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Abstract As a multi-objective combinatorial optimization problem, multi-agile
satellite scheduling of earth observation, which with long observation time and
multiple observation windows under complex constraints, has been a hotspot
research problem in recent years. As a scarce resource, improving the in-orbit
utilization of satellites and optimizing the imaging observation plan have been the
goals of many researchers. For small scale task scheduling, the optimal solution is
obtained by precise algorithm. However, for the large-scale task scheduling, it is
difficult to find the exact solution, and the precise algorithm no longer has the
advantage. Intelligent algorithms have been widely studied to obtain approximate
optimal solutions. Genetic algorithm and immune algorithm are the most widely
used intelligent algorithm. But the immune algorithm follows the evolutionary
mode of the genetic algorithm, when confronted with large-scale task scheduling,
the evolution operations such as crossover and mutation tend to make the solution
fall into local optimization easily, and the randomness of these two operations make
the scheduling time increases. Therefore, the traditional evolutionary approaches
not only resulted in a waste of resources but also extended the evolutionary gen-
erations. In this paper we developed an improved immune algorithm, which the
evolutionary idea of probability distribution instead. The specific evolution process
are as follows. First, discretized the observation time of the all tasks, then coded all
observation periods of tasks as antibody genes. Secondly, assigned an average
probability value to the different observation periods of tasks, so the initial joint
probability density matrix was constructed. Finally, updates the joint probability

L. Ren (&) � X. Ning � S. C. Ma � J. P. Yuan
National Key Laboratory of Aerospace Flight Dynamics,
Northwestern Polytechnical University, Xi’an, China
e-mail: liliren@mail.nwpu.edu.cn

X. Ning
e-mail: ningxin@nwpu.edu.cn

S. C. Ma
e-mail: shichaoma@nwpu.edu.cn

J. P. Yuan
e-mail: jyuan@nwpu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. N. Atluri and I. Vušanović (eds.), Computational and Experimental Simulations
in Engineering, Mechanisms and Machine Science 98,
https://doi.org/10.1007/978-3-030-67090-0_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67090-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67090-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67090-0_3&amp;domain=pdf
mailto:liliren@mail.nwpu.edu.cn
mailto:ningxin@nwpu.edu.cn
mailto:shichaoma@nwpu.edu.cn
mailto:jyuan@nwpu.edu.cn
https://doi.org/10.1007/978-3-030-67090-0_3


density matrix until convergence according to the fitness value of antibodies, then
the optimal scheduling solution was obtained. The simulation results show that
compared with the genetic algorithm, both scheduling time and scheduling effi-
ciency have a significant improvement.

Keywords Probability distribution � Immune algorithm � Multi-satellite

1 Introduction

As the key research object of the new generation of earth observation satellite,
Agile earth observation satellite (AEOS) is of great economic and military value
and has become an important way to obtain information in many fields, such as
agriculture and forestry planning, disaster monitoring, resource exploration and
military reconnaissance. For the excess mission observation requirements and the
relatively scarce satellite resources, making a reasonable scheduling plan is helpful
to improve the utilization rate of satellites and meet the needs of users to the
maximum extent.

With the development of Agile satellites in recent years, many scholars have
studied the scheduling problem of AEOS. M. Lemaitre defined the agile satellite
scheduling problem for the first time and simplify the scheduling problem, then
solved the problem by local search algorithm, constraint programming algorithm,
dynamic programming algorithm and greedy algorithm [1]. According to different
observation requirements and task scale, the study can be divided into single AEOS
scheduling and multiple AEOS scheduling. Such as E. J. Kuipers, X. Wang and X.
Liu respectively solved the single satellite scheduling problem by using simulated
annealing algorithm, fast approximate scheduling algorithm and adaptive large
neighborhood search algorithm [2–4]. And the agile satellite constellation
scheduling problem has been studied based on priority heuristic algorithm and ant
colony optimization meta-heuristic algorithm by P. Wang and E.V. Ntagiou [5, 6].
At the level of scheduling algorithm, the research has undergone many evolutions.
R. Xu solved the satellite scheduling problem by using the priority-based sequential
construction algorithm [7]. N. Bianchessi proposed a deterministic construction
algorithm with forward-looking and retrospective features [8]. In addition, many
hybrid algorithms have been studied, such as enumeration search algorithm hybrid
the tabu search algorithm [9], and forward construction algorithm hybrid three
pruning strategies [10]. Other works related to the hybrid algorithms also solved the
AEOS scheduling problems [11–13]. Furthermore, there were some studies on
intelligent algorithms, such as different improvements of genetic algorithms to solve
satellite scheduling problems [11, 12, 14–19].

However, for the above intelligent algorithms, especially for different
improvements of genetic algorithms, the search process has the disadvantages of
slow convergence speed and easy to fall into local optimization in large-scale task
scheduling. In view of the above shortcomings, this paper proposes an improved
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immune algorithm, the joint probability density immune algorithm (JPDI), to solve
the large-scale task scheduling problem of multi-agile satellites. The algorithm has
the following advantages. Firstly, the optimal evolution generations have greatly
reduced, and the scheduling efficiency also improved. Secondly, under the same
iterations, the scheduling results were obviously better than the traditional evolu-
tionary ways. Thirdly, scheduling process do not easily fall into local optimization.

The following contents are divided into the following parts. The second part is
the description of the problem and the construction of the model, the introduction of
the algorithm and the solution method in the third part, the fourth part is the
simulation results, and the conclusion and declaration in the fifth part.

2 Problem Description

In this study, we considered the process of observing multiple imaging tasks on the
earth's surface by multiple agile satellites to develop an optimal imaging plan. The
simulated observation process is shown in Fig. 1. Since agile satellite has three
rotational degrees of freedom, the observation efficiency has greatly improved. At
the same time, the solution space of the scheduling scheme increases exponentially,
which increases the difficulty of the solution process.

Based on this understanding, we detail the scheduling process and the variables
or constraints involved. In general, agile satellites have multiple visible time win-
dows (VTW) for each task, when there are M AEOS observing N tasks, if task i has
been arranged to be observed by the kth VTW under satellite j, then xijk ¼ 1,
otherwise xijk ¼ 0. The start time of the kth VTW of task i under satellite j is
expressed as wsijk and the end time is weijk. In the actual observation, the length of
VTW is much longer than the actual observation time window (OTW). If the
observation time length of task i is expressed as duri, the start time of OTW is sti,

Fig. 1 Simulation of the
earth observation process of
three agile satellites orbiting
the earth
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then the end time is eti ¼ sti þ duri, and must satisfy that wsijk � sti � eti �weijk.
Obviously, the image quality observed in different OTW is different, and the image
quality obtained in the middle of each VTW is set to be the best. qi is used to
represent the quality of the observation image of task i to measure the distance
between OTW and the midpoint of the corresponding VTW. Each task has an
observation priority level pi. If the user has a demand for stereo observation of a
task i, it is denoted as stei ¼ 1. We specify that two observations with an interval of
three times OTW of the task are the observation of completing the stereo task. If
tasks i and j are executed continuously, then denoted as yij ¼ 1. Moreover, the
observation start time of task j is greater than the sum of the observation end time of
task I and the attitude angle conversion time dij between the two tasks. In addition,
if there are clouds in the observation process, the observation will be affected. Note
the time when the ni th clouds begin to appear is csi and the time when they stop is
cei. Our ultimate goal is to maximize the total return and also called the fitness in
the combinatorial probability density function:

max
XN
i¼1

XM
j¼1

XLi
k¼1

xijkpiqi ð1Þ

Assume
In the scheduling process of multi-AEOS, in addition to the oversubscribed
observation tasks and the different observation needs from different users, the
maneuvering constraints of satellites make the scheduling process very compli-
cated. Since the purpose of our study concentrates more on the task planning level,
the simplified model of satellite is adopted under the following assumptions in this
paper:

1. The satellite has enough energy for mission observation.
2. The storage capacity of the satellite is sufficient for the satellite to operate until it

reaches the ground receiving station to transmit the image down.
3. Set the stereo observation task as the highest observation priority.

The key of this study lies in how to obtain an approximate optimal scheduling
plan that maximizes the total scheduling profit and minimizes the scheduling time.
This paper will solve this problem in the following part.

3 Scheduling Algorithm

Based on the above problem description, we will give the solution process in this
part. First, pre-processing the task, then constructing the combined probability
density immune algorithm for the multi-AEOS scheduling problem, Immune
algorithm is an intelligent computing method inspired by biological immune
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system. Self-organizing and self-learning ability and powerful information pro-
cessing ability of immune make it effectively applied in many fields such as
intelligent control pattern recognition, optimization design and machine learning
[20]. Considering that the immune algorithm inherits the disadvantages of the
genetic algorithm, we will replace the crossover and mutation evolution strategy in
the traditional immune algorithm with the combined probability density estimation
strategy, and the performance of the combined probability density immune algo-
rithm should be further improved. And finally presenting the general flow of the
algorithm.

3.1 Scheduling Preprocessing

Please Scheduling preprocessing refers to select an observation satellite for each
task to be observed and determine a VTW under that satellite. Then the first step is
to select an AEOS for each task based on the total observed collision time heuristic.
The second step is to choose an VTW for each observation task based on the equal
opportunity heuristic operator which means ignore the difference in the number of
Windows. The conflict calculation function is as follows:

Xt2

i¼1

Xt1

j¼1
cij ð2Þ

t1 is the number of VTW under task i, t2 is the number of tasks assigned to
satellite. cij refers to the length of OTW overlap between the two tasks.

And the tasks with closed observation windows are removed from the database,
which can reduce the total computation time.

3.2 JPDI Algorithm Description

After the scheduling preprocessing above, the process of the JPDI algorithm
scheduling is summarized as shown in Table 1.

3.3 JPDI Algorithm

In order to encode the task into the antibodies required by the algorithm, we need to
divide all the tasks into m segments corresponding to the OTW of the task
according to the VTW selected by the above preprocessing process. Take task i as
an example to introduce the specific segmentation method, first subtract duri=2
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before and after the corresponding VTW, then divide the rest of the period into
m� 1 segments, all the segmentation points and endpoints in this segment have a
total of m, these m points are the midpoints of m OTWs for task i. The start time,
end time and corresponding observation quality of m OTWs respectively corre-
sponding to n tasks were respectively stored into the matrix S, E and Q. The quality
calculation is measured by the distance between the midpoint of each OTW and the
corresponding VTW midpoint, and If they overlap, then the mass equals one.

Thus, the coding method is introduced. n tasks are randomly assigned the integer
value between one and m according to the task order, which represents the OTW
selected for the corresponding task. And repeat several times to form an initial
population P0. Then the quality of the corresponding antibody gene in the popu-
lation was calculated and put into the matrix Q. Finally, we build an initial prob-
ability density matrix D, let it be a discrete probability density matrix with uniform
distribution, which is of n rows and m columns with all same elements 1=m.

Table 1 The flow of combined probability density immune algorithm
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Now we describe the algorithm update iteration strategy. In the population
update iteration process, a matrix E is required to store better antibodies, which is
assigned as E ¼ P0. And we use the expected reproductive rate to evaluate the
quality of antibodies. It is defined by

Rv ¼ fv
gv

ð3Þ

fv is the affinity between antibody and antigen, and it is defined by

fv ¼ 1
1þ 1=fitness

ð4Þ

gv is the antibody concentration. Antibody concentration is determined by
affinity between antibodies. Before we talk about antibody concentration let’s talk
about the entropy value of the genes. For a population composed of T antibodies,
each antibody includes t genes, and the entropy of gene j is defined by

HjðTÞ¼ �
Xm

i¼1
pij � log pij ð5Þ

Where pij is the probability that the jth gene belongs to i in T antibodies. If all
the genes of antibodies are the same, the entropy equals zero. And the information
entropy of these M antibodies is defined by

HðMÞ ¼ 1
n

Xm

j¼1
HjðMÞ ð6Þ

Then the affinity between antibody Ae and Af is defined by Aef ¼ 1
1þHð2Þ, The

higher the value of Aef , the closer the two antibodies are. Thus the concentration of
antibody Ae in population is defined by

gv ¼ 1
T

XM

f¼1
Cef ð7Þ

Cef is a counting variable defined byCef ¼
1; a � max

1\f\T
Aef\Aef\ max

1\f\T
Aef

0; others

(
.

a depends on the distribution of antibodies. After introduced the calculation steps of
expected reproduction rate, select the antibodies with higher expected reproduction
rate to replace the suboptimal antibodies in E, thus completed the update of the
excellent antibody library. Furthermore, the new generation probability density
matrixD is obtained by updatingb � Dþð1� bÞ � F, whereb is the learning rate, and
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the frequency matrix F is also obtained by the distribution of OTW in the antibodies
with higher expected reproduction rate in the current generation.

More importantly, the generation of the new population consists of two parts: the
first part is the random selection of some antibodies in E; the second part is the
generation of new antibodies through the new generation D, and the new population
is obtained by combining the two parts.

We will carry out simulation verification of this algorithm in the following part.

4 Simulation

The current section will verify the effectiveness of the joint probability density
immune algorithm (JPDI) proposed in this paper. The simulation test data is pro-
vided by the high resolution AEOS called SPOT-6 and Pleiades-1A. The details of
the two satellites are given in Table 2. STK is used to simulate the satellite and
calculate the VTWs of the all the tasks under the two satellites.

4.1 Test Data

We simulated 150 common static tasks on the surface of the earth. Tasks are ran-
domly distributed over land areas of the earth. We set the priority of the task as an
integer, no generality, it’s evenly distributed on a scale of 1 to 10. In addition, the
imaging time of each target generated randomly between 30 seconds and 70 seconds.

The maneuvering angle velocity of satellite SPOT-6 is 2.5°/S, and the maneu-
vering angle range is ±30°; the maneuvering angular velocity of satellite
Pleiades-1A is 2.4°/S, and the maneuvering angle range is ±60°. The orbital
parameters of the satellite constellation are shown in Table 3.

Table 2 The parameters of the two satellites

Satellite
designation

SSC
number

Launch
time

TLE format track parameters

SPOT-6 38,755 2012 1 38755U 12047A 13,037.07500000.00000403
00,000-0 86,692-400,003
2 38,755 098.1869 106.6959 0,001,101 018.0310
123.7197 14.58593013021858

Pleiades-1A 38,012 2011 1 38012U 11076F 13,031.16666667 0.00000268
00,000-0 57,796-4 0 00,008
2 38,012 098.1744 108.2165 0,001,176 018.8207
163.0471
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4.2 Simulation of GA and JPDI

In this section, we designed the satellite scheduling simulation process in task scale
150. The computational results of GA and JPDI in four different learning rates are
in Fig. 2. Our reason for studying GA is that it’s evolutionary way similar to the
immune algorithm and thus can be used as a baseline to test the JPDI against.

As can be seen from Fig. 2, the improved immune algorithm is superior to the
traditional genetic algorithm not only in convergence speed but also in scheduling
total benefits. Moreover, the convergence rate is different at different learning rates,
and the evolution of probability distribution immune algorithm by the 150th iter-
ation stops at all learning rates. In the four simulation data experiments we did,
when alpha equals 0.3, the probability distribution immune algorithm has the fastest
convergence rate of our objective function.

The scheduling results show that in addition to the fact that the improved
immune algorithm is superior to the genetic algorithm in the scheduling objective
function value, there is a significant difference in the scheduling time. The time
pairs of the two algorithms under different iteration times are shown in Fig. 3.

As the iteration increases, time consuming with the improved immune algorithm
shows a linear growth trend with a low slope, while the genetic algorithm shows an
exponential growth trend. When traditional genetic algorithms solve continuous
problems, time consumption increased dramatically in global search process, which
leads to the low efficiency of satellite scheduling.

Table 3 The maneuver
parameters of the two
satellites

Satellite GM(km) OR(m) MA(°) MAV(°/s)

SPOT-6 60 2 �30 30=12

Pleiades-1A 20 0.7 �60 60=25
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Fig. 2 The convergence
comparison of the algorithm
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The scheduling results generated by different VTW segments of the task are
different. Figure 4 shows the scheduling benefit results at three different segments.

The experimental results show that as iteration increases, the more segments the
better the scheduling benefits. When VTW is divided into 15 and 11 segments, the
scheduling benefit difference is less than that 11 and 7 segments. Therefore, it can
be assumed that when the number of segments reaches a certain level, the income
growth gradually slows to stop. Therefore, the selection for suitable segments
should be considered with the balance of scheduling time limit and profit value.
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iterations
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20
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Fig. 3 The time consuming of the two algorithms

Fig. 4 The comparison under different VTW segments
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5 Conclusions

This study focuses on the observing schedule problem of multiple agile satellites,
and a detailed multi-satellite task planning constraint satisfaction model is estab-
lished, which includes stereoscopic image requirements, cloud cover constraints
and other factors. Our main goal was to maximize the scheduling efficient, reduce
the waste of satellite resources and meet the different needs of users to the greatest
extent. To achieve this, based on the evolution mode of classical intelligent algo-
rithms, such as genetic algorithm and immune algorithm, making the solution easily
falls into the local optimal solution and convergences slowly. We studied a new
evolutionary approach, then the combined probability density immune algorithm
was adopted. The numerical experiments which conducted on 150 tasks under two
AEOS shows that when achieved the same scheduling efficiency, the algorithm
proposed in this paper requires less evolutionary generations and as the algorithm
iterates, the time required for scheduling convergence is greatly reduced.

In the future, the combined probability density immune algorithm can be further
extended to other applications. The most pertinent direction for future work would
be coordinated scheduling of multi-agent satellites with more practical constraints
considered. Agent satellites will be more applicable for a better scheduling system.
We will explore these potential studies in our future work.
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