
Staleness and Local Progress
in Transactional Memory

Hagit Attiya1, Panagiota Fatourou2, Sandeep Hans3, and Eleni Kanellou4(B)

1 Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 ICS-FORTH and University of Crete, Heraklion, Greece
faturu@ics.forth.gr

3 IBM Research India, New Delhi, India
shans001@in.ibm.com

4 ICS-FORTH, Heraklion, Greece
kanellou@ics.forth.gr

Abstract. A key goal in the design of Transactional Memory (TM)
systems is ensuring liveness. Local progress is a liveness condition which
ensures that a process successfully completes every transaction it initi-
ates, if it continually re-invokes it each time it aborts. In order to facil-
itate this, several state-of-the-art TM systems keep multiple versions of
data items. However, this method can lead to high space-related over-
heads in the TM implementation. Therefore, it is desirable to strike a
balance between the progress that a TM can provide and its practical-
ity, while ensuring correctness. A consistency property that limits the
number of previous versions a TM may rely on, is k-staleness. It is a
condition derivative of snapshot isolation, in which a transaction is not
allowed to access more than k previous versions of a data item. This
facilitates implementations that can take advantage of multi-versioning,
while at the same time, contributing to the restriction of the space over-
head introduced by the TM.

In this paper, we prove that no TM can ensure both local progress
and k-staleness, if it is unaware of the transaction’s accesses and can only
keep a bounded number of versions for each data item.

Keywords: Transactional memory · Progress · Consistency ·
Impossibility

1 Introduction

Transactional memory (TM) [13] is an important programming paradigm, which
offers synchronization of processes by providing the abstraction of the transaction
to the programmer. A transaction contains several read and/or write accesses to
shared memory, determined by a piece of sequential code, which the transaction
encapsulates, in order to ensure that its execution is safe when it is concurrent
with other transactions. The data items accessed by a transaction form its data
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 227–243, 2021.
https://doi.org/10.1007/978-3-030-67087-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_15

228 H. Attiya et al.

set. If the execution of the transaction does not violate consistency, then it
can terminate successfully (commit) and its writes to data items take effect
atomically. Otherwise, all the updates of the transaction are discarded and the
transaction aborts, i.e. it appears as if it had never taken place.

The possibility of aborting a transaction is an important feature that helps
ensure consistency. At the same time, however, it can hinder liveness given that
if a process finds itself in a situation where its transactions repeatedly aborts
(and possibly have to be restarted), it spends computation time and resources
without advancing its computational task.

Thus, it is desirable for a TM implementation to provide liveness guarantees
that avoid such scenarios. Local progress (LP) [5] is such a desirable property. A
TM implementation that ensures LP guarantees that even a transaction that is
aborted will have to be restarted and re-executed a finite number of times before
it finally commits. However, it was shown in [5] that LP cannot be achieved if
the TM implementation has to provide strict serializability [17], traditionally
implemented by database systems. This means that a TM implementation that
ensures the stronger consistency property of opacity [11] cannot guarantee LP.

Snapshot isolation (SI) [2] is a consistency property weaker than opacity and
strict serializability. While strict serializability requires that a single serialization
point ∗T be found for each committed transaction T , so that T appears as if it
had been atomically executed at ∗T , snapshot isolation allows two serialization
points, i.e. ∗T |r, a read serialization point, and ∗T |w, a write serialization point,
for each committed transaction T , so that T ’s reads on data items appear as if
they had atomically occurred at point ∗T |r, while its writes appear as if they had
atomically occurred at ∗T |w. We define a condition that is derivative of snapshot
isolation, called k-staleness (k-SL), where a read operation of some transaction
may read one of the k last values that the data item has had.

Multi-version TMs that keep an unbounded number of previous versions may
end up in implementations with high space complexity. Even more so, in prac-
tice, data items have shared representation, which results in even higher space
overheads in real-life implementations. k-SL restricts the number of previous
versions that a transaction may access in order to be consistent, i.e., in order to
make it possible to assign it serialization points. In practice, then, this can lead
to implementations that are more parsimonious in the use of space.

We extend the impossibility result of [5] to k-staleness, by showing that even
a TM implementation that provides only k-SL cannot guarantee LP. This result
concerns TM implementations where there is the underlying assumption that
transactions may be unaware of each others’ data sets and where a transac-
tion T may not execute a read or write to some data item on behalf of some
other transaction T ′. This means that in such TMs, one transaction does not
have access to the code executed by another transaction. We remark that this
assumption is kind of standard in TM computing (and is needed also for the
result of [3]).

To prove our results we present a comprehensive set of formal definitions,
some introducing new concepts and others formalizing existing ones that are

Staleness and Local Progress in Transactional Memory 229

Table 1. Properties of popular TM implementations.

STM Consistency Progress Version Other

DSTM [12] Opacity Obstruction free 1 –

TL2 [7] Opacity Minimal
progressiveness

1 Invisible reads

NoREC [6] Opacity Lock-Free 1 –

PermiSTM Opacity Wait-free (RO) 1 –

Pessimistic LE Opacity Wait-free (RO) 1 –

SI-STM [21] Snapshot
isolation

Obstruction free k No revalidation

SI-TM [15] Snapshot
isolation

Wait-free (RO) k –

often met only in an informal way and, thus, they are mostly understood intu-
itively. We consider this as one of the contributions of the paper and we believe
that Sect. 2 is interesting on its own.

For instance, the notion of data item versioning plays an important role in
some theoretical results about transactional memory [18,19] and in several TM
implementations [1,10,14,16,20,21]. These works only give informal descriptions
of the term or rely on the intuitive understanding by the reader. Occasionally, the
term is even used in order to refer to past values of a data item or to intermediate
values that are used for local bookkeeping by an implementation.

To provide a clear model for our results, we present a formal definition of
the concept of versions in TM, which reflects the way versioning is used in
some of the prior theoretical results. For example, the limitations of keeping
multiple versions for TM implementations are examined in [19]. The authors use
a design principle by which a new version of a t-object is produced by an update
transaction that has the t-object in its write set and commits, similar to our
concept of past committed transaction. Similarly, in [18], reads on t-objects are
considered to access values installed by transactions that have committed. Our
definition is also compatible with existing k-version implementations. Table 1
summarizes some well-known TM implementations, presenting their properties
according to the parameters we consider. Some of our definitions follow those
in [4,8].

The rest of the paper is organized as follows: Sect. 2 provides the model on
which we base our results, while Sect. 3 outlines the impossibility result. Finally,
Sect. 4 summarizes our result and discusses its implication and context.

2 Definitions

2.1 Basic TM Concepts

We assume a system of n asynchronous processes that communicate through a
shared memory. The shared memory is modeled as a collection of base objects,

230 H. Attiya et al.

provided by hardware, which can be accessed by executing primitives, such as
read, write, or CAS, on them.

A transactional memory (TM) supports the execution of pieces of sequential
code in a concurrent setting through the use of transactions. Transactions contain
read and write accesses to pieces of data, referred to as data items. Data items
may be accessed simultaneously by multiple processes in a concurrent setting. A
data item has a shared representation, also called t-object, out of base objects. A
transaction T may commit or abort. If it commits, its updates on t-objects take
effect, whereas if it aborts, its updates are discarded.

A TM implementation provides, for each process, the implementation of a
set of routines, also called t-operations, which are invoked in order to execute
transactions. Common such routines are listed in Table 2. BeginTx is called in
order to start the execution of a transaction and CommitTx is called in order to
attempt to commit a transaction. T-objects are accessed by calling t-operations
Read and Write. When a transaction initiates the execution of a t-operation,
we say that it invokes it, and a response is returned to the transaction when the
t-operation execution terminates. Invocations and responses are referred to as
actions.

Table 2. Invocations and possible responses of t-operations by a transaction T .

t-operation Invocation Valid response Description

BeginTx T.BeginTx T.ACK Initiates transaction T

CommitTx T.CommitTx T.committed
or T.aborted

Attempts to terminate
T successfully

Read T.Read(x) value v in
some domain
V or T.aborted

Reads the value of
t-object x

Write T.Write(x, v) T.ACK or
T.aborted

Writes value v to
t-object x

In the following, Read(x, v) denotes an instance of a Read t-operation exe-
cuted by some transaction. It accesses t-object x and receives response v. Fur-
thermore, Write(x, v) denotes an instance of a Write t-operation that writes v
to t-object x. We say that a transaction reads a data item when it invokes an
instance of Read on the t-object of the data item, and that it writes to a data
item when it invokes an instance of Write on the t-object of the data item. (In
such cases, we may abuse terminology and say that a transaction reads or writes
a t-object, respectively.) The read set of a transaction T , denoted rset(T), is the
set of data items that T reads, while its write set, denoted wset(T), is the set of
data items that T writes to. The union of read set and write set is the data set
of T .1

1 The definitions of read set, write set, and data set are formulated under the implicit
assumption that transactions only execute their own code and do not perform reads

Staleness and Local Progress in Transactional Memory 231

A history is a (possibly infinite) sequence of invocations and responses of
t-operations. For a history H, H|p denotes the subsequence of all those actions
pertaining to process p. Similarly, H|T denotes the subsequence of all those
actions pertaining to transaction T . We remark that any of those subsequences
may be empty. We denote by λ the empty sequence.

If H|T is not empty, then T is in H. We denote by txns(H) the set of all
transactions in H. Two histories H and H ′ are equivalent, denoted H ≡ H ′, if
txns(H) = txns(H ′) and for every transaction T ∈ txns(H) and every process p,
it holds that H|T = H ′|T and H|p = H ′|p.

A history H is well-formed if for every transaction T in txns(H), H|T
is an alternating sequence of invocations of t-operations and their valid
responses, starting with T.BeginTx, such that (i) no further invocation follows
a T.committed or T.aborted response in H|T , and (ii) given another transaction
T ′ ∈ txns(H) executed by the same process as T , either the last action of H|T
is T.committed or T.aborted and precedes the first action of H|T ′ in H or the
last action of H|T ′ is T ′.committed or T ′.aborted and precedes the first action of
H|T in H. We only consider well-formed histories.

T is committed in H, if H|T ends with T.committed. It is aborted in H, if H|T
ends with T.aborted. T is completed in H, if it is either committed or aborted in
H; otherwise, it is live. If H|T ends with an invocation of T.CommitTx, then T
is commit-pending in H. A history H is complete if all transactions in txns(H)
are completed. Let H|com be the projection of H on actions performed by the
committed transactions in H. A completion of a finite history H is a (well-
formed) complete history H ′ such that H ′ = HH ′′, where H ′′ is a sequence of
actions where any action is either T.committed or T.aborted, for every transaction
T that is commit-pending in H. The set of completions of H is denoted comp(H).

A history H imposes a partial order, called real-time order, on t-operations:
For two t-operations oi, oj in H, we say that oi precedes oj in H, denoted
oi ≺o

H oj , if the response of oi occurs before the invocation of oj in H. A history
H is operation-wise sequential if for every pair of t-operations oi, oj in H, either
oi ≺o

H oj or oj ≺o
H oi. A history H further imposes a partial (real-time) order on

transactions in it. For two transactions Ti, Tj ∈ txns(H), we say that Ti precedes
Tj in H, denoted Ti ≺T

H Tj , if Ti is complete in H and the last action of H|Ti

appears in H before the first action of H|Tj . A history H is sequential if for
every pair of transactions Ti, Tj ∈ txns(H), either Ti ≺T

H Tj or Tj ≺T
H Ti.

A Read(x, v) t-operation r executed by transaction T in a sequential history
S is legal if either (i) T contains a Write(x, v) t-operation w which precedes r;
or in case (i) does not hold, if (ii) txns(S) contains a committed transaction T ′,
which executes a Write(x, v) t-operation w′, and w′ is the last such t-operation
by a committed transaction that precedes T ; or in case neither (i) nor (ii) hold,
if (iii) v is the initial value of x. A transaction T in S is legal if all its Read
t-operations that do not receive T.aborted as a response, are legal in S. A complete
sequential history S is legal if every committed transaction T in S is legal in S.

or writes by executing code that pertains to other transactions or by other forms of
light-weight helping.

232 H. Attiya et al.

We define a configuration of the system as a vector that contains the state of
each process and the state of each base object. This vector describes the system
at some point in time. In an initial configuration all processes are in initial states
and all base objects hold initial values. A step by some process p consists of the
application of a primitive on a base object by p, or of the invocation or the
response of a t-operation by a transaction executed by p; the step may also
contain some local computation by p which cannot cause changes to the state of
the base objects but it may change local variables used by p.

An execution is a (finite or infinite) sequence of steps. We use αβ to denote
the execution α immediately followed by the execution β. An execution α may
also contain a stop(p) event, for each process p ∈ P , which indicates that, after
that point, process p is faulty (i.e. it does not take any further steps in α). Denote
by F (α) the set of faulty processes in α, i.e. for each process p ∈ F (α), there is
a stop(p) event in α.

An execution α of a TM implementation is feasible, starting from a configura-
tion C, if the sequence of steps performed by each process follows the algorithm
for that process (starting from its state in C) and, for each base object, the
responses to the primitives performed on the object are in accordance with its
specification (and the value stored in the object at configuration C). Let H(α)
be the subsequence of α consisting only of the invocations and responses of
t-operations in α. We refer to H(α) as the history of α.

2.2 TM Consistency

Commonly used consistency conditions for transactional memory include strict
serializability [17] and opacity [11]. Roughly speaking, some history H is strictly
serializable if it is possible to assign a linearization point between the invocation
and the response of each transaction in H|com and possibly of some of the
commit-pending transaction in H such that the sequential history resulting from
executing the transactions in the order defined by their linearization points, is
legal. Opacity is a consistency condition stronger than strict serializability, which
further restricts the responses of t-operations obtained by live transactions.

Assigning a single linearization point for each transaction T provides an
atomicity guarantee for all the accesses (reads and writes) to data items by T .
However, in order to avoid the performance overhead that is usually incurred to
ensure these guarantees, weaker consistency conditions are often employed. A
way of relaxing the strict requirements imposed by the aforementioned con-
ditions, is that of assigning two linearization points per transaction, one to
(a subset of its) Read t-operations and another to the rest of its t-operations.
Snapshot isolation [2] is a weaker consistency condition which employs this strat-
egy. Roughly speaking, the effect that the two linearization points per transac-
tion T have, is that of making T appear to be split into two subtransactions,
where one of the subtransactions contains the global Read t-operations that
T performs on data items (i.e. those t-operations that read data items which
are never written to by T), while the second subtransaction contains all Write
t-operations and all remaining Read t-operations performed by T . This practice

Staleness and Local Progress in Transactional Memory 233

is reminiscent of taking a “snapshot” of the values of the data items in T ’s read
set (that are not written by T) at some point in the beginning of the transac-
tion and of reading the data item values from that snapshot whenever necessary,
hence the name of the consistency condition. This use of two linearization points
allows for more flexibility, because when it comes to finding an equivalent legal
sequential history, the two subtransactions can be treated as separate entities
that do not have to be serialized together. Instead, they can be interleaved with
the linearization points of other transactions. This allows a wider collection of
histories to be considered correct under snapshot isolation. In the following, we
formalize the intuitive notion of treating one transaction as split into two sub-
transactions and use this formalism in order to provide a definition for snapshot
isolation.

Given a history H, a Read(x) t-operation r invoked by some transaction
T ∈ txns(H) is global, if T did not invoke a Write(x, v) before invoking r. Let
T |rg be the longest subsequence of H|T consisting only of global read invocations
and their corresponding responses. Let T |o be the subsequence of H|T consisting
of all Read and Write t-operations in H|T other than those in T |rg. Recall that
λ is the empty sequence. For each committed transaction T , let readTxg(T) and
other(T) be the following histories:

– if T |rg = λ then readTxg(T) = λ, otherwise readTxg(T) = T.BeginTx, T.ACK,
T |rg, T.CommitTx, T.committed.

– if T |o = λ then other(T) = λ, otherwise other(T) = T.BeginTx, T.ACK,
T |o, T.CommitTx, T.committed.

Definition 1. A history H satisfies snapshot isolation, if there exists a his-
tory H ′ ∈ comp(H), such that for every committed transaction T in H ′ it is
possible to insert a read point ∗T,r and a write point ∗T,w such that

(i) ∗T,r precedes ∗T,w,
(ii) both ∗T,r and ∗T,w are inserted after the first action of T in H ′ and before

the last action of T in H ′, and
(iii) if σH′ is the sequence defined by these points, in order, and S is the history

obtained by replacing each ∗T,r with readTxg(T) and each ∗T,w with other(T)
in σH′ , then S is legal.

Snapshot isolation is weaker than strict serializability, i.e. all histories that
are strictly serializable satisfy snapshot isolation as well. Definition 1 provides a
weaker form of snapshot isolation in comparison to standard previous definitions
provided in the literature [2,9,21]. This is so because, in addition to ensuring the
conditions of Definition 1, the definitions in [2,9,21] impose the extra constraint
that from any two concurrent transactions writing to the same data item, only
one can commit. Note also that Definition 1 does not impose any restriction on
the value returned by a Read t-operation on some data item by a transaction,
if the transaction has written to the data item before invoking this Read t-
operation.

Figure 1 shows a history H which satisfies snapshot isolation but not strict
serializability. H contains two transactions, T1 and T2, which each perform a

234 H. Attiya et al.

r1(x, 0) w1(x, 1)

r2(x, 0) w2(x, 1)

T1
commit

T2
commit

Fig. 1. An SI history which does not satisfy serializability.

Read and a Write t-operation on x. Both transactions read the value 0 for x
and subsequently, write the value 1 to x. In order for this history to be strictly
serializable, it should be possible to assign a single linearization point between
the invocation and the response of T1 and a single linearization point between
the invocation and the response of T2, so that an equivalent and legal sequential
history can be constructed based on the order of these linearization points. Since
the executions of T1 and T2 are overlapping, by assigning linearization points,
we end up either with equivalent sequential history S = T1T2 or with equivalent
sequential history S′ = T2T1. Notice, however, that neither of those histories is
legal, since for example, in S, the Read t-operation of T2, r2, returns the value
0 for x, although T1, which writes the value 1 to x, has committed before T2

in S. Conversely also for S′. Therefore, it isn’t possible, by assigning a single
linearization point to each transaction, to get an equivalent, legal sequential
history, and therefore H is not strictly serializable.

On the contrary, it is possible to insert read points ∗T1,r, ∗T2,r and write
points ∗T1,w, ∗T2,w, for example in the order ∗T1,r, ∗T2,r, ∗T1,w, ∗T2,w, so that, by
replacing ∗T1,r with readTxg(T1), ∗T2,r with readTxg(T2), ∗T1,w with other(T1),
and ∗T2,w with other(T2), then, the equivalent sequential history that results,
namely S = readTxg(T1)readTxg(T2)other(T1)other(T2), is legal, given that in
that case, both readTxg(T1) and readTxg(T2) contain a Read(x) t-operation
which in either case, legally returns the value 0 for x, since both those trans-
actions commit in S before the invocation of transactions other(T1)other(T2),
which are the ones containing Write(x, 1) t-operations, modifying the value
of x.

2.3 Progress Conditions

A pair 〈α, F 〉 of an execution α produced by a TM implementation I and a set
of processes F ⊂ P , is fair, if for each process p ∈ P \ F , the following holds:

– If α is finite, then p does not have a live transaction at the end of H(α) and
p’s last transaction in H(α) (if any) is not aborted,

– If α is infinite, then α contains either infinitely many steps by p or infinitely
many configurations in which p does not have a live transaction.

For each TM implementation I, let HF (I) = {〈H(α), F (α)〉|∀α produced by I
s.t. 〈α, F (α)〉 is fair}.

Local progress is a set LP of pairs s.t. for each pair 〈H,F 〉 ∈ LP, H is a
well-formed history and F ⊂ P is a set of processes for which the following hold:

Staleness and Local Progress in Transactional Memory 235

– If H is finite, then for each process p ∈ P \ F , p’s last transaction in H (if
any) is committed.

– If H is infinite, then for each process p ∈ P \ F , H contains either infinitely
many commit events for p or there are infinitely many prefixes of H such
that for each such prefix H ′ the last transaction (if any) executed by p in H ′

is committed (i.e. p does not have a live transaction at the end of H ′).

We say that a TM implementation I satisfies local progress (LP) if HF (I) ⊆
LP. Intuitively, local progress guarantees that the transactions of any process
not only terminate, but furthermore, that every non-faulty process eventually
receives a commit response for each transaction it initiates, independently of
the actions of the other processes in the system. This implies that, should a
process decide to restart an aborted transaction, then this transaction will not
indefinitely terminate by aborting.

3 Impossibility Result

In this section, we provide definitions regarding the staleness of values of data
items in TM and use those to formally define k-staleness. Then, we use this
definition in order to prove that it is not possible to come up with a TM system
that can ensure local progress and k-staleness while tolerating failures, i.e. the
existence of faulty processes.

3.1 Stale Values in TM

Consider an operation-wise sequential history H and a Read t-operation r on
data item x by transaction T in H. Let Tpw be a committed transaction which
writes x and its CommitTx t-operation cpw is such that cpw ≺o

H r. Then, we
say that Tpw is a past committed write transaction for r. We define the last
committed write transaction for r as the past committed write transaction Tlw

for r for which the following holds: if clw is the CommitTx t-operation of Tlw,
then there is no other past committed transaction T ′ for r such that, if c′ is the
commit t-operation of T ′, then clw ≺o

H c′.
Let Seqr be the sequence of all past committed write transactions of r,

defined by the order of their CommitTx t-operations. The last transaction in
this sequence is Tlw. Let Sk

r be the set that contains those transactions that are
determined by the k last transactions in Seqr, if |Seqr| > k, and the set that
contains all transactions in Seqr, otherwise. We refer to Sk

r as the set of the k
last committed transactions for r. Each of the values written for x during the
last Write performed for x by each of the transactions in Sk

r is referred to as a
previous value of x. We denote by V k

r the set of all these values. If |Sk
r | < k, let

V k
r contain also the initial value for x.

A Read(x) t-operation invoked by a transaction T in H is called global if T did
not invoke a Write for x before invoking this Read. An operation-wise sequential
history H is k-value if for every global Read(x, v) executed by a transaction T

236 H. Attiya et al.

in H, it holds that v ∈ V k
r . A TM algorithm is k-value if every operation-wise

sequential history that it produces is k-value. Notice that a TM implementation
is single-value if in each operation-wise sequential history H that it produces, for
every global Read(x, v) t-operation r, v is the value written by the last write for
x performed by the last committed write transaction for r; if such a transaction
does not exist, then v is the initial value of x.

Definition 2. An operation-wise sequential history H satisfies k-staleness, if it
satisfies snapshot isolation and it is additionally k-value.

A TM implementation satisfies k-staleness if every operation-wise sequential
history it produces satisfies k-staleness. We remark that k-staleness is a weak
property that does not provide any consistency guarantee for histories produced
by the implementation that are not operation-wise sequential. This makes our
impossibility result stronger.

3.2 Impossibility of k-staleness and Local Progress

In order to prove the following theorem, we construct a fair history based on
the use of a transaction T0 which reads two distinct data items x and y. We
construct the history so that the Read t-operations of T0 are interleaved with
Write t-operations to x and y, and argue that T0 can not commit.

C0 Ci−1 Ci
0 Ci

j−1 Ci
j Ci

k Ci
α1α2 . . . αi−1 αi

0

T0.r1

αi
j

Tj

αi
k+1

T0.r2

Fig. 2. Configurations in the proof of Theorem 1.

Theorem 1. There is no TM implementation I that ensures both k-staleness
and local progress and tolerates one process failure.

Proof. The proof is by contradiction. Consider a TM implementation that
ensures k-SL and LP, and assume that it tolerates one process failure. We will
construct a troublesome history H in which a transaction T0 never commits.
H will be constructed to be an infinite fair history in which process p0, which
executes T0, takes infinitely many steps. To construct H, we employ an instance
of the following transaction (which, as we prove, repeatedly aborts forever
in H):

– T0 = r1(x)r2(y), executed by p0, where x and y are two distinct data items.

We also employ an infinite number of instances of the following k transactions,
executed by a different process p1:

– for every j, 1 ≤ j ≤ k, Tj = wj,1(x, vi
j), wj,2(y, vi

j), executed by p1, where
for every integer i > 0, vi

j is a distinct value other than 0, used by the ith
instance of Tj .

Staleness and Local Progress in Transactional Memory 237

r1(x) r1(x)
T0

abort
T0

(a) Phase 0

wj,1(x, j) wj,2(y, j) wj,1(x, j) wj,2(y, j)
Tj

abort
Tj

commit

(b) Phase j

r2(y) r2(y)r1(x)
T0

abort
T0

abort

(c) Phase k + 1

Fig. 3. An illustration of the phases performed in the proof of Theorem 1

For simplicity, we have omitted the invocations of BeginTx and CommitTx when
describing transactions T0, . . . , Tk above.

Let the initial values of x and y be 0. An adversary constructs history H as
described below:

Phase 0: Process p0 starts executing solo from the initial configuration to per-
form transaction T0 and invokes r1 on x. As long as r1 returns T0.aborted,
phase 0 is repeated until r1 returns a value (we later prove that this indeed
occurs). Then, Phase 1 starts.

Phases j = 1 to k: These phases are constructed inductively on j as follows.
Fix j, 1 ≤ j ≤ k, and assume that phases 1, . . . , j − 1 have been constructed.
Let Cj−1 be the configuration at the end of phase j − 1. Phase j starts from
Cj−1. In phase j, process p1 does the following: It starts executing transaction
Tj . As long as the execution of Tj completes with Tj .aborted, p1 restarts the
execution of Tj from the resulting configuration. If Tj commits, Phase j ends.
We later prove that Tj must indeed eventually commit, and we denote by Cj

the resulting configuration.
Phase k +1: Process p0 resumes executing solo from Ck to continue performing

transaction T0 and invokes r2 on y. As long as r2 returns T0.aborted, the
adversary repeats all phases from the resulting configuration, starting from
phase 0. We later prove that r2 must always return T0.aborted. Therefore, the
result is an infinite, fair history H. This history violates local progress since
T0 never commits.

Figure 3 illustrates the phases described above. Figure 4 illustrates the adver-
sary’s strategy for the case k = 1, namely, for a single-version TM.

The next claim shows that the adversary can indeed follow the strategy
described above and that the resulting history has the required properties. We
denote by C0 the initial configuration.

Claim 1. For each integer i > 0, the TM implementation I has a feasible exe-
cution αi, starting from configuration Ci−1, such that αi = αi

0α
i
1 . . . αi

kα
i
k+1,

where:

238 H. Attiya et al.

Start

BeginTx(T0)

r1(x, 0)

BeginTx(T1)

w2,1(x, 1)

w2,2(y, 1)

CommitTx1

r2(y, 1)

CommitTx0

Stop

commit

abort

abort

abort

abort

commit

abort

abort

Fig. 4. Flowchart of the adversary’s strategy for k = 1.

– αi
0 is a solo execution by p0,

– αi
j is a solo execution by p1, for 1 ≤ j ≤ k,

– αi
k+1 is a solo execution by p0,

so that:

1. αi
0 is a finite execution in which p0, starting from Ci−1, repeatedly executes

T0 until r1 returns a value other than T0.aborted; let Ci
0 be the resulting con-

figuration.
2. αi

j, ∀j, 1 ≤ j ≤ k, is a finite execution starting from Ci
j−1, in which Tj writes

value vi
j to x and y and commits; let Ci

j be the resulting configuration.
3. αi

k+1 is a finite execution by p0 starting from configuration Ci
k such that T0

is aborted in αi
k+1; let Ci be the resulting configuration.

Proof. The proof is by induction on i. Fix any i > 0 and assume that we have con-
structed α1, . . . , αi−1; let Ci−1 be the configuration we reach when α1, . . . , αi−1

Staleness and Local Progress in Transactional Memory 239

is applied from C0. We prove that the claim holds for i. Figure 2 shows the
configurations.

We first show (1), i.e. that there is a feasible execution αi
0, starting from Ci−1

with the required properties.
Notice that no transaction is live at C0. This and the induction hypothe-

sis imply that no transaction is live at Ci−1. So, if process p0 starts executing
solo from configuration Ci−1, it (re-)initiates transaction T0 and invokes r1 on
x. Assume, by the way of contradiction, that either, repeatedly forever, r1 ter-
minates in a T0.aborted event and p0 re-initiates T0 and re-invokes r1, or that
one of these invocations of r1 never terminates. Let γi

0 be the infinite solo exe-
cution by p0, starting from Ci−1, in which this occurs. Consider the execution
δi0 = α1 . . . αi−1γi

0. Then 〈δi0, ∅〉 is fair. This is so because δi0 is infinite and
the induction hypothesis implies that the following hold: (1) there are infinitely
many configurations in δi0 (namely, all configurations in γi

0) in which p1 does not
have a live or aborted last transaction, and (2) p0 takes an infinite number of
steps in δi0. However, 〈H(δi0), ∅〉 ∈ LP. We remark that p0 never commits the
transaction it executes in δi0. To prove that 〈H(δi0), ∅〉 ∈ LP, we consider the
following two cases.

1. H(δi0) is finite. Notice that this holds only if one of the invocations of r1 never
terminates. Then p0, which is non-faulty, has a live transaction at the end of
H(δi0).

2. H(δi0) is infinite. Notice that this holds if r1 repeatedly forever returns
T0.aborted. Then, for p0, it neither contains infinitely many commit events,
nor are there infinitely many prefixes of H(δi0), in which the last transaction
executed by p0 in the prefix, commits.

We now use similar arguments to prove point (2) of Claim 1, i.e. that for
each j, 1 ≤ j ≤ k, there exists a finite execution αi

j starting from Ci
j−1 such that

αi
j is a solo execution by p1 resulting in configuration Ci

j, in which Tj eventually
commits, given that p1 re-executes Tj each time it aborts.

Let f , 1 ≤ f ≤ k, be the first index for which the claim does not hold.
Let γi

f be the infinite solo execution by p1, starting from Ci
f−1, in which either

some t-operation invoked by Tf never terminates, or repeatedly forever, some
t-operation executed by Tf aborts, and Tf is re-initialized. Consider the exe-
cution δif = α1 . . . αi−1αi

0 stopp0
αi
1 . . . αi

f−1γ
i
f . Then, 〈δif , {p0}〉 is fair. This

is because δif is infinite and the following holds: (1) there are infinitely many
configurations in δif (namely, all configurations in γi

f) in which p1 does not have
a live or aborted last transaction, and (2) p1 takes an infinite number of steps in
δif . However, 〈H(δif), {p0}〉 ∈ LP. To prove this, we consider the following two
cases.

1. H(δif) is finite. Then p1, which is non-faulty, has a live transaction at the end
of H(δif).

2. H(δif) is infinite. Then, for p1, it neither contains infinitely many commit
events, nor are there infinitely many prefixes of H(δif), in which the last
transaction executed by p1 in the prefix, commits.

240 H. Attiya et al.

This contradicts the fact that I ensures local progress. Therefore, it holds that
for each j, 1 ≤ j ≤ k, there exists a finite execution αi

j starting from Ci
j−1

such that αi
j is a solo execution by p1 resulting in configuration Ci

j , in which Tj

eventually commits, given that p1 re-executes Tj each time it aborts. Moreover
αi
0 . . . αi

k is a feasible execution starting from Ci−1.
We finally show that point (3) of Claim 1 holds, i.e. that there is a feasible

execution αi
k+1 by p0 starting from configuration Ci

k such that T0 is aborted in
αi
k+1. Starting from Ck, we let process p0 execute solo to continue its execution

with the invocation of r2. Let αi
k+1 be the solo execution by p0, starting from

Ci
k, until r2 completes; if this does not happen, let αi

k+1 be the infinite solo
execution by p0 starting from Ci

k. Let δik+1 = α1 . . . αi−1αi
0 . . . αi

kα
i
k+1.

We prove that if r2 returns in δik+1, then it returns T0.aborted. Assume, by
the way of contradiction, that r2 returns a value (and not T0.aborted) in δik+1. By
point (2) of Claim 1 (proved above), each of the transactions T1, . . . , Tk executed
in δik+1 eventually commits. This in turn means that each Tj , 1 ≤ j ≤ k, writes
value vi

j to both t-objects x and y. Since I is a k-version TM implementation,
it follows that r2 returns one of the last k written values for y, i.e. a value vi

j ,
j ∈ {1, 2, . . . , k}. However, neither of those values for t-object y is consistent
with the value returned by r1 in αi

0 which must be one of the k versions of x
at configuration Ci−1. This contradicts the assumption that I satisfies snapshot
isolation. Therefore, if r2 returns, it returns T0.aborted.

We finally prove that αi
k+1 is finite. Assume, by way of contradiction, that

αi
k+1 is infinite. Then, 〈δik+1, ∅〉 is fair. This is so because δik+1 is infinite and

the following holds: (1) there are infinitely many configurations in δik+1 (namely,
all configurations in αi

k+1) in which p1 does not have a live or aborted last
transaction, and (2) p0 takes an infinite number of steps in δik+1. However,
〈H(δi), ∅〉 ∈ LP. This is so because H(δik+1) is finite, and p0, which is non-
faulty, has a live transaction at the end of H(δik+1). This contradicts the fact
that I ensures local progress. Therefore, it holds that αi

k+1 is a finite execution
by p0 starting from configuration Ci

k in which T0 is aborted. Denote by Ci the
resulting configuration. Notice that execution αi = αi

0 . . . αi
kα

i
k+1 is feasible from

Ci−1. ��
Notice that execution αi

0 corresponds to an execution of Phase 0. Since I
satisfies snapshot isolation, the value returned by r1 in αi

0 must be 0, i.e. the
initial value for x. After Phase 0, the adversary moves to Phase 1. Notice that,
for each j, 1 ≤ j ≤ k, execution αi

j corresponds to an execution of Phase j. In
Phase j, Tj commits. After Tk commits, the adversary moves to Phase k + 1.
Execution αi

k+1 corresponds to an execution of Phase k +1. Claim 1 shows that
each time the adversary executes phases 0, . . . , k + 1, the resulting execution is
finite.

The next claim shows that execution α = α0α1α2 . . . is a feasible fair execu-
tion of I which violates local progress.

Claim 2. Let α = α0α1α2 Then, the following hold:

1. α is a feasible infinite execution starting from C0;

Staleness and Local Progress in Transactional Memory 241

2. the pair 〈α, ∅〉 is fair
3. 〈H(α), ∅〉 ∈ LP.

Proof. Lemma 1 implies that, for each i > 0, αi is a feasible execution starting
from Ci−1 in which T0 is aborted. Therefore, α is a feasible infinite execution.
Moreover, 〈α, ∅〉 is fair. This is so because each process takes infinite steps in
α. Since all t-operation invocations in α receive a response, H(α) is infinite
as well. However, 〈H(α), ∅〉 ∈ LP. This is so since neither does H(α) contain
infinite many commit responses for process p0 (specifically, transaction T0 that
is repeatedly invoked by p0 always completes by aborting in α), nor does H(α)
contain infinitely many prefixes in which the last transaction executed by p0 is
committed. This contradicts the fact that I ensures local progress. ��

Theorem 1 is an immediate consequence of Claims 1 and 2. ��

4 Discussion

We have studied the progress that can be provided by a TM implementation
that ensures k-staleness, a condition derivative of snapshot isolation, but where
processes can crash, i.e., unexpectedly stop executing in between t-operations.
Specifically, we have studied whether such a TM implementation can guarantee
local progress for transactions. We provide a definition of local progress based
on fair executions, which avoids the need to study other types of process mal-
functions, such as the so-called parasitic processes. Parasitic processes have not
suffered crash failures but still do not attempt to commit the transactions that
they invoke, continuously invoking Read or Write t-operations instead [5].

Our impossibility result could possibly be extended to other, even weaker
consistency conditions, for example, adaptive consistency [3], because most con-
sistency conditions require that each transaction obtains a consistent view of its
read set. In this case, and assuming that a system is k-version, an adversary can
always come up with a troublesome strategy that executes more than k update
transactions between two reads of some read-only transaction.

It is interesting to explore the use of stronger primitives, such as
m-assignment, an operation that atomically writes values to m different base
objects, and other objects, such as snapshots, for implementing stronger con-
sistency conditions, such as serializability, in conjunction with local progress.
Alternatively, the impossibility might be sidestepped for weaker consistency con-
ditions also, by using other assumptions and primitives, which might be less
complex.

Acknowledgment. This work has been supported by the European Commission
under the 7th Framework Program through the TransForm (FP7-MC-ITN-238639)
project. It has further been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and Inno-
vation, under the call RESEARCH – CREATE – INNOVATE (project code:T1EDK-
02857)

242 H. Attiya et al.

References

1. Attiya, H., Hillel, E.: A single-version STM that is multi-versioned permissive.
Theory Comput. Syst. 51(4), 425–446 (2012)

2. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: SIGMOD (1995)

3. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The PCL theorem: trans-
actions cannot be parallel, consistent and live. In: SPAA (2014)

4. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The PCL theorem: trans-
actions cannot be parallel, consistent, and live. J. ACM 66(1), 2:1–2:66 (2019).
https://doi.org/10.1145/3266141

5. Bushkov, V., Guerraoui, R., Kapalka, M.: On the liveness of transactional memory.
In: PODC (2012)

6. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining STM by abolishing
ownership records. In: PPoPP (2010)

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC (2006)
8. Dziuma, D., Fatourou, P., Kanellou, E.: Consistency for transactional memory

computing. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Founda-
tions, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 3–31. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14720-8 1

9. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005). https://
doi.org/10.1145/1071610.1071615

10. Fernandes, S.M., Cachopo, J.a.: Lock-free and scalable multi-version software
transactional memory. In: PPoPP (2011)

11. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP (2008)

12. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC (2003)

13. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

14. Kumar, P., Peri, S., Vidyasankar, K.: A timestamp based multi-version STM algo-
rithm. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 212–226. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-45249-9 14

15. Litz, H., Cheriton, D.R., Firoozshahian, A., Azizi, O., Stevenson, J.P.: SI-TM:
reducing transactional memory abort rates through snapshot isolation. In: ASP-
LOS (2014)

16. Lu, L., Scott, M.L.: Generic multiversion STM. In: Afek, Y. (ed.) DISC 2013.
LNCS, vol. 8205, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41527-2 10

17. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

18. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: selective multi-
versioning STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 9

https://doi.org/10.1145/3266141
https://doi.org/10.1007/978-3-319-14720-8_1
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-24100-0_9

Staleness and Local Progress in Transactional Memory 243

19. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC (2010)

20. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: DISC (2006)

21. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional
memory. In: TRANSACT (2006)

	Staleness and Local Progress in Transactional Memory
	1 Introduction
	2 Definitions
	2.1 Basic TM Concepts
	2.2 TM Consistency
	2.3 Progress Conditions

	3 Impossibility Result
	3.1 Stale Values in TM
	3.2 Impossibility of k-staleness and Local Progress

	4 Discussion
	References

