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Abstract. In order to support location-based services, vehicles share
their location with a server to receive relevant data. Revealing a vehi-
cle’s location compromises its privacy. One way to reduce this problem
is obfuscating the vehicle’s location by adding artificial noise. However,
this increases the area where the true location of the vehicle may be.
Hence, under limited available bandwidth, the server will provide fewer
data relevant to the vehicle’s true location, reducing the effectiveness of
the location-based service. To compensate for this reduction, we allow
that the data relevant to a vehicle is also shared through direct, ad hoc
communication between neighboring vehicles. Through such Vehicle-to-
Vehicle (V2V) cooperation, the impact of location obfuscation is miti-
gated. In this set up, and assuming that the data served may have differ-
ent impact levels, we propose and study a game that determines the data
subscription a vehicle should use, without explicit coordination among
them. The aim is maximizing the expected impact of the data received,
either directly from the server or via V2V. Our analysis and results show
that the proposed V2V cooperation and derived strategy lead to signifi-
cant performance increase compared to other uncoordinated approaches,
and largely alleviates the impact of location obfuscation.

Keywords: Floating Car Data · Location-based services · Location
privacy · V2V communication

1 Introduction

The vehicles of the future will be required to have increased awareness of their
environment, in order to assist the driver or to support autonomous driving.
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This awareness has typically been provided by sensors on the vehicles, which
measure vital data about the environment of the vehicle. The data provided by
these sensors is limited to the vehicle’s immediate environment, due to the sen-
sors’ inherent physical limitations (e.g., their range). Nevertheless, information
from locations away from a given vehicle may also be important to it (e.g., for
traffic safety, route planning, or navigation). To make such information available
to far away vehicles, passing vehicles may capture it through their own sensors,
and communicate it to a server using an appropriate communication infras-
tructure such as a cellular network. Then, the vehicles desiring to receive such
information indicate so to the server, and receive it via a similar infrastructure.
By sharing their local perception of the environment via a cellular infrastructure,
as described, vehicles can complement their local perception with distant data
provided by other vehicles.

In order for vehicles to get this, so-called, Floating Car Data (FCD), they
have to share their location with the server, which is usually assumed to be a
trusted entity. The server selects the relevant FCD for the vehicles using their
location, and distributes it accordingly. This continuous context and location
exchange with a server is a risk to the privacy of the vehicles. Consequently,
privacy-sensitive users either have to accept this risk, or turn off the option of
receiving FCD. Clearly, users that disable the reception of FCD cannot benefit
from location-based services and other services enabled by vehicular networks.
It is therefore desirable to have a mechanism that allows the reception of FCD
while preserving the location privacy of the user.

A technique that is often used to increase the privacy of a vehicle, is adding
random noise to its true location (obfuscation). Hence, instead of providing the
server with a position, the vehicle provides an area. (We will assume in the
rest of the paper that this type of obfuscation to increase privacy is used.)
A negative consequence of obfuscation is that the server cannot use the true
location to deliver its best FCD to a vehicle, and may hence send it useless data.
We assume that different data items may have different value (impact level) for a
vehicle. A vehicle subscribes to some impact level, and the server provides to the
vehicle all available data items with matching impact for the vehicle area. Since
the available bandwidth is limited, vehicles using obfuscation end up receiving
a smaller portion of data of a given impact that is useful to them. As a result,
location-based services would be less effectively provided to privacy-concerned
vehicles.

To alleviate this problem, and to increase the amount of location-relevant
data provided to a vehicle, we propose that neighboring vehicles can exchange
data through direct, ad hoc communication. That is, we assume Vehicle-to-
Vehicle (V2V) cooperation for exchanging local relevant data. We assume that
vehicles do not use location obfuscation with other neighboring vehicles, only
with the server, and hence the messages exchanged via V2V are all relevant
and useful. (Trying to hide a vehicle’s location to a neighbor seems point-
less, since the neighbor can “see” the vehicle with its local sensors.) Hence,
through V2V cooperation, the negative impact of location obfuscation could be
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mitigated to some extent. The use of V2V cooperation has also been considered
in [1] combined with vehicle clusters. As it will be discussed later and shown
in the results, cluster-based approaches are complex and suffer from connectiv-
ity problems, which reduces their performance. For these reasons, in this work
the V2V communication is not cluster-based but ad hoc through direct V2V
exchanges.

Notice that, without any coordination, neighboring vehicles are expected to
subscribe to the same high impact levels, which results in receiving overlapping
sets of data. This reduces the potential benefit of V2V cooperation. To prevent
that, we develop and study a game among the vehicles. This game drives vehi-
cles to subscribe to certain impact levels, so that the aforementioned overlap
is reduced. The design goal is to maximize the expected value of a utilization
function as shaped by the participating (neighboring) vehicles as well. Our anal-
ysis and results show that the proposed V2V cooperation scheme and derived
strategy lead to significant performance increase compared to non-cooperative
approaches, while alleviating the impact on privacy of location-based services.

Related Work. Several techniques have been introduced in the literature to
protect users’ privacy in vehicular networks. Some of the common techniques
include the use of pseudonyms [2–4], obfuscation [5,6], and the use of group
communications [7–9]. The first technique involves users taking on other iden-
tities (pseudonyms) to dissociate their actual identity from their data [10]. The
use of a single pseudonym is not very effective, and hence it is often required for
users to change pseudonyms periodically, to maintain their level of privacy [11].
Such pseudonym changes are usually done in mix zones where drivers can switch
pseudonyms [12]. These mix zones can be fixed [13] or specified dynamically [14].
However, the use of pseudonyms has been shown not to be effective against a
global eavesdropper [15], and especially in environments with low car density like
highways. Furthermore, the use of pseudonyms usually focuses on eavesdroppers
monitoring V2V communications and involves having to deal with a trusted (or
semi-trusted) server which coordinates the assignments of pseudonyms [8]. This
still involves trusting a central server, which is a risk in the case that an adver-
sary gets hold of such server. Our work focuses on the privacy of users in their
communications with the central server.

Likewise, obfuscation has been extensively used in privacy protection in
vehicular networks and location-based services. Obfuscation involves users pro-
viding (i) an inaccurate location, (ii) an imprecise region including their real
location, or (iii) a vague description of their location [16]. To quantify the effec-
tiveness of obfuscation, metrics like k-anonimity, which means that a user’s
shared location data makes it indistinguishable from k−1 other users, have been
introduced [17,18]. The imprecision added into the location of the user usually
leads to users getting less relevant data and, thus, a decrease in efficiency. Our
method mitigates against this decrease in performance by implicitly cooperating
with other vehicles to get relevant updates through V2V communication.

Game-theory has been applied to modeling aspects of privacy, especially in
mobile networks and location-based services [19,20], and in security and privacy
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assessment of vehicular networks [21]. Distinct from previous studies, our work
focuses on privacy of users in their communications with the server considering
the impact of the messages to the user. We adopt an obfuscation technique by
reporting a region instead of their exact location, and mitigate against the result-
ing reduction in performance by implicitly coordination the vehicles through a
game-theoretic approach, which maximizes the relevant data received by the
vehicles.

Contributions. The contributions of this work are the following. First, we intro-
duce privacy considerations in the management of FCD and reveal their impact
on location-based services: given a fixed bandwidth availability, some data may
not be forwarded to a vehicle due to location obfuscation. Second, in order to
alleviate this problem, we propose that vehicles cooperate and forward relevant
data to their neighboring vehicles, increasing in principle the data received by a
vehicle beyond what is directly received from the server. An ad-hoc, direct V2V
cooperation paradigm is employed instead of a cluster-based one, and we show
the high performance deterioration of the latter in a real vehicular networking
environment. Third, we develop and study of a game determining the strategies
(in terms of probabilities that a vehicle is forwarded by the server data of a
given impact level) that vehicles should follow, so that the expected utility is
maximized. This is shown to lead to a diversification of the data received directly
from the server by neighboring vehicles, and increases the effectiveness of V2V
cooperation. Finally, the aforementioned contributions are supported through
simulation evaluation.

Structure. The rest of the paper is as follows. In Sect. 2, we provide an overview
of the system model considered, and describe the influence of location privacy
on the network. In Sect. 3, we describe our proposed game theoretic approach for
privacy sensitive communication. In Sect. 4, we evaluate the performance of our
method. We conclude the paper in Sect. 5 with a discussion about our findings.

2 System Model

Definitions. We provide first an overview of the considered system model. We
assume a context-aware vehicular network, in which a central server transmits
context-sensitive messages to interested vehicles. In this network, time is assumed
to be slotted (a typical slot length is 1 s). Every vehicle has a limited (average)
bandwidth A (in bits per time slot) to receive these messages via a cellular
network. This assigned bandwidth is generally low compared to the maximum
(physically) available bandwidth, such that vehicles may exceed this bandwidth
temporarily (as long as the average consumed bandwidth matches the prede-
fined value). A message contains FCD as payload, as well as additional meta-
information such as the source location, generation time, and type of FCD. In
this work, we assume that FCD carry road-related information (e.g., accidents,
traffic jams, traffic flow information) that can be useful for improving the driv-
ing behavior of the vehicles in proximity. Let a(m) (in bits) denote the size of a
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message m, s(m) the source location, r(m) the radius of its dissemination area,
and μ(m) its impact (which depends on the type of FCD: an accident has gen-
erally higher impact than traffic flow information). As our bandwidth is limited,
the impact per utilized bandwidth is pivotal for our approach. Based on the
message impact μ(m) and the dissemination radius r(m), we divide messages
in nμ impact levels. For simplicity, we assume that every message m of impact
level i ∈ {1, . . . , nμ} has the same dissemination radius r(m) = ri and impact
μ(m) = μi. We assume that μi is the impact per bit assigned to impact level i.
When convenient, we use μnμ+1 = ∞.

A vehicle can control the reception of messages from the server by expressing
interest in certain impact levels and by providing a representation of its location.
More specifically, a vehicle wants to receive a message m if (i) it has expressed
interest in the corresponding impact level i of the message, and (ii) the vehicle’s
location is at most at distance ri from the source s(m) of the FCD. Let ai denote
the traffic load of messages of impact level i (in bits per time slot) expected for
the vehicle if the provided location is accurate. A vehicle is either interested in
an impact level or not, i.e., receives either all or no messages of this impact level.
This interest can be changed dynamically at the beginning of every time slot.

Depending on the assumed privacy-sensitivity (referred to as privacy-level)
φ ∈ Φ of a vehicle v, the aforementioned representation of the location may be
accurate or may be imprecise. We implement this imprecision by providing only
a (circular) area in which the vehicle is certainly located (uniformly distributed),
without actually revealing the exact location to the server. The privacy level φ
chosen by the respective vehicle determines the radius rφ of this area. That
imprecise representation of the location increases the load of received messages
due to the less accurate server-side filtering. To capture the additional bandwidth
consumption, let aφ,i ≥ ai denote the expected load (in bits) of messages of
impact level i for a vehicle with privacy level φ.

The central server uses the announced interest of the vehicles to actively push
new messages (i.e., messages containing yet unknown FCD.) via the cellular
network to them. Since the available bandwidth is assumed to be limited, a
vehicle aims to maximize the total impact of the received messages, which is
achieved by dropping low-impact messages if the bandwidth is insufficient. To
maximize that total impact of received messages, vehicles may cooperate to
share bandwidth for the reception of messages; i.e., vehicles can locally broadcast
messages, received via the cellular network, without additional costs to notify
vehicles in their proximity. Thus, not every vehicle needs to receive all messages
of its interest via the limited cellular bandwidth, as these messages might be
provided by its neighbors.

Influence of Location Obfuscation. In the following, we provide an insight on
the influence of privacy in our model. Each privacy level φ > 1 adds a certain
level of imprecision to the provided location, while φ = 1 refers to no privacy-
sensitivity. The privacy-sensitivity and, thus, location imprecision increases with
φ and reduces the accuracy of the context-based message filtering at the server-
side. Thus, a vehicle receives messages not relevant for its current context, while
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its share of relevant messages is reduced. This influences the number of received
messages nφ,i and their expected impact per bit μφ,i for a privacy state φ and
an impact level i. The number of messages received typically increases with
increasing privacy level, while the expected impact per bit of a message decreases.
We reflect this change for every impact level i by the adaptation factor ρφ,i as
follows.

aφ,i = ai · ρφ,i μφ,i =
μi

ρφ,i
(1)

ρφ,i depends on the context-sensitivity of the distributed messages for a vehicle of
privacy level φ receiving messages with impact level i. For non-context-sensitive
messages, ρφ,i = 1,∀φ ∈ Φ. For context-sensitive of messages, i.e., messages with
a specific distribution-area with radius ri, ρφ,i ≥ 1,∀φ ∈ Φ. These statements
are proven in Theorem 1.

Theorem 1. The adaptation factor for a network with uniformly distributed
messages is ρφ,i = (rφ/ri + 1)2 for a circular geocast-area and a circular location-
imprecision, where ri is the radius of the geocast-area of the message of impact
level i and rφ is the radius of the location-imprecision area of privacy-level φ.

Proof. Without location privacy, the vehicle receives all messages with a maxi-
mum distance of ri to its current location. Thus, area of interest for the vehicle is
π · r2i . If the vehicle reduces the precision of its location by hiding inside an area
of radius rφ, the server will need to transmit all messages within a distance of
rφ + ri from the center of the area to ensure that the vehicle receives all relevant
messages. The size of this area is π · (rφ + ri)2. This leads to ρφ,i = (rφ/ri + 1)2.

3 Game-Theoretic Model for Privacy-Sensitive
Communication

To enhance the performance of our impact-aware vehicular network, we employ
a game-theoretic model with the aim to maximize the sum of impact of the
received messages. Our innovative approach relies only on the number nφ of
vehicles of each privacy-level φ in proximity to find a mixed Nash-optimal solu-
tion for our developed game-theoretic model, i.e., vehicles receive messages with
a certain probability. In our game, each actor (vehicle) aims to find the strat-
egy (receive messages in a certain impact-range via the cellular network) that
maximizes its utility (sum of impact values of all received messages, directly via
cellular or from the neighbors) while sticking to cellular bandwidth constraints.
This game is played periodically in every time slot to adjust the vehicles behavior
to environmental changes, i.e. changes in the number of neighbors in proximity
and changes in number of messages. Notice that vehicles are assumed to coop-
erate; thus, a vehicle might additionally receive messages directly by vehicles in
proximity. The intuition behind this game model is that high-impact messages
are generally prioritized, as their bandwidth usage is more efficient compared
to low-impact messages. Thus, vehicles may rely on their neighbors to provide
some high-impact messages to them, as a number of neighbors aims to receive
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these high-impact messages. These vehicles can then use a part of their avail-
able cellular bandwidth to receive low-impact messages and share these with
their neighbors. The idea is similar to cooperative caching: Instead of storing
all high-demand message at every local cache, some nodes fetch low-demand
messages instead and satisfy the request of high-demand messages from nearby
cooperative caches [22].

The vehicles are the only actors in this game; the server is not directly
involved, but only determines the set of receivers of messages based on the
strategies chosen by the vehicles. For this purpose, the vehicles share their strat-
egy in the form of subscriptions with the server. The strategy is represented as
a vector pφ with nμ probability entries pφ,i with i ∈ {1, . . . , nμ}, and depends
on the chosen privacy level φe of the vehicle. Each entry pφ,i refers to the prob-
ability of the tagged vehicles to receive messages of the corresponding impact
level. Additionally, 0 ≤ pφ,i ≤ 1,∀pφ,i ∈ pφ . For the assignment of messages
to an impact level, we use the impact μi. Note that μi does not depend on the
privacy level φ. The privacy-dependent message impact μφ,i is only used for the
calculation of the utility of a vehicle. In the calculation, pφ needs to be chosen
such that Eq. 2 holds, with aφ,i being the expected number of bits in the received
messages of impact level i and privacy level φ according to Eq. 1, and A being
the usable bandwidth.

nμ∑

i=1

aφ,i · pφ,i ≤ A (2)

Notice that this differs from previous work, like [1], in which the vehicle
is intended to receive all messages in the set {m|μi ≤ μ(m)}. The advantage
of our new model is the additional flexibility provided by removing some of
the message redundancy among neighboring vehicles, which improves the total
impact of received messages (via cellular and direct neighbor forwarding) by
each vehicle.

Each vehicle aims at maximizing its utility, which is defined in a way that
captures the impact of the messages received. The utility used in this paper is
defined in Eq. 3, and is based on the messages sent Msnt, the messages received
Mrcv, and the impact μ(m) of every message m. I{m∈Mrcv} is the indicator
function of whether a message m has been received by the vehicle.

u =
∑

m∈Msnt

μ(m) · a(m) · I{m∈Mrcv} (3)

As the probability of a vehicle receiving a message depends on pφ , we derive
the expectation of the utility based on Eq. 3. For this purpose, we assume that
the environment of each vehicle is similar, so that the strategies of two vehicles
with the same privacy level are the same. Thus, the strategy of every privacy
level can be calculated by every vehicle in proximity, which is the basis of our
offloading approach. Thus, we only use the strategies pφ along with the number
nφ of vehicles for each privacy level φ to calculate the probability of receiving
a message either via the cellular network or from one of the neighbors. The
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probability p(μi) to receive a message via any interface (cellular or V2V) with
at impact level μi can be calculated as shown in Eq. 4. This formula assumes
that there is no loss in the network, i.e., every transmitted messages is received
by the intended receiver.

p(μi) = 1 −
∏

φ∈Φ

(1 − pφ,i)nφ (4)

We use the probability p(μi) to receive a message to derive the expected
utility u(φe,p1, . . . ,p|Φ|). This estimates the set of received messages Mrcv using
the expected amount of sent messages ai and the probability p(μi) to receive each
message. The resulting expected utility for the tagged vehicle is shown in Eq. 5.

u(φe,p1, . . . ,p|Φ|) =
nμ∑

i=1

μφe,i · aφe,i ·
⎡

⎣1 −
∏

φ∈Φ

(1 − pφ,i)nφ

⎤

⎦ (5)

When clear from context, we refer to u(φe,p0, . . . ,p|Φ|) as u to increase
readability. In the next section, we describe the process of deriving a utility-
maximizing strategy for the described game. The advantage of determining the
solution analytically is (i) the possibility to analyze and bound the effects of
location privacy to the system, and (ii) the lower computational complexity
compared to a non-linear solver.

3.1 Game-Theoretic Solution

We derive now the optimal strategy for a vehicle with privacy level φe, given that
the privacy level and number of vehicles in each privacy level in its environment
is known. For this purpose, we calculate the partial derivatives of the expected
utility u with respect to the probabilities of the tagged vehicle pφ,i. However, it
is important to consider the dependency between the probabilities pφ,i,∀φ ∈ Φ,
as Eq. 2 limits the possible values of pφ,i. (This approach would work similarly
with any other probability pφ,i|i �= 1.) We depict this dependency by expressing
pφ,1 depending on the other probabilities {pφ,i|i > 1} as shown in Eq. 6. Thus,
pφ,1 depends on all other probabilities, i.e., the derivative of pφ,1 with respect
to any probability pφ,i is not always non-zero, which leads to our optimization
problem.

pφ,1 ≤ A − ∑nμ

i=2 aφ,i · pφ,i

aφ,1
(6)

While the inequality is sufficient to guarantee the bandwidth requirements,
we will assume Eq. 6 to be an equation as higher values of pφ,1 cannot decrease
the utility. As there is no dependency between any pair of probabilities pφ,i and
pφ,j if i �= j ∧ i �= 1 ∧ j �= 1, the derivative of the utility with respect to pφ,l

depends only on pφ,1 and pφ,l for every l > 1 as shown in Eq. 7. Notice that
μφe,i · aφe,i = μi · ai according to Eq. 1. Additionally, we assume that pφe,l �= 0.
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We ensure that by considering the cases with pφe,l = 0,∀l ∈ {1, . . . , nμ} sepa-
rately as described in Sect. 3.2.

∂u

∂pφe,l
= μlalnφe

· (1 − pφe,l)nφe −1 · Pl(Φ \ {φe})

+μ1a1

(
∂pφe,1

∂pφe,l

)
nφe

· (1 − pφe,1)nφe −1 · P1(Φ \ {φe}) (7)

with Pj(Φ) =
∏

φ∈Φ(1 − pφ,j)nφ . Equation 1 displays the dependency of pφe,1

and pφe,l. Thus, the derivative of pφe,1 with respect to pφe,l can be calculated
according to Eq. 8.

∂pφe,1

∂pφe,l
= − aφe,l

aφe,1
(8)

By setting the derivative of the utility to 0, we determine all possibly optimal
solutions. This leads to Eq. 9 after some minor transformations. Notice that al

and nφe, are omitted as they are present on both sides of the equation.

μl

μ1
·
(

1 − pφe,l

1 − pφe,1

)nφe −1

· Pl(Φ \ {φe}) =
ρφe,l

ρφe,1
· P1(Φ \ {φe}) (9)

For a given impact level l, we divide the set of privacy levels Φ into Φ+(l),
which only contains privacy levels with pφ,l > 0, and Φ−(l), which contains
privacy levels with pφ,l = 0. This is necessary, as the derivative of the expected
utility with respect to pφ,l is always 0 if pφ,l = 0, thus, Eq. 9 does not hold.
However, Eq. 9 still contains pφ,l,∀φ ∈ Φ+(l) and pφ,1,∀φ ∈ Φ(l). We need to
replace pφ,l,∀φ ∈ Φ+(l) \ φe to calculate pφe,l. We can calculate the pφe,l using
Eq. 10, according to Theorem 2.

Theorem 2. For any probability pφe,l,∀φe ∈ Φ+(l) with nφe
> 1, we have that

μl

μ1
·

∏

φ∈Φ+(l)\{φe}

(
ρφe,l · ρφ,1

ρφ,l · ρφe,1

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+(l)

=
(

ρφe,l

ρφe,1

)
·P1(Φ−(l)) (10)

where n+(l) =
∑

φ∈Φ+(l) nφ−1. Hence, pφe,l depends only on pφe,1 and previously
calculated probabilities.

Proof. We use full induction to prove the correctness of Eq. 10. For the base-
case, we consider Φ = {φe}. Based on Eq. 9, we observe that P1(Φ \ φe) = 1
and Pl(Φ \ φe) = 1, as Φ contains only φe. Additionally, n+(l) = nφe

− 1 for
the same reason, which immediately leads to Eq. 10. For the induction step,
we use Φ+

+(l) ⊆ Φ+ and Φ+
−(l) ⊆ Φ+ as auxiliary variables with φ ∈ Φ+

+(l) ⊕
Φ+

−(l),∀φ ∈ Φ+(l), for which the index states if they have already been included
in the calculation. Based on Eq. 9 and Eq. 10, we can derive Eq. 11 associated
φe ∈ Φ+

−(l) as intermediate state of the calculation. Notice that φe ∈ Φ+
+ by
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assumption. Additionally, the privacy levels in Φ− are not considered on the left
side of the equation, as pφ,l = 0,∀φ ∈ Φ−.

μl

μ1
·

∏

φ∈Φ+
+(l)\{φe}

(
ρφe,l

ρφ,l

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+
+(l)

· Pl(Φ+
− \ {φe})

=
∏

φ∈Φ+
+(1)\{φe}

(
ρφe,1

ρφ,1

)nφ

· ρφe,l

ρφe,1
· P1({Φ−(l) ∪ Φ+

−(l)}) (11)

with n+
+(l) =

∑
φ∈Φ+

+(l) nφ − 1.

We aim to include a privacy level φn into Φ+
+. Thus, we solve Eq. 11 associated

with φn for pφn,l and insert it into Eq. 11 associated with all other φe ∈ Φ+
−(l)\φn

to obtain Eq. 12.

μl

μ1
·

∏

φ∈(Φ+
+(l)∪φn)\{φe}

(
ρφe,l

ρφ,l

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+
+(l)+nφn

· Pl(Φ+
− \ {φn})

=
∏

φ∈(Φ+
+(l)∪φn)\{φe}

(
ρφe,1

ρφ,1

)nφ

· ρφel

ρφe1
· P1({Φ−(l) ∪ Φ+

−(l)} \ φn) (12)

This equation is similar to our initial Eq. 11 if we set Φ+
+ = Φ+

+ ∪ φn and
Φ+

− = Φ+
−\φn. Additionally, it is evident that Eq. 12 is equal to Eq. 10 if Φ+

+ = Φ+

and Φ+
− = ∅. �

Equation 10 still contains pφe,1 as an auxiliary variable. When replacing
pφe,1 according to its definition in Eq. 6, we can derive the remaining variables
pφe,i,∀i > 1 only based on the other variables pφe,i,∀i > 1. For that purpose,
we introduce the variable Λl with 1 < l ≤ nμ as defined in Eq. 14, which encap-
sulates the constant values and the dependency on other privacy levels φ for
readability. Thus, we can transform Eq. 10 to Eq. 13 by taking the n+(l)-th root
and replacing pφe,1.

1 − pφe,l =

[
1 −

(
A

aφe,1
−

nμ∑

i=2

aφe,i · pφe,i

aφe,1

)]
· Λl (13)

with

Λi = n+(i)

√√√√
(

μ1

μi

)
·
(

ρφe,i

ρφe,1

)
·

∏

φ∈Φ+(l)\{φe}

(
ρφ,i · ρφe,1

ρφ,1 · ρφe,i

)nφ

·
∏

φ∈Φ−(i)

(1 − pφ,1)nφ

(14)
The equation system described by Eq. 13 for all 2 ≤ l ≤ nμ cannot be solved

without considering the dependency on the other privacy levels encapsulated in
Λl. However, this dependency is hard to resolve except for some special cases,
as it removes the linearity from Eq. 13. Thus, we assume that Λl is constant for
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Algorithm 1: Determining the optimal strategy for all privacy-levels.
recal(. . .) recalculates pφe,i based on the current values of pφ,i. ε is the
infinitesimal.
Result: pφ,i, ∀φ ∈ Φ, i ∈ {1, . . . , nμ}

1 pφ,i ← 0, ∀φ ∈ Φ, i ∈ {1, . . . , nμ};
2 c ← ∞;
3 for i ← 1; c > ε; i ← (i mod |Φ|) + 1 do
4 tempj ← pi,j , ∀j ∈ {1, . . . , nμ};

5 recal(pi,j), ∀j ∈ {1, . . . , nμ};
6 c ← ∑nμ

j=1 |tempj − pi,j |;
7 end
8 return pφ,i, ∀φ ∈ Φ, i ∈ {1, . . . , nμ};

the calculation of pφe,l,∀l ∈ {2, . . . , nμ}. Thus, we can represent pφe,j �= 0 as
pφe,i �= 0 by subtracting the representation of pφe,i from the representation of
pφe,j according to Eq. 13 and obtain Eq. 15.

pφe,i = Λi

(
pφe,j − 1

Λj

)
+ 1 (15)

With this assumption, we can calculate every pφl,l with Eq. 16, which can
be derived from Eq. 13 and the representation of any pφe,i as pφe,j from Eq. 15.
Notice, that Λ1 = 1, as either pφ,1 = 0 (then 1 − pφ,1 = 1 and disappears), or
pφ,1 �= 0 (then φ /∈ Φ−(1)).

pφe,l =

[
A − ∑nμ

i=1|i�=l∧φe /∈Φ−(i) aφe,i

]
Λl

∑nμ

i=1|i�=l∧φe /∈Φ−(i) (aφe,i · Λi)
+ 1 (16)

Based on Eq. 16, we can determine the strategies for each privacy level using
Algorithm 1. This algorithm ensures that the initial error (induced by setting all
probabilities to 0) converges, i.e., the initial error constantly reduces for each
iteration of Algorithm 1. This algorithm converges immediately if there is no
inter-dependency between the privacy levels, i.e., if there is no other privacy
level φo | pφo,i = 0. If there is an inter-dependency, it converges due to three
factors: (i) In the calculation of pφ,1, all probabilities pφ,i with i > 1 are utilized,
thus, pφ,1 balances the error of the other probabilities. (ii) pφ,1 influences Λi

of all privacy levels in Φ−(i), but we can see that Λl in the nominator and Λi

in the denominator partially cancel out the error of each other in Eq. 16. (iii)
∃l, φ | nφ < n+(l), in which case the error in Λl gets reduced based on the errors
of the other privacy levels.

3.2 Deriving the Utility-Optimal Strategy

In the previous section, we assumed that every probability under consideration
is non-zero. To calculate the overall optimal strategy, we consider every possible
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combination of zero and non-zero probabilities of every privacy level, i.e., we
consider every possible combination of Φ+(l) and Φ−(l). That is, the compu-
tational complexity of our approach is O(2|Φ|·nμ), i.e., is exponential with the
number of privacy levels |Φ| and the number of impact levels nμ. This exponen-
tial growth is justified by the separate consideration of zero probabilities, which
leads to 2 tries per probability. While an exponential growth is generally bad,
we need to remember the limited size of |Φ| and nμ. As every single computa-
tion of probabilities is very fast, the total computation time of the probabilities
remains comparably small (in our experiments, it stayed around 100 ms). In the
calculation, we set the probabilities of all pφ,l = 0 | φ ∈ Φ−(l) and only calculate
the remaining probabilities with our approach proposed in the previous section.
The solution found has certain properties.

Optimality. For each possible set of Φ+(j),∀j ∈ {1, . . . , nμ}, the partial deriva-
tives of the utility with respect to all probabilities are 0, i.e., are either local
optima or saddle points. To prove that the found solutions are global optima,
we need to ensure that there is no other optimum with a higher utility than the
found solution. For this purpose, we investigate on the second derivative of the
utility function.

∂2u

∂2pφe,l
= −μl · Ψl − μ1 · al

a0
·
(

− ρφe,l

ρφe,1

)2

· Ψ1 (17)

with Ψj = al · nφe
· (nφe

− 1) · (1 − pφe,l)nφe −2 · Pj(φ ∈ Φ \ {φe}).
As Ψi, μi, and ai are non negative for all i, the second derivative of the utility

with respect to any probability pφe,l is always smaller or equal to 0. Thus, the
expected utility presented in Eq. 5 is concave. This guarantees that the found
solution maximizes the utility, but is not necessarily unique, i.e., there might be
other solutions with similar utility.

Stability. The game solution found is a Nash equilibrium, as shown in the fol-
lowing theorem (the proof is omitted for space limitation).

Theorem 3. The solution of our non-cooperative game shown in Eq. 16 is a
Nash equilibrium, i.e., no vehicle has an incentive to deviate from the found
solution.

Observe that this equilibrium is only reached if every vehicle is aware that
its neighbors follow the same strategy.

4 Evaluation

In this section, we evaluate the performance of our approach in a realistic vehicu-
lar network under varying environmental conditions. For this purpose, we utilize
the vehicular extension of the Simonstrator framework [23] in conjunction with
SUMO [24] to simulate a vehicular network in Cologne [25]. We compare our



Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 23

approach with state-of-the-art methods for cooperative communication in large-
scale vehicular networks and non-cooperative uncoordinated approaches. In this
large-scale vehicular network, messages are provided based on the current loca-
tion of the vehicle (considering its privacy restrictions).

In our simulation, we generate messages randomly in an area of roughly
220 × 220 km2, while the movement of vehicles and their networking is only
simulated in an area of 2 × 2 km2, to reduce the computational overhead. As
all events with a possible influence to the network are simulated, we accurately
model the message load in a large-scale vehicular network. Unless otherwise said,
the bandwidth A is set to 10% of the total required bandwidth. We use messages
of 4 impact levels (1, 10, 100, 1000), with frequencies (90%, 9%, 0.9%, 0.1%) and
ranges (10 km, 1 km, 100 km, 100 km), respectively. The approaches that will be
evaluated and compared are the following.

– Game-Theoretic Privacy-Sensitive Cooperation (GTP). This is our approach
proposed in Sect. 3, which relies on implicit coordination between vehicles.

– No Cooperation (NC). The No-Cooperation (NC) approach does not consider
cooperation between vehicles. Thus, vehicles using the NC approach receive
similar messages as their neighbors, i.e., they do not share their messages.

– Clustering with perfect failure detection (GK). Clustering is used as follows.
A vehicle is chosen as cluster-head, which is the only one communicating
directly with the server. The cluster-head distributes the received messages
to the vehicles in proximity via V2V communication. In the GK approach
we assume that the disconnection of the cluster-head (moving out of range)
is immediately detected. GK is used as an (unrealistic) upper bound for the
performance of our approach.

– Clustering without perfect failure detection (CL). CL is similar to GK, with
the exception that the detection of cluster-head disconnections is now imper-
fect. Thus, the vehicles need to wait for a timeout until they detect it and
reorganize the cluster. This approach is more realistic than GK.

We use two metrics to evaluate the performance of our approach: the achieved
relative utility and the used bandwidth. The achieved relative utility measures the
performance of the network, i.e., how much data is provided to a vehicle in the
network. This metric is between 0 and 1, where 1 states that the vehicle has
received all the FCD that was sent and 0 states that the vehicle has received
nothing. Used bandwidth captures whether the approach sticks to the average
bandwidth limitation, i.e., if the side condition of the game is fulfilled.

We use box-plots and line-plots to visualize our results. In the box-plots, the
boxes show the differences between vehicles inside of one simulation run. Next to
each box, there is a line with a dot, visualizing the average value over all vehicles
and simulation runs and the standard deviation of the average of all vehicles. In
line-plot, the line displays the mean value for the vehicles in one simulation run.

Figure 1 depicts the performance of the approaches under different available
bandwidths to each individual vehicle. It is evident that the performance of all
approaches increases as the bandwidth increases, as depicted in Fig. 1a. For a full
reception of all data available in the network via cellular, a bandwidth of roughly



24 T. Meuser et al.

(a) Achieved relative utility. (b) High-impact.

Fig. 1. Achieved relative bandwidth for different bandwidths (in messages/s).

100 messages per second is required. Even with a much smaller bandwidth of
10 messages per second, all approaches can achieve reasonable utility levels by
prioritizing high-impact messages. It can be observed that our GTP approach
outperforms the CL approach as well as the NC approach and has much smaller
confidence intervals compared to the CL approach. Thus, our approach is more
resilient and adaptive to different network conditions. Additionally, our approach
is very close in performance to the GK approach. The same holds for a band-
width of 1, while our approach decreases in performance for a bandwidth of 0.1.
For a bandwidth of 0.1, our approach performs worse than the CL approach,
as the redundant transmission of high-impact messages and the missing explicit
coordination between vehicles decrease the performance of our GTP approach.
This is also confirmed by Fig. 1b: For the high-impact messages, our approach
performs well for both a bandwidth of 1 and 10, but struggles to receives the
high-impact messages for a bandwidth of 0.1. That is, a bandwidth of 0.1 is not
sufficient to receive the high-impact messages using only the available bandwidth
of a single vehicle. Thus, the performance of our approach decreases below the
performance of the CL approach, as the explicit coordination of vehicles in clus-
tering approaches can handle low bandwidths well. Additionally, all approaches
stick to the available bandwidth on average, while the bandwidth is temporarily
exceeded by a subset of vehicles. This exceeding of bandwidth is justified by (i)
the different number of available messages depending on the event location and
(ii) the cooperative reception of messages by vehicles.

Figure 2 displays the influence of the share of privacy (fraction of privacy-
sensitive vehicles) on our realistic vehicular network if the privacy-sensitive vehi-
cles use an area of imprecision with radius 10 km. Figure 2a shows the behavior
of the relative utility for all of the approaches. The NC approach decreases
the most, as the privacy-sensitive vehicles have no possibility to compensate for
their context imprecision. Additionally, our GTP approach constantly outper-
forms the CL approach and the NC approach independent of the level of privacy.
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Most interestingly, the performance decrease of our GTP approach compared to
the GK approach is not constant, it is lowest around 50% privacy. This can be
justified by implicit coordination between privacy levels. This is also visible in
Fig. 2b, which displays the relative utility of messages with an impact between
10 and 100. While the NC approach is not able to receive these messages at all,
the utility of the other approaches decreases constantly. However, for our GTP
approach, the utility remains constant for a very long duration, which leads to
a comparably constant overall utility even for high privacy levels.

(a) Overall. (b) Low-impact.

Fig. 2. Achieved relative utility for mixed environments.

5 Conclusion

In this paper we introduce privacy considerations in the management of FCD
and have shown its impact on location-based services, since some data are not
forwarded to a vehicle due to privacy considerations and the implemented loca-
tion obfuscation. In order to alleviate this problem, we have introduced cooper-
ation among vehicles so as to forward relevant data to their neighboring vehi-
cles, enhancing in principle the data received by a vehicle only directly from
the remote server. In this work, an ad-hoc, direct V2V cooperation paradigm
is employed instead of a cluster-based one, also showing the high performance
deterioration of the latter in a real vehicular networking environment. A major
contribution of this work is the development and study of a game without coor-
dination that determines the strategies (in terms of probabilities that a vehicle
is forwarded by the server data of a given impact index) vehicles should follow,
so that a properly defined utility is maximized; this is shown to lead to a diver-
sification of the data received directly from the server by neighboring vehicles
and increases the effectiveness of V2V cooperation.



26 T. Meuser et al.

In the evaluation, we analyzed the performance of our approach in a realis-
tic vehicular network. Our results show the drastic performance increase com-
pared to non-cooperative uncoordinated approaches, and the improvements over
cluster-based approaches. Additionally, our approach performs almost similarly
to a perfect clustering approach, which utilizes bandwidth optimally and detects
disconnects immediately, but is not realizable in reality. When we analyze the
performance of our approach for different privacy levels, we see that the perfor-
mance remains constant for a long time.
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13. Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-
zones for location privacy in vehicular networks. In: Proceedings of ACM Workshop
on Wireless Networking for Intelligent Transportation Systems (WiN-ITS) (2007)

https://doi.org/10.1007/11767831_13


Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 27

14. Ying, B., Makrakis, D., Mouftah, H.T.: Dynamic mix-zone for location privacy in
vehicular networks. IEEE Commun. Lett. 17(8), 1524–1527 (2013)

15. Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in inter-vehicular
networks: why simple pseudonym change is not enough. In: Proceedings of Inter-
national Conference on Wireless On-Demand Network Systems and Services
(WONS), pp. 176–183 (2010)

16. Duckham, M., Kulik, L.: Location privacy and location-aware computing. In:
Dynamic and Mobile GIS, pp. 63–80. CRC Press (2006)

17. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of International Conference on
Mobile Systems, Applications and Services (MobiSys), pp. 31–42. ACM, New York
(2003)

18. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Achieving k-anonymity in privacy-aware
location-based services. In: Proceedings of IEEE International Conference on Com-
puter Communications (INFOCOM), pp. 754–762, April 2014

19. Liu, X., Liu, K., Guo, L., Li, X., Fang, Y.: A game-theoretic approach for achiev-
ing k-anonymity in location based services. In: Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), pp. 2985–2993 (2013)

20. Freudiger, J., Manshaei, M.H., Hubaux, J.-P., Parkes, D.C.: On non-cooperative
location privacy: a game-theoretic analysis. In: Proceedings of the 16th ACM Con-
ference on Computer and Communications Security, CCS 2009, pp. 324–337. ACM,
New York (2009)

21. Du, S., Li, X., Du, J., Zhu, H.: An attack-and-defence game for security assess-
ment in vehicular ad hoc networks. Peer-to-Peer Netw. Appl. 7(3), 215–228 (2012).
https://doi.org/10.1007/s12083-012-0127-9

22. Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish
replication. IEEE Trans. Parallel Distrib. Syst. 17(12), 1401–1413 (2006)

23. Meuser, T., Bischoff, D., Steinmetz, R., Richerzhagen, B.: Simulation platform for
connected heterogeneous vehicles. In: Proceedings of International Conference on
Vehicle Technology and Intelligent Transport Systems (VEHITS). SCITEPRESS,
May 2019, pp. 412–419 (2019)

24. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: Proceedings of
IEEE ITSC. IEEE (2018)

25. Uppoor, S., Fiore, M.: Large-scale urban vehicular mobility for networking
research. In: Proceedings of IEEE Vehicular Networking Conference (VNC), pp.
62–69 (2011)

https://doi.org/10.1007/s12083-012-0127-9

	Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks
	1 Introduction
	2 System Model
	3 Game-Theoretic Model for Privacy-Sensitive Communication
	3.1 Game-Theoretic Solution
	3.2 Deriving the Utility-Optimal Strategy

	4 Evaluation
	5 Conclusion
	References




