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Abstract The Radial Point Interpolation Mixed Collocation (RPIMC) method is
developed for the solution of the reaction-diffusion equation in cardiac electro-
physiology simulations. RPIMC is an efficient and purely meshfree technique
which is expected to be a valuable alternative to the Finite Element Method
(FEM) for cardiac electrophysiology applications where models with large number
of degrees of freedom and high geometric complexity are common. We propose
applying the operator splitting technique to solve the decoupled reaction-diffusion
equation. In this way, the reaction (cardiac cell dynamics) and diffusion (action
potential propagation) terms are solved independently. We evaluate the RPIMC in a
simulation of the cardiac action potential (AP) propagation in a two-dimensional
square tissue composed of human ventricular epicardium cells. The state-of-art
O’Hara Rudy cell dynamics model is used to solve the reaction term while the
diffusion term is solved using the standard forward Euler method. The simulation of
the AP propagation using the RPIMC method is compared against a FEM simu-
lation using isoparametric bilinear elements. Comparable results between RPIMC
and FEM are obtained for both normal AP propagation and spiral wave generation
conditions (expected in arrhythmic events). The convergence of the RPIMC solu-
tion to the FEM solution is evaluated for varying nodal spacing and varying
dilatation coefficient during support domain nodes identification.
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1 Introduction

The action potential propagation in the human heart (cardiac electrophysiologic
function) is a complex multiscale phenomenon [1] that can be described mathe-
matically by the reaction-diffusion Eq. (1a) and the boundary condition Eq. (1b).

@V=@t ¼ �Iion=Cþr � DrVð Þ in X; ð1aÞ

n � DrVð Þ ¼ 0 in @X; ð1bÞ

where X and @X are the domain of interest and its boundary, n is the outward
unit vector to the boundary, V is the action potential (AP), Iion is the sum of the
cardiac cell ionic currents, C is the cell capacitance, and D is the diffusivity tensor
of the cardiac tissue given by:

D ¼ d0 1� qð Þf � f þ qI½ �; ð2Þ

where d0 expresses the conductivity coefficient, q� 1 is the transversal to lon-
gitudinal conductivity ratio, f is the fiber direction vector, I is the identity matrix,
and � denotes the tensor product operation. The diffusive term r � DrVð Þ
describes the propagation of the cellular AP in the tissue, while the reactive term
�Iion=C describes the cellular AP dynamics. Due to the high complexity of the
cardiac cell structure, realistic AP models employ a large number of “stiff” ordinary
differential equations (ODE) to model accurately the cardiac gate variables and the
produced ionic currents [2]. The reaction term “stiffness” requires a time integration
step with sufficiently small size to ensure the stability and accuracy of the numerical
solution of Eq. (1). To allow for larger time step size without reducing the
numerical stability and accuracy, the solution can be decoupled using the operator
splitting technique [3]. The two terms of the reaction-diffusion equation are
decoupled and solved sequentially. A larger time integration step can be used then
for the integration of the diffusion term while the reaction term can be integrated
adaptively using a smaller step. State-of-art numerical solvers in cardiac electro-
physiology employ the operator splitting approach and use the Finite Element
Method (FEM) to derive the numerical solution. However, due to the complexity of
the human heart geometry, meshfree methods that alleviate the mesh requirement
are of great interest. In this work, we propose the Radial Point Interpolation Mixed
Collocation [4] for the simulation of AP propagation in cardiac electrophysiology.

2 Methodology

The Radial Point Interpolation Mixed Collocation (RPIMC) method is a purely
meshfree method based on the Meshless Local Petrov Galerkin (MLPG) method
[5, 6], where the Radial Point Interpolation (RPI) is used to construct trial functions
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and the Dirac delta function is used to construct test functions. Using RPIMC, the
weak form of Eq. (1) is evaluated directly on the discretization nodes of the domain
of interest and is given in Eq. (3). The use of the Dirac delta function to construct
test functions results to reducing the spatial integration of the weak form to nodal
summation over the support domain nodes.

Xn
i¼1

/i xIð Þ@Vi=@t ¼ �Iion=Cþ
Xn
i¼1

r � DrT/i xIð ÞVi; ð3Þ

where n is the number of support domain nodes of the Ith discretization node and
/iðxIÞ is the RPI basis function given by:

/T ¼ rITpI
T

� �
GI

�1; ð4Þ

where rI is a radial basis function (RBF) and pI is the polynomial basis, both
evaluated at the Ith discretization node. GI is composed by the RBF and polynomial
basis moment matrices, RI and PI respectively:

GI ¼ RIPI

PI
T0

� �
: ð5Þ

In this work, we use the linear polynomial basis pI ¼ 1; xI ; yIf g and the poly-
harmonic RBF (rI ¼ r5Ii; i ¼ 1. . .nÞ proposed in [7], with rIi being the radial dis-
tance between the Ith discretization node and its ith support domain node. Explicit
time integration is performed using the forward Euler method and applying the
operator splitting technique to decouple the solution of Eq. (3). Applying operator
splitting, the solution of Eq. (3) at a time step k is obtained by:

(i) Solving @Vk0
I =@t ¼ �Iion Vk�1

I

� �
=C, and then

(ii) Solving
Pn
i¼1

/i xIð Þ@Vk
I =@t ¼

Pn
i¼1

r � DrT/i xIð ÞVk0
I .

In the following numerical examples, we consider a tissue composition of human
cardiac ventricular epicardium. The O’Hara Rudy model [2] is used to simulate the
cell dynamics in step (i) of the decoupled RPIMC solution.

3 Numerical Examples

In the first example, we consider a 5 cm � 5 cm square tissue with human cardiac
ventricular epicardium composition. The direction of the cardiac fibers is consid-
ered perpendicular to the X-axis (f ¼ 10½ �T ). We use conductivity coefficient d0 ¼
0:0013 mS/cm and transversal to longitudinal conductivity ratio q ¼ 1=4.
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A periodic stimulus with period tT ¼ 1 s, duration td ¼ 2 ms, and amplitude (A) of
twice diastolic threshold is applied on the left side of the tissue (x ¼ 0 cm). The AP
propagation is simulated for time (ts ¼ 3 s). We validate the solution of the RPIMC
method comparing it with a FEM solution using bilinear isoparametric elements.
Regular nodal discretizations and quadrilateral meshes with nodal spacing h ¼
0:2; 0:1; 0:05; 0:025f g cm are considered. The support domain size sd ¼ a � h, with

a ¼ 2:8, is used for the support domain construction in RPIMC. A comparison of
the generated AP by RPIMC and FEM in the time interval t ¼ 0; 3½ � s for all the
nodal discretizations is given in Fig. 1.

To further evaluate the quality of the simulated AP we measure the AP duration
(APD) metric for 90%, 50%, and 20% repolarization. The APD90 metric denotes
the time between the maximum value of the potential´s time derivative (dV/dt)max

and the time of 90% repolarization from peak amplitude. The APD50 and APD20

metrics are defined similarly. The highest value of the percentage error of the
RPIMC APD compared to the FEM APD is found 0.45%, 2.25%, and 2.27% for
the APD90, APD50, APD20 and nodal spacing h ¼ 0:2 cm. The percentage errors
are reduced monotonically for reducing nodal spacing and are equal to zero for
nodal spacing h ¼ 0:025 cm. We further investigate the effect of the dilatation
coefficient a by computing the Normalized Root Mean Square (NRMS) error
between the RPIMC solution at t ¼ 2:2 s for a nodal discretization with h ¼
0:04 cm and varying dilatation coefficient a ¼ 1:2; 1:6; 2:0; 2:4; 2:8f g with a FEM
solution. The NRMS error is computed using the formula:

NRMS ¼
P

xi2X uRPIMC xið Þ � uFEM xið Þð Þ2
� 	1=2

max uFEM xið Þj j � min uFEM xið Þj j ; ð6Þ

Fig. 1 Comparison of action potential (AP) for time interval t ¼ 0; 3½ � s for nodal spacing
(a) h ¼ 0:2 cm, (b) h ¼ 0:1 cm, (c) h ¼ 0:05 cm, (d) h ¼ 0:025 cm
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Where xi is the vector denoting the spatial coordinates of the ith node in the
discretization of the domain X, uRPIMC xið Þ is the RPIMC solution at xi, and uFEM is
the FEM solution at xi. The NRMS error convergence plot with respect to a is given
in Fig. 2.

In the next example, a S1-S2 cross stimulation protocol [8] is simulated to
investigate the ability of RPIMC to generate and maintain spiral wave effects that
are usually observed in cardiac arrhythmic events. The same tissue geometry and
parameters as in the previous example are used with nodal spacing h ¼ 0:025 cm.
An initial stimulus (S1) is applied at the left edge of the tissue (x ¼ 0 cm) at
t ¼ 50 ms. A second stimulus (S2) is applied at a square region located at the left
bottom corner of the tissue with width 1:25 cm and height 2:50 cm at t ¼ 290 ms.
A spiral wave is generated due to the interaction of the S2 wave front with the S1
wave tail. The spiral wave is considered maintainable if at least 2 spirals are
generated during the simulation time ts ¼ 1 s. The spiral wave simulation using
RPIMC and FEM at different time intervals is plotted in Fig. 3. Maintainable spiral

Fig. 3 Spiral wave propagation at different instants in the time interval t ¼ 0; 1½ � s for the S1-S2
cross stimulation protocol

Fig. 2 Normalized Root
Mean Square (NRMS) error
convergence for varying
dilatation coefficient a ¼
1:2; 1:6; 2:0; 2:4; 2:8f g and

nodal spacing h ¼ 0:04 cm
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waves are generated both in RPIMC and FEM with high similarity. The degradation
of the similarity between the RPIMC and FEM spiral waves with time may be
associated with the slightly slower conduction velocity of the AP in the FEM
simulation compared to RPIMC.
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