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Abstract Social Network Analysis is the use of Network andGraph Theory to study
social phenomena, which was found to be highly relevant in areas like Criminology.
This chapter provides an overview of key methods and tools that may be used for
the analysis of criminal networks, which are presented in a real-world case study.
Starting from available juridical acts, we have extracted data on the interactions
among suspects within two Sicilian Mafia clans, obtaining two weighted undirected
graphs. Then,wehave investigated the roles of theseweights on the criminal networks
properties, focusing on two key features: weight distribution and shortest path length.
We also present an experiment that aims to construct an artificial network which
mirrors criminal behaviours. To this end, we have conducted a comparative degree
distribution analysis between the real criminal networks, using some of the most
popular artificial networkmodels:Watts-Strogats, Erdős-Rényi, andBarabási-Albert,
with some topology variations. This chapter will be a valuable tool for researchers
who wish to employ social network analysis within their own area of interest.
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1 Introduction

GraphTheory is awell establishedfield inmathematics.However, only recentlymany
of its theoretical results started to be used within Social Network Analysis (SNA),
an area with significant implications for real world scenarios. For example, one
can simulate the behaviour of social networks using strategies like link predictions
[1, 2], temporal networks, or spreading of influences [3, 4]. Other practical applica-
tions include to dealwith largeArtificialNeuralNetworks [5–7] or targeted advertise-
ments to people based on their friends’ interests [8] or, on the other side, containing
the spread of fake news [9].

Network Science tools may also be used in the investigation of criminal networks.
Sometimes the complex social interactions within a clan-based society may help the
feature selection process for building machine learning models [10]. Other times,
it is Network Science itself that helps conducting better performing investigation
from law enforcement agencies. To this end, criminal networks can be encoded as
graphs, and various types of analysis and simulations can be carried out formodelling
criminal behaviours.

This chapter is to intended as a short tutorial on how Network Science strate-
gies may be used to conduct an in-depth analysis on real criminal networks. Here,
the Sicilian Mafia scenario has been considered. Section 4 relates to our previous
analysis on this topic. In particular, Sect. 4.4 includes a comparative Degree Distri-
bution analysis between real criminal networks and artificial ones. Indeed, when it is
possible to find out a synthetic network reflecting the behaviour of real-world crimi-
nal networks, law enforcement agencies (LEAs) and network scientists can recreate
those networks and simulate how interconnections among criminal will evolve.

This chapter is structured as follows. Section 2 presents the key theoretical tools
(required for understanding the experiments conducted in Sect. 4), and it is divided
in two parts: (i) tools, where the basic definitions on network science are provided;
and (ii) popular artificial networks description (as the topologies used in Sect. 4.4).
Next, in Sect. 3 a brief review on the use of (i) Social Network Analysis, and its
implication in (ii) Criminal Networks is defined. Section 4 is a case study summa-
rizing our work on two real criminal networks related to Sicilian Mafia [11, 12].
This section includes four parts: (i) datasets description, based on the data extracted
from juridical acts; (ii) weights distribution analysis, which represents an important
preliminary study to understand how the interactions among suspected are structured
in terms of interaction frequency; (iii) shortest path analysis, which allows to identify
trusted affiliates inside the clan who can spread confidential and illegal messages;
(iv) comparative degree distribution analysis between real and synthetic networks, to
artificially recreate the criminal networks used here, with the purpose of conducting
further investigations through them. Finally, the conclusions follow in Sect. 5.
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2 Complex Networks

In this section we introduce the main Network Science concepts underpinning Social
Network Analysis, which are later exemplified in the criminal network case study
(Sect. 4). In particular, in Sect. 2.1 the main definitions required for understanding
the mechanics of SNA are provided. All theoretical concepts are derived from [13],
which we refer to the reader for further technical details.

2.1 Tools

In this section, we start with some basic definitions of Graph Theory.

Graph

Definition 1 A graph denoted by G = (N , E), consists of a set of nodes N and a set of
edges E ⊆ N × N (also called links L). It is a convenientwayof representing relationships
between pairs of objects.
As an example, Facebook® may be viewed as a graph, where the nodes represent users
and edges represent the friendship relationship among them. Is it also possible to define a
subgraph as follows:

Definition 2 A subgraph H of the graph G is a graph whose nodes and edges are subsets
of the nodes and edges of G.
Furthermore, graphs may be either weighted, or unweighted:

Definition 3 A weighted graph G = (N , E,W ) is a triplet consisting of a finite set of
nodes N , a set of edges E , and a set of weights W : E → R defined on each edge. If all
edges weights are equal to one, then the graph is called unweighted.

Degree

Definition 4 The degree of a node ni , denoted deg(i) or ki , is the number of incident
edges to ni . The sum of the degrees of all nodes is equal to the double of the number of
edges E : ∑

n ∈ N

kn = 2E . (1)

Definition 5 In weighted networks, the weighted degree (also known as strength [14, 15])
is the sum of the edges weights w incident on ni :

ki =
∑

(i, j)∈E
wi j , (2)

where the summation spans over all edges (i, j) in the network, linked to node ni .

Definition 6 For undirected networks, the average degree is defined as

〈k〉 = 1

N

N∑

i=1

ki = 2L

N
, (3)
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where N is the total number of nodes, ki is the degree of a generic node i , and L represents
the total number of links, or edges E , within the network.

Small-World
The SmallWorld phenomenon [16, 17] is based on the concept of the six degrees of
separations, according to which two random people in the world may be connected
each other via a few acquaintances (i.e., it is estimated that there are six people in the
middle between the source and the destination). In Network Science, it translates
into a “short” distance between two randomly chosen nodes within a network, that
is

〈d〉 ≈ ln N

ln 〈k〉 , (4)

where N is the total number of nodes in the graph, 〈k〉 is the network average degree,
and 〈d〉 the average distance within the network. The denominator implies that the
denser the network, the smaller the distance between the nodes is. In conclusion,
the average path length or the diameter depends logarithmically on the system size.

Degree Distribution
The degree distribution pk provides the probability that a randomly selected node in the
network has degree k. Since pk is a probability, it must be normalized; i.e.,

∞∑

i=1

pk = 1. (5)

For a network made of N nodes, the degree distribution is the normalized histogram given
by:

pk = Nk

N
, (6)

where Nk is the number of nodes having degree k.
The degree distribution has assumed a central role in network theory following the dis-
covery of scale-free networks (See “Scale-Free Property” paragraph); moreover, pk deter-
mines many network phenomena, from network robustness to the spread of viruses.
Weight Distribution
The degree distribution can be extended to weighted networks considering the weighted
degree (strength) distribution P(s), defined as the probability that a node may have
weighted degree (strength) equal to s. Based on [15], this is

P(s) ∼ s−γ , (7)

where γ is a constant typical of the network.
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Clustering Coefficient

Clustering is used to quantify the relationship among nodes’ neighbours. Indeed, the
degree only considers the number of direct links between nodes. The clustering coefficient
Ci measures the edge density in the immediate neighbourhood of a node. Ci ∈ [0, 1]
represents the clustering coefficient of a generic node ni :

{
if Ci = 0, there are no edges among the node’s neighbours

if Ci = 1, each node’s neighbour is connected with the others

The local clustering coefficient is computed as follow:

Ci = 2Li
ki (ki − 1)

, (8)

where ki is the degree of the generic node ni , and Li represents the number of links (i.e.,
edges) between the ki neighbours of ni .
Average Clustering Coefficient
The average 〈C〉 of Ci ∈ i = 1, . . . , N in the whole network is given by

〈C〉 = 1

N

N∑

i=1

Ci . (9)

Adjacency Matrix

A common way to represent relationships among nodes is the adjacency matrix A.

Definition 7 The Adjacency Matrix A[i, j] holds node degree (weighted or unweighted)
to the edge (ni , n j ) if it exists, where ni is the node with index i and n j is the node with
index j . If there is no such edge, then A[i, j] = None.
For undirected graphs A is symmetric (i.e., A[i, j] = A[ j, i] ∀ni , n j ∈ N ).

Path
Definition 8 A path is a sequence of alternating nodes and edges that flow from a starting
node to an ending one such that each edge is incident to its predecessor and successor
node. A path is called simple if each node in the path is distinct.
More formally, a path can be defined as a sequence of nodes

P = (n1, n2, . . . , nm) ∈ N × N × · · · × N ,

such that ni is adjacent to ni+1 for 1 ≤ i ≤ m − 1. Such a path P is called a path of length
m − 1 from n1 to nm .
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Measures based on paths strategies are the shortest path length analysis.

Distance
Definition 9 The distance from a node ni to a node n j in G, denoted d(ni , n j ) is the
length of a shortest path from ni to n j (if such a path exists).

di j = min (�(i, j)) ,

where �(i, j) is the set of paths connecting i and j .

Connectedness
Definition 10 A graph G is connected if, for any two nodes, there is a path between them.
Definition 11 If G is not connected, its maximal connected subgraphs are called the
connected components of G.
Definition 12 If a network consists of two components, a properly placed link can connect
them, making the network connected. Such a link is called bridge.

Scale-Free Property

Themajority of real networks, such as theWorldWideWeb, are called scale-free networks
and follow the definition:
Definition 13A scale-free network is a networkwhose degree distribution follows a power
law.
The power-law distribution has the following form

pk ∼ k−γ , (10)

where the exponent γ is its degree exponent.
Some artificial network models such as the Barabási-Albert (BA) Model successfully
exhibit this feature.

2.2 Artificial Networks

The need for scientists to create Artificial, or Synthetic Networks has been born from
the aim to reproduce real network properties in a controlled environment. For this
reason, several typologies of Artificial Networks have been formulated.

Three models in particular have found special popularity within the scientific
community: The Erdős-Rényi (ER, also known as Random Network) Model, the
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Watts-Strogats Model (WS; i.e., a Random Network variation), and the Barabási-
Albert (BA) Model. This last one tries to capture two important properties of real
network: the growth and the preferential attachment. Further details on those models
are provided in the following paragraphs.

Random Network Model
A random network consists of N nodes where each node pair (ni , n j ),∀i, j ∈ N is con-
nected with probability p. To construct a random network one needs to

1.Start with N isolated nodes,
2.Select a node pair (ni , n j ) and generate a random number rand ∈ [0, 1]:

{
ifrand > p, connect the selected node pair with a link

otherwise, leave them disconnected

3.Repeat the previous step for all pairs of distinct nodes (ni , n j ) ∈ N × N .

The network obtained after this procedure is called a random graph or a random network.
There are two definitions of a random network: the definition provided in the Erdős-Rényi
Model, and the one of the Gilbert Model.

Erdős-Rényi Model
Random networks are also called Erdős-Rényi Networks from the names of the
mathematicians Paul Erdős (1913–1996) andAlfréd Rényi (1921–1970), who stud-
ied the properties of these networks. Their model follow the structure

G(N , L), (11)

where N labeled nodes are connected with L randomly placed links (i.e., edges).
Paul Erdős and Alfréd Rényi used this definition in their paper [18].

Gilbert Model
It is a variation of the Erdős-Rényi Model. It has been defined by Edgar Nelson
Gilbert (1923–2013) and follows the structure

G(N , p), (12)

where each pair of N labeled nodes is connected with probability p.
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There are two main limits in Random Network Model that had to be overcome
over the years by the academic community:

1. The local clustering coefficient in ER model is given by [13]

Ci = 〈k〉
N

.

This behaviour of Ci is contradicted by the local clustering coefficient of real
networks.

2. The Poisson distribution that describes the degree distribution of ER networks
does not allow large differences between the worst- and best-connected nodes
in the network. This implies that hubs, frequently observed in real networks,
cannot be found in ER networks. BA model, relying on preferential attachment
and growth, successfully reproduces this fundamental feature.

In the following paragraphs those models are described.

Watts-Strogats Model

Twomain considerations motivated Duncan J. Watts (1971) and Steven Strogatz (1959) to
propose this model: (i) in real networks the average distance between two nodes depends
logarithmically on N (See “Small-World” average distance 〈d〉); (ii) the average clustering
coefficient 〈C〉 of real networks is much higher than expected for a random network of
similar N and L (i.e., E).
To construct a random network according to Watts-Strogats Model [19]:

1. Start froma ring of N nodes,whereas each node is connected to its immediate previous
and next neighbours; hence, each node has 〈C〉 = 3/4, initially.

2. With probability p ∈ [0, 1] each link is rewired to a randomly chosen node

⎧
⎪⎪⎨

⎪⎪⎩

if p � 0, regular lattice

if 0 < p < 1, Small-World property

if p = 1, Random Network Model (all links rewired).

TheWatts-Strogatzmodel interpolates between a regular lattice, which has high clustering
(but lacks the Small-World phenomenon), and a random network, which has low clustering
(but displays the Small-World property). Moreover, high nodes degrees are absent from
Watts-Strogatz model.

Barabási-Albert Model
This model was theorized by Albert-László Barabási (1967) and Réka Albert (1972) [20].
It simulates a Scale-Free Network rather than a Random one, by introducing two new
concepts to the model: network growth and the preferential attachment. The first concept
assumes that real networks continuously increase over time, so new nodes must be con-
sidered. The second point argues that random connections defined by a fixed probability
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do not reflect the behaviour of real networks; in fact, in real scenarios, nodes tend to link
to the more connected nodes.
Definition 14 The Preferential Attachment is the probability �(k) that a link of the new
node n j connects to node ni depends on the degree ki through the formula

�(ki ) = ki∑
j k j

. (13)

To construct an artificial network with the Barabási-Albert model, the steps are:

1. Start with a set of N0 nodes, the links between which are chosen arbitrarily, as long
as each node has at least one link.

2. Growth – At each timestep a new node n j with l links (with l ≤ l0) that connects
the new node to nodes already in the network is added.

3. The connections between the new node with the older nodes are defined by the
Preferential Attachment probability.

3 Social Network Analysis in Criminal Networks

In this section we provide an overview of state-of-the-art of Social Network Analysis
applied to Criminal Networks.We also consider the most relevant studies concerning
specifically the Sicilian Mafia criminal topologies.

3.1 Criminal Networks Analysis

Through SNA, LEAs are able to analyze criminal networks and investigate the rela-
tions among criminals. For this reason, nowadays there is a growing interest in the
application of Graph and Network Science onto criminal networks. For instance,
SNA has been used in [21] to build crime prevention systems. However, due to the
lack of data availability on those kind of networks, there are difficulties in finding
relevant quantitative studies. Such examples are those conducted by Szymanski [22]
and Berlusconi [23], on the problem of community detection and link prediction.

3.2 Sicilian Mafia Networks

Sicilian Mafia has a particular structure that differs from common criminal networks
(such as the terrorist nets), whereby it is a common practice for criminals to come
together to achieve a common goal and then fall apart. By contrast, in Sicilian Mafia
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this behaviour does not occur. Indeed, the affiliates are boundbyblind loyalty and they
still pursue further goals even after achieving a previous one. Moreover, Families last
for several generations. They also tend to diversify their objectives: from controlling
entire economic sectors (e.g., by giving “protection” to small traders and taking
control of larger factories), to influencing countries political life (e.g., by interfering
in the results of electoral competitions). Sicilian Mafia originated in Sicily, and has
now spread worldwide [24–26]. The blind loyalty of affiliates makes it even more
difficult to obtain reliable information about those criminal networks topologies:
important information about such criminal network is likely to be missing or hidden,
due to the covert and stealthy nature of criminal actions [27–30].

4 Case Study: The Sicilian Mafia

This section describes firstly the real criminal datasets we used for our tests, followed
by a brief summary on the strategies conducted jointly with the results obtained so far
as an example on Network Science strength, and how it can be used to significantly
help LEAs. In particular, the experiments relate to: (i) weight distribution, (ii) shortest
path length, and (iii) degree distribution.

4.1 Dataset Description

The case study example relates to two real-world datasets [31] we built from juridical
acts1 [12]: (i) theMeetings dataset represents the physical meetings among criminals
obtained through LEA evensdropping; (ii) the Phone Calls dataset refers to phone
calls between individuals obtained through LEA interceptions.

This particular investigation was a prominent operation conducted during the first
decade of the 2000s and focused on twoMafia clans known as the “Mistretta” family,
and the “Batanesi” clan [11, 12, 32].

Both datasets led to undirected and weighted graphs; thus, edge weights w are
available and represent the number of times any given pair had a meeting in the
Meetings dataset, and the number of times two individuals called each other inPhone
Calls dataset. In SNA, those coefficients are also known as the strength of the tie
binding two individuals [11]. In Fig. 1, the graphs obtained as well as the description
of what each element represents (i.e., nodes, colours, edges weight, nodes and edges
size, etc.) is shown. The main characteristics of the datasets are summarized in
Table1.

1Source code are available at https://github.com/lcucav/criminal-nets.

https://github.com/lcucav/criminal-nets
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(a)

(b)

Fig. 1 Dataset Description. The colours represent different clans: darker nodes are the “Mistretta”
family; in grey the “Batanesi” clan is drawn; white and light gray circled nodes and for two others
Mafia families not directly involved in the current investigation. All circled nodes represent the
bosses. Lastly, white nodes represent other subjects not classifiable in any of the previous categories.
Edges’ width depends on the number of meetings or phone calls, while the nodes size relates with
their degree. (Reproduced from Ficara et al. 2020)

4.2 Weight Distribution Analysis

Figure2 shows theweight distribution of theMeetings and thePhone Calls networks.
As already mentioned, the weights represent the amount of meetings and phone calls
exchanged between pairs of individuals in the networks, respectively.

It is noteworthy that in both these networks there are just a few high-weight edges;
i.e., nodes incident on those links exhibit an high number of interaction within the
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Table 1 Characteristics of Meetings and Phone Calls networks. (Reproduced from Ficara et al.
2020)

Parameter Meetings Phone calls

No. nodes 101 100

No. edges 256 124

Max. weight 10 8

Max. frequency 200 100

Avg. degree 5.07 2.48

Max. shortest path 7 14

Common nodes 47

network. In [11], we motivated this behaviour as a necessity from affiliates to focus
their efforts in trying to reduce the risk of being intercepted by external people
(i.e., LEA, and other people outside the clan). In theMeetings network, this trend is
even more accentuated; moreover, the maximum interactions weight (i.e., w = 10)
is greater than its counterpart in the Phone Calls network (i.e., w = 8).

Our explanation is that mobsters prefer to communicate by face-to-face meetings,
rather than calling each other, to reduce interception risks. Furthermore, bosses often
have to participate to public events to pursue their power inside a clan, including:
funerals of other affiliates, and other solemn religious demonstrations (masses, pro-
cessions, etc.). It is a well known practice that, during those kinds of events, bosses
pass messages to their closest subordinate affiliates.

4.3 Shortest Path Length Analysis

The shortest path length distribution in Fig. 3 is closely related to dynamic properties
such as velocity of messages spreading process within the network. Generally speak-
ing, the criminal organizations structure aims to optimize the interaction frequency
among members, while reducing as much as possible the interception risks. Thus,
trusted members may be discovered by following short interactions paths; indeed,
those affiliates may also be acting as a bridge (See Sect. 2.1“Connectedness”) to
connect distant groups in the network.

In [11] we noticed that both the weighted and the unweighted shortest path length
analyses show a higher interaction frequency among affiliates throughout a “bal-
anced” number of intermediates. This means that they do not like to spread their
encrypted messages with a too low (resp., high) number of intermediates. This is to
avoid, from one side, to overexpose their bosses to police investigations. From the
other side, the longer the sequence of intermediates, the higher the chances to be
intercepted by people outside the Family.
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(a) (b)

Fig. 2 Weight distribution in theMeetings dataset (a), and the Phone Calls dataset (b). (Repro-
duced from Ficara et al. 2020)

Even through this analysis, as it was for the weights distribution, it emerged that
the clan tries to minimize the risk of interceptions, especially to avoid exposing those
mobsters who are hierarchically in a higher rank.

4.4 Degree Distribution Analysis

The Degree Distribution Analysis has been conducted in order to discover an appro-
priate artificial network that would virtually mirror the real-world criminal graphs
topology under scrutiny. We previously analysed the weight distribution, but due to
lack of libraries available for weighted graphs analysis,2 we opted for a preliminary
analysis on nodes degree distribution. To this end, in Fig. 4 we compared our real
criminal networks against five artificial models: (i) the Random Network by Gilbert
(G-ER), (ii) Watts-Strogatz (WS), (iii) its variant accordingly with Newmann [33]
(N-WS), and (iv) two different configurations of the Barabási-Albert (BA) model in
terms of links added at each step; BA2 with m = 2, and BA3 with m = 3. Tables2
and 3 summarize the number of edges and average degree obtained with the config-
urations above described in Phone Calls and Meetings graphs, respectively.

2https://networkx.github.io/documentation/networkx-1.9/reference/generators.html.

https://networkx.github.io/documentation/networkx-1.9/reference/generators.html
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Fig. 3 Distribution of
shortest path lengths in
Meetings and Phone
Calls networks in
Unweighted (a) and
Weighted (b) graphs.
(Reproduced from Ficara et
al. 2020)

(a) Unweighted graph.

(b) Weighted graph.

Note that all the results herein shown represent the average results obtained after
100 runs per each synthetic network.

We initially compared the real networks with the Erdős-Rényi (ER) topology, but
this model did not allow to customize the number of links. Then, we opted for the
Gilbert one, whereby both number of nodes n and links m are defined a priori.

In theWSmodel,we setn, k = 2m
n (that represents the number of nearest neighbors

links per node), and the rewiring probability p = 0.5, with p ∈ [0, 1]. As previously
asserted in Sect. 2.2, if p = 1, we turn into a Random Network. The main difference
betweenWS andN-WSmodels is that inWS, number p is the probability of rewiring
each edge; whereas in N-WS, p = 0.25 is the probability of adding a new edge for
each edge. Indeed, if p = 1, then number of edges is doubled.

The actual graphs degree distributions act very differently from one another. In
particular, the fluctuations in Meetings are justified by the fact that face-to-face
encounters have been observed not only between couple of suspects, but also among
groups of more than two people at the same time. On the other hand, phone calls have
only been considered between individual suspects. The analysis suggests that through



Graph and Network Theory for the Analysis of Criminal Networks 153

Fig. 4 Degree Distribution
in the Meetings dataset (a),
and the Phone Calls
datasets (b). Circles give the
actual datasets values. G-ER
is the Random Network
proposed by Gilbert. WS is
the Watts-Strogatz network.
N-WS is the Newmann
variation of WS. BA2 and
BA3 are the Barabási-Albert
models with m = 2 and
m = 3, respectively

(a)

(b)

Table 2 Characteristics of artificial models in the Phone Calls network

Model No. edges Avg. degree

G-ER 124 2.48

WS 100 2.00

N-WS 123 2.46

BA2 196 3.92

BA3 291 5.82
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Table 3 Characteristics of artificial models in theMeetings network

Model No. edges Avg. degree

G-ER 256 5.07

WS 202 4.00

N-WS 250 4.95

BA2 198 3.92

BA3 294 5.82

degree distribution it was not possible to identify an appropriate artificial network
that best fits the network characteristics of the two real-world datasets considered.
This is mainly due to the size of the networks. In fact, artificial networks seem to
work better with lager sizes; thus, are quite unstable in the first step of their creation.
For example, the emergence of hubs in BA models cannot be highlighted because of
the small size of the overall network obtained.

5 Conclusions

This chapter aims to showcase the applicability of Graph Theory in Criminology,
during a time when the use of SNA by LEAs is growing substantially. The case study
herein reported as an example, explores different approaches on criminal networks
analysis by means of network science tools.

In our study we have first created a graph from data extracted from juridical acts;
then, we started a twofold preliminary investigation: a weight distribution analysis,
and in parallel, a shortest path length analysis. These have been conduced to identify
the extent by which weighted graphs are useful in those small networks.

Thus, we conducted a comparative degree distribution analysis between our real-
world networks and some models generated by popular artificial networks. The aim
was to identify the appropriate synthetic network which could simulate criminal
networks artificially, but in an effective manner. The strength of this idea is that we
may also be able to understand the patterns followed by criminals to create their
internal interconnections among affiliates. Our study has found that the network
size is a limitation. Indeed, there are significant fluctuations and through degree
distribution comparative analysis it was not possible to find an appropriate artificial
network that accurately mirrors the two real criminal networks used in our tests.

To overcome this issue, in future studies we will investigate adjacency matrix
structures for both real and synthetic networks to get insights into network topologies.
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