
Generalized Finite Difference Method
for Solving Viscoelastic Problems

Jian Li and Tao Zhang

Abstract In this paper, the generalized finite difference method (GFDM) combined
with the implicit Euler method is developed to solve the viscoelastic problem. The
mathematical description of the viscoelastic problem is a time-dependent boundary
value problem, governed by a second-order partial differential equation and
non-linear boundary conditions. To solve the time-dependent differential governing
equation and boundary conditions of viscoelasticity, the implicit Euler method and
GFDM are employed for the temporal discretization and the spatial discretization
respectively. GFDM is a newly developed meshless method, which avoids
time-consuming mesh generation and numerical integration. The basic idea of the
GFDM originates from the moving least squares method to transform the spatial
derivatives at each node into linear summation of nearby node function values with
different weighting coefficients. Two numerical examples are presented to illustrate
the accuracy, stability and efficiency of GFDM, including the creep and stress
relaxation of viscoelastic materials with single connected domains and double
connected domains.
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1 Introduction

Viscoelastic problems are very common in engineering, such as the creep of clay or
rock, which can be regarded as a class of time-dependent boundary value problems.
For the simple viscoelastic problem, the analytic solutions can be obtained. But for
the complex engineering problems, numerical methods are inevitably required.

Finite element method (FEM) [1, 2] and boundary element method (BEM) [3, 4]
were initially used to solve the viscoelastic problem, while the element would be
distorted in the process of calculation and this reduced the accuracy and led to the
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failure of calculation. The meshless method which was based only on node
information could partially or completely avoid element constraints. So it was
widely used to solve the viscoelastic problems [5–8].

The GFDM, which preserves the accuracy and simplicity of the traditional finite
difference method and avoids the time-consuming meshing generation and
numerical integration, is a developable meshless method proposed by Benito et al.
[9] in 2001. GFDM is based on the moving-least squares method to transform the
partial derivative at each node into the linear summation of the nearby node
function values with different weight function. Each internal node and boundary
node is forced to respectively satisfy the governing equation and boundary con-
ditions. Then the partial differential equations will be transformed into linear
algebraic equations that can be written as sparse matrix and solved easily.
The GFDM preserves the physical conservation of the original equation (including
the conservation of mass, momentum, energy, etc.) and other important charac-
teristics in the subdomain. It is an important discrete method for solving the partial
differential equations. Moreover, GFDM can be used to accurately and efficiently
solve various problems, such as dynamic propagation of crack, impact and colli-
sion, large deformation and complex high-dimensional geometric problems and so
on.

In this paper, the GFDM is extended for the first time to solve the viscoelastic
problem. The outline of this paper is as follows: In Sect. 2, The temporal and
special discretization of governing equation and boundary condition by implicit
Euler method and GFDM is introduced. In Sect. 3, Two examples are presented to
illustrate the stability, accuracy and efficiency of the proposed method. In Sect. 4, a
brief summary of this paper is provided.

2 The Generalized Finite Difference Method
for Viscoelastic Problem

2.1 Basic Equation of Viscoelastic Problem

The three-parameter viscoelastic model is used to descript the viscoelasticity
behavior. The constitutive equations of this model are

eðtÞ ¼ 1
E2

GrðtÞ; t ¼ 0 ð1Þ

q0eðtÞ þ q1
deðtÞ
dt

¼ G rðtÞþ p1
drðtÞ
dt

� �
; t[ 0 ð2Þ

where
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p1 ¼
g

1

E1 þE2
; q0 ¼ E1E2

E1 þE2
; q1 ¼ E2g1

E1 þE2
; ð3Þ

G ¼
G11 G12 0
G12 G22 0
0 0 G33

0
@

1
A: ð4Þ

For the plane stress problem,

G11 ¼ G22 ¼ 1;G33 ¼ 2 1þ vð Þ;G12 ¼ �v; ð5Þ

where m is Poisson’s ratio.
The strain–displacement relationship can be written as

eij ¼ ui;j þ uj;i
� �

=2: ð6Þ

The equilibrium equation of viscoelasticity is

rij;j þ bi ¼ 0; ð7Þ

and the boundary conditions are specified by:

u ¼ ~u onCu; ð8Þ

p ¼ ~p onCt; ð9Þ

where r and e are the stress and strain respectively; b is the body force; u is the
displacement; p is the traction; u  and p  are the prescribed values of u and p on the
boundary.

2.2 Generalized Finite Difference Method for Viscoelastic
Problem

After the time term of the governing equation and boundary conditions are dis-
cretized by implicit Euler method, The GFDM is used to discretize the space terms
of governing equations and boundary conditions. At the beginning, the interesting
domain is discretized into regularly or randomly distributed boundary nodes and
internal nodes. A node xi is selected as the center node, the m nodes xj (j = 1, 2, …,
m) around the xi will be searched according to the principle of nearest distance, the
node xi and m nearest nodes are used to form a star, which is shown in Fig. 1.
Assume the ui is the displacement at point xi and uj is the displacement at point xj.
Using the Taylor series expansion, we can expand the uj as:
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uj ¼ ui þ hj;i
@ui
@x

þ kj;i
@ui
@y

þ 1
2
h2j;i

@2ui
@x2

þ 1
2
k2j;i

@2ui
@y2

þ hj;ikj;i
@2ui
@x@y

þ � � � � � � ; ð10Þ

where hj;i ¼ xj � xi; kj;i ¼ yj � yi are the distances between xi and xj in x and y di-
rections respectively. The accurate of uj will be higher if the order of Taylor series
increase. Here, the Eq. (10) is truncated after the second-order derivatives.
A residual function is defined as:

B uð Þ ¼
Xm
j¼1

ui � uj þ hj;i
@ui
@x þ kj;i

@ui
@y þ 1

2 h
2
j;i

@2ui
@x2

þ 1
2 k

2
j;i

@2ui
@y2 þ hj;ikj;i

@2ui
@x@y

 !
w hj;i; kj;i
� �" #2

; ð11Þ

where w hj;i; kj;i
� �

is the weighting function at xi. There are many choices for
w hj;i; kj;i
� �

, such as potential function, exponential function, cubic spline, quartic
spline, etc. The quartic spline is chosen as the weighting function in this study:

wðdijÞ ¼ 1� 6 dij
dmi

� �2
þ 8 dij

dmi

� �3
�3 dij

dmi

� �4
; dij � dmi

0; dij [ dmi

(
; ð12Þ

where dij denotes the distance between nodes xi and xj, dmi denotes the distance
between the farthest node and the center node in the star.

By minimizing the above function B(u) with respect to Du ¼ @ui
@x ;

@ui
@y ;

@2ui
@x2 ;

n
@2ui
@y2 ;

@2ui
@x@ygT , a linear equation system is obtained by:

ADu ¼ b; ð13Þ

Fig. 1 The circular shape of
the star
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The vector b in Eq. (13) can be reformulated as the following form

b ¼ BQ; ð14Þ

where Q ¼ ui ui1 ui2 � � � uim
� 	T

are the displacement of the total nodes inside
the star. Therefore, Du can be written as:

Du ¼

@ui
@x
@ui
@y
@2ui
@x2
@2ui
@y2

@2ui
@x@y

2
6666664

3
7777775
¼ A�1b ¼ A�1BQ ¼ DQ ¼ D

ui
ui1
ui2
� � �
uim

2
66664

3
77775: ð15Þ

From the Eq. (15), we can obtain the partial derivatives of ui at xi by a linear
combination of uj at its supporting nodes xj. The partial derivatives can be written as
follows:

@u
@x






i

¼ wxi0ui þ
Xm
j¼1

wxiju
i
j; ð16Þ

@u
@y






i
¼ wyi0ui þ

Xm
j¼1

wyiju
i
j; ð17Þ

@2u
@x2






i
¼ wxxi0ui þ

Xm
j¼1

wxxiju
i
j; ð18Þ

@2u
@y2






i
¼ wyyi0ui þ

Xm
j¼1

wyyiju
i
j; ð19Þ

@2u
@x@y






i

¼ wxyi0ui þ
Xm
j¼1

wxyiju
i
j; ð20Þ

where wxij
n om

j¼ 0
; wyij
n om

j¼ 0
; wxxij
n om

j¼ 0
; wyyij
n om

j¼ 0
; wxyij
n om

j¼ 0
are weight coef-

ficients of the center node xi.
The implementing procedure at each node inside the computational domain can

be carried out as described above. And the derivatives at each node will be replaced
with the linear combination of the approximate nodal values. Each interior node is
forced to satisfy the governing equation and each boundary node is forced to satisfy
the boundary condition. The partial differential equations will be transformed into
linear (or nonlinear) algebraic equations.
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3 Numerical Examples

3.1 Example 1: Creep Analysis of a Rectangular Plate

The first example is a rectangular viscoelastic plate subjected to a uniform traction
loading P ¼ 1N

�
m2 at the right end x ¼ L. The left and lower ends are fixed in the

x-direction and y-direction respectively and the other boundary is free, as shown in
Fig. 2. The material parameters are E1 ¼ 1000 N

�
m2,E2 ¼ 2000N

�
m2,

g ¼ 1000N
�
m2, and v ¼ 0:3. The length of the plate is L ¼ 2m and the width is

w ¼ 1m. The analytical solutions of displacements are given as follows:

ux ¼ Pxð 1
E2

þ 1
E1

ð1� e�
g1
E1
tÞÞ; ð21Þ

uy ¼ �vPyð 1
E2

þ 1
E1

ð1� e�
g1
E1
tÞÞ: ð22Þ

In this example, 60 boundary nodes and 171 internal nodes are used, see Fig. 3.
In Fig. 4 and Fig. 5, The numerical results for the variation of displacement from
t = 0 s to t = 10 s at nodes A (2, 0.5) and B (1, 1) obtained by the present method
are compared with analytical results. We can observe a very good agreement of
both results.

Fig. 2 The geometry for example 1
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3.2 Example 2: Relaxation Analysis of a Square Plate
with a Circular Hole

The second example is a square plate with a circular hole at the center subjected to a
uniform displacement u0 ¼ 5� 10�4 m, as shown in Fig. 6. The side length is
W ¼ 20m, and the radius of circular hole is R ¼ 5m. The material parameters are
given as:E1 ¼ 1000N/m2;E2 ¼ 2000N/m2; g1 ¼ 1000N/m2, and v ¼ 0:3.

Due to the symmetry of the model, only one quarter of the plate is considered as
shown in Fig. 7. The total number of nodes is 813 as shown in Fig. 8. As there is no
analytical solution, a convergent ABAQUS viscoelastic solution with 98,102 ele-
ment nodes is used as reference. In the ABAQUS model, only quadrilateral element
is used.

Fig. 3 The nodes distribution
for example 1

Fig. 4 The variation of displacement at point A (2, 0.5) from t = 0 s to t = 10 s
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Since there is stress concentration in the circular hole of the plate, it is difficult to
obtain the accurate results of stress in the circular hole. The fourth-order Taylor
series is used to obtain the accurate numerical results in the numerical procedures of

Fig. 5 The variation of displacement at point B (1, 1) from t = 0 s to t = 10 s

Fig. 6 Geometry model for example 2
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GFDM. In Fig. 9, Fig. 10 and Fig. 11, the variation of stress from t = 0 s to t = 2 s
at nodes A (0, 5), B (10, 10) and C (5, 0) obtained by the present method are
compared with the reference results. We can observe that the results obtained using
GFDM are in good agreement with the ABAQUS solution.

Fig. 7 Simplified model for
example 2

Fig. 8 The nodes distribution
for example 2
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Fig. 9 The variation of stress at points A (0, 5) from t = 0 s to t = 2 s

Fig. 10 The variation of stress at points B (10, 10) from t = 0 s to t = 2 s
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4 Conclusions

In this paper, the GFDM and the implicit Euler method are adopted to discretized
spatial and temporal domain of viscoelastic problem respectively. As the vis-
coelastic material are often accompanied by continuous shape deformation, the
meshless method is a better choice. GFDM is a newly-developed domain-type
meshless method, which really avoids time-consuming mesh generation and
numerical integration. So it has a simple form and high calculation efficiency. Two
examples are proposed to prove the simplicity and efficiency of the proposed
method for viscoelastic problems.
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