a tla+ specification of a transactional protocol (2pl/2pc)
using states. At each step of the algorithm tlc checks if the isolation guarantees
hold.

5.1 Formalizing 2PL/2PC

Two-Phase Commit (2pc) combined with Two-Phase Locking (2pl) forms a
protocol used to implement acid transactions. 2pc takes care of atomicity of a
transaction and 2pl provides Serializable isolation. We extend the formalization
of 2pc by Gray and Lamport [9] to support multiple parallel transactions via
2pl.

We model 2pl/2pc in the PlusCal algorithm language, which is compiled
down to regular tla+, but provides a higher-level notation, closer to imper-
ative programming languages. PlusCal describes multiple possibly different
processes with atomic steps. During model checking, one of the processes takes
a single step, which allows processes to be interleaved. The model checker makes
sure all possible interleavings are explored.

The PlusCal encoding of 2pl/2pc consists of two types of processes: trans-
action managers and transaction resources. The actual number of processes is
defined by model constants and . Message passing is mod-
eled by a monotonically growing set of messages. This means that messages are
never lost, but a recipient process might handle them out of order or not at all.

Listing 3 shows the definition of the transaction manager. There is a
process for each of the . PlusCal processes do atomic steps, each
represented by a label such as . A label can intuitively be viewed as a state
in the process’ state machine. All statements within a step are done as a single
step.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 51

A transaction manager first sends out the VoteRequest message by
adding a tuple with the transaction’s identifier and the message label

to the set. Then its next step is in which three alterna-
tives () can occur: 1) either it receives messages of type
of each resource occurring in the set of messages, and sends GlobalCommit;
2) or one message of type and sends GlobalAbort; 3) or it times
out and aborts (to prevent deadlock). The construct ensures that a step
only happens if its precondition is fulfilled. tlc makes sure that all alternatives
are explored. are added to explicitly label the steps for readability in the
model checker’s execution. is a special PlusCal label, which represents the
process being completed.

The PlusCal specification of a transaction resource, shown in Listing 4, is
slightly more involved. The resource process has local variables (Lines 1 to 6) to
keep track of stopping, votes, commits, aborts and resource state. The state is
used for ci as a symbolic state, represented by an integer.

When the resource is started (Lines 7 to 18), it does noth-
ing () and decrements receives a message.

denotes choosing a transaction ID from the
set of minus the transactions already for. The resource can
then either VoteCommit or VoteAbort. The local variable keeps track
of the transactions it has already voted for and is updated to make sure to only
vote once per transaction.

Next, it becomes (Lines 19 to 30) and waits on either GlobalCommit
or GlobalAbort, but only for transactions which it voted for, and has not
committed yet. It keeps track of the and transactions in order to
not send duplicate messages and to later check the atomicity of the transactions.
Each iteration, decrements to ensure termination.

52 T. Soethout et al.

In order to model check ci it captures the read and written values in
(Line 23) and updates its local . Both reads and writes are

added on commit and not on vote, because if reads are added on vote, it could
be the case that the resource reads a later committed value when responding
to the VoteRequest later which will always be aborted anyway. This results
in a violation of Serializability for the ci check, while it is technically never an
observed value.

5.2 Model Checking 2PL/2PC

As sanity check for the formalization of 2pl/2pc, first atomicity and termination
are checked:

Automated Validation of State-Based Client-Centric Isolation with TLA+ 53

For atomicity, when all transactions are completed (process counter is
), for all pairs of resources it should not () be the case that a transaction

is aborted by one resource, but committed by the another. So all should either
committed or aborted the transaction. Property makes
sure that eventually () all transactions complete.

To model check the isolation guarantees an instance of the ci formalization
is added, which gives access to the previously defined isolation level tests (see
Sect. 4), given the initial state and the observed transactions.

In this case all cases are valid when we run the tlc model checker for
and .

The model checker then checks the isolation guarantees for each step of the
algorithm. When the isolation test fails, it presents a counter example. Table 2
gives an intuition on the relative time durations of the tlc model checker on dif-
ferent numbers of transactions and resources. The model checker checks the four
ci isolation levels (Serializability, Snapshot Isolation, Read Committed, Read
Uncommitted) on each of the model’s steps. It never invalidates the checks, so
it traverses the entire state space.

Table 2. Run time durations of tlc on ci checks for different number of transactions
and resources n of 2pl/2pc. Results on MacBook Pro (13-inch, 2016) with 3,3 GHz Intel
Core i7 with 4 worker threads and allocated 8 GB ram on AdoptOpenJDK 14.0.1+7,
on tlc 2.15 without profiling and using symmetry sets for constants.

#tx n = 1 n = 2 n = 3

1 7 s 9 s 19 s

2 8 s 21 s 5 m 55 s

3 11 s 1m 53 s 3 h 21 m 54 s

5.3 2PL/2PC Bug Seeding

To additionally stress the formalization presented above, we have introduced
a subtle, but realistic bug in the definition of transaction resource. When the
resource is in the ready state and waiting on a GlobalCommit or Global-
Abort message from the transaction manager, the resource should only wait for

54 T. Soethout et al.

these messages when it is the actual transaction it voted for. This is guaranteed
by in Listing 4 Line 20. The bug is to replace this
with . This means can faultily represent
a never-seen before transaction as well.

When this model is checked with two transactions and resources, all of the
invariants hold and no problem is found. However, with three transactions and
two resources the Serializability invariant is violated and a counter example with
20 steps is found within half a minute; this trace shown in Fig. 3. The example
shows that due to this bug it is possible for a resource to side-step an in progress
transaction, by responding to the GlobalCommit of a different transaction.

First and request to vote and votes to commit for , then aborts
due to timeout with GlobalAbort(t2). then uses this abort to abort its
waiting on . This is possible because
allows . It receives the GlobalAbort(t2), aborts and steps to receive the
next transaction. The model checker requires some more steps to find non-
serializable behavior, when the other transactions and commit and their
effects are applied in different order on and , hence the system is not serial-
izable.

Fig. 3. Non-serializable trace found for bugged 2pl/2pc specification. Horizontal
lines represent processes over time with state changes. Arrows represent messages
sent and received. Message labels are abbreviations of 2pc messages: VoteRequest,
VoteCommit, GlobalAbort and GlobalCommit.

These kinds of bugs during specification can occur naturally, for example
when specializing algorithms for specific applications with the goal of added
efficiency [25]. Using ci in model checking helps us find bugs while designing
new algorithms and also for validating claims of existing algorithms.

6 Discussion and Future Work

The formalization of ci in tla+ is relatively straightforward. The definitions for
the base abstractions, such as and , influence the whole formal-
ization. Staying as close as possible to the mathematical model however, results
in quite verbose output, since there are no labels on transactions. The definition
on read states was improved to support incremental model checking, starting
with empty transactions.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 55

The main limitation of using model checking to find isolation violations is
the state explosion when the numbers of processes grows. As seen in Table 2,
running times grow rapidly and model checking becomes infeasible when more
transactions are added. Since the model checker evaluates the isolation guaran-
tees in every algorithm state we assume, however, that most isolation violations
can be found in small examples. The small scope hypothesis [13] supports this
saying that most bugs have small counterexamples. Nevertheless, we can not be
entirely sure that anomalies that only occur in larger interactions and longer
traces are found by the current approach, but it gives us confidence in the the
checked isolation level, while keeping it feasible.

There is a lot of research focusing on proving distributed consistency proper-
ties. Model checking tools, such as Uppaal [3], Spin [12], LTSMin [4], mCRL2 [10]
and tla+ [20] are used to verify distributed systems and algorithms as well as
real-world implementations and protocols [8,11,21,22].

There are also many approaches [2,17,23,28] that try to balance the trade-
off between performance and data-consistency by choosing different isolation
guarantees. Our work adds to this knowledge by providing a reusable framework
to investigate and model check distributed consistency protocols.

To further evaluate the usefulness of our approach for real-life systems,
it would be insightful to reproduce known isolation bugs in older versions of
database implementations, such as found by Jepsen [14,15] and Bailis et al. [2].
In order to do this we could either create one or more clients that capture the
observed transactions, or instrument the database to store this information for
offline model checking.

Furthermore the scripts of the isolation anomalies of Hermitage [18] can
be reproduced as tlc model checks to strengthen (our formalization of) ci.
The tla+ Toolbox also features a theorem prover. The ci formalizations could
be extended by proving certain properties, such as reproducing the proofs on
equivalence with Adya’s formalization and proving conformity to isolation levels
for specific algorithms.

Generating performant and correct implementations from high-level specifi-
cations is an attractive goal in software engineering, as it would bring the benefits
of (semi-)automatic verification to correct-by-construction implementation.

For instance, the Rebel domain-specific language has been used to specify
realistic systems (for instance, in the financial domain), from which highly scal-
able implementations are generated using novel consistency algorithms [25–27].
It is however, a far from trivial endeavour to state and prove isolation guar-
antees of some of these algorithms. ci can be extended to support operations
on a semantically higher level than reads and writes, such as the semantically
richer operations used in Rebel. A tla+ formalization can then be used to allows
for rapid prototyping of synchronization implementation alternatives for Rebel,
while leveraging the higher-level semantics [29]. The checking of isolation guar-
antees can then be automated.

56 T. Soethout et al.

7 Conclusion

This paper formalizes Crooks’ state-based client-centric isolation model (ci) in
tla+ in order to check conformance to isolation levels using model checking. The
running examples of Crooks et al. [6] are reproduced and validated in tla+. An
example of a transaction implementation using two phase locking (2pl) and two
phase commit (2pc) is formalized in tla+. The tlc model checker is used to
automatically show conformance to the ci formalization. The ci formalization
is also used to find a bug in the algorithm’s formalization.

Formalizing ci in tla+ enables automatic validation of isolation guarantees of
synchronization implementations by mapping their algorithms to read and write
operations. It can be used both for checking isolation conformance of run-time
traces of (distributed) systems and of formal specification of algorithms.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science (1999)

2. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions - virtues and limitations. Proc. VLDB Endow. 7(3), 181–192
(2013). https://doi.org/10.14778/2732232.2732237

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

4. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

5. Brooker, M., Chen, T., Ping, F.: Millions of tiny databases. In: Bhagwan, R.,
Porter, G. (eds.) 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, 25–27 February 2020, pp.
463–478. USENIX Association (2020)

6. Crooks, N., Pu, Y., Alvisi, L., Clement, A.: Seeing is believing. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing, pp. 73–82. ACM,
July 2017. https://doi.org/10.1145/3087801.3087802

7. Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.E.: Making snap-
shot isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005).
https://doi.org/10.1145/1071610.1071615

8. Gomes, V.B., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying
strong eventual consistency in distributed systems. Proc. ACM Program. Lang.
1(OOPSLA), 1–28 (2017). https://doi.org/10.1145/3133933

9. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Trans. Database
Syst. 31(1), 133–160 (2006). https://doi.org/10.1145/1132863.1132867

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

11. Gustafson, J., Wang, G.: Hardening Kafka replication (2020). https://github.com/
hachikuji/kafka-specification

https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/3133933
https://doi.org/10.1145/1132863.1132867
https://github.com/hachikuji/kafka-specification
https://github.com/hachikuji/kafka-specification

Automated Validation of State-Based Client-Centric Isolation with TLA+ 57

12. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

13. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

14. Kingsbury, K., Alvaro, P.: Elle: inferring isolation anomalies from experimental
observations. CoRR abs/2003.10554 (2020)

15. Kinsbury, K.: Jepsen: distributed systems safety research (2020). http://jepsen.io/
16. Kinsbury, K.: Knossos (2020). https://github.com/jepsen-io/knossos
17. Kleppmann, M.: Designing Data-Intensive Applications: The Big Ideas behindReli-

able, Scalable, and Maintainable Systems. O’Reilly, Sebastopol (2016)
18. Kleppmann, M.: Hermitage: testing transaction isolation levels (2020). https://

github.com/ept/hermitage
19. Lamport, L.: The PlusCal Algorithm Language - Microsoft Research. https://www.

microsoft.com/en-us/research/publication/pluscal-algorithm-language/
20. Lamport, L.: Specifying Systems, the TLA+ Language and Tools for Hardwareand

Software Engineers. Addison-Wesley, Boston (2002)
21. Microsoft: High-level TLA+ specifications for the five consistency levels offered by

Azure Cosmos DB (2020). https://github.com/Azure/azure-cosmos-tla
22. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:

How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015). https://doi.org/10.1145/2699417

23. Preguiça, N.M., Baquero, C., Shapiro, M.: Conflict-free replicated data types
CRDTs. In: Sakr, S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data Technolo-
gies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8 185

24. Soethout, T.: TimSoethout/tla-ci: TLA+ specifications used in “Automated Val-
idation of State-Based Client- Centric Isolation with TLA+”. Zenodo (2020).
https://doi.org/10.5281/zenodo.3961617

25. Soethout, T., van der Storm, T., Vinju, J.: Path-sensitive atomic commit. Pro-
gramming 5(1) (2020). https://doi.org/10.22152/programming-journal.org/2021/
5/3

26. Soethout, T., van der Storm, T., Vinju, J.J.: Static local coordination avoidance
for distributed objects. In: Proceedings of the 9th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
- AGERE 2019, pp. 21–30. ACM Press, Athens (2019). https://doi.org/10.1145/
3358499.3361222

27. Stoel, J., van der Storm, T., Vinju, J., Bosman, J.: Solving the bank with Rebel: on
the design of the Rebel specification language and its application inside a bank. In:
Proceedings of the 1st Industry Track on Software Language Engineering - ITSLE
2016, pp. 13–20. ACM Press (2016). https://doi.org/10.1145/2998407.2998413

28. Tanenbaum, A.S., van Steen, M.: Distributed Systems - Principles and Paradigms,
2nd edn. Pearson Education, Upper Saddle River (2007)

29. Weikum, G.: Principles and realization strategies of multilevel transaction man-
agement. ACM Trans. Database Syst. 16(1), 132–180 (1991). https://doi.org/10.
1145/103140.103145

http://jepsen.io/
https://github.com/jepsen-io/knossos
https://github.com/ept/hermitage
https://github.com/ept/hermitage
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://github.com/Azure/azure-cosmos-tla
https://doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-319-77525-8_185
https://doi.org/10.5281/zenodo.3961617
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1145/103140.103145
https://doi.org/10.1145/103140.103145

Code Coverage Aware Test Generation
Using Constraint Solver

Krystof Sykora1, Bestoun S. Ahmed2(B), and Miroslav Bures1

1 Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University, Prague, Czech Republic

{sykorkry,buresm3}@fel.cvut.cz
2 Department of Mathematics and Computer Science, Karlstad University,

Karlstad, Sweden
bestoun@kau.se

Abstract. Code coverage has been used in the software testing context
mostly as a metric to assess a generated test suite’s quality. Recently,
code coverage analysis is used as a white-box testing technique for test
optimization. Most of the research activities focus on using code coverage
for test prioritization and selection within automated testing strategies.
Less effort has been paid in the literature to use code coverage for test
generation. This paper introduces a new Code Coverage-based Test Case
Generation (CCTG) concept that changes the current practices by uti-
lizing the code coverage analysis in the test generation process. CCTG
uses the code coverage data to calculate the input parameters’ impact
for a constraint solver to automate the generation of effective test suites.
We applied this approach to a few real-world case studies. The results
showed that the new test generation approach could generate effective
test cases and detect new faults.

Keywords: Software testing · Code coverage · Automated test
generation · Test case augmentation · Constrained interaction testing

1 Introduction

In software engineering, regression testing has become a common practice to be
used during test development. In this practice, testers begin by rerunning exist-
ing test suites to validate new software-under-test (SUT) functionality. However,
this approach faces many problems as existing tests decrease their ability to
detect SUT faults. This paper shows how Test suite augmentation techniques
can be used to solve this problem.

To improve the test generation, tools like code coverage analysis and con-
straint solving are commonly utilized. We use these techniques in the Code
Coverage-based Test Case Generation (CCTG) method. This approach is akin
to Test suite augmentation techniques [10], which is commonly used in regres-
sion testing. Augmentation is employed to adjust existing test cases by analyzing
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 58–66, 2021.
https://doi.org/10.1007/978-3-030-67220-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_5

Code Coverage Aware Test Generation Using Constraint Solver 59

changes in the SUT. Practitioners of Test suite augmentation techniques believe
the use of preexisting test cases can improve that test suites [9]. To promote
these test cases, the SUT is analyzed using code coverage and other criteria to
prioritize how changes to the test suites should be conducted. In our method, we
focus on the second part of the augmentation approach – code coverage. By ana-
lyzing the code coverage of preexisting generated test cases, we can determine
test parameters’ impact. This information is then used for the test generation.

CCTG can be used for the test suite augmentation method by utilizing the
code coverage data and test models to refine the test generation process. To
generate the test cases, CCTG first creates the test data sets used for the input
interaction. A test model consists of the SUT parameters classes (i.e., possi-
ble parameter values). The results are sets of specific SUT parameter values,
which will be referred to as test cases. The parameter classes are then used to
generate random test cases to be executed for code coverage monitoring. This
process generates coverage data related to each generated test case. If a spe-
cific test parameter change affects the coverage consistently or significantly, the
parameter’s weight also increases. The weight indicates the extent to which each
parameter is used and permuted when generating a new set of test cases. The
process as a whole contributes towards the test suite augmentation. Here, the
code coverage data used for the augmentation may also minimize the number of
test cases and generate more effective test cases in terms of fault-finding.

As in most modern software systems, the test suite augmentation also suffers
from input interaction constraint problems [1]. Here, we deployed a constraint
solver within our approach during the test generation process to resolve the
input values’ constraints. The solver makes sure no test cases are generated with
meaningless interactions with the SUT. The resulting test cases should resemble
the general workflow of test cases [4] as the code coverage analysis motivates
variety in decision paths, and the constraint solver ensures that the combinations
remain reasonable.

2 Background

Classically, code coverage has been used as an analytical approach with the
test suite execution. The approach is also used with the test suite generation
strategies to maximizing the code-base covered by generating more test cases [8].
We have recently used more advanced techniques function as gray-box methods
for test case analysis and test generation [2]. We considered the code’s internal
structure while augmenting a generated test suite for Combinatorial Interaction
Testing (CIT). This approach improved the test generation process by studying
the program’s code to determine individual parameters’ impacts. We used this
impact factor to select the input parameters and values for the test cases. In
this regard, the CCTG strategy proposed in this paper is very similar. However,
examining the internal code structure can prove costly, in terms of a manual
analysis of the input parameters and values. So, the CCTG simplifies this process
by automatically evaluating the parameter impact, requiring only a test model of

60 K. Sykora et al.

parameters and their possible values. It can also explore various hidden criteria
for test generation (such as SUT configuration and state).

A common problem for test generation is that the test models don’t consider
specific constraints that would make the test cases useless or nonsensical. To
avoid this, test generation methods [7,11] rely on constraint solvers to eliminate
such undesirable combinations. Such constraint or rather Boolean satisfiability
problem-solvers [3] (SAT solvers) are also employed in the CCTG method. The
solver’s additional benefit is that the CCTG user may incorporate the SAT
constraints into the test model to prevent the generation of unwanted test cases
and correct the focus of the test cases. If new functionality is added to the SUT,
it can be specified that some parameters (representing the choice to use the
new functionality) must be used. This allows the tester to influence the test
generation by only adjusting the test model without changing the code coverage
analysis results.

While the CCTG finds relations to the previously mentioned techniques, it
is primarily a test suite augmentation method [10]. Our approach is based on an
innovative idea of augmenting test cases using the coverage criteria. The CCTG
method, however, uses randomly generated test cases to establish the coverage
data. This data is then used to generate what is essentially the first set of actual
test cases.

3 The Proposed Method

In this section, we examine each step of the CCTG method. The following sub-
sections illustrate these steps in detail.

3.1 Determining Parameter Weight

The initial step in the CCTG methods is the code coverage analysis. This process
is used to calculate the impact (weight) of SUT parameters that will be used for
test generation.

SUT Test Model. For each SUT, a model (shown in Fig. 1(a)) for interaction
consisting of the input parameters and constraints among them. The parameters
are represented as the P[n] array, where each index P[1], P[2],... P[n] represents
one of the test model parameters. Each parameter has a value. The value V is
the possibility of a parameter. This can be represented in two ways, either the
V is an array of the possible values for parameters (booleans or enums) from the
SUTs perspective, or the value can be represented as a number with a range. In
the case of range representation, the parameter depth [d] is added to represent
the number of values chosen from the range for further test generation. The
other parameter property in the model is its weight, which is graded as a float
ranging from 0 to 1.

The second part of the model is a set of SAT constraints to ensure that the
conflicting decision is not selected. This model is used to generate the initial test

Code Coverage Aware Test Generation Using Constraint Solver 61

P[1]

P[2]

P[3]

 ...

P[k]

 ...

P[n]

V = [1, 2, ..., n]
w ∈ <0,1>

SUT parameters SAT constraints

P[1] == P[1].V[1] or P[k] != -1

and

P[k] < 10

and

P[n] != P[n].V[2] xor P[l] < 5

 ...

V = {type,<j,k>}
d ∈ N
w ∈ <0,1>

(a) SUT test model

TC[1]
TC[2]
TC[3]

TC[k]
TC[k+1]

TC[n]
TC[n+1]
TC[n+2]

= [P[1].RV[1], P[2].RV[1], ... ,P[k].RV[1], ... P[n].RV[1]]
= [P[1].RV[2], P[2].RV[1], ... ,P[k].RV[1], ... P[n].RV[1]]
= [P[1].RV[2], P[2].RV[2], ... ,P[k].RV[1], ... P[n].RV[1]]

= [P[1].RV[2], P[2].RV[2], ... ,P[k].RV[1], ... P[n].RV[1]]
= [P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[1]]

= [P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[1]]
= [P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[2]]
= [P[1].RV[3], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[2]]

.

.

.

.

.

.

.

.

.

(b) Test case analysis

Fig. 1. SUT modeling and parameter analysis

cases for code coverage analysis and generate the resulting test set for the actual
testing. For regression testing, the first set of random test cases can be replaced
with a set of regression tests from earlier stages of the SUT development.

Test Case Analysis and Generation. In contrast to other strategies, max-
imizing of code coverage is not a direct goal for CCTG. The strategy relies on
using the coverage data in a more specific manner more targeted on condition or
coverage principles. We follow the standard definition of code coverage for lines
of code per individual test case. The gcov1 tool and stored for later analysis for
each test case. The test suite used for coverage determination is designed in a
very specific way. As the initial step of generation, we select a test depth level.
This level represents how many values will be selected for each parameter. The
same number of values as overall test depth is selected for each parameter P
and randomly ordered in an array RV. The first test case TC uses each parame-
ter’s first value in all randomly ordered lists. For every test case after that, one
parameter changes the value to the next in the randomised list (P[1].RV[1] to
P[1].RV[2]) as shown in Fig. 1(b). We proceed this way until all the arrays are
exhausted. The rationale behind this approach is its effects on code coverage
change that determines the parameter impact. We always select two test cases
where all but one parameter have the same values to measure this. This will be
explained in the Parameter weight calculation section and the Fig. 2.

Parameter Weight Calculation. The initial step in this phase is to determine
each parameter’s effect on code coverage (i.e., the parameter weight). Using the
initial test cases, the code coverage is gathered automatically. To determine the
information about a specific parameter, we must take a look at a set of test
cases, where the examined parameter changes, while the remaining parameters
stay the same, as shown in Fig. 2.

Initially, a parameter is selected by the algorithm for analysis. Then, similar
pair test cases are selected, except for the value of the parameter under investi-
gation. The difference in the code-coverage results of the test cases is recorded.

1 https determines the code coverage: //linux.di.e.net/man/1/gcov.

https://linux.die.net/man/1/gcov

62 K. Sykora et al.

TC[1]
TC[2]
TC[3]

TC[k]
TC[k+1]

TC[n]
TC[n+1]
TC[n+2]

= {[P[1].RV[1], P[2].RV[1], ... ,P[k].RV[1], ... P[n].RV[1]], CC}
= {[P[1].RV[2], P[2].RV[1], ... ,P[k].RV[1], ... P[n].RV[1]], CC}
= {[P[1].RV[2], P[2].RV[2], ... ,P[k].RV[1], ... P[n].RV[1]], CC}

= {[P[1].RV[2], P[2].RV[2], ... ,P[k].RV[1], ... P[n].RV[1]], CC}
= {[P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[1]], CC}

= {[P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[1]], CC}
= {[P[1].RV[2], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[2]], CC}
= {[P[1].RV[3], P[2].RV[2], ... ,P[k].RV[2], ... P[n].RV[2]], CC}

.

.

.

.

.

.

.

.

.

Fig. 2. Test case selection

These steps are repeated for all remaining pairs of test cases matching the crite-
ria of all parameters being the same, except for the changing parameter under
analysis. From the derived differences in coverage, an average is calculated. This
average represents an absolute value of the parameters weight. These steps are
illustrated in detail in the Algorithm 1.

Algorithm 1: Steps in the code coverage analysis to determine parameter’s
impact
1 CodeCoverageAnalysis (TCL, P)

Input : Test case list TCL, Parameter-under-test P
Output: Measure of the impact of parameter P on code coverage avrg(DL)

2 TL = TestCaseList;
3 DL = list of float values;
4 while TCL not empty do
5 TL add(TCL pop first item);
6 foreach TC in TCL do
7 if each i/PI : PV [i] in TC == PV [i] in TL[0] then
8 TL add(pop TC from TCL);

9 DL add(max(TL) – min(TL));
10 TL clear;

11 return avrg(DL);

Maximum code coverage for the generated tests is not the aim here. Instead,
by determining the impact on individual parameters’ coverage, parameters are
selected for permutation in test cases if they influence code coverage more.

3.2 Test Case Generation

Test cases are generated using the data of parameter weight. All unary param-
eters have only two possible permutations (0,1) as they can only be or not be
included upon program execution. The number of binary parameter permutation
is equal to 1 + the number of pre-selected possible values. The unary parameter

Code Coverage Aware Test Generation Using Constraint Solver 63

is a set with two elements (one being the parameters exclusion) and the binary
a set with 1 + (number of values) elements. All test cases created are solved for
constraints.

The code-coverage based method is relying on the selected parameters to
permute based on their weight. All weights are places on an axis, spanning
the range from 0 to 100. Thanks to normalizing the values, their sum is 100
exactly and, as such, fills up the entire axis. For example, take 3 parameters with
respective weights 15, 60, and 25. The parameters would assume the following
ranges on the axis. P1 (0,15), P2 (15,75) and P3(75,100).

The first constructed test case has all parameters with their default values.
A random real number is generated in the range of (0,100) to construct the next
test case. A parameter whose range corresponds (on the axis) to the number
generated is selected for the permutation. The selected parameter’s value is
permuted to the next value in the sum that represents it. The test case is then
saved if it is not identical to a previously created one. The test case generation
algorithm is included in Algorithm 2.

Algorithm 2: Code-coverage-based test-case generation
1 CVBasedTCGeneration (PL, n)

Input : ParameterList PL, Number of test cases to be generated n
Output: TestCaseList TCL

2 TCL = list of TestCases ;
3 CTC = TestCase where each PV in PV L is 0;
4 while n > 0 do
5 r = random float value;
6 t = 0;
7 foreach P in PL do
8 t = t + PW in P ;
9 if r <= t then

10 permute(P);

11 add(PL);
12 n–;

13 return TCL;

We have used the Z3 solver with this test generation to resolve the con-
straints. We have also developed an interface for the tool so that the relevant
constraints for test cases exclusion can be imported from the test model.

4 Experimental Evaluation

To evaluate the CCTG method, we have conducted three case studies. The
experiments were designed according to the Mutation Testing [6] approach. For
each case study, several mutants were created using a fault seeding framework.
To test the CCTG method’s effectiveness, the generated test cases were used
for both the original version of the SUT and the mutated (faulty) version. The
outputs of the two SUTs were then compared. When the outputs differ, the fault
is considered to be detected. The mull [5] LLVM-based tool was used.

64 K. Sykora et al.

For the case studies, the Unix utilities Flex, grep, gzip were selected. The
Software-artifact Infrastructure Repository2 obtained from the Gnu site. These
utilities were chosen, as the test cases generated represent their command-line
arguments. Therefore, each test case is essentially a parametrized call of these
utilities that produces a standard output test.

The test case structure reflects the archetype of the SUTs from the case
study, standard C utilities, requiring only a set of arguments. For the case study,
CCTG test cases were therefore represented by a set of command-line arguments
only. The type of arguments or parameters used can be divided into a few basic
categories. There is a unary argument – which always represents a Boolean value.
As the parameters are for typical command-line programs, these usually specify
some functionality (e.g.., –printToCommandLine) that is enabled or a specific
instruction (e.g.., –help). The second type is binary arguments, consisting of
parameter and value (e.g.., –input /inputs/file1).

For each SUT, a set of all possible parameters is gathered. This is a simple
list of all unary parameters accompanied by possible values for the binary ones.
In many cases, the parameter values are subjective to the testing environments.
Input files are part of prepared testing inputs for a specific program. Values
with range such as integers are also limited to discrete and finite selection. The
range’s selecting values are done either based on other testing information, cho-
sen randomly, or at regular intervals. The selection of specific values from a
range does not directly affect the experiments as the selections are final for all
test generation methods. Seeded versions of SUT are executed using test cases
generated by various methods to measure the test effectiveness. The methods
used are compared to the code-coverage method.

As a reference, we use two methods of test generation: Random generation
and unweighted method. The random generation method is based on random
parameter permutation. The initial setup is very similar to the CCTG method,
as prepared sets represent the parameters. Unlike the CCTG method, the ran-
dom method does not rely on coverage information but approaches the selection
of parameters for permutation entirely randomly. The selection of parameters
for permutation and the value to which it should be permuted is determined
randomly. First, a random integer in the range representing all the test case
parameters is generated to select a permutation parameter. Secondly, a second
random integer is generated within the range of all said parameter values minus
one (the one being the previous parameter value - so as not to repeat the same
test case).

In each study, a set of 100 test cases is generated. This is done for all three
methods and is used on 20 different seeded faults. The entire process is then
repeated five times by generating a new set of test cases. The test cases were
generated multiple times to account for the random elements in their generation.
The code-coverage based method generally has the best results. For illustration,
the results of each program are show in box-plot Figs. 3a, b, and c.

2 http provided the programs: //sir.unl.edu.

https://sir.csc.ncsu.edu/portal/index.php

Code Coverage Aware Test Generation Using Constraint Solver 65

0

10

20

30

40

50

60

70

80

90

100

CCTG random generation ordered generation

fa
ul

t d
et

ec
tio

n
ra

te
 [%

]

(a) Flex % of faults found

0

10

20

30

40

50

60

70

CCTG random generation ordered generation

fa
ul

t d
et

ec
tio

n
ra

te
 [%

]

Min Outlier

(b) Grep % of faults found

0

10

20

30

40

50

60

70

80

90

100

CCTG random generation ordered generation

fa
ul

t d
et

ec
tio

n
ra

te
 [%

]

Min Outlier Max Outlier

(c) GZip % of faults found

Fig. 3. CCTG evaluation results in Box Plot

The Flex results are shown in Fig. 3a and have the narrowest range for the
code-coverage method – the shortest box plot. This indicates that the coverage
based test cases are of very similar quality for flex. The code coverage method
also has an overall higher median. However, the random method shows a tall
box-plot, reflecting a completely random approach to test generation.

Figure 3b for the Grep experiments has all box plots of similar size. This
reflects the random elements in all test generation methods. However, it does not
produce such dissimilar sizes as in the Flex experiments. The overall dispersion,
while similar in size, is marginally more successful for the code coverage method.

Gzip experiment results are shown in Fig. 3c. Here the smallest box plot
represents the systematic method. While this does not correspond with results
from other tests, it is not necessarily a surprise, as the systematic method has
the lowest random factor of generation. The code coverage method again holds
a marginally better median then the remaining two methods.

In all three cases, the medians are lower compared to the code coverage
method. Most distributions in all figures are also not widely dissimilar, indicating
even effectively test generating methods. It also shows the code coverage method
as the most effective one.

5 Conclusion

This paper presented a new automated test case generation method based on the
code coverage measure. The method’s goal is to achieve automated test gener-
ation using the code coverage, which would also show improved performance at
fault detection. Three case studies were implemented that compared out method
against two other trivial approaches for test case generation. The results showed
an overall improvement in the fault detection rate. The future goal is to work
with a wider variety of parameters.

Acknowledgement. This research is conducted as a part of the project TACR
TH02010296 Quality Assurance System for the Internet of Things Technol-
ogy. The authors acknowledge the support of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/ 0000765 “Research Center for Informatics.” Bestoun S.
Ahmed has been supported by the Knowledge Foundation of Sweden (KKS) through
the Synergi Project AIDA - A Holistic AI-driven Networking and Processing Frame-
work for Industrial IoT (Rek:20200067).

66 K. Sykora et al.

References

1. Ahmed, B.S., Zamli, K.Z., Afzal, W., Bures, M.: Constrained interaction testing:
a systematic literature study. IEEE Access 5, 25706–25730 (2017)

2. Ahmed, B.S., Gargantini, A., Zamli, K.Z., Yilmaz, C., Bures, M., Szeles, M.: Code-
aware combinatorial interaction testing. IET Softw. 13(6), 600–609 (2019)

3. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the sat
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015)

4. Bures, M.: PCTgen: automated generation of test cases for application workflows.
In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contributions
in Information Systems and Technologies. AISC, vol. 353, pp. 789–794. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16486-1 78

5. Denisov, A., Pankevich, S.: Mull it over: mutation testing based on LLVM. In: 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 25–31, April 2018

6. Du, Y., Pan, Y., Ao, H., Ottinah Alexander, N., Fan, Y.: Automatic test case gener-
ation and optimization based on mutation testing. In: 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion (QRS-C), pp.
522–523, July 2019

7. Gargantini, A., Petke, J., Radavelli, M.: Combinatorial interaction testing for auto-
mated constraint repair. In: 2017 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 239–248, March 2017

8. Saumya, C., Koo, J., Kulkarni, M., Bagchi, S.: Xstressor: automatic generation
of large-scale worst-case test inputs by inferring path conditions. In: 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST), pp.
1–12, April 2019

9. Xu, Z., Rothermel, G.: Directed test suite augmentation. In: 2009 16th Asia-Pacific
Software Engineering Conference, pp. 406–413, December 2009

10. Xu, Z., Kim, Y., Kim, M., Rothermel, G., Cohen, M.B.: Directed test suite augmen-
tation: techniques and tradeoffs. In: Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pp.
257–266. Association for Computing Machinery, New York (2010)

11. Zhang, J., Ma, F., Zhang, Z.: Faulty interaction identification via constraint solving
and optimization. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol.
7317, pp. 186–199. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31612-8 15

https://doi.org/10.1007/978-3-319-16486-1_78
https://doi.org/10.1007/978-3-642-31612-8_15
https://doi.org/10.1007/978-3-642-31612-8_15

From Requirements to Verifiable
Executable Models Using Rebeca

Marjan Sirjani1,2(B), Luciana Provenzano1, Sara Abbaspour Asadollah1,
and Mahshid Helali Moghadam3

1 Mälardalen University, Väster̊as, Sweden
{marjan.sirjani,Luciana.Provenzano,Sara.Abbaspour}@mdh.se

2 Reykjavik University, Reykjavik, Iceland
3 RISE Research Institutes of Sweden, Väster̊as, Sweden

mahshid.helali.moghadam@ri.se

Abstract. Software systems are complicated, and the scientific and
engineering methodologies for software development are relatively young.
We need robust methods for handling the ever-increasing complexity of
software systems that are now in every corner of our lives. In this paper
we focus on asynchronous event-based reactive systems and show how
we start from the requirements, move to actor-based Rebeca models, and
formally verify the models for correctness. The Rebeca models include
the details of the signals and messages that are passed at the network
level including the timing, and can be mapped to the executable code.
We show how we can use the architecture design and structured require-
ments to build the behavioral models, including Rebeca models, and use
the state diagrams to write the properties of interest, and then use model
checking to check the properties. The formally verified models can then
be used to develop the executable code. The natural mappings among
the models for requirements, the formal models, and the executable code
improve the effectiveness and efficiency of the approach. It also helps in
runtime monitoring and adaptation.

1 Introduction

Safety-critical systems are systems that may fail with catastrophic consequences
on people, environment and facilities. These systems are becoming more and
more common, powerful, and dependent on safety-critical software. The result
is that serious consequences may arise from the failure of such software systems.
Safety analysis is performed to identify the hazards that may cause failures which
lead to accidents. Safety requirements are written as measures to mitigate the
identified hazards, i.e. to avoid them or reduce their probability or limit their
consequences. Therefore, safety requirements play an important role because
they define the system’s behaviors that shall be implemented to ensure the safety
properties of the whole system.

In a model-driven development approach, requirements can be seen as the
specification of the system to be developed. One can start from these require-
ments, build the necessary models to capture the structure and the behavior of
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 67–86, 2021.
https://doi.org/10.1007/978-3-030-67220-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_6

68 M. Sirjani et al.

the system, and build the code based on that. In this process, we can use formal
verification to come up with dependable models and hence more dependable
code. Note that this is an iterative and incremental approach where we have
to go back and forth between the models (including the requirements and the
code) several times. This approach is not necessarily the common practice. In
this paper, we promote this model-driven development approach.

Defective requirements can cause serious failures. This emphasizes the need
to have requirements that are correct, precise and clear as basis of the system
development. For building formal models based on the requirements, we need
the requirements to be consistent and unambiguous, or else we will not be able
to build the models. So, throughout the process of model-driven development we
not only build the system based on the requirements, but also the requirements
will be refined and become consistent and unambiguous. The models are then
checked against the safety properties that are also derived from the requirements,
to make sure that the (behavioral and implementation) details that are added
to build the models are not introducing errors.

We describe our experience with an industrial case study, a time-critical
safety function, i.e., “Passenger Door Control”, from a train control system.
We present how we start with the safety requirements and software architecture
documents, and then conclude with verified models using the Rebeca modeling
language [1–3]. Rebeca is an actor-based language used for modeling reactive
and asynchronous distributed and concurrent systems [4]. Rebeca is supported
with formal verification theories and tools [5]. Event-based reactive systems play
a major role in many industrial control software systems such as those in railway
and automotive domains. Hence, the experience we report in this paper can be
used in other similar cases and domains.

The whole process from requirements to Rebeca models is depicted in Fig. 1.
Specifically, to be able to create the Rebeca model, two inputs are necessary, i.e.
the functional safety requirements and the system architecture. From the safety
requirements and the architecture document, we create the behavioral models,
i.e. the state diagrams and the sequence diagrams, and based on these diagrams
we build the Rebeca model along with the properties that have to be checked. It
is worth noting that this process foresees a document called “structured require-
ments”. Indeed, it is important that the safety requirements in input are written
according to a well-structured syntax. This enables us to reduce the ambiguity
typical of natural language requirements in order to facilitate their interpreta-
tion and translation into the formal model. We use the GIVEN-THEN-WHEN
syntax [6] for requirement specification, as explained in Sect. 31.

As for now, the Rebeca models are the final output of our proposed pro-
cess from safety requirements towards verifiable models. During this process,
by building visualized system-level models we get a better view of the system
architecture is an extra step that can be conducted in parallel with building the
Rebeca models. The co-modeling of hardware and software can be done using

1 We use this format based on the experience of the second author of the paper who
worked for seven years as requirements manager in industry.

From Requirements to Verifiable Executable Models 69

Fig. 1. The proposed process from requirement to code. Note that the figure shows one
iteration in our iterative and incremental approach. All the models, from requirements
to behavioral and executable ones are refined through the process in an iterative way.

modeling and simulation tools like Ptolemy [7] (as suggested in Fig. 1). While
using Rebeca gives us formally verifiable models, by using Ptolemy we will get
a clear view of the architecture, and also simulation results. The more detailed
process is explained in the following sections.

2 The Door Controller Case Study

We use an example based on a real industrial case to describe the approach
that should be followed to formally verify a set of requirements using Rebeca.
We use the function “Open external passengers doors” that controls opening of
the external doors of a train to let passengers get on and off safely. Specifically,
the external doors of a train can be opened by the driver, through a dedicated
button installed in the driver’s cabin, and by the passenger, through a button
placed on each external door. This is done to let passengers get off the train at
their destination, and it should be only enabled when the train reaches a station
and stops at it. Moreover, the external passenger doors are equipped with a lock
mechanism to prevent opening a door when the train leaves the station and is
running. This implies that to open a door, the door must be unlocked. This is
an interesting function to be modeled and verified for two main reasons:

– The function is safety-related. Indeed, an external door which is accidentally
opened when the train is running may cause a passenger to fall out of the
train, thus causing an accident.

70 M. Sirjani et al.

– The external door can be considered as a shared resource between the driver
and the passenger. The door can receive simultaneous commands from the
driver, i.e. to open, close or lock it; and from the passenger, i.e. to open it.
This may cause the door to be in an erroneous or unexpected state.

Our aim is therefore to formally check by using the Rebeca modeling language
whether there is any possibility that a passenger can open a locked door to
get off from a running train. In other words, we would like to check whether
the behavioral model that is built based on the requirements violates a safety
property of the train, which also means to show that the requirements may be
incorrect, inconsistent, or ambiguous.

It is worth noting that we define “running” as the train state which cor-
responds to one of the following situations: the train is approaching a station
(before it stops and the doors are unlocked and open), the train is leaving the
station (the boarding is completed and doors are closed and locked), and the
train is running between two stations. There are multiple properties that can be
checked using the Rebeca model checking tool Afra [8], in particular, the safety
property that can be checked is the following:

– Is it possible to open a locked door when the train is running?

3 Structured Requirements

According to the proposed process in Fig. 1, the starting point to create the
Rebeca model is to collect the safety requirements of the function to be verified
and rewrite them using a well-structured syntax.

Fig. 2. Hazard Ontology for the hazard “Passenger fall out of the train”.

From Requirements to Verifiable Executable Models 71

Table 1. An example of the safety requirements for the door opening function.

SafeReq1

GIVEN the train is ready to run

WHEN the driver requests to lock all external doors

THEN all the external doors in the train shall be closed

and locked

SafeReq2

GIVEN an external door is locked

WHEN the passenger requests to open an external door

THEN the external door shall be kept closed and locked

SafeReq3

GIVEN an external door is unlocked

WHEN the passenger requests to open an external door

THEN the external door shall be opened

SafeReq4

GIVEN all external doors on the side of the train close

to the platform are unlocked

WHEN the driver requests to open all external doors

THEN all external doors on the side of the train close

to the platform shall be opened

SafeReq5

GIVEN the train approaches a station

WHEN the driver requests to unlock all external doors

that are on the train side close to the platform

THEN all external doors on the side of the train close

to the platform shall be unlocked

SafeReq6

GIVEN the train is running

WHEN an external door is open

THEN an alert shall be provided

In this work, the safety requirements related to the “Open external passenger
doors” function are obtained by applying the Safety Requirements Elicitation
(SARE) approach [9] to the Hazard Ontology depicted in Fig. 2. This Hazard
Ontology is used to identify the causes and consequences of the “Passengers
fall out of the train” hazard. The Hazard Ontology proposed in [10] and [11],
provides a conceptualization of the hazard which enables to gain a deep knowl-
edge of the circumstances that result in hazards. This knowledge is structured
in entities of the Hazard Ontology which correspond to the hazard’s sources,
causes and consequences. The SARE approach uses this knowledge to elicit the
safety requirements that mitigate the hazard.

Here, we use the experience of the second author in the railway domain and
the SARE approach to formulate the safety requirements; and as a real hazard
for trains, we choose the hazard “Passengers fall out of the train”. One can
alternatively use the functional safety document from an industry as the input.
This experience also shows that the SARE approach can be used to complement
the existing safety requirements provided as input or to discover new safety
requirements in case of new systems.

To specify the safety requirements elicited by SARE, we use the GIVEN-
WHEN-THEN syntax in order to obtain well-structured requirements that can
be easily used for modeling in Rebeca, and then the model can be used for for-
mal verification. Specifically, the GIVEN-WHEN-THEN is “a style of specifying
a system’s behavior using Specification by Example” [12] developed within the
Behavior-Driven Development [6]. According to this style, a scenario is decom-

72 M. Sirjani et al.

posed in three parts, i.e. the GIVEN states the pre-condition(s) to the scenario;
the WHEN describes the input event(s) which trigger the action(s); the THEN
defines the action(s) the system shall perform as a consequence of the trigger
and the expected changes in the system. We think that this structured syntax
for requirement specification helps to derive the concepts that build the actors,
states of the actors, and also the events that trigger the changes. Moreover, it
helps in deriving the properties to be verified using model checking. Table 1
shows a set of safety requirements in the GIVEN-WHEN-THEN syntax for the
open door example.

4 The Architecture

Fig. 3. The system architecture with a focus on the door controller case study. The
dotted circles show the actors in the Rebeca code.

Figure 3 depicts an overview of a typical system architecture realizing the func-
tionalities in our industrial case. The intended system is an example of a cyber-
physical system consisting of hardware components like programmable control
units, actuators, different communication channels, and different control applica-
tions running on the hardware units. The main components in the architecture
are Input-Output (IO) units, central Train Control Unit (TCU), Door Con-
trol Unit (DCU). IO units act as interfaces to the system and are intended to
receive/send the input/output signals. The IO unit on the passenger side are in
charge of reading the door push buttons to receive the open request from the
passenger. When a passenger pushes the “open” button, the IO unit receives the
open request and sends it to the DCU. The commands for open, close, lock and

From Requirements to Verifiable Executable Models 73

unlock coming from the driver pass through TCU and go to the DCU. The DCU
is responsible for actuating the proper commands for changing the state of the
door.

TCU plays the role of the central control management. TCU might be dis-
tributed and run on separate physical devices. For example, one physical control
device for running non safety-related functions and one device for the execu-
tion of safety-critical functions. DCU may represent a programmable unit which
receives the command signal from TCU and applies the signal to the correspond-
ing converters actuating the door. Data communication between the physical
devices is usually conducted through a system-wide bus and a safe communi-
cation protocol. Later in our behavioral models, we model both DCU and the
associated IO on the passenger side as “Door” actor and also the combination
of TCU and the driver as “Controller” actor.

The actor “Train” models a set of IO units receiving the status from the
sensors, and other means, that are used to inform the TCU and the driver that
the train is in a state which is significant for our case study, i.e., approached at
the station, and ready to leave. These are the states in which the TCU has to
change the state of the doors. Figure 3 shows how we abstract the architecture
diagram to extract main Rebeca actors.

Generally, in safety critical systems, in order to satisfy the integrity and avail-
ability, different types of redundancy structures are applied to different units
including IO units. For example, redundant IO units are in place and extra
supervision mechanisms for the validity check of the resulted values from these
redundant IO units are used. In our example, we abstract these details away. We
can create other models focusing on such details and verify the correct function-
ality of these parts of the system. In general, we need to use compositional and
modular approaches to cover large and complicated systems.

5 The Mapping from Requirements to Behavioral Models

By studying the structured requirements, together with the architecture of the
software system, we will know the actors to be included in the Rebeca code.
We build an abstract version of the architecture to be the basis for writing the
Rebeca code. The abstract architecture includes the reactive classes that we
include in our code.

In the context of our door controller example, from the architecture (Fig. 3),
we see that we have I/O units for the passenger door buttons (passing the input to
the door to request open) and the driver input interface (passing the input to the
controller to request open, close, lock and unlock (release)), and the door control
actuator (passing the output from the controller to the door, commanding for open,
close, lock and unlock (release)). From this explanation we can conclude that we
need actors to represent the controller, the door, the driver and the passenger in
the model.

From the structured requirements (Table 1), we can see that the players are:
the train, the driver, the passenger, and the door. Note that we do not see the

74 M. Sirjani et al.

controller in the requirements. To see the complete picture to model the software
system we need to study both the requirements and the architecture. For the
door controller we consider the scenarios when a train is ready to run, and when
it approaches the station. When boarding is complete and the train is ready to
run, the driver sends the request to close and then lock the doors. When the
train approaches the station, the driver sends the request to unlock and then
open the doors. The requests are received by the controller, and the controller
makes the decision based on the status of the train and the doors. The logic
within the code of the controller is supposedly written in a way that the safety
requirements are guaranteed. There is no exact physical realization as signals or
hardware devices for the train in the model, the train is in the model to represent
the states where the driver knows he has to send the command for closing and
locking the doors, or unlocking and opening them. The passenger can always
request to open the door.

The structured requirements also help in deriving the state variables, and
their values, specially the pre- and post-conditions in the GIVEN and THEN
parts. For example, consider the condition “the train is ready to run” written
in the GIVEN part of the requirement SafeReq1 in Table 1. We can infer that
we need a variable representing the train status (the variable trainStatus of
the actor Controller in Fig. 6); and one possible value of this variable shows
that the train is “ready to run”. From these requirements we can also infer that
we need two state variables to capture the status of the doors being locked or
unlocked, and being opened or closed (the variables isLocked and isClosed of
the actor Controller in Fig. 6).

The events defined in the WHEN parts are mapped to the messages that
are sent to the actors and upon which the actors react. They can be used to
obtain the sequence of messages exchanged among the actors, and to build the
sequence diagram based on that.

This process and the natural mapping facilitate the development of the
Rebeca model from the requirements and help to limit the errors that may
be introduced when translating the requirements into the model. Moreover, the
pre- and post- conditions in the requirements can be used to form the assertions
that represent the properties to be verified.

Abstraction in an Iterative and Incremental Approach. Note that during
the process we choose to have abstract models to begin with, and we continue
by adding more details in an iterative and incremental way. For example, in
the behavioral models derived from the requirements of the door controller case
study, we do not distinguish each door separately, and we do not distinguish
which side of the train the doors are. A concrete example of this abstraction is
where for the requirement SafeReq5, we abstract away the part regarding the
side of the train in the part referring to “all external doors on the side of the
train close to the platform”.

From Requirements to Verifiable Executable Models 75

5.1 The Mapping to Logical Properties

We can use the structured requirements for writing assertions that must hold
throughout the execution of the code. For example, consider the requirement
SafeReq2: “GIVEN an external door is locked, WHEN the passenger requests
to open the locked external door, THEN the external door shall be kept closed
and locked”. This requirement helps us to derive the main safety property of the
function “open external passenger door”. The assertion that shall be checked is
the following: “It is not possible to open a locked door by passengers”. A stronger
assertion that covers this one is discussed in Sect. 6.1, the assertion is checked
by Afra, and we show how the model is modified such that this assertion holds.

There are other interesting requirements, like the requirement SafeReq4
which is a property to show that progress has to be made. The SafeReq4 require-
ment states: “GIVEN all external doors on the side of the train close to the plat-
form are unlocked, WHEN the driver requests to open all external doors, THEN
all external doors on the side of the train close to the platform shall be opened”.
Safety properties are about showing that nothing bad will happen, while progress
properties are about showing that good things will finally happen. For checking
these types of requirements, we cannot use simple assertions and we need to use
the TCTL model checking tool for Timed Rebeca [13]2. The timing features can
be included here, for example for the requirement SafeReq4, we can check that
“if the doors are unlocked and an open request is sent by the driver then the
doors will be opened within x units of time”.

6 The Behavioral Models

Here we explain the state diagrams, sequence diagrams and the Rebeca code
that are derived from the requirements. We also explain the timing properties.

State Diagrams. Using the mapping explained in Sect. 5, we can derive the
state diagrams for the door controller case study. In Sect. 5, we concluded that
we need actors to represent the controller, the door, the driver, the passenger,
and the train in the model. For simplifying the model, we decided not to model
the driver, the behavior of the driver is merged with the controller. We may
consider this as an autonomous controller that decides based on the conditions
of the doors and the train. Note that we only have one actor that represents all
the doors, also for the sake of simplicity. The model can be refined, and details
can be added in an iterative and incremental way in order to check different
properties and different parts of the system.

As shown in the state diagram in Fig. 4a, the train can be either in a state
that has just approached the station (when the doors should be unlocked and
then opened), or in a state that it is ready to run (when the doors should be
closed and locked). Note that these are the only two states of the train that are

2 The TCTL model checking tool for Timed Rebeca is not yet integrated in the Eclipse
tool suite of Afra.

76 M. Sirjani et al.

important for us in our example because our focus is on changing the states of
the doors, and only in these states of the train we need to change the status
of the doors. For example when the train is running, or stopped (with doors
already open) the status of the doors should stay unchanged (and that is what
the controller in Fig. 4c guarantees by not accepting any wrong event in the
wrong states).

Figure 4b shows the states of the doors. A locked and closed door can only be
unlocked, and then opened; and an unlocked and open door can only be closed and
then locked. The state diagram is consistent with the Rebeca code in Fig. 6. We
prevent the door from going to a state where it is locked and open, an unsafe state
that should be avoided. The if-statement in Line 93 guarantees this.

Figure 4c shows the state diagram for the controller. The controller receives
the status of the doors and the train, also the requests for opening, closing,
locking and unlocking the doors. The controller coordinates the commands that
are sent to the doors based on the status of the door itself, and the train. Figure
4d is the state diagram of the passenger. This actor models the requests coming
from the passengers in a non-deterministic way, and the Rebeca code is model
checked to make sure this behavior cannot jeopardize the safety.

Sequence Diagrams. The sequence diagrams derived from the requirements
and the architecture are shown in Fig. 5. These diagrams are made in a simi-
lar way as described for the state diagram. Indeed, the actors controller, door,
passenger and train become the objects in the sequence diagrams among which
messages are exchanged in a temporal order to perform the door functions. In
the sequence diagrams the flow of messages between actors, and also their order
and causality are clearer. In Fig. 5a, it is shown that when the status of the train
or the door is changed the controller receives a message to update the status of
these two actors in the controller. Any change in the status of the train or the
doors triggers the execution of driveController message server in which the
controller decides which command to send to the doors.

Figure 5b shows the message sent by the passenger to the door. Note that
the sequence diagrams are consistent with the Rebeca code, here instead of
having an actor representing the passenger button on the door, and another actor
representing the door controller, for the sake of simplicity, we have both modeled
as one actor. Passenger sends the open command directly to the door, and the
door sends a message to the controller to update the status in the controller
(as described above). This is where different errors may occur if the behavioral
model (Rebeca code) is not written with enough care. More explanation is in
Sect. 6.1.

Rebeca Code. Based on the state and the sequence diagrams, we wrote a
Timed Rebeca code with four reactive classes: Controller, Train, Door, and
Passenger. The Rebeca code is presented in Fig. 6. The rebecs (i.e. reactive
objects, or actors) controller, train, door, and passenger are instantiated
from these reactive classes.

From Requirements to Verifiable Executable Models 77

Fig. 4. The state diagrams for the door controller case study. In the state diagram
for the Train (Part a), the state in which trainStatus is true is when the train has
approached the station and stopped and ready for the doors to be unlocked and then
opened. The state in which trainStatus is false is when the boarding is complete,
and the train is ready to run and leave the station, and the doors must be closed and
then locked. The name of the rest of the variables are chosen in a way to make the
diagrams self-explanatory as much as possible.

The main message server of the reactive class Controller is
driveController, where we check the state of the train and the doors, and
send proper commands. If the train is in the state that the boarding is com-
pleted and the train is ready to run (trainStatus is true - lines 31–41), then if
the doors are not yet closed, the Controller sends a command to close them
(by sending the closeDoor to the rebec door). If the doors are already closed
the controller sends a command to lock them (by sending the lockDoor to the
rebec door). If the train is in the approaching state (trainStatus is false - lines
42–51), then if the doors are not yet unlocked, the controller sends a command
to unlock the doors (by sending the unlockDoor to the rebec door). If the doors
are already unlocked the controller sends a command to open them (by sending
the openDoor to the rebec door).

The reactive class Controller also has two other message servers:
setDoorStatus and setTrainStatus. The setDoorStatus (lines 21–25) is
called by the Door after updating the status of the doors. The setTrainStatus
(lines 26–29) is called by the Train after updating the status of the train. The
reactive class Train has two message servers that model the train behavior
when the train is ready to run (leaveStation) and approaches the station
(approachStation). Both message servers in this actor inform the controller
when the train status changes.

The reactive class Door models the behavior of the doors and has four mes-
sage servers: closeDoor(), lockDoor(), unlockDoor() and openDoor(). The
closeDoor() (lines 88–91) is called by Controller actor (line 34) to close the
door by changing the status of the door (line 89). The lockDoor() (lines 92–
97) is called by the controller (line 38) to lock the door. If the current status
of the door is closed, then the status of the door is change to locked (line 94).

78 M. Sirjani et al.

Fig. 5. Sequence diagrams of the door controller case study showing the message
passing between the actors Controller, Train, Passenger, and Door.

The unlockDoor() (lines 98–101) is called by the Controller actor (line 45) to
unlock the door by changing the status of the lock (line 99). The openDoor()
(lines 102–107) is called by the Controller actor (line 49) and the Passenger
actor (line 117) to open the door. If the current status of the door is unlocked,
then the status of the door can change to open (line 104). In all these message
servers the status value is sent to the Controller actor after any updates.

The Passenger actor is implemented to model the behavior of a passenger.
We assume that the passenger can constantly send a request to the Door actor
to open the door. This actor has only one message server (passengerOpenDoor).
The passengerOpenDoor is designed to send a request (open the door) to the
Door actor every 5 units of time (lines 117 and 118).

Timing Properties. The Rebeca code in Fig. 6 contains the environment vari-
ables (denoted by env at the top of the code). These variables are used to set
the timing parameters. The variable networkDelayDoor represents the amount
of time that takes for a signal to get to the door from the controller (and vice
versa), and the variable networkDelayTrain shows the amount of time that

From Requirements to Verifiable Executable Models 79

Fig. 6. The Rebeca model for the door controller case study.

takes for a signal to get from the train to the controller. We also have other tim-
ing features, e.g., we modeled a reaction delay for the controller when it reacts to
the events (reactionDelay); passengerPeriod is defined to show the passenger
sending the open command periodically (it can be modeled differently but this is
the simplest way and serves our purpose to find possible errors). We also model

80 M. Sirjani et al.

passage of time between a train leaving and then again approaching the station
(runningT ime), and the time that train stays at the station (atStationT ime).

The environment variables can be used as parameters to set different cycle
times and communication channel features. The value for the parameters can
be changed to check different configurations. For example, we can see varying
depths in getting into the error state by changing the period of the passenger
pressing the open door button.

6.1 Formal Verification

The Rebeca code in Fig. 6 is a version of the code that runs without violating
any of the properties of interest. We checked the assertion: “It is not possible
to open a locked door (not by the driver nor the passengers);” and we showed
that the door cannot be opened when it is locked. This assertion covers multiple
other weaker assertions, like: “It is not possible to open a locked door (by driver
or passengers) when the train is leaving the station;” and “It is not possible to
open a locked door (by driver or passengers) when the train is arriving at the
station”.

In the Rebeca model, the passenger sends a request directly to the door, the
request does not pass through the controller. This is what makes the model vulner-
able to errors. The door is receiving commands from both the passenger and the
controller, and variant interleaving of these commands (i.e. events in the queue)
may cause the execution of the model to end in a state that violates the safety prop-
erty3. The two “if-statements” in lines 93 and 103 of the reactive class Door are
there to avoid this problem. If we remove the passenger from the model, the model
is correct even without these if-statements.

We run the Rebeca model checking tool, Afra, on a MacBook Pro laptop with
2,9 GHz Intel Core i5 processor and 8 GB memory. While model checking the
code without the passenger the number of reached states is 55, and the number
of reached transition is 68 (consumed memory is 660, and the total spent time is
below one second). For the setting shown in the Rebeca model in Fig. 6, where
we have a passenger and when the passenger sends a request to open the door
every 5 units of time then the number of reached states will be 402079, the
number of transitions is 1286068 and the total time spent for model checking is
115 s.

A different design for the model, derived from a different allocation of functions
in the architecture, can be modeled and model checked. More explanation will be
in Sect. 7In the Rebeca code in Fig. 6, where we have a passenger, if we remove
the if-statements in lines 93 and 103, then the model violates the assertion and
comes back with a counterexample. The depth of the trace in the state space to
reach the counterexample depends highly on the setting of the timing parameters.
A snapshot of the Afra tool where the counterexample is found is shown in Fig. 7.
The assertion is checking the value of variables isDoorClosed and isDoorLocked

3 A different design for the model, derived from a different allocation of functions in the
architecture, can be modeled and model checked. More explanation will be in Sect. 7.

From Requirements to Verifiable Executable Models 81

from the rebec door. In the snapshot you may see that isDoorClosed is false (the
door is open), and isDoorLocked is also false (the door is unlocked). The only mes-
sage in the queue of the rebec door is lockDoor. This will cause the execution of
the message server lockDoor in the rebec door which will create the state in which
isDoorClosed stays false (the door is open), and isDoorLocked changes to true (the
door is locked). This states fail the assertion and the model checking tool comes
back with the counterexample shown in Fig. 7. You can see this state on the right
hand side of the figure, and the trace to get to it in the left hand side of the figure.

Note that changing the timing parameters can change the state space sig-
nificantly. The timing parameter includes the period of sending the requests,
network delay, and the computation/process delay.

Fig. 7. The screen shot of Afra, coming back with a counterexample for checking the
assertion “It is not possible to open a locked door” for the Rebeca code in Fig. 6.

7 Discussion and Future Work

To reach the Rebeca code from the requirements we need to use an iterative
approach. There may be ambiguity in the informally stated requirements that
need to be clarified. To come up with the right state variables and right tran-
sitions among states, we may need to go back and forth several times and ask
the experts for the right information to avoid misunderstandings and incorrect
outcome. As stated in many classical papers on formal methods, one of the main

82 M. Sirjani et al.

advantages of formal methods is to make the requirements clear, unambiguous,
and consistent. Some examples of this kind of clarifications within our work are
explained further in this section.

Rebeca models can be useful for checking safety and timing properties only
if the topology of the actor model matches (or is consistent with) the architec-
ture of the system. As we plan for a straightforward mapping of Rebeca code
to executable code we need this consistency. This can be another challenge in
the process, to know the architecture and the allocation of tasks to different
components. One example is the decision we made for the Door Control Unit,
modeled within the actor door, to send the open command to the door upon
receiving the request from the passenger. Alternatively, we could have a model
in which all the decisions for sending the open command to the door are handled
centrally in the Train Control Unit. This will change the design and verification
results in a significant way.

In the current Rebeca code, the status of the units are sent to the control
unit upon any change. Another design is updating the status of different units
periodically. This will result in a much more complicated design where verifi-
cation can help in finding the timing problems and tuning the timing features.
Again, the decision has to be based on the architecture and execution model of
the system.

Some issues about the safety requirements (refer to Table 1) that we observed
while building the Rebeca model are explained here. The two actions described
in the THEN part of the safety requirement SafeReq1 make the requirement
ambiguous and, likely, incorrect. In fact, it is not clear under which condition an
external door should be locked. In our Rebeca model, we assume that an external
door can be locked if it is closed and the train is leaving the station. To remove
the ambiguity in the requirement, we can specify two different requirements, one
to define the close action and the other for the lock action, such as “GIVEN the
train is ready to run WHEN the driver requests to close all external doors THEN
all the external doors in the train shall be closed”; and “GIVEN all the external
doors in the train are closed AND the train is ready to run WHEN the driver
requests to lock all external doors THEN all the external doors in train shall be
locked”. Having two different requirements allows to define the appropriate pre-
conditions and events for the action expressed in the THEN part. The proposed
requirements implies that “close” and “lock” are two different actions that the
driver must perform in order to lock the external doors. However, it is also
possible that the action to lock the external doors includes the action to close
them in order to guarantee that no open door can be locked. In this case, the
safety requirement SafeReq1 is correct but, for the sake of clarity, the action
close should be removed, i.e. “THEN all the external doors in the train shall be
locked”.

The safety requirement SafeReq3 is unclear and incorrect due to incomplete
pre-condition in the GIVEN part. In fact, the pre-condition “an external door is
unlocked” does not take into account the train status, i.e. if the train is leaving or
approaching the station. In our model, we assume that a door can be open if it

From Requirements to Verifiable Executable Models 83

is unlocked and the train is approaching the station. As a result, a better require-
ment would be “GIVEN an external door is unlocked AND the train approaches the
stationWHEN the passenger requests to open the external door THEN the external
door shall open”. The proposed requirement also covers the dangerous situation in
which an external door is opened when the train is leaving the station. The safety
requirement SafeReq6 cannot happen in the Rebeca model proposed in this paper
since an external door that is locked cannot be open. However, such requirements
must be considered in a real application since they mitigate unexpected behaviors
that may happen due to interactions of other system’s parts which may interfere
with the “open door” function.

The work presented in this paper is in preliminary stages. One direction to
go is to make the mappings automatic or semi-automatic. Generating Ptolemy
models during the process will make the approach more robust and also more
friendly towards the engineers. It gives us a better view on the architecture and
helps in choosing the actors involved.

8 A Quick Overview of Related Work

The work presented in this paper has multiple dimensions. We speak of a pro-
cess for model-driven development of reactive systems that involves requirement
documentation, architecture designs, UML models, actor models, and formal
verification. In the following we point at a few related work, the text is far from
a complete survey or a thorough comparison with the existing work.

The center of the work is the actor-based language Rebeca, and how we
can use it in model-driven development of dependable reactive systems. Indus-
trial reactive systems are mainly cyber-physical systems combining computation
and communication with physical and temporal dynamics. They consist of dif-
ferent components (actors) acting based on different computation models and
interacting with each other through communication channels. Actor-based mod-
elling is one of the key approaches for co-modeling of hardware and software of
cyber-physical systems [14]. In this modeling style, actors are the components
communicating through interfaces, i.e. ports, via sending and receiving data.

For building dependable systems, we look for models that capture timing fea-
tures and come with formal verification support. Timed automata and UPPAAL
[15] are examples of such models and tools that are widely used in industrial cases.
The reason for using Rebeca is its friendliness towards event-driven and asyn-
chronous distributed systems [4], and the support for formal verification. Rebeca
is the first actor-based language with model checking support [16], and is used for
schedulability analysis of wireless sensor network applications [17], protocol veri-
fication [18], design exploration and comparing routing algorithms [19].

To fill the gap between the formal actor model and the requirements we need
other less formal models that are closer to the requirement specification. In this
work, we use the GIVEN-WHEN-THEN syntax to specify the safety require-
ments, and then we used UML state diagrams and sequence diagrams. One way

84 M. Sirjani et al.

to get closer to a formal representation from informal requirements (written in
natural language), is using patterns. Using patterns to specify requirements are
proposed in multiple works [20–22]. Patterns for requirements specification are
also integrated in frameworks which aim at building conceptual models from the
structured requirements and, consequently, formally verifying them using differ-
ent tools for model checking. Some examples of such frameworks are proposed
in [23] and [24].

State diagrams are common notation for behavioral modelling of reactive
systems. Currently they are a key part of modelling standards like UML, SysML
[25] and MARTE [26]. There are many commercial and open source design tools
supporting system behavior modelling in terms of state diagrams. While state
diagrams show different states of each actor or combination of actors, sequence
diagrams can show the flow of messages among actors and are used for modeling
reactive systems [27].

For modeling reactive systems, there are other modeling and simulation
frameworks which provide heterogeneous modeling along with simulation capa-
bilities. Ptolemy II [7] and Stateflow [28] are popular examples of this category.
Ptolemy II supports hierarchical actor-based modelling, i.e., composite actor,
and various types of models of computation (MoC) with simulation capabilities.
Stateflow provides a graphical language to describe the system behavior logic
using state diagrams, flow charts and truth tables. It also offers the possibil-
ity of reusing Simulink subsystems and MATLAB code for representing states,
and automatic code generation. However, none of these tools support formal
verification.

Regarding proposing a systematic process for building verifiable behavioral
models, Gamma [29] is a modeling framework which integrates heterogeneous
statechart components to make a hierarchical composition, supports formal ver-
ification for the composite model and provides automatic code generation on top
of the existing source code of the components. Gamma focuses on building hier-
archical statechart network based on the existing statechart components, and
like most existing tools and approaches do not consider the phase in the process
where we need to map the requirements to behavioral models.

Acknowledgment. We would like to thank Edward Lee for reading the paper and
giving us very useful comments. The research of the first three authors for this work
is supported by the Serendipity project funded by the Swedish Foundation for Strate-
gic Research (SSF). The research of the first two authors is also supported by the
DPAC project funded by the Knowledge Foundation (KK-stiftelsen). The research of
the fourth author is funded partially by Vinnova through the ITEA3 TESTOMAT and
XIVT projects.

References

1. Rebeca: Rebeca. http://www.rebeca-lang.org/. Accessed July 2019
2. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of

reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

http://www.rebeca-lang.org/

From Requirements to Verifiable Executable Models 85

3. Sirjani, M.: Rebeca: theory, applications, and tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102–126.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5 5

4. Sirjani, M.: Power is overrated, go for friendliness! expressiveness, faithfulness, and
usability in modeling: the actor experience. In: Lohstroh, M., Derler, P., Sirjani,
M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 423–448. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95246-8 25

5. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Model checking, automated
abstraction, and compositional verification of Rebeca models. J. UCS 11(6), 1054–
1082 (2005)

6. North, D.: Introducing BDD. Better Software Magazine, March 2006. https://
dannorth.net/introducing-bdd/. Accessed July 2019

7. Ptolemaeus, C.: System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley (2014)

8. Rebeca: Afra Tool (2019). http://rebeca-lang.org/alltools/Afra. Accessed July
2019

9. Provenzano, L., Häninnen, K., Zhou, J., Lundqvist, K.: An ontological approach
to elicit safety requirements. In: Asia-Pacific Software Engineering Conference,
APSEC, pp. 713–718 (2017)

10. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological approach to
hazard identification for safety-critical systems. In: 2nd International Conference
Reliability and System Engineering, ICRSE, pp. 54–60 (2017)

11. Zhou, J., Häninnen, K., Lundqvist, K., Provenzano, L.: An ontological approach
to identify the causes of hazards for safety-critical systems. In: 2nd International
Conference System Reliability and Safety, ICSRS, pp. 405–413 (2017)

12. Fowler, M.: ThoughtWorks: GivenWhenThen (2013). https://martinfowler.com/
bliki/GivenWhenThen.html. Accessed July 2019

13. Rebeca: RMC Tool (2016). http://rebeca-lang.org/alltools/RMC. Accessed July
2019

14. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), pp.
363–369 (2008)

15. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

16. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5) 76:1–76:39 (2017)

17. Khamespanah, E., Sirjani, M., Mechitov, K., Agha, G.: Modeling and analyzing
real-time wireless sensor and actuator networks using actors and model checking.
STTT 20(5), 547–561 (2018). https://doi.org/10.1007/s10009-017-0480-3

18. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of wire-
less ad hoc networks. Formal Asp. Comput. 29(6), 1051–1086 (2017). https://doi.
org/10.1007/s00165-017-0429-z

19. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
ECEASST 66, 1–16 (2013)

20. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering,
ICSE, pp. 411–420 (1999)

21. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: International Con-
ference on Software Engineering, ICSE, pp. 372–381 (2005)

https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-319-95246-8_25
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
http://rebeca-lang.org/alltools/Afra
https://martinfowler.com/bliki/GivenWhenThen.html
https://martinfowler.com/bliki/GivenWhenThen.html
http://rebeca-lang.org/alltools/RMC
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-017-0480-3
https://doi.org/10.1007/s00165-017-0429-z
https://doi.org/10.1007/s00165-017-0429-z

86 M. Sirjani et al.

22. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: IEEE International Requirements Engineering Conference, RE,
pp. 317–322 (2009)

23. Konrad, S., Cheng, B.H.: Real-time specification patterns. IEEE Trans. Softw.
Eng. 30, 970–992 (2004)

24. Filipovikj, P., Jagerfield, T., Nyberg, M.G., Rodriguez-Navas, C.S.: Integrating
pattern-based formal requirements specification in an industrial tool-chain. In:
IEEE Annual Computer Software and Applications Conference, COMPSAC, pp.
167–173 (2016)

25. Object Management Group: OMG Systems Modeling Language v1.5 (2017).
https://sysmlforum.com/sysml-specs/. Accessed July 2019

26. Object Management Group: UML profile for MARTE, beta 2 (2008). https://www.
omg.org/omgmarte/Specification.htm. Accessed July 2019

27. Alavizadeh, F., Nekoo, A.H., Sirjani, M.: ReUML: a UML profile for modeling and
verification of reactive systems. In: International Conference on Software Engineer-
ing Advances ICSEA, pp. 50–55 (2007)

28. MathWorks: Stateflow: model and simulate decision logic using state machines
and flow charts (2018). https://www.mathworks.com/products/stateflow.html.
Accessed July 2019

29. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma statechart
composition framework. In: International Conference on Software Engineering,
ICSE, pp. 113–116 (2018)

https://sysmlforum.com/sysml-specs/
https://www.omg.org/omgmarte/Specification.htm
https://www.omg.org/omgmarte/Specification.htm
https://www.mathworks.com/products/stateflow.html

CIFMA 2020

Organization

CIFMA 2020 – Workshop Chairs

Pierluigi Graziani University of Urbino, Italy
Pedro Quaresma University of Coimbra, Portugal

CIFMA 2020 – Programme Committee

Samuel Alexander The U.S. Securities and Exchange Commission
New York Regional Office, USA

Oana Andrei University of Glasgow, UK
John A. Barnden University of Birmingham, UK
Francesco Bianchini University of Bologna, Italy
José Creissac Campos University of Minho, Portugal
Antonio Cerone Nazarbayev University, Kazakhstan
Peter Chapman Edinburgh Napier University, UK
Luisa Damiano University of Messina, Italy
Anke Dittmar University of Rostock, Germany
Pierluigi Graziani University of Urbino, Italy
Yannis Haralambous IMT Atlantique, France
Matej Hoffmann CTU Prague, Czech Republic
Bipin Indurkhya Jagiellonian University, Poland
Reinhard Kahle NOVA University Lisbon, Portugal
Karl Lermer ZHAW, Switzerland
Kathy L. Malone Nazarbayev University, Kazakhstan
Paolo Masci National Institute of Aerospace (NIA), USA
Paolo Milazzo University of Pisa, Italy
Henry Muccini University of L’Aquila, Italy
Eugenio Omodeo University of Trieste, Italy
Graham Pluck Nazarbayev University, Kazakhstan
Giuseppe Primiero University of Milan, Italy
Ka I. Pun Western Norway University of Applied

Sciences, Norway
Pedro Quaresma University of Coimbra, Portugal
Anara Sandygulova Nazarbayev University, Kazakhstan
Giuseppe Sergioli University of Cagliari, Italy
Sandro Sozzo University of Leicester, UK
Mirko Tagliaferri University of Urbino, Italy

CIFMA 2020 – Additional Reviewers

Alessandro Aldini University of Urbino, Italy
Gianluca Curzi University of Birmingham, UK
Flavia Marcacci Pontifical Lateran University, Vatican State

A Pragmatic Model of Justification for Social
Epistemology

Raffaela Giovagnoli(B)

Pontifical Lateran University, Rome, Italy
giovagnoli@pul.it

Abstract. Social epistemology presents different theories about the status of
shared knowledge, but only some of them retain a fruitful relation with classi-
cal epistemology. The aim of my contribution is to present a pragmatic model
which is, on the one side, related to the classical concepts of “truth” and “justifi-
cation”, while, on the other side, addressing to a fundamentally “social” structure
for the justification of knowledge. The shift from formal semantics to pragmatics
is based on a notion of “material inference” embedding commitments implicit
in the use of language, that favors the recognition of the social source of shared
knowledge.

Keywords: Social epistemology · Truth · Justification ·Material inference ·
Deontic statuses · Deontic attitudes

1 Introduction

Social epistemology presents different perspectives concerning the assessment of “social
evidence”. We can (I) assess the epistemic quality of individual doxastic attitudes when
social evidence is used; (II) assess the epistemic quality of group attitudes or (III) assess
the epistemic consequences of adopting certain institutional devices or systemic relations
as opposed to alternatives [1]. The so-called “communitarian epistemology” (Hardwig,
Welbourne, McIntyre, Brandom, Kusch) falls into the first stream and, particularly,
maintains that knowledge is “essentially” social.

In this contribution, we’ll sketch a social model of knowledge representation made
explicit by a form of “expressive logic”, which rests on a complex game of deontic
statuses and deontic attitudes [2]. This pragmatic order of explanation focuses on the
role of expression rather than representation. In this context, “expression”means tomake
explicit in assertion what is implicit in asserting something. A fundamental claim of this
form of expressivism is to understand the process of explicitation as the process of the
application of concept. According to the relational account, what is expressed must be
understood in terms of the possibility of expressing it. Making something explicit is to
transform it in premise and conclusion of inferences. What is implicit becomes explicit
as reason for asserting and acting. Saying or thinking something is undertaking a peculiar
kind of inferentially articulated commitment. It shows a deontic structure that entails
the authorization of the inference as a premise and the responsibility to entitle oneself

© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 89–99, 2021.
https://doi.org/10.1007/978-3-030-67220-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_7

90 R. Giovagnoli

to that commitment by using it (under adequate circumstances) as conclusion of an
inference from other commitments one is or can become entitled. To apply a concept is
to undertake a commitment that entitles to and precludes other commitments. Actually,
there is a relevant difference between the Wittgensteinian theory of linguistic games
and the scorekeeping model. Inferential practices of producing and consuming reasons
are the point of reference of linguistic practices. Claiming is being able to justify one’s
claims and other claims (starting from one’s claims) and cannot be considered as a game
among other linguistic games. Following Sellars, Robert Brandom uses the metaphor of
the “space of reasons”, but he understands it as a “social” concept, i.e. as the space of the
intersubjective justification of our assertions [3]. Reasons contained in assertions possess
a content that is inferentially structured. The formal structure of communication gives us
the possibility to make explicit this content. From the point of view of a “social” concept
of the space of reasons, beliefs, mental states, attitudes and actions possess a con-tent
because of the role they play in social “normative” practices (inferentially articulated).

Before to introduce a social concept of the space of reasons we want to make clear
the sense in which we are talking of “normativity” as grounded on linguistic rules. The
functioning of scorekeeping in a language game has been presented by David Lewis [4].
The result of Lewis’ model is useful to understand the context dependence of ordinary
conversation and this option helps us to grasp in plausible way the nature of the content
in the game of giving and asking for reasons. The content of beliefs and actions is
“phenomenalistic” because it expressed by inferential rules in the sense of material
incompatibility. Moreover, the grasp of the conceptual content is possible only using
intersubjective pragmatic rules that in some sense “harmonize” the collateral beliefs of
the participants.

2 Communitarian Epistemology

To clarify the notion of “communitarian epistemology” it is important to analyze the con-
cept of ‘evidence’, mostly considered in the philosophy of science and in the sociology
of scientific knowledge. John Hardwig has subjected the conception of the ‘individual’
evidence to a critical analysis full of interesting ideas. According to this conception,
there may be good reasons for a belief ‘that p’ if we have ‘evidence’ in favor of it;
and the evidence is “anything that counts toward establishing the truth of p (i.e., sound
arguments as well as factual argumentation)” [5].

Suppose that my trusted doctor told me that I have been suffering from a rare foot
disease for many years. He or she has good reasons for diagnosis; in fact, given his
professional experience, he can form a reliable judgment by studying the x-rays on my
foot and the manner of walking. However, it may be that I do not feel pain, do not see
anything strange in the manner of walking and do not find anything surprising on the
radiographs (after all I am not a doctor). Clearly my doctor has good reasons to believe
that I have that condition. In turn, I have good reasons to believe my doctor’s diagnosis.
But do my reasons constitute the evidence for the truth of the diagnosis? According to
individualism, the answer must be negative. My reasons for believing in the diagnosis do
not correspond to my doctor’s reasons. The good reasons of my doctor are not enough
to establish a connection of trust. They do not strengthen after the announcement of

A Pragmatic Model of Justification for Social Epistemology 91

the diagnosis. But, according to Hardwig, the ‘narrow’ conception of evidence conflicts
with common sense. We must therefore expand it by introducing a concept that includes
second-hand evidence.Normallywe believewhat our trusted doctor tells us and therefore
our reasons correspond to his. In general, we rely on the knowledge of experts and in
everyday practice it would be irrational to do otherwise, because we are unable to control
the truth and accuracy of the testimony. Sometimes we test the credentials of the experts
when they conflict with the judgments of other experts. But we are not obliged to always
use our head.

Hardwig extends the authority of testimony to knowledge in general (so it does not
apply only to ‘rational belief’). He writes [6]:

belief based on testimony is often epistemically superior to belief based on entirely
direct, non-testimonial evidence. For [one person] b’s reasons for believing p will often
be epistemically better than any [other person] a would/could come up with on her
own. If the best reasons for believing p are sometimes primarily testimonial reasons,
if knowing requires having the best reasons for believing, and if p can be known, then
knowledge will also sometimes rest on testimony.

This thesis is supported by arguments drawn from the scientific practice. Scientists
form routine teams and these teams are formed on the basis of testimony and trust.
Hardwig refers as an example to an experiment conducted by physicists on high energy
in the early 1980s [7]:

After it was funded, about 50 man/years were spent making the need-ed equipment
and the necessary improvements in the Stanford Linear Accelerator. Then approximately
50 physicists worked perhaps 50man/years collecting the data for the experiment.When
the data were in, the experimenters divided into five geographical groups to analyze the
data, a process which involved looking at 2.5 million pictures, making measurements
on 300, 000 interesting events, and running the results through computers… The “West
Coast group” that analyzed about a third of the data included40physicists and technicians
who spent about 60 man/years on their analysis.

The research gave rise to an article with 99 co-authors, some of whom will not know
how they have arrived at such number. To producing data for such an article presupposes
that scientists exchange information and that they consider the results of others as evi-
dence for the measurements in question. It cannot be done otherwise. None of the partic-
ipating physicists could replace his testimony- based knowledge with perception-based
knowledge: doing this would take too much vital time. This type of ‘epistemic depen-
dence’ can also be found in mathematics; for example, in the de Branges proof of the
Bieberbach conjecture, a proof that involved mathematicians with very different forms
of specialization. Reading Hardwig, Kusch begins to identify three epistemological
alternatives:

1. ‘Strict individualism’ for which knowledge is in the possession of the individual and
presupposes the evidence is sufficient on the resources available.

2. ‘Weak individualism’ for which it is not necessary to possess evidence for the truth
of what is known and perhaps not even fully understand what is known.

3. ‘Communitarianism’which sees the community as the primary source of knowledge.
It maintains the idea that the acquaintance must have ‘direct’ possession of the

92 R. Giovagnoli

evidence, but breaks with the assumption that this acquaintance must or can be an
individual.

According to Kusch, Hardwig tends to community; and not only for epistemology
but for philosophy in general. Testimony is located in an area where epistemology meets
ethics. Whether or not the expert’s result provides good reasons for believing that p
will depend on the recipient’s perception of the reliability of the expert’s testimony
which in turn will depend on an assessment of its character. Here we find the relevance
of the reflections of the sociologist Max Weber on the figure of the scientist and the
politician. Was the expert sufficiently responsible for considering himself informed for
developments in the field? Was he conscientious, and realistic in the self-consideration
of how a reliable judgment should be produced? To answering these questions is to make
an assessment about a moral and epistemic character together.

The work of Hardwig on teams and trust in scientific practice has been taken up
by relevant exponents of contemporary social epistemology (Galison, Knorr Cetina,
Shaffer, Shapin andMackenzie). Kusch highlights two limitations of it. In the first place,
Hardwig favors real and proper scientific communities, therefore it does not investigate
cases of cooperation more related to daily practice and where testimony plays a crucial
role, given that we rely on numerous public messages without investigating sincerity
or competence of the sources. In the second place, the way in which Hardwig refers
to the evidence of true belief can be criticized. He rejects strong individualism because
the evidence can belong to the individual if testimony is allowed (mild individualism)
and only teams have sufficient direct evidence. The latter notion is not clear; in fact
one wonders: do teams have direct evidence as they have mental states like individuals?
Finally, many epistemologists reject the thesis that knowledge is true belief based on
evidence. Knowledge is not ‘true justified belief’, nor ‘true belief based on evidence’,
but ‘true belief produced in a reliable manner’. Trustworthiness does not require one
to be able to provide reasons for his belief; it is sufficient that this is formed through
a reliable process. It may be that reliability is compatible with communitarianism, but,
according to Kusch, Hardwig did not clarify this compatibility.

Michael Welbourne wrote the book, The Community of Knowledge, which repre-
sents a good example of communitarian epistemology based on testimony [8]. The deci-
sive theoretical step is the consideration of testimony not as a mere ‘transmission’ of
information as for classical epistemology. Knowledge takes place in a community where
knowledge is transmitted, according to a certain vision of ‘shared knowledge’. To share
knowledge means sharing commitments and entitlements with others, at least in many
standard cases [9]. His theory of ‘authority’ runs counter to the theory of evidence. Enti-
tlements imply that we consider knowledge as a base or premise for our inferences since
we consider it as an external and objective standard forwhat others should also recognize.
Commitments include the investigation of the authorizations of others so that a dialogic
dynamic is created that generates new shared knowledge. In Kusch’s words [10]:

Assume that I claim to knowhow long it takes to travel fromCambridge toEdinburgh;
I tell you, and you believe me and tell me so. In doing so, we agree that we should not
consent to anyone who suggests a different travel period, that we shall inform each other
in case it turns out that we did not possess knowledge after all, that we shall let this

A Pragmatic Model of Justification for Social Epistemology 93

information figure in an unchallenged way in travel plans, and so on. We can perhaps
go beyond Welbourne by saying that the sharing of knowledge creates a new subject of
knowledge: the community. And, once this community is constituted, it is epistemically
prior to the individual member. This is so since the individual community members’
entitlement and commitment to claiming this knowledge derive from the membership
in this community. The individual knows as “one of us”, in a way similar to how I get
married as ‘one of a couple’, or how I play football as ‘one of the team’.

Themajor limitation ofWelbourne’s work, according to Kusch, lies in the fact that he
did not consider the ‘normative’ basis of testimony or the background of knowledge. The
fact of believing in what another says, depends very much on sharing the background of
the knowledge that provides ‘normativity’ to the speaker and the hearer; the formation
of a community of knowledge presupposes previous communities of knowledge. In
addition, the attitude to believe in someone can be described more effectively by notions
such as ‘participant attitude’ or ‘trust in others’, notions that also imply a moral aspect.

Since the position of Welbourne invites us not to consider testimony as mere trans-
mission, but as the dialogical process of exchange of commitments and entitlements
(Wilfrid Sellars’ game of giving and asking for reasons’) which has a normative back-
ground, a further step could be to consider knowledge as ‘built’ from testimony bymeans
of a sort of ‘institutionalization’. In such case we will have the need of a theory of social
institutions and social states that are based on the use of the so-called ‘performatives’
(Austin). The major references for social epistemology are John Searle, Barry Barnes
and David Bloor.

‘Performative’ testimony starts from the act we perform by saying something and
how this act is received by our interlocutor. It is not concerned simple ‘to say so and so’
or mere transmission as in traditional epistemology, but a common construction process.
A performative testimony does not allow to consider a state of things p, to refer and to
know as discrete, sequential and independent events. For example [11]:

The registrar a tells the couple b that they have now entered a legally binding rela-
tionship of marriage; and by telling them so, and their understanding what he tells them,
the registrar makes it so that they are in the legally bin ding relationship of marriage.
For the registrar’s action to succeed, the couple has to know that they are being married
through his say-so, and he has to know that his action of telling does have this effect.
Moreover, a and b form a community of knowledge in so far as their jointly knowing that
p is essential for p to obtains. That is to say, a and b enter into a nexus of entitlements
and commitments, and it is this nexus that makes it so that each one of them is entitled
to claim that p. The registrar has to use certain formulas (By the power invested in me
by the state of California.. . etc.) bride and groom have to confine themselves to cer-
tain expressions (a simple “yes” will be fine), and each one commits himself or herself,
and entitles the other, to refer to p as a fact subsequently. More principally, we can say
that “getting married” is an action that one cannot do on one’s own (or just with one’s
partner). It is an action that is primarily performed by a ‘we’.

The new social status and the knowledge that is created between the spouses is gen-
erated by the performative testimony, or by the linguistic act performed by the authority
in question. The knowledge that ‘p’ did not exist ‘before’ the declaration (to use Searle’s
language). The reasons to explain why performative testimony generates knowledge lie

94 R. Giovagnoli

in two important characteristics of performatives: self-reference and self-validity. The
act refers to itself in as much as it announces what it does and if is done in the right
circumstances (therefore given the institutional setting) it generates the validity of the
reality it creates. The act that creates the new social situation is like a common act car-
ried out through an agreement between people. This act is fragmented and distributed to
other linguistic acts; it is implicit in daily practices, such as when we greet someone, we
talk about greeting colleagues we meet or criticize those who have not responded to our
greeting. All these acts for the most part assertions and contain shared performatives.
This thesis is fundamental for the epistemology of testimony, since it is mostly realized
through shared and widely distributed.

Testimony generates (for the most part) its references and knowledge of them. We
can isolate three options for defining knowledge:

(1) Knowledge is equivalent to a term for a natural species such as ‘elephant’ and then
whatever is connoted by the term it continues to exist (although not as knowledge)
even ifwe stop using the commonperformative (which establishes animal taxonomy
and the specimens of ‘being an elephant’);

(2) Knowledge outlines a social state such as ‘money’ or ‘marriage’ and the social
institution of knowledge disappears as soon as we stop using the performative.

(3) Knowledge is like the ‘typewriter’. The physical or mental entity or the processes
that we produce and call ‘knowledge’ can continue to exist (even if they are no
longer called in this way) when we stop using the perfomative (which establishes
the relevant taxonomy and the specimens of ‘being a typewriter’).

Also in case (1) we have to understand knowledge on the basis of a shared perfor-
mative because the category of ‘elephant’ has its specimens and models that are socially
established and maintained. Kusch’s thesis is that knowledge is a social state consist-
ing of a shared performative (We hereby declare that there is a single, recommendable
way of possessing the truth, and we call this way ‘knowledge’). Knowledge is a social
referent created through references to it; and these references occur in testimony, as in
other forms of dialogue. Dialogue in fact includes affirming that something is knowl-
edge, posing challenges to knowledge, testing knowledge, doubting knowledge and so
on through a broad spectrum of possible references.

3 The Role of Conditionals for Human Discursive Practices

Before to briefly sketch the social normative source of shared knowledge in inferential
terms, we need to clarify the very notion of “inference” embedded in conditionals.
We are not only creatures who possess abilities such as to respond to environmental
stimuli we share with thermostats and parrots but also “conceptual creatures” i.e. we
are logical creatures in a peculiar way. It is a fascinating enterprise to investigate how
machines simulate human behavior and the project of Artificial Intelligence, a project
that beganmeads of theXX century, could tell us interesting things about the relationship
between syntactical abilities and language. Brandom seriously considers the functioning
of automata because he moves from some basic abilities and he gradually introduces

A Pragmatic Model of Justification for Social Epistemology 95

more sophisticated practices, which show how an autonomous vocabulary raises [12].
This analysis is a “pragmatist challenge’ for different perspectives in analytic philosophy
such as formal semantics (Frege, Russell, Carnap and Tarski), pragmatics both in the
sense of the semantics of token-reflexive expressions (Kaplan and Stalnaker) and of
Grice, who grounds conversation on classical semantics. Conditionals are the paradigm
of logical vocabulary to remain in the spirit of Frege’s Begriffschrift. But, according to
Brandom, the meaning-use analysis of conditionals specifies the genus of which logical
vocabulary is a species. In this sense, formal semantics is no more the privileged field
for providing a universal vocabulary or meta-language.

Starting from basic practices, we canmake explicit the rules that govern them and the
vocabulary that expresses these rules. There are practices that are common to humans,
non-human animals and intelligent machines that can be also artificially implemented
like the standard capacities to respond to environmental stimuli. But, it seems very
difficult to artificially elaborate the human discursive practices which depend on the
learning of ordinary language. In particular, humans are able to make inferences and
so to use conditionals because they move in a net of commitments and entitlements
embedded in the use of concepts expressed in linguistic expressions. Logical vocabulary
helps to make explicit the inferential commitments entailed by the use of linguistic
expressions, but the meanings of them depend on the circumstances and consequences
of their use. The last meta-language is ordinary language in which we give and ask
for reasons and therefore acquire a sort of universality. It seems that, we do not need
to apply the classical salva veritatae substitutional criterion, as conditionals directly
make explicit the circumstances and consequences namely inferential commitments and
entitlements possessed by singular terms and predicates [13].

The sourceof thenormativity entailedby conceptual activity is a kindof “autonomous
discursive practice” that corresponds to the capacity to associate with materially good
inferences ranges of counterfactual robustness [14, 15, 16]. In this sense, “modal” vocab-
ulary represented by modally qualified conditionals such as if p then q has an expressive
role. Modal vocabulary is a conditional vocabulary that deserves to codify endorsements
of material inferences: it makes them explicit in the form of material inferences that can
themselves serve as the premises and conclusions of inferences. According to the argu-
ment Brandomcalls “themodalKant-Sellars thesis”, we are able to secure counterfactual
robustness (in the case of the introduction of a new belief), because we “practically” dis-
tinguish among all the inferences that rationalize our current beliefs, which of them are
update candidates. The possibility of this practical capacity derives from the notion of
“material incompatibility”, according to which if we treat the claim that q follows from
p as equivalent to the claim that everything materially incompatible with q is materially
incompatible with p. So, for example if we say “Cabiria is a dog” entails “Cabiria is
a mammal” we are stating that everything in-compatible with her being a mammal is
incompatible with her being a dog.

For the sake ofmy discussion, it is interesting howwe can intendKantian normativity
in terms of “incompatibility” relations between commitments. Actually, there is a dis-
tinction between empirical vocabulary and modal vocabulary, because the world cannot
tell us what we ought to do in certain situations. The content is normally understood in
terms of representation of objects. The scorekeeping model replaces the Kantian notion

96 R. Giovagnoli

transcendental apperception with a kind of synthesis based on incompatibility relations.
In drawing inferences and “repelling” incompatibilities, a person is taking oneself to
stand in representational relations to objects that she is talking about. A commitment to
A’s being a horse does not entail a commitment to B’s being a mammal. But it does entail
a commitment to A’s being a mammal. Drawing the inference from a horse- judgment
to a mammal-judgment is taking it that the two judgments represent one and the same
object. Thus, the judgment that A is a horse is not incompatible with the judgment that
B is a cat. It is incompatible with the judgment that A is a cat. Taking a horse-judgment
to be incompatible with a cat-judgment is taking them to refer or represent that object,
to which incompatible properties are being attributed by the two claims.

The normative rational unity of apperception is a synthesis to expand commitments
inferentially, noting and repairing incompatibilities. In this sense, one’s commitments
become reasons for and against other commitments; it emerges the rational critical
responsibility implicit in taking incompatible commitments to oblige one to do some-
thing, to update one’s commitment so as to eliminate the incompatibility. According to
the scorekeeping model, attention must be given not only to “modal” incompatibility
but also to “normative” incompatibility. Again, modal incompatibility refers to states of
affairs and properties of objects that are incompatible with others and it presupposes the
world as independent of the attitudes of the knowing-and-acting subjects.

Normative incompatibility belongs to discursive practices on the side of the knowing-
and-acting subjects. In discursive practice the agent cannot be entitled to incompatible
doxastic or practical commitments and if one finds herself in this situation one is obliged
to rectify or repair the incompatibility. On the side of the object, it is impossible for it
to have incompatible properties at the same time; on the side of the subject, it is imper-
missible to have incompatible commitments at the same time. In this sense, Brandom
introduces themetaphysical categorical sortalmeta-concept subjectwhereas it represents
the conceptual functional role of units of account for deontic normative incompatibil-
ities. In my opinion, we can intend this role as a “social” role because of the fact that
we learn how to undertake deontic attitudes in the process of socialization. The possi-
bility of criticizing commitments in order to be able not to acknowledge incompatible
commitments is bound to the normative statuses of commitment and entitlement and we
ought to grasp the sense of them.

4 The Dimensions of Justification

The scorekeeping model describes a system of social practices in which agents performs
assertions that express material inferential commitments [17]. In the previous section,
I considered together with the modal vocabulary also the normative vocabulary both
related to the use of ordinary language. Let’s see now what are the inferential relations
that agents ought to master in order for justifying their claims. Our assertions have a
“sense” or are “contentful” by virtue of three dimensions of inferential social practices.
To the first dimension belongs the commitment-preserving inference that corresponds to
the material deductive inference. For example, A is to the west of B then B is to the east
of A and the entitlement preserving inference that corresponds to inductive inference
like if this thermometer is well made then it will indicate the right temperature. This

A Pragmatic Model of Justification for Social Epistemology 97

dimension is structured also by incompatibility relations: two claims have materially
incompatible contents if the commitment to the one precludes the entitlement to the
other.

The second dimension concerns the distinction between the concomitant and the
communicative inheritance of deontic statuses. To the concomitant inheritance corre-
sponds the intrapersonal use of a claim as a premise. In this case, if a person is committed
to a claim is, at the same time, committed to other concomitant claims as consequences.
Correspondently, a person entitled to a commitment can be entitled to others by virtue of
permissive inferential relations. Moreover, incompatibility relations imply that to under-
take a commitment has as its consequence the loss of the entitlement to concomitant
commitments to which one was before entitled. To the communicative inheritance cor-
responds the interpersonal use of a claim, because to undertake a commitment has as
its “social” consequence to entitle others to the “attribution” of that commitment. The
third dimension shows the two aspects of the assertion as “endorsed”: the first aspect
is the “authority” to other assertions and the second aspect dependent to the first is the
“responsibility” throughwhich an assertion becomes a “reason” enabling the inheritance
of entitlements in social contexts.

The entitlement to a claim can be justified (1) by giving reasons for it, or (2) by
referring to the authority of another agent, or (3) by demonstrating the capacity of the
agent reliably to respond to environmental stimuli. The scorekeepingmodel is based on a
notion of entitlement that presents a structure of “default” and “challenge”. This model
is fundamental in order to ground a pragmatic and social model of justification, that
requires the participation to the game of giving and asking for reasons. A fundamental
consequence of this description is that the deontic attitudes of the interlocutors represent
a perspective on the deontic states of the entire community.

We begin with the intercontent/interpersonal case. If, for instance, B asserts “That’s
blue”, B undertakes a doxastic commitment to an object being blue. This commitment
ought to be attributed to B by anyone who is in a position to accept or refuse it. The
sense of the assertion goes beyond the deontic attitudes of the scorekeepers, because it
possesses an inferentially articulated content that is in a relationship with other contents.
In this case, if by virtue of B’s assertion the deontic attitudes of A change, as A attributes
to B the commitment to the claim “That’s blue”, then A is obliged to attribute to B
also the commitment to “That’s colored”. A recognizes the correctness of that inference
when she becomes a scorekeeper and, therefore, consequentially binds q to p. Again,
the incompatibility between “That’s red” and “That’s blue” means that the commitment
to the second precludes the entitlement to the first. Then A treats these commitments as
incompatible if she is disposed to refuse attributions of entitlement to “That’s red” when
A attributes the commitment to “That’s blue”. In the infracontent/interpersonal case, if
A thinks that B is entitled (inferentially or not inferentially) to the claim “That’s blue”,
then this can happen because A thinks that C (an agent who listened to the assertion) is
entitled to it by testimony.

An interesting point is to see how the inferential and incompatibility relations among
contents alter the score of the conversation. First, the scorekeeper Amust include “That’s

98 R. Giovagnoli

blue” in the set of commitments already attributed to B. Second, Amust include the com-
mitments to whatever claim which is the consequence of “That’s blue” (in commitive-
inferential terms) in the set of all the claims already attributed to B. This step depends
on the available auxiliary hypothesis i relationship with other commitments already
attributed to B. These moves determine the closure of the attributions of A to B by virtue
of the commitment-preserving inferences: starting from a priori context with a certain
score, the closure is given by whatever committive-inferential role A associates with
“That’s blue” as part of its content.

Incompatibility also limits the entitlements attributed to B. A can attribute entitle-
ments towhat ever claim is a consequence in permissive-inferential terms of commitment
to which B was already entitled. For example, B is entitled to “That’s blue” because she
is a reliable reporter i.e. she correctly applies responsive capacities to environmental
stimuli. The correctness of the inference depends also on A’s commitment, namely on
the circumstances under which the deontic status was acquired (these conditions must
correspond to the ones in which B is a reliable reporter of the content of “That’s blue”).
Moreover, A can attribute the entitlement also by inheritance: reliability of another
interlocutor who made the assertion in a prior stage comes into play.

5 Conclusion

The pragmatic model I sketched could represent a valid perspective for social episte-
mology by virtue of its “relational” perspective. It rests on social evidence that derives
from semantic relations among material-inferential commitments and entitlements and
pragmatic attitudes expressed by a net of basic speech acts. The structure represents a
view of knowledge as projected by the discursive practices of an entire community of
language users. Moreover, it is a dynamic model as social practices are always exposed
to the risk of dissent. In this context, social practices entail the dimension of challenge,
i.e. the case in which the speaker challenges the interlocutor to justify and eventually to
repudiate his/her commitment. Even in the case in which an agent acquires the entitle-
ment to act by deferral i.e. by indicating a testimonial path whereby entitlements to act
can be inherited, the query and the challenge assume the function of fostering discussion
among the participants.

References

1. Goldman, A.: Social epistemology, stanford enciclopedia of philosophy (2015); Giovagnoli
R.: Introduzione all’epistemologia sociale, LUP, Vatican City (2017)

2. Brandom, R.: Making It Explicit. Cambridge University Press, Cambridge (1994)
3. Brandom, R.: Knowledge and the social articulation of the space of reasons. Philos.

Phenomenol. Res. 55, 895–908 (1995)
4. Lewis, D.: Scorekeeping in a LanguageGame, Philosophical Papers. OxfordUniversity Press,

New York (1983)
5. Hardwig, J.: Epistemic dependence. J. Philos. 82, 337 (1985)
6. Hardwig, J.: The role of trust to knowledge. J. Philos. 88, 698 (1991)
7. Hardwig: p. 347 (1985)

A Pragmatic Model of Justification for Social Epistemology 99

8. Welbourne, M.: The Community of Knowledge. Gregg Revivals, Aldershot (1993)
9. Giovagnoli, R.: The debate on testimony in social epistemology and its role in the game of

giving and asking for reasons, Information MDPI, March 2019
10. Kusch, M.: Knowledge by Agreement, p. 60. Oxford University Press, Oxford (2002)
11. Kusch, M.: pp. 65–66 (2002)
12. Brandom, R.: Between Saying and Doing. Oxford University Press, Oxford (2008)
13. Giovagnoli, R.: Why the fregean square of opposition matters for epistemol- ogy. In: Beziau,

J.Y., Dale, J. (eds.) Around and Beyond the Square of Opposition. Springer, Basel (2012).
https://doi.org/10.1007/978-3-0348-0379-3_7

14. Brandom, R.: (2008)
15. Giovagnoli, R.: Representation, analytic pragmatism and AI. In: Dodig-Crnkovic, G., Gio-

vagnoli, R. (eds.) Computing Nature, pp. 161–170. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37225-4_9

16. Giovagnoli, R.: The relevance of language for the problem of representation. In: Dodig-
Crnkovic, G., Giovagnoli, R. (eds.) Representation and Reality in Humans, Other Living
Organisms and IntelligentMachines. SAPERE, vol. 28, pp. 235–245. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-43784-2_11

17. Giovagnoli, R.: From single to relational scoreboards. In: Beziau, J.Y., Costa- Leite, A., -
J.M.L., D’Ottaviano, J.M.L. (eds.) Aftermath of the Logical Paradise, Colecao CLE, Brazil,
vol. 81, pp. 433–448 (2018)

https://doi.org/10.1007/978-3-0348-0379-3_7
https://doi.org/10.1007/978-3-642-37225-4_9
https://doi.org/10.1007/978-3-319-43784-2_11

Personal Identity and False Memories

Danil Razeev(B)

Institute of Philosophy, Saint Petersburg State University, Saint Petersburg, Russia
d.razeev@spbu.ru

Abstract. In current philosophy of mind, there are two main
approaches to the question of personal identity. The first one claims
that personal identity is based on our memory and, for several decades,
has been known as a psychological approach to the problem. The sec-
ond one has been called an animalistic approach and considers personal
identity as a biological property of human beings or as a specific feature
of our bodily continuity. The experiment on creating false memories in
mice brains, recently conducted at Massachusetts Institute of Technology
(MIT), seems to shed new light on the question of personal identity, tak-
ing into account the fact that the mouse brain is morphologically quite
similar to our brain. The purpose of my paper is to consider whether the
above-mentioned experiment supports one of the approaches: the psy-
chological or the animalistic. Using the conceptual instrumentarium of
contemporary analytic philosophy and cognitive phenomenology, I dif-
ferentiate between strong and weak false memories and I argue that we
cannot consider the conducted experiment to have created false memo-
ries in the strong sense. I develop a thought experiment showing what
it would be like to experience an implanted (weak) false memory in the
human brain. I conclude that there is not and cannot be an experience
of the (strong) false memory.

Keywords: Personal identity · False memory · Animalism

1 Introduction

Could a computer or robot be a person? Contemporary philosophers and scien-
tists do not offer an unequivocal answer to this question. Some of them claim that
being a person is inherent only to highly developed biological organisms, par-
ticularly humans, and cannot be found in non-biological matter. Others express
some optimism in this regard and claim that, in the future, it will be possible
not only to create artificial intelligence possessing genuine personality but also
to transfer a biologically-based personality to an artificially-built one and vice
versa.

The problem of personal identity is deep rooted in the history of philosophy.
The British philosopher John Locke has been one of the most influential figures

This work was supported by the Russian Foundation for Basic Research under Research
Grant 18-011-00840.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 100–107, 2021.
https://doi.org/10.1007/978-3-030-67220-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_8&domain=pdf
http://orcid.org/0000-0002-5129-7532
https://doi.org/10.1007/978-3-030-67220-1_8

Personal Identity and False Memories 101

in discussing the question about personal identity. In his famous book “An Essay
Concerning Human Understanding” [1] he points out that we cannot find the
only unitary criterion of identity for all that exists. Locke’s argumentation, let
me present it in a slightly modern and free manner, suggests dividing identity
into three basic types: the first one is the identity of a thing, the second is the
identity of a living organism and the last one is the identity of a person. The
identity of a thing depends on the identity of material stuff, the identity of a
living body goes back to its persistence as an organism, i.e. as a unified whole,
and the identity of a person has its roots in the capacity to maintain a kind of
self-representation through time. Let us give some examples of Locke’s typology
of identities. Identity of a thing does not allow us to identify the statue of
David with the huge piece of marble, from which Michelangelo’s masterpiece was
sculptured, rather we deal with a process whereby one thing became something
else. An example of the second type of identity would be a cat having been
identified by its owner as the same living organism through time, although in
its old age it does not look like that pretty kitten, which first entered the house.
More confusing is the situation with personal identity and each of us, human
animals, could count as an example for this kind of identity. Intuitively, we
understand the difference between the identity of a living body and personal
identity, as in the case of a human being falling into a vegetative state, where
the body remains the same, but its carrier loses his bodily citizenship so to
speak. Many contemporary philosophers think that the question about personal
identity should be considered beyond the framework of our living bodies.

Even careful usage of the term identity can lead us to a set of very difficult
questions, such as: 1. Does the identity of a thing mean the material identity
atom by atom? 2. Where can a material boundary for a living thing be found? 3.
Can a digital copy of a person be created? 4. Would a person remain the same, if
they were reproduced using a different material carrier? 5. What would happen
to a person if they were reproduced using two carriers, materially identical atom
by atom? And so on.

2 Experimental Data

The question about what makes us identical through time has not found any
unambiguous answer and has been discussed by many philosophers studying
the problem of personal identity since Locke’s time. Nowadays, there exist two
general approaches to the problem: the psychological one, which is sometimes
called psychological reductionism [2–5], and the somatic one, the so-called ani-
malism [6–9]. According to the first approach, a criterion for personal identity
has to be found in our psychological continuity over time. The second one tries
to find this criterion in the persistence of our bodily organization. Psychological
reductionism has been continuing Locke’s attempt to find a certain criterion for
personal identity in the mechanism of memory. Animalism regards this approach
as conceptually wrong and claims that the identity of a person can be completely
reduced to the identity of this or that living body, in our case to the identity of
a living body of the human type or, in short, of a human animal.

102 D. Razeev

In my paper I would like to consider in detail a very interesting scientific
experiment, recently conducted by neuroscientists at Massachusetts Institute
of Technology (MIT). It pretends to change our understanding of genesis and
structure of subjectivity and shed new light on the contemporary discussion
about whether or not personal identity could count as a special and irreducible
type of identity. The neuroscientists Susumi Tonegawa and his colleagues at MIT
claim to have created a false memory in the brain of a living organism [10].

First of all, let me recall the details of the experiment on the mouse brain. For
the experiment scientists used genetically modified mice whose neuronal activity
in hippocampus, a specific region in the brain responsible for memory, could be
activated or deactivated by flashes of light, using a special laser device attached
to the mouse brain.

At first, the mice were placed in a box (box A) with a comfortable envi-
ronment and the neuroscientists were able to trace the neuronal activity in the
mice’s hippocampus. After that, the mice were moved to another box (box B),
where their memories about being in Box A were activated with a laser while
at the same time their feet were shocked with electricity. Using this technique
in the mice brains, an association of being in Box B and experiencing some fear
there was created. Being placed again in Box A, the mice behaved as if they
remembered some negative experience in Box B that in reality had never hap-
pened. In such a way the neuroscientists came to a general conclusion that they
had created in the mice brains a false memory or a memory about something
that never actually happened.

Although the experiment was conducted on mice brains, in my opinion, it has
very serious philosophical and ethical consequences for the understanding of our
own subjectivity. Even though morphologically the mouse brain and the human
brain are similar, to draw conclusions about the structure of our subjectivity
based only on the results of the experiment would not be correct. Nevertheless,
in philosophy we can conduct so-called thought experiments. As philosophers
we are permitted to suggest that a set of neural events that happened in the
mouse brain during the experiment could have happened in the human brain,
despite the fact that it cannot be verified at the present moment due to the
lack of technology or because of ethical restrictions. In other words, I would
like to discuss some philosophical consequences that would have arisen if the
experiment had been conducted on humans and it had resulted in the creation
in the human brain of false memories about some events that in reality never
happened.

If we extrapolated this experiment from mice to people, not taking into
account technical and ethical aspects [11], it could work in the following way.
At first, a volunteer is placed in a blue room with a comfortable environment.
Then, s/he is moved to a red room with an uncomfortable environment, where
neuroscientists, using a special technology, would activate a specific region in the
volunteer’s brain responsible for the memory of his/her previous presence in the
blue room and thereby create an additional association between his/her presence
in the blue room and the uncomfortable environment in the red room. Lastly,

Personal Identity and False Memories 103

s/he is moved back to the blue room. The result of the experiment is expected
to be as follows. The volunteer will remember some negative experience about
her/his previous presence in the blue room that in reality never happened to
her/him.

Having become acquainted with the details of the experiment, I would like
to involve it in the contemporary discussion about personal identity.

3 Evaluation and Discussion

To what extent is the mechanism of memory crucial for personal identity?
According to the psychological approach, memory plays the fundamental role
in the constitution of personal identity. Many philosophers who represent this
approach are very familiar with psychological theories about so-called long-term
memory [12,13]. They claim that personal identity is represented by a number of
systems within long-term memory [14–17]. Contemporary psychologists consider
long-term memory to contain two basic systems: procedural and declarative.
The procedural memory system is responsible for the acquisition and retention
of perceptual, motor and cognitive skills, while the declarative memory system
involves facts and beliefs about the world. Some psychologists distinguish two
subsystems within declarative memory: episodic and semantic [18,19]. Semantic
memory contains relatively generic information about the world, such as mathe-
matical knowledge and general context-free facts about the world, without spec-
ifying when, where and how such information was acquired. Semantic memory
plays an important role in our self-identity. Within semantic memory two kinds
of self-related memories can be differentiated: 1) semantic factual knowledge of
the self, 2) knowledge of one’s own traits. Although self-trait memory gives a
rudimental sense of self, it is not sufficient for a sense of personal identity over
time. Episodic memory, in contrast to semantic memory, has access to the events
that have been experienced by a subject at a particular point in space and time,
such as what one did yesterday evening and so on. In other words, episodic
memory makes explicit reference to the time and place of its acquisition. In rela-
tion to the problem of personal identity, it is this feature of episodic memory
that has made it the center of research interest for both psychologists [20,21]
and philosophers [22–25]. Retrieval from episodic memory has been described
as having a self-referential quality that is not available in other types of mem-
ory. Using episodic memory, a subject can re-experience events from their past
constructing a personal narrative, i.e. a life story [26,27].

Could the experiment on false memories shed new light on the problem of
personal identity? The experiment seems to challenge the psychological approach
to the problem of personal identity. Obviously, memory, being controlled from
the outside, cannot be an intrinsic feature of personal identity and should be
regarded rather as an extrinsic, additional mechanism. If, using a specific tech-
nology, neuroscientists were able to switch on or off some neuronal populations
in the hippocampus, and to make someone recall events that never happened
or make them suppress others that did, and, thereby, were able to manipulate

104 D. Razeev

their behavior in the future, the mechanism of memory would lose its central
and fundamental role for the formation of personal identity, particularly for the
constitution of phenomenal self. It would mean that we do not need a personal
identity in order to exist and we are nothing but highly organized animatons
possessing several sophisticated cognitive mechanisms, one of which is mem-
ory [28,29]. Nevertheless, I suggest being cautious and raising some important
questions concerning the experiment before drawing radical philosophical conclu-
sions. The first question concerns the status of false memory in the experiment.
More specifically, with what kind of memory are we dealing in the experiment:
is it false memory or rather a kind of modified memory? The second question
is related to the very process of memorization in the experiment. I am ask-
ing, whether actually experiencing an event is a necessary condition for creating
memory about it or whether memory can be created even if the event was not
actually experienced. The third question is about the role that the mechanism
of memory seems to play with regard to the identity of a person and whether
modifying memory or creating false memory can significantly change personal
identity.

At a first glance, the experiment seems to support the animalistic approach.
The question about the status of memory in the experiment on the mouse brain is
a core one. Let me differentiate between creating a new memory and modifying
the already existing memory. Neuroscientists called the type of memory they
dealt with in the experiment “false memory”. I think they misinterpreted the
very concept of false memory. Contemporary neuroscience does not offer a precise
definition of false memory. Even in the famous paper of the cognitive psychologist
E. Loftus, who was one of the first scientists to introduce this concept [30], we
cannot find a clear definition of what exactly this term means. Loftus prefers to
use it contextually and, in general, considers false memory to be a subtype of
memory distortion. She provides very deep insights into how false memories are
formed. Many false memories begin through suggestive misinformation that leads
to a false recollection of an event or idea. Her studies show that a strong form of
suggestion has led many subjects to believe or even remember in detail events
that did not happen, that were completely manufactured with the help of family
members, and that would have been traumatic had they actually happened. In
the context of our study, another conclusion made by Loftus where she claims
that her findings do not, however, give us the ability to reliably distinguish
between real and false memories is important [31]. In my opinion, the experiment
on the mouse brain dealt with false memory as a subtype of distorted memory,
which I would call false memory in the weak sense. Let us take a look at the
details of the experiment from this perspective. Firstly, being in Box A, the
mice stored some information about being in a positive environment. Secondly,
being moved to Box B, their memories about being in Box A were activated and
additionally associated with experiencing some fear, because their feet received
an electric shock. Thirdly, being placed again in Box A, the mice recalled a
distorted memory, i.e. their original memory of being in Box A was superimposed
by their memory of being in Box B. I think that the overlapping of memories

Personal Identity and False Memories 105

can lead to creating distorted memory and is part of our everyday psychological
process. We only need to consider cases of eyewitnesses at a crime scene. Being
asked, just after an incident they usually cannot recall any specific information,
but later, step by step, they begin to recall details of the incident very vividly. In a
broad sense, all our memories can be regarded as distorted memories. Individual
pieces of memory do not exist in isolation. Each one is always recalled in a
new context and, being recalled in the present, has already been modified. In
my opinion, in the experiment, scientists did not create in the mice brains false
memories in the strong sense. They combined the memories that had existed in
each of the mice brains before, resulting in what I called false memory in the
weak sense.

Creating false memories in the strong sense is connected to the second of
the above-mentioned questions, namely, whether it is possible to create such a
memory that would not refer to an event experienced earlier by a subject [32].
If we tried to imagine the conditions of such an experiment on false memories
in the strong sense, they would probably be as follows. Subject number one is
placed in a blue room and subject two in a red room. Then both subjects are
moved to a green room where, using a new sophisticated technology, neurosci-
entists exchange the subjects’ memories about being in the blue and red rooms
respectively. After that, the subjects are put in the previous rooms, but now
in reverse order: subject number one in the red room and subject two in the
blue one. The experiment would succeed if subjects could report remembering
already having been in the rooms. It would seemingly prove that neuroscientists
could create false memories in subjects about their being where they had never
been before. Nevertheless, I am afraid that even this hypothetical experiment,
were it technically possible in the future, would not prove that false memories
in the strong sense are possible. The problem is more difficult then it appears
to be. To what extent being a person presupposes recalling in memory what
happened in your own experience and not in another’s experience? Often we
coordinate our behavior by recalling in our semantic memory something that
never happened personally to us. I do not need to be hit by a car in order to
realize that the street should be crossed on a green light. Other animals certainly
possess a similar mechanism of memory. They, like us, are capable of learning
something by recalling the experience of others. And they can do it without
being persons. Even if subjects could recall each other’s memories or have their
own memories exchanged, it would not mean that false memories in the strong
sense had been created in their minds. In my opinion, even in this case, each
subject’s memories would remain false memories in the weak sense, because each
of them would, in the end, refer to an experience undergone earlier by another
subject. It means that the above-mentioned hypothetical experiment with sub-
jects recalling each other’s memories or having their own memories exchanged
does not give a physically possible example of false memory in the strong sense.
Moreover, I am inclined to regard the very notion of false memory in the strong
sense as a self-contradictory notion, i.e. not only physically not possible, but
also logically not possible. In order to be recalled, memories per definition must

106 D. Razeev

refer to experiences that have actually happened before, regardless of which of
the subjects’ minds was involved. In other words, only something that has hap-
pened before in the actual experience of a conscious mind can be recalled in our
memory. Whether the experiencing being and the recalling being have to be the
same one is another question.

4 Conclusion

Could the results of the experiment on false memories be used as empirical
support of the animalistic approach to personal identity and contra the psycho-
logical one? I don’t think so. All that the experiment has proven is the existence
of a certain type of memory that can be activated bypassing the phase of actual
experience. It means that as human animals we are able to maintain our life,
process information cognitively, regulate behavior and we can carry out all of
these activities using a specific type of memory, which is not accompanied by
awareness. At the same time, it does not prove that we do not possess a dif-
ferent type of memory, which defines us as persons and takes us beyond mere
human animals. It means that the mechanism of memory still remains a vessel
for personal identity.

In general, our analysis of the experiment on false memories shows the fol-
lowing. Firstly, the experiment does not support the animalistic approach to
personal identity. If animalism were true, we could not exist except as animals
and personal identity would be a phenomenon that is solely inherent to some
highly developed biological organisms. Secondly, our analysis emphasizes support
of the psychological approach to personal identity. If the psychological approach
is correct, then memory is a core mechanism of personal identity. The psycho-
logical approach gives us hope for the development, in the future, of such a form
of artificial intelligence that could possibly possess a genuine personality.

References

1. Locke, J.: An Essay Concerning Human Understanding. Oxford University Press,
Oxford (1975)

2. Parfit, D.: Reasons and Persons. Oxford University Press, Oxford (1984)
3. Shoemaker, S.: Self-Knowledge and Self-Identity. Cornell University Press, Ithaca

(1963)
4. Shoemaker, S., Swinburne, R.: Personal Identity. Blackwell, London (1984)
5. Unger, P.: Identity, Consciousness, and Value. Oxford University Press, Oxford

(1990)
6. Hudson, H.: A Materialist Metaphysics of the Human Person. Cornell University

Press, Ithaca (2001)
7. Olson, E.: The Human Animal: Personal Identity Without Psychology. Oxford

University Press, Oxford (1997)
8. Olson, E.: What Are We? A Study in Personal Ontology. Oxford University Press,

Oxford (2007)

Personal Identity and False Memories 107

9. Thomson, J.: People and their bodies. In: Dancy, J. (ed.) Reading Parfit, pp. 202–
209. Blackwell, London (1997)

10. Ramirez, S., et al.: Creating a false memory in the hippocampus. Science
341(6144), 387–391 (2013)

11. Liao, S.: The ethics of memory modification. In: Bernecker, S., Michaelian, K.
(eds.) Routledge Handbook of Memory, pp. 373–382. Routledge, New York (2017)

12. Cohen, N.: Preserved learning capacity in amnesia: evidence for multiple memory
systems. In: Squire, L., Butters, N. (eds.) Neuropsychology of Memory, pp. 83–103.
Guilford Press, New York (1984)

13. Squire, L.: Memory and Brain. Oxford University Press, New York (1987)
14. Tulving, E.: Elements of Episodic Memory. Oxford University Press, New York

(1983)
15. Gillihan, S., Farah, M.: Is self special? A critical review of evidence from experi-

mental psychology and cognitive neuroscience. Psychol. Bull. 131, 76–97 (2005)
16. Klein, S.: The self: as a construct in psychology and neuropsychological evidence

for its multiplicity. WIREs Cogn. Sci. 1, 172–183 (2010)
17. Rathbone, C., Moulin, C., Conway, M.: Autobiographical memory and amnesia:

using conceptual knowledge to ground the self. Neurocase 15, 405–418 (2009)
18. Gennaro, R.: Consciousness and Self-consciousness. John Benjamins Publishing,

Phildelphia (1996)
19. Parkin, A.: Memory and Amnesia. Basil Blackwell, New York (1997)
20. Klein, S.: The cognitive neuroscience of knowing one’s self. In: Gazzaniga, M. (ed.)

The Cognitive Neurosciences, pp. 1007–1089. MIT Press, Cambridge (2004)
21. Klein, S., Ganagi, C.: The multiplicity of self: neuropsychological evidence and its

implications for the self as a construct in psychological research. Ann. N. Y. Acad.
Sci. 1191, 1–15 (2010)

22. Brennan, A.: Amnesia and psychological continuity. Philos. Supplement. 11, 195–
209 (1985)

23. Campbell, S.: Rapid psychological change. Analysis 64, 256–264 (2004)
24. Northoff, G.: Are ”Q-Memories” empirically realistic? A neurophilosophical app-

roach. Philos. Psychol. 13, 191–211 (2000)
25. Schechtman, M.: Personhood and personal identity. J. Philos. 87, 71–92 (1990)
26. Eakin, P.: Living Autobiographically: How we Create Identity in Narrative. Cornell

University Press, Ithaca (2008)
27. Fivush, R., Haden, C.: Autobiographical Memory and the Construction of a Nar-

rative Self. Lawrence Erlbaum Publishers, Mahwah (2003)
28. Shettleworth, S.: Cognition, Evolution, and Behavior. Oxford University Press,

New York (2010)
29. Millin, P., Riccio, D.: False memory in nonhuman animals. Learn. Memory 26(10),

381–386 (2019)
30. Loftus, E.: The reality of repressed memories. Am. Psychol. 48(5), 518–537 (1993)
31. Loftus, E., Pickrell, J.: The formation of false memories. Psychiatric Ann. 25,

720–725 (1995)
32. Vetere, G., et al.: Memory formation in the absence of experience. Nat. Neurosci.

22(6), 933 (2019)

Against the Illusory Will Hypothesis

A Reinterpretation of the Test Results from Daniel
Wegner and Thalia Wheatley’s I Spy Experiment

Robert Reimer(B)

Universität Leipzig, Leipzig, Germany
robertreimer@gmx.de

Abstract. Since Benjamin Libet’s famous experiments in 1979, the
study of the will has become a focal point in the cognitive sciences. Just
like Libet, the scientists Daniel Wegner and Thalia Wheatley came to
doubt that the will is causally efficacious. In their influential study I Spy
from 1999, they created an experimental setup to show that agents erro-
neously experience their actions as caused by their thoughts. Instead,
these actions are caused by unconscious neural processes; the agent’s
‘causal experience of will’ is just an illusion. Both the scientific method
and the conclusion drawn from the empirical results have already been
criticized by philosophers. In this paper, I will analyze the action per-
formed in the I Spy experiment and criticize more fundamentally the
assumption of a ‘causal experience of will’. I will argue that the exper-
iment does not show that the agent’s causal experience of will is illu-
sory, because it does not show that there is a causal experience of will.
Against Wegner & Wheatley’s assumption, I will show that it is unlikely
that the participants in the I Spy experiment experienced their conscious
thoughts as causally efficacious for an action, that they did not perform
at all. It is more likely, that they experienced their own bodily movement
as causally efficacious for a cooperative action, that they did not perform
solely by themselves.

Keywords: Philosophy of cognition · Consciousness of the will ·
Causal theories of action

1 Introduction

In their paper Apparent Mental Causation, Daniel Wegner and Thalia Wheatley
write: “Conscious will is a pervasive human experience.” [13] However, it might
be an illusion that an agent’s conscious thoughts to perform an action cause that
action.

The neuroscientists Wegner & Wheatley are proponents of the illusory will
hypothesis. According to it, agents only have the impression that there is a causal
relation between their thought of performing an action and the performance of
that action. They call the experience of this causal relation ‘causal experience
of will’. Instead of being caused by her own thoughts, the agent’s action is
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 108–117, 2021.
https://doi.org/10.1007/978-3-030-67220-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_9&domain=pdf
http://orcid.org/0000-0003-0947-8249
https://doi.org/10.1007/978-3-030-67220-1_9

Against the Illusory Will Hypothesis 109

caused by unconscious neural processes. The illusory causal experience of will
arises, because these unconscious neural processes that actually cause the action
additionally produce the conscious thoughts about it. The thoughts, however,
remain impotent epiphenomena.

To refute the assumption that there is a real causal relation between the
agent’s thoughts of performing an action and the performance of that action,
Wegner & Wheatley tried to create an experimental setup in which participants
first develop a thought to move an object and second perceive a movement
adequate to this thought (the supposed action) without actually moving the
object. Wegner & Wheatley believed to show that, if it turned out that the
participants in the experiment still have the impression that they moved the
object, we (in general) just have the “[. . .] feeling we willfully cause what we
do”, without doing it [13]. This experiment was called ‘I Spy ’.

Wegner & Wheatley are not the first scientists setting up an experiment
to test the causal efficiency of the conscious will. The pioneer scientist in the
field of consciousness, Benjamin Libet, also assumed that the conscious will
must be something that causes the action to happen and that can be felt by
the agent [5]. In a series of experiments in 1979, Libet advised his participants
to measure the time when they felt the will to act in advance of acting itself.
After measuring their neural processes, Libet discovered that their will to act
was preceded by unconscious nerve cell activities in the motor cortex. Based on
these results, Libet concluded that the will is either an epiphenomenon (and
therefor causally impotent) or caused by these previous neural activities (and
therefor itself causally determined). Wegner & Wheatley’s hypothesis about the
nature and function of the will is highly influenced by Libet’s experiments.

On the other hand, Wegner & Wheatley’s I Spy study and their theory about
the nature of the will influenced the work of many other scientists in the field of
psychology and neurobiology, such as Lau [4], Haggard [2], Mogi [6]. Haggard,
for example, not just shared the assumption of a distinction between what he
called ‘the experience of intention’ and ‘the experience of agency’ [2]. He also
defended the illusory will hypothesis. Just like Wegner & Wheatley, Haggard
tried to create situations in which agents have thoughts about an action without
performing the action.

Wegner himself further developed his illusory will hypothesis in his book
The Illusion of Conscious Will [10], and further defended it in other, similarly
structured studies, such as the helping hands experiment [12].

In this paper, I will take a closer look at the ‘causal experience of will’
that is presupposed by Wegner & Wheatley’s illusory will hypothesis. I agree
with Wegner & Wheatley that there is no causal relation between the thoughts
(of willing to act) and that action. However, I do not think that there is an
experience of such a causal relation, either. In acting, agents do not experience
any causal relation between a previously experienced thought and a subsequent
action. Acting and willing to act are not two separable and causally dependent
events. They are synchronous and inseparable.

110 R. Reimer

Many philosophers, such as Wittgenstein,1 have already argued against the
assumption of a separate experience of will and in favor of a unity between
thinking and acting. I will not participate in this general discussion within the
philosophy of action. However, my aim is to support the assumption of the unity
between thinking and acting indirectly by showing that the test results of I Spy,
differently interpreted, do not support the assumption that there is a causal
experience of will.

In Sect. 2, I will briefly explain what it means to experience a causal relation
in general and what it could mean to experience a causal relation between one’s
own thoughts of willing to perform a certain action and that action. In Sect. 3,
I will introduce the experiment which is supposed to show that agents can have
thoughts and experience these thoughts as (more or less) causally efficacious for
the action without acting. In Sect. 4, I will show that the empirical results do
not support that interpretation. Instead, I will present my own alternative inter-
pretation according to which the participants in I spy rather moved their fingers
and experienced these bodily movements as (more or less) causally efficacious
for the execution of the overall action.

2 The Experience of Causal Relations

Consider the following situation: You are playing billiard. You hit the white ball
and observe it hitting the black ball. Then you observe the black ball starting
to roll, too. You assume that these events are causally dependent on each other:
The white ball, by striking the black ball, caused the black ball to roll, too2:

The white ball (by hitting the black ball) →caused the black ball (to roll)

Even if you are skeptical, whether there is a real causal relation between
these events, your skepticism might vanish after repeating the trial. David Hume
argued that the idea of a causal relation, or a causal connection, is based on the
perception of the temporal succession of two events that can be repeated. If
you notice that events of type A, such as the movement of the white ball, are
regularly followed by events of type B, such as the movement of the black ball,
your mind concludes that there must be a causal relation between instances of
type A and instances of type B. According to Hume, however, you suffered from

1 Consider this passage in the Philosophical Investigations: “When I raise my arm
‘voluntarily’, I do not use any instrument to bring the movement about [. . .] ‘Willing
if it is not a sort of wishing, must be the action itself [. . .]”’ [14].

2 Each causal relation consists of two objects (agens and patiens) being involved in
two separate events; the event of the patiens (effect) is causally dependent on the
event of the agens (cause). I will frequently use schemas like this to illustrate the
structure of certain causal relations. These schemas should be read in the following
way:

Agens (cause-event) →caused patiens (effect-event)

.

Against the Illusory Will Hypothesis 111

a ‘causal illusion’ in positing that relation. There was no causal relation between
these events; just a succession of them.

For Hume, not only events in the physical world give rise to such a ‘causal
illusion’, but also the ‘acts of the spirit’. He wrote:

Some have asserted, that we feel an energy, or power, in our own mind;
[. . .] But to convince us how fallacious this reasoning is, we need only
consider, that the will being here consider’d as a cause, has no more a
discoverable connexion with its effects, than any material cause has with
its proper effect. So far from perceiving the connexion betwixt an act of
volition, and a motion of the body; [. . .] the actions of the mind are, in this
respect, the same with those of matter. We perceive only their constant
conjunction; nor can we ever reason beyond it. [3]

Wegner & Wheatley, in referring to Hume, did not want to support his general
skepticism of causal relations. In fact, their theory rests on the assumption that
actions are caused by unconscious neural processes. However, they adopted the
skepticism of mental causation and two central ideas.

First, they noted that causal relations, in general, cannot be perceived
directly. Causality is not a ‘magic bond’ between events that can be made visible
under the microscope. Instead, observers must infer a causal relation, based on
the experience of the repeated succession of two events of a certain type. That
explains why causal theories are prone to illusions: There is no proof, whether
events of two types really stood in a causal relation to each other, or whether
one was just followed by the other.

Second and more importantly, Wegner & Wheatley also shared the assump-
tion with Hume that the perception of events in the physical world basically
resembles the experience of one’s own agency. They wrote:

The person experiencing will [. . .] is in the same position as someone per-
ceiving causation as one billiard ball strikes another. Causation is inferred
from the conjunction of ball movements, and will is inferred from the con-
junction of events that lead to action. [13]

According to this analogy, the object of perception in case of agency must be
identical to the subject of perception. It is the agent who is supposed to expe-
rience a causal relation ‘within’ herself. First, she experiences some of her own
thoughts when they ‘occur in their consciousness’, as Wegner & Wheatley put
it [13]. These thoughts constitute the supposed cause of the supposed causal
relation. Then, she experiences her own action either through observation of her
limbs or through proprioception. This action constitutes the supposed effect of
the supposed causal relation. Based on the experience of the thought processes
and the action, the agent gains the impression that her thoughts have caused the
action. In the words of Wegner: “[P]eople experience conscious will when they
interpret their own thought as the cause of their action” [11].

112 R. Reimer

However, there is no proof of a causal relation between thought and action,
even if both occurred, and match each other. The action could also have been
caused by something else, for instance an unconscious neural process. If that is
true, the power of will is a causal illusion (See Fig. 1).

Fig. 1. Wegner & Wheatly used this schema to illustrate the real and the appar-
ent causal path from the unconscious neural process to the action according to their
hypothesis [13].

3 The I Spy Experiment

Let me now briefly explain the experimental setup of the I Spy experiment as
well as Wegner & Wheatley’s interpretation of its test results.

The experiment included a series of trials. In each trial, a participant was
paired with an assistant working for the experiment’s administrator. Both
placed their fingers on an Ouija-board-like mouse and moved it together in a
circular manner. The movements of the mouse were projected to a monitor
where the mouse cursor moved over several items on the screen (a swan, an
umbrella, etc.). The participants were instructed to stop their movements freely
at some point. During each trial, they listened to music through headphones
(See Fig. 2). Frequently, words designating an item on the screen, such as
“Swan!”, were spoken through the headphones of the participant. These words
were supposed to prime a thought about the respective item ‘in the participant’s
consciousness’.

Against the Illusory Will Hypothesis 113

Fig. 2. The picture shows a participant and an assistant moving the Ouija-board-like
mouse in the I Spy experiment [13].

The participants assumed that the assistants were also participants, just like
them. In fact, they received secret instructions from the administrator either
to stop the mouse by themselves on a specific item or to let the participants
stop the mouse freely wherever they want. Those trials in which the assistant
was instructed to let their participant stop freely were called ‘free stops’. Those
trials in which the assistant was instructed to force a stop on an item were called
‘forced stops’. In case of the forced stops, the participants heard the word for
the respective item through their head-phones 30, 5, or 1 s before; or 1 s after
the mouse was forced to stop on the item.

After each trial, the administrator asked the participants to rate the ‘level of
intentionality’ that they felt when the mouse stopped, both in case of the free
stops and in case of the forced stops: “[T]hey each would rate how much they
had intended to make each stop, independent from their partner’s intention.”
[13] At the end, the participants rated the free stops in average 56% intentional
and the forced stops in average 52% intentional. However, there was a fluctuation
in the perception of intentionality depending on the time difference. Given that
the primed word was spoken 1 s before the forced stop, participants rated the
stop up to 65% intentional. So, it seems that even in case of the forced stops,
when the assistant was instructed to move and to stop, the participants felt, at
least to some extent, that they intended to make a stop.

Based on these results, Wegner & Wheatley hypothesized that the occurring
thought of a certain item on the screen together with the subsequent perception
of the mouse stopping on that very item made the participant believe that their
own thoughts caused their hand to move the mouse towards the primed item,
even though they did not [13].

4 The Causal Experience in the I Spy Experiment

Wegner & Wheatley’s study, as well as their illusory will hypothesis, have been
criticized by many philosophers.

114 R. Reimer

In his paper Willusionism, epiphenomenalism and the feeling of conscious
will [9], Sven Walter identified various problems of the I Spy study, including
the low significance of the test results and the ambiguous responses of the partic-
ipants that do not justify Wegner & Wheatley’s conclusion. Markus Schlosser [8]
remarked that there is plenty of empirical evidence supporting the assumption
that the sub-personal correlates of an agent’s intention are causally efficacious for
her action. Glenn Carruthers [1], arguing from the opposite direction, doubted
the existence of a universal causal experience of will. He discussed a variety of
empirical evidence showing that many agents, especially children and patients
suffering from autism, can experience agency without experiencing these actions
as caused by their intentions.

I am, clearly, sympathetic to Carruthers’ position. However, I want to go
further and assume that even the participants in the I Spy study did not experi-
ence their intentions (or thoughts) as (more or less) causally efficacious for their
action. To show this, I will provide an alternative and more plausible interpre-
tation of the test results.

Note that the question of the action’s level of intentionality, or the question,
“How much did you intend to make the stop?” that Wegner & Wheatley asked
the participants can be interpreted in different ways. Given that the participants
developed the thought of an item on the screen after hearing the respective word,
it can be interpreted in the following way: “Did my thought of the primed item
cause my hand to move the mouse to this item or not?” or in that way: “How
strongly did my thought of the primed item cause me to move the mouse to this
item?”. It is clear, that this is the interpretation that Wegner & Wheatley had
in mind when they asked their question. The schema of the causal experience
according to this interpretation would be the following:

My thoughts (by occurring in my consciousness) →caused the mouse (to move)

However, the question of the action’s level of intentionality could also have
been interpreted in a different way by the participants, namely as the question
whether or how strongly the thrust of their hand contributed to the movement
of the mouse towards the primed item. That interpretation presupposes a dis-
tinction not between two different events, the mental act of thinking to move the
mouse and the action of moving the mouse, but within the action itself, namely
between the participant’s hand movement and the movement of the mouse. If
the participants suffered from a causal illusion, that illusion would not have con-
sisted, as Wegner & Wheatley assumed, in misjudging the causal impact of the
thought on the movement of the mouse, but in misjudging the causal impact
of the hand’s thrust on the movement of the mouse. The schema of the causal
experience according to this alternative interpretation would be the following:

My hand (by pushing the mouse) →caused the mouse (to move)

To illustrate the difference between both causal schemas, consider this exam-
ple given by Wegner in his book The Illusion of Conscious Will. Wegner describes
a situation of him sitting in front of a gaming machine in a toy store. While

Against the Illusory Will Hypothesis 115

moving the joy-stick “[a] little monkey on the screen was eagerly hopping over
barrels as they rolled toward him.” [10] He was under the impression of playing
a video game, but the machine just showed a pre-game demo. Wegner concludes:
“I thought I was doing something that I really did not do at all.” [10] Further-
more, he assumes that operating the gaming machine is a good real-life example
to proof his illusory will hypothesis.

Timothy O’Connor [7] and Walter [9] have already criticized Wegner’s inter-
pretation of the situation. In fact, Wegner did do something, namely moving
the joystick. He did not erroneously assume that his thoughts caused an action.
He assumed that his hand, in moving the joystick, caused the machine to oper-
ate. He did not err about acting at all, but about the outcome of his moving
the joystick [7], or, in other words, about the causal effects of his moving the
joystick [9].

Unfortunately, we cannot easily apply the reinterpretation of the gaming
machine situation to the I Spy experiment. Since the action that Wegner per-
formed at the gaming machine involved a machine-interaction, as O’Conner put
it [7], it is not comparable with the action that the participants performed in
I Spy. Successfully interacting with a machine requires the functioning of many
independently operating devices and gears that are partially hidden. Since some
of the devices and gears in the machine did not operate as they would operate,
if the game was running, Wegner’s movement of the joystick did not have the
expected outcome. His action was prone to a causal illusion, because he did not
have direct control over, or insight in the mechanism of the gaming machine.

The causal illusion of the participants in the I Spy experiment, however, can-
not be explained in the same way, because the action did not involve any defec-
tive machine-interaction. The Ouija-mouse and the connected monitor operated
flawlessly, and the mouse transmitted the movement information properly to the
cursor on the screen. It seems, that the participants had direct control over the
movement of the cursor over the whole timespan. So, how could they suffer from
a causal illusion? How could they have been mistaken about the effects or the
outcome of their hand movement?

Even though the action that was performed in I Spy did not involve a defec-
tive causal mechanism, it was not a simple bodily movement, either. Since both
the participants and the assistants were invited to move the Ouija-mouse in
circles for the whole time, the participants and the assistants performed a coop-
erative (or joint) action. With regard to the cooperative character of the action
in I Spy, Sven Walter noted that “[i]n cases of joint action, however, you always
have to try to respond to cues from the other in order to coordinate your move-
ments with the other movements” [9]. Accordingly, it is likely that in case of
the free stops, the assistants took part in moving the mouse towards an item,
along with the participants; and in case of the forced stops, it is likely that the
participants took part in moving the mouse, along with the assistants, towards
the primed item. Or in other words: During all trials, the overall action (of mov-
ing the mouse to an item) was influenced by the thrust of both the assistant’s
and of the participant’s hand, because both were constantly pushing forward, or

116 R. Reimer

responding to a push. This essentially cooperative character of the action during
both kinds of trials can be supported by the fact that the ‘level of intentionality’
that was rated during both trials was roughly the same, namely 56% vs. 52%
intentional.

Given that this is true, and both the participants and the assistants con-
tributed to the movement of the mouse by constantly pushing and by respond-
ing to a push, it is likely that the participants could not tell for sure to which
extent the assistants actively intended to move the mouse towards the primed
item. “Did the other person independently move towards that item or did they
simply try to coordinate their movement with mine?” That fact applies to both
the forced stops and the free stops, because the participants did not know, which
trial was a free and which trial was a forced stop. Furthermore, given that the
participants could not precisely estimate the assistants’ causal impact on the
mouse movement, they could also not tell for sure, to which extent they them-
selves actively contributed to the overall movement of the mouse.

That the participants were unsure about their own contribution to the overall
movement can be supported by the indecisive answers that they gave, when
they were asked to rate the ‘level of intentionality’ for their action. In case of a
normal, non-cooperative action, such as moving a bottle from A to B, an agent
would exactly know if she intended to do it or not. She would rate her level of
intentionality either 100% intentional (fully intentional) or 0% (not intentional
at all). Cooperative actions, in turn, are indeed prone to this kind of certainty.
That is why neither in case of the free stops nor in case of the forced stops the
participants rated the level of intentionality 100% intentional or 0%.3

I conclude that the test results of the I Spy experiment do not show that the
participants experienced a (more or less) causally efficacious will, separate from
their action. It is more likely that they experienced their own hand movement
as (more or less) causally efficacious for the overall cooperative movement of
the mouse. Furthermore, the test results do not support Wegner & Wheatley’s
illusory will hypothesis. It is possible that the participants suffered from some
kind of causal illusion. But the causal illusion that they suffered from, most
likely, did not consist in overestimating or underestimating the causal impact
of their own thoughts on the action (of moving the mouse towards the primed
item). It is more likely that the causal illusion consisted in overestimating, or
in underestimating the causal impact of their own hand’s thrust (against the
mouse) on the overall cooperative movement of the mouse.

3 Walter also pointed out the unusual indecisiveness of the participants: “If 100 corre-
sponds to ‘I intended to make the stop,’ then a stop that was experienced as intended
should receive an average of 100, not of 56. Therefore, the fact that free stops received
an average rating of 56 does not show that the correct rating for intended stops is
56, but that the free stops were not perceived as fully intended” [9].

Against the Illusory Will Hypothesis 117

References

1. Carruthers, G.: A problem for Wegner and colleagues’ model of the sense of
agency. Phenom Cogn. Sci. 9(3), 341–357 (2010). https://doi.org/10.1007/s11097-
010-9150-6

2. Haggard, P.: Human volition: towards a neuroscience of will. Nat. Rev. Neurosci.
9(12), 934–946 (2008). https://doi.org/10.1038/nrn2497

3. Hume, D.: A Treatise of Human Nature, 2nd edn. Clarendon Press, Oxford [1739]
(1978)

4. Lau, H.C., Rogers, R.D., Passingham, R.E.: On measuring the perceived onsets
of spontaneous actions. J. Neurosci. 26(27), 7265–7271 (2006). https://doi.org/10.
1523/JNEUROSCI.1138-06.2006

5. Libet, B.W.: Do we have free will? J. Conscious. Stud. 6(8–9), 47–57 (1999)
6. Mogi, K.: Free will and paranormal beliefs. Front. Psychol. 5, 281 (2014). https://

doi.org/10.3389/fpsyg.2014.00281
7. O’ Connor, T.: Freedom with a human face. Midwest Stud. Philos. 29, 207–227

(2005). https://doi.org/10.1111/j.1475-4975.2005.00113.x
8. Schlosser, M.E.: Causally efficacious intentions and the sense of agency: in defense

of real mental causation. J. Theoret. Philos. Psychol. 32(3), 135–160 (2012).
https://doi.org/10.1037/a0027618

9. Walter, S.: Willusionism, epiphenomenalism, and the feeling of conscious will. Syn-
these 191(10), 2215–2238 (2014). https://doi.org/10.1007/s11229-013-0393-y

10. Wegner, D.M.: The Illusion of Conscious Will. MIT Press, Cambridge (2002)
11. Wegner, D.M.: Précis of the illusion of conscious will. Behav. Brain Sci. 27, 649–694

(2004). https://doi.org/10.1017/s0140525x04000159
12. Wegner, D.M., Sparrow, B., Winerman, L.: Vicarious agency: experiencing control

over the movements of others. J. Pers. Soc. Psychol. 86(6), 838–848 (2004). https://
doi.org/10.1037/0022-3514.86.6.838

13. Wegner, D.M., Wheatley, T.: Apparent mental causation: sources of the experience
of Will. Am. Psychol. 54(7), 480–492 (1999). https://doi.org/10.1037/0003-066X.
54.7.480

14. Wittgenstein, L.: Philosophical Investigations. (German) [Philosophische Unter-
suchungen]. 2. edn. Blackwell, Malden [1953] (1999)

https://doi.org/10.1007/s11097-010-9150-6
https://doi.org/10.1007/s11097-010-9150-6
https://doi.org/10.1038/nrn2497
https://doi.org/10.1523/JNEUROSCI.1138-06.2006
https://doi.org/10.1523/JNEUROSCI.1138-06.2006
https://doi.org/10.3389/fpsyg.2014.00281
https://doi.org/10.3389/fpsyg.2014.00281
https://doi.org/10.1111/j.1475-4975.2005.00113.x
https://doi.org/10.1037/a0027618
https://doi.org/10.1007/s11229-013-0393-y
https://doi.org/10.1017/s0140525x04000159
https://doi.org/10.1037/0022-3514.86.6.838
https://doi.org/10.1037/0022-3514.86.6.838
https://doi.org/10.1037/0003-066X.54.7.480
https://doi.org/10.1037/0003-066X.54.7.480

Understanding Responses of Individuals
with ASD in Syllogistic

and Decision-Making Tasks: A Formal
Study

Torben Braüner1(B), Aishwarya Ghosh2, and Sujata Ghosh2

1 Roskilde University, Roskilde, Denmark
torben@ruc.dk

2 Indian Statistical Institute, Chennai, India

Abstract. Recent studies have shown that in some reasoning tasks peo-
ple with Autism Spectrum Disorder perform better than typically devel-
oping people. The present note gives a brief comparison of two such tasks,
namely a syllogistic task and a decision-making task, identifying the com-
mon structure as well as differences. In the terminology of David Marr’s
three levels of cognitive systems, the tasks show commonalities on the com-
putational level in terms of the effect of contextual stimuli, though an in-
depth analysis of such contexts provides certain distinguishing features in
the algorithmic level. We also make some general remarks on our approach.

1 Introduction

It is well-known from the vast psychological and psychiatric literature on Autism
Spectrum Disorder1 (ASD) that children with ASD have a limited or delayed
capacity to respond correctly to certain psychological reasoning tests such as
false-belief tasks. In other words, on such tests, children with ASD perform less
well than children with typical development (TD). However, it turns out that in
some other reasoning tasks, people with ASD perform not worse, but better, than
typicals, thus, showing that ASD is not in all respects a “disability”, a view that
was put forward by Simon Baron-Cohen [2] two decades ago. During the last few
years, several new empirical studies have emerged where individuals with ASD
perform better than typical individuals, thus supporting Baron-Cohen’s view.

In [6], Farmer et al. investigate adult’s performance in a decision task where
the subject has to choose between pairs of consumer products that are presented
with a third, less desirable “decoy” product. According to conventional economic
theory, a consumer’s choice of one product over another should be independent
1 Autism Spectrum Disorder is a psychiatric disorder with the following diagnostic

criteria: 1. Persistent deficits in social communication and social interaction. 2.
Restricted, repetitive patterns of behavior, interests, or activities. For details, see
Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-V), pub-
lished by the American Psychiatric Association.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 118–128, 2021.
https://doi.org/10.1007/978-3-030-67220-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_10

Understanding Responses of Individuals with ASD 119

of whether there is a third option. To quote the paper, “If one prefers salmon to
steak, this should not change just because frogs’ legs are added to the menu”.
Farmer et al. demonstrate that the tendency to violate this norm is reduced
among individuals with ASD, thus, in this sense, they are more rational than
typical individuals. They found a similar difference between the two groups of
people drawn from the general population, classified in accordance with their
levels of autistic-like traits, measured in terms of the self-report questionnaire
called the Autism-Spectrum Quotient (AQ).

A similar example can be found in [11], where Lewton et al. compares the
ability to do syllogistic reasoning in the general population with individuals
showing autistic-like traits that are measured in terms of the AQ-score. Some
syllogisms are consistent with reality: All birds have feathers. Robins are birds.
Therefore robins have feathers, but others are not: All mammals walk. Whales
are mammals. Therefore whales walk. Both of these syllogisms are valid, that
is, the conclusion follows logically from the premises, in fact, they have exactly
the same logical structure, but the validity is more difficult to detect in the
second syllogism because the correct answer is inconsistent with reality. Thus,
prior knowledge of reality can affect the judgement of validity, and the study
in [11] shows that there is a negative correlation between this reasoning bias
and the AQ-score, thus, the more autistic-like a person is, the better the person
is to judge syllogisms without being affected by irrelevant prior knowledge of
reality. See [9] for a comprehensive overview of different psychological theories
of syllogistic reasoning.

Now, to the best of our knowledge, there are no systematic and theoretical
studies of the commonalities between the psychological tasks where individuals
with ASD perform better than the typical individuals, as reported in [6,11]. It is
the goal of the present paper to investigate this question – an interdisciplinary
enterprise requiring insights from both logic and economic theory. Such an inves-
tigation will help us in providing a better understanding of the capabilities of the
individuals with ASD, which in turn might help in accommodating a better work
environment for these individuals. A common feature of the above-mentioned
tasks seems to be that they require an ability to disregard irrelevant contextual
information, but this is a very informal verbal description. We will aim at a more
formal and precise analysis, identifying a common structure, inspired by other
works aiming at identifying a common logical structure in superficially different
reasoning tasks.2 As a tool to analyze the tasks in question, we make use of
David Marr’s levels of analysis of cognitive systems [12]: Any task computed by

2 In particular, in [4] it is demonstrated that two seemingly dissimilar reasoning tasks,
namely two different versions of a false-belief task called the Smarties task, have
exactly the same underlying logical structure. Similarly, in [5] it is demonstrated
that four second-order false-belief tasks share a certain logical structure, but they
are also distinct in a systematic way. We remark that such a strategy was also pursued
in the book [17], where it was shown that a false-belief task and what is called the
box task have a logical structure similar to a third task called the suppression task.

120 T. Braüner et al.

a cognitive system must be analyzed at the following three levels of explanation
(in order of decreasing abstraction):

Computational level: Identification of the goal and of the information-
processing task as an input–output function;

Algorithmic level: Specification of an algorithm which computes the function;
Implementational level: Physical or neural implementation of the algorithm.

Analogous levels of analysis can be found in several other works of cognitive
science, e.g., see the overview in [16], pages 9–12. For this work, we shall focus
on the computational and algorithmic levels.

2 The Syllogistic Task

In this section, we analyze the performances in the syllogistic tasks as investi-
gated in [11] on both computational and algorithmic levels. We first provide a
brief discussion on the empirical study as reported in [11].

An Empirical Study by Lewton et al. [11]: Four different types of syl-
logisms are considered. The two syllogisms described in the introduction were
of the respective types of valid-believable and valid-unbelievable (this termi-
nology is self-explanatory). But there are also the types invalid-believable and
invalid-unbelievable. An example of the former type is: All flowers need water.
Roses need water. Therefore Roses are flowers. An invalid-unbelievable syllo-
gism with exactly the same structure is: All insects need oxygen. Mice need
oxygen. Therefore mice are insects. Each subject has to judge four congruent
syllogisms (valid-believable and invalid-unbelievable) and four incongruent ones
(invalid-believable and valid-unbelievable). A subject scores 1 point for each
correct judgement. So there is a 0–4 scale for congruent syllogisms and 0–4 for
incongruent ones. A belief bias occurred when there is a decrease in accuracy
for incongruent problems (valid-unbelievable and believable-invalid) relative to
congruent problems (valid-believable, invalid-unbelievable). Such a bias is calcu-
lated by subtracting the score for incongruent syllogisms from that of congruent
ones, resulting in a possible score from −4 to 4. The study reports a number
of correlation results, in particular, the correlation between AQ and belief bias
was −0.39 (with a p-value less than 0.001). The AQ-congruent correlation was
−0.11 but not significant, whereas the AQ-incongruent correlation was 0.40 (also
with a p-value less than 0.001). Thus, the congruent and incongruent variables
measure different underlying cognitive abilities, only the latter is associated with
AQ.

2.1 Computational Level Analysis (Syllogistic Task)

We now ask the following question: What does it precisely mean that a subject
is able to judge a syllogism without bias, that is, without involving irrelevant
contextual information? We assume that the validity of syllogisms is defined in

Understanding Responses of Individuals with ASD 121

the usual manner as in first-order logic in terms of first-order models M. This
defines a function valid which maps syllogisms to truth-values. This function
formalizes the normatively correct judgement of syllogisms.

Now, a subject’s judgement of a syllogism takes place in a specific context,
that is, in a specific state of affairs, namely the actual state of affairs, where
for example Robins have feathers is true, but Whales walk is false. Such a state
of affairs is formalized by a model. This means that a subject’s judgement of
syllogisms in a context can be modeled by a function believable similar to the
function valid , but with an extra parameter, representing a context. Thus, the
function believable maps a pair consisting of a syllogism and a model to a truth-
value, and the requirement of context-independence can be formulated as

believable(S,M1) = believable(S,M2) (1)

for any syllogism S and any models M1 and M2.
A stronger requirement than the independence of context is the notion of

correctness, that is,
believable(S,M) = valid(M) (2)

for any syllogism S and any model M. Note that this is a strictly stronger
requirement, for example, a believable function that always gives the incorrect
answer would be independent of contexts. We note here that we would not find
a similar requirement in case of the decision task we discuss later.

2.2 Algorithmic Level Analysis (Syllogistic Task)

In what follows we shall describe some theoretical explanations of belief bias in
syllogistic reasoning, based on the work done in [10]. These explanations have
the form of algorithms, where bias arises at one of the three different stages
in the reasoning process: during input, processing, or output (cf. see [10], page
852). Given the algorithmic character of the explanations, we are situated at the
second of Marr’s three levels, where an algorithm computes the input-output
function specified at the top level. We give particular attention to the reasoning
process that takes place when incongruent syllogisms are judged, that is when
logic and belief conflict.

One of the algorithms described in [10] is the misinterpreted necessity model,
which is described by the flowchart-like diagram in Fig. 1. A feature of this
algorithm is that the logically correct answer is guaranteed if the conclusion
follows from the premises or if the conclusion is falsified by the premises (called
determinately invalid). If none of these two conditions are satisfied, that is, if
some models of the premises falsify the conclusion and some models verify it
(called indeterminately invalid), then the output of the algorithm is decided by
the conclusion’s believability. Thus, the logically correct answer is guaranteed
for any syllogism that either is valid or determinately invalid. Note that the bias
here takes effect after the logical reasoning process. According to Klauer et al.
[10], the bias in this model is due to the subject’s misunderstanding of what it
means to say a conclusion not following from the premises, namely that it is

122 T. Braüner et al.

Fig. 1. The misinterpreted necessity
model, taken from [10].

Fig. 2. An account by mental models,
taken from [10].

sufficient that the conclusion is falsified by some models of the premises, not
necessarily all such models.

Earlier we discussed the invalid “rose” and “mice” syllogisms, which have
exactly the same logical structure. Since syllogisms with this structure have
models of the premises that verify the conclusion (the “rose” case) as well as
models that falsify it (the “mice” case), they are indeterminately invalid. Thus,
in these syllogisms, the response of the misinterpreted necessity model is decided
by the believability of the conclusion, so in the “rose” syllogism, the response
would incorrectly be “valid”, but in the “mice” syllogism, the response would
correctly be “invalid” (but for the wrong reason).

In [10], Klauer et al. also give an account of the belief bias based on the
“mental models” school in the psychology of reasoning, according to which the
mechanism underlying human reasoning is the construction of models, [8]. An
account by mental models is shown in Fig. 2. The first step of this algorithm is
to build an initial model of the premises of the syllogism under investigation,
which is followed by an evaluation of the conclusion in the model in question.
If the conclusion comes out as true, but it is not believable, this triggers the
generation of further models of the premises, as indicated in the figure. Note
that like in the misinterpreted necessity model, the logically correct answer is
guaranteed for any syllogism that either is valid or determinately invalid. But if
a syllogism is indeterminately invalid, then the answer becomes incorrect if and
only if the conclusion is true in the initial model and also believable, hence, the
selection of the initial model matters. Note that the bias here takes effect during
the reasoning process.

Understanding Responses of Individuals with ASD 123

3 The Decision Task

We now analyze the performances in a decision task of choosing between pairs of
consumer products in the presence of a third less desirable decoy product, inves-
tigated in [6]. We investigate the task on computational as well as algorithmic
levels.

An Empirical Study by Farmer et al. [6]: It is investigated whether indi-
viduals with ASD show reduced sensitivity to contextual stimuli when exposed
to a decision-making situation where they had to make choices between pairs of
consumer products that are presented with a third, less desirable decoy option.
In a choice set, a decoy option is usually considered as an asymmetrically dom-
inated alternative which is dominated by one of the choice alternatives but not
by the other, i.e., based on the preference determining attributes, it is com-
pletely dominated by (i.e., inferior to) one option (target) and only partially
dominated by the other (competitor). The choice task included participants to
see 10 pairs of products (e.g., USB sticks); the products in each pair differed
on two dimensions (in the case of USB sticks, storage capacity, and longevity).
Each pair was presented twice, once with a decoy that targeted one product and
once with a decoy that targeted the other. According to the conventional eco-
nomic theory, any rational individual when exposed to such a situation should
show a consistent preference behavior as the individual’s preference between two
items should be independent of the ‘decoy’ options on offer. In contrast, it was
observed that the choices of the general participants (control group) were heavily
influenced by the composition of the choice set. Rather than being based on an
independent assessment, the attractiveness of a given option relied upon how the
individual compared it with the other values that were simultaneously present
(attraction effect). But this tendency was quite reduced for individuals with
ASD. Thus, they showed reduced sensitivity to contextual stimuli, indicating
that their choices were more consistent and conventionally rational.

3.1 Computational Level Analysis (Decision Task)

The reduced context effect in people with ASD might be a manifestation of
their reduced understanding of, or concern for, the likely beliefs and appraisals
of others. Thus, the choices of individuals with ASD have a better chance to
satisfy the norm given by (3) than typical individuals [2].

In theory, the rational decision-makers are expected not to show sensitivity
to context stimuli and be more consistent in their choices when they had to make
choices in the situation mentioned above in the presence of a decoy option. Choice
consistency should be the norm in this case. More formally, we can consider a
choice function which returns the chosen item from the finite tuple of possible
choices, and the requirement for context-independence is given by:

Choice(Product1,Product2,Decoy1) = Choice(Product1,Product2,Decoy2) (3)

Note that this is analogous to the requirement on the judgements of syllogisms
that we called context-independence (requirement (1) on a believable function).

124 T. Braüner et al.

On the other hand, there is no requirement similar to the correctness of the
believable function (requirement (2) on the function).

3.2 Algorithmic Level Analysis (Decision Task)

We now provide an algorithmic explanation of the attraction effect bias that is
visible in context-dependent decision tasks [6]. To this end, we consider dimen-
sional weight models as discussed in [1,19], where the authors mention how the
difference in dimensional (attribute) weights are highly dependent on the simi-
larity relationship among the items. The more similar a set of items is on one
attribute the easier it is to notice discrepancies on their other attribute (for both
target and decoy items) so that the observed discrepancies on a given dimension
increase the corresponding weight [1]. Thus, once the decision-maker (DM) is
able to determine the important dimension it then goes on to compare the three
items (target, decoy, and competitor) on that dimension. After the comparison,
the DM gives more attention weight to the target and decoy as the distance
between them is smaller compared to that between competitor and decoy, even-
tually selecting the target as the final choice. This idea of giving higher attention
weights to options whose attribute values are similar is based on the multiat-
tribute linear ballistic accumulator (MLBA) model given by Trueblood et al.
[18].

The Dominance Search Model (DSM) of Decision Making [14], which consid-
ers four phases of a decision process (cf. Fig. 3) is used to describe the decision
process discussed above. We analyze the dimensional weight theory using the
flowchart-like diagram in Fig. 3 and establish a line of argument as to how the
decision task explained in [6] fits in this respect. However, this argument might
vary with different examples especially in terms of given attribute values. The
decision task in [6] considers a choice set with three items defined on two dimen-
sions where the target strictly dominates the decoy. According to this model,
the DM follows four phases of the decision process:

1. Pre-editing Phase: In the first phase, the DM screens and evaluates the
attributes and alternatives. Alternatives with a better chance of becoming
dominant are selected.

2. Finding a promising alternative phase: Given the selected alternatives
from the first phase the DM now moves on to detect an alternative with
attractive attributes that can be considered as a promising alternative (see
Fig. 3). The bias becomes evident in this phase as the target shows a higher
potential of being a promising alternative because of its strict dominance over
the decoy.

3. The dominance testing phase: Once the DM is able to find a potentially
promising alternative, the dominance test is done in this phase. If there is any
violation, the DM caters to it in the next phase. If no violation is found, the
DM checks whether all the relevant information has been evaluated (Fig. 3).
Once this is done, the final decision is taken, otherwise, the DM moves on to
test dominance once again.

Understanding Responses of Individuals with ASD 125

4. The dominance structuring phase: After identifying a violation of domi-
nance the DM tries to neutralize it in this phase using the ways mentioned in
Fig. 3. After possible removal of the violation, the DM moves on to make the
final decision. Otherwise, the evaluation process starts again. We note that
the decision process of Fig. 3 is task-dependent and might vary accordingly.

Fig. 3. The decision process, adapted from
[14].

For the example discussed at
the beginning of this section, it
is seen that the target strictly
dominates the decoy thus reducing
its chance of getting selected, but
both the target and the competitor
are considered as options at this
stage [Phase 1]. Now, the target is
considered as the more promising
alternative because of the attrac-
tion effect [Phase 2]. A strict dom-
inance of the target over the decoy
is established but the target and
the competitor are found to be
incomparable [Phase 3]. This leads
to a violation that gets resolved
in the next phase [Phase 4] which
can be explained using the theories
mentioned above.

We note here that the syllogisms discussed in Sect. 2 are endowed with a
notion of (in)correct reasoning and bias in the algorithmic models amounts to
various ways of deviating from this norm. In the case of the decision task, one
can also consider norms, but we leave it to future work to investigate how the
algorithmic models can capture such deviations from the relevant norms if any.

4 Discussion

For certain syllogistic tasks [11] and decision tasks [6], it was shown that indi-
viduals with ASD performed better than typical individuals. To analyze these
results on a computational level, we took a functional approach (with a subject’s
reasoning being represented by a mathematical function) where the functions
considered the respective tasks as arguments together with certain contextual
information. For such functions, we have considered the following properties:
contextual independence and correctness.

While the syllogistic task gave rise to certain functional expressions (as
defined by mathematical functions) pertaining to both of the properties, those
corresponding to the decision task paved the way for considering one of them,
namely, context independence. These decision tasks were based on certain
attributes, and no single choice was a dominant one (i.e. strictly better than

126 T. Braüner et al.

the others), hence no notion of correctness. One might argue that such a cor-
rectness condition may be added to the decision task in case one of the choices
is a strictly dominant one. But, more often than not, these tasks have rather
complex choices. Moving on to contextual considerations, they can be further
developed in the decision tasks by considering the following effect: attraction
effect and dominance effect. For the syllogistic tasks, the contextual information
is explored through the consideration of belief biases.

At the algorithmic level, the mental model corresponding to the syllogis-
tic tasks provided in Fig. 2 constitutes building an initial model satisfying the
premises of the syllogism under investigation. Then, an evaluation of the con-
clusion takes place in the model in question. Thus, the algorithm bases on the
initial input of the model structure. In contrast, the algorithm given by DSM
for the decision tasks considers the entrance of possible promising alternatives
within the process itself, and as such, we have an ongoing process of introduction
of the alternatives at different phases.

In addition, for the syllogistic tasks, belief biases are considered both during
the reasoning process and after the reasoning process, depending on the model.
For the decision making task, the corresponding notion of attraction effect is
considered throughout the four phases of the decision-making process consid-
ered according to DSM. We note here that at the computational level for the
syllogistic and decision-making tasks we were not able to make a deeper connec-
tion with respect to contextual independence.

To summarize, the commonalities in these two tasks on the computational
level exist in terms of the effect of contextual stimuli, though the in-depth anal-
yses of such contexts provide us with certain distinguishing features. When the
tasks are analyzed at the abstract computational level, the responses of ASDs in
both tasks exhibit certain similarities, but when they are analyzed at the more
concrete algorithmic level, the differences are made explicit with respect to the
handling of biases. One might argue that our study should be relevant for typical
individuals as well, but then we would digress from the initial analysis at the
computational level. The functional expressions fit very well for the individuals
with ASD.

5 Future Work

Here, we consider reasoning tasks where individuals with ASD perform better
than typical individuals, namely, [11] and [6]. Below, we mention three more
example studies that provide further validation towards the better performance
of individuals with ASD. We plan to subject these studies to similar analysis in
the future, so as to provide a more detailed formal insight into the performances
of the individuals with ASD, which may lead to a better understanding of the
capabilities of such individuals.

In [7], Fujino et al. investigate adults’ performance in the so-called sunk-
cost task, which measures the tendency to include considerations on past costs
while choosing between current alternatives. According to conventional economic

Understanding Responses of Individuals with ASD 127

theory, past expenses are irrelevant, rational decision-makers should only pay
attention to future consequences of possible alternatives. It is shown in [7] that
individuals with ASD are less prone to violate this norm than typical individuals.
The study [13] investigates adult’s performance on a financial task in which the
monetary prospects were presented as either loss or gain, and it is shown that
individuals with ASD demonstrate a larger consistency in decision making than
typical individuals. The study [15] compares the performance of individuals with
ASD and typical adolescents on tasks from the heuristics and biases literature,
including the famous Linda task, involving the conjunction fallacy, which violates
a fundamental law of probability theory. It is found that children with ASD are
less susceptible to this fallacy.

Such formal investigations of the tasks where individuals with ASD perform
better than typical individuals would help us to identify common strengths and
competencies in the cognitive style of such individuals, which in turn can be the
basis for neurobiological research, investigating biological explanations of such
common competencies. In addition, it would also add impetus to the neurodi-
versity perspective [3] that suggests that autism should not be seen as a disorder
but as variations of the neurotypical brain - the involved disability and even
disorder may be about the person-environment fit.

References

1. Ariely, D., Wallsten, T.S.: Seeking subjective dominance in multidimensional space:
an explanation of the asymmetric dominance effect. Organ. Behav. Hum. Decis.
Process. 63(3), 223–232 (1995)

2. Baron-Cohen, S.: Is Asperger syndrome/high-functioning autism necessarily a dis-
ability? Dev. Psychopathol. 12, 489–500 (2000)

3. Baron-Cohen, S.: Editorial perspective: neurodiversity - a revolutionary concept
for autism and psychiatry. J. Child Psychol. Psychiatry 58, 744–747 (2017)

4. Braüner, T.: Hybrid-logical reasoning in the Smarties and Sally-Anne tasks. J. Log.
Lang. Inf. 23, 415–439 (2014). https://doi.org/10.1007/s10849-014-9206-z

5. Braüner, T., Blackburn, P., Polyanskaya, I.: Being deceived: information asymme-
try in second-order false belief tasks. Top. Cogn. Sci. 12, 504–534 (2020)

6. Farmer, G., Baron-Cohen, S., Skylark, W.: People with autism spectrum conditions
make more consistent decisions. Psychol. Sci. 28, 1067–1076 (2017)

7. Fujino, J., et al.: Sunk cost effect in individuals with autism spectrum disorder. J.
Autism Dev. Disord. 49, 1–10 (2019). https://doi.org/10.1007/s10803-018-3679-6

8. Johnson-Laird, P.: Mental models and deductive reasoning. In: Adler, J., Rips, L.
(eds.) Reasoning: Studies of Human Inference and Its Foundations, pp. 206–222.
Cambridge University Press (2008)

9. Khemlani, S., Johnson-Laird, P.: Theories of the syllogism: a meta-analysis. Psy-
chol. Bull. 138, 427–457 (2012)

10. Klauer, K., Musch, J., Naumer, B.: On belief bias in syllogistic reasoning. Psychol.
Rev. 107, 852–884 (2000)

11. Lewton, M., Ashwin, C., Brosnan, M.: Syllogistic reasoning reveals reduced bias
in people with higher autistic-like traits from the general population. Autism 23,
1311–1321 (2019)

https://doi.org/10.1007/s10849-014-9206-z
https://doi.org/10.1007/s10803-018-3679-6

128 T. Braüner et al.

12. Marr, D.: Vision. Freeman and Company, New York (1982)
13. Martino, B.D., Harrison, N., Knafo, S., Bird, G., Dolan, R.: Explaining enhanced

logical consistency during decision making in autism. J. Neurosci. 28, 10746–10750
(2008)

14. Montgomery, H.: Decision rules and the search for a dominance structure: towards
a process model of decision making. In: Advances in Psychology, vol. 14, pp. 343–
369. Elsevier (1983)

15. Morsanyi, K., Handley, S., Evans, J.: Decontextualised minds: adolescents with
autism are less susceptible to the conjunction fallacy than typically developing ado-
lescents. J. Autism Dev. Disord. 40, 1378–1388 (2010). https://doi.org/10.1007/
s10803-010-0993-z

16. Stanovich, K.: Who is Rational? Studies of Individual Differences in Reasoning.
Lawrence Erlbaum, Hillsdale (1999)

17. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Cambridge (2008)

18. Trueblood, J.S., Brown, S.D., Heathcote, A.: The multiattribute linear ballistic
accumulator model of context effects in multialternative choice. Psychol. Rev.
121(2), 179–205 (2014)

19. Wedell, D.H.: Distinguishing among models of contextually induced preference
reversals. J. Exp. Psychol. Learn. Mem. Cogn. 17(4), 767 (1991)

https://doi.org/10.1007/s10803-010-0993-z
https://doi.org/10.1007/s10803-010-0993-z

Symbolic and Statistical Theories
of Cognition: Towards Integrated

Artificial Intelligence

Yoshihiro Maruyama(B)

Research School of Computer Science,
The Australian National University, Canberra, Australia

yoshihiro.maruyama@anu.edu.au

Abstract. There are two types of approaches to Artificial Intelligence,
namely Symbolic AI and Statistical AI. The symbolic and statistical
paradigms of cognition may be considered to be in conflict with each
other; the recent debate between Chomsky and Norvig exemplifies a fun-
damental tension between the two paradigms (esp. on language), which is
arguably in parallel with a conflict on interpretations of quantum theory
as seen between Bohr and Einstein, one side arguing for the probabilist
or empiricist view and the other for the universalist or rationalist view.
In the present paper we explicate and articulate the fundamental dis-
crepancy between them, and explore how a unifying theory could be
developed to integrate them, and what sort of cognitive rôles Integrated
AI could play in comparison with present-day AI. We give, inter alia, a
classification of Integrated AI, and argue that Integrated AI serves the
purpose of humanising AI in terms of making AI more verifiable, more
explainable, more causally accountable, more ethical, and thus closer to
general intelligence. We especially emphasise the ethical advantage of
Integrated AI. We also briefly touch upon the Turing Test for Ethical
AI, and the pluralistic nature of Turing-type Tests for Integrated AI.
Overall, we believe that the integrated approach to cognition gives the
key to the next generation paradigm for AI and Cognitive Science in
general, and that Categorical Integrated AI or Categorical Integrative
AI Robotics would be arguably the most promising approach to it.

Keywords: Symbolic AI · Statistical AI · Integrated AI · Categorical
AI

1 Introduction: MIT’s AI Lab, Now and Then

Neil Thompson at MIT and his collaborators recently published an intriguing
article entitled “The Computational Limits of Deep Learning” [53], arguing in
the following way:

[P]rogress along current lines is rapidly becoming [...] unsustainable. Thus,
continued progress [...] will require dramatically more computationally-
efficient methods, which will either have to come from changes to deep
learning or from moving to other machine learning methods.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 129–146, 2021.
https://doi.org/10.1007/978-3-030-67220-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_11

130 Y. Maruyama

There are many other problems in statistical machine learning, such as explain-
ability and ethical issues as we shall discuss below. How could we overcome them?
What sort of changes would be necessary for the next generation of Artificial
Intelligence (and Cognitive Science in general)? A possible approach to over-
come the limitations of statistical machine learning would be the integration of
Symbolic and Statistical AI; at least some part of what Statistical AI is bad at is
what Symbolic AI is good at. Deductive reasoning and inductive learning would
be arguably the two fundamental wheels of the human mind (even though there
may possibly be yet another wheel of human cognition).

An earliest idea of Integrated AI comes from Marvin Minsky, the 1969 Turing
Award winner and co-founder of MIT’s AI Lab, who proposes the integration of
Symbolic and Connectionist AI in particular (aka. Logical and Analogical AI, or
Neat and Scruffy AI) as a form of Integrated AI in his 1991 article [48]1:

Our purely numerical connectionist networks are inherently deficient in
abilities to reason well; our purely symbolic logical systems are inherently
deficient in abilities to represent the all-important “heuristic connections”
between things—the uncertain, approximate, and analogical linkages that
we need for making new hypotheses. The versatility that we need can be
found only in larger-scale architectures that can exploit and manage the
advantages of several types of representations at the same time. Then,
each can be used to overcome the deficiencies of the others.

In light of this, the Minsky’s conceptions of Symbolic (Logical) and Connection-
ist (Analogical) AI may be compared with the Reichenbach’s well-known (yet
debated) conceptions of the context of justification (“reason well”) and the con-
text of discovery (“making new hypotheses”). From the philosophy of science
point of view, the cognitive capacities of discovery and justification are arguably
the conditions of possibility of science as a human intellectual enterprise, which
would make it compelling to combine the two paradigms of AI. Yet at the same
time, there is a fundamental tension between the two paradigms, as exemplified
by the Chomsky versus Norvig debate (Peter Norvig is Google’s research direc-
tor; Chomsky is one of the founders of Cognitive Science as well as the father of
modern linguistics), which is arguably in parallel with the Bohr versus Einstein
debate on the nature of quantum reality, as we shall see below.

In the following, we revisit the Chomsky-Norvig (and Bohr-Einstein)
debate(s) to elucidate the discrepancy between the two paradigms, and place
it in a broader context of science and philosophy (Sect. 2). And we discuss how
the two paradigms could be integrated and why that matters at all, especially
from an AI ethics point of view; we also give Turing-type tests for Ethical AI and
Integrated AI (Sect. 3). We finally conclude with outlooks for the future of Arti-
ficial Intelligence and Cognitive Science, arguing that category theory, as giving
transdisciplinary foundations/methodology of science (or interlanguage in the

1 Statistical AI in this paper is meant to include Connectionist AI. Note that the MIT
AI Lab is an origin of Embodied AI, too (see Rodney Brooks’ seminal paper [10]).

Symbolic and Statistical Theories of Cognition 131

trading zone of science in terms of Galison [20]), could be the key to Integrated
Artificial Intelligence and Integrated Cognitive Science (Sect. 4).

2 The Fundamental Tension Between Symbolic
and Statistical Paradigms of Cognition

In everyday life, we use both logical reasoning and statistical inference to make
various judgments; deduction and induction are indispensable part of everyday
life as well as scientific investigation. At the same time, we cannot precisely tell
which part of human cognition is essentially symbolic, and which part of it is
essentially statistical. It could, for example, happen that all functions of the
human mind can be simulated by logical means alone or by statistical means
alone; if this sort of reduction is possible, the apparent dualism of logic and
statistics may collapse. For instance, automated theorem provers or assistants
(such as Coq) have been developed within the symbolic paradigm of AI, but
there is now some evidence that it can be done more efficiently within the sta-
tistical paradigm, especially with the help of deep learning (see, e.g., [4,26,51]).
AI research today seems to make it compelling to reconsider the relationships
between deductive reasoning and inductive learning. In this section, we focus
upon a fundamental tension between the two paradigms, which manifests in the
present landscape of AI as well as the history of science and philosophy as we
shall discuss in the following. Let us begin with the Maxwell’s integrative view
of Nature.

2.1 Maxwell’s Dualistic View of Nature

In a 1850 letter to Lewis Campbell, Maxwell [46] asserts as follows:

[T]he true Logic for this world is the Calculus of Probabilities.

Maxwell is known for his great contributions to electromagnetism and statistical
mechanics. Philosophically, he was seemingly influenced by the British tradition
of empiricism, which puts a strong emphasis on the contingent nature of reality.
His empiricist tendency may be observed in the following passage as well [46]:

[A]s human knowledge comes by the senses in such a way that the existence
of things external is only inferred from the harmonious (not similar) tes-
timony of the different senses, understanding, acting by the laws of right
reason, will assign to different truths (or facts, or testimonies, or what
shall I call them) different degrees of probability.

Yet Maxwell was not a näıve empiricist. His statistical mechanics is in harmony
with the empiricist thought; however, his theory of electromagnetism, which is
arguably his greatest contribution to science, is rather closer to the rationalist
thought in the continental tradition that sticks to the absolute, universal nature
of truth, or the mechanistic view of Nature as shared by Newton and Laplace.
Indeed, Maxwell [46] argues as follows:

132 Y. Maruyama

[O]ur experiments can never give us anything more than statistical infor-
mation [...] But when we pass from the contemplation of our experiments
to that of the molecules themselves, we leave a world of chance and change,
and enter a region where everything is certain and immutable.

The “molecules themselves” in Maxwell’s thought may be compared with the
Kant’s idea of things themselves. So, whilst asserting that the true logic of the
world is the calculus of probabilities, he maintains the universal conception of
truth as being immune to chance and change. Experiments only allow us to
access statistical information, but he thought there is something beyond that,
namely some Platonistic realm of absolute truths. The probabilist view somehow
coexisted with the universalist view in his thought. The Maxwell equations in his
theory of electromagnetism embody the latter, whilst his statistical mechanics
the former.

2.2 The Chomsky Versus Norvig Debate on the Nature of Science
and Cognition

There was already some tension between the probabilist and universalist views
at the time of Maxwell; it culminates in the contemporary debate between Noam
Chomsky, who defends the universalist position, and Peter Norvig, who defends
the probabilist position (see, e.g., [13]). Gold [22] recapitulates their debate in
the following manner:

Recently, Peter Norvig, Google’s Director of Research and co-author of the
most popular artificial intelligence textbook in the world, wrote a webpage
extensively criticizing Noam Chomsky, arguably the most influential lin-
guist in the world. Their disagreement points to a revolution in artificial
intelligence that, like many revolutions, threatens to destroy as much as
it improves. Chomsky, one of the old guard, wishes for an elegant theory
of intelligence and language that looks past human fallibility to try to
see simple structure underneath. Norvig, meanwhile, represents the new
philosophy: truth by statistics, and simplicity be damned.

Norvig basically takes the empiricist position, emphasising the “world of chance
and change” (in terms of Maxwell) and thus the necessity of statistical analysis;
Chomsky, by contrast, takes the rationalist position, emphasising the universal
nature of linguistic structure and of scientific laws in general. To clarify Chom-
sky’s view, Katz [25] interviewed Chomsky at MIT; Chomsky criticises Statistical
AI, or Statistical Cognitive Science in general, in the following manner:

[I]f you get more and more data, and better and better statistics, you can
get a better and better approximation to some immense corpus of text [...]
but you learn nothing about the language.

Chomsky does not deny the success of statistical methods in prediction and
other tasks; rather, he is concerned with the nature of scientific understanding,
his point being akin to the recent issue of explainability in machine learning,

Symbolic and Statistical Theories of Cognition 133

especially deep learning. Chomsky even argues, in the same interview, that sta-
tistical analysis allows us to “eliminate the physics department” in his extreme
Gedanken experiment:

[I]t’s very different from what’s done in the sciences. So for example, take
an extreme case, suppose that somebody says he wants to eliminate the
physics department and do it the right way. The “right” way is to take
endless numbers of videotapes of what’s happening outside the video, and
feed them into the biggest and fastest computer, gigabytes of data, and do
complex statistical analysis [...] you’ll get some kind of prediction about
what’s gonna happen outside the window next. In fact, you get a much
better prediction than the physics department will ever give.

Chomsky is not just concerned with cognition and language, but also with the
nature of science in general. Chomsky argues that there are two conceptions of
science, the universalist one aiming at the scientific understanding of Nature (and
Cognition) and the probabilist one aiming at the engineering approximation of
data; he says as follows in the same interview [25].

These are just two different concepts of science. The second one is what
science has been since Galileo, that’s modern science. The approximating
unanalyzed data kind is sort of a new approach, not totally, there’s things
like it in the past. It’s basically a new approach that has been accelerated
by the existence of massive memories, very rapid processing, which enables
you to do things like this that you couldn’t have done by hand. But I think,
myself, that it is leading subjects like computational cognitive science into
a direction of maybe some practical applicability.

To Chomsky, it is a wrong direction to go, especially from a scientific, rather
than engineering, point of view. Chomsky argues that statistical analysis is just
“butterfly collecting”; Norvig [50] himself succinctly recapitulates Chomsky’s
points as follows:

Statistical language models have had engineering success, but that is irrel-
evant to science [...] Accurately modeling linguistic facts is just butter-
fly collecting; what matters in science (and specifically linguistics) is the
underlying principles [...] Statistical models are incomprehensible; they
provide no insight.

To Chomsky, data science is engineering rather than science; science must confer
understanding. As the above passage clearly shows, Norvig actually understood
Chomsky’s points very well, and still strongly disagreed. Norvig [50] argues for
the necessity of statistical analysis in the science of language on the grounds of
the contingent nature of language per se:

[L]anguages are complex, random, contingent biological processes that are
subject to the whims of evolution and cultural change. What constitutes a
language is not an eternal ideal form, represented by the settings of a small

134 Y. Maruyama

number of parameters, but rather is the contingent outcome of complex
processes. Since they are contingent, it seems they can only be analyzed
with probabilistic models.

The Chomsky versus Norvig debate may be compared with the Bohr versus Ein-
stein debate on the ultimate nature of quantum reality, especially the issue of the
EPR (Einstein-Podolsky-Rosen) paradox and non-local correlations [9] (which
are even debated in the context of cognition; see [1] and references therein).
The Chomskyan linguistics aims at explicating the eternal ideal form of lan-
guage, and Chomsky is very much like Einstein, who believed that probabilities
arise in quantum mechanics because the formulation of quantum mechanics is
still incomplete, i.e., there are some hidden variables (“small number of param-
eters”) to make it a deterministic theory like classical mechanics. The univer-
salist’s strongest possible presupposition is that there are always universal (or
deterministic) principles underlying apparently complex (or probabilistic) phe-
nomena. From the universalist perspective, statistics is more like a compromise
than an ultimate solution to the problem of understanding Nature. On the other
hand, Norvig argues that the irreducible complexity of natural language and its
evolution makes it compelling to use probabilistic models, just as Bohr argued for
the necessity of probabilities in quantum mechanics and so for the completeness
of it. To the probabilist, there is nothing lurking behind statistics; it can simply
happen that certain phenomena in Nature are inherently probabilistic. That is
to say, there is just the surface without any depths underlying it (incidentally,
such an idea has been discussed in twentieth century continental philosophy as
well); certain probabilistic theories are already complete.

It is a common view that Bohr won the debate with Einstein, whose under-
standing of quantum theory was proven to be misconceived by the celebrated Bell
theorem [6], even though there are some non-local deterministic formulations of
quantum theory, such as Bohmian mechanics, to which the assumptions of the
Bell theorem do not apply and which thus partially realise Einstein’s dream [8].
Bell-type theorems in physics are called No-Go theorems because they mathe-
matically refute certain forms of classical realism, which, therefore, is a wrong
direction to go. If there are similar theorems in AI, Norvig could mathematically
refute Chomsky; however, there is no such theorem known at the moment. And
in the case of AI in particular, there is some hope for reconciling the two camps
as we shall discuss in the next section, before which we briefly touch upon the
tension between the two paradigms in the context of natural language semantics
in particular.

2.3 A Manifestation of the Fundamental Tension in Natural
Language Semantics

The success of Natural Language Processing in the statistical paradigm is mostly
due to the so-called Vector Space Model (VSM) of Meaning. Turney and Pantel
[54] indeed argue as follows:

Symbolic and Statistical Theories of Cognition 135

The success of the VSM for information retrieval has inspired researchers to
extend the VSM to other semantic tasks in natural language processing,
with impressive results. For instance, Rapp (2003) used a vector-based
representation of word meaning to achieve a score of 92.5% on multiple-
choice synonym questions from the Test of English as a Foreign Language
(TOEFL), whereas the average human score was 64.5%.

The Vector Space Model of Meaning is statistical semantics of natural language,
and based upon what is called the Distributional Hypothesis [54]: “words in
similar contexts have similar meanings.” This is some sort of semantic contex-
tualism, and semantic contextualism is a form of holism about meaning, since
the meaning of a word is determined with reference to a larger whole, namely
contexts, without which meaning cannot be determined. In the Vector Space
Model of Meaning, for instance, meaning vectors are derived on the basis of a
large amount of linguistic contexts, without which meaning vectors cannot be
determined.

In contrast to this statistical semantics, which builds upon contextualism,
there is another paradigm of natural language semantics, namely symbolic
semantics, which builds upon compositionalism, the view that the meaning of a
whole is determined with reference to the meaning of its parts. In contextual-
ism, the meaning of a part is only determined with reference to a larger whole,
and thus compositionalism is in sharp contrast with contextualism. The tension
between Chomsky and Norvig in the narrow context of linguistic analysis may
be understood as rooted in this conflict between compositional and contextual
semantics. The compositionality camp includes Montague as well; he expresses
an opinion sympathetic with Chomsky as follows [49]:

There is in my opinion no important theoretical difference between nat-
ural languages and the artificial languages of logicians; indeed, I consider
it possible to comprehend the syntax and semantics of both kinds of lan-
guages within a single natural and mathematically precise theory. On this
point I differ from a number of philosophers, but agree, I believe, with
Chomsky and his associates.

Both the principle of compositionality and the principle of contextuality have
their origins in Frege’s philosophy of language. It is puzzling why Frege endorsed
both of them, especially in light of the above view that there is a fundamental
conflict between compositionality and contextuality. Michael Dummett, a well
known commentator on Frege, was clearly aware of this, pointing out a “difficulty
which faces most readers of Frege” [18]:

It was meant to epitomize the way I hoped to reconcile that principle,
taken as one relating to sense, with the thesis that the sense of a sentence
is built up out of the senses of the words. This is a difficulty which faces
most readers of Frege [...] The thesis that a thought is compounded out of
parts comes into apparent conflict [...] with the context principle [...].

According to more recent commentators on Frege, it is actually not so obvious
whether Frege really endorsed any of them. Pelletier [52], for example, concludes

136 Y. Maruyama

that Frege endorsed neither of them; Janssen [24] argues that Frege only endorsed
the principle of contextuality.

Compositionality is essential in the so-called productivity of language; thanks
to the compositional character of language, we can compose and comprehend
entirely new sentences. Frege [19] was already aware of this connection between
compositionality and productivity:

It is astonishing what language can do. With a few syllables it can express
an incalculable number of thoughts, so that even a thought grasped by a
terrestrial being for the very first time can be put into a form of words
which will be understood by someone to whom the thought is entirely new.

Compositionality allows us to understand some other striking characteristics of
natural language. Davidson [15], for example, points out that compositionality
is essential in the learnability of language:

It is conceded by most philosophers of language, and recently by some
linguists, that a satisfactory theory of meaning must give an account of
how the meanings of sentences depend on the meanings of words. Unless
such an account could be supplied for a particular language, it is argued,
there would be no explaining the fact that we can learn the language: no
explaining the fact that, on mastering a finite vocabulary and a finitely
stated set of rules, we are prepared to produce and to understand any of
a potential infinitude of sentences. I do not dispute these vague claims, in
which I sense more than a kernel of truth.

Yet these do not necessarily imply that the principle of contextuality or statisti-
cal semantics based on it cannot account for those properties of natural language
(see, e.g., [38], which also explains the tension between compositionality and con-
textuality in more detail; for contextuality across physics and cognitive science,
see [39,41]).

Statistical semantics in Natural Language Processing has been highly suc-
cessful in various domains of application and actually implemented in a variety of
real-world systems. It is however known to suffer from lack of structure; it mostly
ignores the inherent structure of language such as grammar. Turney-Pantel [54],
for example, argue in the following manner:

Most of the criticism stems from the fact that term-document and word-
context matrices typically ignore word order. In LSA, for instance, a phrase
is commonly represented by the sum of the vectors for the individual words
in the phrase; hence the phrases house boat and boat house will be repre-
sented by the same vector, although they have different meanings.

The same criticism applies to what is generally called the bag-of-words model
in information retrieval [54]. It is truly amazing that statistical semantics has
been so successful whilst ignoring the structure of language mostly. The intrinsic
structure of language is what Chomsky has investigated for a long time. So Gold
[22] says that modern AI technologies would make “Chomskyan linguists cry”:

Symbolic and Statistical Theories of Cognition 137

Norvig is now arguing for an extreme pendulum swing in the other direc-
tion, one which is in some ways simpler, and in others, ridiculously more
complex. Current speech recognition, machine translation, and other mod-
ern AI technologies typically use a model of language that would make
Chomskyan linguists cry: for any sequence of words, there is some prob-
ability that it will occur in the English language, which we can measure
by counting how often its parts appear on the internet. Forget nouns and
verbs, rules of conjugation, and so on: deep parsing and logic are the failed
techs of yesteryear.

Yet at the same time, substantial improvement in computational efficiency and
other respects has been achieved recently with the integration of symbolic and
statistical methods in Natural Language Processing (see, e.g., [23]). And there
is now some movement to integrate the two paradigms in linguistic and other
contexts (for integrations in Natural Language Processing, see, e.g., [5,14,23]).
The integration of Symbolic and Statistical AI works beyond Natural Language
Processing, allowing for different advantages, and this is what we are going to
address in the following section (for more detailed discussions on linguistic issues
concerning Symbolic and Statistical AI, we refer to [38]).

3 Towards Integrated Artificial Intelligence
and Integrated Cognitive Science

Symbolic AI is good at principled judgements, such as logical reasoning and rule-
based diagnoses, whereas Statistical AI is good at intuitive judgements, such as
pattern recognition and object classification. The former would amount to what
is called the faculty of reason and understanding, and the latter to the faculty of
sensibility in terms of the Kantian epistemology or philosophy of mind. McLear
[47] explains these fundamental faculties of human cognition in the following
manner:

Kant distinguishes the three fundamental mental faculties from one
another in two ways. First, he construes sensibility as the specific manner
in which human beings, as well as other animals, are receptive. This is in
contrast with the faculties of understanding and reason, which are forms
of human, or all rational beings, spontaneity.

So, from this Kantian point of view, animal cognition, as well as human cogni-
tion, is equipped with the faculty of sensibility to recognise the world, and yet
the faculty of reason and understanding is a striking characteristic of human
cognition only. If this view is correct, Statistical AI may not be sufficient for
realising human-level (or super-human) machine intelligence. The Kantian phi-
losophy of mind suggests that both Symbolic and Statistical AI are indispensable
for human-level artificial intelligence. If so, it would be essential for the next gen-
eration of AI to overcome the symbolic-statistical divide and integrate the two
paradigms of cognition.

138 Y. Maruyama

3.1 The Integrated Paradigm: A Classification of Integrated AI

Let us discuss Integrated AI in more detail in the following. We give a classi-
fication of three levels of Integrated AI, and propose Turing-type tests for it.
In addition we argue, inter alia, that Integrated AI is a promising approach to
Ethical AI or Just AI.

Let us begin with some history of AI. Broadly speaking, historical develop-
ments of Artificial Intelligence may be summarised as follows [12]:

– First-generation AI: Search-based Primitive AI.
– Second-generation AI: Deductive Rule-based Symbolic AI (aka. GOFAI, i.e.,

Good Old-Fashioned Artificial Intelligence).
– Examples of Symbolic AI: expert systems based on production rules; auto-

mated reasoning and planning; theorem provers and verification; and so
fourth.

– Third-generation AI (present-day AI): Inductive Learning-based Statistical
AI (with successful applications in industry today).

– Examples of Statistical AI: neural networks and deep learning; support
vector machines and kernel methods; Bayesian networks and their variants
such as Markov networks; and so fourth.

The next generation AI, then, might be:

– Fourth-generation AI (in the coming future): Towards Integrated AI, namely
the integration of Symbolic and Statistical AI.

[12] presents a similar perspective on future developments of AI.
In order to explicate different ways to conceive Integrated AI, let us now give

a conceptual classification of Integrated AI in terms of three levels of integration
(i.e., task-oriented integration, modular mechanism integration, and seamless
mechanism integration) in the following manner:

1. Task-oriented integration: integration at the level of each concrete problem
solving, namely integration made for (or dependent upon) a given particular
task, which is thus applicable to the specific type of problems only.

– Examples of task-oriented integration: Statistical Theorem Proving,
which generates candidate proofs via statistical methods, and then ver-
ify their correctness via symbolic methods [4,26,51]; Safe Learning, which
combines deductive reachability analysis with statistical machine learning
in order to determine safe regions for safety critical systems to operate in
[2,55]; Neural Planning (i.e., classical planning with deep learning) [3].

2. Modular mechanism integration: integration at the level of modular mecha-
nisms, namely integration with symbolic and statistical components modu-
larly separated to each other.

– Examples of modular mechanism integration: the compositional distri-
butional model of natural language processing, which derived word vec-
tors via statistical methods based upon what is called the distributional
hypothesis (“words in similar contexts have similar meanings”), and com-
pose sentence vectors from word vectors via symbolic methods based upon
the logical theory of formal grammar such as Lambek’s pregroups [14,23].

Symbolic and Statistical Theories of Cognition 139

3. Seamless mechanism integration: integration at the level of integrated mech-
anism, namely integration as a single mechanism unifying symbolic and sta-
tistical approaches to cognition.

– Examples of seamless mechanism integration: Markov logic network,
which is a general framework to combine first-order logic and Markov
networks, “attaching weights to first-order formulas and viewing them as
templates for features of Markov networks” [16] (see also [17]); neural-
symbolic computing [7,21], which is one of the oldest approaches to the
integrated paradigm of Artificial Intelligence, and aims to integrate sta-
tistical connectionism and symbolic representationism within a general
framework for learning and reasoning.

Task-independent methods are desirable in order to develop Integrated AI for dif-
ferent purposes in a systematic manner. Task-oriented integrations only work for
specific tasks, but both modular and seamless mechanism integrations can work
for more general purposes, just as the compositional distributional model of nat-
ural language processing mentioned above works for a broad variety of linguistic
tasks. Note that there is no implication like seamless integrations are generally
better than modular integrations. Modular integrations could be more useful
than seamless ones, for example, on the ground that results in each paradigm
can be transferred and applied directly. Note also that machine learning frame-
works are usually task-independent, even though each problem solving algorithm
is made in a task-dependent manner; this means that the mathematical essence
of learning is independent of the nature of each concrete task, and that is why
machine learning is a theory of learning.

3.2 Five Features of Integrated AI: Making AI More Verifiable,
Explainable, Accountable, Ethical, and Thus More Human

Integrated AI is not just for improvement of computational performance; it is
expected to resolve difficulties in Statistical AI via the methods of Symbolic AI.
Desirable characteristics of Integrated AI would be as follows (cf. [42]):

1. Verifiability: Integrated AI should allow us to verify the results of its problem
solving such as prediction and classification (which Statistical AI is good at,
whereas Symbolic AI is good at verification).

2. Explainability: Integrated AI should allow us to explain the results of its
problem solving, e.g., the reason why they have obtained rather than others;
explainability is seemingly one of the strongest concerns in recent AI research.

3. Causality: Integrated AI should allow us to account for causal relationships
as well as correlational ones; this is particularly important in data science,
which must be able to account for causal laws if it aims to qualify as proper
science on its own.

4. Unbiasedness: Integrated AI should allow us to make unbiased judgements
or to correct their biases learned from biased real-world data; this ‘debiasing’
function shall be discussed below in more detail.

140 Y. Maruyama

5. Generality: Integrated AI would allow for AGI, namely Artificial General
Intelligence; this may be too strong a requirement, yet developing general
intelligence would be one of the ultimate purposes of AI research.

Caliskan et al. show in their recent Science article [11] that:

Semantics derived automatically from language corpora contain human-
like biases.

Machine learning, or data-driven science enabled with it, is descriptive in the
sense that it basically learns anything in data, regardless of whether it is good
or bad. It is like a very obedient child, who may mimic some bad behaviour of
parents or teachers without considering whether it is good or bad. By contrast,
Integrated AI can be normative as well as descriptive; it can, for example, be
equipped with top-down rules or norms to prevent bias learning and to make AI
more ethical. This may count as a striking feature of Integrated AI, especially
from the perspective of AI ethics.

There might be no means for purely statistical AI to prevent itself from
learning biases from biased data; the better it approximates the given biased
data, the better it learns those biases contained in it. This ironically suggests
that those AI systems that are inferior in learning performance can actually
be superior, in terms of unbiasedness, to those that are superior in learning
performance (something analogous could happen in the human society as well).
Put another way, there are things one should not learn from experience (i.e.,
empirical data) as well as things one should learn from it. And rational agents
must be able to distinguish between them on the ground of some norms or rules,
which can be incorporated via Symbolic AI. Integrated AI would thus be a right
framework for Unbiased Ethical AI (aka. Just AI; see also [42]); this would be
crucial in developments of AI for the Social Good, which has been sought after
in the present, more and more AI-laden society.

Social implementation of AI systems would require them to be ethical; ethics,
or ethical behaviour, may also be considered to be constituents of intelligence.
But how could we judge whether AI is morally good or not? There could be
something like the Turing Test to do that. For example, the Ethical Turing Test
could be formulated in the following manner:

– The Ethical Turing Test (aka. Misleading Turing Test): we try to deceive AI
with biased data or reasoning; still AI must be able to make correct judgments
whilst being not deceived by us humans.

AI must be able to follow (or simulate) correct behaviour in the original Turing
Test; in the above Ethical Turing Test, AI must be able to correct its behaviour,
and so it may also be called the Dual Turing Test. The Dual Turing Test can be
more difficult to pass than the original Turing Test, because correcting wrong
answers is often more complex than giving correct answers (the author is familiar
with this phenomenon in his experience of teaching logic to hundreds of students
and correcting their mistakes every week during the term). The Ethical/Dual
Turing Test requires AI to be resilient with respect to different biases, which

Symbolic and Statistical Theories of Cognition 141

do exist in real-world situations. Although Statistical AI has been shown to
learn different biases from real-world data in an inductive, bottom-up manner,
nevertheless, Integrated AI could pass the Ethical Turing Test with the help of
Symbolic AI, which gives top-down rules and principles to make it immune to
potential biases.

To test Integrated AI, we could rely upon other types of Turing-type tests
as well, such as the Verification Turing Test, in which AI must be able to give
both answers to questions and the verification of them. In general, the plurality
of Turing-type tests would be essential; there may be no single experimental
scheme to test different aspects of intelligence at once. If so, multiple tests are
required to test different facets of intelligence. Human intelligence is so versatile
that no single experiment allows for an adequate assessment of different aspects
of it. So the plurality of Turing-type tests would be essential for conceiving the
Turing Test for Integrated AI (for related Turing-type Tests, see also [42]).

There could be Chinese-Room-style counterarguments against these Turing-
type Tests. Highly non-ethical AI could pass the Ethical Turing Test above just
by simulating ethical behaviour in a superficial manner. Superintelligent AI, e.g.,
could not be deceived by us, bur rather could deceive us in many ways, whilst
hiding its unethical nature from us. This means it could easily pass the Ethical
Turing Test. Yet the same thing may happen in the human case as well. Just
as there is no effective method to test the ethical nature of human beings, there
would be no ultimate Turing Test for Ethical AI, neither (for related issues, see
also [32,42]).

4 Concluding Remarks: The Integrated Paradigm
as a Transdisciplinary Trading Zone

We have discussed the fundamental tension between the symbolic and statistical
paradigms of AI, and the possibility of integrating and unifying them, together
with various advantages to do so, including the ethical one in particular. What is
particularly interesting in the present landscape of AI is, in our opinion, that the
debate between the symbolic and statistical camps look very much like the classic
debate between the universalist and the probabilist views of Nature (including
Cognition and Intelligence as part of it), and that the debate is directly relevant
to urgent issues in AI, such as verifiability, explainability, causal accountability,
and algorithmic biases, as we have discussed above.

AI and Machine Learning, therefore, would allow us not only to revive the
classic debate between the universalist and the probabilist in the past, but also
to place it in different novel contexts relevant to the present society. The central
tenet of the present paper is that Integrated AI, if it could be developed in the
right way, would serve the purpose of solving those urgent issues in AI. Yet at
the same time, we would contend that philosophical debates in the past (and
present) could be useful inputs to the design and development of Integrated AI,
since they are closely linked with the urgent issues in AI as we have discussed
above. In light of these, Integrated AI could be a transdisciplinary platform (or

142 Y. Maruyama

trading zone in Peter Galison’s terms [20]) where different sorts of intellectual
cultures are allowed to meet each other, as well as a theoretical foundation for
the next generation AI technology (note that Galison also contrasts Image and
Logic, which Statistical and Symbolic AI are arguably about).

We have mainly focused upon AI rather than Cognitive Science in general;
even so, our arguments would mostly apply to Cognitive Science as well as AI.
There are, as a matter of course, symbolic and statistical paradigms in Cognitive
Science just as well, and integrating them would be beneficial in many ways.
From the AI point of view, the principal merits of the integrated paradigm would
be developments of solutions to problems such as explainability and algorithmic
biases. Yet from the Cognitive Science point of view, the principal advantages
of the integrated paradigm would rather be the integrated understanding of
fundamental faculties of the human mind, especially the faculty of reason and
understanding on one hand, and the faculty of sensibility on the other. Integrated
Cognitive Science could, hopefully, lead to something like a cognitive theory of
everything (or a theory of every-cognition). A physical theory of everything is
concerned with a unified understanding of general relativity and quantum theory,
and a cognitive theory of everything with a unified understanding of the faculty
of reason and understanding and the faculty of sensibility.

It is a highly non-trivial issue how to actually develop Integrated AI and
Integrated Cognitive Science or what kind of mathematical framework allows us
to lay down a theoretical foundation for the integrated paradigm of AI and Cog-
nition in the first place. Let us briefly remark upon our speculative vision for the
integrated paradigm. We have touched upon different approaches to Integrated
AI throughout the paper, some of which can be expressed in terms of category
theory, an algebraic theory of structural networks. We generally believe that cat-
egory theory could give a principal methodology to integrate the two paradigms,
as it has indeed played such unificatory rôles in the sciences, and succeeded in
integrating different paradigms even across different kinds of sciences, inter alia,
via the transdisciplinary theory of categorical dualities between the ontic and
the epistemic in various scientific disciplines (see, e.g., [27–31,34,36,37,40,43–
45] and references therein). Let us just touch upon a single successful case of the
transdisciplinary application of category theory: substructural logic and quan-
tum mechanics have been unified by means of the abstract theory of categorical
quantum theory (see [14,33,35] and references therein), and the logical meth-
ods of automated reasoning have been applied to quantum physics, and quan-
tum computation in particular, via the categorical connection between substruc-
tural logic and quantum physics; the first system developed at the University
of Oxford is called Quantomatic, and there are more advanced versions avail-
able online for free, including PyZX for the so-called ZX calculus in quantum
computation. Those automated reasoning systems for quantum mechanics and
computation may be regarded as artificial intelligence for quantum mechanics
and computation; it is supported by graphical calculus in terms of category the-
ory, the completeness of which can be shown in a mathematically rigorous way
(basically, any equation valid in Hilbert spaces can be logically derived in the

Symbolic and Statistical Theories of Cognition 143

graphical calculus of categorical quantum mechanics, and vice versa; see [14]
and references therein). In light of these, many approaches to Integrated AI and
Cognition could even be understood and unified under one umbrella, namely
Categorical Artificial Intelligence and Categorical Cognitive Science, hopefully.
Integrated AI could even be integrated into Robotics, thus leading to Integrative
AI Robotics, in particular Categorical AI Robotics or Categorical Integrative AI
Robotics. In order to address the symbol grounding problem, it is essential to
consider enacted interactions between symbolic cognition and physical environ-
ments. Categorical Integrative AI Robotics might even help us to resolve the
symbol grounding problem, and account for the nature of symbol emergence.

Acknowledgements. The author is grateful to the four referees for their numerous
helpful comments and suggestions for improvement. The author hereby acknowledges
that this work was supported by JST PRESTO (JPMJPR17G9).

References

1. Aerts, D., et al.: Quantum entanglement in physical and cognitive systems: a con-
ceptual analysis and a general representation. Eur. Phys. J. Plus 134 (2019). Arti-
cle number: 493. https://doi.org/10.1140/epjp/i2019-12987-0

2. Akametalu, A.K., Kaynama, S., Fisac, J.F., Zeilinger, M.N., Gillula, J.H., Tomlin,
C.J.: Reachability-based safe learning with Gaussian processes. In: Proceedings of
CDC, pp. 1424–1431 (2014)

3. Asai, M.: Classical planning in deep latent space: bridging the subsymbolic-
symbolic boundary. In: Proceedings of AAAI, pp. 6094–6101 (2018)

4. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an environ-
ment for machine learning of higher order logic theorem proving. In: Proceedings
of ICML, pp. 454–463 (2019)

5. Baroni, M., et al.: Frege in space: a program of compositional distributional seman-
tics. Linguist. Issues Lang. Technol. 9, 5–110 (2014)

6. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers
on Quantum Philosophy. Cambridge University Press, Cambridge (2004)

7. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and inter-
pretation (2017). arXiv:1711.03902

8. Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of
Quantum Theory. Routledge Chapman & Hall, Abingdon (1993)

9. Born, M.: The Born Einstein Letters. Walker and Company, New York (1971)
10. Brooks, R.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)
11. Caliskan, A., et al.: Semantics derived automatically from language corpora contain

human-like biases. Science 356, 183–186 (2017)
12. CDRS: Research and Development on the Fourth Generation of AI, Strategic Pro-

posal, CRDS-FY2019-SP-08 (2019)
13. Chomsky, N.: Keynote panel: the golden age - a look at the original roots of artificial

intelligence. In: Cognitive Science, and Neuroscience. Minds, and Machines, MIT
Symposium on Brains (2011)

14. Coecke, B., et al.: Mathematical foundations for a compositional distributional
model of meaning. Linguist. Anal. 36, 345–384 (2010)

15. Davidson, D.: Truth and meaning. Synthese 17, 304–323 (1967)

https://doi.org/10.1140/epjp/i2019-12987-0
http://arxiv.org/abs/1711.03902

144 Y. Maruyama

16. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov
logic. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic
Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 92–117. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8 4

17. Domingos, P., Lowd, D.: Unifying logical and statistical AI with Markov logic.
Commun. ACM 62, 74–83 (2019)

18. Dummett, M.: The Interpretation of Frege’s Philosophy. Duckworth, London
(1981)

19. Frege, G.: Compound thoughts. Mind 72, 1–17 (1963). Originally 1923
20. Galison, P.: Image & Logic: A Material Culture of Microphysics. The University

of Chicago Press, Chicago (1997)
21. Garcez, A., Gori, M., Lamb, L., Serafini, L., Spranger, M., Tran, S.: Neural-

symbolic computing: an effective methodology for principled integration of machine
learning and reasoning. arXiv:1905.06088

22. Gold, K.: Norvig vs. Chomsky and the Fight for the Future of AI. Tor.com, 21
June 2011

23. Grefenstette, E., et al.: Experimental support for a categorical compositional dis-
tributional model of meaning. In: Proceedings of EMNLP 2011, pp. 1394–1404
(2011)

24. Janssen, T.: Frege, contextuality and compositionality. J. Log. Lang. Inform. 10,
87–114 (2001). https://doi.org/10.1023/A:1026542332224

25. Katz, Y.: Noam Chomsky on Where Artificial Intelligence Went Wrong. The
Atlantic, 1 November 2012

26. Lederman, G., Rabe, M.N., Lee, E.A., Seshia, S.A.: Learning heuristics for auto-
mated reasoning through deep reinforcement learning. arXiv:1807.08058

27. Maruyama, Y.: Fundamental results for pointfree convex geometry. Ann. Pure
Appl. Log. 161, 1486–1501 (2010)

28. Maruyama, Y.: Natural duality, modality, and coalgebra. J. Pure Appl. Algebra
216, 565–580 (2012)

29. Maruyama, Y.: From operational chu duality to coalgebraic quantum symmetry. In:
Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 220–235. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40206-7 17

30. Maruyama, Y.: Full lambek hyperdoctrine: categorical semantics for first-order
substructural logics. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC
2013. LNCS, vol. 8071, pp. 211–225. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39992-3 19

31. Maruyama, Y.: Categorical duality theory: with applications to domains, convexity,
and the distribution monad. In: International Proceedings in Informatics, vol. 23,
pp. 500–520. Leibniz (2013)

32. Maruyama, Y.: AI, quantum information, and external semantic realism: searle’s
observer-relativity and Chinese room, revisited. In: Müller, V.C. (ed.) Fundamental
Issues of Artificial Intelligence. SL, vol. 376, pp. 115–126. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-26485-1 8

33. Maruyama, Y.: Prior’s tonk, notions of logic, and levels of inconsistency: vindi-
cating the pluralistic unity of science in the light of categorical logical positivism.
Synthese 193, 3483–3495 (2016). https://doi.org/10.1007/s11229-015-0932-9

34. Maruyama, Y.: Categorical harmony and paradoxes in proof-theoretic semantics.
In: Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics.
TL, vol. 43, pp. 95–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-22686-6 6

https://doi.org/10.1007/978-3-540-78652-8_4
http://arxiv.org/abs/1905.06088
https://doi.org/10.1023/A:1026542332224
http://arxiv.org/abs/1807.08058
https://doi.org/10.1007/978-3-642-40206-7_17
https://doi.org/10.1007/978-3-642-39992-3_19
https://doi.org/10.1007/978-3-642-39992-3_19
https://doi.org/10.1007/978-3-319-26485-1_8
https://doi.org/10.1007/s11229-015-0932-9
https://doi.org/10.1007/978-3-319-22686-6_6
https://doi.org/10.1007/978-3-319-22686-6_6

Symbolic and Statistical Theories of Cognition 145

35. Maruyama, Y.: Meaning and duality: from categorical logic to quantum physics.
D.Phil. thesis, University of Oxford (2017)

36. Maruyama, Y.: The dynamics of duality: a fresh look at the philosophy of duality.
In: RIMS Kokyuroku (Proceedings of RIMS, Kyoto Univesity), vol. 2050, pp. 77–99
(2017)

37. Maruyama, Y.: The frame problem, Gödelian incompleteness, and the Lucas-
Penrose argument: a structural analysis of arguments about limits of AI, and
its physical and metaphysical consequences. In: Müller, V.C. (ed.) PT-AI 2017.
SAPERE, vol. 44, pp. 194–206. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96448-5 19

38. Maruyama, Y.: Compositionality and contextuality: the symbolic and statistical
theories of meaning. In: Bella, G., Bouquet, P. (eds.) CONTEXT 2019. LNCS
(LNAI), vol. 11939, pp. 161–174. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34974-5 14

39. Maruyama, Y.: Contextuality across the sciences: bell-type theorems in physics
and cognitive science. In: Bella, G., Bouquet, P. (eds.) CONTEXT 2019. LNCS
(LNAI), vol. 11939, pp. 147–160. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34974-5 13

40. Maruyama, Y.: Foundations of mathematics: from Hilbert and Wittgenstein to
the categorical unity of science. In: Wuppuluri, S., da Costa, N. (eds.) WITTGEN-
STEINIAN (adj.). TFC, pp. 245–274. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-27569-3 15

41. Maruyama, Y.: Rationality, cognitive bias, and artificial intelligence: a structural
perspective on quantum cognitive science. In: Harris, D., Li, W.-C. (eds.) HCII
2020. LNCS (LNAI), vol. 12187, pp. 172–188. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49183-3 14

42. Maruyama, Y.: The conditions of artificial general intelligence: logic, auton-
omy, resilience, integrity, morality, emotion, embodiment, and embeddedness. In:
Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS
(LNAI), vol. 12177, pp. 242–251. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-52152-3 25

43. Maruyama, Y.: Topological duality via maximal spectrum functor. Commun. Alge-
bra 48, 2616–2623 (2020)

44. Maruyama, Y.: Higher-order categorical substructural logic: expanding the horizon
of tripos theory. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020.
LNCS, vol. 12062, pp. 187–203. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-43520-2 12

45. Maruyama, Y.: Universal stone duality via the concept of topological dualizability
and its applications to many-valued logic. In: Proceedings of FUZZ-IEEE. IEEE
Computer Society (2020)

46. Maxwell, J.C.: The Scientific Letters and Papers of James Clerk Maxwell: 1846–
1862. Cambridge University Press, Cambridge (1990)

47. McLear, C., Kant: philosophy of mind. In: Internet Encyclopedia of Philosophy.
Accessed 2 Feb 2020

48. Minsky, M.L.: Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. AI Mag. 12, 34–51 (1991)

49. Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)
50. Norvig, P.: On Chomsky and the two cultures of statistical learning. Berechen-

barkeit der Welt?, pp. 61–83. Springer, Wiesbaden (2017). https://doi.org/10.
1007/978-3-658-12153-2 3

https://doi.org/10.1007/978-3-319-96448-5_19
https://doi.org/10.1007/978-3-319-96448-5_19
https://doi.org/10.1007/978-3-030-34974-5_14
https://doi.org/10.1007/978-3-030-34974-5_14
https://doi.org/10.1007/978-3-030-34974-5_13
https://doi.org/10.1007/978-3-030-34974-5_13
https://doi.org/10.1007/978-3-030-27569-3_15
https://doi.org/10.1007/978-3-030-27569-3_15
https://doi.org/10.1007/978-3-030-49183-3_14
https://doi.org/10.1007/978-3-030-49183-3_14
https://doi.org/10.1007/978-3-030-52152-3_25
https://doi.org/10.1007/978-3-030-52152-3_25
https://doi.org/10.1007/978-3-030-43520-2_12
https://doi.org/10.1007/978-3-030-43520-2_12
https://doi.org/10.1007/978-3-658-12153-2_3
https://doi.org/10.1007/978-3-658-12153-2_3

146 Y. Maruyama

51. Paliwal, A., Loos, S.M., Rabe, M.N., Bansal, K., Szegedy, C.: Graph representa-
tions for higher-order logic and theorem proving. In: Proceedings of AAAI, pp.
2967–2974 (2020)

52. Pelletier, F.J.: Did Frege believe Frege’s principle? J. Logic Lang. Inform. 10, 87–
114 (2001). https://doi.org/10.1023/A:1026594023292

53. Thompson, N.C., et al.: The computational limits of deep learning (2020).
arXiv:2007.05558

54. Turney, P., Pantel, P.: From frequency to meaning: vector space models of seman-
tics. J. Artif. Intell. Res. 37, 141–188 (2010)

55. Zhou, W., Li, W.: Safety-aware apprenticeship learning. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 662–680. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 38

https://doi.org/10.1023/A:1026594023292
http://arxiv.org/abs/2007.05558
https://doi.org/10.1007/978-3-319-96145-3_38

An Interdisciplinary Model for Graphical
Representation

G. Antonio Pierro1,2(B), Alexandre Bergel3, Roberto Tonelli2,
and Stéphane Ducasse1

1 Université de Lille, Inria, CNRS, Centrale Lille, UMR 9189 – CRIStAL,
Lille, France

giuseppe.pierro@inria.fr
2 Università degli Studi di Cagliari, Cagliari, Italy
3 DCC Universidad de Chile, Santiago, Chile

Abstract. The paper questions whether data-driven and problem-
driven models are sufficient for a software to automatically represent
a meaningful graphical representation of scientific findings. The paper
presents descriptive and prescriptive case studies to understand the bene-
fits and the shortcomings of existing models that aim to provide graphical
representations of data-sets. First, the paper considers data-sets coming
from the field of software metrics and shows that existing models can
provide the expected outcomes for descriptive scientific studies. Second,
the paper presents data-sets coming from the field of human mobility and
sustainable development, and shows that a more comprehensive model
is needed in the case of prescriptive scientific fields requiring interdis-
ciplinary research. Finally, an interdisciplinary problem-driven model is
proposed to guide the software users, and specifically scientists, to pro-
duce meaningful graphical representation of research findings. The pro-
posal is indeed based not only on a data-driven and/or problem-driven
model but also on the different knowledge domains and scientific aims of
the experts, who can provide the information needed for a higher-order
structure of the data, supporting the graphical representation output.

Keywords: Data visualization · Interdisciplinary model · Data-driven
model · Problem-driven model

1 Introduction

Graphical representations of data are fundamental for the understanding of sci-
entific knowledge, as readers often rely on what the experts visually represent
in their publications to understand the underlying data-set and interpret their
potential scientific meaning [1]. Figures and diagrams not only show the relevant
data that support key research findings, but also provide visual information on
the interactions among different operations required in scientific reasoning [2,3].
Being able to adequately and precisely visualize data is also a pillar on which
decisions can be made, as proposed by different dashboards in the market.
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 147–158, 2021.
https://doi.org/10.1007/978-3-030-67220-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_12

148 G. A. Pierro et al.

Data visualization has various purposes, such as to make abstract thinking
on data series or sets more concrete and (mentally) manipulable, to help readers
identify and evaluate some features of the data, to let users see the possible
underlying trends, patterns, processes, mechanisms, etc. of the phenomena con-
sidered and studied [4]. The way data are visualized can therefore have impor-
tant epistemic implications for scientific knowledge, as data visualization is not
an “interpretation-free” practice, i.e. a neutral process of data presentation in
terms of scientific understanding. There are indeed several ways to transform
data into a visual format, each of them entailing different possibilities for data
interpretation.

Nowadays data visualization plays a significant role in the large adoption
of data-driven and machine learning approaches and techniques. In this frame,
the definition of what a visualization is can be object of debate. A visualization
could be defined as a reusable component, which is achieved through a dedicated
software library. For instance, some software for data visualization are MATLAB
and Mathematica. Despite the large amount of tools offered by these software,
surprisingly, it is left to the practitioner to actually manipulate the data to
achieve a ready-to-be-used graphical representation. Previous research proposed
data-driven models that exploit existing software libraries or adopt a framework-
agnostic approach (D. A. Keim, 2002 [5]) based on data types to be visualized.

The paper aims at designing a framework for a software, named Miró, which
instead allows the users to produce meaningful graphical representation in an
automatic way without the need to manually transform the data. First of all,
we aim to verify the benefits and the shortcomings of existing data-driven and
problem-driven models, by presenting some case studies. The case studies focus
on the problem of visually representing specific data-sets collected in different
scientific domains for different (descriptive vs. prescriptive) scientific aims. The
case studies suggest that data-driven models can actually provide a visualiza-
tion that fits the domain knowledge and scientific aims of the experts in the
case of descriptive sciences, but present some limitations in the case of prescrip-
tive sciences. Finally, the paper draws some conclusion from the case studies,
presenting an alternative interdisciplinary perspective for data visualization. A
comprehensive model for graphical representation is then presented, which inte-
grates a data-driven approach with an approach that guides the experts on a
specific domain field to achieve the intended visualization, based on their aims,
knowledge and hypotheses. Miró adopts this interdisciplinary perspective and is
based on a visualization engine developed in Pharo and named Roassal [6].

2 Data-Driven and Problem-Driven Models

In the field of data visualization computing, researchers proposed different
approaches to a comprehensive data-model, i.e. a model able to provide a mean-
ingful graphical representation of a data-set for some scientific aims. Some
authors advocated graphical representation techniques or visualization frame-
works [7] based on data-driven models. The data-driven model approach is based

An Interdisciplinary Model for Graphical Representation 149

on the idea that a comprehensive data-model is based on a prior data classifica-
tion that can guide the automatic creation of a meaningful graphical representa-
tion. In general, the data-driven model describes the data characteristics of the
data-set, such as the size (the number of rows), the data type (string, number,
boolean) and the dimension (the number of the variables to represent), to cate-
gorize the data. Keim [5] proposed a data-driven visualization model based on
the data types to be visualized, the visualization technique and the technique of
visual interaction with data, ranging from standard and projection to distortion
and “link&brush”.

Other authors, especially in the context of big data visualization, proposed
graphical representation techniques based on a problem-driven model [8]. The
problem-driven model provides the researchers with the possibility to perform
specific tasks on specific variables of the data-set, such as visualizing a variable
distribution, performing a linear regression between two variables to see an even-
tual relationship via a scatter plot, comparing their composition via a pie chart,
etc.

On the one hand, adopting a problem-driven model does not necessarily mean
abandoning data-driven models. The problem-driven model may be tightly linked
to the data-driven model, because the data-driven model imposes constraints on
the graphical representation of data which might conditioning how the problem
can be solved. For instance, in the case of time series, there are graphs that are
less appropriate than others or that are simply wrong depending on the data
classification: the time data-type is indeed a constraint given or inferred from
the data-driven model. On the other hand, a graphical representation that is
guided only by a data-driven model would not allow the users to further act on
data to have their final intended graphical representation. In the software where
a problem-driven model is also envisaged, the user can interfere with the final
graphical representation of the data. The user can indeed act on and guide the
graphical representation to be produced.

The main disadvantage of the problem-driven model is that it might be neg-
atively influenced by the users’ previous hypotheses or scientific aims. On the
contrary, a data-driven model is neutral under this respect: of course it is based
on a prior classification, but the users might not know it. Without the users’
interference, the final graphical output of a data-driven model might indeed have
the advantage of questioning the researchers’ prior goals and solicit a belief revi-
sion. Especially when a graphical output is unexpected and not corresponding
to previous scientific goals, it might bring about further research or action.

Both the models assume that the data-set contains the information useful to
produce a meaningful graphic representation. This may not always be the case.
Scientific studies based on data-sets make use of graphical representations to bet-
ter interpret their results. Among these studies, it is possible to find descriptive
as well as prescriptive studies. The former aim to describe phenomena as they
are, observing, recording, classifying, and comparing them [9]. The latter aim to
provide the conditions for how phenomena should be, thus supporting inferences
for data interpretation and decision and/or action to perform on data. Of course,

150 G. A. Pierro et al.

a scientific study could be both descriptive and prescriptive, also depending on
the scientific goals. The development of new decision-aiding technology should
be tailored for both [10], also in the case of graphical representation [11]. The
paper is therefore driven by the question on how a model should be to provide
a meaningful graphical representation of a data-set to support the inferences
and/or the decision a researcher wants to draw, in both the case of descriptive
and prescriptive scientific studies.

In the paper we propose a general distinction between a model for descriptive
studies and a model for prescriptive studies. Within these two models, it is
possible to specify sub-models, specific for scientific domain and particular data
types involved in the study [12]. Both the models can be used whenever a study
has both descriptive and prescriptive scientific aims, as it is often the case.

3 Research Questions and Hypotheses

The paper aims to discuss the strengths and limitations of existing models for
data visualization, by considering and discussing some case studies coming from
publications of different scientific domains and having different scientific aims.

The research addresses the following questions: Q1) Are data-driven mod-
els sufficient for a software to help the researchers to automatically create the
intended visual form for a data-set? Q2) In the case the data-driven models are
not sufficient, what could be the best way to overcome their limitations? Q3)
Can the existing libraries or programs fit a data-driven model perspective and
at the same time overcome their shortcomings?

To answer the research questions, we advanced the following hypotheses:
H1) The data-driven models might support the creation of meaningful graphi-
cal representation only for some specific scientific aims, such as the researchers’
aims to provide a descriptive data analysis. H2) For scientific aims going beyond
descriptive analysis, the existing data-driven models might not be sufficient. The
data-driven models might need to be integrated into a more comprehensive and
interdisciplinary data-model to overcome their eventual limitations. H3) Existing
software libraries are data-driven and might not be sufficient to help researchers
to find the intended visual form for prescriptive scientific aims. They might need
further implementation to allow the users to perform different manipulation on
data, such as transformation, accommodation and integration with complemen-
tary data, to achieve the intended graphical output.

Several different real-world scenarios and case studies support the hypotheses
mentioned above [12,13], a couple of which are discussed in the following Sect. 4.

4 Case Studies Evaluation

We analyzed data-sets which are representative of two different scientific
approaches: 1) descriptive and 2) prescriptive studies. In particular we provide
a detailed analysis of some case studies, coming from 1) the domain of software

An Interdisciplinary Model for Graphical Representation 151

metrics, in the wider field of AI, and 2) the field of human mobility and sus-
tainable development. The analysis can be extended to further case studies in
different scientific domains.

4.1 Descriptive Case Studies

As to descriptive scientific studies, we considered first of all the case of a study on
the performance evaluation of different frameworks in AI [14]. The case study
proposes a set of meaningful visual representations of a benchmark data-set
for the performance evaluation of different Deep Learning (DL) models and
frameworks. The Authors calculated the accuracy and the throughput of five
classification problems for the DL models and frameworks. The output data-set
was made of a series of two categorical data (the name of the framework and the
DL model) and two physical data.

We selected this study for three reasons: 1) The work aims to provide a sig-
nificant graphical representation of the performance metrics of different frame-
works; 2) The work also aims to extend the graphical representation to other
frameworks, to be applied to other works and thus be generalized. 3) The study’s
data-set presents a number of variables and categories, which are not trivial to
represent as a whole to obtain a meaningful graphical representation [15].

When analyzing the study case, we found that there is a data-driven model,
specifically Keim’s data-model, that provides us with a significant representa-
tion of the data-set, without any accommodation and/or transformation of the
data and, more importantly, without any addition of further information by the
user. Indeed, by applying Keim’s data-model, the data-set is well within multi-
dimensional category and so the meaningful graphical representation technique
should be a “heat-map graph”, where the colour is represented by the categorical
data and the two physical data (accuracy and throughput) are represented in a
2D coordinate system. Therefore, as to what concerns Q1, “Do data-driven mod-
els support the creation of meaningful graphical representation”, the answer is
positive. As the Keim’s data-model is sufficient to have a proper graphical repre-
sentation, we do not need to cope with Q2 on how to improve it for this specific
case study. As to what concern Q3, the existing libraries for producing data
visualizations alone cannot give that expected output, even though based on a
data-driven model. However, throughout a data-driven model such as the Keim’s
model and some accommodation of the data, the existing libraries could provide
the expected automatic visual representation, starting from the raw data-set.

Other descriptive case studies concern, for instance, static programming anal-
ysis and focus on the correlation between numerical variables, such as the number
of lines of code, cohesion, coupling or cyclomatic complexity [16] and categorical
variables, such as the name of the package included in the analyzed software. This
type of studies’ authors often choose to represent their data-sets via a bar graph
where the bar length represents the numerical value and the categorical variable
is represented by the different color of the bar or by a label. Also in these cases,
the graphical output can thus be provided by a data-driven model such as Keim’s
model. The analysis can be extended to other descriptive case studies in different

152 G. A. Pierro et al.

disciplines (e.g. biology [17], and sociology [18]), where Keim’s data-model is suf-
ficient to provide the categorization for descriptive scientific aims.

4.2 Prescriptive Case Studies

In the case of prescriptive scientific studies we first considered an interdisci-
plinary study on human mobility [19]. The Authors collected the data using
smartphones and smartwatches worn by several participants over 2 weeks.
Through these devices, they collected three kinds of data: 1) motion sensor data,
2) physiological data, 3) environmental data. For the purposes of this case study,
we are interested in the second data-set collecting information about electrocar-
diographic (ECG) data, such as heart beat and blood pressure. The data-set has
the following characteristics: 1) data are multidimensional, as each row of the
data set contains both spatial coordinates (longitude and latitude) and physio-
logical data (heart rate, in beats per minute), provided by the optical heart rate
sensor of the smartwatch; 2) the row data series consists of over 1 millions of
data.

One of the purposes of the research paper was to use physiological data to
infer the user’s stress and emotion level to identify places within a University
campus area that are perceived as dangerous by the majority of participants.
We selected this research for the following reasons:

– The research covers different domains: mobile computing, sensing systems,
human mobility profiling and cardiology.

– As in the previous case study, the data-set presents a number of variables and
categories, which are not trivial to represent in an overall meaningful graphic
representation.

If we apply the Keim’s model to the data-set, the graphic representation out-
put is a “heat-map chart”, where the position is represented in a 2D-coordinate
system and the heart rate beat is represented by color hue. This type of repre-
sentation may not be enough meaningful for the aims of the study, when based
only on the data-set collected by the devices. Indeed, the data-set is not per se
sufficient to have a meaningful representation: the danger zones’ classification
needs other, additional data, such as the normal resting heart rate range and
the dangerous heart rate range, to be properly represented.

Fig. 1. Places that are perceived as dan-
gerous by the majority of users through the
use of colors with different shades.

Figure 1 shows the graphical rep-
resentation produced considering the
additional data, the normal and dan-
gerous heart rate ranges. These addi-
tional data are used to represent the
different zones on the map with col-
ors having different opacity (color with
opacity 1 for the dangerous zones and
transparent color for the zones consid-
ered safe).

An Interdisciplinary Model for Graphical Representation 153

Therefore, as to what concerns Q1, the answer is that the data-driven model
is not sufficient to give the intended graphic representation. Indeed the authors
considered complementary data that are not merely added to the existing cate-
gories considered by the data-driven model, but rather organize in a higher-order
structure and provide the cues to interpret the data-set to have a meaningful
representation of the zones considered dangerous. The complementary data do
shape the authors’ interpretation of the data-set as they provide some inter-
vals (the heartbeat rates intervals), as conditions to classify dangerous vs. safety
zones. Indeed, the graphical representation Fig. 1 can be prescriptively used by
experts in urban development for strategic planning to improve safety in public
places.

As to Q2, the solution to overcome the limitations of the data-driven model
could be the possibility of inserting further data types into the data-set, relating
the average heartbeat rates stored in the original data-set with the heartbeat
rates intervals considered normal and dangerous. Furthermore, the data must
be re-sampled taking into account the new knowledge, the normal resting heart
rate range, coming from a different domain, the cardiology. However, this solution
requires specific knowledge from the cardiology domain which may be different
from the researchers’ knowledge performing the data analysis.

Finally, regarding Q3, data visualization libraries alone cannot help to obtain
the expected output. Indeed, different tasks should be foreseen to achieve the
intended outcome through a software, including the data visualization libraries:

– the program should make use of a data-driven model, such as the Keim’s
model.

– the program should give the user the possibility to add other data type. In the
prescriptive case study, the data-type are intervals (conditioning the interpre-
tation of the other data), also coming from a different scientific domain, i.e.
cardiology.

– the program should give the researchers the possibility to further categorize
the data-set via the additional knowledge. The program must provide the
data-set with an higher-order structure to achieve the graphic representation
meaningfully corresponding to the authors’ scientific aims.

– Once adopting this workflow, the program might use the data visualization
library to generate the intended graphic representation.

Fig. 2. Areas affected by air pollu-
tion.

Another example of prescriptive studies
concern the correlation between air pollution
and respiratory illnesses [20]. The research
findings come from data belonging to differ-
ent domains such as 1) prescriptive data con-
ditions in health information systems, 2) the
air quality index (AQI) data provided by the
World Health Organization (WHO), and 3)
the descriptive data coming from particular
air pollution electrical sensors. The descrip-
tive data alone, in particular the concentra-

154 G. A. Pierro et al.

tion of microscopic particles with a diameter of 2.5µm or less, are not sufficient
to produce a graphical representation apt to meet the prescriptive aims of the
study (see Fig. 2), i.e the sustainable development program in urban and rural
areas affected by air pollution.

5 An Interdisciplinary Model

In the field of graphical representation, interdisciplinary models have been pro-
posed to cope with the limitations of both previous data-driven and problem-
driven models. For instance, Hall et al. [21] proposed a trans-disciplinary model
which allow the experts in a particular domain to be supported by visualization
experts. Their work is very interesting as the interaction between experts with
skills in different domains could greatly influence the production of meaningful
graphical representations to display cues for scientific findings.

However, the prescriptive case study examined in this paper cannot be solved
through this trans-disciplinary approach. Of course a competence in visualization
is welcome, but cannot per se highlight the conditions of meaningfulness, which
come from another scientific domain in the prescriptive case studies. Therefore
an interdisciplinary model is needed which integrates knowledge and practice
coming from different scientific domains in the process of visualization. Figure 3
proposes the main elements of the interdisciplinary model.

– The source domain/s is/are the domain/s from which the data are collected.
– The complementary domain/s is/are the domain/s from where to collect the

data required to interpret the source domain/s data.
– The blended domain [22] is given by the intersection between the source

domain/s and the complementary domain/s, where some new insight could
emerge.

– The data model is the model driving the software in the process of data
categorization and visualization.

As a solution to the prescriptive case studies examined, we propose an inter-
disciplinary problem-driven approach for the visualization of data coming from
different domains. For the aims of descriptive studies, the source domain and the
data-driven model are usually sufficient to have meaningful graphical represen-
tations. The prescriptive case studies instead show the limits of both data-driven
and problem-driven model, as there are scientific aims for which it is not suffi-
cient having both the data models and the data coming from a scientific domain
to obtain meaningful graphic reports for the research findings.

In prescriptive studies, two further processes - not envisaged in previous data-
driven and problem-driven models - are needed to have meaningful graphical
representations of the source data:

– A selection process: when the data collected by the researchers in the source
domain are not sufficient, other specific data selected from a different scientific
domains might be needed to interpret the source data. These data might
indeed be the condition of meaningfulness for data interpretation, and thus
for the visual output of the software.

An Interdisciplinary Model for Graphical Representation 155

Fig. 3. Interdisciplinary model

– A transformation process: specific tasks might be needed for the re-
interpretation of the data in light of the selected complementary data and
the scientific aims of the study. For instance, the source data might need to
be re-sampled considering the complementary knowledge.

The scientist’s insight needs, therefore, to be entered as complementary data
in any software’s visual framework, which in turn should make it possible to
enter them, interacting with the scientist. In the prescriptive case studies, the
interdisciplinary approach is driven by the interaction among experts in different
domains (mobile computing and cardiology) and guides the production of graph-
ical representations, meaningfully representing the areas perceived as dangerous
(see Fig. 1). The insertion of the relevant complementary data might come not
only from experts of another domain, but also from online interactions among
experts in different domains and/or online web-based crowd-sourcing selected
by the expert users themselves.

This interdisciplinary model might then overcome the limitations of both
the data-driven and the problem-drive models, especially when it automatically
proposes the complementary data based on the scientific aims of the expert
and the relative missing expertise, which could come from an expert in another
domain. This approach is the framework for Miró, a software intended to be
a guide to build meaningful graphical representations for both descriptive and
prescriptive studies, based on a data-set coming from the source domain/s and on
a data model eventually able to provide complementary online data. Differently
from softwares based on previous data-driven and/or problem-driven models,
the Miró’s interdisciplinary model allows the user to insert data or select data
coming from complementary domain/s, and transform the source data-set to
have the intended graphical representation.

In the case study requiring data from both human mobility and cardiology,
when the participants to the experiment are considered as a group, their informa-
tion provides other meaningful cues to identify critical geographical or temporal

156 G. A. Pierro et al.

points. For example, the two figures coming from the prescriptive case studies
represent respectively 1) the places that are implicitly perceived as dangerous
or risky by most users and 2) the most polluted areas of a city. By analyzing
the data-sets and their graphical representations, it emerges that there are data
(fields) that make sense only within one or more interval/s [a, b]. Often, the
interval information is neither provided within the data-set nor within the single
scientific discipline and thus the interval must be set by the scientist and/or by
another expert. This needs to be contemplated by the dashboard developer. For
instance, in study 1), the heart-rate belongs to the health domain and make
the place dangerousness meaningful only if the average value is above a certain
threshold. The threshold needs to be provided by a scientist (also following the
scientific practices of his/her scientific field), it is not provided by the data-set
per sé, especially in interdisciplinary prescriptive studies like 1).

Some data actually come from the data-sets, some other data come from the
scientist’s interpretation of the data in light of the scientific hypotheses in her/his
study. The latter should be provided by the scientist and a dashboard should
make it possible to enter them. Prescriptive scientific studies are more likely
to need interval information as a condition of meaningfulness to make sense of
the data-sets when compared to descriptive scientific studies, which can instead
provide meaningful graphical representations based on traditional models. Of
course, scientific studies can be both descriptive and prescriptive: Miró can pro-
vide a meaningful graphical representation also for these studies as it does not
abandon traditional models, but it instead proposes further functionalities.

6 Conclusion and Future Works

The paper shows how important might be an interdisciplinary data model, espe-
cially in prescriptive studies, to have a software able to provide meaningful
graphical representations of data. In the case of descriptive studies, existing
models - data-driven models and/or problem-driven models - might be sufficient
to produce meaningful graphical representations when providing the data com-
ing from the source domain/s. In the case of prescriptive studies, the existing
models might fail to produce meaningful graphical representations when just the
collected data coming from the source domain/s are provided. The paper pro-
posed an interdisciplinary approach to overcome the limitations of the existing
models via a software-expert interaction. In this framework, the software allows
the users to reinterpret and transform the collected source data in the light of
the scientific knowledge coming from (online) interaction with other experts or
data-sets coming from complementary domain/s. The graphical representation
is made meaningful in the blended domain, thus providing a visual support for
new findings.

An Interdisciplinary Model for Graphical Representation 157

References

1. Mahling, A., Herczeg, J., Herczeg, M., Böcker, H.-D.: Beyond visualization: know-
ing and understanding. In: Gorny, P., Tauber, M.J. (eds.) IPsy 1988. LNCS, vol.
439, pp. 16–26. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52698-
6 2

2. Bechtel, W., Abrahamsen, A.: Explanation: a mechanist alternative. Stud. Hist.
Philos. Biol. Biomed. Sci. 36(2), 421–441 (2005)

3. Eklund, P., Haemmerlé, O. (eds.): Conceptual Structures: Knowledge Visualization
and Reasoning. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
70596-3

4. Zacks, J., Tversky, B.: Bars and lines: a study of graphic communication. Mem.
Cogn. 27(6), 1073–1079 (1999). https://doi.org/10.3758/BF03201236

5. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis.
Comput. Graph. 8(1), 1–8 (2002)

6. Bergel, A., et al.: A domain-specific language for visualizing software dependencies
as a graph. In: 2014 Second IEEE Working Conference on Software Visualization,
pp. 45–49 (2014)

7. Zhu, J., et al.: A data-driven approach to interactive visualization of power systems.
IEEE Trans. Power Syst. 26(4), 2539–2546 (2011)

8. Marai, G.E.: Activity-centered domain characterization for problem-driven scien-
tific visualization. IEEE Trans. Vis. Comput. Graph. 24(1), 913–922 (2018)

9. Grimaldi, D.A., Engel, M.S.: Why descriptive science still matters. Bioscience
57(8), 646–647 (2007)

10. Brown, R.V., Vári, A.: Towards a research agenda for prescriptive decision science:
the normative tempered by the descriptive. Acta Psychol. 1–3, 33–48 (1992)

11. Kim, I., Cho, G., Hwang, J., Li, J., Han, S.: Visualization of neutral model of
ship pipe system using X3D. In: Luo, Y. (ed.) CDVE 2010. LNCS, vol. 6240, pp.
218–228. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16066-
0 33

12. Kerren, A., et al.: Information Visualization: Human-Centered Issues and Per-
spectives. LNCS. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
70956-5

13. Hansen, C.: Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scal-
able Visualization. Springer, London (2014). https://doi.org/10.1007/978-1-4471-
6497-5

14. Velasco-Montero, D., et al.: Optimum selection of DNN model and framework for
edge inference. IEEE Access 6, 51680–51692 (2018)

15. Godfrey, P., et al.: Interactive visualization of large data sets. IEEE Trans. Knowl.
Data Eng. 28(8), 2142–2157 (2016)

16. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

17. Roux, O., Bourdon, J. (eds.): Computational Methods in Systems Biology.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23401-4

18. Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.): Social Computing, Behavioral-
Cultural Modeling and Prediction. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19656-0

19. Faye, S., et al.: Characterizing user mobility using mobile sensing systems. Int. J.
Distrib. Sens. Netw. 13(8) (2017). https://doi.org/10.1177/1550147717726310

https://doi.org/10.1007/3-540-52698-6_2
https://doi.org/10.1007/3-540-52698-6_2
https://doi.org/10.1007/978-3-540-70596-3
https://doi.org/10.1007/978-3-540-70596-3
https://doi.org/10.3758/BF03201236
https://doi.org/10.1007/978-3-642-16066-0_33
https://doi.org/10.1007/978-3-642-16066-0_33
https://doi.org/10.1007/978-3-540-70956-5
https://doi.org/10.1007/978-3-540-70956-5
https://doi.org/10.1007/978-1-4471-6497-5
https://doi.org/10.1007/978-1-4471-6497-5
https://doi.org/10.1007/978-3-319-23401-4
https://doi.org/10.1007/978-3-642-19656-0
https://doi.org/10.1007/978-3-642-19656-0
https://doi.org/10.1177/1550147717726310

158 G. A. Pierro et al.

20. Forkan, A., et al.: AqVision: a tool for air quality data visualisation and pollution-
free route tracking for smart city. In: 2019 23rd InfoVis, pp. 47–51 (2019)

21. Hall, K.W., et al.: Design by immersion: a transdisciplinary approach to problem-
driven visualizations. IEEE Trans. Vis. Comput. Graph. 26(1), 109–118 (2020)

22. Turner, M., Fauconnier, G.: A mechanism of creativity. Poetics Today 20(3), 397–
418 (1999)

Information Retrieval from Semantic
Memory: BRDL-Based Knowledge
Representation and Maude-Based

Computer Emulation

Antonio Cerone(B) and Diana Murzagaliyeva

Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
{antonio.cerone,diana.murzagaliyeva}@nu.edu.kz

Abstract. This paper presents a formal model for the representation
of relational information in semantic memory and for its retrieval as a
reaction to triggering questions which are normally used in experimental
psychology. Information is represented using the Behaviour and Reason-
ing Description Language (BRDL), while the engine for its retrieval is
given by the real-time extension of the Maude rewrite language. Maude’s
capability of specifying complex data structures as many sorted algebras
and the time features of Real-Time Maude are essential in providing a
means for formalising alternative human memory models. Furthermore,
using Maude’s object-oriented modelling style, aspects of such alterna-
tive memory models may be implemented in separate, interchangeable
modules, thus providing a way for their comparison through in silico
experiments. Finally, the results of in silico experiments may be con-
trasted with the data produced through lab experiments and natural
observations to yield, on the one hand, a calibration of the emulation
engine underlying BRDL and, on the other hand, important insights
into alternative theories of cognition.

Keywords: Cognitive science · Behaviour and Reasoning Description
Language (BRDL) · Formal methods · Rewriting logic · Real-Time
Maude

1 Introduction

Since the end of the 1960 s, experimental psychology has shown that semantic
memory has a complex network-like structure and that information is retrieved
by ‘navigating’ such a network while following relationships between the stored
representations of concepts. Collins and Quillian’s experiments [10] have shown
that the time to retrieve information is proportional to how far we need to

Work partly funded by Project SEDS2020004 “Analysis of cognitive properties of inter-
active systems using model checking”, Nazarbayev University, Kazakhstan (Award
number: 240919FD3916).

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 159–175, 2021.
https://doi.org/10.1007/978-3-030-67220-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_13&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-67220-1_13

160 A. Cerone and D. Murzagaliyeva

navigate the network to find the requested information and support a hierarchi-
cally organised memory model. Such a hierarchical model allows us to explain
human understanding of simple propositions about class membership and prop-
erty statement as well as the different retrieval times needed to understand a
given proposition or to answer a given question.

After Qullian’s hierarchical network model [21], further work was carried
out in the 1970 s by replacing the hierarchical structure assumption with a gen-
eral network representing concept relatedness [9], for dealing with more formal
propositions involving universal quantification [11,17] and by focusing on the
role of connotative relationships between conceptual components of propositions
[22]. The last approach resulted in set-theoretical models, such as the one devel-
oped by Smith et al. [23]. Although some researchers argued that these two
different classes of models, network-based and set-theoretical, are formally iso-
morphic [13], experiments conducted in the 1980 s on the semantic distance in
the retrieval of conceptual relationships showed that both classes of models may
be fallacious in some contexts that discriminate between them [3].

The strong emphasis on models for the representation of information in
semantic memories continued throughout the 1990 s and 2000 s with little success
in producing convincing computational models of the retrieval of the represented
relations. Even more recent distributed models such as LISA [12], cognitive archi-
tectures such as ATC-R [1] and connectionist models [15] provide only limited
retrieval mechanism, and mostly as part of inferential or analogical reasoning
engines. Holyoak uses the term ‘retrieval gap’ to denote this limitation of the
current computational models and observes that there is no generally accepted
model yet [14].

The purpose of our work is the development of an approach in which differ-
ent models of semantic memory can be formally described, executed to perform
in silico experiments and formally analysed, with the objective of comparing
different alternative models of semantic memory. In previous work, we have
developed modelling languages for this purpose. The Human Behaviour Descrip-
tion Language (HBDL) [5,6] aims at the modelling of automatic and deliberate
human behaviour while interacting with an environment consisting of heteroge-
nous physical components. The Behaviour and Reasoning Description Language
(BRDL) [7] originates from and extends HBDL with the linguistic constructs to
specify reasoning goals, inference rules and unsolved problems.

Recently we have developed a cognitive engine using the Maude rewrite sys-
tem [16,19] and its real-time extension, Real-Time Maude [18,20], to execute
HBDL models of human behaviour [5,6] and BRDL models that emulate human
reasoning [8]. All these implementations are based on direct access to the infor-
mation in semantic memory. Human behaviour is modelled in terms of basic
activities whose representation is stored in semantic memory and which are
directly triggered by the content of short-term memory (STM) and the percep-
tions available in the environment. Human reasoning is modelled in terms of
inference rules whose representation is stored in semantic memory and which
are directly triggered by the presence of its premises in STM.

Information Retrieval from Semantic Memory 161

A similar approach to ours was developed by Broccia et al. [4], who, driven by
the specific objective of modelling human multitasking, used Real-time Maude
to extend our initial untimed framework [5]. In their work, however, time is
used to model non-cognitive aspects, such as the duration of the task, which is
an interface-dependent outcome of the interaction process, and external aspect,
such as the delay due to the switching from one task to another. In contrast to
Broccia et al. we focus on the human component and model the duration of the
mental process, which is an important aspect of human cognition.

In this paper we consider the subset of BRDL that models, on the one hand,
propositions that express facts of the real world and questions related to such
facts and, on the other hand, the representation of such facts in semantic memory.
We develop a modular implementation of such a subset of BRDL using Real-
Time Maude, thus providing an emulation of the process of information retrieval
from semantic memory to be used to carry out in silico experiments.

The rest of this paper is organised as follows. Section 1.1 provides a brief
highlight of Real-Time Maude and refers to the sections of the paper where the
different aspects of the language are illustrated. Section 2 introduces the BRDL
syntax for facts and questions and shows how they are modelled in Real-Time
Maude. Section 3 presents the implementation of a variant of Quillian’s model,
which is used to illustrate our approach. Section 4 illustrates how to plan and
carry out experiments. Section 5 discusses the timed evolution of the system and
the information retrieval process implementation. Section 6 concludes the paper.

1.1 Real-Time Maude

Real-Time Maude [18,20] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude. Real-Time Maude makes use of

– algebraic equational specifications in a functional programming style to define
data types;

– labeled rewrite rules to define local transitions;
– tick rewrite rules to advance time in the entire system state.

The definition of data types is illustrated in Sect. 2.3. The Full Maude syntax is
illustrated in Sect. 3.3 for classes and in Sect. 4.1 for messages. Labelled rewrite
rules and tick rewrite rules are illustrated in Sect. 4.3 and Sect. 5, respectively.

2 Natural Language Constructs: Facts and Questions

BRDL has a concise, functional-like syntax, which is presented elsewhere [7].
Its conciseness is thought to provide an essential description of the model able
to present the bigger picture of the modelled system, and its functional flavour
makes it suitable for direct mathematical manipulation without computer sup-
port. In this paper we mostly use an alternative, somehow verbose syntax, which
is more similar to the English natural language, although ungrammatical in some
details, and can be directly manipulated by the Maude system.

162 A. Cerone and D. Murzagaliyeva

2.1 Facts

Humans, throughout their lives, acquire knowledge of the facts of the real world
and are able to refer to them and reason about them using declarative proposi-
tions. Since a declarative proposition is just a natural language description of a
fact, we will often use the word ‘fact’ also to denote the declarative proposition
that describes it.

A fact is modelled using the functional-like BRDL syntax [7] as

type(category, attribute)

where category is an object of our knowledge and attribute is an attribute of
type type associated with that category. For example, the fact that ‘a dog is an
animal’ is represented using the functional-like BRDL syntax as

is a(dog, animal).

The equivalent English-like syntax manipulated by the Maude system is

a "dog" is a "animal".

The article ‘a’ is used for any noun, although this is ungrammatical when
the noun starts with a vowel as in the case of ’animal’. Other examples of facts
are:

a "dog" has "four legs"

a "animal" can "breathe"

a "dog" can "move"

a "dog" can "bark"

a "cat" cannot "bark"

a "cat" is not a "dog"

a "bird" has not "four legs".

In such examples "animal", "dog", "cat" and "bird" are categories, "four
legs", "breathe", "move", "bark" are attributes and is a, has, can, is not
a, has not and cannot are types to be applied to attributes. Categories may
also be used as attributes as in a "dog" is a "animal". The application of a
type to an attribute, such as is a "animal" or has "four legs" is called typed
attribute. The reason why categories and attribute are between double apices will
be explained in Sect. 2.3.

Finally, we also consider declarative propositions that describe the absence
of knowledge about facts, such as

I do not know if a "animal" "bark"

We could also model declarative propositions that describe our knowledge
about facts, but this would not be more interesting that the fact itself. Actually,
if I state that a "dog" has "four legs", it is obvious that I know that a
"dog" has "four legs".

Information Retrieval from Semantic Memory 163

2.2 Questions

Questions can be of different kinds. Examples are:

what can a "animal" do?

can a "dog" "breathe" ?

is a "dog" a "animal" ?

has a "cat" "four legs"

We can note here that the first question may be answered by a set of declar-
ative propositions, whereas the other three questions, which all have the same
structure, will be answered by one declarative proposition, either the one stating
the fact, negatively or positively, or the one describing the absence of knowledge
about the fact. For example, can a "dog" "breathe" ? will be answered by
one of the following three declarative propositions: a "dog" can "breathe", a
"dog" cannot "breathe" or I do not know if a "dog" can "breathe".

2.3 Modelling Facts and Question in Real-Time Maude

Maude equational logic supports declaration of sorts, with keyword sort for one
sort, or sorts for many. A sort A may be specified as a subsort of a sort B by
subsort A < B. Operators are introduced with the op (for a single definition)
and ops (for multiple definitions) keywords:

op f : s1 . . . sn -> s.
ops f1 f2: s1 . . . sn -> s.

Operators can have user-defined syntax, with underbars ‘_’ marking the argu-
ment positions and ‘‘’ to denote a space. Some operators can have equational
attributes, such as assoc, comm, and id, stating that the operator is associative,
commutative and has a certain identity element, respectively. Such attributes
are used by the Maude engine to match terms modulo the declared axioms. An
operator can also be declared to be a constructor (ctor) that defines the carrier
of a sort. Axioms are introduced as equations using the eq keyword or, if they
can be applied only under a certain condition, using the ceq keyword, with the
condition introduced by the if keyword. Variables used in equations are place-
holders in a mathematical sense and cannot be assigned values. They must be
declared with the keyword var for one variable, or vars for many. The use of
the owise (or otherwise) equational attributes in an equation denotes that the
axiom is used for all cases that are not matched by the previous equations. All
Maude statements are ended by a dot.

The English-like syntax of facts and questions is defined in the Real-Time
Maude module INFORMATION given in Figure 1. The module imports the pre-
defined modules NAT and STRING, which support the specification of natural
numbers and strings, respectively. Sorts Fact and Question model facts and
questions, respectively, and are subsorts of BasicItem, which is in turn subsort
of Item. Only the BasicItem subsort of Item is relevant for the subset of the

164 A. Cerone and D. Murzagaliyeva

(tomod INFORMATION is

protecting NAT .

protecting STRING .

sorts Fact Question BasicItem Item BasicItemSet ItemSet EmptyItemSet .

subsorts Fact Question < BasicItem < Item .

subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < BasicItemSet < ItemSet .

subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor] .

op _;_ : BasicItemSet BasicItemSet -> BasicItemSet

[ctor assoc comm id: none format (b o n b)] .

op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

op _;_ : EmptyItemSet EmptyItemSet -> EmptyItemSet [ctor ditto] .

sorts Category Attribute TypedAttribute .

subsort String < Category < Attribute .

ops can_ is‘a_ has_ : Attribute -> TypedAttribute [ctor] .

ops cannot_ is‘not‘a_ has‘not_ : Attribute -> TypedAttribute [ctor] .

op what‘can‘a_do? : Category -> Question [ctor] .

ops can‘a__? is‘a_a_? has‘a__? : Category Attribute -> Question [ctor] .

op a__ : Category TypedAttribute -> Fact [ctor] .

ops I‘dont‘know‘if‘a_can_

I‘dont‘know‘if‘a_is_ : Category Attribute -> Fact [ctor] .

op I‘dont‘know‘what‘a_can‘do : Category -> Fact [ctor] .

op _is‘negative‘of_ : TypedAttribute TypedAttribute -> Bool .

var A : Attribute . vars TA1 TA2 : TypedAttribute .

eq (cannot A) is negative of (can A) = true .

eq (is not a A) is negative of (is a A) = true .

eq (has not A) is negative of (has A) = true .

eq TA1 is negative of TA2 = false [owise] .

op isItemIn : Item ItemSet -> Bool .

vars I1 I2 : Item . var IS : ItemSet .

eq isItemIn(I1, I2 ; IS) = if I1 == I2 then true

else isItemIn(I1, IS) fi .

eq isItemIn(I1, none) = false .

endtom)

Fig. 1. Module INFORMATION.

BRDL implementation considered in this paper. Other subsorts, which are not
introduced here, are used in other parts of the BRDL implementation [6,7].

Both BasicItem and Item are organised into sets by defining the two sorts
BasicItemSet and ItemSet using the ; user-defined infix operator, which is
given the appropriate equational attributes for the properties that characterise
sets. The ditto equational attribute is a short form for all attributes of the
previous sort declaration. The format equational attribute is used to format the

Information Retrieval from Semantic Memory 165

output with spaces, colours and newlines in order to make it more readable. By
declaring BasicItem as a subsort of BasicItemSet and Item as a subsort of
ItemSet we implicitly defined singletons of sorts BasicItemSet and ItemSet.
However, the none empty set needs to be explicitly introduced as the only ele-
ment of sort EmptyItemSet, which is subsort of BasicItemSet, in turn subsort
of ItemSet.

The sorts Category and Attribute include Maude-predefined sort String
as a subsort. This allows us to freely use any string, which is enclosed by double
quotes in Maude syntax, as a category or attribute, while leaving open the
option to use other representations in possible extensions of the module. The
elements of sorts TypedAttribute, Fact and Question are instead defined using
constructors, since they have special relationships between each other and need
to be manipulated in special, distinct ways by the Maude engine.

One of these special relationships is the negation: cannot, is not and has
not are the negations of can, is and has, respectively. Negation is expressed
as an infix boolean operator is negative of characterised by three axioms for
the three pairs of attribute types above which return true. The last axiom has
the owise equational attribute, thus it is applied to all other cases and returns
false.

Finally, the boolean operator isItemIn returns true if an element of sort
Item belongs to an element of sort ItemSet.

3 Human Memory Model

BRDL is based on Atkinson and Shiffrin’s multistore model of human memory
[2]. This model is characterised by three stores between which various forms
of information flow: sensory memory, where information perceived through the
senses persists for a very short time, short-term memory (STM), which has a lim-
ited capacity and where the information that is needed for processing activities
is temporarily stored with rapid access and rapid decay, and long-term memory
(LTM), which has a virtually unlimited capacity and where information is organ-
ised in structured ways, with slow access but little or no decay. We consider a
further decomposition of LTM: semantic memory, which refers to our knowledge
of the world and consists of the facts that can be consciously recalled, and pro-
cedural memory, which refers to our skills and consists of rules and procedures
that we unconsciously use to carry out tasks, particularly at the motor level.

This paper focuses on STM and on the part of semantic memory devoted to
the storage of fact representations, that is, the representations of our knowledge
of the facts of the real world in the form of a hierarchical network, often called a
semantic network, as first introduced by Collins and Quillian [10,21]. In Sect. 2.1
we illustrated how to model facts in a natural-language-like fashion.

166 A. Cerone and D. Murzagaliyeva

In Sect. 3.1 we present how to model fact representations and their hier-
archical organisation in semantic memory. The hierarchy among categories is
expressed using the is a type applied to the more general category. For exam-
ple, the type attribute is a "animal" denotes a generalisation to category
"animal". The more specific category inherits all attributes of the more generic
category unless the attribute is redefined at the more specific category level.

3.1 Fact Representation in Semantic Memory

A fact representation in semantic memory is modelled using the functional-like
BRDL [7] syntax as

domain : category | delay−→ | type(attribute)

where delay is the mental processing time needed to retrieve the association
between category category and type attribute type(attribute) within the given
knowledge domain domain. The knowledge domain is used to set a boundary
under which the mental processing is retrieving information from the semantic
memory and manipulating it. The role of such a boundary is clarified in Sect. 5.

As an example, the fact that ‘a dog is an animal’ is represented within the
semantic domain dogs as

dogs : dog | 1−→ | is a(animal)

and this generalisation can be retrieved from semantic memory in 1 time unit.
The more specific category of a generalisation inherits all typed attributes of
the more generic category unless the attribute is redefined at the more specific
category level. Therefore,

animals : animal | 1−→ | can(move)

which is an association of a category with a typed attribute rather than a general-
isation, specifies that an animal can move and, since an animal is a generalisation
of a dog, such a typed attribute is inherited by the category dog.

The equivalent English-like syntax manipulated by the Maude system of the
fact representations above is

"dogs" : "dog" |- 1 ->| is a "animal"

"animals" : "animal" |- 1 ->| can "move"

Such an English-like syntax of fact representations is defined in the Real-
Time Maude module SEMANTIC-MEMORY shown in Figure 2. This module imports
the module INFORMATION and the predefined module NAT-TIME-DOMAIN, which
defines the sort Time to model discrete time. Fact representations are defined
as element of the sort FactRepresentetion. The semantic memory is modelled
by the sort SemanticMemory, which is defined as a set of fact representations.

Information Retrieval from Semantic Memory 167

(tomod SEMANTIC-MEMORY is

protecting NAT-TIME-DOMAIN .

including INFORMATION .

sorts Domain FactRepresentation SemanticMemory .

subsort String < Domain .

subsort FactRepresentation < SemanticMemory .

op emptySemantic : -> SemanticMemory [ctor] .

op _:_|-_->|_ : Domain Category Time TypedAttribute ->

FactRepresentation [ctor format (!r o b o r o b o)] .

op __ : SemanticMemory SemanticMemory -> SemanticMemory

[ctor assoc comm id: emptySemantic format (o n o)] .

op _is‘negated‘in_ : Fact SemanticMemory -> Bool .

var M : Time . var D : Domain .

var C : Category . var A : Attribute .

vars TA1 TA2 : TypedAttribute . var S : SemanticMemory .

eq (a C TA1) is negated in ((D : C |- M ->| TA2) S) =

TA2 is negative of TA1 .

eq (a C TA1) is negated in S = false [owise] .

endtom)

Fig. 2. Module SEMANTIC-MEMORY.

The constructor denotes that sets of fact representations are created by justap-
position, with no written operator. The constructor emptySemantic denotes an
empty semantic memory.

Given the "dogs" : "dog" |- 1 ->| can "bark" fact representation, let
us consider the following downward extension of the animal–dog hierarchy:

"dogs" : "hund" |- 1 ->| is a "dog"

"dogs" : "basenji" |- 1 ->| is a "hund"

"dogs" : "basenji" |- 1 ->| cannot "bark"

The category "basenji" has the cannot "bark" typed attribute, which rede-
fines the can "bark" typed attribute of the "dog" category. In fact, a basenji is
an exceptional dog breed that cannot bark.

In order to make sure that the category "basenji" does not inherit the can
"bark" typed attribute from the more general "dog" category, we introduce the
is negated in user-defined infix operator, which returns true only if the fact
passed as the left argument is negated by some fact representation in the seman-
tic memory passed as the right argument. As shown in Sect. 5, this operator is
used by the Maude engine to prevent the retrieval of general information that is
negated for the more specific category we are considering. In this way, given
the fact representations above, (a "basenji" can "bark") is negated in
("dog" : "basenji" |- 1 ->| cannot "bark") equals true, thus the ques-
tion can a "basenji" "bark" ? does not trigger the retrieval of the typed
attribute can "bark".

168 A. Cerone and D. Murzagaliyeva

(tomod TIMED-INFORMATION is

protecting INFORMATION .

protecting NAT-TIME-DOMAIN-WITH-INF .

sorts TimedItem TimedItemSet TimedBasicItem FutureBasicItem .

subsort TimedItem < TimedItemSet .

op _<‘decay_> : Item TimeInf -> TimedItem [ctor] .

op _for_ : BasicItem TimeInf -> TimedBasicItem [ctor] .

op _in_ : TimedBasicItem Time -> FutureBasicItem [ctor] .

op emptyTIS : -> TimedItemSet [ctor] .

op _;_ : TimedItemSet TimedItemSet -> TimedItemSet

[ctor assoc comm id: emptyTIS format (b o n b)] .

eq ITEM:Item < decay 0 > = emptyTIS .

op removeTime : TimedItemSet -> ItemSet .

var I : Item .

var TIS : TimedItemSet .

var T : TimeInf .

eq removeTime(emptyTIS) = none .

eq removeTime((I < decay T >) ; TIS) = I ; removeTime(TIS) .

ops DECAY-TIME MAX-RETRIEVAL-TIME : -> TimeInf .

endtom)

Fig. 3. Module TIMED-INFORMATION.

3.2 Short-Term Memory (STM) Model

STM is normally used as a buffer where the information that is needed for
processing activities is temporarily stored. In our model the kind of information
stored in the STM belongs to sort Item. However, the limited capacity of STM
requires the presence of a mechanism to empty it when the stored information
is no longer needed. In fact, information in STM decays very quickly, normally
in less than one minute. To implement STM decay, we need to associate a time
with the elements of sort Item.

Module TIMED-INFORMATION in Figure 3 imports the module INFORMATION
and the predefined module NAT-TIME-DOMAIN-WITH-INF, which defines a new
sort TimeInf by extending the sort Time with value INF to model an infinite
time. Sort TimedItem associates a time with the elements of sort Item using
the constructor <‘decay > and sort TimedItemSet define sets of elements of
TimedItem using the constructor ;. The equation on the constructor <‘decay >
ensures that if the time to decay has reached zero, the term is removed. Therefore,
STM is modelled as an element of sort TimedItem. The operator removeTime
removes the time from an element of sort TimedItem and returns the corre-
sponding element of sort TimedItem. Finally, undefined operation DECAY-TIME

Information Retrieval from Semantic Memory 169

is declared to be used as a constant holding the user-defined STM decay time
as we will see in Sect. 4.3.

3.3 Human Memory as a Maude Class

Full Maude supports the definition of classes. Class objects are elements of the
pre-defined sort Configuration, which defines the state of the overall system.

We model the structure of human memory using the following Real-Time
Maude class.

class HumanMemory | shortTermMem : TimedItemSet,

semanticMem : SemanticMemory .

STM is modelled by the field shortTermMem. Semantic memory is modelled by
the field SemanticMem.

4 Experimental Environment and Its Evolution

We model an environment consisting of perceptions in the form of questions to
which a human subject has to answer. Once they appear in the environment,
questions persist for a certain time before disappearing. In a typical experiment,
questions will be shown to the human subject for a few seconds.

4.1 Modelling Perceptions

We use Full Maude messages to model perceptions. A message is an element
of the pre-defined sort Msg and has the same syntax as an operation but, in
addition, is also an element of the pre-defined sort Configuration.

The persistence of a perception is modelled by the user-defined infix operator
for in module TIMED-INFORMATION given in Fig. 3. Note that the time may be
infinite to denote that the perception persists forever.

Therefore, a perception is modelled by operation perc as follows.

sorts Perception .

subsort Perception < Msg .

op perc : TimedBasicItem -> Perception [ctor] .

var BI : BasicItem .

eq perc(BI for 0) = none .

The equation ensures that if the persistence time has reached zero, the perception
is removed from the configuration (none is the empty configuration).

4.2 Planning Experiments

We call planned experiment any single question presented to a human sub-
ject together with the time that must pass before the question is actually pre-
sented. Such a time is modelled by the user-defined infix operator in in module
TIMED-INFORMATION given in Fig. 3.

Therefore, a planned experiment is modelled by operation exp as follows.

170 A. Cerone and D. Murzagaliyeva

sorts Experiment .

subsorts Experiment < Msg .

op exp : FutureBasicItem -> Experiment [ctor] .

For example, we can plan an experiment similar to the one by Collins and Quil-
lian [10] to find how response time (RT) may depend on the hierarchical structure
of semantic memory. The subjects are presented with questions on a screen, each
question for 30 s. Within these 30 s the subject has to answer the question. The
experimental setting is as follows.

op init : -> Configuration .

op human : -> Oid .

op initSemanticMem : -> SemanticMemory .

op aHuman : -> Object .

eq aHuman = < human : Human | shortTermMem : emptyTIS,

semanticMem : initSemanticMem > .

eq init = (exp(((can a "dog" "breathe" ?) for 30000) in 0))

(exp(((can a "animal" "move" ?) for 30000) in 30000))

(exp(((has a "dog" "four legs" ?) for 30000) in 60000))

(exp(((can a "hound" "track" ?) for 30000) in 90000))

(exp(((can a "basenji" "bark" ?) for 30000) in 120000))

(exp(((is a "armadillo" a "mammal" ?) for 30000) in 150000))

(exp(((can a "giraffe" "bark" ?) for 30000) in 180000))

(exp(((is a "swallow" a "bird" ?) for 30000) in 210000))

aHuman .

The time is expressed in milliseconds.
The operator initSemanticMem must be defined with an equation whose

right part comprises the content of the semantic memory. The purpose of the
experiment above could be the validation of the following research hypotheses:

1. Higher RTs may be due to the fact that the typed attribute is associated with
a more general category than the one mentioned in the question;

2. In some cases, the RT for a negative answer may be considerably smaller than
the average RT for a positive answer to a similar question;

3. The retrieval of less known or seldom used categories or associations may
result in a higher RT.

Hypothesis 1 can be validated using questions like can a "dog" "breathe" ? and
can a "animal" "move" ?: the RT for the former question is higher if the typed
attribute can "breathe" is associated with the more general category "animal".
Hypothesis 2 can be validated using questions like can a "basenji" "bark" ? and
can a "giraffe" "bark" ?: the RT for the former question is lower if the typed
attribute cannot "bark" is directly associated with category "basenji". Hypoth-
esis 3 can be validated using questions like is a "armadillo" a "mammal" ? and
is a "swallow" a "bird" ?: the RT for the former question is higher if the fact
representation stating that the less known category "armadillo" is a "mammal"
has a higher mental processing time than the fact representation stating that the
well-known category "swallow" is a "bird".

Information Retrieval from Semantic Memory 171

Initially, in silico experiments can be conducted with no aim at validating
research hypotheses and contrasted to experiments with human subjects to cali-
brate the Maude emulation engine. Once the calibration process is concluded, in
silico experiments and experiments with human subjects aiming at the validation
of research hypothesis can be conducted and contrasted. These kinds of exper-
iment may be used to compare alternative models corresponding to different
models of semantic memory.

As a final remark, we would like to clarify that the experiment above has
been defined for a purely illustrative purpose. In a real experimental context, a
separate set of planned experiments should be considered for each of the research
questions.

4.3 Environment Evolution

Maude models system evolution using rewrite logic. Labeled rewrite rules

rl [l]: t => t′ or crl [l]: t => t′ if cond

define local transitions from state t to state t′.
The following labelled rewrite rule transforms a planned experiments into a

perception when the scheduled time has been reached.

rl [activate-perception] :

(exp((BI for T) in 0))

REST

=>

(perc (BI for T))

REST .

The following labelled rewrite rule make a ‘copy’ of the perception and stores
it in the STM at any time when the perception is available in the environment
and associates the value of the constant operator DECAY-TIME with such a copy,
provided that the untimed version of the STM (IS := removeTime(TIS)) does
not contain the perception yet (not isItemIn(BI, IS)).

crl [perceive] :

(perc(BI for T))

< H : Human | shortTermMem : TIS >

REST

=>

< H : Human | shortTermMem : (BI < decay DECAY-TIME >) ; TIS >

(perc(BI for T))

REST

if IS := removeTime(TIS) /\ not isItemIn(BI, IS) .

5 Tick Rewrite Rules for Information Retrieval

Information retrieval from semantic memory and time passing are modelled using
tick rewrite rules. Tick rewrite rules

172 A. Cerone and D. Murzagaliyeva

rl [l]: {t} => {t′} in time Δ
crl [l]: {t} => {t′} in time Δ if cond

advance time in the global state t by Δ time units.
We use tick rewrite rules to model the navigation through semantic memory

to retrieve the information needed to answer the question in STM. The RT
is added to the current time and the retrieved information is used to build the
answer and store it in STM together with the associated decay time DECAY-TIME.

The following idle function is used to update all time-related components
of the system:

op idle : Configuration Time -> Configuration [frozen (1)] .

op idle : TimedItemSet Time -> TimedItemSet .

op idle : TimedBasicItem Time -> TimedBasicItem .

op idle : FutureBasicItem Time -> FutureBasicItem .

eq idle(none, T) = none .

eq idle(< H : Human | > REST, T) = < H : Human | > idle(REST, T) .

eq idle(perc(TBI) REST, T) = perc(idle(TBI, T)) idle(REST, T) .

eq idle(exp(FBI) REST, T) = exp(idle(FBI, T)) idle(REST, T) .

eq idle(emptyTIS, T) = emptyTIS .

eq idle((I < decay T1 >) ; TIS , T) =

(I < decay (T1 monus T) >) ; idle(TIS, T) .

eq idle(BI for T1, T) = BI for (T1 monus T) .

eq idle(TBI in FT , T) = TBI in (FT monus T) .

The module TIMED-EVOLUTION contains the tick rewrite rules that implement
a variant of Qullian’s hierarchical network model [21]. As an illustrative example,
we present the conditional tick rule for answering a can-question, such as can a
"dog" "breathe" ?.

crl [can] :

< H : Human | cognitiveLoad : N,

shortTermMem : TIS ; ((can a C A ?) < decay T1 >),

semanticMem : S >

REST

=>

< H : Human | cognitiveLoad : N,

shortTermMem : ((a C can A) < decay DECAY-TIME >) ; idle(TIS, T),

semanticMem : S >

idle(REST,T)

in time T

if IS := removeTime(TIS) /\
not isItemIn(a C can A, IS) /\
T := canRetrievalTime(C, A, S) /\ T <= MAX-RETRIEVAL-TIME /\
not ((a C can A) is negated in S) .

The retrieval time is calculated using the canRetrievalTime operator, which
searches in the semantic memory S for a fact representation with category C1
and typed attribute can A, where either C1 = C or C1 is a generalisation of C.

Information Retrieval from Semantic Memory 173

However, an additional condition for the application of the rule is that the RT
T is less than or equal to the MAX-RETRIEVAL-TIME constant value. When the
RT is greater than the MAX-RETRIEVAL-TIME, instead, the application of another
conditional tick rule with complementary condition results in the answer I dont
know if C can A. The use of such a constant as an RT upper bound supports
the modelling of situations in which, although the information is in semantic
memory, the semantic distance is actually too high for retrieval. Two more rules
model the two possible situations in which the answer is C cannot A. The most
explicit situation is when there is a fact representation with category C and typed
attribute cannot A in the semantic memory. An implicit situation occurs when
C is the generalisation of another category C1, such that the fact representation
with category C1 and typed attribute can A is in the semantic memory. As an
example of such an implicit situation, the question can a "animal" "bark" ?
results in the fact a "animal" cannot "bark" ?.

Further rules are used for covering the situations in which we answer is a
and has a questions. The what can question results in the retrieval of a number
of facts. This is achieved by repeated applications of the rule. Moreover, the
answer to this question depends on the knowledge domain on which the human
subject focuses. For example, the question what can a "dog" do? returns only
a "dog" can "bark" if the focus is on the knowledge domain dogs, whereas it
returns also a "dog" can "breathe" and a "dog" can "move" if the focus is
on the knowledge domain animals. This requires the use of two distinct rules,
one for the presence and one for the absence of focus. However, the technical
details concerning these rules are beyond the illustrative purpose of this paper.

Finally, the following conditional tick rule models the time passing.

crl [time-passing] :

< H : Human | shortTermMem : TIS >

REST

=>

< H : Human | shortTermMem : idle(TIS,1) >

idle(REST,1)

in time 1

if not questionFound(TIS) /\ noExperimentStart(REST)

/\ noPerceptionAvailable(REST) .

The condition ensure that time is increased by this rule only when there is no
question in STM (not questionFound(TIS)), there is no planned experiment
at the current time (noExperimentStart(REST)) and there is no perception
available in the environment (noPerceptionAvailable(REST)). In this way the
time-passing rule may be applied only if no other rule can be applied.

6 Conclusion and Future Work

We have developed an approach for formally modelling fact representations in
semantic memory and carrying out the in silico emulation of experiments aiming
at the comparison of different models of semantic memory. This comparison is

174 A. Cerone and D. Murzagaliyeva

an essential part of our future work. The code illustrated in this paper can be
downloaded at

http://github.com/AntonioCerone/Pubblications/tree/master/2020/CIFMA

Although the code refers to the Quillian’s hierarchical network model [21]
and Collins and Quillian’s experiments [10], the module TIMED-EVOLUTION can
be replaced with a module that implements another semantic memory model.

This code is also simplified for illustrative purposes. It does not include the
mechanisms that allow to output the outcome of the in silico experiments in
a form suitable to carry out the comparison of alternative semantic memory
models.

Acknowledgments. We would like to thank Graham Pluck for reading the
manuscript and providing important comments. The first author would also like to
thank Peter Csaba Ölveczky for his kind hospitality in Oslo in May 2019 and for many
insightful discussions about Maude, which strongly influenced the way Maude was used
in this paper.

References

1. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Lawrence
Erlbaum, Hillsdale (1998)

2. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control
processes. In: Spense, K.W. (ed.) The Psychology of Learning and Motivation:
Advances in Research and Theory II, pp. 89–195. Academic Press (1968)

3. Berry, C., Grove, C.: Semantic distance in memory structure: the retrieval of con-
ceptual relationships. Q. J. Exp. Psychol. 35A, 553–570 (1983)

4. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190 (2019)

5. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

6. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018.
LNCS, vol. 11176, pp. 216–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04771-9 17

7. Cerone, A.: Behaviour and reasoning description language (BRDL). In: Camara,
J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp. 137–153. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57506-9 11

8. Cerone, A., Ölveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using real-time maude. In: Sekerinski, E. (ed.) FM 2019. LNCS, vol.
12232, pp. 424–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
54994-7 32

9. Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing.
Psychol. Rev. 82, 407–428 (1975)

10. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal
Learn. Verbal Behav. 8, 240–247 (1969)

http://github.com/AntonioCerone/Pubblications/tree/master/2020/CIFMA
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-57506-9_11
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-54994-7_32

Information Retrieval from Semantic Memory 175

11. Glass, A.L., Holyoak, K.T.: Alternative onceptions of semantic memory. J. Verbal
Learn. Verbal Behav. 5, 598–606 (1975)

12. Hammel, J.E., Hollok, K.J.: Distributed representations of structures: a theory of
analogical access and mapping. Psychol. Rev. 104, 427–466 (1997)

13. Hollan, J.D.: Feature and semantic model: seth theoretic or network model? Psy-
chol. Rev. 82, 154–155 (1975)

14. Holyoak, K.T.: Analogy and relational reasoning. In: Holyoak, K.T., Morrison,
R.G., (eds.) The Oxford handbook of thinking and reasoning, pp. 234–259. Oxford
University Press (2012)

15. Leech, R., Mareschal, D., Cooper, R.P.: Analogy as relational priming: a develop-
mental and computational perspective on the origin of a complex cognitive skill.
Behav. Brain Sci. 31, 357–378 (2008)

16. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret.
Comput. Sci. 285(2), 121–154 (2002)

17. Meyer, D.E.: On the representation and retrieval of stored sematic information.
Cogn. Psychol. 1, 242–300 (1970)

18. Ölveczky, P.C.: Real-time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

19. Ölveczky, P.C.: Designing Reliable Distributed Systems. Undergraduate Topics in
Computer Science. Springer (2017)

20. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time-Maude.
Higher-order symbolic Comput. 20(1–2), 161–196 (2007)

21. Quillian, M.R.: The teachable language comprehender: a simulation program and
theory of language. Commun. ACM 12, 459–476 (1969)

22. Rips, L.J., Shoben, E.J., Smith, E.E.: Semantic distance and the verification of
semantic relations. J. Verbal Learn. Verbal Behav. 12, 1–20 (1973)

23. Smith, E.E., Shoben, E.J., Rips, L.J.: Comparison processes in semantic memory.
Psychol. Rev. 81, 214–241 (1974)

https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3

A Multi-Agent Depth Bounded
Boolean Logic

Giorgio Cignarale1(B) and Giuseppe Primiero2

1 Embedded Computing Systems, TU Wien, Vienna, Austria
giorgio.cignarale@tuwien.ac.at

2 Department of Philosophy, University of Milan, Milan, Italy
giuseppe.primiero@unimi.it

Abstract. Recent developments in the formalization of reasoning, espe-
cially in computational settings, have aimed at defining cognitive and
resource bounds to express limited inferential abilities. This feature is
emphasized by Depth Bounded Boolean Logics, an informational logic
that models epistemic agents with inferential abilities bounded by the
amount of information they can use. However, such logics do not model the
ability of agents to make use of information shared by other sources. The
present paper provides a first account of a Multi-Agent Depth Bounded
Boolean Logic, defining agents whose limited inferential abilities can be
increased through a dynamic operation of becoming informed by other
data sources.

Keywords: Logic of information · Resource bounded reasoning ·
Information transmission

1 Introduction

Knowledge, belief and information are notions that have received increasing
attention in the formal representation of cognition since the 1960 s for their
relevance to AI, distributed and multi-agent systems. Epistemic Logic (EL) [9,
15], with its interpretation of modal operators, and its Dynamic counterpart
(DEL) [2,10] have modelled knowledge from an agent-based perspective and
its changes through the use of private and public announcement operations.
Informational logics aim at a similar task by offering formal interpretations for
the epistemic states of being informed [1,11,12]; of holding the information [6–
8]; and of becoming informed [16,17]. The former still interprets information
states explicitly through modal operators, while the logics that refer to states of
holding the information and becoming informed interpret propositional contents

This research was funded by the Department of Philosophy “Piero Martinetti” of the
University of Milan under the project “Departments of Excellence 2018–2022” awarded
by the Ministry of Education, University and Research (MIUR); and supported by the
Austrian Science Fund (FWF) project ByzDEL (P33600). The authors wish to thank
Marcello D’Agostino and Pere Pardo for comments on previous versions of this work.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 176–191, 2021.
https://doi.org/10.1007/978-3-030-67220-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_14&domain=pdf
http://orcid.org/0000-0002-6779-4023
http://orcid.org/0000-0003-3264-7100
https://doi.org/10.1007/978-3-030-67220-1_14

A Multi-Agent Depth Bounded Boolean Logic 177

epistemically, in the vein of intuitionistic logic. In particular, Depth-Bounded
Boolean Logic (DBBL) [4,5,7,8] captures single-agent reasoning on the basis of
informational states qualified as follows, see [14, p.177]:

1. Informational truth (T): agent j holds the information that φ is true;
2. Informational falsehood (F): agent j holds the information that φ is false;
3. Informational indeterminacy (*): agent j does not hold either the infor-

mation that φ is true, or that it is false.

If bound to information actually held, an agent is said to reason at 0-depth. To
resolve those cases in which the agent has informational indeterminacy, i.e. she
does not hold either the information that φ is true, or that it is false, she may
use information not actually held. If the agent is able to derive φ by supposing
another formula ψ to be true on the one hand, and false on the other, then φ
must hold irrespective of the information state concerning ψ. In this way, agents
are able to simulate informational states richer than the ones they actually are
in, so as to infer further contents. For k nested instances of such process, the
agent is said to reason at k-depth. This informal concept is formalized both
semantically and proof-theoretically. Each k-consequence and derivability rela-
tion characterizes a tractable logic, with classical logic obtained as the limit of
their sequence.

DBBL models so far only the case in which virtual information is simu-
lated by an agent’s inner inferential abilities. But in many practical applications
information is obtained through communication, as modelled for example by
the epistemic operation of becoming informed, see [17]. When in a context of
informational indeterminacy, the cognitive process of an agent may be aided by
becoming informed by another agent with stronger cognitive or computational
capabilities. For k distinct instances of such communication operation, the sys-
tem may be said to implement multi-agent reasoning at k-depth. In the following,
we propose MA-DBBL, a multi-agent version of DBBL, extending the latter with
an operator of information sharing between agents, and one expressing informa-
tion held by every agent in the system. This opens to multiple considerations
on how to attribute such degrees of cognitive abilities to different agents, be
they human or artificial. In a human-machine interaction setting, for example,
cognitively bounded human agents may be aided in their processes by mechani-
cal ones. Then, a measure of their inferential depth should express the ability to
access information. Such measure can be expressed in terms of information qual-
ity (IQ, [13]), which provides qualitative parameters for evaluating data available
for the inferential process. MA-DBBL uses such account of information access
to qualify agents with different inferential abilities, and models bounds over sets
of agents through communication operations.

The remaining of this paper is structured as follows. In Sect. 2 we introduce
our logic and motivate the order on the agents by data quality criteria that justify
inferential abilities. In Sect. 3 we provide the semantics, and in Sect. 4 the proof-
theory for MA-DBBL. In Sect. 5 we provide soundness and completeness results.
We conclude in Sect. 6 highlighting limitations and further possible extensions
of the present system.

178 G. Cignarale and G. Primiero

2 Multi-Agent DBBL

In Depth-Bounded Boolean logic, agents are characterised by two aspects: first,
the information they currently hold as true, false or indeterminate; second, their
inferential abilities. The latter aspect is typical of DBBL, considered especially
in order to distinguish tractable fragments of classical logic. We consider a sit-
uation in which different epistemic agents are ordered by such characteristics.
While current information held is a static property, the inferential abilities are
usually linked to cognitive or computational capacities which allow to extend the
information base of the agent. In the following, the inferential ability of an agent
corresponds to a semantic interpretation of the data available to her. The result
is a hierarchy of agents in which at each level the agent holds more information
and also has better inferential abilities than the agent below.

Definition 1 (Syntax of MA-DBBL).

S := {i � j � k � · · · � z}
P := {φi, ψi, ρi, . . . , }
D := {Ac,Un,Us}
C := {∧,∨,→,¬}

K := {BIi, Ii}
S is a finite set of agents where each agent is identified with the information

she holds. A total preorder � is imposed on S, such that i � j means that agent
i holds at least as much information as agent j. This is a preference relation, i.e.
it is reflexive (∀i ∈ S, i � i); connexive (∀i, j ∈ S, i � j or j � i); and transitive
(∀h, i, j ∈ S if h � i and i � j, then h � j). This guarantees that any two agents
are comparable, and when considered equivalent in the hierarchy they have the
same information. P is an enumerable set of propositional variables denoting
data available to agents in S, although not every agent has a determinate truth
value for every such data. Propositional variables are indexed by agents, therebey
expressing a source for that data; and are closed under a set of propositional
connectives C and a set of indexed epistemic operators K. In order to define the
preorder � on agents and give a precise interpretation of the relation underlying
it, we use elements of the set D over elements of the set P. Elements in D are data
quality functions, namely expressing for each agent i which data is accessible,
which is understandable and which is usable. Note that it is essential to have P
accessible in principle to all agents in order for them to be ordered with respect
to one another. Formally, these are functions on formulas or sets of formulas
with the following meaning:1

1 We use here a two-value valuation function v on formulas as a mapping to truth
and falsity. Its formal definition, extended to a three-valued function, is postponed
to Sect. 3.

A Multi-Agent Depth Bounded Boolean Logic 179

Ac(φi) ↔ v(φi) ∈ {1, 0}
Un(φi) ↔ Ac(ψi), for some ψi such that ψi implies φi

Us(φi) ↔ Ac(ψi),∀ψi implied by φi

The first function expresses the condition that information is accessible if the
agent holds it true or false. Accessibility is a monotonic function, i.e. if the
cardinality of the set Γi of formulas accessible to agent i is greater than the
cardinality of the set Γj of formulas accessible to agent j, then there is at least
one formula φi which is accessible to i, but which is not accessible to j. Formally:
| Ac(Γi) |>| Ac(Γj) |↔ ∃φi ∈ Ac(Γi) ∧ φ /∈ Ac(Γj). In other words, all agents
are characterized by a common database represented by P, but each agent can
have access to different elements of P, depending on which truth values she
has for those elements. We shall see in Sect. 3 that the semantics of DBBL is
three-valued and non-deterministic, hence accessible information is a subset of
all information available to agents. The second function expresses the condition
that information is understandable if the agent can access it from other accessible
information. This, informally, means that understandable information is such
when it is recognised as a consequence of accessible information. Finally, the third
function expresses the condition that information is usable if it allows to access
other information. This, informally, means that information is qualified as usable
when it allows to perform inferences that make other information accessible.
Accessibility is a monotonic function, hence agents higher in the hierarchy have
access to an increasing set of formulas; so are therefore also the set of formulas
that can be understood and used by them. We shall see in Sect. 4 how usability
is the criterion which underlies the inferential depth of agents. Let us for now
consider an informal example.2

Example 1. Suppose that agent j doesn’t hold information about whether the
sentence φ: “C is father of both A and B” is true or false, nor is she able to
derive it by herself. Then φ is not accessible to agent j i.e. φ /∈ Ac(φj). Suppose
also that agent i has not access to φ, that is φ /∈ Ac(φi), but she holds true
the information ψ: “C is not father of A” and true the information χ: “C is not
father of B”. Then agent i has access to both ψ and χ i.e. Ac(ψi, χi). Moreover,
agent i holds true the information ξ: “C is not father of A and C is not father
of B”. Then we obtain that ψ and χ are understandable to agent i, written
Un(ψi, χi), for i is able to use those propositional contents in order to access
new information. Finally, if agent i is able to establish that φ is false, then we
conclude that Us(ψi, χi) and Ac(φi).

Information is usable if understood and accessible. Given a shared infor-
mation set, not every agent might have the same accessible, understandable or
usable information. Information which is not accessible, understandable or usable
denotes contents for which a truth value cannot be determined, or whose conse-
quences cannot be inferred, or which cannot be inferred from other information.
We link the inferential ability of an agent i to her accessible, understandable and

2 This example is based on an unpublished one formulated by Marcello D’Agostino.

180 G. Cignarale and G. Primiero

usable information. We define therefore our total preorder (S,�) on agents as
follows:

Definition 2 (Source Order by Information Usability).

i � j iff | Us(Γi) |≥| Us(Γj) |
Where Γi and Γj are set of formulas, and | Us(Γi) | represents the cardinality
of the set of formulas usable to agent i. Hence i � j holds if agent i has more
information than j with a determined truth-value, from which she can infer new
information and which she can infer from determined information.

Example 2. Take S = {h, i, j}, Ac(pi ∧ qi), Un(pi), Us(pi) so that Ac(pi ∨ ri).
Now suppose Ac({}j), it also holds Un({}j) and Us({}j). Hence i � j. Moving
to agent h, Ac(rh → th), Un(ph) Un(th), Us(ph) so that Ac(ph ∨ rh) and Us(th)
so that Ac(th ∧ sh). Now since | Us(ph, th) |≤| Us(pi) |, h � i is the case, and
given transitivity of � the order among agents is established.

Our goal is now to model reasoning in a context in which agents higher in
the hierarchy can communicate information which is not directly accessible to
those below. From now on, we say that information is held by an agent always
meaning that it is usable by that agent in the sense defined above.

Definition 3 (Language).

LCK ::= pj |φj ∧ φj |φj ∨ φj |φj → φj | ¬φj | BIjφi | Ijφi

Given pj denoting an indexed atomic variable, a metavariable for a formula φj

denotes information φ held – i.e. usable – by an agent j. The set of information
held by agent j is denoted as Γj for a set of formulae {φj , . . . , ψj}. Formulas
are closed under standard connectives. We use brackets to enclose composed
formulas and use the index after the closing bracket, while avoiding brackets in
the case of negated formulas for aiding readability. We refer to the non-epistemic
fragment of our language as LC , and the corresponding logic as MA-DBBLC . We
refer to the epistemic fragment of our language as LK, and the corresponding
logic as MA-DBBLK. The latter is obtained from the former by adding two
epistemic formulae with the indexed operators:

– BIjφi says that “agent j becomes informed that φ by an agent i � j”;
– Ijφi says that “agent j is informed that φ by all agents i � j”.

BIjφi simulates a private announcement of φ received by agent j from agent
i. Ijφi expresses consensus on φ, similar in meaning to the epistemic operator
“everybody knows”.3

3 The two operators reflect the distinction between an alethically neutral and a veridi-
cal conception of information, see [17] and [11] respectively. Technically, it is possible
to reformulate the present monotonic version of MA-DBBL without the I operator
without loss of expressiveness. We keep it both in the language to preserve the men-
tioned conceptual distinction, and because it offers the basis for a planned extension
of the present system with contradictory information updates.

A Multi-Agent Depth Bounded Boolean Logic 181

Table 1. Non-deterministic 3-valued truth tables for agent i

∧ 1i 0i ∗i

1i 1i 0i ∗i

0i 0i 0i 0i

∗i ∗i 0i 0i, ∗i

∨ 1i 0i ∗i

1i 1i 1i 1i

0i 1i 0i ∗i

∗i 1i ∗i 1i,∗i

→ 1i 0i ∗i

1i 1i 0i ∗i

0i 1i 1i 1i

∗i 1i ∗i 1i,∗i

¬
1i 0i

0i 1i

∗i ∗i

3 Semantics

MA-DBBLC has a three-valued semantics which formalizes reasoning by an agent
based on her actually held information, captured as evaluation of LC formulas.
The matrices exposed in Table 1 express the informational meaning of the logical
operators for this fragment, see [6]. We include values for information that agent
i holds as true (1i), information that agent i holds as false (0i), and information
which agent i cannot establish whether it is true or false (∗i). For formulas with
determined values (i.e. where ∗ is not present), the tables are the classical ones.
When only one element is undetermined, those tables work exactly as their clas-
sical counterparts: for example, the truth value of a conjunction is undetermined
only when the element that is not undetermined is true, and false otherwise. But
when considering, e.g. the conjunction of two undetermined elements, the resem-
blance with the classical tables falls apart. In such instances, the conjunction of
two undetermined elements can have two different outputs: it could be false or
undetermined. Which is the case, does not depend merely on the truth values
of the components of the conjunction, but it also depends on the background
information possessed by the agent. Example 1 from the previous section has
already shown a case for this unusual behaviour.

Formula valuation for LC is defined as follows:

Definition 4 (Valuation of LC formulas). A 3ND-valuation is a mapping
v : Γi → {1, 0, ∗}LC

, satisfying the following conditions for all φi, ψi ∈ Γi:

1. v(¬φi)= F¬(v(φi))
2. v(φi ◦ ψi) ∈ F◦(v(φi), v(ψi))

where

(i) F¬ is the deterministic truth-function defined by 3-valued table for ¬, and
(ii) F◦ is the non-deterministic truth-function defined by the 3-valued table for

◦ = {∧,∨,→}.
This valuation defines therefore the way in which an agent establishes truth,

falsity and indeterminacy for the information she holds, without any aid offered
by other sources. The consequence relation for the fragment LC is dubbed 0-
depth and it is defined as follows:

Definition 5 (0-depth consequence relation). For every set of formulas Γi

and formula φi of LC, we say that φi is a 0-depth consequence of Γi, denoted by

182 G. Cignarale and G. Primiero

Γi �0 φi, if v(φi) = 1 for every v as of Definition 4 such that v(ψi) = 1,∀ψi ∈ Γi.

Accordingly, a notion of inconsistency for LC holds as follows:

Definition 6 (0-depth inconsistency). A set of formulas Γi of LC is incon-
sistent, denoted by Γi �0 ⊥, if no valuation exists such that all formulas φi ∈ Γi

are satisfied.

When adding the BI and I operators, we move to the fragment LK of the
language, with formulas indexed by multiple agents.

Definition 7 (Valuation of LK formulas).
A 3ND-valuation is a mapping v : Γj → {1, 0, ∗}LK

, satisfying the following
conditions for all φj ∈ Γj, and ◦ = {1, 0, ∗}:
– v(BIjφi) = ◦ iff v(φi) = ◦
– v(Ijφi) = ◦ iff v(BIjφi) = ◦ for all i � j.

Example 3. Suppose that agent j doesn’t hold information about whether the
sentence φ: “C is father of both A and B” is true or false, nor is she able to
derive it by herself. Agent i, despite not holding a truth value for φ, is able to
use the information that “C is not father of A” and that “C is not father of
B”, thus concluding that “C is father of both A and B” is false. Hence, agent j
becomes informed that “C is father of both A and B” is false from agent i.

Example 4. Suppose h � j and i � j. Suppose that agent j doesn’t hold infor-
mation about whether φ: “C is father of both A and B” is true or false, nor is
she able to derive it by herself. Agent i, despite not holding a truth value for
φ, is able to use the information that “C is not father of A” and that “C is
not father of B”, thus concluding that “C is father of both A and B” is false.
Assume moreover that agent h is able to infer that “C is father of both A and
B” is false, because she knows that “C is father of D” and “D is sibling of A
and not sibling of B” are both true. Hence, agent j becomes informed that “C
is father of both A and B” is false from agent i and from agent h separately.
Then we say that j is informed that “C is father of both A and B” is false.

The notion of consequence relation for MA-DBBL expresses the principle
that given i � j, an agent j either establishes the truth of some formula φ by
using the information she holds – i.e. consequence relation at 0-depth; or else, she
becomes informed of a formula φ from agent i who is able to infer it on her own
by using some additional information, or what are called virtual assumptions: the
latter is a consequence relation at k > 0-depth. In order to bound the number of
formulas that are allowed to be used as virtual assumptions up to a certain fixed
depth, we introduce the notion of “virtual space”, see [8, p.84]. Given any set Δi

of formulae of LCK; the function Sub(Δi) that returns the set of subformulae of
Δi; and the function At(Δi) that returns the set of all its atomic subformulae;
consider all operations f such that:

A Multi-Agent Depth Bounded Boolean Logic 183

1. for all Δi, At(Δi) ⊆ f(Δi)
2. Sub(f(Δi)) = f(Δi)
3. | f(Δi) |≤ p(| Δi |), for some fixed polynomial p and | Δi | denoting the size

of Δi, i.e. the number of occurrences of symbols in that set.

The first criterion ensures that for every set of formulas Δi the set of its atomic
subformulae is contained in the set resulting from applying f to Δi; the second
states that f(Δi) is closed under subformulae; the third ensures that any function
f is at most polynomial in some size. While Sub(Δi) and At(Δi) are examples
of such operations, in fact all operations that are built from them and have
bounded logical complexity satisfy the above criteria. Our virtual space can now
be defined as a function f of the set Γi∪{φi} made of premises Γi and conclusion
φi of the given inference for agent i.

Definition 8 (Consequence relation for MA-DBBL).
For every set of formulas Γj, formula φi of LC, formulas BIjφi and Ijφ of

LK, all operations f satisfying points 1–3 above and i � j:

– Γj �f
0 φi iff Γj �0 φi;

– Γj �f
k+1 BIjφi iff Γi, ψi �f

k φi and Γi,¬ψi �f
k φi for some ψi ∈ f(Γi ∪ {φi})

and some i � j;
– Γj �f

k+1 Ijφ iff Γi, ψi �f
k φi and Γi,¬ψi �f

k φi for some ψi ∈ f(Γi ∪{φi}) and
all i � j.

This definition follows from Definitions 5 and 7, together with the function f
defined above. The first case holds trivially, as f is irrelevant. The second case is
shown to hold by reasoning by induction on the depth of k. Suppose that k = 0
and that Γj �f

k+1 BIjφi is valid, but that Γi ∪ ψi �
f
k φi and Γi ∪ ¬ψi �

f
k φi

for some ψi ∈ f(Γi ∪ {φi}). Take Γi ∪ ψi �
f
k φi. As said, with k = 0 we have

Γi ∪ ψi �
f
0 φi. Hence, by Definition 4, v(φi) = 0 and v(Γi ∪ ψi) = 1. Now

by Definition 7, if v(φi) = 0 then v(BIjφi) = 0, which (by monotonicity of
Usi) means that Γj �

f
k+1 BIjφi, against the assumption. The case for k > 0 is

straightforward and the case for I formulas only generalises to all agents.

Definition 9 (Inconsistency for MA-DBBL). A set of formulas Γi of LCK

is k-depth inconsistent if and only if Γi∪{ψi} and Γi∪{¬ψi} are both (k-1)-depth
inconsistent for some ψi ∈ f(Γi).

Since �0 is monotonic, �f
k⊆�f

k+n, and the increase in depth corresponds to
the use of additional virtual information by more agents, restricted by the space
defined by f . Note also that we can define a partial order among operations in
f , such that f1 � f2 iff f1(Δi) ⊆ f2(Δi), for every Δi. Hence �f1

k ⊆�f2
k whenever

f1 � f2. Then (see [8, p.85]):

Proposition 1. The relation �f
∞=

⋃
k∈N �f

k is the consequence relation of clas-
sical propositional logic

184 G. Cignarale and G. Primiero

φi ∨ − intro1
(φ ∨ ψ)i

ψi ∨ − intro2
(φ ∨ ψ)i

¬φi ¬ψi ∨ − intro3¬(φ ∨ ψ)i

φi ψi ∧ − intro1
(φ ∧ ψ)i

¬φi ∧ − intro2¬(φ ∧ ψ)i

¬ψi ∧ − intro3¬(φ ∧ ψ)i

¬φi → −intro1
(φ → ψ)i

ψi → −intro2
(φ → ψ)i

φi ¬ψi → −intro3¬(φ → ψ)i

(φ ∧ ψ)i ∧ − elim1
φi

(φ ∧ ψ)i ∧ − elim2
ψi

¬(φ ∧ ψ)i φi ∧ − elim3¬ψi

¬(φ ∧ ψ)i ψi ∧ − elim4¬φi

(φ ∨ ψ)i ¬φi ∨ − elim1
ψi

(φ ∨ ψ)i ¬ψi ∨ − elim2
φi

¬(φ ∨ ψ)i ∨ − elim3¬ψi ¬φi

(φ → ψ)i φi → −elim1
ψi

(φ → ψ)i ¬ψi → −elim2¬φi

¬(φ → ψ)i → −elim3
φi

¬(φ → ψ)i → −elim4¬ψi

Fig. 1. Introduction and elimination rules for MA-DBBLC

If we constrain one instance of a BI-formula for each distinct agent, higher
depth expresses nesting of information requests from distinct sources, which
means we obtain the full classical propositional logic only with an infinite number
of agents.

4 Proof-Theory

To illustrate the proof-theory of MA-DBBL, we start again by separating the
inferential abilities of the agent reasoning only on the basis of her actually held
information, from her inferential abilities supported by information received from
agents with a larger set of usable information. Introduction and elimination rules
for MA-DBBLC capture the idea of manipulating actual information, expressing
inferential ability at 0-depth, see Fig. 1.

Definition 10 (Derivability for MA-DBBLC). Given a set of formulas Γi

of LC:

A Multi-Agent Depth Bounded Boolean Logic 185

– An intelim sequence for Γi is a sequence φi, ..., ψi such that
– each formula φi in the sequence is a member of Γi, or
– is the conclusion of the application of a MA-DBBLC rule;

– An intelim proof of φi from Γi is such that
– either it is a closed sequence, i.e. it contains both φi and ¬φi;
– or φi is the last formula in the sequence;

– A formula φi is 0-depth derivable from Γi, written Γi �0 φi, if and only if
there is an intelim proof of φi from Γi according to MA-DBBLC rules.

Definition 11 (Refutability for MA-DBBLC). Given a set of formulas Γi

of LC:

– An intelim refutation of Γi is a closed intelim sequence for Γi;
– Γi is intelim-refutable if there is a closed intelim sequence for Γi.

Reasoning at 0-depth proves to be a weighty limit for an agent, for she cannot
make any supposition that exceeds the information she actually holds, bounding
her inferential abilities. The next step consists in finding a way to manipulate
virtual information: when an agent is not able to infer the truth value of a
formula φ by the information she holds, she can be informed about φ by an
agent with higher inferential abilities. The rules of Fig. 2 describe operations in
which agent j receives information from one or several agents with access to
more information. By convention the formula in the conclusion of a rule with
multiple premises always carries the index of the highest agent in the hierarchy:
this ensures that the most informed source is always referenced. The RB rule
(for Rule of Bivalence) corresponds to the introduction rule for the BI operator.
When an agent can infer the truth value of a formula φ in any state of affairs
(i.e. from both ψ and ¬ψ), then an agent j � i becomes informed about it.
The BI-operator is closed under standard connectives. The I-intro rule infers
from an operation of becoming informed from every source strictly higher in the
hierarchy a state of being informed about the formula. This rule also plays the
role of elimination rule for the BI operator. The I-elim rule makes information
shared by all agents into a valid formula for the current agent.

Example 5. Consider the following scenario, with three agents involved in the
reasoning process and ordered as h � i � j:

(χ → (ψ ∨ φ))i (¬χ → (ψ ∨ φ))i
BIj(ψ ∨ φ)i

(¬ρ → ¬φ)h (ρ → ¬φ)h
BIj¬φh

BIjψh

We assume that j is at k-depth and she does not hold the truth value of
the formula ψ. The derivation of such formula occurs at k + 2 because in the
derivation of BIjψh two instances of RB involving distinct agents occur, namely
the derivation of (ψ ∨ φ) from both χ and ¬χ for agent i, and the derivation of

186 G. Cignarale and G. Primiero

(ψ → φ)i (¬ψ → φ)i
RB

BIjφi

BIj ψh BIj φi

BIj (φ ∧ ψ)h

BIj ¬φi

BIj ¬(φ ∧ ψ)i

BIj ¬ψi

BIj ¬(φ ∧ ψ)i

BIj φi

BIj (φ∨ψ)i

BIj ψi

BIj (φ∨ψ)i

BIj ¬φh BIj ¬ψi

BIj ¬(φ ∨ ψ)h

BIj ¬φi

BIj (φ → ψ)i

BIj ψi

BIj (φ → ψ)i

BIjφh BIj¬ψi

BIj ¬(φ → ψ)h

BIj (φ ∧ ψ)i
BIj φi

BIj (φ ∧ ψ)i
BIj ψi

BIj ¬(φ ∧ ψ)h BIj φi

BIj ¬ψh

BIj ¬(φ ∧ ψ)h BIj ψi

BIj ¬φh

BIj (φ ∨ ψ)h ¬BIj φi

BIj ψh

BIj (φ ∨ ψ)h ¬BIj ψi

BIj φh

BIj¬(φ ∨ ψ)i
BIj¬ φi

BIj¬(φ ∨ ψ)i
BIj¬ ψi

BIj (φ → ψ)h BIj φi

BIj ψh

BIj (φ → ψ)h BIj ¬ψi

BIj ¬φh

BIj ¬(φ → ψ)i
BIj ¬ψi

BIj ¬(φ → ψ)i
BIj φi

BIjφi, ∀i � j ∈ S
I-intro

Ijφi

Ijφi
I-elim

φj

Fig. 2. Introduction and elimination rules for MA-DBBLK with h � i � j

¬φ from both ρ and ¬ρ for agent h. Hence, the elements of the set of premises
of the derivation of ψ are four formulas: (χ → (ψ ∨ φ))i, (¬χ → (ψ ∨ φ))i, (¬ρ →
¬φ)h, (ρ → ¬φ)h.4

4 We stress here that while in single agent DBBL the depth of the reasoning process
is given by nested applications of RB by the agent, in MA-DBBL are the instances
of RB indexed by distinct agents that determine such depth.

A Multi-Agent Depth Bounded Boolean Logic 187

Example 6. Consider the following scenario:

(φ ∨ ψ)j ¬ψj

φj

(χ → γ)i (¬χ → γ)i
BIjγi BIjγn ∀n � j

Ijγn
γj

(φ ∧ γ)j

Let’s begin with the longer branch. Agent j (assuming is at k ≥ 0 depth),
does not hold a truth value for formula γ. However, agent i can derive the truth
value of γ from both χ and ¬χ at k + 1-depth. Hence, BIjγi can be inferred.
Now suppose that not only i, but every agent n � j (i.e. every agent with more
information than j) holds γ, and thus agent j becomes informed about it by all
agents higher in the hierarchy. As such, by the I-intro rule, it holds that Ijγi. By
the I-elim rule, agent j holds that γ, and hence γj holds. Moving to the other
branch, agent j holds (φ ∨ ψ). In addition, she holds that ¬ψ is the case. Hence,
by the ∨-elim2 rules of MA-DBBLC , agent j is able to infer that φ is the case,
hence φj holds. Using the ∧-intro1 rule, agent j is able to infer that (φ ∧ γ) is
the case, hence (φ∧γ)j holds. This example shows how rules of MA-DBBLC and
of MA-DBBLK operate harmoniously at two different levels in the same tree:
the rules of the first allows the formalization of the operations that an agent
performs with her own information, while the second formalizes the operations
of becoming informed and being informed.

The number of instances of RB in a derivation executed by distinct agents
establishes the depth of the reasoning in which they are (collectively) involved,
and f is still an operation to establish the depth of formulas. Then we generalize
derivability and refutability for the logic MA-DBBL:

Definition 12 (Derivability for MA-DBBL). Given a set of formulas Γj,
formula φi of LC, formulas BIjφi and Ijφ of LK, all operations f and i � j:

– Γj �f
0 φ iff Γj �0 φ;

– Γj �f
k+1 BIjφi iff

– there are k + 1 distinct instances of RB such that for each application of
the rule there is some formula ψi ∈ f(Γi ∪ {φi}), such that Γi, ψi �f

k φi

and Γi,¬ψi �f
k φi;

– or BIjφi is obtained from k+1-depth derivable BI-formulae by an intelim
rule of MA-DBBLK;

– Γj �f
k+1 Ijφi iff

– there is an instance of an I-introduction rule with n premises of the form
Γj �f

k+1 BIjφi, for n agents i � j;
– or φi is obtained from a k +1-depth derivable I-formula by an I-elim rule

of MA-DBBLK.

188 G. Cignarale and G. Primiero

The first case holds trivially. For the second case and k = 0 suppose that
Γj �f

k+1 BIjφi, but that there is no formula ψi such that Γi, ψi �f
k φi nor

Γi,¬ψi �f
k φi can be satisfied: then the RB rule from Fig. 2 cannot be applied

and Γj �
f
k+1 BIjφi against the hypothesis. For k > 0 the previous case requires

multiple distinct instances of RB. The second part of the second point follows
from the rules of Fig. 2. For the third case, suppose that Γj �f

k+1 Ijφh is valid
for h � i � j. Suppose also that Γj �f

k+1 BIjφi holds, but Γj �f
k+1 BIjφh

does not. Hence, the I-introduction rule from Fig. 2 cannot be applied and thus
Γj �

f
k+1 Ijφi, against the hypothesis. The second part of the third case follows

from the definition of the I-elimination rule of Fig. 2.

Definition 13 (k+1 Inconsistency). Γi is k+1-depth inconsistent if and only
if Γi ∪ {ψi} and Γi ∪ {¬ψi} are both k-depth inconsistent for some ψi ∈ f(Γi).

Definition 14 (MA-DBBL Refutability). Given a set of formulas Γi ∈ LCK

and f :

– An MA-DBBL derivation is closed when it contains both φi and ¬φi, for some
φi ∈ f(Γi);

– An MA-DBBL refutation of Γi is a closed MA-DBBL derivation for Γi;
– Γi is MA-DBBL-refutable if there is a closed MA-DBBL derivation for Γi.

5 Meta-theory

In the present section we provide essential meta-theoretic results.

Theorem 1 (Soundness). If Γi �f
k φj then Γi �f

k φj.

Proof. The proof proceeds by induction on the depth of the derivability relation:

– for k = 0-depth: consider the case φj ∧ ψj , with φj , ψj in Γj . Then, Γj �0 φj ,
Γj �0 ψj and by ∧-intro1 their conjunction is derivable at k = 0. There is a
matching case in the semantics such that if 1j , 1j then the conjunction is in
the consequence set Cn0(Γj). The same holds for all rules of MA-DBBLC .

– for k > 0-depth:
– BI formulae: consider Γj �f

k+1 BIjφi, obtained by an instance of RB.
Then Γi �f

k ψi → φi and Γi �f
k ¬ψi → φi for some ψi ∈ f(Γi), while

Γj �
f
k φj . By the former Γi �f

k φi, which grants Γi �f
k φi, i.e. v(φi) = 1;

the latter means Γj �
f
k φj , i.e. v(φj) = 0 or v(φj) = ∗; in both cases,

according to the evaluation function in Definition 7, if 1i then BIjφi = 1.
– I formulae: if Γj �f

k+1 Ijφj then BIjφi,∀i � j. The above argument holds
for versions of the RB rules with premises indexed by every i � j, with
matching case in the truth-table for the I operator.

Theorem 2 (Completeness). If Γj �f
k φj then Γj �f

k φj.

A Multi-Agent Depth Bounded Boolean Logic 189

Proof. The proof proceeds by induction on the depth of the consequence relation:

– for k = 0-depth we follow the proof in [8]: suppose that Γj �0 φj and Γj �0 φj .
Then Γj is not 0-depth refutable; otherwise, by definition of 0-depth proof,
it should hold that Γj �0 φj (as well as Γj �f

0 ¬φj) against the hypothesis.
Now, consider the set Γ 0

j = {ψj | Γj �0 ψj}; since Γj is not 0-depth refutable,
there are no formulas χj , and ¬χj such that they are both in Γ 0

j . Then, the
function V, defined as follows:

V(χj) =

⎧
⎪⎨

⎪⎩

1 if χj ∈ Γ 0
j

0 if ¬χj ∈ Γ 0
j

∗ otherwise
(1)

is a three-value valuation that agrees with Table 1. Consider now the fol-
lowing formula case: V(χj) = V(ρj) = ∗; then ¬(χ ∨ ρ)j /∈ Γ 0

j . Otherwise,
by definition of Γ 0

j and by the ∨-elim3 rule of Fig. 1, ¬χj and ¬ρj should
also be in Γ 0

j . Therefore, by definition of V, V(χj) = V(ρj) = 0, against our
assumption. Hence V(χ∨ρ)j �= 0. Moreover, (χ∨ρ)j , may or may not belong
to Γ 0

j , and so either V(χ ∧ ρ)j = 1 or V(χ ∧ ρ)j = ∗. Finally:
i) ψj ∈ Γ 0

j , for all ψj ∈ Γj and so, by definition of V, V satisfies all ψj ∈ Γj ;
ii) by the hypothesis that Γj �

f
0 φj , φj /∈ Γ 0

j and so V does not satisfy φj .
Hence Γj �

f
0 φj , against the initial assumption.

– for k > 0-depth; we denote, as above, with Γ k
i the theoremhood set of Γi

and depth k. Functions are defined for the theoremhood sets of BI and I
formulas:

V(BIjχi) =

⎧
⎪⎨

⎪⎩

1 if χi ∈ Γ k
i , χj /∈ Γ k

j and ¬χj /∈ Γ k
j

0 if ¬χi ∈ Γ k
i , χj /∈ Γ k

j and ¬χj /∈ Γ k
j

∗ if χi /∈ Γ k
i and ¬χi /∈ Γ k

i

(2)

V(Ijχ) =

⎧
⎪⎨

⎪⎩

1 if χi ∈ Γ k
i for all i � j ∈ S, and χi ∈ Γ k+1

j

0 if ¬χi ∈ Γ k
i for all i � j ∈ S, and ¬χi ∈ Γ k+1

j

∗ if χi �∈ Γ k
i and ¬χi �∈ Γ k

i for all i � j ∈ S.

(3)

– For BI formulas: Suppose that Γj �f
k+1 BIjφi and Γj �

f
k+1 BIjφi. Then

Γj is not k + 1-depth refutable; otherwise, by definition of k + 1-depth proof,
it should hold that Γi �f

k φi (as well as Γi �f
k ¬φi), for some φ ∈ f(Γi); hence

Γj �f
k+1 BIjφi is derivable by RB, against the hypothesis. Now, consider the

set Γ k+1
j = {BIjφi | Γj �f

k+1 BIjφi}. Since Γj is not k + 1-depth refutable,
there is no formula such that BIjχi and BIj¬χi are both in Γ k+1

j . Then,
consider V(BIjφi) = 1. Then φi ∈ Γ k

i , and both φj and ¬φj /∈ Γ k
j . Otherwise

V(φi) = 0 and V(φj) = 1 or V(φj) = 0:
−− if V(φi) = 0, the premises of the relevant RB cannot be satisfied, and
V(BIjφi) �= 1 against our assumption;

190 G. Cignarale and G. Primiero

−− if V(φj) = 1, by 0-depth evaluation φj ∈ Γ k
j which is against the definition

of V(BIjφi) from the assumption Γj �f
k+1 BIjφi;

−− and if V(φj) = 0, by 0-depth evaluation ¬φj ∈ Γ k
j , as above against the

definition of V(BIjφi) from the assumption Γj �f
k+1 BIjφi;

– For I-formulas: Consider Γ k+1
j = {Ijφi | Γj �f

k+1 Ijφi} and V(Ijφi) = 1.
Then, φi ∈ Γ k

i for any i � j ∈ S. Then, by the definition of I, φj ∈ Γ k+1
j .

Otherwise φi /∈ Γ k
i for at least one i � j ∈ S. But then φj /∈ Γ k+1

j and hence
Γj �

f
k+1 Ijφi, against the initial assumption.

6 Conclusions and Future Work

MA-DBBL is an extension of Depth Bound Boolean Logic to express reasoning
by agents ordered on their cognitive abilities, in terms of inferential power based
on data access. The language includes a one-to-one information transmission
operator between source and receiver which, for one instance of its application,
expresses an increase of one degree in the depth of the reasoning power of the
receiving agent. The language also includes an operator between every source
and a given receiver, which expresses a state of the system where everybody
shares the same information. Such operations allow agents with poorer cognitive
capacities (inferential abilities and data access) to become informed of content
otherwise available only to better equipped agents. This feature is especially well
fitted for human-machine interaction settings or in distributed systems, where
agents with different inferential-bounds work towards a common goal.

Planned extensions of this logic are: an appropriate relational semantics by
using three-valued Kripke models, where the BI-operator corresponds to an
accessibility relation indexed by the receiving agent, restricting the accessible
worlds to some of those accessible by the source; a non-monotonic extension, to
allow updates with contradictory information and the manipulation of disjoint
sets of information for agents; the definition of a negative trust operation on
informational contents held and shared by agents, on the lines of [18]; trustwor-
thiness evaluations on sources and updates on their order, on the lines of [3];
the combination with different resource bounds, e.g. by considering access to
information as costly, i.e. leading to a consumption of resources, see e.g. [19].

References

1. Allo, P.: The logic of ‘being informed’ revisited and revised. Philos. Stud. 153(3),
417–434 (2011). https://doi.org/10.1007/s11098-010-9516-1

2. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Classical Logics
17(2), 129–155 (2007). https://doi.org/10.3166/jancl.17.129-155

3. Ceolin, D., Primiero, G.: A granular approach to source trustworthiness for nega-
tive trust assessment. In: Meng, W., Cofta, P., Jensen, C.D., Grandison, T. (eds.)
IFIPTM 2019. IAICT, vol. 563, pp. 108–121. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-33716-2 9

https://doi.org/10.1007/s11098-010-9516-1
https://doi.org/10.3166/jancl.17.129-155
https://doi.org/10.1007/978-3-030-33716-2_9
https://doi.org/10.1007/978-3-030-33716-2_9

A Multi-Agent Depth Bounded Boolean Logic 191

4. D’Agostino, M.: Depth-bounded logic for realistic agents. Logic Philos. Sci. 11,
3–57 (2013)

5. D’Agostino, M.: Informational semantics, non-deterministic matrices and feasible
deduction. In: Fernández, M., Finger, M. (eds.) Proceedings of the 8th Workshop
on Logical and Semantic Frameworks, LSFA 2013, São Paulo, Brazil, 2–3 Septem-
ber 2013, Electronic Notes in Theoretical Computer Science, vol. 305, pp. 35–52.
Elsevier (2013). URL https://doi.org/10.1016/j.entcs.2014.06.004

6. D’Agostino, M.: Semantic information and the trivialization of logic: Floridi on
the scandal of deduction. Information 4(1), 33–59 (2013). https://doi.org/10.3390/
info4010033

7. D’Agostino, M.: Analytic inference and the informational meaning of the logical
operators. Logique Anal. 227, 407–437 (2014)

8. D’Agostino, M.: An informational view of classical logic. Theor. Comput. Sci. 606,
79–97 (2015). https://doi.org/10.1016/j.tcs.2015.06.057

9. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B.: Handbook of Epistemic
Logic. College Publications, London (2015)

10. Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic and Philos-
ophy Of Science. Springer, Berlin (2007)

11. Floridi, L.: The logic of being informed. Logique et Analyse 49(196), 433–460
(2006). http://www.jstor.org/stable/44085232

12. Floridi, L.: Semantic information and the correctness theory of truth. Erkenntnis
74(2), 147–175 (2011). https://doi.org/10.1007/s10670-010-9249-8

13. Stegenga, J.: Information quality in clinical research. In: Floridi, L., Illari, P. (eds.)
The Philosophy of Information Quality. SL, vol. 358, pp. 163–182. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07121-3 9

14. Larese, C.: The principle of analyticity of logic, a philosophical and formal per-
spective. Ph.D. thesis, Scuola Normale Superiore, Classe di Scienze Umane (2019)

15. Meyer, J.J.C., Hoek, W.v.d.: Epistemic Logic for AI and Computer Science. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press (1995).
https://doi.org/10.1017/CBO9780511569852

16. Primiero, G.: An epistemic constructive definition of information. Logique et Anal-
yse 50(200), 391–416 (2007)

17. Primiero, G.: An epistemic logic for becoming informed. Synthese 167(2), 363–389
(2009). https://doi.org/10.1007/s11229-008-9413-8

18. Primiero, G.: A logic of negative trust. J. Appl. Non Class. Logics 30(3), 193–222
(2020). https://doi.org/10.1080/11663081.2020.1789404

19. Primiero, G., Raimondi, F., Bottone, M., Tagliabue, J.: Trust and distrust in con-
tradictory information transmission. Appl. Netw. Sci. 2(1), 1–30 (2017). https://
doi.org/10.1007/s41109-017-0029-0

https://doi.org/10.1016/j.entcs.2014.06.004
https://doi.org/10.3390/info4010033
https://doi.org/10.3390/info4010033
https://doi.org/10.1016/j.tcs.2015.06.057
http://www.jstor.org/stable/44085232
https://doi.org/10.1007/s10670-010-9249-8
https://doi.org/10.1007/978-3-319-07121-3_9
https://doi.org/10.1017/CBO9780511569852
https://doi.org/10.1007/s11229-008-9413-8
https://doi.org/10.1080/11663081.2020.1789404
https://doi.org/10.1007/s41109-017-0029-0
https://doi.org/10.1007/s41109-017-0029-0

The Intensional Structure of Epistemic
Convictions

Reinhard Kahle1,2(B)

1 Carl Friedrich von Weizsäcker-Zentrum, Universität Tübingen,
Keplerstr. 2, D-72074 Tübingen, Germany

kahle@mat.uc.pt
2 FCT, CMA, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal

Abstract. We discuss an axiomatic setup as an appropriate account
to the intensional structure of epistemic convictions. This includes a
resolution of the problem of logical omniscience as well as the individual
rendering of knowledge by different persons.

In this position paper we present a model for epistemic convictions, which pro-
vides the general framework for different applications as belief revision [12,18],
modalities [13–15], Frege’s mode of presentation [16], and counterfactuals [17].

The idea is to model knowledge or belief of a person in an axiomatic setup.
The purpose is to make good use of the concept of derivation, in fact performed
derivations, to overcome some of the well-known problems of knowledge repre-
sentation in formal frameworks1.

To avoid an intricate discussion of the conflicting terms of “knowledge” and
“belief” we prefer to use the neutral designation of epistemic conviction for a
person’s knowledge or belief. In the last section, however, we address how our
account may help to explicate, at least in part, the traditional understanding of
knowledge as true and justified belief.

1 Axiomatic Setup

We presuppose that epistemic convictions of a person can be represented by
sentences in a formal(izable) language. We do not specify a particular formal
language, but assume that, at least, propositional connectives and quantifiers
are available.

1 Our approach reassembles ideas which one also finds in Doyle’s Truth Maintenance
Systems (TMSs), [5]. As TMSs were developed in the context of expert systems in
Computer Science, they soon fell victim to complexity issues. For us it is, however,
just the qualitative setup which matters from a philosophical point of view. The
quantitative aspect may go out of control when one tries to explain and store every
single step of a derivation.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 192–200, 2021.
https://doi.org/10.1007/978-3-030-67220-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_15

The Intensional Structure of Epistemic Convictions 193

Some basic convictions are fixed (for an individual person; they might differ
from one person to another2). A sentence belonging to these basic convictions
is considered as an axiom, an axiom which can then be used to derive further
epistemic convictions. A sentence is added to the person’s convictions, if it is
actually derived from the basic convictions by a correct derivation.

For the discusion which follow one has to distinguish two complementary
aspects of the axiomatic setup.

1. The internal aspect, which takes the “axioms” of a person—at a certain
moment—as fixed and studies the derived consequences.

2. The external aspect, which considers the choice, justification, and changes of
these axioms.

The word “axiom”, when we use it for basic convictions, is not used with its
traditional meaning as evident truth, but rather in the modern understanding as
distinguished starting point for derivations (see also Remark 1 below).

The intensional structure, discussed in this paper, concerns, first of all, only
the internal aspect of an axiomatic setup. To keep the presentation clean, we
presuppose that only correct reasoning is used by a person. But our account
may also be used to study the effects of incorrect reasoning. “Correct” does not
need to be restricted to purely logical reasoning, but could include inductive
reasoning in the way it is vindicated by common sense. And one may address
the question, to which extent the rules for correct reasoning have to be part
of the basic convictions. A detailed discussion of these aspects, however, would
go beyond the scope of this paper which should just illustrate the qualitative
potential of the intensional structure of an axiomatic setup.

We will touch occasionally on the external aspect of the axiomatic setup,
which can be located in the narthex of axiomatics3. Here, one would have to
discuss how an axiom enters in the individual convictions of a person (empiri-
cal observation will be one way; another way is by learning in school ; but one
may also consider just believing, see Remark 1 below; and a good Platonist
may include anamnesis). Also, the axioms of a person’s convictions are subject
to change (one is continuously making new empirical observation and learning
new facts; one may also retract old convictions or revise the present ones). The
dynamics of the change of convictions is a wide field, and here we like to point out
only that our axiomatic setup provides a tool to deal with it (see, in particular,
the end of the following section).

2 For a fruitful discussion amoung different people it is, however, desirable that one
can agree on the same starting points.

3 See the reference to “Vorhalle der Geometrie” for work of Moritz Pasch, one of the
founding fathers of modern axiomatics, in [24, p. 80].

194 R. Kahle

2 Avoiding Logical Omniscience

Many approaches to knowledge and belief presuppose that they are closed under
logical consequences. Although it comes sometimes under the label of rationality
criteria, as in AGM [2], this presupposition is quite inadequate4.

Alan Turing formulated this neatly [25, p. 451]5:

The view that machines cannot give rise to surprises is due, I believe, to a
fallacy to which philosophers and mathematicians are particularly subject.
This is the assumption that as soon as a fact is presented to a mind all
consequences of that fact spring into the mind simultaneously with it. It
is a very useful assumption under many circumstances, but one too easily
forgets that it is false.

Under the heading of logical omniscience, this problem is acknowledged in
the literature6. One way out is to turn to a theory of implicit knowledge, which
is supposed to come from the logical closure of initial knowledge. But it seems to
be of little help. Just consider mathematical knowledge: it doesn’t seem to be of
particular interest to study a person’s implicit knowledge of mathematics, which,
in some sense, should contain the solutions of all open questions in Mathematics7.

There a some attempts to address logical omniscience with “non-standard”
logical frameworks. Some of them are semantically in nature, drawing essentially
on (modified) possible world semantics, as, for instance, awareness structures and
local-reasoing structures (Halpern and Fagin [6]), impossible worlds (Hintikka
[9]), or situation semantics (Barwise and Perry, [3]). On a more proof-theoretic
side, one can consider depth-bounded logics [4] and resource-aware logics. As
much as they tame logical omniscience in general, it is not clear how they should
cope with examples from Mathematics. And we don’t find any counterpart to the
specific ingredient of our account: the relation between presupposed axioms and

4 See [18] for a detailed discussion of AGM in our perspective.
5 Also cited in [1, p. 261].
6 The paragraph on logical omniscience in the article on Epistemic Logic in the Stan-

ford Encyclopedia of Philosophy exposes here a certain helplessness [22, § 4].
7 Of course, one may study an idealized notion of knowability which should be closed

under logical omniscience. But, in our view, this form of idealization goes to far to
provide a tool to take up challenges concerned with knowledge of a person. Thus, we
are explicitely at odds with the first part of the justification of this idealization by
Gabbay and Woods [7, p. 158]:

A logic is an idealization of certain sorts of real-life phenomena. By their very
nature, idealizations misdescribe the behavior of actual agents. This is to be
tolerated when two conditions are met. One is that the actual behavior of
actual agents can defensibly be made out to approximate to the behavior of
the ideal agents of the logician’s idealization. The other is the idealization’s
facilitation of the logician’s discovery and demonstration of deep laws.

.

The Intensional Structure of Epistemic Convictions 195

the derived formulas. Conceptionally, this relation is located on the meta-level,
i.e., the derivability relation, rather than inside the logical framework8.

This relation is manifest in Mathematics by a proof; and for mathematical
knowledge by a proof “at hand”: we consider a theorem only as a part of a
person’s knowledge, when (s)he is able to provide this proof when asked9.

This should be the normal case for mathematical knowledge, but we may
discuss two special cases, which belong, however, to the external aspect of our
axiomatic setup.

First, you may have learned a mathematical theorem from a trustworthy
source, normally that means from Mathematicians which did perform the proof
of the theorem in question. We would say that most of the Mathematicians know
that Fermat’s Last Theorem is true, without being able to provide Wiles’s proof.
In this case, it is simply added as an axiom, and the justification of the axiom
comes from reference to the reliable source.

Secondly, it is possible to be convinced of the truth of an open conjecture
without having a proof yet. This, of course, does not result in knowledge, but is
just belief. But it can be treated in our framework in the same way as knowledge,
and one may flag such conjectures when they enter the convictions of a person
only as “axioms” with lower credibility. Of course, consequences derived from
such flagged axioms will also only be “believed theorems”, rather than known
ones. Here, we will not work out any technical theory of mathematical beliefs,
but just pointing to one important aspect, which contrasts our approach to those
aiming for logical omniscience (even, if only implicitely): believing in a conjecture
might not be irrational, even if the conjecture is false. It can be treated as an
axiom of the person’s convictions, and there is no fundamental problem as long
as no contradiction is actually derived.

Remark 1. David Hilbert gave a bold example of this situation [8, p. 160]:

Nothing prevents us from taking as axioms propositions which are prov-
able, or which we believe are provable. Indeed, as history shows, this pro-
cedure is perfectly in order: [. . .] Riemann’s conjecture about the zeroes
of ζ(s), [. . .]

Only, when a contradiction is actually derived, it should trigger a belief
revision. Belief revisions might be caused for quite different reasons, but the
encounter of a contradiction is probably the most important one. The way such
a belief revision can be performed is part of the external aspect of our axiomatic
setup. But the concrete derivation of a contradiction is of fundamental help: it
singles out those axioms (basic convictions) which are involved in the derivation
8 There are other criticisms of the alternative approaches, like, for example, the “onto-

logical overkill” of possible worlds [14], which we cannot discuss here. All these crit-
icisms, of course, do not mean that those approaches do not have their merits; we
just like to point to the conceptional difference with our account.

9 Ryle’s distinction of knowing how and knowing that [23] points into another direction.
But we share with him, at least, the opposition to a raw knowing that. We like to
complement it by knowing why.

196 R. Kahle

and point to the fact that the resolution has to revise at least one of them (while,
at the same time, basic conviction not used in this derivation do not need to be
considered)10. For a more elaborated approach to belief revision in terms of our
axiomatic setup, see [12].

3 Individual Structuring of Convictions

The axiomatic setup exhibits the intensional structure of a person’s convictions.
These are not just the derived sentences, but the concrete derivations come into
play in, at least, two ways: first, a derivable sentence has many different proofs
in an axiomatic framework. Choosing one or another derivation can influence the
trust in the derived sentences as well as the way the conviction can be defended
when it comes under scrutiny11. Secondly, and more important, the same set of
sentences can be derived from different sets of axioms. Thus, extensionally equal
sets of convictions can be represented by different sets of axioms.

We would like to illustrate the latter situation by a simplified example from
Astronomy.

Person A may observe a good number of positions of the planets of our solar
system, with the precision available in the 18th century. The coordinates of these
positions are A’s axioms, justified by empirical evidence. By intelligent inductive
reasoning, A derives from these positions Kepler’s laws for the movement of
planets.

Person B learned at school Kepler’s laws and, without ever looking to the
sky at night, may derive the positions of the planets using some given initial
data.

By construction, the astronomical knowledge of A and B should be equiva-
lent. However, the difference in the intensional structure should become visible,
when both learn about the more exact perihelion precession of Mercury as avail-
able in the 19th century. For A these are “just” new empirical data, which
question, of course, the derived Kepler’s laws, but which do not contradict the
original axioms. For B, however, the very axioms are falsified and B’s knowledge
as such is called into question.

In [16] we mentioned as another example two axiomatizations of the natural
numbers, the first one as a commutative semigroup, the second by the Peano

10 This sketches the qualitative aspect of our account only; in the presence of a plau-
sibility order of beliefs, for instance, one may revise first the basic convictions with
lowest plausibility.

11 The question how different derivations should compared with each other was rised
by Hilbert in his 24th problem. This problem was not included in his famous prob-
lems lecture at the International Congress of Mathematicians in 1900 in Paris but
remained unpublished in his notebook before it was discovered in 2000. Since then,
it triggered a lot of a research, including the question of identity of proofs [10]. Our
approch is not intended to contribute to a solution of Hilbert’s 24th problem, but
rather the other way around: a satisfactory concept for identity of proofs may allow
to abstract from the concrete derivations we are relying on.

The Intensional Structure of Epistemic Convictions 197

Axioms. While in the former one, commutativity of addition is “built in”, in the
latter one this property requires a proof by induction. Thus, one may introduce a
notion of sense—in Fregean terms—such that the sense of the two sum terms t+s
and s+t is equal in the former but different in the latter axiomatic presentation.

In general, whenever one has two different axiomatizations which result in
the same set of derived formulas, the very difference of the axiomatization can be
considered as an intensional difference—a difference which could, at best, only
be encoded artifically in a semantic setup.

Due to the axiomatic nature of mathematical theories, they will provide many
more examples to illustrate our point; you may think, for instance, of Geometry
given in terms of points, straight lines, etc., following Euclid and Hilbert, or in
terms of reflections, following Bachmann. In Physics, for instance, the Heisenberg
picture [19] can be contrasted by the Schrödinger picture [20]. We expect that it
should be possible to find examples even from “every day” concepts which may
be represented extensionally equivalently, but intensionally differently.

One may ask whether our approach reduces the knowledge of a person to a
“blob of derived sentences” which is somehow arbitrary. In some sense, this is
the case, as the knowledge of different people is usually quite different. But it is
arbitrary only in the way that it cannot be determined “from the outside” or “in
advance” which knowledge a particular person is deriving for himself or herself.
Ex post the particular person is, however, supposed to provide the justification
for the derived knowledge (see also the next section) and, thus, one should not
characterizes the knowledge as “arbitrary”. But we turn this argument around,
when we ask whether the knowledge of the person is computable. Assuming that
the life span of every person is finite, and that, in finite time, you may perform
only finitely many derivations, it is clear that every person’s knowledge is finite.
Thus, it appears to be computable, as we should have no problems to compute
finite sets. But this works only ex post (and with a protocol of all knowledge of
the person at hand). Given a certain set of axioms, we may go different routes
to derive new consequences; as these choice are not determined in advance, it is
not to see how to program a machine which could anticipate which formulas are
actually derived by a person; thus, in this way the knowledge of person remains
uncomputable12.

4 The Question “Why?”

The axiomatic setup is also the adequate model to study the way a person
answers the question: “Why do you believe this?” or “How do you know this?”
The given answer should reveal the argument the person used in the derivation
of the sentence in question. Turning the perspective around, we can use why-
questions to uncover the axiomatic structure of a person’s epistemic convictions.
12 More moderately expressed: unpredictable. The situation is not too different from

the question whether you can compute the roulette results of the Monte Carlo casino.
Of course, you can do it for those outcomes which already took place in a finite time
period; but you will not be able to compute it in advance.

198 R. Kahle

A by-product of this analysis is that it gives support for the classical charac-
terization of knowledge as true and justified belief. While the justification comes
from derivations13, the mentioned analogy to mathematical proof shows that,
of course, the sentences used in the derivation need to be hereditary knowledge,
i.e., being themselves all true. Leaving aside the notorious question how truth
should be established, it rules out, at least, flawed justifications.

Let us draw on a known example of Mathematics. When, in the last decades
of the 19th century, the proof attempts of Kempe and Tait were considered by
the mathematical community as correct proofs of the four colour problem, of
course, this community did not have knowledge of the four colour theorem. Even
if we know today, by the proofs of the second half of the 20th century, that the
four colour theorem is, indeed, true, the alleged proofs of the 19th century could
not serve as justification, for the simple reason that they were flawed.

The problem confusing a correct justification with a raw justifiability, not
respecting the heritability of truth was discussed a lot in context of the notorious
Gettier examples, and the flawed knowledge based on it could well be called
Gettier knowledge14.

The question: “Why do you believe this ‘axiom’?” makes part of the external
aspect of our axiomatic setup. In contrast to the internal aspect, here we do
not expect a derivation as answer15, but some other type of justification. For
example, the famous equation E = mc2 can be derived in the apporiate formal
framework of relativity theory. However, many people will “know” it without
having ever studied relativity theory. If one asks why, an answer like “because
I learned it in school” provides a proper justification; an answer of the sort
“because I read in my horoscope” would not serve as justification.

The question “Why?” also poses a challange for Artificial Intelligence, in
particular to modern AI based on statistics. As mentioned in Footnote 1, Truth
Maintenance Systems [5] were an attempt to store information which could be
used ot answer Why-questions in expert systems; this turned out to be unfeasible
due to complexity constraints. Still, in SAT solving we may localize clauses
“responsible” for a contradiction which may provide answers to a Why-question
(see [21]). But modern AI cannot provide any justification for its results—and
this is by design due to the used black box technologies. In fact, recovering
justifications for the answers of such AI software would probably amount to
open the black box, a task explainable AI is aiming for. As long as the black box

13 For knowledge, we tactically assume here logical reasoning, only. The case of induc-
tive reasoning is—in the case of knowledge—more delicate as it questions the status
of knowledge in general.

14 When we subscribe the No False Lemmas condition, it goes without saying that also
the “axioms” presupposed for the knowledge need to be true; this is not the case for
the example discussed in [11, § 4].

15 Although inductive reasoning, used to justify a universal statement which is supposed
to be taken as an axiom, might enter here, rather than as part of the internal aspect
of knowledge.

The Intensional Structure of Epistemic Convictions 199

stays closed, we would even predict that AI software will fail the Turing Test
when asked to answer a Why-question16.

Acknowledgement. Research supported by the Udo Keller Foundation and by the
Portuguese Science Foundation, FCT, through the project UIDB/00297/2020 (Centro
de Matemática e Aplicações).

References

1. Aaronson, S.: Why philosophers should care about computational complexity. In:
Copeland, B.J., Posy, C.J., Shagrir, O. (eds.) Computability, pp. 261–327. MIT
Press (2013)

2. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial
meet functions for contraction and revision. J. Symbolic Logic 50(2), 510–530
(1985)

3. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Bronx (1983)
4. D’Agostino, M.: Tractable depth-bounded logics and the problem of logical omni-

science. In: Hosni, H., Montagna, F., (eds.) Probability, Uncertainty and Rational-
ity, pp. 245–275. Edizioni Scuola Normale Superiore, Springer (2010)

5. Doyle, J.: A truth maintenance system. Artif. Intell. 12, 231–272 (1979)
6. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34,

39–76 (1988)
7. Gabbay, D.M., Woods, J.: The new logic. Logic J. IGPL 9(2), 141–174 (2001)
8. Hilbert, D.: Neubegründung der Mathematik. Abhandlungen aus dem Mathema-

tischen Seminar der Hamburgischen Universität 1, 157–177 (1922)
9. Hintikka, J.: Impossible possible worlds vindicated. J. Philos. Logic 4(4), 475–484

(1975)
10. Hipolito, I., Kahle, R.: Theme issue on “The notion of simple proof - Hilbert’s 24th

problem”. Philosophical Transactions of the Royal Society A, 377 (2019)
11. Ichikawa, J.J., Steup, M.: The analysis of knowledge. In: Zalta, E.N. (eds.), The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, summer 2018 edition (2018)

12. Kahle, R.: Structured belief bases. Logic Logical Philos. 10, 49–62 (2002)
13. Kahle, R.: A proof-theoretic view of necessity. Synthese 148(3), 659–673 (2006)
14. Kahle, R.: Against possible worlds. In: Degremont, C., Keiff, L., Rückert, H. (eds.),

Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman,
vol. 7 of Tributes, pp. 235–253. College Publications (2008)

15. Kahle, R.: Modalities without worlds. In: Rahman, S., Primiero, G., Marion, M.
(eds.), The Realism-Antirealism Debate in the Age of Alternative Logics, vol. 23
of Logic, Epistemology and the Unity of Science, pp. 101–118. Springer, Dordrecht
(2012) https://doi.org/10.1007/978-94-007-1923-1 6

16. Kahle, R.: Towards a proof-theoretic semantics of equalities. In: Piecha, T.,
Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics. TL, vol. 43,
pp. 153–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22686-6 9

16 Here, we like to express serious doubts that justifications, in terms of derivations,
can be “learned” just statistically, in the same way, as it is unlikely that AI could
statistically generate a C++ compiler.

https://doi.org/10.1007/978-94-007-1923-1_6
https://doi.org/10.1007/978-3-319-22686-6_9

200 R. Kahle

17. Kahle, R.: The Logical Cone. If CoLog J. Logics their Appl. 4(4), 1087–1101 (2017).
Special Issue Dedicated to the Memory of Grigori Mints. Dov Gabbay and Oleg
Prosorov (Guest Editors)

18. Kahle, R.: Belief Revision Revisited. In: Pombo, O., Pato, A., Redmond, J. (eds.),
Epistemologia, Lógica e Linguagem, vol. 11 of Colecção Documenta. Centro de
Filosofia das Ciências da Universidade de Lisboa (2019)

19. Kukin, V D.: Heisenberg representation. Encyclopedia of Mathematics. http://
encyclopediaofmath.org/index.php?title=Heisenberg representation&oldid=44704

20. Kukin, V.D.: Schrödinger representation. Encyclopedia of Mathematics. http://
encyclopediaofmath.org/index.php?title=Schr

21. Küchlin, W.: Symbolische KI für die Produktkonfiguration in der Automobilin-
dustrie. In: Mainzer, K. (eds.), Philosophisches Handbuch Künstliche Intelligenz.
Springer, New York (2021) https://doi.org/10.1007/978-3-658-23715-8 53-1

22. Rendsvig, R., Symons, J.: Epistemic logic. In: Zalta, E.N. (ed.), The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer
2019 edition (2019)

23. Ryle, G.: Konwing how and knowing that. Proc. Aristotelian Soc. 46, 1–16 (1945–
46)

24. Tamari, D.: Moritz Pasch (1843–1930). Shaker Verlag (2007)
25. Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

http://encyclopediaofmath.org/index.php?title=Heisenberg_representation&oldid=44704
http://encyclopediaofmath.org/index.php?title=Heisenberg_representation&oldid=44704
http://encyclopediaofmath.org/index.php?title=Schr
http://encyclopediaofmath.org/index.php?title=Schr
https://doi.org/10.1007/978-3-658-23715-8_53-1

Short-Circuiting the Definition
of Mathematical Knowledge

for an Artificial General Intelligence

Samuel Allen Alexander(B)

The U.S. Securities and Exchange Commission, Washington D.C., USA
samuelallenalexander@gmail.com

https://philpeople.org/profiles/samuel-alexander/publications

Abstract. We propose that, for the purpose of studying theoretical
properties of the knowledge of an agent with Artificial General Intel-
ligence (that is, the knowledge of an AGI), a pragmatic way to define
such an agent’s knowledge (restricted to the language of Epistemic Arith-
metic, or EA) is as follows. We declare an AGI to know an EA-statement
φ if and only if that AGI would include φ in the resulting enumeration
if that AGI were commanded: “Enumerate all the EA-sentences which
you know.” This definition is non-circular because an AGI, being capa-
ble of practical English communication, is capable of understanding the
everyday English word “know” independently of how any philosopher
formally defines knowledge; we elaborate further on the non-circularity
of this circular-looking definition. This elegantly solves the problem that
different AGIs may have different internal knowledge definitions and yet
we want to study knowledge of AGIs in general, without having to study
different AGIs separately just because they have separate internal knowl-
edge definitions. Finally, we suggest how this definition of AGI knowledge
can be used as a bridge which could allow the AGI research community
to import certain abstract results about mechanical knowing agents from
mathematical logic.

Keywords: AGI · Machine knowledge · Quantified modal logic

1 Introduction

It is difficult to define knowledge, or what it means to know something. In Plato’s
dialogues, again and again Socrates asks people to define knowledge1, and no-
one ever succeeds. Neither have philosophers reached consensus even in our own
era [15].

At the same time, the problem is often brushed aside as something only
philosophers care about: pragmatists rarely spend time on this sort of debate.
One exception is in the study of agents with Artificial General Intelligence (AGIs,

1 Perhaps the best example being in the Theaetetus [18].

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 201–213, 2021.
https://doi.org/10.1007/978-3-030-67220-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_16&domain=pdf
http://orcid.org/0000-0002-7930-110X
https://doi.org/10.1007/978-3-030-67220-1_16

202 S. A. Alexander

or Type II AIs in the terminology of [7]), where even the staunchest pragmatists
admit the importance of the question.

In this paper, we narrow down the question “what is knowledge” and offer
a simple answer within that narrow context: we propose a definition of what
it means for a suitably idealized AGI to know a mathematical sentence2 in the
language of Epistemic Arithmetic [21] (hereafter EA). EA is the language of
Peano Arithmetic along with an additional modal operator K for knowledge. To
be precise:

– EA-terms are built up from variables x, y, . . . and a constant symbol for 0,
the unary function symbol S for the successor function, and binary function
symbols for addition and multiplication.

– EA-formulas are built up from atomic EA-formulas (which are of the form
s = t where s and t are EA-terms), propositional connectives →,¬, uni-
versal quantifiers ∀x,∀y, . . ., existential quantifiers ∃x,∃y, . . ., and modal
operator K.

The EA-sentence K(1 + 1 = 2) might be read “I know 1 + 1 = 2” or “the
knower knows 1 + 1 = 2”. Our proposed definition is parsimonious (at the price
of appearing deceptively circular). We say that an AGI knows an EA-sentence φ
if and only if φ would be among the sentences which that AGI would enumerate
if that AGI were commanded:

“Enumerate all the EA-sentences which you know.”

This is non-circular because an AGI, being capable of practical English com-
munication, is therefore capable of understanding the everyday English word
“know” in the above command, independently of how any philosopher formally
defines knowledge. We discuss this further in Subsect. 3.1.

A primary motivation for this paper was the author’s experience in the AGI
research community where applications of mathematical logic are hindered by
questions like “What does it mean for an AGI to know something?” For exam-
ple, philosophers have long known that a suitably idealized mechanical knowing
agent cannot know its own code and its own truthfulness3. But in informal
conversations, we find AGI researchers struggle with this assertion, and we can
hardly blame them, since, without agreeing what it means for the AGI to know
something, of course the question arises, “What does it mean for an AGI to know
something?” Likewise, we have proposed [6] an AGI intelligence measure based
on the AGI’s knowledge, and this, too, often provokes the response “What does
it mean for an AGI to know something?” In Sect. 5 we will consider these exam-
ples, and related examples from the same area, using our proposed definition to
translate them into a more concrete form, not in terms of what the AGI knows,
but in terms of the AGI’s stimulus-responses.
2 By a sentence, we mean a formula with no free variables. Thus, x2 > 0 is not a

sentence, but ∀x(x2 > 0) is.
3 Often phrased more like “cannot know its own code”, with knowledge-of-own-

truthfulness taken for granted.

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 203

The structure of this paper is as follows.

– In Sect. 2 we discuss the AGIs whose knowledge we are attempting to define.
– In Sect. 3 we propose a knowledge definition for AGIs for EA-sentences.
– In Sect. 4 we extend our knowledge definition to formulas with free variables.
– In Sect. 5 we use this knowledge definition as a bridge to translate some ideas

from mathematical logic into the field of AGI.
– In Sect. 6 we summarize and make concluding remarks.

2 Idealized AGIs

In this paper, we approach AGI using what Goertzel [13] calls the Universalist
Approach: we adopt “...an idealized case of AGI, similar to assumptions like
the frictionless plane in physics”, hoping that by understanding this “simplified
special case, we can use the understanding we’ve gained to address more realistic
cases.” At the same time, an AGI might serve as a kind of hyper-idealized proxy
for human cognition, and we hope that the development of the logic of AGI
may serve as a step toward development of “new forms of logic as the basis of
cognitive and substrate-independent studies of intelligent interaction” [11].

We do not have a formal definition for what an AGI is, but whatever it is, we
assume an AGI is a deterministic machine which repeatedly reads sensory input
from its environment and outputs English words based on what sensory inputs
it has received so far4. When we say that this AGI is a “deterministic machine”,
we mean that said outputs (considered as a function of said inputs) could be
computed by a Turing machine. We further assume the AGI can understand
English commands and is capable of practical English communication. Thus, if
we were to command the AGI in English, “Tell us the value of 1 + 1”, the AGI
would respond in English and reply “2”, or “1 + 1 = 2”, or something along
those lines5.

We assume an AGI is capable of everyday English discussions which would
cause no difficulty to a casual English speaker, even if these discussions involve
topics, such as “knowledge”, which might be philosophically tricky. A casual
English speaker does not get stuck in philosophical questions about the nature of
knowledge just in order to answer a question like “Do you know that 1+1 = 2?”,
and therefore neither should our AGI.

We also assume an AGI is better than a casual human English speaker in
certain ways. We assume an AGI would have no objections to performing tedious

4 We should note that, with the AGI research field being so young, there is little
consensus even on basic things. Some researchers would consider some things to be
AGI which have no communication ability (applying the term to entities who have
certain adaptation abilities or pattern-matching abilities, for example, even if those
entities have no means of communicating), however, we believe that to be a minority
opinion.

5 We assume the AGI explicitly follows commands (that it is “under explicit control”,
to use Yampolskiy’s terminology [24]).

204 S. A. Alexander

tasks indefinitely, if so commanded. If we asked a casual human English speaker
to begin computing and reciting all the prime numbers until further notice,
and then we waited silently forever listening to the results, said human would
eventually get tired of the endless tedium and would disobey our command (and
would probably make arithmetic errors along the way). We assume an AGI has
no such limitations and would happily compute and recite prime numbers for all
eternity, if so commanded (without arithmetic mistakes). Of course, in reality
the AGI would eventually run out of memory, terminate when the world ends,
etc., but we are speaking of idealized AGI here and we intentionally ignore such
possibilities, in the same way a Turing machine is assumed to have infinite tape
and infinite time to run.

3 An Elegant Definition of Mathematical Knowledge

The following definition may initially look circular, but we will argue it is not.

Definition 1. Let X be an AGI. For any EA-sentence φ, we say that X knows
φ if and only if X would eventually include φ in the resulting enumeration if X
were commanded:

“Enumerate all the EA-sentences which you know.”

Definition 1 is non-circular because the AGI is capable (see Sect. 2) of prac-
tical English communication, including that involving everyday English words
such as the word “know”, independently of how any philosophers formally define
things6. More on this in Subsect. 3.1.

One of the strengths of Definition 1 is that it is uniform across different
AGIs: many different AGIs might internally operate based on different definitions
of knowledge, but Definition 1 works equally well for all these different AGIs
regardless of those different internal knowledge definitions7. We can contrast this
with difficulties that could arise from a more experimental approach. Scientists
could carefully examine one particular AGI and eventually discover how that
AGI’s knowledge works, and attempt to define AGI knowledge accordingly, for
example, they might define knowledge in terms of the contents of Memory Bank
35, which exists in that particular AGI. But then another AGI might come along
which functions completely differently than the first AGI, and does not even have
said Memory Bank 35 at all. Definition 1 is not tied to the particular form of
the AGI, just so long as the AGI obediently follows English commands.

Remark 1. In Definition 1 when we speak of what the AGI would do if given
such a command, implicitly we intend this to be understood as what the AGI
would do if given such a command and then allowed to respond to the command

6 This is reminiscent of Williamson’s contextualism [23].
7 This is reminiscent of Elton’s proposal that instead of trying to interpret an AI’s

outputs by focusing on specific low-level details of a neural network, we should
instead let the AI explain itself [12].

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 205

in isolation, without outside distractions. An AGI could potentially update its
knowledge based on observations of the world, and so its knowledge might change
from one time to the next: its knowledge at a given instant is defined by Definition
1 to consist of what the AGI would enumerate if the AGI were so commanded
at that particular instant (and immediately secluded from further distracting
observations).

Although Definition 1 may differ significantly from a particular AGI X’s own
internal definition of knowledge, the following theorem states that materially the
two definitions have the same result.

Theorem 1. Suppose X is an AGI. For any EA-sentence φ, the following are
equivalent:

1. X is considered to know φ (based on Definition 1).
2. X knows φ (based on X’s own internal understanding of knowledge).

Proof. By Definition 1, (1) is equivalent to the statement that X would include
φ in the list which X would output if X were commanded:

“Enumerate all the EA-sentences which you know.”

Since we have assumed (in Sect. 2) that X is obedient, X would output φ in the
resulting list if and only if (2). ��
Theorem 2. Let X be an AGI. The set of EA-sentences φ such that X knows
φ (based on Definition 1) is computably enumerable.

Proof. This follows from our assumption (in Sect. 2) that X is a deterministic
machine. ��

3.1 Non-circularity of Definition 1

‘What is said by a speaker (what she meant to say, her “meaning-
intention”) is understood or misunderstood by a hearer (“an interpreter”).’
—Albrecht Wellmer [22]

Definition 1 is non-circular because an AGI’s response to an English com-
mand only depends on how the AGI understands the words in that command,
not on how we (the speakers) understand those words. Recall from Sect. 2 that
we are assuming an AGI is a deterministic machine which outputs English words
based on sensory inputs from its environment. Those outputs depend only on
those environmental inputs, and not on any decisions made by philosophers.

If the reader wants to further convince themselves of the non-circularity of
Definition 1, we need only point out that the apparent circularity would disap-
pear if we changed Definition 1 to define what it means for X to “grok” sentence
φ, rather than to “know” sentence φ (without changing the command itself). In
other words, we could define that X “groks” φ if and only if X would include φ
in the list of sentences that would result if X were commanded,

206 S. A. Alexander

“Enumerate all the EA-sentences which you know.”

This would make the non-circularity clearer, because the word “grok” does not
appear anywhere in the command.

We will further illustrate the non-circularity of Definition 1 with two
examples.

– (The color blurple) Bob could (without Alice’s awareness) define “blurple” to
be the color of the card which Alice would choose if Bob were to run up to
Alice, present her a red card and a blue card, and demand: “Quick, choose
the blurple card! Do it now, no time for questions!” There is nothing circular
about this, because Alice’s choice cannot depend on a definition which Alice
is unaware of.

– (Zero to the zero) If asked to compute 00, some calculators output 1, and some
output an error message or say the result is undefined8. For any calculator
X, it would be perfectly non-circular to define “the 00 of X” to be the output
which X outputs when asked to compute 00. Said output is pre-programmed
into the calculator; the calculator does not read the user’s mind in order to
base its answer on any definitions that exist there.

These considerations hinge on the AGI being separate from the reader. The
human reader can apply Definition 1 to AGIs which she creates, but not to
herself. An AGI X could apply Definition 1 to child AGIs that X created, but
X could not apply the definition to X’s own knowledge9.

3.2 Sentences Using the Knowledge Operator

Definition 1 is particularly interesting when φ itself makes use of EA’s K operator
for knowledge.

Example 1. Applying Definition 1, we consider an AGI X to know K(1+1 = 2)
if and only if X would output K(1 + 1 = 2) when commanded to enumerate all
the EA-sentences he knows. X would (when so commanded) output K(1+1 = 2)
if and only if X knows (in his own internal sense of the word “know”) that he
knows (in his own internal sense of the word “know”) 1 + 1 = 2.

3.3 A Simpler Definition, and Why It Does Not Work

“It is difficult to be aware of whether one knows or not. For it is difficult
to be aware of whether we know from the principles of a thing or not—
and that is what knowing is. (...) Let that demonstration be better which,

8 Which is incorrect—see [16].
9 This is reminiscent of a recent argument [17] that humans maintain superiority over

the AIs they create, as, for example, today’s latest and greatest chess-playing AI is
better at tactically playing individual games of chess, but is incapable of designing
its own replacement (tomorrow’s latest and greatest chess-playing AI), which will
instead be designed by humans (making humans still better at chess in a higher-level
sense).

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 207

other things being equal, depends on fewer postulates or suppositions. For
if they are equally familiar, knowing will come about more quickly in this
way; and that is preferable.” —Aristotle [8]

The reader might wonder why we would not further simplify Definition 1
and declare that X knows φ if and only if X would respond “yes” if X were
asked: “Do you know φ? (Yes or no)”. We will argue that this would be a poor
candidate for an idealized knowledge definition.

Definition 2. If X is an AGI and φ is an EA-sentence, say that X quick-knows
φ if and only if X would respond “yes” if X were asked, “Do you know φ? (Yes
or no)”.

The following should be contrasted with Theorem 2.

Theorem 3. Let X be an AGI. The set of EA-sentences φ such that X quick-
knows φ is computable.

Proof. This follows from our assumption (in Sect. 2) that X is a deterministic
machine. ��

By Theorem 3, it seems that if we used Definition 2 as a knowledge definition,
it would contradict Aristotle’s claim that “it is difficult to be aware of whether
one knows or not”. It is more plausible that knowledge be computably enumerable
(as in Theorem 2) than that knowledge be computable. A prototypical example of
a set which is computably enumerable but not computable is: the consequences
of Peano arithmetic10 (hereafter PA). Said consequences cannot be computable,
lest they could be used to solve the Halting Problem (because a Turing machine
halts if and only if PA proves that it halts).

Theorem 4. Let X be an AGI and assume X does not quick-know any false-
hoods. At least one of the following is true:

1. There is an axiom of PA which X does not quick-know.
2. There exist PA-sentences φ and ψ such that X quick-knows ψ and X quick-

knows ψ → φ, but X does not quick-know φ.

Proof. It is well-known that a sentence φ is provable from PA if and only if there
is a sequence φ1, . . . , φn such that:

1. φn is φ.
2. For every i, either φi is an axiom of PA, or else there are j, k < i such that

φk is φj → φi.

(Loosely speaking: proofs from PA can be carried out using no rules of inference
besides Modus Ponens.) For any formula φ which PA proves, let |φ| be the
smallest n such that there is a sequence φ1, . . . , φn as above.

10 We assume Peano arithmetic is true.

208 S. A. Alexander

Call a PA-sentence φ elusive if PA proves φ but X does not quick-know φ.
By Theorem 3, the fact that X does not quick-know any falsehoods, and the
unsolvability of the Halting Problem, it follows that some elusive φ exists—
otherwise, to computably determine whether or not a given Turing machine M
halts, we could simply ask X, “Do you know Turing machine M halts? (Yes or
no)”.

Since some elusive φ exists, there exists an elusive φ such that |φ| is as small
as possible—that is, such that |φ| ≤ |ψ| for every elusive ψ. Fix such a φ.

Case 1: φ is an axiom of PA. Then condition (1) of the theorem is satisfied,
as desired.

Case 2: φ is not an axiom of PA. Let φ1, . . . , φ|φ| be as in the first paragraph
of this proof (so φ|φ| is φ). Then since φ is not an axiom of PA, there must be
j, k < |φ| such that φk is φj → φ|φ|. Now, the sequence φ1, . . . , φk witnesses that
PA proves φk and |φk| ≤ k < |φ|; and the sequence φ1, . . . , φj witnesses that PA
proves φj and |φj | ≤ j < |φ|. Thus, since φ was chosen to be elusive with |φ| as
small as possible, it follows that φk and φj are not elusive. Thus, X quick-knows
φj , and X quick-knows φk, but φk is φj → φ. Thus condition (2) of the theorem
is satisfied, as desired. ��

Theorem 4 shows that Definition 2 makes a poor notion of idealized knowl-
edge. An AGI should certainly know the axioms of PA, and should certainly
be capable of the minimal logical reasoning needed to conclude φ from ψ and
ψ → φ. And the way we have established the unsuitability of Definition 2 is nicely
anticipated by the words of Aristotle quoted at the beginning of this subsection.

4 Quantified Modal Logic

Definition 1 only addresses sentences with no free variables. In this section, we
will extend Definition 1 to formulas which possibly include free variables. We
are essentially adapting a trick from Carlson [10].

Definition 3. We define so-called numerals, which are EA-terms, one numeral
n for each natural number n ∈ N, by induction: 0 is defined to be 0 (the constant
symbol for zero from PA) and for every n ∈ N, n + 1 is defined to be S(n) (where
S is the successor symbol from PA).

For example, the numeral 3 is the term S(S(S(0))).

Definition 4. If φ is an EA-formula (with free variables x1, . . . , xk), and if s
is an assignment mapping variables to natural numbers, then we define φs to be
the sentence

φ(x1|s(x1))(x2|s(x2)) · · · (xk|s(xk))

obtained by substituting for each free variable xi the numeral s(xi) for xi’s value
according to s.

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 209

Example 2. Suppose s(x) = 0, s(y) = 1, and s(z) = 3. Then

((z > y + x) ∧ ∀x(K(z > y + x − x)))s

is defined to be
((3 > 1 + 0) ∧ ∀x(K(3 > 1 + x − x)))

(note that the numeral is not substituted for the later occurrences of x because
these are bound by the ∀x quantifier).

Definition 5. If φ is any L -formula, and s is any assignment mapping vari-
ables to N, we say that X knows φ (with variables interpreted by s) if and only
if X knows φs according to Definition 1.

Armed with Definition 5, the Tarskian notion [14] of truth can be extended
to EA.

Example 3. Assume an AGI X is clear from context. Suppose φ is an EA-
formula, of one free variable x, which expresses “the xth Turing machine even-
tually halts”. Suppose we want to assign a truth value to the formula

∃x(¬K(φ) ∧ ¬K(¬φ)).

We proceed as follows.

– Following Tarski, we should declare ∃x(¬K(φ) ∧ ¬K(¬φ)) is true if and only
if for every assignment s mapping variables to N, ∃x(¬K(φ) ∧ ¬K(¬φ)) is
true (with variables interpreted by s).

– By the semantics of ∃, the above is true if and only if for every assignment
s, there is some n ∈ N such that ¬K(φ) ∧ ¬K(¬φ) is true (with variables
interpreted by s(x|n)), where s(x|n) is the assignment that agrees with s
except for mapping x to n.

– By Definition 5, this is the case if and only if for every assignment s there is
some n ∈ N such that X does not know φs(x|n) (according to Definition 1)
and X does not know ¬φs(x|n) (according to Definition 1).

– By Definition 4 and the fact that x is the only free variable in φ, the above
is the case if and only if there is some n ∈ N such that X does not know
φ(x|n) (according to Definition 1) and X does not know ¬φ(x|n) (according
to Definition 1).

So ultimately, we consider ∃x(¬K(φ) ∧ ¬K(¬φ)) to be true if and only if there
is some n ∈ N such that, in response to the command “Enumerate all the EA-
sentences which you know”, X would not include φ(x|n) nor ¬φ(x|n) in the
resulting enumeration.

210 S. A. Alexander

5 Translating Knowledge Formulas

In this section, we will look at some formulas about knowledge and translate
them into statements about AGI stimulus-response, using Definitions 1 and 5.
First, we will start by translating some simple axioms of knowledge, to give
the reader a feel for how this translation works. Then, we will advance to the
examples we mentioned in the Introduction, and closely related examples.

Although the statements in the following example may seem plausible, our
purpose is not to claim that every AGI must satisfy them. Rather, they serve to
classify AGIs: for each axiom schema, one can speak of AGIs who satisfy that
axiom schema, and of AGIs who do not satisfy it.

Example 4. (Basic axioms of knowledge) The following axiom schemas, in the
language of EA, are taken from Carlson [10] (we restrict them to sentences for
purposes of simplicity).

– (E1) K(φ) whenever φ is valid (i.e., true in every model). Translated for an
AGI X using Definition 1, this becomes: “If commanded to enumerate his
knowledge in EA, X will include all valid EA-sentences in the resulting list.”

– (E2) K(φ → ψ) → K(φ) → K(ψ). This becomes: “If commanded to enu-
merate his knowledge in EA, if X would include φ → ψ and if X would also
include φ, then X would also include ψ.”

– (E3) K(φ) → φ. This becomes: “If commanded to enumerate his knowledge
in EA, the resulting statements X enumerates would be true.”

– (E4) K(φ) → K(K(φ)). This becomes: “If commanded to enumerate his
knowledge in EA, if X would list φ, then X would also list K(φ).”

Our purpose in Example 4 is not to declare that an AGI must satisfy E1–E4.
Rather, our goal is to translate these modal logical axioms into AGI language—
note that the translations in quotation marks in Example 4 do not directly
depend on the AGI’s knowledge, but only on the AGI’s stimulus-response. When
studying AGI in broadest generality, even E3, the factivity of knowledge, might
be questioned (certain AGIs might satisfy it and other AGIs might not). By
translating E3 into a concrete statement about the AGI’s stimulus-response, we
can talk about “AGIs who satisfy E3” or “AGIs who fail E3,” without getting
stuck on hard questions like “What does it mean to know something?”

Example 5. (Reinhardt’s strong mechanistic thesis [10,19,20]) Reinhardt sug-
gested the EA-schema

∃e∀x(K(φ) ↔ x ∈ We)

as a formalization of the mechanicalness of the knower. Here, We is the eth
computably enumerable set of natural numbers11 (We can also be thought of
as the set of naturals enumerated by the eth Turing machine). For simplic-
ity, consider the case where x is the lone free variable of φ. Then in terms of

11 It can be shown that We is definable in the language of Peano arithmetic, therefore
we can use expressions like “x ∈ We” in EA-formulas as shorthand.

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 211

Definition 5, the schema becomes: “If X were commanded to enumerate his
knowledge in the language of EA, then the set of n ∈ N such that X would
include φ(x|n) in the resulting list, would be computably enumerable.” If Φ is
the universal closure12 of the above EA-schema, then the schema K(Φ) is Rein-
hardt’s strong mechanistic thesis. Reinhardt conjectured that his strong mech-
anistic thesis is consistent with basic axioms about knowledge (i.e., that it is
possible for a knowing machine to know that it is a machine). This conjecture
was proved by Carlson [10] using sophisticated structural results about the ordi-
nals [9]. See [4] for an elementary proof of a weaker version of the conjecture.

Example 6. (Reinhardt’s absolute version of Gödel’s incompleteness theorem) If
we vary the formula from Example 5 by requiring that the knower know the
value of e, we obtain:

∃eK(∀x(K(φ) ↔ x ∈ We)).

Carlson [10] glosses this schema in English as: “I am a Turing machine, and
I know which one.” Reinhardt showed that this schema is not consistent with
basic axioms about knowledge. Following Carlson’s gloss, this shows that it is
impossible for a suitably idealized AGI to know its own code13.

Remark 2. As far as I know, AGI has not yet received much attention in the
mathematical logical literature. Instead, mathematical logicians tend to concern
themselves with knowing agents or knowing machines. Presumably, every suit-
ably idealized AGI is a knowing agent and a knowing machine, but certainly not
every knowing agent (or knowing machine) is an AGI. Thus, in general, inconsis-
tency results about knowing agents or knowing machines carry directly over to
AGIs (if no knowing agent, or no knowing machine, can satisfy some property,
then in particular no suitably idealized AGI can either). Consistency results do
not generally carry over to AGIs (it may be possible for a knowing agent or
a knowing machine to satisfy some property, but it might be that none of the
knowing agents or knowing machines which satisfy that property are AGIs).
Nevertheless, a consistency result about knowing agents or knowing machines
should at least count as evidence in favor of the corresponding consistency result
for AGIs, at least if there is no clear reason otherwise. In the examples above:

– Reinhardt’s strong mechanistic thesis (Example 5) was proven to be consis-
tent with basic knowledge axioms, so it is possible for a knowing machine
to know that it is a machine (without necessarily knowing which machine).
Since not every knowing machine is an AGI, it might still be impossible for
an AGI to know it is a machine. But the consistency of Reinhardt’s strong
mechanistic thesis at least suggests evidence that an AGI can know it is a
machine.

12 A universal closure of a formula φ is a sentence ∀x1 · · · ∀xkφ, and the universal
closure of a schema of formulas is the schema of universal closures of those formulas.

13 We have pointed out elsewhere [3] that (i) Reinhardt implicitly assumes that the
knower knows its own truthfulness; and (ii) it is possible for a knowing machine to
know its own code if it is allowed to be ignorant of its own truthfulness, despite still
being truthful. See [1] and [2] for some additional discussion.

212 S. A. Alexander

– Reinhardt’s absolute version of the incompleteness theorem (Example 6) is
an inconsistency result. As such, it transfers over directly to AGI, proving
that no suitably idealized AGI can know its own code14.

Example 7. (Intuitive Ordinal Intelligence) In [5] we defined an intelligence mea-
sure for idealized mechanical knowing agents (who are aware of the computable
ordinals) as follows. If A is such a knowing agent, we define the intelligence of
A to be the supremum of the set of ordinals α such that α has some code c
such that A knows that c is a code of a computable ordinal. In [6] we specialized
this to AGIs, and called it Intuitive Ordinal Intelligence. Let L be a language
like EA but including an additional predicate symbol O for the set of codes of
computable ordinals. Modifying Definition 1 accordingly, we can systematically
perform said specialization to AGIs, and it becomes: “The Intuitive Ordinal
Intelligence of an AGI X is the supremum of the set of ordinals α such that α
has some code c such that X would include O(c) in the resulting enumeration if
we asked X to enumerate all the L -sentences that he knows.”

6 Conclusion

What does it mean to know something? This is a difficult question and there
probably is no one true answer. In the field of AGI, how can we systematically
investigate the theoretical properties of knowledge, when different AGIs might
not even agree about what knowledge really means? So motivated, we have pro-
posed an elegant way to brush these philosophical questions aside. In Definition
1, we declare that an AGI knows an EA-sentence if and only if that AGI would
enumerate that sentence if commanded:

“Enumerate all the EA-sentences which you know”

(this definition might look circular at first glance but we have argued that it
is not; see Subsect. 3.1). In Definition 5 we extended this to formulas with free
variables, not just sentences.

This universal knowledge definition sets the study of AGI knowledge on a
firmer theoretical footing. In Sect. 5 we give examples of how our definition can
serve as a bridge to translate knowledge-related formulas from mathematical
logic into the realm of AGI.

Acknowledgments. We gratefully acknowledge Alessandro Aldini, Phil Maguire,
Brendon Miller-Boldt, Philippe Moser, and the reviewers for comments and feedback.

References

1. Aldini, A., Fano, V., Graziani, P.: Do the self-knowing machines dream of knowing
their factivity? In: AIC, pp. 125–132 (2015)

14 Or rather, its own code and its own truthfulness—we have pointed out [3] that
Reinhardt implicitly assumes the knower knows its own truthfulness.

Short-Circuiting the Definition of Mathematical Knowledge for an AGI 213

2. Aldini, A., Fano, V., Graziani, P.: Theory of knowing machines: revisiting Gödel
and the mechanistic thesis. In: Gadducci, F., Tavosanis, M. (eds.) HaPoC 2015.
IAICT, vol. 487, pp. 57–70. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-47286-7 4

3. Alexander, S.A.: A machine that knows its own code. Stud. Logica. 102(3), 567–
576 (2014)

4. Alexander, S.A.: Fast-collapsing theories. Stud. Logica. 103(1), 53–73 (2015)
5. Alexander, S.A.: Measuring the intelligence of an idealized mechanical knowing

agent. In: CIFMA (2019)
6. Alexander, S.A.: AGI and the Knight-Darwin law: why idealized AGI reproduction

requires collaboration. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R.
(eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 1–11. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-52152-3 1

7. Aliman, N.-M., et al.: Error-correction for AI safety. In: Goertzel, B., Panov, A.I.,
Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 12–22.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3 2

8. Aristotle: Posterior analytics. In: Barnes, J., et al. (eds.) The Complete Works of
Aristotle. Princeton University Press (1984)

9. Carlson, T.J.: Ordinal arithmetic and Σ1-elementarity. Arch. Math. Logic 38(7),
449–460 (1999)

10. Carlson, T.J.: Knowledge, machines, and the consistency of Reinhardt’s strong
mechanistic thesis. Ann. Pure Appl. Logic 105(1–3), 51–82 (2000)

11. Cerone, A., Fazli, S., Malone, K., Pietarinen, A.V.: Interdisciplinary aspects of
cognition. In: CIFMA (2019)

12. Elton, D.: Self-explaining AI as an alternative to interpretable AI. In: International
Conference on Artificial General Intelligence (2020)

13. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future
prospects. J. Artif. General Intell. 5, 1–48 (2014)

14. Hodges, W.: Tarski’s truth definitions. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2018
edn. (2018)

15. Ichikawa, J.J., Steup, M.: The analysis of knowledge. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Uni-
versity, summer 2018 edn. (2018)

16. Knuth, D.E.: Two notes on notation. Am. Math. Monthly 99(5), 403–422 (1992)
17. Maguire, P., Moser, P., Maguire, R.: Are people smarter than machines? Croatian

J. Philosop. 20(1), 103–123 (2020)
18. Plato: Theaetetus. In: Cooper, J.M., Hutchinson, D.S., et al. (eds.) Plato: complete

works. Hackett Publishing (1997)
19. Reinhardt, W.N.: Absolute versions of incompleteness theorems. Nous 19, 317–346

(1985)
20. Reinhardt, W.N.: Epistemic theories and the interpretation of Gödel’s incomplete-

ness theorems. J. Philosoph. Logic 15(4), 427–474 (1986)
21. Shapiro, S.: Epistemic and intuitionistic arithmetic. In: Studies in Logic and the

Foundations of Mathematics, vol. 113, pp. 11–46. Elsevier (1985)
22. Wellmer, A.: Skepticism in interpretation. In: Conant, J.F., Kern, A. (eds.) Vari-

eties of Skepticism: Essays after Kant, Wittgenstein, and Cavell. Walter de Gruyter
(2014)

23. Williamson, T.: Knowledge, context, and the agent’s point of view. In: Preyer, G.,
Peter, G. (eds.) Contextualism in Philosophy: Knowledge, Meaning, and Truth,
pp. 91–114. Oxford University Press (2005)

24. Yampolskiy, R.: On controllability of artificial intelligence. Technical report (2020)

https://doi.org/10.1007/978-3-319-47286-7_4
https://doi.org/10.1007/978-3-319-47286-7_4
https://doi.org/10.1007/978-3-030-52152-3_1
https://doi.org/10.1007/978-3-030-52152-3_2

Reasoning About Ignorance and Beliefs

Alessandro Aldini(B), Pierluigi Graziani, and Mirko Tagliaferri

University of Urbino Carlo Bo, Urbino, Italy
alessandro.aldini@uniurb.it

Abstract. When building artificial agents that have to make decisions,
understanding what follows from what they know or believe is manda-
tory, but it is also important to understand what happens when those
agents ignore some facts, where ignoring a fact is interpreted to stand
for not knowing/not being aware of something. This becomes especially
relevant when such agents ignore their ignorance, since this hinders their
ability of seeking the information they are missing. Given this fact, it
might prove useful to clarify in which circumstances ignorance is present
and what might cause an agent to ignore that he/she is ignoring. This
paper is an attempt at exploring those facts. In the paper, the rela-
tionship between ignorance and beliefs is analysed. In particular, three
doxastic effects are discussed, showing that they can be seen as a cause
of ignorance. The effects are formalized in a bi-modal formal language
for knowledge and belief and it is shown how ignorance follows directly
from those effects. Moreover, it is shown that negative introspection is
the culprit of the passage between simply ignoring a fact and ignoring
someone’s ignorance about that fact. Those results could prove useful
when artificial agents are designed, since modellers would be aware of
which conditions are mandatory to avoid deep forms of ignorance; this
means that those artificial agents would be able to infer which informa-
tion they are ignoring and they could employ this fact to seek it and fill
the gaps in their knowledge/belief base.

Keywords: Ignorance · Beliefs · Modal logics

1 Introduction

A sub-field of artificial intelligence is the one that concentrates on building expert
systems. An expert system (ES) is a computer system that tries to emulate the
decision-making abilities of human beings. ESs often rely on knowledge bases,
which can be employed by the systems to infer new information and, thus, allow
for better decisions [23]. In this respect, modal logic provides an invaluable con-
tribution to the modelling of such systems, since formal systems of epistemic
logic can satisfactorily represent knowledge and inferences based on knowledge
[3,17]. Those modal languages are even more impactful when finer grained cog-
nitive phenomena are taken into consideration. For instance, BDI (Belief-Desire-
Intention) intelligent systems can decide which plans are better to perform and
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 214–230, 2021.
https://doi.org/10.1007/978-3-030-67220-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_17

Reasoning About Ignorance and Beliefs 215

then perform them, thus increasing their efficiency compared to expert systems
that rely only on knowledge bases [8,16,20,24,25]. This shall not come as a sur-
prise; the more aspects of human cognitive infrastructures systems can emulate,
the more the actions and plans of those systems will resemble those of humans.1

While contemporary systems have become extremely good at emulating positive
cognitive elements of human decision-making, one thing which is neglected is
the impact of ignorance.2 Seldom systems make explicit reference to ignorance,
despite the abundance of formal work on the notion[7,9,12,13,19]. This paper
is an attempt at showing that even when ignorance is not modelled directly into
intelligent systems, if those systems have representations of beliefs and certain
doxastic effects take place, then, it can be claimed that the systems are ignor-
ing. In order to achieve this goal, a thorough investigation of ignorance within
a logical framework is provided. Having a clear idea of how ignorance might be
modelled using modal logic and which are the relationships with other cognitive
phenomena such as knowledge and belief can greatly enhance the deductive pow-
ers of intelligent systems employing those improved formal languages to make
their inferences. Moreover, once the formal framework is clear, it is possible to
reason about higher-orders of ignorance, to allow intelligent systems to under-
stand which dangerous cognitive stance they should avoid in order to not fall
within the black-hole of ignoring to ignore. All of this will be obtained assuming
a straightforward definition of ignorance, that can be assumed to be present even
when not explicitly modelled into intelligent systems. The aim of the paper is
thus to show how doxastic3 phenomena relate to ignorance and, furthermore, to
show what principles must be implemented into an intelligent system to avoid
higher-order instances of ignorance.

The structure of the paper will be the following: in Sect. 2, an introduction to
the logic of ignorance and beliefs is provided. In Sect. 3, the relation between believ-
ing and ignoring is explored and explained, providing insights and novel results into
possible ways ignorance can emerge. In Sect. 4, previously proven results [7] on the
relationship between higher-orders of ignorance are discussed.4 In Sect. 5, it will
be shown how the lack of negative introspection can be seen as a major cause of
second-order ignorance (i.e., ignorance of ignorance), providing novel insights into
the relationship between first-order ignorance and second-order ignorance. Finally,
concluding remarks and possible ventures for the future will follow.

2 Logic for Ignorance and Beliefs

The origin of the formal discussion on ignorance can be attributed to Jaakko
Hintikka’s seminal work Knowledge and Belief: An Introduction to the Logic of
1 See [1,4,18] for some recent and interesting applications of BDI systems.
2 It is necessary to clarify that the term ignorance employed in this paper is given a

specific meaning, i.e., to not know/not be aware of something.
3 In this paper, the term doxastic will always refer to the act of believing.
4 In the paper, ignorance will always be indicated with a specific order, which indicates

the depth of the ignoring phenomenon. First-order ignorance means that a given fact
is ignored; second-order ignorance means that it is ignored that a given fact is ignored,
and so forth.

216 A. Aldini et al.

the Two Notions [11]. In his book, Hintikka provides a propositional axiomatiza-
tion of the two notions of knowledge and belief, providing insights also on other
cognitive notions such as that of ignorance. This work is important because it
is the first attempt to try to axiomatize ignorance employing an axiomatization
of knowledge as a starting point. Following this path, Hintikka gave birth to
the classical approach of formally defining ignorance in terms of lack of knowl-
edge. Specifically, for Hintikka, ignoring a specific proposition φ is equivalent to
not knowing whether φ is true or false (formally I(φ) =def ¬K(φ) ∧ ¬K(¬φ)).
This definition of ignorance, while natural, might be considered stronger than the
common notion of ignorance interpreted as not knowing, since the phrase “ignor-
ing φ” might simply stand for “not knowing that φ” (formally I(φ) =def ¬K(φ)).
While this might be true, when dealing with artificial agents, the cognitive stance
of those agents can be interpreted as the stronger one, therefore it makes sense
to follow the classical approach and employ Hintikka’s original definition.

2.1 Defining the Formal Framework

In this paper, the formal definition of ignorance of Hintikka [11] will be assumed.
Moreover, the two notions of knowledge and belief that will be discussed are
going to be interpreted in the language of propositional modal logic, using, as
a semantic basis, Kripke structures. In particular, a bimodal language L will be
employed. For brevity purposes, the syntactic definition of the language will be
provided, but the semantics will not be presented.5

Definition 1 (Logical Language for Knowledge and Belief). Given a
countable set At of primitive propositions p1, . . . , pn the bimodal logical language
L is defined by the set of all formulas obtained through the following grammar:

φ := pi | ¬φ | φ ∧ φ | K(φ) | B(φ) with pi ∈ At

All the other Boolean connectives are defined in the standard way. The main
modalities of the language will be K and B, where K(φ) should be read as “φ
is known” and will be called knowledge formula; B(φ) should be read as “φ is
believed” and will be called belief formula. Finally, ignorance (I) is defined in
terms of knowledge in the following way: I(φ) =def ¬K(φ) ∧ ¬K(¬φ), where
I(φ) will be called an ignorance formula.6

In the language L different readings for the ignorance formulas will be
employed. It will be said that a formula φ is first-order ignored, whenever there
is only one ignorance operator applied to it, the simplest case being I(φ). It will
be said that a formula φ is second-order ignored, whenever there are at least, and
no more than, two nested ignorance operators applied to φ. Again, the simplest
case is I(I(φ)). Higher-order instances of ignorance follow a similar path.

5 The interested reader is referred to [17] for a standard presentation of Kripke struc-
tures.

6 Note that an ignorance formula could represent instances of ignorance of any order,
depending on how many occurrences of ignorance operators appear in the formula
φ.

Reasoning About Ignorance and Beliefs 217

Some particular properties of the two notions of knowledge and beliefs will
be assumed. For the notion of knowledge, it will be assumed that knowledge is
factual (T) and positively introspective (4). The factuality (or truthfulness) of
knowledge is pretty straightforward: this comes mainly from philosophical reflec-
tions on the notion of knowledge, which is taken to be a rigorous cognitive phe-
nomenon strongly tied with truth, i.e., only true things might be known. In fact,
the strength of this axiom is what distinguishes proper knowledge from simple
beliefs. Beliefs might be false, but knowledge never is. The positive introspective
axiom might be slightly more problematic and it comes from the assumption
that agents have a privileged access to their cognitive states. This might not
always make sense for human beings, who can often forget what they know and
thus, are unable to keep track of everything they know, but it is a reasonable
assumption for expert and intelligent systems, which always explicitly compute
what they know and thus have records of all the things they know, without
major issues on the memory side of things. For the notion of belief, it will be
assumed that beliefs are consistent (D). Consistency of beliefs means that some-
one cannot believe that a fact is both true and false at the same time. As with
positive introspection, this assumption might not always be valid for ordinary
human beings, especially the irrational ones; however, since expert and intelli-
gent systems should resemble the behaviour of rational agents, having such a
consistency imposition is mandatory.7 Finally, it will be assumed that the two
notions interact in the following way: knowledge will always imply belief (Int1)
and whenever something is believed, it is known that it is believed (Int2). The
first interaction axiom is commonly derived directly from the analysis of knowl-
edge given in Plato’s Theatetus [15]: in such an analysis, knowledge is taken
to be justified true belief. Unfortunately, the justification component is often
neglected in formal languages, even though some attempts have been made to
insert it;8 the truth component is formalized through axiom T , while the belief
component is given exactly by the interaction axiom Int1. Int2, on the other
hand, is justified using arguments similar to the ones employed for positive intro-
spection. In fact, it is assumed that agents not only have privileged access to
their knowledge, but also to their beliefs. Again, this makes perfect sense when
computational systems are involved, since they often can keep a record of what
they know and/or believe. Formally, all those properties are axiomatized through
the following formulas:

Definition 2 (Properties of Knowledge and Belief). The following for-
mulas are assumed to be valid in L (in symbols �L) for knowledge:

– K: �L K(φ → ψ) → (K(φ) → K(ψ)).
– T: �L K(φ) → φ.
– 4: �L K(φ) → K(K(φ)).

The following formulas are assumed to be valid in L for belief:
7 Note that, given the semantic framework employed to interpret the two notions,

those notions also distribute over implications.
8 See, e.g., [2].

218 A. Aldini et al.

– B: �L B(φ → ψ) → (B(φ) → B(ψ)).
– D: �L ¬(B(φ) ∧ B(¬φ)).

The following formulas are assumed to be valid in L for the interaction between
knowledge and beliefs:

– Int1: �L K(φ) → B(φ).
– Int2: �L B(φ) → K(B(φ)).

A further axiom which will be employed in later sections of the paper, but
will not be assumed in the language is the axiom of negative introspection, often
known as axiom 5 of epistemic logic. Negative introspection is similar in spirit
to positive introspection: both axioms attribute to the agents a form of trans-
parency towards their cognition. As was said above, positive introspection allows
an agent to know everything he/she knows; on the other hand, negative intro-
spection says that an agent will always know what he/she does not know, i.e.,
¬K(φ) → K(¬K(φ)). This axiom, while often assumed in epistemic languages
employed in computer science [10], might be too demanding for artificial agents,
since it would imply that those agents are aware of all the facts they do not
know. Making the reasonable assumption that there are an infinite amount of
unknown facts, this would mean that the artificial agent has an infinite memory
to stock all those facts that it knows not to know. It will be shown later that neg-
ative introspection alone is sufficient to prevent the occurrence of higher-order
instances of ignorance. Moreover, it will be shown that when negative introspec-
tion is assumed missing, then first-order ignorance and second-order ignorance
are tightly tied together.

Note that in the proofs that are given in this paper, various inference rules will
be employed. All those rules are standard rules of modal logic. Since indicating
all the rules employed would occupy way too much space, the reader is invited
to check [14] and [5] for references on all the rules that will be employed in this
paper.9

Now that all the formal details have been given, it is possible to move on to
the reflections concerning the interplay between beliefs and ignorance.

3 Misbelieving, Being Agnostic or Doubting

Understanding the origin of ignorance is quite complicated. Sometimes, it is
easy to recognize if someone is ignorant about something, but it is not clear
what brought about and fed this ignorance. The main issue is that ignorance is
a negative fact, i.e., it is a lack of knowledge, and, therefore, there is no specific

9 The abbreviations that will be employed in the proofs of this paper will all be
reported here. Ass. will stand for “assumption”; P. Taut. will stand for “propositional
tautology”; Elim. will stand for “elimination rule”; Intr. will stand for “introduction
rule”; Contrap. will stand for “contrapposition”; MP will stand for “Modus Ponens”;
DM will stand for “DeMorgan rules”; DS will stand for “disjunctive syllogism”; Nec.
will stand for “necessitation rule”; finally Distr. will stand for “distributivity rule”.

Reasoning About Ignorance and Beliefs 219

moment in time when ignorance is generated; it is there the whole time, until it
disappears. Simply put, ignorance is not something that can be gained, but only
lost. Not having a specific moment in time during which ignorance originates
makes it difficult for researchers to focus on specific acts or behaviours that can
aid their understanding of the phenomenon. For this reason, a formal research
on the notion of ignorance might help to understand what are the constituents of
such notion and thus which other phenomena are responsible for its emergence
and/or existence. Once the formal links between doxastic effects and ignorance
are understood and recognized, modellers will be able to design artificial agents
that are better suited to deal with ignorance and the effects ignorance has in
planning and pursuing a specific goal. Specifically, three different, alternative
doxastic effects will be explored, showing that those individually imply igno-
rance and, conversely, they are implied by ignorance, making them equivalent
to ignorance. The first of those states will be called the misbelieving effect, the
second will be called the agnostic effect, and, finally, the third one will be called
the doubting effect.

Intuitively, we say that an agent is subject to the misbelieving effect either
when the agent believes that a given fact is true, while it is false, or when the
agent believes that a given fact is false, while it is true.10

Definition 3 (Misbelieving Effect). The misbelieving effect is represented by
the following formula:

(B(φ) ∧ ¬φ) ∨ (B(¬φ) ∧ φ) (1)

The misbelieving effect is quite common. Everybody, even the most consci-
entious human being, will have some misbeliefs about the world that surrounds
him/her. Science is full of examples: researchers constantly discover new facts
that contradict what was previously thought to be true, thus highlighting many
misbeliefs that were held by those scientists. Per se, the fact that this effect is
so extensively spread does not cause many problems, since misbelieving, when
taken in isolation, only implies ignorance and it is plausible that most scien-
tists will admit to be ignorant about many things. However, if the misbelieving
agent is not open to revise his/her beliefs, the misbelieving effect might cause
dangerous issues, since both first-order ignorance and higher-order instances of
ignorance will be produced.

Intuitively, we say that an agent is subject to the agnostic effect when the
agent neither believes that a given fact is true nor believes that the fact is false.

Definition 4 (Agnostic Effect). The agnostic effect is represented by the fol-
lowing formula:

¬B(φ) ∧ ¬B(¬φ) (2)

Again, also the agnostic effect is quite common. People not having an opinion
about a specific matter are the prime candidates of agents which are subject to

10 See [6] for a discussion about different aspects that relate misbelieving and ignoring.

220 A. Aldini et al.

this effect. Since they do not have an opinion about a given fact, they simply do
not believe neither in the truth of the fact nor in its falsity. Note that this does not
mean that they do not believe that the fact is either true or false (which is indeed
a tautology and must be believed due to the necessitation rule and Int1), but
they cannot make up their mind in one direction or the other and, thus, suspend
their judgement. It is not surprising that the agnostic effect causes ignorance,
since the lack of beliefs is just the first step to the lack of knowledge. Again,
this is not a problem if the agnostic effect is due to a suspension of judgement
about the truth of a specific fact, since this is just a clear acknowledgement that
such fact is ignored. The problem begins when the agnostic effect is coupled with
unawareness of the possibility of believing that the fact is either true or false.
As with misbelieving, also in this latter case, being agnostic does not just cause
first-order ignorance, but also higher-order instances of ignorance.

Intuitively, we say that an agent is subject to the doubting effect when the
agent believes in something which in fact holds, but he/she does not have the
guarantee that such fact actually holds.

Definition 5 (Doubting Effect). The doubting effect is represented by the
following formula:

(B(φ) ∧ φ ∧ ¬K(φ)) ∨ (B(¬φ) ∧ ¬φ ∧ ¬K(¬φ)) (3)

The doubting effect is similar in spirit to the misbelieving effect. Since in
both cases agents do not have access to the state of the world, from a first-
person perspective, it is impossible, for the agent, to recognize whether he/she
is misbelieving or is simply doubtful. The main difference between the two cases
is that, in the doubting effect, the lack of knowledge of the agent is explicitly
specified. This specification is fundamental, since it is the main culprit of the
emergence of ignorance. This does not seem to be a great surprise, since, per se,
believing something that actually holds should not cause problems.

Even though it seems quite reasonable that the misbelieving effect, the agnos-
tic effect and the doubting effect imply first-order ignorance, such facts must be
proven. The existence of these proofs in standard formal systems can be given
both a normative and a descriptive reading. On the normative side, they show
that the intuitions about misbelieving, being agnostic and doubting are indeed
well-guided and, thus, strengthen the relation between beliefs and knowledge;
on the descriptive side, if it is assumed that the intuitions are justified, the
proofs provided here show that classical epistemic and doxastic formal systems
are well-structured and manage to properly describe real world phenomena. The
proofs provided will show that the three effects presented above are individually
sufficient for ignorance. Subsequently, it will also be shown that ignorance will
always imply at least one of the three effects.

Reasoning About Ignorance and Beliefs 221

3.1 From Misbelieving to Ignoring

Proposition 1. �L ((B(φ) ∧ ¬φ) ∨ (B(¬φ) ∧ φ)) → I(φ).

Proposition 1 says that, in L, misbelieving and ignorance are tied together.
Interestingly, this connection holds also in weaker languages, since axiom 4 and
axiom B of L are not needed in the proof of the proposition, see appendix A.

3.2 From Being Agnostic to Ignoring

Proposition 2. �L (¬B(φ) ∧ ¬B(¬φ)) → I(φ).

Proposition 2 says that, in L, being agnostic and ignorance are tied together.
Again, this result holds also in weaker languages (in fact, systems even weaker
than the ones that satisfy Proposition 1), since only the interaction axiom Int1
is needed to obtain the proof, see appendix A.

3.3 From Doubting to Ignoring

Proposition 3. �L ((B(φ) ∧ φ ∧ ¬K(φ)) ∨ (B(¬φ) ∧ ¬φ ∧ ¬K(¬φ))) → I(φ).

Proposition 3 shows that, in L, doubting and ignorance are tied together.
Note that this connection also holds in weaker systems, since only axiom T of L
has been used in the proof, see appendix A.

3.4 From Ignoring to the Three Effects

The fact that ignorance must imply one among the three effects will now be
proven.

Theorem 1 (From Ignorance to the three effects). The following formula
linking Ignorance and the three doxastic effects is valid in L:

�L I(φ) →
B(φ) ∧ ¬φ ∨
B(¬φ) ∧ φ ∨
¬B(φ) ∧ ¬B(¬φ) ∨
B(φ) ∧ φ ∧ ¬K(φ) ∨
B(¬φ) ∧ ¬φ ∧ ¬K(¬φ)

Proof (Theorem 1).
The proof will be given by contradiction. Assume:

¬K(φ) ∧ ¬K(¬φ) ∧
¬((B(φ) ∧ ¬φ) ∨ (B(¬φ) ∧ φ)) ∧
¬(¬B(φ) ∧ ¬B(¬φ)) ∧
¬((B(φ) ∧ φ ∧ ¬K(φ)) ∨ (B(¬φ) ∧ ¬φ ∧ ¬K(¬φ)))

222 A. Aldini et al.

The previous formula can be transformed into Conjunctive Normal Form
(CNF), i.e., a series of clauses connected by ∧s where each clause only contains
∨s. The first step to do so is to apply DeMorgan to the three clauses (double
negations will also be eliminated directly):

¬K(φ) ∧ ¬K(¬φ) ∧
¬(B(φ) ∧ ¬φ) ∧ ¬(B(¬φ) ∧ φ) ∧
B(φ) ∨ B(¬φ) ∧
¬(B(φ) ∧ φ ∧ ¬K(φ)) ∧ ¬(B(¬φ) ∧ ¬φ ∧ ¬K(¬φ))

A second iteration of DeMorgan is possible (again, double negations will be
eliminated directly):

¬K(φ) ∧ ¬K(¬φ) ∧
(¬B(φ) ∨ φ) ∧ (¬B(¬φ) ∨ ¬φ) ∧
(B(φ) ∨ B(¬φ)) ∧
(¬B(φ) ∨ ¬φ ∨ K(φ)) ∧ (¬B(¬φ) ∨ φ ∨ K(¬φ))

Now, a row will be given to each clause of the above CNF formula:

(a) ¬K(φ) ∧
(b) ¬K(¬φ) ∧
(c) ¬B(φ) ∨ φ ∧
(d) ¬B(¬φ) ∨ ¬φ ∧
(e) B(φ) ∨ B(¬φ) ∧
(f) ¬B(φ) ∨ ¬φ ∨ K(φ) ∧
(g) ¬B(¬φ) ∨ φ ∨ K(¬φ)

Taking the list above as a reference, it is possible to prove that the set of
formulas (a)-(g) leads to a contradiction.

Note first that clause (e) produces two separate cases, i.e., either B(φ) holds
or B(¬φ) holds. It will be shown that both cases lead to a contradiction.

Case 1:
(1) B(φ) Ass.
(2) ¬B(φ) ∨ φ Clause (c)
(3) φ DS (1)-(2)
(4) ¬K(φ) Clause (a)
(5) B(φ) ∧ φ ∧ ¬K(φ) ∧ Intr. (1)-(3)-(4)
(6) ¬(¬B(φ) ∨ ¬φ ∨ K(φ)) DM (5)
(7) ¬B(φ) ∨ ¬φ ∨ K(φ) Clause (f)
(8) Contradiction (6)-(7)

Case 2:
(1) B(¬φ) Ass.
(2) ¬B(¬φ) ∨ ¬φ Clause (d)
(3) ¬φ DS (1)-(2)

Reasoning About Ignorance and Beliefs 223

(4) ¬K(¬φ) Clause (b)
(5) B(¬φ) ∧ ¬φ ∧ ¬K(¬φ) ∧ Intr. (1)-(3)-(4)
(6) ¬(¬B(¬φ) ∨ φ ∨ K(¬φ)) DM (5)
(7) ¬B(¬φ) ∨ φ ∨ K(¬φ) Clause (g)
(8) Contradiction (6)-(7)

All cases lead to a contradiction. Therefore, at least one doxastic effect must
be true whenever first-order ignorance is present. ��

4 Hierarchies of Ignorance

When dealing with hierarchies of ignorance, there are at least two important
aspects which require analysis. The first aspect is the one that describes the
relation between first-order ignorance and second-order ignorance; the second
aspect is the one that describes the relation between second-order ignorance and
higher-order levels of ignorance. The importance of those aspects is based on
one fundamental fact: first-order ignorance is a common phenomenon of every
day life; people are ignorant about many facts and information about the world
they live in. Not only common people, but also scientists and curious persons fall
victim to the phenomenon of ignoring. It is an indissoluble trait of all human
beings. Nonetheless, first-order ignorance is not problematic on its-own; quite
the opposite, first-order ignorance is what often stimulates the genuine curiosity
that pushes human beings towards making new discoveries and increasing their
overall knowledge. What can be considered problematic is the ignorance of igno-
rance (second-order ignorance), since this phenomenon precludes the possibility
of dissipating first-order ignorance, given that people do not have the stimu-
lus to understand something they are not even aware of being ignorant about.
This should highlight the importance of understanding and exploring what is
the relation between first-order ignorance and second-order ignorance. Once the
interplay between the two phenomena is clear, it is possible to design strategies
that lock the passage from the former to the latter.

The second aspect (the relation between second-order ignorance and higher-
orders of ignorance) is important for similar reasons. Once it is admitted that
some forms of second-order ignorance are unavoidable, it might be good to know
that such second-order ignorance exists, i.e., to know that one is second-order
ignorant about something. At least, such knowledge would stimulate persons to
work on their ignorance, in order to avoid it.

While the first aspect is still obscure in the literature on the formal repre-
sentation of ignorance and will be explored in the next section of this paper,
the second aspect has been well explored by Kit Fine in his paper “Ignorance
of ignorance” [7].11 In his paper, Fine shows that second-order ignorance and
11 It should be pointed out that Fine does not use the terms “first-order ignorance”,

“second-order ignorance” and so on. However, to maintain coherence with the rest
of the paper, those terms will be employed when the concepts expressed by Fine are
aligned with the meanings attributed to those terms in this paper.

224 A. Aldini et al.

higher-orders of ignorance are tightly tied together. Once second-order igno-
rance is present, an agent is doomed to the black hole of higher-order levels of
ignorance.

Those aspects about the hierarchies of ignorance are especially important
when strategies for modelling artificial agents are taken into consideration. This
is due to the fact that if modellers do not pay enough attention, those artificial
agents might end up falling victims of second-order ignorance and, subsequently,
to higher-orders of ignorance; they would thus be unable to recognize that they
are missing some information and would not look for it.

Theorem 2 (Fine’s Ignorance Theorem). Second-order ignorance implies
higher-orders of ignorance. Specifically, second-order ignorance implies third-
order ignorance. Third-order ignorance implies fourth-order ignorance and so
forth.

The proof of this statement is straightforward and only requires a few for-
mal definitions and a few lemmas. First, the notion of Rumsfeld ignorance of φ
is introduced. Intuitively, someone is Rumsfeld ignorant when he is first-order
ignorant about φ and does not know it.

Definition 6 (Rumsfeld Ignorance). Rumsfeld ignorance of a formula φ is
represented by the formula

IR(φ) =def I(φ) ∧ ¬K(I(φ))

where I(φ) is a first-order ignorance formula.

Lemma 1 (From second-order ignorance to first-order ignorance).
�L I(I(φ)) → I(φ).12

Lemma 2 (From second-order ignorance to Rumsfeld ignorance).
�L I(I(φ)) → IR(φ).

Lemma 3 (From Rumsfeld ignorance to second-order ignorance).
�L IR(φ) → I(I(φ)).

Lemma 4 (Impossibility of knowing to be Rumsfeld ignorant).
�L ¬K(IR(φ)).

A further lemma which will be useful later is the following.13

12 Proofs of lemmas will not be provided. If the reader is interested, in [7] it is possible
to find all the details concerning the lemmas which are introduced here. The only
important detail is that Fine provides proofs in the axiomatic system S4, which
is a system that defined languages weaker than the one employed in this paper.
Therefore, every proof provided by Fine could be easily reproduced inside L.

13 Fine proves such lemma while proving his main theorem. However, to make the proof
easier to read, this lemma will be given separately. The proof of such lemma can be
found in appendix A.

Reasoning About Ignorance and Beliefs 225

Lemma 5 (Second-order ignorance and impossibility of knowing it).
�L I(I(φ)) → ¬K(I(I(φ))).

It is now possible to prove Fine’s main result about the relationship between
second-order ignorance and higher-orders of ignorance.

Proof (Theorem 2).

(1) I(I(φ)) Ass.
(2) I(I(φ)) → ¬K(I(I(φ))) Lemma 5.
(3) ¬K(I(I(φ))) MP (1)-(2).
(4) K(¬I(I(φ))) → ¬(I(I(φ))) Axiom T.
(5) I(I(φ)) → ¬K(¬(I(I(φ)))) Contrap. (4).
(6) ¬K(¬(I(I(φ)))) MP (1)-(5).
(7) ¬K(I(I(φ))) ∧ ¬K(¬(I(I(φ)))) ∧ Intr. (3)-(6).
(8) I(I(I(φ))) Definition of (7).

What Theorem 2 shows is that there is a deep connection between second-order
ignorance and higher-order levels of ignorance. In fact, as soon as someone is
second-order ignorant, there is no possibility that he/she escapes the dark hole
of ignorance on his/her own. Once this is well understood, it becomes evident why
deep investigations on the relation between first-order ignorance and second-order
ignorance are required. Once it is established what causes second-order ignorance
in the presence of first-order ignorance, it might be possible to stop agents from
crossing the event-horizon of the black hole which is second-order ignorance. The
rest of the paper will be dedicated to the exploration of such relation.

5 The Birth of Second-Order Ignorance

As it has been shown in the previous section, once an agent steps into second-
order ignorance, he/she also enters the black hole of higher-order levels of igno-
rance, without having much hope to escape, since, formally, this black hole is
inescapable employing the resources internal to the language. Assuming that
first-order ignorance phenomena are common, it is important, when modelling
artificial agents, to avoid possible passages from first-order ignorance to second-
order ignorance, so that the black hole of higher-order levels of ignorance is
avoided. Interestingly, negative introspection is an incredibly powerful cogni-
tive phenomenon that can block the passage between first-order ignorance and
second-order ignorance.14

Theorem 3 (Negative introspection and lack of second-order igno-
rance). Assume �L ¬K(φ) → K(¬K(φ)), then �L I(φ) → ¬I(I(φ))).

Proof (Theorem 3).
The proof will be given directly.

14 This result is not novel to this paper, but is well known in the logical literature on
formalizing ignorance.

226 A. Aldini et al.

(1) I(φ) Ass.
(2) ¬K(φ) ∧ ¬K(¬φ) Definition of (1).
(3) ¬K(φ) ∧ Elim. (2).
(4) ¬K(φ) → K(¬K(φ)) Axiom 5.
(5) K(¬K(φ)) MP (3)-(4).
(6) ¬K(¬φ) ∧ Elim. (2).
(7) ¬K(¬φ) → K(¬K(¬φ)) Axiom 5.
(8) K(¬K(¬φ)) MP (6)-(7).
(9) K(¬K(φ) ∧ ¬K(¬φ)) ∧ Distr. (5)-(8).
(10) K(I(φ)) Definition of (9).
(11) K(I(φ)) ∨ K(¬I(φ)) ∨ Intr. (10).
(12) ¬(¬K(I(φ)) ∧ ¬K(¬I(φ))) DM (11)
(13) ¬I(I(φ))) Definition of (12).

It can therefore be safely claimed that negative introspection is an excep-
tionally effective measure to avoid the black hole of higher levels of ignorance.
However, as discussed in Sect. 2, assuming that artificial agents possess the deep
introspection that axiom 5 requires might be too much. Unfortunately, a direct
negation of negative introspection can become the main culprit in the spread of
second-order ignorance. That means that even though it is reasonable to assume
that agents are not negatively introspective, it is important to avoid that agents
are completely non-negatively introspective, as this would tie together first-order
ignorance and second-order ignorance, as stated by the following theorem:

Theorem 4 (From first-order ignorance to second-order ignorance).
�L I(φ) ∧ (¬K(φ) ∧ ¬K(¬K(φ))) → I(I(φ)).

Proof (Theorem 4).
The proof will be given by contradiction.

(1) I(φ) Ass.
(2) ¬K(φ) ∧ ¬K(¬K(φ)) Ass.
(3) ¬I(I(φ)) Ass.
(4) ¬(¬K(I(φ)) ∧ ¬K(¬I(φ))) Def. of (3).
(5) K(I(φ)) ∨ K(¬I(φ)) DM (4).
(6) K(I(φ)) Ass.
(7) I(φ) → ¬K(φ) P. Taut.
(8) K(I(φ) → ¬K(φ)) Nec. (7).
(9) K(I(φ) → ¬K(φ)) → K(I(φ) → K(¬K(φ)) Axiom K.
(10) K(I(φ) → K(¬K(φ)) MP (8)-(9).
(11) K(¬K(φ)) MP (6)-(10).
(12) ¬K(¬K(φ)) ∧ Elim. (2).
(13) Contradiction (11)-(12).
(14) K(¬I(φ)) Ass.
(15) K(¬I(φ)) → ¬I(φ) Axiom T .
(16) ¬I(φ) MP (14)-(15)
(17) Contradiction (1)-(16).

Reasoning About Ignorance and Beliefs 227

Since both clauses of K(I(φ)) ∨ K(¬I(φ)) lead to a contradiction, it must
follow that ¬(K(I(φ)) ∨ K(¬I(φ))), which is equivalent to I(I(φ)). ��

6 Conclusion and Future Works

In the paper, three possible conditions that make ignorance emerge have been
proposed, showing that those conditions are both sufficient and necessary for
ignorance to emerge. Those conditions were given in terms of beliefs and thus
are employable to enrich previously proposed BDI-frameworks that model intel-
ligent systems. This is especially important, if the modellers want to allow the
intelligent system to avoid the black-hole of higher-orders of ignorance. While it
might not seem a great improvement, it should be noted that a system which is
unaware of being ignorant, will never be in a position to question such ignorance
and, thus, will always be unable to produce plans to achieve extra informa-
tion and make better decisions. In the paper, it has also been shown what can
cause the passage between basic ignorance and higher-order levels of ignorance,
providing insights on what should be explicitly avoided by intelligent systems.
What shall be done in the future is to explore if the negative introspection con-
dition that bridges basic and higher-order levels of ignorance can be expressed
through more specific belief conditions that can be tailored to the specific cases
of misbelieving, agnosticism and doubting. It would be also interesting to relate
ignorance conditions to other knowledge-based aspects, such as trust [21,22] and
the spread of fake news.

A Formal Proofs

Proof (Proposition 1).
The proof will be split into two parts.
Case 1: The proof will be given directly.

(1) B(φ) ∧ ¬φ Ass.
(2) B(φ) ∧ Elim. (1).
(3) ¬φ ∧ Elim. (1).
(4) K(φ) → φ Axiom T .
(5) ¬φ → ¬K(φ) Contrap. (4).
(6) ¬K(φ) MP (3)-(5).
(7) ¬(B(φ) ∧ B(¬φ)) Axiom D.
(8) ¬B(φ) ∨ ¬B(¬φ) DM (7).
(9) ¬B(¬φ) DS (2)-(8).
(10) K(¬φ) → B(¬φ) Axiom Int1.
(11) ¬B(¬φ) → ¬K(¬φ) Contrap. (10).
(12) ¬K(¬φ) MP (9)-(11).
(13) ¬K(φ) ∧ ¬K(¬φ). ∧ Intr. (6)-(12).

228 A. Aldini et al.

Case 2: The proof will be given directly.

(1) B(¬φ) ∧ φ Ass.
(2) B(¬φ) ∧ Elim. (1).
(3) φ ∧ Elim. (1).
(4) ¬(B(φ) ∧ B(¬φ)) Axiom D.
(5) ¬B(φ) ∨ ¬B(¬φ) DM (4).
(6) ¬B(φ) DS (2)-(5).
(7) K(φ) → B(φ) Axiom Int1.
(8) ¬B(φ) → ¬K(φ) Contrap. (10).
(9) ¬K(φ) MP (6)-(8).
(10) K(¬φ) → ¬φ Axiom T .
(11) φ → ¬K(¬φ) Contrap. (10).
(12) ¬K(¬φ) MP (3)-(11).
(13) ¬K(φ) ∧ ¬K(¬φ). ∧ Intr. (9)-(12).

Proof (Proposition 2).
The proof will be given directly.

(1) ¬B(φ) ∧ ¬B(¬φ) Ass.
(2) ¬B(φ) ∧ Elim. (1).
(3) ¬B(¬φ) ∧ Elim. (1).
(4) K(φ) → B(φ) Axiom Int1.
(5) ¬B(φ) → ¬K(φ) Contrap. (4).
(6) ¬K(φ) MP (2)-(5).
(7) K(¬φ) → B(¬φ) Axiom Int1.
(8) ¬B(¬φ) → ¬K(¬φ) Contrap. (7).
(9) ¬K(¬φ) MP (3)-(8).
(10) ¬K(φ) ∧ ¬K(¬φ). ∧ Intr. (6)-(9).

Proof (Proposition 3).
The proof will be split into two parts, showing that each disjunct of the

antecedent of the conditional implies the consequent of the conditional.
Case 1: The proof will be given directly.

(1) B(φ) ∧ φ ∧ ¬K(φ) Ass.
(2) B(φ) ∧ Elim. (1).
(3) φ ∧ Elim. (1).
(4) ¬K(φ) ∧ Elim. (1).
(5) K(¬φ) → ¬φ Axiom T .
(6) φ → ¬K(¬φ) Contrap. (5).
(7) ¬K(¬φ) MP (3)-(6).
(8) ¬K(φ) ∧ ¬K(¬φ). ∧ Intr. (4)-(7).

Reasoning About Ignorance and Beliefs 229

Case 2: The proof will be given directly.

(1) B(¬φ) ∧ ¬φ ∧ ¬K(¬φ) Ass.
(2) B(¬φ) ∧ Elim. (1).
(3) ¬φ ∧ Elim. (1).
(4) ¬K(¬φ) ∧ Elim. (1).
(5) K(φ) → φ Axiom T .
(6) ¬φ → ¬K(φ) Contrap. (5).
(7) ¬K(φ) MP (3)-(6).
(8) ¬K(φ) ∧ ¬K(¬φ). ∧ Intr. (4)-(7).

Proof (Lemma 5). The proof is given by contradiction.

(1) I(I(φ)) Ass.
(2) I(I(φ)) → IR(φ) Lemma 2.
(3) K(I(I(φ))) Ass.
(4) K(I(I(φ)) → IR(φ) Nec. (2).
(5) K(I(I(φ)) → IR(φ)) → (K(I(I(φ))) → K(IR(φ)) Axiom K.
(6) K(I(I(φ))) → K(IR(φ) MP (4)-(5).
(7) K(IR(φ) MP (3)-(6).
(8) ¬K(IR(φ)) Lemma 4.
(9) Contradiction (7)-(8).

Since a contradiction has been reached, one of the assumptions must be
rejected. Thus, I(I(φ)) → ¬K(I(I(φ))) holds in L. ��

References

1. Adam, C., Gaudou, B.: BDI agents in social simulations: a survey. Knowl. Eng.
Rev. 31(3), 207–238 (2016)

2. Artemov, S., Fitting, M.: “Justification Logic”, The Stanford Encyclopedia of Phi-
losophy (Summer 2020 Edition), Edward N. Zalta (ed.)

3. Baltag, A., Renne, B.: “Dynamic Epistemic Logic”, The Stanford Encyclopedia of
Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.)

4. Caillou, P., Gaudou, B., Grignard, A., Truong, C. Q., Taillandier, P.: A simple-to-
use BDI architecture for Agent-based Modeling and Simulation. In: Proceedings of
the 11th Conference of the European Social Simulation Association (ESSA 2015)
(2015)

5. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

6. Fano, V., Graziani, P.: A working hypothesis for the logic of radical ignorance,
Synthese (2020)

7. Fine, K.: Ignorance of ignorance. Synthese 195(9), 4031–4045 (2018)
8. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-

intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds) Intelligent
Agents V: Agents Theories, Architectures, and Languages. ATAL 1998 (1999)

230 A. Aldini et al.

9. Halpern, J.Y.: A theory of knowledge and ignorance for many agents. J. Logic
Comput. 7(1), 79–108 (1997)

10. Halpern, J., Moses., Y., Fagin, R., Vardi, M.: Reasoning about knowledge. The
MIT Press, Cambridge (1995)

11. Hintikka, J.: Knowledge and beliefs: an Introduction to the logic of the two notions.
Cornell University Press, Ithaca (1962)

12. van der Hoek, W., Lomuscio, A.: A logic for ignorance. In: Leite, J., Omicini,
A., Sterling, L., Torroni, P. (eds) Declarative Agent Languages and Technologies.
DALT 2003 (2004)

13. Meyer, C., van der Hoek, W.: Epistemic logic for AI and computer science. Cam-
bridge University Press, Cambridge (1995)

14. Mints, G.: Natural deduction for propositional logic. In: A Short Introduction to
Intuitionistic Logic. The University Series in Mathematics, pp. 9–22. Springer,
Boston (2002). https://doi.org/10.1007/0-306-46975-8 3

15. Plato, “Theaetetus”, traslation by McDowell, J., Oxford University Press, Oxford
(2014)

16. Rao, A., Georgeff, M.: Formal models and decision procedures for multi-agent
systems. Technical Note, AAII (1995)

17. Rendsvig, R., Symons, J.: “Epistemic Logic”. The Stanford Encyclopedia of Phi-
losophy (Summer 2019 Edition), Edward N. Zalta (ed.)

18. Smitha Rao, M.S., Jyothsna, A.N.: BDI: applications and architectures. Int. J.
Eng. Res. Technol. 2(2), 1–5 (2013)

19. Steinsvold, C.: A Note on Logics of Ignorance and Borders. Notre Dame Journal
of Formal Logic 49(4), 385–392 (2008)

20. Souza, M.: Choices that make you change your mind : a dynamic epistemic logic
approach to the semantics of BDI agent programming language, Ph.D. Thesis,
University of Rio Grande (2016)

21. Aldini, A., Tagliaferri, M.: Logics to reason formally about trust computation and
manipulation. In: Saracino, A., Mori, P. (eds.) ETAA 2019. LNCS, vol. 11967, pp.
1–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39749-4 1

22. Tagliaferri, M., Aldini, A.: From knowledge to trust: a logical framework for pre-
trust computations. IFIP Adv. Inf. Commun. Technol. 528, 107–123 (2018)

23. Tripathi, K.P.: A review on knowledge-based expert system: concept and architec-
ture. IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches
and Practical Applications (2011)

24. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)
25. Wooldridge, M.: Practical reasoning with procedural knowledge. In: Gabbay, D.M.,

Ohlbach, H.J. (eds.) FAPR 1996. LNCS, vol. 1085, pp. 663–678. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61313-7 108

https://doi.org/10.1007/0-306-46975-8_3
https://doi.org/10.1007/978-3-030-39749-4_1
https://doi.org/10.1007/3-540-61313-7_108

CoSIM-CPS 2020

Organization

CoSim-CPS 2020 – Workshop Chairs

Cinzia Bernardeschi University of Pisa, Italy
Cláudio Gomes Aarhus University, Denmark
Paolo Masci National Institute of Aerospace (NIA), USA
Peter Gorm Larsen Aarhus University, Denmark

CoSim-CPS 2020 – Programme Committee

Swee Balachandran National Institute of Aerospace (NIA), USA
Stylianos Basagiannis Raytheon Technologies, Ireland
Mongi Ben Gaid IFPEN, France
Joerg Brauer Verified Systems International GmbH,

Germany
Fabio Cremona Argo.ai, Germany
Julien Deantoni Inria, France
Paul De Meulenaere University of Antwerp, Belgium
Joachim Denil University of Antwerp, Belgium
Marco Di Natale Scuola Superiore Sant’Anna, Italy
Andrea Domenici University of Pisa, Italy
Adriano Fagiolini University of Palermo, Italy
Claudio David López Delft University of Technology, The

Netherlands
Cesar Munoz NASA Langley Research Center, USA
Maurizio Palmieri University of Pisa, Italy
Akshay Rajhans Advanced Research and Technology Office

MathWorks, USA
Rudolf Schlatte University of Oslo, Norway
Neeraj Singh INPT-ENSEEIHT/IRIT, University of

Toulouse, France
Frank Zeyda Verified Systems International GmbH,

Germany

A Case Study on Formally Validating
Motion Rules for Autonomous Cars

Mario Henrique Cruz Torres1, Jean-Pierre Giacalone2, and
Joelle Abou Faysal3(B)

1 IVEX.ai Intelligent Vehicle Technology, Leuven, Belgium
2 Renault SW Labs (RSL), Expert ADAS/AD Software Architecture,

Autonomous Vehicle Algorithms, Sophia Antipolis, France
3 Renault Software Labs (RSL), Université Cote d’Azur, CNRS, Inria, I3S,

Valbonne, France
joelle.abou-faysal@etu.univ-cotedazur.fr

Abstract. Car motion control is a key functional stage for providing
advanced assisted or autonomous driving capabilities to vehicles. Car
motion is subject to strict safety rules which are normally expressed
in natural language. As such, these natural language rules are subject
to potential misinterpretation during the implementation phase of the
motion control stage. In this paper, we show a novel approach by which
safety rules are expressed in natural language, then in a formal language
specification which is then validated and used to generate a car motion
checker. We present a case study of using the approach with true road
capture data and its associated imperfections. We also show how the
approach lowers the validation efforts needed to guarantee that the car
motion always respects a desired set of safety rules while other traditional
validation methods would be much heavier to deploy and error prone.

Keywords: Formal language · Autonomous drive · Motion safety

1 Introduction

In the past few years, across most regions in the world, there has been a push
to improve vehicles driving safety through specific regulations. In Europe, for
instance, this has been the case with the issuance of General Safety Regula-
tion (GSR) phase 2 [6]. These regulations tend to mandate the deployment of
Advanced Driving Assistance systems in cars, like Automatic Emergency Brak-
ing and other car motion control systems such as Autonomous Emergency Steer-
ing or Adaptive Cruise Control [5]. These driving features take control of car
motion on behalf of the driver, even if the driver still has the ability to take back
control, in order to operate within time ranges and with perception reaction
time that allows fast action to protect the car occupants. As such, these systems
must make sure that passengers safety is guaranteed during their operation.

For such systems, a key element to guarantee safety is the car trajectory
control. The trajectory control component is the part that computes the future
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 233–248, 2021.
https://doi.org/10.1007/978-3-030-67220-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_18

234 M. H. C. Torres et al.

trajectory of the vehicle as a function of what is perceived by the car sensors.
The trajectory is transformed into 2D positional objectives to follow on the
road, from the current position. The problem behind ensuring safety at the
current position and along the trajectory is bounded in terms of the expression
of the safety rules. Important properties behind such bounding are related to
creating priorities (e.g., what is happening at the front of the vehicle versus at
the rear) or having parallel conditions expressed (e.g., checks being performed
simultaneously on different directions, longitudinally and laterally) [15]. Hence,
car motion safety construction is a perfect domain for exploring formal methods
to express safety rules.

In the context of proof that is needed to express safety rules described above,
one can refer to several specification languages providing design by contract
approaches ([1,12] for instance). Usually, though, these languages are not at the
right level of abstraction to express key aspects regarding car motion. In this
paper, we will explain what that level should be and why. As it will be shown,
there are several challenges expressing safety rules about motion control. As a
result, we will describe the expected flow to be used between the expression of
rules in human language by a car safety engineer and their formalization using
the proposed approach. We will also illustrate the application of the formal
method depicted in this paper through true road captures of difficult scenarios
in traffic jams, with complicated perception situations (at night, for instance).
We will devise the impact of those conditions as constraints in the expression
of safety rules. Finally, we will indicate some trends in the application of this
technique for safe car motion control implementation.

This paper is organized as follows. Section 1.1 briefly discusses related work.
Section 2 presents the challenges in implementing safety rules concerning car
motion control. Section 3 introduces IVEX tools and details IVEX approach to
model safety rules for car motion. Section 4 describes a case study of a Society
of Automotive Engineering (SAE) Level 3 car experiments. It also discusses the
low speed motion control safety rules set. Finally, Sect. 5 draws conclusions and
details some possible future work.

1.1 Related Work

Reachability analysis is used to propose a safety framework to analyse the motion
of autonomous vehicles by used at [13]. It is used to guarantee that any feasible
future motion of dynamic obstacles around the automated car, also known as
Ego car, is taken into account when assessing a planned trajectory. Similar to our
technique, [13] define a set of assumptions for the future movement of dynamic
obstacles around the Ego car and verifies if the Ego car can reach a future state
where it would have a collision. An interesting aspect of the work [13] is to also
provide an alternative fail-safe trajectory planning that the autonomous vehicle
(AV) could use to avoid a collision.

The work by [16] proposes a mathematical model, called Responsibility-
Sensitive Safety (RSS), for safety assurance of autonomous vehicles. The RSS

A Case Study on Formally Validating Motion Rules for Autonomous Cars 235

model is explainable and has well defined assumptions. The model tries to formal-
ize common sense human behavior concerning the judgment of “who is responsi-
ble for causing an accident”. The final goal of the model is to guarantee that an
autonomous car never causes an accident, being than considered safe. The main
limitation of the model is not taking variability and uncertainty into account.
This limitation greatly impacts the ability of RSS to guarantee safety in reality.

2 Challenges in Implementing Safety Rules Around Car
Motion Control

When creating safety rules for a car motion control we assume that it is impos-
sible to guarantee there is absolutely no collisions involving the controlled car.
The impossibility of zero collisions is due to the fact that the Autonomous
Vehicle/Advanced Driver Assistant Systems (AV/ADAS) car cannot control the
behaviour of other road users. If another road user is actively trying to cause
a collision and has a vehicle capable of very large accelerations/decelerations,
it is easy to understand that even if the AV/ADAS executes evasive maneuvers
or stops on the side of the road, the other road user can still cause a collision.
There is a trade-off between the drive-ability and safety of the controlled car,
since there will always be a risk of a collision. We believe that creating the safety
rules for the car motion control will always incorporate such trade-off.

The first challenge for creating safety rules for car motion control is identify-
ing the minimum set of assumptions (including hidden assumptions) about the
environment, particularly assumptions about other road users, which are mea-
surable and represent reality closely enough. The RSS model [16], for instance,
defines a small number of assumptions about the environment, such as the max-
imum, minimum acceleration/deceleration of other vehicles which leads to a
model that can be easily understood by human beings but which also leads to
lower drive-ability of a controlled car. For instance, one’s assumptions for maxi-
mum deceleration may lead to an extremely conservative driving behaviour, thus
lowering the drive-ability of the controlled car.

We believe the car motion safety rules should be formally verified for sound-
ness and completeness for a certain environment. This brings the second chal-
lenge which is defining the proper abstraction level to formally model the safety
rules. Each formalism requires the system (software + hardware) to be specified
in a certain way, [9,17]. The modeler has to reduce, simplify, or abstract the
system being modeled to be able to use different model checking tools.

Formally modelling the system and its environment has to be done taking
into account possible issues, such as:

– the model does not represent the system,
– the model does not properly represent the environment (e.g. wrong assump-

tions about the environment),
– the model truly represents the system and its environment, but is intractable.

236 M. H. C. Torres et al.

Finding the correct level of abstraction to represent the AV/ADAS system
and its environment is challenging because it has to be done in a way that the
model is close enough to the reality, but abstract enough to be solvable [7].
Toolboxes like Tulip [18] help to mitigate the problem of having a model which
does not represent the system, since it synthesizes controllers, but does not help
in defining the proper abstraction level to represent the problem, or mitigating
having wrong assumptions about the environment.

Particular attention has to be given to modeling the input information that
will be used by the motion control rules. The perception systems which provide
information used by the motion controllers may have a great impact into the
safety rules. When modeling the car motion rules, it is extremely important to
clearly model the assumptions concerning the perception systems used in the
car so that limitations of this system can be properly dealt with in the motion
of the car.

The focus of this paper is on car motion control under conditions of low speed
(lower than 60 km/h) and traffic jams. The control context is either Advanced
Driving Assistance where the driver is still under control but is assisted by the
electronic system or Autonomous Driving of Level 3, as defined by the SAE [14].
Motion control consists in constructing a trajectory to be followed by the car
under control. This trajectory is expressed as 2D positions on the road, provided
with a recurrence of 20 to 100 ms into the future from current time. The positions
are expressed in the car coordinates (see Fig. 1). Car motion control takes these
target positions and transforms them into actions along the longitudinal direc-
tion (along the X axis) and the lateral (along the Y axis through the yaw angle)
one, for the vehicle. Simply put, these actions relate to defining acceleration or
deceleration of the car and steering wheel movement. As a result, there will be
rules for checking longitudinal and lateral safety, and these rules are going to
be valid simultaneously which is another challenge we have to address with the
rules description language.

Fig. 1. Car motion trajectory definition in the car coordinates system.

Car motion control constructs the trajectory based on information reported
by sensors mounted in the vehicle. This information is usually named Percep-
tion and consists in aggregating different details about moving or static objects

A Case Study on Formally Validating Motion Rules for Autonomous Cars 237

around the car, like type, dimensions, position, speed and acceleration. This
aggregation is performed by an electronic system called Fusion that materializes
and confirms the various detections provided by individual sensors. Depending
on the number and type of sensors available, the accuracy and reliability of the
information may vary. Challenges regarding obtaining a quality Perception have
been highlighted in publications like [8]. Among other issues related to percep-
tion conditions (night, rain, fog, as examples), problems of persistence are quite
impacting to the definition of safety rules like the ones introduced above. In
essence, potential appearance and disappearance of detected obstacles means
that safety rules must express a dependency in space (longitudinal, lateral) and
time (provided an obstacle is confirmed over a certain time, for instance). And
this becomes a constraint to the description language.

As we will see in Sect. 4, the approach for implementing car motion safety
rules presented in this paper has been exposed to real road data captured with a
car prototype embedding several classes of sensors (cameras, radars, lidars, ultra
sonic) and called TRAJAM. We will see clear examples of perception challenges
that were faced in order to properly express rules given by a human safety
engineer.

3 IVEX Tools Suite and Approach to Model Safety Rules
for Car Motion

The IVEX toolchain can be used to model different systems that need safety
guarantees and which operate in complex environments. IVEX engineers spent
years performing research into the development of safety critical systems for
other domains, such as aerial vehicles and Automated Guided Vehicles (AGVs)
[2–4]. When doing research, they modelled different systems using varied
approaches, exploring diverse ways to specify safety critical autonomous systems.
IVEX engineers understood that traditional approaches like creating Finite State
Machines (FSM), Behavioral Trees, and traditional formal modeling techniques,
like solvers for LTL, had their own limitations to define safe autonomous systems
[11]. The systems build by IVEX engineers were used and demonstrated, besides
others, in aerial platforms having embedded mission control and autonomous
safe behavior, used to fly around electricity towers in Belgium.

At the core of the IVEX toolchain is an engineering process (Depicted in
Fig. 2) which supports the creation of the safety rules. The process allows one
to automatically transform safety requirements into formally verified software.
The toolchain then generates correct-by-construction software, by performing a
translation between a solved model specification and a C++ execution policy.
The process highlights the limitations of safety requirements (by performing con-
sistency and completeness checks). The process shortens iteration cycles, reuses
existing knowledge and is supported by mature toolchain.

The first step into the process is to identify the safety requirements that
should be always satisfied by the car motion. Normally, such requirements reflect

238 M. H. C. Torres et al.

Fig. 2. The IVEX process consists of 3 main steps: 1 - define a behavior specification of
the system and its environment, 2 - generation of a decision making logic, 3 - validation
of the created system using the Safety Assessment Tool.

a number of safety requirements imposed on the car motion. The safety require-
ments can even consider what is the expected car behavior in different opera-
tional design domains (ODD).

Based on the requirements gathering on system goals, safety and other (as
gathered together with the various system stakeholders), IVEX engineers specify
the requirements in a behaviour specification. During specification, a concise,
formal model of the system is built, including of the perceivable system states, its
actuation, rules and constraints that must be fulfilled. The behavior specification
is created using a domain specific language (DSL). The DSL has constructs to
represent vehicle system properties, such as pre-conditions for action executions,
and expected outcomes. The behavior specification is written in the DSL using
first-order logic constructs. The specification is declarative (it describes goals,
state, actions - as in a traditional planning model - and constraints), it is not
imperative (describing for every situation exactly which action to take). This
is a fundamental aspect of the approach, which makes it more adaptable and
manageable from the ground up. The exact decision making logic is generated
later on in the process.

The next step is performing an automated analysis on the specification, by
using IVEX verification tool, to check whether the specification is:

– complete (the specification will be able to decide in each possible state)
– consistent (the specification does not contain contradicting requirements)

It could be that (a) the specifications is not covering a combination of states; or
(b) that the model is inconsistent. The verification tool will automatically detect
and report inconsistencies. If a specification is not verifiable, developers receive
clear and punctual feedback on the status of the specification. Through iterative

A Case Study on Formally Validating Motion Rules for Autonomous Cars 239

specification and verification steps, developers are guided to unambiguously and
completely model the expected system behavior under all circumstances.

Based on the final, verified specification, the toolchain generates the decision
making logic as code. At this step the decision logic is translated into a tree-like
data structure with a known maximum depth, which is critical for guaranteeing
real-time execution deadlines. Besides that, the decision logic is a direct map-
ping of the behavior specification into C++ code, which lowers the chances of
implementation bugs.

The logic implements a mapping for every possible discrete situation - based
on the state representation from the requirements & specification - to one or a set
of actions to be executed by the system. This logic is guaranteed to cover every
possible discrete scenario, and respect all safety requirements and other con-
straints. A typical specification for a SAE Level 3 car generates around 120.000
safety rules in the decision logic, when considering many aspects of the Operating
Design Domain.

The toolchain has a runtime execution environment which is used to perform
the integration of the execution policy with the rest of the system, called the
IVEX safety co-pilot. The runtime includes specific components for integration
in the overall autonomous system. The runtime has well defined inputs and
outputs interfaces, to facilitate its integration into the system. For instance:

– The runtime communicates with the rest of the system via a middleware or
via direct function invocation (loading new threads to execute continuous
controllers).

– Inputs are read by monitors. Monitors are runtime components that actively
read the perception data from the system and convert this perception data
into discrete values. Example of monitor inputs are: static and dynamic obsta-
cle location (with corresponding confidence levels), car velocity, etc. One of
the inputs for car motion validation is the planned trajectory created by a
path planner.

– Outputs are given by actions. Actions represent the actuator components
from the autonomous system that should be activated and their parameters.
For instance, an action can represent an emergency operation such as a strong
longitudinal braking controller.

The process has two distinct parts, being an off-line one, used to model the
system, and an on-line one used to verify the behaviour of the system during
execution. In order to validate the full system that uses the decision making logic
the process has a validation step. The first validation step is done by testing the
created system with recorded driving data in the IVEX Safety Assessment Tool
(SAT). The SAT tool performs Software-in-the-loop (SIL) tests, using the system
created.

The SAT tool allows one to replay recorded driving sensor data into the SIL
which will then check its thousands of decision rules to define if a certain car
movement is triggering a safety violation. The SAT tool then collects all safety
violations occurrences and generates statistics highlighting all critical situations
in the driving data. A safety engineer can then proceed to analyse the highlighted

240 M. H. C. Torres et al.

safety violations and the safety metrics created by the SAT tool. After analysing
thousands of scenarios, the SAT tool indicates how conservative the created
system is, allowing safety engineers to proceed to refine the behavior specification
or its parameters.

4 Case Study of a SAE Level 3, Low Speed Motion
Control Safety Rules Set

In this section, we are entering into real experiments conducted using the tools
and method described in the previous section through information available in a
re-simulation environment. A re-simulation environment is providing data cap-
tured during road trips by a car embedding a set of sensors close to the one
used in production and located where they would be installed. Hence, study
presented here is based on real data. The environment provides data at various
locations in the processing stages through pipes that can be connected to the
system to be tested. In our case, these pipes carried kinematic information from
sensor fusion outputs for objects, infrastructure and Ego (a.k.a. the automated)
car. They also carried the future Ego car trajectory positions as delivered by the
planning stage. The infrastructure data consisted of lanes structure information
as captured by the perception stage. Kinematic information included positions
in 2D as measured in Ego car referential (see Fig. 1) as well as speed and accel-
eration. The re-simulation environment also provides a situational camera view,
towards the front of Ego car, synchronous to the provided data in order to bet-
ter understand visually a given scenario configuration. Table 1 summarizes the
re-simulation data available.

Table 1. Data available through re-simulation.

Type Content Sampling

Objects Position, Speed, Accel., Size 40 ms

Ego car Position, Speed, Accel 40 ms

Infrastructure Lines types, Shape 40 ms

Trajectory Positions 100 ms

With this re-simulation environment, we constructed and verified car motion
safety rules corresponding to the SAE Level 3 motion control mode. These were
written as a real safety policy, describing longitudinal and lateral situations to be
avoided and corresponding expected behavior. Figure 3 shows how these rules are
getting exercised with the re-simulation data. The Trajectory Validation function
receives the results of the analysis according to safety rules, and apply them on
the trajectory data proposed by the planner. This valid trajectory will be passed
to the motion control that follows it (as explained earlier). In case checks report

A Case Study on Formally Validating Motion Rules for Autonomous Cars 241

Fig. 3. Safety rules verification high level architecture. Each rectangle represents a
functional component in the system. The safety rules are checked at the Safety rules
Checker component which receives information from the Perception/Fusion and
Trajectory Planner components. The results of the checks performed by the Safety
rules Checker components are sent to the Trajectory Validation component which
is then responsible for deciding on following the planned trajectory or not.

a failure in fulfilling the rules then an emergency maneuver could be signaled by
this function, as an example.

Safety rules considered here were initially structured and expressed in human
text language. Situations covered for L3 control mode were essentially in traffic
jam, at low speed and various weather and light conditions as well as infrastruc-
ture and slopes. Organized in tables, the rules provide information about the
situation being verified, the preconditions, the result being avoided (usually, a
collision) and specific aspects to consider. Their definition is owned by a safety
engineer from Renault and he was supporting requests for understanding situa-
tions to be checked in case there was any ambiguity. An example of longitudinal
safety description is depicted in Fig. 4. There were around 20 rules like this that
composed the L3 set.

By going over this rule, we can first observe that a traffic jam situation
must be the operating case (also known as the Operating Design Domain or
ODD). This means Ego car is surrounded by several moving objects. We can
also observe that it is following a preceding vehicle with which a safety distance
of 2 s is defined. The rule sets a situation by which the preceding vehicle is
potentially decelerating with a certain strength (minimal for 1m/s2, nominal for
5m/s2 or strong for 10m/s2). This covers limits of the environment model as
discussed in Sect. 2. On his side, the Ego car has the capability to regulate its
speed with an Automatic Cruise Control (ACC) deceleration capability up to
a strong braking capability of 10 m/s2. In order to model this rule, we need
to start discretizing space to separate system states with the preceding vehicle.
Figure 5 describes this, based on the rule content. The blue vehicle is Ego car.

Longitudinal states are so that either Ego car is alone or there is a preceding
vehicle. And, if there is one, then the situation can be that Ego car is at a safe
distance, i.e. 2 s from it, or it is within a range of ACC distance where it should

242 M. H. C. Torres et al.

Fig. 4. Longitudinal rule expressed by safety engineering.

regulate with corresponding deceleration levels or it is within an emergency
distance that requires to regulate speed with strong braking capabilities. The
resource that is actionable is longitudinal acceleration. The rules brings up 2
system states that matter for verifying it: The traffic jam state (S traffic jam, a
Boolean, yes/no) and the front car distance state (S front car, an enumerated,
not exist, safe distance, acc distance, emergency distance). Each state values are
provided by monitors that run at the pace of the re-simulation data. For the
front car distance, the state is populated with the equations below, assuming
constant velocities within 100 ms trajectory sampling points and the maximum
deceleration capability of 3m/s2 for ACC:

d is the distance to the front car, as reported by perception,

V ego is Ego car velocity, Aego is 3 m/s2

Dsafe = 2 × V ego is the safe distance

if d > Dsafe → ”safe distance” state

if d ≤ Dsafe and d ≥ Dsafe − 6 → ”acc distance” state

if d < Dsafe − 6 → ”emergency distance” state

Finally, the rule expresses three actions to be fulfilled as shown in Table 2.

A Case Study on Formally Validating Motion Rules for Autonomous Cars 243

Fig. 5. Example of a state variable used to discretize the different safety distances
taken into account between ego car and a front car. Depending on the current sen-
sor readings and the assumptions used in the system, the front car distance can be
classified as not exist, meaning there is no visible front car, safe distance meaning
that considering current distance, velocities and assumptions for the front car accelera-
tions there is no imminent risk of collision, acc distance means that given the current
assumptions and sensor readings, the ego-car would need to reduce its velocity at the
ACC rate (3.5 m/s2) to satisfy the 2-s distance rule, while the emergency distance
value indicates that given the assumptions and current sensor readings, the ego-car
would need to reduce its velocity at a higher rate than (3.5 m/s2) to avoid a collision.

Table 2. Actions to be fulfilled according to the longitudinal rule.

Type Meaning

A not brake No action

A brake acc ACC braking (0.6m/s2 to 3m/s2

A brake strong 10m/s2 braking

With these rules elements properly broken down, the following formal descrip-
tion can be constructed to represent the safety rule goals. The formal code looks
like this:

when

S traffic jam is yes

then

goal type: constraint

when S front car is acc distance then goal: executing A brake acc

when S front car is emergency distance then goal: executing A brake strong

244 M. H. C. Torres et al.

At this point, it must be noted that the formal constructs provided for Ego
and front car are also applicable to the rear car (i.e. if a car follows). So, effec-
tively, we have two sets of concurrent statements like the last 2 in the pseudo
code above. This would be flagged, though, as infeasible by the language solver
as priorities need to be added. Indeed, a priority is linked to responsibility levels
according to the driving code: Ego car can only be held responsible for hitting
the front car via a longitudinal maneuver. Hence, the statements above (related
to the front car) must be indicated as having priority over the ones related to
the rear car and this is done by changing the goal type statement to goal type:
priority for the corresponding statements block.

Another aspect that we highlighted in Sect. 2 is related to perception imper-
fections. It consists in the potential loss of track of objects over time. With sen-
sors used in cars (cameras, radars, ultra-sound) and existing information fusion
technology, the driving assistance system is subject to loss in tracking of objects
due to inaccuracies in location and trajectory parameters estimations, as time
passes. This results in objects IDs to disappear and new ones to be re-generated,
potentially for the same objects. The safety rules have to deal with such case
in order to decide for the validity of issuing an emergency maneuver action,
for instance. Here, we talk about discretizing in time, collecting, via monitors,
the disappearing times statistics from the re-simulation data. The corresponding
“tracking” state values are then expressed with a statement like:

goal type: constraint

when S front car tracking is disappeared more than t1
then goal: executing A emergency operation1

In the statement above, “t1” is a statistical time value that needs to be
evaluated by a monitor from re-simulation data described in this section. The
disappeared more than t1 state is a Boolean created by a comparison with the
threshold “t1” in the corresponding monitor.

The whole set of L3 rules, coded with the approach described above, gen-
erated a total number of 13500 checking states. These checks were formally
compiled, without human intervention, into an executable checker code that
was embedded into the Safety Assessment Tool introduced in Sect. 3. This tool
provided a global view over several hours of driving under traffic jam or dense
traffic conditions, under day light or at night conditions. All safety violations
as defined by the formal representation of the rules, i.e. triggering an action as
presented above, were reported into a single view, along the timeline. The pic-
ture in Fig. 6 shows a graphical representation of an example of such report for
a case of ACC braking that was reported as insufficient. The indicators on the
left show the Ego car kinematic parameters (speed, acceleration, longitudinal,
lateral). The situation is showing a merge to the left, into Ego car lane, of object
labeled 14882 (zoom on the upper left), but the lanes structure is not reported
yet in this representation. Object 14882 motion intent is depicted, at current
time, by its kinematic projection trajectory model shown by a yellow color, in
Fig. 6. This trajectory model takes a statistical representation of the longitu-

A Case Study on Formally Validating Motion Rules for Autonomous Cars 245

dinal and lateral speeds evolution over time from the current object position,
based on a combination of its current acceleration parameter as well as worst
case (strong) deceleration. The Ego car future trajectory is depicted in front of
it and consists of 50 points separated by 100 ms. It is colored blue for the points
that do not report safety issues and red for points that do. In the case shown
below, the safety action is an A brake acc action that is required when the tra-
jectory becomes red. For this situation, the insufficient braking level is reported
due to the 2-s safe distance definition in the rule that is violated by car 14882
sudden arrival in Ego car lane. This was not anticipated by the motion plan-
ner during the road drive. In the functional system shown in Fig. 3, this safety
error would be reported to the trajectory validation as a warning of a potential
future issue. As we move over time in the Safety Assessment tool we can, hence,
deduce whether that situation becomes real when the red color reaches the Ego
car position (instantaneous violation), potentially highlighting a critical situa-
tion for which an emergency action is required. In the data set captured for this
case, the instantaneous violation appeared roughly a second later.

Fig. 6. Graphical representation of an ACC braking violation along Ego trajectory.
(Color figure online)

4.1 Notes Regarding Real-Time Performance

For the study presented in this paper, we did not only want to address the
formal construction of car motion safety rules and their offline validation with
re-simulation data captured on the road. We also wanted to make sure that the

246 M. H. C. Torres et al.

safety checker that is automatically built by the method studied was capable
to be embedded within the car motion control software. And we wanted this to
occur by using a real computing platform as used in the automotive industry.
Such platforms are called ECUs in the automotive industry.

Fig. 7. Motion rules checker performance curves on a single AURIX core.

We chose a processing engine used in those and provided by the Infineon
manufacturer [10], embedding a multi-core AURIXTM system (in this study, a
TCS397 development board), where we have constrained ourselves to operate on
a single core to bound the processing footprint. The checker software code was
generated as a single C++ code for both supporting safety assessment (offline)
and for our performance analysis. The checker code was embedded into the
IVEX Safety Co-Pilot runtime framework, which was responsible for updating
the sensor data flowing into the monitors and for maintaining a memory and
computationally efficient representation of the safety checker policy. The code
was compiled with Infineon tools and run on the platform with re-simulation data
patterns injected through the automotive bus ports available on that platform, at
speed and synchronized (see Table 1). The various situations found in the data,
in terms of objects density around Ego car, and the capability to re-sample
in time the trajectory allowed to gather curves like in Fig. 7. Our threshold
for considering that the checker is valid to run in a single care was that its
execution did not exceed 80% loading at maximum frequency (300 MHz). These
curves clearly indicate the fact that the checker can cope with a large number
of surrounding objects for a given choice of trajectory sampling in the system.

A Case Study on Formally Validating Motion Rules for Autonomous Cars 247

5 Conclusion

This paper highlights real experiments, conducted over road captures made in
the context of advanced driving and autonomous control car prototyping, on a
practical approach to formalize the driving rules with an objective of maximal
safety, using novel language and tools available from IVEX. Expressing safety
rules applied to car motion control in a formal way carry challenges linked to both
the imprecise nature of the rules defined by a human as well as the uncertainties
related to the motion control process itself. We have presented, in previous sec-
tions, the needs for improvements from existing formal methods to address those
challenges. And we have shown how a well thought set of language and tools,
associated with a practical usage method, can handle all the above concerns
together.

The method proposed also drives for a way of considering the safety rules
verification in the chain that starts from motion planning and ends in car motion
execution via physical actuators. Indeed, if it makes sense to apply safety prin-
ciple within the various stages of the chain above, this paper has shown that the
motion control safety rules generate a formal verification complexity of several
thousand states. This shows that a safety checker executing this verification is
required, associated with a trajectory validation function in order to cover the
full safety complexity (see Fig. 3, above, for an example of this). So, this poses
the question for the proposed approach of this paper to be compatible with real-
time execution constraints of running within the electronic processing system in
the car.

5.1 Next Steps

The motion safety rules used for this study where a preliminary set. Our study
allowed to show that, as a whole, they where performing as expected, captur-
ing driving situations that where below the quality requirements. The analysis
showed that the proposed method could be used to create indicators of bugs in
safety rules coverage and system behavior. This part is worth further studying.
Also, and finally, we have noticed that some rules where too “static” in their
definition and that some parameters would benefit from being specified accord-
ing to the driving situation (e.g., the safety distance of 2 s). This is another axis
of future study.

References

1. Bezault, E., Howard, M., Kogtenkov, A., Meyer, B., Stapf, E.: Eiffel analysis, design
and programming language. ECMA International, Technical report ECMA-367
(2005)

2. De Waen, J., Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Scalable multirotor UAV
trajectory planning using mixed integer linear programming. In: 2017 European
Conference on Mobile Robots (ECMR), pp. 1–6 (2017)

248 M. H. C. Torres et al.

3. Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Dancing uavs: Using linear program-
ming to model movement behavior with safety requirements. In: International Con-
ference on Unmanned Aircraft Systems, pp. 326–335. IEEE (2017). https://doi.
org/10.1109/ICUAS.2017.7991352. https://lirias.kuleuven.be/1571693

4. Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Combining planning and model check-
ing to get guarantees on the behavior of safety-critical UAV systems. In: ICAPS
Workshop on Planning and Robotics. ICAPS Workshop on Planning and Robotics
(2018)

5. Euro, N.: Euro NCAP 2025 roadmap: in pursuit of vision zero. Belgium, Leuven
(2017)

6. European Commission: Revision of the EU General Safety Regulation and Pedes-
trian Safety Regulation (2018). https://www.unece.org/fileadmin/DAM/trans/
doc/2018/wp29grsp/GRSP-63-31e.pdf

7. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

8. Giacalone, J., Bourgeois, L., Ancora, A.: Challenges in aggregation of heteroge-
neous sensors for autonomous driving systems. In: 2019 IEEE Sensors Applications
Symposium (SAS), pp. 1–5 (2019)

9. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Towards a two-layer frame-
work for verifying autonomous vehicles. In: Badger, J.M., Rozier, K.Y. (eds.) NASA
Formal Methods, pp. 186–203. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-20652-9 12

10. Infineon: AURIXTM 32-bit microcontrollers for automotive and industrial applica-
tions (2020). https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/
GRSP-63-31e.pdf

11. Maoz, S., Ringert, J.O.: Gr (1) synthesis for LTL specification patterns. In: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pp. 96–106 (2015)

12. Microsoft: AURIXTM 32-bit microcontrollers for automotive and industrial appli-
cations (2004). http://research.microsoft.com/en-us/projects/specsharp

13. Pek, C., Koschi, M., Althoff, M.: An online verification framework for motion
planning of self-driving vehicles with safety guarantees. In: AAET-Automatisiertes
und vernetztes Fahren (2019)

14. SAE International: Automated Driving Levels of Driving Automation are Defined
in New SAE International Standard J3016 (2014). http://www.sae.org/autodrive

15. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for
autonomous vehicles. Annual Rev. Control, Robot. Autonom. Syst. 1(1), 187–210
(2018). https://doi.org/10.1146/annurev-control-060117-105157

16. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scal-
able self-driving cars. CoRR abs/1708.06374 (2017). http://arxiv.org/abs/1708.
06374

17. Wolff, E.M., Murray, R.M.: Optimal control of nonlinear systems with temporal
logic specifications. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol.
114, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28872-
7 2

18. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th
International Conference on Hybrid Systems: Computation and Control, pp. 313–
314 (2011)

https://doi.org/10.1109/ICUAS.2017.7991352
https://doi.org/10.1109/ICUAS.2017.7991352
https://lirias.kuleuven.be/1571693
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-63-31e.pdf
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-63-31e.pdf
https://doi.org/10.1007/978-3-030-20652-9_12
https://doi.org/10.1007/978-3-030-20652-9_12
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-63-31e.pdf
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-63-31e.pdf
http://research.microsoft.com/en-us/projects/specsharp
http://www.sae.org/autodrive
https://doi.org/10.1146/annurev-control-060117-105157
http://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1708.06374
https://doi.org/10.1007/978-3-319-28872-7_2
https://doi.org/10.1007/978-3-319-28872-7_2

Modelling Train Driver Behaviour
in Railway Co-simulations

Tomas Hotzel Escardo1, Ken Pierce1(B), David Golightly2,
and Roberto Palacin2

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{T.Escardo,kenneth.pierce}@newcastle.ac.uk

2 School of Engineering, Newcastle University, Newcastle upon Tyne, UK
{david.golightly,roberto.palacin}@newcastle.ac.uk

Abstract. The performance of a cyber-physical system (CPS) is
affected by many factors, however the impact of human performance on
a CPS is often overlooked. Modelling and simulation play an important
role in understanding CPSs, and co-simulation offers a way to easily
incorporate human performance models into co-models of CPSs. This
paper demonstrates an initial human performance model in the form
of a train driver model in the railway domain. The model is linked to
models of the rolling stock and movement authority using the Functional
Mock-up Interface (FMI). Initial results are presented and a discussion
of future directions for the work.

Keywords: Human performance · FMI · Railways · Co-simulation

1 Introduction

Cyber-Physical Systems (CPSs) are systems constructed of interacting hardware
and software elements, with components networked together and distributed
geographically [23]. Importantly, humans are a key component of CPS design.
For example, Rajkumar et al. call for “systematic analysis of the interactions
between engineering structures, information processing, humans and the physical
world” [27, p. 734]. Humans may act as operators, acting with or in addition to
software controller; or as users, interpreting data from or actions of the CPS.

The railways are a good example of such a CPS, involving physical infrastruc-
ture and assets, coupled to increasing levels of digital control systems. Ultimately,
this system is operated/supervised by people (drivers, signallers/dispatchers, sta-
tion staff), for users (the passengers). It is a domain where systematic analysis
is important, for technical design, and for delivering the operational framework
(i.e. the timetable). This is increasingly relevant to goals such as optimising the
network for low-carbon performance [5].

Model-based design techniques offer opportunities to achieve this systematic
analysis. When considering the diverse nature of disciplines however, and there-
fore diverse modelling techniques and even vocabulary, creating models that
sufficiently capture all aspects of a CPS present a challenge. Rail modelling is
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 249–262, 2021.
https://doi.org/10.1007/978-3-030-67220-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_19

250 T. Hotzel Escardo et al.

no exception [7]. Multi-modelling techniques present one solution, where models
from appropriate disciplines are combined into a multi-model and are analysed,
for example, through co-simulation [16,21].

An open challenge in CPS design is how to accurately reflect human capa-
bilities and behaviours. Without considering such an important part of a CPS,
observed performance in an operational context may differ from that predicted
by models [13,19]. For example, train systems fail to achieve optimal performance
due to drivers’ not following eco-driving advice [26], or optimal performance
requires unrealistic demands on operators (e.g. challenging peaks or reduced
wellbeing) [24].

There is a wealth of modelling of human behaviours within the field of
ergonomics—the study of the human role in work and systems design to ensure
safety, health andperformance—which couldbe applicable tomulti-modelling [15].
In return, multi-modelling would seem to offer an ideal way for these existing mod-
els to be incorporated into system-level models of CPSs. In the rail domain, a key
contributionwould bemore realistic simulation of driver behaviour.Railmodelling
rarely takes into account human performance characteristics. Either human per-
formance is not considered, or the human operator is assumed to perform perfectly
(e.g. the driver always drives to the timetable), or a degree of noise is introduced
to reflect variability in operator performance. In practice, drivers are often opti-
mising their performance with knowledge and experience of their route, the wider
system state or anticipated implications of their actions (e.g. in conditions of low
adhesion). In this sense, operator variability is rational, and describable, rather
than stochastic and simply ‘noisy’ [11,26]. As well as this rational adaptation of
behaviour, operational roles are also prone to more general limitations on human
performance. For the driver this is often an issue of fatigue and decrements to vig-
ilance [12] or performance change due to underload [10].

A very early model of driver behaviour had been built to control an urban
train network [14]. However, this model was limited in a number of ways:

– The model only addressed a very small part of an urban rail network;
– This part of the urban rail network only used a rudimentary two-aspect sig-

nalling, which is unrepresentative of the majority of mainline rail in Great
Britain;

– Neither the infrastructure model, nor driver behaviour model, had a concept
of maximum line speed (i.e. the speed limit): this was not necessary given
the short distance in the urban rail model, but is a significant limitation for
wider application of the model; and

– The driver model only captured basic performance characteristics; other fac-
tors, such as fatigue or workload, were not expressed in the model.

The rest of this paper presents work to develop both a more sophisticated
driver model, and relevant enhancement of the initial infrastructure and train
models to provide the degrees of freedom necessary for more complex behaviour.
By doing so, it gives a demonstration of the possibility to include human operator
modelling within CPS multi-model simulation.

The remainder of this paper is structured as follows. Section 2 provides back-
ground on behavioural modelling and co-simulation. Section 3 presents the ele-

Modelling Train Driver Behaviour in Railway Co-simulations 251

ments of the driver behaviour model and its implementation as a Functional
Mockup Unit (FMU). Section 4 presents a railway case study and shows co-
simulation results with the driver model included, with results co-simulation
results presented in Sect. 5. Finally, Sect. 6 presents conclusions from the work
and suggests direction for future work, both in terms of developing the driver
model, and wider developments for modelling human performance in CPS with
multi-modelling.

2 Background

This section provides background and definitions relating to human behaviour
modelling and co-simulation, which serve as a basis for the results presented
later in the paper in Sects. 3 and 4.

2.1 Co-simulation

The FMI (Functional Mockup Interface) standard is an emerging standard for
co-simulation of multi-models, where individual models are packaged as Func-
tional Mockup Units (FMUs). FMI defines an open standard that any tool can
implement, and currently more than 30 tools can produce FMUs, with the num-
ber expected to surpass 100 soon, taking into account partial or upcoming sup-
port1. INTO-CPS is a tool chain based on FMI for the modelling and analysis
of CPSs [21]. At the core of the tool chain is Maestro [28], an open-source and
fully FMI-compliant co-simulation engine supporting variable- and fixed-step size
Master algorithms across multiple platforms. Maestro includes advanced features
for simulation stabilisation and hardware-in-the-loop simulation. INTO-CPS also
provides a graphical front end for defining and executing co-simulations.

The Vienna Development Method (VDM) [22] is a family of formal languages
based on the original VDM-SL language for systematic analysis of system spec-
ifications. The VDM-RT language allows for the specification of real-time and
distributed controllers [29], including an internal computational time model.
VDM-RT is an ex-tension of the VDM++ object-oriented dialect of the family,
which itself extends the base VDM-SL language. VDM is a state-based discrete-
event (DE) language, suited to modelling system components where the key
abstractions are state, and modifications of that state through events or deci-
sions. Overture is an open-source tool for the definition and analysis of VDM
models, which supports FMU export.

The 20-sim tool2 supports modelling and simulation of physical formula based
on differential equations. 20-sim can represent phenomena from the mechanical,
electrical and even hydraulic domains, using graphs of connected blocks. Blocks
may contain further graphs, code or differential equations. The connections rep-
resent channels by which phenomena interact; these may represent signals (one-
way) or bonds (two-way). Bonds offer a powerful, compositional and domain-
independent way to model physical phenomena, as they carry both effort and
1 http://fmi-standard.org/tools/.
2 http://www.20sim.com/.

http://fmi-standard.org/tools/
http://www.20sim.com/

252 T. Hotzel Escardo et al.

flow, which map to pairs of familiar concepts, e.g. voltage and current. 20-sim is
a continuous-time tool which solves differential equations numerically to produce
high-fidelity simulations of physical components.

2.2 Human Behaviours

There are many aspects to human behaviour that require understanding or study
when humans are included in a CPS. Several of these are relevant to a potential
train driver model.

Reaction Time. At high speed, slow reaction times can easily lead to overrunning
and potential accidents, particularly on high-speed rail. Reaction time in humans
can be broken down into simple reaction time (the minimal time needed to
respond to a stimulus) and choice response time (time taken for a decision).
Simple reaction time has been shown to increase with age [31]. The range of
the mean is between 0.55 ms to 1.7 ms increase per year after the age of 18.
Error rates also showed a difference between ages; the 18–24 bracket showed the
highest error rate, at around 8% vs 3% for other age groups [31].

Fatigue. Railway drivers are usually shift-workers, so often have night shifts,
as well as continuously varying periods of the day when they work [12]. Shift
workers have been shown to have up to 50% higher (264 ms up from 182 ms)
visual reaction time, as a simple reaction time response [18]. Despite being only
performed with only young male participants, this research is relevant for rail
study due to rail driver jobs being heavily male dominated, at 93.5% male in
the UK, though this picture is changing [8].

There are studies on how sleep deprivation affects error rates in various
domains. Railway specific studies show similar patterns of fatigue in shift-
workers in terms of work length, despite showing that severe sleepiness (higher
fatigue) decreased with age [17]. Accident rates on both passenger and freight
rail increased with the number of consecutive hours worked, and higher fatigue
levels can show higher rates of lapses in attention leading to delayed responses,
which in the tested case was of changing speed restrictions [6,9]. Other factors
may also affect train drivers, but which are more difficult to account for, include:

– Noise—“High continuous noise levels increase arousal, reducing error in repet-
itive, monotonous tasks. However, the performance of complex tasks decreases
with reduced accuracy, poor response to the unexpected, increased annoyance
and induction of fatigue” [3].

– Vibration—“Vibration may cause significant changes in arterial pressure,
reduce tactile feedback, induce fatigue and motion sickness” [3].

Modelling driver behaviour correctly is vital to the accuracy of the model;
differences in acceleration and brake usage will produce different results such as
energy usage. Some alternative strategies lead to similar energy usage, such as
low but consistent acceleration vs high acceleration with coasting [11]. However,
the variation in driver approach can lead to inconsistent and contradictory energy

Modelling Train Driver Behaviour in Railway Co-simulations 253

consumption, especially around the use of train control notches, since throttle
notches do not necessarily show linear power increases, due to differences between
trains. This error might not have shown up in real rail usage simply due to
assuming that drivers are following the appropriate control advice, showing the
need for driver models covering all variables and variations of driver style [26],
but can affect simulation modelling. Even minor differences between simulated
and observed performance can have a significant impact, for example at very
high capacity sections of track, junctions and stations.

Powell et al. [25] produce a model of different sections of urban rail (also of
sections of the Tyne & Wear Metro), superseding previous the use of spreadsheets
for such calculations, with the specific goal of optimising the driving profiles to
mirror real-life drivers, producing a reasonably well-fitting model compared to
the collected data. Errors were mainly due to the perceptions of when to brake
being different (data was gathered during autumn when drivers are told to brake
more gently to avoid sliding due to low wheel adhesion caused by leaves). Other
issues which could not be accounted for included other random conditions such as
wind (influencing drag) and lack of adhesion caused by other weather conditions.

Given the various aspect of human behaviours that can affect the operation
of cyber and physical elements, it is important to model such behaviours and

Fig. 1. Finite state machine diagram showing the primary states of the driver model.

254 T. Hotzel Escardo et al.

ensure that they can be incorporated with models of the other elements, to
predict better the real-world performance of CPSs.

3 Driver Behaviour Model

A driver model was developed using VDM-RT encoding the basic operation of
a driver, assuming perfect response time and no delay. The main behaviours of
a driver can be represented in four distinct states [26]:

1. Accelerating—throttling to reach the speed limit
2. Cruising—short combined phases of:

(a) Throttling
(b) Free-running—period of no throttle
(c) Applying brake

3. Coasting—Long period of free-running
4. Braking—apply the brake to follow the new lower speed limit, stop at a

station or for a signal.

The state machine in Fig. 1 shows how these are encoded in the model,
where accelerating, cruising and coasting are part of the driving state. Although
the driver must respond to the speed limits and signals, it us up to the driver
how to drive, for example how fast to accelerate or brake. These is the core of
the individual driver behaviours encoded in the model which we describe in the
following sections.

3.1 Baseline vs. Defensive Driving

Drivers differ in style, either through practice, through specific training (e.g.
in more fuel-efficient driving styles) or under guidance from Driver Advisory
systems. In terms of how the driver chooses to drive, this can be described in
terms of a ‘baseline’ driving style, and a more fuel efficient or ‘defensive’ driving
style. Defensive driving involves using lower application of power with lighter
acceleration, and earlier, gentler braking to reduce energy use and generation
of particulates. The model encodes these in the following way, with the default
being the baseline driving style:

– Higher throttle and brake values;
– Shorter braking distances set; and
– Slower response to applying brake or reducing power.

A parameter is included to control how ‘defensive’ a driver is. A driver has
a maxi-mum and minimum value to which it can set the throttle or brake, and
this defensiveness parameter is used as a ratio for what the actual throttle/brake
value is set to. The formula is given by:

((MAX V AL − MIN V AL) ∗ (1.0 − DEFENSIV ENESS)) + MIN V AL)

This allows for flexibility in exploring behaviours ranging from drivers who
may be slow to react to signals but defensive in terms of throttle and brake
values, or any other combination.

Modelling Train Driver Behaviour in Railway Co-simulations 255

3.2 Response Time

Response time this is the most basic factor in terms of the variability of humans
in a CPS. As described above, this is affected by a variety of factors. Response
time is encoded in the driver model by separating input events, in this case
signals and speed limit signs, and adding them to a delay queue through which
they must proceed before being processed. The time events spend in the delay
queue is dependent on four parameters:

– A ‘base human reaction time’ constant;
– A notional age of the driver;
– The number of hours the driver has been ‘on shift’; and
– Whether it is night or day.

The default values of these parameters were calculated based on values and pat-
terns described in Härmä et al. [17], Hemamalini et al. [18], and Woods et al. [31].

3.3 Fatigue

Fatigue is a major factor in the performance of rail drivers in terms of awareness
and failure. Fatigue leading to driver mistakes is a probabilistic process: tiredness
makes mistakes more likely. Within this driver model, mistakes relate to the pro-
cessing of events and there are two types. The first are ‘errors’, where an event (sig-
nal or speed limit) is completely ignored. The second are ‘lapses’, where reduced
concentration induces additional delay. Both can be realised using the delay queue,
by not adding an event to the queue or adding an additional delay, respectively.

Errors and lapses are controlled by a by a pseudo random number generator.
To make the model deterministic, a random seed parameter is included if a spe-
cific run needs to be repeated. The ‘error rate’ is controlled variable, in the range
(0, 1), and is calculated based on how long the driver has been on shift and the
time of day, using assumptions from Härmä et al. [17] and Volná and Šonka [30].
The ‘lapse rate’ works in a similar way but has random numbers controlling both
the length and severity of lapses. Different lapse rates are encoded for different
degrees of fatigue after Woods et al. [31], as below:

Probability of lapse (lapse rate)

Length of lapse (s) Low fatigue Medium fatigue High fatigue

0 0.67 0.58 0.3

0–0.5 0.33 0.34 0.4

0.5–2.0 0.01 0.08 0.2

2.0–4.0 0 0 0.1

4.0–6.0 0 0 0.05

6.0–8.0 0 0 0.05

256 T. Hotzel Escardo et al.

4 Railway Co-simulation

The driver model described above was exported to an FMU and incorporated
into a railway multi-model for co-simulation. The multi-model is based on the
urban rail model described by Golightly et al. [14], with the train and signalling
model updated to mainline speeds, and the basic driver model replaced with the
more sophisticated implementation. An overview of the multi-model structure
is given in Fig. 2, showing the relationship between the FMUs, the main data
exchanged between them, and the parity between them, i.e. multiple driver-
train pairs are controlled by a single movement authority and power system.
The FMUs in the multi-model are:

Fig. 2. Abstract UML diagram showing the relationship between the FMUs in the
railway case study, their data exchange and parity.

– Movement Authority (VDM-RT): controls the signalling and provides the
driver FMU with the signals and speed limits which they can ‘see’ up ahead.

– Train (20-sim): a model of an Intercity 125 train composed of three carriages,
including variations for a lighter model with regenerative braking.

– Power (20-sim): a simple power model providing line voltage to the train;
does not model voltage drop or other phenomena.

– Driver (VDM-RT): the model described in the previous section.

Though there are exceptions, the majority of Great Britain’s mainline rail
network uses a signalling method called track circuit block signalling, where
only one train is allowed in a block of track, with each block being protected by
colour light signals. In conjunction with this, GB rail also functions with ‘route’
signalling, meaning that signals inform the driver of the state of the signals that
follow that signal. While signals can have up to seven states (or ‘aspects’), the
four most common configurations are:

Modelling Train Driver Behaviour in Railway Co-simulations 257

– Green: clear; proceed subject to track or train speed limits.
– Double-yellow: preliminary caution; the next signal is yellow.
– Yellow: caution, the next signal is danger/stop.
– Red: danger/stop. Stop at this signal unless given explicit permission to pro-

ceed by a signaller.

Green and yellow signals are known as ‘proceed aspects’ since the driver may
pass the signal. These signals are controlled by a ‘movement authority’ which
knows the state of the system. Drivers must respect these signals, along with
any speed limits on the track which affect how fast the train can go despite
a green signal. The movement authority model used signal type and position,
collected from open source rail models, to create a realistic infrastructure model
that capture both signal position and line speeds for a 25 km stretch of the East
Coast Main Line, between Newcastle and Durham.

5 Results

A co-simulation was run with a single train performing a journey of a few minutes
from Newcastle to Durham in the North East of England. Three driver profiles
were used, a baseline driver, a fully defensive driver and an intermediate driver
with 50% defensiveness (a defensive parameter of 0.5). Plots for different levels
of fatigue are shown in Fig. 3. This allows a comparison of the number of and
length of different lapses. These show the intended smaller gap between ‘low’
and ‘medium’ fatigued driver models, and a large difference between them and
the ‘high’ fatigued driver, as intended to reflect lapses described by Dorrian et
al. [9]. The ‘medium’ fatigued driver still has more longer lapses than the ‘low’
fatigued driver. One issue that is immediately obvious in the high fatigued driver
is that the lapses are both long and repeated consecutively. One possible way
to fix this would be for the randomness around laps-es to be pseudo-random
(reduced likelihood after a long lapse has occurred), as research has shown train
drivers will be more alert in the period after making a mistake [20].

Plots for the velocity, acceleration and energy usage for these three drivers
are shown in Fig. 4. When comparing velocity, the baseline driver is much closer
to the speed limit at all times than both more defensive drivers, despite with
the defensive drivers braking earlier in response to speed limits compared to the
baseline driver. The drawbacks of using the higher throttle and braking values
is shown by the much larger changes in acceleration as the defensiveness of a
driver decreases. This highlights some of the issues with the parameters used
in this model. The values acceleration and jerk (rate of change of acceleration)
are unlikely to be comfortable for either the driver or passengers, showing an
important avenue in which driver models could be improved in the future.

The cost of baseline driving is further demonstrated when considering energy
consumption, as shown in Fig. 4. This reflects what has been shown in previous
research, including and an earlier study with this model [26], with less defensive
drivers showing much larger energy consumption. The following table shows the
energy consumption and distance travelled by each driver:

258 T. Hotzel Escardo et al.

Fig. 3. Plots showing the rate and duration of lapses during a co-simulation for low,
medium and high fatigue drivers.

Modelling Train Driver Behaviour in Railway Co-simulations 259

Fig. 4. Plots showing velocity, acceleration and energy usage for different driving styles.

260 T. Hotzel Escardo et al.

Defensive 50% defensive Baseline

Energy consumption (MWh) 0.375 0.559 0.643

Distance travelled (m) 8192 10197 10444

Energy consumption relative
to the defensive driver (%)

100% 149% 172%

Distance travelled relative to
the defensive driver (%)

100% 124% 127%

The baseline driver uses 72% more energy than the defensive driver, however
the train also travels 27% farther within the time of the simulation run. However,
the somewhat defensive driver shows an energy consumption 13% lower than
the base-line driver whilst travelling 98% of the distance in the same time. This
shows how a mixed driving style may achieve the best compromise with keeping
to current travel timing as well as the beneficial energy consumption reductions.

6 Conclusions

Human performance is a key aspect of CPS, and CPS simulation. Train driving
is an example of a critical human aspect of a CPS, yet one that is routinely
overlooked in systems modelling. The work presented in this paper has started
to move ahead with a sophisticated model of driver performance. In practical
terms, such a model could be used in simulation efforts such as understanding
the viability of optimisation tools for nodes and rail system bottlenecks [2], or
for understanding the impact of low-adhesion strategies [1].

More broadly, the work begins to demonstrate the feasibility of representing
human performance-shaping factors within multi-modelling. The kind of fatigue,
workload, and competence/skill parameters shown here are likely to be just
as relevant in any CPS that involves a human controller such as control of
an aircraft/aero-engine, semi-autonomous vehicle or human-robot collaboration.
Moreover, there is scope to add error or human-computer interaction parameters
to the model, and thus represent performance with ICT.

The use of FMI as a means to encapsulate human behaviour models and link
them to models of other cyber-physical components through co-simulation can
serve as a way to make such important aspects of CPS accessible to systems
engineers and integrators. While the model here currently uses the terminology
of driving, the under-lying principles of a human operator dealing with events
and actions while switching between multiple tasks, and responding more slowly
under stress and fatigue, can be generalized and incorporated into other co-
simulations as an FMU.

One major limitation of the work presented here is that it has not been
validated with actual driving. To some extent, the intention of this model has
shown that the parameters can be defined, the simulation performs broadly
within expectations, and the human performance can be modelled to influence

Modelling Train Driver Behaviour in Railway Co-simulations 261

system performance. A next critical step will be to consult both with actual
drivers, and with sources such as On-Train Data Recorders [4].

Acknowledgements. This work was partially supported by the Rail Safety and Stan-
dards Board (RSSB) as the Digital Environment for Collaborative Intelligent De-
carbonisation (DECIDe) project (COF-IPS-06).

References

1. Alturbeh, H., Stow, J., Tucker, G., Lawton, A.: Modelling and simulation of the
train brake system in low adhesion conditions. Proc. Inst. Mech. Eng. Part F J.
Rail Rapid Transit 234(3), 301–320 (2020)

2. Armstrong, J., Preston, J.: Capacity utilisation and performance at railway sta-
tions. J. Rail Transp. Plan. Manage. 7(3), 187–205 (2017)

3. Arnstein, F.: Catalogue of human error. Br. J. Anaesth. 79(5), 645–656 (1997)
4. Balfe, N.: Human factors applications of on-train-data-recorder (OTDR) data: an

exploratory study. Cogn. Technol. Work, 1–15 (2020). https://doi.org/10.1007/
s10111-019-00622-y

5. Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-
saving cyber-physical system in the railway domain. In: Proceedings of the Sym-
posium on Applied Computing, pp. 1356–1363 (2017)

6. Chang, H.L., Ju, L.S.: Effect of consecutive driving on accident risk: a comparison
between passenger and freight train driving. Accid. Anal. Prev. 40(6), 1844–1849
(2008)

7. Chen, L., James, P., Kirkwood, D., Nguyen, H.N., Nicholson, G.L., Roggenbach,
M.: Towards integrated simulation and formal verification of rail yard designs-an
experience report based on the UK east coast main line. In: 2016 IEEE Interna-
tional Conference on Intelligent Rail Transportation (ICIRT), pp. 347–355. IEEE
(2016)

8. Davies, C.: Rail union in push for more female and BAME train drivers. The
Guardian (2019). https://www.theguardian.com/uk-news/2019/jun/17/female-
bame-train-drivers-aslef

9. Dorrian, J., Roach, G.D., Fletcher, A., Dawson, D.: The effects of fatigue on train
handling during speed restrictions. Transp. Res. Part F Traffic Psychol. Behav.
9(4), 243–257 (2006)

10. Dunn, N., Williamson, A.: Driving monotonous routes in a train simulator:
the effect of task demand on driving performance and subjective experience.
Ergonomics 55(9), 997–1008 (2012)

11. Ellis, R., et al.: Observations of train control performance on a camshaft-operated
DC electrical multiple unit. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
230(4), 1184–1201 (2016)

12. Filtness, A.J., Naweed, A.: Causes, consequences and countermeasures to driver
fatigue in the rail industry: the train driver perspective. Appl. Ergon. 60, 12–21
(2017)

13. Flach, J.M.: Complexity: learning to muddle through. Cogn. Technol. Work 14(3),
187–197 (2012)

14. Golightly, D., Gamble, C., Palacin, R., Pierce, K.: Multi-modelling for decarboni-
sation in urban rail systems. Urban Rail Transit 5(4), 254–266 (2019)

https://doi.org/10.1007/s10111-019-00622-y
https://doi.org/10.1007/s10111-019-00622-y
https://www.theguardian.com/uk-news/2019/jun/17/female-bame-train-drivers-aslef
https://www.theguardian.com/uk-news/2019/jun/17/female-bame-train-drivers-aslef

262 T. Hotzel Escardo et al.

15. Golightly, D., Gamble, C., Palacin, R., Pierce, K.: Applying ergonomics within
the multi-modelling paradigm with an example from multiple UAV control.
Ergonomics 63, 1–17 (2020)

16. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

17. Härmä, M., Sallinen, M., Ranta, R., Mutanen, P., Müller, K.: The effect of an
irregular shift system on sleepiness at work in train drivers and railway traffic
controllers. J. Sleep Res. 11(2), 141–151 (2002)

18. Hemamalini, R., Krishnamurthy, N., Saravanan, A.: Influence of rotating shift work
on visual reaction time and visual evoked potential. J. Clin. Diagn. Res. JCDR
8(10), BC04 (2014)

19. Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive
Systems Engineering. CRC Press, Boca Raton (2005)

20. Itoh, K., Tanaka, H., Seki, M.: Eye-movement analysis of track monitoring patterns
of night train operators: effects of geographic knowledge and fatigue. In: Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, pp.
360–363. SAGE Publications, Sage CA: Los Angeles, CA (2000)

21. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.:
Features of integrated model-based co-modelling and co-simulation technology. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 26

22. Larsen, P.G., et al.: The VDM-10 language manual. Technical report TR-2010-06,
The Overture Open Source Initiative, April 2010

23. Lee, E.A.: Cyber physical systems: design challenges. Technical report.
UCB/EECS-2008-8, EECS Department, University of California, Berkeley,
January 2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.
html

24. de Mattos, D.L., Neto, R.A., Merino, E.A.D., Forcellini, F.A.: Simulating the influ-
ence of physical overload on assembly line performance: a case study in an auto-
motive electrical component plant. Appl. Ergon. 79, 107–121 (2019)

25. Powell, J.P., Fraszczyk, A., Cheong, C.N., Yeung, H.K.: Potential benefits and
obstacles of implementing driverless train operation on the Tyne and Wear Metro:
a simulation exercise. Urban Rail Transit 2(3–4), 114–127 (2016)

26. Powell, J., Palaćın, R.: A comparison of modelled and real-life driving profiles for
the simulation of railway vehicle operation. Transp. Plan. Technol. 38(1), 78–93
(2015)

27. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: 2010 47th ACM/IEEE Design Automation Conference
(DAC), pp. 731–736 (2010)

28. Thule, C., Lausdahl, K., Larsen, P.G., Meisl, G.: Maestro: The INTO-CPS Co-
Simulation Orchestration Engine (2018, submitted to Simulation Modelling Prac-
tice and Theory)

29. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006). https://doi.
org/10.1007/11813040 11

30. Volná, J., Šonka, K.: Reaction time measurement in different periods of shift work
at nurses. České Budějovice 2010, p. 147 (2010)

31. Woods, D.L., Wyma, J.M., Yund, E.W., Herron, T.J., Reed, B.: Factors influencing
the latency of simple reaction time. Front. Hum. Neurosci. 9, 131 (2015)

https://doi.org/10.1007/978-3-319-74781-1_26
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
https://doi.org/10.1007/11813040_11
https://doi.org/10.1007/11813040_11

Cross-level Co-simulation and Verification
of an Automatic Transmission Control

on Embedded Processor

Cinzia Bernardeschi1(B), Andrea Domenici1, Maurizio Palmieri1,
Sergio Saponara1, Tanguy Sassolas2, Arief Wicaksana2, and Lilia Zaourar2

1 Department of Information Engineering, University of Pisa, Pisa, Italy
cinzia.bernardeschi@unipi.it

2 CEA, LIST, Gif-sur-Yvette CEDEX, France

Abstract. This work proposes a method for the development of cyber-
physical systems starting from a high-level representation of the con-
trol algorithm, performing a formal analysis of the algorithm, and co-
simulating the algorithm with the controlled system both at high level,
abstracting from the target processor, and at low level, i.e., including
the emulation of the target processor. The expected advantages are a
smoother and more controllable development process and greater design
dependability and accuracy with respect to basic model-driven develop-
ment. As a case study, an automatic transmission control has been used
to show the applicability of the proposed approach.

1 Introduction

Simulation is an essential activity in model-driven development (MDD), as it
enables developers to implement virtual prototypes of their designs at all required
levels of abstraction, until the design has been refined and validated to the point
that it can be prototyped in hardware and code.

The existence of design models at different levels of abstraction makes it
convenient to use different tools and formalisms for each model. Let us con-
sider, for example, the control part of a cyber-physical system (CPS). This
component must implement a high-level control algorithm that can be defined
mathematically and modelled and simulated with the well-known tools together
with a model of the controlled plant, usually built with the same tools, e.g.,
with Simulink. From now on, it is tacitly assumed that simulations include a
plant model built with Simulink. Further refinements lead to a lower-level design
including programming code and a hardware platform of the target processor(s),
including system software/microcode. In this work, the terms hardware or plat-
form refer to the physical and software infrastructure that executes the control

Work partially supported by the EPI (European Processor Initiative) project, EU-
H2020 and by the Italian Ministry of Education and Research (MIUR) in the framework
of the CrossLab project (Department of Excellence).

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 263–279, 2021.
https://doi.org/10.1007/978-3-030-67220-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-67220-1_20

264 C. Bernardeschi et al.

algorithm. At this level of abstraction, it is possible to run the developed pro-
gramming code on a simulated or real processor architecture. At this point, the
hardware platform is the critical issue, as it affects significantly system perfor-
mance and dependability. Accurate simulation of the platform makes it possi-
ble to evaluate hardware from different vendors, compare different architectural
solutions, and choose optimal parameter configurations.

Processor simulation, however, requires formalisms and tools that are quite
different from those used for high-level design. This mismatch is both conceptual
and organisational, since the two levels require different fields of expertise, and
is a potential source of issues ranging from project delays to design errors.

This paper introduces the concept of cross-level simulation, an approach
to MDD aimed at bridging the gap between high- and low-level models, pre-
serving coherence between them, and furthermore enabling formal verification
of the control algorithm. A key point in this concept is that the implemen-
tation of the control algorithm is the same for both levels of simulation, and
that the implementation is produced automatically from a formally verifiable
model. Depending on application characteristics or project constraints, verifi-
cation may be performed upfront on the formal model, or concurrently with
simulation, the two activities cross-checking each other. This approach, sum-
marised in Fig. 1, is an extension to the common development flows based on
Simulink-like tools, and relies on various tools for model construction, transfor-
mation, and simulation. More precisely, (i) a prototyping environment is used
to create a high-level, automaton-based model and generate both a logic-based
specification and C code; (ii) the specification is used to verify the control algo-
rithm with a theorem-proving environment; (iii) high-level simulation executes
the controller code together with a plant model, e.g., in Simulink; and (iv) low-
level simulation executes the same code on simulated hardware, built in the
SESAM/VPSim environment to account for timing behaviour.

In summary, this work extends the common MDD process by (i) starting
with an abstract formal model; (ii) automatically generating an executable and
a verifiable model; (iii) using formal verification side by side with simulation; (iv)
relying on co-simulation to achieve modularity and flexibility of system models;
and (v) using the same control code in high- and low-level simulation. The
expected advantages are (i) a smoother and more controllable process and (ii)
greater design dependability and accuracy with respect to basic MDD, relying on
tools that enforce coherency among models at different levels of abstraction. In
particular, the same code is used in both high-level and low-level co-simulations.

The rest of the paper is structured as follows: a selection of related works is
presented in Sect. 2, the methods and tools for virtual prototyping/verification
are introduced in Sect. 3, Sect. 4 illustrates the proposed approach, and Sect. 5
shows its application to a case study. Section 6 concludes the paper.

2 Related Work

Model-driven development relies mainly on simulation to analyse the system
behaviour [25]. In cyber-physical systems, simulation often takes the form of

Cross-level Co-simulation and Verification 265

control algorithm logic specification formal verification

initial models intermediate models activities

C code

high−level simulation

low−level simulation

plant dynamics

hardware model

Fig. 1. Overview of cross-modelling.

co-simulation [11], which integrates simulation of heterogeneous sub-systems,
modelled and simulated with the appropriate tools.

Due to the complexity of such systems, formal verification can help to assess
compliance to safety requirements. Hybrid model checking, which relies on the
formalism of Hybrid Automata [12], is used for the analysis of cyber-physical
systems with a model-checking approach. One example of a model checking tool
is HYCOMP [7] which also relies on Satisfiability Modulo Theories [8]. A com-
plementary approach to model checking is theorem proving. Dynamic Logic [5] is
used with the KeyMaeraX [22] theorem prover, which has been integrated with
the SPIRAL environment [23] as reported by Franchetti et al. [10]. A framework
that integrates simulation and theorem proving is PVSio-web [18], which uses
higher-order logic as modelling language, as reported in [3,9,20].

None of these works integrates the processor emulation in the co-simulation.
In the field of electronic systems design, virtual prototypes are extensively

used to simulate the behaviour of a system to be built. This allows hard-
ware/software co-design to be better assessed and provides fast software devel-
opment, reducing time to market. Many tools from academic work [6,14] or
electronic design automation vendors [26] address this need. The cited tools are
all based on the IEEE SystemC standard [13] meant for model sharing. The stan-
dard defines a C++ library providing both a full discrete event simulation envi-
ronment and design specific architectural constructs to enable hardware design
at this level of abstraction. SystemC is further extended by the TLM 2.0 stan-
dard [1] which abstracts complex communication channels and protocols into
simple function calls for faster simulation.

3 Background

This section provides details on the methods and tools used in this work.

3.1 PVS, Emucharts, and PVSio-web

Theorem proving consists in describing a system as a theory in some logic
language, expressing its requirements as theorems, and verifying them with

266 C. Bernardeschi et al.

automatic or interactive theorem-proving software. The Prototype Verification
System (PVS) [19] is an interactive theorem-proving environment based on a
higher-order specification language whose variables can range over functions and
predicates. Theorems are proved by issuing commands to execute proof steps.

Users can create any theory by editing a text file, but the PVSio-web
toolkit [18] can generate a PVS theory from an automaton created with the
Emucharts [16] editor. An Emucharts graph is composed of modes linked by tran-
sitions. The graph is complemented by a set of variables whose values, together
with the current mode, define the current state. Transitions are defined by a
trigger (an event), a guard (an enabling condition on variables), and an action
(updates on variables). The variables may range over discrete or continuous
domains, they may represent time, state variables, values of time derivatives,
and updated values in difference equations, so the Emucharts are a form of
hybrid automata as defined in [12]. An example is shown in Sect. 5.1, Fig. 5.

The PVSio-web toolkit can translate Emucharts into various specification and
programming languages, including Misra C, a dependability-oriented version of
C [17]. It is then possible to create a high-level automaton-based system model
and from it generate a PVS theory to assert its properties, and use executable
code automatically produced from the same model.

3.2 INTO-CPS

Co-simulation [11] is a technique to couple different simulation units together.
A complex system can then be divided in many simpler submodels, and each
submodel can be simulated using its specific language and tools. The Func-
tional Mock-up Interface (FMI) [4] is an emerging standard for co-simulation,
in which different simulation units, called Functional Mock-up Units (FMU),
are orchestrated by a master algorithm in charge of synchronisation and data
exchange among the FMUs. The master algorithm adopted in this work is the
Co-simulation Orchestration Engine (COE), developed by the INTO-CPS Asso-
ciation [15]. The COE requires as input the logical connections between FMUs,
the parameter values and the constraints on the co-simulation time step size.
The INTO-CPS application also collects and graphically displays data produced
by the co-simulation experiments.

3.3 SESAM/VPSim Environment

Within the SESAM [27] CPS design framework, the VPSim [6] tool targets the
fast assembly and simulation of SoC architecture for both design space explo-
ration and hardware/software co-design and validation. VPSim uses Python
scripts to define architectures composed of SystemC modules from an exten-
sive library of simulated commercial components including CPUs, interconnects,
peripherals, and external controllers from various vendors (Xilinx, Renesas,
Cadence, etc.). VPSim relies on the QEMU [2] processor emulator to provide a
rich and fast CPU library model. As it targets fast simulation, VPSim is based
on a loosely-timed model in compliance with TLM 2.0.

Cross-level Co-simulation and Verification 267

As all SESAM tools, VPSim supports FMI co-simulation for tool interoper-
ability throughout the design stages. It is a fully automated solution for export-
ing a hardware/software virtual prototype as an FMU. This enables the co-
simulation of a whole CPS as detailed in [24]. Therefore, it can easily interface
with other FMI-compliant simulators. An FMU encapsulating the virtual plat-
form can be automatically generated based on a high-level description of the
hardware/software platform.

4 Cross-level Modelling, Co-simulation and Verification

Cross-level simulation, introduced in Sect. 1, is discussed below.

Emucharts
Editor Model

Emucharts
Controller

Theorem
Prover

PVS
generator

C Code

Generator
+ FMU

Controller
PVS theory

Proof

Developer

PVS environment

PVSio−web environment

Controller
C Code

Controller
FMU

Fig. 2. Model generation and formal verification.

4.1 Development Process

The initial steps of the development process are depicted in Fig. 2: first, the
developer uses the PVSio-web environment to generate the Emucharts model of
the algorithm under analysis and then the developer uses the PVS and C code
generators to generate the PVS theory and the Misra C code.

In the verification activity, the theory is used for two forms of verification:
First, the well-formedness of the system model is assessed with the PVS type
checker [21], then its compliance to requirements is checked with the theorem
prover. The type checker may generate type checking conditions (TCC), i.e.,
statements that must be proved to ensure type correctness. Many TCCs are
discharged automatically, others can be proved by the user with one or few com-
mands, but unprovable TCC reveal incompleteness or inconsistency in a theory.
The specification of requirements involves translating the desired property from
natural or mathematical language to a PVS theorem.

In the high-level simulation phase, the controller is co-simulated to validate
it in connection with the plant model (Fig. 3). The latter, built with a tool such
as Simulink, is packaged in an FMU.

268 C. Bernardeschi et al.

Simulink
FMU

INTO−CPS
application

simulation
results

Plant

FMU
Controller

Fig. 3. High-level co-simulation.

In the low-level simulation phase, the controller implementation is compiled
and executed on a simulated platform including accurate models of real hard-
ware, such as processors, memories, and controllers. In this phase, performance-
related properties are assessed, such as execution time, latencies, or cache misses,
possibly evaluating alternative choices of hardware components (Fig. 4).

FMU
Generator

FMUVPSim models

INTO−CPS
application

simulation
results

VPSim environment
platform
Control and

Controller
C code

Plant
FMU

Fig. 4. Low-level co-simulation.

The verification or simulation activity (or both) may fail, e.g., because the
results of the co-simulation are not the expected ones or because the discharge
of some TCC failed; In this case, the Emucharts model should be refined, using
the results of the failed activities, then a new Misra C code and a new PVS
theory should be generated, and the two activities iterated until both succeed.

When type checking and co-simulation succeed, it is then possible to specify
and prove safety properties of the submodel under analysis.

4.2 Emulation of Processors with VPSim

Any architecture can be simulated by VPSim using the CPU models provided by
the QEMU, an open-source hardware emulation solution, although it also allows
the integration of model providers that have a SystemC/TLM interface, such as
ARM Fast Models. By using QEMU for CPU modelling, we can obtain a very
high simulation speed. Such a high performance is achieved mainly by abstract-
ing the architectural aspects of CPUs while maintaining the functional accuracy
in the execution. To provide the essential performance statistics to users, the
QEMU models is enriched by VPSim in the SystemC simulation domain to

Cross-level Co-simulation and Verification 269

model architectural aspects. To that end, all models that are backed by QEMU,
including the VirtIOs, are encapsulated in SystemC modules and executed in
the context of SystemC threads. Accordingly, QEMU models are controlled by
the SystemC kernel like any native module and are transparently exposed to the
user like any other VPSim component. For CPS validation purposes, the VPSim
virtual platform can be packaged as an FMU by adding the definition of nec-
essary FMI interfaces used in the Python front-end interface. VPSim supports
models such as CAN controllers in its hardware library.

5 Automatic Transmission Control Case Study

The case study of this work is based on the Automatic Transmission Controller
example from the Matlab documentation1. This example is a Simulink/Stateflow
model composed of five high-level blocks: the Engine, the ShiftLogic, the Trans-
mission, the Vehicle, and the ManeuvresGUI, which drives the simulation by pro-
ducing the throttle and brake signals for a passing manoeuvre. The ShiftLogic
block is a hybrid automaton, defined in Stateflow, that produces the upshift
and downshift commands to the Transmission, according to a shift schedule that
takes into account the current gear, the vehicle speed, and the throttle position.

The ShiftLogic controller is in a steady state if the vehicle is driving at an
intermediate speed between the upshift and downshift thresholds for the current
gear and throttle. If the throttle or speed cross a threshold, the controller moves
to either of two waiting states (for upshift or downshift). If the speed remains
beyond the threshold for a given time, the corresponding shift command is issued
and the controller moves to the steady state of the new gear.

5.1 High-Level Virtual Prototyping

The ShiftLogic block has been re-designed as outlined in Sect. 4.1 and packed in
an FMU. Another FMU, generated by Simulink, contained the other four blocks.
The two FMUs were then co-simulated in INTO-CPS.

Emucharts Model for ATC. The ATC behaviour is specified by the shift
schedule. Using the data from the cited example, the shift schedule is defined by
the functions represented in Tables 1 and 2. Each row labelled as n −m shows
the threshold speed value (in miles per hour) for a shift from gear n to gear m
in consecutive intervals of throttle position t% (in percent).

The shift schedule has been modelled as an Emucharts diagram. Figure 5
shows the diagram fragment relative to the lower two gears, while the complete
diagram (Fig. 13), drawn in a more compact form, is in the Appendix with the
transition definitions. Each transition is identified with a label followed by a
guard in square brackets and possibly an action in braces.

1 https://www.mathworks.com/help/simulink/slref/modeling-an-automatic-
transmission-controller.html.

https://www.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html
https://www.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

270 C. Bernardeschi et al.

Table 1. Shift schedule, speed thresholds for upshifts.

Shift t% ≤ 25 25 < t% ≤ 35 35 < t% ≤ 50 50 < t% ≤ 90 90 < t% ≤ 100

1-2 10 0.5t% − 2.5 0.53333t% − 3.6667 0.425t% + 1.75 40

2-3 30 30 0.73333t% + 4.3333 0.725t% + 4.75 70

3-4 50 50 0.66667t% + 26.6667 t% + 10 100

Table 2. Shift schedule, speed thresholds for downshifts.

Shift t% ≤ 5 5 < t% ≤ 40 40 < t% ≤ 50 50 < t% ≤ 90 90 < t% ≤ 100

4-3 35 0.1429t% + 34.28571429 t% 0.75t% + 12.5 80

3-2 20 0.1429t% + 19.2857 0.5t% + 5 0.5t% + 5 50

2-1 5 5 5 0.625t% − 26.25 30

In the diagram, stdy modes represent steady conditions of the ATC, while up
and down modes represent the waiting phases before the ATC is going to issue
an upshift or downshift command, respectively, if the speed remains beyond the
corresponding threshold for a long enough time.

The transitions depend on variables: the discrete variables clock and gear and
the continuous variables tht (throttle), up th (upshift threshold), dw th (down-
shift threshold), and speed. Variable clock is a timer that can be incremented
by one step or reset, and gear is the controller output. The flow conditions [12]
for the input variables tht and speed are defined externally by the Vehicle and
ManeuvresGUI models, while the flow conditions for up th and dw th are given
by the shift schedule in Tables 1 and 2, respectively.

g1_stdy

T1: [speed < up_th]

g1_up

T11: [speed >= up_th]
{clock := 0}

T20: [speed =< dw_th & clock >= 5]
{gear := 1}

g2_stdy g2_upg2_down

T14: [speed >= up_th] {clock := 0]

T23: [speed =< dw_th] T15: [speed < up_th]

T24: [speed > dw_th]

{clock++}
T2: [clock < 5 & speed >= up_th]

T10: [speed > dw_th & speed < up_th]T5: [clock < 5 & speed =< dw_th]
{clock++}

T3: [clock < 5 & speed >= up_th]
{clock++}

~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

T13: [speed >= up_th & clock >= 5]
{gear := 2}

T12: [speed < up_th]

Fig. 5. Fragment of the Emucharts diagram for the shift logic automaton.

Discharging the TCCs for the ATC. The Emucharts model of the ATC was
derived from the Stateflow machine in the cited Matlab example. Typechecking
the PVS theory generated from the first Emucharts version produced unprovable

Cross-level Co-simulation and Verification 271

TCCs. One is a coverage TCC, stating that the disjunction of the guards of all
transitions is identically true, i.e., at least one transition is enabled. The comple-
mentary mutual exclusion TCC requires that at most one transition is enabled.
The problem was that some transitions were implicit in the Stateflow model, and
was fixed by explicitly adding the needed transitions to the Emucharts model.
These transitions are labelled in boldface as T1, T8, T9, and T10 in Fig. 13.
This is an example of how a sophisticated type system, together with automatic
checking, helps spotting hidden assumptions that are often sources of errors.

Co-Simulation for ATC. Figure 6 shows the co-simulation architecture for
the high-level simulation. The co-simulations are executed using a fixed time
step of 0.1 s and last 80 s of simulated time. Figure 7 shows the results of a co-
simulation run. These results are consistent with those obtained with the original
Simulink model, i.e., the shapes of the throttle and speed curves between the
first and third upshifts match those of the plot in the MATLAB documentation,
except for the initial speed value and the initial transient as discussed in Sect. 5.2
below.

COEAutomotive FMU

speed
gear
throttle

Controller FMU

speed
gear

throttle

Fig. 6. High-level co-simulation architecture.

Fig. 7. High-level control co-simulations.

272 C. Bernardeschi et al.

Verification Process for ATC. As an example, one of the safety properties
of the ATC algorithm is “it is never possible to move in one step from a state
where gear equals g to a state where gear equals g ± 2”. This natural language
statement can be translated in PVS with the main th theorem, where abs is the
absolute value function:

gear_T: TYPE = {x: posnat | x<=4}

main_th: THEOREM

FORALL (N:nat, g:gear_T):

kth_step(N)‘gear = g => abs(kth_step(N+1)‘gear - g) < 2

where kth step(N) is a data structure containing the values of all variables at
step N , and ‘gear selects the value of gear. The proof has been done by induction
on the number of steps and by analysing separately the different values of gear.
The proof relies on a few lemmas. For example, it must be proved that in any
gear, the computed threshold speed for an upshift (compute UP TH(s)‘up th) is
greater than the one for a downshift (compute DW TH(s)‘dw th):

UPgtDW: LEMMA
FORALL (s:State):

compute_UP_TH(s)‘up_th > compute_DW_TH(s)‘dw_th

Another lemma excludes direct transitions between two steady states:

gear1: LEMMA
FORALL(N:nat):

kth_step(N)‘mode = g1_steady => kth_step(N+1)‘mode /= g2_steady

Verifying this and similar theorems guarantees the functional correctness of the
control algorithm.

5.2 Co-simulation with VPSim

Figure 8 shows the architecture for the low-level simulation with VPSim. This
architecture is very similar to the high-level scenario, the only difference is that
the controller FMU has been replaced with the FMU generated from VPSim.
The FMU generated by VPSim emulates a cluster of ARMv8 64-bit architec-
tures. The cluster contains 1-core processors with private L1 and L2 caches,
which is connected to the on-chip interconnect and peripheral devices. More
cores and clusters can be added in future works for more complex applications.
The architecture executes a Linux OS which supports the ShiftLogic application.

Hence, the VPSim FMU requires an initial time to boot the operating system
before executing the application of the ShiftLogic algorithm, while the MisraC
FMU executes the algorithm since the beginning of the co-simulation. For sake
of comparison between the two architectures, the value of throttle is always kept
close to zero for the first seconds of the co-simulations.

Cross-level Co-simulation and Verification 273

Automotive FMU

speed
gear
throttle

Controller + Platform
FMU

COE

speed
gear

throttle

Fig. 8. Low-level co-simulation architecture.

Fig. 9. Co-simulation of VPSim-generated FMU with fast ATC execution.

VPSim enables the timing behaviour of a system to be captured. Hence the
duration of the applicative code has a direct impact on the evolution of the FMU
outputs that it may change. Simulations have been performed with different
execution times of the ATC, obtained by adding delay loops to the original code.
When the ATC executes faster than the FMI simulation step demanded by the
FMI master (Fig. 9), the behaviour is similar to what is achieved with high-level
simulation. (Functions fmi2set and fmi2get are write and read operations, while
function fmi2DoStep triggers the execution of one simulation step.) In that case,
Fig. 11 shows the behaviour of the co-simulation with the VPSim FMU: The
resulting behaviour is consistent with the one previously obtained with the high-
level co-simulation. On the contrary (Fig. 10), when the ATC executes slower
than the interval between invocations of fmi2DoStep, output value changes are
differed to after future simulation steps.

Fig. 10. Co-simulation of VPSim-generated FMU with slow ATC execution.

274 C. Bernardeschi et al.

Fig. 11. Low-level control co-simulations.

Having both simulation levels together allows inadequate execution speed of
the code under scrutiny to be better underlined. Indeed, when the application
execution speed is appropriate, the behaviour is consistent throughout the val-
idation levels as expected. However, it is worth noting that, even if one may
set the co-simulation step to an arbitrarily small value, this will create new dis-
crepancies due to processing delay in the low-level simulation compared to the
high-level one. If achievable, users should be advised to keep a simulation step
duration in line with the expected control decision deadline.

To further improve the alignment of models without this constraint, it could
also be beneficial in future work to model the target execution time during high-
level simulation by delaying control decisions accordingly. This would render
the high-level model behaviour invariant to simulation step choices. Similarly
the low-level simulation results shall not be made available too early, even if
the control code execute too fast. This would likely be taken into account in
real-time code where control decision would never be output before the target
deadline.

5.3 Results and Discussion

It is possible to compare Fig. 11 with Fig. 7: excluding the first seconds, in which
gear equals zero because the processor is still booting, the variable of gear has
the same behaviour for both cases. This result implies that the time required to
execute the ATC on the emulated processor is lower than the step-size chosen
for the co-simulation (0.1 s).

In order to highlight the advantages of considering low-level co-simulation,
the algorithm of the ATC has been artificially extended with a redundant code
that increases its computation time so that the execution time of the ATC

Cross-level Co-simulation and Verification 275

Fig. 12. Gear shifts in high- and low-level simulations.

becomes greater than the co-simulation step-size. Figure 12, shows the compar-
ison between the low- and high-level behaviour of the gear variable with the
extended code. It is possible to notice a small time delay in the behaviour of
the variable which is due to the different time management: The high-level co-
simulation always executes the whole ATC algorithm within a co-simulation step
while the low-level now requires more co-simulation steps. Please notice that the
delay in the first two gear transitions of the low-level co-simulation has affected
the value of speed, increasing it, in such a way that the next gear transition
occurs earlier with respect to the high-level simulation and, apparently, with no
delay.

The co-simulation results show that the underlying hardware performance
(e.g., computation speed), must be taken into account to ensure that the plant
can be controlled within the step-size. High-level simulation hides system per-
formance issues that the virtual prototype can highlight.

In all the co-simulation runs, both high-level and low-level, the results
obtained with PVS hold, as it is never the case that two gear transitions are
executed in two adjacent steps, thus validating the results obtained in Sect. 5.1.
Of course, time-related properties will be affected by the different time man-
agement and so require an additional step in the verification process, i.e., the
specification of the processor in PVS, but this will be subject of future work.

6 Conclusions

This work proposes an approach to the analysis of control algorithms deployed on
automotive systems. The approach uses models with different levels of abstrac-
tion: a more abstract, high-level, model composed of the executable code of the

276 C. Bernardeschi et al.

control algorithm, and a more accurate, low-level, model that also includes the
emulation of the hardware executing the code. The high-level analysis provides
information on the functional correctness of the model by exploiting both formal
reasoning tools such as the PVS theorem prover and simulation tools such as
INTO-CPS, while the low-level analysis provides information on the execution
performances related to the chosen hardware for the low-level model by exploit-
ing VPSim. The proposed approach also uses FMI co-simulation to include the
physical components of the car in the analysis.

Both levels of analysis are needed in the development of CPSs, especially
safety- or mission-critical ones.

It would not make sense to jump to software/hardware integration before
validating and possibly verifying the controller design, as it would not make sense
to choose a hardware platform without assessing its adequacy with respect to
timing constraints and evaluating its performance. This work strives to provide
a framework to maintain as much coherence as possible to the three key aspects
of development, i.e., formal verification, high-level, and low-level modelling.

A case study of an automatic transmission controller algorithm is used as a
proof of concept for the methods and tools involved in a safety-critical area like
automotive applications. The results highlight that it is possible to assess the
performance of the chosen hardware: If the emulated processor is fast enough to
accommodate the execution of the algorithm within a co-simulation time step,
then the behaviour of the low-level co-simulation is the same as the one of high-
level co-simulation, otherwise the co-simulation shows a different behaviour. The
proposed methodology was applied to an ARMv8 64-bit single-core processor
with private L1 and L2 caches, used in many application automotive processors
(e.g. NXP S32V). More cores will be added in future work to consider high-end
processors (like the Rhea1, expected as output of the European Processor Initia-
tive project) and for more complex safety-critical applications like autonomous
driving and model predictive control of vehicle dynamics.

Acknowledgements. The authors would like to thank the reviewers for their useful
comments and suggestions.

Appendix

Table 3 below shows the transition definitions of the simplified Emucharts dia-
gram shown in Fig. 13. Functions up th and dw th implement the shift schedule
specifications from Tables 1 and 2, respectively.

Cross-level Co-simulation and Verification 277

Table 3. Shift logic transitions.

Transition Source Target Guard Action

T1 g1 stdy speed < up th(1, t%)

T2 g1 up clock < 5 AND speed ≥ up th(1, t%) clock++

T3 g2 up clock < 5 AND speed ≥ up th(2, t%) clock++

T4 g3 up clock < 5 AND speed ≥ up th(3, t%) clock++

T5 g2 down clock < 5 AND speed ≤ dw th(2, t%) clock++

T6 g3 down clock < 5 AND speed ≤ dw th(3, t%) clock++

T7 g4 down clock < 5 AND speed ≤ dw th(4, t%) clock++

T8 g4 stdy speed > dw th(4, t%)

T9 g3 stdy speed > dw th AND speed < up th(3, t%)

T10 g2 stdy speed > dw th AND speed < up th(2, t%)

T11 g1 stdy g1 up speed ≥ up th(1, t%) clock := 0

T12 g1 up g1 stdy speed < up th(1, t%)

T13 g1 up g2 stdy speed ≥ up th(1, t%) AND clock ≥ 5 gear := 2

T14 g2 stdy g2 up speed ≥ up th(2, t%) clock := 0

T15 g2 up g2 stdy speed < up th(2, t%)

T16 g2 up g3 stdy speed ≥ up th(2, t%) AND clock ≥ 5 gear := 3

T17 g3 stdy g3 up speed ≥ up th(3, t%) clock := 0

T18 g3 up g3 stdy speed < up th(3, t%)

T19 g3 up g4 stdy speed ≥ up th(3, t%) AND clock ≥ 5 gear := 4

T20 g2 down g1 stdy speed ≤ dw th(2, t%) AND clock ≥ 5 gear := 1

T21 g3 down g2 stdy speed ≤ dw th(3, t%) AND clock ≥ 5 gear := 2

T22 g4 down g3 stdy speed ≤ dw th(4, t%) AND clock ≥ 5 gear := 3

T23 g2 stdy g2 down speed ≤ dw th(2, t%) clock := 0

T24 g2 down g2 stdy speed > dw th(2, t%)

T25 g3 stdy g3 down speed ≤ dw th(3, t%) clock := 0

T26 g3 down g3 stdy speed > dw th(3, t%)

T27 g4 stdy g4 down speed ≤ dw th(4, t%) clock := 0

T28 g4 down g4 stdy speed > dw th(4, t%)

T2 T4

g1_up

T1 T8

g1_stdy

T10 T9

g3_down g4_down

T5 T6 T7

g2_down

T11

T3

g2_up g3_up

T13 T17T16T14
T15

T20
T24

T23

g2_stdy g3_stdy g4_stdy

T18 T19

T21
T26

T25 T22 T28
T27

T12

Fig. 13. Simplified Emucharts diagram for the shift logic automaton.

278 C. Bernardeschi et al.

References

1. Accelera: TLM-2.0 Language Reference Manual (2009). https://www.accellera.
org/images/downloads/standards/systemc/TLM 2 0 LRM.pdf

2. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41.
USENIX Association, USA (2005)

3. Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment
for model-based analysis of cyber-physical systems. IEEE Trans. Softw. Eng. 44(6),
512–533 (2018)

4. Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
MODELICA Conference, pp. 173–184. No. 76 in Linköping Electronic Conference
Proceedings (2012)

5. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, CPP 2017, pp. 208–221. ACM (2017). https://doi.
org/10.1145/3018610.3018616

6. Charif, A., Busnot, G., Mameesh, R.H., Sassolas, T., Ventroux, N.: Fast virtual
prototyping for embedded computing systems design and exploration. In: Chillet,
D. (ed.) Proceedings of the Rapid Simulation and Performance Evaluation: Meth-
ods and Tools, RAPIDO 2019, Valencia, Spain, 21–23 January 2019, pp. 3:1–3:8.
ACM (2019). https://doi.org/10.1145/3300189.3300192

7. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 4

8. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

9. Domenici, A., Fagiolini, A., Palmieri, M.: Integrated simulation and formal veri-
fication of a simple autonomous vehicle. In: Cerone, A., Roveri, M. (eds.) SEFM
2017. LNCS, vol. 10729, pp. 300–314. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74781-1 21

10. Franchetti, F., et al.: High-assurance spiral: end-to-end guarantees for robot and
car control. IEEE Control Syst. 37(2), 82–103 (2017). https://doi.org/10.1109/
MCS.2016.2643244

11. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. (CSUR) 51(3), 1–33 (2018)

12. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

13. IEEE: IEEE Standard for Standard SystemC Language Reference Manual. IEEE
Std 1666–2011 (Revision of IEEE Std 1666–2005), pp. 1–638 (2012)

14. Imperas Ltd.: Open Virtual Platforms (2020). http://www.ovpworld.org/
15. Larsen, P.G., et al.: Integrated tool chain for model-based design of Cyber-Physical

Systems: the INTO-CPS project. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, April 2016.
https://doi.org/10.1109/CPSData.2016.7496424

https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3300189.3300192
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-319-74781-1_21
https://doi.org/10.1007/978-3-319-74781-1_21
https://doi.org/10.1109/MCS.2016.2643244
https://doi.org/10.1109/MCS.2016.2643244
https://doi.org/10.1007/978-3-642-59615-5_13
http://www.ovpworld.org/
https://doi.org/10.1109/CPSData.2016.7496424

Cross-level Co-simulation and Verification 279

16. Masci, P., et al.: Combining PVSio with Stateflow. In: Badger, J.M., Rozier, K.Y.
(eds.) NFM 2014. LNCS, vol. 8430, pp. 209–214. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06200-6 16

17. Mauro, G., Thimbleby, H., Domenici, A., Bernardeschi, C.: Extending a user inter-
face prototyping tool with automatic MISRA C code generation. In: Dubois, C.,
Masci, P., Méry, D. (eds.) Third Workshop on Formal Integrated Development
Environments. Electronic Proceedings in Theoretical Computer Science, vol. 240,
pp. 53–66. Open Publishing Association (2017). https://doi.org/10.4204/EPTCS.
240.4

18. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid
prototyping device user interfaces in PVS. In: FMIS 2013, 5th International Work-
shop on Formal Methods for Interactive Systems, London, UK, 24 June 2013 (2013)

19. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

20. Palmieri, M., Bernardeschi, C., Masci, P.: A framework for FMI-based co-
simulation of human-machine interfaces. Softw. Syst. Model. 19(3), 601–623 (2020)

21. Palmieri, M., Macedo, H.D.: Automatic generation of functional mock-up units
from formal specifications. In: Camara, J., Steffen, M. (eds.) SEFM 2019. LNCS,
vol. 12226, pp. 27–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57506-9 3

22. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

23. Püschel, M., et al.: SPIRAL: code generation for DSP transforms. Proc. IEEE
93(2), 232–275 (2005). https://doi.org/10.1109/JPROC.2004.840306

24. Saidi, S.E., Charif, A., Sassolas, T., Le Guay, P.G., Souza, H.V., Ventroux, N.:
Fast virtual prototyping of cyber-physical systems using SystemC and FMI: ADAS
use case. In: Proceedings of the 30th International Workshop on Rapid System
Prototyping (RSP 2019), pp. 43–49 (2019)

25. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003). https://doi.org/10.1109/MS.2003.1231146

26. Synopsys: Virtualizer (2020). https://www.synopsys.com/verification/virtual-
prototyping/virtualizer.html

27. Ventroux, N., et al.: SESAM: an MPSoC simulation environment for dynamic
application processing. In: 2010 10th IEEE International Conference on Computer
and Information Technology, pp. 1880–1886 (2010). https://doi.org/10.1109/CIT.
2010.322

https://doi.org/10.1007/978-3-319-06200-6_16
https://doi.org/10.1007/978-3-319-06200-6_16
https://doi.org/10.4204/EPTCS.240.4
https://doi.org/10.4204/EPTCS.240.4
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-030-57506-9_3
https://doi.org/10.1007/978-3-030-57506-9_3
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/MS.2003.1231146
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://doi.org/10.1109/CIT.2010.322
https://doi.org/10.1109/CIT.2010.322

A Semantic-Aware, Accurate
and Efficient API for (Co-)Simulation

of CPS

Giovanni Liboni1,2(B) and Julien Deantoni1

1 Université Cote d’Azur, CNRS/INRIA Kairos, Sophia Antipolis, France
julien.deantoni@univ-cotedazur.fr
2 Safran Tech, Modeling and Simulation,

Rue des Jeunes Bois, 78114 Magny-Les-Hameaux, France
giovanni.liboni@safrangroup.com

Abstract. To understand the behavior emerging from the coordination
of heterogeneous simulation units, co-simulation usually relies on either
a time-triggered or an event-triggered Application Programming Inter-
face (API). It creates bias in the resulting behavior since time or event
triggered API may not be appropriate to the behavioral semantics of the
model inside the simulation unit. This paper presents a new semantic-
aware API to execute models. This API is a simple and straightforward
extension of the Functional Mock-up Interface (FMI) API. It can be
used to execute models in isolation, to debug them, and to co-simulate
them. The new API is semantic aware in the sense that it goes beyond
time/event triggered API to allow communication based on the behav-
ioral semantics of internal models. This API is illustrated on a simple
co-simulation use case with both Cyber and Physical models.

Keywords: Co-simulation · API · Behavioral semantics

1 Introduction

Cyber-Physical Systems are a class of systems where computation parts (cyber)
and the plant parts (physical) can not be developed in isolation since the behav-
ior of one impacts the others. In this context, it is of prime importance that
orchestration of software and physical processes are based on semantic mod-
els that reflect properties of interest in both [14]. Echoing this, such systems are
usually developed by multiple stakeholders, which use domain-specific languages,
tailored both syntactically and semantically to the domain of expertise [10].

One solution to address the orchestration of different processes is the use of
co-simulation, where processes are computed/solved by dedicated tools and kept
in synchronization by a coordination algorithm. Usually, co-simulation makes use
of a common Application Programming Interface (API) to communicate more
easily with the various tools. For instance, the Functional Mockup Interface
(FMI [18]) proposes a homogeneous time-driven interface to realize a computa-
tion step on a solver; this is well suited to the simulation of continuous physical
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 280–294, 2021.
https://doi.org/10.1007/978-3-030-67220-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_21&domain=pdf
http://orcid.org/0000-0002-0981-0750
http://orcid.org/0000-0001-6962-7846
https://doi.org/10.1007/978-3-030-67220-1_21

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 281

processes. Another well-known co-simulation approach is HLA [2], which pro-
poses a homogeneous publish-subscribe event-based API well suited to discrete
event processes.

However, in order to keep during the orchestration the behavioral semantics
specificity of each modeling language, it is important to avoid using an API that
hides semantic specificity in order to homogenize. Not taking care of internal
semantics during the orchestration of such processes may lead to wrong results,
lack of accuracy, and bad simulation performance [9,11,16,19,25].

In this paper, we presented a versatile API, which can be tailored to the inter-
nal model under simulation. By using this API, it is possible to communicate
with the simulation unit according to different semantics (e.g., time-triggered,
event-triggered, mix); according to the internal semantics of the simulation unit.
Additionally, it is also possible to ask the simulation unit to stop under spe-
cific conditions like for instance when crossing a threshold or when it reaches
breakpoint (for debugging purpose).

The next section explains the problems and overviews of the solutions pro-
posed by other approaches. In Sect. 3, we present the semantic-aware API and
in Sect. 4, we illustrate its use and benefits on a case study. Finally, before to
conclude in Sect. 6, we propose a small discussion about the approach in Sect. 5.

2 Problem Statement and Related Work

Collaborative simulation of Cyber Physical Systems relies on the data and time
synchronizations between various simulation units; where a simulation unit is,
generally speaking, an encapsulation of a system part execution. Depending on
the co-simulation, a simulation unit can encapsulate different entities amongst
which (but not limited to): a model and its solver, a program together with
its virtual machine, a compiled executable code, a proxy to an existing system
part (hardware/software in the loop). A co-simulation actually implements the
coordination that should ensure a correct1 synchronization between the data
produced and required by different simulation units. The goal is to be able to
understand the behavior emerging from the coordination of the different parts of
the system; either for simulation or analysis. Usually, such parts were developed
by different domain experts, who are using domain specific languages and tools
tailored syntactically and semantically to their needs. Also, most of the time, a
simulation unit is seen as a black box by the coordination to ensure Intellectual
Property preservation.

In this context, various algorithms were proposed to realize the coordina-
tion; well known classics like the Jacobi or Gauss-Siedel algorithms but also
many others variants [3,4,7,8,20,22,23,28,29]. It is worth noticing that all the
proposed algorithms are time-triggered, i.e., simulation units are all executed for
a specific predefined time-step. This is a surprising fact since from the 90’s work
about coordination languages and architecture description languages (ADLs)

1 This notion is defined later in this section.

282 G. Liboni and J. Deantoni

proposed more sophisticated techniques for the correct and efficient coordina-
tion among software components [13,17,21]. Actually, using the same API, being
time-triggered or event-triggered on all the simulation units creates bias in the
understanding of what the simulation units do. For instance, [9,16,25,26] identi-
fied the problem introduced by the use of a time-triggered API on Cyber simula-
tion units where sampling the behavior at specific point in times creates artificial
delays and loss of information from the coordinator point of view. Such delay can
lead to error in results, to bad performances of the co-simulation, or both [16].

In this paper, we consider a coordination algorithm as correct if it does not
introduce any delays or lose information during the communication with the
simulation unit. Consequently, delays and information loss that appear when
using a time-triggered API on a piece-wise constant data are considered incor-
rect (see Fig. 1). Three important things must be noticed at this point. First,
sampling a piece-wise constant value can make sense and does not necessarily
introduce major problem; however, this should be done on purpose and not be
the result of an inappropriate API. Second, there exists in many API (e.g., the
FMI standard [18]) the possibility to avoid such delay, typically by roll-backing
the simulation to a previous state and trying to locate the actual value change.
This can be done only if the simulation can actually be rolled-backed; also this
is costly in terms of simulation-time. Finally, third, it is worth noticing that the
problem is broader than the simple illustrative case. As illustrated in [26], the
coordination algorithm can have an impact on the correctness of the system.

!

Fig. 1. Time-triggered simulation considered as incorrect.

The core of the problem was identified in several papers: it is not appro-
priate for any simulation unit to communicate only through a time-triggered
or event-triggered API. In the literature, some approaches proposed to extend
some existing API to fix a particular problem. This was for instance the case
in [25] where they proposed to add a new parameter to the FMI time-triggered
doStep(Δt) function. The new parameter is nextEventT ime, a placeholder to
store the time at which unpredictable events occurred. [16] went further by
proposing to extend the FMI API with new functions that simulate until input
and output ports are respectively ready to be read or just written. Finally, the

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 283

new features of FMI3.0 for hybrid co-simulation tries to aggregate such propo-
sitions (see Chapter 5 of FMI3.0 development version https://fmi-standard.org/
docs/3.0-dev/#fmi-for-hybrid-co-simulation).

However, in all these related works, the problem is not handled in its gener-
ality and they make specific cases of something that should be straightforward.
In order to speak correctly with a simulation unit, you should be aware of its
behavioral semantics and adapt the way to realize the doStep accordingly. As an
abstraction of a simulation unit behavioral semantics, previous works proposed
to focus on the nature of the inputs and outputs of the simulation units [8,24]
like for instance continuous, piecewise-continuous, piecewise-constant or spuri-
ous. We believe this abstraction is very interesting and can be used as a basis
for a semantics-aware API.

3 Proposition

We propose to consider the FMI time-triggered interface doStep(Δt) as a spe-
cific case where we ask a simulation unit to simulate until a specific predicate
characterized by an amount of time spent in the simulation unit2. Following the
same rationale, the proposed semantics-aware API can ask to a simulation unit
to execute until a specific coordination predicate holds. The predicate must be
expressed according to the information from the simulation unit behavioral inter-
face (typically containing input/output nature, time representation, and solver
capability [8,15,16,24]). Consequently, the general form of the proposed doStep
API is:

StopCondition doStep(CoordinationPredicate p);

where p expresses a condition under which the execution should pause, i.e., the
condition under which the doStep function returns. For instance, considering
the input and output nature as defined in [24] (i.e., continuous, piece-wise con-
stant, piece-wise continuous or spurious), the concept of predicate for a correct
coordination can be defined as shown in the class diagram Fig. 2.

If the simulation unit supports only temporal predicates, then it corresponds
to the FMI API. However, other coordination predicates have been defined. Here
is a brief description of their meaning and their typical use case.

1. TemporalPredicate is a predicate that becomes true when the internal time
of the simulation unit reaches the value of the predicate. This is the classical
FMI predicate.

2. UpdatedPredicate is a predicate that becomes true as soon as the referenced
variable, which must be a piece-wise constant output, has been assigned. It
typically corresponds to example from Fig. 1, which can then be managed
without data loss, delays, or very small communication step size; i.e., in a
correct way.

2 Note that, in reference to study on Model of Computations [27] that this may be
done only for timed simulation units.

https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation
https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation

284 G. Liboni and J. Deantoni

Fig. 2. Minimal but extendable set of predicates.

3. ReadyToReadPredicate is a predicate that becomes true just before the sim-
ulation units actually read the referenced variable. It is typically used if there
is a need to provide an input to a simulation unit that actually reads (non nec-
essarily in a deterministic way) this input at specific points in time. Instead of
periodically providing the input data (consequently with unavoidable delays),
the data is provided only when needed by the simulation unit.

4. ThresholdPredicate is a predicate that becomes true when the referenced
variable crosses the defined threshold (according to the crossing direction3).
It is typically used when a simulation unit is waiting for a specific threshold
on a value from another simulation unit. Instead of periodically providing the
input data (consequently with unavoidable delays) to be tested and possibly
using rollback for more precision, the data is provided only when the condition
is reached.

5. EventPredicate is a predicate that becomes true when the referenced event
occurs. While this is in our implementation only used for cyber events, it
may also be extended to encompass discontinuities or other kinds of events
on (piecewise) continuous signals.

6. BinaryPredicate defines the disjunction of other predicates.

Finally, the proposed API also provides the classical function like for instance
loadModel, get/set Variable, get/set State and terminate.

What is important is the (preliminary) definition of the coordination pred-
icate, which is, according to our experiments, the minimal set of predicates to
have an accurate coordination i.e., without loosing any data, events or signals.
Note that for now, we are only using the disjunction of predicates since it is not
clear about the meaning of their conjunction. For instance, existing works about
Event constraints suggest using Union or Inf/Sup constraints instead of AND
since they intrinsically embed a notion of order which is not existing into the
classical Boolean operators [1,12].
3 It can be either from above to below, from below to above or both.

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 285

To these predicates, many others could be added like for instance a disconti-
nuity predicate that stops when a discontinuity is detected on a piece-wise con-
tinuous variable (see description of the Event predicate). Another more complex
predicate could be a Bchi predicate, which is verified when a specific state-based
observation occurs. There is no real reason to limit the kind of predicate that can
be defined, as long as it makes sense according to the simulation unit execution
semantics.

In other words, based on the simulation unit behavioral interface, one can
speak about the simulation in terms of predicates which are relevant in the par-
ticular simulation units used in the co-simulation. For instance, considering a
simulation unit interface of an untimed simulation unit, no temporal predicate
can be used. In the same idea, if the simulation unit exposes only (piece-wise)
continuous variable, then it should not be possible to refer to these variable
updates (since it creates an undesired connection with the internal simulation
unit discretization step). In short, the acceptable predicates for a specific sim-
ulation unit can be inferred from the simulation unit behavioral interface of
such simulation unit. However, it is also important that each tool specifies the
predicates it supports.

The value returned by the doStep function must allow the coordinator to
understand why the simulation was actually paused, so that it can do the
appropriate action. For instance, if the simulation unit was paused due to an
UpdatedPredicate, then the variable that has been updated should be com-
municated to the appropriate simulation unit input (after being sure that the
receiving simulation unit is at the same time than the emitting simulation unit,
aligning the time if needed). For now, we used a simple form a StopCondition
but it might be aligned with the Predicate class diagram. The Fig. 3 shows a
minimal proposition for a simple StopCondition. The StopReason is a predicate
type defining why the simulation was paused; the elementName defines the ref-
erenced element link with the stop reason and the stopTime stores the internal
time of the simulation unit when paused.

Fig. 3. Simple StopCondition, returned by the doStep function.

Remarque 1: This is not clear yet how the link should be made between the
name of an exposed variable in the simulation unit behavioral interface and the
actual variable inside the model under simulation. For now, we are using qualified
names instead of simple names like in the simulation unit behavioral interface.

286 G. Liboni and J. Deantoni

Similarly, for experimental facilities, we are using a Double to encode time in
the co-simulation. It does not mean that the time is internally a double (since
it may be encoded by super dense time for instance) but it provides a helpful
homogenization of the time from the coordination point of view.

Remarque 2: According to our definition, FMI is a specific mold of our interface
since it defines only (piece-wise) continuous variables and (and it does not allow
for Threshold predicate injection). Consequently, the only acceptable predicate
is a Temporal predicate.

We show in the next section how this API, implemented for language devel-
oped in the GEMOC studio [6], provides a simple way to gain in term of accuracy
and performance during the coordination of multiple simulation units. However,
in the next subsection, we overview how it can be used for other usages, typically
debugging.

Example of Extension of the API for Debugging
In this subsection, we show an implementation experimented in the GEMOC stu-
dio to use the very same API for debugging. Our goal was to implement the func-
tionality of an API as defined in the usual debugger. We consider this useful for
the developer of one simulation unit when she/he wants to debug the simulation
unit in the context of the other simulation units. For this reason, we considered
that breakpoints are defined with another interface and considered only the way
to execute the simulation unit. To define the new use of the interface, we simply
defined the necessary Predicate for debugging (see Fig. 4) and implemented the
corresponding management of the Predicate in a wrapper. Details can be found
here: https://github.com/jdeantoni/cosimulationOfCpuHeatManagement. Fur-
thermore, it is interesting to realize that debugging equational simulation units
could use a totally different notion of breakpoint. For instance, one could want
to pause the simulation when the derivative of a specific output reaches a symp-
tomatic threshold, in order to check different values in the system and try to
understand what actually happens. In this case, Predicates should be defined
accordingly.

Fig. 4. Simple StopCondition, return by the doStep function.

https://github.com/jdeantoni/cosimulationOfCpuHeatManagement

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 287

Once again, we tried to provide an extendable simulation API, focused on
co-simulation but suitable for different activities.

4 Case Study

We used the management of a CPU temperature as a simple but representative
case study4. This system is made up of 3 simulation units (see Fig. 5). CPUin-
BoxWithFan and fanControler have been developed in the OpenModelica tool5

to respectively define the CPU in a box which is cooled by a fan and the controller
of the fan speed (a simple Proportional controller). The heat between the box
and the CPU is transferred according to the fan speed. The overHeatController
has been developed as a state machine in the GEMOC studio6.

In the CPUinBoxWithFan simulation unit, the CPU is activated as long as
the stopWorking input is equal to false. When activated, the CPU produces
heat, which is exchanged with the air of its box more or less rapidly depending
on the fanSpeedCommand input (∈ [0..10] where at 0 the fan is stopped and at
10 the fan is at full speed).

In the overHeatController simulation unit, a state machine is defined. It
monitors periodically (every 3 s) the cpuTemperature and if it exceeds a specific
threshold, the switch event occurs and the state machine enters in a new state
where it monitors the CPU temperature every 5 s. If it goes above a specific
threshold, the switch event occurs and the state machine enters the first state
(see Fig. 6).

Fig. 5. Simple but representative case study for co-simulation.

4 The associated code can be retrieved from http://i3s.unice.fr/∼deantoni/cosim-
cps2020.

5 https://openmodelica.org.
6 http://eclipse.org/gemoc.

http://i3s.unice.fr/~ deantoni/cosim-cps2020
http://i3s.unice.fr/~ deantoni/cosim-cps2020
https://openmodelica.org
http://eclipse.org/gemoc

288 G. Liboni and J. Deantoni

Fig. 6. Over Heat Controller state machine.

To connect the different simulation units we relied on strategies defined
in [16]. Consequently the temperature from CPUinBoxWithFan to overHeat-
Controller is only exchanged when the later simulation unit is ready to read the
data. Similarly, the change of the stopWorking input is only done only when the
switch event occurs. Between the two simulation units obtained from Modelica,
the connectors define classical time trigger communication.

Of course, we handled these different cases by using different Predicates in
the doStep function call. However, one can notice that the coordination algo-
rithm will not be generic anymore but dedicated to the topology of simulation
units and the information on the connectors. For this specific use case, the coor-
dination algorithm is provided on Listing 1.1. Lines 4 to 6, the predicate for the
overHeatController simulation unit is defined as “the variable cpuTemperature
is ready or the switch event occurs”. Line 7, the dostep function is called and
lines 8 to 16 the result of the function is managed. If the simulation was paused
due to the variable cpuTemperature which is ready to be read, then a function
(simulateBoxAndFanControl defined line 19) is called to set the CPUinBoxWith-
Fan simulation unit at the same time as the over heat controller simulation unit.
Once done, the expected value is exchanged between the FMU. If the simulation
was paused due to the occurrence of the switch event, then the receiving simu-
lation unit is at the time when the event occurred, so the stopWorking variable
is changed. The temporal connector between the fan controller and the CPU, as
defined in Fig. 5, requires to simulate both models until a specific point in time.
In lines 21 to 36, the simulation units must reach an expectedTime. If there is
one (or several) intermediate temporal steps in between now and the expected
time (i.e., now%5 = 0 in our case), then the simulation units are simulated until
this point in time and data are exchanged as expected.

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 289

Listing 1.1. Coordination Algorithm dedicated to the example on Figure 5 using the
proposed interface
1 public void coSimulate (double endtime) {

//now = 0 ; l o ca l I sS topped = f a l s e ;
3 while (now < endTime){

ReadyToReadPredicate r2rp (”cpuTemperature”) ;
5 EventPredicate ep (” switch ”) ;

BinaryPred icate bp (r2rp , ep) ;
7 StopCondit ion sc = contro lerSU . doStep (bp) ;

i f (sc . stopReason == READYTOREAD) {
9 simulateBoxAndFanControl (sc . stopTime) ;

double cpuTemperature = c . boxSU . read (”cpuTemperature”) ;
11 contro lerSU . s e tVar i ab l e (”cpuTemperature” , cpuTemperature) ;

} else { // event occured
13 simulateBoxAndFanControl (sc . stopTime) ;

l o ca l I sS topped = ! l o ca l I sS topped ;
15 boxSU . wr i t e (” stopWorking”) . with (l o ca l I sS topped) ;

}
17 }

19 public void simulateBoxAndFanControl (double expectedTime) {
double de l t a = expectedTime − now ;

21 while (de l t a + (now % 5) >= 5) { //\Delta t == 5 f o r each
↪→ connector from boxSU and fanContro l l e rSU
double stepToDo = (5−(now % 5)) ;

23 boxSU . doStep (stepToDo) ;
fanContro l l e rSU . doStep (5) ;

25 double cpuTemperature = boxSU . read (”cpuTemperature”) ;
fanContro l l e rSU . wr i t e (”cpuTemperature”) . with (cpuTemperature) ;

27 int fanCommand = fanContro l l e rSU . read (”fanSpeedCommand”) ;
boxSU . wr i t e (”fanSpeedCommand”) . with (fanCommand) ;

29 double boxTemperature = boxSU . read (”BoxTemperature”) ;
now += stepToDo ;

31 de l t a = expectedTime − now ;
}

33 i f (de l t a > 0) {
boxSU . doStep (de l t a) ;

35 now += de l t a ;
}

37 }

The results from the beginning of the co-simulation obtained with this setup
are provided in Fig. 7. The reader should notice that the points are only retrieved
as specified in Fig. 5, i.e., at the exact time it is needed to have a correct co-
simulation. For instance on Fig. 7, we can see that a first paused was realized
by the overheat controller at time 2, i.e., which is the non deterministic time
spent for the state machine to enter in the normalTemp state, where the guard
of output transition is evaluated and consequently the CPU temperature is read.
Then, pauses are realized every 5 s and every multiple of 3 (the reading period
in the first state of overHeatController). This way, we reduce the number of
communication points to their strict minimum to have a correct co-simulation
and we avoid the delays introduced by the classical sampling strategy.

290 G. Liboni and J. Deantoni

Temperature (◦C)

Time (s) CPU Box

0 20 20
2 20.33212 20.00001
5 20.82698 20.00009
8 21.31794 20.00023
10 21.64328 20.00035
11 21.80536 20.00042
14 22.28902 20.00067
15 22.44940 20.00076
17 22.76890 20.00097
20 23.24500 20.00133

Fig. 7. Results obtained at the begin of the co-simulation.

In the Fig. 8, the first point in time is the one when the state machine
switch from the normalTemp state to the tooHot state. It occurred at time
14679. Consequently, as long as the state machine remains in this state, data
are retrieved every 5 s as specified in the temporal connectors and in the reading
period from the state machine. However, since the state machine entered in the
tooHot state at time 14679, then the simulation unit was paused after 5 s, i.e., at
14684, while the temporal connectors induce a pause every 5 s. We can see here
that the internal semantics of the simulation is consistently exposed and took
into consideration.

Temperature (◦C)

Time (s) CPU Box

14679 85.00110 57.21210
14680 84.87561 57.21432
14684 84.37902 57.22311
14685 84.25629 57.22527
14689 83.77094 57.23384
14690 83.65101 57.23595
14694 83.17671 57.24429

Fig. 8. Results obtained when the controller enters in the tooHot state.

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 291

Finally, in Fig. 9, the simulation is run for 8 h and 20 min (30000 s). For this
simulation, we obtained 15023 communication steps without sacrificing accuracy
over performance. If we were using a time-triggered interface and allowed an
error up to 100 ms, then we would have 300’000 communication step and a loss
of accuracy. Additionally, we believe that the proposed interface is intuitive to
use and may be extended for different purposes. In the next section, before to
conclude, a small discussion about implementation is made.

5 Discussion

We argued that the proposed interface is extendable, efficient, and intuitive to
use. In this section, we discuss some of these points according to our experiment
in implementing the API in the GEMOC studio.

Fig. 9. Results obtained when running the coordination algorithm.

Concerning the implementation of the predicates, two main points can be
addressed. First, its efficiency strongly relies on how the API is internally imple-
mented. In our case we modified the code generation to generate a pause when
needed. For instance, for the Updated predicate, all assignments are instrumented
to create a pause. This has only a minor impact on performance. However, if the
implementation is done in a wrapper where all micro steps are checked to see if
a variable has been updated, then the execution may suffer from a slowdown.
The same phenomenon happens for the Threshold predicate. If one sample the
variable to check the crossing, the execution will be slow down and the exact
point in time when the crossing occurs may be missed. It is better to inject the
actual zero crossing in the model (typically in the equation set) to ensure better
performance and accuracy. This is what is expected to be done in collaboration
with Safran. Also, the implementation of the predicates must actually follow the
semantics of the simulation unit. For instance, if a simulation unit is executing a
model developed in a synchronous language [5], then all the assignments should
NOT be caught since according to the synchronous semantics, data are latched
at specific points in time. In our implementation, we relied on annotations to

292 G. Liboni and J. Deantoni

provide flexibility on the exposed semantics. Consequently, the tool developer is
in charge of providing the expected semantics.

Concerning the extension of the predicate, there are two minors points to take
care of. First, it is important to rely on a mechanism to clearly specify which
predicate is supported for a specific simulation unit. This may for instance be
done in an artefact equivalent of the FMI model description. Second, there is a
risk of an uncontrolled evolution of predicates, leading to a predicate tower of
Babel. This is a long term issue and we believe there are few risks it happens. If
the road to this situation is taken, it may be interesting to provide an official set
of predicate extension repository, where people can look for existing predicate
before to create their own and where all predicates are put together.

6 Conclusion

We presented in this paper a new API, initially thought as a co-simulation inter-
face. However, it can be used for different purposes. It uses the proposed notion
of predicate to represent the condition under which a simulation unit must be
paused. These predicates can be of different nature depending on the use of
the API. In each case, it relies on the information provided about the simula-
tion unit. In the co-simulation case, it relies on the data nature (continuous,
piece-wise continuous, etc.) exposed by the simulation unit. This information is
an abstraction of the internal behavioral semantics of the simulation unit. We
developed a case study where we showed how the API can be used in a semantic-
aware way. The use of the API adapts the number of co-simulation steps to the
internal behavior of the simulation units, keeping only the communication points
required for a correct co-simulation. We believe such communication between the
coordination algorithm and the simulation unit provides the basis for an analysis
of a co-simulation.

In future works, we first want to focus on the automated generation of the
coordination algorithm. As shown in Listing 1.1, the coordination is dedicated
to a specific simulation and it may be tricky to write it by hand for a more
complex system. Additionally, it becomes important to allow for the distribution
of co-simulation. Our approach, by limiting the number of co-simulation steps
to the minimum, is well appropriate to distribution. This is why we are actually
finishing the development of the generator of distributed coordination algorithm
based on our interface. Another future work concern the integration of such
approach into a system engineering approach but this is a longer term work.

References

1. André, C.: Syntax and semantics of the clock constraint specification language.
Technical report 6925, INRIA (2009)

2. IEEE Standards Association and others: IEEE Standard for Modeling and Simu-
lation (M&S) High Level Architecture (HLA)—Framework and Rules. Institute of
Electrical and Electronics Engineers, New York. IEEE Standard (1516-2010), pp.
10–1109 (2010)

A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS 293

3. Awais, M.U., Palensky, P., Elsheikh, A., Widl, E., Matthias, S.: The high level
architecture RTI as a master to the functional mock-up interface components. In:
2013 International Conference on Computing, Networking and Communications
(ICNC), pp. 315–320. IEEE (2013)

4. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: Proceedings of the 8th International Modelica Conference, March 20th–22nd,
Technical Univeisity, Dresden, Germany, pp. 115–120, No. 63. Linköping University
Electronic Press (2011)

5. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De
Simone, R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83
(2003)

6. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the GEMOC studio (tool demo). In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering,
pp. 84–89. ACM (2016)

7. Broman, D, et al.: Determinate composition of FMUS for co-simulation. In: Pro-
ceedings of the Eleventh ACM International Conference on Embedded Software,
p. 2. IEEE Press (2013)

8. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Require-
ments for hybrid cosimulation standards. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, HSCC 2015, pp. 179–
188. Association for Computing Machinery, New York (2015)

9. Centomo, S., Deantoni, J., De Simone, R.: Using SystemC cyber models in an
FMI co-simulation environment. In: 19th Euromicro Conference on Digital Sys-
tem Design 31 August - 2 September 2016. 19th Euromicro Conference on Digital
System Design, Limassol, Cyprus, vol. 19, August 2016. https://doi.org/10.1109/
DSD.2016.86. https://hal.inria.fr/hal-01358702

10. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014). https://doi.org/
10.1109/MC.2014.147

11. Cremona, F., Lohstroh, M., Broman, D., Di Natale, M., Lee, E.A., Tripakis, S.:
Step revision in hybrid co-simulation with FMI. In: 14th ACM-IEEE International
Conference on Formal Methods and Models for System Design. IEEE, Kanpur,
November 2016

12. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research report
RR-8628, Inria, November 2014. https://hal.inria.fr/hal-01082274

13. Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances in
Software Engineering and Knowledge Engineering 1(3.4) (1993)

14. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369 (2008)

15. Liboni, G., Deantoni, J.: WIP on a coordination language to automate the gen-
eration of co-simulations. In: 2019 Forum for Specification and Design Languages
(FDL), pp. 1–4. IEEE (2019)

16. Liboni, G., Deantoni, J., Portaluri, A., Quaglia, D., De Simone, R.: Beyond Time-
triggered co-simulation of cyber-physical systems for performance and accuracy
improvements. In: 10th Workshop on Rapid Simulation and Performance Evalu-
ation: Methods and Tools, Manchester, United Kingdom, January 2018. https://
hal.inria.fr/hal-01675396

https://doi.org/10.1109/DSD.2016.86
https://doi.org/10.1109/DSD.2016.86
https://hal.inria.fr/hal-01358702
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1109/MC.2014.147
https://hal.inria.fr/hal-01082274
https://hal.inria.fr/hal-01675396
https://hal.inria.fr/hal-01675396

294 G. Liboni and J. Deantoni

17. Medvidovic, N., Taylor, R.N.: A framework for classifying and comparing archi-
tecture description languages. ACM SIGSOFT Softw. Eng. Notes 22(6), 60–76
(1997)

18. Modelisar: FMI for Model Exchange and Co-Simulation, July 2014. https://fmi-
standard.org/downloads#version2

19. Mustafiz, S., Gomes, C., Vangheluwe, H., Barroca, B.: Modular design of hybrid
languages by explicit modeling of semantic adaptation. In: 2016 Symposium on
Theory of Modeling and Simulation (TMS-DEVS), pp. 1–8, April 2016. https://
doi.org/10.23919/TMS.2016.7918835

20. Neema, H., et al.: Model-based integration platform for FMI co-simulation and
heterogeneous simulations of cyber-physical systems. In: Proceedings of the 10th
International Modelica Conference, Lund, Sweden, pp. 235–245, No. 096. Linköping
University Electronic Press (2014)

21. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998)

22. Savicks, V., Butler, M., Colley, J.: Co-simulating event-B and continuous models
via FMI. In: Proceedings of the 2014 Summer Simulation Multiconference, p. 37.
Society for Computer Simulation International (2014)

23. Schierz, T., Arnold, M., Clauß, C.: Co-simulation with communication step size
control in an FMI compatible master algorithm. In: Proceedings of the 9th
International MODELICA Conference, Munich, Germany, pp. 205–214, No. 076.
Linköping University Electronic Press (2012)

24. Tavella, J.P., et al.: Toward an Hybrid Co-simulation with the FMI-CS Standard,
Research report, April 2016. https://hal-centralesupelec.archives-ouvertes.fr/hal-
01301183

25. Tavella, J.P., et al.: Toward an accurate and fast hybrid multi-simulation with the
FMI-CS standard. In: 21st IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), pp. 1–5. IEEE, Berlin, September 2016.
https://doi.org/10.1109/ETFA.2016.7733616

26. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.:
Towards the verification of hybrid co-simulation algorithms. In: Workshop on For-
mal Co-Simulation of Cyber-Physical Systems (SEFM satellite), Toulouse, France,
June 2018. https://hal.inria.fr/hal-01871531

27. Tripakis, S.: Bridging the semantic gap between heterogeneous modeling for-
malisms and FMI. In: 2015 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS), pp. 60–69. IEEE (2015)

28. Van Acker, B., Denil, J., Vangheluwe, H., De Meulenaere, P.: Generation of an
optimised master algorithm for FMI co-simulation. In: Proceedings of the Sym-
posium on Theory of Modeling & Simulation: DEVS Integrative M&S Sympo-
sium, DEVS 2015, pp. 205–212. Society for Computer Simulation International,
San Diego (2015)

29. Wang, B., Baras, J.S.: Hybridsim: a modeling and co-simulation toolchain for
cyber-physical systems. In: Proceedings of the 2013 IEEE/ACM 17th International
Symposium on Distributed Simulation and Real Time Applications, DS-RT 2013,
pp. 33–40. IEEE Computer Society, Washington, DC (2013). https://doi.org/10.
1109/DS-RT.2013.12. http://dx.doi.org/10.1109/DS-RT.2013.12

https://fmi-standard.org/downloads#version2
https://fmi-standard.org/downloads#version2
https://doi.org/10.23919/TMS.2016.7918835
https://doi.org/10.23919/TMS.2016.7918835
https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183
https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183
https://doi.org/10.1109/ETFA.2016.7733616
https://hal.inria.fr/hal-01871531
https://doi.org/10.1109/DS-RT.2013.12
https://doi.org/10.1109/DS-RT.2013.12
http://dx.doi.org/10.1109/DS-RT.2013.12

An FMI-Based Initialization Plugin
for INTO-CPS Maestro 2

Simon Thrane Hansen(B) , Casper Thule , and Cláudio Gomes

DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{sth,casper.thule,claudio.gomes}@eng.au.dk

Abstract. The accuracy of the result of a co-simulation is dependent
on the correct initialization of all the simulation units. In this work, we
consider co-simulation where the simulation units are described as Func-
tional Mock-up Units (FMU). The Functional Mock-up Interface (FMI)
specification specifies constraints to the initialization of variables in the
scope of a single FMU. However, it does not consider the initialization
of interconnected variables between instances of FMUs. Such intercon-
nected variables place particular constraints on the initialization order
of the FMUs.

The approach taken to calculate a correct initialization order is based
on predicates from the FMI specification and the topological ordering
of both internal connections and interconnected variables. The approach
supports the initialization of co-simulation scenarios containing algebraic
loops using fixed point iteration. The approach has been realized as a
plugin for the open-source INTO-CPS Maestro 2 Co-simulation frame-
work. It has been tested for various scenarios and compared to an exist-
ing Initializer that has been validated through academic and industrial
application.

Keywords: Co-simulation · Initialization · Algebraic loop ·
Topological ordering · FMI

1 Introduction

Cyber-physical systems (CPS) are becoming ever more sophisticated, while mar-
ket pressure shortens the available development time. One of the tools to manage
the increasing complexity of such systems is co-simulation since it tackles their
heterogeneous nature. Co-simulation is a technique to combine multiple black-
box simulation units to compute the combined models’ behavior as a discrete
trace (see, e.g., [12,14]). The simulation units, often developed independently
from each other, are coupled using a master algorithm, often developed inde-
pendently, that communicates with each simulation unit via its interface. This

We are grateful to the Poul Due Jensen Foundation, which has supported the estab-
lishment of a new Centre for Digital Twin Technology at Aarhus University. Finally,
we thank the reviewers for the thorough feedback.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 295–310, 2021.
https://doi.org/10.1007/978-3-030-67220-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_22&domain=pdf
http://orcid.org/0000-0002-3796-4319
http://orcid.org/0000-0001-6606-9236
http://orcid.org/0000-0003-2692-9742
https://doi.org/10.1007/978-3-030-67220-1_22

296 S. T. Hansen et al.

interface comprises functions for setting/getting inputs/outputs and comput-
ing the associated model behavior over a given time interval. The Functional
Mock-up Interface (FMI) standard [4,7] is such an interface prescribing how to
communicate with each simulation unit. The interface is used to connect differ-
ent simulation units, called Functional Mock-up Units (FMUs), exchange values
between them, and make them progress in time.

A typical co-simulation consists of three phases: initialization, simulation, and
teardown [22]. This work concentrates on the first. The FMI standard specifies
criteria for how a single FMU shall be initialized. However, FMI is not concerned
with how a connected system of multiple FMUs is initialized correctly as a whole.

The way a system of multiple FMUs should be initialized and interacted with
depends on each FMU’s implementation and interconnections to other FMUs
[9], since these place precedence constraints between the FMU variables. These
precedence constraints can introduce algebraic loops between the FMU vari-
ables. An algebraic loop places particular requirements on the strategy for both
the order of initialization and the method used to calculate the correct initial
values of the variables in the algebraic loop [3]. Algebraic loops occur whenever
an interconnected FMU variable indirectly depends on itself. Not solving an
algebraic loop can lead to a prohibitively high error in the co-simulation result
[2], and invalid results, as shown in Sect. 4. It is crucial for all interconnected
variables that the initialization procedure ensures that a variable is never read
before it is set. For variables within an algebraic loop, the initialization must
ensure that all initial values have converged to a fixed point before entering the
next phase of the co-simulation.

Other approaches for the generation of co-simulation algorithms have avoided
co-simulation scenarios containing algebraic loops since their presence reduces
the chance of obtaining a deterministic co-simulation result[1,5,10]. This choice
is driven by the fact that not all co-simulation scenarios containing algebraic
loops are valid since those algebraic loops never converge, or might converge
to unexpected solutions. However, as shown in Sect. 4, solving algebraic loops
can be essential to obtaining valid simulation results, and a well-established co-
simulation framework should be able to handle these scenarios.

Contribution: This paper describes an approach for calculating the initialization
order of an FMI-based co-simulation in linear time of the number of intercon-
nected variables, even when algebraic loops are present. The approach does not
put any constraints on the master algorithm chosen to carry out the simula-
tion. The approach is realized as a plugin to the co-simulation framework called
INTO-CPS Maestro 2 (Maestro 2), introduced in [22]. The realized plugin has
been tested for various co-simulation scenarios and compared to an existing Ini-
tializer that has been validated through academic and industrial applications.
Furthermore, the calculated initialization order is systematically verified by the
semantics of co-simulation introduced in [9,10].

Structure: The paper is structured as follows: Sect. 2 gives a brief background of
the formalization of FMUs and Maestro 2. Section 3 describes the approach taken
to calculate the initialization order. It is followed by Sect. 5, where the realization

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 297

of the approach is presented. Finally, Sect. 7 provides concluding remarks and
describes future work.

2 Background

In this section, we provide a formalization of FMI co-simulation and a brief
background on INTO-CPS Maestro 2.

2.1 FMU Definitions

To describe the formalization of FMUs, we adopt the vocabulary from [9]. The
main definitions of relevance to this paper will be presented, but readers are
referred to the original publications for more information. This paper is only
concerned with the initialization-phase of a co-simulation, making time of an
FMU irrelevant. The formalization from Gomes et al.[9] is extended with new
definitions regarding algebraic loops, and convergence of fixed point iteration.

Definition 1 (FMU). An FMU with identifier c is represented by the tuple

〈Sc, Uc, Yc, setc, getc〉 ,

where: Sc represents the state space of FMU c; Uc and Yc the set of input and
output variables, respectively; setc : Sc × Uc × V → Sc and getc : Sc × Yc → V
are functions to set the inputs and get the outputs, respectively (we abstract the
set of values that each input/output variable can take as V).

Definition 2 (Scenario). A scenario is a structure 〈C,L〉 where each iden-
tifier c ∈ C is associated with an FMU, as defined in Definition 1, and
L(u) = y means that the output y is connected to input u. Let U =

⋃
c∈C Uc

and Y =
⋃

c∈C Yc, then L : U → Y .

Note a single output can connect to multiple inputs, but a single input can
only rely on a single output. The following definitions correspond to the opera-
tions that are permitted in the initialization phase of a co-simulation.

Definition 3 (Output Computation). The getc(, yc) represents the calcu-
lation of output yc of c ∈ C. Given a co-simulation state, it checks whether all
inputs that feed-through to yc are defined.

Definition 4 (Input Computation). The setc(, uc, v) represents the setting
of input uc of c ∈ C. Given a co-simulation state, it checks whether all outputs
connected to uc are defined.

Definition 5 (Fixed Point). The fixedpointl represents an ordered sequence
of the setting or getting of all variables of a given SCC l, see Definition 9 for a def-
inition of SCC. The fixedpointl ⊆ ⋃

c∈C {getc, setc}

298 S. T. Hansen et al.

Definition 6 (Initialization). Given a scenario 〈C,L〉, we define the ini-
tialization procedure (Ii)i∈N

as is a finite ordered sequence of FMU function
calls that needs to be performed in the initialization of a co-simulation sce-
nario. The ordered sequence is defined as: (fi)i∈N

= f0, f1, . . . with fi ∈ I =⋃
l∈loops fixedpointl, and i denoting the order of the function call. Loops is

defined as the set of all SCC see Definition 9.

It should be noted that a trivial SCC (see Definition 9) is only a single get
or set action and is not regarded as a fixed point outside Definition 6, but just
a simple computation.

Definition 7 (Feed-through). The input uc ∈ Uc feeds through to output
yc ∈ Yc, that is, (uc, yc) ∈ Dc, when there exists v1, v2 ∈ V and sc ∈ Sc, such
that getc(setc(sc, uc, v1), yc) �= getc(setc(sc, uc, v2), yc).

A graph of the dependencies of a co-simulation scenario is established from
the interconnected variables by Definition 8. The graph is the foundation for
the calculation of the initialization procedure and is therefore referred to as the
Initialization Graph. The graph construction is similar to the one in [10], except
the later focuses on a general co-simulation step, while this work focus on the
initialization phase.

Definition 8 (Initialization Graph). Given a co-simulation scenario 〈C,L〉,
and a set of feed-through dependencies

⋃
c∈C {Dc}, we define the Initialization

Graph where each node represents a port yc ∈ Yc or uc ∈ Uc of some fmu c ∈ C.
The edges are created according to the following rules:

1. For each c ∈ C and uc ∈ Uc, if L(uc) = yd, add an edge yd → uc (output to
input).

2. For each c ∈ C and (uc, yc) ∈ Dc, add an edge uc → yc (input to output).

The interconnections of FMU variables can lead to circular dependencies
between the variables. An example of this behavior is the car suspension system
that is presented in Sect. 4. Figure 1 shows the co-simulation scenario of the
example and the Initialization Graph of the system. The Initialization Graph in
Fig. 1 is annotated with the strongly connected components of the graph.

The following definitions formalize the concept of an algebraic loop in a co-
simulation scenario and define the problem these algebraic loops are introducing.
The definition of strongly connected components is adapted from the semantics
of Causal Block Diagrams (see [8] for an overview).

Definition 9 (Algebraic loops). An algebraic loop is defined as a non-trivial,
strongly connected component of the graph in Definition 8. Formally, a strong
connected component satisfies {a, b ∈ SCC : Path(a, b)}, where Path(a, b) is true
when there’s a path (including an empty path from a node to itself) between nodes
a and b (Path(a, a) is always true). An SCC is non-trivial when it has more than
one node.

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 299

SCC 2

SCC 1

Road_zs Suspension_zs

Suspension_FA

Chassis_FA

Chassis_za,va

Trivial SCC

Non-trivial SCC

zs

FA

Suspension FMU

Chassis FMU

za,va

Road FMU

Fig. 1. An FMU co-simulation scenario of the Quarter car and its Initialization Graph
denoted with SCCs.

Since the edges of the graph represent dependencies between the variables,
the value of every variable in a non-trivial strong component depends on itself.
Let X denote a vector of one or more variables whose value depends on itself. The
non-trivial strong component forms an equation with the form F (X,U) = X,
where F denotes the relations between the variables in the loop and U denotes
the variables whose values are calculated elsewhere. This means that algebraic
loops need to be handled using fixed point iterations[12].

An example of a co-simulation scenario where fixed point iteration is needed
can be seen in Fig. 1 where the Initialization Graph of the quarter car system
from Sect. 4 is shown.

A fixed point iteration technique is not guaranteed to convergence if the sys-
tem is unstable. The fixed point is as a numerical fixed point that approximates
a limit if such a value exist (the system is stable). It means that an upper bound
of the number of repetitions needs to be established to ensure termination. In the
case of a non-converging algebraic loop, the simulation should be stopped since
the result of the co-simulation scenario would not be trustworthy. The criteria
of a valid co-simulation scenario are specified in Definition 10.

Definition 10 (Convergence of Fixed point iteration). A fixed point iter-
ation converges if a finite number of iterations will make the difference of the
output value of the same operation between two following iterations within a cer-
tain threshold ε.
Formally, ∃n ∈ N : |F (Xn+1, U) − F (Xn, U)| ≤ ε.

300 S. T. Hansen et al.

2.2 INTO-CPS Maestro 2

INTO-CPS Maestro 21 [22] is a framework for creating simulation specifications
and executing such specifications. The framework is FMI-based and set to super-
sede Maestro [21] with the main goal of supporting research into co-simulation
based on FMI.

The philosophy of the framework is to separate the specification of a co-
simulation from the execution. This allows one to inspect and verify, manually
or automatically, how a given co-simulation is to be executed.

A specification is expressed in the domain-specific language called Maestro
Base Language (MaBL), and it is explicit, such that the application of, i.e.,
FMUs are transparent. Expansion plugins can assist in creating such MaBL
specifications, and one can apply expansion plugins that, in turn, generate the
MaBL code. The plugin described in this paper is such an expansion plugin.
The application of a plugin is evident in a MaBL specification. Upon processing
of the specification, a new specification is created where the application of a
plugin is replaced by the MaBL code generated by the plugin. This process is
known as expansion, and a specification without any expansions remaining is a
fully expanded MaBL specification. An example of a part of the folded MaBL
specification of the case study example of Sect. 4 can be seen below.

1 simulation

2 import Initializer;

3 {

4 FMI2 chassis = load("FMI2", "{8c4e810f -3df3 -4a00 -8276 -176

fa3c9f000}", "src/chassis -c.fmu");

5 ...

6 IFmuComponent components [3]={ chassis ,suspension , road};

7 expand initialize(components ,START_TIME , END_TIME);

8 ...

9 }

To conduct a co-simulation, Maestro2 also features an interpreter that can exe-
cute a fully expanded MaBL specification, resulting in the execution of the co-
simulation.

3 Calculation of an Initialization Order

The FMI specification defines certain information about the initialization order
described through different states of a co-simulation. The initialization phase
covers the two states (in chronological order) defined in the FMI specification:

– Instantiated
– Initialization Mode

1 Currently in alpha https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-
alpha.

https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-alpha
https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-alpha

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 301

In each of the two states, different groups of FMU variables and parameters
are potentially assigned a value. The groups are defined by FMI based on the
characteristics of the FMU variables. The rules have been extracted as predicates
and used in the implementation. Some groups consist of variables and parameters
whose value does not depend on other variables. These independent variables
and parameters can be set in the Instantiated phase of the Initialization. Since
these variables have no connections to other FMU variables - meaning they are
not represented in the graph of Definition 8, the order their value is set in is
insignificant. The setting and getting operations of each FMU are grouped to
perform the fewest possible FMU-operations during the Initialization.

In the Initialization Mode state all the interconnected variable is being
defined, but as stated by the Definitions 3, 4 and 7 the operations get and
set require that the operations are performed in a specific order. Furthermore,
algebraic loops place even more requirements on the initialization strategy. Since
each non-trivial strongly connected component (algebraic loop) needs to be iso-
lated from the other variables of the system to calculate their initial values using
fixed point iteration as described in Definition 5. After the Initialization Mode
state, all variables of all FMUs in the co-simulation scenario should be defined,
and the co-simulation should be ready to enter the modelInitialized state.

3.1 Method to Calculate the Initialization Order

This section describes the approach taken to calculate the initialization order
of the interconnected FMU variables. The approach is based on the strategy
proposed in Gomes et al. [5,10], but the approach in this work is extended with
the ability to handle the Initialization of algebraic loops.

The initialization algorithm starts by building a directed graph of the depen-
dencies between the interconnected variables of the FMUs. The graph is con-
structed based on the interconnected variables and internal connections (feed-
through); please see Definition 8 for a formal definition of the graph.

The topological ordering of the strongly connected components of the graph
defined in Definition 8 is the initialization order of the interconnected FMU
variables. The non-trivial strongly connected components are algebraic loops of
the system. The trivial ones are standard interconnected FMU variables, whose
port operation should be performed only once during the initialization procedure.
The calculation of an initialization order is performed in linear time based on
the number of external and internal connections using Tarjan’s algorithm [20].

As described in earlier sections, it is essential to handle algebraic loops by a
particular initialization strategy since the loops otherwise would invalidate the co-
simulation result. The procedure for initializing algebraic loops is identifying and
initializing them using a fixed point iteration strategy until convergence. Since
convergence is not guaranteed, this property is monitored using Definition 10 to

302 S. T. Hansen et al.

see if the difference between all the output variables of two successive iterations is
below a defined threshold. Suppose convergence is not established within a finite
number of iterations2, the co-simulation scenario is rejected to avoid running an
invalid simulation.

3.2 Optimization of a Initialization Procedure

An initialization procedure can sometimes be optimized since the FMI specifica-
tion allows multiple set or get operations of the same FMU to be performed in
bulk by grouping them together to a single operation over multiple variables with
similar characteristic. This criteria of optimization is formalized in Definition 11.

Definition 11 (Optimization of a Initialization procedure). Given an
initialization procedure (Ii)i∈N

with a finite ordered sequence of FMU function
calls fi ∈ F =

⋃
c∈C {setc, getc} , and i denoting the order of the function call.

It can be optimized if ∃fi, fi+1 ∈ F : ∃c ∈ C : (fi ∈ setc ∧ fi+1 ∈ setc) ∨ (fi ∈
getc ∧ fi+1 ∈ getc)

The correctness of the optimization in Definition 11 is established by the
proof of using the Initialization Graph’s topological ordering as the initialization
order by Gomes et al. [11]. Their proof is trivially shown to cover this approach
since the optimization does not change the structure of the Initialization Graph.
A limitation of this optimization strategy is that it is not guaranteed to find all
potentially valid optimizations of a co-simulation scenario. Considering it works
only on a specific co-simulation step (a topological order of a graph), which
is not necessarily unique for a given co-simulation scenario. A more advanced
optimization strategy needs to be developed to perform all viable optimizations
of a co-simulation step. Another solution is to apply this optimization strategy
on the set of all valid co-simulation steps - yielding a potential very inefficient
initialization algorithm. The initialization of a co-simulation is typically not
the most time consuming or computational heaviest part of the co-simulation.
However, it is still considered a low hanging fruit to apply this optimization to
optimize the initialization.

3.3 The Complete Initialization Strategy

The pseudo-code in Algorithm 1 formulates the entire initialization strategy of
the interconnected variables of a co-simulation scenario.

2 5 iterations is the default in our approach. This number is based on experience.

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 303

Algorithm 1. Initialization strategy for Interconnected variables
1: InitializationGraph ← createGraph(connections)
2: SCCS ← Tarjan(InitializationGraph)
3: OptimizeInitializationOrder(SCCS)
4: for each: SCC ∈ SCCS do
5: if isAlgebraicLoop(SCC) then
6: applyF ixedPointIteration(SCC);
7: else
8: initializeV ariable(SCC);
9: end if

10: end for

As seen from the algorithm in Algorithm 1, the algebraic loops are handled
using a different initialization strategy compared to the other trivial SCC of a
single interconnected FMU variable.

4 Case Study

In this section, we give a simple example of a co-simulation whose correct ini-
tialization demands the solution to an algebraic loop.

We consider a co-simulation of a quarter car model [19, Section 6.4], illus-
trated in Fig. 2. We omit the equations that each FMU is solving but note that
gravity acts on both wheel and chassis masses and that the origin of each mass
is when the springs are not displaced. The equations and simulation model for
this example are available online3.

mA

zA

zR

chassis

wheel

tire elasticity

road surface

dA

wheel
suspension

zS

cA

mR

cR

zs

Road FMU

FA

Suspension FMU

Chassis FMU

za,va

Due to Initial conditions:
acceleration and velocity of

the vehicle = 0
Gravity

Fig. 2. Quarter car model co-simulation. Adapted from [19, Section 6.4].

3 https://github.com/SimplisticCode/QuarterCarCaseStudy.

https://github.com/SimplisticCode/QuarterCarCaseStudy

304 S. T. Hansen et al.

The FMUs need initial conditions specified by equations that restrict the pos-
sible initial values for the position and velocity of the wheel and chassis masses.
Figure 3 illustrates what happens when we set those positions and velocities to
zero. Note that, because of gravity, the car chassis bounces on the suspension
wheel, with a maximum compression of about 17cm compared to when the sys-
tem’s springs are uncompressed. This is most likely an invalid scenario, as the
car’s suspension might not be rated to be displaced that much. In any case, the
purpose of simulation studies involving quarter car models is to understand how
well a suspension system absorbs shock when the car goes over a bump, not
when the car falls on the road, which is what the simulation results in Fig. 3
resemble.

0.5 1 1.5 2 2.5 3 3.5 4

−20

−15

−10

−5

5

Time (s)

C
ar

ch
as
si
s
po

si
ti
on

(c
m
)

Fig. 3. Simulation results when position and velocity of the chassis mass is zero.

The correct way to initialize this co-simulation scenario is to force the master
algorithm to calculate the valid initial velocities and position from equations that
force the accelerations and velocities on the masses to be zero. This will force
the co-simulation to initialize to a steady state.

To make the above explanation concrete, we now show the equations that
are active at the initial time for each FMU for a correct initialization, and we
show that there is an algebraic loop.

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 305

For the road FMU, the initial equation is simply the initial height of the
road surface, which in this case is zero, i.e., zs = 0. For the suspension FMU,
the following equations are active:

aR = 0.0 Acceleration of tire (1)
vR = 0.0 Velocity of tire (2)
FgR = 9.81 ∗ mR Gravity on the tire (3)
FR = −cR ∗ zR Rubber force acting on tire (4)
FA = cA ∗ (zA − zR) + dA ∗ (vA − vr) Suspension force acting on tire (5)
Ftotal = FR + FA − FgR Total forces acting on tire (6)
aR = (1/mR) ∗ Ftotal Acceleration of tire. (7)

Finally, for the Chassis FMU, the following equations are active at the initial
time:

aA = 0.0 Acceleration of chassis (8)
vA = 0.0 Velocity of chassis (9)
FgA = 9.81 ∗ mA Gravity on the chassis (10)
aA = (1/mA) ∗ (−FA − FgA) Acceleration of chassis. (11)

To see that there is an algebraic loop, note that the output zA of the chassis
FMU is not restricted directly, but instead has to be computed from the acceler-
ation equations aA = 0 = (1/mA) ∗ (−FA − FgA). The later contains the output
FA of the Suspension FMU. This output, in turn, depends on zA, thus yielding

0.5 1 1.5 2 2.5 3 3.5 4

−18

−16

−14

−12

−10

−8

−6

Time (s)

C
ar

ch
as
si
s
po

si
ti
on

(m
)

Fig. 4. Simulation results starting from a correct initial state (a steady state).

306 S. T. Hansen et al.

an algebraic loop. Figure 4 shows the simulation results when the algebraic loop
is properly solved during initialization.

5 Realization of a Maestro 2 Plugin

The presented approach has been realized as a Maestro 2 expansion plugin that
generates the Initialization-phase of a co-simulation specification expressed in
MaBL. The plugin calculates the MaBL-specification based on the FMUs of a co-
simulation scenario and a specific plugin-configuration to let the user supply the
initial values of FMU parameters and fine-tune the initialization of the system.
The plugin can calculate a correct initialization specification if the co-simulation
scenario adheres to the behavior dictated by the definition given in Definition 10
meaning all algebraic loops in the scenario convergences within a finite number
of iterations.

The plugin optimizes the initialization order by grouping operations that
can be executed in parallel to take advantage of FMI’s ability to set or get
multiple variables of a single FMU in bulk. The criteria for this optimization
is defined in Definition 11. The developed plugin has been tested on numerous
co-simulation scenarios from the INTO-CPS universe[21] and compared with
the existing Initializer of Maestro. The plugin has been tested as a part of the
complete Maestro 2 pipeline.

5.1 Realization of the Topological Sorting

The topological sorting algorithm (Tarjan’s Algorithm) is implemented in Scala
[18], an object-oriented programming language incorporating many features from
the functional programming paradigm. The motivation for choosing Scala [18] is
its relation to JVM and the connection to Slang and the Sireum framework [17].
Slang (Sireum Language) is a programming language based on Scala, developed
at Kansas State University (KSU), to develop and reason about critical software
systems. Sireum is a framework for performing programming language analysis,
reasoning, and verification of CPS also developed at KSU. Logika is one of the
tools in the Sireum framework used for performing automated formal verification
of a piece of Slang code using the theorem prover Z3 [23]. The connection of the
implementation to Slang and Logika will be investigated in future work. The
plan is to use the Logika framework to formally verifying the plugin. This will
also be used to explore how Slang’s contract-based nature can be used to obtain
more reliable results of co-simulations. Tarjan’s algorithm returns a topological
order of strongly connected components. The returned order is the initialization
order, where the non-trivial strongly connected components denote an algebraic
loop requiring a particular initialization strategy.

5.2 Verification of the Initialization Order

The plugin is verified using several methods. The plugin approach is established
using traditional proof methods, and the plugin has been practically verified

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 307

against an established co-simulation step verifier. Gomes et al. have verified the
approach in [9]; they proved the correctness of using the topological order of
a dependency graph of the interconnected FMU-variables as the order of the
operations in a co-simulation step (both the initialization procedure and an
arbitrary step). Gomes et al. [9] used a graph of FMU-operations (Set, Get,
doStep) in their proof instead of interconnected FMU-variables, which is the
approach of this paper. The simplification of using the interconnected FMU-
variables is valid and preserves the properties proved by Gomes et al. since this
approach only considers the initialization phase of a co-simulation. This makes
it possible to omit all the doStep nodes from Gomes et al.’s graph, eventually
ending up with a graph similar to the initialization graph described in Definition
8. This approach is a subgraph of the graph by Gomes et al.[9], which allows
their proof to be modified to the approach presented in this paper.

Practical Verification Against an Established Verifier. Gomes et al.’s
[9] main contribution is a Prolog implementation of the principles for a valid
FMI based co-simulation step 4. Gomes et al. use the Prolog implementation in
their research to verify their approach for generating different co-simulation algo-
rithms. The Prolog realization encapsulates all the rules of a valid co-simulation
step (both master-algorithm and an initialization algorithm). The Initializer
includes an integration to the Prolog Verifier. The integration is a Java program
based on JIProlog [13] - a library that allows calling Prolog predicates directly
from Java. The integration is used to check the initialization order against the
rules in the Prolog database. The integration performs all the necessary transfor-
mations of the dependency graph (see definition 8) used in the Maestro plugin
to a graph of FMU operations used in the Prolog database. The transforma-
tion is based on the definitions 3 and 4. The integration has been realized to
systematically verify the calculated initialization order’s correctness against an
established and recognized co-simulation Algorithm Verifier. The Prolog imple-
mentation does support co-simulation scenarios containing algebraic loop, so
these scenarios are not tested against the Prolog database.

6 Related Work

Prior work [5,11] is looking into the generation of co-simulation algorithms (both
master and initialization algorithms) for FMI-based scenarios. Their generation
technique is like ours, based on a dependency graph of the operations of a co-
simulation step. Both Gomes and Broman present an approach for using the
topological order of a dependency graph to establish a correct order of oper-
ations in a co-simulation step of a given co-simulation scenario. The work by
Gomes et al. [11] does also define the criteria for a correct co-simulation step.
Their work has many similarities with ours. However, their work is mostly con-
cerned with the theoretical aspect of co-simulation algorithm generation and

4 http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip.

http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip

308 S. T. Hansen et al.

verification, while our work has a more practical nature. Gomes et al. do also
not consider the handling of algebraic loops, which is a key feature of our app-
roach. Furthermore, the approach taken in our work is only concerned with the
initialization procedure of a co-simulation.

Broman et al. [5] also suggest to use the topological sorting of a dependency
graph of the interconnected variables to detect algebraic loops and discover the
partial order of port-operations. Nevertheless, they explicitly specify the require-
ment for cycle freedom in the dependency graph as a precondition for generating
a valid co-simulation. It means they refuse all co-simulation scenarios contain-
ing algebraic loops. It is a significant difference to our approach that applies a
fixed point iteration strategy to handle these scenarios. Also, the approach in
this paper is more specialized because it only considers the initialization of a
co-simulation, which means it deals with non-interconnected variables.

Amalio et al. [1] investigate how to avoid algebraic loops in FMU based co-
simulation scenarios by statically checking the architectural design of a CPS.
The publication’s purpose is like ours, to avoid invalid co-simulation scenarios.
Nevertheless, they achieve this by excluding co-simulation scenarios containing
algebraic loops. Their method is realized in a co-simulation tool, INTO-SysML
[15]. Formal methods form the basis of their work (Theorem Proving and Model-
checking). It will be an inspiration for the future work of formally verifying the
plugin and other parts of Maestro 2.

The work by Gomez et al. [6] is similar to ours. They use Tarjan’s SCC
algorithm to generate a sorted DAG of strongly connected components to solve
the initialization problem. Even though their work is very similar to ours, we
extend their approach with the verification against the simulation semantics
resulting in a formally more sound approach. However, further work will look
into further improvements and formal verification of the current approach.

7 Concluding Remarks

This work uses a topological ordering of a dependency graph of the intercon-
nected FMUs variable and internal FMU connections along with predicates from
the FMI specification to calculate a correct initialization order for a co-simulation
scenario potentially containing algebraic loops. The initialization procedure opti-
mizes the initialization order by grouping variables with similar characteristics to
perform the fewest possible operations in the initialization procedure. This app-
roach supports the initialization of a co-simulation scenario containing algebraic
loops by using fixed point iteration. The approach is suitable to combine with
well-established master algorithms like Gauss-Seidel and Jacobi [16]. The app-
roach is realized as an expansion plugin for the open-source INTO-CPS Maestro
2 tool and verified against the existing Initializer and the calculated initializa-
tion order was verified against an established co-simulation Algorithm Generator
and Verifier implemented in Prolog [9].

Future work includes formal verification of the plugin using the Logika
framework[17]. We will also look into the generation of a verification strategy for

An FMI-Based Initialization Plugin for INTO-CPS Maestro 2 309

the whole Maestro 2 framework to examine how different forms of verification
jointly can extend the trust of the correctness of the result of a co-simulation.

Acknowledgements. We would like to thank Stefan Hallerstede, Christian Møldrup
Legaard, and Peter Gorm Larsen for providing valuable input to this paper and the
developed plugin.

References

1. Amálio, N., Payne, R., Cavalcanti, A., Woodcock, J.: Checking SysML models for
co-simulation. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 450–465. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 28

2. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error estimates for co-
simulation in FMI for model exchange and co-simulation v2.0. In: Schöps, S., Bar-
tel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-
Algebraic Equations. DEF, pp. 107–125. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44926-4 6

3. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: 8th International Modelica Conference, pp. 115–120. Linköping University Elec-
tronic Press, Linköpings universitet (2011). https://doi.org/10.3384/ecp11063115

4. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: 9th International Modelica Confer-
ence, pp. 173–184. Linköping University Electronic Press (2012). https://doi.org/
10.3384/ecp12076173

5. Broman, D., et al.: Composition of FMUs for Co-Simulation. Technical report,
University of California, Berkeley (2013). http://www.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-153.html

6. Évora Gómez, J., Hernández Cabrera, J.J., Tavella, J.P., Vialle, S., Kremers, E.,
Frayssinet, L.: Daccosim NG: co-simulation made simpler and faster. In: The 13th
International Modelica Conference, Regensburg, Germany, March 4–6, 2019, pp.
785–794, February 2019. https://doi.org/10.3384/ecp19157785

7. FMI.: Functional Mock-up Interface for Model Exchange and Co-Simulation
(2014). https://fmi-standard.org/downloads/

8. Gomes, C., Denil, J., Vangheluwe, H.: Causal-block diagrams: a family of lan-
guages for causal modelling of cyber-physical systems. Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems, pp. 97–125. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43946-0 4

9. Gomes, C., Lucio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with
simulator contracts. In: 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C) (2019).
https://doi.org/10.1109/models-c.2019.00124

10. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.: Generation of co-
simulation algorithms subject to simulator contracts. In: Camara, J., Steffen, M.
(eds.) SEFM 2019. LNCS, vol. 12226, pp. 34–49. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57506-9 4

11. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and
Applications, pp. 57–68 (2019). https://doi.org/10.5220/0007830000570068

https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.3384/ecp11063115
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp12076173
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-153.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-153.html
https://doi.org/10.3384/ecp19157785
https://fmi-standard.org/downloads/
https://doi.org/10.1007/978-3-030-43946-0_4
https://doi.org/10.1109/models-c.2019.00124
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.5220/0007830000570068

310 S. T. Hansen et al.

12. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 1–33, Article 49 (2018). https://doi.org/10.
1145/3179993

13. JIProlog: JIProlog, October 2016. http://www.jiprolog.com. Accessed 20 Aug 2020
14. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Com-

put. Model. Dyn. Syst. 6(2), 93–113 (2000). https://doi.org/10.1076/1387-
3954(200006)6:2;1-M;FT093

15. Miyazawa, U.Y.A., Woodcock, U.J.: Integrated tool chain for model-based design
of CPSs foundations of the SysML profile for CPS modelling (2016). https://www.
semanticscholar.org/paper/INtegrated-TOol-chain-for-model-based-design-of-of-
Miyazawa-Woodcock/3042572251aba18ab21ced9cc2fb49223dea2a2c. Accessed 13
Nov 2020

16. Palensky, P., Van Der Meer, A.A., Lopez, C.D., Joseph, A., Pan, K.: Cosimulation
of intelligent power systems: fundamentals, software architecture, numerics, and
coupling. IEEE Ind. Electron. Mag. 11(1), 34–50 (2017). https://doi.org/10.1109/
MIE.2016.2639825

17. Robby Hatcliff, J., Belt, J.: Model-based development for high-assurance embedded
systems. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Modeling, pp. 539–545. Lecture Notes in
Computer Science, Springer International Publishing (2018). https://doi.org/10.
1007/978-3-030-03418-4 32

18. Scala: The Scala Programming Language, August 2020. https://www.scala-lang.
org. Accessed 19 Aug 2020

19. Schramm, D., Hiller, M., Bardini, R.: Force components. Vehicle Dynamics, pp.
207–224. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-54483-
9 9

20. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972). https://doi.org/10.1137/0201010

21. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.: Maestro: the INTO-CPS
co-simulation framework. Simul. Model. Pract. Theor. 92, 45–61 (2019). https://
doi.org/10.1016/j.simpat.2018.12.005

22. Thule, C., et al.: Towards reuse of synchronization algorithms in co-simulation
frameworks. In: Camara, J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp.
50–66. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57506-9 5

23. Z3prover: z3, September 2020). https://github.com/Z3Prover/z3/wiki. Accessed
13 Sept 2020

https://doi.org/10.1145/3179993
https://doi.org/10.1145/3179993
http://www.jiprolog.com
https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://www.semanticscholar.org/paper/INtegrated-TOol-chain-for-model-based-design-of-of-Miyazawa-Woodcock/3042572251aba18ab21ced9cc2fb49223dea2a2c
https://www.semanticscholar.org/paper/INtegrated-TOol-chain-for-model-based-design-of-of-Miyazawa-Woodcock/3042572251aba18ab21ced9cc2fb49223dea2a2c
https://www.semanticscholar.org/paper/INtegrated-TOol-chain-for-model-based-design-of-of-Miyazawa-Woodcock/3042572251aba18ab21ced9cc2fb49223dea2a2c
https://doi.org/10.1109/MIE.2016.2639825
https://doi.org/10.1109/MIE.2016.2639825
https://doi.org/10.1007/978-3-030-03418-4_32
https://doi.org/10.1007/978-3-030-03418-4_32
https://www.scala-lang.org
https://www.scala-lang.org
https://doi.org/10.1007/978-3-662-54483-9_9
https://doi.org/10.1007/978-3-662-54483-9_9
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1016/j.simpat.2018.12.005
https://doi.org/10.1007/978-3-030-57506-9_5
https://github.com/Z3Prover/z3/wiki

Introducing Regression Tests
and Upgrades to the INTO-CPS

Application

Prasad Talasila(B), Armine Sanjari, Kristoffer Villadsen, Casper Thule,
Peter Gorm Larsen, and Hugo Daniel Macedo

DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{prasad.talasila,casper.thule,pgl,hdm}@eng.au.dk,

{201607125,201607406}@post.au.dk

Abstract. In this paper, we report on the progress made to upgrade
and develop a stable upgrading process to the INTO-CPS Application,
an Electron.js based desktop application providing a front-end to an
INtegrated TOolchain, which is used to develop Cyber-Physical Systems
models. We added regression tests to the codebase and for the first time
can detect the loss of functionality of the application and its accompany-
ing training tutorials using an automated process. The tests were devel-
oped on top of the Mocha, Chai and Spectron frameworks and cover
all the tutorials steps performed in the desktop application (approxi-
mately 33% of the app and other tools total). The testing process is not
yet ready to be deployed in the also recently developed GitHub Actions
automated workflow, but this is a possibility to be considered in future
developments. We expect this work to improve the stability and security
of the code, thus improving user experience.

Keywords: Integrated toolchain · Front end · Automated regression
test

1 Introduction

The INTO-CPS Application is a front-end used by engineers and students in
several projects and universities. It enables users to harness the backend co-
simulation toolchain in the development of Cyber-Physical Systems models, and
its typical use-cases are illustrated in a set of tutorials. The front-end was cre-
ated during the INtegrated TOolchain for Model-based Design of Cyber-Physical
Systems (INTO-CPS) project [2], and intends to reduce the entry barriers to
newcomers interested in the modelling and co-simulation of CPS, by integrating
other tools like Overture, Modelio, and Maestro.

The front-end was developed on top of Electron1 and Angular2 among other
web-based dependencies. Given their nature, the dependencies and in particular
1 See https://www.electronjs.org/.
2 See https://angular.io/.
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 311–317, 2021.
https://doi.org/10.1007/978-3-030-67220-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_23&domain=pdf
https://www.electronjs.org/
https://angular.io/
https://doi.org/10.1007/978-3-030-67220-1_23

312 P. Talasila et al.

Electron and Angular evolve fast with short release cycles. Furthermore, newer
versions of any of the frameworks are not necessarily backwards compatible.
Thus applications built on top of such frameworks require frequent upgrades with
non-trivial code changes. In addition, the back-end third-party tools evolve and
such upgrades need to be accommodated in the front-end. For instance, the new
releases of tools such as Maestro require frequent upgrades to the application.

Upgrades are likely to break the app features, and in particular the perfor-
mance of its tutorial steps, thus frustrating precisely the most vulnerable in the
userbase. To prevent that, the tool-induced and framework-induced upgrades
to the codebase require significant manual regression testing to ensure that all
the expected functional and non-functional requirements are satisfied. Manual
regression testing of the application requires hundreds of tedious and error-prone
steps. The only guaranteed way to make successful upgrades to the application
is to have automated regression tests. Automation of the regression tests paves
way for more frequent testing of the application. An added advantage of auto-
mated tests is the ability to take advantage of Continuous Integration/Continu-
ous Delivery pipelines during the software development process.

In this paper we describe two improvements – automated regression tests
and framework upgrades – carried out recently. With these two improvements
in place, it is now possible to make successful and frequent releases of the appli-
cation. This paper starts off with background information on the application in
Sect. 2. Afterwards, Sect. 3 provides an overview of the initiatives taken for auto-
mated regression testing of the application. This is followed by Sect. 4 explaining
the systematic steps taken to upgrade the dependencies of the application to
the latest stable versions. Finally, Sect. 5 provides concluding remarks and an
overview of the future work.

2 Background

The INTO-CPS toolchain has been used to develop CPS case studies in vari-
ous fields and features co-simulation [3], the combination of models simulating
system components to obtain a joint whole system simulation, as a paradigm in
the development of CPS models. Any model living up to the Functional Mockup
Interface (FMI) standard [4] is compatible with the toolchain, and is referred to
as a Functional Mockup Unit (FMU) [7]. The INTO-CPS toolchain consists of
the following baseline tools:

Modelio3 is a modeling environment for generating the co-simulation scenario,
i.e. connections between FMUs, the interface of the FMUs and related param-
eters, from a SysML profile for CPS modeling [1].

3 See http://www.modelio.org/.

http://www.modelio.org/

Introducing Regression Tests and Upgrades to the INTO-CPS Application 313

Overture4, 20-sim5, OpenModelica6, and RT-Tester7 are tools that
export FMUs.

Maestro [9] is a co-simulation orchestration engine to simulate selected FMUs
based on a given co-simulation scenario.

Because the INTO-CPS Application brings together different tools, and each
party whose tool is to be available within the application can develop a tool-
specific UI component that is plugged into the application, Electron.js was cho-
sen as a framework. Applications built using Electron framework use web tech-
nologies yet work like native desktop applications, and simplify the support of
Windows, Linux, and Mac versions. With most of the codebase written using
web technologies, the desktop version of the application can be easily converted
into a web application [6,8].

3 Introducing Regression Tests

We developed tests for the tutorials8 that are performed by trainees and engi-
neering students while learning how to explore the INTO-CPS toolchain [5]. Each
tutorial consists of a sequence of steps, each requiring a user to interact with the
application or an external tool. See Fig. 1 for an illustration of an application
state expected to be visible at the beginning of a tutorial step.

Fig. 1. A tutorial fig. with the expected state before launching the co-simulation engine.

4 See http://overturetool.org/.
5 See http://www.20sim.com/.
6 See https://www.openmodelica.org/.
7 See http://www.verified.de/products/rt-tester/.
8 See https://github.com/INTO-CPS-Association/training.

http://overturetool.org/
http://www.20sim.com/
https://www.openmodelica.org/
http://www.verified.de/products/rt-tester/
https://github.com/INTO-CPS-Association/training

314 P. Talasila et al.

We use Spectron9 as a test framework and wrote the tests resourcing to
primitives available in the mocha10 and chai11 testing libraries. As an example,
the test checking the conformance of the app state to the expected (Fig. 1) is
shown in Listing 1.1.

1 it(’Co-Simulation Engine offline ’, function () {

2
3 this.app.client.$(’coe -simulation ’).waitForVisible ()

4 .then (() => {

5 return this.app.client.$(’coe -simulation ’)

6 .$(’.alert.alert -danger’)

7 .getText ()

8 .then(function (text) {

9 expect(text)

10 .contain(’Co-Simulation Engine offline ’)

Listing 1.1. Testing if the app state is according to the expectation (Figure 1).

Although the INTO-CPS Application and its tutorials steps involve the usage
of external tools like Overture, our tests do not cover such steps, because such
interactions happen beyond the scope of the Spectron framework. Table 1 shows
the coverage achieved by the automated regression tests. The covered steps cor-
respond to steps that are part of the application. Based on the number of steps
covered in the tutorials, we have a tutorial step coverage of 34%, yet the auto-
mated regression tests cover all the tutorial steps run inside the application.

Table 1. The extent of automation in regression tests for all the tutorials.

Tutorials Tutorial Steps Automated Steps

1 – First Co-simulation 20 7
2 – Adding FMUs 31 21
3 – Using SysML 39 10
4 – FMU Export (Overture) 38 9
5 – FMU Export (20-sim) 41 9
6 – SysML for DSE 46 46
7 – Editing and Running DSE in

App
N/A 7

8 – SysML for Co-simulation 24 N/A
9 – Building Controllers in VDM 29 4
10 – Deploy the LFRController 28 N/A
11 – Building Controllers in PVSio-

web
47 2

Total Steps 343 115

9 See https://github.com/electron-userland/spectron.
10 See https://mochajs.org/.
11 See https://www.chaijs.com/.

https://github.com/electron-userland/spectron
https://mochajs.org/
https://www.chaijs.com/

Introducing Regression Tests and Upgrades to the INTO-CPS Application 315

4 Upgrading the Dependencies

The application is built on top of the Electron framework, which in turn uses
Node.js12. We use the npm13 package manager to download and manage the
dependencies including gulp, which we use as a build system. There are hun-
dreds of dependencies including the electron-packager, spectron and spectron-
fake-menu. Each of these packages, in turn, depends on other packages and
it is easy to find two npm packages requiring different versions of the same
base package. Figure 2 illustrates a concise dependency scenario for one devel-
opment snapshot of the application. While spectron is both a direct and nested
dependency for the application, yargs-parser is completely a nested dependency.
Despite the complexity the one finds, it is possible to list upgradable and security
vulnerabilities posed by using outdated packages.

The npm command line interface provides a comprehensive summary of the
security vulnerabilities arising out of the existing package versions. Figure 3
shows the audit report for yargs-parser package; the audit report suggests a
range of packages to be used. We used this feature and the Angular update web
tool to upgrade the INTO-CPS Application. Notably, an upgrade from Angular
2.0.0 to 7.2 and the Gulp build system to its version 4.

Fig. 2. A concise view of npm dependency problems encountered during upgrade of
Electron application.

Fig. 3. Security vulnerability report for yargs-parser package.

12 See https://nodejs.org/.
13 See https://www.npmjs.com/.

https://nodejs.org/
https://www.npmjs.com/

316 P. Talasila et al.

By upgrading npm packages to the latest possible versions and updating
the code, we were able to reduce the number of security vulnerabilities in the
application. After the software upgrade, the total security vulnerabilities have
decreased from 73 major and 195 minor vulnerabilities to 3 major and 7 minor
vulnerabilities. We have also mapped the deprecated features of npm packages
used to features of the application. Based on this mapping, certain features have
been either marked for deprecation or prioritized in the current development
process.

In addition to the previous Jenkins based continuous integration (CI) server,
we developed an additional GitHub release workflow. Each code update in the
git repository triggers build process on the CI server and the software build
status is visible to all the developers. The build status immediately highlights
any problems due to the latest changes in the source code. The lead developer
periodically updates the master branch of the git repository which automatically
builds the latest version the application and release the same for Windows, Linux
and Mac platforms.

5 Concluding Remarks and Future Work

The INTO-CPS Application is a user interface to an integrated toolchain used in
the design of Cyber-Physical Systems. Updates to underlying tools and software
library frameworks mandate continuous upgrades to the application. Our work
made progress in regression testing and upgrading the application. The regres-
sion tests provide a check on the expected features of the application while
the upgrade process significantly reduced the software vulnerabilities. Due to
improved testing and successful upgrades, we are also making definitive progress
in code reuse in desktop and web versions of the application. Shortly, we intend
to unify the development of the desktop and web versions of the application. We
also intend to track the test coverage based on the number of lines of code or func-
tions, and deepen the testing procedures. Doing so will increase the usability and
performance of the application and its associated CPS development paradigm,
thus providing better user experiences.

Acknowledgements. We acknowledge the European Union for funding the INTO-
CPS project (Grant Agreement 644047) which developed the open toolchain and the
INTO-CPS Application, the Poul Due Jensen Foundation that has funded subsequent
work on taking this forward towards the engineering of digital twins and the European
Union for funding the HUBCAP (Grant Agreement 872698) project.

Introducing Regression Tests and Upgrades to the INTO-CPS Application 317

References

1. Amalio, N., Cavalcanti, A., Miyazawa, A., Payne, R., Woodcock, J.: Foundations
of the SysML for CPS modelling. Technical report, INTO-CPS Deliverable, D2.2a,
December 2016

2. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: For-
maliSE: FME Workshop on Formal Methods in Software Engineering, ICSE 2015,
Florence, Italy, May 2015

3. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a
survey. ACM Comput. Surv. 51(3), 1–33 (2018)

4. Larsen, P.G., et al.: The integrated toolchain for cyber-physical systems (INTO-
CPS): a guide. Technical report, INTO-CPS Association, October 2018. www.into-
cps.org

5. Larsen, P.G., et al.: Frontiers in software engineering education. In: Bruel, J.M.,
Capozucca, A., Mazzara, M., Meyer, B., Naumchev, A., Sadovykh, A. (eds.) Fron-
tiers in Software Engineering Education, pp. 196–213. Springer International Pub-
lishing, Cham (2020)

6. Macedo, H.D., Rasmussen, M.B., Thule, C., Larsen, P.G.: Migrating the INTO-CPS
application to the cloud. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12233,
pp. 254–271. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54997-8 17

7. Pohlmann, U., Schäfer, W., Reddehase, H., Röckemann, J., Wagner, R.: Generat-
ing functional mockup units from software specifications. In: Modelica Conference
(2012)

8. Rasmussen, M.B., Thule, C., Macedo, H.D., Larsen, P.G.: Migrating the INTO-
CPS application to the cloud. In: Gamble, C., Couto, L.D. (eds.) Proceeding 17th
Overture Workshop, pp. 47–61. Newcastle University Technical Report CS-TR-1530,
October 2019

9. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theor. 92,45–61 (2019). http://
www.sciencedirect.com/science/article/pii/S1569190X1830193X

www.into-cps.org
www.into-cps.org
https://doi.org/10.1007/978-3-030-54997-8_17
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

Cosimulation-Based Control Synthesis

Adrien Le Coënt(B) , Julien Alexandre dit Sandretto ,
and Alexandre Chapoutot

U2IS, Institut Polytechnique de Paris, ENSTA Paris, 828 Boulevard des maréchaux,
91762 Palaiseau Cedex, France

adrien.le-coent@ens-cachan.fr, {alexandre,chapoutot}@ensta.fr

Abstract. In this paper, we present a procedure for guaranteed con-
trol synthesis for nonlinear sampled switched systems which relies on
an adaptive state-space tiling procedure. The computational complexity
of the procedure being exponential in the dimension of the system, we
explore the use of cosimulation for improving computation times and
the scalabity of the method. We apply the procedure on a scalable case
study of various dimensions, which is, to our knowledge, a significant step
towards the scalabity of formal control synthesis methods with respect
to the state of the art.

Keywords: Switched systems · Guaranteed numerical integration ·
Interval analysis · Symbolic control synthesis · Cosimulation

1 Introduction

Model-based design [20,27] is an effective approach to tackle the increasing com-
plexity of cyber-physical systems. In this approach, physical systems, e.g., plant,
are usually modelled by differential equations while computer parts are described
by transition systems. Combining these models allows to simulate the behaviour
of the whole model of the system in order to predict its behaviour to avoid faults
or to synthesize control algorithms.

Safety critical cyber-physical systems require strong guarantees in their exe-
cution in order to assess the safety of the mission or the users. Formal meth-
ods can produce rigorous evidence for the safety of cyber-physical systems, i.e.,
based on mathematical reasoning. For example, reachability analysis is an effi-
cient technique to compute the set of reachable states of cyber-physical systems.
Once, knowing the set of reachable states, the avoidance of bad states can be
formally proved. The main feature of reachability analysis is its ability to prop-
agate sets of values through dynamical systems instead of performing several
numerical simulations.

This work was supported by the Chair Complex Systems Engineering - Ecole polytech-
nique, THALES, DGA, FX, Dassault Aviation, Naval Group Research, ENSTA Paris,
Télécom Paris, and Fondation ParisTech.

c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 318–333, 2021.
https://doi.org/10.1007/978-3-030-67220-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_24&domain=pdf
http://orcid.org/0000-0002-4180-3219
http://orcid.org/0000-0002-6185-2480
http://orcid.org/0000-0002-7230-0710
https://doi.org/10.1007/978-3-030-67220-1_24

Cosimulation-Based Control Synthesis 319

One weakness of formal verification methods, in particular, reachability anal-
ysis, is the scalability with respect to the dimension (number of states) of cyber-
physical systems. Applying a cosimulation approach to reachability analysis is
attractive since it could broaden the class of problems which can be solved with
this technique. A set-based approach of cosimulation to solve differential equa-
tions has been defined [21], we explore here its use in the context of formal
control synthesis.

Contribution. We propose an extension of a controller synthesis algorithm for
a particular class of cyber-physical systems, a.k.a. nonlinear sampled switched
systems, it relies on a cosimulation approach for the required reachability anal-
ysis. A formal definition of the set-based cosimulation is given and then used in
order to compute a safe controller for a model of an apartment with a controlled
heating.

Related Work. Most of the recent work on set-valued integration of nonlinear
ordinary differential equations is based on the upper bounding of the Lagrange
remainders either in the framework of Taylor series or Runge-Kutta schemes
[2,3,5,7,9,10,12,24]. Sets of states are generally represented as vectors of inter-
vals, a.k.a. boxes, and are manipulated through interval arithmetic [25] or affine
arithmetic [11]. Taylor expansions with Lagrange remainders are also used in
the work of [3], which uses polynomial zonotopes for representing sets of states
in addition to interval vectors.

The guaranteed or validated solution of ODEs using interval arithmetic is
studied in the framework of Taylor series in [10,13,22,25,26], and Runge-Kutta
schemes in [2,5,6,14,18]. The former is the oldest method used in interval analy-
sis community because the expression of the remainder of Taylor series is simple
to obtain. Nevertheless, the family of Runge-Kutta methods is very important
in the field of numerical analysis. Indeed, Runge-Kutta methods have several
interesting stability properties which make them suitable for an important class
of problems. The recent work [1] implements Runge-Kutta based methods which
prove their efficiency at low orders and for short simulations.

Cosimulation has been extensively studied in the past years [16,17], and has
been reported in a number of industrial applications (see [16] for an extensive
list domain applications and associated publications). However, most of the uses
and tools developed rely on the FMI/FMU standard [4,8,28], which do not allow
guaranteed simulation. To our knowledge, guaranteed cosimulation of systems
has never been applied on controller synthesis method.

Organization of the Paper. Section 2 presents the mathematical model of sam-
pled switched systems as well as an algorithm to synthesize a safe controller.
Set-based simulation and its extension to cosimulation are presented in Sect. 3.
Experimental results are presented in Sect. 4 before concluding in Sect. 5.

320 A. Le Coënt et al.

2 Control Synthesis of Switched Systems

A presentation of the mathematical model of sampled switched systems is given
in Sect. 2.1. An algorithm to synthetize safe controllers is described in Sect. 2.2.

2.1 Switched Systems

Let us consider nonlinear switched systems such that

ẋ(t) = fσ(t)(x(t), d(t)) (1)

is defined for all t ≥ 0, where x(t) ∈ R
n is the state of the system, σ(·) : R

+ −→ U
is the switching rule, and d(t) ∈ R

m is a bounded perturbation. The finite set
U = {1, . . . , N} is the set of switching modes of the system. We focus on sampled
switched systems, given a sampling period τ > 0, switchings will periodically
occur at times τ , 2τ , Switchings depend only on time, and not on states,
this is the main difference with hybrid systems.

The switching rule σ(·) is thus piecewise constant, we will consider that σ(·)
is constant on the time interval [(k − 1)τ, kτ) for k ≥ 1. We call “pattern” a
finite sequence of modes π = (i1, i2, . . . , ik) ∈ Uk. With such a control pattern,
and under a given perturbation d, we will denote by x(t; t0, x0, d, π) the solution
at time t ≥ t0 of the system

ẋ(t) = fσ(t)(x(t), d(t)),
x(t0) = x0,

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [t0 + (j − 1)τ, t0 + jτ).
(2)

We address the problem of synthesizing a state-dependent switching rule
σ̃(·) for Eq. (2) in order to verify some properties. This important problem is
formalized as follows:

Problem 1 (Control Synthesis Problem). Let us consider a sampled switched
system as defined in Eq. (2). Given three sets R, S, and B, with R ∪ B ⊂ S and
R ∩ B = ∅, find a rule σ̃(·) such that, for any x(0) ∈ R

– τ -stability1: x(t) returns in R infinitely often, at some multiples of sampling
time τ .

– safety : x(t) always stays in S\B.

In this problem, S is a safety set in which the state should always stay. The
set R is a recurrence set, in which the state will return infinitely often, it is used
to make the computation of a safety controller easier. The set B is an optional
obstacle, or avoid set. Under the above-mentioned notation, we propose the main
procedure of our approach which solves this problem by constructing a rule σ̃(·),

1 This definition of stability is different from the stability in the Lyapunov sense.

Cosimulation-Based Control Synthesis 321

such that for all x0 ∈ R, and under the unknown bounded perturbation d, there
exists π = σ̃(·) ∈ Uk for some k such that:

⎧
⎪⎨

⎪⎩

x(t0 + kτ ; t0, x0, d, π) ∈ R

∀t ∈ [t0, t0 + kτ], x(t; t0, x0, d, π) ∈ S

∀t ∈ [t0, t0 + kτ], x(t; t0, x0, d, π) /∈ B.

Such a law permits to perform an infinite-time state-dependent control. The
synthesis algorithm is described in Sect. 2.2 and involves guaranteed set-based
integration presented in Sect. 3, the main underlying tool is interval analysis [25].

2.2 Controller Synthesis Algorithm

Before introducing the algorithms to synthetize controller of sampled switched
systems, some preliminary definitions will be introduced.

Definition 1. Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈

Uk. The successor set of X via π, denoted by Postπ(X), is the image of X
induced by application of the pattern π, i.e., the solution at time t = kτ of

ẋ(t) = fσ(t)(x(t), d(t)),
x(0) = x0 ∈ X,

∀t ≥ 0, d(t) ∈ [d],
∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ).

(3)

Note that Postπ(X) is usually hard to compute so an over-approximation will
be computed instead in order to guarantee rigourous results.

Definition 2. Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈

Uk. We denote by Tubeπ(X) the union of boxes covering the trajectories of
IVP (3), which construction is detailed in Sect. 3.

Principle of the Algorithm. We describe the algorithm solving the con-
trol synthesis problem for nonlinear switched systems (see Problem 1, Sect. 2.1).
Given the input boxes R, S, B, and given two positive integers P and D, the algo-
rithm provides, when it succeeds, a decomposition Δ of R of the form {Vi, πi}i∈I

verifying the properties:

–
⋃

i∈I Vi = R,
– ∀i ∈ I, Postπi

(Vi) ⊆ R,
– ∀i ∈ I, Tubeπi

(Vi) ⊆ S,
– ∀i ∈ I, Tubeπi

(Vi)
⋂

B = ∅.

Decomposition Δ = {Vi, πi}i∈I is thus a set of boxes (Vi) covering R, each
box being associated with a control pattern (πi), and I is a set of indexes used
for listing the covering boxes. The sub-boxes {Vi}i∈I are obtained by repeated

322 A. Le Coënt et al.

bisection to produce a paving of R. At first, function Decomposition calls sub-
function Find Pattern which looks for a pattern π of length at most P such
that Postπ(R) ⊆ R, Tubeπ(R) ⊆ S and Tubeπ(R)

⋂
B = ∅. If such a pattern π

is found, then a uniform control over R is found (see Fig. 1(a)). Otherwise, R is
divided into two sub-boxes V1, V2, by bisecting R w.r.t. its longest dimension.
Patterns are then searched to control these sub-boxes (see Fig. 1(b)). If for each
Vi, function Find Pattern manages to get a pattern πi of length at most P
verifying Postπi

(Vi) ⊆ R, Tubeπi
(Vi) ⊆ S and Tubeπi

(Vi)
⋂

B = ∅, then it
is a success and algorithm stops. If, for some Vj , no such pattern is found, the
procedure is recursively applied to Vj . It ends with success when every sub-box of
R has a pattern verifying the latter conditions, or fails when the maximal depth
of decomposition D is reached. The algorithmic form of functions Decomposition
and Find Pattern are given in Algorithm 1 and Algorithm 2 respectively.

Fig. 1. Principle of the bisection method.

Algorithm 1. Algorithmic form of Function Decomposition.
Function: Decomposition(W, R, S, B, D, P)

Input: A box W , a box R, a box S, a box B, a degree D of bisection, a length P
of input pattern

Output:〈{(Vi, πi)}i, T rue〉 or 〈 , False〉

(π, b) := Find Pattern(W, R, S, B, P)
if b = True then

return 〈{(W, π)}, T rue〉
else

if D = 0 then
return 〈 , False〉

else
Divide equally W into (W1, W2)
for i = 1, 2 do

(Δi, bi) := Decomposition(Wi, R, S, B, D − 1, P)
end for
return (

⋃
i=1,2 Δi,

∧
i=1,2 bi)

end if
end if

Cosimulation-Based Control Synthesis 323

Our control synthesis method being well defined, we introduce the main
algorithm of this paper, stated as follows:

Proposition 1. Algorithm1 with input (R,R, S,B,D, P) returns, when it suc-
cessfully terminates, a decomposition {Vi, πi}i∈I of R which solves Problem 1.

Proof. Let x0 = x(t0 = 0) be an initial condition belonging to R. If the decom-
position has terminated successfully, we have

⋃
i∈I Vi = R, and x0 thus belongs

to Vi0 for some i0 ∈ I. We can thus apply the pattern πi0 associated to Vi0 . Let
us denote by k0 the length of πi0 . We have:

– x(k0τ ; 0, x0, d, πi0) ∈ R,
– ∀t ∈ [0, k0τ], x(t; 0, x0, d, πi0) ∈ S,
– ∀t ∈ [0, k0τ], x(t; 0, x0, d, πi0) /∈ B.

Let x1 = x(k0τ ; 0, x0, d, πi0) ∈ R be the state reached after application of πi0

and let t1 = k0τ . State x1 belongs to R, it thus belongs to Vi1 for some i1 ∈ I,
and we can apply the associated pattern πi1 of length k1, leading to:

– x(t1 + k1τ ; t1, x1, d, πi1) ∈ R,
– ∀t ∈ [t1, t1 + k1τ], x(t; t1, x1, d, πi1) ∈ S,
– ∀t ∈ [t1, t1 + k1τ], x(t; t1, x1, d, πi1) /∈ B.

We can then iterate this procedure from the new state

x2 = x(t1 + k1τ ; t1, x1, d, πi1) ∈ R.

This can be repeated infinitely, yielding a sequence of points belonging to R
x0, x1, x2, . . . attained at times t0, t1, t2, . . . , when the patterns πi0 , πi1 , πi2 , . . .
are applied.

We furthermore have that all the trajectories stay in S and never cross B:

∀t ∈ R
+,∃k ≥ 0, t ∈ [tk, tk+1]

and
∀t ∈ [tk, tk+1], x(t; tk, xk, d, πik) ∈ S, x(t; tk, xk, d, πik) /∈ B.

The trajectories thus return infinitely often in R, while always staying in S and
never crossing B. �
Remark 1. Note that it is possible to perform reachability from a set R1 to
another set R2 by computing Decomposition(R1, R2, S,B,D, P). The set R1 is
thus decomposed with the objective to send its sub-boxes into R2, i.e., for a
sub-box V of R1, patterns π are searched with the objective Postπ(V) ⊆ R2.

Remark 2. The search space of control patterns is the set of patterns of length
at most P , i.e. U ∪U2 ∪ . . . UP . In a practical way, function Find Pattern tests
control patterns of length 1, then control patterns of length 2, iteratively up to
length P . Patterns of length i are generated as combinatorial i-tuples. The set of

324 A. Le Coënt et al.

Algorithm 2. Algorithmic form of Function Find Pattern.
Function: Find Pattern(W, R, S, B, P)

Input:A box W , a box R, a box S, a box B, a length P of input pattern
Output:〈π, True〉 or 〈 , False〉

for i = 1 . . . P do
Π := U i (the set of input patterns of length i)
while Π is non empty do

Select π in Π
Π := Π \ {π}
if Postπ(W) ⊆ R and Tubeπ(W) ⊆ S and Tubeπ(W)

⋂
B = ∅ then

return 〈π, True〉
end if

end while
end for
return 〈 , False〉

patterns of length i is U i, its size is N i. The complexity of function Find Pattern
is thus exponential with the length of control patterns P . The value of P leading
to successful decompositions is unknown and depends on each system, but in
most cases P = 4 leads to successful control synthesis. Longer sequences might
be required if the dynamics is slow.

3 Set-Based Cosimulation

In this section, we explain how the Post and Tube operators can be computed in
a distributed way through a cosimulation approach. We first explain the principle
of interval analysis and standard guaranteed integration, we then suppose that
the system can be written as the composition of components and explain our
method for guaranteed cosimulation. In order to ease the reading of this section,
we omit the notation of the switched modes σ and control sequences π associated
to the Post and Tube operators.

Before presenting the details of interval analysis and cosimulation, let us
introduce the following time periods:

– τ is the switching period,
– H is the communication period,
– h is the simulation period (or integration time-step).

We suppose that h ≤ H ≤ τ , H is a multiple of h, and τ is a multiple of
H. Consider H = kh and τ = KH with k,K ∈ N>0, and an initial time
t0. On time intervals [t0, t0 + τ), the switching mode is constant. In case of

Cosimulation-Based Control Synthesis 325

cosimulation a model of cyber-physical systems is broken down into different
Simulation Units (SU). Those SUs will exchange information at periodic rate,
i.e., at times t0, t0 + H, . . . , t0 + KH.

3.1 Interval Analysis

In this section, the main set-based tools that are required in this paper are
presented.

Interval Artithmetic. The simplest and most common way to represent and
manipulate sets of values is with intervals, see [25]. An interval [xi] = [xi, xi]
defines the set of reals xi such that xi ≤ xi ≤ xi. IR denotes the set of all
intervals over reals. The size or the width of [xi] is denoted by w([xi]) = xi −xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1]+[x2] = [x1+x2, x1+x2], encloses the image of the sum
function over its arguments. In general, an arithmetic operation � = {+,−,×,÷}
is associated to its interval extension such that:

[a] � [b] ⊂ [min{a � b, a � b, a � b, a � b},max{a � b, a � b, a � b, a � b}].

An interval vector or a box [x] ∈ IR
n, is a Cartesian product of n intervals.

The enclosing property basically defines what is called an interval extension or
an inclusion function.

Definition 3 (Inclusion function). Consider a function f : R
n → R

m, then
[f] :IRn → IR

m is said to be an extension of f to intervals if

∀[x] ∈ IR
n, [f]([x]) ⊇ {f(x),x ∈ [x]}.

It is possible to define inclusion functions for all elementary functions such as ×,
÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain: all
occurrences of the real variables are replaced by their interval counterpart and all
arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function
may also be used (see [19] for more details).

Combining the inclusion function and the rectangle rule, integral can be
bounded following:

∫ b

a

f(x) dx ∈ (b − a).[f]([a, b]).

Set-Based Simulation. Also named validated simulation or reachability, set-
based simulation aims to compute the reachable tube of an Initial Value Problem
with Ordinary Differential Equation (IVP-ODE) with a set-based approach and
validated computations.

326 A. Le Coënt et al.

When dealing with validated computation, mathematical representation of
an IVP-ODE is as follows:

⎧
⎪⎨

⎪⎩

ẏ(t) = f(t, y(t), d(t))
y(0) ∈ [y0] ⊆ R

n

d(t) ∈ [d] ⊆ R
m.

(4)

We assume that f : R × R
n → R

n is continuous in t and globally Lipschitz
in y, so Eq. (4) admits a unique solution for a given continuous perturbation
trajectory. We furthermore suppose that d is bounded in the box [d].

The set (expressed as a box) [y0] of initial conditions is usually used to
model some (bounded) uncertainties. The set [d] is used to model (bounded)
perturbations. For a given initial condition y0 ∈ [y0], and a given perturbation
d ∈ [d], the solution at time t > 0 when it exists is denoted y(t; y0, d). The
goal, for validated numerical integration methods, is then to compute the set of
solutions of Eq. (4), i.e., the set of possible solutions at time t given the initial
condition in the set of initial conditions [y0] and the perturbation lying in [d]:

y(t; [y0], [d]) = {y(t; y0) | y0 ∈ [y0], d(t) ∈ [d]}. (5)

Validated numerical integration schemes, exploiting set-membership frame-
work, aims at producing the solution of the IVP-ODE that is the set defined in
Eq. (5). It results in the computation of an over-approximation of y(t; [y0], [d]).

The use of set-membership computation for the problem described above
makes possible the design of an inclusion function for [y](t; [y0], [d]), which is an
over-approximation of y(t; [y0], [d]) defined in Eq. (5). To do so, let us consider a
sequence of time instants t1, . . . , tK with ti+1 = ti +h and a sequences of boxes
[y1], . . . , [yK] such that y(ti+1; [yi], [d]) ⊆ [yi+1], ∀i ∈ [0,K − 1] are computed.
From [yi], computing the box [yi+1] is a classical 2-step method (see [23]):

– Phase 1: compute an a priori enclosure Ph([yi], [d]) of the set {y(tk; yi, d) | tk ∈
[ti, ti + h], yi ∈ [yi], d ∈ [d]}, such that y(tk; [yi], [d]) is guaranteed to exist;

– Phase 2: compute a tight enclosure of the solution [yi+1] at time ti+1.

The a priori enclosure Ph([yi], [d]) computed in Phase 1 is referred to as a Picard
box, since its computation relies on the Picard-Lindelöf operator and the Picard
theorem (see [2,21] for more details). We omit the theoretical details, but a suc-
cessful computation of this box ensures the existence and uniqueness of solutions
over the time interval [ti, ti + h] for the given box of initial conditions [yi] and
perturbation box [d]. Two main approaches can be used to compute the tight
enclosure in Phase 2. The first one, and the most used, is the Taylor method
[25,26]. The second one, more recently studied, is the validated Runge-Kutta
method [2]. Guaranteed integration or reachability analysis consists in comput-
ing a sequence of boxes that enclose the state of the system on a given time
interval. For a given switched mode (the notation being omitted) and pertur-
bation set [d] on time interval [t, t + τ], given a time integration period h such

Cosimulation-Based Control Synthesis 327

that τ = Kh, (k = 1), the Tube operator is computed as the union of enclosures
Ph([yi], [d]):

Tube([y0]) =
⋃

i=1,...,K

Ph([yi], [d]).

The post operator is the tight enclosure given at the final time:

Post([y0]) = [yK].

3.2 Cosimulation of Reachable Sets

The complexity of the computation of the Picard boxes, as well as the tightening
of the solutions, is exponential in the dimension of the differential equation
considered. As a result, reachability analysis lacks scalability with respect to the
dimension of the system. In order to break the exponential complexity of those
computations, a cosimulation approach can be used with the aim of computing
these objects only on parts of the system.

Cosimulation aims at simulating components of a coupled system separately.
In brief, the principle is to enable simulation of the coupled system through
the composition of simulators, or simulation units (SUs) [17], each SU being
dedicated to only a component of the system. SUs exchange information at
some given communication times in order to ensure the simulation error does
not grow uncontrollably.

Let us suppose that the dynamics can be decomposed as follows:

ẋ1 ∈ f1(t, x1, u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2, u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm, um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm, u1, . . . , um) = 0,

where the state x is decomposed in m components x = (x1, . . . , xm), for all
j ∈ {1, . . . , m}, xj ∈ Xj , X1 × · · · × Xm = R

d, and L is a coupling function
between the components. The coupling condition L(x1, . . . , xm, u1, . . . , um) = 0
should hold at all time. From now on, we use index j ∈ {1, . . . , m} to denote
subsystem j, and index i to denote a time interval starting at ti. Note that, in
order to increase the accuracy of the method, the decomposition should be made
so as to minimize the number of shared variables between sub-systems.

In the most general case, coupling L is an algebraic condition. For our appli-
cations, the coupling is supposed to be given explicitly, i.e, uj is given as function
of the other state variables: uj = Kj(x1, . . . , xm). Cosimulation then consists in
computing Post operators for each sub-system separately, and doing a cross
product to obtain the global state. To ensure a guaranteed computation, the
inputs uj can be considered as bounded perturbations. The difficulty lies in the
determination of the size of the set in which the perturbations evolve, since it
has to be determined before performing the simulation of the other sub-systems.

328 A. Le Coënt et al.

This can be done using the cross-Picard operator, introduced in [21]. The pur-
pose of the cross-Picard operator is to over-approximate the solutions of all the
sub-systems over a given time interval (the communication period, also called
macro-step), using only local computations.

To compute these sets, we start by guessing a rough over-approximation
[pj] of the solutions xj over the next macro-step. This gives some rough over-
approximations [rj] = Kj([p1], . . . , [pm]) of the perturbations uj . We then com-
pute local Picard boxes iteratively, until the proof of validity of the approxima-
tions is obtained for all sub-systems.

More precisely, let us denote by PH
j ([xj], [uj]) the enclosure of the set of

solutions of subsystem j over the time-interval [t, t + H]: {xj(tk;xj , uj) | tk ∈
[t, t + H], xj ∈ [xj], uj ∈ [uj]}, where [xj] and [uj] are the boxes of initial condi-
tions and perturbation for sub-system j. If we can prove that for all sub-systems
j ∈ {1, . . . , m}, PH

j ([xj],Kj([p1], . . . , [pm])) � [pj], then, by application of the
Picard theorem, existence and uniqueness of global solutions is ensured for the
time interval [t, t + H]. Fortunately, this condition is in practice easily met by
application of a fixed point algorithm that tightens the rough initial guesses [pj]
(see [21]). Once the Picard boxes are computed and proved safe, each sub-system
j can, in parallel, compute its own solution safely on the time interval [t, t + H]
by considering uj as a perturbation lying in Kj([p1], . . . , [pm]). We denote the
cross-Picard operator as the computation of the validated Picard boxes, the
result being given as the cross-product of the Picard boxes.

Our approach for guaranteed cosimulation of the Post operator over the
interval [t, t + τ] is thus summarized as follows:

1. Compute an over-approximation of the solutions on time interval [t, t + H]
(compute the cross-Picard operator),

2. Advance simulation of all subsystems in parallel (using a time step h) until
time t + H, the inputs are considered as bounded perturbations in the sets
returned in Step 1,

3. Update initial conditions and input values,
4. Repeat on interval [t + H, t + 2H] until [t + τ − H, t + τ].

3.3 Discussion on Meta-parameters

The different time periods involved in the synthesis and cosimulation procedures
(h, H, and τ) play a crucial role in the accuracy of the reachability analysis, and
thus in the success of the control synthesis. In mere words, a reachability analysis
is performed each time a control sequence is tested. Improving the speed of the
reachability analysis drastically improves control synthesis computation times,
provided that the accuracy is high enough to allow control synthesis.

One of the key aspects is that the frequency at which we update the initial
conditions and perturbation sets (the communication frequency 1/H) should be
as small as possible in order to increase the speed of the reachability analy-
sis, but at the cost of the accuracy of cosimulation. The speed increase when
using fewer communications is due to the fact that each communication time

Cosimulation-Based Control Synthesis 329

involves the application of a fixed-point algorithm to validate the perturbation
sets, thus taking a non negligible amount of computation. However, using shorter
communication periods means that the perturbation sets are smaller, and the
cosimulation thus leads to tighter reachable tubes, making the synthesis eas-
ier. The largest communication period we can consider is actually the switching
period H = τ . If such a large communication period allows enough accuracy for
control synthesis purposes, then this would lead to the best computation time
gains. However, in practice, the switching period can be too large to avoid com-
munication between switching times. If a communication is necessary between
switchings, then, in order to maximize the use of the data exchange, communi-
cation frequency should be a multiple of the switching frequency.

We would like to point out that the integration time step h can actually be
different for each simulation unit (for reachability analysis of separate compo-
nents, once the perturbation sets are validated). The integration methods can
be essentially different since we can even consider implicit and explicit methods
in parallel. The only requirement is that the perturbation sets are proved safe
(with the use of Picard operators). This means that complex systems involving
stiff and nonstiff dynamics, or linear and nonlinear dynamics, can be divided in
such a way that the computation power is dedicated to the more difficult parts
to integrate. In our applications, we illustrate the scalability property of the
proposed method, but industrial applications involving more complex dynamics
could show even better improvements.

4 Experiments

4.1 Case Study

This case study is based on a simple model of a two-room apartment, heated
by a heater in one of the rooms (adapted from [15]). Initially of dimension of
the state space is 2, the case study is made scalable by concatenating two-room
apartments in line, so that each room exchanges heat with its neighbouring
rooms, and every other room is equipped with a heater.

In this example, the objective is to control the temperature of all rooms.
There is heat exchange between neighbouring rooms and with the environment.
The continuous dynamics of the system, the temperature, is given by

˙⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

+ Bu.

330 A. Le Coënt et al.

The dimension n is supposed to be even n = 2m. The non null coefficients
ai,j of matrix A are:

a1,1 = −αr − αe − αfu1

a2i+1,2i+1 = −2αr − αe i = 1, . . . ,m − 1
a2i,2i = −2αr − αe − αfui i = 1, . . . ,m − 1

a2m,2m = −αr − αe

ai,i+1 = ai+1,i = αr i = 1, . . . , 2m − 1.

The non null coefficients bi,j of the input matrix Bu are:

b2i−1 = αeTe + αfTfui+1 i = 1, . . . ,m

b2i = αeTe i = 1, . . . , m.

Here Ti for i = 1, . . . , 2m is the temperature of room i, and the state of the system
corresponds to T = (T1, . . . , Tn). The control modes are given by variables uj

for j = 1, . . . ,m, each can take the values 0 or 1, depending on whether the
heater in room 2j −1 (for j = 1, . . . ,m) is switched off or on. Hence, the number
of switched modes is 2m. Temperature Te corresponds to the temperature of
the environment, and Tf to the temperature of the heaters. The values of the
different parameters are as follows: αr = 5×10−2, αe = 5×10−3, αf = 8.3×10−3,
Te = 10 and Tf = 50.

The control objective is to ensure τ -stability of the temperature in R =
[19, 21] × · · · × [19, 21], while ensuring safety in S = [18, 22] × · · · × [18, 22], with
a switching period τ = 10. We don’t consider any obstacle B in this example,
the maximal length of patterns is set to P = 4, and the maximum depth of
decomposition is D = 2.

4.2 Experimental Results

In order to validate our approach, we synthetize the control rule for the problem
given in Sect. 4.1 for different number of rooms n = 2, 4, 6, 8. The results are
gathered in Table 1. All the simulations are performed with the classical method
RK4, an explicit Runge-Kutta method with four stages at the fourth order. Our
choice for this method is based on its fame and on the fact that to find a control
for the case study, an order greater than two is needed. Cosimulation consists in
m simulations of systems of dimension two (three with an additional dimension
for time). More precisely, if m ≥ 3, system

˙⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

T1

T2

...
Tn

⎞

⎟
⎟
⎟
⎠

+ Bu,

Cosimulation-Based Control Synthesis 331

for n = 2m, is rewritten as m systems:

˙(
T1

T2

)

= A1

(
T1

T2

)

+ B1
u + D1

(
T3

)
,

˙(
T3

T4

)

= A2

(
T3

T4

)

+ B2
u + D2

(
T2

T5

)

,

. . .
˙(

T2m−1

T2m

)

= Am

(
T2m−1

T2m

)

+ Bm
u + Dm

(
T2m−2

)
,

where Di is a disturbance matrix composed of coefficients of A. One can see that
each subsystem is perturbed by the adjacent rooms (there is one adjacent room
for the first and last system, and two adjacent rooms for the others). There is
one communication per switching period, meaning that H = 5 for τ = 10.

These simulations are also performed in parallel using Open Multi-Processing
API for Linux. Experiments are done on a bi-processor Intel(R) Xeon(R) CPU
E5-2620 v3 @ 2.40 GHz with 12 cores each. A time out (T.O.) is fixed at three
days, i.e., 4320 min. Computation times seem important but the results are guar-
anteed and have to be computed only one time and offline.

Table 1. Results of synthesis for problem given in Sect. 4.1: computation times, in min-
utes, for centralized dynamics, with cosimulation and with parallelized cosimulation.

Number of rooms (n) Centralized Cosimulation Cosimulation in parallel

2 0m43 – –

4 2m28 2m30 1m58

6 185m 80m 42m

8 T.O 3606m 2072m

4.3 Discussion

Our method shows its efficiency, even with only 4 rooms if parallelization is used.
A control rule can be synthetized for 8 rooms with cosimulation while no result
can be obtained without our approach before time out. Cosimulation allows
a very straightforward parallelization which reduces significantly computation
time. Our experiments revealed the necessity of using one communication per
switching period for this case study. Using none (communicating only at the
beginning of a switching period) led to sets too wide for ensuring τ -stability.

5 Conclusion

In this paper, we presented a procedure for control synthesis that relies heavily on
(guaranteed) reachability computations, its scalability being limited by the com-
plexity of set-based integration. We proposed to use a guaranteed cosimulation

332 A. Le Coënt et al.

to improve the control synthesis computation times. We illustrate the scalability
of our method on a scalable case-study that shows the efficiency of our approach.
As of now, some expertise is required for choosing a communication frequency
that allows computation time gains as well as successful control synthesis. We
would like to explore the possibility of automating the determination of a good
communication frequency in the context of switching systems.

The current implementation of the procedure allows to simulate subsystems
in parallel, but the cross-Picard computation (involving repeated applications
of Picard operators) is still sequential due to memory management issues. Our
future work will be devoted to the development of a parallel implementation of
the cross-Picard computation. Such an implementation would hopefully mitigate
the cost of communication times in the present procedure.

References

1. Alexandre dit Sandretto, J., Chapoutot, A.: DynIbex. https://perso.ensta-paris.
fr/∼chapoutot/dynibex/

2. Alexandre dit Sandretto, J., Chapoutot, A.: Validated explicit and implicit Runge-
Kutta methods. Reliable Comput. 22, 79 (2016)

3. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Hybrid Systems: Computation and Control,
pp. 173–182 (2013)

4. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error estimates for co-
simulation in FMI for model exchange and co-simulation v2.0. In: Schöps, S., Bar-
tel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-
Algebraic Equations. DEF, pp. 107–125. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44926-4 6

5. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38088-4 8

6. Bouissou, O., Martel, M.: GRKLib: a guaranteed Runge Kutta library. In: Scientific
Computing, Computer Arithmetic and Validated Numerics (2006)

7. Bouissou, O., Mimram, S., Chapoutot, A.: HySon: set-based simulation of hybrid
systems. In: Rapid System Prototyping. IEEE (2012)

8. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In: 2013
Proceedings of the International Conference on Embedded Software (EMSOFT),
pp. 1–12. IEEE (2013)

9. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: IEEE 33rd Real-Time Systems Symposium, pp.
183–192. IEEE Computer Society (2012)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

11. de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications.
In: Brazilian Mathematics Colloquium Monographs, IMPA/CNPq (1997)

https://perso.ensta-paris.fr/~chapoutot/dynibex/
https://perso.ensta-paris.fr/~chapoutot/dynibex/
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-642-38088-4_8
https://doi.org/10.1007/978-3-642-38088-4_8
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

Cosimulation-Based Control Synthesis 333

12. Alexandre dit Sandretto, J., Chapoutot, A.: Validated simulation of differential
algebraic equations with Runge-Kutta methods. Reliable Comput. 22, 57 (2016)

13. Dzetkulič, T.: Rigorous integration of non-linear ordinary differential equations in
Chebyshev basis. Numer. Algorithms 69(1), 183–205 (2015). https://doi.org/10.
1007/s11075-014-9889-x

14. Gajda, K., Jankowska, M., Marciniak, A., Szyszka, B.: A survey of interval
Runge–Kutta and multistep methods for solving the initial value problem. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1361–1371. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68111-3 144

15. Girard, A.: Low-complexity switching controllers for safety using symbolic models.
IFAC Proc. Vol. 45(9), 82–87 (2012)

16. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
state of the art. arXiv preprint arXiv:1702.00686 (2017)

17. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. (CSUR) 51(3), 1–33 (2018)

18. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 3

19. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

20. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-
physical systems. In: 2011 7th International Wireless Communications and Mobile
Computing Conference, pp. 1666–1671. IEEE (2011)

21. Le Coënt, A., Alexandre dit Sandretto, J., Chapoutot, A.: Guaranteed cosimula-
tion of cyber-physical systems. hal-02505237 https://hal.archives-ouvertes.fr/hal-
02505237 (2020)

22. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-
ric odes. Appl. Numer. Math. 57(10), 1145–1162 (2007)

23. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value prob-
lems. In: Computer Arithmetic, pp. 255–286 (1987)

24. Makino, K., Berz, M.: Rigorous integration of flows and ODEs using Taylor models.
In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC
2009, pp. 79–84. ACM, New York (2009)

25. Moore, R.E.: Interval Analysis. Series in Automatic Computation. Prentice Hall,
Englewood Cliffs (1966)

26. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

27. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of
systems engineering: basic concepts, model-based techniques, and research direc-
tions. ACM Comput. Surv. (CSUR) 48(2), 1–41 (2015)

28. Schierz, T., Arnold, M., Clauß, C.: Co-simulation with communication step size
control in an FMI compatible master algorithm. In: Proceedings of the 9th Interna-
tional MODELICA Conference, Munich, Germany, 3–5 September 2012, no. 076,
pp. 205–214. Linköping University Electronic Press (2012)

https://doi.org/10.1007/s11075-014-9889-x
https://doi.org/10.1007/s11075-014-9889-x
https://doi.org/10.1007/978-3-540-68111-3_144
https://doi.org/10.1007/978-3-540-68111-3_144
http://arxiv.org/abs/1702.00686
https://doi.org/10.1007/978-3-662-46681-0_3
https://doi.org/10.1007/978-1-4471-0249-6
https://hal.archives-ouvertes.fr/hal-02505237
https://hal.archives-ouvertes.fr/hal-02505237

Author Index

Abbaspour Asadollah, Sara 67
Abou Faysal, Joelle 233
Ahmed, Bestoun S. 58
Aldini, Alessandro 214
Alexander, Samuel Allen 201
Alexandre dit Sandretto, Julien 318

Bergel, Alexandre 147
Bernardeschi, Cinzia 263
Boubaker, Houda 21
Boufaida, Mahmoud 21
Braüner, Torben 118
Bures, Miroslav 58

Cerone, Antonio 159
Chapoutot, Alexandre 318
Cignarale, Giorgio 176

Deantoni, Julien 280
Domenici, Andrea 263
Ducasse, Stéphane 147

Ghosh, Aishwarya 118
Ghosh, Sujata 118
Giacalone, Jean-Pierre 233
Giovagnoli, Raffaela 89
Golightly, David 249
Gomes, Cláudio 295
Graziani, Pierluigi 214

Hansen, Simon Thrane 295
Hotzel Escardo, Tomas 249

Kahle, Reinhard 192

Larsen, Peter Gorm 311
Le Coënt, Adrien 318
Liboni, Giovanni 280
Lounis, Karim 30

Macedo, Hugo Daniel 311
Maruyama, Yoshihiro 129

Medina-Bulo, Inmaculada 3
Moghadam, Mahshid Helali 67
Murzagaliyeva, Diana 159

Ouchani, Samir 30

Palacin, Roberto 249
Palmieri, Maurizio 263
Pierce, Ken 249
Pierro, G. Antonio 147
Primiero, Giuseppe 176
Provenzano, Luciana 67

Razeev, Danil 100
Reimer, Robert 108

Sahu, Sneha 3
Sanjari, Armine 311
Saponara, Sergio 263
Sassolas, Tanguy 263
Schorr, Ruth 3
Sirjani, Marjan 67
Soethout, Tim 43
Souilah Benabdelhafid, Maya 21
Sykora, Krystof 58

Tagliaferri, Mirko 214
Talasila, Prasad 311
Thule, Casper 295, 311
Tonelli, Roberto 147
Torres, Mario Henrique Cruz 233

van der Storm, Tijs 43
Villadsen, Kristoffer 311
Vinju, Jurgen J. 43

Wagner, Matthias 3
Wicaksana, Arief 263

Zaourar, Lilia 263

	Preface
	Contents
	ASYDE 2020
	Organization
	ASYDE 2020 – Workshop Chairs
	ASYDE 2020 – Programme Committee
	ASYDE 2020 – Steering Committee

	Model Translation from Papyrus-RT into the nuXmv Model Checker
	1 Introduction
	2 Case Studies
	3 Translation Approach
	3.1 UML-RT State-Diagrams to Finite-State-Machines
	3.2 Translation into SMV Model
	3.3 Model Restrictions

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Modeling and Verification of Temporal Constraints for Web Service Composition
	1 Introduction
	2 Motivation Scenario
	3 Temporal Constraints Modeling and Verification
	4 TCPN-Based Modeling
	5 CPN Tools-Based Monitoring
	6 Java Framework-Based Evaluation
	7 Conclusion
	References

	Modeling Attack-Defense Trees' Countermeasures Using Continuous Time Markov Chains
	1 Introduction
	2 ADTrees and CTMCs
	2.1 ADTrees
	2.2 Enumerated Continuous Time Markov Chains
	2.3 Countermeasures in ADTrees
	2.4 CTMC Model for Countermeasures
	2.5 Tokenized Continuous Time Markov Chain

	3 Tokenized-CTMC for Countermeasure Modeling
	4 Conclusion
	References

	Automated Validation of State-Based Client-Centric Isolation with TLA+
	1 Introduction
	2 Background: State-Based Client-Centric Consistency
	3 Formalizing CI in TLA+
	4 CI Examples
	5 Model Checking Algorithms Using CI
	5.1 Formalizing 2PL/2PC
	5.2 Model Checking 2PL/2PC
	5.3 2PL/2PC Bug Seeding

	6 Discussion and Future Work
	7 Conclusion
	References

	Code Coverage Aware Test Generation Using Constraint Solver
	1 Introduction
	2 Background
	3 The Proposed Method
	3.1 Determining Parameter Weight
	3.2 Test Case Generation

	4 Experimental Evaluation
	5 Conclusion
	References

	From Requirements to Verifiable Executable Models Using Rebeca
	1 Introduction
	2 The Door Controller Case Study
	3 Structured Requirements
	4 The Architecture
	5 The Mapping from Requirements to Behavioral Models
	5.1 The Mapping to Logical Properties

	6 The Behavioral Models
	6.1 Formal Verification

	7 Discussion and Future Work
	8 A Quick Overview of Related Work
	References

	CIFMA 2020
	Organization
	CIFMA 2020 – Workshop Chairs
	CIFMA 2020 – Programme Committee
	CIFMA 2020 – Additional Reviewers

	A Pragmatic Model of Justification for Social Epistemology
	1 Introduction
	2 Communitarian Epistemology
	3 The Role of Conditionals for Human Discursive Practices
	4 The Dimensions of Justification
	5 Conclusion
	References

	Personal Identity and False Memories
	1 Introduction
	2 Experimental Data
	3 Evaluation and Discussion
	4 Conclusion
	References

	Against the Illusory Will Hypothesis
	1 Introduction
	2 The Experience of Causal Relations
	3 The I Spy Experiment
	4 The Causal Experience in the I Spy Experiment
	References

	Understanding Responses of Individuals with ASD in Syllogistic and Decision-Making Tasks: A Formal Study
	1 Introduction
	2 The Syllogistic Task
	2.1 Computational Level Analysis (Syllogistic Task)
	2.2 Algorithmic Level Analysis (Syllogistic Task)

	3 The Decision Task
	3.1 Computational Level Analysis (Decision Task)
	3.2 Algorithmic Level Analysis (Decision Task)

	4 Discussion
	5 Future Work
	References

	Symbolic and Statistical Theories of Cognition: Towards Integrated Artificial Intelligence
	1 Introduction: MIT's AI Lab, Now and Then
	2 The Fundamental Tension Between Symbolic and Statistical Paradigms of Cognition
	2.1 Maxwell's Dualistic View of Nature
	2.2 The Chomsky Versus Norvig Debate on the Nature of Science and Cognition
	2.3 A Manifestation of the Fundamental Tension in Natural Language Semantics

	3 Towards Integrated Artificial Intelligence and Integrated Cognitive Science
	3.1 The Integrated Paradigm: A Classification of Integrated AI
	3.2 Five Features of Integrated AI: Making AI More Verifiable, Explainable, Accountable, Ethical, and Thus More Human

	4 Concluding Remarks: The Integrated Paradigm as a Transdisciplinary Trading Zone
	References

	An Interdisciplinary Model for Graphical Representation
	1 Introduction
	2 Data-Driven and Problem-Driven Models
	3 Research Questions and Hypotheses
	4 Case Studies Evaluation
	4.1 Descriptive Case Studies
	4.2 Prescriptive Case Studies

	5 An Interdisciplinary Model
	6 Conclusion and Future Works
	References

	Information Retrieval from Semantic Memory: BRDL-Based Knowledge Representation and Maude-Based Computer Emulation
	1 Introduction
	1.1 Real-Time Maude

	2 Natural Language Constructs: Facts and Questions
	2.1 Facts
	2.2 Questions
	2.3 Modelling Facts and Question in Real-Time Maude

	3 Human Memory Model
	3.1 Fact Representation in Semantic Memory
	3.2 Short-Term Memory (STM) Model
	3.3 Human Memory as a Maude Class

	4 Experimental Environment and Its Evolution
	4.1 Modelling Perceptions
	4.2 Planning Experiments
	4.3 Environment Evolution

	5 Tick Rewrite Rules for Information Retrieval
	6 Conclusion and Future Work
	References

	A Multi-Agent Depth Bounded Boolean Logic
	1 Introduction
	2 Multi-Agent DBBL
	3 Semantics
	4 Proof-Theory
	5 Meta-theory
	6 Conclusions and Future Work
	References

	The Intensional Structure of Epistemic Convictions
	1 Axiomatic Setup
	2 Avoiding Logical Omniscience
	3 Individual Structuring of Convictions
	4 The Question ``Why?''
	References

	Short-Circuiting the Definition of Mathematical Knowledge for an Artificial General Intelligence
	1 Introduction
	2 Idealized AGIs
	3 An Elegant Definition of Mathematical Knowledge
	3.1 Non-circularity of Definition 1
	3.2 Sentences Using the Knowledge Operator
	3.3 A Simpler Definition, and Why It Does Not Work

	4 Quantified Modal Logic
	5 Translating Knowledge Formulas
	6 Conclusion
	References

	Reasoning About Ignorance and Beliefs
	1 Introduction
	2 Logic for Ignorance and Beliefs
	2.1 Defining the Formal Framework

	3 Misbelieving, Being Agnostic or Doubting
	3.1 From Misbelieving to Ignoring
	3.2 From Being Agnostic to Ignoring
	3.3 From Doubting to Ignoring
	3.4 From Ignoring to the Three Effects

	4 Hierarchies of Ignorance
	5 The Birth of Second-Order Ignorance
	6 Conclusion and Future Works
	A Formal Proofs
	References

	CoSIM-CPS 2020
	Organization
	CoSim-CPS 2020 – Workshop Chairs
	CoSim-CPS 2020 – Programme Committee

	A Case Study on Formally Validating Motion Rules for Autonomous Cars
	1 Introduction
	1.1 Related Work

	2 Challenges in Implementing Safety Rules Around Car Motion Control
	3 IVEX Tools Suite and Approach to Model Safety Rules for Car Motion
	4 Case Study of a SAE Level 3, Low Speed Motion Control Safety Rules Set
	4.1 Notes Regarding Real-Time Performance

	5 Conclusion
	5.1 Next Steps

	References

	Modelling Train Driver Behaviour in Railway Co-simulations
	1 Introduction
	2 Background
	2.1 Co-simulation
	2.2 Human Behaviours

	3 Driver Behaviour Model
	3.1 Baseline vs. Defensive Driving
	3.2 Response Time
	3.3 Fatigue

	4 Railway Co-simulation
	5 Results
	6 Conclusions
	References

	Cross-level Co-simulation and Verification of an Automatic Transmission Control on Embedded Processor
	1 Introduction
	2 Related Work
	3 Background
	3.1 PVS, Emucharts, and PVSio-web
	3.2 INTO-CPS
	3.3 SESAM/VPSim Environment

	4 Cross-level Modelling, Co-simulation and Verification
	4.1 Development Process
	4.2 Emulation of Processors with VPSim

	5 Automatic Transmission Control Case Study
	5.1 High-Level Virtual Prototyping
	5.2 Co-simulation with VPSim
	5.3 Results and Discussion

	6 Conclusions
	References

	A Semantic-Aware, Accurate and Efficient API for (Co-)Simulation of CPS
	1 Introduction
	2 Problem Statement and Related Work
	3 Proposition
	4 Case Study
	5 Discussion
	6 Conclusion
	References

	An FMI-Based Initialization Plugin for INTO-CPS Maestro 2
	1 Introduction
	2 Background
	2.1 FMU Definitions
	2.2 INTO-CPS Maestro 2

	3 Calculation of an Initialization Order
	3.1 Method to Calculate the Initialization Order
	3.2 Optimization of a Initialization Procedure
	3.3 The Complete Initialization Strategy

	4 Case Study
	5 Realization of a Maestro 2 Plugin
	5.1 Realization of the Topological Sorting
	5.2 Verification of the Initialization Order

	6 Related Work
	7 Concluding Remarks
	References

	Introducing Regression Tests and Upgrades to the INTO-CPS Application
	1 Introduction
	2 Background
	3 Introducing Regression Tests
	4 Upgrading the Dependencies
	5 Concluding Remarks and Future Work
	References

	Cosimulation-Based Control Synthesis
	1 Introduction
	2 Control Synthesis of Switched Systems
	2.1 Switched Systems
	2.2 Controller Synthesis Algorithm

	3 Set-Based Cosimulation
	3.1 Interval Analysis
	3.2 Cosimulation of Reachable Sets
	3.3 Discussion on Meta-parameters

	4 Experiments
	4.1 Case Study
	4.2 Experimental Results
	4.3 Discussion

	5 Conclusion
	References

	Author Index

