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Abstract. We consider the problem of automatically checking safety
properties of fault-tolerant distributed algorithms. We express the con-
sidered class of distributed algorithms in terms of the Heard-Of Model
where arbitrary many processes proceed in infinite rounds in the presence
of failures such as message losses or message corruptions. We propose,
for the considered class, a sound but (in general) incomplete procedure
that is guaranteed to terminate even in the presence of unbounded num-
bers of processes. In addition, we report on preliminary experiments for
which either correctness is proved by our approach or a concrete trace
violating the considered safety property is automatically found.

1 Introduction

Fault-tolerant distributed algorithms are difficult to prove correct. Such algo-
rithms are meant to operate in the presence of faults ranging from process crashes
to message losses or corruption. We consider the parameterized case where arbi-
trarily many identical processes participate in running the distributed algorithm.
We adopt the popular Heard-Of model [3,4]. This model uniformly describes dis-
tributed algorithms in the presence of transmission-based failures whether static
or dynamic, permanent or transient. Algorithms proceed in rounds where, at
each round, each process sends a message to other processes, hears from some
of them, and updates its state. Hence, at each round, a process “hears” from a
set of other processes. Fault descriptions are captured by stating constraints on
the possible sets of processes and messages each process hears from (e.g. each
process hears from at least half the processes or at most a third of the sent
messages have been corrupted).

We consider the problem of automatically establishing the correctness of
safety properties for parameterized distributed algorithms expressed in the
Heard-Of model. The safety properties we consider concern checking state reach-
ability, i.e., reachability of configurations where a given number of processes are
in some forbidden combination of states. Observe that we do not check whether
the algorithms make progress. This would require us to account for communi-
cation predicates that ensure the processes eventually hear from enough other
processes. We need however to constrain, depending on the environment we want
to capture, that messages may be lost (benign crashes or transmission failures)
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or altered (corruption failure). For consensus protocols, this is enough to cap-
ture all executions that violate agreement (two processes decide on different
values), validity (a value is decided although no process proposed it) or irrevo-
cability (a decided value is revoked). The verification problem is made difficult
by the parameterization in the number of processes and by the allowed faults.
Parameterization requires us to verify infinite families of algorithms, one for each
number of participating processes. The transmission model allows each process
to receive a subset of the sent messages (benign failures) in addition to a number
of altered messages (corrupted communication), making this information local
to the processes.

Related work. Abstractions for threshold-based fault-tolerant distributed sys-
tems were introduced in [11,12]. The work is extended to synchronous round-
based semantics in [17]. These works can handle interesting fault-tolerant algo-
rithms in presence of different faults such as Byzantine faults, but have the
limitation of requiring the user to encode the distributed system in terms of
threshold automata and propose interval-based over-approximations or bounded-
model checking based under-approximations for the parameterized verification
problem. The models we consider directly target al.gorithms expressed in the
Heard-Of model with a sound over-approximation and can account for message
losses (omission fault) and message alteration (corruption fault). The work in
[14] has the merit of proposing cutoffs for a syntactically restricted class of con-
sensus algorithms. The class is also expressed in the Heard-Of model. While we
do not provide such cutoffs, our work can afford to check correctness for richer
fragments that can more faithfully capture constructs such as “the number of
received messages with value v0 is at least two thirds the number of processes” as
opposed to “the number of received messages is at least two thirds the number
of processes, and all of them have value v0”. The approach in [14] can verify
Heard-Of algorithms such as Paxos that we cannot verify in our current app-
roach. Because in our current setting, we have only many-to-many transmissions,
while we need to account for one-to-many and many-to-one transmissions to be
able to capture those algorithms. However, they only consider benign faults for
the algorithms, but our approach can handle both benign and corruption faults.
To the best of our knowledge, we are the first ones to verify Heard-of algorithms
in presence of corruption faults.

Ongoing works [1,13] study automatizing deciding satisfiability of constraints
involving arbitrarily many processes and cardinality constraints over sets of
received messages with specific properties. Such constraints naturally arise when
verifying fault-tolerant distributed algorithms. For instance, [7,15] consider a rich
class of algorithms but require the user to supply such constraints in order to
automatically establish correctness. The work in [15] abstracts the quorum of
threads in the Paxos algorithm by introducing a new sort for quorum and adding
an axiom to capture the fact that the intersection of two quorums is non-empty.
While this abstraction is enough for verifying Paxos, it is too coarse for the algo-
rithms we consider, since the size of the intersection of quorums are essential
for proving the correctness of them. Other approaches [6,8–10] can tackle wider
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classes of systems but adopt an interactive approach to verification, while our
approach is fully automatic.

Contributions. We propose a sound and automatic approach to check safety
properties. More specifically:

1. We identify a subclass of fault-tolerant distributed algorithms in terms of the
Heard-Of model and describe the considered safety properties.

2. We introduce a symbolic representation where we capture cardinality con-
straints on multisets (formed by values of variables or heard-of sets) using
integer counters, hence avoiding the challenge of implementing quantifier elim-
ination for theories with cardinality constraints.

3. We show how to use the symbolic representation in a sound but (in general)
incomplete procedure for checking state reachability in the presence of lossy
or corrupt communication.

4. We show termination of the procedure even in the presence of arbitrarily
many processes.

5. We report on preliminary experiments with correct and buggy examples.

Outline. We describe the challenges of the verification problem using a motivat-
ing example in Sect. 2. We then introduce the class of distributed algorithms and
the properties we aim to verify in Sect. 3. We formalize the symbolic represen-
tations in Sect. 4 and use them in Sect. 5 in a sound (but in general incomplete)
verification algorithm for which we show termination. We describe preliminary
experiments in Sect. 6 and conclude in Sect. 7.

i n i t : x , res = −1
r mod 1 = 0 :

send x ;
1 . |HO| > 2n/3 ∧ |HO1| ≤ |HO0| ≤ 2n/3 → x:=0
2 . |HO| > 2n/3 ∧ |HO0| < |HO1| ≤ 2n/3 → x:=1
3 . |HO0| > 2n/3 → x , r e s :=0 ,0
4 . |HO1| > 2n/3 → x , r e s :=1 ,1
5 . |HO| ≤ 2n/3 → sk ip

Fig. 1. The One-Third-Rule consensus algorithm. An arbitrary number of processes
synchronize in rounds and try to choose the same value for res. HO is the multiset of
values received from other processes and |HOd| is the number of those messages equal
to d.

2 Motivating Example

The One-Third-Rule algorithm listed in Fig. 1 is a simple consensus protocol that
can tolerate benign transmission failures such as process crashes and message
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losses. Each process p has two local variables xp and resp ranging over finite
domains. The values of each variable xp range over the set {0, 1}. They are used
to capture the candidate of process p in the consensus algorithm. The values of
each variable resp range over {−1, 0, 1} and are used to capture the decisions of
the process. The initial value −1 captures that the process did not decide yet.
The example is formalized in the Heard-Of model where n processes operate in
infinite rounds in lock-step. The goal of the protocol is for the processes to agree
on one of the initial values as a common output.

In each round, a process first sends its local candidate value xp to all other
processes and receives values sent by other processes. Then, it executes one of the
guarded commands that follow the send operation and whose guard is satisfied.
In the original HO model [4] it is assumed that process ids of those processes a
process p hears from is stored in the set HOp. We make a small modification and
assume that the values received from those processes by process p are stored in
a local multiset HOp called the heard-of multiset of p. At each round, there are as
many HOp multisets as there are processes. These are used to uniformly capture
different failures (e.g., delays, losses, crashes, corruption). For instance, if x is
the multiset obtained by collecting the values of all variables xp just sent by all
processes, and in case of benign transmission failures (e.g. process crashes or
message losses), each HOp will be smaller than x for each value, written HOp � x.
For a multiset m, we write |m| to mean the cardinality of m. For instance, |x| is
the number n of processes running the algorithm while |HOp| captures the total
number of messages received by process p (i.e. the total number of processes that
p heard from). Moreover, for any value d in the domain of the sent variables, we
write |HOdp| to mean the number of those messages that are equal to d.

In Fig. 1, a process p that receives more messages than two-thirds of the
total number of processes (i.e. |HOp| > 2n/3) will update the value of its local
candidate xp with the smallest most often received value (lines 1 to 4). Besides,
if among the received messages, more than two-thirds of the number of processes
have the same value (here |HO0p| > 2n/3 or |HO1p| > 2n/3), then both variables xp
and resp are updated to the said value (lines 3 and 4). The process is then said
to have decided on the value of resp. Observe that if a process does not receive
its candidate value xp from more than 2n/3 processes, then it will not decide on
it (lines 1 and 2). Furthermore, if a process has only heard from less than 2n/3
processes then it will not update its local variables (line 5).

Typical safety properties for such consensus protocols include:

– Agreement: whenever two processes have reached a decision, the values they
have decided on must be equal.

– Validity: if all processes propose the same initial value, then the processes
who have reached a decision must have decided on that initial value.

– Irrevocability: if a process has decided on a value, it does not revoke its
decision later.

Detecting violations of the above properties boils down to checking reachabil-
ity of sets of configurations for unbounded numbers of processes. However, the
correctness of the One-Third-Rule algorithm is independent of the number of
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processes. In fact, its correctness lies in the fact that: (1) in each round, HOp � x
for each process p, (2) only those processes can update their x who have heard
from more than two thirds of the total number of processes and (3) only those
can decide who have heard the same value from more than two thirds of the
processes.

truex

|HO0i| > 2n/3i
(xi = 0, resi = 0),
command 3

|HOj| > 2n/3 ∧ |HO0j| ≥ |HO1j|j (xj = 0, resj = 1),
command 1

|x0| > 2n/3x

|HOi| > 2n/3 ∧ |HO0i| ≥ |HO1i|i
(xi = 0, resi = −1),
command 1

|HOj| > 2n/3 ∧ |HO1j| > |HO0j|j (xj = 1, resj = 1),
command 2

|x0| > n/3x

..
.

|x0| > n/3x

round r

round r−1

...

Fig. 2. A run of the One-Third-Rule algorithm by two process groups i and j in
backward from configurations with processes having decided on different values of res.
The widths of the bars model the size of the corresponding multisets. Different colors
correspond to different rounds.

In order to capture unbounded numbers of processes, we use constraints that
group the processes based on the valuations of their local variables. Observe there
are finitely many such valuations. We then describe bad configurations using such
constraints. For instance, in order to check the agreement property for the One-
Third-Rule algorithm, we need to check reachability of all constraints capturing
all configurations where at least two groups of processes, namely i and j have
resi = 0 and resj = 1. Assume this constraint had been reached after r rounds.
It is not difficult to see that process groups i and j could not have executed the
guarded commands 3 and 4 during the same round r and assign 0 and 1 to resi
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and resj respectively. This is because they would have had to satisfy both of the
guards |HO0i| > 2n/3 and |HO1j| > 2n/3. Combined with HOp � x for each process
p (since message loss is the only fault), we get |x0| > 2n/3 and |x1| > 2n/3.
This would give |x| > 4n/3, which contradicts the assumption that the number
of processes in the system is n. Thus, we should look for runs in which resi and
resj are set to 0 and 1 in separate rounds.

A possible run in backwards is shown in Fig. 2 in which each group of pro-
cesses in each round is represented by its valuation, its heard-of multiset and
the weakest predicate on its local variables that needs to be satisfied to make
the run possible. In this description, we do not account for corruption or dupli-
cation of messages and therefore assume heard-of multisets are smaller (because
of message loss) than the multiset of sent values x. Accounting for corruption
or duplication of messages is a matter of assuming other relations between x
and the heard-of multisets. A key to the correctness of the algorithm is the fact
that the fraction 2n/3 used in the guards ensures local heard-of multisets of
participating processes (i.e. not executing the skip command because they did
not receive enough messages) have large intersections (in fact larger than n/3
for any pair of such multisets).

We start the run without any assumption on x, therefore it satisfies true. If all
processes in group i and all those in group j had executed the commands 1 and 3
respectively during round r (note that each group could have also executed more
commands, and we might need to split groups), one of the possible predecessors
would be that the same process groups i and j existed with valuations resi =
−1 and resj = 0. Moreover, the predicate |x0| > 2n/3 needs to hold at the
beginning of round r. This is implied by the guards of the commands 1 and
3, |HOi| > 2n/3 ∧ |HO1i| ≤ |HO0i| ≤ 2n/3 and |HO0j| > 2n/3, as well as the
invariant HOp � x for each process p. We could unroll the loop once more,
assuming that in round r− 1 the two process groups had executed commands 1
and 2 respectively and assigned different values to their variables xi and xj (this
does not contradict |x0| > 2n/3). The guards of the corresponding commands
together with the invariant HOp � x for each process p entail that the predicate
|x0| > n/3 held at the beginning of the round r − 1. Further unrollings of the
loop in backward for any number of times will maintain |x0| > n/3. As a result,
firing command 4 in some previous iteration would have been impossible as it
requires |HO1| > 2n/3. This command is however needed to reach to the initial
state. A systematic exploration of similar constraints allows us to conclude the
impossibility of deciding on different values.

The work in [3] introduced algorithms in Heard-Of model where received
messages might be corrupted. One such algorithm is demonstrated in Fig. 3. We
can handle such algorithms and the analysis is similar to the case where we have
omission faults. The only difference is that the invariant in presence of corruption
faults is that no more than α messages received per round, per process and per
data value will be corrupted. Therefore, the invariant is that |HOdp| ≤ |xd| + α.

Our work proposes a sound but (in general) incomplete algorithm for checking
control state reachability for unbounded number of processes. The algorithm is
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i n i t : x , res = −1
r mod 1 = 0 :

send x ;
1 . |HO| > T ∧ |HO1| ≤ |HO0| ≤ E → x:=0
2 . |HO| > T ∧ |HO0| < |HO1| ≤ E → x:=1
3 . |HO0| > E → x , r e s :=0 ,0
4 . |HO1| > E → x , r e s :=1 ,1
5 . |HO| ≤ T → sk ip

Fig. 3. The AE,T consensus algorithm [3]. An arbitrary number of processes synchro-
nize in rounds and try to choose the same value for res. The messages might get lost or
corrupted. Per each round, process, and data value, there will be at most α corrupted
messages. T is the threshold on the number of received messages and E is enough
number of received messages with a certain value. According to [3], for correctness of
the algorithm, it is sufficient that T ≥ 2(n + 2α − E), E ≥ n

2 + α and n > T ≥ E. We
check correctness by adding these predicates as invariants.

guaranteed to terminate and starts from a symbolic representation of all bad
configurations. It successively computes representations of over-approximations
of predecessor configurations.

3 Heard-Of Programs

To simplify the presentation, we use a unique domain for all local variables and
assume programs to proceed in infinite rounds where the state of each process
is captured by the local variables. Introducing specific data domains for each
variable or explicit local states in the transitions is straightforward. We use
valuations (i.e., mapping from the set of local variables of a process to its domain)
to capture the values of process variables. We define the syntax and semantics of
a language to capture a class of heard-of programs. A heard-of program prg =
(V, D, Init, Tr) involves:

– A set V of variables local to each process.
– A finite set D ⊂ Z of possible data values,
– An initial set of valuations Init sending local variables V to D,
– A set of transitions Tr.

The syntax of such programs is as follows.

prg ::= init tr1 . . . tr|Tr|
init ::= v | v := d

tr ::= (r mod |Tr| = e : send v; cmd1, . . . cmdK)
cmd ::=

(
guard, val1 → val2

)

guard ::= guard ∨ guard | guard ∧ guard | true | false | atom
atom ::= |HOdi | cmp |HOdj | | |HOd| cmp c.n | |HO| cmp c.n
cmp ::= > | < | ≥ | ≤
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Each process starts by setting the initial values to its local variables. Then,
all processes execute the transitions in a lock-step manner. Each program
consists of a macro-round which is a sequence of |Tr| consecutive rounds (r
mod |Tr|) = 0, . . . , (r mod |Tr|) = |Tr| − 1. The program starts in round r = 0
and at each round r, all the processes will execute the transition designated with
(r mod |Tr|). r is incremented after each transition.

In each transition (r mod |Tr| = e : send v; cmd1, . . . cmdK), first, all pro-
cesses send the value of their local variable v. After send, there is an implicit
receive step in which the processes receive the values sent by others. Between
the send and receive of the messages, an adversarial environment can choose to
drop or alter messages. The received values are stored in a HO (heard-of) multiset
that is local to each process. The impact of the environment is captured by the
heard-of multiset.

After send and receive, each process p with heard-of multiset HOp executes
a guarded command cmdk =

(
guardk : val1k → val2k

)
where HOp |= guardk. A

guard mainly focuses on capturing cardinality of some HO multiset(s). This car-
dinality is in many cases compared to a fraction of the total number of processes,
i.e. c.n. In order to simplify the presentation, we consider each cmd to be a change
in the local valuation of a process . A skip command can easily be transformed
to this format by choosing identical values for the command. Introducing explicit
local states is simple but would not improve readability.

Configurations. Configurations of a heard-of program describe the round num-
ber, as well as the local state of the processes, i.e. their valuations and heard-of
multisets. More formally, a configuration of prg = (V, D, Init, Tr) is a tuple
(r, [p1, . . . , pa]) where:

– r is the round number.
– for all i in 0 ≤ i ≤ a, pi = (vali, HOi) is a process where:

• vali is a mapping V → D. In other words, the valuation vali maps each
local variable of the process to a value in the domain.

• HOi : D → N is a multiset of integer values.

Values of a configuration. For a configuration c = (r, [p1, . . . , pa]) and for any
variable v ∈ V we define valuesOf(c, v) to be a multiset containing all the local
values of v in all the processes. More formally, for all d ∈ D, valuesOf(c, v)(d) =
| {pi|pi = (vali, HOi) with vali(v) = d} |.
Example 1. For the program in Fig. 1, consider the following processes at round
r = 0.

– p1 = ((x1 = 1, r1 = −1), ∅)
– p2 = ((x2 = 1, r2 = −1), ∅)
– p3 = ((x3 = 0, r3 = −1), ∅)
– p4 = ((x4 = 1, r4 = −1), ∅)

The configuration c = (0, [p1, p2, p3, p4]) captures initial configuration. The
heard-of multisets of the processes are empty initially. The values of variable
x are captured by the multiset valuesOf(c, x) = [0, 1, 1, 1].
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Semantics. Given a program prg = (V, D, Init, Tr), the processes start exe-
cuting Tr from an initial configuration cinit =

(
rinit,

[
pinit
1 , . . . , pinit

a

])
where

rinit = 0, and for all 1 ≤ i ≤ a, pinit
i = (vali, ∅), and vali ∈ Init. Suppose

configurations c and c′ can be written (up to a renaming of the processes) as c =
(r, [(val1, HO1), . . . (vala, HOa)]), c′ = (r′, [(val′

1, HO
′
1), . . . (val

′
a, HO′

a)]), and tr =
(r mod |Tr| = e : send v; cmd1, . . . cmdK) with cmdk =

(
guardk, val1k → val2k

)

for each k : 1 ≤ k ≤ K. We write c
tr−→ c′ to mean that r′ = r + 1 and there

is a total function F : {1, . . . a} → {1, . . . K} where for each i : 1 ≤ i ≤ a,
vali = val1F(i), val

′
i = val2F(i) and HOi |= guardF(i). Note that the numbers of

processes in c and c′ are finite, arbitrary large and equal.

Example 2. Consider Example 1 and tr being the transition tr in Fig. 1. Pro-
cesses 1 to 4 can take guarded commands 2, 2, 5 and 4 respectively and result
in the configuration c′ = (1, [p′

1, p
′
2, p

′
3, p

′
4]) where:

– p′
1 = ((x1 = 1, r1 = −1), [1, 0, 1])

– p′
2 = ((x2 = 1, r2 = −1), [1, 1, 0])

– p′
3 = ((x3 = 0, r3 = −1), [0, 1])

– p′
4 = ((x4 = 1, r4 = 1), [1, 1, 1])

Here F = {(1, 2), (2, 2), (3, 5), (4, 4)} witnesses c
tr−→ c′.

4 Symbolic Representation

In this section, we formally define our symbolic representation and describe a
corresponding entailment relation. We assume a program prg = (V, D, Init, Tr).

Constraints. A constraint φ is a tuple (e, gl, {val1, . . . , valb}) that denotes a
possibly infinite set of configurations such that:

– An integer e in {0, . . . |Tr|−1} capturing the control location of the execution.
– A global condition gl in the form of a Presburger predicate with a free vari-

able n (for the number of processes) and a set of |V| × |D| free variables
#V =

{
#vd | v ∈ V and d ∈ D

}
, where each #vd accounts for the number of

occurrences of value d among variables v of all processes.
– A base formed by a set of valuations {val1, . . . valb}. The valuations are

similar to those used by the configurations and represent groups of processes
with the same valuations.

Each valuation in the base of a constraint corresponds to one or more pro-
cesses with that valuation in a denoted configuration. Besides, a constraint does
not explicitly represent conditions on heard-of multisets; instead, we maintain
a global condition gl which is a predicate on the number of occurrences of val-
ues in program variables of all processes (i.e.g.lobal state). The intuition is that
heard-of sets ultimately originate from the global state. Hence constraining their
values (to satisfy some guarded commands) is a matter of constraining the global
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state and accounting for possible faults (see Sect. 5). For a predicate p that might
depend on a set of integer variables X = {x1, . . . , xq}, we write p(X) to clarify
that p might have a subset of X as free variables. To simplify the presentation,
we typically omit to mention that a predicate might have n (for the number of
processes) as a free variable. For instance, we write gl(#V) to clarify that gl
might have as free variables a subset of #V in addition to the variable n.

Denotations. For a constraint φ =
(
e, glφ,

{
valφ

1 , . . . , valφ
b

})
we write c |= φ

to mean φ denotes the configuration c = (r, (valc1, HO
c
1), . . . , (val

c
a, HOca)). Intu-

itively, φ should account for all local valuations in c (captured by a surjection
from {1, . . . a} to {1, . . . b}). Moreover, the predicate glφ must be compatible
with the multiset of all local valuations of the processes. More formally:

1. r mod |Tr| = e.
2. Replacing in the global condition gl each occurrence of #vd by the number

of occurrences of d in c (i.e., valuesOf(c, v)(d)) and each occurrence of n by
the number of processes in c (i.e., a) results in a valid formula.

3. There is a surjection S :: {1, . . . a} → {1, . . . b} such that for all 1 ≤ i ≤ a,
valci = valφ

S(i)

Observe that a constraint (e, gl, {val1, . . . , valb}) will have an empty deno-
tation if its base requires the presence of valuations forbidden by the global con-
dition, or if the global condition requires valuations forbidden by the base (since
we require a surjection). It is safe to systematically discard such constraints in
our analysis presented in Sect. 5.

Example 3. The configuration c′ in Example 2 is in the denotation of the con-
straint
φ′ = (1,#x1 > 2n/3, {(x1 = 1, r1 = −1), (x1 = 0, r2 = −1), (x3 = 1, r3 = 1)})
with S being {(1, 1), (2, 1), (3, 2), (4, 3)}.

Entailment. We write φ1 	 φ2 to mean φ1 =
(
e, gl1,

{
val11, . . . , val

1
b1

})
is

entailed by φ2 =
(
e, gl2,

{
val21, . . . , val

2
b2

})
. This will ensure that configurations

denoted by φ2 are also denoted by φ1. Intuitively, φ1 and φ2 must have the same
round number modulo |Tr|, and

– There is a bijection Y :: {1, . . . b2} → {1, . . . b1} with val2j = val1Y(j) for all
1 ≤ j ≤ b2.

– gl2 ⇒ gl1.

5 A Symbolic Verification Procedure

We use the constraints defined in Sect. 4 as a symbolic representation to denote
sets of configurations. We adopt a working-list procedure that checks reachability
of a 	-minimal set Φ of target constraints by a program prg = (V, D, Init, Tr).
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For a bad set B = {val1, . . . valx} of valuations, the set of target constraints ΦB

contains each (e, true, val1, . . . , valx) where e is a value in {0, . . . , |Tr|−1}. In
addition, it contains each constraint obtained from such a constraint by adding
some unique valuations that were not in its base (since we require surjections
for the denotations in Sect. 4).

The procedure computes a fixpoint using the entailment relation 	 and a
predecessor computation that results, for a constraint φ and a transition tr,
in a finite set pretr(φ). In fact, pretr(φ) is the set of constraints that capture
an over-approximation of all the configurations that might reach in one round a
configuration denoted by φ. Figure 4 captures this computations and uses several
sets of integer variables. The variables #V =

{
#vd | v ∈ V and d ∈ D

}
(resp.

#V′ =
{
#v′d | v ∈ V and d ∈ D

}
) are used to constrain values of process variables

in the successor constraint φ (resp. predecessor constraint φ′). The variables
#HOk =

{
#hodk | d ∈ D

}
are used to constrain values in the heard-of multisets

of processes taking a guarded command cmdk in tr. The remaining text in this
Section describes the over-approximation.

φ = (e, gl, {val1, . . . , valb})
tr = (r mod |Tr| = e : send v; cmd1, . . . cmdK)
1 ≤ k ≤ K =⇒ cmdk = guardk, val1k → val2k
I ⊆ {1, . . . K} × {1, . . . b} st. I|{1,...b} = {1, . . . b}

H :: {1, . . . |I|} → I is an enumeration of I
1 ≤ i ≤ |I| ∧ H(i) = (k, j) =⇒ vali = val1k ∧ val2k = valj

Γ = {γk | k : 1 ≤ k ≤ K} with
γk(#V ) = ∃#HOk .ξ(guardk)(

#HOk ) ∧ HAXk(#HOk , #V )

gl (#V ) = Inv ∧
(k, )∈I

γk(#V ) ∧ PrAbs[Γ ] ∃#V. DAX(#V, #V ) ∧ gl(#V)

Inv = (
d∈D

#v
d = n)

φ = (e − 1) mod |Tr|, gl #V #V , setOf(val1, . . . , val|I|)

φ ∈ pretr(φ)

Fig. 4. Predecessors computation for constraint φ and transition tr.

Choice of guarded commands and resulting bases. Intuitively, the set I corre-
sponds to combinations of processes in the successors (i.e., φ) and guarded com-
mands in the transition (i.e., tr). Each pair (k, j) ∈ I corresponds to a group
of processes with the same valuation val′

H−1((k,j)) in the predecessors (i.e., φ′)
that took the guarded command cmdk in the transition tr resulting in a valua-
tions valj in φ. Observe there are finitely many such combinations, and hence
finitely many such sets I. The definition of I ensures that the set {1, . . . b}
of process groups of φ is covered. In addition, two pairs (k1, j1) and (k2, j2)
may result in equal valuations val′

H−1((k1,j1))
and val′

H−1((k2,j2))
. We keep only
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one representative in φ′ by making a set setOf(val′
1, . . . , val

′
|I|) of the multiset

[val′
1, . . . , val

′
|I|]

Constraints imposed by the guards. Given a guarded command cmdk, we use the
predicate ξ(guardk) to encode the fact that the heard-of multisets of predecessor
configurations denoted by φ′ satisfy the guard guardk of cmdk. For this, we use
an integer variable #hodk for each value d and index k : 1 ≤ k ≤ K to count the
occurrences of d in the heard-of multiset of the processes taking cmdk. We write
#HOk =

{
#hodk | d ∈ D

}
to mean the set of all such variables for all values in D.

For instance, guard3 is |HO0| > 2n/3 in Fig. 1 and is encoded with the predicate
(#ho03 > 2n/3). We also need to relate the constraints on the heard-of multisets
to the constraints on the variables values in the predecessor constraint φ′. Assume
φ′ denotes a configuration c′ resulting, via tr, in a configuration c denoted by
φ. Suppose tr sends values of variable v. In the case of benign failures (e.g.,
message losses), any heard-of multiset HOk of some process that took a guarded
command cmdk in tr needs to get its values from the multiset valuesOf(c′, v) of
values of v in c′. We therefore enforce HOk � valuesOf(c′, v). This is captured by
HAXk(#HOk ,#V′) =

∧

d∈D

0 ≤ #hodk ≤ #v′d. For each guarded command cmdk, the

predicate γk(#V′) = ∃#HOk .
(
ξ(guardk)(#HOk ) ∧ HAXk(#HOk ,#V′)

)
captures the

strongest constraints imposed, in the predecessor processes, by the guard of cmdk

on values of the variable that was sent (here v). We explain later in this section
how we handle corrupt communication. These predicates are only dependent on
the chosen guarded commands and the sent variables. We collect them in a set
Γ = {γk | k : 1 ≤ k ≤ K}. Observe the set Γ is finite.

Constraints imposed by the commands. Each time a process takes a chosen
guarded command cmdk =

(
guardk, val1k → val2k

)
with (k, j) in I for some j,

it transforms its valuation from val1k to val2k. This affects the relation between
gl(#V) and gl′(#V′) as the number of occurrences of a variable with a given
value depends on the proportions of processes that take each guarded command.
We first illustrate how this relation can be captured exactly by introducing aux-
iliary variables to represent the number of processes that took each one of the
chosen guarded commands. Then we describe how we can over-approximate this
relation and avoid the introduction of the variables.

First, we introduce an integer variable δk, for each k ∈ {1, . . . ,K}, to capture
the number of processes in some configuration c′ denoted by φ′ that executed
the guarded command cmdk =

(
guardk, val1k → val2k

)
. If d1 = val1k(v) and

d2 = val2k(v), then each process taking the guarded command cmdk will decrease
the number of occurrences of d1 and increase the number of occurrences of d2.
More precisely, for each variable v, the following relation holds:

DAXe(
#
V, #V

′) =

⎛

⎜
⎜
⎝

∃ {δk | k ∈ {1, . . . , K}} . ∧ ∧

(k, )∈I

δk ≥ 1

∧ ∧
v ∈ V

d ∈ D

#v′d =
∑

d = val1k(v)
(k, ) ∈ I

δk ∧ #vd =
∑

d = val2k(v)
(k, ) ∈ I

δk

⎞

⎟
⎟
⎠
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The relation DAXe is expensive to compute. Instead, we over-approximate
it with DAX (see below) where we identify two cases in which we can relate
variables in #V and #V′ . For each variable v ∈ V, the first case (captured
with the predicate preservedI(v)) is true when each chosen guarded command(
guardk, val1k → val2k

)
with (k, ) ∈ I preserves the variable v (i.e., val1k(v) =

val2k(v)). The second (captured with the predicate uniqueChangeI(v, d)) cor-
responds to the situation when the only allowed changes for variable v are to
some value d (i.e., for all k, k′ with (k, ), (k′, ) ∈ I, if val1k(v) �= val2k(v) and
val1k′(v) �= val2k′(v) then val2k(v) = val2k′(v) = d). The over-approximation DAX
of DAXe is defined as:

DAX(#V, #V
′) =

∧

v∈V

(
preservedI(v) =⇒ ∧

d∈D
#v′d = #vd

∧ ∧
d∈D

(
uniqueChangeI(v, d) =⇒ #v′d ≤ #vd

)
)

To achieve the computation of gl′(#V′), we account for the global condition of
the successor constraint (using gl(#V)) and deduce constraints on V′ via the rela-
tion DAX(#V,#V′). More precisely, we compute: π(#V′) = ∃#V. DAX(#V,#V′) ∧
gl(#V). In general, arbitrarily many different such predicates may be generated
in the fixpoint iteration. To help termination, we use the abstraction PrAbs[Γ ](π)
of π with respect to the predicates Γ = {γk | k : 1 ≤ k ≤ K} obtained from all
the guards.

Example 4. Consider the configurations c, c′ and the constraint φ′ in the Exam-
ples 1, 2 and 3. We have shown c

tr−→ c′ using F and c′ |= φ′ using S. Consider
now the constraint φ = (0,#x1 > 2n/3, {(x1 = 1, r1 = −1), (x1 = 0, r2 = −1)}).
We define H = {(1, (2, 1)), (2, (5, 2)), (1, (4, 3))} to show φ′ ∈ pretr(φ). Moreover,
there is a surjection S′ = {(1, 1), (2, 1), (3, 2), (4, 1)} that witnesses c |= φ.

Corrupted communications. As in [3], corrupted communications or value faults
are related to the classical Byzantine Faults in which a portion of the received
messages are corrupted. Note that in the classical Byzantine setting, also the
state of a process can be corrupted, which is not the case in this model. All
processes follow the algorithm but may receive a number of corrupted messages
(whether accidental or malicious). We weaken this assumption so that in each
round, for each process and for each data value, no more than α (given as a
fraction of n) messages received by a process may have been corrupted. This
assumption is weaker than the one in [14]. We model this by enforcing the
following invariants. DAX remains unchanged because of the assumption that
states of processes are not corrupted. It is the relation between the heard-of
multisets and process variables that change: HAXk =

∧

d∈D

(0 ≤ #hodk ≤ #v′d + α).

The rest of the computation of predecessors remains unchanged.

Theorem 1. The proposed predecessor computation method introduced in Fig. 4
is a sound over-approximation for parameterized Heard-Of programs.
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Proof. Sketch. Assume configurations c, c′ and constraint φ as described in
Fig. 5. The total function F witnesses c′ → c and surjection S witnesses c |= φ.
We show a constraint φ′ that denotes c′ is generated by the procedure. All
generated e′ capture r′ if c′ → c and c |= φ. Observe each valφ

j is mapped
to (via S) at least some valφ

i . By choosing I = {(F(i), S(i)) | i : 1 ≤ i ≤ a} we
ensure the existence of a surjection S′ that maps each valc

′
i to some valφ′

j′ . In
addition, the values valuesOf(c′, v), for each v ∈ V, resulted in heard-of mul-
tisets that satisfied the guarded commands

{
cmdF(i) | i : 1 ≤ i ≤ a

}
. Moreover,

valuesOf(c′, v) satisfies gl′ because of the following. Indeed, valuesOf(c, v) sat-
isfy gl and are related to valuesOf(c′, v) with DAXe and its over-approximations
DAX and its predicate abstraction with respect to some predicates. Finally, Inv
restricts valuesOf(c′, v) to possible values (e.g., sum of all occurrences per vari-
able should be n) or relevant values (e.g., enforcing invariants under which cor-
rectness is checked).

c : r , [pc1 . . . pci = valci , HOci . . . pca ] c : (r, [pc1 . . . pci = (valci, HO
c
i) . . . pca])

φ : e, gl, val
φ
1 . . . valφ

j . . . valφ
bφ : e , gl , setOf(valφ

1 . . . valφ

j
. . . valφ

|I|)

F : {1, . . . a} → {1, . . . K}

guardF (i) : val1
F (i) → val2

F (i)

valci = val1
F (i), val2

F (i) = valci

S : {1 . . . a} → {1, . . . b}

I ⊆ {1, . . . K} × {1, . . . b}
I|{1,...b} = {1, . . . b}

H : {1, . . . |I|} → I

H(j ) = (k, j)
guardk : val1k → val2k

val
φ
j

= val1k, val2k = val
φ
j

S ?

Fig. 5. Given c′ → c and c |= φ, soundness boils down to showing the existence of
φ′ ∈ pretr(φ) for which c′ |= φ′.

Theorem 2. The proposed procedure terminates.

Termination is obtained by the fact that at most a finite number of constraints
might be generated. To see this, observe that constraints consist of an integer
capturing control location, a predicate (the global condition), and a set of local
valuations of processes (the base). The number of control locations and that of
the local valuations of processes is finite. In addition, the number of combinations
of subsets of guarded commands is finite and the strengthening invariants do not
change.

6 Experimental Results

We report on experiments with our open-source prototype SyncV which is pub-
lically available online at https://gitlab.liu.se/live/syncv for the verification of a

https://gitlab.liu.se/live/syncv
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class of HO algorithms. The experiments were conducted on a 2.9 GHz processor
with 8 GB of memory. We conducted experiments on several variations of the
One-Third-Rule and AE,T algorithms. In fact, these variations correspond to
checking the correctness properties of agreement, validity, and irrevocability for
correct and buggy versions of the considered algorithms and for an unbounded
number of processes. For each property, a correct version and a buggy version
were tested. The buggy versions differ from the correct ones by the considered
guards in the commands. For verification of the AE,T algorithm, we strength-
ened our invariant Inv in Fig. 4 with the invariants represented in Fig. 3 that
according [3] are essential for correctness of the algorithm.

For all the correct versions, our tool reported that the program is safe and
for all the buggy ones, it presented a valid trace violating the considered prop-
erty. Our implemented procedure does not eagerly concretize local valuations of
processes. Instead, we concretize on demand. All benchmarks are available on
the tool homepage.

Checking different correctness properties. We discussed in depth checking the
agreement correctness property in Sects. 2 and 5. Checking the validity property
is similar in the sense that it also uses a finite set of forbidden valuations to
characterize the set of bad constraints. In order to check irrevocability, one needs
to see if a process can make a decision and revoke it later. In order to make such
checks, we take into account a history of the changes. We do that by augmenting
each process group in a constraint by a list of possible decisions as its history.
This list is empty by default. A bad constraint that violates irrevocability has at
least one process group with a minimum of two different values in its history.

7 Conclusion and Future Work

We have studied a subclass of fault-tolerant distributed algorithms in terms
of the Heard-Of model and proposed a symbolic representation using cardinal-
ity constraints on multisets to model sets of configurations generated during
the analysis of such programs. We have also introduced a sound procedure for
checking state reachability to check various correctness properties for consensus
programs such as agreement, validity, and irrevocability in the presence of lossy
or corrupt communications. We showed that the introduced procedure termi-
nates even for an unbounded number of processes. To the best of our knowledge,
this is the first fully-automatic approach to verify Heard-Of protocols in the
presence of corrupt communication. We reported on preliminary experiments
with correct and buggy variations of the protocols (Table 1).
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Table 1. The result of checking safety properties for some HO protocols with SyncV.
For each algorithm, a correct and a buggy version were tested by the tool. The buggy
versions differ from the correct ones by the guards of their commands. For all the
correct versions our tool reported that the program is safe and for all the buggy ones,
it presented a valid trace violating the considered property.

Program Property Safe? Result Time(m)

simple agreement ✓ safe 2

validity ✓ safe 0

irrevocability ✓ safe 1
1
3 -rule agreement ✓ safe 19

✗ trace 0

validity ✓ safe 2

✗ trace 0

irrevocability ✓ safe 7

✗ trace 0

AE,T agreement ✓ safe 54

✗ trace 1

validity ✓ safe 5

✗ trace 0

irrevocability ✓ safe 21

✗ trace 0

Future Work. Future work can consider improving the scalability of the tool, and
also extending the presented technique to more general models and more sophis-
ticated faults such as Byzantine faults. Besides, the current technique assumes
symmetric processes in the sense that all of them execute the same operation
in each round. One can extend the model to non-symmetric processes as in the
Heard-Of examples having coordinators, for instance in CoordUniformVoting
and LastVoting algorithms in [4], or the Phase King and Phase Queen algo-
rithms introduced in [2] in which a King or Queen is distinguished in each
round, or the reliable broadcast algorithm in [16]. It will also be interesting to
combine the approach with abstract interpretation for loops to be able to capture
the distributed algorithms in which the number of iterations is crucial for the
correctness of the algorithm, for example, the FloodMin algorithm in [5]. More-
over, identification of conditions for completeness of the approach, automatic
refinement of the over-approximation and combination with richer theories are
interesting directions for future work.
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