
Cutoffs for Symmetric Point-to-Point
Distributed Algorithms

Thanh-Hai Tran1, Igor Konnov2(B), and Josef Widder2

1 TU Wien, Vienna, Austria
2 Informal Systems, Vienna, Austria

igor@informal.systems

Abstract. Distributed algorithms are typically parameterized in the
number of participants. While in general, parameterized verification
is undecidable, many distributed algorithms such as mutual exclusion,
cache coherence, and distributed consensus enjoy the cutoff property,
which reduces the parameterized verification problem to verification of a
finite number of instances. Failure detection algorithms do not fall into
one of the known classes. While consensus algorithms, for instance, are
quorum-based, failure detectors typically rely on point-to-point commu-
nication and timeouts. In this paper, we formalize this communication
structure and introduce the class of symmetric point-to-point algorithms.
We show that the symmetric point-to-point algorithms have a cutoff.
As a result, one can verify them by model checking small instances.
We demonstrate the feasibility of our approach by specifying the failure
detector by Chandra and Toueg in TLA+, and by model checking them
with the TLC and the APALACHE model checkers.

Keywords: TLA+ · Parameterized model checking · Failure
detectors · Symmetry · Point-to-point communication

1 Introduction

Nowadays, many high-reliability systems are distributed and parameterized in
some manner, e.g. the number of participants, or the size of message buffers.
Since the number and the cost of failures of these systems increases [2], industry
has applied many automated techniques to reason about their correctness at
the design and implementation levels, such as model checking [6,17,24,28], and
testing [19]. While these methods report positive results in analyzing individual
system configurations with fixed parameter values, the real goal is to verify all
configurations, i.e., with infinitely many vectors of parameter values.

Unfortunately, the parameterized verification problem is typically undecid-
able, even if every participant follows the same code [1,3,27]. This negative result
has led naturally to two approaches of algorithm analyses: (a) semi-automated

Supported by Interchain Foundation (Switzerland) and the Austrian Science Fund
(FWF) via the Doctoral College LogiCS W1255.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 329–346, 2021.
https://doi.org/10.1007/978-3-030-67087-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_21

330 T.-H. Tran et al.

methods based on user-guided invariants and proof assistants, and (b) automatic
techniques for restricted classes of algorithms and properties. A particularly fas-
cinating case is the cutoff property that guarantees that analyzing a few small
instances is sufficient to reason about the correctness of all instances [8,15]. In a
nutshell, given a property ξ and a system that has a parameter m, there exists
a number B ≥ 1 such that whenever all instances that assign a value not greater
than B to a parameter m satisfy ξ, then all instances which assign an arbitrary
number to m satisfy ξ. Hence, verification of algorithms that enjoy the cutoff
property can be done by model checking of finite instances.

In this paper, we introduce the class of symmetric point-to-point algorithms
that enjoys the cutoff property. Informally, an instance in this class contains N
processes that follow the same algorithm, and communicate with each other by
sending and receiving messages through point-to-point communication channels.
At each process, local memory can be partitioned into regions such that one
region corresponds one-to-one with a remote process, e.g. the array element
timeout [p, q] at a process p stores the maximum waiting time for a process q by
the process p. The failure detector [5] is one example of this class. Let 1..N be
a set of indexes. We show two cutoffs for these algorithms:

1. Let i be an index, and ω{i} be an LTL\X (the stuttering-insensitive linear
temporal logic) formula in which every predicate takes one of the forms: P1(i)
or P2(i, i). Properties of the form

∧
i∈1..N ω{i} has a cutoff of 1.

2. Let i and j be different indexes, and ψ{i,j} be an LTL\X formula in which
every predicate takes one of the (syntactic) forms: Q1(i), or Q2(j), or Q3(i, j),
or Q4(j, i). Properties of the form

∧i�=j
i,j∈1..N ψ{i,j} has a cutoff of 2.

For instance, by the second cutoff result, we can verify the following property
called the strong completeness property of the failure detector in [5] by model
checking of an instance of size 2.

FG(∀i, j ∈ 1..N : (Correct(i) ∧ ¬Correct(j)) ⇒ Suspected(i, j))

This formula means that every crashed process is eventually permanently sus-
pected by every correct process. We are writing F and G to denote “eventually”
and “globally” operators of linear temporal logic (LTL), see [9]. We demonstrate
the feasibility of our approach by specifying Chandra and Toueg’s failure detec-
tors [5] in the language TLA+ [22], and model checking the specification with
two model checkers: TLC [28] and APALACHE [20].

Related work. Our work is inspired by the cutoff results for various mod-
els of computation: ring-based message-passing systems [14,15], purely disjunc-
tive guards and conjunctive guards [12,13], token-based communication [8], and
quorum-based algorithms [23]. Additionally, there are semi-decision procedures
based on invariants, induction, and abstraction that are successful in many inter-
esting cases [4,7,18,21,25]. Interactive verification methods with proof assis-
tants [10,16,26] have produced positive results in proving distributed algorithms.

The paper is organized as follows. Section 2 presents our motivating example -
Chandra and Toueg’s failure detector [5], and challenges in verification of these
algorithms. Section 3 defines the model of computation as a transition system.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 331

Section 4 shows our main contributions: two cutoff results in the class of symmetric
point-to-point distributed algorithms. Section 5 presents how we encode the model
of computation, and the failure detector of [5] in TLA+, and the model checking
results. Section 6 concludes the paper with a discussion of future extensions.

2 Motivating Example

This section starts with a description of our motivating example – Chandra and
Toueg’s failure detector [5]. Then, we present challenges in verification of the
failure detector, and state-of-the-art verification techniques.

Algorithm 1 presents the pseudo-code of the failure detector of [5]. A system
instance has N processes that communicate with each other by sending-to-all and
receiving messages through N2 point-to-point communication channels. A process
performs local computation based on these messages (we assume that a process
also receives the messages that it sends to itself). In one system step, all processes
may take up to one step. Some processes may crash, i.e., stop operating. Correct
processes follow Algorithm 1 to detect crashes in the system. Initially, every cor-
rect process sets a default value for a timeout of each other, i.e. how long it should
wait for others and assumes that no processes have crashed (Line 4). Every correct
process p has three tasks: (i) repeatedly sends an “alive” message to all (Line 6),
and (ii) repeatedly produces predictions about crashes of other processes based on
timeouts (Line 8), and (iii) increases a timeout for a process q if p has learned that
its suspicion on q is wrong (Line 12). Notice that a process p raises suspicion on
the operation of a process q (Line 8) by considering only information related to q:
timeout [p, q] , suspected [p, q], and messages that p has received from q recently. In
other words, its suspicions about other processes grow independently.

Let Correct(p) be a predicate whether a process p is correct. (However, p can
crash later. A crashed process p1 satisfies ¬Correct(p1).) Let Suspected(p, q) be
a predicate whether a process p suspects a process q. The failure detector should
guarantee the following properties [5]:

– Strong completeness: Every crashed process is eventually permanently sus-
pected by every correct process.

FG(∀p, q ∈ 1..N : (Correct(p) ∧ ¬Correct(q)) ⇒ Suspected(p, q))

– Eventual strong accuracy: There is a time after which correct processes are
not suspected by any correct processes.

FG(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q))

In the asynchronous model, Algorithm 1 does not satisfy eventually strong accu-
racy since there exists no bound on message delay, and messages sent by correct
processes might always arrive after the timeout expires. The correctness of failure
detectors is based on two implicit time constraints: (1) the transmission delay
of messages and (2) the relative speeds of different processes [5]. Even if these
upper bounds exist but are unknown, failure detectors can satisfy both strong
completeness and eventually strong accuracy.

332 T.-H. Tran et al.

Algorithm 1. The eventually perfect failure detector algorithm in [5]
1: Every process p ∈ Π executes the following :
2: for all q ∈ Π do � Initalization step
3: timeout [p, q] = default-value
4: suspected [p, q] = ⊥ }
5:
6: Send “alive” to all q ∈ Π � Task 1: repeat periodically
7:
8: for all q ∈ Π do � Task 2: repeat periodically
9: if suspected [p, q] = ⊥ and not hear q during last timeout [p, q] ticks then

10: suspected [p, q] = �
11:
12: if suspected [p, q] then � Task 3: when receive “alive” from q
13: timeout [p, q] ← timeout [p, q] + 1
14: suspected [p, q] = ⊥

Note that the symmetry exists in both the failure detectors of [5] and the
above correctness properties. First, every process is isomorphic under renam-
ing. A correct process p always sends a message to all and raises suspicion on
a process q by considering only information related to q. Second, there are only
point-to-point communication channels. Third, the contents of in-transit mes-
sages is identical. They are merely “keep-alive” messages that may arrive at
different times. Finally, all variables in both properties strong completeness and
eventual strong accuracy are variables over process indices, and they are bound
by universal quantifiers. The symmetry is captured by our model of computation
and is the key point in our proofs of the cutoff results.

As a result, verification of failure detectors faces the following challenges:

1. Algorithms are parameterized by the number of processes. Hence, we need to
verify infinitely many instances of algorithms.

2. Its model of computation lies between synchrony and asynchrony since mul-
tiple processes can take a step in a global transition.

3. The algorithm relies on a global clock and local clocks. A straightforward
encoding of a clock with an integer would produce an infinite state space.

4. The algorithm is parameterized with the upper bounds on transmission time
of messages, and the relative speeds of different processes. These upper bounds
are called Δ and Φ, respectively.

In this paper, we focus on Challenges 1–2: Our model of computation in Sect. 3
does not restrict the number of processes that simultaneously take a step, and we
show cutoffs on the number of processes in Sect. 4. Our cutoff results apply for
checking LTL\X formulas of the forms

∧
i∈1..N ω{1} and

∧i�=j
i,j∈1..N ψ{1,2}. Hence,

we can verify the failure detector of [5] by model checking its few instances. We
demonstrate the feasibility of our approach by specifying and model checking the
failure detector in the synchronous case. Our specification contains optimizations
for Challenge 3, which allows us to efficiently encode global and local clocks. In
the synchronous case, we can skip Challenge 4, which we leave for furture work.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 333

3 Model of Computation

In this section, we formalize a distributed system as a transition system. This
formalization captures the semantics of the theoretical model of [5,11], but does
not consider the restrictions on the execution space given by Δ and Φ. A global
system is a composition of N processes, N2 point-to-point outgoing message
buffers, and N control components that capture what processes can take a step.
Every process is identified with a unique index in 1..N , and follows the same
deterministic algorithm. Moreover, a global system allows: (i) multiple processes
to take (at most) one step in one global transition, and (ii) some processes to
crash. Every process may execute three kinds of transitions: internal, round, and
stuttering. Notice that in one global transition, some processes may send a mes-
sage to all, and some may receive messages and do computation. Hence, we need
to decide which processes move, and what happens to the message buffers. We
introduce four sub-rounds: Schedule, Send, Receive, and Computation. The tran-
sitions for these sub-rounds are called internal ones. A global round transition is
a composition of four internal transitions. We formalize sub-rounds and global
transitions later. As a result of modeling, there exists an arbitrary sequence of
global configurations which is not accepted in [5,11]. We define so-called admissi-
ble sequences of global configurations that are accepted in [5,11]. We did encode
our formalization in TLA+, and our specification is presented in Sect. 5.

Since every process follows the same algorithm, we first define a process tem-
plate that captures the process behavior. This formalization focuses on symmet-
ric point-to-point algorithms parameterized by N . Every process is an instance
of the process template. Then, we present the formalization of a global system.

3.1 The Process Template

We fix a set of process indexes as 1..N . Moreover, we assume that the message
content does not have indexes of its receiver and sender. We let Msg denote a set
of potential messages, and Set(Msg) denote a set of sets of messages.

We model a process template as a transition system UN =
(QN ,TrN ,RelN , q0

N) where QN = Loc × Set(Msg)N × DN is a set of template
states, TrN is a set of template transitions, RelN ⊆ QN × TrN × QN is a tem-
plate transition relation, and q0

N ∈ QN is an initial state. These components of
UN are defined as follows.

States. A template state ρ is a tuple (�, S1, . . . , SN , d1, . . . , dN) where:

– � ∈ Loc refers to a location of a program counter, and Loc is a set of locations.
We assume that Loc = Locsnd ∪ Locrcv ∪ Loccomp ∪ {�crash}, and three sets
Locsnd , Locrcv , Loccomp are disjoint, and �crash is a special location of crashes.
To access the program counter, we use a function pc : QN → Loc that takes a
template state at its input, and produces its program counter as the output.
Let ρ(k) denote the kth component in a template state ρ. For every ρ ∈ QN ,
we have pc(ρ) = ρ(1) .

– Si ∈ Set(Msg) refers to a set of messages. It is to store the messages received
from a process pi for every i ∈ 1..N . To access a set of received messages from

334 T.-H. Tran et al.

a particular process whose index in 1..N , we use a function rcvd : QN ×1..N →
Set(Msg) that takes a template state ρ and a process index i at its input, and
produces the (i + 1)th component of ρ at the output, i.e. for every ρ ∈ QN ,
we have rcvd(ρ, i) = ρ(1 + i) .

– di ∈ D refers to a local variable related to a process pi for every i ∈ 1..N .
To access a local variable related to a particular process whose index in 1..N ,
we use a function lvar : QN × 1..N → D that takes a template state ρ and a
process index i at its input, and produces the (1 + N + i)th component of ρ
as the output, i.e. lvar(ρ, i) = ρ(1 + N + i) for every ρ ∈ QN .

Initial State. The initial state q0
N is a tuple q0

N = (�0, ∅, . . . , ∅, d0, . . . , d0) where
�0 is a location, every box for received messages is empty, and every local variable
is assigned a constant d0 ∈ D.

Transitions. We define TrN = CSnd ∪ CRcv ∪ {comp, crash, stutter} where

– CSnd is a set of transitions. Every transition in CSnd refers to a task that
does some internal computation, and sends a message to all. For example,
in task 1 in Algorithm 1, a process increases its local clock, and performs an
instruction to send “alive” to all. We let csnd(m) denote a transition referring
to a task with an action to send a message m ∈ Msg to all.

– CRcv is a set of transitions. Every transition in CRcv refers to a task that
receives N sets of messages, and does some internal computation. For exam-
ple, in task 2 in Algorithm 1, a process increases its local clock, receives mes-
sages, and remove false-negative predictions. We let crcv(S1, . . . , SN) denote
a transition referring to a task with an action to receive sets S1, . . . , SN of
messages. These sets S1, . . . , SN are delivered by the global system.

– comp is a transition which refers to a task with purely local computation. In
other words, this task has neither send actions nor receive actions.

– crash is a transition for crashes.
– stutter is a transition for stuttering steps.

Transition Relation. For two states ρ, ρ′ ∈ QN and a transition tr ∈ TrN , we
write ρ

tr−→ ρ′, instead of (ρ,
tr−→, ρ′). In the model of [5,11], each process follows

the same deterministic algorithm. Hence, we assume that for every ρ0
tr0−−→ ρ′

0

and ρ1
tr1−−→ ρ′

1, if ρ0 = ρ1 and tr0 = tr1, then it follows that ρ′
0 = ρ′

1. Moreover,
we assume that there exist the following functions which are used to define
constraints on the template transition relation:

– A function nextLoc : Loc → Loc takes a location at its input and produces
the next location as the output.

– A function genMsg : Loc → Set(Msg) a location at its input, and produces
a singleton set that contains the message that is sent to all processes in the
current task. The output can be an empty set. For example, if a process is
performing a receive task, the output of genMsg is an empty set.

– A function nextVar : Loc × Set(Msg) × D → D takes a location, a set of
messages, and a local variable’s value, and produces a new value of a local
variable as the output.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 335

Let us fix functions nextLoc, genMsg and nextVar . We define the template tran-
sitions as follows.

1. For every m ∈ Msg, for every pair of states ρ, ρ′ ∈ QN , we have ρ
csnd (m)−−−−−→ ρ′

if and only if
(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ {m} = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ, i) = rcvd(ρ′, i)
(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar

(
pc(ρ), rcvd(ρ′, i), lvar(ρ, i)

)

Constraint (a) implies that the update of a program counter and the con-
struction of a sent message m depend on only the current value of a program
counter, and a process wants to send only m to all in this step. Constraint
(b) is that no message was delivered. Constraint (c) implies that the value of
lvar(ρ′, i) depends on only the current location, a set of messages that have
been delivered and stored in rcvd(ρ′, i), and the value of lvar(ρ, i).

2. For every S1, . . . , SN ⊆ Msg, for every pair of states ρ, ρ′ ∈ QN , we have

ρ
crcv (S1,...,SN)−−−−−−−−−−→ ρ′ if and only if the following constraints hold:

(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ ∅ = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ′, i) = rcvd(ρ, i) ∪ Si

(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar
(
pc(ρ)), rcvd(ρ′, i), lvar(ρ, i)

)

Constraint (a) in crcv is similar to constraint (a) in csnd , except that no
message is sent in this sub-round. Constraint (b) refers that messages in a
set Si are from a process indexed i, and have been delivered in this step.
Constraint (c) in crcv is similar to constraint (c) in csnd .

3. For every pair of states ρ, ρ′ ∈ QN , we have ρ
comp−−−→ ρ′ if and only if the

following constraints hold:
(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ ∅ = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ′, i) = rcvd(ρ, i)
(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar

(
pc(ρ), rcvd(ρ′, i), lvar(ρ, i)

)

Hence, this step has only local computation. No message is sent or delivered.
4. For every pair of states ρ, ρ′ ∈ QN , we have ρ

crash−−−→ ρ′ if and only if the
following constraints hold:
(a) pc(ρ) �= �crash ∧ pc(ρ′) = �crash
(b) ∀i ∈ 1..N : rcvd(ρ, i) = rcvd(ρ′, i) ∧ lvar(ρ, i) = lvar(ρ′, i)
Only the program counter is updated by switching to �crash .

5. For every pair of states ρ, ρ′ ∈ QN , we have ρ
stutter−−−−→ ρ′ if and only if ρ = ρ′.

3.2 Modeling the Distributed System

Given N processes which are instantiated from the same process template UN =
(QN ,TrN ,RelN , q0

N), the global system is a composition of (i) these processes,
and (ii) N2 point-to-point buffers for in-transit messages, and (iii) N control
components that capture what processes can take a step. We formalize the global
system as a transition system GN =

(CN , TN , RN , g0
N

)
where CN = (QN)N ×

Set(Msg)N ·N × BoolN is a set of global configurations, and TN is a set of global
internal, round, and stuttering transitions, and RN ⊆ CN × TN × CN is a global

336 T.-H. Tran et al.

transition relation, and g0
N is an initial configuration. These components are

defined as follows.

Configurations. A global configuration κ is defined as a following tuple κ =(
q1, . . . , qN , S1

1 , S2
1 . . . , Sr

s , . . . SN
N , act1, . . . , actN

)
where:

– qi ∈ QN : This component is a state of a process pi for every i ∈ 1..N . To access
a local state of a particular process, we use a function lstate : CN × 1..N →
QN that takes input as a global configuration κ and a process index i, and
produces output as the ith component of κ which is a state of a process pi. Let
κ(i) denote the ith component of a global configuration κ. For every i ∈ 1..N ,
we have lstate(κ, i) = κ(i) = qi.

– Sr
s ∈ Set(Msg): This component is a set of in-transit messages from a process

ps to a process pr for every s, r ∈ 1..N . To access a set of in-transit messages
between two processes, we use a function buf : CN × 1..N × 1..N → Set(Msg)
that takes input as a global configuration κ, and two process indexes s, r,
and produces output as the (s · N + r)th component of κ which is a message
buffer from a process ps (sender) to a process pr (receiver). Formally, we have
buf (κ, s, r) = κ(s · N + r) = Sr

s for every s, r ∈ 1..N .
– acti ∈ Bool: This component says whether a process pi can take one step in a

global transition for every i ∈ 1..N . To access a control component, we use a
function active : CN × 1..N → Bool that takes input as a configuration κ and
a process index i, and produces output as the ((N + 1) · N + i)th component
of κ which refers to whether a process pi can take a step. Formally, we have
active(κ, i) = κ((N + 1) · N + i) = bi for every i ∈ 1..N . The environment
sets the values of act1, . . . , actN in the sub-round Schedule defined later.

We will write κ ∈ (QN)N × Set(Msg)N ·N × BoolN or κ ∈ CN .

Initial Configuration. The global system GN has one initial configuration g0
N ,

and it must satisfy the following constraints:

1. ∀i ∈ 1..N : ¬active(g0
N , i) ∧ lstate(N, i) = q0

N

2. ∀s, r ∈ 1..N : buf (g0
N , s, r) = ∅

Global Round Transitions. Intuitively, every round transition is a sequence
of a Sched−−−→ transition, a Snd−−→ transition, a Rcv−−→ transition, and a

Comp−−−→ transition
defined below. We let � denote round transitions. The semantics of round tran-
sitions is defined as follows: for every pair of global configurations κ0, κ4 ∈ CN ,
we say κ0 � κ4 if there exist three global configurations κ1, κ2, κ3 ∈ CN such
that κ0

Sched−−−→ κ1
Snd−−→ κ2

Rcv−−→ κ3
Comp−−−→ κ4. Notice that every correct process

can make at most one global internal transition in every global round transition.
Moreover, round transitions allow some processes to crash only in the sub-round
Schedule. We call these faults clean-crashes.

Global Stuttering Transition. In the proof of Lemma 5 presented in Section 4,
we do projection. Therefore, we extend the relation � with stuttering: for every
configuration κ, we allow κ � κ.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 337

Admissible Sequences. An infinite sequence π = κ0κ1 . . . of global configura-
tions in GN is admissible if the following constraints hold:

1. κ0 is the initial state, i.e. κ0 = g0
N , and

2. π is stuttering equivalent with an infinite sequence π′ = κ′
0κ

′
1 . . . such that

κ′
4k

Sched−−−→ κ′
4k+1

Snd−−→ κ′
4k+2

Rcv−−→ κ′
4k+3

Comp−−−→ κ′
4k+4 for every k ≥ 0.

Notice that it immediately follows by this definition that if π = κ0κ1 . . . is an
admissible sequence of configurations in GN , then κ′

4k � κ′
4k+4 for every k ≥ 0.

From now on, we only consider admissible sequences of global configurations.

Global Internal Transitions. In the model of [5], many processes can take
a step in a global transition. We assume that a computation of the distributed
system is organized in rounds, i.e.global ticks, and every round is organized as
four sub-rounds called Schedule, Send, Receive, and Computation. To model that
as a transition system, for every sub-round we define a corresponding transition:
Sched−−−→ for the sub-round Schedule, Snd−−→ for the sub-round Send, Rcv−−→ for the sub-
round Receive,

Comp−−−→ for the sub-round Comp. These transitions are called global
internal transitions. We define the semantics of these sub-rounds as follows.

1. Sub-round Schedule. The environment starts with a global configuration
where every process is inactive, and move to another by non-deterministically
deciding what processes become crashed, and what processes take a step in
the current global transition. Every correct process takes a stuttering step,
and every faulty process is inactive. If a process p is crashed in this sub-
round, every incoming message buffer to p is set to the empty set. Formally,
for κ, κ′ ∈ CN , we have κ

Sched−−−→ κ′ if the following constraints hold:
(a) ∀i ∈ 1..N : ¬active(κ, i)
(b) ∀i ∈ 1..N : lstate(κ, i) stutter−−−−→ lstate(κ′, i) ∨ lstate(κ, i) crash−−−→ lstate(κ′, i)
(c) ∀i ∈ 1..N : pc(lstate(κ′, i)) = �crash ⇒ ¬active(κ′, i)
(d) ∀s, r ∈ 1..N : pc(lstate(κ′, r)) �= �crash ⇒ buf (κ, s, r) = buf (κ′, s, r)
(e) ∀r ∈ 1..N : pc(lstate(κ′, r)) = �crash ⇒ (∀s ∈ 1..N : buf (κ′, s, r) = ∅)

2. Sub-round Send. Only processes that perform send actions can take a step in
this sub-round. Such processes become inactive at the end of this sub-round.
Fresh sent messages are added to corresponding message buffers. To define
the semantics of the sub-round Send, we use the following predicates:

Enabled(ψ, i, L) � active(κ, i) ∧ pc(lstate(κ, i)) ∈ L

FrozenS(ψ1, ψ2, i) � ∧ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
∧ active(κ, i) = active(κ′, i)
∧ ∀r ∈ 1..N : buf (κ, i, r) = buf (κ′, i, r)

Sending(ψ1, ψ2, i,m) � ∧ ∀r ∈ 1..N : m /∈ buf (κ, i, r)
∧ ∀r ∈ 1..N : buf (κ′, i, r) = {m} ∪ buf (κ, i, r)

∧ lstate(κ, i)
csnd (m)−−−−−→ lstate(κ′, i)

Formally, for κ, κ′ ∈ CN , we have κ
Snd−−→ κ′ if the following constraints hold:

338 T.-H. Tran et al.

(a) ∀i ∈ 1..N : ¬Enabled(κ, i,Locsnd) ⇔ FrozenS(κ, κ′, i)
(b) ∀i ∈ 1..N : Enabled(κ, i,Locsnd) ⇔ ∃m ∈ Msg : Sending(κ, κ′, i,m)
(c) ∀i ∈ 1..N : Enabled(κ, i,Locsnd) ⇒ ¬active(κ′, i)

3. Sub-round Receive. Only processes that perform receive actions can take a
step in this sub-round. Such processes become inactive at the end of this sub-
round. Delivered messages are removed from corresponding message buffers.
To define the semantics of this sub-round, we use the following predicates:

FrozenR(ψ1, ψ2, i) � ∧ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
∧ active(κ, i) = active(κ′, i)
∧ ∀s ∈ 1..N : buf (κ, s, i) = buf (κ′, s, i)

Receiving(κ, κ′, i, S1, . . . , SN) � ∧ ∀s ∈ 1..N : Ss �⊆ buf (κ′, s, i)
∧ ∀s ∈ 1..N : buf (κ′, s, i) ∪ Ss = buf (κ, s, i)

∧ lstate(κ, i)
crcv (S1,...,SN)−−−−−−−−−−→ lstate(κ′, i)

Formally, for κ, κ′ ∈ CN , we have κ
Rcv−−→ κ′ if the following constraints hold:

(a) ∀i ∈ 1..N : ¬Enabled(κ, i,Locrcv) ⇔ FrozenR(κ, κ′, i)
(b) ∀i ∈ 1..N : Enabled(κ, i,Locrcv)

⇔ ∃S1, . . . , SN ⊆ Msg : Receiving(κ, κ′, i, S1, . . . , SN)
(c) ∀i ∈ 1..N : Enabled(κ, i,Locrcv) ⇒ ¬active(κ′, i)

4. Sub-round Computation. Only processes that perform internal computation
actions can take a step in this sub-round. Such processes become inactive at
the end of this sub-round. Every message buffer is unchanged. Formally, for
κ, κ′ ∈ CN , we have κ

Comp−−−→ κ′ if the following constraints hold:
(a) ∀i ∈ 1..N : Enabled(κ, i,Loccomp) ⇔ lstate(κ, i)

comp−−−→ lstate(κ′, i)
(b) ∀i ∈ 1..N : ¬Enabled(κ, i,Loccomp) ⇔ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
(c) ∀s, r ∈ 1..N : buf (κ, s, r) = buf (κ′, s, r)
(d) ∀i ∈ 1..N : Enabled(κ, i,Loccomp) ⇒ ¬active(κ′, i)

Remark 1. Observe that the definitions of κ
Snd−−→ κ′, and κ

Rcv−−→ κ′, and κ
Comp−−−→ κ′

allow κ = κ′, that is stuttering. This captures, e.g. global transitions in [5,11]
where no process sends a message.

4 Cutoff Results

Let A be a symmetric point–to–point algorithm. In this section, we show two
cutoff results for the number of processes in the algorithm A. With these cutoff
results, one can verify the strong completeness and eventually strong accuracy
of the failure detector of [5] by model checking two instances of sizes 1 and 2.

Theorem 1. Let A be a symmetric point–to–point algorithm. Let G1 and GN

be instances of 2 and N processes respectively for some N ≥ 1. Let Path1 and
PathN be sets of all admissible sequences of configurations in G1 and in GN ,
respectively. Let ω{i} be a LTL\X formula in which every predicate takes one of
the forms: P1(i) or P2(i, i) where i is an index in 1..N . Then,

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 339

(
∀πN ∈ PathN : GN , πN |=

∧

i∈1..N

ω{i}
)

⇔
(
∀π1 ∈ Path1 : G1, π1 |= ω{1}

)
.

Theorem 2. Let A be a symmetric point–to–point algorithm. Let G2 and GN

be instances of 2 and N processes respectively for some N ≥ 2. Let Path2 and
PathN be sets of all admissible sequences of configurations in G2 and in GN ,
respectively. Let ψ{i,j} be an LTL\X formula in which every predicate takes one
of the forms: Q1(i), or Q2(j), or Q3(i, j), or Q4(j, i) where i and j are different
indexes in 1..N . It follows that:

(∀πN ∈ PathN : GN , πN |=
i�=j∧

i,j∈1..N

ψ{i,j}
) ⇔ (∀π2 ∈ Path2 : G2, π2 |= ψ{1,2}

)
.

Since the proof of Theorem 1 is similar to the one of Theorem 2, we focus
on Theorem 2 here. Its proof is based on the symmetric characteristics in the
system model and correctness properties, and on the following lemmas.

– Lemma 1 says that every transposition on a set of process indexes 1..N pre-
serves the structure of the process template UN .

– Lemma 2 says that every transposition on a set of process indexes 1..N pre-
serves the structure of the global transition system GN for every N ≥ 1.

– Lemma 5 says that G2 and GN are trace equivalent under a set AP{1,2} of
predicates that take one of the forms: Q1(i), or Q2(j), or Q3(i, j), or Q4(j, i).

In the following, we present definitions and constructions to prove these lemmas.
We end this section with the proof sketch of Theorem 2.

4.1 Index Transpositions And symmetric point–to–point systems

We first recall the definition of transposition. Given a set 1..N of indexes, we
call a bijection α : 1..N → 1..N a transposition between two indexes i, j ∈ 1..N
if the following properties hold: α(i) = j, and α(j) = i, and ∀k ∈ 1..N : (k �=
i ∧ k �= j) ⇒ α(k) = k. We let (i ↔ j) denote a transposition between two
indexes i and j.

The application of a transposition to a template state is given in Definition 1.
Informally, applying a transposition α = (i ↔ j) to a template state ρ gener-
ates a new template state by switching only the evaluation of rcvd and lvar
at indexes i and j. The application of a transposition to a global configuration
is provided in Definition 2. In addition to process configurations, we need to
change message buffers and control components. We override notation by writ-
ing αS(ρ) and αC(κ) to refer the application of a transposition α to a state ρ
and to a configuration κ, respectively. These functions αS and αC are named a
local transposition and a global transposition, respectively.

340 T.-H. Tran et al.

Definition 1 (Local Transposition). Let UN be a process template with pro-
cess indexes 1..N , and ρ = (�, S1, . . . , SN , d1, . . . , dN) be a state in UN . Let
α = (i ↔ j) be a transposition on 1..N . The application of α to ρ, denoted as
αS(ρ), generates a tuple (�′, S′

1, . . . , S
′
N , d′

1, . . . , d
′
N) such that

1. � = �′, and Si = S′
j, and Sj = S′

i, and di = d′
j and dj = d′

i, and
2. ∀k ∈ 1..N : (k �= i ∧ k �= j) ⇒ (Sk = S′

k ∧ dk = d′
k)

Definition 2 (Global Transposition). Let GN be a global system with process
indexes 1..N , and κ be a configuration in GN . Let α = (i ↔ j) be a transposition
on 1..N . The application of α to κ, denoted as αC(κ), generates a configuration
in GN which satisfies following properties:

1. ∀i ∈ 1..N : lstate(αC(κ), α(i)) = αS(lstate(κ, i)).
2. ∀s, r ∈ 1..N : buf (αC(κ), α(s), α(r)) = buf (κ, s, r)
3. ∀i ∈ 1..N : active(αC(κ), α(i)) = active(κ, i)

Since the content of every message in Msg does not have indexes of the receiver
and sender, no transposition affects the messages. We define the application of
a transposition to one of send, compute, crash, and stutter template transitions
return the same transition. We extend the application of a transposition to a
receive template transition as in Definition 3.

Definition 3 (Receive-transition Transposition). Let UN be a process
template with process indexes 1..N , and α = (i ↔ j) be a transposition on
1..N . Let crcv(S1, . . . , SN) be a transition in UN which refers to a task with
a receive action. We let αR(crcv(S1, . . . , SN)) denote the application of α to
crcv(S1, . . . , SN), and this application returns a new transition crcv(S′

1, . . . , S
′
N)

in UN such that:

1. Si = S′
j, and Sj = S′

i, and
2. ∀k ∈ 1..N : (k �= i ∧ k �= j) ⇒ (Sk = S′

k ∧ dk = d′
k)

We let αU (UN) and αG(GN) denote the application of a transposition α
to a process template UN and a global transition GN , respectively. Since these
definitions are straightforward, we skip them in this paper. We prove later that
αS(UN) = UN and αC(GN) = GN (see Lemmas 1 and 2).

Lemma 1 (Symmetric Process Template). Let UN = (QN ,TrN ,
RelN , q0

N) be a process template with indexes 1..N . Let α = (i ↔ j) be a trans-
position on 1..N , and αS be a local transposition based on α (from Definition 1).
The following properties hold:

1. αS is a bijection from QN to itself.
2. The initial state is preserved under αS, i.e. αS(q0

N) = q0
N .

3. Let ρ, ρ′ ∈ UN be states such that ρ
crcv (S1,...,SN)−−−−−−−−−−→ ρ′ for some sets of messages

S1, . . . , SN ∈ Set(Msg). It follows αS(ρ)
αR(crcv(S1,...,SN))−−−−−−−−−−−−−→ αS(ρ′).

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 341

4. Let ρ, ρ′ be states in UN , and tr ∈ TrN be one of send, local computation,
crash and stutter transitions such that ρ

tr−→ ρ′. Then, αS(ρ) tr−→ αS(ρ′).

Lemma 2 (Symmetric Global System). Let UN = (QN ,TrN ,RelN , q0
N) be

a process template, and GN =
(CN , TN , RN , g0

N

)
be a global transition system

such that the process indexes is a set 1..N , and every process is instantiated with
UN . Let α be a transposition on 1..N , and αC be a global transposition based on
α (from Definition 2). The following properties hold:

1. αC is a bijection from CN to itself.
2. The initial configuration is preserved under αC , i.e. αC(g0

N) = g0
N .

3. Let κ and κ′ be configurations in GN , and tr ∈ TN be either a internal tran-
sition such that κ

tr−→ κ′. It follows αC(κ) tr−→ αC(κ′).
4. Let κ and κ′ be configurations in GN . If κ � κ′, then αC(κ) � αC(κ′).

4.2 Trace Equivalence of G2 and GN Under AP{1,2}

Let G2 and GN be two global transition systems whose processes follow the
same symmetric point–to–point algorithm. In the following, our goal is to prove
Lemma 5 that says G2 and GN are trace equivalent under a set AP{1,2} of predi-
cates which take one of the forms: Q1(1), Q2(2), Q3(1, 2), or Q4(2, 1). To do that,
we first present two construction techniques: Construction 1 to construct a state
in U2 from a state in UN , and Construction 2 to construct a global configuration
in G2 from a given global configuration in GN . Then, we present two Lemmas 3
and 4. These lemmas are required in the proof of Lemma 5.

To keep the presentation simple, when the context is clear, we simply write
UN , instead of fully UN =

(
QN ,TrN ,RelN , q0

N

)
. We also write GN , instead of

fully GN =
(CN , TN , RN , g0

N

)
.

Construction 1 (State Projection). Let A be an arbitrary symmetric
point–to–point algorithm. Let UN be a process template of A for some N ≥
2, and ρN be a process configuration of UN . We construct a tuple ρ2 =
(pc1, rcvd1, rcvd2, v1, v2) based on ρN and a set {1, 2} of process indexes in the
following way:

1. pc1 = pc(ρN).
2. For every i ∈ {1, 2}, it follows rcvdi = rcvd(ρN , i).
3. For every i ∈ {1, 2}, it follows vi = lvar(ρN , i).

Construction 2 (Configuration Projection). Let A be a symmetric point–
to–point algorithm. Let G2 and GN be two global transitions of two instances of
A for some N ≥ 2, and κN ∈ CN be a global configuration in GN . We construct
a tuple κ2 = (s1, s2, buf1

1 , buf2
1 , buf1

2 , buf2
2 , act1, act2) based on the configuration

κN and a set {1, 2} of indexes in the following way:

1. For every i ∈ {1, 2}, a component si is constructed from lstate(κN , i) with
Construction 1 and indexes {1, 2}.

342 T.-H. Tran et al.

2. For every s, r ∈ {1, 2}, it follows bufr
s = buf (κN , s, r).

3. For every process i ∈ {1, 2}, it follows acti = active(κN , i).

Note that a tuple ρ2 constructed with Construction 1 is a state in U2, and
a tuple κ2 constructed with Construction 2 is a configuration in G2. We call ρ2

(and κ2) the index projection of ρN (and κN) on indexes {1, 2}. The following
Lemma 3 says that Construction 2 allows us to construct an admissible sequence
of global configurations in G2 based on a given admissible sequence in GN .

Lemma 3. Let A be a symmetric point–to–point algorithm. Let G2 and GN be
two transition systems such that all processes in G2 and GN follow A, and N ≥
2. Let πN = κN

0 κN
1 . . . be an admissible sequence of configurations in GN . Let

π2 = κ2
0κ

2
1 . . . be a sequence of configurations in G2 such that κ2

k is the index
projection of κN

k on indexes {1, 2} for every k ≥ 0. Then, π2 is admissible in G2.

The proof of Lemma 3 is based on the following observations:

1. The application of Construction 1 to an initial template state of UN constructs
an initial template state of U2.

2. Construction 1 preserves the template transition relation.
3. The application of Construction 2 to an initial global configuration of GN

constructs an initial global configuration of G2.
4. Construction 2 preserves the global transition relation.

Moreover, Lemma 4 says that given an admissible sequence π2 = κ2
0κ

2
1 . . . in

G2, there exists an admissible sequence πN = κN
0 κN

1 . . . in GN such that κ2
i is

the index projection of κN
i on indexes {1, 2} for every 0 ≤ i.

Lemma 4. Let A be an arbitrary symmetric point–to–point algorithm. Let G2

and GN be global transition systems of A for some N ≥ 2. Let π2 = κ2
0κ

2
1 . . . be an

admissible sequence of configurations in G2. There exists an admissible sequence
πN = κN

0 κN
1 . . . of configurations in GN such that κ2

i is index projection of κN
i

on indexes {1, 2} for every i ≥ 0.

Lemma 5. Let A be a symmetric point–to–point algorithm. Let G2 and GN be
its instances for some N ≥ 2. Let AP{1,2} be a set of predicates that take one
of the forms: Q1(1), Q2(2), Q3(1, 2) or Q4(2, 1). It follows that G2 and GN are
trace equivalent under AP{1,2}.

4.3 Cutoff Results Of symmetric point–to–point algorithms

In the following, we prove the cutoff result in Theorem 2 (see Page 10). A proof
of another cutoff result in Theorem 1 is similar.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 343

Proof sketch of Theorem 2. We have
(∀πN ∈ PathN : GN , πN |=

i�=j∧

i,j∈1..N

ψ{i,j}
)

⇔ (∧i�=j
i,j∈1..N (∀πN ∈ PathN : GN , πN |= ψ{i,j})

)
. Let i and j be two pro-

cess indexes in a set 1..N such that i �= j. It follows that α1 = (i ↔ 1)
and α2 = (j ↔ 2) are transpositions on 1..N (*). By Lemma 2, we have:
(i) ψ{α1(i),α2(j)} = ψ{1,2}, and (ii) α2((α1(GN))) = α2(GN) = GN , and (iii)
α2((α1(g0

N))) = α2(g0
N) = g0

N .
Since ψ{i,j} is an LTL\X formula, Aψ{i,j} is a CTL*\X formula where A

is a path operator in CTL*\X (see [9]). By the semantics of the operator A,
it follows ∀πN ∈ PathN : GN , πN |= ψ{i,j} if and only if GN , g0

N |= Aψ{i,j}. By
point (*), it follows GN , g0

N |= Aψ{i,j} if and only if GN , g0
N |= Aψ{1,2}. We have

that GN , g0
N |= ∧i�=j

i,j∈1..N Aψ(i, j) if and only if GN , g0
N |= Aψ(1, 2), because both

i and j are arbitrary and different. By the semantics of the operator A, we have
GN , g0

N |= Aψ(1, 2) if and only if ∀πN ∈ PathN : GN , πN |= ψ(1, 2). It follows
∀πN ∈ PathN : GN , πN |= ψ(1, 2) if and only if ∀π2 ∈ Path2 : G2, π2 |= ψ(1, 2) by
Lemma 5. Then, Theorem 2 holds. ��

5 Experiments

To demonstrate the feasibility of our approach, we specified the failure detec-
tor [5] in TLA+ [22] 1. Our specification follows the model of computation in
Section 3. It is close to the pseudo-code in 1, except that these tasks are orga-
nized in a loop: task 1, task 2, and task 3. Moreover, our encoding contains the
upper bounds on transmission time of messages and on the relative speeds of
different processes, called Δ and Φ respectively. The user can verify our speci-
fication with different values of Δ and Φ by running model checkers TLC [28]
and APALACHE [20]. Our experiments were set up in the synchronous case
where Δ = 0 and Φ = 1. To reduce the state space, we apply abstractions to a
global clock, local clocks, and received messages. Our abstractions are explained
in detail in our TLA+ specification.

We ran the following experiments on a laptop with a core i7-6600U CPU and
16GB DDR4. Table 1 presents the results in model checking the failure detec-
tors [5] in the synchronous model. From the theoretical viewpoint, an instance
with N = 1 is necessary, but we show only interesting cases with N ≥ 2 in
Table 1. (We did check an instance with N = 1, and there are no errors in
this instance.) The strong accuracy property is the following safety property:
G(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q)). The column
“depth” shows the maximum execution length used by our tool as well as the
maximum depth reached by TLC while running breadth-first search. For the
second and forth benchmarks, we used the diameter bound that was reported
by TLC, which does exhaustive state exploration. Hence, the verification results
with APALACHE are complete. The abbreviation “TO” means timeout of 10 h.

1 Our specification is available at https://github.com/banhday/netys20.git.

https://github.com/banhday/netys20.git

344 T.-H. Tran et al.

Table 1. Checking the failure detector [5] in the synchronous case

Property N Tool Runtime Memory Depth

1

Strong accuracy

2 TLC 2 s 112M 36

2 2 APALACHE 1 m 1.12G 37

3 4 TLC 17 m 774 M 40

4 4 APALACHE 72 m 2.27G 41

5 6 TLC TO 943M 2

6 6 APALACHE TO 3M 31

7
Eventually strong

accuracy

2 TLC 2 s 140M 36

8 4 TLC 20 m 683M 40

9 6 TLC TO 839M 2

10

Strong completeness

2 TLC 2 s 134 M 36

11 4 TLC 23 m 678 M 40

12 6 TLC TO 789M 3

13

Inductive invariant

2 TLC 20 s 192M

14 2 APALACHE 1 m 674M

15 3 TLC TO 1.1G

16 3 APALACHE 3 m 798M

17 4 APALACHE 31 m 1.14G

The inductive invariant is on the transition �, and contains type invariants,
constraints on the age of in-transit messages, and constraints on when a process
executes a task.

6 Conclusion

We have introduced the class of symmetric point-to-point algorithms that cap-
ture some well-known algorithms, e.g. failure detectors. The symmetric point-
to-point algorithms enjoy the cutoff property. We have shown that checking
properties of the form ω(i) has a cutoff of 1, and checking properties of the form
ψ(i, j) has a cutoff of 2 where ω(i) is an LTL\X formula whose predicates inspect
only variables with a process index i, and ψ(i, j) is an LTL\X formula whose
predicates inspect only variables with two different process indexes i �= j. We
demonstrated the feasibility of our approach by specifying and model checking
the failure detector by Chandra and Toueg under synchrony with two model
checkers TLC and APALACHE.

We see two directions for future work. The first is to find new cutoffs for
checking other properties in symmetry point-to-point algorithms. For example,
given a correctness property with k universal quantifiers over process index vari-
ables, we conjecture that checking k small instances whose size is less than or
equal to k is sufficient to reason about the correctness of all instances. The second

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 345

is to extend our results to the model of computation under partial synchrony.
This model has additional time constraints on message delay Δ and the relative
process speed Φ. Algorithms under partial synchrony are parameterized by Δ
and Φ. We explore techniques to deal with these parameters.

References

1. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. IPL 15, 307–309 (1986)

2. Bailis, P., Kingsbury, K.: The network is reliable. Queue 12(7), 20–32 (2014)
3. Bloem, R., et al.: Decidability of parameterized verification. Syn. Lect. Dist. Com-

put. Theory 6(1), 1–170 (2015)
4. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:

Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. CAV. LNCS 2404, 359–364 (2002)

7. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 4

8. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-
8 18

9. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model checking.
MIT press (2018)

10. Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in theheard-of
model. Archive of Formal Proofs 2012 (2012)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

12. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000). https://doi.org/10.1007/10721959 19

13. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache
coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol.
2860, pp. 247–262. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39724-3 22

14. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message
passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol.
3210, pp. 325–339. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30124-0 26

15. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. pp.
85–94 (1995)

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-540-78800-3_4
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/10721959_19
https://doi.org/10.1007/978-3-540-39724-3_22
https://doi.org/10.1007/978-3-540-39724-3_22
https://doi.org/10.1007/978-3-540-30124-0_26
https://doi.org/10.1007/978-3-540-30124-0_26

346 T.-H. Tran et al.

16. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: Proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

17. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

18. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

19. Kingsbury, K.: Jepsen: Testing the partition tolerance of postgresql, redis, mongodb
and riak, 2013

20. Konnov, I., Kukovec, J., Tran, T.H.: TLA+ model checking made symbolic. Pro-
ceedings of the ACM on Programming Languages 3(OOPSLA), 1–30 (2019)

21. Kurshan, R.P., McMillan, K.: A structural induction theorem for processes. In:
Proceedings of the eighth annual ACM Symposium on Principles of distributed
computing. pp. 239–247 (1989)

22. Lamport, L.: Specifying systems: The TLA+ language and tools for hardwareand
software engineers. Addison-Wesley (2002)

23. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 12

24. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Comm. ACM 58(4), 66–73 (2015)

25. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 7

26. Schiper, N., Rahli, V., Van Renesse, R., Bickford, M., Constable, R.L.: Devel-
oping correctly replicated databases using formal tools. In: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. pp.
395–406. IEEE (2014)

27. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

28. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1007/3-540-45319-9_7
https://doi.org/10.1007/3-540-48153-2_6

	Cutoffs for Symmetric Point-to-Point Distributed Algorithms
	1 Introduction
	2 Motivating Example
	3 Model of Computation
	3.1 The Process Template
	3.2 Modeling the Distributed System

	4 Cutoff Results
	4.1 Index Transpositions And symmetric point–to–point systems
	4.2 Trace Equivalence of G2 and GN Under AP{1, 2}
	4.3 Cutoff Results Of symmetric point–to–point algorithms

	5 Experiments
	6 Conclusion
	References

