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Abstract. Several popular blockchains such as Ethereum execute complex trans-
actions through user-defined scripts. A block of the chain typically consists
of multiple smart contract transactions (SCTs). To append a block into the
blockchain, a miner executes these SCTs. On receiving this block, other nodes
act as validators, who re-execute these SCTs as part of the consensus protocol to
validate the block. In Ethereum and other blockchains that support cryptocurren-
cies, a miner gets an incentive every time such a valid block is successfully added
to the blockchain. When executing SCTs sequentially, miners and validators fail
to harness the power of multiprocessing offered by the prevalence of multi-core
processors, thus degrading throughput. By leveraging multiple threads to execute
SCTs, we can achieve better efficiency and higher throughput. Recently, Read-
Write Software Transactional Memory Systems (RWSTMs) were used for con-
current execution of SCTs. It is known that Object-based STMs (OSTMs), using
higher-level objects (such as hash-tables or lists), achieve better throughput as
compared to RWSTMs. Even greater concurrency can be obtained using Multi-
Version OSTMs (MVOSTMs), which maintain multiple versions for each shared
data item as opposed to Single-Version OSTMs (SVOSTMs).

This paper proposes an efficient framework to execute SCTs concurrently
based on object semantics, using optimistic SVOSTMs and MVOSTMs. In our
framework, a multi-threaded miner constructs a Block Graph (BG), capturing the
object-conflicts relations between SCTs, and stores it in the block. Later, valida-
tors re-execute the same SCTs concurrently and deterministically relying on this
BG.

A malicious miner can modify the BG to harm the blockchain, e.g., to cause
double spending. To identify malicious miners, we propose Smart Multi-threaded
Validator (SMV). Experimental analysis shows that proposed multi-threaded
miner and validator achieve significant performance gains over state-of-the-art
SCT execution framework.
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1 Introduction

Blockchains like Bitcoin [15] and Ethereum [2] have become very popular. Due to their
usefulness, they are now considered for automating and securely storing user records
such as land sale documents, vehicle, and insurance records. Clients, external users of
the system, send requests to nodes to execute on the blockchain, as smart contracts
transactions (SCTs). An SCT is similar to the methods of a class in an object-oriented
langugage, which encode business logic relating to the contract [4,8]. Listing 1 shows
a smart contract function, transfer() of coin contract from Solidity [4]. It transfers the
amount from sender to receiver if the sender has a sufficient balance.

Blocks are added to the blockchain by block-
creator nodes also known as miners. A miner m
packs several SCTs received from (possibly differ-
ent) clients, to form a block B. Then, m executes
the SCTs of the block sequentially to obtain the final ballr id] += amt:
state of the blockchain, which it stores in the block. }

To maintain the chain structure, m adds the hash of the previous block to the new block
B and proposes B to be added to the blockchain.

On receiving the block B, other nodes act as validators that execute a global con-
sensus protocol to decide the order of B in the blockchain. As part of the consensus
protocol, validators re-execute all the SCTs of B sequentially to obtain the final state
of the blockchain, assuming that B will be added to the blockchain. If the computed
final state matches the one stored in B by the miner m then B is accepted by the val-
idators. In this case, the miner m gets an incentive for adding B to the blockchain (in
Ethereum and other cryptocurrency-based blockchains). Otherwise, B is rejected, and
m does not get any reward. This execution is known as order-execute model [5] adapted
by Ethereum and several other blockchains such as Bitcoin [15], EOS [1].

Listing 1: Transfer function

transfer(s_id, r_id, amt) {
if (amt > bal[s_id])
throw;
bal[s_id] -= amt;

[ R S

Previous Work: Dickerson et al. [8] observed that both miner and validators can exe-
cute SCTs concurrently to exploit multi-core processors. They observed another inter-
esting advantage of concurrent execution of SCTs in Ethereum, where only the miner
receives an incentive for adding a valid block while all the validators execute the SCTs
in the block. Given a choice, it is natural for a validator to pick a block that supports
concurrent execution and hence obtain higher throughput.

Concurrent execution of SCTs poses a challenge. Consider a miner m that executes
the SCTs in a block concurrently. Later, a validator v may re-execute same SCTs concur-
rently, in an order that may yield a different final state than given by m in B. In this case,
v incorrectly rejects the valid block B proposed by m. We denote this as False Block
Rejection (FBR), noting that FBR may negate the benefits of concurrent execution.

Dickerson et al. [8] proposed a multi-threaded miner algorithm that is based on a
pessimistic Software Transactional Memory (STM) and uses locks for synchronization
between threads executing SCTs. STM [14,18] is a convenient concurrent program-
ming interface for a programmer to access the shared memory using multiple threads.
To avoid FBR, the miner identifies the dependencies between SCTs in the block while
executing them by multiple threads. Two SCTs are dependent if they are conflicting,
i.e., both of them access the same data item and at least one of them is a write. These
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dependencies among SCTs are recorded in the block as a Block Graph (BG). Two SCTs
that have a path in the BG are dependent on each other and cannot be executed concur-
rently. Later, a validator v relies on the BG to identify dependencies between the SCTs,
and concurrently execute SCTs only if there is no path between them in the BG. In the
course of the execution by v, the size of BG dynamically decreases and the dependen-
cies change. Dickerson et al. [8] use a fork-join approach to execute the SCTs, where a
master thread allocates independent SCTs to different slave threads to execute.

Anjana et al. [6] used an optimistic Read-Write STM (RWSTM), which identifies
the conflicts between SCTs using timestamps. Those are used by miner threads to build
the BG. A validator processes a block using the BG in a completely decentralized man-
ner using multiple threads, unlike the centralized fork-join approach of [8]. Each valida-
tor thread identifies an independent SCTand executes it concurrently with other threads.
The decentralized approach yields significant performances gain over fork-join.

Saraph and Herlihy [17] used a speculative bin approach to execute SCTs of
Ethereum in parallel. A miner uses lock to store SCTs into two bins, concurrent bin
stores non-conflicting SCTs while the sequential bin stores the remaining SCTs. If an
SCT T; requests a lock held by an another SCT T} then T; is rolled back and placed
in the sequential bin. Otherwise, T; is placed in the concurrent bin. To save the cost of
rollback and retries of SCTs, they have used static conflict prediction which identifies
conflicting SCTs before executing them speculatively. The multi-threaded validator in
this approach executes all the SCTs of the concurrent bin concurrently and then exe-
cutes the SCTs of the sequential bin sequentially. We call this the Static Bin approach.

Zhang and Zhang [20] proposed a pessimistic approach to execute SCTs concur-
rently in which the miner can use any concurrency control protocol while the validator
uses multi-version timestamp order.

Exploiting Object-Based Semantics: Prior STM-based solutions of [6,20], rely on
read-write conflicts (rwconflicts) for synchronization. In contrast, object-based STMs
(OSTMs) track higher-level, more advanced conflicts between operations like insert,
delete, lookup on a hash-table, enqueue/dequeue on queues, push/pop on the stack [11,
12,16]. It has been shown that OSTMs provide greater concurrency than RWSTMs
(see Fig. 1 in [7]). This is particularly important since Solidity [4], the language used
for writing SCTs for Ethereum, extensively uses hash-tables. This indicates that a hash-
table based OSTM is a natural candidate for concurrent execution of these SCTs.!

The pessimistic lock-based solution of [8] uses abstract locks on hash-table keys,
exploiting the object semantics. In this paper, we want to exploit the object semantics
of hash-tables using optimistic STMs to improve the performance obtained.

To capture the dependencies between the SCTs in a block, miner threads construct the
BG concurrently and append it to the block. The dependencies between the transactions
are given by the object-conflicts (oconflicts) (as opposed to rwconflicts) which ensure that
the execution is correct, i.e., satisfies conflict-opacity [16]. It has been shown [11,12,16]
that there are fewer oconflicts than rwconflicts. Since there are fewer oconflicts, the BG
has fewer edges which in turn, allows validators to execute more SCTs concurrently.
This also reduces the size of the BG leading to a smaller communication cost.

! For clarity, we denote smart contract transactions as SCTs and an STM transaction as a trans-
action in the paper.
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Fig. 1. (a) Transaction T gets the balance of two accounts A; and Az (both initially $10), while
transaction 7% transfers $10 from A; to A and 73 aborts. Since, its conflict graph has a cycle
(see (c)); (b) When T and T> are executed by MVOSTM, 77 can read the old versions of A; and
As. This can be serialized, as shown in (d).

Multi-version object-based STMs (MVOSTMs) [13] maintain multiple versions for
each shared data item (object) and provide greater concurrency relative to traditional
single-version OSTMs (SVOSTM:s). Figure 1 illustrates the benefits of concurrent exe-
cution of SCTs using MVOSTM over SVOSTM. A BG based on MVOSTM will have
fewer edges than an SVOSTM-based BG, and will further reduce the size of the BG.
These advantages motivated us to use MVOSTM:s for concurrent execution of SCTs by
miners.

Concurrent executions of SCTs may cause inconsistent behaviors such as infinite
loops, divide by zero, crash failures. Some of these behaviors, such as crash failures and
infinite loops can be mitigated when SCTs are executed in a controlled environment, for
example, the Ethereum Virtual Machine (EVM) [2]. However, not all environments can
prevent all anomalies. The inconsistent executions can be prevented by ensuring that
the executions produced by the STM system satisfy opacity [9] or one of its variants
such as co-opacity [16]. Our MVOSTM satisfies opacity, while our SVOSTM satisfies
co-opacity.

Handling a Malicious Miner: A drawback of the approaches mentioned above is that
a malicious miner can make the final state of the blockchain be inconsistent. In the BG
approach, the miner can send an incorrect BG, missing some edges. In the bin-based app-
roach [17], the miner can place the conflicting transactions in the concurrent bin. This
can result in inconsistent states in the blockchain due to double spending, e.g., when two
concurrent transactions incorrectly transfer the same amount of money simultaneously
from a source account to two different destination accounts. If a malicious miner does not
add an edge between these two transactions in the BG [6] or puts them in the concurrent
bin [17], then both SCTs can execute concurrently by validators. If a majority of valida-
tors accept the block containing these two transactions, then the state of the blockchain
becomes inconsistent. We denote this problem as edge missing BG (EMB) for the BG
approach [6] and faulty bin (FBin) for the bin-based approach [17]. In Sect. 4, we show
the effect of malicious miners through experiments on the blockchain system.

To handle EMB and FBin errors, the validator must reject a block when edges are
missing in the BG or when conflicting SCTs are in the concurrent bin, since their execu-
tion can lead to an inconsistent state. To detect this situation, validator threads monitor
transactions performing conflicting access to the same data items while executing con-
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currently. In Sect. 3, we propose a Smart Multi-threaded Validator (SMV) which uses
counters to detect this condition and rejects the corresponding blocks.

Dickerson et al. [8] suggest a lock-based solution to handle EMB errors. The miner
generates and stores the lock profile required to execute the SCTs of a block along
with the BG. The validator then records a trace of the locks each of its thread would
have acquired, had it been executing speculatively independent of the BG. The validator
would then compare the lock profiles it generated with the one provided by the miner
present in the block. If the profiles are different then the block is rejected. This check
is in addition to the check of the final state generated and the state in the block. This
solution is effective in handling EMB errors caused by malicious miners. However, it is
lock-based and cannot be used for preventing EMB issue in optimistic approaches such
as [6]. The advantage of our SMV solution is that it works well with both optimistic
and lock-based approaches.

Our Contributions: This paper develops an efficient framework to execute SCTs con-
currently by a miner using an optimistic hash-table (both single and multi-version)
OSTM. We use two methodologies to re-execute the SCTs concurrently by validators:
the fork-join approach [8] and a decentralized approach [6]. To handle EMB and FBin
errors, we propose a decentralized smart multi-threaded validator. To summarize:

— We introduce an efficient object-based framework for the concurrent execution of
SCTs by miners (Sect.3.2). We propose a way to execute SCTs efficiently using
optimistic SVOSTM by the miner while ensuring co-opacity [16], a way to execute
SCTs by the miner using optimistic MVOSTM [13] while satisfying opacity [9]

— We propose the concurrent execution of SCTs by validators using the BG provided
by the miner to avoid FBR errors (Sect. 3.3), using either the fork-join or the decen-
tralized approach.

— We propose a Smart Multi-threaded Validator to handle EMB and FBin errors caused
by malicious miners (Sect. 3.4).

— Extensive simulations (Sect.4) show that concurrent execution of SCTs by
SVOSTM and MVOSTM miner provide an average speedup of 3.41x and 3.91x
over serial miner, respectively. SVOSTM and MVOSTM based decentralized val-
idator provide on average of 46.35x and 48.45x over serial validator, respectively.

2 System Model

As in [10,14], in each miner/validator there are n threads, p1,...,p, in a system that
access shared data items (or objects/keys) in a completely asynchronous fashion. We
assume that none of the threads/processes will crash or fail unexpectedly.

Events: A thread invokes the transactions and the transaction calls object-level methods
that internally invoke read/write atomic events on the shared data items to communi-
cate with other threads. Method invocations (or ¢nv) and responses (or rsp) are also
considered as events.

History: It is a sequence of invocations and responses of different transactional meth-
ods. We consider sequential history in which invocation on each transactional method
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follows the immediate matching response. We consider well-formed histories in which
a new transaction does not begin until the invocation of previous transaction has not
been committed or aborted.

Object-Based Software Transactional Memory (OSTM): OSTM exports higher-
level methods: (1) STM_begin(): begins a transaction with unique id. (2) STM_-
lookup(k) (or I(k)): does a lookup on data item % from shared memory. (3) STM._-
insert(k, v) (or i(k,v)): inserts the value of data item k as v in its local log. (4) STM_-
delete(k) (or d(k)): deletes the data item k. (5) STM_tryC(): validates the transaction.
After successful validation, the actual effects of STM_insert() and STM _delete() will
be visible in the shared memory and transaction returns commit (C). Otherwise, it will
return abort (A). We represent STM _lookup(), and STM _delete() as return-value (rv)
methods because both methods return the value from hash-table. We represent STM _-
insert(), and STM _delete() as update (upd) methods as on successful STM_tryC() both
methods update the shared memory. Methods rv() and STM_tryC() may return A. For
a transaction 7;, we denote all the objects accessed by its rv;() and upd; () methods as
ruvSet; and updSet;, respectively.

Listing 2 shows the concurrent execution
of transfer() (from Listing 1 in the Sect. 1) T ransfer(s 4 s 14 amild
using STM. On the invocation of transfer(), g ¢ iq = stM begin();
STM assigns the unique id using STM _begin() 1?) iE}?ZiltzziTDsLll)Zi})(ul{)(S_id);
to each SCT (Line 8). Then, it reads the bal- |; abort (t_id) ;
ance of the sender using STM _lookup() (Line g } throw;
9) and validates it (Line 10). If the sender does 14 g gelete(s_id, amt);
not have a sufficient balance, then it aborts the 15~ STM_insert(r_id, amt);
SCT and throws an exception. Otherwise, it i? lfgi)st? Eti?ec (gtjl(‘i‘),!;fiif f\se)d
withdraws the amount from the sender account 18 3}
using STM _delete() (Line 14) and deposits the amount in the receiver account using
STM _insert() (Line 15). With an optimistic STM, the effect of the STM delete() and
STM _lookup() will take place after successful validation of the SCT in STM _tryC() (Line
16). If validation is successful, then the SCT commits, and the amount is transferred
from the sender to the receiver account. Otherwise, the SCT is aborted and re-execute
from Line 8.

Listing 2: Transfer function using STM

Valid and Legal History: If the successful rv;(k,v) (i.e., v # .A) method of a trans-
action T} returns the value from any of previously committed transaction 7 that has
performed upd() on key k with value v then such rv;(k, v) method is valid. If all the
rv() methods of history H are valid then H is valid history [16].

If the successful rv;(k,v) (ie., v # A) method of a transaction T} returns the
value from previous closest committed transaction 7; that k € updSet; (T; can also be
To) and updates the k& with value v then such rv;(k, v) method is legal. If all the rv()
methods of history H are legal then H is legal history [16]. A legal history is also valid.

Two histories H and H' are equivalent if they have the same set of events. H and
H’ are multi-version view equivalent [19, Chap. 5] if they are valid and equivalent. H
and H' are view equivalent [19, Chap. 3] if they are legal and equivalent. Additional
definitions appear in [7].
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3 Proposed Mechanism

This section describes the construction, data structures, and methods of concurrent BG,
concurrent execution of SCTs by multi-threaded miner using optimistic object-based
STMs, multi-threaded validator, and detection of a malicious miner.

3.1 The Block Graph

The multi-threaded miner executes the SCTs concurrently and stores their dependen-
cies in a BG. Each committed transaction corresponding to an SCTis a vertex in the
BG while edges capture the dependencies, based on the STM protocol. Multi-threaded
miner uses SVOSTM or MVOSTM to execute the SCTs concurrently, using times-
tamps. The challenge here is to construct the BG concurrently without missing any
dependencies. We modified SVOSTM and MVOSTM to capture oconflicts and multi-
version oconflicts (mvoconflicts) in the BG.

SVOSTM-based miner maintains three types of edges based on oconflicts between
the transactions. An edge T; — T between two transaction is defined when: (1)
rv;(k,v) - STM tryC;() edge : If rv;(k,v) on key k by T; completed before
STM _tryC;() on k by a committed transaction T in history H such that T} returns
a value v # A. Formally, rv;(k,v) <g STM_tryC;(), k € updSet(T;) and
v # A; 2) STM tryC;() - rvj(k,v) edge : If STM tryC;() on k by a commit-
ted transaction T; completed before 7v;(k,v) on key k by Tj in history H such that
Tj returns a value v # A. Formally, STM _tryC;() <m rv;(k,v), k € updSet(T;)
and v # A; 3) STM _tryC;() - STM tryC;() edge : If STM _tryC;() on k by a
committed transaction T; completed before ST M _tryC;() on k by a committed trans-
action Tj in history H. Formally, STM _tryC;() <g STM tryC;() and (updSet(T;)
N updSet(T;) # 0).

MVOSTM-based miner maintains two types of edges based on mvoconflicts [13].
(1) return value from (rvf) edge: If ST M _tryC;() on k by a committed transaction 7;
completed before rv; (k, v) onkey k by Tj in history H such that T returns a value v #
A then there exist an rvf edge from T; to T}, i.e., T; — Tj; (2) multi-version (mv) edge:
consider a triplet, ST M _tryC;(), rvm, (k,v), STM tryC;() in which (updSet(T;) N
updSet(T;) NrvSet(T,,) # 0), (two committed transactions T; and T; update the key
k with value v and u respectively) and (u, v # A); then there are two types of mv edge:
(a) if STM tryC;() <g STM _tryC;() then there exist a mv edge from T, to Tj. (b)
if STM tryC;() <g STM _tryC;() then there exist a mv edge from T} to T;.

Data Structure for the Block Graph: To maintain a block graph BG(V, E), the set
of vertices (or SCTs) V is stored as a vertex list and the set of edges (conflicts between
SCTs) E is stored as an adjacency list. Two lock-free methods build the BG (see details in
[7]): addVertex() adds a vertex and addEdge() adds an edge in BG. To execute the SCTs,
validator threads use three methods: globalSearch() identifies an independent vertex with
indegree O to execute it concurrently, remExNode() decrements the indegree of conflict-
ing vertices and keeps it into thread local log if its indegree becomes 0, and localSearch()
identifies the vertex with indegree 0O in thread local log to execute it concurrently.
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Algorithm 1. Multi-threaded Miner(sctList[], STM): n threads concurrently execute

the SCTs from sctList with STMs.
19: procedure Multi-threaded Miner (sctList[], STM)

20: curlnd = gIndex.get&Inc(); // Atomically read the index and increment it.

21: while (curInd < sctList.length) do // Execute until all SCTs have not been executed
22 curTrn = sctList[curInd];// Get the current SCTto execute

23 T; = STM _begin(); // Begins a new transaction. Here 4 is unique id

24: for all (curStep € curTrn.scFun)do // scFun is a list of steps

25: switch(curStep)

26: case lookup(k):

27: v «— STM_lookup(k); // Lookup data item & from a shared memory

28: if(u == A) then goto Line 23;end if break;

29: case insert(k, v): // Insert data item k into T local memory with value v

30: STM.insert(k, v); break;

31: case delete(k):

32: v «— STM_delete(k); // Actual deletion of data item k happens in STM_tryC()
33 if(u == A) then goto Line 23; end if break;

34: default: Execute the step normally // Any step apart from lookup, insert, delete
35: endswitch

36: end for

37: v «— STM_tryC(); // Try to commit the transaction T

38: if(v == A) then goto Line 23; end if

39: addVertex(i); // Create vertex node for T; with scFun

40: BG(i, STMs); // Add the conflicts of T’; to block graph

41: curInd = gIndex.get&Inc(); // Atomically read the index and increment it.
42: end while

43: build-block(); // Here the miner builds the block.
44: end procedure

3.2 Multi-threaded Miner

A miner m receives requests to execute SCTs from different clients. It forms a block
with several SCTs (the precise number of SCTs depend on the blockchain), and exe-
cutes these SCTs while executing the non-conflicting SCTs concurrently to obtain the
final state of the blockchain. Identifying the non-conflicting SCTs statically is not
straightforward because smart contracts are written in a turing-complete language [8]
(e.g., Solidity [4] for Ethereum). We use optimistic STM to execute the SCTs concur-
rently as in [6] but adapted to object-based STMs on hash-tables to identify conflicts.

Algorithm 1 shows how SCTs are executed by an n-threaded miner. The input is
an array of SCTs, sctList and a object-based STM, (SVOSTM or MVOSTM), both
supporting the BG methods described above. The multi-threaded miner uses a global
index into the sctList g/ndex which is accessed by all the threads. A thread T'h,, first
reads the current value of gIndex into a local value curInd and increments gIndex
atomically (Line 20).

Having obtained the current index in curlInd, Th, gets the corresponding SCT,
curTrn from sctList]] (Line 22), and begins a STM transaction corresponding to
curT'rn (Line 23). For every hash-table insert, delete and lookup encountered while
executing the scFun of curT'rn, Th, invokes the corresponding STM methods: STM_-
lookup(), STM _insert(), STM _delete(), either on an SVOSTM or on an MVOSTM. Oth-
erwise, it simply executes the step. If any of these steps fail, T'h, begins a new STM
transaction (Line 23) and re-executes these steps.

Upon successful completion of transaction 75, Th, creates a vertex node for 7; in
the block graph (Line 39). Then, Th, obtains the transactions (SCTs) with which T;
is conflicting from the OSTM, and adds the corresponding edges to the BG (Line 40).
Th, then gets the index of the next SCTto execute (Line 41).
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An important step here is how the underlying OSTMs (either SVOSTM or
MVOSTM) maintain the conflicts among the transactions which is used by Th, (see
[7]). Both SVOSTM and the MVOSTM use timestamps to identify the conflicts.

Once all the SCTs of sctList have been executed successfully and the BG is con-
structed concurrently, it is stored in the proposed block. The miner then stores the final
state of the blockchain (which is the state of all shared data items), resulting from the
execution of SCTs of sctList in the block. The miner then computes the operations
related to the blockchain. For Ethereum, this would constitute the hash of the previous
block. Then the multi-threaded miner proposes a block which consists of all the SCTs,
BG, final state of all the shared data items and hash of the previous block (Line 43).
The block is then broadcast to all the other nodes in the blockchain.

We prove the next properties (see [7]):

Theorem 1. The BG captures all the dependencies between the conflicting nodes.

Theorem 2. A history H,,, generated by the multi-threaded miner with SVOSTM satis-
fies co-opacity.

Theorem 3. A history H,, generated by multi-threaded miner with MVOSTM satisfies
opacity.

3.3 Multi-threaded Validator

The validator re-executes the SCTs deterministically relying on the BG provided by
the miner in the block. BG consists of dependency among the conflicting SCTs and
restrict validator threads to execute them serially to avoid the FBR errors while non-
conflicting SCTs execute concurrently to obtain greater throughput. The validator uses
globalSearch(), localSearch(), and remExNode() methods of the BG library as described
in Sect. 3.1.

After successful execution of the SCTs, validator threads compute the final state of
the blockchain which is the state of all shared data items. If it matches the final state
provided by the miner then the validator accepts the block. If a majority of the validators
accept the block, then it is added to the blockchain. Detailed description and proofs of
the next theorems appear in [7].

Theorem 4. A history H,, generated by the multi-threaded miner with SVOSTM and a
history H,, generated by a multi-threaded validator are view equivalent.

Theorem 5. A history H,, generated by the multi-threaded miner with MVOSTM and
a history H,, generated by a multi-threaded validator are multi-version view equivalent.

3.4 Detection of Malicious Miners by Smart Multi-threaded Validator (SMYV)

We propose a technique to handle edge missing BG (EMB) and Faulty Bin (FBin)
caused by the malicious miner as explained in Sect. 1. A malicious miner mm can
remove some edges from the BG and set the final state in the block accordingly. A
multi-threaded validator executes the SCTs concurrently relying on the BG provided by
the mm and results the same final state. Hence, incorrectly accepts the block. Similarly,
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if a majority of the validators accept the block then the state of the blockchain becomes
inconsistent. For example, due to double spending.

A similar inconsistency can be caused by a mm in bin-based approach: mm can
maliciously add conflicting SCTs to the concurrent bin resulting in FBin error. This may
cause a multi-threaded validator v to access shared data items concurrently leading to
synchronization errors. To prevent this, an SMV checks to see if two concurrent threads
end up accessing the same shared data item concurrently. If this situation is detected,
then the miner is malicious.

Algorithm 2. SMV (scFun): Execute scFun with atomic global lookup/update counter.

45. while (scFun.steps.hasNext()) do //scFun is a list of steps

46: curStep = scFun.steps.next(); /Get the next step to execute

47: switch (curStep) do

48: case lookup(k):

49: if (k.gUC == k.lUC;) then //Check for update counter (uc) value

50: Atomically increment the global lookup counter, k.g LC';

51 Increment k.ILC; by 1. //Maintain k.l LC; in transaction local log
52: Lookup £ from a shared memory;

53: else return (Miner is malicious);

54: end if

55: case insert(k, v):

56: if ((k.gLC == k.ILC;) && (k.gUC == k.lLUC;)) then //Check lookup/update counter value
57: Atomically increment the global update counter, k.gU C;

58: Increment k.1U C; by 1. //Maintain k..U C; in transaction local log
59: Insert k in shared memory with value v;

60: else return (Miner is malicious);

61: end if

62: case delete(k):

63: if ((k.gLC == k.ILC;) && (k.gUC == k.lUC;)) then //Check lookup/update counter value
64: Atomically increment the global update counter, k.gU C';

65: Increment k.1U C; by 1. //Maintain k£.lU C; in transaction local log
66: Delete k in shared memory.

67: else return (Miner is malicious);

68: end if

69: case default:

70: curStep is not lookup, insert and delete;

71 execute curStep;

72: end while
73: Atomically decrement the k.g LC' and k.gU C corresponding to each shared data-item key k.

To identify such situations, an SMV uses counters, inspired by the basic timestamp
ordering (BTO) protocol in databases [19, Chap. 4]. It tracks each global data item that
can be accessed across multiple transactions by different threads. Specifically, the SMV
maintains two global counters for each key of hash-table (shared data item) & (a) k.qUC'
- global update counter (b) k.gLC' - global lookup counter. These, respectively, track the
number of updates and lookups that are concurrently performed by different threads
on k. Both counters are initially 0.

When an SMV thread Th, is executing an SCT T; it maintains two local variables
corresponding to each global data item k which is accessible only by Th, (c) k.IUC;
- local update counter (d) k.ILC; - local lookup counter. These respectively keep track
of number of updates and lookups performed by T'h, on k while executing 7;. These
counters are initialized to O before the start of 7T;.

Having described the counters, we will explain the SMV Algorithm 2 at a high level.
Suppose the next step to be performed by Th,; is:
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1. lookup(k): Thread Th, will check for equality of the global and local update coun-
ters, i.e., (k.gUC == k.lUC;) (Line 49). If they are not same then SMV will
report the miner as malicious (Line 53). Otherwise, (i) Th, will atomically incre-
ment k.gLC (Line 50). (ii) T'h, will increment k.ILC; (Line 51). (iii) Perform the
lookup on the key k from shared memory (Line 52).

2. update(k,val): Here, Th, wants to update (insert/delete) k with value val. So,
Th, will check for the equality of both global, local update and lookup counters,
ie., (k.gUC == k.IUC;) and (k.gLC == k.ILC;) (Line 56 or Line 63). If they
are not same then SMV will report the miner as malicious (Line 60 or Line 67).
Otherwise, (i) T'h,, will atomically increment k.gU C' (Line 57 or Line 64). (ii) Th,
will increment k£.[UC; (Line 58 or Line 65). (iii) Update key & with value val in the
shared memory (Line 59 or Line 66).

Once T; terminates, T'h, will atomically decrements k.gUC| k.gLC' by the value
of k.IUC;, k.ILC;, respectively (Line 73). Then Th,, will reset k.LUC;, k.ILC; to 0.

The reason for performing these steps and the correctness of the algorithm is as
follows: if T'h,, is performing a lookup on k then no other thread should be performing
an update on k. Here, k.gU C represents the number of updates to k currently executed
by all the threads while k.IUC; represents the number of updates to k£ on behalf of T;
by T'h,. Thus the value of gUC should be same as [UC'. Otherwise, some other thread
is also concurrently performing the updates to k. Similarly, if Th, is performing an
update on k, then no other thread should be performing an update or lookup on k. This
can be verified by checking if [LC, [UC are respectively same as gLC, gUC.

Theorem 6. Smart Multi-threaded Validator rejects malicious blocks with BG that
allow concurrent execution of dependent SCTs.

The same SMV technique can be applied to identify the faulty bin error as explained in
Sect. 1. See proof of Theorem 6 in [7].

4 Experimental Evaluation

This section demonstrates the performance gains by proposed multi-threaded miner and
validator against state-of-the-art miners and validators. To evaluate our approach, we
considered Ethereum smart contracts. The virtual environment of Ethereum, EVM, does
not support multi-threading [2,8]. So, we converted the smart contracts of Ethereum
as described in Solidity documentation [4] into C++ multi-threaded contracts similar
to [6]. Then we integrated them into object-based STM framework (SVOSTM and
MVOSTM) for concurrent execution of SCTs by the miner.

We chose a diverse set of smart contracts described in Solidity [4] as benchmarks to
analyze the performance of our proposed approach as was done in [6,8]. The selected
benchmark contracts are (1) Coin: a financial contract, (2) Ballot: an electronic voting
contract, (3) Simple Auction: an auction contract, and (4) a Mix contract: combination of
three contracts mentioned above in equal proportion in which block consists of multiple
SCTs belonging to different smart contracts.
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Fig. 2. Multi-threaded and SMVs Speedup over Serial Miner and Validator for Mix Contract on
W1 and W2

We compared the proposed SVOSTM and MVOSTM miner with state-of-the-art
multi-threaded: BTO [6], multi-version timestamp order (MVTO) [6], Speculative Bin
(or SpecBin) [17], Static Bin (or StaticBin) [17], and Serial miner.> We could not com-
pare our work with Dickerson et al. [8] as their source code is not available in public
domain. We converted the code of StaticBin and SpecBin [17] from Java to C++ for
comparing with our algorithms.

Concurrent execution of SCTs by the validator does not use any STM protocol,;
however it uses the BG provided by the multi-threaded miner, which does use STM.
To identify malicious miners and prevent any malicious block from being added to
the blockchain, we proposed Smart Multi-threaded Validator (SMV) for SVOSTM,
MVOSTM as SVOSTM SMV, MVOSTM SMV. Additionally, we proposed SMV for
state-of-the-art validators as BTO SMV, MVTO SMYV, SpecBin SMYV, and StaticBin
SMYV and analysed the performance.

Experimental Setup: The experimental system consists of two sockets, each com-
prised of 14 cores 2.60 GHz Intel (R) Xeon (R) CPU E5-2690, and each core supports 2
hardware threads. Thus the system supports a total of 56 hardware threads. The machine
runs Ubuntu 16.04.2 LTS operating system and has 32GB RAM.

2 Code is available in: https:/github.com/PDCRL/ObjSC.
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Fig.3. % of average multi-threaded validator (NonSMV) accepted a malicious block for Mix
Contract on W1 and W2

To analyze the performance, we evaluated the speedup achieved by each contract
on two workloads. In the first workload (W1), the number of SCTs varied from 50 to
300 while the number of threads fixed is at 50. The maximum number of SCTs in a
block of Ethereum is approximately 250 [3,8], but is growing over time. In the second
workload (W2), the number of threads varied from 10 to 60, while the number of SCTs
is fixed at 100. The average number of SCTs in a block of Ethereum is around 100
[3]. The hash-table size and shared data items are fixed to 30 and 500 respectively for
both workloads. For accuracy, results are averaged over 26 runs in which the first run is
discarded and considered as a warm-up run. The results of serial execution is treated as
the baseline for evaluating the speedup. This section describes the detailed analysis for
the Mix contract and analysis of Coin, Ballot and Simple Auction benchmark contracts
are in [7].

Experimental Results: Fig.2(a) and (b) show the speedup of MVOSTM, SVOSTM,
MVTO, BTO, SpecBin, and StaticBin miner over serial miner for Mix contract on
workloads W1 and W2, respectively.! The average speedup achieved by MVOSTM,
SVOSTM, MVTO, BTO, SpecBin, and StaticBin miner over serial miner is 3.91x,
3.41x,1.98x, 1.5%,3.02x%, and 1.12 %, respectively.

As shown in Fig.2(a), increasing the number of SCTs leads to high contention
(because shared data items are fixed to 500). So the speedup of multi-threaded
miner reduces. MVOSTM and SVOSTM miners outperform SpecBin miner because
MVOSTM and SVOSTM miners use optimistic object-based STMs to execute SCTs
concurrently and construct the BG whereas SpecBin uses locks to execute SCTs con-
currently and constructs two bins using the pessimistic approach. SpecBin miner does
not release the locks until the construction of the concurrent bin, which gives less con-
currency. However, for the smaller numbers of SCTs in a block, SpecBin is slightly bet-
ter than MVOSTM and SVOSTM miners, which can be observed in the Fig. 2(a) at 50
SCTs. MVOSTM and SVOSTM miners outperform MVTO and BTO miners because
both of them are consider rwconflicts. It can also be observed that MVOSTM miner

! In the figures, legend items in bold.
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Fig. 4. Average Number of Dependencies in BG for Mix Contract on W1 and W2

outperforms all other STM miners as it has fewer conflicts, which gets reflected (see
Fig. 4) as the least number of dependencies in the BG as compared to other STM min-
ers. For the multi-version (MVOSTM and MVTO) miners, we did not limit the number
of versions because the number of SCTs in a block is finite. The speedup by StaticBin
miner is worse than serial miner for more than 100 SCTs because it takes time for static
conflict prediction before executing SCTs.

Figure 2(b) shows that speedup achieved by multi-threaded miner increases while
increasing the number of threads, limited by the number of hardware threads available
on the underlying experimental setup. Since, our system has 56 logical threads, the
speedup decreases beyond 56 threads. MVOSTM miner outperforms all other miners
with similar reasoning, as explained for Fig. 2(a). Another observation is that when the
number of threads is less, the serial miner dominates BTO and MVTO miner due to the
overhead of the STM system.

The average number of dependencies in BG by all the STM miners presented
in Fig.4. It shows that BG constructed by the MVOSTM has the least number of
edges for all the contracts on both workloads. However, there is no BG for bin-based
approaches (both SpecBin and StaticBin). So, from the block size perspective, bin-
based approaches are efficient. But the speedup of the validator obtained by the bin-
based approaches is significantly lesser than STM validators.

Figure 2(c) and (d) show the speedup of Smart Multi-threaded Validators (SMVs)
over serial validator on the workloads W1 and W2, respectively. The average speedup
achieved by MVOSTM, SVOSTM, MVTO, BTO, SpecBin, and StaticBin decentralized
SMVs are 48.45x, 46.35x%, 43.89x, 41.44x, 5.39x, and 4.81 x over serial validator,
respectively.

It can be observed that decentralized MVOSTM SMV is best among all other STM
validators due to fewer dependencies in the BG. Though the block size is less in bin-
based approaches as compared to STM based approaches due to the absence of BG,
however, STM validators outperform bin-based validators because STM validators pre-
cisely determines the concurrent SCTs based on BG. In contrast, bin-based validator
gives less concurrency using a lock-based pessimistic approach.
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The speedup of SMYV is significantly higher than multi-threaded miner because the
miner has to execute the SCTs concurrently either using STMs (including the retries
of aborted transactions) and constructs the BG or prepare two bins (concurrent and
sequential bin using locks in SpecBin and static analysis in StaticBin). On the other
hand, the validator executes the SCTs concurrently and deterministically relying on BG
(without any retries) or bins provided by miner.

A malicious miner may cause either EMB or FBin errors in a block. Figure 3
illustrates the percentage of validators without SMV logic embedded, i.e., NonSMVs
accepting a malicious block on workloads W1 and W2, respectively. Here, we con-
sidered 50 validators and ran the experiments for the Mix contract. The Fig. 3 shows
that less than 50% of validators (except bin-based NonSMYV) accept a malicious block.
However, SpecBin and StaticBin NonSMVs show more than 50% acceptance of mali-
cious blocks. Though, it is to be noted that the acceptance of even a single malicious
block result in the blockchain going into inconsistent state.

To solve this problem, we developed a Smart Multi-threaded Validator (SMV),
which identifies the malicious miner (described in Sect. 3.4). We prove that the SMV
detects malicious block with the help of counter and rejects it. In fact all the validators
shown in Fig. 2 (c) and (d) are SMV based. Another advantage of SMV is that once it
detects a malicious miner during the concurrent execution of SCTs, it can immediately
reject the block and need not execute the remaining SCTs in the block thus saving time.

To show the degree of parallelism, we Mﬂg gm :Z ME}%ZBE —-
consider diameter of BG which shows the | svosTM smv SVOSTM-BG —v—
longest path of the BG implies that a longest MVOSTMSSe'\r’i';/. i WMVOSTM-BG —<—
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cover the average number of dependencies in

the BG, additional space required to store the BG into the block, compared the time
taken by the SMV and NonSMYV, and speedup of fork-join validator for all the work-
loads in [7].

5 Conclusion and Future Directions

This paper presents an efficient framework for concurrent execution of smart con-
tracts by miners and validators based on object semantics. In blockchains that follow
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order-execute model [5] such as Ethereum [2] and Bitcoin [15], SCTis executed in two
different contexts: first by the multi-threaded miner to propose a block and later by
the multi-threaded validator to verify the proposed block by the miner as part of the
consensus. To avoid FBR errors, the miner on concurrent execution of SCTs capture
the dependencies among them in the form of a BG as in [6,8]. The validator then re-
executes the SCTs concurrently while respecting the dependencies recorded in the BG
to avoid FBR errors.

The miner executes the SCTs concurrently using STMs that exploit the object
semantics: SVOSTM and MVOSTM. The dependencies among the SCTs are collected
during this execution and used by the miner threads to construct the BG concurrently.
Due to the use of object semantics, the number of edges in the BG is smaller, which
benefits both miners and validators by enabling them to execute SCTs quickly in a con-
current setting.

We also considered a malicious miner, which may proposes an incorrect BG that
does not have all the edges, resulting in EMB error. To handle malicious miners we have
proposed a SMV that can identify these errors and reject the corresponding blocks.

The proposed SVOSTM and MVOSTM miner achieve on average speedup of 3.41x
and 3.91 x over a serial miner, respectively. Proposed SVOSTM and MVOSTM decen-
tralized validator outperform with an average speedup of 46.35 x and 48.45 x over serial
validator, respectively, on Ethereum smart contracts.

There are several directions for future work. A malicious miner can intentionally
append a BG in a block with additional edges for the purpose of delaying other miners.
Preventing such a malicious miner from doing this would be an immediate future work.
A natural question is whether the size of BG can become a significant overhead. Cur-
rently, the average number of SCTs in a block is /100 in Ethereum. So, storing the BG
inside the block does not consume much space. The BG constructed by MVOSTMs has
fewer dependencies as compared with state-of-the-art SCT execution as shown in Fig. 4.
However, the number of SCTs in a block can increase over time and as a result storing
the BG will consume more space. Hence, constructing storage optimal BG is an interest-
ing challenge. Alternatively, it might be possible to concurrently execute SCTs correctly
without incurring any extra storage overhead, and without compromising speedup. This
opens up the question what the optimal storage required for achieving the best possible
speedup.

Another interesting research direction is optimizing power consumption, since,
multi-threading on the multi-core system consumes more power. Additional power is
consumed by the multiple miner and validator threads to propose and validate the blocks
concurrently. Hence, we would like to explore trade-off between harnessing the number
of cores and power consumption.

Finally, since EVM [2] does not support multi-threading, it is not possible to test
the proposed approach on Ethereum. So, another research direction is to design multi-
threaded EVM. We plan to test our proposed approach on other blockchains such as Bit-
coin [15], EOS [1] which follow the order-execute model and support multi-threading.
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