
Chryssis Georgiou
Rupak Majumdar (Eds.)

LN
CS

 1
21

29

8th International Conference, NETYS 2020
Marrakech, Morocco, June 3–5, 2020
Proceedings

Networked Systems

Lecture Notes in Computer Science 12129

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Chryssis Georgiou • Rupak Majumdar (Eds.)

Networked Systems
8th International Conference, NETYS 2020
Marrakech, Morocco, June 3–5, 2020
Proceedings

123

Editors
Chryssis Georgiou
University of Cyprus
Nicosia, Cyprus

Rupak Majumdar
Max Planck Institute for Software Systems
Kaiserslautern, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-67086-3 ISBN 978-3-030-67087-0 (eBook)
https://doi.org/10.1007/978-3-030-67087-0

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-67087-0

Preface

This volume contains the papers presented at the 8th edition of the International
Conference on NETworked sYStems (NETYS 2020). The conference was originally
scheduled to be held in Marrakech, Morocco, between June 3 and 5, 2020. However, it
moved to a fully virtual mode due to the Covid-19 pandemic.

The aim of the NETYS series of conferences is to bring together researchers and
engineers from both the theory and practice of distributed and networked systems. The
scope of the conference covers all aspects related to the design and the development
of these systems, including, but not restricted to, concurrent and distributed algorithms,
parallel/concurrent/distributed programming, multi-core architectures, formal verifica-
tion, distributed databases, cloud systems, networks, security, formal verification, etc.

The Program Committee of NETYS 2020 included 38 researchers working in 16
different countries. There were 46 papers submitted to the conference, 38 as full papers,
and 8 as short papers. The Program Committee selected 18 contributions out of the 38
full paper submissions for regular presentations at the conference (which represents an
acceptance rate of 47%) as well as 4 extended abstracts for short presentations. Every
submitted paper was read and evaluated by at least three members of the Program
Committee. The committee was assisted by 14 external reviewers.

The program also included invited lectures, again hosted virtually, by C. Aiswarya,
Chennai Mathematical Institute (India), Antonio Fernández Anta, IMDEA Networks
Institute (Spain), Constantin Enea, University of Paris (France), Maria Potop-Butucaru,
Sorbonne University (France), and Nitin Vaidya, Georgetown University (USA). In
addition, C. Aiswarya, Antonio Fernández Anta and Maria Potop-Butucaru contributed
invited papers.

The videos of all invited and contributed presentations can be viewed at:
https://www.youtube.com/channel/UC3Y0phGAVVV_MyFbntZa0Ug/videos.

The program committee also selected a Best Paper and a Best Student Paper. The
Best Paper was awarded to Quentin Bramas, Stéphane Devismes, and Pascal
Lafourcade for their paper Infinite Grid Exploration by Disoriented Robots. The Best
Student Paper was awarded to Carole Delporte-Gallet, Hugues Fauconnier, and Mouna
Safir for their paper Byzantine k-Set Agreement. The author Mouna Safir was a full-time
student at the time of the submission.

We are grateful to all members of the Program and Organizing Committees, to all
referees for their cooperation, and to Springer for their professional support during the
production phase of the proceedings. Finally, we would like to thank the sponsoring
institutions without whom NETYS 2020 could not have been a reality. We are also
thankful to all authors of submitted papers and to all participants of the conference.

https://www.youtube.com/channel/UC3Y0phGAVVV_MyFbntZa0Ug/videos

Their interest in this conference and contributions to the discipline are greatly
appreciated.

August 2020 Chryssis Georgiou
Rupak Majumdar

vi Preface

Organization

General Chair

Mohammed Erradi ENSIAS, Mohammed V University in Rabat, Morocco

General Vice-chairs

Ahmed Bouajjani University of Paris, France
Rachid Guerraoui EPFL, Switzerland

Program Chairs

Chryssis Georgiou University of Cyprus, Cyprus
Rupak Majumdar Max Planck Institute for Software Systems, Germany

Program Committee

M. Faouzi Atig Uppsala University, Sweden
Slimane Bah EMI, Mohammed V University, Morocco
Yahya Benkaouz FS, Mohammed V University, Morocco
Ismail Berrada SMBAU, Morocco
Annnette Bieniusa TU Kaiserslautern, Germany
Ahmed Bouajjani University of Paris, France
Costas Busch LSU, USA
Ioannis Chatzigiannakis Sapienza University of Rome, Italy
Yu-Fang Chen Academia Sinica, Taiwan
Evgenia Christoforou University of Cyprus, Cyprus
Loris D’Antoni University of Wisconsin-Madison, USA
Carole Delporte University of Paris, France
Ankush Desai Amazon, USA
Amr El Abbadi UCSB, USA
Pierre Ganty IMDEA Software Institute, Spain
Seth Gilbert NUS, Singapore
Vincent Gramoli University of Sydney, Australia
Radu Grosu Vienna University of Technology, Austria
Aarti Gupta Princeton University, USA
Mohamed Jmaiel University of Sfax, Tunisia
Mohammed-Amine Koulali ENSA d’Oujda, Morocco
Jan Kretinsky Technical University of Munich, Germany
S. Krishna IIT Bombay, India
Fabian Kuhn University of Freiburg, Germany
Miguel Matos INESC-ID & IST, University of Lisbon, Portugal

Miguel Mosteiro Pace University, USA
Calvin Newport Georgetown University, USA
Nicolas Nicolaou Algolysis Ltd., Cyprus
Guevara Noubir Northeastern University, USA
Andreas Podelski University of Freiburg, Germany
Maria Potop-Butucaru Sorbonne University, France
Azalea Raad Imperial College London, UK
Michel Raynal IRISA, Université de Rennes 1, France
Indranil Saha IIT Kanpur, India
Elad M. Schiller Chalmers University of Technology, Sweden
Thomas Wies NYU, USA

Organizing Committee

Khadija Bakkouch IRFC, Rabat, Morocco
Yahya Benkaouz FS, Mohammed V University, Rabat, Morocco
Abdellah Boulouz FS, Ibn Zohr University, Agadir, Morocco
Rachid Guerdaoui Mohammed VI Polytechnic University, Ben Guerir,

Morocco
Mustaf Hedabou ENSA Safi, Cadi Ayyad University, Marrakech,

Morocco
Zahi Jarir FS, Cadi Ayyad University, Marrakech, Morocco
Abdellatif Kobbane ENSIAS, Mohammed V University, Rabat, Morocco
Mohammed Ouzzif EST, Hassan II University, Casablanca, Morocco

Students Committee

Hind Boukhairate University Mohammed VI Polytechnic, Benguerir
Mohammed Lechiakh University Mohammed VI Polytechnic, Benguerir
Rachid Zennou ENSIAS, Mohammed V University, Rabat

Additional Reviewers

Ishtiyaque Ahmad
Mohammad Javad Amiri
Miëtek Bak
Abtin Bateni
Ignacio Cascudo
Lotfi Chaari
Samuel Drews

Earlence Fernandes
Sujaya Maiyya
Sebgui Marouane
Stefanie Mühlberger
Kausik Subramanian
Josef Tkadlec
Mouna Torjmen

viii Organization

Sponsors

MOHAMMED VI Polytechnic University OCP Group

Springer

King Abdullah
University of Science

and Technology

Auto Hall
Fondation Hassan II

thinline

Université Mohammed
V de Rabat

ENSIAS
Association

Alkhawarizmi de Génie
Informatique

Organization ix

Abstracts

Reasoning About Concurrent Data Types

Constantin Enea

IRIF, University of Paris

Abstract. Modern software is typically built with specialized concurrent
objects, which encapsulate shared-memory accesses or message-passing proto-
cols into higher-level abstract data types. These objects are designed to behave
according to certain consistency criteria like linearizability, eventual or causal
consistency. In this talk, I will give an overview of recent results concerning
formal reasoning about concurrent objects, from efficient testing algorithms to
algorithmic verification methods. These results give rise to alternative specifi-
cation frameworks to characterize the intended behaviors of such objects, which
complement the existing generic formalizations of linearizability and weak
consistency.

Security and Privacy for Distributed
Optimization and Learning

Nitin Vaidya

Georgetown University

Abstract. Consider a network of agents wherein each agent has a private cost
function. In the context of distributed machine learning, the private cost function
of an agent may represent the “loss function” corresponding to the agent’s local
data. The objective here is to identify parameters that minimize the total cost
over all the agents. In machine learning for classification, the cost function is
designed such that minimizing the cost function should result in model
parameters that achieve higher accuracy of classification. Similar problems arise
in the context of other applications as well, including swarm robotics.
Our work addresses privacy and security of distributed optimization with

applications to machine learning. In privacy-preserving machine learning, the
goal is to optimize the model parameters correctly while preserving the privacy
of each agent’s local data. In security, the goal is to identify the model
parameters correctly while tolerating adversarial agents that may be supplying
incorrect information. When a large number of agents participate in distributed
optimization, security compromise of some of the agents becomes increasingly
likely. The talk will provide intuition behind the design and correctness of the
algorithms.

Contents

Invited Papers

On Network Topologies and the Decidability of Reachability Problem. 3
C. Aiswarya

Hide Me: Enabling Location Privacy in Heterogeneous
Vehicular Networks. 11

Tobias Meuser, Oluwasegun Taiwo Ojo, Daniel Bischoff,
Antonio Fernández Anta, Ioannis Stavrakakis, and Ralf Steinmetz

Blockchains and the Commons . 28
Maria Potop-Butucaru

Regular Papers

On the State Reachability Problem for Concurrent Programs Under Power . . . 47
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani,
Egor Derevenetc, Carl Leonardsson, and Roland Meyer

On the Encoding and Solving of Partial Information Games 60
Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru,
Nathalie Sznajder, Léo Tible, and Sébastien Tixeuil

Efficient Concurrent Execution of Smart Contracts in Blockchains Using
Object-Based Transactional Memory . 77

Parwat Singh Anjana, Hagit Attiya, Sweta Kumari, Sathya Peri,
and Archit Somani

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking
and Symbolic Execution . 94

Boutheina Bannour, Arnault Lapitre, and Pascale Le Gall

Broadcasting Information in Multi-hop Networks Prone to Mobile
Byzantine Faults . 112

Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil

Infinite Grid Exploration by Disoriented Robots . 129
Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade

Wireless Broadcast with Short Labels . 146
Gewu Bu, Maria Potop-Butucaru, and Mikaël Rabie

The Imitation Game: Algorithm Selection by Exploiting
Black-Box Recommenders . 170

Georgios Damaskinos, Rachid Guerraoui, Erwan Le Merrer,
and Christoph Neumann

Byzantine k-Set Agreement . 183
Carole Delporte-Gallet, Hugues Fauconnier, and Mouna Safir

Fissile Locks . 192
Dave Dice and Alex Kogan

Verifying Safety of Parameterized Heard-Of Algorithms 209
Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

Staleness and Local Progress in Transactional Memory 227
Hagit Attiya, Panagiota Fatourou, Sandeep Hans, and Eleni Kanellou

Generic Framework for Optimization of Local Dissemination in Wireless
Networks . 244

Dariusz R. Kowalski, Miguel A. Mosteiro, and Krutika Wadhwa

Verifying Weakly Consistent Transactional Programs Using Symbolic
Execution. 261

Burcu Kulahcioglu Ozkan

NetSheriff: Sheltering Software-Defined Networks from Rogue Switches 279
Paolo Laffranchini, João Miranda, Nuno Machado, Luís Rodrigues,
Etienne Rivière, and Ramin Sadre

Self-stabilizing Uniform Reliable Broadcast . 296
Oskar Lundström, Michel Raynal, and Elad M. Schiller

Fully Anonymous Consensus and Set Agreement Algorithms 314
Michel Raynal and Gadi Taubenfeld

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 329
Thanh-Hai Tran, Igor Konnov, and Josef Widder

Short Papers

Stateless Distributed Ledgers . 349
François Bonnet, Quentin Bramas, and Xavier Défago

Stability Under Adversarial Injection of Dependent Tasks
(Extended Abstract) . 355

Vicent Cholvi, Juan Echagüe, Antonio Fernández Anta,
and Christopher Thraves Caro

xvi Contents

Collaborative Filtering: Comparative Study Between Matrix Factorization
and Neural Network Method . 361

Driss El Alaoui, Jamal Riffi, Badraddine Aghoutane,
Abdelouahed Sabri, Ali Yahyaouy, and Hamid Tairi

Routing in Generalized Geometric Inhomogeneous Random Graphs
(Extended Abstract) . 368

Andrés Sevilla and Antonio Fernández Anta

Author Index . 375

Contents xvii

Invited Papers

On Network Topologies and the
Decidability of Reachability Problem

C. Aiswarya1,2(B)

1 Chennai Mathematical Institute, Chennai, India
aiswarya@cmi.ac.in

2 CNRS IRL ReLaX, Chennai, India
https://www.cmi.ac.in/aiswarya

Abstract. We consider models of distributed systems where processes
communicate by means of point-to-point (unbounded) channels. The pro-
cesses have a finite set of control states whose dynamics is given by a finite
state automaton. They may sometimes have auxiliary storage like stacks.
They may sometimes have variables storing values from an unbounded
data domain. The channels may have access policies, like first-in first-
out (queue). The channel may be assumed to be reliable or unreliable
(lossy channel). The channels may be allowed to transmit only messages
coming from a finite set, or may be allowed to transmit elements from
an infinite set. The processes and the channels may be arranged in par-
ticular topologies, for example like a tree or a star. We view a topology
as a node and edge labelled directed graph, where nodes represent the
processes, and the directed edges represents the channels between them.
The node labels describe the features of each process, and the edge label
represents the assumptions on the channel. We consider local control
state reachability on a single process. That is, given a distributed system
over a topology, and a specific control state of a specific process, is it
possible to ever reach a configuration where the specific process is in the
specific control state. This problem is in general undecidable. We present
a quick survey of the decidability status of this problem across different
topologies.

Keywords: Distributed systems · Network topology · Reachability

1 Introduction

Mathematical modelling of distributed systems and formal reasoning about its
correctness have been a central topic of research in formal methods. We focus
on a very small part of it and accumulate a few results in the form of a short
survey.

We consider distributed systems which consist of finite state or pushdown
processes. The processes communicate between each other by means of point-to-
point channels. The channels may follow a first-in first-out policy for the mes-
sages in it, or simple follow no particular order for delivery. Further the channel

Supported by DST Inspire.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 3–10, 2021.
https://doi.org/10.1007/978-3-030-67087-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_1&domain=pdf
http://orcid.org/0000-0002-4878-7581
https://doi.org/10.1007/978-3-030-67087-0_1

4 C. Aiswarya

may be reliable (perfect) or unreliable (lossy) where it may non-deterministically
lose arbitrary messages. The processes may work either on a finite data domain
such as boolean programs, and transmit messages from a finite set of messages.
Or the processes may have variables to store and transmit values from an infi-
nite domain, such as protocols involving storing and passing of process ids. These
attributes describe the type of processes and channels in the system.

The network topology is a graph that describes how the processes and chan-
nels are arranged in the network. We look in the literature to understand how
the network topology affects the decidability status of the (local) control state
reachability problem. We do not give proofs or proof ideas in this quick survey,
but only make statements and give references to where one can find details.

2 Distributed Systems, Topology, Reachability Problem

We consider physically distributed systems consisting of processes communicat-
ing via channels. This is a vague description, as it gives a lot of freedom for
what the processes could be, what the channels could be, and how they could
be arranged. We capture this notion by topology/architecture.

As alluded to earlier, a distributed system consists of processes Procs and
channels Channels. The channels offer dedicated end-to-end message transmission
between processes. Thus each channel ch ∈ Channels have a unique process that
can write into it (denoted writer(ch)) and a unique process that can read from
it (denoted reader(ch)).

When the Data Domain is Finite. First we consider the situation when the
data domain is finite. Each process p ∈ Procs has a finite set of control states
States(p), transitions Trans(p), and a specified initial control state inState(p).
Since we are interested only in control state reachability and not in language
theory, we will ignore the alphabet and final states. However the transitions
may also have associated actions, which in our case may be sending a mes-
sage to a channel or receiving a message from a channel. The messages come
from a finite set Msgs of messages. A send action snd(m, ch) indicates send-
ing of the message m to the channel ch. The set of send actions of process p
will thus be SndActions(p) = {snd(m, ch) | m ∈ Msgs,writer(ch) = p}. Sim-
ilarly RcvActions(p) = {rcv(m, ch) | m ∈ Msgs, reader(ch) = p}. Thus, the
transitions of p are of the form (state1, op, state2) where op ∈ SndActions(p) ∪
RcvActions(p) ∪ {nop} and state1, state2 ∈ States(p).

In addition, if the process is pushdown (has a stack) then the associ-
ated actions could also be push operations PushActions(p) = {push(s) | s ∈
StackAlph} or pop operations PopActions(p) = {pop(s) | s ∈ StackAlph}. Here
StackAlph is the finite set of stack symbols.

When the Data Domain is Infinite. Let Ddom be the infinite data domain
equipped with just the equality relation on the elements. The processes with
finite control states are provided with variables/registers to store the values

Network Topologies and Reachability Problem 5

coming from the infinite domain (sometimes called data). A process has only
finitely many variables available for storage. Let Variable(p) be the set of vari-
ables available for the perusal of process p. The operations are enriched to allow
data updates as well. The operation v ← ∗ overwrites the content of the variable
v by a non-deterministic value. The operation v ← u copies the content of u to
v. The operations assert(v = u) and assert(v �= u) acts like transition guards –
the transition can be performed only if the assertion holds for the contents of
the respective registers.

One can consider a model where processes are equipped to handle data as
above, but the channels can only transmit messages coming from the finite set
Msgs of messages. For the reachability problem, this model is essentially the
previous finite state system, via an abstraction that keeps track of the equiv-
alence relation on the variables. Similar is the case for pushdown processes
equipped with data where stacks can store only objects coming from the finite
set StackAlph. Thus decidability status of reachability problem with these kinds
of processes coincide with the finite state versions.

Interestingly, if we allow data values to be transmitted via channels and
stored in stack, we have a different story. For this we enrich the send actions
to send the value stored in a particular variable also in a message. Thus
SndActions(p) = {snd(m, v, ch) | m ∈ Msgs, v ∈ Variable(p),writer(ch) = p}.
Naturally we want to store a received data value in a specific register. The oper-
ation rcv(m, v, ch) receives a message from channel ch whose finite part is m,
and the data value received along is stored into variable v. Similarly the push
an pop operations can also be enriched if the process is pushdown, so that the
stacks store sequence of elements from StackAlph × Ddom.

The Channel Nature. We consider three kinds of channels. The multiset channel
(or a bag) just stores the messages in a bag. The FIFO channel stores it in
a queue. A lossy FIFO may lose the messages arbitrarily while the retained
messages still preserve the FIFO order. We do not consider lossy multisets for
reasons mentioned in Remark 1 below.

Configuration Graph. We understand the semantics of the distributed system in
terms of a configuration graph. A configuration assigns a state to each process,
and a sequence of messages (resp. stack symbols) to each channel (resp. process
stack). The initial configuration assigns the initial states to each process, and all
channels and stacks are empty. An edge in the configuration graph indicates the
effect of a transition in a process. The successor configuration is as expected from
the transition. Sending a message will prepend the message to the beginning of
the sequence on the respective channel. So does a push. A pop will remove it
from the beginning of the sequence as stacks follow last-in first-out policy. For a
multiset/bag channel, a receive removes an arbitrary message from the sequence.
For a FIFO channel, the receive removes the message at the end of the sequence.
For a lossy channel as well, the message is removed from the end. There are
some additional edges in the configuration graph to model the lossy channel.

6 C. Aiswarya

The sequence corresponding to a lossy channel may lose an arbitrary number of
messages, shrinking the sequence into a subsequence.

For the processes handling data, the configuration in addition assigns a data
value to each of its variable. The stack in this case is assigned a sequence of pairs
of the form (stack symbol, data value). If a channel is between processes handling
data then the channel is also assigned a sequence of pairs of messages and data
values. The semantics of the channels is reflected according to its nature.

We say a configuration is reachable from another if it is reachable in the
configuration graph defined above.

Network Topology. The topology or architecture of a distributed system is a
node- and edge-labelled directed graph. The nodes of this graph are the pro-
cesses, and the directed edges represent the channels. The node label comes from
the set {fs,data,pd,datapd} and indicates, respectively, whether the process
is simply a finite state machine, or a finite state machine with variables to handle
data from infinite domain, or a pushdown machine over a finite data domain,
or a pushdown machine over infinite data domain. The edge labels from the set
{bag, fifo, lossy} indicates respectively whether the channel is an unordered
set, a reliable queue, or a lossy queue. A topology is depicted in Fig. 1.

fs pd

lossy

lossy

lossy

fifo

Fig. 1. A topology with two processes and four channels.

Reachability Problem. It takes as input a distributed system, a process p and
a control state target . The reachability problem is to decide whether, starting
from the initial configuration, it is possible to reach a configuration in which the
process p is in the control state target .

3 Boundaries of Decidability

We focus on the decidability status of the reachability problem wrt. the topology.
First of all we notice that the problem is undecidable in general. In fact the
undecidability holds for the following restricted topologies. We provide brief
explanations later, and give citations to the papers in the literature from which
the main ideas for proving these results come from.

Theorem 1. The reachability problem is undecidable as soon as the topology
embeds any of the following.

Network Topologies and Reachability Problem 7

1. A fs process with a fifo self-loop [5].
2. Two fs processes with two fifo channels between them (the direction of the

fifo channels does not matter [8,9].
3. Two pd processes with a fifo channel between them.
4. A pd process with a lossy channel self-loop.
5. A data process with a lossy channel self-loop [1].
6. Two data processes with two lossy channels (the direction of the channels

does not matter) [1].

Reachability of single fs process with a queue is undecidable [5]. One can use
a perfect fifo to store a Turing machine configuration. Using just the finite state
control we can enqueue and dequeue to cyclically shift the channel contents, and
at the same time update it to the next configuration. Two processes with fifo
channels between them in opposite directions can simulate a single process with
a single queue: the second process just copies the contents from the incoming
channel to the outgoing channel. Two processes with two queues between them
in the same direction is also undecidable [8,9]. We can easily give a reduction
from the Post’s Correspondence Problem: The first process guesses a sequence
of tiles and sends the top strings on one channel and the bottom strings on
the other. Once it finishes the guessing it will send a special symbol to mark
the end. The second process will receive from each channel in an interleaving
manner checking that both channels deliver the same string until it receives the
end marker from both, in which case it moves to the target state.

Two pd processes communicating via a fifo channel can check the
intersection-non-emptiness of context-free languages. One pd process non-
deterministically generates a string in its language and transmits it over the
fifo channel as it is generated. The second process checks that the received
string is in its language.

Pushdown processes with cycles of lossy channel are Turing powerful. One can
use the a lossy channel instead of the perfect channel for simulating successive
configurations of a Turing machine. We may require the Turing machine to finally
erase the used tape cells from the right and accept on the first cell with a blank
tape. In order to detect loss of messages, it will use the pushdown to count the
number of currently active tape cells, according to the transitions. In the end
if the pushdown is not empty it means that the channel has lost messages. It
reaches the target state only if the stack is currently empty in addition to the
Turing machine reaching a final state. Note that, this proof also works if we
provide only a simple counter instead of the stack.

lossy channel with data can reliably encode two counter machines, and
hence reachability is undecidable in this case too [1]. The idea is to use the data
equality relations to induce a strict chain-like structure to the channel contents.
This structure is broken by loss of messages, and once broken it can never be
built back. The finite control with the help of variables can check if the structure
is broken, and ignore such lossy runs. This ability to check loss of messages lets
processes with a lossy channel and infinite data domain simulate perfect channels
on finite data domain. This explains the last two undecidability results.

8 C. Aiswarya

On the other hand we have a collection of decidability results as well.

Theorem 2. The reachability problem is decidable for the following topologies.

1. If it has only fs or data processes and bag channels [6,12,14,16].
2. If it has only fs processes and fifo channels, and the undirected topology

does not have undirected cycles [9,13]. Undirected topology treats the topology
as an undirected graph by ignoring the direction in the edges.

3. If it has fs processes and lossy channels [2,7].
4. If it has pd processes and lossy channels, and the undirected topology does

not have cycles [4].
5. If it has only two fs processes and a lossy channel and a fifo channel

between them, both channels in the same direction [9].
6. If it has only fs processes, and topology can be decomposed into components,

each of which is decidable, and the components are linked only by lossy
channels [9].

7. If it has only fs processes, and if the topology can be fused along an essential
edge (edge contraction) to result in a decidable topology, where an essential
edge is a channel between different processes, and it is the only one between
these in either direction [9].

The first case of fs processes and bag channels can be simulated easily by
Petri nets or vector addition systems with states. Basically we provide a place
for each (m, ch) pair. The number of tokens in that place indicates how many
m-messages are present in channel ch. Our reachability problem corresponds to
the coverability problem for Petri nets which is known to be decidable [6,12,16].
When these are data processes, it corresponds to Data nets—Petri nets with
tokens carrying data. Coverability problem is decidable for Data nets [14].

The decidability of reachability problem in acyclic topologies containing only
fs processes with fifo channels was shown in [13] and also in [8,9]. The decid-
ability of lossy channel systems was shown in [2,7]. Decidability of acyclic
networks of pushdown processes communicating via lossy channels was shown
in [4].

For different combinations of lossy and fifo channels between fs processes,
a complete picture of decidability status is given by Chambart and Schnoebelen
in [9] (See also Chapter 5 of [8]). As per [9], a lossy channel and a fifo channel
between a pair of processes in the same direction is decidable. On the other
hand if there are two lossy channels and one fifo channel between a pair of
processes in the same direction, it is undecidable. They give basic decidable and
undecidable architectures consisting of only two fs processes. They also show
that, a bigger topology consisting of components connected to each other via
lossy channels, each component being a decidable topology, is again decidable.
Also, if a bigger topology can be transformed into a smaller one by fusion along an
essential channel (a channel that is not a loop which is the only channel between
the writer and reader of this channel, independent of the direction) and if the
smaller topology is decidable then so is the bigger. Chambart and Schnoebelen
[9] even give a complete characterization of decidable topologies by means of
fusion and splitting along lossy edges.

Network Topologies and Reachability Problem 9

Remark 1. We do not consider lossy bag channels. This is because the control
states reachable by lossy bag will exactly be the ones reached by perfect bag
channels, as we do not have emptiness check on channels. Already we have
decidability for bag channels, and this implies that the distributed systems with
pd or data processes where the channels are any combination of perfect or lossy
bags will have a decidable reachability problem.

4 Conclusions

Though this short survey captures several different models studied in the liter-
ature, it does not cover the vast area of distributed systems and all the decid-
ability results pertaining to them. We have not considered other communicating
paradigms such as broadcast or rendez-vous. We have not considered model
checking problems, nor language theoretic problems. Even for the problem of
reachability that we have considered, there is a plethora of work which achieves
decidability by under- or over- approximation techniques. There are also uni-
fying results which understand the behaviours of these systems as graphs and
attribute the decidability to graph theoretic notions such as tree-width [15] or
split-width [3,10,11].

References

1. Abdulla, P.A., Aiswarya, C., Atig, M.F.: Data communicating processes with unre-
liable channels. In: Proceedings of LICS 2016, pp. 166–175. ACM (2016)

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

3. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Verifying communicating multi-
pushdown systems via split-width. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 1

4. Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-
works of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85361-9 29

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

6. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups (preliminary report). In: Proceedings of
STOC, pp. 50–54. ACM (1976)

7. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

8. Chambart, P.: Du Problème de sous-mot de Post et de la complexité des canaux non
fiables. Thèse de doctorat, Laboratoire Spécification et Vérification, ENS Cachan,
France (2011). http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-
these11.pdf

9. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 28

https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-540-85361-9_29
https://doi.org/10.1007/978-3-540-85361-9_29
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/chambart-these11.pdf
https://doi.org/10.1007/978-3-540-85361-9_28

10 C. Aiswarya

10. Cyriac, A.: Verification of communicating recursive programs via split-width.
Ph.D. thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2014).
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/cyriac-phd14.pdf

11. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown systems
via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 547–561. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 38

12. Karp, R.M., Miller, R.E.: Parallel program schemata: a mathematical model for
parallel computation. In: 8th Annual Symposium on Switching and Automata The-
ory (SWAT 1967), pp. 55–61 (1967)

13. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 21

14. Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens
which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol.
4546, pp. 301–320. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73094-1 19

15. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, Th.,
Sagiv, M. (eds.) POPL 2011, pp. 283–294. ACM (2011)

16. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comput. Sci. 6(2), 223–231 (1978)

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/cyriac-phd14.pdf
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19

Hide Me: Enabling Location Privacy
in Heterogeneous Vehicular Networks

Tobias Meuser1,2, Oluwasegun Taiwo Ojo2, Daniel Bischoff1,
Antonio Fernández Anta2(B), Ioannis Stavrakakis3, and Ralf Steinmetz1

1 Multimedia Communications Lab (KOM), Technische Universität Darmstadt,
Darmstadt, Germany

{tobias.meuser,daniel.bischoff,ralf.steinmetz}@KOM.tu-darmstadt.de
2 IMDEA Networks Institute, Madrid, Spain

{oluwasegun.ojo,antonio.fernandez}@imdea.org
3 National and Kapodistrian University of Athens, Athens, Greece

ioannis@di.uoa.gr

Abstract. In order to support location-based services, vehicles share
their location with a server to receive relevant data. Revealing a vehi-
cle’s location compromises its privacy. One way to reduce this problem
is obfuscating the vehicle’s location by adding artificial noise. However,
this increases the area where the true location of the vehicle may be.
Hence, under limited available bandwidth, the server will provide fewer
data relevant to the vehicle’s true location, reducing the effectiveness of
the location-based service. To compensate for this reduction, we allow
that the data relevant to a vehicle is also shared through direct, ad hoc
communication between neighboring vehicles. Through such Vehicle-to-
Vehicle (V2V) cooperation, the impact of location obfuscation is miti-
gated. In this set up, and assuming that the data served may have differ-
ent impact levels, we propose and study a game that determines the data
subscription a vehicle should use, without explicit coordination among
them. The aim is maximizing the expected impact of the data received,
either directly from the server or via V2V. Our analysis and results show
that the proposed V2V cooperation and derived strategy lead to signifi-
cant performance increase compared to other uncoordinated approaches,
and largely alleviates the impact of location obfuscation.

Keywords: Floating Car Data · Location-based services · Location
privacy · V2V communication

1 Introduction

The vehicles of the future will be required to have increased awareness of their
environment, in order to assist the driver or to support autonomous driving.

This work has been supported by the DFG within the CRC 1053 - MAKI (B1), the
Spanish grant PID2019-109805RB-I00 (ECID), the Region of Madrid EdgeData-CM
program (P2018/TCS-4499), and the NSF of China grant 61520106005.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 11–27, 2021.
https://doi.org/10.1007/978-3-030-67087-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_2

12 T. Meuser et al.

This awareness has typically been provided by sensors on the vehicles, which
measure vital data about the environment of the vehicle. The data provided by
these sensors is limited to the vehicle’s immediate environment, due to the sen-
sors’ inherent physical limitations (e.g., their range). Nevertheless, information
from locations away from a given vehicle may also be important to it (e.g., for
traffic safety, route planning, or navigation). To make such information available
to far away vehicles, passing vehicles may capture it through their own sensors,
and communicate it to a server using an appropriate communication infras-
tructure such as a cellular network. Then, the vehicles desiring to receive such
information indicate so to the server, and receive it via a similar infrastructure.
By sharing their local perception of the environment via a cellular infrastructure,
as described, vehicles can complement their local perception with distant data
provided by other vehicles.

In order for vehicles to get this, so-called, Floating Car Data (FCD), they
have to share their location with the server, which is usually assumed to be a
trusted entity. The server selects the relevant FCD for the vehicles using their
location, and distributes it accordingly. This continuous context and location
exchange with a server is a risk to the privacy of the vehicles. Consequently,
privacy-sensitive users either have to accept this risk, or turn off the option of
receiving FCD. Clearly, users that disable the reception of FCD cannot benefit
from location-based services and other services enabled by vehicular networks.
It is therefore desirable to have a mechanism that allows the reception of FCD
while preserving the location privacy of the user.

A technique that is often used to increase the privacy of a vehicle, is adding
random noise to its true location (obfuscation). Hence, instead of providing the
server with a position, the vehicle provides an area. (We will assume in the
rest of the paper that this type of obfuscation to increase privacy is used.)
A negative consequence of obfuscation is that the server cannot use the true
location to deliver its best FCD to a vehicle, and may hence send it useless data.
We assume that different data items may have different value (impact level) for a
vehicle. A vehicle subscribes to some impact level, and the server provides to the
vehicle all available data items with matching impact for the vehicle area. Since
the available bandwidth is limited, vehicles using obfuscation end up receiving
a smaller portion of data of a given impact that is useful to them. As a result,
location-based services would be less effectively provided to privacy-concerned
vehicles.

To alleviate this problem, and to increase the amount of location-relevant
data provided to a vehicle, we propose that neighboring vehicles can exchange
data through direct, ad hoc communication. That is, we assume Vehicle-to-
Vehicle (V2V) cooperation for exchanging local relevant data. We assume that
vehicles do not use location obfuscation with other neighboring vehicles, only
with the server, and hence the messages exchanged via V2V are all relevant
and useful. (Trying to hide a vehicle’s location to a neighbor seems point-
less, since the neighbor can “see” the vehicle with its local sensors.) Hence,
through V2V cooperation, the negative impact of location obfuscation could be

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 13

mitigated to some extent. The use of V2V cooperation has also been considered
in [1] combined with vehicle clusters. As it will be discussed later and shown
in the results, cluster-based approaches are complex and suffer from connectiv-
ity problems, which reduces their performance. For these reasons, in this work
the V2V communication is not cluster-based but ad hoc through direct V2V
exchanges.

Notice that, without any coordination, neighboring vehicles are expected to
subscribe to the same high impact levels, which results in receiving overlapping
sets of data. This reduces the potential benefit of V2V cooperation. To prevent
that, we develop and study a game among the vehicles. This game drives vehi-
cles to subscribe to certain impact levels, so that the aforementioned overlap
is reduced. The design goal is to maximize the expected value of a utilization
function as shaped by the participating (neighboring) vehicles as well. Our anal-
ysis and results show that the proposed V2V cooperation scheme and derived
strategy lead to significant performance increase compared to non-cooperative
approaches, while alleviating the impact on privacy of location-based services.

Related Work. Several techniques have been introduced in the literature to
protect users’ privacy in vehicular networks. Some of the common techniques
include the use of pseudonyms [2–4], obfuscation [5,6], and the use of group
communications [7–9]. The first technique involves users taking on other iden-
tities (pseudonyms) to dissociate their actual identity from their data [10]. The
use of a single pseudonym is not very effective, and hence it is often required for
users to change pseudonyms periodically, to maintain their level of privacy [11].
Such pseudonym changes are usually done in mix zones where drivers can switch
pseudonyms [12]. These mix zones can be fixed [13] or specified dynamically [14].
However, the use of pseudonyms has been shown not to be effective against a
global eavesdropper [15], and especially in environments with low car density like
highways. Furthermore, the use of pseudonyms usually focuses on eavesdroppers
monitoring V2V communications and involves having to deal with a trusted (or
semi-trusted) server which coordinates the assignments of pseudonyms [8]. This
still involves trusting a central server, which is a risk in the case that an adver-
sary gets hold of such server. Our work focuses on the privacy of users in their
communications with the central server.

Likewise, obfuscation has been extensively used in privacy protection in
vehicular networks and location-based services. Obfuscation involves users pro-
viding (i) an inaccurate location, (ii) an imprecise region including their real
location, or (iii) a vague description of their location [16]. To quantify the effec-
tiveness of obfuscation, metrics like k-anonimity, which means that a user’s
shared location data makes it indistinguishable from k−1 other users, have been
introduced [17,18]. The imprecision added into the location of the user usually
leads to users getting less relevant data and, thus, a decrease in efficiency. Our
method mitigates against this decrease in performance by implicitly cooperating
with other vehicles to get relevant updates through V2V communication.

Game-theory has been applied to modeling aspects of privacy, especially in
mobile networks and location-based services [19,20], and in security and privacy

14 T. Meuser et al.

assessment of vehicular networks [21]. Distinct from previous studies, our work
focuses on privacy of users in their communications with the server considering
the impact of the messages to the user. We adopt an obfuscation technique by
reporting a region instead of their exact location, and mitigate against the result-
ing reduction in performance by implicitly coordination the vehicles through a
game-theoretic approach, which maximizes the relevant data received by the
vehicles.

Contributions. The contributions of this work are the following. First, we intro-
duce privacy considerations in the management of FCD and reveal their impact
on location-based services: given a fixed bandwidth availability, some data may
not be forwarded to a vehicle due to location obfuscation. Second, in order to
alleviate this problem, we propose that vehicles cooperate and forward relevant
data to their neighboring vehicles, increasing in principle the data received by a
vehicle beyond what is directly received from the server. An ad-hoc, direct V2V
cooperation paradigm is employed instead of a cluster-based one, and we show
the high performance deterioration of the latter in a real vehicular networking
environment. Third, we develop and study of a game determining the strategies
(in terms of probabilities that a vehicle is forwarded by the server data of a
given impact level) that vehicles should follow, so that the expected utility is
maximized. This is shown to lead to a diversification of the data received directly
from the server by neighboring vehicles, and increases the effectiveness of V2V
cooperation. Finally, the aforementioned contributions are supported through
simulation evaluation.

Structure. The rest of the paper is as follows. In Sect. 2, we provide an overview
of the system model considered, and describe the influence of location privacy
on the network. In Sect. 3, we describe our proposed game theoretic approach for
privacy sensitive communication. In Sect. 4, we evaluate the performance of our
method. We conclude the paper in Sect. 5 with a discussion about our findings.

2 System Model

Definitions. We provide first an overview of the considered system model. We
assume a context-aware vehicular network, in which a central server transmits
context-sensitive messages to interested vehicles. In this network, time is assumed
to be slotted (a typical slot length is 1 s). Every vehicle has a limited (average)
bandwidth A (in bits per time slot) to receive these messages via a cellular
network. This assigned bandwidth is generally low compared to the maximum
(physically) available bandwidth, such that vehicles may exceed this bandwidth
temporarily (as long as the average consumed bandwidth matches the prede-
fined value). A message contains FCD as payload, as well as additional meta-
information such as the source location, generation time, and type of FCD. In
this work, we assume that FCD carry road-related information (e.g., accidents,
traffic jams, traffic flow information) that can be useful for improving the driv-
ing behavior of the vehicles in proximity. Let a(m) (in bits) denote the size of a

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 15

message m, s(m) the source location, r(m) the radius of its dissemination area,
and μ(m) its impact (which depends on the type of FCD: an accident has gen-
erally higher impact than traffic flow information). As our bandwidth is limited,
the impact per utilized bandwidth is pivotal for our approach. Based on the
message impact μ(m) and the dissemination radius r(m), we divide messages
in nμ impact levels. For simplicity, we assume that every message m of impact
level i ∈ {1, . . . , nμ} has the same dissemination radius r(m) = ri and impact
μ(m) = μi. We assume that μi is the impact per bit assigned to impact level i.
When convenient, we use μnμ+1 = ∞.

A vehicle can control the reception of messages from the server by expressing
interest in certain impact levels and by providing a representation of its location.
More specifically, a vehicle wants to receive a message m if (i) it has expressed
interest in the corresponding impact level i of the message, and (ii) the vehicle’s
location is at most at distance ri from the source s(m) of the FCD. Let ai denote
the traffic load of messages of impact level i (in bits per time slot) expected for
the vehicle if the provided location is accurate. A vehicle is either interested in
an impact level or not, i.e., receives either all or no messages of this impact level.
This interest can be changed dynamically at the beginning of every time slot.

Depending on the assumed privacy-sensitivity (referred to as privacy-level)
φ ∈ Φ of a vehicle v, the aforementioned representation of the location may be
accurate or may be imprecise. We implement this imprecision by providing only
a (circular) area in which the vehicle is certainly located (uniformly distributed),
without actually revealing the exact location to the server. The privacy level φ
chosen by the respective vehicle determines the radius rφ of this area. That
imprecise representation of the location increases the load of received messages
due to the less accurate server-side filtering. To capture the additional bandwidth
consumption, let aφ,i ≥ ai denote the expected load (in bits) of messages of
impact level i for a vehicle with privacy level φ.

The central server uses the announced interest of the vehicles to actively push
new messages (i.e., messages containing yet unknown FCD.) via the cellular
network to them. Since the available bandwidth is assumed to be limited, a
vehicle aims to maximize the total impact of the received messages, which is
achieved by dropping low-impact messages if the bandwidth is insufficient. To
maximize that total impact of received messages, vehicles may cooperate to
share bandwidth for the reception of messages; i.e., vehicles can locally broadcast
messages, received via the cellular network, without additional costs to notify
vehicles in their proximity. Thus, not every vehicle needs to receive all messages
of its interest via the limited cellular bandwidth, as these messages might be
provided by its neighbors.

Influence of Location Obfuscation. In the following, we provide an insight on
the influence of privacy in our model. Each privacy level φ > 1 adds a certain
level of imprecision to the provided location, while φ = 1 refers to no privacy-
sensitivity. The privacy-sensitivity and, thus, location imprecision increases with
φ and reduces the accuracy of the context-based message filtering at the server-
side. Thus, a vehicle receives messages not relevant for its current context, while

16 T. Meuser et al.

its share of relevant messages is reduced. This influences the number of received
messages nφ,i and their expected impact per bit μφ,i for a privacy state φ and
an impact level i. The number of messages received typically increases with
increasing privacy level, while the expected impact per bit of a message decreases.
We reflect this change for every impact level i by the adaptation factor ρφ,i as
follows.

aφ,i = ai · ρφ,i μφ,i =
μi

ρφ,i
(1)

ρφ,i depends on the context-sensitivity of the distributed messages for a vehicle of
privacy level φ receiving messages with impact level i. For non-context-sensitive
messages, ρφ,i = 1,∀φ ∈ Φ. For context-sensitive of messages, i.e., messages with
a specific distribution-area with radius ri, ρφ,i ≥ 1,∀φ ∈ Φ. These statements
are proven in Theorem 1.

Theorem 1. The adaptation factor for a network with uniformly distributed
messages is ρφ,i = (rφ/ri + 1)2 for a circular geocast-area and a circular location-
imprecision, where ri is the radius of the geocast-area of the message of impact
level i and rφ is the radius of the location-imprecision area of privacy-level φ.

Proof. Without location privacy, the vehicle receives all messages with a maxi-
mum distance of ri to its current location. Thus, area of interest for the vehicle is
π · r2i . If the vehicle reduces the precision of its location by hiding inside an area
of radius rφ, the server will need to transmit all messages within a distance of
rφ + ri from the center of the area to ensure that the vehicle receives all relevant
messages. The size of this area is π · (rφ + ri)2. This leads to ρφ,i = (rφ/ri + 1)2.

3 Game-Theoretic Model for Privacy-Sensitive
Communication

To enhance the performance of our impact-aware vehicular network, we employ
a game-theoretic model with the aim to maximize the sum of impact of the
received messages. Our innovative approach relies only on the number nφ of
vehicles of each privacy-level φ in proximity to find a mixed Nash-optimal solu-
tion for our developed game-theoretic model, i.e., vehicles receive messages with
a certain probability. In our game, each actor (vehicle) aims to find the strat-
egy (receive messages in a certain impact-range via the cellular network) that
maximizes its utility (sum of impact values of all received messages, directly via
cellular or from the neighbors) while sticking to cellular bandwidth constraints.
This game is played periodically in every time slot to adjust the vehicles behavior
to environmental changes, i.e. changes in the number of neighbors in proximity
and changes in number of messages. Notice that vehicles are assumed to coop-
erate; thus, a vehicle might additionally receive messages directly by vehicles in
proximity. The intuition behind this game model is that high-impact messages
are generally prioritized, as their bandwidth usage is more efficient compared
to low-impact messages. Thus, vehicles may rely on their neighbors to provide
some high-impact messages to them, as a number of neighbors aims to receive

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 17

these high-impact messages. These vehicles can then use a part of their avail-
able cellular bandwidth to receive low-impact messages and share these with
their neighbors. The idea is similar to cooperative caching: Instead of storing
all high-demand message at every local cache, some nodes fetch low-demand
messages instead and satisfy the request of high-demand messages from nearby
cooperative caches [22].

The vehicles are the only actors in this game; the server is not directly
involved, but only determines the set of receivers of messages based on the
strategies chosen by the vehicles. For this purpose, the vehicles share their strat-
egy in the form of subscriptions with the server. The strategy is represented as
a vector pφ with nμ probability entries pφ,i with i ∈ {1, . . . , nμ}, and depends
on the chosen privacy level φe of the vehicle. Each entry pφ,i refers to the prob-
ability of the tagged vehicles to receive messages of the corresponding impact
level. Additionally, 0 ≤ pφ,i ≤ 1,∀pφ,i ∈ pφ . For the assignment of messages
to an impact level, we use the impact μi. Note that μi does not depend on the
privacy level φ. The privacy-dependent message impact μφ,i is only used for the
calculation of the utility of a vehicle. In the calculation, pφ needs to be chosen
such that Eq. 2 holds, with aφ,i being the expected number of bits in the received
messages of impact level i and privacy level φ according to Eq. 1, and A being
the usable bandwidth.

nμ∑

i=1

aφ,i · pφ,i ≤ A (2)

Notice that this differs from previous work, like [1], in which the vehicle
is intended to receive all messages in the set {m|μi ≤ μ(m)}. The advantage
of our new model is the additional flexibility provided by removing some of
the message redundancy among neighboring vehicles, which improves the total
impact of received messages (via cellular and direct neighbor forwarding) by
each vehicle.

Each vehicle aims at maximizing its utility, which is defined in a way that
captures the impact of the messages received. The utility used in this paper is
defined in Eq. 3, and is based on the messages sent Msnt, the messages received
Mrcv, and the impact μ(m) of every message m. I{m∈Mrcv} is the indicator
function of whether a message m has been received by the vehicle.

u =
∑

m∈Msnt

μ(m) · a(m) · I{m∈Mrcv} (3)

As the probability of a vehicle receiving a message depends on pφ , we derive
the expectation of the utility based on Eq. 3. For this purpose, we assume that
the environment of each vehicle is similar, so that the strategies of two vehicles
with the same privacy level are the same. Thus, the strategy of every privacy
level can be calculated by every vehicle in proximity, which is the basis of our
offloading approach. Thus, we only use the strategies pφ along with the number
nφ of vehicles for each privacy level φ to calculate the probability of receiving
a message either via the cellular network or from one of the neighbors. The

18 T. Meuser et al.

probability p(μi) to receive a message via any interface (cellular or V2V) with
at impact level μi can be calculated as shown in Eq. 4. This formula assumes
that there is no loss in the network, i.e., every transmitted messages is received
by the intended receiver.

p(μi) = 1 −
∏

φ∈Φ

(1 − pφ,i)nφ (4)

We use the probability p(μi) to receive a message to derive the expected
utility u(φe,p1, . . . ,p|Φ|). This estimates the set of received messages Mrcv using
the expected amount of sent messages ai and the probability p(μi) to receive each
message. The resulting expected utility for the tagged vehicle is shown in Eq. 5.

u(φe,p1, . . . ,p|Φ|) =
nμ∑

i=1

μφe,i · aφe,i ·
⎡

⎣1 −
∏

φ∈Φ

(1 − pφ,i)nφ

⎤

⎦ (5)

When clear from context, we refer to u(φe,p0, . . . ,p|Φ|) as u to increase
readability. In the next section, we describe the process of deriving a utility-
maximizing strategy for the described game. The advantage of determining the
solution analytically is (i) the possibility to analyze and bound the effects of
location privacy to the system, and (ii) the lower computational complexity
compared to a non-linear solver.

3.1 Game-Theoretic Solution

We derive now the optimal strategy for a vehicle with privacy level φe, given that
the privacy level and number of vehicles in each privacy level in its environment
is known. For this purpose, we calculate the partial derivatives of the expected
utility u with respect to the probabilities of the tagged vehicle pφ,i. However, it
is important to consider the dependency between the probabilities pφ,i,∀φ ∈ Φ,
as Eq. 2 limits the possible values of pφ,i. (This approach would work similarly
with any other probability pφ,i|i �= 1.) We depict this dependency by expressing
pφ,1 depending on the other probabilities {pφ,i|i > 1} as shown in Eq. 6. Thus,
pφ,1 depends on all other probabilities, i.e., the derivative of pφ,1 with respect
to any probability pφ,i is not always non-zero, which leads to our optimization
problem.

pφ,1 ≤ A − ∑nμ

i=2 aφ,i · pφ,i

aφ,1
(6)

While the inequality is sufficient to guarantee the bandwidth requirements,
we will assume Eq. 6 to be an equation as higher values of pφ,1 cannot decrease
the utility. As there is no dependency between any pair of probabilities pφ,i and
pφ,j if i �= j ∧ i �= 1 ∧ j �= 1, the derivative of the utility with respect to pφ,l

depends only on pφ,1 and pφ,l for every l > 1 as shown in Eq. 7. Notice that
μφe,i · aφe,i = μi · ai according to Eq. 1. Additionally, we assume that pφe,l �= 0.

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 19

We ensure that by considering the cases with pφe,l = 0,∀l ∈ {1, . . . , nμ} sepa-
rately as described in Sect. 3.2.

∂u

∂pφe,l
= μlalnφe

· (1 − pφe,l)nφe −1 · Pl(Φ \ {φe})

+μ1a1

(
∂pφe,1

∂pφe,l

)
nφe

· (1 − pφe,1)nφe −1 · P1(Φ \ {φe}) (7)

with Pj(Φ) =
∏

φ∈Φ(1 − pφ,j)nφ . Equation 1 displays the dependency of pφe,1

and pφe,l. Thus, the derivative of pφe,1 with respect to pφe,l can be calculated
according to Eq. 8.

∂pφe,1

∂pφe,l
= − aφe,l

aφe,1
(8)

By setting the derivative of the utility to 0, we determine all possibly optimal
solutions. This leads to Eq. 9 after some minor transformations. Notice that al

and nφe, are omitted as they are present on both sides of the equation.

μl

μ1
·
(

1 − pφe,l

1 − pφe,1

)nφe −1

· Pl(Φ \ {φe}) =
ρφe,l

ρφe,1
· P1(Φ \ {φe}) (9)

For a given impact level l, we divide the set of privacy levels Φ into Φ+(l),
which only contains privacy levels with pφ,l > 0, and Φ−(l), which contains
privacy levels with pφ,l = 0. This is necessary, as the derivative of the expected
utility with respect to pφ,l is always 0 if pφ,l = 0, thus, Eq. 9 does not hold.
However, Eq. 9 still contains pφ,l,∀φ ∈ Φ+(l) and pφ,1,∀φ ∈ Φ(l). We need to
replace pφ,l,∀φ ∈ Φ+(l) \ φe to calculate pφe,l. We can calculate the pφe,l using
Eq. 10, according to Theorem 2.

Theorem 2. For any probability pφe,l,∀φe ∈ Φ+(l) with nφe
> 1, we have that

μl

μ1
·

∏

φ∈Φ+(l)\{φe}

(
ρφe,l · ρφ,1

ρφ,l · ρφe,1

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+(l)

=
(

ρφe,l

ρφe,1

)
·P1(Φ−(l)) (10)

where n+(l) =
∑

φ∈Φ+(l) nφ−1. Hence, pφe,l depends only on pφe,1 and previously
calculated probabilities.

Proof. We use full induction to prove the correctness of Eq. 10. For the base-
case, we consider Φ = {φe}. Based on Eq. 9, we observe that P1(Φ \ φe) = 1
and Pl(Φ \ φe) = 1, as Φ contains only φe. Additionally, n+(l) = nφe

− 1 for
the same reason, which immediately leads to Eq. 10. For the induction step,
we use Φ+

+(l) ⊆ Φ+ and Φ+
−(l) ⊆ Φ+ as auxiliary variables with φ ∈ Φ+

+(l) ⊕
Φ+

−(l),∀φ ∈ Φ+(l), for which the index states if they have already been included
in the calculation. Based on Eq. 9 and Eq. 10, we can derive Eq. 11 associated
φe ∈ Φ+

−(l) as intermediate state of the calculation. Notice that φe ∈ Φ+
+ by

20 T. Meuser et al.

assumption. Additionally, the privacy levels in Φ− are not considered on the left
side of the equation, as pφ,l = 0,∀φ ∈ Φ−.

μl

μ1
·

∏

φ∈Φ+
+(l)\{φe}

(
ρφe,l

ρφ,l

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+
+(l)

· Pl(Φ+
− \ {φe})

=
∏

φ∈Φ+
+(1)\{φe}

(
ρφe,1

ρφ,1

)nφ

· ρφe,l

ρφe,1
· P1({Φ−(l) ∪ Φ+

−(l)}) (11)

with n+
+(l) =

∑
φ∈Φ+

+(l) nφ − 1.

We aim to include a privacy level φn into Φ+
+. Thus, we solve Eq. 11 associated

with φn for pφn,l and insert it into Eq. 11 associated with all other φe ∈ Φ+
−(l)\φn

to obtain Eq. 12.

μl

μ1
·

∏

φ∈(Φ+
+(l)∪φn)\{φe}

(
ρφe,l

ρφ,l

)nφ

·
(

1 − pφe,l

1 − pφe,1

)n+
+(l)+nφn

· Pl(Φ+
− \ {φn})

=
∏

φ∈(Φ+
+(l)∪φn)\{φe}

(
ρφe,1

ρφ,1

)nφ

· ρφel

ρφe1
· P1({Φ−(l) ∪ Φ+

−(l)} \ φn) (12)

This equation is similar to our initial Eq. 11 if we set Φ+
+ = Φ+

+ ∪ φn and
Φ+

− = Φ+
−\φn. Additionally, it is evident that Eq. 12 is equal to Eq. 10 if Φ+

+ = Φ+

and Φ+
− = ∅. �

Equation 10 still contains pφe,1 as an auxiliary variable. When replacing
pφe,1 according to its definition in Eq. 6, we can derive the remaining variables
pφe,i,∀i > 1 only based on the other variables pφe,i,∀i > 1. For that purpose,
we introduce the variable Λl with 1 < l ≤ nμ as defined in Eq. 14, which encap-
sulates the constant values and the dependency on other privacy levels φ for
readability. Thus, we can transform Eq. 10 to Eq. 13 by taking the n+(l)-th root
and replacing pφe,1.

1 − pφe,l =

[
1 −

(
A

aφe,1
−

nμ∑

i=2

aφe,i · pφe,i

aφe,1

)]
· Λl (13)

with

Λi = n+(i)

√√√√
(

μ1

μi

)
·
(

ρφe,i

ρφe,1

)
·

∏

φ∈Φ+(l)\{φe}

(
ρφ,i · ρφe,1

ρφ,1 · ρφe,i

)nφ

·
∏

φ∈Φ−(i)

(1 − pφ,1)nφ

(14)
The equation system described by Eq. 13 for all 2 ≤ l ≤ nμ cannot be solved

without considering the dependency on the other privacy levels encapsulated in
Λl. However, this dependency is hard to resolve except for some special cases,
as it removes the linearity from Eq. 13. Thus, we assume that Λl is constant for

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 21

Algorithm 1: Determining the optimal strategy for all privacy-levels.
recal(. . .) recalculates pφe,i based on the current values of pφ,i. ε is the
infinitesimal.
Result: pφ,i, ∀φ ∈ Φ, i ∈ {1, . . . , nμ}

1 pφ,i ← 0, ∀φ ∈ Φ, i ∈ {1, . . . , nμ};
2 c ← ∞;
3 for i ← 1; c > ε; i ← (i mod |Φ|) + 1 do
4 tempj ← pi,j , ∀j ∈ {1, . . . , nμ};

5 recal(pi,j), ∀j ∈ {1, . . . , nμ};
6 c ← ∑nμ

j=1 |tempj − pi,j |;
7 end
8 return pφ,i, ∀φ ∈ Φ, i ∈ {1, . . . , nμ};

the calculation of pφe,l,∀l ∈ {2, . . . , nμ}. Thus, we can represent pφe,j �= 0 as
pφe,i �= 0 by subtracting the representation of pφe,i from the representation of
pφe,j according to Eq. 13 and obtain Eq. 15.

pφe,i = Λi

(
pφe,j − 1

Λj

)
+ 1 (15)

With this assumption, we can calculate every pφl,l with Eq. 16, which can
be derived from Eq. 13 and the representation of any pφe,i as pφe,j from Eq. 15.
Notice, that Λ1 = 1, as either pφ,1 = 0 (then 1 − pφ,1 = 1 and disappears), or
pφ,1 �= 0 (then φ /∈ Φ−(1)).

pφe,l =

[
A − ∑nμ

i=1|i�=l∧φe /∈Φ−(i) aφe,i

]
Λl

∑nμ

i=1|i�=l∧φe /∈Φ−(i) (aφe,i · Λi)
+ 1 (16)

Based on Eq. 16, we can determine the strategies for each privacy level using
Algorithm 1. This algorithm ensures that the initial error (induced by setting all
probabilities to 0) converges, i.e., the initial error constantly reduces for each
iteration of Algorithm 1. This algorithm converges immediately if there is no
inter-dependency between the privacy levels, i.e., if there is no other privacy
level φo | pφo,i = 0. If there is an inter-dependency, it converges due to three
factors: (i) In the calculation of pφ,1, all probabilities pφ,i with i > 1 are utilized,
thus, pφ,1 balances the error of the other probabilities. (ii) pφ,1 influences Λi

of all privacy levels in Φ−(i), but we can see that Λl in the nominator and Λi

in the denominator partially cancel out the error of each other in Eq. 16. (iii)
∃l, φ | nφ < n+(l), in which case the error in Λl gets reduced based on the errors
of the other privacy levels.

3.2 Deriving the Utility-Optimal Strategy

In the previous section, we assumed that every probability under consideration
is non-zero. To calculate the overall optimal strategy, we consider every possible

22 T. Meuser et al.

combination of zero and non-zero probabilities of every privacy level, i.e., we
consider every possible combination of Φ+(l) and Φ−(l). That is, the compu-
tational complexity of our approach is O(2|Φ|·nμ), i.e., is exponential with the
number of privacy levels |Φ| and the number of impact levels nμ. This exponen-
tial growth is justified by the separate consideration of zero probabilities, which
leads to 2 tries per probability. While an exponential growth is generally bad,
we need to remember the limited size of |Φ| and nμ. As every single computa-
tion of probabilities is very fast, the total computation time of the probabilities
remains comparably small (in our experiments, it stayed around 100 ms). In the
calculation, we set the probabilities of all pφ,l = 0 | φ ∈ Φ−(l) and only calculate
the remaining probabilities with our approach proposed in the previous section.
The solution found has certain properties.

Optimality. For each possible set of Φ+(j),∀j ∈ {1, . . . , nμ}, the partial deriva-
tives of the utility with respect to all probabilities are 0, i.e., are either local
optima or saddle points. To prove that the found solutions are global optima,
we need to ensure that there is no other optimum with a higher utility than the
found solution. For this purpose, we investigate on the second derivative of the
utility function.

∂2u

∂2pφe,l
= −μl · Ψl − μ1 · al

a0
·
(

− ρφe,l

ρφe,1

)2

· Ψ1 (17)

with Ψj = al · nφe
· (nφe

− 1) · (1 − pφe,l)nφe −2 · Pj(φ ∈ Φ \ {φe}).
As Ψi, μi, and ai are non negative for all i, the second derivative of the utility

with respect to any probability pφe,l is always smaller or equal to 0. Thus, the
expected utility presented in Eq. 5 is concave. This guarantees that the found
solution maximizes the utility, but is not necessarily unique, i.e., there might be
other solutions with similar utility.

Stability. The game solution found is a Nash equilibrium, as shown in the fol-
lowing theorem (the proof is omitted for space limitation).

Theorem 3. The solution of our non-cooperative game shown in Eq. 16 is a
Nash equilibrium, i.e., no vehicle has an incentive to deviate from the found
solution.

Observe that this equilibrium is only reached if every vehicle is aware that
its neighbors follow the same strategy.

4 Evaluation

In this section, we evaluate the performance of our approach in a realistic vehicu-
lar network under varying environmental conditions. For this purpose, we utilize
the vehicular extension of the Simonstrator framework [23] in conjunction with
SUMO [24] to simulate a vehicular network in Cologne [25]. We compare our

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 23

approach with state-of-the-art methods for cooperative communication in large-
scale vehicular networks and non-cooperative uncoordinated approaches. In this
large-scale vehicular network, messages are provided based on the current loca-
tion of the vehicle (considering its privacy restrictions).

In our simulation, we generate messages randomly in an area of roughly
220 × 220 km2, while the movement of vehicles and their networking is only
simulated in an area of 2 × 2 km2, to reduce the computational overhead. As
all events with a possible influence to the network are simulated, we accurately
model the message load in a large-scale vehicular network. Unless otherwise said,
the bandwidth A is set to 10% of the total required bandwidth. We use messages
of 4 impact levels (1, 10, 100, 1000), with frequencies (90%, 9%, 0.9%, 0.1%) and
ranges (10 km, 1 km, 100 km, 100 km), respectively. The approaches that will be
evaluated and compared are the following.

– Game-Theoretic Privacy-Sensitive Cooperation (GTP). This is our approach
proposed in Sect. 3, which relies on implicit coordination between vehicles.

– No Cooperation (NC). The No-Cooperation (NC) approach does not consider
cooperation between vehicles. Thus, vehicles using the NC approach receive
similar messages as their neighbors, i.e., they do not share their messages.

– Clustering with perfect failure detection (GK). Clustering is used as follows.
A vehicle is chosen as cluster-head, which is the only one communicating
directly with the server. The cluster-head distributes the received messages
to the vehicles in proximity via V2V communication. In the GK approach
we assume that the disconnection of the cluster-head (moving out of range)
is immediately detected. GK is used as an (unrealistic) upper bound for the
performance of our approach.

– Clustering without perfect failure detection (CL). CL is similar to GK, with
the exception that the detection of cluster-head disconnections is now imper-
fect. Thus, the vehicles need to wait for a timeout until they detect it and
reorganize the cluster. This approach is more realistic than GK.

We use two metrics to evaluate the performance of our approach: the achieved
relative utility and the used bandwidth. The achieved relative utility measures the
performance of the network, i.e., how much data is provided to a vehicle in the
network. This metric is between 0 and 1, where 1 states that the vehicle has
received all the FCD that was sent and 0 states that the vehicle has received
nothing. Used bandwidth captures whether the approach sticks to the average
bandwidth limitation, i.e., if the side condition of the game is fulfilled.

We use box-plots and line-plots to visualize our results. In the box-plots, the
boxes show the differences between vehicles inside of one simulation run. Next to
each box, there is a line with a dot, visualizing the average value over all vehicles
and simulation runs and the standard deviation of the average of all vehicles. In
line-plot, the line displays the mean value for the vehicles in one simulation run.

Figure 1 depicts the performance of the approaches under different available
bandwidths to each individual vehicle. It is evident that the performance of all
approaches increases as the bandwidth increases, as depicted in Fig. 1a. For a full
reception of all data available in the network via cellular, a bandwidth of roughly

24 T. Meuser et al.

(a) Achieved relative utility. (b) High-impact.

Fig. 1. Achieved relative bandwidth for different bandwidths (in messages/s).

100 messages per second is required. Even with a much smaller bandwidth of
10 messages per second, all approaches can achieve reasonable utility levels by
prioritizing high-impact messages. It can be observed that our GTP approach
outperforms the CL approach as well as the NC approach and has much smaller
confidence intervals compared to the CL approach. Thus, our approach is more
resilient and adaptive to different network conditions. Additionally, our approach
is very close in performance to the GK approach. The same holds for a band-
width of 1, while our approach decreases in performance for a bandwidth of 0.1.
For a bandwidth of 0.1, our approach performs worse than the CL approach,
as the redundant transmission of high-impact messages and the missing explicit
coordination between vehicles decrease the performance of our GTP approach.
This is also confirmed by Fig. 1b: For the high-impact messages, our approach
performs well for both a bandwidth of 1 and 10, but struggles to receives the
high-impact messages for a bandwidth of 0.1. That is, a bandwidth of 0.1 is not
sufficient to receive the high-impact messages using only the available bandwidth
of a single vehicle. Thus, the performance of our approach decreases below the
performance of the CL approach, as the explicit coordination of vehicles in clus-
tering approaches can handle low bandwidths well. Additionally, all approaches
stick to the available bandwidth on average, while the bandwidth is temporarily
exceeded by a subset of vehicles. This exceeding of bandwidth is justified by (i)
the different number of available messages depending on the event location and
(ii) the cooperative reception of messages by vehicles.

Figure 2 displays the influence of the share of privacy (fraction of privacy-
sensitive vehicles) on our realistic vehicular network if the privacy-sensitive vehi-
cles use an area of imprecision with radius 10 km. Figure 2a shows the behavior
of the relative utility for all of the approaches. The NC approach decreases
the most, as the privacy-sensitive vehicles have no possibility to compensate for
their context imprecision. Additionally, our GTP approach constantly outper-
forms the CL approach and the NC approach independent of the level of privacy.

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 25

Most interestingly, the performance decrease of our GTP approach compared to
the GK approach is not constant, it is lowest around 50% privacy. This can be
justified by implicit coordination between privacy levels. This is also visible in
Fig. 2b, which displays the relative utility of messages with an impact between
10 and 100. While the NC approach is not able to receive these messages at all,
the utility of the other approaches decreases constantly. However, for our GTP
approach, the utility remains constant for a very long duration, which leads to
a comparably constant overall utility even for high privacy levels.

(a) Overall. (b) Low-impact.

Fig. 2. Achieved relative utility for mixed environments.

5 Conclusion

In this paper we introduce privacy considerations in the management of FCD
and have shown its impact on location-based services, since some data are not
forwarded to a vehicle due to privacy considerations and the implemented loca-
tion obfuscation. In order to alleviate this problem, we have introduced cooper-
ation among vehicles so as to forward relevant data to their neighboring vehi-
cles, enhancing in principle the data received by a vehicle only directly from
the remote server. In this work, an ad-hoc, direct V2V cooperation paradigm
is employed instead of a cluster-based one, also showing the high performance
deterioration of the latter in a real vehicular networking environment. A major
contribution of this work is the development and study of a game without coor-
dination that determines the strategies (in terms of probabilities that a vehicle
is forwarded by the server data of a given impact index) vehicles should follow,
so that a properly defined utility is maximized; this is shown to lead to a diver-
sification of the data received directly from the server by neighboring vehicles
and increases the effectiveness of V2V cooperation.

26 T. Meuser et al.

In the evaluation, we analyzed the performance of our approach in a realis-
tic vehicular network. Our results show the drastic performance increase com-
pared to non-cooperative uncoordinated approaches, and the improvements over
cluster-based approaches. Additionally, our approach performs almost similarly
to a perfect clustering approach, which utilizes bandwidth optimally and detects
disconnects immediately, but is not realizable in reality. When we analyze the
performance of our approach for different privacy levels, we see that the perfor-
mance remains constant for a long time.

References

1. Meuser, T., Bischoff, D., Richerzhagen, B., Steinmetz, R.: Cooperative offloading
in context-aware networks: a game-theoretic approach. In: Proceedings of ACM
International Conference on Distributed and Event-Based Systems (DEBS 2019).
ACM (2019)

2. Golle, P., Greene, D., Staddon, J.: Detecting and correcting malicious data in
VANETs. In: Proceedings of ACM International Workshop on Vehicular Ad Hoc
Networks (VANET), VANET 2004, pp. 29–37. ACM, New York (2004)

3. Dötzer, F.: Privacy issues in vehicular ad hoc networks. In: Danezis, G., Martin,
D. (eds.) PET 2005. LNCS, vol. 3856, pp. 197–209. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767831 13

4. Ying, B., Makrakis, D., Hou, Z.: Motivation for protecting selfish vehicles’ location
privacy in vehicular networks. IEEE Trans. Veh. Technol. 64(12), 5631–5641 (2015)

5. Pan, X., Xu, J., Meng, X.: Protecting location privacy against location-dependent
attacks in mobile services. IEEE Trans. Knowl. Data Eng. 24(8), 1506–1519 (2012)

6. Ying, B., Nayak, A.: Social location privacy protection method in vehicular social
networks. In: Proceedings of IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 1288–1292 (2017)

7. Wasef, A., Shen, X.S.: REP: location privacy for VANETs using random encryption
periods. Mobile Netw. Appl. 15(1), 172–185 (2010)

8. Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.:
CARAVAN: providing location privacy for VANET. In: Embedded Security in Cars
(ESCAR) (2005)

9. Liu, B., Zhou, W., Zhu, T., Gao, L., Luan, T.H., Zhou, H.: Silence is golden:
enhancing privacy of location-based services by content broadcasting and active
caching in wireless vehicular networks. IEEE Trans. Veh. Technol. 65(12), 9942–
9953 (2016)

10. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular net-
works: a survey. IEEE Commun. Surv. Tutor. 17(1), 228–255 (2014)

11. Gerlach, M., Guttler, F.: Privacy in VANETs using changing pseudonyms - ideal
and real. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Spring),
April 2007, pp. 2521–2525 (2007)

12. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: 2011 IEEE 27th International Conference on Data Engineering,
pp. 494–505 (2011)

13. Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-
zones for location privacy in vehicular networks. In: Proceedings of ACM Workshop
on Wireless Networking for Intelligent Transportation Systems (WiN-ITS) (2007)

https://doi.org/10.1007/11767831_13

Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks 27

14. Ying, B., Makrakis, D., Mouftah, H.T.: Dynamic mix-zone for location privacy in
vehicular networks. IEEE Commun. Lett. 17(8), 1524–1527 (2013)

15. Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in inter-vehicular
networks: why simple pseudonym change is not enough. In: Proceedings of Inter-
national Conference on Wireless On-Demand Network Systems and Services
(WONS), pp. 176–183 (2010)

16. Duckham, M., Kulik, L.: Location privacy and location-aware computing. In:
Dynamic and Mobile GIS, pp. 63–80. CRC Press (2006)

17. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of International Conference on
Mobile Systems, Applications and Services (MobiSys), pp. 31–42. ACM, New York
(2003)

18. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Achieving k-anonymity in privacy-aware
location-based services. In: Proceedings of IEEE International Conference on Com-
puter Communications (INFOCOM), pp. 754–762, April 2014

19. Liu, X., Liu, K., Guo, L., Li, X., Fang, Y.: A game-theoretic approach for achiev-
ing k-anonymity in location based services. In: Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), pp. 2985–2993 (2013)

20. Freudiger, J., Manshaei, M.H., Hubaux, J.-P., Parkes, D.C.: On non-cooperative
location privacy: a game-theoretic analysis. In: Proceedings of the 16th ACM Con-
ference on Computer and Communications Security, CCS 2009, pp. 324–337. ACM,
New York (2009)

21. Du, S., Li, X., Du, J., Zhu, H.: An attack-and-defence game for security assess-
ment in vehicular ad hoc networks. Peer-to-Peer Netw. Appl. 7(3), 215–228 (2012).
https://doi.org/10.1007/s12083-012-0127-9

22. Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish
replication. IEEE Trans. Parallel Distrib. Syst. 17(12), 1401–1413 (2006)

23. Meuser, T., Bischoff, D., Steinmetz, R., Richerzhagen, B.: Simulation platform for
connected heterogeneous vehicles. In: Proceedings of International Conference on
Vehicle Technology and Intelligent Transport Systems (VEHITS). SCITEPRESS,
May 2019, pp. 412–419 (2019)

24. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: Proceedings of
IEEE ITSC. IEEE (2018)

25. Uppoor, S., Fiore, M.: Large-scale urban vehicular mobility for networking
research. In: Proceedings of IEEE Vehicular Networking Conference (VNC), pp.
62–69 (2011)

https://doi.org/10.1007/s12083-012-0127-9

Blockchains and the Commons

Maria Potop-Butucaru(B)

Sorbonne Universite, CNRS, LIP6, 75005 Paris, France
maria.potop-butucaru@lip6.fr

Abstract. Blockchain phenomena is similar to the last century gold
rush. Blockchain technologies are publicized as being the technical solu-
tion for fully decentralizing activities that were for centuries central-
ized such as administration and banking. Therefore, prominent socio-
economical actors all over the world are attracted and ready to invest in
these technologies. Despite their large publicity, blockchains are far from
being a technology ready to be used in critical economical applications
and scientists multiply their effort in warning about the risks of using
this technology before understanding and fully mastering it. That is, a
blockchain technology evolves in a complex environment where rational
and irrational behaviors are melted with faults and attacks. This position
paper advocates that the theoretical foundations of blockchains should
be a cross research between classical distributed systems, distributed
cryptography, self-organized micro-economies, game theory and formal
methods. We discuss in the following a set of open research directions
interesting in this context.

Keywords: Blockchain · The commons · Open research directions

1 Introduction

Blockchain systems became today one of the most appealing area of research
motivated mainly by the recent speculations on crypto-currencies such as Bit-
coin [63] or Ethereum [76]. A blockchain is a distributed ledger that mimics the
functioning of a classical traditional ledger (i.e. transparency and falsification-
proof of documentation) in an untrusted environment where the computation is
distributed. The set of participants in the system are not known and it varies
during the execution. Moreover, each participant follows his own rules to maxi-
mize its welfare.

Blockchain systems maintain a continuously growing list of ordered blocks
that include one or more transactions1 that have been verified by the members
of the system, called miners. Blocks are linked using cryptography and the order
1 Transaction is used here as a generic name to be adapted to a broad class of use

cases. For example, a transaction in Bitcoin [63] or Ethereum [76] can be a transfer
of digital money or assets.

This position paper is based on the homonymous ERC Advanced submission [71]. It is
assumed that the reader has some background knowledge on Blockchain technologies.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 28–44, 2021.
https://doi.org/10.1007/978-3-030-67087-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_3

Blockchains and the Commons 29

of blocks in the blockchain is the result of a form of agreement among the system
participants. Participants strongly agree only on a prefix of the blockchain; the
suffix of the blockchain may be different from one participant to another.

Blockchain systems, beyond their incontestable assets such as decentraliza-
tion, simple design and relative easy use, are not free of incidents and limitations.
The most popular incident reported for Ethereum, for example, was the 60 mil-
lion dollars ether theft which was possible by simply exploiting an error in the
code and the lack of system specification.

A recent scientific analyse, [43], focus on several limitations of the most pop-
ular blockchain, Bitcoin, such as: weak security, low quality of services, storage
limitations, low throughput and high cost and weak consistency.

Therefore, despite their large publicity blockchains are far from being a tech-
nology ready to be used in critical economical applications and scientists multiply
their efforts in warning about the risks of using this technology before under-
standing and fully mastering it. Interestingly, many recent attempts to alarm
on vulnerabilities of popular blockchains like Bitcoin are target of defenders
brigading.

Nevertheless, once fully mastered, Blockchain systems will be the techni-
cal solution for fully decentralizing activities that were for centuries centralized
such as, for example, administration or banking. The applications of tomorrow
that potentially will be blockchainized are all different from each other. These
applications may range from IoTs to notary passing by administration, banking
or health. These applications have various consistency and quality of services
requirements. Therefore, we advocate that there will not be only one blockchain
but a family of modular blockchains that will have to offer various qualities of
services and that will be eventually interconnected.

It should be noted that differently from classical distributed applications,
some blockchains have a strong economical aspect, since participants should be
constantly incited to participate to the system welfare by rewarding their con-
tribution. This contribution is materialized either in the energy spent in solving
cryptographic puzzles in order to generate blocks or in the bandwidth spent to
route transactions and blocks. If participants massively leave the system then the
system collapses, a phenomenon known in economy as the tragedy of commons
[56,65,66]. In order to avoid this phenomenon, blockchains have to cross-over
new distributed formally verified and proven algorithms with game theory tools
and also government rules issued from self-organized micro-economies.

2 State of the Art

The birth of blockchains systems, as for the case of P2P systems in the early
2000, was in the non academic research. After the releasing of the most popular
blockchains (e.g. Bitcoin [63] or Ethereum [76]) with a specific focus on eco-
nomical transactions their huge potential for various other applications became
evident.

Their popularity, transformed blockchains in a huge social experiment that
confirmed the fact that blockchains can be a viable alternative for distributed

30 M. Potop-Butucaru

systems of tomorrow. Starting with this point, the blockchain area started to
became the focus of the academical research.

Interestingly, only recently distributed computing scientist started to investi-
gate theoretical aspects of blockchains and several directions of research can be
identified: blockchains based on proof-of-work and its alternatives such as proof-
of-stake, proof-of-space or proof-of-authority, blockchains using as underlying
building block the achievements in classical practical Byzantine fault-tolerance
and finally sortition based blockchains.

The theoretical study of proof-of-work based blockchains has been pioneered
by Garay et al. [51]. They decorticate the pseudo-code of Bitcoin and analyze
its agreement aspects considering a synchronous round-based communication
model. That is, messages sent in a round are assumed to arrive in the next
round. This study has been extended by Pass et al. [68] to round based systems
where messages sent in a round can be received later. The major criticisms for the
proof-of-work approach are as follows: it is assumed that the honest miners hold
a majority of the computational power, the generation of a block is energetically
costly which yielded to the creation of mining pools and finally, the multiple
blockchains that coexist in the system. Interestingly, the two alternatives for
proof-of-work such as proof-of-stake (the power of block building is proportional
to the amount of money they own in the system) or proof-of-authority (the
power of block building is proportional to the amount of authority they own
in the system) have not yet been fully analyzed from a theoretical point of
view. The line of research that addresses the consensus in proof-of-stake based
blockchains is pioneered by Daian et al. [44] that proposes a protocol for weakly
synchronous networks. The execution of the protocol is organized in epochs.
Similar to Bitcoin-NG [46] described below in each epoch a different committee
is elected and inside the elected committee a leader will be chosen. The leader is
allowed to extend the new blockchain. The protocol is validated via simulations
and only partial proofs of correctness are provided.

In order to overcome the drawbacks of Bitcoin, [46] proposes a mix between
proof-of-work blockchains and proof-of-work free blockchains referred as Bitcoin-
NG. The idea is that the execution of the system is organized in epochs. In
each epoch a leader elected via a proof-of-work mechanism will decide the order
transactions that will be committed in the blockchain till the next epoch. Bitcoin-
NG inherits the drawbacks of Bitcoin: costly proof-of-work process, forks, no
guarantee that a leader in an epoch is unique, no guarantee that the leader do
not change the history at will if the leader is corrupted.

Later, [58] initiates an alternative to the proof-of-work based blockchains,
named Byzcoin. Their research build on top of practical Byzantine fault-tolerance
[38] enhanced with a scalable collective signing process. The work in [58] is based
on a leader-based consensus over a group of members chosen based on a proof-of-
membership mechanism. As in Bitcoin, when a miner succeeds to mine a block it
is included in the voting members set that excludes one member. This protocol
also inherits some of the Bitcoin problems and vulnerabilities. Also Byzcoin
voting core can be totally corrupted by a dynamic adversary. More recently,

Blockchains and the Commons 31

SBFT [53] and Hyperledger Fabric [15] build also on top of [38]. In the same
spirit, [42] proposes for the first time a leader-free algorithm to solve Consensus
among participants in a consortium Blockchain where the specifications has been
adapted to the Blockchain scenario. The same specification is then considered
in DBFT [41], an evolution of the consensus algorithm in [42], in Tendermint
Consensus algorithm [36]. In the same line of research SBFT [53] and Hot-Stuff
[9] have been proposed recently.

In order to avoid some of the previously cited problems, Micali [62] intro-
duced (further extended in [23,39]) the sortition based blockchains that com-
pletely replace the proof-of-work mechanism by sortition. These works focus
again the agreement aspects of blockchains using probabilistic ingredients. More
specifically, the set of nodes that are allowed to produce and validate blocks are
randomly chosen and they change over the time. Interestingly, the study focuses
only on synchronous round-based communication models which do not reflect
the reality of blockchain technologies.

In another line of research, Pass et al. address in [69] one of the vulnerabilities
of Bitcoin studied formally in Eyal and Sirer [47]. In [47] the authors prove that
if the adversary controls a coalition of miners holding even a minority fraction
of the computational power, this coalition can gain twice its share. Fruitchain
proposed in [69] overcomes this problem by ensuring that no coalition controlling
less than a majority of the computing power can gain more than a factor 1 + 3δ
by not respecting the protocol, where δ is a parameter of the protocol.

A full overview of the agreement protocols designed for blockchain systems
can be found in [50].

Another interesting line of research has been opened by Decker et al. [45]
which is related to the blockchains consistency. They propose PeerCensus sys-
tem that targets to provide the linearizability of transactions. PeerCensus com-
bines, similar to Byzcoin, the proof-of-work blockchain and the classical results
in practical byzantine agreement fault tolerance. This line of research has been
continued in [14,16,18,40].

All the above-mentioned studies leave a huge unexplored space in the theo-
retical distributed aspects of blockchains. Moreover, even though a strong effort
has been recently dedicated to formalizing blockchain systems, it comes to evi-
dence that blockchains still lack of formalization and theoretical understanding
of their properties and their level of consistency face to system asynchrony, churn
and partitions, rational and irrational behaviors and multiple types of faults and
attacks. This important drawback limits drastically the integration of blockchains
in industrial applications despite the huge interest of the main industrial actors
in this technology. In the following we detail open research directions that may
help in integrating blockchain solutions in practical applications.

3 Explore Novel Models of Reliability for Blockchains

Faults are studied in distributed systems for decades [19] and most of the time
in isolation. Interestingly, faults and behaviors are defined in the distributed

32 M. Potop-Butucaru

systems literature in a verbose mode which, in most of the cases leaves the place
to the interpretation.

In a very popular paper, Laprie et al. [20] describe and classify the distributed
system faults, errors and failures. Interestingly, Byzantine Altruistic and Ratio-
nal model, a.k.a BAR [11] extends the model proposed in [20]. BAR model
identifies three categories of processes: altruistic, those who follow a prescribed
protocol; rationals, those who act in order to maximise their utility function; and
Byzantines, those who may rationally deviate from a prescribed protocol. This
later behavior can be seen as rational Byzantine behavior. In [8] the authors
introduce the notion of robustness of a distributed system by introducing the
notions of k-resiliency and t-immunity. In a k-resilient equilibrium there is no
coalition of k players having an incentive to simultaneously change strategy to
get a better outcome. On the other hand, the concept of t-immunity evaluates
the risk of a set of t players to have a Byzantine behavior. It should be noted
that the property of t-immunity is often impossible to be satisfied in practical
systems [7].

In the context of blockchains, Micali et al. [39] advocate that blockchains
should be tolerant to churn and to a very powerful dynamic adversary. Informally
speaking, this adversary “can corrupt any user he wants, at any time; totally
control and perfectly coordinate all corrupted users and schedule the delivery
of messages”. Moreover, Blockchains area brings a new direction of research by
exposing rational behavior with effects similar to the irrational ones. This type
of behavior is extensively studied in economics theories as for example the Elinor
Ostrom work [56,65,66].

The hierarchy of Laprie et al. [20] extended with the BAR model or the
(k, t)-robustness model covers complex faults experienced in blockchains such as
dynamic adversaries, churn, transient faults, rational and irrational behaviors or
combinations. Therefore, several research directions need to be explored in this
context.

3.1 Blockchain Robustness to Dynamic Adversaries

The dynamic adversary that affects blockchains described by Micali in [39] has a
Byzantine flavor and has similarities with Mobile Byzantine Adversaries studied
in classical distributed systems. Intuitively, a mobile byzantine adversary can
move agents from a process to another in order to deviate the process computa-
tion. When a process is infected by an adversarial agent, it behaves arbitrarily
until the adversary decides to move the agent to another process. Most of the
literature on Mobile Byzantine Adversaries [21,34,37,49,67,73,75] considered so
far synchronous round-based models, and only between two consecutive rounds
Byzantine agents are allowed to move from one process to another. Hence, the
set of faulty processes at any given time has a bounded size, yet its membership
may evolve from one round to the next. It is obvious that adversaries described
so far by the classical distributed literature do not match Micali’s description
of dynamic adversary in blockchains. A challenge would be to explore Mobile
Byzantine Adversaries decoupled from the synchronous communication of the

Blockchains and the Commons 33

system. However, this line of research still does not cover the dynamic adversary
in blockchains and further research is needed in this direction.

Therefore, the main challenge will be the formal specification of the robustness
of blockchains face to dynamic adversaries.

3.2 Robustness to Rationality and Irrationality

Common resources in blockchain systems can be seen at different levels. Partici-
pants gain a financial benefit from generating blocks. However, they bring to the
system their energy. Moreover, the system itself uses participants as resources
since functionalities of the system such as routing, overlay maintenance, mining
or agreement, are totally dependent on the presence of the participants. The risk
in these systems, as the one advertised recently for Bitcoin, is the fact that par-
ticipants will leave the system and hence the system collapses. This phenomenon
is known in economy as the tragedy of commons. Commons have similarities to
the fair resource sharing in P2P networks where peers express rational behav-
iors. Each peer in a resource sharing system gains a certain benefit from using
the system and pays a certain cost for participating to it. The incentives-based
solutions proposed so far in P2P networks (e.g. [13]) are most of the time eval-
uated in an empirical model with no formalization. Also these solutions are not
designed to cope with dynamic adversaries.

In order to avoid the tragedy of commons phenomenon in blockchains, new
solutions have to be designed by combining self-organized micro-economies the-
ories (in particular the work of Nobel Prize Elinor Ostrom) with on-the-shelf
tools issued from mechanisms and game theories.

A first step would be to understand the effect of various behaviors on
blockchain systems. From the game perspective point of view rationality in
blockchains has been studies in [24] (for the case of Bitcoin protocol) or [74] (for
the case of proof-of-stake protocols). Recently, in [12] the authors explore the
robustness of Tendermint consensus core to rational and Byzantine behaviors.
They analyze equilibrium interactions between Byzantine and rational commit-
tee members and derive conditions under which consensus properties are satisfied
or not in equilibrium. However, the proposed framework is not general enough
to be applied to other blockchain building blocks.

The challenge here will be to define a unified framework for specifying ratio-
nal and irrational behaviors all together with mobility of faults and attacks and
propose incentive rules tolerant to these behaviors.

One possible solution is first to extend the model proposed in [11] to the
specificities of blockchain systems. In [11] the authors define a Byzantine Altru-
istic Rational Tolerant (BART) protocol that guarantees the specified set of
safety and liveness properties in the presence of all rational deviations. A proto-
col is said to be Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) if any
rational user is incentivized to follow the prescribed protocol, also in presence of
Byzantine users. Then, to make practical the model proposed in [8] by relaxing
the requirements in terms of t-immunity. Then, propose combined rules resulted
from various theories (games theory, mechanisms theory) that will be encoded
in incentive rules.

34 M. Potop-Butucaru

4 Formal Abstractions for Blockchains Consistency

A large number of political, economical and social organisms invoke the possi-
bility of blockchainize their activity. Obviously, the data that will be stored on
the blockchain in each of these applications may have various levels of consis-
tency: starting with very strong consistency for the case of banking or notary
applications and finishing with weak consistency for applications such as IoTs.
Identifying the exact requirements of consistency for representative applications
in each class is a challenge in itself.

Studying the level of consistency provided by existing blockchains is related
to the distributed shared register area. However, the similarity is moderated. A
distributed register is a shared variable accessed by a set of processes through two
operations, namely write() and read(). Informally, the write() operation updates
the value stored in the shared variable while the read() obtains the value con-
tained in the shared variable. The classical registers definitions [59] have been
extended to the self-stabilizing area in [30]. This work considers that the system
can be hit by arbitrary errors.

It should be noted that none of the above mentioned classical definitions
captures the behavior of the popular blockchains such as Ethereum and Bitcoin.
That is, values written in a classical register are potentially independent, and
during the execution, the size of the register remains the same. In contrast, a new
block cannot be written in the blockchain if it does not depend on the previous
one, and successive writings in the blockchain increase its size. Also, differently
from stabilizing registers, the prefix of the blockchain eventually converges, while
no guarantees hold for the last created blocks.

The challenge here is to define new consistency abstractions that will capture
the semantics of blockchains.

4.1 Defining New Consistency Abstractions for Blockchains

The first effort in specifying the properties of permissionless blockchain systems
is due to Garay and Kiayias [51]. They characterized Bitcoin blockchain via
its quality and its common prefix properties, i.e., they define an invariant that
this protocol has to satisfy in order to verify with high probability an eventu-
ally consistent prefix. This line of work has been continued by [69]. In order to
model the behavior of distributed ledgers at runtime, Girault et al. [52] present
an implementation of the Monotonic Prefix Consistency (MPC) criterion and
showed that no criterion stronger than MPC can be implemented in a partition-
prone message-passing system. On the other hand, the proposed formalization
does not propose weaker consistency semantics more suitable for proof-of-work
blockchains as Bitcoin. In the same line of research, in [14], Anceaume et al. pro-
pose a new data type to formally model distributed ledgers and their behavior
at runtime. They provide consistency criteria to capture the correct behavior
of current blockchain proposals in a unified framework. In parallel and inde-
pendently of [14], Anta et al. [17] propose a formalization of distributed ledgers

Blockchains and the Commons 35

modeled as an ordered list of records. The authors consider three consistency
criteria: eventual consistency, sequential consistency and linearizability.

Providing a unified framework able to capture the specificity of blockchain
systems is still an open problem.

Moreover, formalizing the definition of this class of blockchain consistency
will help in further proving the correctness and formally verifying algorithms
that implement them. The semantic of the consistency can be express in terms
of events and partial orders to these events. Note that for the classical consistency
criteria the recent work of Gotsman et al. [54] provided a rich formalism based
on token systems. However, this formalism should be extended to the blockchain
context.

4.2 Design and Formally Prove New Consistency Algorithms
Tolerant to Complex Behaviors

It should be noted that existing effort for implementing consistency in
blockchains (e.g. [23,51,62]) concentrate on solving the agreement (consensus)
problem. However, it is already folklore that consensus is impossible to solve
deterministically in asynchronous environments [48]. As pointed out in the state
of the art section, implementing blockchain probabilistic consensus in asyn-
chronous environments subject to dynamic faults is still an open problem. The
deterministic implementation of registers (even with strong consistency guaran-
tees) in various models characterized by the presence of multiple types of faults
(crashes, byzantine, dynamic byzantine or transient) have been investigated in
the past [30–32,35]. In blockchain systems, recent effort has been directed to both
formalizing and implementing consistency criteria in systems prone to faults or
Byzantine behaviors [14,16,18,40].

None of the above proposed solutions work with the severe model of
blockchain adversary including rationality, irrationality, churns or partitions.
Therefore, the implementation of blockchain objects with various consistency
guarantees in a asynchronous environment with dynamic models of adversary
when the size of the network is unknown is a real challenge that might be miti-
gated by combining the framework in [35] with abstractions such as k-quorums
defined in [10] and sortition techniques or intersecting sets (i.e. the secure version
of the classical distributed quorum systems).

5 Develop Correct-by-Construction Agreement
Algorithms for Blockchains

The core of blockchains technologies is the agreement problem, studied in
an environment where participants to the agreement may be controlled by a
dynamic adversary. This form of agreement is known in distributed comput-
ing as Byzantine Agreement. Briefly stated, it requires that processors, some of
which being potentially malicious, start the computation with an initial value
and decide on the same value.

36 M. Potop-Butucaru

Byzantine Agreement, introduced by Lamport et al. [60], has been studied
for decades in static distributed systems under different aspects (e.g., possi-
bility, complexity, cost) in various models (from synchronous to asynchronous,
from authenticated to anonymous) with different methodologies (deterministic
or probabilistic).

5.1 Feasibility of Blockchain Agreement Face to Complex Faults
and Behaviors

Garay et al. [51] and [62] pioneered the study of Byzantine Agreement in
blockchains. However, their studies are restricted to only round-based syn-
chronous systems.

In [29], the authors study deterministic Byzantine Agreement in environ-
ments where the set of nodes controlled by the adversary may change over time.
Contrary to other approaches, the model considers that a process previously
affected by the adversary may send messages (based on a corrupted state), it will
behave correctly in the way it sends those messages: i.e., send messages according
to the algorithm. This behavior is very similar to the way the adversary acts in
blockchains systems. Interestingly, in order to implement Byzantine Agreement
under the assumption of dynamic Byzantine adversary a system needs at least
5f + 1 nodes while in the case of static Byzantine adversary only 3f + 1 are
sufficient, where f is the number of nodes controlled by the Byzantine. These
studies leave a huge avenue to be explored. First, there is no extension of [29] to
round-free environments. Second, in the same model of adversarial model there
is no study related to feasibility of the agreement problem when the adversary
movement is decoupled from the synchronous round of computation.

The above works do not implement agreement in asynchronous systems prone
to dynamic adversary, rationality or churn.

An interesting challenge would be to explore the asynchronous probabilistic
Byzantine agreement in systems prone to dynamic adversary and churn and
where processes may have rational behaviors. One of possible solutions would
be to considered the methodology proposed in [29] to round free churn exposed
systems combined with sortition techniques and incentives rules issues from
games and mechanisms theories.

5.2 New Abstractions for Blockchain Agreement

Agreement in blockchains has an Approximate agreement flavor since the agree-
ment on blockchains should be guaranteed not on an exact value. In systems hit
by Mobile Byzantine Adversaries (the closes to the blockchain dynamic adver-
sary) [33] formalized the approximate agreement and prove lower bounds on
problem solvability in various dynamic adversary models and further propose
an optimal algorithm for approximate agreement in round based systems. The
lower bounds range from n > 3f + 1 to n > 6f + 1 depending on the type of
adversary.

Blockchains and the Commons 37

The previous results do not cover the blockchain agreement for several rea-
sons: blockchains are not round-based, the adversary is not bounded to the
rounds change, the agreement value is not a real value but a prefix of an ever
changing blockchain.

Formalizing the bockchain approximate agreement and then proposing solu-
tions in asynchronous environments hit by a dynamic adversary and rationality
is the scientific lock here.

6 Develop Correct-by-Construction Overlays
and Routing Algorithms for Blockchains

Blockchain underlying overlays and the associate routing are totally unexplored
from a theoretical point of view. However, the performances of blockchains tech-
nologies heavily depend on the performances of the underlying routing process.
Recently, Lightning technologies [70] imposed themselves as a viable direction
for improving the blockchains throughput. This technology builds on top of
blockchains (e.g. Bitcoin) an overlay of secured channels opened by two par-
ties involved in long term multi-transactions. This overlay is further used to
route transactions. Although blockchain technologies make strong assumptions
on their underlying overlays there is no academic research that focus on these
overlays. The only prior research on the overlays topic has been developed in the
context of dynamic networks such as P2P or wireless networks.

Another interesting point to be explored is the liveness of the overlay and
more generally of the system. In blockchains the welfare of participants is
a crucial factor. When participants desert the system in proof-of-work based
blockchains the security of the system sinks, which yields to the global sink of
the system. As mentioned previously, this phenomenon is known in economy as
the tragedy of commons.

6.1 New Abstractions for Blockchain Overlays

Expanders theory proved recently its effectiveness for constructing overlays
resilient to churn and partitions. The (node) expansion of an undirected graph
is a characterization of the graph robustness. That is, graphs with good expan-
sion are hard to be partitioned into a number of large connected components.
In this sense, the expansion of a graph can be seen as a good evaluation of its
resilience to faults and churn. However, the expansion of tree overlays is trivially
O(1/n) where n is the number of nodes in the tree overlay. This weakness to
faults explains why tree overlays are not pervasive in real applications.

In [57], the authors measured the robustness of tree overlay networks by
evaluating their graph expansion and proposed a logarithmic algorithm for the
construction of a constant degree self* expander that improves the resilience to
churn of P2P tree-overlays.

38 M. Potop-Butucaru

The existing works are not tolerant to dynamic adversaries which can dis-
connect the overlay before its stabilization. The unexplored yet research direc-
tion concerns the construction of constant degree expenders tolerant to dynamic
Byzantine behavior and multiple types of faults. A possible solution would be to
extend the methodology in [57] with sortition techniques.

6.2 New Formally Verified Routing Protocols for Blockchains

In order to increase the throughput in Bitcoin, the non academical research in
blockchains proposed recently lightning routing networks [70]. Secured channels
between two or more participants are opened on top of Bitcoin and transactions
are routed on top of the virtual network formed by these channels. Routing in
lightning networks has some similarities with routing in P2P or mobile wireless
networks or delay tolerant networks. Flare [72], for example, which is one of
the most prominent lightning routing was inspired by the wireless ZRP routing
protocol.

Interestingly, there is no formal academic research on this topic so far and
our preliminary studies show that Flare (and its derivates) present severe lim-
itations such as weak resilience to churn or deadlocks. Moreover, none of these
lightning routing protocols has been exposed to multiple types of faults, attacks
or dynamic adversaries.

The most studied overlay for routing in classical distributed systems and
networking theory is the minimum spanning tree (MST). Research on spanning
trees tolerant to multiple faults has been conducted in [25–28]. None of the above
cited algorithms is resilient to dynamic adversaries in conjunction with churn
and attacks. The challenge here will be the design of new routing algorithms
optimized for the context of lightning networks subject to multiple types of
faults, attacks, rationality and dynamic adversaries.

7 Blockchains Interoperability

There are currently several operational systems for achieving interoperability
between different blockchains such as Cosmos [2] or Polkadot [6]. These systems
can be classified into two categories according to their decentralization level:
systems that use a trusted third-party to validate transactions or systems that
realize it directly between blockchains without the need of a trusted third-party.

In order to execute an exchange or a swap (i.e., a set of transactions between
parties), transacting agents (i.e., blockchain users) are provided with a protocol
to stick to. A protocol in this case consists of a specific sequence of instructions
agents should perform to preserve the ACID properties [61] of the individual
transactions or exchanges.

The first atomic swap solution has been proposed for Bitcoin by Nolan [64]
making use of hash-time locked contracts enabling conditional assets transfers.
Decred [3] implements Nolan’s algorithm on UTXO-based premissionless. In [55]
the authors generalize and prove correct Nolan’s scheme. Other projects such as

Blockchains and the Commons 39

BartherDEX [5], part of the Komodo project [4], represents a cross-chain solution
that matches orders and defines the swap protocol or Blockchain.io [1] imple-
ments atomic cross-chain swaps by combining centralized components (order
matching) with decentralized ones (trade settlement and execution). These
projects are not yet formally proved correct.

The academic research focuses on hybrid swap protocols, replacing decen-
tralized commitment/locking schemes (hash-locks) with centralized ones, result-
ing more attractive and efficient. AC3TW and AC3WN [77] protocols propose
atomic cross-chain swaps respectively with centralized and distributed trusted
authorities (i.e. witnesses). It should be noted that different swap protocols differ
essentially in the involved parties. The set of swap participants can be composed
only of the asset owners (e.g., as in [55]) or by owners accompanied by a trusted
third party (e.g., as in the AC3TW protocol [77]).

In [22], the authors propose a generic game theoretical framework that for-
malizes the swap problem and characterize equilibria of two representative recent
protocols presented in [64] and [77] respectively. In the case of the protocol pro-
posed in [64] and generalised in [55], following the protocol is the unique subgame
perfect equilibrium (in dominant strategies), while in the case of the protocol
proposed in [77], following the protocol is a Nash equilibrium.

These works open several research directions. Swap protocols and more gen-
erally blockchain intercommunication are not yet properly formalized and ana-
lyzed.

An important challenge in this area is to fully formalize the problem and
analyze the robustness of protocols that implement it face to both rational and
irrational behaviors, dynamic adversaries and attacks and coalitions.

8 Conclusions

Blockchains evolve in a very complex environment. Differently from the classical
distributed systems, where faults are considered to appear in isolation and to
affect the same node of the system during the whole computation, in blockchains
environments faults do not follow the same pattern. Blockchains have to face in
the same time classical pattens of faults such as crash faults, transient faults,
Byzantine faults but also attacks, dynamic faults, churn and selfish or ratio-
nal/irrational behaviors. Therefore, before addressing the algorithmic core of
blockchains a fully characterization of the adversarial environment is necessary.
Interestingly, faults and errors in most of the cases (even in classical distributed
system) have only a verbose definition. When systems have to be released for
industrial or critical economical use automatic verifications and mathematical
proofs are necessary. Therefore, verbose definitions are not precise enough. In
this paper we discuss five important challenges in this area. The first chal-
lenge is to explore and formalize blockchains robustness. The second challenge
is to formally define universal abstractions for characterizing blockchains con-
sistency. The third challenge is to provide new correct-by-construction abstrac-
tions for agreement in blockchains. The effectiveness of these building blocks will

40 M. Potop-Butucaru

be insured by a formal verification and proof using formal methods tools. The
fourth challenge is to develop optimized overlays and communication primitives
for blockchains resilient to nodes churn, various attacks and adversary dynamic
behaviors and target to avoid the partition or the sink of the system in a tragedy
of commons. Finally, the formalization of blockchains interoperability is the fifth
challenge.

References

1. Blockchain.io (Your gateway to the internet of value). https://blockchain.io/.
Accessed 10 January 2020

2. Cosmos: A network of distributed ledgers. https://cosmos.network/cosmos-
whitepaper.pdf. Accessed 10 January 2020

3. Decred cross-chain atomic swapping. https://github.com/decred/atomicswap.
Accessed 10 January 2020

4. Komodo (Advanced blockchain technology, focused on freedom). https://docs.
komodoplatform.com/whitepaper/introduction.html. Accessed 10 January 2020

5. Komodo barterdex. https://github.com/KomodoPlatform/BarterDEX. Accessed
10 January 2020

6. Polkadot: Vision for a heterogeneous multi-chain framework. https://polkadot.
network/PolkaDotPaper.pdf. Accessed 10 January 2020

7. Abraham, I., Alvisi, L., Halpern, J.: Distributed computing meets game theory:
combining insights from two fields. SIGACT News 42, 69–76 (2011)

8. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, New York, NY, USA, pp. 53–62. Association
for Computing Machinery (2006)

9. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-
message BFT devil. CoRR https://arxiv.org/abs/1803.05069 (2018)

10. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Byzantine and multi-writer k-quorums. In:
Proceedings of 20th International Symposium on Distributed Computing, DISC
2006, 18–20 September 2006, Stockholm, Sweden, pp. 443–458 (2006)

11. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: SOSP 2005 (2005)

12. Amoussou-Guenou, Y., Biais, B., Potop-Butucaru, M., Tucci Piergiovanni, S.:
Rationals vs byzantines in consensus-based blockchains. https://arxiv.org/abs/
1902.07895 (2019). To appear AAMAS 2020

13. Anceaume, E., Gradinariu, M., Ravoaja, A.: Incentives for P2P fair resource shar-
ing. In: Fifth IEEE International Conference on Peer-to-Peer Computing (P2P
2005), 31 August–2 September 2005, Konstanz, Germany, pp. 253–260 (2005)

14. Anceaume, E., Pozzo, A.D., Ludinard, R., Potop-Butucaru, M., Tucci Piergiovanni,
S.: Blockchain abstract data type. In: Proceedings of the 31st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA) (2019)

15. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, 23–26 April 2018, Porto, Portugal, pp. 30:1–30:15 (2018)

16. Anta, A.F., Georgiou, C., Nicolaou, N.C.: Atomic appends: selling cars and coor-
dinating armies with multiple distributed ledgers. CoRR https://arxiv.org/abs/
1812.08446 (2018)

https://blockchain.io/
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://github.com/decred/atomicswap
https://docs.komodoplatform.com/whitepaper/introduction.html
https://docs.komodoplatform.com/whitepaper/introduction.html
https://github.com/KomodoPlatform/BarterDEX
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://arxiv.org/abs/1803.05069
https://arxiv.org/abs/1902.07895
https://arxiv.org/abs/1902.07895
https://arxiv.org/abs/1812.08446
https://arxiv.org/abs/1812.08446

Blockchains and the Commons 41

17. Anta, A.F., Konwar, K., Georgiou, C., Nicolaou, N.: Formalizing and implementing
distributed ledger objects. ACM SIGACT News 49(2), 58–76 (2018)

18. Anta, A.F., Konwar, K.M., Georgiou, C., Nicolaou, N.C.: Formalizing and imple-
menting distributed ledger objects. SIGACT News 49(2), 58–76 (2018)

19. Attiya, H., Welch, J.: Distributed Computing: Fundamentals Simulations and
Advanced Topics. Wiley, New York (2004)

20. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2014)

21. Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved byzantine agreement algo-
rithm for synchronous systems with mobile faults. Int. J. Comput. Appl. 43(22),
1–7 (2012)

22. Belotti, M., Moretti, S., Potop-Butucaru, M., Secci, S.: Game theoretical analysis
of atomic cross-chain swaps. In: 40th IEEE International Conference on Distributed
Computing Systems (ICDCS), Singapore, December 2020

23. Bentov, I., Pass, R., Shi, E.: The sleepy model of consensus. IACR Cryptol. ePrint
Arch. 2016, 918 (2016)

24. Biais, B., Bisière, C., Bouvard, M., Casamatta, C.: The blockchain folk theorem.
Rev. Financ. Stud. 32(5), 1662–1715 (2019)

25. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing mini-
mum spanning tree construction - using compact nearest common ancestor labeling
scheme. In: Proceedings of 24th International Symposium on Distributed Comput-
ing, DISC 2010, 13–15 September 2010, Cambridge, MA, USA, pp. 480–494 (2010)

26. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-
approximation algorithm for dynamic Steiner trees. Theor. Comput. Sci. 500,
90–112 (2013)

27. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. Comput. J. 59(2),
225–243 (2016)

28. Blin, L., Potop-Butucaru, M.G., Rovedakis, S.: Self-stabilizing minimum degree
spanning tree within one from the optimal degree. J. Parallel Distrib. Comput.
71(3), 438–449 (2011)

29. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile
byzantine agreement. Theor. Comput. Sci. 609, 361–373 (2016)

30. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based
storage in byzantine asynchronous message-passing systems: extended abstract. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, 21–23 July 2015, Donostia-San Sebastián, Spain, pp. 471–479 (2015)

31. Bonomi, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing byzantine-fault tolerant
storage. In: 2015 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2015, 25–29 May 2015, Hyderabad, India, pp. 894–903 (2015)

32. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M.: Tight self-stabilizing mobile
byzantine-tolerant atomic register. In: Proceedings of the 17th International Con-
ference on Distributed Computing and Networking, 4–7 January 2016, Singapore,
pp. 6:1–6:10 (2016). To appear in TCS 2017

33. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agree-
ment under mobile byzantine faults. In: 36th IEEE International Conference on
Distributed Computing Systems, ICDCS 2016, 27–30 June 2016, Nara, Japan, pp.
727–728 (2016)

42 M. Potop-Butucaru

34. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Optimal mobile byzan-
tine fault tolerant distributed storage: extended abstract. In: Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, 25–
28 July 2016, Chicago, IL, USA, pp. 269–278 (2016)

35. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Self-stabilizing mobile
byzantine-tolerant regular register with bounded timestamp. In: SRDS 2017,
https://arxiv.org/abs/1609.02694 (2016)

36. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

37. Buhrman, H., Garay, J.A., Hoepman, J.H.: Optimal resiliency against mobile
faults. In: Proceedings of the 25th International Symposium on Fault-Tolerant
Computing (FTCS 1995), pp. 83–88 (1995)

38. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

39. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2017)
40. Cholvi, V., Anta, A.F., Georgiou, C., Nicolaou, N.C.: Brief announcement: imple-

menting byzantine tolerant distributed ledger objects. In: Suomela, J. (ed.) 33rd
International Symposium on Distributed Computing, DISC 2019, 14–18 October
2019, Budapest, Hungary, vol. 146 of LIPIcs, pp. 40:1–40:3. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

41. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: Efficient byzantine consen-
sus with a weak coordinator and its application to consortium blockchains. arXiv
preprint arXiv:1702.03068 (2017)

42. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: (Leader/Randomization/
Signature)-free Byzantine Consensus for Consortium Blockchains. http://csrg.
redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf (2017). Accessed 22
May 2018

43. Croman, K.: On scaling decentralized blockchains - (A position paper). In: Finan-
cial Cryptography and Data Security - FC 2016 International Workshops, BIT-
COIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, pp. 106–125 (2016)

44. Pass, D.R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptol.
ePrint Arch. 2016, 919 (2016)

45. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the 17th International Conference on Distributed Computing and Net-
working Conference (ICDCN) (2016)

46. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2016, 16–18 March 2016, Santa Clara, CA, USA, pp.
45–59 (2016)

47. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

48. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

49. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile
faults. In: Proceedings of the 8th International Workshop on Distributed Algo-
rithms, vol. 857, pp. 253–264 (1994)

50. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR
Cryptol. ePrint Arch. 2018, 754 (2018)

https://arxiv.org/abs/1609.02694
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1702.03068
http://csrg.redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf
http://csrg.redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf
https://doi.org/10.1007/978-3-662-45472-5_28

Blockchains and the Commons 43

51. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

52. Girault, A., Gössler, G., Guerraoui, R., Hamza, J., Seredinschi, D.-A.: Monotonic
prefix consistency in distributed systems. In: Baier, C., Caires, L. (eds.) FORTE
2018. LNCS, vol. 10854, pp. 41–57. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92612-4 3

53. Golan-Gueta, G., et al.: SBFT: a scalable decentralized trust infrastructure for
blockchains. CoRR https://arxiv.org/abs/1804.01626 (2018)

54. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause i’m
strong enough: reasoning about consistency choices in distributed systems. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, 20–22 January 2016, St. Petersburg, FL,
USA, pp. 371–384 (2016)

55. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, pp. 245–254. ACM (2018)

56. Hess, C., Ostrom, E.: Understanding knowledge as a commons. From theory to
Practice (2007)

57. Izumi, T., Potop-Butucaru, M., Valero, M.: When expanders help self-healing dis-
tributed r-tree overlays. In: IEEE 12th International Symposium on Parallel and
Distributed Computing, ISPDC 2013, 27–30 June 2013, Bucharest, Romania, pp.
143–150 (2013)

58. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. In: Proceedings of the 25th USENIX Security Symposium (2016)

59. Lamport, L.: On inter-process communications, Part I: basic formalism and Part
II: algorithms. Distrib. Comput. 1(2), 77–101 (1986)

60. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Prog. Lang. Syst. 4(3), 382–401 (1982)

61. Lewis, P., Bernstein, A., Kifer, M.: Databases and Transaction Processing: An
Application-Oriented Approach. Addison-Wesley Reading, Boston (2002)

62. Micali, S.: Algorand: the efficient and democratic ledger. arXiv preprint
arXiv:1607.01341 (2016)

63. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

64. Nolan, T.: Re: alt chains and atomic transfers. https://bitcointalk.org/index.php?
topic=193281.msg2224949#msg2224949. Accessed 10 January 2020

65. Ostrom, E.: Governing the Commons. Cambridge University Press, Cambridge
(2015)

66. Ostrom, E., Walker, J.: Trust and Reciprocity: Interdisciplinary Lessons for Exper-
imental Research. Russell Sage Foundation, New York (2003)

67. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1991), pp. 51–59 (1991)

68. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-92612-4_3
https://doi.org/10.1007/978-3-319-92612-4_3
https://arxiv.org/abs/1804.01626
http://arxiv.org/abs/1607.01341
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

44 M. Potop-Butucaru

69. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC 2017, 25–27 July 2017,
Washington, DC, USA, pp. 315–324 (2017)

70. Poon, J., Dryja, T.: The bitcoin lightning network (2016). https://lightning.
network/lightning-network-paper.pdf

71. Potop-Butucaru, M.: Brace: Blockchains and the commons. submitted to ERC
Advanced program (2017) Proposal ID : 788886 (Internal reference number: SEP-
210446727) Call : ERC-2017-ADG Type of action : ERC-ADG Topic : ERC-2017-
ADG. http://pagesperso.lip6.fr/Maria.Gradinariu/spip.php?article23

72. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A.: Flare: an approach to routing
in lightning network white paper (2016)

73. Reischuk, R.: A new solution for the byzantine generals problem. Inf. Control
64(1–3), 23–42 (1985)

74. Saleh, F.: Blockchain Without Waste: Proof-of-Stake. SSRN Scholarly Paper ID
3183935, Social Science Research Network, Rochester, NY, January 2019

75. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile byzantine agreement
on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS
2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03850-6 17

76. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. http://
gavwood.com/Paper.pdf. Accessed 22 May 2018

77. Zakhary, V., Agrawal, D., Abbadi, A.: Atomic commitment across blockchains.
Proc. VLDB Endow. (2020)

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://pagesperso.lip6.fr/Maria.Gradinariu/spip.php?article23
https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1007/978-3-319-03850-6_17
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

Regular Papers

On the State Reachability Problem
for Concurrent Programs Under Power

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1(B), Ahmed Bouajjani2,
Egor Derevenetc3, Carl Leonardsson1, and Roland Meyer4

1 Uppsala University, Uppsala, Sweden
mohamed faouzi.atig@it.uu.se

2 IRIF, Université Paris Diderot, Paris, France
3 Yandex.Technology GmbH, Berlin, Germany

4 TU Braunschweig, Brunswick, Germany

Abstract. We consider the problem of safety verification, formalized as
control-state reachability, for concurrent programs running on the Power
architecture. Our main result shows that safety verification under Power
is undecidable for programs with just two threads.

1 Introduction

For performance reasons, modern multi-processors may reorder memory access
operations. This is due to complex buffering and cashing mechanisms that aim at
improving responsiveness of memory queries (load operation), and at improving
execution times by parallelizing operations and computation flows. Therefore,
in general operations issued by processors may take time to be visible to other
processors, they will not necessarily become visible to all processors at the same
time, and they are not necessarily seen in the same order by the different proces-
sors (when they concern different addresses/variables). The only model where
all operations are visible immediately to all processors is the Sequential Consis-
tency (SC) [18] model that ensures so-called strong consistency, and which cor-
responds to the standard interleaving model where the program order between
operations of a same processor is preserved. In fact, memory models correspond-
ing to modern architectures are in general weaker than SC in the sense that they
allow more behaviours. Many weak memory models have been considered such
as TSO (Total Store Ordering) adopted in Intel x86 machines [15] for instance,
POWER adopted in PowerPC machines [14], and ARMv7 [8]. While TSO allows
the store-to-load relaxation of the program order that consists in letting loads
overtake stores on different addresses/variables (due to the use of store buffers),
POWER and ARMv7 models (that are quite similar, so we focus from now on
POWER), are by far more complex, allowing much more relaxations, reordering
all kinds of operations under some conditions. Indeed, POWER allows reorder-
ing between stores, and more importantly, it allows loads to be delayed past
later loads, and even past later stores. Delaying loads corresponds actually to
allowing speculation on the future of the execution: loads do not return values
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 47–59, 2021.
https://doi.org/10.1007/978-3-030-67087-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_4

48 P. A. Abdulla et al.

that are currently available, but values that will be stored later by some (other)
processor. To avoid situations of circular causality between operations, reorder-
ing loads past other operations occurs only when the reordered operations are,
roughly, control and data independent. On the other hand, in situations where
synchronization is needed, requiring that some operations must be visible with-
out delays, (various) fencing operations can be used by programmers in order to
forbid reordering of some operations at some specific points in the program. A
series of papers has addressed the issue of defining a formal model capturing the
POWER semantics [4,7,19,22]. We consider in this paper the model defined in
[12,22].

In general, the effects of all these relaxations on the executions of concur-
rent programs are extremely hard to apprehend. While most programmers can
assume data-race-freeness which ensures that all behaviours are observation-
ally equivalent to SC computations, this assumption does not fit all situations.
Therefore, developing automatic verification approaches for concurrent programs
under weak memory models is of paramount importance. This paper addresses
the decidability and the complexity of verifying safety properties (or dually of
verifying state reachability) under POWER. This problem is hard due to the
high complexity and intricacy of the model. From the computational point of
view, the formal model associated with POWER uses unbounded data structures
for storing operations that are dispatched and executed later according to some
specific rules. Therefore, decidability and complexity of the state reachability
problem for this model is far from being trivial. Work investigating these issues
for weak memory models are rare. In [9], Atig et al. addressed these issues for
TSO and PSO (Partial Store Ordering), and subsequently they extended their
result in [10] to a variety of abstract weak memory models where loads can be
reordered past other operations. They have shown basically that the reachability
problem is decidable for TSO and PSO, and even when additionally the load-to-
load relaxation is allowed. Those results hold even for unbounded store buffers,
i.e., when there is no a-priori bound on the distance between reordered opera-
tions in the original computation of the processor. On the other hand, they have
shown that considering in addition the load-to-store relaxation (the obtained
model is called RMO), leads to undecidability. However, the formal models con-
sidered in that work do not take into account dependencies between operations
as in the case of POWER. So, these formal models are either not comparable
with, or weaker (in the case of their RMO model) than the model of POWER
considered here, and therefore the results established for them in [9,10] do not
apply directly to the case of POWER.

In this paper, we prove that the state reachability problem under POWER is
undecidable in general. This result comes as a surprise, given that Power avoids
the causality cycles [12] used in the undecidability proof for RMO [9]. The proof is
technically involved and is based on a reduction from the reachability problem for
perfect FIFO channel machine (PCM). PCMs are known to be Turing-complete,
even with only one channel [11]. Essentially, the simulation of PCM is due to

On the State Reachability Problem for Concurrent Programs Under Power 49

allowing an unbounded number of speculating loads that can for instance be
generated by a loop whose condition does not depend on the loads in its body.

1.1 Related Work

In the last few years, there were a number of works that propose approxi-
mate verification techniques for programs running under POWER (e.g., [3,5–
7,13,20,21,23]). The work [5] extends the CBMC framework to programs run-
ning under different weak memory models including TSO and POWER using
their axiomatic definitions [7] to detect potential cycles. The work in [6] com-
bines partial orders with bounded model checking for the verification of programs
running under various weak memory models including TSO and POWER. The
works [3] and [2] develop stateless and bounded-context model checking tech-
niques under POWER, respectively. More recently, the works [13] and [20] pro-
pose efficient SMT based bounded-model checking techniques for the verification
of various weak memory models including TSO, POWER, and ARM.

The state reachability problem for programs running under the TSO memory
model and causal consistency has been shown to be decidable in [9] and [17],
respectively. This problem becomes undecidable for programs under the release-
acquire semantics [1].

Finally, the paper [12] addresses the robustness problem for programs running
under POWER, i.e., whether a program has the same (trace) semantics for both
POWER and SC. This problem has been shown to be PSpace-complete.

2 Programming Model

We give the syntax of concurrent programs and recall the semantics under
POWER. We base our development on automata A = (S,Σ,Δ, s0, F), where
S is a set of states, Σ an alphabet, Δ ⊆ S × (Σ ∪ {ε}) × S a set of transitions,
s0 ∈ S an initial state, and F ⊆ S a set of final states. We write s1

a−→ s2
if (s1, a, s2) ∈ Δ and generalize the relation to computations σ ∈ Σ∗ by exis-
tentially quantifying over the intermediary states. For σ = a1 . . . an ∈ Σ∗ we
define the length to be |σ| := n and access the ith letter with σ(i) := ai. The
automaton is finite if S and Σ are finite. It is deterministic if for every state
s and every letter a there at most one state s′ with s

a−→ s′. Letters a and b

commute in state s if for all s′ ∈ S we have s
a·b−−→ s′ iff s

b·a−−→ s′. The language
of A consists of all computations that lead from the initial to a final state,
L(A) := {σ ∈ Σ∗ | s0

σ−→ s ∈ F}.
We use [n] for the interval [1, n]. Given f : X → Y , x′ ∈ X, and y′ ∈ Y , we

define the updated function f ′ = f [x′ ←↩ y′] by f ′(x′) := y′ and f ′(x) := f(x)
for x �= x′.

2.1 Programs

A program P = T1 . . .Tn is a finite sequence of threads, each carry-
ing an identifier from TID := [n]. Threads are given as automata Ttid =

50 P. A. Abdulla et al.

(Qtid,CMD, Itid, q0tid, Ftid) with tid ∈ TID. We call these automata control-flow
graphs, Qtid the finite set of control states, and Itid the instructions. The final
states will be used to define safety verification as an emptiness problem.

Instructions are labeled by commands from the set CMD. It includes loads,
stores, assignments, conditionals (assume), and three synchronization primitives:

〈cmd〉 ::= 〈reg〉 ← mem[〈expr〉] | mem[〈expr〉] ← 〈expr〉
| 〈reg〉 ← 〈expr〉 | assume(〈expr〉)
| sync | lwsync | isync .

Programs come with a finite domain DOM = ADR that contains both the
values and addresses, and we do not differentiate between the two. The domain
is assumed to contain the value 0 and not to contain ⊥. On DOM∪{⊥}, we have
a set of (computable) functions FUN. We assume that these functions return ⊥
iff any of the arguments is ⊥. Besides the domain, let REG be a finite set of
registers that take values from DOM. The set of expressions EXP is

〈expr〉 ::= 〈reg〉 | 〈dom〉 | 〈fun〉(〈expr〉. . .〈expr〉) .

To fix the terminology, when we refer to loops in a control-flow graph we
mean loops that are simple in the sense that they do not repeat control states.

2.2 Power Semantics

The Power architecture supports program-order relaxations based on address,
data, and control dependencies as well as non-store atomicity. The semantics of
programs running on Power has been formalized in a series of papers [4,7,19,22]
that bit by bit corrected mismatches between the model and the observable
machine behavior until arriving at the by now considered stable [7]. We focus
on this definition but give an operational presentation as in [12,22]. The state
of a program running on a Power processor consists of the runtime states of the
threads and the state of a storage subsystem.

The runtime state of a thread includes information about the instructions
being executed by the thread. In order to start executing an instruction, the
thread must fetch it. The thread can fetch any instruction whose source con-
trol state is equal to the destination state of the last fetched instruction. Then,
the thread must perform any computation required by the semantics of this
instruction. For example, for a load the thread must compute the address being
accessed and read the value from this address into the target register. The last
step of executing an instruction is committing it. Committing an instruction
requires committing all its dependencies. For example, before committing a load
the thread must commit all its address dependencies—the instructions which
define the values of registers used in the address expression—and all control
dependencies—the program-order-earlier (fetched earlier than the load) condi-
tional instructions. Moreover, all loads and stores accessing the same address
must be committed in the order in which they were fetched.

On the State Reachability Problem for Concurrent Programs Under Power 51

The storage subsystem keeps track, for each address, of the global ordering
of stores to this address—the coherence order—and the last store to this address
propagated to each thread. When a thread commits a store, this store is assigned
a position in the coherence order which we identify by a rational number—the
coherence key. The key must be greater than the coherence key of the last store to
the same address propagated to this thread. The committed store is immediately
propagated to its own thread. At some point later this store can be propagated
to any other thread, as long as it is coherence order-later (has a greater coherence
key) than the last store to the same address propagated to that thread. When
a thread loads a value from a certain address, it gets the value written by the
last store to this address propagated to this thread. A thread can also forward
the value being written by a not yet committed store to a later load reading the
same address. This situation is called an early read.

An important property of Power is that it maintains the illusion of sequential
consistency for single-threaded programs. This means, reorderings on the thread
level must not lead to situations where, e.g., a program-order-later load reads a
coherence order-earlier store than the one read by a program-order-earlier load
to the same address. In [22] these restrictions are enforced by the mechanism
of restarting operations. We put these conditions into the requirements on final
states of the running program instead.

Power provides three synchronization commands to enforce ordering among
operations: sync, lwsync, and isync. We use the notation (lw)sync to mean a
sync or an lwsync, and similar for (i)sync and (lw/i)sync. When an (lw)sync is
committed, the group-A set of stores is captured. It consists of the last stores
that were propagated to the thread performing the (lw)sync at the moment of
commit. Once all group-A stores have been propagated to a thread, the (lw)sync
can be propagated to this thread. We also say that the thread has passed the
(lw)sync. If an (lw)sync has not yet been propagated to a thread, the thread
remains before the (lw)sync. Once all threads have passed a sync, it is considered
acknowledged.

Symmetrically, when a thread commits a store the group-A set of (lw)syncs
is captured. It consists of all (lw)syncs that were propagated to the thread doing
the store at the moment of commit. A store can be propagated to a thread only
after all group-A (lw)syncs have been propagated to this thread.

An (lw)sync can be understood as a barrier that separates the group-A stores
from the stores that have the (lw)sync in their group-A set of (lw)syncs. The
semantics requires these barriers not to cross each other. Imagine four stores wa

followed by w′
a in the coherence order and wb followed by w′

b on the addresses a
and b, respectively. If one (lw)sync requires w′

b to be before wa, then it cannot be
the case that another (lw)sync requires the later w′

a to be before wb. Such a cycle
should also not occur transitively and is not restricted to the group-A stores.
Instead, one keeps for each (lw)sync and each thread a snapshot of the last stores
that were propagated to that thread at the moment when the (lw)sync is prop-
agated to the thread. This function of group-A stores conservatively generalizes

52 P. A. Abdulla et al.

the set of group-A stores (held for the thread who committed the (lw)sync) to
all threads.

Committing an (lw)sync requires all previous loads, stores, and (lw/i)syncs
to be committed. Committing a load or a store requires all previous (lw/i)syncs
to be committed and syncs to be acknowledged. Committing an isync requires
all preceding loads and stores to have their addresses computed.

Finally, loading a value from memory or from an earlier store requires all
previous (i)syncs to be committed and syncs to be acknowledged. In contrast,
pending lwsyncs do not forbid speculative loads.

We turn to the formalization. It will be interesting to the reader familiar
with the Power model. For a reader new to Power, we suggest to skip the details
and get back to them when unsure about arguments given in the development.
The semantics of program P on a Power processor is captured by the Power
automaton Z(P) := (SZ ,ACT,ΔZ , s0Z , FZ).

Alphabet. The alphabet is the set of actions

ACT := IID × {f, l, c, p} × (
⋃

tid∈TID

Itid ∪ IID ∪ Q ∪ TID) .

Actions make visible the step (fetch, load, commit, propagate) performed during
the execution of an instruction (instance). Instances of instructions are identified
uniquely by an element from IID := TID × N. The natural number will be the
index in the list of fetched instructions of the given thread. The identification
scheme will guarantee that every action occurs at most once during a compu-
tation. For fetch actions, we also give the instruction being fetched. For load
actions, we track the store that the load obtains its value from. For committed
stores, we track the coherence index from Q. Propagate actions moreover give the
thread that a store or (lw)sync is propagated to. Fetch, load, and commit actions
are said to be local because they do not interact with the storage subsystem.

States. A state sZ = (ts, sY) ∈ SZ of the Power automaton consists of the
runtime thread states ts : TID → SX and the storage subsystem state sY ∈ SY .

A runtime state ts(tid) = (fet, com, ld) ∈ SX of the thread tid ∈ TID includes
a sequence of fetched instructions fet ∈ Itid∗ of length |fet| = n, a set of indices
of committed instructions com ⊆ [n], and a function ld : [n] → IID ∪ INIT ∪ {⊥}
giving the store read by a load and ⊥ if the load has not yet received a value.
The set INIT := {inita | a ∈ ADR} contains, for each address, an initial store
of value 0. If the state belongs to thread tid, we also apply fet, com, and ld
to instruction ids of the form iid = (tid, i) rather than natural numbers. For
example, fet(iid) = fet(i) returns the ith fetched instruction of thread tid. The
initial state of a running thread is s0X := (ε, ∅, λi.⊥).

A storage subsystem state sY = (co, p, gast, gasy) ∈ SY contains the coher-
ence order co : IID → Q for stores, initially λiid.0. The propagate function
p : TID → ADR → IID ∪ INIT maps thread tid and address a to the last store
to a propagated to tid, initially λtid.λa.inita. The function of group-A stores
gast : IID → TID → (ADR → IID ∪ INIT) ∪ {⊥} maps an (lw)sync iid, thread

On the State Reachability Problem for Concurrent Programs Under Power 53

tid, and address a to the last store to a that was propagated to tid at the
moment when the (lw)sync is propagated to tid, initially λiid.λtid.⊥. The group-
A (lw)syncs are given by gasy : IID → P(IID), initially λiid.∅.

The initial state Z(P) is s0Z := (λtid.s0X , s0Y) with s0Y the initial state of
the storage subsystem.

Note that a state sZ = (ts, sY) does not contain the valuations of registers
and addresses, nor does it declare any dependencies among instructions. We now
define auxiliary functions that serve this purpose. Function ev(iid, e) returns the
value of expression e in instruction iid, and ⊥ when the value is undefined.
Formally, ev(iid, e) := v is computed as follows. If e ∈ DOM, then v := e. If e =
fun(e1 . . . en), then v := fun(ev(iid, e1) . . . ev(iid, en)). Otherwise, e = r ∈ REG.
We identify the last instruction iid′ fetched before iid that is an assignment or
a load to r. Formally, if iid = (tid, i) then iid′ = (tid, i′) where i′ ∈ [i − 1] is the
largest index so that fet(i′) is of the required form. If there is no such instruction
iid′, we define v := 0. If iid′ is an assignment r ← ev, then v := ev(iid′, ev). If iid′

is a load r ← mem[ea], then v := ⊥ if ld(iid′) = ⊥, and v := val(ld(iid′)) otherwise.
The definition of val is given in the next paragraph.

Function adr(iid) returns the value of the address argument in an instruction.
If iid is a load r ← mem[ea] or a store mem[ea] ← ev, we set adr(iid) := ev(iid, ea).
If there is no address argument, we use adr(iid) := �. We overload the function
with adr(inita) := a. Similarly, val(iid) returns the value of the value argument.
If iid is a store mem[ea] ← ev, an assignment r ← ev, or a conditional assume(ev),
we set val(iid) := ev(iid, ev). Otherwise, val(iid) := �.

The functions adep(iid), ddep(iid), cdep(iid), applied to iid = (tid, i), denote
the ids of instructions in thread tid being address, data, and control dependencies
of iid. The first two are defined recursively similar to ev. We define cdep(iid) to
be the set {(tid, i′) | i′ ∈ [i − 1] where fet(i′) is a conditional}.

The predicate ack(iid) checks whether a sync has been propagated to all
threads. Formally, the predicate returns � if gast(iid, tid′) �= ⊥ for all tid′, and
⊥ otherwise.

Transitions. Consider state sZ = (ts, sY) where thread tid is in state ts(tid) =
(fet, com, ld). In the following, the instruction iid := (tid, i) is always assumed to
stem from this thread. The transition relation ΔZ is the smallest relation defined
by the rules below:

(T-F) Thread tid can fetch any instruction inst originating from its current
control state in the control-flow graph. This state is q where (q′, cmd, q) is the last
instruction in fet. The transition appends inst to the list of fetched instructions:

(ts, sY)
((tid,|fet|+1),f,inst)−−−−−−−−−−−−→ (ts[tid ←↩ (fet · inst, com, ld)], sY).

Note that the instruction id is the pair (tid, |fet| + 1).

(T-LDE) Let iid be a load that has not yet obtained its value, ld(iid) = ⊥, but
whose address argument has been computed, a := adr(iid) �= ⊥. Let iid′ be the
last instruction fetched before iid that is a store to this address, adr(iid′) = a.
Assume the value of the store has been computed, val(iid′) �= ⊥, and iid′ has
not yet been committed, iid′ /∈ com. Assume that all (i)syncs fetched before iid

54 P. A. Abdulla et al.

have been committed and all syncs fetched before iid have been acknowledged.
Formally, assume that for all i′ ∈ [i−1] the following holds. If fet(i′) is an (i)sync
then i′ ∈ com, and if fet(i′) is a sync then ack(tid, i′) = �. We now obtain the
early-read transition

(ts, sY)
(iid,l,iid′)−−−−−−→ (ts[tid ←↩ (fet, com, ld[iid ←↩ iid′])], sY).

(T-LD) Let iid be a load that has not yet obtained its value but whose address

argument has been computed to be a. Let iid′ = p(tid, a) be the last store
to address a that has been propagated to thread tid. Moreover, assume that
all previous (i)syncs have been committed and all previous syncs have been
acknowledged. The load transition is

(ts, sY)
(iid,l,iid′)−−−−−−→ (ts[tid ←↩ (fet, com, ld[iid ←↩ iid′])], sY).

(T-C) Assume iid has not yet been committed, iid /∈ com, and that it is not
a store. Assume all dependencies have been committed, adep(iid) ∪ ddep(iid) ∪
cdep(iid) ⊆ com, and the address and value arguments have been computed,
a := adr(iid) �= ⊥ and v := val(iid) �= ⊥. If there is an address argument, a �= �,
assume all previous instructions with address arguments have been committed,
{i′ ∈ [i − 1] | adr(tid, i′) ∈ {a,⊥}} ⊆ com. In case iid is a conditional, assume
it is satisfied, v �= 0. In case iid is a load, assume it has obtained its value,
ld(iid) �= ⊥. In case iid is a load or (lw/i)sync, assume all previous (lw/i)syncs
have been committed, and all previous syncs have been acknowledged. In case
iid is an (lw)sync, assume all previous iid′ with address arguments have been
committed, adr(iid′) �= � implies iid′ ∈ com. In case iid is an isync, assume all
previous instructions with address arguments have obtained their addresses. The
transition is

(ts, sY)
(iid,c)−−−−→ (ts[tid ←↩ (fet, com ∪ {iid}, ld)], sY).

If iid is an (lw)sync, the transition is immediately followed by a (T-PSY) tran-
sition propagating the (lw)sync to thread tid.

(T-CST) Assume all preconditions from the previous rule hold but iid is a
store. Choose a coherence key k ∈ Q such that there is no iid′ with co(iid′) = k.
Then

(ts, sY)
(iid,c,k)−−−−−→ (ts[tid ←↩ (fet, com ∪ {iid}, ld)], s′

Y)

with s′
Y := (co′, p, gast, gasy′). We add the coherence key with co′ := co[iid ←↩

k] and record the group-A (lw)syncs with gasy′ := gasy[iid ←↩ {iid′ |
gast(iid′, tid) �= ⊥}]. The transition is immediately followed by a transition (T-
PST) propagating the store to the thread tid where it was committed.

(T-PST) To propagate a store iid that has been committed, let a := adr(iid)
be its address. Assume the last store to this address that has been propagated
to thread tid′ is older than iid, co(p(tid′, a)) < co(iid). Assume all group-A

On the State Reachability Problem for Concurrent Programs Under Power 55

(lw)syncs of iid have been propagated to tid′. Formally, gast(iid′, tid′) �= ⊥ for
all iid′ ∈ gasy(iid). Then

(ts, sY)
(iid,p,tid′)−−−−−−→ (ts, (co, p[(tid′, a) ←↩ iid], gast, gasy)).

(T-PSY) Let iid be an (lw)sync committed by thread tid and let tid′ be a
thread to which iid has not yet been propagated, gast(iid, tid′) = ⊥. If tid = tid′,
we have to capture the group-A stores of iid and there are no further precon-
ditions. Otherwise, assume the stores currently propagated to tid′ are more
recent than the group-A stores of iid. Formally, co(wa) ≤ co(p(tid′, a)) for all
wa = gast(iid, tid, a). Then

(ts, sY)
(iid,p,tid′)−−−−−−→ (ts, (co, p, gast′, gasy))

with gast′ := gast[(iid, tid′) ←↩ p(tid′)].
Action σ is enabled in state sZ , if sZ

σ−→ s′
Z for some s′

Z . Instruction iid is
ready to commit in sZ , if the commit action (iid, c) (for a store also the following
propagate action) is enabled.

Final States. The set FZ ⊆ SZ consists of all states with coherence order co
and propagate map p so that for all threads with state (fet, com, ld) the following
holds:

(F-CO) Loads and stores agree with the coherence order. Let iid and iid′ be
loads of the same thread from the same address. If iid is fetched earlier, then
it loads a coherence-earlier store, co(ld(iid)) ≤ co(ld(iid′)). Similarly, if iid is an
earlier store of the same thread to the same address, then co(iid) ≤ co(ld(iid′)).

(F-SY) The relation is acyclic that is formed as the union of the coherence order
and the set of pairs (iid, iid′) where iid has been propagated to the thread tid′

before an (lw)sync, and tid′ commits iid′ after that (lw)sync. Formally, there is
no sequence of store instructions iid0 . . . iidk with iid0 = iidk so that for every
j ∈ [k] we have co(iidj−1) ≤ co(iidj) or there is an (lw)sync iid with iidj−1 =
gast(iid, tidj , adr(iidj−1)) and iid ∈ gasy(iidj), with tidj the thread of iidj .

(F-FIN) All instructions are committed, com = [1..|fet|], and every thread tid
is in its final state. More precisely, if the last fetched instruction is (q′, cmd, q), then
q ∈ Ftid. If the thread did not fetch any instructions, then q0tid ∈ Ftid.

A key observation about the Power semantics is that in every state every
action has at most one successor.

Lemma 1. Z(P) is deterministic.

The lemma guarantees that every computation (which is a sequence of actions)
gives rise to a unique sequence of states. Note that the lemma does not imply
(and it is not true in general) that every state has only one successor.

The safety verification problem under Power is to check, given a program
P , whether L(Z(P)) = ∅. Note that, algorithmically, checking this emptiness
amounts to finding a path from the initial to a final state. Under SC, safety

56 P. A. Abdulla et al.

verification is well-understood and PSpace-complete [16]. Due to early-reads,
single-threaded programs running on a Power processor appear to behave as if
they were running under SC. Together, this yields a first observation.

Remark 1. For single-threaded programs, safety verification under Power is
PSpace-complete.

3 Undecidability

We prove that, in general, safety verification under Power is undecidable. The
result came as a surprise to us, given that Power avoids the causality cycles [12]
used in the undecidability proof for RMO [9].

Theorem 1. Programs with at least two threads running under Power are
Turing-complete.

To obtain the result, we show how to mimic a perfect FIFO channel machine
(PCM) by a program consisting of two threads and running under Power. PCMs
are known to be Turing-complete, even with only one channel [11]. A PCM is a
tuple M = (S,C,Σ,Δ, (s0, cs0)), where S is a finite set of states, C is a finite
set of channels, Σ is a finite set of messages, Δ ⊆ S × (C × {?, !} × Σ) × S is
a set of transitions, and (s0, cs0) is an initial configuration. Configurations give
the current state and the current channel content and are taken from S × Σ∗C .
The semantics is defined by the transition relation −→ among configurations, the
smallest relation including

(s1, cs) −→ (s2, cs[c ←↩ cs(c) · m]) if (s1, c!m, s2) ∈ Δ

(s1, cs[c ←↩ m · cs(c)]) −→ (s2, cs) if (s1, c?m, s2) ∈ Δ .

Given a PCM M with one channel, we construct a program P(M) whose
behavior under Power mimics the semantics of the PCM. This program has
two threads: Tmain implements M using send and receive operations, Taux is the
thread implementing the perfect and unbounded FIFO channel.

We implement the channel using two variables x and y initially having the
special value 0 which is not in the set of messages transmitted over the channel.
Assume the value to be sent through the channel is stored in register rdata. We
implement the send operation in Tmain as follows:

q1
r←mem[x]−−−−−→ q2

assume(r=0)−−−−−−−→ q3
mem[x]←rdata−−−−−−−→ q4.

This implementation blocks if sending fails.
Assume the value to be received from the channel must be written to register

rdata. Then we implement the receive operation in Tmain as follows:

q1
rdata←mem[y]−−−−−−−→ q2

assume(rdata �=0)−−−−−−−−−→ q3
mem[y]←0−−−−−−→ q4.

Similarly, the implementation blocks when the operation fails.

On the State Reachability Problem for Concurrent Programs Under Power 57

The auxiliary thread Taux := (Q,CMD, I , q0, Q) copies x into y. The control
states are Q := {q0, . . . , q6}. The instructions I are the following:

q0
rmask←1−−−−−→ q1

r←mem[x]−−−−−→ q2
rmask←rmask∧(r�=0)−−−−−−−−−−−→ q3

mem[x]←0−−−−−−→ q4

q4
r′←mem[y]−−−−−−→ q5

rmask←rmask∧(r′=0)−−−−−−−−−−−→ q6
mem[y]←r∧rmask−−−−−−−−−→ q1 .

Here, we assume a ∧ 1 ≡ a, a ∧ 0 ≡ 0, and comparisons to return 0 (false) and 1
(true).

The idea behind the construction is as follows. The send operation checks
if Taux has already processed the previously sent value (variable x contains 0).
Only in this case the new value is written into x. The receive operation does the
reverse, it reads the value from y, checks that this value is not 0 (i.e. was written
by Taux), and writes 0 to y to signal Taux that a new value can be put there.

The thread Taux executes a loop reading values from x and writing them to
y. The thread uses register rmask for remembering whether reading or writing a
value did previously fail. After reading a value from x it checks that this value
is not 0, i.e. some value was actually sent. If this is not the case, rmask becomes
0. Next, the thread writes 0 to x, thus signalling that a new value can be sent.
After that, the thread checks that y contains 0 (i.e. the previously written value
was received). If not, again rmask is set to 0. Finally, the thread writes either
the value that was read (if rmask = 1) or 0 (if rmask = 0) to y. Accordingly, all
subsequent receive operations will fail if Taux at least once detected that x does
not contain a value to be sent or y contains the previously copied value.

Note that the sequence of values loaded from x will be the same as the
sequence of values written to y, as Power forbids reordering load operations
from and store operations to the same address. This yields a FIFO channel.
Moreover, the loads from and stores to y in Taux can be delayed arbitrary long,
which makes the delay between reading a new value from x and writing it back
to y arbitrary large. This gives unboundedness of the channel. Finally, a value
cannot be sent until it was read by Taux. Similarly, a value cannot be written
back by Taux until the previous value was received by Tmain. This makes the
channel perfect.

Depending on scheduling, the channel implementation may fail. This is
detected and the subsequent receive operations blocked. However, there always is
a schedule in which no operation fails (except when one attempts to receive from
an empty channel). Each send operation is immediately followed by the instruc-
tions q1 . . . q4. Each receive operation is preceded by the instructions q4 . . . q1
followed by actions that propagate the store to y to both threads.

4 Conclusion

In this paper, we have shown that the state reachability problem for programs
running under the POWER memory model is undecidable. This result holds even
for programs with just two threads. This undecidability result was not expected,

58 P. A. Abdulla et al.

given that Power avoids the causality cycles used in the undecidability proof
for RMO [9]. As future work, we intend to identify interesting subclasses of
programs for which the verification problem under the Power memory models is
decidable. Such subclasses can be used as bases for defining scalable and efficient
under-approximation techniques.

References

1. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.N.: Verification of programs under
the release-acquire semantics. In: McKinley, K.S., Fisher, K. (eds.) Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, 22–26 June 2019, Phoenix, AZ, USA, pp. 1117–1132.
ACM (2019)

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
56–74. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 4

3. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 8

4. Alglave, J.: A Shared Memory Poetics. Ph.D. Thesis, University Paris 7 (2010)
5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak

memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37036-6 28

6. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

7. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014)

8. ARM: ARM Architecture Reference Manual, ARMv7-A and ARMv7-R Edition
(2014)

9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL, pp. 7–18. ACM (2010)

10. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 2

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. JACM 30(2),
323–342 (1983)

12. Derevenetc, E., Meyer, R.: Robustness against Power is PSpace-complete. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43951-7 14

13. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: relation analysis for compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 355–365. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25540-4 19

14. IBM: Power ISA, Version 2.07 (2013)

https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-030-25540-4_19

On the State Reachability Problem for Concurrent Programs Under Power 59

15. Intel Corporation: Intel 64 and IA-32 Architectures Software Developers Manual
(2012)

16. Kozen, D.: Lower bounds for natural proof systems. In: FOCS, pp. 254–266. IEEE
(1977)

17. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared
memory. In: Proceedings of the 41th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020. ACM (2020)

18. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

19. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

20. Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: Portability analysis for
weak memory models. PORTHOS: one tool for all models. In: SAS 2017, pp. 299–
320 (2017)

21. Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC with memory
models as modules. In: FMCAD 2018, pp. 1–9 (2018)

22. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM (2011)

23. Tomasco, E., Lam, T.N., Fischer, B., Torre, S.L., Parlato, G.: Embedding weak
memory models within eager sequentialization, October 2016

https://doi.org/10.1007/978-3-642-31424-7_36

On the Encoding and Solving of Partial
Information Games

Yackolley Amoussou-Guenou1,2(B), Souheib Baarir1, Maria Potop-Butucaru1,
Nathalie Sznajder1, Léo Tible3, and Sébastien Tixeuil1

1 LIP6, CNRS, Sorbonne Université, 75005 Paris, France
{yackolley.amoussou-guenou,souheib.baarir,maria.potop-butucaru,

nathalie.sznajder,sebastien.tixeuil}@lip6.fr
2 CEA LIST, 91191 Gif-sur-Yvette, France

3 IBISC, Univ Évry, Université Paris-Saclay, 91025 Evry, France

Abstract. In this paper we address partial information games restricted
to memoryless strategies. Our contribution is threefold. First, we prove
that for partial information games, deciding the existence of memoryless
strategies is NP-complete, even for games with only reachability objec-
tives. The second contribution of this paper is a SAT/SMT-based encod-
ing of a partial information game altogether with the correctness proof of
this encoding. Finally, we apply our methodology to automatically syn-
thesize strategies for oblivious mobile robots. We prove that synthesizing
memoryless strategies is equivalent to providing a distributed protocol
for the robots. Interestingly, our work is the first that combines two-
player games theory and SMT-solvers in the context of mobile robots
with promising results and therefore it is highly valuable for distributed
computing theory where a broad class of open problems are still to be
investigated.

1 Introduction

Two-player games are a widely used and very natural framework for reactive sys-
tems, i.e. that maintain an ongoing interaction with an unknown and/or uncon-
trollable environment. It is intimately linked to model-checking of μ-calculus [18]
and synthesis of reactive programs (see e.g. [9]). In classical two-player zero-sum
games, two players play on a graph. One of the players tries to force the sequence
of visited nodes to belong to a (generally ω-regular) subset of infinite paths,
called the winning condition. Its opponent tries to prevent her to achieve her
goal. When total information is assumed, each player has a perfect knowledge
of the history of the play. In a more realistic model in regards to applications
to automatic synthesis of programs for instance, the protagonist does not have
access to all the information about the game. Indeed, in distributed systems,

This work has been done while Y. Amoussou-Guenou and L. Tible where affiliated
LIP6. This work was supported in part by ANR project SAPPORO, ref. 2019-CE25-
0005-1.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 60–76, 2021.
https://doi.org/10.1007/978-3-030-67087-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_5

On the Encoding and Solving 61

each component may have an internal state that is unknown by other compo-
nents. This requires to consider games of partial information, in which only a
partial information on the play is disclosed to the players. The main question
to solve regarding games in our context is the existence of a winning strategy
for the player modeling the system. This is now well understood. We know that
total information parity games enjoy the memoryless determinacy property [18]
ensuring that in each game, one of the players has a winning strategy, and that
a winning strategy exists if and only if there is a memoryless winning strategy,
i.e. a strategy that depends only on the last visited node of the graph, and not
on a history of the play. However, partial information games do not enjoy this
property since the player may need memory to win the game. On the other hand,
regarding tools implementations, the field of two-player games has not reached
the maturity obtained in model-checkers area. For total information games, to
the notable exception of pgsolver [23] that provides a platform of implemen-
tation for algorithms solving parity games, and Uppaal-TiGa [28] that solves
in a very efficient way timed games (but restricted to reachability conditions),
few implementations are available. SAT-implementations of restricted types of
games have also been proposed [17], as well as a reduction of parity games to
SAT [20]. As for partial information games, even less attempts have been made.
To our knowledge, only alpaga [1] solves partial information games, but the
explicit input format does not allow to solve real-life instances.

Motivated by a problem on swarms of mobile robots, we propose here an
attempt to solve partial information games, when restricted to memoryless
strategies.

Formal Methods for the Study of Networks of Robots. The study of
networks of mobile oblivious robots was pioneered by Suzuki and Yamashita [27].
In their seminal work, robots are considered as points evolving obliviously in a
2D space (that is, robots cannot remember their past actions). Moreover, robots
have no common chirality nor direction, and cannot explicitly communicate with
each other. Moreover, robots are anonymous and execute the same algorithm to
achieve their goal. Nevertheless, they embed visual sensors that enable sensing
other robots positions.

Recently, the original model was extended to robots that move in a discrete
space, modeled as a graph whose nodes represent possible robot locations, and
edges denote the possibility for a robot to move from one location to another.
The main problems that have been considered in the literature in this context
are: gathering [21], where all robots must gather on the same location (not
determined beforehand) and stop moving, perpetual exploration [7,12] where,
robots must visit infinitely often a ring, and exploration with stop [19], in that
case, robots must visit each node of the ring and eventually stops.

Designing correct algorithms for mobile robots evolving on graphs is noto-
riously difficult. The scarcity of information that is available to the robots
yields many possible symmetries, and asynchrony of the robot actions triggers
moves that may be due to obsolete observations. As a matter of fact, published

62 Y. Amoussou-Guenou et al.

protocols for mobile robots on graphs were recently found incorrect, as reported
in model checking attempts to assess them [6,14,15].

In addition to finding bugs in the literature [6], Model-Checking was used to
check formally the correctness of published algorithms [6,13,25]. However, the
current models do not help in designing algorithms, only in assessing whether
a tentative solution satisfies some properties. An approach based on Formal
Proof has been introduced with the Pactole framework [3–5,10,11] using the
Coq Proof assistant. Pactole enabled the certification of both positive [4,11] and
negative results [3,10] for oblivious mobile robots. The framework is modular
enough that it permits to handle discrete spaces [5]. The methodology enabled
by Pactole forces the algorithm designer to write the algorithm along with its
correctness proof, but still does not help her in the design process (aside from
providing a binary assessment for the correctness of the provided proof).

By contrast, Automatic synthesis is a tempting option for relieving the mobile
robot protocol designer. Indeed, Automatic synthesis aims to automatically pro-
duce algorithms that are correct by design, or, when no protocol can be syn-
thesized, it inherently gives an impossibility proof. Automatic program synthesis
for the problem of perpetual exclusive exploration in a discrete ring is due to
Bonnet et al. [8] (the approach is however restricted to the class of protocols that
are unambiguous, where a single robot may move at any time). The approach
was refined by Millet et al. [22] for the problem of gathering in a discrete ring
network using synchronous semantics (robots actions are synchronized).

Contributions. In the current paper, we propose a SAT-based encoding of
two-player partial information games, when restricted to memoryless strategies.
We also prove that this problem is NP-complete. Then we apply this result to
automatic synthesis of mobile robot protocols. We significantly extend the work
of Millet et al. [22] since we define and prove correct a general framework for
automatic synthesis of mobile robot protocols, for any target problem, using the
most general asynchronous semantics (i.e. no synchronization is assumed about
robots actions). Our framework makes use of the results presented in the first
part, since we need to look for memoryless strategies in a partial information
game.

2 Preliminaries

We recall here few notations on 2-player game with partial information. A game
on an arena is played by moving a token along a labeled transition system (the
arena). Following previous work [16], the game is presented as follows. When the
token is positioned on a state s of the arena, the player called the protagonist
can chose the label a of one of its outgoing transitions. Then the opponent
moves the token on a state s′ such that (s, a, s′) is a transition of the arena. The
game continues in a turn-based fashion for infinitely many rounds. The winner is
determined according to the winning condition, which depends on the sequence
of states visited. In a game with partial information, the protagonist is not able

On the Encoding and Solving 63

to precisely observe the play to make a decision on where to move the token next.
This is formalized by the notion of observation, which is a partition of the states
of the arena in observation sets. Hence, the decision of the player is made solely
according to the sequence of observations visited, and not the precise sequence
of vertices.

Arena with Partial Information. A game arena with partial information A =
(S,Σ, δ, s0,Obs) is a graph where S is a finite set of states, Σ is a finite alphabet
labeling the edges, and δ ⊆ S × Σ × S is a finite set of labeled transitions,
and s0 is the initial state. The arena is total in the sense that, for any s ∈ S,
a ∈ Σ, there exists s′ ∈ S such that (s, a, s′) ∈ δ. The set Obs is a partition
of S in observations visible to the protagonist. For s ∈ S, we let o(s) ∈ Obs
be the corresponding observation. We extend o to the sequence of states in the
natural way. An arena can be finite or infinite. In this work, we only consider
finite arenas.

Plays. A play π on the arena A = (S,Σ, δ, s0,Obs) is an infinite sequence π =
s0s1 · · · ∈ Sω such that for all i ≥ 0, there exists ai ∈ Σ such that (si, ai, si+1) ∈
δ. The history of a play π is a finite prefix of π, noted π[i] = s0s1 . . . si, for i ≥ 0.

Strategies, Consistent Plays. A strategy for a player is a function that determines
the action to take according to what has been played. Formally, a strategy σ for
the protagonist is given by σ : S+ → Σ. As we explained, in an arena with partial
information, the protagonist does not have a full knowledge of the current play.
This is formalized by the notion of observation-based strategy. A strategy σ is
observation-based if, for all π, π′ ∈ S+ such that o(π) = o(π′), σ(π) = σ(π′). A
strategy for the opponent is given by τ : S+ × Σ → S. Given two strategies for
the players, σ and τ , we say that a play π = s0s1 · · · ∈ Sω is (σ, τ)-compatible
if for all i ≥ 0, τ(π[i], σ(π[i])) = si+1, where π[i] = s0 · · · si. We say that it is
σ-compatible if there exists a strategy τ for the opponent such that π is (σ, τ)-
compatible.

When σ depends only of the last visited state, σ is said to be a memoryless
strategy. In that case, we may define σ simply as σ : S → Σ. We highlight the
fact that σ is a total function.

Winning Condition, Winning Strategy. A winning condition on an arena A =
(S,Σ, δ, s0,Obs) is a set φ ⊆ Sω. An observation-based strategy σ is winning for
the protagonist in the game G = (S,Σ, δ, s0,Obs, φ) if any σ-compatible play
π ⊆ φ (such a play is called a winning play). Observe that we do not require the
strategy of the opponent to be observation-based.

When the observation set is the finest partition possible, i.e., for all s, s′ ∈ S,
if o(s) = o(s′), then s = s′, the game is of total information, and any strategy
for the protagonist is observation-based.

We are interested in the following classical winning conditions:

– Reachability Given a subset F ⊆ S of target states, the reachability win-
ning condition is defined by REACH(F) = {π = s0s1 · · · ∈ Sω | si ∈

64 Y. Amoussou-Guenou et al.

F for some i ≥ 0}. The winning plays are then the plays where one target set
has been reached.

– Büchi Given a subset F ⊆ S of target states, the Büchi winning condition is
given by BUCHI(F) = {π = s0s1 · · · ∈ Sω | Inf(π) ∩ F �= ∅}. The winning
plays are then those where at least one target state has been visited infinitely
often.

– co-Büchi Given a subset F ⊆ S of target states, the co-Büchi winning condi-
tion is given by coBUCHI(F) = {π = s0s1 · · · ∈ Sω | Inf(π) ∩ F = ∅}. The
winning plays are then those where no target state has been visited infinitely
often.

– Parity The parity winning condition requires the use of a coloring function
d : S → [0, n] where [0, n] is a set of colors. The parity winning condition is
given by Parity(d) = {π | min{d(s) | s ∈ inf(π)} is even}. The winning plays
are then those where the minimal color occurring infinitely often is even.

Observe that Büchi and co-Büchi winning conditions are special cases of
parity winning conditions, and that a reachability game can be transformed into
a Büchi (or a co-Büchi) game, hence into a parity game. Hence to establish
general results on games it is enough to consider only parity games.

The following result is a well-known result, called the memoryless determi-
nacy of parity games of total information.

Theorem 1 ([18]). In any parity game of total information, either the protago-
nist or the opponent has a winning strategy. Moreover, any player has a winning
strategy if and only if it has a memoryless winning strategy.

This important result shows that it is then sufficient to consider only mem-
oryless strategies to solve parity games.

However this does not hold true anymore when we consider the more general
case of partial information games. The following result is also well-known [16].

Theorem 2. There exist parity games of incomplete information where there
exists a winning strategy for the protagonist, but no memoryless winning strategy.

Parity games of partial information are then more difficult to solve, since
their resolution implies a modification of the arena using a subset construction,
hence an exponential blow-up [24].

From now on we explore resolution of games of partial information when one
is only interested in memoryless strategies.

3 Resolution of Partial Information Games,
with Memoryless Strategies

3.1 Complexity Results

In this subsection, we establish NP-completeness of the problem. In fact, we
show that even for the simple case of reachability games, the problem is already
NP-hard. Due to space limitations, the detailed proof of the following theorem
can be found in [2].

On the Encoding and Solving 65

Theorem 3. Deciding the existence of a memoryless strategy for partial obser-
vation game with reachability objective is NP-complete.

Proof (Sketch). We show NP-hardness by a reduction from 3-SAT. Let ϕ =∧
1≤i≤k ci be a 3-SAT formula in conjunctive normal form over a set X of vari-

ables.
We define a reachability game Gϕ = (S,Σ, δ, s0,Obs, φ). The set of states

of the arena will include a state for each clause, and a state for each variable
and negation of variable. Formally, S = {s0} ∪ {sci | 1 ≤ i ≤ k} ∪ {sx, s¬x |
x ∈ X}∪{s�, s⊥}. The game is supposed to go as follows. The opponent selects
a clause that the protagonist must show valued to 1. To do so, the protag-
onist goes to a state s� with
 a literal (x or ¬x) appearing in the selected
clause, which is supposed to be true. According to its actual valuation, the
game goes to the winning state s� or to the losing state s⊥. We assume that
for all 1 ≤ i ≤ k, ci =
i,1 ∨
i,2 ∨
i,3, with
i,j ∈ {x,¬x | x ∈ X}. We
define Σ = {0, 1, 2, 3} and δ = {(s0, 0, sci) | 1 ≤ i ≤ k} ∪ {(sci , j, s�i,j) |
1 ≤ j ≤ 3} ∪ {(sx, 1, s�), (sx, 0, s⊥), (s¬x, 0, s⊥), (s¬x, 1, s�) | x ∈ X} ∪
{(s�, 0, s�), (s⊥, 0, s⊥)}. Observe that non-determinism, hence choice of the
opponent, appears only in the transitions from the initial state s0. The opponent
only choses the clause to prove to be true. The rest of the game is totally deter-
mined by the strategy of the protagonist. Finally, we define the observations.
Each state has its own observation class, except for the literals: for all x ∈ X,
o(sx) = o(s¬x) = {sx, s¬x}. For all state s ∈ X \ {sx, s¬x | x ∈ X}, o(s) = {s}.
The objective of the game is φ = REACH({s�}). Then the formula ϕ is sat-
isfiable if and only if there is a memoryless observation-based strategy for the
game Gϕ.

The upper bound follows from the fact that once a memoryless strategy has
been guessed, one can check its correctness by nspecting the arena reduced to the
only transitions chosen by the strategy in polynomial time (by checking absence
of a loosing cycle).

The problem is then NP-complete. �
Since any reachability game can be reduced to a parity game, the following

result can be obtained.

Corollary 4. Deciding the existence of a memoryless strategy for partial obser-
vation game with parity objective is NP-complete.

Proof. NP-hardness of reachability games allows to conclude the NP-hardness
of parity games. The upper bound relies on algorithmic on graphs: in the graph
restricted to the edges allowed by the strategy that have been guessed, one needs
to detect for each node if it belongs to a cycle with odd minimal parity. Then
one must determine if one of these nodes is accessible from the initial state. This
can be computed in polynomial time. �

3.2 Encoding a Partial Information Game as a SAT Problem

In this section, we show how to encode G = (S,Σ, δ, s0,Obs, φ) a partial infor-
mation game in a propositional logic formula. Here, the winning condition φ can

66 Y. Amoussou-Guenou et al.

be either a reachability, a Büchi or a co-Büchi condition for a target set of states
F ⊆ S. We give the proof for reachability games, but slight modifications of the
constraint (4) allow to handle Büchi and co-Büchi conditions.

We encode the arena of the game by attributing a variable to each transition.
Let X = {〈s1, a, s2〉 | (s1, a, s2) ∈ δ} be the corresponding set of variables. Val-
uation of a variable to 1 will mean that the corresponding transition is selected
by the strategy.

Now we need to express the different constraints that characterize a strat-
egy. First, the strategy chooses a label of a transition, not the estination state.
Moreover, the decision of a player is made only according to observation, and
cannot depend specifically on one state.

∧

〈s1,a,s2〉,〈s′
1,a,s′

2〉∈X
s.t. o(s1)= o(s′

1)

(〈s1, a, s2〉 ←→ 〈s′
1, a, s′

2〉) (1)

Then, at each state, the strategy will choose a unique action:

∧

〈s1,a,s2〉∈X

((
〈s1, a, s2〉 −→

∧

〈s1,b,s′
2〉∈X ,

b∈Σ\{a}

¬〈s1, b, s′
2〉

)
∧

(
¬〈s1, a, s2〉 −→

∨

〈s1,b,s′
2〉∈X ,

b∈Σ\{a}

〈s1, b, s′
2〉

)) (2)

A valuation of these variables satisfying these constraints would hence describe
a memoryless observation-based strategy. Now we add constraints to check that
this strategy is winning.

To do so, we need to check that any play compatible with this strategy
is winning. We then add boolean variables that will encode prefixes of plays
compatible with the strategy, i.e. paths in the graph of the arena, when restricted
to edges selected by the strategy. In the following we refer to this graph as the
restricted arena.

– P = {〈s, s′〉 | (s, s′) ∈ S2}. A variable 〈s, s′〉 ∈ P encodes the existence of a
path starting at s and ending with s′.

– W = {〈s, s′〉 | (s, s′) ∈ S2}. A variable 〈s, s′〉 ∈ W encode the fact that all
paths starting at s and ending with s′ visit a state from F (different from s).

Thus, the constraints characterizing valid prefixes are:

i)
∧

〈s1,a,s2〉∈X ,〈s1,s2〉∈P(〈s1, a, s2〉 −→ 〈s1, s2〉). If the strategy allows a transi-
tion (s1, a, s2) ∈ δ, then 〈s1, s2〉 is a path in the restricted arena.

ii)
∧

〈s1,s2〉∈P,〈s2,a,s3〉∈X ((〈s1, s2〉 ∧ 〈s2, a, s3〉) −→ 〈s1, s3〉). A prefix 〈s1, s2〉 is
extended to 〈s1, s3〉 if the strategy allows the transition (s2, a, s3) ∈ δ.

On the Encoding and Solving 67

iii)
∧

〈s1,a,s2〉∈X ,s2 /∈F (〈s1, a, s2〉 −→ ¬〈s1, s2〉). If the strategy allows a transition
(s1, a, s2) ∈ δ where s2 is not a target state then there is a path from s1 to
s2 that does not visit any state from F .

iv)
∧

〈s1,s2〉∈W,s2 /∈F
(〈s1, s2〉 −→

∧
〈s3,b,s2〉∈X ,〈s1,s3〉∈W,s3
=s2

(¬〈s3, b, s2〉 ∨ 〈s1, s3〉)). If all the paths from s1
to s2 visit a state from F (different from s1, while s2 is not a target state,
then it means that for every predecessor s3 of s2, all paths from s1 to s3
already visit a state from F .

The formula resulting of the conjunction of the previous constraints is
noted (3).

It remains to show that the strategy is indeed winning, i.e., in the arena
restricted to transitions allowed by the strategy, all the plays are winning. If this
is not the case, then there exists a (infinite) play that never visits any set of F .
Since the arena is finite, such a play necessarily contains a loop that does not
visit a target state. The constraint expressing that the strategy is not winning is
then: 〈s0, s〉∧¬〈s0, s〉∧〈s, s〉∧¬〈s, s〉. So, to express that the strategy is winning,
we just have to negate this formula and quantify over all variables of P and W.
We obtain:

∧

〈s0,s〉,〈s,s〉∈P,

〈s0,s〉,〈s,s〉∈W

(¬〈s0, s〉 ∨ 〈s0, s〉 ∨ ¬〈s, s〉 ∨ 〈s, s〉) (4)

The final formula encoding existence of a winning strategy is then the con-
junction of all previous formulae:

ψG = (1) ∧ (2) ∧ (3) ∧ (4) (5)

The detailed proof of the following theorem can be found in [2].

Theorem 5. G = (S,Σ, δ, s0,Obs,REACH(F)) admits a memoryless winning
strategy if and only if ψG is satisfiable.

Proof (Sketch). Given a strategy σ on G, we define Aσ = (S,Σ, δσ, s0,Obs),
where δσ = {(s, a, s′) ∈ δ | σ(s) = a} as the game arena restricted to the
transitions allowed by the strategy σ.

Assume first that G admits a winning memoryless and observation-based
strategy σ : S → Σ. Then ψG is satisfied by the valuation νσ : (X ∪ P ∪ W) →
{0, 1}, defined as follows:

– for all 〈s, a, s′〉 ∈ X , νσ(〈s, a, s′〉) =

{
1 ifσ(s) = a.

0 otherwise.

– for all 〈s, s′〉∈P, νσ(〈s, s′〉)=

{
1 if there is play of Aσ with a prefix s . . . s′.
0 otherwise.

68 Y. Amoussou-Guenou et al.

– for all 〈s, s′〉∈W, νσ(〈s, s′〉)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if there is play of Aσ with a prefix s . . . s′

and all prefixes starting at s and ending

with s′ visit a state from F different from s.

0 otherwise.

It is then straightforward to check that νσ(ψG) = 1.
Assume now that ψG is satisfiable and let ν : X ∪ P ∪ W → {0, 1} such that

ν(ψG) = 1. We build a strategy σν : S → Σ as follows. For s ∈ S, let a ∈ Σ
and s′ ∈ S such that ν(〈s, a, s′〉) = 1 then σν(s) = a. Condition (2) ensures
that σν is well-defined. Moreover, if s1, s

′
1 ∈ S are such that o(s1) = o(s′

1), then
condition (1) ensures that, for all a ∈ Σ, ν(〈s1, a, s2〉) = ν(〈s′

1, a, s′
2〉). Hence

σν(s1) = σν(s′
1) and σν is observation-based.

To prove that σν is winning, we rely on the following observation: in a game
G = (S,Σ, δ, s0,Obs,REACH(F)), if a strategy σ is not winning, then there
exists a σ-compatible play s0 · · · s · πω, with π = s1 · · · sk for some k ∈ N, and
that play never visits a state from F . We can then prove that it is impossible to
have such a play in Aσ. �

4 Application: Automatic Synthesis of Strategies
for Swarms of Autonomous Oblivious Robots

In this section, we consider applying our methodology to formally study dis-
tributed algorithms that are designed for sets of mobile oblivious robots. Robots
are mobile entities that evolve in a discrete space (here, a ring), When two robots
are positioned on the same node, they form a tower. In this model, robots cannot
remember their past actions (they are oblivious), have no common chirality nor
direction, and cannot explicitly communicate with one another. However, they
can sense their entire environment (using visual sensors). Moreover, robots are
anonymous and execute the same deterministic algorithm to achieve their goal.

Each robot evolves following an internal cycle: it takes a snapshot of the ring,
computes its next move, and then executes the movement it has computed. Sev-
eral semantics for swarms of robots have been studied. In the fully synchronous
semantics (FSYNC), all the robots evolve at the same time, completing an inter-
nal cycle simultaneously. In the semi-synchronous semantics (SSYNC), in each
round, only a non-empty subset of the robots fulfills a complete cycle. Finally, in
the asynchronous semantics (ASYNC), each robot completes its internal cycle
at its own pace. The later semantics are considered the harder to design robot
algorithms, since a robot may move based on obsolete observations.

In this section, we extend the work done by Millet et al. [22], where auto-
matic synthesis of protocols of gathering in FSYNC and SSYNC semantics was
considered. In the current paper, we first provide a general framework for auto-
matic synthesis of mobile robot protocols, for any target problem, using the most
general ASYNC semantics. Then, we use our propositional logic-based encoding
to effectively solve the problem.

On the Encoding and Solving 69

r5

r1, r2

r4

r3

(a) A configu-
ration c with a
tower

r1

r2
r3

(b) A disori-
ented robot in
configuration
c

Fig. 1. Configurations of robots on a ring

4.1 Model for the Robots

We partly use notations defined in [26]. We consider a fixed number of k > 0
robots evolving on a ring of fixed size n ≥ k. We denote by R the set of considered
robots. Positions on the ring of size n are numbered {0, . . . , n − 1}.

Configurations and Robots Views. A configuration is a vector c ∈ [0, n−1]k

that gives the position of each robot on the ring at a given instance of time.
We assume that positions are numbered in the clockwise direction. The set of
all configurations is called Cn,k, or simply C when n and k are clear from the
context.

Decisions made by a robot are based on the snapshot it takes of the environ-
ment, called the view of that robot. We model it by the sequence of distances
between neighboring robots on the ring, a distance of 0 means that the two con-
secutive robots share the same position on the ring. Formally, a view is then a
tuple V = 〈d1, . . . , dk〉 such that Σn

i=0di = n. The set of all the views on a ring of
size n with k robots is noted V. Notice that two robots sharing the same position
should have the same view. This might be problematic with our definition since
when two robots share the same node, their distance is equal to 0, and this 0 is
not at the same position in the tuple according to the concerned robot in the
tower. To ensure this, we assume that the first distance in the tuple is always
strictly greater than 0 (which is always possible by putting the first 0’s at the
end instead). In Fig. 1a is shown a configuration defined by c(r1) = c(r2) = 0,
c(r3) = 3, c(r4) = 7 and c(r5) = 8. When looking in the clockwise direction, the
view of robots r1 and r2 is given by the tuple V = 〈3, 4, 1, 2, 0〉, and the view
of robot r3 is given by V′ = 〈4, 1, 2, 0, 3〉. Formally, for a view V = 〈d1, . . . , dk〉
giving the view of a robot starting in one direction, we write its view in the
opposite direction

←−
V = 〈dj , . . . , d1, dk, . . . , dj−1〉, where 1 ≤ j ≤ k is the great-

est index such that dj �= 0. In our example, it means that
←−
V = 〈2, 1, 4, 3, 0〉 and←−

V′ = 〈3, 0, 2, 1, 4〉.

70 Y. Amoussou-Guenou et al.

Given a configuration c ∈ C and a robot i ∈ R, the view of robot i when
looking in the clockwise direction, is given by Vc[i →] = 〈di(i1), di(i2) −
di(i1), . . . , n − di(ik−1)〉, where, for all j �= i, di(j) ∈ [1, n] is such that
(c(i)+di(j)) mod n = c(j) and i1, . . . , ik are indexes pairwise distinct such that
0 < di(i1) ≤ di(i2) ≤ · · · ≤ di(ik−1). When robot i looks in the opposite direc-
tion, its view according to the configuration c is Vc[← i] =

←−−−−−
Vc[i →]. Hence, in

the configuration c pictured in Fig. 1a, Vc[r1 →] = 〈3, 4, 1, 2, 0〉 and Vc[← r1] =
〈2, 1, 4, 3, 0〉. Observe that in Fig. 1b, Vc′ [r1 →] = Vc′ [← r1] = 〈3, 1, 3〉. Robot r1
is then said to be disoriented, since it has no way to distinguish one direction from
the other. For a configuration c, we let Views(c) =

⋃
i∈R{Vc[i →],Vc[← i]}

be the set of views of all the robots in this configuration.
Since robots are anonymous, given a configuration c, the set of decisions taken

by the robots based on their view in this configuration is invariant with respect
to permutation of the robots or to any rotation of the ring. Since they have no
chirality, a robot i ∈ R takes a decision solely based on 〈Vc[i →],Vc[← i]〉, hence
the same decision is reached for any configuration symmetric to c. Regarding
decision taking, any two configurations that are obtained through symmetry or
any rotation of the ring are equivalent. The notion of views captures handily
this notion and we define the equivalence relation on configurations as follows.

Definition 6 (Equivalence Relation on Configurations). Two configura-
tions c and c′ ∈ C are equivalent if and only if Views(c) = Views(c′). We write
then c ≡ c′. The equivalence class of c with respect to ≡ is simply written [c].

We now make some observations on the relations between configurations and
views of the robots.

Let V ∈ V. We note Config(V) = {c ∈ C | V ∈ Views(c)}.

Lemma 7. Let V ∈ V, and c, c′ ∈ Config(V). Then c ≡ c′.

We distinguish now some set of configurations that are useful in the remaining
of the paper. Let CT = [c] where c(i) = 0 for all i ∈ R be the set of all the
configurations where all the robots are gathered on the same position. For i ∈ R
and j ∈ [0, n − 1], let Cj

i = {c ∈ C | c(i) = j)} be the set of configurations where
the robot i is on the position j of the ring, and we let Cj =

⋃
i∈R Cj

i be the set
of configurations where there is one robot on position j of the ring.

Protocols for the Robots. We are interested in modeling distributed proto-
cols that govern the movements of the robots in a ring in order to achieve some
predefined goal. Such protocols control each robot according to its local view.
Robots being anonymous imply that two robots having the same view of the
ring execute the same order. Having no common chirality implies that the pro-
tocol does not discriminate between the clockwise and the anti-clockwise view,
hence gives symmetric move orders to robots in symmetric positions, and cannot
decide where to move when the robot is disoriented, i.e. when both views are
identical.

On the Encoding and Solving 71

We denote by Δ = {−1, 0, 1, ?} the set of possible decisions given by the
protocol, where 0 means that the robot will not move, −1 means an anticlockwise
movement, 1 a clockwise movement and ? means that the robot moves but is
disoriented, hence it has no control on the exact direction to take.

We review here some basic notations. For a function f : A → B, we let
dom(f) = A its domain of definition, and for a subset C ⊆ A, we let f|C : C → B
the restriction of f on C, defined by f|C(c) = f(c) for all c ∈ C. We can now
define the notion of decision function.

Definition 8. Let D : V → Δ be a (partially defined) function. We say that D is
a decision function if, for all V ∈ dom(D), (i)

←−
V ∈ dom(V), (ii) if V =

←−
V, then

D(V) ∈ {0, ?}, (iii) otherwise, D(V) ∈ {−1, 0, 1} and D(V) = (−1) · D(
←−
V).

We denote by D the set of all decision functions.

A protocol P for k robots on a ring of size n is simply a total decision
function.

Executions. Recall that each robot behaves according to an internal cycle,
alternating between a phase where it looks at its environment and computes its
next move, and a phase where it actually moves. We model here the asynchronous
semantics, where other robots can execute an unbounded number of actions
between the two aforementioned phases.

Hence, to define the transition relation between two configurations, we need
to enrich the notion of configuration with that of internal state of each robot,
which determines the next action of a robot. The set of all possible internal
states for the robots is S = {−1, 0, 1,L}, where −1 represents a move in the
anti-clockwise direction, 0 not moving, 1 represents a move in the clockwise
direction, and L represents the fact that the robot is ready to take a snapshot
of its environment.

Let s ∈ Sk be the vector of internal states of the robots. An asynchronous
configuration is an element (c, s) ∈ C × Sk. We say that (c, s) →P (c′, s′) if and
only if there exists a robot i ∈ R such that:

– s′(j) = s(j) and c′(j) = c(j) for all j �= i,
– if s(i) = L then c′(i) = c(i) and s′(i) ∈ {−1, 1} if P(Vc[i →]) =?, and s′(i) =
P(Vc[i →]) otherwise. If s(i) �= L then s′(i) = L and c′(i) = (c(i) + s(i))
mod n.

Observe that given two asynchronous configurations (c, s) and (c′, s′), two
protocols P and P′ such that P|Views(c) = P′|Views(c), then (c, s) →P (c′, s′) if
and only if (c, s) →P′ (c′, s′).

Protocols for robots are meant to work starting from any initial configu-
ration, or at least from a subset of possible initial configurations. The only
requirement is that internal states of robots are set to L at the beginning of
the execution. Hence, an initial asynchronous P-run is a (finite or infinite)
sequence ρ = (c0, s0)(c1, s1) . . . such that: (1) s0(i) = L for all robot i ∈ R,

72 Y. Amoussou-Guenou et al.

and (2) for all 0 ≤ k < |ρ|, (ck, sk) →P (ck+1, sk+1). For a robot i ∈ R, we let
Acti(ρ) = |{0 ≤ k < |ρ| | sk(i) �= L and sk+1(i) = L}| be the number of times
this robot has been moved during the execution. A P-run is fair if, for all i ∈ R,
Acti(ρ) = ω.

For a P-run ρ, the projection of ρ on the sequence of configurations is written
πC(ρ).

We can now define the synthesis problem under consideration in this work,
where we are given an objective for the robots, describing the set of desirable
runs.

Definition 9 (Synthesis Problem). Given an objective Ω ⊆ Cω, decide
wether there exists a protocol P such that for all initial fair asynchronous P-run
ρ, πC(ρ) ⊆ Ω.

Objectives. Classical objectives for the robots are gathering, perpetual explo-
ration and exploration with stop. Formally, we call GATHER the synthe-
sis problem where Ω = {c1 · · · ck · cω

k | for some k ≥ 1, ck ∈ CT}, we call
EXPLORATION the synthesis problem where Ω = {π ∈ Cω | Inf(π) ∩ Cj

i �=
∅ for all i ∈ R and j ∈ [0, n − 1]} and EXPLORATION-STOP the synthesis prob-
lem where Ω = {c1 . . . ck · cω

k | ck ∈ CT, and for all j ∈ [0, n − 1], there exists
1 ≤
 ≤ k, c� ∈ Cj}.

4.2 Definition of the Arena

We define now a partial information game Gn,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k, φ)
that captures the asynchronous model for a set R of k robots evolving on a ring
of size n. The protocol of the robots gives, according to the last view of the
robot, the next move to do, taken from the set Δ = {−1, 0, 1, ?}. The states of
the arena are the possible distinct asynchronous configurations, enriched with
a vector of bits b ∈ {0, 1}k that keeps track of the various activated robots to
ensure the fairness of the execution. We write B = {0, 1}k. Moreover, the initial
configuration of the execution is chosen by the opponent. To ensure this, we add
a special initial state, sι, that can access any possible initial configuration.

Hence the set of states Sn,k = (C×Sk ×B)�{ι}. Choosing a transition for the
protocol means choosing a decision function for the possible views of the robots
in a particular configuration c. The labeling of the transitions is hence taken from
Σn,k = D � {ε}, the set of all possible decision functions, along with a dummy
label, ε, used only for the initial state. The protocol we look for is supposed to
achieve the goal starting in any initial configuration. The transitions starting
from the initial state of the arena (which is the special state ι) are all labelled
by the same dummy action, and lead to any initial configuration. Formally,
{(ι, ε, (c, sL, b0)) | c ∈ C} ⊆ δn,k with sL(i) = L for all i ∈ R, b0(i) = 0 for all
i ∈ R.

Now, in any configuration, the protagonist choses the decision function cor-
responding to the decisions of the robots in this particular configuration, and

On the Encoding and Solving 73

the opponent chooses the resulting configuration. The opponent then decides
which robot moves (the role of the scheduler), and, whenever a robot is disori-
ented where it actually moves. Formally, let (c, s, b) ∈ Sn,k be a state of the
arena, and f : Views(c) → Δ be a decision function. Let al.so f : V → Δ be
any protocol such that f |Views(c) = f . Then, ((c, s, b), f, (c′, s′, b′)) ∈ δn,k iff
(c, s) →f (c′, s′) and b′ is defined as follows: let b′′ ∈ B, such that b′′(i) = b(i)
if s(i) = s′(i), i.e. if the robot i has not been scheduled, and

b′′(i) =

{
1 if s(i) �= L and s′(i) = L
b(i) otherwise.

Then, b′ is defined as follows. If b′′(i) = 1 for all i ∈ R, then b′(i) = 0 for all
i ∈ R, otherwise b′ = b′′. Hence, the bit b(i) is turned to 1 every time robot i has
been scheduled to move. Once they all have been scheduled to move once, every
bit is set to 1, and the entire vector is reset to 0. Finally we define the observation
sets. Indeed, when the protocol is defined, it only takes into account the view
of a robot, and it does not depend on the internal states of other robots, nor
on the scheduling. Hence the strategy computed for the protagonist should only
depend on the configuration. Moreover, as we have explained earlier, decisions of
the robots are invariant to permutation of the robots, rotation of the ring or any
symmetry transformation. The strategy then only depends on the equivalence
class of the configuration. Formally we let Obsn,k = {[c] | c ∈ C} and for any
state (c, s, b) ∈ Sn,k, o(c, s, b) = [c].

Given a set R of k robots evolving on a ring of size n, let φ ⊆ Sω
n,k. Then,

An,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k) is the corresponding arena with partial infor-
mation and Gn,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k, φ) is the two-player game with
winning condition φ.

Proposition 10. For GATHER, EXPLORATION or EXPLORATION-STOP,
there exists a protocol for the robots if and only if there exists a memoryless
winning strategy in Gn,k, with suitable winning condition (more precisely a com-
bination of reachability, Büchi and co-Büchi condition).

Definition 11. Let An,k be an arena as described above, and P a protocol for
the robots. A play s0(c0, s0, b0)(c1, s1, b1) . . . in An,k is equivalent to the initial
asynchronous run (c0, s0)(c1, s1)

Moreover, observe that for any initial run (c0, s0)(c1, s1) . . . , there exists
a unique play s0(c0, s0, b0)(c1, s1, b1) . . . in Gn,k that is equivalent, since the
sequence of bi is entirely determined by the sequence of ci and si. In the following,
we have two lemmas which prove the equivalence.

Lemma 12. Let σ : Sn,k → Σn,k be an observation-based memoryless strategy
on Gn,k. Then there exists a protocol Pσ : V → Δ such that any σ-compatible
play is equivalent to an initial P-run, and any initial P-run is equivalent to a
σ-compatible play.

74 Y. Amoussou-Guenou et al.

Lemma 13. Let P : V → Δ be a protocol for k robots on a ring of size n.
Then there exists an observation-based memoryless strategy σ : Sn,k → Σn,k

such that any initial P-run is equivalent to a σ-compatible play of Gn,k and any
σ-compatible play is equivalent to an initial P-run.

To conclude on the equivalence between solving the game for the robots
and the synthesis problem defined in Sect. 4.1, it remains to state the following
lemma.

Lemma 14. Given ρ a run and π an equivalent play in the game, ρ is fair if
and only if Inf(π) ∩ {(c, s, b) | b(i) = 0 for all i ∈ R} �= ∅.
Proof (Proof of Proposition 10). In order to solve GATHER, we need to slightly
modify the arena of Gn,k. Indeed, if the objective of the gathering resembles a
reachability objective, it is also required that once robots are gathered, they do
not leave their positions anymore, while in a reachability game, the play is won
as soon as the objective is attained no matter what happens afterwards. In order
to circumvent this problem, we modify Gn,k as follows. For all (c, s,b) ∈ Sn,k

such that c ∈ CT, for all (c′, s′,b′) ∈ Sn,k, ((c, s,b), f, (c′, s′,b′)) ∈ δ if and only
if f(V) = 0 for all V ∈ Views(c). The rest of the arena remains unchanged.
We call this new game G ′

n,k. Hence, this modification restricts the possibilities
to decision functions that detect that a configuration where all the robots are
gathered is reached, and commands not to move anymore. This does not change
anything for Lemma 12, and it is easy to see that Lemma 13 could be adapted
to the special protocols that command not to move while all the robots are
gathered. We then let T = {(c, s, b) | c ∈ CT and s(i) ∈ {L, 0} for all i ∈ R}. In
the modified arena, any play π = s0 · (c0, s0,b0)(c1, s1,b1) · · · ∈ REACH(T)
is such that there exists k ≥ 0, such that for all
 ≥ k, (c�, s�,b�) ∈ T .
Indeed, let k ≥ 0, such that (ck, sk,bk) ∈ F . Since we consider the mod-
ified arena, ((ck, sk,bk), f, (ck+1, sk+1,bk+1)) ∈ δ implies that f(V) = 0
for all V ∈ Views(ck). Hence, by definition, there exists i ∈ R such that
sk(i) �= sk+1(i). If sk(i) = L then sk+1 = 0 by definition of f and ck+1 = ck;
if sk(i) = 0 then ck+1 = ck and sk+1 = L. Then, (ck+1, sk+1,bk+1) ∈ T . We
also need to consider unfair executions that should not be considered as loosing
if they fail to reach T . Let F = {(c, s,b) | b(i) = 0 for all i ∈ R}, the set of
configurations where the vector b has been reset to 0.

�
With the general parity condition, one can also use Gn,k (with slight suitable

modifications) in order to solve EXPLORATION and EXPLORATION-STOP.

5 Conclusion

We studied the implementation of partial information zero-sum games with
memoryless strategies. We proved that this problem is NP-complete and pro-
vided its SAT-based encoding. Furthermore, we used this framework to offer a

On the Encoding and Solving 75

solution to automatic synthesis of protocols for autonomous networks of mobile
robots in the most generic settings (i.e. asynchronous). This encoding is then a
generalization of the work presented in [22], where the encoding allowed only for
the gathering problem in synchronous or semi-synchronous semantics.

This generalization is at the cost of an increasing of the size of the arena,
as well as lifting the problem to parity games with partial information, hence
making the problem more complex to solve, as we have seen earlier (NP-complete
instead of linear time in the case of reachability games of total information
studied in [22]). Results of Sect. 3.2 would allow us to solve this problem using
a SAT-solver. Future work includes encoding this arena using a SMT-solver to
effectively provide an implementation of the problem.

References

1. http://lit2.ulb.ac.be/alpaga/usermanual.html
2. Amoussou-Guenou, Y., Baarir, S., Potop-Butucaru, M., Sznajder, N., Tible, L.,

Tixeuil, S.: On the encoding and solving partial information games. Research
report, LIP6, Sorbonne Université, CNRS, UMR 7606; LINCS; CEA Paris Saclay;
Sorbonne Université (2018)

3. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibil-
ity results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS’13. LNCS, vol. 8255,
pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-
0 13

4. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gath-
ering without multiplicity detection: a certified algorithm. In: Bonakdarpour, B.,
Petit, F. (eds.) SSS’2016. Lecture Notes in Computer Science, vol. 10083, pp. 7–19.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 2

5. Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for cer-
tified impossibility results with mobile robots on graphs. Proc. ICDCN’18 5, 1–10
(2018). https://doi.org/10.1145/3154273.3154321

6. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016)

7. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) Dis-
tributed Computing DISC 2010. Lecture Notes in Computer Science, vol. 6343,
pp. 312–327. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15763-9 29

8. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In: SRDS Workshops
2014, pp. 50–59. IEEE Computer Society Press (2014)

9. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969)

10. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115(3), 447–452 (2015)

http://lit2.ulb.ac.be/alpaga/usermanual.html
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1145/3154273.3154321
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29

76 Y. Amoussou-Guenou et al.

11. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. Lecture
Notes in Computer Science, vol. 9888, pp. 187–200. Springer, Berlin, Heidelberg
(2016)

12. D’Angelo, G., Stefano, G.D., Navarra, A., Nisse, N., Suchan, K.: A unified approach
for different tasks on rings in robot-based computing systems. In: Proceedings of
IPDPSW’13, pp. 667–676. IEEE Press (2013)

13. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. Lecture Notes in Computer Science, vol. 7596, pp. 64–76. Springer, Berlin,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-5 7

14. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. Lecture Notes in Computer Science, vol. 10189, pp. 201–219.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-57708-1 12

15. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Pro-
ceedings of OPODIS17, LIPIcs (2017)

16. Doyen, L., Raskin, J.-F.: Games with Imperfect Information: Theory and Algo-
rithms, pp. 185–212. Cambridge University Press, Cambridge (2011)

17. Eén, N., Legg, A., Narodytska, N., Ryzhyk, L.: Sat-based strategy extraction in
reachability games. In: Proceedings of AAAI’, pp. 3738–3745. AAAI press (2015)

18. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of FOCS’91, SFCS’91, pp. 368–377. IEEE Computer Society Press, Wash-
ington, DC, USA (1991)

19. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

20. Heljanko, K., Keinänen, M., Lange, M., Niemelä, I.: Solving parity games by a
reduction to SAT. J. Comput. System Sci. 78(2), 430–440 (2012)

21. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in
the Ring. Synthesis Lectures on Distributed Computing Theory, 122 p. Morgan &
Claypool Publishers, San Rafael (2010)

22. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of
mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.)
SSS’2014. Lecture Notes in Computer Science, vol. 8756, pp. 237–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11764-5 17

23. https://github.com/tcsprojects/pgsolver
24. Reif, J.H.: The complexity of two-player games of incomplete information. J. Com-

put. Syst. Sci. 29(2), 274–301 (1984)
25. Rubin, S., Zuleger, F., Murano, A., Aminof, B.: Verification of asynchronous

mobile-robots in partially-known environments. In: Chen, Q., Torroni, P., Villata,
S., Hsu, J., Omicini, A. (eds.) PRIMA 2015: Principles and Practice of Multi-Agent
Systems PRIMA 2015. Lecture Notes in Computer Science, vol. 9387, pp. 185–200.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 12

26. Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verifi-
cation of algorithms for oblivious robots on a ring. In: Proceedings of FMCAD’17,
pp. 212–219. IEEE Press (2017)

27. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

28. http://people.cs.aau.dk/∼adavid/tiga/

https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.1007/978-3-319-11764-5_17
https://github.com/tcsprojects/pgsolver
https://doi.org/10.1007/978-3-319-25524-8_12
http://people.cs.aau.dk/~adavid/tiga/

Efficient Concurrent Execution of Smart
Contracts in Blockchains Using Object-Based

Transactional Memory

Parwat Singh Anjana1, Hagit Attiya2, Sweta Kumari2, Sathya Peri1,

and Archit Somani2(B)

1 Department of Computer Science and Engineering, IIT Hyderabad, Sangareddy, India
cs17mtech11014@iith.ac.in, sathya p@cse.iith.ac.in

2 Department of Computer Science, Technion, Haifa, Israel
{hagit,sweta,archit}@cs.technion.ac.il

Abstract. Several popular blockchains such as Ethereum execute complex trans-
actions through user-defined scripts. A block of the chain typically consists
of multiple smart contract transactions (SCTs). To append a block into the
blockchain, a miner executes these SCTs. On receiving this block, other nodes
act as validators, who re-execute these SCTs as part of the consensus protocol to
validate the block. In Ethereum and other blockchains that support cryptocurren-
cies, a miner gets an incentive every time such a valid block is successfully added
to the blockchain. When executing SCTs sequentially, miners and validators fail
to harness the power of multiprocessing offered by the prevalence of multi-core
processors, thus degrading throughput. By leveraging multiple threads to execute
SCTs, we can achieve better efficiency and higher throughput. Recently, Read-
Write Software Transactional Memory Systems (RWSTMs) were used for con-
current execution of SCTs. It is known that Object-based STMs (OSTMs), using
higher-level objects (such as hash-tables or lists), achieve better throughput as
compared to RWSTMs. Even greater concurrency can be obtained using Multi-
Version OSTMs (MVOSTMs), which maintain multiple versions for each shared
data item as opposed to Single-Version OSTMs (SVOSTMs).

This paper proposes an efficient framework to execute SCTs concurrently
based on object semantics, using optimistic SVOSTMs and MVOSTMs. In our
framework, a multi-threaded miner constructs a Block Graph (BG), capturing the
object-conflicts relations between SCTs, and stores it in the block. Later, valida-
tors re-execute the same SCTs concurrently and deterministically relying on this
BG.

A malicious miner can modify the BG to harm the blockchain, e.g., to cause
double spending. To identify malicious miners, we propose Smart Multi-threaded
Validator (SMV). Experimental analysis shows that proposed multi-threaded
miner and validator achieve significant performance gains over state-of-the-art
SCT execution framework.

Keywords: Blockchain · Smart contract · Concurrency · Object-based
Software Transactional Memory · Multi-version · Opacity · Conflict-opacity

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 77–93, 2021.
https://doi.org/10.1007/978-3-030-67087-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_6

78 P. S. Anjana et al.

1 Introduction

Blockchains like Bitcoin [15] and Ethereum [2] have become very popular. Due to their
usefulness, they are now considered for automating and securely storing user records
such as land sale documents, vehicle, and insurance records. Clients, external users of
the system, send requests to nodes to execute on the blockchain, as smart contracts
transactions (SCTs). An SCT is similar to the methods of a class in an object-oriented
langugage, which encode business logic relating to the contract [4,8]. Listing 1 shows
a smart contract function, transfer() of coin contract from Solidity [4]. It transfers the
amount from sender to receiver if the sender has a sufficient balance.

Listing 1: Transfer function

1 transfer(s_id, r_id, amt){
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Blocks are added to the blockchain by block-
creator nodes also known as miners. A miner m
packs several SCTs received from (possibly differ-
ent) clients, to form a block B. Then, m executes
the SCTs of the block sequentially to obtain the final
state of the blockchain, which it stores in the block.
To maintain the chain structure, m adds the hash of the previous block to the new block
B and proposes B to be added to the blockchain.

On receiving the block B, other nodes act as validators that execute a global con-
sensus protocol to decide the order of B in the blockchain. As part of the consensus
protocol, validators re-execute all the SCTs of B sequentially to obtain the final state
of the blockchain, assuming that B will be added to the blockchain. If the computed
final state matches the one stored in B by the miner m then B is accepted by the val-
idators. In this case, the miner m gets an incentive for adding B to the blockchain (in
Ethereum and other cryptocurrency-based blockchains). Otherwise, B is rejected, and
m does not get any reward. This execution is known as order-execute model [5] adapted
by Ethereum and several other blockchains such as Bitcoin [15], EOS [1].

Previous Work: Dickerson et al. [8] observed that both miner and validators can exe-
cute SCTs concurrently to exploit multi-core processors. They observed another inter-
esting advantage of concurrent execution of SCTs in Ethereum, where only the miner
receives an incentive for adding a valid block while all the validators execute the SCTs
in the block. Given a choice, it is natural for a validator to pick a block that supports
concurrent execution and hence obtain higher throughput.

Concurrent execution of SCTs poses a challenge. Consider a miner m that executes
the SCTs in a block concurrently. Later, a validator v may re-execute same SCTs concur-
rently, in an order that may yield a different final state than given by m in B. In this case,
v incorrectly rejects the valid block B proposed by m. We denote this as False Block
Rejection (FBR), noting that FBR may negate the benefits of concurrent execution.

Dickerson et al. [8] proposed a multi-threaded miner algorithm that is based on a
pessimistic Software Transactional Memory (STM) and uses locks for synchronization
between threads executing SCTs. STM [14,18] is a convenient concurrent program-
ming interface for a programmer to access the shared memory using multiple threads.
To avoid FBR, the miner identifies the dependencies between SCTs in the block while
executing them by multiple threads. Two SCTs are dependent if they are conflicting,
i.e., both of them access the same data item and at least one of them is a write. These

Efficient Concurrent Execution of Smart Contracts 79

dependencies among SCTs are recorded in the block as a Block Graph (BG). Two SCTs
that have a path in the BG are dependent on each other and cannot be executed concur-
rently. Later, a validator v relies on the BG to identify dependencies between the SCTs,
and concurrently execute SCTs only if there is no path between them in the BG. In the
course of the execution by v, the size of BG dynamically decreases and the dependen-
cies change. Dickerson et al. [8] use a fork-join approach to execute the SCTs, where a
master thread allocates independent SCTs to different slave threads to execute.

Anjana et al. [6] used an optimistic Read-Write STM (RWSTM), which identifies
the conflicts between SCTs using timestamps. Those are used by miner threads to build
the BG. A validator processes a block using the BG in a completely decentralized man-
ner using multiple threads, unlike the centralized fork-join approach of [8]. Each valida-
tor thread identifies an independent SCTand executes it concurrently with other threads.
The decentralized approach yields significant performances gain over fork-join.

Saraph and Herlihy [17] used a speculative bin approach to execute SCTs of
Ethereum in parallel. A miner uses lock to store SCTs into two bins, concurrent bin
stores non-conflicting SCTs while the sequential bin stores the remaining SCTs. If an
SCT Ti requests a lock held by an another SCT Tj then Ti is rolled back and placed
in the sequential bin. Otherwise, Ti is placed in the concurrent bin. To save the cost of
rollback and retries of SCTs, they have used static conflict prediction which identifies
conflicting SCTs before executing them speculatively. The multi-threaded validator in
this approach executes all the SCTs of the concurrent bin concurrently and then exe-
cutes the SCTs of the sequential bin sequentially. We call this the Static Bin approach.

Zhang and Zhang [20] proposed a pessimistic approach to execute SCTs concur-
rently in which the miner can use any concurrency control protocol while the validator
uses multi-version timestamp order.

Exploiting Object-Based Semantics: Prior STM-based solutions of [6,20], rely on
read-write conflicts (rwconflicts) for synchronization. In contrast, object-based STMs
(OSTMs) track higher-level, more advanced conflicts between operations like insert,
delete, lookup on a hash-table, enqueue/dequeue on queues, push/pop on the stack [11,
12,16]. It has been shown that OSTMs provide greater concurrency than RWSTMs
(see Fig. 1 in [7]). This is particularly important since Solidity [4], the language used
for writing SCTs for Ethereum, extensively uses hash-tables. This indicates that a hash-
table based OSTM is a natural candidate for concurrent execution of these SCTs.1

The pessimistic lock-based solution of [8] uses abstract locks on hash-table keys,
exploiting the object semantics. In this paper, we want to exploit the object semantics
of hash-tables using optimistic STMs to improve the performance obtained.

To capture the dependencies between the SCTs in a block, miner threads construct the
BG concurrently and append it to the block. The dependencies between the transactions
are given by the object-conflicts (oconflicts) (as opposed to rwconflicts) which ensure that
the execution is correct, i.e., satisfies conflict-opacity [16]. It has been shown [11,12,16]
that there are fewer oconflicts than rwconflicts. Since there are fewer oconflicts, the BG
has fewer edges which in turn, allows validators to execute more SCTs concurrently.
This also reduces the size of the BG leading to a smaller communication cost.

1 For clarity, we denote smart contract transactions as SCTs and an STM transaction as a trans-
action in the paper.

80 P. S. Anjana et al.

(d) MVOSTMs

(c) SVOSTMs

(b) Multi−version OSTMs(a) Single−version OSTMs
(SVOSTMs) (MVOSTMs)

T1

C1 T2T1
T1

get1(A1, $10)

T1 T2

A1
get1(A2, Abort)

T2
C2 T2

C2

get1(A1, $10) get1(A2, $10)

get-transfer

transfer-get

get-transfer

transfer2(A1, A2, $10) transfer2(A1, A2, $10)

Fig. 1. (a) Transaction T1 gets the balance of two accounts A1 and A2 (both initially $10), while
transaction T2 transfers $10 from A1 to A2 and T1 aborts. Since, its conflict graph has a cycle
(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A1 and
A2. This can be serialized, as shown in (d).

Multi-version object-based STMs (MVOSTMs) [13] maintain multiple versions for
each shared data item (object) and provide greater concurrency relative to traditional
single-version OSTMs (SVOSTMs). Figure 1 illustrates the benefits of concurrent exe-
cution of SCTs using MVOSTM over SVOSTM. A BG based on MVOSTM will have
fewer edges than an SVOSTM-based BG, and will further reduce the size of the BG.
These advantages motivated us to use MVOSTMs for concurrent execution of SCTs by
miners.

Concurrent executions of SCTs may cause inconsistent behaviors such as infinite
loops, divide by zero, crash failures. Some of these behaviors, such as crash failures and
infinite loops can be mitigated when SCTs are executed in a controlled environment, for
example, the Ethereum Virtual Machine (EVM) [2]. However, not all environments can
prevent all anomalies. The inconsistent executions can be prevented by ensuring that
the executions produced by the STM system satisfy opacity [9] or one of its variants
such as co-opacity [16]. Our MVOSTM satisfies opacity, while our SVOSTM satisfies
co-opacity.

Handling a Malicious Miner: A drawback of the approaches mentioned above is that
a malicious miner can make the final state of the blockchain be inconsistent. In the BG
approach, the miner can send an incorrect BG, missing some edges. In the bin-based app-
roach [17], the miner can place the conflicting transactions in the concurrent bin. This
can result in inconsistent states in the blockchain due to double spending, e.g., when two
concurrent transactions incorrectly transfer the same amount of money simultaneously
from a source account to two different destination accounts. If a malicious miner does not
add an edge between these two transactions in the BG [6] or puts them in the concurrent
bin [17], then both SCTs can execute concurrently by validators. If a majority of valida-
tors accept the block containing these two transactions, then the state of the blockchain
becomes inconsistent. We denote this problem as edge missing BG (EMB) for the BG
approach [6] and faulty bin (FBin) for the bin-based approach [17]. In Sect. 4, we show
the effect of malicious miners through experiments on the blockchain system.

To handle EMB and FBin errors, the validator must reject a block when edges are
missing in the BG or when conflicting SCTs are in the concurrent bin, since their execu-
tion can lead to an inconsistent state. To detect this situation, validator threads monitor
transactions performing conflicting access to the same data items while executing con-

Efficient Concurrent Execution of Smart Contracts 81

currently. In Sect. 3, we propose a Smart Multi-threaded Validator (SMV) which uses
counters to detect this condition and rejects the corresponding blocks.

Dickerson et al. [8] suggest a lock-based solution to handle EMB errors. The miner
generates and stores the lock profile required to execute the SCTs of a block along
with the BG. The validator then records a trace of the locks each of its thread would
have acquired, had it been executing speculatively independent of the BG. The validator
would then compare the lock profiles it generated with the one provided by the miner
present in the block. If the profiles are different then the block is rejected. This check
is in addition to the check of the final state generated and the state in the block. This
solution is effective in handling EMB errors caused by malicious miners. However, it is
lock-based and cannot be used for preventing EMB issue in optimistic approaches such
as [6]. The advantage of our SMV solution is that it works well with both optimistic
and lock-based approaches.

Our Contributions: This paper develops an efficient framework to execute SCTs con-
currently by a miner using an optimistic hash-table (both single and multi-version)
OSTM. We use two methodologies to re-execute the SCTs concurrently by validators:
the fork-join approach [8] and a decentralized approach [6]. To handle EMB and FBin
errors, we propose a decentralized smart multi-threaded validator. To summarize:

– We introduce an efficient object-based framework for the concurrent execution of
SCTs by miners (Sect. 3.2). We propose a way to execute SCTs efficiently using
optimistic SVOSTM by the miner while ensuring co-opacity [16], a way to execute
SCTs by the miner using optimistic MVOSTM [13] while satisfying opacity [9]

– We propose the concurrent execution of SCTs by validators using the BG provided
by the miner to avoid FBR errors (Sect. 3.3), using either the fork-join or the decen-
tralized approach.

– We propose a Smart Multi-threaded Validator to handle EMB and FBin errors caused
by malicious miners (Sect. 3.4).

– Extensive simulations (Sect. 4) show that concurrent execution of SCTs by
SVOSTM and MVOSTM miner provide an average speedup of 3.41× and 3.91×
over serial miner, respectively. SVOSTM and MVOSTM based decentralized val-
idator provide on average of 46.35× and 48.45× over serial validator, respectively.

2 System Model

As in [10,14], in each miner/validator there are n threads, p1, . . . , pn in a system that
access shared data items (or objects/keys) in a completely asynchronous fashion. We
assume that none of the threads/processes will crash or fail unexpectedly.

Events: A thread invokes the transactions and the transaction calls object-level methods
that internally invoke read/write atomic events on the shared data items to communi-
cate with other threads. Method invocations (or inv) and responses (or rsp) are also
considered as events.

History: It is a sequence of invocations and responses of different transactional meth-
ods. We consider sequential history in which invocation on each transactional method

82 P. S. Anjana et al.

follows the immediate matching response. We consider well-formed histories in which
a new transaction does not begin until the invocation of previous transaction has not
been committed or aborted.

Object-Based Software Transactional Memory (OSTM): OSTM exports higher-
level methods: (1) STM begin(): begins a transaction with unique id. (2) STM -
lookup(k) (or l(k)): does a lookup on data item k from shared memory. (3) STM -
insert(k, v) (or i(k, v)): inserts the value of data item k as v in its local log. (4) STM -
delete(k) (or d(k)): deletes the data item k. (5) STM tryC(): validates the transaction.
After successful validation, the actual effects of STM insert() and STM delete() will
be visible in the shared memory and transaction returns commit (C). Otherwise, it will
return abort (A). We represent STM lookup(), and STM delete() as return-value (rv)
methods because both methods return the value from hash-table. We represent STM -
insert(), and STM delete() as update (upd) methods as on successful STM tryC() both
methods update the shared memory. Methods rv() and STM tryC() may return A. For
a transaction Ti, we denote all the objects accessed by its rvi() and updi() methods as
rvSeti and updSeti, respectively.

Listing 2: Transfer function using STM

7 transfer(s_id, r_id, amt){
8 t_id = STM_begin();
9 s_bal = STM_lookup(s_id);

10 if(amt => s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id, amt);
15 STM_insert(r_id, amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;//Trans aborted
18 }

Listing 2 shows the concurrent execution
of transfer() (from Listing 1 in the Sect. 1)
using STM. On the invocation of transfer(),
STM assigns the unique id using STM begin()
to each SCT (Line 8). Then, it reads the bal-
ance of the sender using STM lookup() (Line
9) and validates it (Line 10). If the sender does
not have a sufficient balance, then it aborts the
SCT and throws an exception. Otherwise, it
withdraws the amount from the sender account
using STM delete() (Line 14) and deposits the amount in the receiver account using
STM insert() (Line 15). With an optimistic STM, the effect of the STM delete() and
STM lookup() will take place after successful validation of the SCT in STM tryC() (Line
16). If validation is successful, then the SCT commits, and the amount is transferred
from the sender to the receiver account. Otherwise, the SCT is aborted and re-execute
from Line 8.

Valid and Legal History: If the successful rvj(k, v) (i.e., v �= A) method of a trans-
action Tj returns the value from any of previously committed transaction Ti that has
performed upd() on key k with value v then such rvj(k, v) method is valid. If all the
rv() methods of history H are valid then H is valid history [16].

If the successful rvj(k, v) (i.e., v �= A) method of a transaction Tj returns the
value from previous closest committed transaction Ti that k ∈ updSeti (Ti can also be
T0) and updates the k with value v then such rvj(k, v) method is legal. If all the rv()
methods of history H are legal then H is legal history [16]. A legal history is also valid.

Two histories H and H′ are equivalent if they have the same set of events. H and
H′ are multi-version view equivalent [19, Chap. 5] if they are valid and equivalent. H
and H′ are view equivalent [19, Chap. 3] if they are legal and equivalent. Additional
definitions appear in [7].

Efficient Concurrent Execution of Smart Contracts 83

3 Proposed Mechanism

This section describes the construction, data structures, and methods of concurrent BG,
concurrent execution of SCTs by multi-threaded miner using optimistic object-based
STMs, multi-threaded validator, and detection of a malicious miner.

3.1 The Block Graph

The multi-threaded miner executes the SCTs concurrently and stores their dependen-
cies in a BG. Each committed transaction corresponding to an SCTis a vertex in the
BG while edges capture the dependencies, based on the STM protocol. Multi-threaded
miner uses SVOSTM or MVOSTM to execute the SCTs concurrently, using times-
tamps. The challenge here is to construct the BG concurrently without missing any
dependencies. We modified SVOSTM and MVOSTM to capture oconflicts and multi-
version oconflicts (mvoconflicts) in the BG.

SVOSTM-based miner maintains three types of edges based on oconflicts between
the transactions. An edge Ti → Tj between two transaction is defined when: (1)
rvi(k, v) - STM tryCj() edge : If rvi(k, v) on key k by Ti completed before
STM tryCj() on k by a committed transaction Tj in history H such that Ti returns
a value v �= A. Formally, rvi(k, v) <H STM tryCj(), k ∈ updSet(Tj) and
v �= A; (2) STM tryCi() - rvj(k, v) edge : If STM tryCi() on k by a commit-
ted transaction Ti completed before rvj(k, v) on key k by Tj in history H such that
Tj returns a value v �= A. Formally, STM tryCi() <H rvj(k, v), k ∈ updSet(Ti)
and v �= A; (3) STM tryCi() - STM tryCj() edge : If STM tryCi() on k by a
committed transaction Ti completed before STM tryCj() on k by a committed trans-
action Tj in history H . Formally, STM tryCi() <H STM tryCj() and (updSet(Ti)
∩ updSet(Tj) �= ∅).

MVOSTM-based miner maintains two types of edges based on mvoconflicts [13].
(1) return value from (rvf) edge: If STM tryCi() on k by a committed transaction Ti

completed before rvj(k, v) on key k by Tj in history H such that Tj returns a value v �=
A then there exist an rvf edge from Ti to Tj , i.e., Ti → Tj ; (2) multi-version (mv) edge:
consider a triplet, STM tryCi(), rvm(k, v), STM tryCj() in which (updSet(Ti) ∩
updSet(Tj) ∩ rvSet(Tm) �= ∅), (two committed transactions Ti and Tj update the key
k with value v and u respectively) and (u, v �= A); then there are two types of mv edge:
(a) if STM tryCi() <H STM tryCj() then there exist a mv edge from Tm to Tj . (b)
if STM tryCj() <H STM tryCi() then there exist a mv edge from Tj to Ti.

Data Structure for the Block Graph: To maintain a block graph BG(V,E), the set
of vertices (or SCTs) V is stored as a vertex list and the set of edges (conflicts between
SCTs)E is stored as an adjacency list. Two lock-free methods build the BG (see details in
[7]): addVertex() adds a vertex and addEdge() adds an edge in BG. To execute the SCTs,
validator threads use three methods: globalSearch() identifies an independent vertex with
indegree 0 to execute it concurrently, remExNode() decrements the indegree of conflict-
ing vertices and keeps it into thread local log if its indegree becomes 0, and localSearch()
identifies the vertex with indegree 0 in thread local log to execute it concurrently.

84 P. S. Anjana et al.

Algorithm 1. Multi-threaded Miner(sctList[], STM): n threads concurrently execute
the SCTs from sctList with STMs.
19: procedureMulti-threaded Miner (sctList[], STM)
20: curInd = gIndex.get&Inc(); // Atomically read the index and increment it.
21: while (curInd < sctList.length) do // Execute until all SCTs have not been executed
22: curTrn = sctList[curInd]; // Get the current SCTto execute
23: Ti = STM begin(); // Begins a new transaction. Here i is unique id
24: for all (curStep ∈ curTrn.scFun) do // scFun is a list of steps
25: switch(curStep)
26: case lookup(k):
27: v ← STM lookup(k); // Lookup data item k from a shared memory
28: if(v == A) then goto Line 23;end if break;
29: case insert(k, v): // Insert data item k into Ti local memory with value v
30: STM insert(k, v); break;
31: case delete(k):
32: v ← STM delete(k); // Actual deletion of data item k happens in STM tryC()
33: if(v == A) then goto Line 23; end if break;
34: default: Execute the step normally // Any step apart from lookup, insert, delete
35: endswitch
36: end for
37: v ← STM tryC(); // Try to commit the transaction Ti

38: if(v == A) then goto Line 23; end if
39: addVertex(i); // Create vertex node for Ti with scFun
40: BG(i, STMs); // Add the conflicts of Ti to block graph
41: curInd = gIndex.get&Inc(); // Atomically read the index and increment it.
42: end while
43: build-block(); // Here the miner builds the block.
44: end procedure

3.2 Multi-threaded Miner

A miner m receives requests to execute SCTs from different clients. It forms a block
with several SCTs (the precise number of SCTs depend on the blockchain), and exe-
cutes these SCTs while executing the non-conflicting SCTs concurrently to obtain the
final state of the blockchain. Identifying the non-conflicting SCTs statically is not
straightforward because smart contracts are written in a turing-complete language [8]
(e.g., Solidity [4] for Ethereum). We use optimistic STM to execute the SCTs concur-
rently as in [6] but adapted to object-based STMs on hash-tables to identify conflicts.

Algorithm 1 shows how SCTs are executed by an n-threaded miner. The input is
an array of SCTs, sctList and a object-based STM, (SVOSTM or MVOSTM), both
supporting the BG methods described above. The multi-threaded miner uses a global
index into the sctList gIndex which is accessed by all the threads. A thread Thx first
reads the current value of gIndex into a local value curInd and increments gIndex
atomically (Line 20).

Having obtained the current index in curInd, Thx gets the corresponding SCT,
curTrn from sctList[] (Line 22), and begins a STM transaction corresponding to
curTrn (Line 23). For every hash-table insert, delete and lookup encountered while
executing the scFun of curTrn, Thx invokes the corresponding STM methods: STM -
lookup(), STM insert(), STM delete(), either on an SVOSTM or on an MVOSTM. Oth-
erwise, it simply executes the step. If any of these steps fail, Thx begins a new STM
transaction (Line 23) and re-executes these steps.

Upon successful completion of transaction Ti, Thx creates a vertex node for Ti in
the block graph (Line 39). Then, Thx obtains the transactions (SCTs) with which Ti

is conflicting from the OSTM, and adds the corresponding edges to the BG (Line 40).
Thx then gets the index of the next SCTto execute (Line 41).

Efficient Concurrent Execution of Smart Contracts 85

An important step here is how the underlying OSTMs (either SVOSTM or
MVOSTM) maintain the conflicts among the transactions which is used by Thx (see
[7]). Both SVOSTM and the MVOSTM use timestamps to identify the conflicts.

Once all the SCTs of sctList have been executed successfully and the BG is con-
structed concurrently, it is stored in the proposed block. The miner then stores the final
state of the blockchain (which is the state of all shared data items), resulting from the
execution of SCTs of sctList in the block. The miner then computes the operations
related to the blockchain. For Ethereum, this would constitute the hash of the previous
block. Then the multi-threaded miner proposes a block which consists of all the SCTs,
BG, final state of all the shared data items and hash of the previous block (Line 43).
The block is then broadcast to all the other nodes in the blockchain.

We prove the next properties (see [7]):

Theorem 1. The BG captures all the dependencies between the conflicting nodes.

Theorem 2. A historyHm generated by the multi-threaded miner with SVOSTM satis-
fies co-opacity.

Theorem 3. A history Hm generated by multi-threaded miner with MVOSTM satisfies
opacity.

3.3 Multi-threaded Validator

The validator re-executes the SCTs deterministically relying on the BG provided by
the miner in the block. BG consists of dependency among the conflicting SCTs and
restrict validator threads to execute them serially to avoid the FBR errors while non-
conflicting SCTs execute concurrently to obtain greater throughput. The validator uses
globalSearch(), localSearch(), and remExNode() methods of the BG library as described
in Sect. 3.1.

After successful execution of the SCTs, validator threads compute the final state of
the blockchain which is the state of all shared data items. If it matches the final state
provided by the miner then the validator accepts the block. If a majority of the validators
accept the block, then it is added to the blockchain. Detailed description and proofs of
the next theorems appear in [7].

Theorem 4. A historyHm generated by the multi-threaded miner with SVOSTM and a
history Hv generated by a multi-threaded validator are view equivalent.

Theorem 5. A history Hm generated by the multi-threaded miner with MVOSTM and
a historyHv generated by a multi-threaded validator are multi-version view equivalent.

3.4 Detection of Malicious Miners by Smart Multi-threaded Validator (SMV)

We propose a technique to handle edge missing BG (EMB) and Faulty Bin (FBin)
caused by the malicious miner as explained in Sect. 1. A malicious miner mm can
remove some edges from the BG and set the final state in the block accordingly. A
multi-threaded validator executes the SCTs concurrently relying on the BG provided by
the mm and results the same final state. Hence, incorrectly accepts the block. Similarly,

86 P. S. Anjana et al.

if a majority of the validators accept the block then the state of the blockchain becomes
inconsistent. For example, due to double spending.

A similar inconsistency can be caused by a mm in bin-based approach: mm can
maliciously add conflicting SCTs to the concurrent bin resulting in FBin error. This may
cause a multi-threaded validator v to access shared data items concurrently leading to
synchronization errors. To prevent this, an SMV checks to see if two concurrent threads
end up accessing the same shared data item concurrently. If this situation is detected,
then the miner is malicious.

Algorithm 2. SMV(scFun): Execute scFun with atomic global lookup/update counter.
45: while (scFun.steps.hasNext()) do //scFun is a list of steps
46: curStep = scFun.steps.next(); //Get the next step to execute
47: switch (curStep) do
48: case lookup(k):
49: if (k.gUC == k.lUCi) then //Check for update counter (uc) value
50: Atomically increment the global lookup counter, k.gLC;
51: Increment k.lLCi by 1. //Maintain k.lLCi in transaction local log
52: Lookup k from a shared memory;
53: else return 〈Miner is malicious〉;
54: end if
55: case insert(k, v):
56: if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then //Check lookup/update counter value
57: Atomically increment the global update counter, k.gUC;
58: Increment k.lUCi by 1. //Maintain k.lUCi in transaction local log
59: Insert k in shared memory with value v;
60: else return 〈Miner is malicious〉;
61: end if
62: case delete(k):
63: if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then //Check lookup/update counter value
64: Atomically increment the global update counter, k.gUC;
65: Increment k.lUCi by 1. //Maintain k.lUCi in transaction local log
66: Delete k in shared memory.
67: else return 〈Miner is malicious〉;
68: end if
69: case default:
70: curStep is not lookup, insert and delete;
71: execute curStep;
72: end while
73: Atomically decrement the k.gLC and k.gUC corresponding to each shared data-item key k.

To identify such situations, an SMV uses counters, inspired by the basic timestamp
ordering (BTO) protocol in databases [19, Chap. 4]. It tracks each global data item that
can be accessed across multiple transactions by different threads. Specifically, the SMV
maintains two global counters for each key of hash-table (shared data item) k (a) k.gUC
- global update counter (b) k.gLC - global lookup counter. These, respectively, track the
number of updates and lookups that are concurrently performed by different threads
on k. Both counters are initially 0.

When an SMV thread Thx is executing an SCT Ti it maintains two local variables
corresponding to each global data item k which is accessible only by Thx (c) k.lUCi

- local update counter (d) k.lLCi - local lookup counter. These respectively keep track
of number of updates and lookups performed by Thx on k while executing Ti. These
counters are initialized to 0 before the start of Ti.

Having described the counters, we will explain the SMV Algorithm 2 at a high level.
Suppose the next step to be performed by Thx is:

Efficient Concurrent Execution of Smart Contracts 87

1. lookup(k): Thread Thx will check for equality of the global and local update coun-
ters, i.e., (k.gUC == k.lUCi) (Line 49). If they are not same then SMV will
report the miner as malicious (Line 53). Otherwise, (i) Thx will atomically incre-
ment k.gLC (Line 50). (ii) Thx will increment k.lLCi (Line 51). (iii) Perform the
lookup on the key k from shared memory (Line 52).

2. update(k, val): Here, Thx wants to update (insert/delete) k with value val. So,
Thx will check for the equality of both global, local update and lookup counters,
i.e., (k.gUC == k.lUCi) and (k.gLC == k.lLCi) (Line 56 or Line 63). If they
are not same then SMV will report the miner as malicious (Line 60 or Line 67).
Otherwise, (i) Thx will atomically increment k.gUC (Line 57 or Line 64). (ii) Thx

will increment k.lUCi (Line 58 or Line 65). (iii) Update key k with value val in the
shared memory (Line 59 or Line 66).

Once Ti terminates, Thx will atomically decrements k.gUC, k.gLC by the value
of k.lUCi, k.lLCi, respectively (Line 73). Then Thx will reset k.lUCi, k.lLCi to 0.

The reason for performing these steps and the correctness of the algorithm is as
follows: if Thx is performing a lookup on k then no other thread should be performing
an update on k. Here, k.gUC represents the number of updates to k currently executed
by all the threads while k.lUCi represents the number of updates to k on behalf of Ti

by Thx. Thus the value of gUC should be same as lUC. Otherwise, some other thread
is also concurrently performing the updates to k. Similarly, if Thx is performing an
update on k, then no other thread should be performing an update or lookup on k. This
can be verified by checking if lLC, lUC are respectively same as gLC, gUC.

Theorem 6. Smart Multi-threaded Validator rejects malicious blocks with BG that
allow concurrent execution of dependent SCTs.

The same SMV technique can be applied to identify the faulty bin error as explained in
Sect. 1. See proof of Theorem 6 in [7].

4 Experimental Evaluation

This section demonstrates the performance gains by proposed multi-threaded miner and
validator against state-of-the-art miners and validators. To evaluate our approach, we
considered Ethereum smart contracts. The virtual environment of Ethereum, EVM, does
not support multi-threading [2,8]. So, we converted the smart contracts of Ethereum
as described in Solidity documentation [4] into C++ multi-threaded contracts similar
to [6]. Then we integrated them into object-based STM framework (SVOSTM and
MVOSTM) for concurrent execution of SCTs by the miner.

We chose a diverse set of smart contracts described in Solidity [4] as benchmarks to
analyze the performance of our proposed approach as was done in [6,8]. The selected
benchmark contracts are (1) Coin: a financial contract, (2) Ballot: an electronic voting
contract, (3) Simple Auction: an auction contract, and (4) a Mix contract: combination of
three contracts mentioned above in equal proportion in which block consists of multiple
SCTs belonging to different smart contracts.

88 P. S. Anjana et al.

Fig. 2. Multi-threaded and SMVs Speedup over Serial Miner and Validator for Mix Contract on
W1 and W2

We compared the proposed SVOSTM and MVOSTM miner with state-of-the-art
multi-threaded: BTO [6], multi-version timestamp order (MVTO) [6], Speculative Bin
(or SpecBin) [17], Static Bin (or StaticBin) [17], and Serial miner.2 We could not com-
pare our work with Dickerson et al. [8] as their source code is not available in public
domain. We converted the code of StaticBin and SpecBin [17] from Java to C++ for
comparing with our algorithms.

Concurrent execution of SCTs by the validator does not use any STM protocol;
however it uses the BG provided by the multi-threaded miner, which does use STM.
To identify malicious miners and prevent any malicious block from being added to
the blockchain, we proposed Smart Multi-threaded Validator (SMV) for SVOSTM,
MVOSTM as SVOSTM SMV, MVOSTM SMV. Additionally, we proposed SMV for
state-of-the-art validators as BTO SMV, MVTO SMV, SpecBin SMV, and StaticBin
SMV and analysed the performance.

Experimental Setup: The experimental system consists of two sockets, each com-
prised of 14 cores 2.60 GHz Intel (R) Xeon (R) CPU E5-2690, and each core supports 2
hardware threads. Thus the system supports a total of 56 hardware threads. The machine
runs Ubuntu 16.04.2 LTS operating system and has 32GB RAM.

2 Code is available in: https://github.com/PDCRL/ObjSC.

https://github.com/PDCRL/ObjSC

Efficient Concurrent Execution of Smart Contracts 89

Fig. 3. % of average multi-threaded validator (NonSMV) accepted a malicious block for Mix
Contract on W1 and W2

To analyze the performance, we evaluated the speedup achieved by each contract
on two workloads. In the first workload (W1), the number of SCTs varied from 50 to
300 while the number of threads fixed is at 50. The maximum number of SCTs in a
block of Ethereum is approximately 250 [3,8], but is growing over time. In the second
workload (W2), the number of threads varied from 10 to 60, while the number of SCTs
is fixed at 100. The average number of SCTs in a block of Ethereum is around 100
[3]. The hash-table size and shared data items are fixed to 30 and 500 respectively for
both workloads. For accuracy, results are averaged over 26 runs in which the first run is
discarded and considered as a warm-up run. The results of serial execution is treated as
the baseline for evaluating the speedup. This section describes the detailed analysis for
the Mix contract and analysis of Coin, Ballot and Simple Auction benchmark contracts
are in [7].

Experimental Results: Fig. 2(a) and (b) show the speedup of MVOSTM, SVOSTM,
MVTO, BTO, SpecBin, and StaticBin miner over serial miner for Mix contract on
workloads W1 and W2, respectively.1 The average speedup achieved by MVOSTM,
SVOSTM, MVTO, BTO, SpecBin, and StaticBin miner over serial miner is 3.91×,
3.41×, 1.98×, 1.5×, 3.02×, and 1.12×, respectively.

As shown in Fig. 2(a), increasing the number of SCTs leads to high contention
(because shared data items are fixed to 500). So the speedup of multi-threaded
miner reduces. MVOSTM and SVOSTM miners outperform SpecBin miner because
MVOSTM and SVOSTM miners use optimistic object-based STMs to execute SCTs
concurrently and construct the BG whereas SpecBin uses locks to execute SCTs con-
currently and constructs two bins using the pessimistic approach. SpecBin miner does
not release the locks until the construction of the concurrent bin, which gives less con-
currency. However, for the smaller numbers of SCTs in a block, SpecBin is slightly bet-
ter than MVOSTM and SVOSTM miners, which can be observed in the Fig. 2(a) at 50
SCTs. MVOSTM and SVOSTM miners outperform MVTO and BTO miners because
both of them are consider rwconflicts. It can also be observed that MVOSTM miner

1 In the figures, legend items in bold.

90 P. S. Anjana et al.

Fig. 4. Average Number of Dependencies in BG for Mix Contract on W1 and W2

outperforms all other STM miners as it has fewer conflicts, which gets reflected (see
Fig. 4) as the least number of dependencies in the BG as compared to other STM min-
ers. For the multi-version (MVOSTM and MVTO) miners, we did not limit the number
of versions because the number of SCTs in a block is finite. The speedup by StaticBin
miner is worse than serial miner for more than 100 SCTs because it takes time for static
conflict prediction before executing SCTs.

Figure 2(b) shows that speedup achieved by multi-threaded miner increases while
increasing the number of threads, limited by the number of hardware threads available
on the underlying experimental setup. Since, our system has 56 logical threads, the
speedup decreases beyond 56 threads. MVOSTM miner outperforms all other miners
with similar reasoning, as explained for Fig. 2(a). Another observation is that when the
number of threads is less, the serial miner dominates BTO and MVTO miner due to the
overhead of the STM system.

The average number of dependencies in BG by all the STM miners presented
in Fig. 4. It shows that BG constructed by the MVOSTM has the least number of
edges for all the contracts on both workloads. However, there is no BG for bin-based
approaches (both SpecBin and StaticBin). So, from the block size perspective, bin-
based approaches are efficient. But the speedup of the validator obtained by the bin-
based approaches is significantly lesser than STM validators.

Figure 2(c) and (d) show the speedup of Smart Multi-threaded Validators (SMVs)
over serial validator on the workloads W1 and W2, respectively. The average speedup
achieved by MVOSTM, SVOSTM, MVTO, BTO, SpecBin, and StaticBin decentralized
SMVs are 48.45×, 46.35×, 43.89×, 41.44×, 5.39×, and 4.81× over serial validator,
respectively.

It can be observed that decentralized MVOSTM SMV is best among all other STM
validators due to fewer dependencies in the BG. Though the block size is less in bin-
based approaches as compared to STM based approaches due to the absence of BG,
however, STM validators outperform bin-based validators because STM validators pre-
cisely determines the concurrent SCTs based on BG. In contrast, bin-based validator
gives less concurrency using a lock-based pessimistic approach.

Efficient Concurrent Execution of Smart Contracts 91

The speedup of SMV is significantly higher than multi-threaded miner because the
miner has to execute the SCTs concurrently either using STMs (including the retries
of aborted transactions) and constructs the BG or prepare two bins (concurrent and
sequential bin using locks in SpecBin and static analysis in StaticBin). On the other
hand, the validator executes the SCTs concurrently and deterministically relying on BG
(without any retries) or bins provided by miner.

A malicious miner may cause either EMB or FBin errors in a block. Figure 3
illustrates the percentage of validators without SMV logic embedded, i.e., NonSMVs
accepting a malicious block on workloads W1 and W2, respectively. Here, we con-
sidered 50 validators and ran the experiments for the Mix contract. The Fig. 3 shows
that less than 50% of validators (except bin-based NonSMV) accept a malicious block.
However, SpecBin and StaticBin NonSMVs show more than 50% acceptance of mali-
cious blocks. Though, it is to be noted that the acceptance of even a single malicious
block result in the blockchain going into inconsistent state.

To solve this problem, we developed a Smart Multi-threaded Validator (SMV),
which identifies the malicious miner (described in Sect. 3.4). We prove that the SMV
detects malicious block with the help of counter and rejects it. In fact all the validators
shown in Fig. 2 (c) and (d) are SMV based. Another advantage of SMV is that once it
detects a malicious miner during the concurrent execution of SCTs, it can immediately
reject the block and need not execute the remaining SCTs in the block thus saving time.

Fig. 5. Speedup of SMV over serial and
Diameter of BG

To show the degree of parallelism, we
consider diameter of BG which shows the
longest path of the BG implies that a longest
sequence of transactions to be executed
sequentially. To observe the diameter of BG,
we consider another workload W3 in which
the number of shared data items varied from
100 to 600 while the number of threads,
SCTs, and hash-table size is fixed to 50, 100,
and 30, respectively. In Figure 5, Y1 axis
shows the speedup achieved by SMV over
serial and Y2 axis demonstrates the diame-
ter of the BG in considered STMs. It shows
that highest speedup achieved when diameter
of the BG is least.

We presents additional experiments that
cover the average number of dependencies in
the BG, additional space required to store the BG into the block, compared the time
taken by the SMV and NonSMV, and speedup of fork-join validator for all the work-
loads in [7].

5 Conclusion and Future Directions

This paper presents an efficient framework for concurrent execution of smart con-
tracts by miners and validators based on object semantics. In blockchains that follow

92 P. S. Anjana et al.

order-execute model [5] such as Ethereum [2] and Bitcoin [15], SCTis executed in two
different contexts: first by the multi-threaded miner to propose a block and later by
the multi-threaded validator to verify the proposed block by the miner as part of the
consensus. To avoid FBR errors, the miner on concurrent execution of SCTs capture
the dependencies among them in the form of a BG as in [6,8]. The validator then re-
executes the SCTs concurrently while respecting the dependencies recorded in the BG
to avoid FBR errors.

The miner executes the SCTs concurrently using STMs that exploit the object
semantics: SVOSTM and MVOSTM. The dependencies among the SCTs are collected
during this execution and used by the miner threads to construct the BG concurrently.
Due to the use of object semantics, the number of edges in the BG is smaller, which
benefits both miners and validators by enabling them to execute SCTs quickly in a con-
current setting.

We also considered a malicious miner, which may proposes an incorrect BG that
does not have all the edges, resulting in EMB error. To handle malicious miners we have
proposed a SMV that can identify these errors and reject the corresponding blocks.

The proposed SVOSTM and MVOSTM miner achieve on average speedup of 3.41×
and 3.91× over a serial miner, respectively. Proposed SVOSTM and MVOSTM decen-
tralized validator outperform with an average speedup of 46.35× and 48.45× over serial
validator, respectively, on Ethereum smart contracts.

There are several directions for future work. A malicious miner can intentionally
append a BG in a block with additional edges for the purpose of delaying other miners.
Preventing such a malicious miner from doing this would be an immediate future work.
A natural question is whether the size of BG can become a significant overhead. Cur-
rently, the average number of SCTs in a block is ≈100 in Ethereum. So, storing the BG
inside the block does not consume much space. The BG constructed by MVOSTMs has
fewer dependencies as compared with state-of-the-art SCT execution as shown in Fig. 4.
However, the number of SCTs in a block can increase over time and as a result storing
the BG will consume more space. Hence, constructing storage optimal BG is an interest-
ing challenge. Alternatively, it might be possible to concurrently execute SCTs correctly
without incurring any extra storage overhead, and without compromising speedup. This
opens up the question what the optimal storage required for achieving the best possible
speedup.

Another interesting research direction is optimizing power consumption, since,
multi-threading on the multi-core system consumes more power. Additional power is
consumed by the multiple miner and validator threads to propose and validate the blocks
concurrently. Hence, we would like to explore trade-off between harnessing the number
of cores and power consumption.

Finally, since EVM [2] does not support multi-threading, it is not possible to test
the proposed approach on Ethereum. So, another research direction is to design multi-
threaded EVM. We plan to test our proposed approach on other blockchains such as Bit-
coin [15], EOS [1] which follow the order-execute model and support multi-threading.

Acknowledgment. We are thankful to the anonymous reviewers for helpful suggestions. This
research was supported by ISF grant 380/18, IMPRINT Project number 6918F funded by MHRD,
and MEITY project number 4(20)/2019-ITEA.

Efficient Concurrent Execution of Smart Contracts 93

References

1. EOS. https://eos.io/. Accessed 08 Mar 2020
2. Ethereum. http://github.com/ethereum. Acessed 08 Mar 2020
3. Ethereum Stats. https://etherscan.io. Accessed 08 Mar 2020
4. Solidity Documentation. https://solidity.readthedocs.io/. Accessed 08 Mar 2020
5. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned

blockchains. EuroSys (2018)
6. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An efficient framework for opti-

mistic concurrent execution of smart contracts. In: PDP, pp. 83–92 (2019)
7. Anjana, P.S., Attiya, H., Kumari, S., Peri, S., Somani, A.: Achieving greater concurrency in

execution of smart contracts using object semantics. CoRR ArXiv:1904.00358 (2019). http://
arxiv.org/abs/1904.00358

8. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding Concurrency to Smart Con-
tracts, pp. 303–312. In: PODC. ACM, NY, USA, New York (2017)

9. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPoPP (2008)
10. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lectures on Dis-

tributed Computing Theory (2010)
11. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic Transactional Boosting, vol. 49, pp. 387–

388. ACM, New York, NY, USA 2014)
12. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-concurrent

transactional objects. In: PPoPP (2008)
13. Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to achieve

compositionality efficiently using multi-version object based transactional systems. In:
Izumi, T., Kuznetsov, P. (eds.) SSS’2018, pp. 284–300. Springer, Cham (2018)

14. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional memory.
Theor. Comput. Sci. 688, 103–116 (2017)

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
16. Peri, S., Singh, A., Somani, A.: Efficient means of achieving composability using transac-

tional memory. In: NETYS (2018)
17. Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in ethereum smart

contracts. In: Tokenomics (2019)
18. Shavit, N., Touitou, D.: Software transactional memory. In: PODC (1995)
19. Weikum, G., Vossen, G.: Transactional Info Systems: Theory, Algorithms, and the Practice

of Concurrency Control and Recovery (2002)
20. Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiversion ordering.

In: Web and Big Data (2018)

https://eos.io/
http://github.com/ethereum
https://etherscan.io
https://solidity.readthedocs.io/
http://arxiv.org/abs/1904.00358
http://arxiv.org/abs/1904.00358
http://arxiv.org/abs/1904.00358

Exploring IoT Trickle-Based
Dissemination Using Timed

Model-Checking and Symbolic Execution

Boutheina Bannour1(B), Arnault Lapitre1, and Pascale Le Gall2

1 CEA LIST, Gif-sur-Yvette, France
{boutheina.bannour,arnault.lapitre}@cea.fr

2 MICS Laboratory, University of Paris-Saclay, Gif-sur-Yvette, France
pascale.legall@centralesupelec.fr

Abstract. We focus on studying an IoT algorithm called Trickle using
a formal model-based approach. The algorithm has an essential role in
traffic regulation across distributed networks of wireless sensors which
are part of IoT. The algorithm allows efficient dissemination of infor-
mation such as critical applicative data, firmware upgrades or security
fixes. In this paper, we develop timed asynchronous computational mod-
els for Trickle. We show how reachability properties can be assessed on
such models using a combination of model-checking and symbolic execu-
tion implemented by the tools UPPAAL and DIVERSITY, respectively.
Our experiments produce promising results on highlighting updated or
outdated nodes situations during dissemination.

1 Introduction

Context. Sensors networks (WSN) play an essential role in the uptake of the
Internet of Things (IoT) as they allow direct connection between the physical
environment and the digital systems. They come with a reduced economical cost,
and they can easily be deployed in inaccessible areas. WSN involve constrained-
energy devices (sensors) which operate over long periods. The information dis-
semination across these networks is often subject to constraints to reduce the
communication cost, with the objective not to exhaust the batteries of such nodes
that are in general neither rechargeable nor replaceable after the deployment.
Gossip paradigm has been recognized as being efficient in practice to control the
communications of each node, roughly speaking: (i) every node try quickly to
transmit new data, and (ii) in case of redundant data reception, the node reduces
the transmissions frequency over time. The algorithm Trickle [23,25,27] is one of
the most known: It comes as a standard library in TinyOS [24] and Contiki [16],
two well-known firmware Operating Systems (OS) for WSN. The algorithm is
involved in recently standardized WSN protocols namely the Multicast Protocol
for Low Power and Lossy Networks (MPL) [17] and the IPv6 Routing Protocol
for Low Power and Lossy Networks (RPL) [1]. There are many others like FireFly
Gossip (FiGo) [8], Energy Efficient Gossiping (E-Gossip) [22], Multi Random-
ized Gossip-Consensus-based Sync (Multi RGCS) [29], and new ones continue
to be proposed given the economic interest of WSN.
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 94–111, 2021.
https://doi.org/10.1007/978-3-030-67087-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_7

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 95

Case Study: Trickle Dissemination. The goal of Trickle is to reach a stable global
state of the network where all the nodes have the same up-to-date information.
Each node applies a set of rules to control its transmissions as follows [27]:

– each node maintains a current interval I, a counter c and a broadcasting time
t in interval [I/2, I[,

– global parameters to all nodes are k the redundancy constant, Imin (resp.
Imax) the smallest (resp. largest) interval,

– each node applies the following rules:
1. at the start of a new interval, the timer and counter c are reset and t is

randomly set to a value in [I/2, I[,
2. if a received message is consistent with the information the node holds,

the counter c is incremented,
3. when the timer reaches t and c < k, a message carrying the node infor-

mation is transmitted to neighbours in broadcast,
4. when the timer expires at I, the interval length is increased by setting I

to min(2 · I, Imax) and a new interval starts,
5. when a received message is inconsistent with the node information, then

I is set to Imin, and a new interval starts. Otherwise, nothing happens.

Trickle uses “polite gossip” to exchange information with its network neighbours.
It breaks time into dynamically adjustable intervals, and at a random point in
each interval, it considers broadcasting the information it holds. If Trickle has
already heard several other nodes gossip the same information in this interval,
it politely stays quiet: “repeating what someone else has said is rude” [25].

Motivation and Related Work. As it may show from Trickle, popular gossip proto-
cols are sophisticated and complex on the nature of applied control on node trans-
missions. For that reason, most of the validation effort of this class of protocols
relies mainly on testbeds or simulations, and at a less extend on analytical meth-
ods, more exhaustive, yet they lack automation: among the latter, we can cite
those developed for Trickle in [7,12,19,28,31]. On the other hand, formal meth-
ods and in particular model-checking [11] come with a high degree of automation.
They consider computational models which, by its nature, delimit the perimeter
of the analysis and the kind of properties to be verified. The survey [9] overviews
many relevant works on applying formal methods on WSN protocols, including
gossip-based protocols. The following papers [15,20,32–34]) have successfully
applied model-checking on gossip protocols, among which [15,33,34] concern
Trickle. The early work [15] proposed formal models for WSN based on classic
process algebras. The work developed a simplified model of Trickle for illus-
tration purposes, then translated into a network of Timed Automata (TA) [2]
supported by the model-checker UPPAAL. In their model, Trickle intervals are
not adjustable and are of fixed length, which restricts the coverage of performed
analyses. More recently, authors in [33,34] have proposed model-checking tech-
niques for WSN, and Trickle has been proposed for illustration as well. The
work [34] provides formal semantics for a subset of NesC programs used to built
TinyOS [24] applications; such semantics have been implemented in the model-
checking framework PAT [26] which supports TA too. The work [33] focuses

96 B. Bannour et al.

on combining probabilistic model checking provided by the tool PRISM [21]
with automated debugging algorithms in order to find pathological typologies
which cause some failure: typically in case of Trickle, it is about finding the
topology pattern that prevents recent information from being spread. In both
works [33,34], Trickle models have not been given. In this paper, we are inter-
ested in the distributed nature of WSN nodes [31], that is they are dephased
by some duration because often they do not share a common zero as classi-
cally in distributed systems. Gossip protocols, Trickle included, do not have any
assumption on nodes that should be synchronized. The control they provide on
transmission instants is usually implemented by introducing some time random-
ness to benefit from desynchronized nodes. Besides, inline with such assumption,
we consider asynchronous communications which can take time to deliver data,
all previous works have not taken into account such desynchronized hypothesis.

Contribution and Paper Outline. We provide formal models for Trickle as
Extended Timed Automata (XTA) in which data can be used to define com-
putations, random updates, constraints on clocks and communication actions.
A network of XTA can then be designed to form the overall Trickle topology
of nodes. The network is endowed with operational semantics in which XTA
communicate their data via unbounded queues. In this paper, we are interested
in highlighting some situations of updated or outdated nodes using reachability
properties under the desynchronized assumption. To assess such properties on
XTA, which are more expressive than classical TA because they introduce data,
we propose to combine model-checking [11] with symbolic execution [18]. The
latter virtually executes models (or code) for symbolic input parameters rather
than concrete values. Each execution path is associated with logical constraints
on those input parameters computed at each execution step, the so-called Path
Conditions (PC). PCs are a compact representation of classes of actual values
for input parameters for executing those paths; they can be solved using SMT
solvers such as CVC4 [6] or Z3 [13]. Symbolic execution can be applied on timed
models (e.g., [4]).

Yet enumerating all execution paths to check a property of interest is com-
binatorial, this is an identified problem of the technique that we have experi-
mented as well on some early work on Trickle [5,30]. The idea is then to apply
model-checking first on XTA in which data is numeric and random updates
are restricted to some values, yet clock constraints are handled as usual by
zone-based abstraction implemented in UPPAAL using the efficient Difference
Bounded Matrices data structure (DBM) [14]. In case the property is verified,
the corresponding sequence of transitions of a solution is used to guide symbolic
execution. We experiment with the combined techniques in UPPAAL and in
the symbolic execution tool DIVERSITY [3]. The rest of the paper is organized
as follows. Section 2 introduces the formal model of the network of XTA and
its operational semantics. Section 3 proposes a Trickle model designed as a net-
work of XTA. Section 4 introduces our approach of combining model-checking
and symbolic execution to assess reachability properties and evaluates it on
UPPAAL-DIVERSITY connection. Section 5 concludes the paper.

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 97

2 Network of Extended Timed Automata

The model of Timed automata [2] is a well-established formalism for modelling
the timing behaviour of systems. This section defines syntax and semantics of an
extension of timed automata introducing data updates, communication actions
with data transmission, and non-trivial data-dependent time constraints. Those
appear in functional specification of systems, as in the specification of Trickle in
the introduction.

Data Domain. We use a universal data domain D to abstract all values of time
variables, called clocks as usual, and other data variables. Data variables can
be of any type, whereas clocks are typed in a time domain T ⊆ D which is
isomorphic to Q+, the set of positive rational numbers.

Data Valuations. For a set of data variables V , a data valuation is a type-
preserving mapping v : V → D. We canonically extend data valuation to usual
arithmetical expressions defined over V , i.e., v(e) is the value of e for the valua-
tion v. We denote by DV the set of all such valuations.

Data Formulae. The set F(V) of data formula f over V is either: an atomic
formula of the form true, false, e1 = e2, e1 ≺ e2, and e1 � e2 with ≺∈ {<,≤}
and �∈ {>,≥}: or built over those using usual connectives: conjunction (∧),
disjunction (∨), and negation (¬).

Sequential Data Updates. We consider sequential updates defined as follows:

u::= skip | x :=e1 | e1 ≺: x :≺ e2 | u1;u2 | if(f)then{u1}else{u2} | repeat(n){u1}
skip is the null update; x := e1 assigns the variable x with a new value denoted
by e1; e1 ≺: x :≺ e2 assigns x with a new random value bounded from below
by the value denoted by e1, the value of x is also bounded from above by the
value denoted by e2. Moreover, updates can be built using usual control primi-
tives: sequence (;), condition (if . . . then . . . else . . .) or counted-loop (repeat(n))
allowing the repetition of the enclosed update n times.

The set of update functions U(V) is defined by functions �u� from DV to
2(D

V). The set of valuations �u�(v) ∈ 2(D
V) is defined on the form of u as follows1:

�skip�(v)={v} (1)
�x:=e1�(v)={v[x→v(e1)]} (2)

�e1≺:x:≺e2�(v)={v[x→y]|v(e1)≺y≺v(e2)} (3)
�u1;u2�(v)={v′ | ∃v′′∈u1(v), v

′∈u2(v
′′)} (4)

�if(f)then{u1}else{u2}�(v)=u1(v) v(f) (5)
�if(f)then{u1}else{u2}�(v)=u2(v) ¬v(f) (6)

�repeat(n){u1}�(v)=�u1;repeat(n−1){u1}�(v) n>0 (7)
�repeat(0){u1}�(v)={v} (8)

1 Given a function h : A → B, a subset X ⊂ A, the function h′ = h[x → y, x ∈ X] is
defined as follows: h′(z) = y if z ∈ X otherwise h′(z) = h(z). In case X is a singleton
of the form {x}, we denote h′ = h[x → y] in short.

98 B. Bannour et al.

Clock Formulae. Given a set of clocks Cl disjointed from V (Cl ∩ V = ∅), a clock
valuation is a mapping w : Cl → T . With previous notation, the set G(Cl, V) of
clock formulas g over Cl and V is either an atomic formulas of the form true, false,
clk ≺ e or clk � e where e is an expression over V typed in time domain T ; or a
conjunction of those. The set of clock invariants I(Cl) is defined by conjunctions of
formulas of the form clk ≺ e. We define a universal valuation v ⊕ w : V ∪ Cl → D
as the resulting valuation which coincide with v and w on V and Cl respectively.
This valuation can be canonically extended to formulas as usual.

Communication Actions with Data. Given a set of interaction points, often called
ports, P , the set of communication actions C(P, V) contains two kind elements:
output actions of the form p!e which denotes an emission on some port p of a
piece of data corresponding to the current valuation of e; or input actions of
the form p?x which denotes a reception of a piece of data that is stored in the
variable x. Moreover, we consider the special action ε which denotes the absence
of communication action. The valuations of actions of the form p!e, p?x, and ε,
are defined by v(p!e) = p!v(e), v(p?x) = p?v(x), and v(ε) = ε respectively.

Extended Timed Automaton. An extended timed automaton (XTA in short) is
a tuple (L, l0, V, Cl, P, Tr, Inv) where L is a finite set of locations, l0 ∈ L is
the initial location, V is a set of variables, Cl is a set of clocks, P is a set of
ports, Tr ⊆ L × F(V) × G(Cl, V) × (C(P, V) ∪ {ε}) × U(V) × 2Cl × L is a set of
transitions, and Inv : L → I(Cl) is a state invariant mapping.

For a transition tr = (l, f, g, ca, u,R, l′) ∈ Tr, l and l′ are respectively the
source and target location of tr; f and g are respectively the data guard and
time guard of tr, i.e., enabling conditions on data variables and clocks; ca is
the communication action of tr; u is an update function through which data
variables are updated when tr is executed; and R ⊆ Cl is the set of clocks to be
reset.

The semantics of an XTA is a labeled transition system where states s are
triples (l, v, w) where l is a location, v and w are data and clock valuations
respectively. The transition relation is defined as follows:

– delay transition: (l, v, w) d−→ (l, v, w′) where for all clk ∈ Cl, w′(clk) =
w(clk) + d with some d ∈ T such that v ⊕ w′ |= Inv(l)

– action transition: (l, v, w) a−→ (l′, v′, w′) if and only if there exists a transition
(l, f, g, ca, u,R, l′) ∈ Tr:

• v ⊕ w |= f ∧ g,
• a = v(ca),
• v′ ∈ �u�(v),
• w′ = w[clk → 0, clk ∈ R].

In the following, we introduce a network of XTA which exchange data using
broadcast communication.

A Network of Extended Timed Automata. A network of XTA denoted by N =
((Ai)i∈{1,...,n},K) is defined as follows:

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 99

– (Ai)i∈{1,...,n} a family of XTA Ai = (Li, l
i
0, Vi, Cli, Pi, T ri, Invi) which do

not share variables and clocks, i.e., for all i, j ≤ n we have that Vi ∩ Vj = ∅,
Cli ∩ Clj = ∅, and Pi ∩ Pj = ∅,

– a total function K : PN → 2PN specifying connections between ports.

The set of all ports of N is denoted by PN =
⋃

i≤n Pi. Besides, the set of
all variables (resp. clock variables) of N is denoted by VN =

⋃
i≤n Vi (resp.

ClN =
⋃

i≤n Cli).
We make the hypothesis that latent data issued (potentially by different

sources) and targeting some internal port in delivered on that port in the order
they were sent, i.e., we will implement this using queues with a policy of first-
in-first-out (fifo). In the following, we denote by the function q : PN → D∗

the pending data in the network as being the content of queues associated with
receiving ports.

The semantics of a network of XTA is a labeled transition system in which:
states are tuples of the form S = ((l1, v1, w1), . . . , (ln, vn, wn), q) with initial
states S0 verify for all i ≤ n, li = li0; and transitions are defined as follows:

– delay transition:

((l1, v1, w1), . . . , (ln, vn, wn), q) d−→ ((l1, v1, w′
1), . . . , (ln, vn, w′

n), q)

iff for all i ≤ n there exists (li, vi, wi)
d−→ (li, vi, w′

i)
– internal output transition:

((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q) a−→
((l1, v1, w1), . . . , (l′i, v

′
i, w

′
i), . . . , (ln, vn, wn), q′)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w

′
i) with a = p!m, q′ is such that for all

port p1 either p1 ∈ K(p) then q′(p1) = q(p1).m otherwise q′(p1) = q(p1),
– internal input transition:

((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q) a−→
((l1, v1, w1), . . . , (l′i, v

′
i, w

′
i), . . . , (ln, vn, wn), q′)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w

′
i) with a = p?m, q(p) is not empty and

is of the form q(p) = m.q1, and q′ is such that q′(p) = q1 and for all p1 �= p
we have q′(p1) = q(p1),

– silent or external action transition:
((l1, v1, w1), . . . , (li, vi, wi), . . . , (ln, vn, wn), q) a−→

((l1, v1, w1), . . . , (l′i, v
′
i, w

′
i), . . . , (ln, vn, wn), q)

iff there exists (li, vi, wi)
a−→ (l′i, v

′
i, w

′
i) with a = ε or a = p!m (resp. a = p?m)

such that K(p) = ∅ (resp. for all p1, p �∈ K(p1)).

In a nutshell, the above definition shows that time advances in the same way for
all clocks of XTA forming the network. Besides, an internal emission p!m on a
port p has the effect of filling all the fifo associated to the ports of K(p) and an
internal reception p?m on port p consumes the first message stored in its fifo.

100 B. Bannour et al.

When a silent action or an external action (reception or an emission) occurs on
a port which is not connected to other XTA ports, it is executed with no effect
on fifo queues, since it is assumed to be connected to some implicit environment.

A run of the network is derived from the labelled transition system as a path
starting in an S0 and alternating delay transitions and action transitions. The
property we are interested in is the reachability of states S. A state S is reachable
iff there exists a run in which S occurs. In practice, such states are those which
satisfy some user-specified formula φ = f ∧ g on data and clocks.

Let us denote by tr-seq(r) the sequence of (syntactic) transitions in
⋃

i≤n Tri
covered by a run r. We recall that such sequence intertwines transitions of dif-
ferent automata composing the network based on induced fifo-communications
causalities discussed above.

Two runs r1 and r2 are said to be coverage equivalent if and only if
tr-seq(r1) = tr-seq(r2), i.e., they cover the same (syntactic) transitions sequence.

The equivalence classes characterized by this relation guide the symbolic
execution to search for all runs of a given class (as a symbolic path together with
its path condition). On the other hand, model-checking will be used to compute
some representative runs of the class that satisfy a reachability property φ. In
practice, from the latter, we extract the transition sequence that guides the
exploration performed by the symbolic execution.

3 Trickle Models

Trickle Node Behavior. We propose the XTA (L, Init, V, Cl, P, Tr, Inv) which
specifies Trickle behaviour of each node in the network, the automaton is
depicted in Fig. 1. The XTA has 5 locations.

L = {Init, Listen1, Listen2, Check1, Check2} in which Init is the initial
location. The clocks set is a singleton Cl = {clk} containing one clock used
to implement the Trickle timer. The set of variables contains 5 variables
V = {I, t, c,myv, rcv}: the former three variables I, t and c are Trickle vari-
ables which respectively represent the value of the current interval, the instant
of transmission and the counter value (whereas Imin, Imax, k are Trickle con-
stants). Without loss of generality, in this automaton, Trickle is used to maintain
consistency of version number across the network, the variable myv stores the
most recent version the node holds and rcv is used to store received versions
from neighbors.

The automaton has 10 transitions composing the set Tr, that we will overview
next together with meaning associated with state invariants defined by mapping
Inv. A node can be started at any time; this is captured by state invariant
Inv(Init) : true in location l0, which means that any duration can elapse in this
location. The transition Init → Listen1 is fired to start the Trickle behaviour. It
sets I to Imin, assigns counter c and clk with 0, and finally chooses a the transmis-
sion time I/2 ≤: t :< I within the second-half of the interval current interval I.
The state invariant Inv(Listen1) : clk ≤ t constrain time elapsing to be bounded
by t. When clk reaches t, there two possible behaviors: either the transmission

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 101

Init

Listen1

Listen2
Check2Check1

[c < k] [clk = t]
Version ! myv

[c ≥ k] [clk = t]

[clk = I]
doubleInterval

{clk}

resetInterval
{clk}

doubleInterval :
if (2 · I ≤ Imax)
I := 2 · I

else
I := Imax ;

I/2 ≤: t :< I ;
c := 0

updateVersion :
if (myv ≤ rcv)
myv := rcv

else
skip ;

resetInterval :
I := Imin ;
I/2 ≤: t :< I ;
c := 0

[clk ≤ t]

[true]

[clk ≤ I]

[¬isConsistent]
updateVersion
resetInterval

{clk}

[¬isConsistent]
updateVersion
resetInterval

{clk}

[isConsistent]
[isConsistent]
c := c + 1

Version ? rcv
isConsistent :=

rcv = myv ;

Version ? rcv
isConsistent :=

rcv = myv ;

[clk ≤ 0][clk ≤ 0]

Fig. 1. An extended timed automaton (XTA) of a Trickle node behavior

occurs given c < k is fulfilled (horizontal transition Listen1 → Listen2 with
action V ersion?rcv), otherwise the transmission is suppressed (curved transi-
tion Listen1 → Listen2 with action ε). A first reception handling is defined by
transition Listen1 → Check1. Once started, the automaton satisfies the input
enable less property: in every state (Listen1 or Listen2), it is possible to receive
every input (action V ersion?rcv). Each time, a version is received, it is com-
pared to the current version of the node: in case of consistency (same version
rcv = myv), the counter c is incremented (c := c + 1), we recall that the latter
counts redundant versions; otherwise (case of inconsistency) a new interval is
started, and the node updated its version if it is older.

Listen1
Listen2 ExtCheck2ExtCheck1

[myv < rcv]
myv := rcv
resetInterval[myv < rcv]

myv := rcv
resetInterval

[myv ≥ rcv]

[myv ≥ rcv]

[clk ≤ 0][clk ≤ 0]
ExtVersion ? rcvExtVersion ? rcv

node1 node2

node3 node4

external
source

gateway

range

Fig. 2. Setting a network of XTA for a Trickle dissemination

State invariant Inv(Listen2) : clk ≤ I constrains time elapsing to be at most
of the value denoted by current interval length I. Subsequently, a new interval is

102 B. Bannour et al.

started by doubling I (until Imax) and a new t is chosen as previous (transition
Listen2 → Listen1). Similar reception handling as in location Listen1 is defined.

Network Modelling. A transmission can be associated with several receivers,
which are exactly those situated within the broadcast range of the node, i.e.,
they are its neighbours. A typical Trickle topology contains some gateway node
node1 in Fig. 2, which can receive versions to be disseminated across the net-
work from an external source. A network of XTA one per node can be naturally
designed for such topology. Among those, XTA of gateway nodes are extended
with extra transitions which allows the reception of new versions from the
external source (transitions Listen1 → ExtCheck1 and Listen2 → ExtCheck2
with input ExtV ersion?myv). The connections between XTA ports, defined by
function K, are inferred from topology connections: e.g., K(node1.V ersion) =
{noed2.V ersion, node3.V ersion} for the four-nodes topology depicted by the
bidirectional graph in Fig. 2. Note that ports of gateway nodes are implicitly
connected to external source and can receive any value.

v2
0 : I → 0

t → 0
c → 0
myv → 0
rcv → 0

w2
0 clk → 0

v1
0 : I → 0

t → 0
c → 0
myv → 0
rcv → 0

w1
0 : clk → 0

v1
1 : I → 8

t → 13/2
w1

1 : clk → 10

w2
1 : clk → 10

0

q0 : node2.V ersion → ε

S0 : (s10, s20, q0)

S1 : (s11, s21, q0)

S2 : (s12, s21, q0)

S3 : (s13, s22, q0)

S4 : (s13, s23, q0)

S5 : (s14, s24, q0)

S6 : (s15, s24, q1)

S7 : (s16, s25, q1)

S8 : (s17, s25, q1)

S8 : (s18, s26, q1)

S8 : (s18, s27, q2)

ε

10

s10 : (node1) s20 : (node2)

Init, Init

Listen1, Init

Listen1, Init

Init, Init

Listen1, Listen1

Listen1, Listen1

Listen2, Listen1

Listen1, Listen1

Listen1, Listen1

Listen1, Listen1

Listen1, Check1

s12 : (node1)

V ersion!0 V ersion?0

node1 node2

10

t = 13/2
15

5

ε

s21 : (node2)

q1 : node2.V ersion → 0
q2 : node2.V ersion → ε

I
=

8
I

=
1
6

suppress transmission

c = 1

c = 0

c ≥ k

3/2

V ersion!0

V ersion?0

Imin = 8
Imax = 16
k = 1

time

3/2

ε

5/2

18

t = 7

clk = 11/2

Fig. 3. A run of a two-nodes network of XTA.

Illustration of Network Runs. Figure 3 depicts a simple sequence diagram
together with a run of a simple two-nodes network of XTA. The run shows
that both nodes exchange a version of value 0, that they both initially hold (see
data valuations in initial state S0). As the redundancy constant k is set to 1, the
receiver node gets its counter saturated, i.e., c reaches k. Therefore, it suppresses
its transmission. This is a typical trickle behaviour which reduces the number of
transmissions (gossip) when the neighbourhood is up-to-date.

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 103

4 Exploring Trickle with UPPAAL and DIVERSITY

UPPAAL Model. We have created a model in UPPAAL, which corresponds to
the network of XTA presented in Sect. 3. The UPPAAL model has a very similar
structure in terms of states and transitions. Locations Check1 and Check2 have
been declared as Committed (marked with a “C”) which means that time cannot
elapse in this location as intended in the original model. Also, such locations have
a higher priority to be taken than non-committed ones. This reduces interleaving
between automata if the latter are not executing on their turn transitions from
committed locations. To implement asynchronous communication actions, we
have created c-like functions in UPPAAL which implement fifo operations on
queues. Unlike XTA which uses unbounded queues, those are arrays of fixed
parameter size QUEUE SIZE.

Fig. 4. UPPAAL transitions.

In UPPAAL, clocks are only compared to inte-
ger expressions, and clock guards are essentially
conjunctions. This does not allow the specification
of guards of the form clk ≤ t where t can take
any random value in the dense interval [I/2, I[.
In XTA, those values are (isomorphic to) positive
rationals (Q+). In Fig. 4, we propose a UPPAAL
pattern so that values assigned with t are positive
integers (Z+). This is compliant with the nature
of clock constraints supported by UPPAAL, i.e.,
clocks in guards are bounded by integer expres-
sions. On the other hand, UPPAAL provides a
select statement s : [L,U] on transition which
selects a random value for an integer variable s
within a specified integer interval. Interval bounds
L and U are necessarily constants. It is equivalent
to an update L ≤: s :≤ U in XTA. The pattern
allows the selection of at most N values for t within the current interval [I/2, I[:
first an integer s is selected in the interval [0, N − 1], s is then used to assign t
with a value denoted by the expression e = (N + s) · I/(2 · N), however t is an
integer variable, so t will be assigned exactly by the greatest integer less than
or equal to the valuation of e. For instance, for I = 8 (resp. for I = 16) and
N = 4, t can be assigned with the four integers 4, 5, 6 and 7 (resp. 8, 10, 12
and 14). The variable t can have an infinite number of possible values within
the second half of I; the pattern allows exploring with UPPAAL just a few
(at most N integers, we experiment with small values). But since we are inter-
ested in reachability, if a solution exists for those, the verification concludes.

Model Exploration in UPPAAL. The tool uses the notion of zone to represent
the set of valuations of clocks symbolically. A zone is defined by the conjunction
of difference constraints of the form clk ≺ s or clk − clk′ ≺ s where s is an
integer. The simulation graph in UPPAAL is composed of nodes of the form
((l1, v1), . . . , (ln, vn), Z, v) where li is the location (resp. vi is the data valuation)

104 B. Bannour et al.

for the ith automaton, Z is a zone over clocks of the n involved automata, and
v is the valuation of global or shared data variables. An example of such node is
((Listen1, v

1
0), (Init, v20), node1.clk ≤ 4, v0) with notation of Fig. 3, v0 associates

Trickle constants to their values, it sets queues to empty at start. The exploration
of the graph uses inclusion on zones which checks whether a zone of a succes-
sor node in the graph is already covered by some zones of previously explored
nodes. In case of inclusion, data valuations must coincide in order to prune the
search. This helps master the search when infinite cycles exist. Intuitively, a typ-
ical cycle is when all nodes reach Imax, share the same version and the content
of the queues coincides, then same behaviours will start over again. To enable
detect this situation: (i) we choose small values for Imax and (ii) we stop incre-
ment the counter c once it reaches k (see transition Check1 → Listen1 in Fig. 4).
Note that saturation is an extra clock of the node that will be discussed later;
obviously, this has no effect on Trickle behaviour since the decision to suppress
transmission depends only on reaching exactly k. In fact, after exchanging k
or many more redundant versions is similar concerning subsequent behaviours.
Otherwise, counter c will be assigned differently depending on the number of
received versions. In which case, matching data valuations fails despite zone
inclusion, and the cycle never exit. UPPAAL provides classical search strategies
Depth-First Search (DFS) and Breadth-First Search (BFS), as well as Ran-
dom Depth-First Search (RDFS). As we consider reachability, so one solution is
wanted, DFS or RDFS are typically the most efficient option according to the
tool documentation. When applying a DFS (or RDFS), inclusion on zones is of
practical use as is it avoids getting lost in an infinite cycle.

Reachability Properties in UPPAAL. The tool supports a subset of Computation
Tree Logic (CTL) [10]. As we are interested in reachability, we propose to use
CTL formulae of the form E♦φ where φ = f ∧ g is a formula on data variables
and clocks. The satisfaction of such formula is defined on the tree with root an
S0 extracted from the labelled transition system of the network (see Sect. 2).
The operator E quantifies over paths (or runs) of such a tree: it checks if there
exists a path (with root S0) in the tree satisfying the sub formula ♦φ, the latter
on the other hand is satisfied by that path if a state S satisfying φ occurs in the
path. A simple property is E♦(node2.c ≥ k∧node2.clk = node2.I). The property
is satisfied by the run discussed in Fig. 3, in which the node node2 suppresses
its transmission. Let us discuss the following two properties expressed for the
four-nodes topology of Fig. 2.

Updated: E♦((node1.myv = NEW) ∧ (node2.myv = NEW)∧
(node3.myv = NEW) ∧ (node4.myv =

NEW))
Outdated: E♦((node4.isStarted) ∧ (node4.myv = OLD)∧

(node2.myv = NEW)∧(node2.c ≥ k)∧(node3.myv = NEW)∧(node3.c ≥ k))∧
((node2.saturation ≥ D) ∧ (node3.saturation ≥ D))

The first property states that it is possible that all the nodes are updated.
The second property states that there exists a node which is still outdated (holds
an old version) while its neighbours are all updated, yet they have suppressed

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 105

their transmissions. We use an extra clock saturation per node which is reset
when the counter c reaches k (see Fig. 4). The clock measures the delay elapsed
since then, and the formula requires that such delay is bounded by a parameter
D > 0. This situation is not desirable, especially after having observed numerous
exchanges of messages in the networks.

Init

true

Listen1

clk <= t

I := Imin;
newfresh(t);
guard(I/2<= t <I);
c := 0;
clk := 0;

ec< id:0 , eval 1 , height:0 , width:1 >
(node1:Init , node2:Init)

PC: (z_1 >= 0)

Imin = Imin, Imax = Imax, k = 1
node1.myv = node1.myv_0

node1.clk = z_1
node1.I = node1.I_0
node1.t = node1.t_0
node1.c = node1.c_0

node1.consistent = node1.consistent_0
node1.rcv = node1.rcv_0

node2.myv = node2.myv_0
node2.clk = z_1

node2.I = node2.I_0
node2.t = node2.t_0
node2.c = node2.c_0

node2.consistent = node2.consistent_0
node2.rcv = node2.rcv_0
node1.queue = fifo { }
node2.queue = fifo { }

ec< id:1 , eval 2 , height:1 , width:1 >
(node1:Init , node2:Init)

PC: (z_1 >= 0)

ec< id:2 , eval 3 , height:2 , width:2 >
(node1:Listen1 , node2:Init)

PC: (((Imin / 2) <= node1.t_1 < Imin)
&& (z_3 <= node1.t_1) && ((z_1 + z_3) >= 0) &&

(node1.t_1 >= 0) && (z_1 >= 0) && (z_3 >= 0))

node1.clk = z_3
node1.I = Imin

node1.t = node1.t_1
node1.c = 0

node2.clk = (z_1 + z_3)

fired node1.init

Fig. 5. Symbolic execution of a DIVERSITY transition.

DIVERSITY Models and Symbolic Execution. DIVERSITY [3] tools provides
symbolic execution for state-based models (e.g., [4]) involving data expressions,
data and clock guards. Input parameters or fresh symbols (they are used only
once) can substitute uninitialized variables, reception variables used in commu-
nication with the external environment or any variable using a dedicated explicit
newfresh statement. The latter is of the form newfresh(x); it associates the vari-
able x with a new fresh symbol. We have developed a DIVERSITY model of
the XTA network for Trickle, as the UPPAAL model it has a similar structure
in terms of states and transitions. DIVERSITY provides communication over
unbounded fifo queues. We declare a single queue per node as each node owns
only one port for internal communications. Those are initially empty, and their
size is automatically adjusted by the tool as communication actions are evalu-
ated. Figure 5 depicts a DIVERSITY transition (Init → Listen1). It suggests a
pattern in DIVERSITY which allows to assign the variable t with a random value
within current interval [I/2, I[: newfresh(t) associates with t with a new fresh
symbol, the latter is constrained by subsequent guard statement I/2 ≤ t < I. It
is possible in DIVERSITY to declare Imin, Imax, I and t to be typed as a posi-
tive rational numbers (Q+) so as to be compatible with clock clk. DIVERSITY
computes the so-called symbolic tree in which nodes are called execution contexts
ec: they store pieces of information about the execution including the current
location, about the transition which allows reaching the context, and impor-
tantly about Path Conditions and Substitutions of data variables, clocks, queue
places, . . . by arithmetical expressions over input parameters. Figure 5 depicts
the symbolic execution step of the previous transition (being of node1) from
ec1. The context ec2 is reached, the transmission variable t is substitutes by a
new symbol node1.t1 (substituted by t0 in initial context ec0), t1 is constrained
by the PC sub-formula ((Imin/2) ≤ node1.t1 < Imin). Note that sub-formula

106 B. Bannour et al.

(z3 ≤ node1.t1) shows that time elapsing in ec2 (denoted by duration symbol
z3) is bounded by the value denoted by node1.t1. This condition corresponds to
the evaluation of clock invariant clk ≤ t in location Init for node1 (node1.clk is
substituted by z3 in ec2). Symbolic execution techniques characterize all intended
runs. DIVERSITY provides different classical search strategies which can be used
to unfold the symbolic tree from the initial context ec0 up to criteria on tree
size (depth, width or number of nodes). Naturally, this results in a huge tree.
DIVERSITY provides heuristic search [3] guided by a user-specified sequence of
transitions, possibly non-consecutive as it is difficult in general to guess strict
sequencing when it comes to automata network. We use UPPAAL to find such
a sequence corresponding to some runs satisfying a user-specified property. Let
us now overview the connection between both tools.

V ersion!myv0
V ersion?myv0

node1 node2

suppress transmission at t1

node1.myv0 = node2.myv0

UPPAAL DIVERSITY

Network of XTA for Trickle

property E♦φ

an initial

reachability

concrete S0

Nupp Ndiv

runs from
a given S0

tr-seq

parameters:
N values for

transmission instant t

max. QUEUE SIZE

N

Imin, Imax,
t ∈ Q+

Imin, Imax,
t ∈ Z+

all runs from any S0

(Imin/2) ≤ node2.t1 < Imin

Path Condition (PC)

@z1 + . . . + z6

z1 + . . . + z6 = t1

timestamp

. . .

transitions
sequence

tr-seq coverage:

Fig. 6. Workflow UPPAAL-DIVERSITY. (Color figure online)

Tools Workflow and Experiments. The workflow is given in Fig. 6. UPPAAL
takes as input a user-specified property E♦φ. The aim is to check the property
from an initial state S0. Parameters on the number N of transmission instants
t to be selected within the Trickle interval have to be given together with a
bound QUEUE SIZE on communication queues. The property is assessed on
the UPPAAL model Nupp. In case of the property is verified, i.e., there exists
at least a run from S0 which satisfies φ (such runs are schematically depicted
by a blue ellipse), then the sequence of covering transitions tr-seq is derived
from the UPPAAL solution. The idea now is to compute the equivalence class
composed by all runs from any sates S0 which are covered by the sequence tr-
seq. For this, a symbolic exploration guided by the sequence is conducted on
the DIVERSITY model Ndiv, a symbolic path together with its Path Condition
(PC) is obtained then. The path is naturally feasible (satisfiability of its PC is
assessed with SMT solvers). It identifies all runs covered by tr-seq with dense
domain for Imin, Imax and t as being positive rationals (those are schematically
depicted by a green ellipse). Since the path often represents pairwise communi-
cation actions from different automata, it can be depicted in a natural manner

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 107

as a Sequence Diagram (SD). Figure 7 depicts an SD which highlights an out-
dated node situation, that of node4. It has been computed by DIVERSITY for
the four-nodes grid topology given in Fig. 2. The situation is atypical: neighbors
of node4, that is node2 and node3 are first updated by gateway node1 with a
new version (green messages), they hence reset their interval to Imin; right away,
node4 gets them to reset their interval again by transmitting its old version (blue
messages), their transmissions are postponed; this somehow gives node1 time to
retransmit the new version and saturate them (orange messages); therefore they
suppress their transmissions for node4. This unfortunate circumstance for node4
can be prevented by increasing the redundancy constant so that its neighbors,
node2 and node3, can still transmit, yet this comes at a cost, the number of
messages increases for the entire nodes lifetime. Or node4 can still be updated
later because it together with node1 will get their intervals doubled, and their
transmission instants are at least dephased of Imin of those of node2 and node3
which leaves them time to update node4. This is in favour of using Trickle, even if
a node is in such outdated situation, it will not remain for a long time, thanks to
the dynamic interval adjustment which avoids flood the network with messages.
We have experimented with more nodes in the grid (up to 9), Table 1 reports
on those. Updated and Outdated properties were successfully checked, which is
satisfactory given the non-trivial kind of interactions in case of outdated nodes.

Table 1. The nodes graph is bidirectional in the form of a grid topology (See Fig. 2),
7(2) (resp. 7(3)) denotes that node7 is two blocks (resp. three blocks) from the gateway
node1. Results measured on an Intel Core i7-7920HQ processor with RAM 32 GB,
the redundancy constant k was set to 1 the minimum transmission case in Trickle.
DIVERSITY time includes PC check with CVC4. UPPAAL concluded in few more
trials inline with the exponential growth in running time.

Nodes Updated Outdated

UPPAAL DIVERSITY Messages UPPAAL DIVERSITY Messages

3 1ms 1 s 542ms 7 12ms 4 s 156ms 8

4 3ms 2 s 731ms 16 984ms 9 s 796ms 12

5 4ms 9 s 395ms 12 168ms 11 s 828ms 12

6 7ms 32 s 750ms 21 7 s 621ms 1m 28 s 953ms 23

7(2) 6ms 29 s 453ms 29 5 s 772ms 2m 5 s 375ms 26

7(3) 5ms 49 s 375ms 29 3 s 227ms 1m 42 s 718ms 24

8 8ms 59 s 640ms 41 8m 9 s 503ms 9m 36 s 375ms 42

9 9ms 2m 58 s 408ms 64 9m 19 s 22ms 15m 36 s 11ms 62

108 B. Bannour et al.

node1

node1

node2

node2

node3

node3

node4

node4

PATH 1 ec< id:316 , eval 19, height:18 >

((Imin / 2) <= t_1 < Imin)
&& (z_5 <= t_1) ((Imin / 2) <= t_2 < Imin)

&& ((z_5 + z_8) <= t_1)
&& (z_8 <= t_2)

((Imin / 2) <= t_3 < Imin)
&& ((z_12 + z_5 + z_8) <= t_1)
&& ((z_12 + z_8) <= t_2)
&& (z_12 <= t_3)

((Imin / 2) <= t_4 < Imin)
&& ((z_12 + z_16) <= t_3)
&& ((z_12 + z_16 + z_5 + z_8) <= t_1)
&& ((z_12 + z_16 + z_8) <= t_2)
&& (z_16 <= t_4)

((node1.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_5 < Imin)
&& ((z_12 + z_16 + z_24) <= t_3)
&& ((z_12 + z_16 + z_24 + z_8) <= t_2)
&& ((z_16 + z_24) <= t_4) && (z_24 <= t_5))

ExtVersion ? node1.rcv_1
@ (z_1 + z_12

+ z_16 + z_5 + z_8)

((z_24 == t_5) && ((z_12 + z_16 + z_24 + z_30) <= t_3)
&& ((z_12 + z_16 + z_24 + z_30 + z_8) <= t_2)
&& ((z_16 + z_24 + z_30) <= t_4) && ((z_24 + z_30) <= Imin))

Version ! node1.rcv_1 @ (z_1 + z_12
+ z_16 + z_24 + z_5 + z_8)

(node2.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_4 < Imin)
&& ((z_12 + z_16 + z_24 + z_30 + z_34) <= t_3)
&& ((z_12 + z_16 + z_24 + z_30 + z_8) <= t_2)
&& ((z_16 + z_24 + z_30 + z_34) <= t_4)
&& ((z_24 + z_30 + z_34) <= Imin) && (z_34 <= t_4)

Version ? node1.rcv_1
@ (z_1 + z_12 + z_16
+ z_24 + z_5 + z_8)

((node3.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_7 < Imin)
&& ((z_12 + z_16 + z_24 + z_30 + z_34) <= t_3)
&& ((z_16 + z_24 + z_30 + z_34 + z_39) <= t_4)
&& ((z_24 + z_30 + z_34 + z_39) <= Imin)
&& ((z_34 + z_39) <= t_4) && (z_39 <= t_7))

Version ? node1.rcv_1
@ (z_1 + z_12
+ z_16 + z_24
+ z_5 + z_8)

(((z_16 + z_24 + z_30 + z_34 + z_39) == t_4)
&& ((z_16 + z_24 + z_30 + z_34 + z_39 + z_49) <= Imin)
&& ((z_24 + z_30 + z_34 + z_39 + z_49) <= Imin)
&& ((z_34 + z_39 + z_49) <= t_4) && ((z_39 + z_49) <= t_7))

Version ! node4.myv_0 @ (z_1 + z_12 + z_16
+ z_24 + z_30 + z_34 + z_39 + z_5 + z_8))

(((z_24 + z_30 + z_34 + z_39 + z_49) == Imin)
&& (Imin <= t_14 < (2 * Imin))
&& ((z_16 + z_24 + z_30 + z_34 + z_39 + z_49 + z_70) <= Imin)
&& ((z_34 + z_39 + z_49 + z_70) <= t_4)
&& ((z_39 + z_49 + z_70) <= t_7) && (z_70 <= t_14))

(((z_16 + z_24 + z_30 + z_34 + z_39 + z_49 + z_70) == Imin)
&& (Imin <= t_9 < (2 * Imin))
&& ((z_101 + z_34 + z_39 + z_49 + z_70) <= t_4)
&& ((z_101 + z_39 + z_49 + z_70) <= t_7)
&& ((z_101 + z_70) <= t_14) && (z_101 <= t_9))

((node4.myv_0 < node1.rcv_1)) && ((Imin / 2) <= t_21 < Imin)
&& ((z_101 + z_137) <= t_9) && ((z_101 + z_137 + z_39 + z_49 + z_70) <= t_7)
&& ((z_101 + z_137 + z_70) <= t_14)
&& ((z_101 + z_34 + z_39 + z_49 + z_70) <= t_4) && (z_137 <= t_21))

Version ? node4.myv_0
@ (z_1 + z_12
+ z_16 + z_24
+ z_30 + z_34
+ z_39 + z_5 + z_8)

((node4.myv_0 < node1.rcv_1) && ((Imin / 2) <= t_35 < Imin)
&& ((z_101 + z_137 + z_164) <= t_9)
&& ((z_101 + z_137 + z_164 + z_70) <= t_14)
&& ((z_101 + z_137 + z_39 + z_49 + z_70) <= t_7)
&& ((z_137 + z_164) <= t_21) && (z_164 <= t_35))

Version ? node4.myv_0
@ (z_1 + z_12
+ z_16 + z_24
+ z_30 + z_34
+ z_39 + z_5 + z_8)

(((z_101 + z_137 + z_164 + z_70) == t_14)
&& ((z_101 + z_137 + z_164 + z_202) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202) <= t_21) && ((z_164 + z_202) <= t_35))

Version ! node1.rcv_1 @ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164 + z_24 + z_30
+ z_34 + z_39 + z_49 + z_5 + z_70 + z_8)

(((z_101 + z_137 + z_164 + z_202 + z_258) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202) <= t_21)
&& ((z_137 + z_164 + z_202 + z_258) <= t_21) && ((z_164 + z_202 + z_258) <= t_35))

Version ? node1.rcv_1
@ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164
+ z_24 + z_30 + z_34

+ z_39 + z_49 + z_5
+ z_70 + z_8)

(((z_101 + z_137 + z_164 + z_202 + z_258 + z_301) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301) <= t_21)
&& ((z_164 + z_202 + z_258) <= t_35) && ((z_164 + z_202 + z_258 + z_301) <= t_35))

Version ? node1.rcv_1
@ (z_1 + z_101 + z_12
+ z_137 + z_16 + z_164
+ z_24 + z_30 + z_34
+ z_39 + z_49 + z_5
+ z_70 + z_8)

(((z_137 + z_164 + z_202 + z_258 + z_301) == t_21)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301 + z_311) <= Imin)
&& ((z_164 + z_202 + z_258 + z_301 + z_311) <= t_35))

(((z_164 + z_202 + z_258 + z_301 + z_311) == t_35)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= t_9)
&& ((z_101 + z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315 + z_70) <= (2 * Imin))
&& ((z_137 + z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= Imin)
&& ((z_164 + z_202 + z_258 + z_301 + z_311 + z_315) <= Imin))

Fig. 7. Outdated node situation - Sequence Diagram generated by DIVERSITY. (Color
figure online)

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 109

5 Conclusion

We have developed first models for desynchronized Trickle network. Those mod-
els use data to express adjustable transmission intervals and abstract transmit-
ted information. To assess reachability properties, we combine model checking
and symbolic execution. If the property is verified on the model in which data
is concrete, we derive from the returned solution a sequence of transitions that
guides the symbolic execution to compute the corresponding symbolic path. The
latter is a compact representation of the equivalence class of behaviours for the
transitions coverage and can be depicted in the user-friendly format of sequence
diagrams to enable their understanding. For future work, we plan to extract
from the model-checking solution more information about structural coverage of
the mini-language of updates on transitions to refine the equivalence classes by
symbolic execution. We also plan to experiment with other gossip protocols. We
believe that our approach can be of practical use to highlight for those non-trivial
nodes interactions and give hints on their benefit for transmissions control.

Acknowledgment. This work was financially supported by European commission
through ECSEL-JU 2018 program under grant agreement No. 826276.

References

1. RPL: IPv6 routing protocol for low-power and lossy networks, request for com-
ments: 6550. Technical report, Cooper Power Systems and Cisco Systems and
Stanford University, March 2012 (2012)

2. Alur, R., Dill, D.: A theory of timed automata. J. Theoret. Comput. Sci. 126,
183–235 (1994)

3. Arnaud, M., Bannour, B., Lapitre, A.: An illustrative use case of the DIVERSITY
platform based on UML interaction scenarios. Electr. Notes Theoret. Comput. Sci.
320, 21–34 (2016)

4. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-line test case generation
for timed symbolic model-based conformance testing. In: Nielsen, B., Weise, C.
(eds.) ICTSS 2012. LNCS, vol. 7641, pp. 119–135. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34691-0 10

5. Bannour, B., Lapitre, A.: Heuristic-aided symbolic simulation for trickle-
based wireless sensors networks configuration. In: International Workshop on
RAPIDO@HiPEAC. ACM (2020)

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

7. Becker, M., Kuladinithi, K., Görg, C.: Modelling and simulating the Trickle algo-
rithm. In: Pentikousis, K., Aguiar, R., Sargento, S., Agüero, R. (eds.) MONAMI
2011. LNICST, vol. 97, pp. 135–144. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30422-4 10

8. Breza, M.J., McCann, J.A.: Lessons in implementing bio-inspired algorithms on
wireless sensor networks. In: International Conference on NASA/ESA. IEEE (2008)

https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-30422-4_10
https://doi.org/10.1007/978-3-642-30422-4_10

110 B. Bannour et al.

9. Chen, Z., Zhang, D., Zhu, R., Ma, Y., Yin, P., Xie, F.: A review of automated
formal verification of ad hoc routing protocols for wireless sensor networks. CoRR,
abs/1305.7410 (2013)

10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking. LNCS, vol. 5000, pp. 196–215. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 12

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

12. Coladon, T., Vucinic, M., Tourancheau, B.: Multiple redundancy constants with
trickle. In: PIMRC. IEEE (2015)

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

14. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

15. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor
networks: an experiment of formal methods. In: Liu, S., Maibaum, T., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 318–337. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88194-0 20

16. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: IEEE ICLCN (2004)

17. Hui, J., Kelsey, R.: Multicast protocol for low-power and lossy networks, request
for comments: 7731. Technical report, Silicon Labs (2016)

18. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 385–394
(1976)

19. Kermajani, H.R., Gomez, C., Arshad, M.H.: Modeling the message count of the
Trickle algorithm in a steady-state, static wireless sensor network. IEEE Commun.
Lett. 16, 1960–1963 (2012)

20. Kwiatkowska, M.Z., Norman, G., Parker, D.: Analysis of a gossip protocol in
PRISM. SIGMETRICS Perform. Eval. Rev. 36, 17–22 (2008)

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

22. Lee, B., Song, H.K., Suh, Y., Oh, K.H., Youn, H.Y.: Energy-efficient gossiping
protocol of WSN with realtime streaming data. In: International Conference on
DASC (2014)

23. Levis, P., Clausen, T., Hui, J., Gnawali, O., Ko, J.: The Trickle algorithm, request
for comments: 6206. Technical report, March 2011 (2011)

24. Levis, P., et al.: TinyOS: an operating system for sensor networks. In: Weber, W.,
Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence. Springer, Heidelberg (2005)

25. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: International
Symposium on NSDI. USENIX Association (2004)

26. Liu, Y., Sun, J., Dong, J.S.: PAT 3: an extensible architecture for building multi-
domain model checkers. In: Dohi, T., Cukic, B. (eds.) International Conference on
ISSRE. IEEE (2011)

https://doi.org/10.1007/978-3-540-69850-0_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-540-88194-0_20
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking 111

27. Meyfroyt, T., Borst, S.C., Boxma, O.J., Denteneer, D.: On the scalability and
message count of Trickle-based broadcasting schemes. Queueing Syst. 81, 203–230
(2015)

28. Meyfroyt, T.M.M.: An analytic evaluation of the Trickle algorithm: towards effi-
cient, fair, fast and reliable data dissemination. In: WoWMoM. IEEE (2015)

29. Nan, X., Fei, M., Yang, T.: Randomized and efficient time synchronization in
dynamic wireless sensor networks: a gossip-consensus-based approach. Complexity
2018, 1–16 (2018)

30. Nguyen, N.M.T., Bannour, B., Lapitre, A., Le Gall, P.: Behavioral models and
scenario selection for testing IoT Trickle-based lossy multicast networks. In: Inter-
national Workshop on VVIoT@ICST. IEEE (2019)

31. Vucinic, M., Król, M., Jonglez, B., Coladon, T., Tourancheau, B.: Trickle-D: high
fairness and low transmission load with dynamic redundancy. IEEE IoT J. 4, 1477–
1488 (2017)

32. Webster, M., Breza, M., Dixon, C., Fisher, M., McCann, J.A.: Formal verification
of synchronisation, gossip and environmental effects for wireless sensor networks.
In: ECEASST (2018)

33. Woehrle, M., Bakhshi, R., Mousavi, M.R.: Mechanized extraction of topology anti-
patterns in wireless networks. In: Derrick, J., Gnesi, S., Latella, D., Treharne,
H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 158–173. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30729-4 12

34. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Yu.: Towards a model checker for
NesC and wireless sensor networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 372–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 26

https://doi.org/10.1007/978-3-642-30729-4_12
https://doi.org/10.1007/978-3-642-24559-6_26
https://doi.org/10.1007/978-3-642-24559-6_26

Broadcasting Information in Multi-hop
Networks Prone to Mobile Byzantine

Faults

Silvia Bonomi1, Giovanni Farina1,2(B), and Sébastien Tixeuil2

1 Sapienza Università di Roma, Rome, Italy
bonomi@diag.uniroma1.it

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{giovanni.farina,sebastien.tixeuil}@lip6.fr

Abstract. Every non-trivial distributed application needs to exchange
information in order accomplish its task, and reliable communication
primitives are fundamental in failures prone distributed systems to guar-
antee correct message exchanges between parties.

Their implementation becomes particularly challenging when consid-
ering distributed systems where processes are arranged in a multi-hop
network and each of them may temporary and continuously be compro-
mised by an attacker during the execution. Although some fundamental
problems (such as the register implementation and the agreement) were
investigated considering Mobile Byzantine Faults (MBF), most of the
contributions consider a fully connected communication network.

In this paper we analyze the specific difficulty of ensuring reliable com-
munication between parties in a distributed system affected by Mobile
Byzantine Faults (compared to the case where the Byzantine failures are
static), showing that such a problem is essentially impossible to solve in
asynchronous systems with MBF, and we propose a synchronous pro-
tocol providing reliable communication both in complete networks and
specific multi-hop topologies.

Keywords: Reliable communication · Mobile Byzantine Faults ·
Multi-hop networks

1 Introduction

Distributed systems are often prone to failures, given the multitude of intercon-
nected components they are composed of, and protocols that are deployed on

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), sup-
ported by French state funds managed by the ANR (Agence Nationale de la Recherche)
and it has been partially supported by the INOCS Sapienza Ateneo 2017 Project
(protocol number RM11715C816CE4CB). Giovanni Farina wishes to thank Univer-
sité Franco-Italienne/Universitá Italo-Francese (UFI/UIF) for supporting his mobility
through the Vinci grant 2018.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 112–128, 2021.
https://doi.org/10.1007/978-3-030-67087-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_8

Mobile Byzantine Reliable Communication 113

them are usually designed to guarantee correct execution despite fault occur-
rences. Besides, distributed systems are more and more frequently subject also
to external attackers, who aim to penetrate and compromise them.

Processes in a distributed system need to communicate in order to achieve
non-trivial goals. Indeed, several reliable communication primitives have been
defined to guarantee integrity, delivery and authorship of messages exchanged
even in case of arbitrary failures. The reliable communication solutions pro-
posed so far mostly put constraints on the spatial distribution of failures or on
their duration. Such assumptions capture most of the internal misbehavior that
may occurs in a system: data corruptions, link failures, machine faults, etc. On
the other side, external malicious attackers commonly start compromising some
machines and then they use them to move over the system till reaching their
targets, and the research handling such kind of attacks mostly focus on their
prevention, detection and reaction.

In this paper, we analyze the specific difficulties of ensuring reliable commu-
nication in distributed system affected by Mobile Byzantine Faults (compared to
the case where the Byzantine failures are static), showing that reliable communi-
cation in asynchronous systems is essentially impossible, and then we propose a
synchronous protocol solving reliable communication both in complete networks
and specific multi-hop topologies.

2 Related Works

The reliable communication problem has been extensively investigated consid-
ering static Byzantine process failures. Dolev [10] provided the seminal contri-
bution addressing this problem in general networks with a globally bounded
number of faulty processes. Subsequently, several failure distributions have been
considered, such as neighborhood-bounded [12,19,21,25], probabilistic [16,20],
and the general adversary model [19]. Weaker problem specifications have been
proposed to allow solving the reliable communication problem in loosely con-
nected network [13,15], and dynamic networks have also been considered [2,17].

In complete communication networks, non-static Byzantine faulty processes
were considered by Reischuk [22] who proposed an algorithm solving the Byzan-
tine agreement in the case of f malicious agents that remain stationary on
f processes only for a given period of time. Later, Ostrovsky and Yung [18]
introduced the notion of an adversary that can inject and distribute faults in
the system at a constant rate and they proposed solutions (mixing randomiza-
tion and self-stabilization) for tolerating the attacks of mobile viruses. Then,
Garay [11] considered processes proceedings in synchronous rounds composed
by three phases (send, receive, and compute), and Byzantine mobile agents able
to move between one process to another during the lifetime of the system. Sev-
eral subsequent works later specialized his model, making alternative hypothesis
on the unawareness of processes of being faulty [24], assuming correct processes
sending non-equivocal messages [1], channels delays [23], decoupling the sys-
tem evolution from the agents movements [5]. All aforementioned works for the

114 S. Bonomi et al.

mobile attacker model addressed either the Byzantine agreement, the approxi-
mate Byzantine agreement [7], or the register abstraction [4] problems in com-
plete networks. Most related to our work is the solution by Sasaki et al. [24],
that is detailed in Sect. 6.

3 System Model

Process Definition and Communication Model. We consider a distributed
system composed by a set of n processes Π = {p1, p2, . . . pn}, each associated
with an unique identifier. Processes communicate by exchanging messages via
reliable and authenticated point-to-point links i.e., messages can neither be lost
or altered by the links and the identity of the sender of any message cannot
be forged. Processes and their links can be abstracted by an undirected graph
G = (Π,E) where the set of nodes is represented by the processes of the system
and the set of edges E contains an element ei,j if and only if there exists a link
between processes pi and pj . Two processes pi and pj can exchange messages
only if there is a link between them.

Time Assumptions and Computational Model. Unless differently stated,
we consider a synchronous system [9]. Specifically, we assume one where the com-
putation evolves in sequential synchronous rounds r0, r1, . . . ri . . . (with i ∈ N).
Every round is divided in three phases: (i) send where processes send messages
through their links for the current round, (ii) receive where processes receive
all messages sent at the beginning of the current round, and (iii) computation
where processes execute a deterministic distributed protocol P and generate the
messages to be sent during the subsequent round. We assume a tamper-proof
read-only memory on every process where the code of P is stored.

Failure Model. We assume that the system is affected by Mobile Byzan-
tine Faults (MBF) [1,8,11,24]. Informally, in the mobile Byzantine failure
model, faults are represented by f computationally unbounded agents that move
between processes. When an agent is on a process pi, it forces pi to behave as
a Byzantine faulty process (i.e., it may corrupt its local variables, forces it to
execute an arbitrary protocol, to send arbitrary messages, to omit sending mes-
sages, etc.). We assume that, at every round ri, every mobile Byzantine agent is
placed on at most one process pj and that it can move from pj to another process
pk only if there is a link between the two. The movement of the Byzantine agents
is characterized by the roaming pace parameter ρ, that is the minimum amount
of time between two displacements of an agent. We assume that the Byzantine
agents can only move in between the computation and the send phase [11,24],
thus ρ ≥ 1 round.

We alternatively consider either an aware [24] or unaware [11] mobile Byzan-
tine failure model: in the former case a process knows about a mobile agent that
is moving away from it, in the latter it does not. At every round ri, a pro-
cess pj is either correct or Byzantine faulty. Precisely, pj is faulty if a mobile

Mobile Byzantine Reliable Communication 115

Byzantine agent is on it at ri, or it is correct otherwise and it executes the dis-
tributed protocol P. Notice that every process backs to execute protocol P right
after a Byzantine agent moved away and that the failure state of a process can-
not change during a message transmission (send - receive phases). In the aware
mobile Byzantine failure model, we refer with cured process to a correct one at
round ri that was Byzantine faulty at round ri−1. We assume that every cured
process wipes all of its local variables at the beginning of the round.

Link Specifications. The point-to-point reliable and authenticated links guar-
antee the following properties [9]: Reliable delivery - if a correct process sends a
message m to a correct process pj , then pj eventually receives m; No duplication
- no message is delivered by a link to a process more than once; Authenticity
- if some correct process pj receives a message m with sender ps, then m was
previously sent to pj by ps.

3.1 Graph Metrics

We briefly recall some graph metrics that are employed to characterize reliable
communication correctness conditions.

Sasaki et al. [24] defined G(α, β) as the class of graphs G = (V,E) such that,
for any pair i, j of vertices in V , there are α disjoint paths connecting i and j,
whose length (in terms of the number of edges) is at most β.

A k-clique community is a graph defined as the union of all k-cliques (i.e.,
complete subgraphs of size k) that can be reached from each other through a
series of adjacent k-cliques (where adjacency means sharing k-1 vertices).

Pelc and Peleg [21] defined the parameter X(G) of a connected graph
G = (V,E): for every pair of nodes i, j ∈ V , X(i, j) denotes the num-
ber of nodes x ∈ Γ (i)1 that are closer to j than i; the parameter X(G) is
defined as the minimum X(i, j) between any pair of not incident nodes, namely
X(G) := min{X(i, j)| i, j ∈ V, (i, j) /∈ E}. The parameter X(G) allows to
arrange nodes of a graph G in disjoint level L0, L1, . . . Lj (j ≥ 1) with respect
their distance to any chosen vertex s ∈ V such that L0 = {s}, L1 = Γ (s) and
any node in a level Li is at distance i from s and it has at least X(G) neighbors
in Li−1 (i.e. a level ordering [12]). A graphical example is provided in Fig. 1a.

Litsas et al. [12] defined the parameter Ψ(G) of a graph G. Such a parameter
allows to arrange nodes of graphs in disjoint level L0, L1, . . . Lj (j ≥ 1) with
respect to any chosen vertex s ∈ V such that L0 = {s}, L1 = Γ (s) and any node
in a level Li has at least Ψ(G) neighbors in levels [L1, Li−1] (i.e. a minimum
level ordering [12]). A graphical example is provided in Fig. 1b.

We refer with 〈k, l〉-multipartite cycle to a connected graph G composed
by l sets of k not adjacent nodes, such that each set is part of exactly two
complete bipartite subgraphs of 2k nodes. Figure 1c depicts an example of a
〈2, 4〉-multipartite cycle.

1 Γ (s) is the set of nodes in the neighborhood of node s in a graph.

116 S. Bonomi et al.

All the graph parameters and topologies we recalled guarantee specific graph
topological properties that will be leveraged addressing the reliable communica-
tion problem.

(a) (b) (c)

Fig. 1. (a) Level ordering with X(G) = 5. (b) Minimum Level ordering with Ψ(G) = 5.
(c) 〈2, 4〉-multipartite cycle.

4 Mobile Byzantine Reliable Communication Problem
Specification

Not all processes in a multi-hop network can directly exchange messages: some
of them have to rely on intermediate nodes relaying their messages in order
to communicate. Meanwhile, Byzantine faulty processes may diffuse spurious
messages, i.e. messages that have not been sent by their advertised source. A
reliable communication primitive prevent all correct processes from delivering
spurious messages while allowing them to communicate.

We aim to define a mobile Byzantine fault tolerant reliable communication
primitive in a multi-hop network of point-to-point reliable authenticated links,
namely to enable message exchanges between every pair of processes extend-
ing the guarantees provided by the point-to-point links in a distributed system
affected by Mobile Byzantine Faults.

The standard reliable communication (RC) specification [3,10,17,19,21]
between a source process ps and a target process pt requires the following prop-
erties to be satisfied: safety - if a correct process pt delivers a message m from
ps, then m has been sent by ps; liveness: if a correct process ps sends a message
m to a correct process pt, then m is eventually delivered by pt.

In the system model we are considering, the failure state of processes change
over time and no process is permanently correct. Furthermore, processes can be
compromised while they are communicating, namely between the computation
and send phase. It follows that every process which aims to communicate with a
peer must remain correct for at least two consecutive rounds in order to diffuse
any message, and thus, we define as correct source a process ps that is correct
for two consecutive rounds ri and ri+1, and computes a message m at ri.

Mobile Byzantine Reliable Communication 117

Another aspect to take into account is that a message may require several
rounds to reach a target process, due to the network topology and to the protocol
employed to diffuse it. As a matter of fact, the state of a process may change over
time and a target process must not be permanently faulty in order to deliver a
message sent by a source. Therefore, we say that a process pj is not permanently
faulty if for every round ri there always exists a round r′ ≥ ri where pj is correct.

Given all considerations stated above, we define a specification for the reliable
communication problem with Mobile Byzantine Faults.

Reliable Communication with MBF Specification. Given a correct source
process ps and target process pt, a reliable communication primitive guarantees
that:

– safety - if pt is correct at ri and it delivers a message m from ps, then m has
been sent by ps;

– liveness: if a correct source ps sends a message m to a not permanently faulty
process pt, then pt eventually delivers m.

5 Reliable Communication in Asynchronous Systems

In this section, we show that it is impossible to design a protocol P that is
able to solve the reliable communication problem between a correct source ps
and a target pt when the distributed system is asynchronous and there is only
one mobile Byzantine agent. This motivates the subsequent assumptions for
analyzing synchronous systems (see Sect. 6).

When assuming a fully asynchronous system, we consider that correct pro-
cesses still execute a deterministic distributed protocol P, but there is no known
upper bound on the time demanded for local computation, neither on the time
required to deliver point-to-point messages.

Theorem 1. There exists no distributed protocol P that is able to solve the
reliable communication problem specification with Mobile Byzantine Faults in an
asynchronous system even if (i) the source process ps is permanently correct,
(ii) there exists only one mobile Byzantine agent, and (iii) processes are aware
of their failure state.

Proof. The reliable communication specification requires both safety and liveness
property to be satisfied. We show that no protocol P can ensures the liveness
property, even assuming an always correct source, only one mobile Byzantine
agent and the aware failure model.

The reliable delivery property enforced by reliable and authenticated links
is guaranteed only between correct processes. Given that there is no constraint
on the link delay, even assuming a permanently correct source that continuously
sends a message m, such a message may never be delivered by the link, because
a target process pt may be compromised during each transmission of m. ��

118 S. Bonomi et al.

On the other hand, we highlight on the solvability of safe communication
(i.e. enforcing only the safety property) in case of an asynchronous system.

The immediate consequence is that in the aware failure model, it is possible
to design a “best-effort” protocol that ensures safety while trying to maximize
the number of delivered messages.

Theorem 2. Safe communication can be achieved with a non-degenerated pro-
tocol in an asynchronous distributed system in the aware mobile Byzantine failure
model.

Proof. We show a “best-effort” solution for the safe communication problem. Let
us assume that every process pj has access to a local clock Tj . It is reasonable to
assume that a Byzantine agent which is forcing a process pk to send a message m
must remain on pk till the end of its transmission to guarantee the link message
delivery. Let us consider the following protocol:

– the source process ps continuously sends 〈s, t,m〉;
– every process pj stores every message 〈s, t,m〉 received from a process pk

jointly with timestamp tk〈s,t,m〉 containing the value of Tj at the reception of
〈s, t,m〉;

– every process pj stores and continuously relays any message 〈s, t,m〉 received
from ps;

– every process pj that stores a set of 2f + 1 tuples M := [〈〈s, t,m〉,
t1〈s,t,m〉〉, 〈〈s, t,m〉, t2〈s,t,m〉〉, . . . , 〈〈s, t,m〉, t2f+1

〈s,t,m〉〉] received fromdistinct neigh-

bors such that ∀i<j , t
i
〈s,t,m〉 < tj〈s,t,m〉 and t2f+1

〈s,t,m〉 − t1〈s,t,m〉 < ρ continuously
relays 〈s, t,m〉;

– if process pt relays 〈s, t,m〉 then it delivers m.

We show that the protocol defined above guarantees safety of reliable com-
munication in an asynchronous system. Let us consider a single agent initially
placed on a process p1 	= ps, that starts the transmission of a spurious message
m̃ to a process pq at time tstart1 and concludes at time tend1 when m̃ is received
by pq. Process pq then stores m̃ and a timestamp t1m̂ obtained by its local clock
at the reception of m̃. Subsequently, the Byzantine agent may move on a dif-
ferent process p2 and start sending another copy of m̃ to pq at time tstart2 , that
it concludes at time tend2 when the message is received by pq. Again, process
pq stores m̃ and a timestamp t2m̂. And once more, the agent can move another
time on a process p3 and iterate again the transmission of m̃. According with
the absence of link latency guarantees, it could happen that tendi − tstarti → 0.
On the other hand, tj+2

m̂ - tjm̂ > ρ, because a mobile agent must move twice in
order to send a spurious message for three distinct processes. It follows that,
assuming f mobile Byzantine agents, if a process q receives more than 2f copies
of a message m in a time windows shorter than ρ, then it can safely accept m.
For ease of explanation, the execution stated above is depicted in Fig. 2. ��

Mobile Byzantine Reliable Communication 119

P1

P2

P3

t1t11
t2

t3

> ρ≥ ρ

m

m

m

time

Fig. 2. Graphical execution example of Theorem 2.

6 Reliable Communication in Synchronous Systems

In this section, we briefly present the seminal reliable communication protocol
defined by Sasaki et al. [24], and we define a new parameterized algorithm,
RCMB.

Sasaki et al. [24] proposed a reliable communication protocol aimed to enable
mobile Byzantine agreement on multi-hop networks. Their solution is based on
the fact that mobile Byzantine agents may compromise at most f processes at
every round: leveraging the disjoint paths available between all pairs of processes,
they defined a reliable communication protocol that enables mobile Byzantine
agreement in the unaware failure model in graphs G(α, β) where the inequality
α > 2βf is satisfied. Specifically, messages between every pair of processes are
routed over α disjoint paths and Byzantine agents may at most compromise βf
of them.

RCMB Algorithm. We define a new protocol addressing the reliable commu-
nication problem, RCMB. With respect to the one proposed by Sasaki et al., it
aims to keep the number of processes that concurrently send spurious messages
bounded over time.

Algorithm Reliable Communication Mobile Byzantines - RCMB:

– the source process ps computes message m addressed to a target process pt
at round ri, and saves 〈s, t,m〉 in a set variable delivered.

– any message 〈s, t,m〉 stored in delivered is removed after τ rounds.
– every process pj queues every message stored in delivered at round ri to be

sent in round ri+1 to itself and to all of its neighbors;
– if a correct process pj receives a message 〈s, t,m〉 from ps at round ri, then

pj saves 〈s, t,m〉 in a set variable delivered, and delivers m from ps if j = t;

120 S. Bonomi et al.

– if a correct process pj receives more than σ copies of a message 〈s, t,m〉
from distinct neighbors at round ri, then pj saves 〈s, t,m〉 in a set variable
delivered, and delivers m from ps if j = t;

The parameter σ is a safety threshold, corresponding to the number of copies of
the same message that must concurrently be received to deliver it. The parameter
τ allows processes that were faulty in the unaware failure model to remove
spurious messages that may have been injected by malicious agents. It can be
ignored in the aware failure model, because cured processes directly wipe their
local variables. Notice that, in case of τ = 1, every message stored in delivered
at round ri is queued to be sent at round ri+1 and then dropped.

6.1 Reliable Communication Correctness Conditions

We provide in this section several correctness conditions that enable to solve
the reliable communication problem with one of the protocols presented in the
previous subsection. We investigate the solvability of reliable communication in
two scenarios: a correct source and a permanently correct source (that is, a source
that is correct in every round ri). The latter case is motivated by the fact that
such additional assumption enables to solve the reliable communication problem
in further topologies.

Unaware Failure Model

Theorem 3. Reliable communication cannot be achieved in the unaware mobile
Byzantine failure model with n ≤ 4f .

Proof. The result can be deduced from the lower bound implementing the safe
register abstraction in the unaware mobile Byzantine failure model [4]. Let us
consider a set of 4f processes connected through a complete communication
network. Let us assume a correct source ps that computes a message m at round
r0, that ps sends it to all other processes at round r1 and that pt and other f −1
processes are faulty at r1. Thus, pt is faulty while the reliable communication
protocol is diffusing m according to a distributed protocol P. Subsequently, the
mobile Byzantine agents move on process ps and on f−1 other processes between
rounds r1 and r2. It follows that at round r2 there are 2f processes that share
a state that contains m and 2f processes (f Byzantine faulty at r2 and f that
were faulty in r1) that may share a state injected by the adversary, thus it is not
possible to distinguish which set of processes is storing the message sent by the
correct source. ��
Theorem 4. The RCMB protocol with σ = (τ + 1)f guarantees safety of reliable
communication in the unaware mobile Byzantine failure model.

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt delivers a

Mobile Byzantine Reliable Communication 121

message m at round ri from ps but m has not been sent by its source (i.e. m is
a spurious message).

The delivery of a message m in the RCMB protocol is independent from
the process local variables and it is only determined by the messages that are
currently received in a round. On the other hand, the messages that are diffused
in a round depends on the content of the delivered variable.

The message m has not been received by a process through a link with the
source process ps according to our hypothesis. It follows that there have been
more than σ = (τ + 1)f processes that sent 〈s, t,m〉 to pt at round ri. Mobile
Byzantine agents can force f processes to send 〈s, t,m〉 at round ri and they
can inject 〈s, t,m〉 in the delivered sent of the processes that were faulty at
ri−k, k ∈ [1, τ] if τ ≥ 1. Thus, at most τf correct processes may potentially relay
〈s, t,m〉 in a round because they were previously faulty, since after τ rounds
〈s, t,m〉 is dropped from the delivered set. Every other correct processes process
pj 	= pt sends 〈s, t,m〉 at ri only if either pj received such a message through
a link with process ps, or from more than (τ + 1)f neighbors. It follows that
at most (τ + 1)f processes in the system may concurrently send 〈s, t,m〉. Thus
message m has been sent by its source. This leads to a contradiction and the
claim follows. ��
Theorem 5. The RCMB protocol with τ = 1 and σ = (τ +1)f provides reliable
communication in complete networks of size n > 4f in the unaware mobile
Byzantine failure model.

Proof. We verified the safety property of the RCMB protocol with σ = (τ +1)f
in the unaware mobile Byzantine failure model in Theorem4. We need to prove
the liveness property of reliable communication in a complete networks of size
n > 4f considering τ = 1.

Let us assume a correct source ps that computes a message m at r0 and sends
it at r1 to itself and to all of its neighbors according to the RCMB algorithm.
It follows that more than 3f processes queue m to be sent at r2, because m has
been received through a link from its source. At any round ri there are at most
f processes that get faulty and at most f ones that were faulty in ri−1. Thus, all
correct processes receive at least 2f + 1 copies of m from distinct nodes at any
round rj ≥ r2 and they relay it at the subsequent round. It follows that message
m is relayed by at least 2f + 1 > σ processes on any round rj ≥ r2, and that
process pt delivers it in a round rj ≥ r2 it is correct. ��
Theorem 6. The RCMB protocol with τ = 1 and σ = (τ + 1)f provides reli-
able communication in the unaware mobile Byzantine failure model in a k-clique
community network topology with k > 4f + 1.

Proof. We verified the safety property of the RCMB protocol with σ = (τ +1)f
in the unaware mobile Byzantine failure model in Theorem4. We need to prove
the liveness property of reliable communication in a k-clique community network
topology with k > 4f + 1 considering τ = 1.

122 S. Bonomi et al.

Let us assume a correct source ps that computes a message m at round r0
and sends it at round r1. Given a k-clique community network, two processes
ps and pt are either both part of a k-clique or they are included in two distinct
k-cliques that are connected through a sequence of adjacent ones.

Let us assume that ps and pt are both part of a k-clique K0. We showed in
Theorem 5 that all correct processes in a complete network of at least 4f + 1
nodes continuously relay a message m sent by a correct sender. It follows that t
delivers m in a round ri ≥ r1 it is correct.

Let us assume that pt is part of a k-clique K1 adjacent to K0. All correct
processes but 2f in K0 sends m at every round rj ≥ ri+2 to all of their neighbors.
It follows that pt receives at least 2f+1 > σ copies of m on every round rj ≥ ri+2

because it is connected to at least 4f + 1 nodes in K0. Thus, it delivers m in a
round rj ≥ ri+2 it is correct.

Such an argumentation extends to any process in a k-clique reachable through
a sequence of adjacent k-cliques. ��
Theorem 7. The RCMB protocol with τ = 2 and σ = (τ + 1)f provides reli-
able communication in the unaware mobile Byzantine failure model in a network
topology G where n > 6f and X(G) > 6f .

Proof. The condition X(G) > 6f allows to arrange nodes of a graph G in a level
ordering of two or more levels [L0, · · · Lk]. Let us consider a correct source ps
that computes a message m at r0 and sends it at round r1.

Let us assume that the level ordering with respect to ps is composed by 2
levels. It follows that all processes have a link with the source and that all the
correct ones receive m at round r1 directly from the source, thus they save it into
their delivered set and relay it at r2. Subsequently, the mobile Byzantine agents
can move between r1 and r2. At round r2 all correct processes are connected to
at least 4f + 1 > σ processes that relays m. It follows they relay m at round r3
and at all the subsequent rounds.

Let us assume that the level ordering with respect to ps is composed by 3
or more levels. At round r1 all correct processes in L1 receive m directly from
the source, thus they save it into their delivered set and they relay it at r2.
Subsequently, the mobile Byzantine agents can move between r1 and r2, and at
round r2 all correct processes in L1 relay m to all nodes in L2. Every process in
L2 has at least 6f + 1 neighbors in L1 and at least 4f + 1 > σ of them relay m.
It follows they all save and relay m at round r3. Between rounds r2 and r3 the
mobile Byzantine agents move and compromise further f processes. It follows
that at round r3 every process in levels L1, L2 and L3 receives m from at least
3f + 1 > σ processes, because each of them has at least 6f + 1 neighbors inside
the first three levels and at most 3f processes may have been compromised from
the beginning of the transmission. It follows that all correct processes in the first
three levels relay m at every round ri ≥ r4. This reasoning extends considering
more levels. ��

Mobile Byzantine Reliable Communication 123

Theorem 8. The RC Sasaki et al. protocol with σ = βf provides reliable com-
munication in the unaware mobile Byzantine failure model in networks where
the inequality α > 2βf is satisfied [24].

Proof. Every reliable communication instance between a source process ps and a
destination process pt lasts exactly β rounds in the RC Sasaki et al. protocol. The
inequality α > 2βf guarantees that between every pair of processes there exist
at least 2α+1 disjoint paths of length at most β. Any process can relay messages
between peers ps and pt at only one defined round every β ones. It follows that
the mobile Byzantine agents can compromise at most βf processes (and thus
disjoint paths) in β rounds, and thus no correct process receive more than σ
copies of a spurious message in a round. The assumption α > 2βf guarantees
instead that there always exist βf + 1 disjoint paths that are not compromised
by Byzantine agents in every communication instance. ��
Theorem 9. The RCMB protocol with τ = 1 and σ = (τ + 1)f provides reli-
able communication from a permanently correct source in the unaware mobile
Byzantine failure model in networks where Ψ(G) > 4f .

Proof. We verified the safety property of the RCMB algorithm with σ = (τ +1)f
in the unaware mobile Byzantine failure model in Theorem4. We need to prove
the liveness property of reliable communication in networks where Ψ(G) > 4f
in case of a permanently correct source and τ = 1.

The condition Ψ(G) > 4f allows to arrange the nodes of a network G in a
(4f + 1)-minimum level ordering with respect to every vertex of G.

Let us assume that process ps sends a message m employing RCMB to process
pt at round ri. Process pt can either be in L1 or in Li>1. In the former case it
receives m through a link from s starting from round rj ≥ ri+1 it is correct, and
thus it eventually delivers the message m. In the latter case, all correct processes
in L1 receive m at every round rj ≥ ri+1. Thus, they queue m to be sent at
every round rj ≥ ri+2. At every round, there are at most f processes that can
be faulty among all levels. It follows that at least 2f +1 processes in L1 relay m
to processes in L2 at every round rj , because f nodes may have been faulty at
rj−1 and f ones are faulty at rj . Therefore, all correct processes in L2 relays m
to all of their neighbors at every round rj ≥ ri+3, and if process t is in L2 then
it delivers m at rj ≥ ri+3 when it is correct. The reasoning extends to any other
level given the assumption of Ψ(G) > 4f , and the claim follows. ��

Aware Failure Model

Theorem 10. Reliable communication cannot be achieved in the aware mobile
Byzantine failure model with n ≤ 3f .

Proof. The result can be deduced from the lower bound implementing the safe
register abstraction in the aware mobile Byzantine failure model [4]. Let us
consider a set of 3f processes connected through a complete communication
network. Let us assume a correct source ps that computes a message m at round

124 S. Bonomi et al.

r0, that ps sends it to all other processes at round r1 and that pt and other f −1
processes are faulty at r1. Thus, pt is faulty while the reliable communication
protocol is diffusing m according to a distributed protocol P. Subsequently,
the mobile Byzantine agents moves on process ps and on f − 1 other processes
between rounds r1 and r2. It follows that at round r2 there are f processes
that share a state that contains m, f cured processes (i.e. with wiped local
variables) and f faulty processes. Thus, it is not possible to distinguish which
set of processes (the f faulty or the f not cured ones) is storing the message
sent by the correct source. ��
Theorem 11. The RCMB protocol with σ = f guarantees safety of reliable com-
munication in the aware mobile Byzantine failure model.

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt has delivered
a message m at round ri from ps but m has not been sent by its source (i.e. m
is a spurious message).

The delivery of a message m in RCMB is independent from the process local
variables and it is only determined by the messages that are received in a round.
The message m has been received by no process through a link with the source
process ps according to our hypothesis. It follows there have been more than
σ = f processes that sent 〈s, t,m〉 to pt at round ri. The mobile Byzantine
agents can force f processes to send 〈s, t,m〉 at round ri. The correct processes
at ri that were faulty at ri−1 turn to the cured state, thus they wipe their
local variables (and thus their delivered set) and remove any message previously
queued for the submission. Any correct process pj 	= pt sends 〈s, t,m〉 at ri only
if either pj has received such a message through a link with process ps, or from
more than f neighbors in a round. It follows that at most f processes in the
system may concurrently send 〈s, t,m〉. Thus message m has been sent by its
source. This leads to a contradiction and the claim follows. ��
Theorem 12. The RC Sasaki et al. protocol with σ = (β −1)f provides reliable
communication in the aware mobile Byzantine failure model in networks where
the inequality α > (2β − 1)f is satisfied.

Proof. The cured processes remain silent, namely they drop every message pre-
viously queued for the submission. In the first round of a reliable communication
instance, only the source is allowed to transmit. It follows that no process can
diffuse spurious messages in such a round. Therefore, spurious messages can only
traverse (β−1)f disjoint paths in a communication instance. On the other hand,
Byzantine agents can still compromise f processes per round, preventing peers
from receiving and relaying messages, and thus up to βf ones may be compro-
mised in every communication instance. The inequality follow considering that
(β−1)f +1 copies of a message received in a single round are sufficient to ensure
safety and that at most βf process can be compromised during a communication
instance. ��

Mobile Byzantine Reliable Communication 125

Theorem 13. The RCMB protocol with σ = f provides reliable communication
in complete networks of size n > 3f in the aware mobile Byzantine failure model.

Proof. We verified the safety property of the RCMB algorithm with σ = f
in the aware mobile Byzantine failure model in Theorem11. We need to prove
the liveness property of reliable communication in a complete networks of size
n > 3f .

Let us assume a correct source ps that computes a message m at r0 and sends
it at r1 to itself and to all of its neighbors according to the RCMB algorithm.
It follows that ps and at least 2f processes queue m to be sent at r2, because
m has been received through a link from its source. At any round ri there are
at most f processes that are faulty and at most f ones that were faulty in ri−1.
Thus, all correct processes receive at least f + 1 > σ copies of m from distinct
nodes at any round rj ≥ r2 and they relay it in the subsequent round. It follows
that message m is relayed by at least f + 1 processes at any round rj ≥ r2, and
that process pt delivers it in a round rj ≥ r2 it is correct. ��
Theorem 14. The RCMB protocol with σ = f provides reliable communication
in the aware mobile Byzantine failure model in (i) a k-clique community network
topology with k > 3f + 1 and (ii) in topologies where X(G) > 5f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in
the unaware mobile Byzantine failure model in Theorem11.

The liveness property in case of k-clique community networks with k > 3f +1
or networks where X(G) > 5f follows from the same argumentation provided
respectively in Theorems 6 and 7 considering that σ is reduced to f . ��
Theorem 15. The RCMB protocol with σ = f provides reliable communication
from a permanent correct source in the aware mobile Byzantine failure model in
networks where Ψ(G) > 3f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in
Theorem 11.

The liveness property in networks where Ψ(G) > 3f follows from the same
argumentation provided in Theorem9 considering that σ is reduced to f . ��

6.2 Graph Parameters Comparison

In this section we provide some examples of topology where the condition α >
2βf by Sasaki et al. [24] is not satisfied, but the reliable communication problem
remains solvable.

Theorems 6 and 14 identify k-clique communities as a topology where the reli-
able communication problem is solvable. There exist topologies where α ≤ 2βf
but k > 4f + 1, and an example is depicted in Fig. 3a: a 6-clique community
graph. According with Theorem6, it is possible to provide reliable communica-
tion tolerating one mobile Byzantine agents (f = 1) in such a topology (indeed,
k > 4f + 1 = 5) considering the unaware failure model with algorithm RCMB.

126 S. Bonomi et al.

On the other hand, in such a graph β = 3 and α = 5, thus the inequality
α > 2βf is not satisfied for f ≥ 1, so the algorithm by Sasaki et al. [24] does
not guarantee reliable communication in such a network.

Theorems 9 and 15 identify graphs where the parameter Ψ(G) is greater than
certain values as topologies where the reliable communication problem is solv-
able from a permanent correct source. There exist topologies where α ≤ 2βf but
Ψ(G) > 4f , and an example is depicted in Fig. 3b. According with Theorem8,
one mobile Byzantine agent (f = 1) cannot be tolerated by the algorithm by
Sasaki et al. [24], indeed α = 5 and β = 3. Instead, Ψ(G) > 4f in such an exam-
ple, allowing to achieve reliable communication against one mobile Byzantine
agent with algorithm RCMB.

The conditions defined in Theorems 7 and 14 identify new topologies where
it is possible to solve the reliable communication problem. Specifically, there
exist topologies where α ≤ 2βf but X(G) > 6f . An example is depicted in
Fig. 3c: a 〈7, 14〉-multipartite cycle. In such a network, X(G) = 7, α = 14 and
β = 7. According with Theorem7 it is possible to achieve reliable communica-
tion against one mobile Byzantine agents (indeed, X(G) > 6f) with Algorithm
RCMB. On the other hand the inequality α > 2βf is not satisfied in such a
topology, so the algorithm by Sasaki et al. [24] cannot guarantee reliable com-
munication in such a setting.

s

p

(a)

0

1

2

3

4

5

6

7
8

(b) (c)

Fig. 3. (a) 6-clique community example. (b) Ψ(G) = 5, α > 2βf not satisfied with
f > 1. (c) 〈7, 14〉-multipartite cycle.

7 Conclusion

We analyzed the reliable communication problem in distributed systems affected
by Mobile Byzantine Faults. We highlighted the specific difficulties that arise
when considering mobile malicious agents able to move in the system and to con-
tinuously compromise nodes. We shown that the reliable communication problem
arises even in complete communication networks, and that it is not possible to
address it in an asynchronous system. Then, starting from the only solution

Mobile Byzantine Reliable Communication 127

available in the literature (the one proposed by Sasaki et al. [24]), we provided
additional insights about the specific properties that such protocols are able to
guarantee. In more details, we defined a new reliable communication protocol,
RCMB, and we identified new multi-hop topologies where reliable communica-
tion primitives remain feasible.

Our work paves the way toward deeper analyzes about reliable communi-
cation and others related distributed system problems with mobile Byzantine
faults in multi-hop networks. A particularly interesting question is the feasibil-
ity of tolerating both mobile Byzantine failures and self-stabilization (as in the
register construction of Bonomi et al. [6]) for the purpose of reliable communi-
cation. To our knowledge, this problem was only shown solvable by Maurer et
al. [14] for the static Byzantine case.

References

1. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile
Byzantine agreement. Theoret. Comput. Sci. 609, 361–373 (2016). https://doi.org/
10.1016/j.tcs.2015.10.019

2. Bonomi, S., Farina, G., Tixeuil, S.: Reliable broadcast in dynamic networks with
locally bounded Byzantine failures. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018.
LNCS, vol. 11201, pp. 170–185. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03232-6 12

3. Bonomi, S., Farina, G., Tixeuil, S.: Multi-hop Byzantine reliable broadcast with
honest dealer made practical. J. Braz. Comput. Soc. 25(1), 9:1–9:23 (2019).
https://doi.org/10.1186/s13173-019-0090-x

4. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M.: Optimal self-stabilizing synchronous
mobile Byzantine-tolerant atomic register. Theoret. Comput. Sci. 709, 64–79
(2018). https://doi.org/10.1016/j.tcs.2017.08.020

5. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Optimal storage under
unsynchronized mobile Byzantine faults. In: 36th IEEE Symposium on Reliable
Distributed Systems, SRDS 2017, Hong Kong, 26–29 September 2017, pp. 154–
163. IEEE Computer Society (2017). https://doi.org/10.1109/SRDS.2017.20

6. Bonomi, S., Del Pozzo, A., Potop-Butucaru, M., Tixeuil, S.: Brief announcement:
optimal self-stabilizing mobile Byzantine-tolerant regular register with bounded
timestamps. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp.
398–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 28

7. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement
under mobile Byzantine faults. Theoret. Comput. Sci. 758, 17–29 (2019). https://
doi.org/10.1016/j.tcs.2018.08.001

8. Buhrman, H., Garay, J.A., Hoepman, J.: Optimal resiliency against mobile faults.
In: Digest of Papers: FTCS-25, The Twenty-Fifth International Symposium on
Fault-Tolerant Computing, Pasadena, California, USA, 27–30 June 1995, pp. 83–
88. IEEE Computer Society (1995). https://doi.org/10.1109/FTCS.1995.466995

9. Cachin, C., Guerraoui, R., Rodrigues, L.E.T.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-15260-3

10. Dolev, D.: Unanimity in an unknown and unreliable environment. In: 22nd Annual
Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28–
30 October 1981, pp. 159–168 (1981). https://doi.org/10.1109/SFCS.1981.53

https://doi.org/10.1016/j.tcs.2015.10.019
https://doi.org/10.1016/j.tcs.2015.10.019
https://doi.org/10.1007/978-3-030-03232-6_12
https://doi.org/10.1007/978-3-030-03232-6_12
https://doi.org/10.1186/s13173-019-0090-x
https://doi.org/10.1016/j.tcs.2017.08.020
https://doi.org/10.1109/SRDS.2017.20
https://doi.org/10.1007/978-3-030-03232-6_28
https://doi.org/10.1016/j.tcs.2018.08.001
https://doi.org/10.1016/j.tcs.2018.08.001
https://doi.org/10.1109/FTCS.1995.466995
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1109/SFCS.1981.53

128 S. Bonomi et al.

11. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile faults
(extended abstract). In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857,
pp. 253–264. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020438

12. Litsas, C., Pagourtzis, A., Sakavalas, D.: A graph parameter that matches the
resilience of the certified propagation algorithm. In: Cichoń, J., Gȩbala, M.,
Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 269–280. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39247-4 23

13. Maurer, A., Tixeuil, S.: Byzantine broadcast with fixed disjoint paths. J. Parallel
Distrib. Comput. 74(11), 3153–3160 (2014). https://doi.org/10.1016/j.jpdc.2014.
07.010

14. Maurer, A., Tixeuil, S.: Self-stabilizing Byzantine broadcast. In: 33rd IEEE Inter-
national Symposium on Reliable Distributed Systems, SRDS 2014, Nara, Japan,
6–9 October 2014, pp. 152–160. IEEE Computer Society (2014). https://doi.org/
10.1109/SRDS.2014.10

15. Maurer, A., Tixeuil, S.: Containing Byzantine failures with control zones. IEEE
Trans. Parallel Distrib. Syst. 26(2), 362–370 (2015). https://doi.org/10.1109/
TPDS.2014.2308190

16. Maurer, A., Tixeuil, S.: Tolerating random Byzantine failures in an unbounded
network. Parallel Process. Lett. 26(1), 1650003:1–1650003:12 (2016). https://doi.
org/10.1142/S0129626416500031

17. Maurer, A., Tixeuil, S., Défago, X.: Communicating reliably in multihop dynamic
networks despite Byzantine failures. In: 34th IEEE Symposium on Reliable Dis-
tributed Systems, SRDS 2015, Montreal, QC, Canada, 28 September–1 October
2015, pp. 238–245. IEEE Computer Society (2015). https://doi.org/10.1109/SRDS.
2015.10

18. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Logrippo, L. (ed.) Proceedings of the Tenth Annual ACM Sympo-
sium on Principles of Distributed Computing, Montreal, Quebec, Canada, 19–21
August 1991, pp. 51–59. ACM (1991). https://doi.org/10.1145/112600.112605

19. Pagourtzis, A., Panagiotakos, G., Sakavalas, D.: Reliable broadcast with respect
to topology knowledge. Distrib. Comput. 30(2), 87–102 (2017). https://doi.org/
10.1007/s00446-016-0279-6

20. Pelc, A.: Reliable communication in networks with Byzantine link failures. Net-
works 22(5), 441–459 (1992). https://doi.org/10.1002/net.3230220503

21. Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Inf. Pro-
cess. Lett. 93(3), 109–115 (2005). https://doi.org/10.1016/j.ipl.2004.10.007

22. Reischuk, R.: A new solution for the Byzantine generals problem. Inf. Control
64(1–3), 23–42 (1985). https://doi.org/10.1016/S0019-9958(85)80042-5

23. Sakavalas, D., Tseng, L.: Delivery delay and mobile faults. In: 17th IEEE Inter-
national Symposium on Network Computing and Applications, NCA 2018, Cam-
bridge, MA, USA, 1–3 November 2018, pp. 1–8. IEEE (2018). https://doi.org/10.
1109/NCA.2018.8548345

24. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile Byzantine agreement
on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS
2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03850-6 17

25. Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algo-
rithm in presence of Byzantine faults. Inf. Process. Lett. 115(4), 512–514 (2015).
https://doi.org/10.1016/j.ipl.2014.11.010

https://doi.org/10.1007/BFb0020438
https://doi.org/10.1007/978-3-642-39247-4_23
https://doi.org/10.1016/j.jpdc.2014.07.010
https://doi.org/10.1016/j.jpdc.2014.07.010
https://doi.org/10.1109/SRDS.2014.10
https://doi.org/10.1109/SRDS.2014.10
https://doi.org/10.1109/TPDS.2014.2308190
https://doi.org/10.1109/TPDS.2014.2308190
https://doi.org/10.1142/S0129626416500031
https://doi.org/10.1142/S0129626416500031
https://doi.org/10.1109/SRDS.2015.10
https://doi.org/10.1109/SRDS.2015.10
https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/s00446-016-0279-6
https://doi.org/10.1007/s00446-016-0279-6
https://doi.org/10.1002/net.3230220503
https://doi.org/10.1016/j.ipl.2004.10.007
https://doi.org/10.1016/S0019-9958(85)80042-5
https://doi.org/10.1109/NCA.2018.8548345
https://doi.org/10.1109/NCA.2018.8548345
https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1016/j.ipl.2014.11.010

Infinite Grid Exploration by Disoriented Robots

Quentin Bramas1, Stéphane Devismes2(B), and Pascal Lafourcade3

1 University of Strasbourg, ICUBE, CNRS, Strasbourg, France
2 Université Grenoble Alpes, VERIMAG, Saint-Martin-d’Héres, France

stephane.devismes@univ-grenoble-alpes.fr
3 University Clermont Auvergne, CNRS UMR 6158, LIMOS, Clermont-Ferrand, France

Abstract. We study the infinite grid exploration (IGE) problem by a swarm of
autonomous mobile robots. Those robots are opaque, have limited visibility capa-
bilities, and run using synchronous Look-Compute-Move cycles. They all agree
on a common chirality, but have no global compass. Finally, they may use lights of
different colors that can be seen by robots in their surroundings, but except from
that, robots have neither persistent memories, nor communication mean. We show
that using only three fixed colors, six robots, with a visibility range restricted to
one, are necessary and sufficient to solve the non-exclusive IGE problem.We show
that using modifiable colors with only five states, five such robots, with a visibility
range restricted to one, are necessary and sufficient to solve the (exclusive) IGE
problem. Assuming a visibility range of two, we also provide an algorithm that
solves the IGE problem using only seven identical robots without any light.

1 Introduction

We deal with a swarm of mobile robots having low computation and communication
capabilities. The robots we consider are opaque (i.e., a robot is able to see another robot
if and only if no other robot lies in the line segment joining them) and run in syn-
chronous Look-Compute-Move cycles, where they can sense their surroundings within
a limited visibility range. All robots agree on a common chirality (i.e., when a robot is
located on an axis of symmetry in its surroundings, it is able to distinguish its two sides
one from another), but have no global compass (they agree neither on a North-South,
nor a East-West direction). However, they may use lights of different colors [17]. These
lights can be seen by robots in their surroundings. However, except from those lights,
robots have neither persistent memories nor communication capabilities.

We are interested in coordinating such weak robots, endowed with both typically
small visibility range (i.e., one or two) and few light colors (only a constant number
of them), to solve an infinite task in an infinite discrete environment. As an attempt to
tackle this general problem, we consider the exploration of an infinite grid, where nodes
represent locations that can be sensed by robots and edges represent the possibility for
a robot to move from one location to another. The exploration task requires each node

This study has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023)
and ESTATE (ANR-16-CE25-0009). Moreover, a preliminary version of this paper has been pre-
sented as a brief announcement at SIROCCO’2019 [5].

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 129–145, 2021.
https://doi.org/10.1007/978-3-030-67087-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_9

130 Q. Bramas et al.

to be visited within finite time by at least one robot. In the following, we refer to it as
the Infinite Grid Exploration (IGE) problem.

Contribution. We give both negative and positive results. We first show that if robots
have a common chirality but a bounded visibility range, the IGE problem is unsolv-
able with:

– two robots, even if those robots agree on common North (the proof of this result is
essentially an adaptation to our context of the impossibility proof given in [13]);

– three or four robots equipped with self-inconsistent compasses (i.e., the compasses
may change throughout the execution).

– five robots equipped with self-inconsistent compasses if the visibility range is
restricted to one, and the lights have fixed (i.e., non-modifiable) colors.

We then propose three algorithms, respectively called AFixed
1 , AModifiable

1 , and
Anolight

2 , for solving the IGE problem using opaque robots equipped with self-
inconsistent compass, yet agreeing on a common chirality. In particular,AModifiable

1 and
Anolight

2 additionally satisfy exclusiveness [2], which requires any two robots to never
simultaneously occupy the same position nor traverse the same edge. In more detail,
Algorithm AFixed

1 solves the non-exclusive IGE problem using six robots with visi-
bility range restricted to one, and only three fixed (i.e., non-modifiable) colors. In this
setting, the algorithm is optimal in terms of number of robots. In AlgorithmAModifiable

1 ,
five robots use modifiable colors with only five states, still with visibility range one. In
this setting, the algorithm is optimal in terms of number of robots; moreover it ensures
exclusiveness. Algorithm Anolight

2 requires seven identical robots without light (i.e.,
seven anonymous oblivious1 robots) and ensures exclusiveness, yet assuming visibility
range two. In order to help the reader, animations are available online [6], for each of
the three algorithms.

Related Work. The model of robots with lights (also called luminous robots) has been
proposed by Peleg in [17]. In [8], the authors use robots with lights and compare the
computational power of such robots with respect to the three main execution models:
fully-synchronous, semi-synchronous, and asynchronous. Solutions for dedicated prob-
lems such as weak gathering or mutual visibility have been respectively investigated
in [15] and [16].

Mobile robot computing in infinite environments has been first studied in the con-
tinuous two-dimensional Euclidean space. In this context, studied problems are mostly
terminating tasks, such as pattern formation [11] and gathering [14], i.e., problems
where robots aim at eventually stopping in a particular configuration specified by their
relative positions. A notable exception is the flocking problem [18], i.e., the infinite task
consisting of forming a desired pattern with the robots and make them moving together
while maintaining that formation.

When considering a discrete environment, space is defined as a graph, where the
nodes represent the possible locations that a robot can take and the edges the possibil-
ity for a robot to move from one location to another. In this setting, researchers have
first considered finite graphs and two variants of the exploration problem, respectively
called the terminating and perpetual exploration. The terminating exploration requires

1 Oblivious means that robots cannot remember the past.

Infinite Grid Exploration by Disoriented Robots 131

every possible location to be eventually visited by at least one robot, with the additional
constraint that all robots stop moving after task completion. In contrast, the perpetual
exploration requires each location to be visited infinitely often by all or a part of robots.
In [9], authors solve terminating exploration of any finite grid using few asynchronous
anonymous oblivious robots, yet assuming unbounded visibility range. The exclusive
perpetual exploration of a finite grid is considered in the same model in [3].

Various terminating problems have been investigated in infinite grids such as arbi-
trary pattern formation [4], mutual visibility [1], and gathering [10,12]. The possibly
closest related work to our paper is that of Emek et al. [13]. They consider the treasure
search problem in an unbounded-size grid which is closely related to the IGE prob-
lem; see [7]. They consider robots that operate in two models: the semi-synchronous
and synchronous ones. However, they do not impose the exclusivity at all since their
robots can only sense the states of the robots located at the same node (in that sense,
the visibility range is zero). The main difference with our settings is that they assume
all robots agree on a global compass, i.e., they all agree on the same directions North-
South and East-West; while we only assume here a common chirality. This difference
makes the problem somehow easier to solve, indeed they propose two algorithms that
respectively need three synchronous and four semi-synchronous robots, while in our
settings we show that at least five robots are necessary to solve the IGE problem (even
in its non-exclusive variant). Notice that they also exclude solutions for two robots.

In a followup paper [7], Brandt et al. extend the impossibility result of Emek
et al. Indeed, they show the impossibility of exploring an infinite grid with three semi-
synchronous deterministic robots that agree on a common coordinate system. Although
proven using similar techniques, this result is not correlated to ours. Indeed, the lower
bound of Brandt et al. holds for robots that are weaker in terms of synchrony assumption
(semi-synchrony vs. fully synchrony in our case), but stronger in terms of coordination
capabilities (common coordinate system vs. self-inconsistent compass with a common
chirality in our case). In other words, our impossibility results do not (even indirectly)
follow from those of Brandt et al. since in our model difficulties arise from the lack of
coordination capabilities and not the level asynchrony. As a matter of facts, based on
the results of Emek et al. [13], four (asynchronous) robots are actually necessary and
sufficient in their settings, while we show that it is five in our context.

Roadmap. In the next section, we define our computational model. In Sect. 3, we
present several lower bounds on the number of robots to solve the IGE problem. In
Sect. 4 and Sect. 5, we propose algorithms solving the IGE problem under visibility
range one and two, respectively. We conclude with some perspectives in Sect. 6.

Due to the lack of space, some technical results are omitted.

2 Model

We consider a set of n > 0 robots located on an infinite grid graph with vertex set
in Z × Z, i.e., there is an edge between two nodes (i, j) and (k, l) if and only if the
Manhattan distance between those two nodes, i.e., |i − k| + |j − l|, is one. Notice that
coordinates are used for the analysis only, i.e., robots cannot access them.

132 Q. Bramas et al.

We assume time is discrete and at each round, the robots synchronously perform a
Look-Compute-Move cycle. In the Look phase, a robot gets a snapshot of the subgraph
induced by the nodes within distance Φ ∈ N

∗ from its position. Φ is called the visibility
range of the robots. The snapshot is not oriented in any way as the robots do not agree
on a common North. However, it is implicitly ego-centered since the robot that performs
a Look phase is located at the center of the subgraph in the obtained snapshot. Then,
each robot computes a destination (either Up, Left, Down, Right or Idle) based only
on the snapshot it received. Finally, it moves towards its computed destination. We also
assume that robots are opaque and can obstruct the visibility so that if three robots are
aligned, the two extremities cannot see each other.

Robots may have lights with different colors that can be seen by robots within dis-
tance Φ from them. Let Cl be the set of possible colors. Even when an algorithm does
not achieve exclusiveness, we forbid any two robots to occupy the same node simulta-
neously. A node is occupied when a robot is located at this node, otherwise it is empty.
The state of a node is either the light color of the robot located at this node, if it is occu-
pied, or ⊥ otherwise. In the Look phase, the snapshot includes the state of the nodes (at
distance Φ). During the compute phase, and if colors are modifiable, a robot may decide
to change its color. Otherwise, colors are said to be fixed.

Configurations. A configuration C is a set of pairs (p, c) where p ∈ Z × Z is an
occupied node and c ∈ Cl is the light color of the robot located at p. A node p is empty
if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied nodes when
the colors are clear from the context. Also, for better readability, we sometimes partition
the configuration into several subsets C1, . . . , Ck and write C = {C1, . . . , Ck} instead
of writing (C = C1 ∪ . . . ∪ Ck) ∧ (∀i �= j, Ci ∩ Cj = ∅).
Views. We denote by Gr the globally oriented view centered at the robot r, i.e., the
subset of the configuration containing the states of the nodes at distance at most Φ from
r, translated so that the coordinates of r is (0, 0). We use this globally oriented view in
our analysis to describe the movements of the robots: when we say “the robot moves
Up”, it is according to the globally oriented view. However, since robots do not agree
on a common North, they have no access to the globally oriented view. Instead, when
a robot looks at its surroundings, it obtains a snapshot. To model this, we assume that,
the local view acquired by a robot r in the Look phase is the result of an arbitrary indis-
tinguishable transformation on Gr. The set IT of indistinguishable transformations is
closed by composition and depends on the assumptions we make on the robots. The
rotations of angle π/2, and consequently of angle π and 3π/2, centered at r are in IT
if and only if the robots do not agree on a common North direction. A mirroring is in
IT if and only if the robots do not agree on a common chirality (they cannot distin-
guish between clockwise and counterclockwise). Moreover, in the obstructed visibility
model, the function that removes the state of a node u if there is another robot between
u and r is in IT and is systematically applied. For a robot r, if the same transformation
fr ∈ IT is used for every look phase of r, we say that r is self-consistent. Otherwise,
the adversary can choose a different transformation for each look phase, and r is said
to be self-inconsistent.

In the remaining of the paper, all our algorithms assume that all robots agree on
a common chirality, i.e., they can distinguish two mirrored views, but we make no

Infinite Grid Exploration by Disoriented Robots 133

assumption on the self-consistency of the coordinate system. On the other hand, we
give impossibility results for stronger models when possible.

When a robot r computes a destination d, it is relative to its local view f(Gr), which
is its globally oriented view Gr transformed by some f ∈ IT . It is important to see
that the actual movement of the robot in its globally oriented view Gr, and so in the
configuration, is f−1(d). Indeed, if d = Up but the robot sees the grid upside-down
(f is the π-rotation), then the robot moves Down = f−1(Up). In a configuration C,
VC(i, j) denotes the globally oriented view of a robot located at (i, j).

Algorithm. An algorithm A is a tuple (Cl , I, T) where Cl is the set of possible colors,
I is the initial configuration, and T is the transition function V iews → {Idle,Up, Left ,
Down , Right} × Cl , where V iews is the set of globally oriented views.

Recall that we assume in our algorithms that the robots are not self-consistent. In
this context, we say that an algorithm (Cl , I, T) is well-defined if the global destination
computed by a robot does not depend on the transformation f chosen by the adversary,
i.e., for every globally oriented view V , and every transformation f ∈ IT , we have
T (V) = f−1(T (f(V))). This is usually a property obtained by construction of the
algorithm, as we describe the destination d for a given globally oriented view V and then
assume that the destination computed from local view f(V) is f(d), for any f ∈ IT .
We can extend the transition function T to the entire configuration. When the robots are
in configuration C, the configuration obtained after one round of execution is denoted
T (C) and contains the pair ((i, j), c) if and only if ∃c′ ∈ Cl for which one of the
following conditions holds

– ((i, j), c′) ∈ C and T (VC(i, j)) = (Idle, c),
– ((i − 1, j), c′) ∈ C and T (VC(i − 1, j)) = (Right, c),
– ((i + 1, j), c′) ∈ C and T (VC(i + 1, j)) = (Left, c),
– ((i, j − 1), c′) ∈ C and T (VC(i, j − 1)) = (Up, c),
– ((i, j + 1), c′) ∈ C and T (VC(i, j + 1)) = (Down, c).

The execution of algorithm A is the sequence (Ci)i∈N of configurations such that C0 =
I and ∀i ≥ 0, Ci+1 = T (Ci). We sometimes write A(C) instead of T (C).

Infinite Grid Exploration. An algorithm A solves the infinite grid exploration (IGE)
problem if in the execution (Ci)i∈N of A and for every node (i, j) ∈ Z×Z of the grid,
there exists t ∈ N such that (i, j) is occupied in Ct.
Notations. t(i,j)(C) denotes the translation of the configuration C of vector (i, j).

3 Impossibility Results

The lemma below states the intuitive, yet non trivial, idea that, to explore an infinite
grid, the maximum distance between the two farthest robots should tend to infinity.
This claim is the cornerstone of our impossibility results.

Lemma 1. Let (Ci)i∈N be an execution of an algorithm A. Let di be the distance
between the two farthest robots inCi. IfA solves the IGEproblem, then lim

i→+∞
di = +∞.

134 Q. Bramas et al.

Proof. We proceed by the contradiction. So we suppose there exists a bound B > 0
such that there are infinitely many configurations in the execution where the distance
between every pair of robots is less than B. In other words, there is a subsequence of
(Ci)i∈N where the distance between every pair of robots is less than B. Let (bi)i∈N be
the sequence of indices of this subsequence, i.e., (bi)i∈N is a strictly increasing sequence
of integers such that dbi < B.

When all robots are at distance less than B, then the occupied positions are included
in a square sub-grid of sizeB×B. Since the number of possible configurations included
in a sub-grid of size B × B is finite, there must be two indices k and l such that
Cbl = t(Cbk) and k < l for a given translation t. The movements done by the robots in
configurations Cbk and Cbl are the same because each robot has the same globally ori-
ented view in both configurations, only their positions change. Thus Cbl+1 = t(Cbk+1)
and so on so forth, so that ∀i, Cbl+i = t(Cbk+i). We obtain that the configurations are
periodic (with period P = bl − bk) and a node u is visited if and only if it is visited
before round bl or if there exists a node v visited between round bk and bl such that
u = tq(v) with q > 0. So, we claim that there exists a node that is never visited.

To prove this claim, we now exhibit such a node. Let I be the set of integers i
such that (t−1)i(0, 0) is visited before round bl applied i times. I is finite because the
number of nodes visited before bl is finite. Let m be the maximum integer in I (or 0
if I is empty). Let u = (t−1)m+1(0, 0). Then, clearly u is not visited before round bl,
otherwise we have a contradiction with the maximality of m. Moreover, u cannot be
visited after round bl, otherwise u would be equals to tq(v) for a given integer q and a
given node v, visited between round bk and bl, i.e., v = (t−1)q(u) = (t−1)q+m+1(0, 0),
which also contradicts the maximality of m. Thus u is never visited.

Theorem 1. No algorithm can solve the IGE problem using two robots, even if robots
agree on common North and chirality.

Proof. By Lemma 1, there is a configuration from which the two robots will no more
see each other (their distance will remain greater than an arbitrary bound B ≥ Φ). For
each robot, its next move will only depend on its color. Since the number of color is
finite, the movements of each robot are then periodic. So, from that point, each robot
r moves by periodically performing the same translation tr, and thus some nodes are
never visited. �

Lemma 2. Assume the robots are equipped with self-inconsistent compasses, yet agree
on a common chirality. Whenever a robot does not see any other one, it either stays idle
or the adversary can make it alternatively move between two chosen adjacent nodes.

Proof. If such a robot does not stay idle, it moves toward a direction d ∈ {Up,Down,
Left, Right} but since its orientation is not self-consistent, the adversary can choose,
for each activation, a transformation f ∈ IT such that the destination f−1(d) in
the globally oriented view alternate between two chosen directions (e.g., Up and
Down). �

Theorem 2. It is impossible to solve the IGE problem using three robots equipped with
self-inconsistent compasses that agree on a common chirality.

Infinite Grid Exploration by Disoriented Robots 135

Proof. By Lemma 1, there is a configuration where two robots are always at distance at
least B (say B > 2 · Φ + 2), so that it is impossible for any robot to see the all others
in the same snapshot. Now, since there are three robots, at least one robot r does not
see any other robot. By Lemma 2, if r stays alone, then it remains idle or the adversary
can make it alternatively move between two nodes infinitely often. Moreover, the two
other robots cannot explore the grid alone, by Theorem 1. Now, they cannot both move
towards r because in such a case the distance between the farthest robots would become
less than B, a contradiction. Finally, if one of the two other robots moves towards r,
at some point all robots are out of the visibility range of each other. In that case, the
adversary can make the exploration fail, by Lemma 2. �

Due to the lack of space, the proofs of the next two theorems are only sketched.

Theorem 3. It is impossible to solve the IGE problem using four robots equipped with
self-inconsistent compasses that agree on a common chirality.

Proof Outline. Assume, by contradiction, that an algorithm A solves the IGE problem
using four robots equipped with self-inconsistent compasses that agree on a common
chirality. Then, using Lemma 1, we consider a round where the two farthest robots,
called here extremities, are always at distance B � Φ. Since we know three robots are
not enough, no robot stays alone forever. Therefore, infinitely often, there is a moving
group of two robots traveling from one extremity to the other. Moreover, whenever trav-
eling an arbitrary long distance, a group of robots necessarily uses periodic movements.
We can then show that these periodic movements induce that after some time, the mov-
ing group travels infinitely often between two extremities by periodically performing
the same translation. This latter claim implies that, after some time, the movements of
the robots depend only on configurations of bounded size, which in turn implies that
the movements of the two extremities are periodic. Since extremities eventually per-
form periodic movements, they each one move inside a strip of bounded width that
grows in only one direction. Hence, whether they move along collinear vectors or not,
the algorithm misses nodes forever in the exploration process. �

Theorem 4. It is impossible to solve the IGE problem using five robots with self-
inconsistent compasses, a common chirality, fixed colors, and visibility range one.

Proof Outline. First, one can generalize the notion of extremities, not only to be the two
farthest robots, but to be a set of k gathering of robots, whose pairwise distances tend to
infinity. Similarly to the previous theorem, one can prove that each extremity eventually
follows a single vector, even if two robots remains close to an extremity. This is because
the movements of the robots near an extremity are independent from the distances to
the other extremities, and hence are periodic.

Since there are at least two robots in the moving group, there are at most three
extremities. If there are only two extremities, the same conclusions as the previous
theorem applies, hence one can assume there are three extremities, delimiting a trian-
gle. Moreover, since colors are fixed, the moving group can only travel between two
extremities in a straight line (vertically or horizontally). Hence the extremities form a
right triangle (or a line but in this case again the previous result applies) and the moving
group cannot travel along the hypotenuse, so that the algorithm misses nodes forever in
the exploration process. �

136 Q. Bramas et al.

4 Infinite Grid Exploration with Φ = 1

In this section, we present two algorithms assuming visibility range one. The for-
mer, Algorithm AFixed

1 , uses six robots with three fixed colors. The latter, Algorithm
AModifiable

1 , uses five robots with five modifiable colors and additionally achieves exclu-
siveness. Recall that animations of these two algorithms are available in our comple-
mentary material [6]. The fact that the rules of these algorithms are well-defined has
been checked by the script that generated those animations. This has been done by mak-
ing sure that (1) the view of any rule cannot be transformed into the view of another
rule using a combination of π

2 -rotations, and (2) for each rule, the global destination
does not depend on the applied local indistinguishable transformation.

4.1 An Algorithm Using Six Robots and Three Fixed Colors

Algorithm Overview. First, our robots are divided into two categories: the beacon
robots—four robots with color B—and the moving group—two robots with respec-
tive color L and F . The beacons are used to delimit the area which is already explored.
The moving group aims at reaching the beacons one by one. Each time a beacon is
reached by the moving group, it moves once in the diagonal (two hops) to take the
newly explored nodes into account. The moving group then continues toward the next
beacon, and so on. Each time the moving group comes back to the first beacon, a so-
called phase terminates: the border of the area initially delimited by the four beacons
is now fully visited, and the area newly delimited by the beacons is bigger; see Fig. 2
to visualize the increasing area that is explored by the moving group (rL is a particular
robot of the moving group, whose role will be explained later).

The moving group successfully performs a phase independently of the distance
between the beacons, so that infinitely many growing phases are achieved in sequence.
The IGE is then solved as any node of the grid is eventually included in the area delim-
ited by the beacons. Note that we use the same technique for the two other algorithms,
yet using areas of different shapes.

smallest enclosing rectangle

B

B

F L B

B

Fig. 1. Initial configuration
of Algorithm AFixed

1 .

Nodes visited by rL
in Phase 1

Nodes visited by rL
in Phase 2

Nodes visited by rL
in Phase 3

Nodes visited by rL
in Phase 4

B

B

F L B

B

Fig. 2. Visited area after four phases for Afixed
1 .

Infinite Grid Exploration by Disoriented Robots 137

Definition of Algorithm AFixed
1 . We use the set of colors Cl = {L,F,B} to partially

distinguish robots. The moving group is composed of two robots: one with light color L
called the leader, and the other with light color F called the follower. The four remain-
ing robots, i.e., the beacons, have light color B. The initial configuration I of AFixed

1 is
defined as follows: I = {((−1, 0), F), ((0, 0), L), ((0,−1), B), ((2, 0), B), ((1, 2), B),
((−2, 1), B)}; see Fig. 1.

Recall that AFixed
1 executes in phases. At the beginning of each phase, we consider

the smallest enclosing rectangle, denoted by SER, that encloses the four beacon robots,
e.g., in Fig. 1, the SER of the initial configuration I is drawn with solid lines. During
a phase, the follower robot rF explores the borders of the SER, while the leader robot
rL visits the borders of the largest rectangle strictly inside the SER. First, the moving
group {rL, rF } moves straight until the leader robot becomes a neighbor of a beacon
robot.

Then, the positions of three robots are adjusted so that (1) the moving group
{rL, rF } makes a turn, and (2) the beacon robot moves diagonally (two hops) in order
to expand the SER. (Notice the execution starts by an adjustment.) Overall, at the end
of Phase i (and so at the beginning of Phase i + 1), both the length and width of SER
increases by two.

The rules of AFixed
1 are defined in Figs. 4, 5, and 6. Some rules aim at moving the

group of robots {rL, rF } straight and the others are used to manage an adjustment. In
the following, we detail how {rL, rF } moves straight toward a beacon robot, does a left
turn, and how the reached beacon robot moves diagonally. Recall that the rules below
also describe the algorithm behavior on equivalent, rotated, local views.

Using Rules of Fig. 6, if we apply AFixed
1 to {((i, j), L), ((i + 1, j), F)}, we obtain

{((i, j + 1), L), ((i + 1, j + 1), F)}, i.e., the two robots go through the translation
t(0,1). So, the group {rL, rF } moves on a straight line when isolated. If we rotate the
two robots with angle π/2, π, or 3π/2, then the moving group will move to the left,
down, or right, respectively. In fact, the direction of the translation actually depends on
the relative positions of rL and rF .

B

L F

(a) RstrF is executed.

B F

L

(b) RtrnB1 and RtrnF1

are executed.

F B

L

(c) RstrL, RtrnB2 , and
RtrnF2 are executed.

B

F

L

(d) RstrL and RstrF

are executed.

Fig. 3. Robots performing a turn.

Before giving the rules for the adjustments and in order to clearly explain how
our algorithm works, we show in Fig. 3 the global configurations that occur when the

138 Q. Bramas et al.

B F

L

B F

Fig. 4.RtrnB1 andRtrnF1 .

F B

L

F B

Fig. 5.RtrnB2 andRtrnF2 .

L F

L F

Fig. 6. RstrL and RstrF .

moving group reaches the upper right beacon robot. In the first round, the follower
(only) moves straight, as previously, to become neighbor of the beacon. In the second
round, the beacon and the follower swap their positions, while the leader stays idle. In
the third round, the beacon moves up to finalize its diagonal motion, while the moving
group {rL, rF } starts to move again in a straight line toward the left.

In more details, for the first round, there is no rule when rL sees a beacon robot,
thus, when it happens rL stays idle and rF continues to move up one more time. For
the second round, according to the rules of Fig. 4, when rF only sees the beacon robot,
it moves towards it, and when the beacon sees both rF and rL, it moves toward rF ,
so that they swap their positions, while rL stays idle. Finally, the beacon robot makes
a last move up, and the moving group moves away from the beacon, according to the
two rules of Fig. 5 and the rule of Fig. 6 that makes the leader move straight. With
those rules, and with M = {((i, j), L), ((i + 1, j), F)}, X = {((i, j + 1), B)},
we can see that by applying AFixed

1 three times starting from {M,X} we obtain
{((i−1, j), L), ((i−1, j+1), F), ((i+1, j+2), B)}, i.e., {ρ(M), t(1,1)(X)}, where
ρ is the rotation centered at (i − 0.5, j − 0.5) of angle π/2.

B

B

L B

F

B

ρ

Fig. 7. Configuration after
three rounds from C0.

Theorem 5. Algorithm AFixed
1 solves the IGE problem

using six robots and fixed colors having common chiral-
ity and a visibility range of one.

Proof. We denote by I = C0 = {M0, C0
0 , C0

1 , C0
2 , C0

3}
the initial configuration given in Fig. 1, where M0 =
{((−1, 0), F), ((0, 0), L)}, C0

0 = {((0,−1), B)}, C0
1 =

{((2, 0), B)}, C0
2 = {((1, 2), B)}, and C0

3 =
{((−2, 1), B)}. We define the configuration Ci =
{M i, Ci

0, Ci
1, C

i
2, C

i
3} in Phase i, where M i =

t(−i,−i)(M0), Ci
0 = t(−i,−i)(C0

0), Ci
1 = t(i,−i)(C0

1),
Ci

2 = t(i,i)(C0
2), andCi

3 = t(−i,i)(C0
3). We now prove that

starting with a configuration Ci, the configuration Ci+1 is
eventually reached. Since the initial configuration of our algorithm is C0, this implies

Infinite Grid Exploration by Disoriented Robots 139

that every configuration Ci, for every i ≥ 0, is gradually reached. By doing so, the
leader robot visits all edges of growing rectangles. Consider the first configuration Ci

of Phase i. In Ci, the distance between rL and the beacon robot on its right is 2i + 2.
Indeed, starting from Ci, the robot rL starts from (−i,−i) and that beacon robot starts
from (i + 2,−i).

By executing the algorithm, we remark (see Fig. 7) that after three rounds (1) the
configuration is {ρ(M i), Ci+1

0 , Ci
1, Ci

2, Ci
3} (where ρ is the rotation with center

(0.5, 0.5) of angle π/2) and (2) rL is at distance 2i + 1 from the bottom down bea-
con. From that point, the moving group {rL, rF } starts moving one node to the right at
each round (due to the first two rules) until robot rL sees a beacon robot r in Ci

1; this
event occurs at round 3 + 2i, i.e., three plus the number of empty nodes between rL

and r. After three more rounds, the moving group performs a left turn again and bottom
right beacon robot is translated by a vector (1,−1).

Thus, at round 3 + 2i + 3, the configuration is {t(2i,0)(ρ2(M i)), Ci+1
0 ,

Ci+1
1 , Ci

2, C
i
3}. After 2i + 3 more rounds, the moving group reaches the top right bea-

con robot, and performs another left turn. So, at round 3 + 2(2i + 3) the configuration
is {t(2i,2i)(ρ3(M i)), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci
3}. Similarly, at round 3+ 3(2i+3)+ 1 the

configuration is {t(−1,2i)(ρ4(M i)), Ci+1
0 , Ci+1

1 , Ci+1
2 , Ci+1

3 }. We can observe that the
moving group {rL, rF } required one extra round (as compared to other beacon robots)
to reach the beacon robot in Ci

3.
Then, after 2i + 1 more rounds, the group of robots {rL, rF } moves 2i + 1 nodes

down to reach the bottom left beacon robot again, so that, at round (3 + 3(2i + 3) +
1) + 2i + 1, the configuration is {t(−1,−1)(ρ4(M i)), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci
3} = Ci+1.

Recursively, if the robots start from configuration C0, they reach configura-
tion Ci in finite time, for any i ≥ 0. Also, the nodes Vi visited by rL between
Phase i and i + 1 contains the edges of the rectangle {t(−i,−i)(−1, 0), t(i,−i)(1, 0),
t(i,i)(1, 1), t(−i,i)(−1, 1)}; see Fig. 2. Since

⋃
i≥0 Vi = Z × Z, our algorithm solves

the infinite grid exploration problem. �

R

G

B

Y

Y

Fig. 8. Initial configuration I of
AModifiable

1 .

B

Y P B P
Y

B

Y P

Fig. 9. Sequence of moves for a diagonal motion.

140 Q. Bramas et al.

B

Y YP B P

Y
Y

P

B

Y

P

G

Y

G B

Y

Fig. 10. Sequence of moves for a turn at the bottom beacon robot. A letter is written near each
arrow to define the new color of the moving robot in case of change.

4.2 An Algorithm Using Five Robots and Five Modifiable Colors

Algorithm AModifiable
1 we present now solves the exclusive IGE problem using a min-

imum number of robots. As compared to the previous algorithm, to use one less robot,
the moving group of two robots moves along a triangle, delimited by three beacon
robots, instead of a rectangle. Except the shape of the growing polygonal, the princi-
ples are similar to the previous algorithm. Notice that we require modifiable colors to
allow the moving group to follow a diagonal and to make adjustments without violating
exclusiveness.

The set of colors isCl = {R, Y,G,B, P}. Notice that, to reduce the number of used
colors, the meaning of each color changes according to the stage of the exploration, i.e.,
along the exploration they are used for different purposes. The initial configuration
I is given in Fig. 8. The three beacon robots at the corners of the growing triangle
respectively hold light colors Y , G, and R. The principle of the algorithm is as follows:
starting from the initial configuration I and using the diagonal movements described
in Fig. 9, the moving group, composed of the two robots initially with lights colored
B and Y , goes to the bottom beacon robot Y . During a diagonal move, the color of
the light of the robot in the moving group initially colored Y alternates at each move
between Y and P , while the light of the robot initially colored B has a fixed color.
Robots in the group alternatively move horizontally and vertically (when one moves
horizontally, the other moves vertically) according to the colors of the group, either
{B, Y } or {B,P}. After the turn at the bottom beacon robot, described in Fig. 10,
the lights of the moving group are now colored G and B and the group moves with
fixed colors similarly to the previous algorithm, until reaching the third beacon robot.
Precisely, they move up towards the top right beacon robot, turns left, and then moves

B

G GY

B

G YP G P B
Y

G

B

Y P

Fig. 11. Sequence of moves of a left turn at the top left beacon robot.

Infinite Grid Exploration by Disoriented Robots 141

straight to the left towards the third beacon robot, following rules that are identical to the
previous algorithm, except that at some point two robots swap their color (and so their
role) instead of swapping positions so that the algorithm remains exclusive; precisely a
member of the moving group becomes a beacon and conversely. Upon reaching the third
beacon robot, the robots perform a turn following the sequence described in Fig. 11.
After the turn at the top left beacon robot, the lights of the moving group have again
colors B and Y and again moves in diagonal. All rules are given in Fig. 12.

Due to the lack of space, the proof of the next theorem (which follows the same
sketch as the one of Theorem 5) has been omitted.

Theorem 6. Algorithm AModifiable
1 solves the exclusive IGE problem using five robots,

five modifiable colors, and a visibility range of one.

Rules for the diagonal move (the fourth rule is also used during the first and the last turns):

B

Y
P

B P
Y

B P B

Y

For the first turn:

B

Y Y
P

Y Y B P

Y
Y

P

Y
P

Y

P
Y

B

Y

P

G

G Y

The rules below allow two robots to move in straight line toward a beacon, turn left, and then move
in straight line towards the next beacon. Actually, they are identical to the previous algorithm,
except that the two robots swap their colors instead of swapping their positions.

G B G B R B

R

R B

G

B

B R B R

G

Rules for the last turn:

B

G G
Y

G G

B

G Y
P

G P G P B
Y

Fig. 12. Rules for Algorithm AModifiable
1 .

142 Q. Bramas et al.

Nodes visited during Phase 1

Nodes visited during Phase 2

Nodes visited during Phase 3

R

G

B

Y

Y

Fig. 13. Visited triangles after three phases for AModifiable
1 .

5 Infinite Grid Exploration with Φ = 2 and No Light

In this section, we describe Algorithm Anolight
2 which solves the exclusive IGE prob-

lem assuming visibility range two, yet using no light (or equivalently, using lights with
the same fixed color for all robots), i.e., using anonymous oblivious robots. Recall that
an animation of this algorithm is available in our complementary material [6]. As pre-
viously, the fact that the rules of this algorithm are well-defined and unambiguous has
been checked by the script that generated those animations.

First, one can observe that since the visibility range is two, the obstructed visibility
can impact the local view of a robot because a robot at distance one can hide a robot
behind it at distance two. So, the rules of Anolight

2 should not depend on the states of
the nodes that are hidden by a robot. To make it clear, those nodes will be crossed out
in the illustrations of our rules, in Figs. 15, 16, and 17.

The principle of our algorithm is similar to the first two ones. We still proceed by
phases. In Phase i (i ≥ 1), a moving group, this time of three robots, traverses the edges
of a square of length 2i (see Fig. 14). The three moving robots are always placed in such
a way that exactly one of them, the leader, has one robot of the group on its horizontal
axis and the other on its vertical axis. Again, the two non-leader robots of the group are
called the followers. Notice however that the leadership changes during a phase. Finally,
as previously, the non-members of the moving group are called the beacon robots.

The overall idea is that the moving group moves straight according to the relative
positions of its members until a follower detects a beacon at distance two. Then, an
adjustment is performed in two rounds to push away the beacon and to make the moving
group turn left.

The initial configuration is presented in Fig. 14 and the rules are given in
Figs. 15, 16, and 17. During Phase i (i ≥ 1), the visited square is actually the one
of length 2i whose center is the initial position of the bottom follower; see Fig. 14. For
the movements along a straight line, the moving group forms a right angle. Each of
the three moving robots sees the others, can determine its position in the group, and so
knows the current direction to follow. Then, when the moving group is close enough
from a beacon robot (see the first configuration in Fig. 18), an adjustment is done in

Infinite Grid Exploration by Disoriented Robots 143

Square of Phase 1

Square of Phase 2

Square of Phase 3
Square of Phase 4

R

R

R R

R

R

R

Fig. 14. Initial configuration I of Anolight
2 and visited squares after four phases.

R R

R

R R

R R R

R

Fig. 15. Moving on a straight line for Anolight
2 .

R

R

R

R R

R

Fig. 16. First round.

R

R

R

R R

Fig. 17. Second round.

two rounds. In the first round, a beacon robot sees a follower in diagonal and moves up.
Simultaneously, that follower moves towards the node on the right of that beacon robot.
The two other members of the moving group move straight, as previously. In the sec-
ond round, the beacon robot moves away, on the left of the aforementioned follower it
sees at distance two (i.e., on the right from a global point of view described in Fig. 18).
Simultaneously, that follower, which sees the beacon robot at distance two, catches up
with the other robots of the moving group that are on its left and stay idle. Then, the
moving group moves again along a straight line, and so on.

Due to the lack of space, the proof of the next theorem has been omitted. Again it
follows the same sketch of the proof of Theorem 5.

144 Q. Bramas et al.

R

R R

R

R

R

R R

R

R

R R

Fig. 18. Sequence moves for a left turn.

Theorem 7. Algorithm Anolight
2 solves the exclusive IGE problem using seven robots

without lights and a visibility range of two.

6 Conclusion and Perspectives

We have considered the problem of exploring an infinite discrete environment, namely
an infinite grid-shaped graph, using a small number of mobile synchronous robots with
low computation and communication capabilities. In particular, our robots are opaque
and only agree on a common chirality. We have shown that using few fixed colors (actu-
ally three), six robots, with a visibility range restricted to one, are necessary and suffi-
cient to solve the non-exclusive IGE problem.We have also shown that using modifiable
colors with few states (actually five), five such robots, with a visibility range restricted
to one, are necessary and sufficient to solve the (exclusive) Infinite Grid Exploration
(IGE) problem. We also provide an algorithm that the exclusive IGE problem using
seven oblivious anonymous robots, yet assuming visibility range two.

A direct perspective of this work is to study the optimality, in terms of number of
robots, when we consider the case of anonymous oblivious robots (i.e., robots without
any light). Another line of research would be to study the impact of removing the chi-
rality assumption. As a long-term perspective, we envision to study the IGE problem in
fully asynchronous settings.

References

1. Gilbert, S., Hughes, D., Krishnamachari, B. (eds.): ALGOSENSORS 2018. LNCS, vol.
11410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6

2. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration without col-
lision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

3. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive perpetual
grid exploration without sense of direction. In: OPODIS, Toulouse, France, pp. 251–265
(2011)

4. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on infinite grid
by asynchronous oblivious robots. In: WALCOM, pp. 354–366 (2019)

5. Bramas, Q., Devismes, S., Lafourcade, P.: Infinite grid exploration by disoriented robots. In:
SIROCCO, pp. 340–344 (2019)

6. Bramas, Q., Devismes, S., Lafourcade, P.: Infinite Grid Exploration by Disoriented Robots:
Animations (September 2019). https://doi.org/10.5281/zenodo.2625730

https://doi.org/10.1007/978-3-030-14094-6
https://doi.org/10.5281/zenodo.2625730

Infinite Grid Exploration by Disoriented Robots 145

7. Brandt, S., Uitto, J., Wattenhofer, R.: A tight bound for semi-synchronous collaborative grid
exploration. In: DISC (2018)

8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots
with lights. Theor. Comput. Sci. 609(P1), 171–184 (2016)

9. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by
asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol.
7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-5 7

10. Di Stefano, G., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum
traveled distance. Inf. Comput. 254, 377–391 (2016)

11. Dieudonné, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Inf. Process.
Lett. 101(4), 156–162 (2007)

12. Dutta, D., Dey, T., Chaudhuri, S.G.: Gathering multiple robots in a ring and an infinite grid.
In: Krishnan, P., Radha Krishna, P., Parida, L. (eds.) ICDCIT 2017. LNCS, vol. 10109, pp.
15–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50472-8 2

13. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does it take to
find the food? Theor. Comput. Sci. 608(P3), 255–267 (2015)

14. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots
with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005)

15. Luna, G.A.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual
visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017)

16. Ooshita, F., Datta, A.K.: Brief announcement: feasibility of weak gathering in connected-
over-time dynamic rings. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201,
pp. 393–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 27

17. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new directions
and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC
2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/
11603771 1

18. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of
autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-50472-8_2
https://doi.org/10.1007/978-3-030-03232-6_27
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1

Wireless Broadcast with Short Labels

Gewu Bu(B), Maria Potop-Butucaru, and Mikaël Rabie

Sorbonne University, LIP6 CNRS UMR 7606, Paris, France
{gewu.bu,maria.potop-butucaru,mikael.rabie}@lip6.fr

Abstract. In this paper, we study the broadcast problem in wireless net-
works when the broadcast is helped by a labelling scheme. We focus on two
variants of broadcast: broadcast without acknowledgment (i.e. the initia-
tor of the broadcast is not notified at the end of broadcast) and broadcast
with acknowledgment. Our contribution is threefold. First, we improve
in terms of memory complexity a recent [12] labelling-based broadcast
scheme with acknowledgment designed for arbitrary networks. Second, we
propose label optimal broadcast algorithms in level separable networks
(a class of networks issued from recent studies in Wireless Body Area
Networks). In this class of networks we propose an acknowledgment-free
broadcast strategy using 1-bit labels and broadcast with acknowledgment
using 2-bits labels. In the class of level-separable networks, our algorithms
finish within 2D rounds, where D is the eccentricity of the broadcast ini-
tiator. Interestingly, the time complexity of broadcast in the case of level-
separable networks does not depend on the size of the network but rather
on the initiator eccentricity which makes this class of graphs interesting for
further investigation. Finally, we study the hardness of determining that a
graph is level separable. Our study shows that even though checking that
a separation is a level separation can be done in polynomial time, deter-
mining that a graph has the level separable property is NP-complete. This
result opens interesting independent research directions.

Keywords: Labelling scheme · Broadcast · Wireless networks

1 Introduction

Broadcast is the most studied communication primitive in networks and dis-
tributed systems. Broadcast ensures that once a source node (a.k.a. the broad-
cast initiator) sends a message, all other nodes in the network should receive
this message in a finite time. Limited by the transmission range, messages might
not be sent directly from one node to some other node in the network. Therefore
relay nodes need to assist the source node during the message propagation by re-
propagating it. Deterministic centralized broadcast, where nodes have complete
network knowledge, has been studied by Kowalski et al. in [23]. The authors
propose an optimal solution that completes within O(D log2 n) rounds, where
n is the number of nodes in the network and D is the largest distance from
the source to any node of the network. For deterministic distributed broadcast,
assuming that nodes only know their IDs (i.e. they do not know the IDs of their

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 146–169, 2021.
https://doi.org/10.1007/978-3-030-67087-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_10

Wireless Broadcast with Short Labels 147

neighbours nor the network topology), in [9] is proposed the fastest broadcast
within O(n log D log log D) rounds, where D is the diameter of the network. The
lower bound in this case, proposed in [10], is Ω(n log D).

In wireless networks, when a message is sent from a node it goes into the
wireless channel in the form of a wireless signal which may be received by all the
nodes within the transmission range of the sender node. However, when a node is
located in the range of more than one node that sends messages simultaneously,
the multiple wireless signals may generate collisions at the receiver. The receiver
cannot decode any useful information from the superimposed interference signals.
At the MAC layer, several solutions have been proposed in the last two decades in
order to reduce collisions. All of them offer probabilistic guarantees. Our study
follows the recent work that addresses this problem at the application layer.
More specifically, we are interested in deterministic solutions for broadcasting
messages based on the use of extra information or advise (also referred to as
labelling) precomputed before the broadcast invocation.

Labelling schemes have been designed to compute network size, the father-
son relationship and the geographic distance between arbitrary nodes in the
network (e.g. [1,15,17]). Labelling schemes have been also used in [14,16] in
order to improve the efficiency of Minimum Spanning Tree or Leader Election
algorithms. Furthermore, [11,13] exploit labelling in order to improve the existing
solutions for network exploration by a robot/agent moving in the network.

Very few works (e.g. [12,20]) exploit labelling schemes to design efficient
broadcast primitives. When using labelling schemes, nodes record less informa-
tion than in the case of centralized broadcast, where nodes need to know com-
plete network information. Compared with the existing solutions for determin-
istic distributed broadcast the time complexity is improved. In [20] the authors
prove that for an arbitrary network, to achieve broadcast within a constant num-
ber of rounds, a O(n) bits of advice is sufficient but not o(n). Very recently, a
labelling scheme with 2-bits advice (3 bits for broadcast with acknowledgment)
is proposed in [12]. The authors prove that their algorithms need 2n − 3 rounds
for the broadcast without acknowledgment and 3n−4 rounds for broadcast with
acknowledgment in an arbitrary network.

Contribution: Our work is in the line of research described in [12]. We first study
in terms of memory complexity the broadcast scheme proposed in [12], where
3-bits labelling based broadcast algorithm with acknowledgment is proposed for
an arbitrary network. However, the utilization of the 3-bits labelling is not opti-
mal. We propose therefore an improvement to optimal the memory complexity
for the proposition in [12]. Due to the pages limitation, please see our technical
rapport [8] for detailed description and preuve. Then, we study labelling-based
broadcast in a new family of networks, called level-separable networks issued
from Wireless Body Area Networks (e.g. [2–4,6,7]). In this class of networks
we propose an acknowledgment-free broadcast strategy using 1-bit labels and
a broadcast scheme with acknowledgment using 2-bits labels. Our algorithms
terminate within 2D rounds for both types of broadcast primitives, where D
is the eccentricity of the broadcast source. Interestingly, the time complexity of
broadcast in the case of level separable networks does not directly depend on

148 G. Bu et al.

the network size which makes the study of level separable networks of indepen-
dent interest. We further investigate the hardness of determining if a graph is
level separable. Our study shows that even though checking that a separation
is a level separation can be done in polynomial time, determining that a graph
has the level separable property is NP-complete. This result opens interesting
independent research directions that will be discussed in the conclusion of this
document.

2 Model and Problem Definition

We model the network as a graph G = (V,E) where V , the set of vertices,
represents the set of nodes in the network and E, the set of edges, is a set of
unordered pairs e = (u, v), u, v ∈ V , that represents the communications links
between nodes u and v. In the following d(u) denotes the set of neighbours of
node u. We assume that the network is connected, i.e., there is a path between
any two nodes in the network.

We assume that nodes execute the same algorithm and are time synchronized.
The system execution is decomposed in rounds. When a node u sends a message
at round x, all nodes in d(u) receive the message at the end of round x. Collisions
occur at node u in round x if a set of nodes, M ⊆ d(u) and |M | > 1, send a
message in round x. In that case, it is considered that u has not received any
message.

In the following we are interested in solving the Broadcast problem: when a
source node s sends a data message μ, this μ should be received by all the nodes in
the network in a finite bounded time. We are also interested in solving Broadcast
with acknowledgment problem: once all nodes received μ, an acknowledgment
message, called ACK, will be generated and sent backward to the source node
s in a finite bounded time.

3 Level-Separable Networks

In this section, we define a family of networks, Level-Separable Network, issued
from WBAN (Wireless Body Area Networks) area (e.g. [2–4,6,7,21,24,26]), due
to the pages limitation, please see our technical rapport [8] for detailed descrip-
tion and specification of WBAN. We therefore investigate the broadcast problem
in these networks.

3.1 Formal Definition of Level-Separable Networks

We say that an arbitrary network is a Level-Separable Network if the underlay
communication graph G = (V,E) of the network verifies the Level-Separable
property defined below. To define the Level-Separable property, we introduce
some preliminary notations.

Wireless Broadcast with Short Labels 149

Let G(V,E) be a network and let s ∈ V , a predefined vertex, be the source
node of the broadcast. Each vertex u ∈ V has a geometric distance with respect
to s denoted d(s, u). The eccentricity of vertex s, εG(s), is the farthest distance
from s to any other vertex. In the rest of the paper, we denote εG(s) by D.

Definition 1 (Level). Let G(V,E) be a network and s the source node. For
any vertex u in G(V,E), the level of u is l(u) = d(s, u) is its geometric distance
to s. Let Si = {u | u ∈ V, l(u) = i} denote the set containing all the vertices at
level i.

Definition 2 (Parents and Sons). Let G(V,E) be a network. A vertex u is
parent of vertex v (a vertex v is son of vertex u) in graph G with the root source
node s: if l(v) − l(u) = 1 ∧ {u, v} ∈ E. Let S(u) (P (v)) be the set of sons
(parents) of u (v). If v ∈ S(u) (u ∈ P (v)), we say that u (v) has v (u) as son
(parent).

Level-Separable property below defines how to filter nodes in the same level
i into two disjoint subsets.

Definition 3 (Level-Separable Subsets). Given G(V,E) a network and the
set Si (the set of all vertices in the same level i of G), the level-separable subsets
of Si are Si,1 and Si,2, such that Si,1 ∩ Si,2 = ∅, Si,1 ∪ Si,2 = Si

There may be many possible pairs of Si,1 and Si,2 for a level i. Let Ti be the
set of all possible pairs of Level-Separable Subsets:

Ti = {(S(1)
i,1 , S

(1)
i,2), (S(2)

i,1 , S
(2)
i,2), . . . , (S(2x)

i,1 , S
(2x)
i,2)}

where (m) on right-top of each pair represent the index of pairs (the mth
pairs) in Ti, and x = |Si|.
Definition 4 (Level-Separable Property). Given an arbitrary graph
G(V,E), for all level i ∈ [1,D − 1], where D is the eccentricity of the source
node, G verifies the Level-Separable property, if there are pairs for every Ti,
(S(k)

i,1 , S
(k)
i,2), such that: ∀u ∈ Si+1, |P (u) ∩ S

(k)
i,1 | = 1 ∨ |P (u) ∩ S

(k)
i,2 | = 1 i.e., for

every vertex u at level i + 1, u has only one parent in Si,1 or Si,2.

Note that when Si,1 is fixed, Si,2 is Si \ Si,1.

Definition 5 (Level-Separable Network). A network G(V,E) is a Level-
Separable Network if its underlay graph verifies the Level-Separable property.

Note that Level-Separable Graph has a similar flavour with Bipartite Graph [18].
A graph G = (V,E) is said to be Bipartite if and only if there exists a partition
V = A ∪ B and A ∩ B = ∅. So that all edges share a vertex from both sets A
and B, and there is no edge containing two vertices in the same set. A bipartite
graph separates nodes into two independent sets. In a level-separable network,
we aim at separating nodes of the same level. Moreover, we are interested in the
relation between the two separated sets at level i and nodes in level i + 1, i.e.,

150 G. Bu et al.

Fig. 1. Example of a Level-2 separable network, which is not a tree network

the node’s father-son relationship. However, note that being bipartite does not
necessarily means that the graph is level-separable.

Note that a level-separable network is not necessary for being a tree net-
work. However, a tree is a level-separable network. A simple example of a level-
separable network is a tree network, where the source node s can be seen as the
root of the tree who begins the broadcast. In a tree topology, all non-source nodes
have only one parent, i.e. ∀u ∈ V −s, |P (u)| = 1. Hence, we can choose Si,1 = Si

and Si,2 = ∅. The Level-Separable property is therefore verified. Figure 1 shows
an example of a level-separable network that is not a tree.

Note that studies conducted in wireless body area networks (e.g. [2–4,6,7])
fit our definition of level-separable network.

4 Broadcast in Level-Separable Network

In this section, we propose a 1-bit constant-length labelling broadcast Algorithm
βLS detailed in Algorithm1. The algorithm needs 2D rounds to terminate, where
D is the eccentricity of the broadcast source node.

4.1 Broadcast with 1-bit Labelling

Given a level-separable network whose root is the source of the broadcast, we
propose Algorithm βLS to achieve the wireless broadcast, when a 1-bit labelling
scheme λLS is used. Each node in the network has a 1-bit label, X1. X1 is set
to 1 or 0 following the labelling scheme λLS described below. The idea of the
broadcast algorithm is to separate nodes at each level into two independent sets.
Nodes in the first set transmit at round x and nodes in the second set transmit
at round x + 1 (the next round), so they will not generate valid collisions1.

1 Note that collisions that occur at a node who has already received the message
successfully are not considered as valid collisions.

Wireless Broadcast with Short Labels 151

The broadcast Algorithm βLS using the labelling scheme λLS is as follows:
the source node sends the message, μ, at round 0. Nodes at level 1 receive μ at
the end of round 0. When nodes with X1 = 1 receive message μ at round 2i − 3
(i > 1) or 2i − 2 (i > 0), where i is the level, they send μ at round 2i − 1. When
nodes with X1 = 0 receive μ at round 2i − 3 (i > 1) or 2i − 2 (i > 0), they send
μ at rounds 2i. That is, nodes at level i > 0 will receive μ from their parents
(nodes at level i− 1) at round 2i− 3 (i > 1) or 2i− 2 (i > 0), and they will send
μ at round 2i or 2i − 1 according to X1. In other words, at each level i, nodes
take two rounds to propagate μ to all nodes at level i + 1.

4.2 1-bit Labelling Scheme λLS

To achieve collision-free transmission, 1-bit Labelling Scheme λLS X1 of all nodes
in Si,1 for level i > 0 is 1, and X1 of all nodes in Si,2 for level i > 0 is 0 where
Si,1 and Si,2 are the sets identified in Definition 4.

4.3 Correctness of Algorithm βLS

In the following, we prove that Algorithm βLS is correct.

Theorem 1. Algorithm βLS with 1-bit constant Labelling Scheme λLS imple-
ments broadcast in a level-separable network within 2D rounds.

The proof of this theorem is a direct consequence of Lemmas 1, 2 and 3 below.

Note 1. Note that the 1-bit labelling scheme is optimal for broadcast in a level-
separable network. That is, with 0-bit labelling (i.e. without using any labelling) it
is possible that some nodes in the network do not receive the broadcasted message
due to the collisions since nodes are synchronized and transmit at the same time.

Lemma 1. Let G = (V,E) be a level-separable network such that each node has
a label according to the labelling scheme λLS. If nodes with X1 = 1 at the same
level i ∈ [1,D − 1] are the only one to send a message concurrently at round j
and on the next round j + 1 nodes with X1 = 0 at the same level i are the only
one to send a message concurrently, all nodes at level i + 1 have received the
message without collision either at round j or round j + 1.

Proof. Let u ∈ Si+1. By construction, u has exactly one parent in Si,1 or Si,2.
In the first case, u has received the message without collision at round j, and it
has received it at round j + 1 in the second case.

Lemma 2. Given a level-separable network whose root is the source node by
applying βLS and λLS , all nodes in level i > 0 finish receiving the message μ at
round 2i − 2.

152 G. Bu et al.

Algorithm 1. βLS(μ) executed at each node v
%Each node has a variable sourcemsg. The source node has this variable initially set to µ, all
other nodes have it initially set to null. A variable k initially set to 0 to ensure each node sends
µ only once.
for each round r from 0 do

if v is the source node and r = 0 then
transmit sourcemsg

if v is not source node and receives µ then
if k = 0 then

sourcemsg ← µ
if r is odd number then

if X1 = 0 then
transmit sourcemsg at round r + 3

else if X1 = 1 then
transmit sourcemsg at round r + 2

else if r is even number then
if X1 = 0 then

transmit sourcemsg at round r + 2
else if X1 = 1 then

transmit sourcemsg at round r + 1

set k = 1

Proof. We begin from the base case where i = 1, nodes at level i = 1 means
nodes that are only one hop away from the source node. At round 0, which is
round 2× i−2 = 2×1−2 = 0, the source sends the message. All nodes at level 1
will receive the message at the end of round 0. For i = 2, as all nodes at level 1 can
receive the message at round 0, they will begin to send at round 1 and round 2
for nodes in Si,1 and Si,2, respectively. According to Lemma 1, all nodes received
the message without collision at round 2, which is round 2× i−2 = 2×2−2 = 2
and they begin to send the message at round 3 and 4. For the general case, we
assume that all nodes at level i, i > 2, finish receiving the message at round
2i − 2. So that nodes begin to send the received message at round 2(i + 1) − 3
and 2(i + 1) − 2, and nodes at level i + 1 receive the message at 2(i + 1) − 3 and
2(i + 1) − 2, that is nodes at level i + 1 finish receiving the message at round
2(i + 1) − 2.

Lemma 3. Given a level-separable network whose root is the source node by
applying βLS and λLS, the broadcast finishes in 2D rounds.

Proof. From Lemma 2, nodes having the longest distance to the source will
receive the message at round 2D − 2, where D is the source eccentricity. After
receiving the message, these nodes will send it according to the broadcast algo-
rithm, even though they are already the ending nodes in the network which takes
two more rounds. Therefore the broadcast finishes at round 2D.

Consider the execution of the Algorithm βLS in a level-separable network
with labelling scheme λLS , where nodes in level i have been separated into two
sets Si,1 and Si,2 verifying the level-separable property at level i, ∀i > 0. Nodes
in Si,1 have X1 = 1, and nodes in Si,2 have X1 = 0. The main idea of βLS

is that, nodes in each level i separated into two different sets transmit their
received messages μ in different execution rounds to reduce the impact of the
collision at nodes in level i + 1.

Wireless Broadcast with Short Labels 153

According to Algorithm βLS , the message μ will be propagated from level to
level. Each propagation from a level to the next one takes two execution rounds.
In the first round all nodes in Si,1 send the received message μ. At the end of this
round all the nodes that are the sons of nodes in Si,1 receive μ, without collision,
see Lemma 1. Therefore sons of nodes in Si,1 contain all the nodes at level i + 1
who have multi-parents, that means it remains only nodes at level i + 1 having
only one parent and did not receive μ yet. In the second round, all nodes in Si,2

send μ, and the remaining part of the nodes at level i + 1 can therefore receive
μ from their unique parent. So that after these two rounds of transmission from
level i, all the nodes at i + 1 will successfully receive the message μ. It takes
therefore 2D rounds to finish the broadcast. Note that nodes will only send once
according to βLS . Therefore the algorithm terminates.

5 Broadcast with ACK in Level-Separable Network

In this section, we propose a broadcast algorithm with ACK, βLS
ACK , and a

Labelling Scheme, λLS
ACK , for level-separable networks. Our algorithm βLS

ACK

(Algorithm 2) uses only 2-bits labelling and the broadcast finishes within 2D
rounds. In our solution, ACK goes back to the source node in at most 2D rounds,
where D is the eccentricity of s (the broadcast source node). That means the
ACK can be received by the source node at the same round of the broadcast
termination.

5.1 2-bits Labelling Broadcast with ACK

According to Theorem 1 the broadcast finishes in a level-separable network
within 2D rounds where D is the eccentricity of the source node. If the source
node has the knowledge of D, then it automatically can decide if the broadcast
is finished. However, when an ACK is necessary to inform the source node to
trigger some additional functions then the source waits for the reception of this
message. In order to avoid that ACK takes additional time after the end of
the broadcast, we propose to send in advance the ACK message at the halfway
of the transmission during the broadcast execution. Since in a level-separable
network, informing nodes from level to level takes exactly 2 rounds, then ACK
also takes 2 rounds to go back one level above. Therefore, when the last node
receives μ, the source node receives ACK at the same round. Interestingly, com-
pared with non-ACK broadcasting, our solution uses one extra bit for labelling
and no additional rounds to forwarding ACK back to the source.

Figure 2 gives the intuition of how to send in advance the ACK: the half-way
ACK mechanism. In Fig. 2, the network is represented in abstract levels to sim-
plify the presentation. Packets flow shown in the figure represent the propagation
of messages μ and ACK.

154 G. Bu et al.

Fig. 2. Anticipating the ACK in a level-separable network

5.2 2-bits Labelling Scheme λLS
AC K

We use λLS to set X1 in λLS
ACK in order to verify Lemma 1. Let X2 be the second

bit of the λLS
ACK labelling scheme. X2 = 1 for a set of nodes if they are on the

way back path from a node at level
D/2� − 1 to the source node, where D is
the eccentricity of s and s is the broadcast source. For the other nodes, X2 = 0.
In Sect. 5.3, we explain why we choose nodes at level
D/2�−1 to begin sending
the ACK.

Note 2. Note that the 2-bits labelling scheme is optimal to achieve broadcast
with acknowledgment in a level-separable network. From Note 1 1-bit is necessary
for broadcast without acknowledgment. When an acknowledgment has to be sent
back to the source node, at least one additional bit is necessary to indicate the
node to generate the acknowledgment message and send it back to the source
node. Without this additional bit no node can decide (unless it uses extra local
memory) if it is the last receiving node, and who should send ACK back.

5.3 Correctness of Algorithm βLS
AC K

Theorem 2 below proves the correctness of Algorithm βLS
ACK .

Theorem 2. Algorithm βLS
ACK with 2-bits labelling scheme λLS

ACK implements
broadcast in a level-separable network. The broadcast terminates in 2D rounds.
The ACK message is transmitted back to the source at round 2(D − 1), if D is
odd or 2D, if D is even.

The proof of the theorem is the direct consequence of Lemmas 4, 5 and 6 below.

Lemma 4. Given a level-separable network whose root is the source node by
applying βLS

ACK and λLS
ACK , nodes in level i > 0 receive message μ at round

2i − 2. The broadcast finishes at round 2D.

Proof. βLS
ACK follows the same idea as βLS . The additional ACK transmission

will not have any impact according to Lemma2 and 3. Hence the proof follows.

Wireless Broadcast with Short Labels 155

Lemma 5. Given a level-separable network whose root is the source node by
applying βLS

ACK and λLS
ACK , ACK goes back to the source node at round 2(D−1),

if D is odd; or 2D, if D is even.

Proof. When D is odd, ACK and μ will begin to be sent to source and to the
ending nodes from levels lACK and lMSG, respectively. The distances from levels
lACK back to the source are the same as that from lMSG to the ending nodes.
ACK arrives at the source at the same round as μ arrives at the ending nodes.
According to Lemma 4, this is round 2(D − 1). When D is even ACK needs to
go one level farther compared with μ. Therefore, it takes two extra rounds when
D is even. Therefore, when D is even the ACK message goes back to the source
node in 2D rounds.

Lemma 6. Given a Level-Separable Network whose root is the source node by
applying βLS

ACK and λLS
ACK , the algorithm finishes within 2D rounds.

Proof. The idea of the correctness proof is as follows. Consider a level-separable
network with the labelling scheme λLS

ACK , where all nodes in level i have been
separated into two sets Si,1 and Si,2. Nodes in Si,1 have X1 = 1, and nodes in
Si,2 have X1 = 0. A way back path is marked with X2 = 1 between source s and
an arbitrary node at level
D/2� − 1, where D is the eccentricity of s, i.e., we
only mark the way back path from the half-way level
D/2� − 1 of the network
in this case.

The idea is that when the message μ propagates to the half-way level of the
network, a node at that level will begin ACK transmission processing, so that
when the μ reaches to the ending node(s) at level D, ACK reaches the source s
at (almost) the same round. As nodes cannot decide if they are the ones at the
half-way of the network who should generate and send ACK, we use a Waiting
Period and an extra pACK message.

According to the βLS
ACK , when a node with X2 = 1, receives μ and finishes the

μ retransmission, it cannot decide its position in the way back path. Therefore, it
sends a pACK and begins to wait for pACK message sent to him in the following
rounds. When a node with X2 = 1 receives a pACK within the WaitingPeriod,
that means it is not the ending node, because there is another node with X2 =
1 that received μ and sent pACK to him. When a node with X2 = 1 does
not receive any pACK within its WaitingPeriod, this means no node in the
next level has X2 = 1, i.e., it is the half-way ending node, so it generates and
sends the ACK. All the nodes with X2 = 1 will forward ACK from the ending
node to the source s according to the marked way back path. In the βLS

ACK , the
WaitingPeriod is delayed two rounds after a node sends pACK to avoid the
collision between pACK/ACK and μ.

A node with X2 = 1 that receives μ at round x, transmits μ at round x + 2,
then it sends pACK to its parents at round x+4, then it waits a Waiting Period
until round x + 6. If it doesn’t receive another pACK, then it sends ACK at
round x + 8. That means, for the half-way ending node, it needs to wait for 6
rounds to begin sending ACK. What we want for this half-way mechanism is
that the source node can receive ACK as fast as possible, after the broadcast

156 G. Bu et al.

Algorithm 2. βLS
ACK(μ) executed at each node v

%Each node has a variable sourcemsg. The source node has this variable initially set to µ, all
other nodes have it initially set to null. A variable k and kack initially set to 0 to ensure each
node send µ only once.
for each round r from 0 do

if v is source node and r = 0 then
transmit sourcemsg

if v is not source node and received µ then
sourcemsg ← µ
if k = 0 then

if r is odd number then
if X1 = 0 then

transmit sourcemsg at round r + 3
if X2 = 1 then

transmit “pACK” at round r + 4
if v does not received “pACK” at r + 6 then

transmit “ACK” at round r + 6, set kack = 1

else if X1 = 1 then
transmit sourcemsg at round r + 2
if X2 = 1 then

transmit “pACK” at round r + 4
if v has not received “pACK” at r + 6 then

transmit “ACK” at round r + 6, set kack = 1

else if r is even number then
if X1 = 0 then

transmit sourcemsg at round r + 2
if X2 = 1 then

transmit “pACK” at round r + 3
if v has not received “pACK” at r + 5 then

transmit “ACK” at round r + 5, set kack = 1

else if X1 = 1 then
transmit sourcemsg at round r + 1
if X2 = 1 then

transmit “pACK” at round r + 3
if v has not received “pACK” at r + 5 then

transmit “ACK” at round r + 5, set kack = 1

set k = 1
if v is not source node and received ACK then

if X2 = 1 and kack = 0 then
transmit ACK at round r + 2
set kack = 1

finishes. When D (the eccentricity of the broadcast source s) is odd, then if
we chose the node at level
D/2� − 1 as the half-way ending node, then the
ACK can be received by the source node at the same round as the end of the
broadcast. Because after waiting for 6 rounds at level
D/2� − 1, μ has already
been transmitted to level
D/2� − 1 + 3 =
D/2� + 2. The distance from node
sending ACK to source node is d(s,
D/2� − 1) =
D/2� − 1; the distance from
node sending μ to nodes at level D is also d(
D/2� + 2,D) =
D/2� − 1. When
D is even, if we chose the node at level
D/2� − 1 as the half-way ending node,
then the ACK can be received by the source node only two rounds after the
round of the ending of the broadcast.

Therefore it takes 2D rounds to finish the broadcast and ACK can be trans-
mitted back to the source node at round 2(D −1) or round 2D. Note that nodes
will only send (both for μ and ACK) once according to βLS

ACK . Therefore the
algorithm terminates.

Wireless Broadcast with Short Labels 157

6 Hardness of Level Separation

It should be noted that checking that a separation is a Level-Separation is
polynomial: it is sufficient to check that for each node u, |P (u) ∩ Sl(u),1| =
1 ∨ |P (u) ∩ Sl(u),2| = 1. In this section we will prove that determining if a graph
has the level-separable property is NP-Hard. To do so, we will reduce 1-IN-3-
SAT [22] to the level separable problem. 1-IN-3-SAT is a NP-Complete variant
of the usual NP-complete problem 3-SAT, where exactly a single literal in each
clause must be true. As input, we have a list of variables X = {x1, . . . , xk} and
a formula φ which is a conjunction of clauses c1, . . . , cl that are each composed
of exactly 3 literals of the form xi or xi. The goal is to find an assignation for
the variables A : X → {,⊥} such that, for every clause ci, exactly one variable
is satisfied (i.e. has the assignation if it appears positively, ⊥ if it appears
negatively).

Theorem 3. Determining if a graph with a source has the Level-Separable prop-
erty is NP-complete.

Proof. Let (X,φ) be an instance of 1-IN-3-SAT. We will build G = (V,E) such
that V = {s} ∪ S1 ∪ S2, S1 being the neighborhood of s, and S2 all the other
nodes, that will actually be at distance 2 from s. We have:

– S1 = {una
, unb

, uy} ∪ {uyi
, uni

}i≤k.
– S2 = {va, vb} ∪ {vxi

}i≤k ∪ {vcj}j≤l.
– {s} × S1 ⊂ E, {(una

, va), (unb
, vb), (uy, va), (uy, vb)} ⊂ E.

– ∀i ≤ k, we have {(uyi
, vxi

), (uni
, vxi

)} ⊂ E. If xi ∈ cj , then we have
(uyi

, vcj) ∈ E. If xi ∈ cj , then we have (uni
, vcj) ∈ E.

– ∀j ≤ l, we have {(una
, vcj), (unb

, vcj)} ⊂ E.

An abstract graph can be seen in Fig. 3 corresponding to the description
above.

Let’s suppose that we have a solution S1,1, S1,2 to the problem (any partition
of S2 works, as there are the farthest nodes from s). We will call Y ∈ {1, 2} the
index of the node uy, and N = 3 − Y the index that is different from Y . Here
below a list of observations:

1. If a node in S2 has exactly two parents, then the index of its parents must
be different.

2. una
(resp. unb

) must have index N , as va (resp. vb) is only connected to it
and to uy.

3. ∀i ≤ k, uyi
and uni

have different indexes, as they are the only parents of
vxi

.
4. ∀j ≤ l, vcj has exactly one parent of index Y , as it has at least two parents

of index N : una
and unb

.

158 G. Bu et al.

Fig. 3. Solid lines represent the edges that always exist. Dense dotted lines represent
the edges that exist if xi ∈ cj . Loose dotted lines represent the edges that exist if
xi ∈ cj

A solution for the corresponding 1-IN-3-SAT instance is to choose, for each
variable xi such that uyi

has index Y , valuation , and ⊥ for the others. Let
cj be a clause. The node vcj has exactly one parent of index Y among the
ones corresponding to variables. If it is a node of the form uyi

, then xi appears
positively in cj (otherwise, it is of the form uni

and xi appears negatively in
cj). Let be another node corresponding to a variable connected to vcj . Its index
must be N , and it appears positively in cj iff the node is some uyi

iff we chose
⊥ for xi. Hence, cj has exactly one variable satisfied.

Reversely, let’s suppose that we have an assignation A to the 1-IN-3-SAT
instance. We choose S1,1 = {uy} ∪ {uyi

: A(xi) = } ∪ {uni
: A(xi) = ⊥} and

S1,2 = S1 \S1,1. Let’s prove that each node in S2 has exactly one parent in S1,1.
For va and vb, it is uy. For a node vcj , we know that exactly one variable of cj is
satisfied. Its corresponding node is in S1,1 by construction, and the corresponding
node of the two other variables are in S1,2 by construction. As vna

and vnb
are

also in S1,2, this concludes the proof.

7 Conclusion

We proposed solutions for implementing broadcast in wireless networks when
the broadcast is helped by a labelling scheme. We studied broadcast without
acknowledgment (i.e. the initiator of the broadcast is not notified at the end of
the broadcast) and broadcast with acknowledgment. We first improved in terms
of memory complexity the scheme proposed in [12] for arbitrary networks. Then
we propose an optimal acknowledgment-free broadcast strategy using only 1-
bit labelling and a broadcast with acknowledgment using a 2-bits labelling in
level 2-separable networks. The complexity of both algorithms is 2D where D
is the eccentricity of the broadcast initiator. Level 2-separable networks have a
practical interest in the large literature of WBAN.

Wireless Broadcast with Short Labels 159

In Sect. 6, we proved that the verification of the level-separable property can
be done in polynomial time while determining if a graph has the level sepa-
rable property is NP-hard. This result may be considered as a serious break in
exploiting the level separable property in labelling-based algorithms. However, in
the case of small scale networks such as WBAN, polynomial algorithms may be
of practical interest. For the case of large scale networks, since the verification
of the level-separable property is NP-hard, we recommend to exploit MIMO
antenna technology [19,25] (wireless devices having the capability to focus the
wireless transmission on several dedicated directions). Thanks to this technology
the connections from a node to several of its neighbours can be disabled. This
simple mechanism can help in constructing networks with built-in level separa-
ble property according to the description in Sect. 3. In this case, our algorithms
are the best to date for labelling-based broadcast.

Independent of the practical interest of our work, an interesting theoretical
research direction is opened by our study: the generalization of our results to
level k-separable networks. In this framework, it would be interesting to find
optimal separations for a graph and the tradeoff between the time and the bit
complexity of broadcast in level k-separable networks.

Appendix A: Broadcast with ACK for Arbitrary Networks

In [12] the authors propose a broadcast with acknowledgment algorithm βACK

for general networks using a 3-bits labelling scheme λACK . The idea of the
broadcast algorithm βACK is an extension of algorithm β also described in [12]
which implements the broadcast of a message μ within bounded time. At each
round, only nodes that received μ in specified previous rounds can send it to avoid
the potential collisions. Initially, the source node s sends μ to all its neighbours.
A Frontier Set, Frnt, is defined where Frnt contains all nodes that have not
received μ and that have direct connections with nodes received μ at the end of
that round. Then a Minimal Dominating Set, miniD is defined over the nodes
that already have received μ such that nodes in Frnt are dominated by nodes in
miniD. Nodes in miniD then send μ, so that some of nodes in Frnt can receive
μ. Frnt and miniD are therefore updated since some nodes will leave Frnt and
may join miniD in the next round. Nodes in new miniD will continue send μ
until Frnt = ∅. The broadcast then finishes. Note that during the execution,
a node in miniD at round i may stay in the miniD till round j, where i < j.
In this case, additional notification message Stay is needed to be sent to nodes
who need to stay in miniD.

Algorithm βACK extends β by adding an additional ACK message, that is,
when the last nodes receive μ, one of them will generate an ACK message that
will be forwarded back to s. During the execution, nodes will store the round
number at which they received and sent μ with two variables informedRound
and transmitRounds. So that nodes know which path the ACK should follow
back to s. βACK is based on a 3 bits labelling scheme λACK . The first bit, X1,
indicates if a node u will be in miniD at least once during the broadcast. If yes,

160 G. Bu et al.

Algorithm 3. βoACK(μ) executed at each node v
%Each node has a variable sourcemsg. The source node has this variable initially set to µ, all
other nodes have it initially set to null.
for each round r from 0 do

if v is source node and r = 0 then
transmit sourcemsg

if v is not source node then
if message m is received AND m �= “stay” then

sourcemsg ← m

else if The node received µ before round r then
if v received sourcemsg for first time in round r − 2 then

if X1 = 1 then
transmit sourcemsg

else if v received sourcemsg for first time in round r − 1 then
if X1 = 0 and X2 = 0 and X3 = 1 then

transmit “ACK”
else if X2 = 1 then

transmit “stay”

else if v received “stay” in round r − 1 then
if v transmitted sourcemsg in round r − 2 then

transmit sourcemsg

else if v received “ACK” in round r − 1 then
if X3 = 1 then

transmit “ACK”

then X1 of u equals 1; if not, it equals 0. If X1 of u equals 1, when u receives
message μ, u can re-send it once. The second bit X2 of u equal to 1 means that
u needs to send a Stay when it receives μ to notify the sender of μ to stay in
miniD for the next round. Only one of the informed nodes will have the third
bit X3 equal to 1. This node will generate the ACK to be sent back to s. At the
end of the broadcasting, which finishes in 2n − 3 rounds, the last informed node
generates and sends back to the source node the ACK within additional n − 2
rounds, where n is the number of nodes in the network.

Our optimization with respect to the λACK proposed in [12] comes from the
following simple observation: in a 3-bits labelling, there are 8 possible states:
000, 001, 010, 011, 100, 101, 110 and 111. The algorithm in [12] uses only 5 of
them: 000, 001, 010, 100 and 110. In this section, we propose a labelling scheme,
λoACK and a broadcast scheme with ACK algorithm that use all the 8 states of
the 3-bits labelling in order to improve the memory complexity of the solution
proposed in [12]. The idea of our optimization is as follows: instead of only
using the last bit X3 (the third bit) as a marker to point who is (one of) the
last informed node(s) during the broadcast, we use also this third bit to show a
path back to the source node s from the last informed node. Differently, from the
solution proposed in [12], nodes do not need to keep additional variables in order
to send back the ACK during the execution. Our proposition can therefore, save
node’s memory and computational power.

In the following, we present our λoACK labelling scheme and βoACK

algorithm.

Wireless Broadcast with Short Labels 161

3-bits Labelling Scheme λoAC K

The first two bits of the labelling scheme X1 and X2 have the same functionality
as in the λACK scheme of [12]. The intuitive idea is as follows: 1) X1 = 1 for
nodes who should propagate μ when they receive it; 2) X2 = 1 for nodes that
need to send Stay back to their sender neighbour to notice that they need to
stay in miniD and send μ one more time in the next round; 3) X3 = 1 for one
of the last receiving nodes to generate ACK and send it back to the source node
s. In our scheme λoACK we also set X3 (the third bit) to 1 for all nodes on the
path back from the last informed node (who holds 001) to s. Note that, nodes
on that path could have four kinds of different labels: 101, 011, 111 and 001,
where 001 is the label of the last informed node. Label states 101, 011 and 111
are not used in the original βACK , therefore nodes can easily recognize if they
are on the path to transmit ACK back to s. Note that we do not change the
main architecture of the algorithm βACK with labelling scheme λ proposed in
[12], therefore the correctness proof of our algorithm is very similar to the one
in [12]. See Sect. 7 for a detailed proof that follows the lines of the proof in [12].

Broadcast Algorithm βoAC K

Our broadcast algorithm βoACK that uses λoACK described above is described
as Algorithm 3. Nodes with X1 = 1 receiving a message at round i − 1 send it
at round i. Then nodes who send at round i wait for the stay message, at round
i + 1, from nodes with X2 = 1. If nodes who send at round i receive a stay at
round x + 1, they continue to send one more time μ at round i + 2, otherwise,
they stay silent. When nodes with label 001 receive the message, they generate
an ACK and send it. Since λoACK already marked the path back to the source
node, in Algorithm βoACK , the ACK message will only be re-propagated by
nodes with X3 = 1. i.e., nodes with label 101, 111 and 011.

Note that our proposed Algorithm βoACK does not need additional vari-
ables to reconstruct the path back to s during the broadcast execution. In
Algorithm βACK [12], two additional variables informedRound (type int) and
transmitRounds (type table of int) are needed to rebuild the back-way path.
informedRound is used to record the round number in which a node received
μ; transmitRounds is a table used to record all the round numbers in which one
node transmits μ. However, by using βoACK , the ACK transmission processing
can be completed only by checking the third bit, X3. Our Algorithm βoACK does
not need any extra local storage for detecting the path for ACK.

Correctness of βoAC K

Our proposition of βoACK with λoACK is based on the algorithm β with labelling
scheme λ proposed in [12]. The algorithm βoACK can be seen as the combination
of two phases: Broadcast Phase and ACK Phase. The aim of the broadcast phase
of βoACK is to finish first the broadcast: every node in the network should be
informed of the message μ sent by the source node. In the second phase, one of

162 G. Bu et al.

the last informed nodes will generate ACK and send it back to the source node
through a specific path marked according to the labelling scheme λoACK .

These two phases are well separated, because ACK will only be generated
and sent to the network after one of the last informed nodes received μ sent
by the source node. Therefore, there will be no collisions between μ and ACK
during the execution of λoACK .

During the first broadcast phase, we use exactly the same idea of the algo-
rithm β with labelling scheme λ in [12]. The correctness of this phase is given
as Theorem 4 in [12], as follows:

Theorem 4 [12]. Consider any n-node unlabelled graph G with a designated
source node s with μ. By applying the 2-bits labelling scheme λ and then executing
algorithm beta, all nodes in G \ {s} are informed within 2n − 3 rounds.

As described in Sect. 7, the idea is that every two rounds, if there are still
nodes that have not received μ yet, a non-null subset of these nodes will form
the new Frnt. When the new miniD set of nodes send μ, some nodes belonging
to Frnt will receive it. Then the number of the non-informed nodes will decrease
until 0. In the worst case, when the topology of the network is a line, μ has to
go through all of them one by one to reach every node. The algorithm therefore
finishes within 2n rounds.

We then prove that the ACK phase of βoACK , finishes within n rounds.

Lemma 7. After the broadcast phase finishes during the execution of βoACK ,
ACK will be sent back to the source node within n rounds.

Proof. By using λoACK described in Sect. 7, only one of the last informed nodes
u will have its three bits equal to 001. Then u will send ACK, and only nodes
with X3 = 1 can forward ACK back only when they received it. The back-
forward path to the source node is chosen by λoACK . In the worst case, when
the topology of the network is a line, then the ACK has to go through all the
nodes to reach the source node. Therefore, during the execution of βoACK , ACK
will need at most n rounds to reach the source node.

The Theorem 4 and Lemma 7 therefore complete the correctness proof of
βoACK .

Appendix B: Wireless Network Specification

The motivation of the study of level-separable networks comes from the recent
studies of WBAN. WBAN is similar to WSN (Wireless Sensor Networks) in terms
of devices functionalities and architecture. However, WBAN still has impor-
tant differences with WSN. The deployment environment and application sce-
nario make them totally different: WSN is usually deployed in wide range areas;
WBAN on the other hand, is deployed on (or inside) the human body, to detect
various physiological parameters of the human body. WBAN devices are in close
contact with the body, therefore the transmission power cannot has a setting

Wireless Broadcast with Short Labels 163

as high as in the case of WSN. Using a relatively small transmission power in
WBAN might be greatly affected by the absorption, interference and refraction
of the human body.

Furthermore, WBAN has to face the challenge of the human body mobility,
which makes the connection between nodes appear and disappear from time to
time. The challenge in WBAN is how to improve the communication reliability
of the network by taking into consideration the human mobility and the changes
in the communication channels.

To our best knowledge, Naganawa et al. [27] proposed the first simulation-
based Data Sets of the human mobility and the channel quality change. These
data sets provide measurement results of channel attenuation between different
WBAN devices deployed on different positions of the human body during differ-
ent human movement actions. The data sets have been validated by comparing
to massive real-human based measurement results.

The network architecture of proposed environment is composed of seven
WBAN devices distributed on the body as follows: Navel, Chest, Head, Upper
Arm, Ankle, Thigh and Wrist. The authors measure the connectivity between
every two nodes in seven different postures: 1) Walking, 2) Running, 3) Walking
weakly, 4) Sitting down, 5) Lying down, 6) Sleeping and 7) Putting on a jacket,
respectively (see Fig. 4).

In each posture, a continuous human action has been decomposed into a set
of frames. Each single human body picture with a corresponding frame number,
x, is a screenshot of this continuous human action at the xth frame. For example,
in posture 1) Walking (see Fig. 4), the continuous action takes 30 frame, and it
uses four screenshots at 1st frame, 10th frame, 20th frame and the 30th frame,
respectively to represent this action. The red diamonds in the figures represent
sensors on the human body while the body is moving.

Tables 1, 2, 3, 4, 5, 6, and to 7 show the measurement results of channel
attenuation between two nodes pair in seven different human mobility postures.
Values above the main diagonal represent the mean values of the random chan-
nel attenuation between any two WBAN nodes of the body. Based on data sets
from [27], authors of [2] propose a channel-mobility model: for every wireless
signal sent from a WBAN node, a random attenuation is added to the outgoing
communication channel. If the signal strength after the attenuation is smaller
than the sensitivity of the receiver, it will be dropped. The random attenua-
tion is calculated by different normal distributions specified by means and stan-
dard deviations for each couple of nodes (e.g., the random channel attenuation
between nodes on head and on upper arm in posture 1) Walking has the mean
45.4 dB and the standard deviations 5.1 dB).

164 G. Bu et al.

Table 1. Means and Standards Deviations of Path Loss for all the links in Posture 1)
Walking [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 30.6 45.1 44.4 57.4 45.8 41.0

chest 0.5 38.5 40.6 58.2 51.6 45.1

head 0.8 0.5 45.4 64.0 61.3 49.7

upper arm 5.8 5.2 5.1 54.2 45.5 34.0 Mean[dB]

ankle 4.3 3.4 5.0 3.1 40.6 48.9

thigh 2.0 2.5 6.8 4.8 1.0 35.0

wrist 5.0 3.6 3.8 2.5 3.8 3.3

Standard deviation [dB]

Table 2. Means and Standards Deviations of Path Loss for all the links in Posture 2)
Running [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 31.4 47.4 54.5 57.9 44.8 45.9

chest 1.4 41.0 39.2 61.0 49.9 41.2

head 3.5 2.9 41.3 65.6 59.3 45.5

upper arm 9.9 8.4 8.4 58.0 52.4 33.8 Mean[dB]

ankle 6.9 6.9 5.7 8.2 39.0 56.9

thigh 2.0 2.5 6.8 4.8 1.0 49.6

wrist 6.1 8.2 3.5 4.6 7.5 11.6

Standard deviation [dB]

Table 3. Means and Standards Deviations of Path Loss for all the links in Posture 3)
Walking weakly [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 26.1 42.4 44.3 55.4 44.9 34.0

chest 0.4 38.1 37.3 58.8 47.1 41.7

head 1.3 0.7 44.5 52.4 60.0 42.8

upper arm 5.5 5.5 6.8 53.7 45.1 34.5 Mean[dB]

ankle 4.2 4.6 3.3 6.1 42.4 49.2

thigh 2.2 5.3 5.4 4.8 2.2 37.9

wrist 2.8 2.5 1.5 3.1 4.8 4.4

Standard deviation [dB]

Wireless Broadcast with Short Labels 165

Fig. 4. 7 Different Human Postures [27]

166 G. Bu et al.

Table 4. Means and Standards Deviations of Path Loss for all the links in Posture 4)
Sitting down [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 27.9 41.1 41.5 59.6 48.3 38.6

chest 1.0 37.0 36.0 60.0 51.0 43.2

head 1.6 0.8 42.1 63.7 59.1 46.9

upper arm 5.3 4.8 6.3 63.7 49.0 37.7 Mean[dB]

ankle 8.4 8.0 8.7 8.1 40.9 60.2

thigh 6.3 5.3 7.8 5.5 6.3 35.1

wrist 4.6 5.3 5.5 5.7 9.6 6.9

Standard deviation [dB]

Table 5. Means and Standards Deviations of Path Loss for all the links in Posture 5)
Lying down [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 30.5 45.1 54.1 65.0 55.8 49.7

chest 2.2 38.2 43.4 63.6 54.3 46.5

head 3.3 1.3 40.0 61.8 58.6 45.5

upper arm 5.9 4.2 4.2 58.3 50.1 38.8 Mean[dB]

ankle 6.9 5.8 7.0 5.1 41.2 44.7

thigh 12.4 10.1 10.1 10.1 7.2 41.6

wrist 6.3 4.9 3.8 1.9 9.6 8.8

Standard deviation [dB]

Table 6. Means and Standards Deviations of Path Loss for all the links in Posture 6)
Sleeping [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 31.7 64.3 66.5 72.5 56.3 58.6

chest 4.3 50.9 51.9 72.4 51.3 44.1

head 10.4 10.6 39.0 69.4 59.9 42.5

upper arm 4.6 2.7 11.3 51.5 42.7 30.9 Mean[dB]

ankle 5.7 7.5 9.3 0.8 35.7 56.8

thigh 5.0 2.1 10.8 2.6 0.9 48.9

wrist 7.8 4.1 7.2 3.6 2.8 2.5

Standard deviation [dB]

Wireless Broadcast with Short Labels 167

Studies [4,6] conducted in WBAN show that various postural mobilities can
be modeled as graphs (one for each human posture), see Fig. 5. Moreover, the
authors in [5] proved that the performances of any protocol for wireless body
area networks strongly depend on the topology of the graph and it should be
noted that none of the graphs corresponds to the classical classes (e.g. planar or
minor-free).

In the case presented above (the only available to date benchmark for prac-
tical WBAN), each graph is a level-separable network defined below.

Fig. 5. Graphs that model human postures in WBAN. Numbers on the edges represent
the edge reliability [4]

Table 7. Means and Standards Deviations of Path Loss for all the links in Posture 6)
Wearing a jack [27]

TX or RX navel chest head upper arm ankle thigh wrist
navel 27.4 43.3 56.8 62.8 45.0 52.0

chest 3.4 37.4 51.4 60.4 47.7 50.9

head 4.9 3.6 49.2 64.0 51.7 46.8

upper arm 6.7 5.1 9.2 52.3 52.9 31.1 Mean[dB]

ankle 7.1 9.9 8.8 4.1 39.5 55.1

thigh 2.5 6.3 7.0 5.1 1.7 52.3

wrist 7.4 5.9 5.9 4.8 10.8 7.7

Standard deviation [dB]

168 G. Bu et al.

References

1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 547–556. Society for Industrial and Applied Mathematics (2001)

2. Badreddine, W., Chaudet, C., Petruzzi, F., Potop-Butucaru, M.: Broadcast strate-
gies in wireless body area networks. In: Proceedings of the 18th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pp. 83–90. ACM (2015)

3. Badreddine, W., Khernane, N., Potop-Butucaru, M., Chaudet, C.: Convergecast
in wireless body area networks. Ad Hoc Netw. 66, 40–51 (2017)

4. Badreddine, W., Potop-Butucaru, M.: Peak transmission rate resilient crosslayer
broadcast for body area networks. arXiv preprint arXiv:1702.05031 (2017)

5. Bruno, B., Gewu, B., Maria, P.-B.: Markovian model for broadcast in wireless
body area networks. In: Proceedings of the 17th ACM International Symposium
on Mobility Management and Wireless. ACM (2019)

6. Bu, G., Potop-Butucaru, M.: Total order reliable convergecast in WBAN. In: Pro-
ceedings of the 18th International Conference on Distributed Computing and Net-
working, p. 26. ACM (2017)

7. Gewu, B., Potop-Butucaru, M.: BAN-GZKP: optimal zero knowledge proof based
scheme for wireless body area networks. Ad Hoc Netw. 77, 28–41 (2018)

8. Bu, G., Potop-Butucaru, M.: Wireless Broadcast with short labelling. arXiv
arXiv:1901.08919v2 (February 2019)

9. Cicalese, F., Manne, F., Xin, Q.: Faster deterministic communication in radio
networks. Algorithmica 54(2), 226–242 (2009)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 709–718. Society for Indus-
trial and Applied Mathematics (2001)

11. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Trans. Algorithms (TALG) 4(4), 42 (2008)

12. Ellen, F., Gorain, B., Miller, A., Pelc, A.: Constant-length labeling schemes for
deterministic radio broadcast. In: The 31st ACM on Symposium on Parallelism in
Algorithms and Architectures, pp. 171–178. ACM (2019)

13. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput.
206(11), 1276–1287 (2008)

14. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice.
Theor. Comput. Syst 47(4), 920–933 (2010). https://doi.org/10.1007/s00224-010-
9280-9

15. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53(1), 85–112 (2004)

16. Glacet, C., Miller, A., Pelc, A.: Time vs. information tradeoffs for leader election
in anonymous trees. ACM Trans. Algorithms (TALG) 13(3), 31 (2017)

17. Gorain, B., Pelc, A.: Finding the size of a radio network with short labels. In:
Proceedings of the 19th International Conference on Distributed Computing and
Networking, p. 10. ACM (2018)

18. Gross, J.L., Yellen, J.: Graph Theory and its Applications. CRC Press, Boca Raton
(2005)

19. Haimovich, A.M., Blum, R.S., Cimini, L.J.: MIMO radar with widely separated
antennas. IEEE Sig. Process. Mag. 25(1), 116–129 (2007)

http://arxiv.org/abs/1702.05031
http://arxiv.org/abs/1901.08919v2
https://doi.org/10.1007/s00224-010-9280-9
https://doi.org/10.1007/s00224-010-9280-9

Wireless Broadcast with Short Labels 169

20. Ilcinkas, D., Kowalski, D.R., Pelc, A.: Fast radio broadcasting with advice. Theor.
Comput. Sci 411(14–15), 1544–1557 (2010)

21. Javaid, N., Khan, N.A., Shakir, M., Khan, M.A., Bouk, S.H., Khan, Z.A.: Ubiqui-
tous healthcare in wireless body area networks - A survey. CoRR, abs/1303.2062
(March 2013)

22. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, vol. 1. WH Freeman, San Francisco (1979)

23. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distrib. Comput. 19(3), 185–195 (2007)

24. Latré, B., Braem, B., Moerman, I., Blondia, C., Demeester, P.: A survey on wireless
body area networks. Wirel. Netw. 17(1), 1–18 (2011)

25. Li, J., Stoica, P.: MIMO radar with colocated antennas. IEEE Sig. Process. Mag.
24(5), 106–114 (2007)

26. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless
body area networks: a survey. IEEE Commun. Surv. Tut. 16(3), 1658–1686 (2014)

27. Naganawa, J., Wangchuk, K., Kim, M., Aoyagi, T., Takada, J.: Simulation-based
scenario-specific channel modeling for WBAN cooperative transmission schemes.
IEEE J. Biomed. Health Inform. 19, 559–570 (2015)

The Imitation Game: Algorithm Selection
by Exploiting Black-Box Recommenders

Georgios Damaskinos1(B), Rachid Guerraoui1, Erwan Le Merrer2,
and Christoph Neumann3

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
georgios.damaskinos@gmail.com,

{georgios.damaskinos,rachid.guerraoui}@epfl.ch
2 Université de Rennes, Inria, CNRS, IRISA, Rennes, France

erwan.le-merrer@inria.fr
3 InterDigital, Rennes, France

christoph.neumann@interdigital.com

Abstract. Cross-validation is commonly used to select the recommen-
dation algorithms that will generalize best on yet unknown data. Yet, in
many situations the available dataset used for cross-validation is scarce
and the selected algorithm might not be the best suited for the unknown
data. In contrast, established companies have a large amount of data
available to select and tune their recommender algorithms, which there-
fore should generalize better. These companies often make their recom-
mender systems available as black-boxes, i.e., users query the recom-
mender through an API or a browser. This paper proposes RecRank,
a technique that exploits a black-box recommender system, in addi-
tion to classic cross-validation. RecRank employs graph similarity mea-
sures to compute a distance between the output recommendations of the
black-box and of the considered algorithms. We empirically show that
RecRank provides a substantial improvement (33%) for the selection
of algorithms for the MovieLens dataset, in comparison with standalone
cross-validation.

Keywords: Recommender algorithm selection · Black-box
exploitation · Cross-validation · Graph similarity · Spearman ranking

1 Introduction

The availability of open source recommendation algorithms and engines is
appealing for startups or institutions that bootstrap their online services. A
plethora of approaches, from collaborative filtering techniques to neural network
based approaches are now at disposal [9], along with the deluge of research results
that are thoroughly described (but not open-sourced). The users of online ser-
vices generate a huge volume of data thus triggering the advantage shift from
solely leveraging a good item recommendation algorithm, to having access to

G. Damaskinos—Work done during an internship at Technicolor - Rennes.
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 170–182, 2021.
https://doi.org/10.1007/978-3-030-67087-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_11

The Imitation Game 171

both a good algorithm and a considerable amount of data for training or param-
eterizing it. In that context, it is clear that the big industrial players, have a
steady and decisive advantage over potential newcomers on the market since
they have both significant engineering work-forces and a large audience to get
data from. Those established companies propose recommendation services, that
interact with users through queries from browser-interactions or standard APIs.
The recommendation algorithm acts as a black-box from the perspective of the
user, and for potential observers such as those newcomers.

We present RecRank, a method to sort a list of available recommenda-
tion algorithms based on their ability to generalize on unknown data. In stark
contrast with cross-validation, this method exploits the recommendations of an
established black-box recommender, and captures how well each of the available
recommendation algorithms imitates the black-box recommender. We evaluate
RecRank and depict its superiority against classic cross-validation and an alter-
native ranking method. Our code is available [3].

Problem Setting. Let D be the corpus of data that the recommender interacts
with. This data includes tuples of the form 〈u, i, l〉 where a user u gives feedback
l (implicit or explicit) for a certain item i. We split D into three parts: D =
{Da ∪ Db ∪ Du}.

On the one hand, an entity (e.g., a startup) targets to bootstrap a recom-
mender. This entity has access to an available dataset Da, typically limited in
size. This entity has also access to a set of open-sourced or in-house candidate
recommendation algorithms, and needs to select the ones that will generalize
best (i.e., provide good recommendations) on an unknown dataset Du.

On the other hand, a well-established recommendation service (e.g., IMDB,
Spotify) enables queries to its recommender, typically through an API. We
assume that the well-established recommender was trained using a private (i.e.,
available only to itself) dataset Db (typically significantly larger than Da) and
a private algorithm. This algorithm is a black-box to a user, and we denote
it as f(Db). The inputs to the black-box recommender are queries of the form
〈u, i, l〉 and the output is a ranked list of the top-N recommendations for user
u, typically based on knowledge of the black-box recommender regarding u and
i. For example, users make queries such as 〈user, song, click〉 (Spotify), 〈user,
video, like〉 (YouTube) or 〈user, movie, rating〉 (IMDB) and get a ranked list of
recommendations such as “Made for Alice” (Spotify), “Up next” (YouTube) or
“Recommended For You” (IMDB), respectively.

Let A be the set of considered recommendation algorithms, along with their
hyper-parameters. We define PA (D) ∈ R as the performance measure of an
algorithm A ∈ A given a dataset D (e.g., the precision of A after splitting D
into a training and validation set). Let K be any side knowledge. We consider
r(A,D,K) to be a ranking function producing a sorted array [A0,A1, . . . ,An−1],
such that PA0(D) ≥ PA1(D) ≥ · · · ≥ PAn−1(D). Each algorithm in A is solely
trained and cross-validated using Da. We define the optimal ranking as r∗ :=

172 G. Damaskinos et al.

r(A,Da ∪ Du, ∅), i.e., the perfect ranking for the available trained algorithms
after taking into account the yet unknown data Du.

Black-Box Exploitation. We define the problem of exploiting a black-box
recommender for algorithm selection as finding the ranking:

r := arg max
r′

ρ(r∗, r′(A,Da, f(Db))) (1)

with ρ being the Spearman ranking correlation score (Sect. 3). The goal is to
obtain side knowledge from the black-box in order to produce a ranking that
gets closer to the optimal ranking. Our working hypothesis is that:

ρ(r∗, r(A,Da, f(Db)) > ρ(r∗, r(A,Da, ∅))) (2)

i.e., there exists a gain (in comparison with cross-validation) from the informa-
tion f(Db) leaked from the black-box.

Noteworthy, the option of building a proxy recommender that always employs
the black-box is not practical. Sending all the data to the black-box implies
potential privacy violations as the user feedback (e.g., movie ratings) is forwarded
to a third-party. From the system performance perspective, there are significant
additional bandwidth costs and the service throughput is bounded by the query
APIs limits (e.g., IMDB via RapidAPI has a limit of 1000 requests per day [17]).
Therefore, the goal is to bootstrap the service and then only utilize the selected
algorithm locally.

2 RecRank

We introduce, RecRank, a ranking function that exploits the outputs of a black-
box (series of top-N recommendations) to compute a distance between each
algorithm in A and a black-box recommender, under the assumption that the
black-box generalizes better due to its larger dataset (we validate this assumption
in Sect. 3). The final ranking of RecRank follows the ascending order of this
distance: the better an algorithm imitates the black-box, the higher its ranking.

RecRank consists of two components as shown in Fig. 1. Rec2Graph trans-
forms the output of a recommender into a graph data structure. The graph
obtained from the outputs of the black-box is compared to the graph obtained
from the outputs of each algorithm in A, in order to compute a distance D
with GraphDist. The graph representation captures latent information about
the recommender outputs (e.g., popularity of certain items among different sub-
sets of users). This information is important for the performance of RecRank,
as we empirically show in Sect. 3 by using a baseline that directly compares
the outputs of the two algorithms. RecRank is shown in Algorithm 1, where
get_rec(X,Dq) returns the top-N recommendations of algorithm X given inputs
in query dataset Dq.

Rec2Graph. This method transforms the output of the queried recommender
into a graph. Building a graph from recommendations was recently shown to be

The Imitation Game 173

Fig. 1. Core components of RecRank. Algorithm A is each algorithm in set A using
the available dataset Da, while B is the black-box recommender. RecRank builds a
graph for each algorithm using Rec2Graph and computes a distance between graphs
using GraphDist.

Algorithm 1: RecRank
Input: Candidate algorithm set A, black-box B, query set Dq

1 Gb = Rec2Graph (get_rec(B,Dq))
2 for A in A do
3 Ga = Rec2Graph (get_rec(A,Dq))
4 D(A,B) = GraphDist (Ga, Gb)
5 distances.append(D(A,B))

6 end
7 return sort(distances)

interesting for several applications [7,13]. For each query 〈u, i, l〉 in the query
dataset, we denote as Dq, the recommender outputs a list of the top-N recom-
mendations. Rec2Graph constructs the graph according to the following rules.

– Vertex i: There exists a recommendation for item i and/or there exists a query
for item i in Dq (e.g., a movie rating).

– Edge eij : Item j is at least in one of the top-N recommendation lists given
as an output to a query for item i.

– Weight wij =
∑

eij
ranking_score

∑
e∈E

∑
e ranking_score

where
∑

eij
ranking_score is the summation of the recommender output over

all recommendations for item j triggered by a query for item i.1

1 If the recommender only outputs a top-N list, the output for each item is the rank
(e.g., value ∈ [1, 5] for top-5 outputs).

174 G. Damaskinos et al.

The edge weight captures the fact that there are typically multiple recom-
mendations between the same items. For example, a user might receive the same
item in multiple top-N recommendations before she either clicks it or the recom-
mender lowers its ranking and removes it from the top-N list. The denominator
normalizes each weight in order for the graphs of different algorithms to be
comparable, given that the scores of each recommender have different scales.

GraphDist. In order to compare the two graphs, GraphDist extracts a set
of features for each graph (denoted as XA and XB) and computes the distance
between the two algorithms:

D(A,B) := ‖XA − XB‖ (3)

GraphDist extracts features that capture the state of the algorithm rec-
ommendations. For the features that involve distributions, we employ statistical
values depending on whether we assume a Gaussian prior or not. We list a subset
of these features below, and note that X ∈ R

31; the full set of the 31 features
that GraphDist employs is available in our code [3]. We normalize the feature
vectors by using z-score normalization.

– Number vertices and number of edges. These illustrate the number of distinct
recommendations.

– Vertex in-degree. This shows how polarized the recommendations are, i.e.,
how many popular items are recommended and how much is their popularity.

– PageRank. This indicates the PageRank centrality in the graph of the recom-
mended items.

– Eigenvector and betweeness centrality. These centrality measures show how
many items are the most central, i.e., most popular among the recommenda-
tions.

– Closeness centrality. This also captures the topological proximity of a given
item to the others in the graph.

– Assortativity. This shows the connectivity between nodes of similar degree,
i.e., how much popular items are connected to other popular items.

– Shortest distances. For each vertex, we compute the mean value of its shortest
distances with each other vertex. We then average these mean values across
all vertexes. This feature captures how close each item node is to the others.

The construction of GraphDist boosts the interpretability of RecRank.
Given the output of RecRank, one can determine the contributing factor of
each feature to this output. For example, if the Vertex in-degree feature has a
very similar value for the candidate algorithm and the black box (i.e., contribu-
tion to the distance is minimal) comparing to the other features, then one can
conclude that recommending popular items is an important factor for the final
rank (output of RecRank) of this candidate algorithm.

The Imitation Game 175

3 Evaluation

We study the performance of RecRank on the MovieLens dataset2 that consists
of 100,000 ratings from 943 users on 1682 movies.

Table 1. Candidate recommendation algorithms. Information regarding the hyperpa-
rameters is available in our open-source repository [3].

Library Model-based Memory-based Baselines

Librec AOBPR, BIASEDMFlib,
BPMFlib, EALSlib, LDAlib,
LLORMAlib, NMFlib,
SVDPPlib, PMF2lib PMFlib,
RBMlib

KNNlib MPOPlib, RANDlib

Surpriselib NMF, PMF, SVD, SVDpp KNNWithMeans

Recommendation Algorithms. We collect recommendation algorithms from
open-source libraries: 14 algorithms from Librec3 and 5 algorithms from Sur-
priseLib,4 as summarized in Table 1. We consider that a different implementation
of the same algorithm constitutes a new candidate recommendation algorithm
(e.g., KNNlib and KNNWithMeans): the output recommendations depend on
various factors that differ among the two libraries (e.g., the formula for calcu-
lating the rating prediction). Additionally, we include two versions of the PMF
algorithm (denoted as PMFlib and PMF2lib) with a different hyper-parameter
tuning setup. Therefore, we illustrate that a different tuning (that can be the
result of a difference in the resources for the A/B testing phase) leads to a
different recommendation behavior (Table 2), thus to a different candidate rec-
ommendation algorithm.

Evaluation Metrics. We now describe the metrics used for reflecting the per-
formance of the candidate recommender and for demonstrating the efficacy of
RecRank.

Precision. We adopt this metric to test the accuracy of the recommendations.
Given that Hu is the set of recommended items that were clicked by a user u
(hits), and Ru is the set of items recommended to u, we denote the precision for
u by Precisionu and define it as follows.

Precisionu =
|Hu|
|Ru| (4)

2 http://grouplens.org/datasets/movielens/.
3 https://www.librec.net/.
4 https://www.surpriselib.com/.

http://grouplens.org/datasets/movielens/
https://www.librec.net/
https://www.surpriselib.com/

176 G. Damaskinos et al.

The overall precision over the whole test set is the average over the precision
values for all users in the test set. Note that a recommended item is consid-
ered as a hit, if the user rates that item anytime later than the time of the
recommendation with a rating score larger than 50% of the maximum score [4].
Recall. We use this metric to capture the sensitivity of a recommender to the
frequency of updates. Given that Cu is the set of items clicked by a user u, we
denote the recall for u by Recallu and define it as follows.

Recallu =
|Hu|
|Cu| (5)

The overall recall is the average over the recall values for all the users in the test
set.

F1-score. We employ this standard metric to measure the recommendation accu-
racy in order to combine the precision and recall into a single score.

F1u = 2 ∗ Precisionu ∗ Recallu
Precisionu + Recallu

Spearman Correlation. We use this metric to evaluate the ranking quality of
RecRank. Moreover, we compute the Spearman rank-order correlation coefficient
between the output ranking and the optimal ranking r∗, i.e., the ranking after eval-
uating the candidates on the dataset Du. A value of 0 indicates no correlation and a
value of 1 an exact monotonic relationship; thus the higher the value of this metric,
the better the performance. This metric is computed as follows [5]:

ρ = 1 − 6
∑

d2i
n(n2 − 1)

, 1 ≤ i ≤ C (6)

where di = rank(Ai) − optimal_rank(Ai), is the difference between the two
ranks for each candidate algorithm and n is the number of candidates.

The impact of an ordering mismatch does not depend on the rank of the
mismatch. For example, the Spearman correlation between {1, 2, 3, 4} and
{1, 2, 4, 3} is the same as {1, 2, 3, 4} and {2, 1, 4, 3}. This ensures an equal weight
for all the ranked candidates based on the fact that the entity that employs
RecRank can have access to any subset of these candidates.

Fig. 2. Chronological data split for MovieLens. The first part is used for Da, the largest
part for the black-box Db, and the last part is the yet unknown data Du.

The Imitation Game 177

Evaluation Scheme. We replay the dataset, ordered by the timestamp, to
capture the original temporal behavior. We split the dataset into Da,Db,Du,Dq,
according to Fig. 2, and derive Dq by randomly sampling 1000 ratings from Du.
We then train all the available recommendation algorithms on Db and evaluate
them on Du. Given our assumption regarding a black-box recommender with (a)
significantly more data available for training and (b) superior algorithm (Sect. 1),
we (a) make Db significantly larger than Da and (b) select the recommenda-
tion algorithm with the highest F1-score as the black-box. The remaining rec-
ommendation algorithms constitute our candidate recommendation algorithms.
Finally, we re-train each candidate recommendation algorithm on the training
set (first split of Da) and tune on the validation set (second split of Da, i.e., most
recent 1000 ratings, based on the benchmark for evaluating stream-based rec-
ommenders [10]). Further information regarding our training setup (e.g., choice
of hyperparameters) is available in our open-source repository [3].

Baselines. We compare RecRank with the traditional ranking approach
(i.e., cross-validation) along with a baseline algorithm, namely setDistRank.
setDistRank computes the distance between algorithms directly from their
outputs (i.e., without the Rec2Graph and GraphDist methods). The compar-
ison with setDistRank illustrates the importance of these two methods for the
performance of RecRank. setDistRank computes the distance as follows:

D(A,B) =
|⋂u∈U Recommendedu| + |⋂i∈I Recommendedi|

2
(7)

where U is the set of users and I is the set of items. Recommendedu is the
per-user recommendation set, i.e., the set of all the items recommended after a
query from user u.

⋂
u∈U Recommendedu denotes the intersection among all the

per-user recommendation sets of the algorithms A,B. Recommendedi is defined
respectively.

Experimental Results. We train the candidate recommendation algorithms
(Table 1) by using the data scheme in Fig. 2 and present the results in Table 2.
First, we observe that the ranking derived from cross-validation on Du (2nd
column) is different than the optimal ranking (3rd column). Therefore, there is
room for RecRank to get a better ranking. We train all the algorithms with the
black-box dataset Db in order to select the black-box recommender. According
to the results shown in the 4th column, this algorithm is LLORMAlib. The 5th
column contains the results when training each algorithm on the training set
and evaluating on the query set Dq, which constitutes the comparison case for
all presented competitors.

We compare the performance of the ranking algorithms by comparing the
Spearman correlation with respect to the third column of Table 2. Table 3 depicts
the results. The poor performance of the cross-validation on the query set Dq

can be attributed to the chronological sorting of the ratings; the cross-validation
becomes accurate if the validation and training set are closer in time and

178 G. Damaskinos et al.

Table 2. F1 @ top-20 recommendations (and rank) of candidate algorithms (black-box
algorithm is in bold).

Standard
cross-
validation

Optimal ranking Black-box ranking Cross-
validation
on query
set

Training set
Evaluation set

Dtraining
a

Dvalidation
a

Dtraining
a Du Db Du Dtraining

a

Dq

AOBPRlib 0.213 (4) 0.087 (5) 0.156 (5) 0.046 (4)
BIASEDMFlib 0.136 (9) 0.054 (11) 0.057 (11) 0.028 (13)
BPMFlib 0.618 (1) 0.419 (2) 0.408 (2) 0.374 (2)
EALSlib 0.1973 (7) 0.084 (7) 0.138 (6) 0.046 (4)
KNNlib 0.206 (6) 0.085 (6) 0.126 (7) 0.046 (4)
KNNWithMeans 0.039 (19) 0.024 (18) 0.027 (15) 0.016 (18)
LDAlib 0.210 (5) 0.095 (4) 0.164 (4) 0.046 (4)
LLORMAlib 0.611 (2) 0.420 (1) 0.412 (1) 0.377 (1)
MPOPlib 0.188 (8) 0.074 (9) 0.115 (8) 0.042 (8)
NMF 0.115 (13) 0.048 (15) 0.023 (16) 0.032 (11)
NMFlib 0.045 (18) 0.016 (19) 0.002 (19) 0.012 (19)
PMF 0.083 (16) 0.043 (16) 0.016 (18) 0.022 (17)
PMF2lib 0.133 (10) 0.076 (8) 0.058 (10) 0.037 (9)
PMFlib 0.106 (15) 0.050 (13) 0.030 (14) 0.027 (14)
RANDlib 0.083 (16) 0.039 (17) 0.023 (16) 0.024 (16)
RBMlib 0.565 (3) 0.398 (3) 0.403 (3) 0.358 (3)
SVD 0.123 (11) 0.049 (14) 0.059 (9) 0.033 (10)
SVDpp 0.120 (12) 0.052 (12) 0.051 (12) 0.031 (12)
SVDpplib 0.109 (14) 0.055 (10) 0.031 (13) 0.027 (14)

Table 3. Candidate algorithms ranking evaluation. The correlation factors are com-
puted based on the output ranking of each method and the optimal ranking (third
column of Table 2).

Ranking method Spearman correlation

Standard cross-validation 0.53
Cross-validation on query set −0.44

setDistRank 0.68
RecRank 0.79

thus have significant overlap in the user sets. We then observe the substantial
improvement (33%) that RecRank provides in comparison with the standard

The Imitation Game 179

Fig. 3. Effect of the amount of queries on the performance of RecRank.

cross-validation. The fact that setDistRank also outperforms the cross-
validation approach confirms that the information provided by the black-box
recommender is valuable even without Rec2Graph and GraphDist.

Figure 3 depicts the effect that the size of the query set has to the perfor-
mance of RecRank. As the portion of Dq used to query recommenders increases,
RecRank exploits more information to compute better distance values, result-
ing in a better final ranking. The results of Table 3 have been obtained with a
query set Dq by sampling 50% of Du (1000 out of 2000 ratings shown in Fig. 2).

4 Related Work

RecRank proceeds by comparing the outputs of recommenders similar to bench-
marking frameworks [12,18]. These frameworks enable the ranking of a set of
recommendation algorithms according to some metric (e.g., F1-score) - similar
to what RecRank does based on Da and the output of a black-box service.
These frameworks do not allow to compare against the output recommendations
of a black-box service that has been trained and tuned on an unknown set of
data.

Evaluation of recommenders is very challenging when using offline datasets
such as MovieLens. We plan to evaluate RecRank with additional metrics
such as propensity-weighting techniques [1], as well as employ alternative online
methodologies and user studies [2]. We also plan to include additional baselines
to the standard (i.e., leave-one-out) cross-validation, e.g., based on k-fold vali-
dation [11]. Nevertheless, the functionality of RecRank is independent of the
evaluation methodology.

Black-box analysis of recommendation algorithms has been also studied
for the goal of algorithmic transparency. Xray [14] infers which user data

180 G. Damaskinos et al.

(e.g. e-mails, searches) a recommender is using. Le Merrer et al. [13] propose
a framework for detecting bias in recommended items. Hou et al. [7] proposed
to operate random walks on the graph extracted from the recommendations to a
user by the Amazon book platform. While these related works try to understand
how the remote recommender system works, they do not try build their own rec-
ommendation system (i.e. they do not try to benefit from the gained insights to
tune a recommender).

Imitation learning [8] and knowledge distillation [6,16] apply the broad idea of
learning a policy, a reward function or prediction function by observing an expert
system. In that sense, RecRank is the first attempt to improve the selection of
a recommender algorithm by imitating an expert recommender system, typically
in production.

RecRank targets to boost the recommendation quality given a limited
amount of data, a problem also known as cold-start. Techniques that boost
the quality of a specific recommender, e.g., transfer learning [15], or meta-
learning [19] can be used for creating better candidate recommendation algo-
rithms as input to RecRank.

5 Discussion and Limitations

It is important to notice that, while RecRank is the first tool to exploit black-
box recommender systems for algorithm selection, we do not claim it to be a
silver bullet. We discuss the limitations of our work in the following.

Black-Box Recommender Bias. The recommendations of the black-box dur-
ing the operation of RecRank may be biased, i.e., not solely targeting the
relevance to the users. For example, a commercial music recommender may pro-
mote songs from certain premium producers with the goal of direct financial
gain. As a second example, the black-box may be a relatively new service that
undergoes an A/B testing phase or some “exploration” phase (e.g., with random
recommendations). In such cases, we expect RecRank to output a biased rank-
ing. Given that it is impossible for the user of RecRank to determine whether
the black-box is biased at a given time, we propose multiple deployments of
RecRank across different times. The similarities between the outputs of these
deployments could help indicate the deployments that are biased; if the bias is
not transient, multiple deployments will not be effective.

Advancing the State-of-the-Art. The goal of RecRank is not to directly
create new recommendation algorithms but to select the most promising ones
among a list of candidates. Nevertheless, this selection could be instrumental in
developing a new state-of-the-art recommender that is an ensemble of multiple
recommendation algorithms. For example, the cold-start component could be
intentionally designed to mimic the cold-start behaviour of a well-established
service; in that case RecRank would be of great interest.

The Imitation Game 181

Local VS Black-Box Data. A question that may arise in our problem setup
is whether there are any constraints for the relation between the training data
of the candidate algorithms (local) and the training data of the black-box. In
our evaluation (Sect. 3), this relation is that the data has no overlap but comes
from the same dataset, i.e., the user rating behaviour follows the preference
and behavioural drifts of the MovieLens dataset [4]. We plan to evaluate the
performance of RecRank under alternative relation scenarios (e.g., the data
comes from different datasets) as part of our future work.

We expect the performance of RecRank to degrade as the difference between
the characteristics (e.g., how frequent are popular items rated and with what
scores) of the local and black-box training data grows. Nevertheless, we highlight
that the operation of RecRank does not have any constraints regarding the
training data as the query data is the same both for the candidate algorithms and
the black-box. The smaller the relevance between the query data and the training
data, the less the performance degradation of RecRank due to differences in
the training data. For example, if the query data only contains new users and
new items, then RecRank is essentially imitating the cold-start behaviour of
the black-box and we thus do not expect differences in the training data to
significantly degrade RecRank performance.

The only requirement is for the input and output format of the query dataset
to be compliant with the black-box. This requirement is easily satisfied given our
generic form of input (tuples of the form 〈u, i, l〉) and output (ranking list of top-
N recommendations) as mentioned in Sect. 1.

6 Concluding Remarks

We present RecRank, an algorithm that facilitates recommender algorithm
selection, traditionally made solely via cross-validation. Our initial results show
a promising potential for this tool. Nevertheless, these results do not constitute
an in-depth experimental validation and there is work towards measuring the
true potential of RecRank. We also plan to compare Rec2Graph with alter-
native methods for transforming the recommender outputs into graphs [7,13].
Finally, we propose RecRank as one instance of an algorithm that exploits a
black-box recommender; we believe this proposal will motivate related works for
finding other good performing alternatives with a similar goal.

References

1. Agarwal, A., Wang, X., Li, C., Bendersky, M., Najork, M.: Offline comparison of
ranking functions using randomized data. In: REVEAL (2018)

2. Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and
user studies in the context of research-paper recommender systems. In: Kapidakis,
S., Mazurek, C., Werla, M. (eds.) TPDL 2015. LNCS, vol. 9316, pp. 153–168.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24592-8_12

3. Damaskinos, G.: RecRank source-code. https://github.com/gdamaskinos/
RecRank

https://doi.org/10.1007/978-3-319-24592-8_12
https://github.com/gdamaskinos/RecRank
https://github.com/gdamaskinos/RecRank

182 G. Damaskinos et al.

4. Damaskinos, G., Guerraoui, R., Patra, R.: Capturing the moment: lightweight
similarity computations. In: ICDE, pp. 747–758. IEEE (2017). https://doi.org/10.
1109/ICDE.2017.126

5. Dodge, Y.: The Concise Encyclopedia of Statistics. Springer Science & Business
Media, New York (2008). https://doi.org/10.1007/978-0-387-32833-1

6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

7. Hou, L., Liu, K., Liu, J.: Navigated random walks on Amazon book recommen-
dation network. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COM-
PLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 935–945. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72150-7_75

8. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of
learning methods. CSUR 50(2), 21 (2017)

9. Jenson, G.: Recommenders list (2019). https://github.com/grahamjenson/list_
of_recommender_systems

10. Kille, B., et al.: Overview of CLEF newsreel 2015: news recommendation evaluation
lab. In: International Conference of the CLEF Initiative (2015)

11. Košir, A., Odić, A., Tkalčič, M.: How to improve the statistical power of the 10-
fold cross validation scheme in recommender systems. In: RepSys, pp. 3–6. ACM
(2013)

12. Kowald, D., Kopeinik, S., Lex, E.: The TagRec framework as a toolkit for the
development of tag-based recommender systems. In: UMAP, pp. 23–28. ACM,
New York (2017). https://doi.org/10.1145/3099023.3099069

13. Le Merrer, E., Trédan, G.: The topological face of recommendation. In: Cherifi, C.,
Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017.
SCI, vol. 689, pp. 897–908. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72150-7_72

14. Lécuyer, M., et al.: XRay: enhancing the web’s transparency with differential cor-
relation. In: USENIX Security Symposium, pp. 49–64 (2014)

15. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative
filtering for sparsity reduction. In: AAAI (2010)

16. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quan-
tization. In: ICLR (2018)

17. IMDB via RapidAPI query limit. https://rapidapi.com/blog/how-to-use-imdb-
api/

18. Said, A., Bellogín, A.: Rival: a toolkit to foster reproducibility in recommender
system evaluation. In: RecSys, pp. 371–372. ACM (2014)

19. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-
learning perspective on cold-start recommendations for items. In: NIPS, pp. 6904–
6914 (2017)

https://doi.org/10.1109/ICDE.2017.126
https://doi.org/10.1109/ICDE.2017.126
https://doi.org/10.1007/978-0-387-32833-1
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-72150-7_75
https://github.com/grahamjenson/list_of_recommender_systems
https://github.com/grahamjenson/list_of_recommender_systems
https://doi.org/10.1145/3099023.3099069
https://doi.org/10.1007/978-3-319-72150-7_72
https://doi.org/10.1007/978-3-319-72150-7_72
https://rapidapi.com/blog/how-to-use-imdb-api/
https://rapidapi.com/blog/how-to-use-imdb-api/

Byzantine k-Set Agreement

Carole Delporte-Gallet1(B), Hugues Fauconnier1, and Mouna Safir2

1 IRIF, Université de Paris, Paris, France
{cd,hf}@irif.fr

2 Université Polytechnique Mohammed 6, Ben Guerir, Maroc
mouna.safir@um6p.ma

Abstract. In the k-set agreement, each process must decide on a value
in such a way that no more than k different values are decided by the
processes. The case where k = 1 corresponds to the consensus problem.
For both theoretical (possibility and impossibility results) and practical
(state machine replication) reasons, this problem remains crucial in dis-
tributed computing.

In this paper, we study k-set agreement in the synchronous case with
Byzantine failures. By extending and fixing the results in [3], we present
an (almost) complete cartography of possibility and impossibility results
on the Byzantine k-set agreement in synchronous systems depending
on the number of processes n, and the number of Byzantine processes
t and k.

Keywords: Byzantine failures · Synchronous systems · Set-agreement
algorithm

1 Introduction

The k-set agreement problem [4] has been extensively studied in distributed com-
puting [13]. Beyond the practical interest of this problem, particularly regarding
fault-tolerant distributed computing, one of the main reasons behind the focus
on k-set agreement problem is the fact that it can be used to define and compare
computational power properties of systems.

In k-set agreement, each process must decide on value such that no more
than k different values are decided by processes. In addition, the processes must
guarantee a validity condition according to the failure models of the processes.
Therefore, with crash process failures, the validity condition ensures that the
decided values are initial values proposed by processes. In the case where k = 1,
the k-set agreement is the very classical consensus problem which is fundamental
for fault tolerant distributed algorithms. An important result in distributed com-
puting is the impossibility of consensus in asynchronous systems when at most
one process can crash [6]. Regarding k-set agreement in asynchronous models
one of the most famous (and difficult) results is the extension of this impossibil-
ity result to the k-set agreement [2,9,14]: the k-set agreement can be resolved if

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 183–191, 2021.
https://doi.org/10.1007/978-3-030-67087-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_12

184 C. Delporte-Gallet et al.

and only if, at most, k − 1 processes may crash. In particular, in the wait-free
case (in which at most n−1 processes may crash) we obtain the impossibility of
the set-consensus (another name for the n − 1 set agreement) whose proof uses
techniques of combinatorial topology [8,10]. An important interest of the k-set
agreement is its universality in the sense where the k-set agreement allows state
machine (with some liveness condition) replication [7].

The results are of course different when we consider synchronous systems
when processes may crash. In this case, we have no impossibility results as
in the asynchronous case: in synchronous systems with crash process failures,
consensus and the k-set agreement become solvable. Therefore, in synchronous
models, the main results concern the lower bound of the number of synchronous
rounds to achieve k-set agreement. In [5] it is proved that �n

k � + 1 rounds are
needed to solve k-set agreement in synchronous systems.

The results we mentioned concern process crash failures. However, in this
paper, we discuss the k-set agreement with Byzantine process failures (recalling
that a Byzantine process can do anything and acts as an adversary without the
limit of computational power). With Byzantine failures, the validity condition
is obtained only in the case where all correct processes propose the same value,
this value is the only possible decision value for the correct processes. The case
k = 1, that is to say the consensus problem with Byzantine process failures and
synchronous systems has been widely studied. In terms of possibility and the
impossibility, the main results found are that for n processes among them at
most t can be Byzantine, there is a solution for consensus if and only if n > 3t
and t + 1 rounds are necessary for the consensus [1,11,12].

Following Bouzid et al. [3], we study in this paper the possibility and the
impossibility of k-set agreement with Byzantine process failures. [3] affirms that
there is no k-set agreement with Byzantine failure, if n < 2t + t

k .
A first of our results shows that this assertion is valid only when n−t ≥ k+1.

Then we generalize the possibility and impossibility conditions for Byzantine k-
set and provide an almost exhaustive cartography according to the values of the
three parameters n, k and t.

These results are summarized in Fig. 1 for n = 18 and n = 19. The number
of failures t is on the abscissa and k on the ordinate. For a (t, k) point on the left
part up to blue line, the k-set agreement is solvable with t byzantine processes.
For a (t, k) point in a aera colored in blue, k-set agreement is impossible with t
byzantine processes. One aera comes from the result of [3] and the other (at the
right surrounded by points in green), from our results. For a (t, k) point with
a red cross, we don’t know if the k-set agreement with t byzantine processes is
solvable or not.

An interesting point that can be drawn is the fact that the possibility results
presented here (with the exception of the consensus case) are using a very sim-
ple algorithm in only one round. This very simple algorithm is clearly optimal
concerning the number of rounds (only one) and very close to being optimal
concerning the k of the k-set agreement which it allows to obtain.

Byzantine K-Set Agreement 185

2 Model and Definitions

2.1 Computation Models

A distributed system is made up of n sequential processes Π = {p1, p2,...,pn}
that communicate by message passing.

Processes may experience Byzantine failures [11], a Byzantine process may
crash, fail to communicate but also may deviate from its code. In this case, they
may send bogus values to some processes. Moreover, the Byzantine processes
may collude to perturb the computation. Henceforth, a Byzantine process may
act as an adversary without any computational limit.

Fig. 1. Case study : n = 18 (Above), n = 19 (Below)

Processes communicate by message passing. Any process may send a message
to any other process. We assume that the communication is reliable with no loss,
corruption, duplication or creation of messages. In addition, when the process p
receives a message from another process q, it knows that q is the sender of the
message and that there is no impersonation (but the messages are not authen-
ticated). To simplify the presentation, we assume that when a process sends a
message to all processes, it “receives” its own message.

186 C. Delporte-Gallet et al.

A process that takes an infinite number of steps without deviating from its
code, as defined by its algorithm, is said to be correct. A process that deviates
from its code or stops taking steps is said to be faulty or Byzantine. t denotes
the maximum number of processes which may be Byzantine. We assume that
there is at least one correct process i.e t < n.

In the synchronous model, the processes execute a sequence of rounds in a
lock-step manner. In every round, a process first sends a message to all processes
then receives messages from processes, and executes a local computation. The
message to be sent and the local computation is defined by the algorithm. The
process receives all the messages sent by correct processes, including itself, in the
very same round and some messages sent by Byzantine processes. As we assume
at most t Byzantine failures, in each round a correct process receives at least
n − t messages.

2.2 The k-Set Agreement Problem

The k-set agreement problem, introduced by Chaudhuri [4], is a generalization
of the consensus problem [6].

Let V be a finite set of at least n values. Each process has an initial value v
in some set V and proposes its initial value to the k-set agreement. Each process
has to irrevocably decide on a value.

The k-set agreement is formally defined by the following properties :

– Agreement: At most k values are decided by the correct processes.
– Validity : If all the correct processes propose the same value, no correct process

can decide on another value.
– Termination: Eventually, a correct process decides.

The classic consensus problem is the k-set agreement problem for k = 1.
We say that an algorithm solving a problem P is t-resilient if it solves the

problem P when at most t processes are faulty.
If the failures are only process crash failures, it is possible to solve t-resilient

k-set agreement, for any t and k, in a synchronous system for �n
k � + 1 rounds

(moreover �n
k � + 1 rounds is a lower bound for t-resilient k-set agreement) [5].

In asynchronous system with process crash failures, t-resilient k-set agree-
ment can be solved if and only if t + 1 ≤ k [2,9,14].

3 Algorithms

In this section, we present Algorithm 1 a very simple al t-resilient algorithm that
solves the k-set agreement problem.

Each process executes only one round. It sends its input value and collects
all the values that it receives from the other processes in the round.

Each process receives at least n−t values and among them all the values sent
by correct processes. If its value is the same as the received values from at least
n − t − 1 processes, it is possible that the initial value of all correct processes is

Byzantine K-Set Agreement 187

Algorithm 1: t-resilient k-set agreement algorithm: code for process pi
Input: vi initial value of pi;
Local Variable: multiset S= ∅
Output: decision value

1 send vi to all processes
2 receive values from all other processes (including the value from pi)
3 Let S be the multiset of received values
4 if the multiplicity of vi in S is at least n − t then
5 decide vi
6 else
7 decide 0
8 end

this value and then by the Validity property of the k-set agreement, the decision
value has to be this value. Hence when a process receives from n−t−1 processes
a value equal to its own value it decides its own value.

When this previous condition is not fulfilled, by the Validity property, a
process can decide on any value. To avoid that many values are decided, we
choose a default value in V for this case: This default value is denoted 0.

When n ≤ 2t, it may be possible that a correct process receives n − t − 1
times its value v (and hence decide v) and all these values come from Byzantine
processes. Hence with at least n − t − 1 Byzantine processes in the run, each
Byzantine process may send the initial value vp of each correct process p to p. In
this way all the correct processes decide their own value. When n ≤ 2t, we have
at most t + 1 correct processes, and no more than t + 1 values are decided by
correct processes, satisfying the Agreement property. If we have less Byzantine
processes in the run, to get n − t − 1 times its value v a correct process has to
receive v from some correct processes. Hence every correct process decides either
0 or value that is initial value of some correct processes. In this way, no more
than t + 1 values are decided by correct processes.

When n ≥ 2t+1, if a correct process p with value v receives v from n− t− 1
different processes among them there are at least n − 2t − 1 correct processes.
These processes decide v or 0.

When n > 3t, in our algorithm, at most 2 values are decided by correct
processes. Which is not optimal, see [11] for example, they give a t resilient
consensus algorithm when n > 3t.

Which lead us to have the following Theorem:

Theorem 1. The Algorithm 1 solves t-resilient k-set agreement problem (1) if

n ≥ 2t + 1, for � n − t

n − 2t
� + 1 ≤ k , and (2) if n ≤ 2t, for t + 1 ≤ k.

Proof. Let e be any execution of the algorithm. In e, there is at most t Byzantine
failures. Let 0 ≤ f ≤ t the actual number of Byzantine failures in e.

188 C. Delporte-Gallet et al.

We prove first that if n ≥ 2t + 1, the correct processes in e decide at most

� n − t

n − 2t
� + 1 values in Algorithm 1.

If a correct process p decides a value v different from 0, then there is at least
n − t − f processes, including p, that have this value as input.

We have n ≥ 2t+1 that implies n− t ≥ t+1. As we have n− t ≥ t+1, then
n − t − f ≥ 1, which leads to two cases:

(1) If n − t − f = 1 then t = f , there are n − t correct processes, even if each

of them decided a different value, there are at most n − t = � n − t

n − 2t
� decided

values by correct processes in e.

(2) if n − t − f ≥ 2, the pcorrect rocesses with input values v may decide
v or 0 if it doesn’t receive the value v from Byzantine processes. Then at most

� n − f

n − t − f
�+1 are decided by correct processes in e. The function � n − f

n − t − f
�+1

of f is growing, as f ≤ t, its maximum is for f = t, consequently at most

� n − t

n − 2t
� + 1 values are decided by correct processes in e.

In both cases, at most � n − t

n − 2t
� + 1 values are decided by correct processes

in e.
We now demonstrate that if n ≤ 2t, the correct processes in e decide at most

t + 1 values in Algorithm 1.
n ≤ 2t implies n − t ≤ t, the number of processes that a process considers

at Line 4 is less that the number of tolerate failures, so it is possible that the
considered values by a correct processes comes from Byzantine processes.

If f ≥ n− t− 1, there are n− f correct processes in e, as n− f ≤ t+1, there
are at most t + 1 values decided by correct processes in e.

If f < n− t−1, then n− t ≥ f +2. A correct process (Line 4) considers n− t
values, at least 2 of them come from correct processes then there are at most
� (n−f)

2 �+1 decided values by correct processes. As f ≥ 0, � (n−f)
2 �+1 ≤ n

2 +1 ≤
t + 1, proving that at most t + 1 values are decided in e by correct processes.

4 Impossibility

In this section, we focus on the case where k-set agreement problem is impossible
to solve t-resilient. Our starting point is the paper of Bouzid and al. [3], which
demonstrates that:

Theorem 2. (from [3]) There is no t-resilient algorithm that solves k-set agree-
ment when n ≤ 2t + t

k

Their theorem implies that there is no t-resilient algorithm that solves any
k-set agreement (k < n) when n ≤ 2t. But we have seen in Sect. 3 that in this
case we can solve t-resilient (t + 1)-set agreement.

Byzantine K-Set Agreement 189

To prove their theorem, they have split the system of n processes into (k+1)

subsets S1, ..., Sk+1 of size �n−t
k+1� or �n−t

k+1� such that card(
j=k+1⋃

j=1

Sj) = n−t. They

show that if n ≤ 2t + t
k then each set Si is a subset of the correct processes and

processes of Si decide a value vi (with vi �= vj). However, they have missed the
idea that this is only true if every set contains at least one process i.e n−t

k+1 ≥ 1.
In fact, they proved:

Theorem 3. (revised from [3]) If n− t ≥ k+1, there is no t-resilient algorithm
that solves k-set agreement when n ≤ 2t + t

k

In this section, we complete their results when n − t < k + 1. In Fig. 1, the
results from [3] are in light blue and our impossibility result are in dark blue.

Theorem 4 and Theorem 1 show that our bound is tight when n ≤ 2t + 1.

Theorem 4. If n − t < k + 1 and n ≤ 2t + 1, there is no t-resilient algorithm
that solves k-set agreement when k ≤ t.

Proof. If n − t < k + 1 and n ≤ 2t + 1, if there is a t-resilient k-set agreement
algorithm, we prove that there is an execution of this algorithm where there are
at least t + 1 different values that are decided by correct processes, proving that
k ≥ t+1. Consequently there is no t-resilient k-set agreement algorithm if k ≤ t.

We proceed as in the proof of [3]. Let A be a t-resilient k-set agreement
algorithm. Let v1, ..., vt+1 be t + 1 different values of V

In our system there is always at least one correct process, then there exists
t + 1 non empty subsets of processes: S1 = {p1} S2 = {p2}, . . ., St+1 = {pt+1}
of Π.

Fig. 2. The behavior of the t Byzantine processes

190 C. Delporte-Gallet et al.

Let S̄i be (
⋃j=t+1

j=1 Sj) \ Si. By construction S̄i contains t processes. As n ≤
2t + 1 then S̄i contains at least n − t − 1 processes. Let F be Π \ ⋃i=t+1

i=1 Si. By
construction F contains n − t − 1 processes. As n ≤ 2t + 1, F contains at most
t processes.

For each i from 1 to t + 1, the process of Si executes the algorithm A with
input value vi.

If F is an empty set, we have n = t + 1. Then for pi, all processes in S̄i may
be Byzantine, to achieve Validity, pi has to decide its own values. Hence t+1 dif-
ferent values are decided by correct processes. Assuming that F is not an empty
set. We specify the behavior of the Byzantine processes in F , as seen in Fig. 2.
The Byzantine processes in F simulate (t + 1) sets of processes F1, . . . , Ft+1,
such that processes of each set Fi execute correctly A with the input value vi.
Moreover, the processes of Fi ignore the messages sent by S̄i and receive those
from Fi ∪Si. Thus, the processes Fi appear as being correct to Si and S̄i appear
to be Byzantine. Besides, the processes of Fi ignore the messages sent by S̄i and
receive those from Fi ∪ Si.

As S̄i contains t processes and at least n − t − 1 processes and F contains
n − t − 1 and at most t processes, the process in Si cannot distinguish the
case where the processes of F are Byzantine and the processes of Si ∪ S̄i are
correct, and the case where processes of S̄i are Byzantine and the processes of
F ∪Si are correct. Consequently, by assumption, A is a t-resilient k-set agreement
algorithm, it follows from the Termination and the Validity properties that, for
each i from 1 to t + 1, the correct processes in Si decide vi.

Consequently, t + 1 different values are decided by correct processes.

5 Conclusion

We have proved that it is possible to solve t-resilient k-set agreement problem
by a simple algorithm in one round in the following cases:

1. if n ≥ 2t + 1, for � n − t

n − 2t
� + 1 ≤ k , and

2. if n ≤ 2t, for t + 1 ≤ k.

We have also proved that if n−t < k+1 and n ≤ 2t+1, there is no t-resilient
algorithm that solves k-set agreement when k ≤ t.

Combined with the results of [3] and the consensus algorithm in Byzantine
setting with 3t < n in, for example, [11], we conclude that we know for every
values of k and t if it is possible or not to solve k-set agreement t resilient except

for n/3 ≥ t ≥ n/2 and k = � n − t

n − 2t
�

Acknowledgments. This work was partially supported by the French ANR project
DESCARTES 16-CE40-0023-03 devoted to layered and modular structures in dis-
tributed computing and FREDDA ANR-17-CE40-0013 devoted to Formal methods
for the design of distributed algorithms.

Byzantine K-Set Agreement 191

References

1. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t-resilient consensus
requires t+ 1 rounds. Inform. Process. Lett. 71(3–4), 155–158 (1999)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, May 16–18, 1993, San Diego, CA, USA pp. 91–100.
ACM (1993)

3. Bouzid, Z., Imbs, D., Raynal, M.: A necessary condition for byzantine k-set agree-
ment. Inform. Process. Lett. 116(12), 757–759 (2016)

4. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inform. Comput. 105(1), 132–158 (1993)

5. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set
agreement. J. ACM 47(5), 912–943 (2000)

6. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

7. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23217-6 2

8. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann, Burlington (2013)

9. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient
tasks. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16–18, 1993, San Diego, CA, USA. pp. 111–120. ACM (1993)

10. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

11. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

12. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

13. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems.
Synth. Lect. Distrib. Comput. Theory 1(1), 1–189 (2010)

14. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

https://doi.org/10.1007/978-3-642-23217-6_2

Fissile Locks

Dave Dice(B) and Alex Kogan

Oracle Labs, Austin, USA
{dave.dice,alex.kogan}@oracle.com

Abstract. Classic test-and-test (TS) mutual exclusion locks are simple,
and enjoy high performance and low latency of ownership transfer under
light or no contention. They do not, however, scale gracefully under high
contention and do not provide any admission order guarantees. Such
concerns led to the development of scalable queue-based locks, such as
a recent Compact NUMA-aware (CNA) lock, a variant of another pop-
ular queue-based MCS lock. CNA scales well under load and provides
certain admission guarantees, but has more complicated lock handover
operations than TS and incurs higher latencies at low contention.

We propose Fissile locks, which capture the most desirable properties
of both TS and CNA. A Fissile lock consists of two underlying locks: a
TS lock, which serves as a fast path, and a CNA lock, which serves as
a slow path. The key feature of Fissile locks is the ability of threads on
the fast path to bypass threads enqueued on the slow path, and acquire
the lock with less overhead than CNA. Bypass is bounded (by a tun-
able parameter) to avoid starvation and ensure long-term fairness. The
result is a highly scalable NUMA-aware lock with progress guarantees
that performs like TS at low contention and like CNA at high contention.

Keywords: Locks · Mutexes · Mutual exclusion · Synchronization ·
Concurrency control

1 Introduction

TS: Test-and-test locks (TS) [3] are compact – consisting of a single lock word
– simple, and provide excellent latency under light or no contention. They fail
to scale, however, as contention increases.

Acquiring threads simply busy-wait, or spin attempting to change the lock
word state from unlocked to locked with an atomic read-modify-write instruc-
tion, such as compare-and-swap (CAS) or exchange (SWAP). If the atomic
operation was successful, then the thread has acquired the lock and may enter
the critical section. Releasing the lock requires only a simple store to set the
state to unlocked. So-called “polite” test-and-test-and-set locks (TTS), a varia-
tion on TS, first fetch the lock value and only attempt the atomic instruction if
the lock was observed to be not held. That is, acquiring threads busy-wait until
the lock is clear, at which point they execute an atomic instruction to try to

An extended version of this paper is available at https://arxiv.org/abs/2003.05025.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 192–208, 2021.
https://doi.org/10.1007/978-3-030-67087-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_13&domain=pdf
http://orcid.org/0000-0001-9164-7747
http://orcid.org/0000-0002-4419-4340
https://arxiv.org/abs/2003.05025
https://doi.org/10.1007/978-3-030-67087-0_13

Fissile Locks 193

gain ownership. TTS acts to avoid unnecessary write invalidation arising from
failed atomic operations. Simple “impolite” TS locks do not bother to first load
the value, so each probe of the lock causes writing via the atomic instruction.
TS and TTS locks are usually augmented with back-off – delays between probes
– to moderate contention.

MCS: The MCS lock [30], is the usual alternative to simple test-and-set-based
locks, performing better under high contention, but also having a more complex
path and often lagging behind simple locks under no or light contention. In MCS,
arriving threads use an atomic operation to append an element to the tail of a linked
list of waiting threads, and then busy wait on a field within that element, avoiding
global spinning as found in TS. The list forms a queue of waiting threads. The lock’s
tail variable is explicit and the head – the current owner – is implicit. When the
owner releases the lock it reclaims the element it originally enqueued and sets the
flag in the next element, passing ownership. To convey ownership, the MCS unlock
operatormust identify the successor, if any, and then store to the locationwhere the
successor busy waits. The list forms a multiple-producer-single-consumer (MPSC)
queue where any thread can enqueue but only the current owner can dequeue itself
and pass ownership. The handover path is longer than that of TS locks and accesses
more distinct shared locations.

MCS uses so-called local waiting where at most one thread is waiting on a
given location at any one time. As such, an unlock operation will normally need
to invalidate just one cache line – the line underlying the flag where the successor
busy waits – in one remote cache. Under contention, the unlock operator must
fetch the address of the successor element from its own element, and then store
into the flag in the successor’s element, accessing two distinct cache lines, and
incurring a dependent memory access to reach the successor. Absent contention,
the unlock operator uses an atomic compare-and-swap (CAS) operator to try to
detach the owner’s element and set the tail variable to null.

MCS locks provide strict FIFO order. They are also compact, with the lock
body requiring just a pointer to the tail of the chain of queue elements.

One MCS queue element instance is required for each lock a thread currently
holds, and an additional queue element is required while a thread is waiting
on a lock. Queue elements can not be shared concurrently and can appear on
at most one queue – be associated with at most one lock – at a given time.
The standard POSIX pthread mutex lock and pthread mutex unlock opera-
tors do not require scoped or lexically balanced locking. As such, queue element
can not be allocated on stack. Instead, MCS implementations that expose a
standard POSIX interface will typically allocate elements from thread-local free
lists, populated on demand1.

The standard POSIX interface does not provide any means to pass infor-
mation from a lock operation to the corresponding unlock operator. As such,
the address of the MCS queue element inserted by the owner thread is usually
recorded in the lock instance so it can be conveyed to the subsequent unlock

1 We note that the MCS “K42” variant [28,33] allows queue elements to be allocated
on stack – they are required only while a thread waits – but at the cost of a longer
path with more accesses to shared locations.

194 D. Dice and A. Kogan

operation to identify the successor, if any. That field is protected by the lock
itself and accessed within the critical section. Accesses to the field that records
the owner’s queue element address may themselves generate additional coher-
ence traffic, although some implementations may avoid such accesses to shared
fields by storing the queue element address in a thread-local associative structure
that maps lock addresses to the owner’s queue element address.

CNA: Compact NUMA-Aware locks (CNA) [15] are based on MCS, but add
NUMA-awareness. At arrival time, threads annotate their queue element with
their NUMA node number. At unlock-time, the owner scans forward into the pri-
mary MCS chain and culls remote elements, transferring them to a secondary chain
of remote threads. That secondary chain is propagated from the unlock operator
to the successor via the queue elements, so the lock structure remains compact.
Reducing the NUMA diversity of the primary chain acts to reduce lock migration
[17] and improve performance. To avoid indefinite starvation of threads on the sec-
ondary chain, the unlock operator periodically flushes the secondary chain back
into the primary chain to shift the currently preferred NUMA node. At unlock-
time, if the primary chain is found empty, the secondary is flushed back into the pri-
mary to reprovision the primary chain. CNA unlock prefers to dispatch to threads
on the primary, but will revert to the secondary list if the primary is empty. The sec-
ondary chain is manipulated under the lock itself, in the unlock operation. While
CNA is NUMA-aware, compared to MCS, a number of additional CNA-specific
administrative steps – culling, reprovisioning, periodic flushing – execute while the
lock is held and are subsumed into the critical section, potentially increasing the
effective hold time of the lock. We observe that all NUMA-aware locks trade-off
short-term fairness for improved overall throughput.

2 The Fissile Algorithm

Fissile augments CNA with a TS fast-path using the LOITER lock construc-
tion (Locking : Outer-Inner Tranformation) [12] where the outer lock is a TS
lock and the inner lock is a CNA lock. Acquiring ownership of the outer TS
lock confers ownership of the compound Fissile lock. Arriving threads first try
the fast-path TS lock and, if successful, immediately enter the critical section.
Otherwise control diverts into the slow path where the thread acquires the inner
CNA lock. We refer to the owner of the inner CNA lock as the alpha thread.
Once the CNA lock has been acquired, the alpha thread then busy-waits on the
TS outer lock. At most one thread at any one time busy-waits on the outer TS
lock, avoiding the scalability impact of global spinning, where multiple threads
simultaneously busy-wait on a given location. As there is at most one thread
busy-waiting on the outer lock, we use TS instead of TTS. Once the outer lock
has been acquired, we release the inner lock and enter the critical section. To
release a Fissile lock, we simply release the outer TS lock, regardless of whether
the corresponding acquisition took the fast path or slow path.

A thread holds the inner CNA lock only within the Fissile lock acquisi-
tion operator. Specifically, Fissile releases the inner CNA lock within the Fis-
sile acquire operation, but while still holding the outer TS lock, potentially

Fissile Locks 195

extending the hold-time of the outer lock. This choice, however, allows us to
allocate the MCS queue element on-stack, which is a distinct advantage, avoid-
ing MCS queue element allocation and deallocation. (Classic MCS requires one
allocated queue element for each lock concurrently held by a thread whereas
our approach avoids that expense). Furthermore the queue element of the alpha
thread does not need to be communicated from the Fissile acquire operation
to the unlock operation, as is the case for normal MCS and CNA. We employ
a specialized CNA implementation, described below, which shifts much of the
administrative overhead specific to CNA and normally found in the unlock oper-
ator to run before we acquire the outer TS lock, so the overhead of releasing the
CNA inner lock while holding the outer TS lock is minimized.

In Listing-1.1 we provide a sketch of the Fissile algorithm. The Outer field is a
TS lock word which can take on 3 values: 0 indicates unlocked ; 1 indicates locked
and 2 encodes a special locked state used when the alpha thread is impatient
and the previous owner is transferring ownership of the outer TS lock directly
to the alpha thread. Inner is the CNA inner lock, and Impatient reflects the
state of the alpha thread.

Absent remediation, simple TS allows indefinite bypass and starvation of
waiting threads. To avoid this issue, the alpha threads busy-waits on the TS
lock for a short grace period but will then become “impatient” and cue direct
handover of ownership the next time the TS lock is released, bounding bypass.

When the alpha thread becomes impatient, having failed to acquire the outer
lock within the grace period, it sets the Impatient field from the normal state of
0 to 2. The unlock operator fetches from Impatient and stores that value into
the TS lock word. In typical circumstances when unlock runs after the alpha
has become impatient, it will observe and fetch 2 from Impatient and store
that value into the TS lock word. The alpha will then notice that the value 2
has propagate from Impatient into the lock word, and takes direct handoff of
ownership from that previous owner, restoring the lock word from 2 back to
1. If the unlock operation happens to run concurrently with the alpha thread
becoming impatient, the unlock may race and fetch 0 from Impatient instead
of 2. In this case either the alpha manages to seize the TS lock and acquire it
when it becomes 0, or some other thread managed to pounce on the TS lock, in
which case the alpha thread must wait one more lock cycle to take ownership.
At worst, impatient handover is delayed by one acquire-release cycle. Once the
value of 2 is visible to threads in unlock, immediate handover to the alpha is
assured. Threads arriving in the fast-path that observe 2 will divert immediately
into the CNA slow-path.

The grace period serves as tunable parameter reflecting the trade-off and
tension between throughput and short-term fairness. A shorter grace periods
yields less bypass and fairer admission, while longer periods may allow better
throughput but worse short-term fairness.

Fissile provides hybrid succession, employing competitive succession [12]
when there is no contention, but switching to more conservative direct succession
when the alpha thread becomes impatient. Under competitive succession, the

196 D. Dice and A. Kogan

owner releases the lock, allowing other waiting or arriving threads to acquire the
lock. Unfettered competitive succession admits undesirable long-term unfairness
and starvation but typically performs well under light load. In addition, compet-
itive succession tends to provide more graceful throughput under preemption. In
direct succession, as used by MCS, for instance, the lock holder directly transfers
ownership to a waiting successor without any intermediate or intervening transi-
tion to an unlocked state. All strict FIFO locks employ direct succession. Direct
succession suffers under preemption, however, as ownership may be conveyed to
a preempted thread, and we have to wait for operating system time-slicing to
dispatch the owner onto a processor.

By restricting the number of threads competing for the outer TS lock, we
improve the odds that an arriving thread will find the lock clear and manage to
acquire via the TS outer fast path. Under fixed load, ithe system will tend to
reach a balanced steady state where many circulating threads tend to acquire
the TS lock without waiting.

As shown in [13], as more threads busy-wait on a given location, as is the
case in TS, stores to that location take longer to propagate. (Concurrent reads
to a given location scale, but concurrent writes or atomics do not [32]). Fissile
addresses that concern by ensuring that only the alpha thread busy-waits on the
outer TS lock at any given time, accelerating handover.

The TS fast path provides the following benefits. First, latency is reduced,
relative to MCS and CNA, for the uncontended case. Acquisition requires an
atomic instruction and just a simple store to release. Second, the slow-path CNA
MCS nodes can be allocated on-stack, simplifying the CNA implementation and
avoiding the need to communicate or convey the owner’s MCS node from the
lock operation to the corresponding unlock. Third, TS with bounded bypass
performs well under preemption, relative to MCS. Finally, and less obviously, the
TS fast path provides benefit in the contended case. Fissile provides significant
improvement over CNA when the critical section is small, and CNA has a hard
time “keeping up” with the flow of arriving threads. That is, for very short critical
sections, CNA itself – CNA overheads – becomes the bottleneck for throughput
[18]. Under intense contention the TS lock allows more throughput, serving as
an alternative bypass channel, giving contention “pressure” a way to get around
CNA when CNA becomes the bottleneck. When the critical sections are longer,
fissile performs like CNA. Allowing some threads to pass through the CNA slow
path and some fraction over the TS fast path would appear to dilute CNA’s
NUMA benefits, but in practice, we find that CNA still quickly acts to filter out
remote threads from a set of threads circulating over a contended lock.

The result is a highly scalable NUMA-aware lock that performs like TS at low
contention and as well or better than CNA at high contention. Fissile provides
short-term concurrency restriction [12] which may improve overall throughput
over a contended lock. Fissile locks are compact and also tolerate preemption,
by virtue of the TS outer lock, more gracefully than does CNA or MCS.

Fissile Locks 197

2.1 Specialized CNA

Classic CNA performs reorganization of the MCS chain – to be more NUMA-
friendly and reduce NUMA lock transitions – while holding the CNA lock itself,
extending the effective critical section length and delaying handover to a suc-
cessor. Handover time impacts the scalability as the lock is held throughout
handover, increasing the effective length of the critical section. At extreme con-
tention, the critical section length determines throughput [2,18]. Fissile uses a
specialized variant of CNA which reorganizes the chain of waiting threads early,
immediately after acquiring the CNA lock. As such, reorganization runs out-
side and before the TS critical section, off the critical path, and potentially
allows pipelining and overlap with the critical section execution. (Arguably, ear-
lier reorganization may suffer as there are fewer threads enqueued from which
to schedule, but we have not observed any performance penalty related to this
concern).

The variant of CNA used by Fissile differs from the original [15] as follows.
Classic CNA, at unlock-time, culls the entire remote suffix of the primary chain
into the remote list. Our variant looks ahead only one thread into the primary
MCS chain, and provides constant-time culling costs, yielding less potentially
futile scanning of the chain, and more predictable overheads. In addition, our
look-ahead-one policy generates less coherence traffic accessing the MCS chain
elements, as the element examine for potential culling would also be accessed in
the near future when we subsequently release the CNA lock.

Finally, our version of CNA performs CNA administrative duties – flushing
and culling – immediately after the owner acquires the CNA lock, whereas classic
CNA defers those operations until unlock-time. Specifically, we reorganize out-
side and before the outer TS critical section, allowing more overlap between CNA
administrative duties and the execution of the critical section, and accelerating
CNA lock handover.

All the changes above are optional optimizations and are not required to use
CNA within Fissile, but they serve to enhance performance.

3 Related Work

While mutual exclusion remains an active research topic [2,4–6,11,14,18–20,22–
24] we focus on locks closely related to our design.

NUMA-aware locks attempt to restrict ownership of a lock to threads on
a given NUMA node over the short term, reducing so-called lock migration,
which can result in expensive inter-node coherence traffic. The first NUMA-
aware lock was HBO (Hierarchical Back Off) [31], a test-and-set lock where
busy-waiting threads running on the same NUMA node as the current owner
would use shorter back-off durations, favoring the odds of handover to such
proximal threads relative to most distant threads. While simple, HBO suffers
from the same issues as other TS locks.

198 D. Dice and A. Kogan

Listing 1.1: Simplified Pseudocode Implementation of Fissile

Fissile Locks 199

Luchangco et al. [27] introducing HCLH, a NUMA-aware hierarchical version
of the CLH queue-lock [10,29]. The HCLH algorithm collects requests on each
node into a local CLH-style queue, and then has the thread at the head of the
queue integrate each node’s queue into a single global queue. This avoids the
overhead of spinning on a shared location and eliminates fairness and starva-
tion issues. HCLH intentionally inserts non work-conserving combining delays
to increase the size of groups of threads to be merged into the global queue. It
was subsequently discovered that HCLH required threads to be bound to one
processor for the thread’s lifetime. Failure to bind could result in exclusion and
progress failures, and as such we will not consider HCLH further.

NUMA-aware Cohort locks [16,17] spawned various derivatives [7,8]. While
cohort locks scale well, they have a large variable-sized footprint. The size of
a cohort lock instance is a function of the number of NUMA nodes, and is
thus not generally known until run-time, complicating static allocation of cohort
locks. Being hierarchical in nature, they suffer increased latency under low or no
contention as acquisition requires acquiring both node-level locks and top-level
lock. CNA avoids all these concerns and is superior to cohort locks. A changeset
to convert the Linux kernel qspinlock low-level spin lock [9,26] implementation
from an MCS-based design to CNA is under submission at the time of writing2.
Similarly, Fissile locks are readily portable into the kernel environment.

Kashyap’s et al. [23] Shuffling Lock also performs NUMA-aware reorganiza-
tion of MCS chains of waiters off the critical path, by waiting threads. They also
use a LOITER-based design, but do not allow bypass. In the evaluation section,
below, we compare Fissile against their user-mode implementation.

LOITER-base designs [12] first appeared, to our knowledge, in the HotSpot
JavaVirtualMachine implementation3 in 2007.The “Go” language runtimemutex
[1] uses a LOITER-based scheme where the inner lock is implemented via a
semaphore and time-bounded bypass is allowed. The linux kernel QSpinlock [26]
construct also has a dual path TS and MCS lock, but does not allow bypass. The
QSpinlock TS fast-path avoids MCS latency overheads in the uncontended case.

Various authors [4,21] have suggested switching adaptively between MCS
and lower latency locks depending on the contention level. While workable, this
adds considerable algorithmic complexity, particularly for the changeover phase,
and requires tuning. Lim et al. [25] suggested a more general framework for
switching locks at runtime.

4 Empirical Evaluation

Unless otherwise noted, all data was collected on an Oracle X5-2 system. The sys-
tem has 2 sockets, each populated with an Intel Xeon E5–2699 v3 CPU running
at 2.30 GHz. Each socket has 18 cores, and each core is 2-way hyperthreaded,
yielding 72 logical CPUs in total. The system was running Ubuntu 18.04 with
2 https://lwn.net/Articles/805655/.
3 https://github.com/openjdk-mirror/jdk7u-hotspot/blob/master/src/share/vm/

runtime/mutex.cpp#L168.

https://lwn.net/Articles/805655/
https://github.com/openjdk-mirror/jdk7u-hotspot/blob/master/src/share/vm/runtime/mutex.cpp#L168
https://github.com/openjdk-mirror/jdk7u-hotspot/blob/master/src/share/vm/runtime/mutex.cpp#L168

200 D. Dice and A. Kogan

a stock Linux version 4.15 kernel, and all software was compiled using the pro-
vided GCC version 7.3 toolchain at optimization level “-O3”. 64-bit C or C++
code was used for all experiments. Factory-provided system defaults were used
in all cases, and Turbo mode [35] was left enabled. In all cases default free-range
unbound threads were used.

We implemented all user-mode locks within LD PRELOAD interposition
libraries that expose the standard POSIX pthread mutex t programming inter-
face using the framework from [17]. This allows us to change lock implementations
by varying the LD PRELOAD environment variable and without modifying the
application code that uses locks. The C++ std::mutex construct maps directly
to pthread mutex primitives, so interposition works for both C and C++ code. All
busy-wait loops used the Intel PAUSE instruction. We note that user-mode locks are
not typically implemented as pure spin locks, instead often using a spin-then-park
waiting policy which voluntarily surrenders the CPUs of waiting threads after a
brief optimistic spinning period designed to reduce the context switching rate. In
our case, we find that user-mode is convenient venue for experiments, and note in
passing that threads in the CNA slow-path are easily made to park.

4.1 MutexBench

The MutexBench benchmark spawns T concurrent threads. Each thread loops
as follows: acquire a central lock L; execute a critical section; release L; execute
a non-critical section. At the end of a 10 s measurement interval the benchmark
reports the total number of aggregate iterations completed by all the threads. We
report the median of 7 independent runs in Fig. 1. The critical section advances a
C++ std::mt19937 pseudo-random generator (PRNG) 2 steps. The non-critical
section is empty. For clarity and to convey the maximum amount of information
to allow a comparision the algorithms, the X-axis is offset to the minimum score
and the Y -axis is logarithmic.

Immediately before acquiring the lock, each thread fetches the value of a
shared lock clock value. The critical section advances that value. Subtracting the
clock value fetched in the critical section from the value fetched before acquiring
the lock gives a useful approximation of the thread’s waiting time, given in units
of lock acquisitions. Within the critical section, we record that waiting time value
into a global log. After the measurement interval the benchmark harness post-
processes the log to produce statistics describing the distribution of the waiting
time values, which reflect short-term fairness of the lock algorithm. The critical
section also tallies lock migrations. These activities increase the effective length
of the critical section.

We ran the benchmark under the following lock algorithms: TTS is a simple
test-and-test-and-set lock using classic truncated randomized binary exponential
back-off [3,30] with the back-off duration capped to 100000 iterations of a PAUSE
loop; MCS is classic MCS; CNA is described in [15] with the probability of
flushing the secondary chain into the primary configured as P = 1/2564; Shuffle
4 We picked P = 1/256 to match the default value used by the Shuffle Lock, allowing

a fair comparison between that lock and CNA.

Fissile Locks 201

is Kashyap’s Shuffle Lock [23] aqswonode variant5; Fissile is the Fissile algorithm
described above with the grace period configured as 50 steps of the TS loop
executed by the alpha thread and the CNA flush probability configured for
P = 1/256.

In Fig. 1 we make the following observations regarding operation at maximal
contention with an empty critical section:

– At 1 thread the benchmark measures the latency of uncontended acquire and
release operations. MCS and CNA lag behind TTS, Shuffle and Fissile as they
lack a fast-path.

– At or above 2 threads, most algorithms fall behind TTS as TTS starves all
but one thread for long periods, effectively yielding performance near that
found at just one thread.

– Broadly, Fissile outperforms CNA and CNA outperforms Shuffle.
– Above 72 threads we encounter preemption via time slicing. TTS and Fis-

sile are tolerant of preemption where the other forms with direct handover
encounter a precipitous drop in performance.

In Table 1 we provide additional details for execution at 10 threads.
Throughput is given in units of millions of acquires per second aggregate
throughput for all threads; Spread reflects long-term fairness between threads,
computed as the maximum number of iterations completed by any thread within
the measurement interval divided by the minimum; Migration is the reciprocal
of the NUMA lock migration rate. (A Migration value of N indicates that the
lock migrated between NUMA nodes 1 out of every N lock acquisitions, on aver-
age). The remaining columns describe the distribution of the observed waiting
times, which we use to measure short-term fairness. RSTDDEV is the relative
standard deviation [36]; Theil-T is the normalized Theil-T index [34,38] – used
in the field of econometrics as a metric of income disparity and unfairness –
where a value of 0 is ideally fair and 1 is maximally unfair.

We observe that TTS is deeply unfair over the long term and short term.
TTS also exhibits a surprisingly low lock migration rate – on average 1 migration
per 323 acquisitions – presumably arising from platform-specific cache line arbi-
tration phenomena. Somewhat perversely, this makes TTS implicitly NUMA-
friendly, reducing migration rates. TTS is vulnerable to the Matthew Effect [37]6

– once a thread has entered deeper back-off, it is less likely to acquire the lock
in unit time, amplifying subsequent unfairness. The remaining locks show rea-
sonable long-term and short-term fairness.

In Fig. 2 we configure the benchmark so the non-critical section generates a
uniformly distributed random value in [0− 200) and steps the thread-local ran-
dom number generator that many steps, admitting potential positive scalability.
In this moderate contention case we can see that Fissile and TTS locks tend
to provide the best performance although TTS is again unfair. Shuffle, CNA,

5 Taken verbatim from https://github.com/sslab-gatech/shfllock/blob/master/
ulocks/src/litl/src/aqswonode.c and integrated into our LD PRELOAD framework.

6 Sometimes called the capture effect.

https://github.com/sslab-gatech/shfllock/blob/master/ulocks/src/litl/src/aqswonode.c
https://github.com/sslab-gatech/shfllock/blob/master/ulocks/src/litl/src/aqswonode.c

202 D. Dice and A. Kogan

and Fissile show a positive inflection around 12 threads, as there are sufficient
waiting threads to allow NUMA-friendly intra-node handover. Again, we see an
abrupt drop in throughput above 72 threads when preemption is active, but note
that Fissile and TTS more gracefully tolerate preemption.

1 2 5 10 20 50 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
CNA
TTS
Shuffle
Fissile

Fig. 1. MutexBench: Maximum Contention

Table 1. Detailed execution analysis

Throughput Spread Migration RSTDDEV Theil-T

MCS .297 1.00 1.83 0.01 0.00

CNA .458 1.06 254 13.5 0.17

TTS 1.85 7.89 323 102 0.44

Shuffle .344 1.86 234 11.3 0.15

Fissile 1.11 1.26 374 11.8 0.17

4.2 Std::atomic

In Fig. 3 we use a benchmark harness similar to that of MutexBench but with the
following differences. The non-critical section uses a thread-local std::mt19937
pseudo-random number generator (PRNG) to compute a value distributed uni-
formly in [0, 200) and then advances the PRNG that many steps. Each iteration
executes A.load() where A is shared an instance of std::atomic<T> and T is a
simple struct containing 5 32-bit integer fields. The C++ compiler and runtime
implement std::atomic for such objects by hashing the address of the instance

Fissile Locks 203

1 2 5 10 20 50 100

0
2

4
6

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
CNA
TTS
Shuffle
Fissile

Fig. 2. MutexBench: Moderate Contention

1 2 5 10 20 50 100

0
1

2
3

4

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
CNA
TTS
Shuffle
Fissile

Fig. 3. C++ std::atomic

into an array of mutexes, and acquiring those as needed to implement the desired
atomic action. Interestingly, the NUMA-aware locks, CNA, Shuffle and Fissile,
exhibit fading performance between 5 and 10 threads, but performance recovers
at higher thread counts when there are sufficient waiting threads to profitably
reorder for a NUMA-friendly admission schedule. Below 10 threads, contention
is sufficiently low that Fissile exceeds CNA by virtue of its fast-path. Fissile and
TTS provide similar performance in this region. Above 10 threads, the critical
section is sufficiently long in duration that CNA and Fissile yield approximately
the same performance.

In Fig. 4 we repeat the experiment in Fig. 3 on an Oracle X5-4, which has 4
NUMA nodes, 18 cores per socket and 2 hyperthreads per core, for 144 logical
CPUs, demonstrating that our approach generalizes to larger NUMA systems.
The onset of benefit provided by NUMA-aware locks is somewhat delayed as

204 D. Dice and A. Kogan

1 2 5 10 20 50 100 200

0
1

2
3

4

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 r
at

e
: M

 s
te

ps
/s

ec

MCS
CNA
TTS
Shuffle
Fissile

Fig. 4. C++ std::atomic on 4-node System

we have 4 nodes instead of 2 and, at a given thread count, threads are more
dispersed and the socket is less populated.

4.3 FIFO Support

Fissile allows bypass both over the outer lock and within the CNA inner lock.
We can, however, easily modify Fissile to provide expedited FIFO-like admis-
sion service as follows. First, FIFO locking requests that pass into the slow path
mark their CNA MCS queue element with a “FIFO” flag. CNA culling refrains
from shifting such elements into the CNA secondary list. Critically, if element
S is marked as FIFO, then no requests that arrive after S on the inner CNA
lock will acquire that lock before S. We also suppress bypass over the outer
lock while FIFO requests are waiting. To that end, instead of setting and clear-
ing the Impatient field we modify Fissile slightly to atomically fetch-and-add
Impatient by 2 or −2, respectively. (We also make a corresponding change to the
comparison in the grace period loop from == 0 to != 1). When a FIFO request
diverts into the slow path, it increments Impatient by 2 before acquiring the
CNA inner lock, and decrements by 2 after acquiring the outer lock. The request
will be serviced in FIFO order, without being bypassed by more recently arrived
threads, once it increments Impatient – and that value has become visible to
threads in the unlock path – and has executed the SWAP instruction that appends
the request to the CNA MCS chain.

To avoid fairness anomalies and make fairness analysis more tractable, we
explicitly do no change the preferred NUMA when servicing a FIFO request.

To demonstrate the efficacy of FIFO-enabled Fissile, we extended the
MutexBench benchmark harness to allow a mixture of normal and FIFO-
designated threads, both competing for a common lock. We used 25 normal
threads, and 2 FIFO threads. Normal threads advance the global PRNG 2 times

Fissile Locks 205

in the critical section, as described above, and in the non-critical section com-
pute a uniformly distributed random number in [0− 100) and advance a thread-
local PRNG instance that many steps. FIFO threads execute the same critical
section, but use a non-critical section duration randomly selected from the range
[0 − 2000), reflecting intermittent low duty-cycle FIFO operations. The FIFO
attribute is per-thread (but could also be specified for individual locking oper-
ations) and is ignored by all lock implementations except FIFO-enabled Fissile.
All FIFO data was taken on the X5-2.

Table 2 shows the results, comparing Fissile, FIFO-enabled Fissile, and MCS.
We report throughput over a 10 s measurement interval broken out for the normal
threads and the FIFO threads. We also report statistics describing the observed
wait times, computed in logical lock clock units, for the FIFO threads in isolation.
As we can see Fissile+FIFO provides wait times very close to that afforded by
MCS, and with greater throughput for both normal and FIFO threads.

Table 2. FIFO performance

Throughput Wait times for FIFO

FIFO Normal RSTDDEV Worst Avg Median

MCS 1.3M 23.0M 0.03 29 24.4 25

Fissile 1.5M 43.9M 52.3 531294 40.7 15

Fissile+FIFO 2.7M 38.8M 0.33 41 11.9 12

5 Conclusion

Fissile locks are compact, NUMA-aware, preemption tolerant, and scalable, but
also provide excellent latency at low or no contention. The algorithm is straight-
forward and easily integrated into existing locking infrastructures. They are par-
ticularly helpful under contention with high arrival rates and short critical sec-
tions. Contended locking uses the CNA lock while uncontended operations use
the TS lock. Fissile locks deflect contention away from TS lock into the CNA
lock.

Bypass over the outer lock via the fast path is the key to Fissile. While the
slow path provides a higher quality NUMA-friendly admission schedule, it also
suffers higher latency arising from the more complex lock mechanism. The fast
path allows for low latency in the uncontended case, but also improves scalability
under contention by augmenting the slow path with an alternative if the slow
path lock overheads prove a bottleneck.

References

1. Go runtime : mutex implementation (2020). https://github.com/golang/go/blob/
master/src/sync/mutex.go

https://github.com/golang/go/blob/master/src/sync/mutex.go
https://github.com/golang/go/blob/master/src/sync/mutex.go

206 D. Dice and A. Kogan

2. Aksenov, V., Alistarh, D., Kuznetsov, P.: Brief announcement: performance pre-
diction for coarse-grained locking. In: Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing. PODC 2018 (2018). http://doi.acm.org/
10.1145/3212734.3212785

3. Anderson, T.E.: The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems (1990)

4. Antić, J., Chatzopoulos, G., Guerraoui, R., Trigonakis, V.: Locking made easy. In:
Proceedings of the 17th International Middleware Conference. Middleware 2016
(2016). http://doi.acm.org/10.1145/2988336.2988357

5. Boyd-Wickizer, S., Kaashoek, M.F., Morris, R., Zeldovich, N.: Non-scalable locks
are dangerous. Ottawa Linux Symposium (OLS) (2012). https://www.kernel.org/
doc/ols/2012/ols2012-zeldovich.pdf

6. Bueso, D.: Scalability techniques for practical synchronization primitives. Com-
mun. ACM (2014). http://doi.acm.org/10.1145/2687882

7. Chabbi, M., Fagan, M., Mellor-Crummey, J.: High performance locks for multi-level
numa systems. Association for Computing Machinery (2015). https://doi.org/10.
1145/2688500.2688503

8. Chabbi, M., Mellor-Crummey, J.: Contention-conscious, locality-preserving locks.
Association for Computing Machinery (2016). https://doi.org/10.1145/2851141.
2851166

9. Corbet, J.: MCS locks and qspinlocks, 11 March 2014. https://lwn.net/Articles/
590243. Accessed 12 Sept 2018

10. Craig, T.: Building fifo and priority-queueing spin locks from atomic swap (1993)
11. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know

about synchronization but were afraid to ask. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. SOSP 2013 (2013). http://doi.
acm.org/10.1145/2517349.2522714

12. Dice, D.: Malthusian locks. CoRR abs/1511.06035 (2015). http://arxiv.org/abs/
1511.06035

13. Dice, D., Kogan, A.: TWA - ticket locks augmented with a waiting array. CoRR
abs/1810.01573 (2018). http://arxiv.org/abs/1810.01573

14. Dice, D., Kogan, A.: Avoiding scalability collapse by restricting concurrency. In:
Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 363–376. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29400-7 26

15. Dice, D., Kogan, A.: Compact numa-aware locks. Association for Computing
Machinery (2019). https://doi.org/10.1145/3302424.3303984

16. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: A general technique for design-
ing numa locks. Association for Computing Machinery (2012). https://doi.org/10.
1145/2145816.2145848

17. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: A general technique for design-
ing numa locks. ACM Trans. Parallel Comput. (2015). http://doi.acm.org/10.
1145/2686884

18. Eyerman, S., Eeckhout, L.: Modeling critical sections in amdahl’s law and its impli-
cations for multicore design. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture. ISCA 2010 (2010). http://doi.acm.org/10.
1145/1815961.1816011

19. Guerraoui, R., Guiroux, H., Lachaize, R., Quéma, V., Trigonakis, V.: Lock-unlock:
Is that all? a pragmatic analysis of locking in software systems (2019). https://doi.
org/10.1145/3301501

http://doi.acm.org/10.1145/3212734.3212785
http://doi.acm.org/10.1145/3212734.3212785
http://doi.acm.org/10.1145/2988336.2988357
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
https://www.kernel.org/doc/ols/2012/ols2012-zeldovich.pdf
http://doi.acm.org/10.1145/2687882
https://doi.org/10.1145/2688500.2688503
https://doi.org/10.1145/2688500.2688503
https://doi.org/10.1145/2851141.2851166
https://doi.org/10.1145/2851141.2851166
https://lwn.net/Articles/590243
https://lwn.net/Articles/590243
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://arxiv.org/abs/1511.06035
http://arxiv.org/abs/1511.06035
http://arxiv.org/abs/1810.01573
https://doi.org/10.1007/978-3-030-29400-7_26
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/2145816.2145848
https://doi.org/10.1145/2145816.2145848
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/1815961.1816011
http://doi.acm.org/10.1145/1815961.1816011
https://doi.org/10.1145/3301501
https://doi.org/10.1145/3301501

Fissile Locks 207

20. Guiroux, H., Lachaize, R., Quéma, V.: Multicore locks: the case is not closed
yet. In: 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association (2016). https://www.usenix.org/conference/atc16/technical-sessions/
presentation/guiroux

21. Ha, P.H., Papatriantafilou, M., Tsigas, P.: Reactive spin-locks: a self-tuning app-
roach. In: 8th International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN 2005) (2005)

22. Jayanti, P., Jayanti, S., Jayanti, S.: Towards an ideal queue lock. In: Proceedings
of the 21st International Conference on Distributed Computing and Networking.
ICDCN 2020, Association for Computing Machinery (2020). https://doi.org/10.
1145/3369740.3369784

23. Kashyap, S., Calciu, I., Cheng, X., Min, C., Kim, T.: Scalable and practical locking
with shuffling. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. SOSP 2019, Association for Computing Machinery (2019). https://doi.
org/10.1145/3341301.3359629

24. Kashyap, S., Min, C., Kim, T.: Scalable numa-aware blocking synchronization
primitives. In: 2017 USENIX Annual Technical Conference (USENIX ATC 2017).
USENIX Association (2017). https://www.usenix.org/conference/atc17/technical-
sessions/presentation/kashyap

25. Lim, B.H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
In: Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS VI (1994). http://doi.
acm.org/10.1145/195473.195490

26. Long, W.: qspinlock: Introducing a 4-byte queue spinlock implementation. https://
lwn.net/Articles/561775, July 31, 2013 (2013). Accessed 19 Sept. 2018

27. Luchangco, V., Nussbaum, D., Shavit, N.: Hierarchical clh queue lock. In: Euro-Par
2006 Parallel Processing. Springer, Heidelberg (2006). https://doi.org/10.1007/
11823285 84

28. Auslander, M., Edelsohn, D., Wisniewski, O.K.B.R.: Enhancement to the mcs lock
for increased functionality and improved programmability - u.s. patent application
number 20030200457 (2003). https://patents.google.com/patent/US20030200457

29. Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent mul-
tiprocessors. In: Proceedings of 8th International Parallel Processing Symposium
(1994)

30. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (1991). http://doi.
acm.org/10.1145/103727.103729

31. Radović, Z., Hagersten, E.: Hierarchical Backoff Locks for Nonuniform Communi-
cation Architectures. In: International Symposium on High Performance Computer
Architecture - HPCA. IEEE Computer Society (2003). http://dl.acm.org/citation.
cfm?id=822080.822810

32. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT) (2015)

33. Scott, M.L.: Shared-Memory Synchronization. Morgan & Claypool Publishers
(2013)

34. Theil, H.: Economics and Information Theory. North-Holland (1967)
35. Verner, U., Mendelson, A., Schuster, A.: Extending amdahl’s law for multicores

with turbo boost. IEEE Computer Architecture Letters (2017). https://doi.org/
10.1109/LCA.2015.2512982

https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
https://doi.org/10.1145/3369740.3369784
https://doi.org/10.1145/3369740.3369784
https://doi.org/10.1145/3341301.3359629
https://doi.org/10.1145/3341301.3359629
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
http://doi.acm.org/10.1145/195473.195490
http://doi.acm.org/10.1145/195473.195490
https://lwn.net/Articles/561775
https://lwn.net/Articles/561775
https://doi.org/10.1007/11823285_84
https://doi.org/10.1007/11823285_84
https://patents.google.com/patent/US20030200457
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729
http://dl.acm.org/citation.cfm?id=822080.822810
http://dl.acm.org/citation.cfm?id=822080.822810
https://doi.org/10.1109/LCA.2015.2512982
https://doi.org/10.1109/LCA.2015.2512982

208 D. Dice and A. Kogan

36. Wikipedia Contributors: Coefficient of variation (2020). https://en.wikipedia.org/
wiki/Coefficient of variation

37. Wikipedia Contributors: Matthew effect (2020). https://en.wikipedia.org/wiki/
Matthew effect

38. Wikipedia Contributors: Theil index (2020). https://en.wikipedia.org/wiki/Theil
index

https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Matthew_effect
https://en.wikipedia.org/wiki/Matthew_effect
https://en.wikipedia.org/wiki/Theil_index
https://en.wikipedia.org/wiki/Theil_index

Verifying Safety of Parameterized
Heard-Of Algorithms

Zeinab Ganjei, Ahmed Rezine(B), Petru Eles, and Zebo Peng

Linköping University, Linköping, Sweden
{zeinab.ganjei,ahmed.rezine,petru.eles,zebo.peng}@liu.se

Abstract. We consider the problem of automatically checking safety
properties of fault-tolerant distributed algorithms. We express the con-
sidered class of distributed algorithms in terms of the Heard-Of Model
where arbitrary many processes proceed in infinite rounds in the presence
of failures such as message losses or message corruptions. We propose,
for the considered class, a sound but (in general) incomplete procedure
that is guaranteed to terminate even in the presence of unbounded num-
bers of processes. In addition, we report on preliminary experiments for
which either correctness is proved by our approach or a concrete trace
violating the considered safety property is automatically found.

1 Introduction

Fault-tolerant distributed algorithms are difficult to prove correct. Such algo-
rithms are meant to operate in the presence of faults ranging from process crashes
to message losses or corruption. We consider the parameterized case where arbi-
trarily many identical processes participate in running the distributed algorithm.
We adopt the popular Heard-Of model [3,4]. This model uniformly describes dis-
tributed algorithms in the presence of transmission-based failures whether static
or dynamic, permanent or transient. Algorithms proceed in rounds where, at
each round, each process sends a message to other processes, hears from some
of them, and updates its state. Hence, at each round, a process “hears” from a
set of other processes. Fault descriptions are captured by stating constraints on
the possible sets of processes and messages each process hears from (e.g. each
process hears from at least half the processes or at most a third of the sent
messages have been corrupted).

We consider the problem of automatically establishing the correctness of
safety properties for parameterized distributed algorithms expressed in the
Heard-Of model. The safety properties we consider concern checking state reach-
ability, i.e., reachability of configurations where a given number of processes are
in some forbidden combination of states. Observe that we do not check whether
the algorithms make progress. This would require us to account for communi-
cation predicates that ensure the processes eventually hear from enough other
processes. We need however to constrain, depending on the environment we want
to capture, that messages may be lost (benign crashes or transmission failures)
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 209–226, 2021.
https://doi.org/10.1007/978-3-030-67087-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_14

210 Z. Ganjei et al.

or altered (corruption failure). For consensus protocols, this is enough to cap-
ture all executions that violate agreement (two processes decide on different
values), validity (a value is decided although no process proposed it) or irrevo-
cability (a decided value is revoked). The verification problem is made difficult
by the parameterization in the number of processes and by the allowed faults.
Parameterization requires us to verify infinite families of algorithms, one for each
number of participating processes. The transmission model allows each process
to receive a subset of the sent messages (benign failures) in addition to a number
of altered messages (corrupted communication), making this information local
to the processes.

Related work. Abstractions for threshold-based fault-tolerant distributed sys-
tems were introduced in [11,12]. The work is extended to synchronous round-
based semantics in [17]. These works can handle interesting fault-tolerant algo-
rithms in presence of different faults such as Byzantine faults, but have the
limitation of requiring the user to encode the distributed system in terms of
threshold automata and propose interval-based over-approximations or bounded-
model checking based under-approximations for the parameterized verification
problem. The models we consider directly target al.gorithms expressed in the
Heard-Of model with a sound over-approximation and can account for message
losses (omission fault) and message alteration (corruption fault). The work in
[14] has the merit of proposing cutoffs for a syntactically restricted class of con-
sensus algorithms. The class is also expressed in the Heard-Of model. While we
do not provide such cutoffs, our work can afford to check correctness for richer
fragments that can more faithfully capture constructs such as “the number of
received messages with value v0 is at least two thirds the number of processes” as
opposed to “the number of received messages is at least two thirds the number
of processes, and all of them have value v0”. The approach in [14] can verify
Heard-Of algorithms such as Paxos that we cannot verify in our current app-
roach. Because in our current setting, we have only many-to-many transmissions,
while we need to account for one-to-many and many-to-one transmissions to be
able to capture those algorithms. However, they only consider benign faults for
the algorithms, but our approach can handle both benign and corruption faults.
To the best of our knowledge, we are the first ones to verify Heard-of algorithms
in presence of corruption faults.

Ongoing works [1,13] study automatizing deciding satisfiability of constraints
involving arbitrarily many processes and cardinality constraints over sets of
received messages with specific properties. Such constraints naturally arise when
verifying fault-tolerant distributed algorithms. For instance, [7,15] consider a rich
class of algorithms but require the user to supply such constraints in order to
automatically establish correctness. The work in [15] abstracts the quorum of
threads in the Paxos algorithm by introducing a new sort for quorum and adding
an axiom to capture the fact that the intersection of two quorums is non-empty.
While this abstraction is enough for verifying Paxos, it is too coarse for the algo-
rithms we consider, since the size of the intersection of quorums are essential
for proving the correctness of them. Other approaches [6,8–10] can tackle wider

Verifying Safety of Parameterized Heard-Of Algorithms 211

classes of systems but adopt an interactive approach to verification, while our
approach is fully automatic.

Contributions. We propose a sound and automatic approach to check safety
properties. More specifically:

1. We identify a subclass of fault-tolerant distributed algorithms in terms of the
Heard-Of model and describe the considered safety properties.

2. We introduce a symbolic representation where we capture cardinality con-
straints on multisets (formed by values of variables or heard-of sets) using
integer counters, hence avoiding the challenge of implementing quantifier elim-
ination for theories with cardinality constraints.

3. We show how to use the symbolic representation in a sound but (in general)
incomplete procedure for checking state reachability in the presence of lossy
or corrupt communication.

4. We show termination of the procedure even in the presence of arbitrarily
many processes.

5. We report on preliminary experiments with correct and buggy examples.

Outline. We describe the challenges of the verification problem using a motivat-
ing example in Sect. 2. We then introduce the class of distributed algorithms and
the properties we aim to verify in Sect. 3. We formalize the symbolic represen-
tations in Sect. 4 and use them in Sect. 5 in a sound (but in general incomplete)
verification algorithm for which we show termination. We describe preliminary
experiments in Sect. 6 and conclude in Sect. 7.

i n i t : x , res = −1
r mod 1 = 0 :

send x ;
1 . |HO| > 2n/3 ∧ |HO1| ≤ |HO0| ≤ 2n/3 → x:=0
2 . |HO| > 2n/3 ∧ |HO0| < |HO1| ≤ 2n/3 → x:=1
3 . |HO0| > 2n/3 → x , r e s :=0 ,0
4 . |HO1| > 2n/3 → x , r e s :=1 ,1
5 . |HO| ≤ 2n/3 → sk ip

Fig. 1. The One-Third-Rule consensus algorithm. An arbitrary number of processes
synchronize in rounds and try to choose the same value for res. HO is the multiset of
values received from other processes and |HOd| is the number of those messages equal
to d.

2 Motivating Example

The One-Third-Rule algorithm listed in Fig. 1 is a simple consensus protocol that
can tolerate benign transmission failures such as process crashes and message

212 Z. Ganjei et al.

losses. Each process p has two local variables xp and resp ranging over finite
domains. The values of each variable xp range over the set {0, 1}. They are used
to capture the candidate of process p in the consensus algorithm. The values of
each variable resp range over {−1, 0, 1} and are used to capture the decisions of
the process. The initial value −1 captures that the process did not decide yet.
The example is formalized in the Heard-Of model where n processes operate in
infinite rounds in lock-step. The goal of the protocol is for the processes to agree
on one of the initial values as a common output.

In each round, a process first sends its local candidate value xp to all other
processes and receives values sent by other processes. Then, it executes one of the
guarded commands that follow the send operation and whose guard is satisfied.
In the original HO model [4] it is assumed that process ids of those processes a
process p hears from is stored in the set HOp. We make a small modification and
assume that the values received from those processes by process p are stored in
a local multiset HOp called the heard-of multiset of p. At each round, there are as
many HOp multisets as there are processes. These are used to uniformly capture
different failures (e.g., delays, losses, crashes, corruption). For instance, if x is
the multiset obtained by collecting the values of all variables xp just sent by all
processes, and in case of benign transmission failures (e.g. process crashes or
message losses), each HOp will be smaller than x for each value, written HOp � x.
For a multiset m, we write |m| to mean the cardinality of m. For instance, |x| is
the number n of processes running the algorithm while |HOp| captures the total
number of messages received by process p (i.e. the total number of processes that
p heard from). Moreover, for any value d in the domain of the sent variables, we
write |HOdp| to mean the number of those messages that are equal to d.

In Fig. 1, a process p that receives more messages than two-thirds of the
total number of processes (i.e. |HOp| > 2n/3) will update the value of its local
candidate xp with the smallest most often received value (lines 1 to 4). Besides,
if among the received messages, more than two-thirds of the number of processes
have the same value (here |HO0p| > 2n/3 or |HO1p| > 2n/3), then both variables xp
and resp are updated to the said value (lines 3 and 4). The process is then said
to have decided on the value of resp. Observe that if a process does not receive
its candidate value xp from more than 2n/3 processes, then it will not decide on
it (lines 1 and 2). Furthermore, if a process has only heard from less than 2n/3
processes then it will not update its local variables (line 5).

Typical safety properties for such consensus protocols include:

– Agreement: whenever two processes have reached a decision, the values they
have decided on must be equal.

– Validity: if all processes propose the same initial value, then the processes
who have reached a decision must have decided on that initial value.

– Irrevocability: if a process has decided on a value, it does not revoke its
decision later.

Detecting violations of the above properties boils down to checking reachabil-
ity of sets of configurations for unbounded numbers of processes. However, the
correctness of the One-Third-Rule algorithm is independent of the number of

Verifying Safety of Parameterized Heard-Of Algorithms 213

processes. In fact, its correctness lies in the fact that: (1) in each round, HOp � x
for each process p, (2) only those processes can update their x who have heard
from more than two thirds of the total number of processes and (3) only those
can decide who have heard the same value from more than two thirds of the
processes.

truex

|HO0i| > 2n/3i
(xi = 0, resi = 0),
command 3

|HOj| > 2n/3 ∧ |HO0j| ≥ |HO1j|j (xj = 0, resj = 1),
command 1

|x0| > 2n/3x

|HOi| > 2n/3 ∧ |HO0i| ≥ |HO1i|i
(xi = 0, resi = −1),
command 1

|HOj| > 2n/3 ∧ |HO1j| > |HO0j|j (xj = 1, resj = 1),
command 2

|x0| > n/3x

..
.

|x0| > n/3x

round r

round r−1

...

Fig. 2. A run of the One-Third-Rule algorithm by two process groups i and j in
backward from configurations with processes having decided on different values of res.
The widths of the bars model the size of the corresponding multisets. Different colors
correspond to different rounds.

In order to capture unbounded numbers of processes, we use constraints that
group the processes based on the valuations of their local variables. Observe there
are finitely many such valuations. We then describe bad configurations using such
constraints. For instance, in order to check the agreement property for the One-
Third-Rule algorithm, we need to check reachability of all constraints capturing
all configurations where at least two groups of processes, namely i and j have
resi = 0 and resj = 1. Assume this constraint had been reached after r rounds.
It is not difficult to see that process groups i and j could not have executed the
guarded commands 3 and 4 during the same round r and assign 0 and 1 to resi

214 Z. Ganjei et al.

and resj respectively. This is because they would have had to satisfy both of the
guards |HO0i| > 2n/3 and |HO1j| > 2n/3. Combined with HOp � x for each process
p (since message loss is the only fault), we get |x0| > 2n/3 and |x1| > 2n/3.
This would give |x| > 4n/3, which contradicts the assumption that the number
of processes in the system is n. Thus, we should look for runs in which resi and
resj are set to 0 and 1 in separate rounds.

A possible run in backwards is shown in Fig. 2 in which each group of pro-
cesses in each round is represented by its valuation, its heard-of multiset and
the weakest predicate on its local variables that needs to be satisfied to make
the run possible. In this description, we do not account for corruption or dupli-
cation of messages and therefore assume heard-of multisets are smaller (because
of message loss) than the multiset of sent values x. Accounting for corruption
or duplication of messages is a matter of assuming other relations between x
and the heard-of multisets. A key to the correctness of the algorithm is the fact
that the fraction 2n/3 used in the guards ensures local heard-of multisets of
participating processes (i.e. not executing the skip command because they did
not receive enough messages) have large intersections (in fact larger than n/3
for any pair of such multisets).

We start the run without any assumption on x, therefore it satisfies true. If all
processes in group i and all those in group j had executed the commands 1 and 3
respectively during round r (note that each group could have also executed more
commands, and we might need to split groups), one of the possible predecessors
would be that the same process groups i and j existed with valuations resi =
−1 and resj = 0. Moreover, the predicate |x0| > 2n/3 needs to hold at the
beginning of round r. This is implied by the guards of the commands 1 and
3, |HOi| > 2n/3 ∧ |HO1i| ≤ |HO0i| ≤ 2n/3 and |HO0j| > 2n/3, as well as the
invariant HOp � x for each process p. We could unroll the loop once more,
assuming that in round r− 1 the two process groups had executed commands 1
and 2 respectively and assigned different values to their variables xi and xj (this
does not contradict |x0| > 2n/3). The guards of the corresponding commands
together with the invariant HOp � x for each process p entail that the predicate
|x0| > n/3 held at the beginning of the round r − 1. Further unrollings of the
loop in backward for any number of times will maintain |x0| > n/3. As a result,
firing command 4 in some previous iteration would have been impossible as it
requires |HO1| > 2n/3. This command is however needed to reach to the initial
state. A systematic exploration of similar constraints allows us to conclude the
impossibility of deciding on different values.

The work in [3] introduced algorithms in Heard-Of model where received
messages might be corrupted. One such algorithm is demonstrated in Fig. 3. We
can handle such algorithms and the analysis is similar to the case where we have
omission faults. The only difference is that the invariant in presence of corruption
faults is that no more than α messages received per round, per process and per
data value will be corrupted. Therefore, the invariant is that |HOdp| ≤ |xd| + α.

Our work proposes a sound but (in general) incomplete algorithm for checking
control state reachability for unbounded number of processes. The algorithm is

Verifying Safety of Parameterized Heard-Of Algorithms 215

i n i t : x , res = −1
r mod 1 = 0 :

send x ;
1 . |HO| > T ∧ |HO1| ≤ |HO0| ≤ E → x:=0
2 . |HO| > T ∧ |HO0| < |HO1| ≤ E → x:=1
3 . |HO0| > E → x , r e s :=0 ,0
4 . |HO1| > E → x , r e s :=1 ,1
5 . |HO| ≤ T → sk ip

Fig. 3. The AE,T consensus algorithm [3]. An arbitrary number of processes synchro-
nize in rounds and try to choose the same value for res. The messages might get lost or
corrupted. Per each round, process, and data value, there will be at most α corrupted
messages. T is the threshold on the number of received messages and E is enough
number of received messages with a certain value. According to [3], for correctness of
the algorithm, it is sufficient that T ≥ 2(n + 2α − E), E ≥ n

2
+ α and n > T ≥ E. We

check correctness by adding these predicates as invariants.

guaranteed to terminate and starts from a symbolic representation of all bad
configurations. It successively computes representations of over-approximations
of predecessor configurations.

3 Heard-Of Programs

To simplify the presentation, we use a unique domain for all local variables and
assume programs to proceed in infinite rounds where the state of each process
is captured by the local variables. Introducing specific data domains for each
variable or explicit local states in the transitions is straightforward. We use
valuations (i.e., mapping from the set of local variables of a process to its domain)
to capture the values of process variables. We define the syntax and semantics of
a language to capture a class of heard-of programs. A heard-of program prg =
(V, D, Init, Tr) involves:

– A set V of variables local to each process.
– A finite set D ⊂ Z of possible data values,
– An initial set of valuations Init sending local variables V to D,
– A set of transitions Tr.

The syntax of such programs is as follows.

prg ::= init tr1 . . . tr|Tr|
init ::= v | v := d

tr ::= (r mod |Tr| = e : send v; cmd1, . . . cmdK)
cmd ::=

(
guard, val1 → val2

)

guard ::= guard ∨ guard | guard ∧ guard | true | false | atom
atom ::= |HOdi | cmp |HOdj | | |HOd| cmp c.n | |HO| cmp c.n
cmp ::= > | < | ≥ | ≤

216 Z. Ganjei et al.

Each process starts by setting the initial values to its local variables. Then,
all processes execute the transitions in a lock-step manner. Each program
consists of a macro-round which is a sequence of |Tr| consecutive rounds (r
mod |Tr|) = 0, . . . , (r mod |Tr|) = |Tr| − 1. The program starts in round r = 0
and at each round r, all the processes will execute the transition designated with
(r mod |Tr|). r is incremented after each transition.

In each transition (r mod |Tr| = e : send v; cmd1, . . . cmdK), first, all pro-
cesses send the value of their local variable v. After send, there is an implicit
receive step in which the processes receive the values sent by others. Between
the send and receive of the messages, an adversarial environment can choose to
drop or alter messages. The received values are stored in a HO (heard-of) multiset
that is local to each process. The impact of the environment is captured by the
heard-of multiset.

After send and receive, each process p with heard-of multiset HOp executes
a guarded command cmdk =

(
guardk : val1k → val2k

)
where HOp |= guardk. A

guard mainly focuses on capturing cardinality of some HO multiset(s). This car-
dinality is in many cases compared to a fraction of the total number of processes,
i.e. c.n. In order to simplify the presentation, we consider each cmd to be a change
in the local valuation of a process . A skip command can easily be transformed
to this format by choosing identical values for the command. Introducing explicit
local states is simple but would not improve readability.

Configurations. Configurations of a heard-of program describe the round num-
ber, as well as the local state of the processes, i.e. their valuations and heard-of
multisets. More formally, a configuration of prg = (V, D, Init, Tr) is a tuple
(r, [p1, . . . , pa]) where:

– r is the round number.
– for all i in 0 ≤ i ≤ a, pi = (vali, HOi) is a process where:

• vali is a mapping V → D. In other words, the valuation vali maps each
local variable of the process to a value in the domain.

• HOi : D → N is a multiset of integer values.

Values of a configuration. For a configuration c = (r, [p1, . . . , pa]) and for any
variable v ∈ V we define valuesOf(c, v) to be a multiset containing all the local
values of v in all the processes. More formally, for all d ∈ D, valuesOf(c, v)(d) =
| {pi|pi = (vali, HOi) with vali(v) = d} |.
Example 1. For the program in Fig. 1, consider the following processes at round
r = 0.

– p1 = ((x1 = 1, r1 = −1), ∅)
– p2 = ((x2 = 1, r2 = −1), ∅)
– p3 = ((x3 = 0, r3 = −1), ∅)
– p4 = ((x4 = 1, r4 = −1), ∅)

The configuration c = (0, [p1, p2, p3, p4]) captures initial configuration. The
heard-of multisets of the processes are empty initially. The values of variable
x are captured by the multiset valuesOf(c, x) = [0, 1, 1, 1].

Verifying Safety of Parameterized Heard-Of Algorithms 217

Semantics. Given a program prg = (V, D, Init, Tr), the processes start exe-
cuting Tr from an initial configuration cinit =

(
rinit,

[
pinit
1 , . . . , pinit

a

])
where

rinit = 0, and for all 1 ≤ i ≤ a, pinit
i = (vali, ∅), and vali ∈ Init. Suppose

configurations c and c′ can be written (up to a renaming of the processes) as c =
(r, [(val1, HO1), . . . (vala, HOa)]), c′ = (r′, [(val′

1, HO
′
1), . . . (val

′
a, HO′

a)]), and tr =
(r mod |Tr| = e : send v; cmd1, . . . cmdK) with cmdk =

(
guardk, val1k → val2k

)

for each k : 1 ≤ k ≤ K. We write c
tr−→ c′ to mean that r′ = r + 1 and there

is a total function F : {1, . . . a} → {1, . . . K} where for each i : 1 ≤ i ≤ a,
vali = val1F(i), val

′
i = val2F(i) and HOi |= guardF(i). Note that the numbers of

processes in c and c′ are finite, arbitrary large and equal.

Example 2. Consider Example 1 and tr being the transition tr in Fig. 1. Pro-
cesses 1 to 4 can take guarded commands 2, 2, 5 and 4 respectively and result
in the configuration c′ = (1, [p′

1, p
′
2, p

′
3, p

′
4]) where:

– p′
1 = ((x1 = 1, r1 = −1), [1, 0, 1])

– p′
2 = ((x2 = 1, r2 = −1), [1, 1, 0])

– p′
3 = ((x3 = 0, r3 = −1), [0, 1])

– p′
4 = ((x4 = 1, r4 = 1), [1, 1, 1])

Here F = {(1, 2), (2, 2), (3, 5), (4, 4)} witnesses c
tr−→ c′.

4 Symbolic Representation

In this section, we formally define our symbolic representation and describe a
corresponding entailment relation. We assume a program prg = (V, D, Init, Tr).

Constraints. A constraint φ is a tuple (e, gl, {val1, . . . , valb}) that denotes a
possibly infinite set of configurations such that:

– An integer e in {0, . . . |Tr|−1} capturing the control location of the execution.
– A global condition gl in the form of a Presburger predicate with a free vari-

able n (for the number of processes) and a set of |V| × |D| free variables
#V =

{
#vd | v ∈ V and d ∈ D

}
, where each #vd accounts for the number of

occurrences of value d among variables v of all processes.
– A base formed by a set of valuations {val1, . . . valb}. The valuations are

similar to those used by the configurations and represent groups of processes
with the same valuations.

Each valuation in the base of a constraint corresponds to one or more pro-
cesses with that valuation in a denoted configuration. Besides, a constraint does
not explicitly represent conditions on heard-of multisets; instead, we maintain
a global condition gl which is a predicate on the number of occurrences of val-
ues in program variables of all processes (i.e.g.lobal state). The intuition is that
heard-of sets ultimately originate from the global state. Hence constraining their
values (to satisfy some guarded commands) is a matter of constraining the global

218 Z. Ganjei et al.

state and accounting for possible faults (see Sect. 5). For a predicate p that might
depend on a set of integer variables X = {x1, . . . , xq}, we write p(X) to clarify
that p might have a subset of X as free variables. To simplify the presentation,
we typically omit to mention that a predicate might have n (for the number of
processes) as a free variable. For instance, we write gl(#V) to clarify that gl
might have as free variables a subset of #V in addition to the variable n.

Denotations. For a constraint φ =
(
e, glφ,

{
valφ

1 , . . . , valφ
b

})
we write c |= φ

to mean φ denotes the configuration c = (r, (valc1, HO
c
1), . . . , (val

c
a, HOca)). Intu-

itively, φ should account for all local valuations in c (captured by a surjection
from {1, . . . a} to {1, . . . b}). Moreover, the predicate glφ must be compatible
with the multiset of all local valuations of the processes. More formally:

1. r mod |Tr| = e.
2. Replacing in the global condition gl each occurrence of #vd by the number

of occurrences of d in c (i.e., valuesOf(c, v)(d)) and each occurrence of n by
the number of processes in c (i.e., a) results in a valid formula.

3. There is a surjection S :: {1, . . . a} → {1, . . . b} such that for all 1 ≤ i ≤ a,
valci = valφ

S(i)

Observe that a constraint (e, gl, {val1, . . . , valb}) will have an empty deno-
tation if its base requires the presence of valuations forbidden by the global con-
dition, or if the global condition requires valuations forbidden by the base (since
we require a surjection). It is safe to systematically discard such constraints in
our analysis presented in Sect. 5.

Example 3. The configuration c′ in Example 2 is in the denotation of the con-
straint
φ′ = (1,#x1 > 2n/3, {(x1 = 1, r1 = −1), (x1 = 0, r2 = −1), (x3 = 1, r3 = 1)})
with S being {(1, 1), (2, 1), (3, 2), (4, 3)}.

Entailment. We write φ1 	 φ2 to mean φ1 =
(
e, gl1,

{
val11, . . . , val

1
b1

})
is

entailed by φ2 =
(
e, gl2,

{
val21, . . . , val

2
b2

})
. This will ensure that configurations

denoted by φ2 are also denoted by φ1. Intuitively, φ1 and φ2 must have the same
round number modulo |Tr|, and

– There is a bijection Y :: {1, . . . b2} → {1, . . . b1} with val2j = val1Y(j) for all
1 ≤ j ≤ b2.

– gl2 ⇒ gl1.

5 A Symbolic Verification Procedure

We use the constraints defined in Sect. 4 as a symbolic representation to denote
sets of configurations. We adopt a working-list procedure that checks reachability
of a 	-minimal set Φ of target constraints by a program prg = (V, D, Init, Tr).

Verifying Safety of Parameterized Heard-Of Algorithms 219

For a bad set B = {val1, . . . valx} of valuations, the set of target constraints ΦB

contains each (e, true, val1, . . . , valx) where e is a value in {0, . . . , |Tr|−1}. In
addition, it contains each constraint obtained from such a constraint by adding
some unique valuations that were not in its base (since we require surjections
for the denotations in Sect. 4).

The procedure computes a fixpoint using the entailment relation 	 and a
predecessor computation that results, for a constraint φ and a transition tr,
in a finite set pretr(φ). In fact, pretr(φ) is the set of constraints that capture
an over-approximation of all the configurations that might reach in one round a
configuration denoted by φ. Figure 4 captures this computations and uses several
sets of integer variables. The variables #V =

{
#vd | v ∈ V and d ∈ D

}
(resp.

#V′ =
{
#v′d | v ∈ V and d ∈ D

}
) are used to constrain values of process variables

in the successor constraint φ (resp. predecessor constraint φ′). The variables
#HOk =

{
#hodk | d ∈ D

}
are used to constrain values in the heard-of multisets

of processes taking a guarded command cmdk in tr. The remaining text in this
Section describes the over-approximation.

φ = (e, gl, {val1, . . . , valb})
tr = (r mod |Tr| = e : send v; cmd1, . . . cmdK)
1 ≤ k ≤ K =⇒ cmdk = guardk, val1k → val2k
I ⊆ {1, . . . K} × {1, . . . b} st. I|{1,...b} = {1, . . . b}

H :: {1, . . . |I|} → I is an enumeration of I
1 ≤ i ≤ |I| ∧ H(i) = (k, j) =⇒ vali = val1k ∧ val2k = valj

Γ = {γk | k : 1 ≤ k ≤ K} with
γk(#V) = ∃#HOk .ξ(guardk)(

#HOk) ∧ HAXk(#HOk , #V)

gl (#V) = Inv ∧
(k,)∈I

γk(#V) ∧ PrAbs[Γ] ∃#V. DAX(#V, #V) ∧ gl(#V)

Inv = (
d∈D

#v
d = n)

φ = (e − 1) mod |Tr|, gl #V #V , setOf(val1, . . . , val|I|)

φ ∈ pretr(φ)

Fig. 4. Predecessors computation for constraint φ and transition tr.

Choice of guarded commands and resulting bases. Intuitively, the set I corre-
sponds to combinations of processes in the successors (i.e., φ) and guarded com-
mands in the transition (i.e., tr). Each pair (k, j) ∈ I corresponds to a group
of processes with the same valuation val′

H−1((k,j)) in the predecessors (i.e., φ′)
that took the guarded command cmdk in the transition tr resulting in a valua-
tions valj in φ. Observe there are finitely many such combinations, and hence
finitely many such sets I. The definition of I ensures that the set {1, . . . b}
of process groups of φ is covered. In addition, two pairs (k1, j1) and (k2, j2)
may result in equal valuations val′

H−1((k1,j1))
and val′

H−1((k2,j2))
. We keep only

220 Z. Ganjei et al.

one representative in φ′ by making a set setOf(val′
1, . . . , val

′
|I|) of the multiset

[val′
1, . . . , val

′
|I|]

Constraints imposed by the guards. Given a guarded command cmdk, we use the
predicate ξ(guardk) to encode the fact that the heard-of multisets of predecessor
configurations denoted by φ′ satisfy the guard guardk of cmdk. For this, we use
an integer variable #hodk for each value d and index k : 1 ≤ k ≤ K to count the
occurrences of d in the heard-of multiset of the processes taking cmdk. We write
#HOk =

{
#hodk | d ∈ D

}
to mean the set of all such variables for all values in D.

For instance, guard3 is |HO0| > 2n/3 in Fig. 1 and is encoded with the predicate
(#ho03 > 2n/3). We also need to relate the constraints on the heard-of multisets
to the constraints on the variables values in the predecessor constraint φ′. Assume
φ′ denotes a configuration c′ resulting, via tr, in a configuration c denoted by
φ. Suppose tr sends values of variable v. In the case of benign failures (e.g.,
message losses), any heard-of multiset HOk of some process that took a guarded
command cmdk in tr needs to get its values from the multiset valuesOf(c′, v) of
values of v in c′. We therefore enforce HOk � valuesOf(c′, v). This is captured by
HAXk(#HOk ,#V′) =

∧

d∈D

0 ≤ #hodk ≤ #v′d. For each guarded command cmdk, the

predicate γk(#V′) = ∃#HOk .
(
ξ(guardk)(#HOk) ∧ HAXk(#HOk ,#V′)

)
captures the

strongest constraints imposed, in the predecessor processes, by the guard of cmdk

on values of the variable that was sent (here v). We explain later in this section
how we handle corrupt communication. These predicates are only dependent on
the chosen guarded commands and the sent variables. We collect them in a set
Γ = {γk | k : 1 ≤ k ≤ K}. Observe the set Γ is finite.

Constraints imposed by the commands. Each time a process takes a chosen
guarded command cmdk =

(
guardk, val1k → val2k

)
with (k, j) in I for some j,

it transforms its valuation from val1k to val2k. This affects the relation between
gl(#V) and gl′(#V′) as the number of occurrences of a variable with a given
value depends on the proportions of processes that take each guarded command.
We first illustrate how this relation can be captured exactly by introducing aux-
iliary variables to represent the number of processes that took each one of the
chosen guarded commands. Then we describe how we can over-approximate this
relation and avoid the introduction of the variables.

First, we introduce an integer variable δk, for each k ∈ {1, . . . ,K}, to capture
the number of processes in some configuration c′ denoted by φ′ that executed
the guarded command cmdk =

(
guardk, val1k → val2k

)
. If d1 = val1k(v) and

d2 = val2k(v), then each process taking the guarded command cmdk will decrease
the number of occurrences of d1 and increase the number of occurrences of d2.
More precisely, for each variable v, the following relation holds:

DAXe(
#
V, #V

′) =

⎛

⎜
⎜
⎝

∃ {δk | k ∈ {1, . . . , K}} . ∧ ∧

(k,)∈I

δk ≥ 1

∧ ∧
v ∈ V

d ∈ D

#v′d =
∑

d = val1k(v)
(k,) ∈ I

δk ∧ #vd =
∑

d = val2k(v)
(k,) ∈ I

δk

⎞

⎟
⎟
⎠

Verifying Safety of Parameterized Heard-Of Algorithms 221

The relation DAXe is expensive to compute. Instead, we over-approximate
it with DAX (see below) where we identify two cases in which we can relate
variables in #V and #V′ . For each variable v ∈ V, the first case (captured
with the predicate preservedI(v)) is true when each chosen guarded command(
guardk, val1k → val2k

)
with (k,) ∈ I preserves the variable v (i.e., val1k(v) =

val2k(v)). The second (captured with the predicate uniqueChangeI(v, d)) cor-
responds to the situation when the only allowed changes for variable v are to
some value d (i.e., for all k, k′ with (k,), (k′,) ∈ I, if val1k(v) �= val2k(v) and
val1k′(v) �= val2k′(v) then val2k(v) = val2k′(v) = d). The over-approximation DAX
of DAXe is defined as:

DAX(#V, #V
′) =

∧

v∈V

(
preservedI(v) =⇒ ∧

d∈D
#v′d = #vd

∧ ∧
d∈D

(
uniqueChangeI(v, d) =⇒ #v′d ≤ #vd

)
)

To achieve the computation of gl′(#V′), we account for the global condition of
the successor constraint (using gl(#V)) and deduce constraints on V′ via the rela-
tion DAX(#V,#V′). More precisely, we compute: π(#V′) = ∃#V. DAX(#V,#V′) ∧
gl(#V). In general, arbitrarily many different such predicates may be generated
in the fixpoint iteration. To help termination, we use the abstraction PrAbs[Γ](π)
of π with respect to the predicates Γ = {γk | k : 1 ≤ k ≤ K} obtained from all
the guards.

Example 4. Consider the configurations c, c′ and the constraint φ′ in the Exam-
ples 1, 2 and 3. We have shown c

tr−→ c′ using F and c′ |= φ′ using S. Consider
now the constraint φ = (0,#x1 > 2n/3, {(x1 = 1, r1 = −1), (x1 = 0, r2 = −1)}).
We define H = {(1, (2, 1)), (2, (5, 2)), (1, (4, 3))} to show φ′ ∈ pretr(φ). Moreover,
there is a surjection S′ = {(1, 1), (2, 1), (3, 2), (4, 1)} that witnesses c |= φ.

Corrupted communications. As in [3], corrupted communications or value faults
are related to the classical Byzantine Faults in which a portion of the received
messages are corrupted. Note that in the classical Byzantine setting, also the
state of a process can be corrupted, which is not the case in this model. All
processes follow the algorithm but may receive a number of corrupted messages
(whether accidental or malicious). We weaken this assumption so that in each
round, for each process and for each data value, no more than α (given as a
fraction of n) messages received by a process may have been corrupted. This
assumption is weaker than the one in [14]. We model this by enforcing the
following invariants. DAX remains unchanged because of the assumption that
states of processes are not corrupted. It is the relation between the heard-of
multisets and process variables that change: HAXk =

∧

d∈D

(0 ≤ #hodk ≤ #v′d + α).

The rest of the computation of predecessors remains unchanged.

Theorem 1. The proposed predecessor computation method introduced in Fig. 4
is a sound over-approximation for parameterized Heard-Of programs.

222 Z. Ganjei et al.

Proof. Sketch. Assume configurations c, c′ and constraint φ as described in
Fig. 5. The total function F witnesses c′ → c and surjection S witnesses c |= φ.
We show a constraint φ′ that denotes c′ is generated by the procedure. All
generated e′ capture r′ if c′ → c and c |= φ. Observe each valφ

j is mapped
to (via S) at least some valφ

i . By choosing I = {(F(i), S(i)) | i : 1 ≤ i ≤ a} we
ensure the existence of a surjection S′ that maps each valc

′
i to some valφ′

j′ . In
addition, the values valuesOf(c′, v), for each v ∈ V, resulted in heard-of mul-
tisets that satisfied the guarded commands

{
cmdF(i) | i : 1 ≤ i ≤ a

}
. Moreover,

valuesOf(c′, v) satisfies gl′ because of the following. Indeed, valuesOf(c, v) sat-
isfy gl and are related to valuesOf(c′, v) with DAXe and its over-approximations
DAX and its predicate abstraction with respect to some predicates. Finally, Inv
restricts valuesOf(c′, v) to possible values (e.g., sum of all occurrences per vari-
able should be n) or relevant values (e.g., enforcing invariants under which cor-
rectness is checked).

c : r , [pc1 . . . pci = valci , HOci . . . pca] c : (r, [pc1 . . . pci = (valci, HO
c
i) . . . pca])

φ : e, gl, val
φ
1 . . . valφ

j . . . valφ
bφ : e , gl , setOf(valφ

1 . . . valφ

j
. . . valφ

|I|)

F : {1, . . . a} → {1, . . . K}

guardF (i) : val1
F (i) → val2

F (i)

valci = val1
F (i), val2

F (i) = valci

S : {1 . . . a} → {1, . . . b}

I ⊆ {1, . . . K} × {1, . . . b}
I|{1,...b} = {1, . . . b}

H : {1, . . . |I|} → I

H(j) = (k, j)
guardk : val1k → val2k

val
φ
j

= val1k, val2k = val
φ
j

S ?

Fig. 5. Given c′ → c and c |= φ, soundness boils down to showing the existence of
φ′ ∈ pretr(φ) for which c′ |= φ′.

Theorem 2. The proposed procedure terminates.

Termination is obtained by the fact that at most a finite number of constraints
might be generated. To see this, observe that constraints consist of an integer
capturing control location, a predicate (the global condition), and a set of local
valuations of processes (the base). The number of control locations and that of
the local valuations of processes is finite. In addition, the number of combinations
of subsets of guarded commands is finite and the strengthening invariants do not
change.

6 Experimental Results

We report on experiments with our open-source prototype SyncV which is pub-
lically available online at https://gitlab.liu.se/live/syncv for the verification of a

https://gitlab.liu.se/live/syncv

Verifying Safety of Parameterized Heard-Of Algorithms 223

class of HO algorithms. The experiments were conducted on a 2.9 GHz processor
with 8 GB of memory. We conducted experiments on several variations of the
One-Third-Rule and AE,T algorithms. In fact, these variations correspond to
checking the correctness properties of agreement, validity, and irrevocability for
correct and buggy versions of the considered algorithms and for an unbounded
number of processes. For each property, a correct version and a buggy version
were tested. The buggy versions differ from the correct ones by the considered
guards in the commands. For verification of the AE,T algorithm, we strength-
ened our invariant Inv in Fig. 4 with the invariants represented in Fig. 3 that
according [3] are essential for correctness of the algorithm.

For all the correct versions, our tool reported that the program is safe and
for all the buggy ones, it presented a valid trace violating the considered prop-
erty. Our implemented procedure does not eagerly concretize local valuations of
processes. Instead, we concretize on demand. All benchmarks are available on
the tool homepage.

Checking different correctness properties. We discussed in depth checking the
agreement correctness property in Sects. 2 and 5. Checking the validity property
is similar in the sense that it also uses a finite set of forbidden valuations to
characterize the set of bad constraints. In order to check irrevocability, one needs
to see if a process can make a decision and revoke it later. In order to make such
checks, we take into account a history of the changes. We do that by augmenting
each process group in a constraint by a list of possible decisions as its history.
This list is empty by default. A bad constraint that violates irrevocability has at
least one process group with a minimum of two different values in its history.

7 Conclusion and Future Work

We have studied a subclass of fault-tolerant distributed algorithms in terms
of the Heard-Of model and proposed a symbolic representation using cardinal-
ity constraints on multisets to model sets of configurations generated during
the analysis of such programs. We have also introduced a sound procedure for
checking state reachability to check various correctness properties for consensus
programs such as agreement, validity, and irrevocability in the presence of lossy
or corrupt communications. We showed that the introduced procedure termi-
nates even for an unbounded number of processes. To the best of our knowledge,
this is the first fully-automatic approach to verify Heard-Of protocols in the
presence of corrupt communication. We reported on preliminary experiments
with correct and buggy variations of the protocols (Table 1).

224 Z. Ganjei et al.

Table 1. The result of checking safety properties for some HO protocols with SyncV.
For each algorithm, a correct and a buggy version were tested by the tool. The buggy
versions differ from the correct ones by the guards of their commands. For all the
correct versions our tool reported that the program is safe and for all the buggy ones,
it presented a valid trace violating the considered property.

Program Property Safe? Result Time(m)

simple agreement ✓ safe 2

validity ✓ safe 0

irrevocability ✓ safe 1
1
3
-rule agreement ✓ safe 19

✗ trace 0

validity ✓ safe 2

✗ trace 0

irrevocability ✓ safe 7

✗ trace 0

AE,T agreement ✓ safe 54

✗ trace 1

validity ✓ safe 5

✗ trace 0

irrevocability ✓ safe 21

✗ trace 0

Future Work. Future work can consider improving the scalability of the tool, and
also extending the presented technique to more general models and more sophis-
ticated faults such as Byzantine faults. Besides, the current technique assumes
symmetric processes in the sense that all of them execute the same operation
in each round. One can extend the model to non-symmetric processes as in the
Heard-Of examples having coordinators, for instance in CoordUniformVoting
and LastVoting algorithms in [4], or the Phase King and Phase Queen algo-
rithms introduced in [2] in which a King or Queen is distinguished in each
round, or the reliable broadcast algorithm in [16]. It will also be interesting to
combine the approach with abstract interpretation for loops to be able to capture
the distributed algorithms in which the number of iterations is crucial for the
correctness of the algorithm, for example, the FloodMin algorithm in [5]. More-
over, identification of conditions for completeness of the approach, automatic
refinement of the over-approximation and combination with richer theories are
interesting directions for future work.

Verifying Safety of Parameterized Heard-Of Algorithms 225

References

1. Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays (decidabil-
ity results and applications). Form. Methods Syst. Des. 51(3), 545–574 (2017).
https://doi.org/10.1007/s10703-017-0279-6

2. Berman, P., Garay, J.A., Perry, K.J.: Optimal early stopping in distributed con-
sensus. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 221–237.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56188-9 15

3. Biely, M., Widder, J., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A.: Tol-
erating corrupted communication. In: Proceedings of the Twenty-sixth Annual
ACM Symposium on Principles of Distributed Computing - PODC 2007. ACM
Press (2007). https://doi.org/10.1145/1281100.1281136

4. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/
10.1007/s00446-009-0084-6

5. Chaudhuri, S., Erlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agree-
ment. J. ACM (JACM) 47(5), 912–943 (2000)

6. Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in the heard-
of model. Archive of Formal Proofs (2012) https://www.isa-afp.org/entries/Heard
Of.shtml

7. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language
for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL
2016. ACM Press (2016). https://doi.org/10.1145/2837614.2837650

8. Gleissenthall, K.v., Bjørner, N., Rybalchenko, A.: Cardinalities and universal quan-
tifiers for verifying parameterized systems. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp.
599–613 (2016)

9. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet. In: Proceedings of the 25th Symposium on Operat-
ing Systems Principles - SOSP 2015. ACM Press (2015). https://doi.org/10.1145/
2815400.2815428

10. Jaskelioff, M., Merz, S.: Proving the correctness of disk paxos. Archive of Formal
Proofs (2005). https://www.isa-afp.org/entries/DiskPaxos.shtml

11. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: 2013 Formal
Methods in Computer-Aided Design. IEEE (2013). https://doi.org/10.1109/fmcad.
2013.6679411

12. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inform.Comput. 252, 95–
109 (2017). https://doi.org/10.1016/j.ic.2016.03.006

13. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005). https://doi.org/10.
1007/11532231 20

14. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 12

15. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable rea-
soning about distributed protocols. In: Proceedings of the ACM on Programming
Languages 1(OOPSLA), pp. 1–31 (2017). https://doi.org/10.1145/3140568

https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/3-540-56188-9_15
https://doi.org/10.1145/1281100.1281136
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://www.isa-afp.org/entries/Heard_Of.shtml
https://www.isa-afp.org/entries/Heard_Of.shtml
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://www.isa-afp.org/entries/DiskPaxos.shtml
https://doi.org/10.1109/fmcad.2013.6679411
https://doi.org/10.1109/fmcad.2013.6679411
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1145/3140568

226 Z. Ganjei et al.

16. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

17. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety of synchronous
fault-tolerant algorithms by bounded model checking. In: Vojnar, T., Zhang, L.
(eds.) TACAS 2019. LNCS, vol. 11428, pp. 357–374. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1 20

https://doi.org/10.1007/978-3-030-17465-1_20

Staleness and Local Progress
in Transactional Memory

Hagit Attiya1, Panagiota Fatourou2, Sandeep Hans3, and Eleni Kanellou4(B)

1 Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 ICS-FORTH and University of Crete, Heraklion, Greece
faturu@ics.forth.gr

3 IBM Research India, New Delhi, India
shans001@in.ibm.com

4 ICS-FORTH, Heraklion, Greece
kanellou@ics.forth.gr

Abstract. A key goal in the design of Transactional Memory (TM)
systems is ensuring liveness. Local progress is a liveness condition which
ensures that a process successfully completes every transaction it initi-
ates, if it continually re-invokes it each time it aborts. In order to facil-
itate this, several state-of-the-art TM systems keep multiple versions of
data items. However, this method can lead to high space-related over-
heads in the TM implementation. Therefore, it is desirable to strike a
balance between the progress that a TM can provide and its practical-
ity, while ensuring correctness. A consistency property that limits the
number of previous versions a TM may rely on, is k-staleness. It is a
condition derivative of snapshot isolation, in which a transaction is not
allowed to access more than k previous versions of a data item. This
facilitates implementations that can take advantage of multi-versioning,
while at the same time, contributing to the restriction of the space over-
head introduced by the TM.

In this paper, we prove that no TM can ensure both local progress
and k-staleness, if it is unaware of the transaction’s accesses and can only
keep a bounded number of versions for each data item.

Keywords: Transactional memory · Progress · Consistency ·
Impossibility

1 Introduction

Transactional memory (TM) [13] is an important programming paradigm, which
offers synchronization of processes by providing the abstraction of the transaction
to the programmer. A transaction contains several read and/or write accesses to
shared memory, determined by a piece of sequential code, which the transaction
encapsulates, in order to ensure that its execution is safe when it is concurrent
with other transactions. The data items accessed by a transaction form its data
c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 227–243, 2021.
https://doi.org/10.1007/978-3-030-67087-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_15

228 H. Attiya et al.

set. If the execution of the transaction does not violate consistency, then it
can terminate successfully (commit) and its writes to data items take effect
atomically. Otherwise, all the updates of the transaction are discarded and the
transaction aborts, i.e. it appears as if it had never taken place.

The possibility of aborting a transaction is an important feature that helps
ensure consistency. At the same time, however, it can hinder liveness given that
if a process finds itself in a situation where its transactions repeatedly aborts
(and possibly have to be restarted), it spends computation time and resources
without advancing its computational task.

Thus, it is desirable for a TM implementation to provide liveness guarantees
that avoid such scenarios. Local progress (LP) [5] is such a desirable property. A
TM implementation that ensures LP guarantees that even a transaction that is
aborted will have to be restarted and re-executed a finite number of times before
it finally commits. However, it was shown in [5] that LP cannot be achieved if
the TM implementation has to provide strict serializability [17], traditionally
implemented by database systems. This means that a TM implementation that
ensures the stronger consistency property of opacity [11] cannot guarantee LP.

Snapshot isolation (SI) [2] is a consistency property weaker than opacity and
strict serializability. While strict serializability requires that a single serialization
point ∗T be found for each committed transaction T , so that T appears as if it
had been atomically executed at ∗T , snapshot isolation allows two serialization
points, i.e. ∗T |r, a read serialization point, and ∗T |w, a write serialization point,
for each committed transaction T , so that T ’s reads on data items appear as if
they had atomically occurred at point ∗T |r, while its writes appear as if they had
atomically occurred at ∗T |w. We define a condition that is derivative of snapshot
isolation, called k-staleness (k-SL), where a read operation of some transaction
may read one of the k last values that the data item has had.

Multi-version TMs that keep an unbounded number of previous versions may
end up in implementations with high space complexity. Even more so, in prac-
tice, data items have shared representation, which results in even higher space
overheads in real-life implementations. k-SL restricts the number of previous
versions that a transaction may access in order to be consistent, i.e., in order to
make it possible to assign it serialization points. In practice, then, this can lead
to implementations that are more parsimonious in the use of space.

We extend the impossibility result of [5] to k-staleness, by showing that even
a TM implementation that provides only k-SL cannot guarantee LP. This result
concerns TM implementations where there is the underlying assumption that
transactions may be unaware of each others’ data sets and where a transac-
tion T may not execute a read or write to some data item on behalf of some
other transaction T ′. This means that in such TMs, one transaction does not
have access to the code executed by another transaction. We remark that this
assumption is kind of standard in TM computing (and is needed also for the
result of [3]).

To prove our results we present a comprehensive set of formal definitions,
some introducing new concepts and others formalizing existing ones that are

Staleness and Local Progress in Transactional Memory 229

Table 1. Properties of popular TM implementations.

STM Consistency Progress Version Other

DSTM [12] Opacity Obstruction free 1 –

TL2 [7] Opacity Minimal
progressiveness

1 Invisible reads

NoREC [6] Opacity Lock-Free 1 –

PermiSTM Opacity Wait-free (RO) 1 –

Pessimistic LE Opacity Wait-free (RO) 1 –

SI-STM [21] Snapshot
isolation

Obstruction free k No revalidation

SI-TM [15] Snapshot
isolation

Wait-free (RO) k –

often met only in an informal way and, thus, they are mostly understood intu-
itively. We consider this as one of the contributions of the paper and we believe
that Sect. 2 is interesting on its own.

For instance, the notion of data item versioning plays an important role in
some theoretical results about transactional memory [18,19] and in several TM
implementations [1,10,14,16,20,21]. These works only give informal descriptions
of the term or rely on the intuitive understanding by the reader. Occasionally, the
term is even used in order to refer to past values of a data item or to intermediate
values that are used for local bookkeeping by an implementation.

To provide a clear model for our results, we present a formal definition of
the concept of versions in TM, which reflects the way versioning is used in
some of the prior theoretical results. For example, the limitations of keeping
multiple versions for TM implementations are examined in [19]. The authors use
a design principle by which a new version of a t-object is produced by an update
transaction that has the t-object in its write set and commits, similar to our
concept of past committed transaction. Similarly, in [18], reads on t-objects are
considered to access values installed by transactions that have committed. Our
definition is also compatible with existing k-version implementations. Table 1
summarizes some well-known TM implementations, presenting their properties
according to the parameters we consider. Some of our definitions follow those
in [4,8].

The rest of the paper is organized as follows: Sect. 2 provides the model on
which we base our results, while Sect. 3 outlines the impossibility result. Finally,
Sect. 4 summarizes our result and discusses its implication and context.

2 Definitions

2.1 Basic TM Concepts

We assume a system of n asynchronous processes that communicate through a
shared memory. The shared memory is modeled as a collection of base objects,

230 H. Attiya et al.

provided by hardware, which can be accessed by executing primitives, such as
read, write, or CAS, on them.

A transactional memory (TM) supports the execution of pieces of sequential
code in a concurrent setting through the use of transactions. Transactions contain
read and write accesses to pieces of data, referred to as data items. Data items
may be accessed simultaneously by multiple processes in a concurrent setting. A
data item has a shared representation, also called t-object, out of base objects. A
transaction T may commit or abort. If it commits, its updates on t-objects take
effect, whereas if it aborts, its updates are discarded.

A TM implementation provides, for each process, the implementation of a
set of routines, also called t-operations, which are invoked in order to execute
transactions. Common such routines are listed in Table 2. BeginTx is called in
order to start the execution of a transaction and CommitTx is called in order to
attempt to commit a transaction. T-objects are accessed by calling t-operations
Read and Write. When a transaction initiates the execution of a t-operation,
we say that it invokes it, and a response is returned to the transaction when the
t-operation execution terminates. Invocations and responses are referred to as
actions.

Table 2. Invocations and possible responses of t-operations by a transaction T .

t-operation Invocation Valid response Description

BeginTx T.BeginTx T.ACK Initiates transaction T

CommitTx T.CommitTx T.committed
or T.aborted

Attempts to terminate
T successfully

Read T.Read(x) value v in
some domain
V or T.aborted

Reads the value of
t-object x

Write T.Write(x, v) T.ACK or
T.aborted

Writes value v to
t-object x

In the following, Read(x, v) denotes an instance of a Read t-operation exe-
cuted by some transaction. It accesses t-object x and receives response v. Fur-
thermore, Write(x, v) denotes an instance of a Write t-operation that writes v
to t-object x. We say that a transaction reads a data item when it invokes an
instance of Read on the t-object of the data item, and that it writes to a data
item when it invokes an instance of Write on the t-object of the data item. (In
such cases, we may abuse terminology and say that a transaction reads or writes
a t-object, respectively.) The read set of a transaction T , denoted rset(T), is the
set of data items that T reads, while its write set, denoted wset(T), is the set of
data items that T writes to. The union of read set and write set is the data set
of T .1

1 The definitions of read set, write set, and data set are formulated under the implicit
assumption that transactions only execute their own code and do not perform reads

Staleness and Local Progress in Transactional Memory 231

A history is a (possibly infinite) sequence of invocations and responses of
t-operations. For a history H, H|p denotes the subsequence of all those actions
pertaining to process p. Similarly, H|T denotes the subsequence of all those
actions pertaining to transaction T . We remark that any of those subsequences
may be empty. We denote by λ the empty sequence.

If H|T is not empty, then T is in H. We denote by txns(H) the set of all
transactions in H. Two histories H and H ′ are equivalent, denoted H ≡ H ′, if
txns(H) = txns(H ′) and for every transaction T ∈ txns(H) and every process p,
it holds that H|T = H ′|T and H|p = H ′|p.

A history H is well-formed if for every transaction T in txns(H), H|T
is an alternating sequence of invocations of t-operations and their valid
responses, starting with T.BeginTx, such that (i) no further invocation follows
a T.committed or T.aborted response in H|T , and (ii) given another transaction
T ′ ∈ txns(H) executed by the same process as T , either the last action of H|T
is T.committed or T.aborted and precedes the first action of H|T ′ in H or the
last action of H|T ′ is T ′.committed or T ′.aborted and precedes the first action of
H|T in H. We only consider well-formed histories.

T is committed in H, if H|T ends with T.committed. It is aborted in H, if H|T
ends with T.aborted. T is completed in H, if it is either committed or aborted in
H; otherwise, it is live. If H|T ends with an invocation of T.CommitTx, then T
is commit-pending in H. A history H is complete if all transactions in txns(H)
are completed. Let H|com be the projection of H on actions performed by the
committed transactions in H. A completion of a finite history H is a (well-
formed) complete history H ′ such that H ′ = HH ′′, where H ′′ is a sequence of
actions where any action is either T.committed or T.aborted, for every transaction
T that is commit-pending in H. The set of completions of H is denoted comp(H).

A history H imposes a partial order, called real-time order, on t-operations:
For two t-operations oi, oj in H, we say that oi precedes oj in H, denoted
oi ≺o

H oj , if the response of oi occurs before the invocation of oj in H. A history
H is operation-wise sequential if for every pair of t-operations oi, oj in H, either
oi ≺o

H oj or oj ≺o
H oi. A history H further imposes a partial (real-time) order on

transactions in it. For two transactions Ti, Tj ∈ txns(H), we say that Ti precedes
Tj in H, denoted Ti ≺T

H Tj , if Ti is complete in H and the last action of H|Ti

appears in H before the first action of H|Tj . A history H is sequential if for
every pair of transactions Ti, Tj ∈ txns(H), either Ti ≺T

H Tj or Tj ≺T
H Ti.

A Read(x, v) t-operation r executed by transaction T in a sequential history
S is legal if either (i) T contains a Write(x, v) t-operation w which precedes r;
or in case (i) does not hold, if (ii) txns(S) contains a committed transaction T ′,
which executes a Write(x, v) t-operation w′, and w′ is the last such t-operation
by a committed transaction that precedes T ; or in case neither (i) nor (ii) hold,
if (iii) v is the initial value of x. A transaction T in S is legal if all its Read
t-operations that do not receive T.aborted as a response, are legal in S. A complete
sequential history S is legal if every committed transaction T in S is legal in S.

or writes by executing code that pertains to other transactions or by other forms of
light-weight helping.

232 H. Attiya et al.

We define a configuration of the system as a vector that contains the state of
each process and the state of each base object. This vector describes the system
at some point in time. In an initial configuration all processes are in initial states
and all base objects hold initial values. A step by some process p consists of the
application of a primitive on a base object by p, or of the invocation or the
response of a t-operation by a transaction executed by p; the step may also
contain some local computation by p which cannot cause changes to the state of
the base objects but it may change local variables used by p.

An execution is a (finite or infinite) sequence of steps. We use αβ to denote
the execution α immediately followed by the execution β. An execution α may
also contain a stop(p) event, for each process p ∈ P , which indicates that, after
that point, process p is faulty (i.e. it does not take any further steps in α). Denote
by F (α) the set of faulty processes in α, i.e. for each process p ∈ F (α), there is
a stop(p) event in α.

An execution α of a TM implementation is feasible, starting from a configura-
tion C, if the sequence of steps performed by each process follows the algorithm
for that process (starting from its state in C) and, for each base object, the
responses to the primitives performed on the object are in accordance with its
specification (and the value stored in the object at configuration C). Let H(α)
be the subsequence of α consisting only of the invocations and responses of
t-operations in α. We refer to H(α) as the history of α.

2.2 TM Consistency

Commonly used consistency conditions for transactional memory include strict
serializability [17] and opacity [11]. Roughly speaking, some history H is strictly
serializable if it is possible to assign a linearization point between the invocation
and the response of each transaction in H|com and possibly of some of the
commit-pending transaction in H such that the sequential history resulting from
executing the transactions in the order defined by their linearization points, is
legal. Opacity is a consistency condition stronger than strict serializability, which
further restricts the responses of t-operations obtained by live transactions.

Assigning a single linearization point for each transaction T provides an
atomicity guarantee for all the accesses (reads and writes) to data items by T .
However, in order to avoid the performance overhead that is usually incurred to
ensure these guarantees, weaker consistency conditions are often employed. A
way of relaxing the strict requirements imposed by the aforementioned con-
ditions, is that of assigning two linearization points per transaction, one to
(a subset of its) Read t-operations and another to the rest of its t-operations.
Snapshot isolation [2] is a weaker consistency condition which employs this strat-
egy. Roughly speaking, the effect that the two linearization points per transac-
tion T have, is that of making T appear to be split into two subtransactions,
where one of the subtransactions contains the global Read t-operations that
T performs on data items (i.e. those t-operations that read data items which
are never written to by T), while the second subtransaction contains all Write
t-operations and all remaining Read t-operations performed by T . This practice

Staleness and Local Progress in Transactional Memory 233

is reminiscent of taking a “snapshot” of the values of the data items in T ’s read
set (that are not written by T) at some point in the beginning of the transac-
tion and of reading the data item values from that snapshot whenever necessary,
hence the name of the consistency condition. This use of two linearization points
allows for more flexibility, because when it comes to finding an equivalent legal
sequential history, the two subtransactions can be treated as separate entities
that do not have to be serialized together. Instead, they can be interleaved with
the linearization points of other transactions. This allows a wider collection of
histories to be considered correct under snapshot isolation. In the following, we
formalize the intuitive notion of treating one transaction as split into two sub-
transactions and use this formalism in order to provide a definition for snapshot
isolation.

Given a history H, a Read(x) t-operation r invoked by some transaction
T ∈ txns(H) is global, if T did not invoke a Write(x, v) before invoking r. Let
T |rg be the longest subsequence of H|T consisting only of global read invocations
and their corresponding responses. Let T |o be the subsequence of H|T consisting
of all Read and Write t-operations in H|T other than those in T |rg. Recall that
λ is the empty sequence. For each committed transaction T , let readTxg(T) and
other(T) be the following histories:

– if T |rg = λ then readTxg(T) = λ, otherwise readTxg(T) = T.BeginTx, T.ACK,
T |rg, T.CommitTx, T.committed.

– if T |o = λ then other(T) = λ, otherwise other(T) = T.BeginTx, T.ACK,
T |o, T.CommitTx, T.committed.

Definition 1. A history H satisfies snapshot isolation, if there exists a his-
tory H ′ ∈ comp(H), such that for every committed transaction T in H ′ it is
possible to insert a read point ∗T,r and a write point ∗T,w such that

(i) ∗T,r precedes ∗T,w,
(ii) both ∗T,r and ∗T,w are inserted after the first action of T in H ′ and before

the last action of T in H ′, and
(iii) if σH′ is the sequence defined by these points, in order, and S is the history

obtained by replacing each ∗T,r with readTxg(T) and each ∗T,w with other(T)
in σH′ , then S is legal.

Snapshot isolation is weaker than strict serializability, i.e. all histories that
are strictly serializable satisfy snapshot isolation as well. Definition 1 provides a
weaker form of snapshot isolation in comparison to standard previous definitions
provided in the literature [2,9,21]. This is so because, in addition to ensuring the
conditions of Definition 1, the definitions in [2,9,21] impose the extra constraint
that from any two concurrent transactions writing to the same data item, only
one can commit. Note also that Definition 1 does not impose any restriction on
the value returned by a Read t-operation on some data item by a transaction,
if the transaction has written to the data item before invoking this Read t-
operation.

Figure 1 shows a history H which satisfies snapshot isolation but not strict
serializability. H contains two transactions, T1 and T2, which each perform a

234 H. Attiya et al.

r1(x, 0) w1(x, 1)

r2(x, 0) w2(x, 1)

T1
commit

T2
commit

Fig. 1. An SI history which does not satisfy serializability.

Read and a Write t-operation on x. Both transactions read the value 0 for x
and subsequently, write the value 1 to x. In order for this history to be strictly
serializable, it should be possible to assign a single linearization point between
the invocation and the response of T1 and a single linearization point between
the invocation and the response of T2, so that an equivalent and legal sequential
history can be constructed based on the order of these linearization points. Since
the executions of T1 and T2 are overlapping, by assigning linearization points,
we end up either with equivalent sequential history S = T1T2 or with equivalent
sequential history S′ = T2T1. Notice, however, that neither of those histories is
legal, since for example, in S, the Read t-operation of T2, r2, returns the value
0 for x, although T1, which writes the value 1 to x, has committed before T2

in S. Conversely also for S′. Therefore, it isn’t possible, by assigning a single
linearization point to each transaction, to get an equivalent, legal sequential
history, and therefore H is not strictly serializable.

On the contrary, it is possible to insert read points ∗T1,r, ∗T2,r and write
points ∗T1,w, ∗T2,w, for example in the order ∗T1,r, ∗T2,r, ∗T1,w, ∗T2,w, so that, by
replacing ∗T1,r with readTxg(T1), ∗T2,r with readTxg(T2), ∗T1,w with other(T1),
and ∗T2,w with other(T2), then, the equivalent sequential history that results,
namely S = readTxg(T1)readTxg(T2)other(T1)other(T2), is legal, given that in
that case, both readTxg(T1) and readTxg(T2) contain a Read(x) t-operation
which in either case, legally returns the value 0 for x, since both those trans-
actions commit in S before the invocation of transactions other(T1)other(T2),
which are the ones containing Write(x, 1) t-operations, modifying the value
of x.

2.3 Progress Conditions

A pair 〈α, F 〉 of an execution α produced by a TM implementation I and a set
of processes F ⊂ P , is fair, if for each process p ∈ P \ F , the following holds:

– If α is finite, then p does not have a live transaction at the end of H(α) and
p’s last transaction in H(α) (if any) is not aborted,

– If α is infinite, then α contains either infinitely many steps by p or infinitely
many configurations in which p does not have a live transaction.

For each TM implementation I, let HF (I) = {〈H(α), F (α)〉|∀α produced by I
s.t. 〈α, F (α)〉 is fair}.

Local progress is a set LP of pairs s.t. for each pair 〈H,F 〉 ∈ LP, H is a
well-formed history and F ⊂ P is a set of processes for which the following hold:

Staleness and Local Progress in Transactional Memory 235

– If H is finite, then for each process p ∈ P \ F , p’s last transaction in H (if
any) is committed.

– If H is infinite, then for each process p ∈ P \ F , H contains either infinitely
many commit events for p or there are infinitely many prefixes of H such
that for each such prefix H ′ the last transaction (if any) executed by p in H ′

is committed (i.e. p does not have a live transaction at the end of H ′).

We say that a TM implementation I satisfies local progress (LP) if HF (I) ⊆
LP. Intuitively, local progress guarantees that the transactions of any process
not only terminate, but furthermore, that every non-faulty process eventually
receives a commit response for each transaction it initiates, independently of
the actions of the other processes in the system. This implies that, should a
process decide to restart an aborted transaction, then this transaction will not
indefinitely terminate by aborting.

3 Impossibility Result

In this section, we provide definitions regarding the staleness of values of data
items in TM and use those to formally define k-staleness. Then, we use this
definition in order to prove that it is not possible to come up with a TM system
that can ensure local progress and k-staleness while tolerating failures, i.e. the
existence of faulty processes.

3.1 Stale Values in TM

Consider an operation-wise sequential history H and a Read t-operation r on
data item x by transaction T in H. Let Tpw be a committed transaction which
writes x and its CommitTx t-operation cpw is such that cpw ≺o

H r. Then, we
say that Tpw is a past committed write transaction for r. We define the last
committed write transaction for r as the past committed write transaction Tlw

for r for which the following holds: if clw is the CommitTx t-operation of Tlw,
then there is no other past committed transaction T ′ for r such that, if c′ is the
commit t-operation of T ′, then clw ≺o

H c′.
Let Seqr be the sequence of all past committed write transactions of r,

defined by the order of their CommitTx t-operations. The last transaction in
this sequence is Tlw. Let Sk

r be the set that contains those transactions that are
determined by the k last transactions in Seqr, if |Seqr| > k, and the set that
contains all transactions in Seqr, otherwise. We refer to Sk

r as the set of the k
last committed transactions for r. Each of the values written for x during the
last Write performed for x by each of the transactions in Sk

r is referred to as a
previous value of x. We denote by V k

r the set of all these values. If |Sk
r | < k, let

V k
r contain also the initial value for x.

A Read(x) t-operation invoked by a transaction T in H is called global if T did
not invoke a Write for x before invoking this Read. An operation-wise sequential
history H is k-value if for every global Read(x, v) executed by a transaction T

236 H. Attiya et al.

in H, it holds that v ∈ V k
r . A TM algorithm is k-value if every operation-wise

sequential history that it produces is k-value. Notice that a TM implementation
is single-value if in each operation-wise sequential history H that it produces, for
every global Read(x, v) t-operation r, v is the value written by the last write for
x performed by the last committed write transaction for r; if such a transaction
does not exist, then v is the initial value of x.

Definition 2. An operation-wise sequential history H satisfies k-staleness, if it
satisfies snapshot isolation and it is additionally k-value.

A TM implementation satisfies k-staleness if every operation-wise sequential
history it produces satisfies k-staleness. We remark that k-staleness is a weak
property that does not provide any consistency guarantee for histories produced
by the implementation that are not operation-wise sequential. This makes our
impossibility result stronger.

3.2 Impossibility of k-staleness and Local Progress

In order to prove the following theorem, we construct a fair history based on
the use of a transaction T0 which reads two distinct data items x and y. We
construct the history so that the Read t-operations of T0 are interleaved with
Write t-operations to x and y, and argue that T0 can not commit.

C0 Ci−1 Ci
0 Ci

j−1 Ci
j Ci

k Ci
α1α2 . . . αi−1 αi

0

T0.r1

αi
j

Tj

αi
k+1

T0.r2

Fig. 2. Configurations in the proof of Theorem 1.

Theorem 1. There is no TM implementation I that ensures both k-staleness
and local progress and tolerates one process failure.

Proof. The proof is by contradiction. Consider a TM implementation that
ensures k-SL and LP, and assume that it tolerates one process failure. We will
construct a troublesome history H in which a transaction T0 never commits.
H will be constructed to be an infinite fair history in which process p0, which
executes T0, takes infinitely many steps. To construct H, we employ an instance
of the following transaction (which, as we prove, repeatedly aborts forever
in H):

– T0 = r1(x)r2(y), executed by p0, where x and y are two distinct data items.

We also employ an infinite number of instances of the following k transactions,
executed by a different process p1:

– for every j, 1 ≤ j ≤ k, Tj = wj,1(x, vi
j), wj,2(y, vi

j), executed by p1, where
for every integer i > 0, vi

j is a distinct value other than 0, used by the ith
instance of Tj .

Staleness and Local Progress in Transactional Memory 237

r1(x) r1(x)
T0

abort
T0

(a) Phase 0

wj,1(x, j) wj,2(y, j) wj,1(x, j) wj,2(y, j)
Tj

abort
Tj

commit

(b) Phase j

r2(y) r2(y)r1(x)
T0

abort
T0

abort

(c) Phase k + 1

Fig. 3. An illustration of the phases performed in the proof of Theorem 1

For simplicity, we have omitted the invocations of BeginTx and CommitTx when
describing transactions T0, . . . , Tk above.

Let the initial values of x and y be 0. An adversary constructs history H as
described below:

Phase 0: Process p0 starts executing solo from the initial configuration to per-
form transaction T0 and invokes r1 on x. As long as r1 returns T0.aborted,
phase 0 is repeated until r1 returns a value (we later prove that this indeed
occurs). Then, Phase 1 starts.

Phases j = 1 to k: These phases are constructed inductively on j as follows.
Fix j, 1 ≤ j ≤ k, and assume that phases 1, . . . , j − 1 have been constructed.
Let Cj−1 be the configuration at the end of phase j − 1. Phase j starts from
Cj−1. In phase j, process p1 does the following: It starts executing transaction
Tj . As long as the execution of Tj completes with Tj .aborted, p1 restarts the
execution of Tj from the resulting configuration. If Tj commits, Phase j ends.
We later prove that Tj must indeed eventually commit, and we denote by Cj

the resulting configuration.
Phase k +1: Process p0 resumes executing solo from Ck to continue performing

transaction T0 and invokes r2 on y. As long as r2 returns T0.aborted, the
adversary repeats all phases from the resulting configuration, starting from
phase 0. We later prove that r2 must always return T0.aborted. Therefore, the
result is an infinite, fair history H. This history violates local progress since
T0 never commits.

Figure 3 illustrates the phases described above. Figure 4 illustrates the adver-
sary’s strategy for the case k = 1, namely, for a single-version TM.

The next claim shows that the adversary can indeed follow the strategy
described above and that the resulting history has the required properties. We
denote by C0 the initial configuration.

Claim 1. For each integer i > 0, the TM implementation I has a feasible exe-
cution αi, starting from configuration Ci−1, such that αi = αi

0α
i
1 . . . αi

kα
i
k+1,

where:

238 H. Attiya et al.

Start

BeginTx(T0)

r1(x, 0)

BeginTx(T1)

w2,1(x, 1)

w2,2(y, 1)

CommitTx1

r2(y, 1)

CommitTx0

Stop

commit

abort

abort

abort

abort

commit

abort

abort

Fig. 4. Flowchart of the adversary’s strategy for k = 1.

– αi
0 is a solo execution by p0,

– αi
j is a solo execution by p1, for 1 ≤ j ≤ k,

– αi
k+1 is a solo execution by p0,

so that:

1. αi
0 is a finite execution in which p0, starting from Ci−1, repeatedly executes

T0 until r1 returns a value other than T0.aborted; let Ci
0 be the resulting con-

figuration.
2. αi

j, ∀j, 1 ≤ j ≤ k, is a finite execution starting from Ci
j−1, in which Tj writes

value vi
j to x and y and commits; let Ci

j be the resulting configuration.
3. αi

k+1 is a finite execution by p0 starting from configuration Ci
k such that T0

is aborted in αi
k+1; let Ci be the resulting configuration.

Proof. The proof is by induction on i. Fix any i > 0 and assume that we have con-
structed α1, . . . , αi−1; let Ci−1 be the configuration we reach when α1, . . . , αi−1

Staleness and Local Progress in Transactional Memory 239

is applied from C0. We prove that the claim holds for i. Figure 2 shows the
configurations.

We first show (1), i.e. that there is a feasible execution αi
0, starting from Ci−1

with the required properties.
Notice that no transaction is live at C0. This and the induction hypothe-

sis imply that no transaction is live at Ci−1. So, if process p0 starts executing
solo from configuration Ci−1, it (re-)initiates transaction T0 and invokes r1 on
x. Assume, by the way of contradiction, that either, repeatedly forever, r1 ter-
minates in a T0.aborted event and p0 re-initiates T0 and re-invokes r1, or that
one of these invocations of r1 never terminates. Let γi

0 be the infinite solo exe-
cution by p0, starting from Ci−1, in which this occurs. Consider the execution
δi0 = α1 . . . αi−1γi

0. Then 〈δi0, ∅〉 is fair. This is so because δi0 is infinite and
the induction hypothesis implies that the following hold: (1) there are infinitely
many configurations in δi0 (namely, all configurations in γi

0) in which p1 does not
have a live or aborted last transaction, and (2) p0 takes an infinite number of
steps in δi0. However, 〈H(δi0), ∅〉 ∈ LP. We remark that p0 never commits the
transaction it executes in δi0. To prove that 〈H(δi0), ∅〉 ∈ LP, we consider the
following two cases.

1. H(δi0) is finite. Notice that this holds only if one of the invocations of r1 never
terminates. Then p0, which is non-faulty, has a live transaction at the end of
H(δi0).

2. H(δi0) is infinite. Notice that this holds if r1 repeatedly forever returns
T0.aborted. Then, for p0, it neither contains infinitely many commit events,
nor are there infinitely many prefixes of H(δi0), in which the last transaction
executed by p0 in the prefix, commits.

We now use similar arguments to prove point (2) of Claim 1, i.e. that for
each j, 1 ≤ j ≤ k, there exists a finite execution αi

j starting from Ci
j−1 such that

αi
j is a solo execution by p1 resulting in configuration Ci

j, in which Tj eventually
commits, given that p1 re-executes Tj each time it aborts.

Let f , 1 ≤ f ≤ k, be the first index for which the claim does not hold.
Let γi

f be the infinite solo execution by p1, starting from Ci
f−1, in which either

some t-operation invoked by Tf never terminates, or repeatedly forever, some
t-operation executed by Tf aborts, and Tf is re-initialized. Consider the exe-
cution δif = α1 . . . αi−1αi

0 stopp0
αi
1 . . . αi

f−1γ
i
f . Then, 〈δif , {p0}〉 is fair. This

is because δif is infinite and the following holds: (1) there are infinitely many
configurations in δif (namely, all configurations in γi

f) in which p1 does not have
a live or aborted last transaction, and (2) p1 takes an infinite number of steps in
δif . However, 〈H(δif), {p0}〉 ∈ LP. To prove this, we consider the following two
cases.

1. H(δif) is finite. Then p1, which is non-faulty, has a live transaction at the end
of H(δif).

2. H(δif) is infinite. Then, for p1, it neither contains infinitely many commit
events, nor are there infinitely many prefixes of H(δif), in which the last
transaction executed by p1 in the prefix, commits.

240 H. Attiya et al.

This contradicts the fact that I ensures local progress. Therefore, it holds that
for each j, 1 ≤ j ≤ k, there exists a finite execution αi

j starting from Ci
j−1

such that αi
j is a solo execution by p1 resulting in configuration Ci

j , in which Tj

eventually commits, given that p1 re-executes Tj each time it aborts. Moreover
αi
0 . . . αi

k is a feasible execution starting from Ci−1.
We finally show that point (3) of Claim 1 holds, i.e. that there is a feasible

execution αi
k+1 by p0 starting from configuration Ci

k such that T0 is aborted in
αi
k+1. Starting from Ck, we let process p0 execute solo to continue its execution

with the invocation of r2. Let αi
k+1 be the solo execution by p0, starting from

Ci
k, until r2 completes; if this does not happen, let αi

k+1 be the infinite solo
execution by p0 starting from Ci

k. Let δik+1 = α1 . . . αi−1αi
0 . . . αi

kα
i
k+1.

We prove that if r2 returns in δik+1, then it returns T0.aborted. Assume, by
the way of contradiction, that r2 returns a value (and not T0.aborted) in δik+1. By
point (2) of Claim 1 (proved above), each of the transactions T1, . . . , Tk executed
in δik+1 eventually commits. This in turn means that each Tj , 1 ≤ j ≤ k, writes
value vi

j to both t-objects x and y. Since I is a k-version TM implementation,
it follows that r2 returns one of the last k written values for y, i.e. a value vi

j ,
j ∈ {1, 2, . . . , k}. However, neither of those values for t-object y is consistent
with the value returned by r1 in αi

0 which must be one of the k versions of x
at configuration Ci−1. This contradicts the assumption that I satisfies snapshot
isolation. Therefore, if r2 returns, it returns T0.aborted.

We finally prove that αi
k+1 is finite. Assume, by way of contradiction, that

αi
k+1 is infinite. Then, 〈δik+1, ∅〉 is fair. This is so because δik+1 is infinite and

the following holds: (1) there are infinitely many configurations in δik+1 (namely,
all configurations in αi

k+1) in which p1 does not have a live or aborted last
transaction, and (2) p0 takes an infinite number of steps in δik+1. However,
〈H(δi), ∅〉 ∈ LP. This is so because H(δik+1) is finite, and p0, which is non-
faulty, has a live transaction at the end of H(δik+1). This contradicts the fact
that I ensures local progress. Therefore, it holds that αi

k+1 is a finite execution
by p0 starting from configuration Ci

k in which T0 is aborted. Denote by Ci the
resulting configuration. Notice that execution αi = αi

0 . . . αi
kα

i
k+1 is feasible from

Ci−1. ��
Notice that execution αi

0 corresponds to an execution of Phase 0. Since I
satisfies snapshot isolation, the value returned by r1 in αi

0 must be 0, i.e. the
initial value for x. After Phase 0, the adversary moves to Phase 1. Notice that,
for each j, 1 ≤ j ≤ k, execution αi

j corresponds to an execution of Phase j. In
Phase j, Tj commits. After Tk commits, the adversary moves to Phase k + 1.
Execution αi

k+1 corresponds to an execution of Phase k +1. Claim 1 shows that
each time the adversary executes phases 0, . . . , k + 1, the resulting execution is
finite.

The next claim shows that execution α = α0α1α2 . . . is a feasible fair execu-
tion of I which violates local progress.

Claim 2. Let α = α0α1α2 Then, the following hold:

1. α is a feasible infinite execution starting from C0;

Staleness and Local Progress in Transactional Memory 241

2. the pair 〈α, ∅〉 is fair
3. 〈H(α), ∅〉 ∈ LP.

Proof. Lemma 1 implies that, for each i > 0, αi is a feasible execution starting
from Ci−1 in which T0 is aborted. Therefore, α is a feasible infinite execution.
Moreover, 〈α, ∅〉 is fair. This is so because each process takes infinite steps in
α. Since all t-operation invocations in α receive a response, H(α) is infinite
as well. However, 〈H(α), ∅〉 ∈ LP. This is so since neither does H(α) contain
infinite many commit responses for process p0 (specifically, transaction T0 that
is repeatedly invoked by p0 always completes by aborting in α), nor does H(α)
contain infinitely many prefixes in which the last transaction executed by p0 is
committed. This contradicts the fact that I ensures local progress. ��

Theorem 1 is an immediate consequence of Claims 1 and 2. ��

4 Discussion

We have studied the progress that can be provided by a TM implementation
that ensures k-staleness, a condition derivative of snapshot isolation, but where
processes can crash, i.e., unexpectedly stop executing in between t-operations.
Specifically, we have studied whether such a TM implementation can guarantee
local progress for transactions. We provide a definition of local progress based
on fair executions, which avoids the need to study other types of process mal-
functions, such as the so-called parasitic processes. Parasitic processes have not
suffered crash failures but still do not attempt to commit the transactions that
they invoke, continuously invoking Read or Write t-operations instead [5].

Our impossibility result could possibly be extended to other, even weaker
consistency conditions, for example, adaptive consistency [3], because most con-
sistency conditions require that each transaction obtains a consistent view of its
read set. In this case, and assuming that a system is k-version, an adversary can
always come up with a troublesome strategy that executes more than k update
transactions between two reads of some read-only transaction.

It is interesting to explore the use of stronger primitives, such as
m-assignment, an operation that atomically writes values to m different base
objects, and other objects, such as snapshots, for implementing stronger con-
sistency conditions, such as serializability, in conjunction with local progress.
Alternatively, the impossibility might be sidestepped for weaker consistency con-
ditions also, by using other assumptions and primitives, which might be less
complex.

Acknowledgment. This work has been supported by the European Commission
under the 7th Framework Program through the TransForm (FP7-MC-ITN-238639)
project. It has further been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and Inno-
vation, under the call RESEARCH – CREATE – INNOVATE (project code:T1EDK-
02857)

242 H. Attiya et al.

References

1. Attiya, H., Hillel, E.: A single-version STM that is multi-versioned permissive.
Theory Comput. Syst. 51(4), 425–446 (2012)

2. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: SIGMOD (1995)

3. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The PCL theorem: trans-
actions cannot be parallel, consistent and live. In: SPAA (2014)

4. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The PCL theorem: trans-
actions cannot be parallel, consistent, and live. J. ACM 66(1), 2:1–2:66 (2019).
https://doi.org/10.1145/3266141

5. Bushkov, V., Guerraoui, R., Kapalka, M.: On the liveness of transactional memory.
In: PODC (2012)

6. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining STM by abolishing
ownership records. In: PPoPP (2010)

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC (2006)
8. Dziuma, D., Fatourou, P., Kanellou, E.: Consistency for transactional memory

computing. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Founda-
tions, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 3–31. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14720-8 1

9. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005). https://
doi.org/10.1145/1071610.1071615

10. Fernandes, S.M., Cachopo, J.a.: Lock-free and scalable multi-version software
transactional memory. In: PPoPP (2011)

11. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP (2008)

12. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC (2003)

13. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

14. Kumar, P., Peri, S., Vidyasankar, K.: A timestamp based multi-version STM algo-
rithm. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 212–226. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-45249-9 14

15. Litz, H., Cheriton, D.R., Firoozshahian, A., Azizi, O., Stevenson, J.P.: SI-TM:
reducing transactional memory abort rates through snapshot isolation. In: ASP-
LOS (2014)

16. Lu, L., Scott, M.L.: Generic multiversion STM. In: Afek, Y. (ed.) DISC 2013.
LNCS, vol. 8205, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41527-2 10

17. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

18. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: selective multi-
versioning STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 9

https://doi.org/10.1145/3266141
https://doi.org/10.1007/978-3-319-14720-8_1
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-24100-0_9

Staleness and Local Progress in Transactional Memory 243

19. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC (2010)

20. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: DISC (2006)

21. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional
memory. In: TRANSACT (2006)

Generic Framework for Optimization of
Local Dissemination in Wireless Networks

Dariusz R. Kowalski1 , Miguel A. Mosteiro2(B) , and Krutika Wadhwa2

1 School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
dkowalski@augusta.edu

2 Computer Science Department, Pace University, New York, NY, USA
{mmosteiro,kw62027n}@pace.edu

Abstract. We present a generic framework to compute transmission
schedules for a comprehensive set of well-known local dissemination prob-
lems in Wireless Networks. In our framework, we formulate the com-
munication restrictions to overcome while solving those problems as a
mathematical optimization program, where the objective function is to
minimize the transmissions schedule length. The program is solved by
standard methods which may yield partial solutions. So, the method is
iterated until the solution is complete. The schedules obtained achieve
the desired dissemination under the general affectance model of interfer-
ence. We prove the correctness of our model and we evaluate its efficiency
through simulations.

1 Introduction

The algorithmic problem of disseminating information in ad-hoc wireless com-
munication networks (for instance, embedded in the Internet of Things) has
been well studied. Depending on the field of application, challenges such as
communication-link interference or network-node limitations yield different mod-
els, but always the desired dissemination is an instance of the following general
problem. Some nodes are the source of one or many data packets, and the goal
is to deliver those packets to some destination nodes, possibly through multiple
hops. The specific meaning of some defines the multiple versions of dissemina-
tion. Yet, to the best of our knowledge, the various versions of dissemination
have been mostly studied independently until now.

Given that local dissemination is the atomic part of any network-wide com-
munication task, in this work, we focus on different variants of the problem
of passing information to nodes that are within reach of the sources of such
information in one hop. Even in the local context, depending on whether it is
enough to receive from (resp. send to) one or more neighboring nodes, applica-
tion requirements yield different types of dissemination. Moreover, transmission

This work was partially supported by the National Science Center Poland (NCN) grant
2017/25/B/ST6/02553; the UK Royal Society International Exchanges 2017 Round 3
Grant #170293; and Pace University SRC Grant and Kenan Fund.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 244–260, 2021.
https://doi.org/10.1007/978-3-030-67087-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_16&domain=pdf
http://orcid.org/0000-0002-1316-7788
http://orcid.org/0000-0001-5842-6256
https://doi.org/10.1007/978-3-030-67087-0_16

Optimization of Local Dissemination in Wireless Networks 245

to all neighboring nodes may be required to happen simultaneously, or may be
enough to do it along multiple rounds of communication. Some of these local
problems are known in the literature as Local-broadcast [10] (transmit to all
neighbors in one slot), Wake-up [6,8] (receive from at least one neighbor), and
Link-scheduling [12,13] (transmit through an input set of links). We define for-
mally all the local dissemination problems studied in Sect. 2.

Motivated by current data-link layer technologies, we focus on settings with
one task per node, which restricts Link-scheduling to one instance of each orig-
inator node in the input set of links1.

We adopt the notation used in the Link-scheduling literature for our node-
centered tasks. The set of nodes such that the local dissemination task needs
to be solved for each of them is called the set of requests. Once the task is
completed for a given node u, we say that u has been realized , or pending
otherwise. Our framework is generic also with respect to the set of requests.
That is, our methods can be applied to solve the dissemination problems on sets
of requests that are proper subsets of the network nodes. We notice that this
is not a simple reduction of the problem to a smaller subgraph. While solving
for a subset, all the other nodes still participate (and produce interference). The
definitions in Sect. 2 reflect this generalization.

We do not assume any underlying communication infrastructure. That is,
transmitters (i.e. source nodes) attempt to deliver a message (i.e. the infor-
mation to deliver) by radio broadcast but, if two or more nodes transmit at the
same time, mutual interference may prevent the receivers from getting the mes-
sage. To take into account this phenomenon, we study local dissemination under
a general model of interference called affectance . As in [15,16] we parameterize
affectance with a real value 0 ď a(u, (v, w)) ď 1 that represents the affectance
of each transmitter u on each link (v, w).

Affectance is a general model of interference in the sense that comprises
other particular models studied before (cf. [16]). Moreover, previous models
do not accurately represent the physical constraints in real-world deployments.
For instance, in the Radio Network model [2] interference from non-neighboring
nodes is neglected. Signal to Inteference-plus-Noise Ratio (SINR) [5,19] is a sim-
plified model because other constraints, such as obstacles, are not taken into
account. Yet, should the application require the use of Radio Network or SINR
models, a simple instantiation of the affectance matrix allows the application of
our generic framework, as we show below.

Customarily, we assume that time is slotted and we call the sequence of
transmit/not-transmit states of the nodes a transmissions schedule .

Related Work. Before [15,16], the generalized affectance model was introduced
and used only in the context of one-hop communication, more specifically, to

1 If a Link-scheduling input contains multiple instances of the same originating node,
representing different links/packets outgoing from that node, we can simply create
virtual copies of the node. We keep the assumption of different link originators for
the easy of presentation of the generic framework.

246 D. R. Kowalski et al.

link scheduling by Kesselheim [12,13]. He also showed how to use it for dynamic
link scheduling in batches. This model was inspired by the affectance parameter
introduced in the more restricted SINR setting [5]. They give a characteristic of a
set of links, based on affectance, that influence the time of successful scheduling
these links under the SINR model.

We note that interference measures for link scheduling cannot immediately
be applied to local broadcast or wake up. Intuitively, the reason is that link
scheduling is a link-oriented task whereas local broadcast and wake up are node-
oriented. For instance, specific classes of power assignments (e.g. linear) are not
well defined when a node has to transmit through many links simultaneously.
So, later on, the interference characteristic was generalized in [15,16], called the
maximum average tree-layer affectance, to be applicable to multi-hop communi-
cation tasks such as broadcast, together with another characteristic, called the
maximum path affectance.

The Wake Up, Local Broadcast, Link Scheduling, and other local dissemina-
tion problems have been thoroughly studied under various models [6,8,10,12,13].
In the SINR model, single-hop instances of broadcast in the ad-hoc setting were
studied by Jurdzinski et al. [7,9] and Daum et al. [3], who gave several determin-
istic and randomized algorithms working in time proportional to the diameter
multiplied by a polylogarithmic factor of some model parameters. To the best of
our knowledge, ours is the first formulation for these and other problems under
the affectance model of interference.

Our Results and Approach. The main contribution of this work is the design
of a generic framework to compute transmission schedules for a comprehensive
set of local dissemination problems.

We start by formulating the communication restrictions to overcome in solv-
ing each of those problems in one mathematical optimization program, where the
objective function is to minimize the transmissions schedule length. The formu-
lation so obtained is an Integer Linear Program (ILP). The model obtained can
be instantiated on each of the problems as needed by removing constraints. The
local dissemination problems studied may require multiple rounds of communica-
tion for non-trivial network topologies. Note that our ILP entails an optimization
over many rounds of communication, rather than a simple repeated application
of one-round optimizations.

Even the seemingly simpler problem of deciding whether a given ILP with
binary variables has a feasible solution, regardless of the objective function, is
well known to be NP-complete (cf. 0–1 Integer Programming [11]). Since
the optimization version asks to minimize the value of the objective function,
subject to all the constraints, it is also NP-complete. So, to apply our method
in networks of significant size, LP-relaxation and Randomized rounding [4] are
applied. That is, we relax the domain of the variables of the ILP to real numbers
in the [0, 1] interval, and we round the values in the solution at random.

Due to rounding, the schedule obtained may not solve the dissemination
problem under consideration for all the requests. Thus, we repeat the above

Optimization of Local Dissemination in Wireless Networks 247

steps iteratively updating the set of requests until all are realized. That is, our
generic framework tolerates multiple applications of the ILP (if needed) reducing
the set of requests in each iteration, but with all the network nodes participating
in the schedule and, hence, introducing interference.

Our approach provides a versatile engineering solution for a variety of fun-
damental communication problems in one tool. Specifically, given the network
topology and the affectance of nodes on links, one can solve the mathematical
formulation adequately tailored for the problem of interest using our framework,
and use the transmission schedules obtained. The method requires knowledge of
all affectance values. These values may be obtained geometrically for the Radio
Network, SINR or similar models of interference, or may be measured in the
field in advance for the most general model. Moreover, affectance may be even
obtained by the network nodes as in Conflict Maps (CMAP) [20], where nodes
probe the network to build a map of conflicting transmissions.

Evaluation. We apply our methods on two network topologies with obsta-
cles. One of them is based on a real-world floor plan of an office building, the
other is a simple square grid with obstacles spaced at regular intervals. Physical
measurements of interference capture all the signal-attenuation factors that are
present in the specific physical medium where the network is deployed. Distance,
reflection, scattering, and diffraction all have an impact on signal attenuation in
an environment with obstacles. Customarily, we simulated those effects comput-
ing attenuation as the inverse of the distance raised to the path-loss exponent.
We considered boundary cases of high- and low interference. The distance was
computed assuming that the signal sorts the obstacles by going around them.

In our experimental evaluations, we observed that the number of iterations
that our method must be applied to obtain a transmissions schedule is constant
with respect to the network size, even if the set of requests is all the nodes. Given
that the cases studied are natural instances of real-world network deployments,
these results show the effectiveness of our methods in practice.

To the best of our knowledge, this is the first comprehensive tool to compute
local dissemination schedules for Wireless Networks under a general model of
interference.

Roadmap. In Sect. 2 we specify the details of the affectance and network mod-
els. In Sect. 3 we specify our generic framework, including the ILP formulation
in Sect. 3.1 and the proof of correctness in Sect. 3.2. In Sect. 4 we present our
simulation results.

2 Model and Problems

We model the Wireless Network topology as a graph G “ (V,E), where V is a
set of n nodes and E is the set of communication links among such nodes. That
is, for each pair of nodes u, v P V , the ordered pair (u, v) P E if an only if v is

248 D. R. Kowalski et al.

able to receive a radio transmission from u directly (if there is no interference).
Without loss of generality, we assume that time is slotted so that the length of
one slot is enough to achieve such communication, provided that interference
from other communications is low enough as defined later.

Following [16], we model interference as affectance of nodes on links. That
is, we define a matrix A of size |V | ˆ |E|, where a(u, (v, w)) quantifies the
interference that a transmitting node u P V introduces to the communication
through link (v, w) P E. We normalize affectance to the range [0, 1], that is,
0 ď a(u, (v, w)) ď 1. The aim of the affectance matrix is to apply our frame-
work to any interference scenario, given that the affectance values are part of
the input. Hence, we do not fix any specific values even though, for instance,
a(u, (u, v)) is naturally 0.

For convenience, we denote aV ′((v, w)) as the affectance of a set of nodes
V ′ Ď V on a link (v, w) P E, and aV ′(E′) as the affectance of a set of nodes
V ′ Ď V on a set of links E′ Ď E. In this model definition, we do not restrict
affectance to a specific function, as long as its effect is additive, that is,

aV ′((v, w)) “
ÿ

uPV ′
a(u, (v, w))

aV ′(E′) “
ÿ

(v,w)PE′
aV ′((v, w)) .

Under the above affectance model, a successful transmission is defined as
follows. For any pair of nodes v, w P V such that (v, w) P E, a transmission from
v is received at w in a time slot t if and only if: v transmits in time slot t, and
aT (t)((v, w)) ă 1, where T (t) Ď V is the set of nodes transmitting in time slot t.
The event of a non-successful transmission, that is when the affectance is at least
1, is called a collision . We assume that a node listening to the channel cannot
distinguish between a collision and background noise present in the channel in
absence of transmissions.

The affectance model defined subsumes any other interference model as long
as the impact of interference is additive. For instance, in the Radio Network
model where a node receives a transmission at a given time t if and only if
exactly one of the neighbors of w is transmitting at time t, for u, v, w P V and
u ‰ v the affectance matrix is the following:

A(u, (v, w)) “
{

0 if (u,w) R E ,
1 otherwise .

On the other hand, consider the SINR with uniform power assignment model
in [5] where a node receives a transmission if and only if the following holds for
a parametric threshold β′:

P {dα
uv

N ` ř
w‰u P {dα

wv

> β′ .

In the latter, P is the transmission power level, N is the background noise, duv is
the Euclidean distance between nodes u and v, α denotes the path-loss exponent.

Optimization of Local Dissemination in Wireless Networks 249

Then, the affectance matrix is

A(u, (v, w)) “ P {dα
uw

P {(β′dα
vw) ´ N

.

The proof of the latter is a simple application of the SINR model definition
and it is left to the full version of this work for brevity.

2.1 Local Dissemination Problems

In this work, we study the following local dissemination problems. Recall that,
with respect to the usual definition of these problems in the literature, ours
parameterize the problem on subsets of network nodes, called a set of requests.

– Wake Up: Given a Wireless Network as defined and a set of requests R Ď
V , the wake-up problem is solved at time slot t if, for every node v P R,
there exists some time slot t′ ď t and some link (u, v) P E such that there
was a successful transmission through (u, v) in t′. As a worst-case scenario
definition, we assume that no nodes wake-up spontaneously.

– Link Scheduling : Given a Wireless Network as defined, a set of requests
R Ď V , and a set of link-requests R such that link (u, v) P R if and only if
u P R, the link-scheduling problem is solved at time slot t if, for every node
u P R and every link (u, v) P R, there exists some time slot t′ ď t such that
there was a successful transmission through (u, v) in t′.

– Local Broadcast : Given a Wireless Network as defined and a set of requests
R Ď V , the local-broadcast problem is solved at time slot t if, for every
node v P R, there exists some time slot t′ ď t such that for every link
(v, w) P E there was a successful transmission through (v, w) in t′. As a
worst-case scenario definition, we assume that all links outgoing a node have
to be scheduled in the same time slot.

We also consider extensions of the above known problems to the following
generalizations.

– Receive-One : Given a Wireless Network as defined and a set of requests
R Ď V , the problem is solved at time slot t if, for every node v P R, there
exists some time slot t′ ď t and some link (u, v) P E such that there was a
successful transmission through (u, v) in t′. (Equivalent to wake-up.)

– Transmit-One : Given a Wireless Network as defined and a set of requests
R Ď V , the problem is solved at time slot t if, for every node v P R, there
exists some time slot t′ ď t and some link (v, u) P E such that there was a
successful transmission through (v, u) in t′.

– Receive-All : Given a Wireless Network as defined and a set of requests
R Ď V , the problem is solved at time slot t if, for every node v P R, and for
every link (u, v) P E, there exists some time slot t′ ď t such that there was a
successful transmission through (u, v) in t′.

250 D. R. Kowalski et al.

– Transmit-All : Given a Wireless Network as defined and a set of requests
R Ď V , the problem is solved at time slot t if, for every node v P R, and for
every link (v, u) P E, there exists some time slot t′ ď t such that there was a
successful transmission through (v, u) in t′. (Equivalent to local broadcast if
all links are scheduled in the same time slot.)

3 Generic Framework

In the following, a transmissions schedule is denoted as a matrix XV “
(xut)uPV,tPN, where xut P {0, 1}. We denote as |XV | the number of columns
of XV where xut “ 1 for some u P V , called the length of the schedule. Also,
let P P{Receive-one, Receive-all, Transmit-one, Transmit-all, Local-broadcast,
Link-scheduling} be one of the problems defined in Sect. 2.

The generic framework (described in Algorithm 1) includes the application
of our ILP (cf. Sect. 3.1) to the particular problem to solve. The variables in the
ILP are restricted to be either 0 or 1. The problem of deciding whether a given
ILP with binary variables has a feasible solution, regardless of the objective
function, is known as 0-1 Integer Programming, and it is known to be NP-
complete [11]. Hence, the optimization version, where the objective function
is minimized subject to all the constraints, is also NP-complete. That is, unless
P=NP, it would take an impractical amount of time to solve the ILP for networks
of significant size.

input : network graph G “ (V,E), affectance matrix A, set of requests R,
problem P and, if P “ Link-scheduling, set of link-requests R such that
@u P R : D(u, v) P E : (u, v) P R and
@(u, v) P R : @w P V : w ‰ v ñ (u,w) R R

output: transmissions schedule XV that solves P for R

1 while R ‰ H do
2 instantiate the ILP of Sect. 3.1 to compute XV that solves P for R
3 relax the integrality constraints to reals in [0, 1] (i.e. ILP Ñ LP)
4 solve the LP to obtain a matrix X ′

V “ (x′
ut)uPV,tPN, where x′

ut P [0, 1]
5 set xut Ð 1 with probability x′

ut, or xut Ð 0 otherwise
6 verify the solution and remove all realized nodes from R

7 end

Algorithm 1: Generic Framework for Optimization of Local Dissemination
in Wireless Networks.

To make it practical, our framework includes the application of standard
approximation methods [4]. Specifically, LP-relaxation and rounding [18]. The
solution of the LP can be obtained in polynomial time [14], but the solution
values are reals in [0, 1]. To obtain integers in {0, 1} as required by a transmissions
schedule, we apply randomized rounding.

Optimization of Local Dissemination in Wireless Networks 251

The integer assignments for the LP decision variables after rounding are a
transmissions schedule, but due to rounding they may not preserve some of
the constraints in the original ILP. In other words, the schedule may not solve
the problem for all requests. An option would be to de-randomize the rounding
step using the method of conditional probabilities, but given the number of
constraints it would be computationally prohibitive. Thus, we include in our
framework a final step when we verify the schedule obtained to identify the
nodes that have been realized, and we iterate the method on the pending nodes.
The total schedule length is the sum of the lengths of the sequence of schedules
computed over this iterative process. Our simulations (cf. Sect. 4) show that in
practice the number of iterations does not depend on the network size, and in
fact it is very small.

In the following sections, we specify the details of our ILP formulation of
local dissemination problems under affectance, and we prove its correctness.

3.1 Integer Linear Program Formulation

Definitions

– Indices:
u, v, w: network nodes, u, v, w P V .
(v, w): directed network link, (v, w) P E.
t: time slot, t P [T].

– Input parameters:
au((v, w)): affectance of node u on link (v, w), 0 ď au((v, w)) ď 1.
T : a large positive integer constant not less than the schedule length.
R Ď V : set of requests.
R Ď E : set of link-requests, where @u P R : D(u, v) P E : (u, v) P R and
@(u, v) P R : @w P V : w ‰ v ñ (u,w) R R.

– Decision variables:
xut “ 1 if node u transmits in time slot t, otherwise xut “ 0.

– Auxiliary variables:
xt “ 1 if some node transmits in time slot t, otherwise xt “ 0.
yvwt “ 1 if total affectance on link (v, w) at time t is less than 1, otherwise
yvwt “ 0.
zvwt “ 1 if there is a successful transmission in link (v, w) at time t,
otherwise zvwt “ 0.
zvt “ 1 if there are successful transmissions in all links outgoing from v
at time t, otherwise zvt “ 0.
qzvt “ 1 if there is a successful transmission in some link outgoing from v
at time t, otherwise qzvt “ 0.

252 D. R. Kowalski et al.

Objective Function
The objective function is simply to minimize the length of the schedule. That
is, to minimize the number of time slots when some node transmits.

Minimize
ÿ

tP[T]

xt

subject to the constraints that follow.

Transmission-Indicator Constraints
The following constraints restrict xt to be an indicator of transmissions at time
t. Given that xt is restricted to be binary, Constraint 1 restricts xt “ 0 ifř

uPV xut “ 0, and Constraint 2 restricts xt “ 1 if
ř

uPV xut > 0:

@t P [T] : xt ď
ÿ

uPV

xut (1)

@t P [T] : nxt ě
ÿ

uPV

xut . (2)

Affectance-Indicator Constraints
The following constraints restrict yvwt to be an indicator of “low” affectance on
link (v, w) at time t. Given that yvwt is restricted to be binary, Constraint 3
restricts yvwt “ 1 if

ř
uPV au((v, w))xut ă 1, and Constraint 4 restricts yvwt “ 0

if
ř

uPV au((v, w))xut ě 1:

@(v, w) P E : @t P [T] :
ÿ

uPV

au((v, w))xut ´ 1 ě ´yvwt (3)

@(v, w) P E : @t P [T] :
ÿ

uPV

au((v, w))xut ´ 1 ă (n ´ 1)(1 ´ yvwt) . (4)

1-Link Successful-Transmission Constraints
The following constraints restrict zvwt to be an indicator of successful transmis-
sion in link (v, w) at time t. Given that zvwt is restricted to be binary, Con-
straint 5 restricts xvt “ 1 if zvwt “ 1, Constraint 6 restricts yvwt “ 1 if zvwt “ 1,
and Constraint 7 restricts that it must be yvwt “ 0 or xvt “ 0 if zvwt “ 0:

@(v, w) P E : @t P [T] : zvwt ď xvt (5)
@(v, w) P E : @t P [T] : zvwt ď yvwt (6)
@(v, w) P E : @t P [T] : zvwt ě yvwt ` xvt ´ 1 . (7)

Optimization of Local Dissemination in Wireless Networks 253

All-Outlinks Successful-Transmission Constraints
The following constraints restrict zvt to be an indicator of successful transmission
in all links outgoing from v at time t. Given that zvt is restricted to be binary,
Constraint 8 restricts zvt “ 1 if

ř
wPout(v) zvwt “ |out(v)|, and Constraint 9

restricts zvt “ 0 if
ř

wPout(v) zvwt ă |out(v)|:

@v P V : @t P [T] : (1 ´ zvt) ď |out(v)| ´
ÿ

wPout(v)

zvwt (8)

@v P V : @t P [T] : |out(v)|(1 ´ zvt) ě |out(v)| ´
ÿ

wPout(v)

zvwt . (9)

Some-Outlink Successful-Transmission Constraints
The following constraints restrict qzvt to be an indicator of successful transmission
in some link outgoing from v at time t. Given that qzvt is restricted to be binary,
Constraint 10 restricts qzvt “ 1 if

ř
wPout(v) zvwt > 0, and Constraint 11 restricts

qzvt “ 0 if
ř

wPout(v) zvwt “ 0:

@v P V : @t P [T] : |out(v)|qzvt ě
ÿ

wPout(v)

zvwt (10)

@v P V : @t P [T] : qzvt ď
ÿ

wPout(v)

zvwt . (11)

Integrality and Range Constraints

@v P V : @t P [T] : xvt P {0, 1} (12)
@t P [T] : xt P {0, 1} (13)

@(v, w) P E : @t P [T] : yvwt P {0, 1} (14)
@(v, w) P E : @t P [T] : zvwt P {0, 1} (15)

@v P V : @t P [T] : zvt P {0, 1} (16)
@v P V : @t P [T] : qzvt P {0, 1} . (17)

Problem-Specific Constraints

– The model is completed with one of the constraints that follow, depending
on the specific problem studied.

– Receive-one: there is at least one time slot when w receives, that is:

@w P R :
ÿ

tP[T]

ÿ

vPin(w)

zvwt ě 1. (18)

254 D. R. Kowalski et al.

– Receive-all: there is at least one time slot when w receives from v:

@w P R : @v P in(w) :
ÿ

tP[T]

zvwt ě 1 . (19)

– Transmit-one: there is at least one time slot when some neighbor of v receives
from v:

@v P R :
ÿ

tP[T]

ÿ

wPout(v)

zvwt ě 1 . (20)

– Transmit-all: there is at least one time slot when w receives from v:

@v P R : @w P out(v) :
ÿ

tP[T]

zvwt ě 1 . (21)

– Local-broadcast: there is at least one time slot when all out-neighbors of v
receive:

@v P R :
ÿ

tP[T]

zvt ě 1 . (22)

– Link-scheduling there is at least one time slot when w receives from v:

@v P R : @(v, w) P R :
ÿ

tP[T]

zvwt ě 1 . (23)

3.2 Correctness

Lemma 1. The indicator variables in the Integer Program of Sect. 3.1 are well
defined.

Proof. We prove that each indicator variable is 1 if and only if the corresponding
event occurred. For each new variable, we use that previous variables are well
defined.

– xvt, for v P V and t P [T]: it is by definition xvt “ 1 if and only if node v
transmits in time slot t.

– xt, for t P [T]: indicates that node v transmits at time t.

Du P V : xut “ 1 ñ
ÿ

uPV

xut ě 1, using Constraint 2,

ÿ

uPV

xut ě 1 ^ nxt ě
ÿ

uPV

xut ñ nxt ě 1, using Constraint 13,

nxt ě 1 ^ xt P {0, 1} ñ xt “ 1 .

@u P V : xut “ 0 ñ
ÿ

uPV

xut “ 0, using Constraint 1,

ÿ

uPV

xut “ 0 ^ xt ď
ÿ

uPV

xut ñ xt ď 0, using Constraint 13,

xt ď 0 ^ xt P {0, 1} ñ xt “ 0 .

Optimization of Local Dissemination in Wireless Networks 255

– yvwt, for (v, w) P E and t P [T]: indicates low affectance on link (v, w) at time
t. Using Constraints 3 and 14 we get:

ÿ

uPV

au((v, w))xut ă 1 ^
ÿ

uPV

au((v, w))xut ´ 1 ě ´yvwt ñ 1 ´ yvwt ă 1,

1 ´ yvwt ă 1 ^ yvwt P {0, 1} ñ yvwt “ 1 .

Using Constraints 4 and 14 we obtain:
ÿ

uPV

au((v, w))xut ě 1^
ÿ

uPV

au((v, w))xut ´ 1 ă (n ´ 1)(1 ´ yvwt) ñ (n ´ 1)(1 ´ yvwt) > 0

(n ´ 1)(1 ´ yvwt) > 0 ^ yvwt P {0, 1} ñ yvwt “ 0.

– zvwt, for (v, w) P E and t P [T]: indicates a successful transmission in link
(v, w) at time t. That is, it indicates whether the affectance on (v, w) is low
and v transmits. Using Constraints 7 and 15, we get

xvt “ 1 ^ yvwt “ 1 ^ zvwt ě yvwt ` xvt ´ 1 ñ zvwt ě 1
zvwt ě 1 ^ zvwt P {0, 1} ñ zvwt “ 1 .

On the other hand, using Constraints 5 and 15, we have

xvt “ 0 ^ zvwt ď xvt ^ zvwt P {0, 1} ñ zvwt “ 0 .

And using Constraints 6 and 15,

yvwt “ 0 ^ zvwt ď yvwt ^ zvwt P {0, 1} ñ zvwt “ 0 .

– zvt, for v P V and t P [T]: indicates a successful transmission in all links
outgoing from v at time t. Using Constraints 8 and 16, we obtain

ÿ

wPout(v)

zvwt “ |out(v)| ^ (1 ´ zvt) ď |out(v)| ´
ÿ

wPout(v)

zvwt ñ (1 ´ zvt) “ 0

(1 ´ zvt) “ 0 ^ zvt P {0, 1} ñ zvt “ 1 .

Using Constraints 9 and 16, we get
ÿ

wPout(v)

zvwt ă |out(v)|^

|out(v)|(1 ´ zvt) ě |out(v)| ´
ÿ

wPout(v)

zvwt ñ |out(v)|(1 ´ zvt) > 0

|out(v)|(1 ´ zvt) > 0 ^ zvt P {0, 1} ñ zvt “ 0.

– qzvt, for v P V and t P [T]: indicates a successful transmission in some link
outgoing from v at time t. Using Constraints 10 and 17, we obtain

ÿ

wPout(v)

zvwt > 0 ^ |out(v)|qzvt ě
ÿ

wPout(v)

zvwt ñ |out(v)|qzvt > 0

|out(v)|qzvt > 0 ^ qzvt P {0, 1} ñ qzvt “ 1 .

256 D. R. Kowalski et al.

Using Constraints 11 and 17, we get
ÿ

wPout(v)

zvwt “ 0 ^ qzvt ď
ÿ

wPout(v)

zvwt ñ qzvt ď 0

qzvt ď 0 ^ qzvt P {0, 1} ñ qzvt “ 0 .

��

Theorem 1. The Integer Program of Sect. 3.1 is correct.

Proof. To prove the correctness of our formulation it is enough to prove that, for
each of the communication problems studied, if the corresponding constraint is
true the problem is solved, and viceversa. We include such proof for the Receive-
one problem. For the other problems the proof is similar.

Constraint 18 is true if, for each node w P R, there is at least one time slot
t P T and one node v P in(w) for which the indicator variable zvwt “ 1. By
Lemma 1, if zvwt “ 1 there is at least one time slot when w receives, as required
by the Receive-one problem.

On the other hand, the Receive-one problem is solved when, for each node
w′ P R, there is at least one time slot t′ when node w′ receives successfully from
at least one of its neighbors. Consider one of those neighbors v′ P in(w′). In that
case, by Lemma 1 we know that zv′w′t′ “ 1. Hence, Constraint 18 is true. ��

4 Simulations

In this section we present applications of our generic framework to network
deployments. We study two network topologies including obstacles: a grid and a
layer network. We note that the cases studied are an illustration of our methods
applied to networks that frequently appear in real world deployments, rather
than examples of worst-case scenarios.

As a layer-network, i.e. a bipartite graph on a partition transmitters-receivers,
we used as a model of obstacles the floorplan of the School of Computer Science
and Information Systems at Pace University (see Fig. 1). We considered nodes
installed in the intersections of each square of four ceiling panels. We focus on
one layer of this network going across various offices. For simplicity, to evaluate
performance as n grows, we replicated the same office multiple times in a layer.

The walls of these offices have a metallic structure. Hence, each office behaves
as a Faraday cage blocking radio transmissions (specially millimeter wave). Con-
sequently, most of the radio waves propagate through doors (which are not metal-
lic). We fixed the radio transmission power to be large enough to reach five grid
cells, so that transmissions from layer to layer are possible. Given the offices
dimensions, transmitters within an office are connected to all receivers. On the
other hand, the interference to other offices in the same layer is approximated
by adding ten grid cells for each office of distance. The resulting topology can
be seen in Fig. 2.

Optimization of Local Dissemination in Wireless Networks 257

Fig. 1. A layer of the network grid.

Fig. 2. Affectance example.

Fig. 3. Square grid.

In the second case studied, nodes are deployed in a square grid, but with a
more intricate placement of obstacles among them, as shown in Fig. 3. In this
case the range of communication is assumed to be 4 grid cells (measured in
Manhattan distance for simplicity) so that connected nodes form paths, which
we assume to be connected in one end by some other means.

Physical measurements of interference capture all the signal-attenuation fac-
tors present in the specific physical medium. In an environment with obstacles,
those factors include distance, reflection, scattering, diffraction, etc. Customar-
ily for synthetic inputs, we computed attenuation as the inverse of the distance
between transmitter and receiver raised to the path-loss exponent α. To evaluate
low- and high-interference scenarios, we considered boundary cases of α “ 6 and
α “ 2 respectively [17].

The separation between transmitter and receiver was measured in Manhattan
distance, assuming that the signal sorts the obstacles by going around them.
Then, assuming a uniform transmission-power assignment, the affectance of each
node u on each link (v, w) was computed as the ratio of the attenuation between
u and w over the attenuation on (v, w).

For the network topologies described, and for various values of n, we applied
our generic framework instantiated in each of the six local dissemination prob-
lems studied, using as a worst case scenario R “ V . We measured the length
of the schedules obtained and the number of iterations our framework needed
to obtain the solution for all nodes. To solve the corresponding LP’s we used
IBM ILOG CPLEX Optimization Studio V12.8.0 in Java, on the Pace University

258 D. R. Kowalski et al.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

It
er
at
io
ns

n

All cases

n

Fig. 4. Framework iterations for all cases studied.

Seidenberg School of CSIS Dell HPC cluster. (Head node with dual 12core Xeon
processors, 192 GB memory, and 8 ˆ 2.4TB HDs, and two GPU Compute nodes
each with dual 12core Xeon processors, 384 GB memory, and 3 ˆ NVIDIA Tesla
V100 32 G Passive GPUs, with a Red Hat Enterprise Linux environment.)

The results of our evaluations are discussed in the following section.

5 Discusion of Results and Conclusions

In this work, we present a generic framework to compute transmission schedules
to solve a comprehensive set of local dissemination problems frequently studied
for Wireless Networks. Our framework provides an engineering solution with
theoretical guarantees of correctness. Based on measurements of interference in
the specific deployment area, one can obtain transmission schedules for any of
the problems studied with one tool.

The practicality of our framework is shown by evaluating the number of
iterations of LP-solver application until the solution is complete. It can be seen
in Fig. 4 that the number of iterations remains constant when the network size
grows, for all problems, topologies, and path-loss exponents studied, even though
the set of requests used for the simulations was R “ V . The length of the
schedules obtained for the variety of problems studied, as the network size grows,
under low- and high-interference, for two typical network topologies, and in a
typical setting with obstacles are shown in Figs. 5 and 6.

To the best of our knowledge, this is the first comprehensive tool to compute
local dissemination schedules for Wireless Networks under a general model of
interference. A possible improvement, suggested by one of the reviewers and
an interesting open direction, relates to the IP formulation - aimed to make it
simpler and algorithmically more tractable.

Optimization of Local Dissemination in Wireless Networks 259

Fig. 5. Schedule length for grid topology.

Fig. 6. Schedule length for layer topology.

References

1. Afek, Y. (ed.): DISC 2013. LNCS, vol. 8205. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41527-2

2. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks.
IEEE Trans. Comput. 36(10), 1209–1223 (1987)

3. Daum, S., Gilbert, S., Kuhn, F., Newport, C.C.: Broadcast in the ad hoc sinr
model. In: Afek [1], pp. 358–372 (2013)

4. Genova, K., Guliashki, V.: Linear integer programming methods and approaches–a
survey. J. Cybernetics Inf. Technol. 11(1) 56 (2011)

5. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in apx. In: Pro-
ceedings of the 36th International Colloquium on Automata, Languages and Pro-
gramming, Part I. pp. 525–536 (2009)

6. Kao, M.-Y. (ed.): Encyclopedia of Algorithms. Springer, New York (2016). https://
doi.org/10.1007/978-1-4939-2864-4

7. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed ran-
domized broadcasting in wireless networks under the sinr model. In: Afek [1], pp.
373–387 (2013)

8. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Deterministic digital
clustering of wireless ad hoc networks. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, pp. 105–114 (2018)

https://doi.org/10.1007/978-3-642-41527-2
https://doi.org/10.1007/978-3-642-41527-2
https://doi.org/10.1007/978-1-4939-2864-4
https://doi.org/10.1007/978-1-4939-2864-4

260 D. R. Kowalski et al.

9. Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broad-
casting in uniform-power ad hoc wireless networks. In: Gasieniec, L., Wolter, F.
(eds.) FCT 2013. LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40164-0 20

10. Jurdziński, T., Różański, M.: Deterministic oblivious local broadcast in the SINR
model. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 312–
325. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8 25

11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

12. Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: Proceedings of
the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pp. 281–290 (2012)

13. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–
178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9 16

14. Khachiyan, L.G.: A polynomial algorithm in linear programming. In: Doklady
Akademii Nauk. vol. 244, pp. 1093–1096. Russian Academy of Sciences (1979)

15. Kowalski, D.R., Mosteiro, M.A., Rouse, T.: Dynamic multiple-message broadcast:
bounding throughput in the affectance model. In: 10th ACM International Work-
shop on Foundations of Mobile Computing, FOMC 2014, Philadelphia, PA, USA,
August 11, 2014, pp. 39–46 (2014)

16. Kowalski, D.R., Mosteiro, M.A., Zaki, K.: Dynamic multiple-message broadcast:
Bounding throughput in the affectance model. CoRR abs/1512.00540 (2015),
http://arxiv.org/abs/1512.00540

17. Kumar, A., Manjunath, D., Kuri, J.: Chapter 2 - wireless communication: Con-
cepts, techniques, models. In: Kumar, A., Manjunath, D., Kuri, J. (eds.) Wire-
less Networking, pp. 15–51. The Morgan Kaufmann Series in Networking, Morgan
Kaufmann, Burlington (2008). https://doi.org/10.1016/B978-012374254-4.50003-
X, http://www.sciencedirect.com/science/article/pii/B978012374254450003X

18. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

19. Scheideler, C., Richa, A.W., Santi, P.: An o(log n) dominating set protocol for
wireless ad-hoc networks under the physical interference model. In: Proceedings
of the 9th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pp. 91–100. ACM (2008)

20. Vutukuru, M., Jamieson, K., Balakrishnan, H.: Harnessing exposed terminals in
wireless networks. In: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, pp. 59–72 (2008)

https://doi.org/10.1007/978-3-642-40164-0_20
https://doi.org/10.1007/978-3-662-55751-8_25
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-15763-9_16
http://arxiv.org/abs/1512.00540
https://doi.org/10.1016/B978-012374254-4.50003-X
https://doi.org/10.1016/B978-012374254-4.50003-X
http://www.sciencedirect.com/science/article/pii/B978012374254450003X

Verifying Weakly Consistent
Transactional Programs Using Symbolic

Execution

Burcu Kulahcioglu Ozkan(B)

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
burcu@mpi-sws.org

Abstract. We present a method for verifying whether all executions of a
set of transactions satisfy a given invariant when run on weakly consistent
systems. Existing approaches check that all executions under weak con-
sistency are equivalent to some serial execution of the transactions, and
separately that the serial executions satisfy the invariant. While sound,
this can be overly strict. Programs running on systems with weak guar-
antees are usually designed to tolerate some anomalies w.r.t. the serial
semantics and yet maintain some expected program invariants even on
executions that are not serializable. In contrast, our technique does not
restrict possible executions to be serializable, but directly checks whether
given program properties hold w.r.t. all executions allowed under varying
consistency models.

Our approach uses symbolic execution techniques and satisfiability
checkers. We summarize the effects of transactions using symbolic execu-
tion and build a satisfiability formula that precisely captures all possible
valuations of the data variables under a given consistency model. Then,
we check whether the program invariants hold on the resulting sym-
bolic set of behaviors. Our encoding is parameterized over the underlying
consistency specification. Hence, the programmer can check the correct-
ness of a program under several consistency models—eventual consis-
tency, causal consistency, (parallel) snapshot isolation, serializability—
and identify the level of consistency needed to satisfy the application-
level invariants.

Keywords: Weak consistency · Transactions · Symbolic execution ·
Satisfiability

1 Introduction

Large-scale distributed systems rely on replicated databases that maintain data
across a large number of nodes, potentially over a wide geographical span. Clients
of the system can perform transactions at any node; the database is responsible
to synchronize the data across the many nodes and maintain “consistency.” Tra-
ditionally, consistency implied that the database was serializable [8]: the result

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 261–278, 2021.
https://doi.org/10.1007/978-3-030-67087-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_17

262 B. K. Ozkan

of concurrently executing a set of transactions should be equivalent to executing
the transactions serially in some order. Unfortunately, the synchronization cost
of maintaining consistency is high; moreover, the CAP theorem [9] states that
a distributed system cannot simultaneously guarantee consistency, availability,
and partition tolerance. Thus, many modern systems sacrifice serializability in
favor of weaker guarantees which allow executions that cannot be explained by
any serial execution. A generic weaker guarantee is eventual consistency [13,31],
which states that all replicas reach a consistent state if no more user updates
arrive to the data centers.

Generally, eventual consistency guarantee is too weak by itself to satisfy the
specifications of many applications: indeed, user updates never stop arriving in
these systems. Hence, systems provide additional consistency guarantees which
pose some restrictions on executions and specify which subset of anomalous
(non-serializable) behaviors are allowed by a system, and which are not. Such
weak consistency models include causal consistency [27], prefix consistency [14],
parallel snapshot isolation [32], and snapshot isolation [6].

While weaker consistency models offer more availability and performance,
they also make reasoning about programs more difficult. Under serializability, a
programmer could argue about invariants one transaction at a time, disregarding
concurrent interactions. Under weaker models, this is no longer possible.

Our goal in this work is to propose a method to verify safety properties of a
program running under a weak consistency model. Existing work for analyzing
safety properties of weakly consistent programs [4,5,10,11,28] take serializability
as a reference model for correctness and decompose the safety verification prob-
lem into two steps: (1) show that the safety property holds under serializability,
and separately, (2) show that a program is robust against a weak consistency
model. Robustness against a weak consistency model [7] means that the program
has exactly the same observable behaviors as with serializability guarantees. To
show robustness, these methods build a dependency graph from the program
executions and check for cycles in the graph which violate serializability.

While sound, this method is often too strict. Most programs designed
for weak consistency are expected to tolerate some anomalies and yet satisfy
application-level safety properties. Consider the two programs in Fig. 1. Neither
program is robust against snapshot isolation, which allows concurrent transac-
tions to commit if they write into a disjoint set of data variables. However, one
of the programs exhibit buggy behavior with respect to the application-level
invariant while the other one satisfies its application invariants under snapshot
isolation.

The program in Fig. 1(a) considers a simple bank application. The example
has two concurrent transactions operating on two bank accounts with an invari-
ant that the total amount in both accounts is nonnegative. While the serial exe-
cutions of the transactions satisfy the assertion, their execution under weaker
consistency models do not. Under snapshot isolation (SI), both transactions can
read from the initial snapshot and be unaware of each other’s updates. Both

Verifying Weakly Consistent Transactional Programs 263

transaction T1()
x = read accx in Accounts
y = read accy in Accounts
if (x + y) > 100

write accx (x -100) in Accounts

transaction T2()
x = read accx in Accounts
y = read accy in Accounts
if (x + y) > 100

write accy (y -100) in Accounts

acc_x = acc_y = 60
T1() || T2()
assert(Accounts [accx] + Accounts [accy]) > 0

read accx , accy
wri te accx

read accx , accy
wri te accyrw

rw

(a) Not robust against SI. Some executions under SI result in incorrect behavior.

transaction scheduleCourse(courseId)
slots = read slot1, ..., slotn in TimeTable
index = findAvailable(slots , courseId)
if index >= 0

write slotindex courseId in TimeTable

scheduleCourse(courseId1) || scheduleCourse(courseId2)
assert(TimeTable[courseId1] != TimeTable[courseId2])

read slot1, . . . , slotn
wri te sloti∈{1,...,n}

read slot1, . . . , slotn
wri te slotj∈{1,...,n}rw

rw

(b) Not robust against SI. However, its executions under SI are correct.

Fig. 1. Two programs both of which are not robust against SI. While the first example
fails to provide its specifications, the second example satisfies them.

transactions can successfully commit under SI since they update disjoint sets of
variables.

On the other hand, the non-serializable program in Fig. 1(b) is correct. This
program considers a simple course scheduling application with an invariant that
only a single course is assigned to a time slot. The example has two concurrent
transactions to schedule the given courses into time slots which operate on a
timetable database. The transactions concurrently read the timetable slots, check
for a slot that is available and that satisfies the course requirements, and commit
the assignment of course to the time slot by marking the allocated slot. Both
transactions can successfully commit under snapshot isolation if they write to
disjoint slots, e.g., if i �= j in Fig. 1(b). All executions under snapshot isolation
satisfy the assertion.

In this paper, we describe a method to verify application-specific assertions in
a transactional program running under a weak consistency model. Our method
is parameterized over the underlying consistency model. Given a set of trans-
actions on an underlying database, an assertion on the program state, and a
consistency model, our method proceeds as follows. First, we use symbolic exe-
cution to construct a summary for each transaction. The summary describes the
relation between the before- and after-states for each transaction. Second, we

264 B. K. Ozkan

symbolically encode an ordering of the transactions in the program, and com-
pose the transaction summaries according to this ordering. The ordering specifies
the data flow relationships between the transactions. Third, we use the axiomatic
approach of [16] to encode constraints on valid executions under the weak con-
sistency model. Altogether, this reduces the problem of assertion verification to
a satisfiability checking question for the conjunction of all these constraints.

We show the applicability of our approach on a set of benchmarks written
in the Boogie programming language [3] and used Symbooglix [26] for symbolic
execution of transactions. Our approach allows the use of existing symbolic exe-
cution and satisfiability checking tools for the problem of verifying programs
running on weakly consistent systems with complicated sets of behaviors.

2 Transactions on Weakly Consistent Systems

2.1 Abstract Executions

We formalize weakly consistent transactions in an axiomatic way, based on the
framework presented by Cerone et al. [16]. We consider a database which keeps
a set of variables Vars = {x, y, . . .}, replicated among a set of nodes in the dis-
tributed system. Clients interact with the database variables by running trans-
actions T ∈ T, which are programs issuing some read and write operations
atomically on the database variables. For simplicity, we assume all the vari-
ables are integer valued and we define the operations on the variables as the
set Op = {rd(x, n),wr(x, n) | x ∈ Vars, n ∈ Z}. An event over Op is a labeled
invocation op�(x, n) of an operation. It consists of a unique identifier � and an
operation op ∈ Op on a variable x ∈ Vars and a value n ∈ Z. For example, the
event rd�(x, 0) represents an event with the (unique) label � that reads the value
0 from variable x and wr�′

(x, 1) represents a write of value 1 to variable x. When
the label is not important, we omit it and write op(·)(x, n).

Definition 1 (Transaction Trace and History). A transaction trace is a
pair (E,<po) where E is a finite set of events over Op and program order <po

is a total order over E. A history H = 〈Vars, {T1, . . . , Tn}〉 consists of a set of
variables Vars and a finite set of transaction traces with pairwise disjoint sets of
identifiers. We assume all transactions are potentially concurrent to each other.

Intuitively, a transaction trace records a successful sequence of operations on a
database atomically executed by a client in a transaction and the order in which
the operations were performed. A history records a concurrent set of transac-
tions. On weakly consistent systems, the distributed nodes are not immediately
synchronized after commiting a transaction. Therefore, the updates of a trans-
action on a replicated variable may not immediately be visible to all the nodes.
Weakly consistent systems allow executing client transactions without the neces-
sity of receiving all the updates committed on different replicas.

Systems providing weak consistency define a conflict resolution policy on the
set of its operations to resolve conflicting updates made by concurrent transac-
tions, such as last writer wins (LWW) for a register data type or add wins for

Verifying Weakly Consistent Transactional Programs 265

a set data type [31]. For example, Cassandra [24] attaches a timestamp to each
data update and applies LWW conflict resolution, i.e., it chooses the data with
the most recent timestamp in case of concurrent updates to a data variable.

An abstract execution of a weakly consistent system is formally defined by
the binary relations visibility vis and the arbitration ar between the transactions
in a history. We write T1

vis−−→ T2 if (T1, T2) ∈ vis and similarly T1
ar−→ T2

if (T1, T2) ∈ ar . The visibility relation is a strict pre-order (i.e., irreflexive and
transitive), and models the delivery of updates between the replicas of a variable:
T1

vis−−→ T2 means that the updates of transaction T1 are delivered to the node
executing the transaction T2 and therefore T2 operates on variables that have
been updated based on the operations in T1. Two transactions are concurrent if
neither of them sees the effects of the other, i.e., T1 � vis−−→ T2 and T2 � vis−−→ T1. The
arbitration relation is a total order; T1

ar−→ T2 intuitively means that the version
of variables written by T2 supersede the versions written by T1. The arbitration
relation can be computed by Lamport timestamps [25].

Definition 2 (Abstract Execution). An (abstract) execution of a history H
is a tuple A = 〈H, vis , ar〉 of the history H with a visibility relation vis ⊆ H ×H
and an arbitration relation ar ⊆ H × H such that vis ⊆ ar.

The constraint vis ⊆ ar in an execution ensures that if T2 is aware of T1 (i.e.,
T1

vis−−→ T2), then T2’s writes supersede T1’s writes (i.e., T1
ar−→ T2).

The weakest consistency specification is eventual consistency [13,31], which
provides the basic guarantee that in a state where clients stop submitting trans-
actions (which is called quiescent state) (i) all update transactions will eventually
be visible to each node and (ii) the value of all the copies of the database vari-
ables will be the same. Eventual consistency is too weak by itself to satisfy the
specifications of many applications. Hence, systems provide a spectrum of weak
consistency models which provide additional guarantees on the system execution
by requiring synchronization to some extent.

2.2 Axioms for Weak Consistency

In this section we recall a set of axioms summarized in [7,16] whose combination
can be used to define weak consistency models.

We need some notation before we can formally describe the axioms. For
a total order <⊆ A × A on a set A and a non-empty set B ⊆ A, we define
max(B,<) (respectively, min(B,<)) as the unique event b ∈ B such that, for
all a ∈ B, we have a < b or a = b (respectively, b < a or b = a). The opera-
tions max and min are undefined if B is empty. For an event a ∈ A, we write
bf(a,<) for the set {b ∈ A | b < a} of events preceding a and write bf(a,<| B)
for bf(a,<) ∩ B. For a set of events E and x ∈ Vars, we write Ex (resp.
Er

x, Ew
x) for the restriction of E to operations (resp. read, write operations)

on variable x: Ex = {op�(x̂, n) ∈ E | x = x̂}, Er
x = {rd�(x̂, n) ∈ E | x̂ = x},

Ew
x = {wr�(x̂, n) ∈ E | x̂ = x}.

266 B. K. Ozkan

The axiom Int is the internal consistency axiom which ensures that, within
a transaction, the database provides sequential semantics: in a transaction
(E,<po), a read event e on a variable x returns the value of the last event
on x preceding e. Formally,

∀(E,<po) ∈ H.∀rd�(x, n)) ∈ E.

bf(e,<po | Ex) = ∅ ∨ max(bf(e,<po | Ex)) ≡ op(·)(x, n) (Int)

The axiom Ext is the external consistency axiom which ensures that, if in
(E,<po) a read e on x is not preceded by an operation on the same variable,
then its value is determined in terms of writes by other transactions visible to
it, if no transaction has written to x, by the initial value 0. For a transaction
T = (E,<po), we define the predicate 〈T writes (x, n)〉 as max(Ew

x , <po) ≡
wr(·)(x, n) and the predicate 〈T reads (x, n)〉 as min(Er

x) ≡ rd(·)(x, n). We also
define 〈T writes x〉 as ∃n ∈ Z.〈T writes (x, n)〉. Formally, the Ext axiom states:

∀(E,<po) ∈ H.∀x ∈ Vars,∀n ∈ Z.〈(E,<po) reads (x, n)〉 ⇒
(bf(T,

vis−−→| wr(x)) = ∅ ∧ n = 0) ∨ max(bf(T,
vis−−→| wr(x)), ar−→) ≡ op(·)(x, n)

(Ext)

where wr(x) = {T ∈ H | 〈T writes x〉}.
The NoConflict axiom states that updates to the same variable by different

transactions must be ordered by the visibility relation:

∀T1, T2 ∈ H.(∃x ∈ Vars.T1 writes x ∧ T2 writes x) ⇒
T1 = T2 ∨ T1

vis−−→ T2 ∨ T2
vis−−→ T1 (NoConflict)

The axiom TransVis states the transitivity of the vis relation:

∀T1, T2, T3 ∈ H.T1
vis−−→ T2 ∧ T2

vis−−→ T3 =⇒ T1
vis−−→ T3 (TransVis)

The Prefix axiom states that if T3 observes T2, then it also observes any
transaction before T2 in the arbitration order and hence it is stricter than
TransVis:

∀T1, T2, T3 ∈ H : T1
ar−→ T2 ∧ T2

vis−−→ T3 =⇒ T1
vis−−→ T3 (Prefix)

The axiom TotalVis states that vis is a total order, i.e., vis = ar, and
hence it is stricter than Prefix:

∀T1, T2 ∈ H.T1 = T2 ∨ T1
vis−−→ T2 ∨ T2

vis−−→ T1 (TotalVis)

Verifying Weakly Consistent Transactional Programs 267

2.3 Weak Consistency Models

We now recall weak consistency models based on the axioms in Sect. 2.2 for
which we provide symbolic encodings in Sect. 3. The definitions of the consistency
models are summarized in Table 1.

Serializability (SER). [8] is a strong consistency model that guarantees the
transactions to be executed serially and in the same order on every node. For-
mally, serializability allows executions which satisfy internal and external con-
sistency for which the visibility relation is totally ordered.

Snapshot Isolation (SI). [6,19] weakens the serializability guarantee by allow-
ing concurrent execution of two transactions that do not write to the same data
variable. A transaction may not see all committed transactions in the system but
it sees a prefix of the total order of transactions. However, it cannot commit if
it updates an intersecting set of data variables with the set of updated variables
of a concurrent transaction (formalized by NoConflict axiom).

Table 1. Definitions of the consistency models

SER = Int ∧ Ext ∧ TotalVis

SI = Int ∧ Ext ∧ Prefix ∧ NoConflict

PSI = Int ∧ Ext ∧ TransVis ∧ NoConflict

PC = Int ∧ Ext ∧ Prefix

CC = Int ∧ Ext ∧ TransVis

Parallel Snapshot Isolation (PSI). [32] relaxes SI by weakening the Prefix
requirement which enforces a global ordering of transactions to causal delivery
of transactions (TransVis). Causal delivery ensures the ordered delivery of
causally related updates. If a transaction Ti was visible to the execution of the
transaction Tj , i.e., Tj operates on the effects produced by Ti, then Tj is causally
related to Tj . In causally consistent systems, all the replicas see the transactions
Ti and Tj in that order. This is formalized by the axiom TransVis.

Prefix Consistency (PC). [14] is also a relaxation of SI which is not strictly
stronger or weaker than PSI. PC is strict in the sense that it requires a trans-
action to see the updates of some prefix of all the updates w.r.t., ar relation,
enforcing Prefix. On the other hand, it is weak on its guarantees for commit-
ting transactions. It allows conflicting updates of concurrent transactions, not
enforcing NoConflict.

Causal Consistency (CC). [27] requires causally related transactions to be
visible to other replicas in the causal order (TransVis). Some variants of causal
consistency are defined in the context of both memory and distributed systems
(e.g., causal memory [1], causal convergence [12,13]). All these definitions are
based on the requirement of causal delivery. Causal consistency guarantees are

268 B. K. Ozkan

weaker than PSI as CC allows the transactions with conflicting set of updates
to commit concurrently.

Verification Problem. In this work, we study the program verification problem
parametrized over the consistency model. Given a history with a set of trans-
actions on the database variables, a consistency model, and an assertion on the
database variable, we ask whether there is an abstract execution of the system
allowed by the consistency model which violates the program assertion.

Definition 3 (Verification Problem). Given a history H = 〈Vars,〉
{T1, . . . , Tn}, a consistency model cm ∈ {SER,SI,PSI,PC,CC}, and a pro-
gram assertion φProg on the variables Vars, the verification problem asks whether
there is an abstract execution A = 〈H, vis , ar〉 satisfying cm that violates φProg

after executing {T1, . . . , Tn}.
In the next section, we present our method for answering the verification

problem by using symbolic execution and encoding the possible set of program
behaviors into a satisfiability formula.

3 Encoding Weakly Consistent Executions

Our method encodes the possible set of executions of a set of concurrent trans-
actions under a given consistency model into a satisfiability formula Φ. Our
encoding has three steps:

1. Symbolically executing each transaction to summarize its effects into symbolic
valuation of variables (Sect. 3.1),

2. Connecting the symbolic valuations of the transactions together so that the
composition captures only causally consistent sets of executions (Sect. 3.2)

3. Constraining the sets of executions w.r.t. a consistency model (Sect. 3.3)

3.1 Symbolic Execution of Transactions

In transactional programs, the effects of a transaction are made visible to other
transactions atomically. The intermediate state of in-progress or rolling back
transactions are not seen by any other transaction. This property allows for a
modular encoding for each transaction independently of others.

Given a set of transactions T1, . . . , Tn, we execute each transaction on a sym-
bolic state and obtain their symbolic summaries. The summary of the transac-
tion is the relation between the initial symbolic snapshot and the final symbolic
expressions for the variables. In order to track different sets of variables, for each
transaction, we introduce two arrays of symbolic variables X and X′. These arrays
keep the symbolic values for each variable before and after the execution of a
transaction respectively. The contents of X′

i with 1 ≤ i ≤ n keeps the updates
made by the transaction in the arbitration order i on state Xi in a symbolic way.

For each transaction Ti ∈ {T1, . . . , Tn}, the formula Transaction-
Summary represents the relationship between its input valuation X and the

Verifying Weakly Consistent Transactional Programs 269

Tar1 Tar2 Tar3
X1 X 1 X2 X 2

. . . Xn X n

Y0 Y1 Y2 . . . Yn−1 Yn

Fig. 2. The execution of transactions Tar1 , . . . , Tarn in the arbitration order on the
symbolic states X1, . . . , Xn respectively.

output valuation X′ along with a map Wr : Vars �→ B. Wr maps a variable to
a Boolean value such that Wr.x is true if Ti modifies the data variable x. The
valuation of the map Wr for a transaction is computed during its symbolic exe-
cution. This information is used later for detecting conflicts between concurrent
transactions.

Ti(X, X′, Wr) (Transaction-Summary)

In order to represent valid executions, we have to “tie together” different sym-
bolic states. The symbolic states of transactions are tied together in their arbitra-
tion order. We model the arbitration as a symbolic permutation of transactions.
We introduce variables ar1, . . . , arn which has distinct values from {1, . . . , n}.
The variable ari represents the identifier of the transaction in the arbitration
order i, that is ari = j iff Tj is the ith transaction in the arbitration.

Figure 2 illustrates the execution of transactions on the symbolic states. Each
transaction Tari

in the arbitration order i, reads a symbolic state Xi and updates
it to X′

i. The first transaction is executed on X0 which contains the initial variable
valuation. The next transactions can operate on either the initial symbolic state
or another state produced by an earlier transaction.

Our encoding nondeterministically picks a symbolic state Xi with 1 ≤ i ≤ n
from the set of states produced by the earlier transactions X′

j with i < j ≤ n.
We use an additional array of symbolic states Yi to keep the effects of the first
i transactions in the arbitration order. Initially, Y0 = X0. As we explain in the
next subsection, the later values of Y are calculated by applying the transactions’
effects in the arbitration order.

3.2 Encoding the Executions

In this subsection, we build a logical formula Φ which brings together the sym-
bolic execution summaries of T1, . . . , Tn. The resulting formula models the pos-
sible executions of transactions as illustrated in Fig. 2.

The set of symbolic valuations which satisfy Φ models all possible variable
valuations that can be obtained after the execution of the transactions. All pos-
sible executions of T1, . . . , Tn satisfy the program properties iff the intersection
of Φ and the negation of the program properties is not satisfiable.

The encoding has three main components:

– The arbitration order of the transactions T1, . . . , Tn (Arbitration)

270 B. K. Ozkan

– The input symbolic states transactions read from (Input-States)
– The symbolic states after the synchronization of updates (Output-States)

(Arbitration) encodes the arbitration order of the transaction summaries
using the variables ar1, . . . , arn. The formula requires the variables ar1, . . . , arn

to have distinct values in {1, . . . , n}. It also encodes that ari keeps the ith trans-
action Tj in the arbitration order.

∧

1≤i≤n

∨

1≤j≤n

(ari = j) ∧
∧

1≤i,j≤n

(i �= j =⇒ ari �= arj)

∧
∧

1≤j≤n

∨

1≤i≤n

(ari = j =⇒ Tj(Xi, X
′
i, Wri))

(Arbitration)

(Input-States) encodes the possible sets of symbolic states Xi that a trans-
action in the arbitration order i can read from. A transaction in ith order can
either read from the output snapshot of a transaction earlier than itself in the
arbitration order or a symbolic state that has the effects of first j < i transac-
tions in the arbitration order. The formula φRead(cm) further restricts the set
of symbolic values w.r.t. a consistency model cm ∈ {CC,PSI,PC,SI,SER} as
we explain in the next subsection.

∧

0<i≤n

∨

0≤j<i

(
∧

x∈Vars

(
Xi.x = X′

j .x
) ∨

∧

x∈Vars

(Xi.x = Yj .x)

)
∧ φRead(cm)

(Input-States)

(Output-States) encodes the valuation of the variables Y1≤i≤n which
summarizes the effects of first i transactions in the arbitration order. For
each variable x ∈ Vars, if the ith transaction writes to x, Yi.x is equal to
the output value of ith transaction X′

i.x. Otherwise, Yi.x keeps the existing
value of x, i.e., Yi−1.x.1 The formula φWrite(cm) further restricts the set of
symbolic values w.r.t. a consistency model cm ∈ {CC,PSI,PC,SI,SER}.

∧

0<i≤n

∧

x∈Vars

((Wri(x) =⇒ Yi = X′
i.x) ∧ (¬Wri(x) =⇒ Yi.x = Yi−1.x)) ∧ φWrite(cm)

(Output-States)

(Initial) encodes the initial valuation of the variables. Initially, Y0 is equal
to the initial variable valuation.

∧

x∈Vars

(Y0.x = X′
0.x ∧ X0.x = X′

0.x) (Initial)

The formula Φ is the intersection of the formulas above, which encodes
all possible executions of T1, . . . , Tn satisfying Int, Ext and TransVis:

Φ = (Arbitration) ∧ (Input-States) ∧ (Output-States) ∧ (Initial)

1 Our encoding follows Last Writer Wins (LWW) policy.

Verifying Weakly Consistent Transactional Programs 271

We check whether some property φProg on x ∈ Vars holds for
all possible executions of the program by using (Program-Prop). We
obtain (Program-Prop) by replacing the accesses of x ∈ Vars to the
symbolic valuation Yn.x, so that we evaluates φ on the symbolic val-
uation of the variables obtained after executing transactions T1, . . . , Tn.

φProg[∀x ∈ Vars. Yn.x/x] (Program-Prop)

Theorem 1. The encoded set of variable valuations satisfies the property φ
under causal consistency iff the formula Φ ∧ ¬(Program-Prop) is not satis-
fiable with φRead(cm) = true and φWrite(cm) = true.

The theorem follows from the fact that the encoded set of executions satis-
fies Int, Ext and TransVis axioms. The axiom Int is trivially satisfied by the
Transaction-Summary which is obtained by symbolically executing a transac-
tion. Ext is satisfied by restricting the input symbolic valuation Xi.x to the last
visible value to the transaction in the arbitration order i. The axiom TransVis
is satisfied by the relation between the symbolic input/output states of trans-
actions. For any three transactions Tari

, Tarj
and Tark

such that Xj = X′
i and

Xk = X′
j , Tark

operating on the symbolic output state of Tarj
sees the effect of

Tarj
as well as the effect of Tari

on whose output state Tarj
operates. Therefore,

for all Tari

vis−−→ Tarj
and Tari

vis−−→ Tark
, we have Tari

vis−−→ Tark
.

Notice that all the program behaviors encoded by the formula—without any
further restrictions on which symbolic values to read or which transactions to
commit—are not allowed by all weak consistency models. In the next subsection,
we restrict the executions for different consistency models.

3.3 Encoding the Consistency Model

We model the allowed set of executions A = 〈H, vis , ar〉 under the given con-
sistency model cm ∈ { PSI, PC, SI, SER} by incorporating the restrictions of
these consistency models into two additional constraints in the formula Φ:

φRead(cm) Constrains the visibility relation vis ⊆ ar , i.e., the effects of which
transactions can be visible for a transaction by restricting the set of
symbolic states a transaction can read from

φWrite(cm) Constrains which transactions can commit concurrently based on
the set of variables they write to

CC φRead(CC) = true φWrite(CC) = true
PSI φRead(PSI) = true φWrite(PSI) = φ-NoConflict
PC φRead(PC) = φ-Prefix φWrite(PC) = true
SI φRead(SI) = φ-Prefix φWrite(SI) = φ-NoConflict
SER φRead(SER) = φ-TotalVis φWrite(SER) = true

Fig. 3. Encodings for φRead and φWrite to constrain the set of executions.

272 B. K. Ozkan

Tar1 = Tar2 = Tar3

Y1 = X 1 Y2 = X 2 Y3 = X 3

X1 X 1 X2 X 2 X3 X 3

(a) The symbolic execution produces a serial execution of Tar1 , Tar2 and Tar3 .

Tar1

Tar2

Tar3
Y1 = X 1

Y2 = X 2

Y3 = Y2 X 3

X 1 X 1

X 2

X 3

= X2

= X3

(b) The symbolic execution produces an execution under snapshot isolation. Both
transactions Tar2 and Tar3 operate on the snapshot valuation X 1 produced by Tar1 .

Fig. 4. Two different executions of transactions Tar1 , Tar2 , Tar3 . Initially, Y0 = X0.

In order to satisfy Prefix, TotalVis and NoConflict, we restrict the
possible set of symbolic valuations which satisfy Φ. Figure 3 lists the formulas
for constraining the executions to satisfy the axioms defined in Sect. 2.3.

(φ-Prefix) requires the symbolic variable valuation Xi read by a transaction
to be a prefix state, i.e., a valuation of variables obtained after the effect of a
prefix of transactions in the arbitration order.

∧

1≤i≤n

∨

0≤j<i

∧

x∈Vars

(Xi.x = Yj .x) (φ−Prefix)

(φ-TotalVis) requires the visibility relation to be a total order. It requires
the input state Xi of the transaction in the ith arbitration order to be the output
state of the transaction in the (i−1)th arbitration order, i.e., X′

i−1. In this case,
X′

i−1 is equal to Yi−1 since there are no concurrent transactions.
∧

1≤i≤n

∧

x∈Vars

(Xi.x = Yi−1.x) (φ-TotalVis)

(φ-NoConflict) requires that if the transaction Tari
reads from the sym-

bolic state of an earlier transaction Tark
, there are not any transactions Tarj

in

between Tark
and Tari

(where Tarj
� vis−−→ Tari

and Tari
� vis−−→ Tarj

) which update
the same variable with Tari

.

∧

0≤k<i≤n

∧

x∈Vars

⎛

⎝(Xi = X′
k ∧ Wrari

.x) =⇒
∧

k<j<i

¬Wrarj
.x

⎞

⎠ (φ-NoConflict)

Theorem 2. The answer to the verification problem in Definition 3 for a history
H = 〈Vars, {T1, . . . , Tn}〉, consistency model cm ∈ {CC,PSI,PC,SI,SER},
and program assertion φProg is Yes iff Φ ∧ ¬Program-Prop is not satisfiable.

Example 1. Figure 4(a) encodes a serializable execution by sequencing the sym-
bolic states in the arbitration order. It feeds the output state of a transaction

Verifying Weakly Consistent Transactional Programs 273

Tari
to the input transaction of Tari+1 where Ti

ar−→ Tari+1 . In a serializable exe-
cution, the prefix state which summarize the effects of first i transactions w.r.t.
the arbitration is equal to the output valuation of the ith transaction.

Example 2. Figure 4(b) encodes an execution of transactions under snapshot iso-
lation. In that particular execution, both transactions Tar2 and Tar3 operate on
the output snapshot of Tar1 (i.e., Tar1

vis−−→ Tar2 and Tar1

vis−−→ Tar3) and they are
concurrent to each other (i.e., Tar2 � vis−−→ Tar3 and Tar3 � vis−−→ Tar2). This is a valid
execution under SI iff Tar2 and Tar3 update a disjoint set of variables. Similar
to the serializable case, Y0 keeps the initial values of the data variables which is
read by the transaction with the smallest arbitration, Y1 = X[1] keeps the updates
of Tar1 . The snapshots Y2 and Y3 keep the effects up to the second and third
transactions in the arbitration respectively. In this example, the symbolic valu-
ations Y and X differ from each other. Consider Tar2

ar−→ Tar3 where Tar2 writes
to x ∈ Vars and Tar3 writes to y ∈ Vars. Then, the symbolic states X2 and
X3 would be respectively be aware of only the updates on x and y respectively.
On the other hand, Y3 would summarize the effects of all three transactions,
incorporating the updates on both x and y. Consider an alternative execution of
the same example in Fig. 4(b) under causal consistency, which allows conflicting
updates. In a case where both Tar2 and Tar3 write to the same variable, the
value in the snapshot Y3 would be determined by the conflict resolution policy
(denoted with � in the figure). For LWW policy, the final value is the value
written by the transaction with the highest arbitration among the concurrent
transactions (as given in (Output-States) formula), resulting in lost update in
this example.

4 Experiments

We show the applicability of our approach on a set of benchmarks extracted from
the literature related to weakly consistent databases. We encoded our formulas
in Boogie language [3] using its support for symbolic variables and symbolically
executed the transactions using Symbooglix [26] symbolic execution engine.

We performed our experiments on Auction, an online auction application
from [29], Courseware, a course registration service adapted from [20,28,29],
FusionTicket, a ticket sales application adapted from [21], and a simple bank-
ing system, SimpleBank, extracted from [16], all of which operate on key-value
data stores. We implemented these systems in Boogie language and instrumented
with the encoding of our formula. Then, we symbolically executed the instru-
mented transactions using Symbooglix and checked whether concurrent execu-
tion of some benchmark set of transactions satisfy the applications’ properties.

Table 2 lists the number of transactions (#T) in each benchmark and whether
the application properties are satisfied (φ) under different consistency models.
We also report the number of satisfiability queries solved (#q) and run time in
seconds (t) for computing different paths of the symbolic execution of the instru-
mented transactions. In addition to the consistency model, the number of satis-
fiability queries and hence the run time depend on the number of transactions,

274 B. K. Ozkan

the number of variables read/written by the transactions, and variable accesses
of concurrent transactions (i.e., the paths with certain concurrent accesses are
infeasible for some consistency models, pruning further exploration of certain
paths). We collected the results on a machine with a 2.6 GHz Intel Core i7
processor and 16 GB memory running macOS Catalina.

Auction models an auction system with transactions to start an auction,
place a bid, and close an auction. The application requires that when an auction
is closed, the declared winner is the bidder with the highest bid. Two different
versions of the application are given in [29]. In the first version, the application
property can be violated in the concurrent execution of transaction for placing
bids, and close of an auction. The second version aims to satisfy the property
by introducing tokens to replicas and closing an auction only after all tokens
are collected. We implemented and verified both versions. As shown in Table 2,
concurrent execution of start/close auction and two bidding transactions may
fail to satisfy the application property under consistency models weaker than
serializability in the first version (V1), while the second version (V2) satisfies it.

Courseware application provides transactions to add courses, add students,
enroll students to courses, and schedule courses to timetable slots. In the first
benchmark (B1), we check whether the property of having unique names for each
course holds if two transactions concurrently add a course with different ids but
the same name. While the property is satisfied under serializability, transac-
tions writing to different keys of the courses table can commit the same course
name in the weaker consistency models. In (B2), we check whether the property
of assigning each slot to a single course holds if two transactions concurrently
schedule a course. As explained in the example in Fig. 1(b), this property holds
under weaker consistency models SI and PSI as well as SER. In (B3), we run
transactions for adding a student, adding a course and enrolling the newly added
student to the newly added course concurrently. We verify that the application
property that requires each enrolled student and course exist in students and
courses respectively is satisfied in all consistency models.

FusionTicket application provides transactions to add events and purchase
tickets. The application updates the price of a ticket based on the sold number of
tickets and has an application property on the expected amount to be collected
from the tickets. Concurrent execution of multiple purchase transactions (B1)
may violate this property under weak consistency models. The application also
requires each event to be assigned to a different venue. Concurrent execution
of multiple transactions for adding events (B2), does not violate that property
under SI and PSI as well as SER. Because, the transactions writing to the same
venue cannot commit concurrently under SI and PSI.

SimpleBank is the implementation of the example in Fig. 1(a). Concurrent
transactions to withdraw some amount may violate the property of nonnegative
balance under consistency models weaker than SER.

Our experiments show that our approach can be used for verifying whether
an application’s properties hold when a set of transactions are run concurrently
on a weakly consistent database. As the method is parametric to the consistency
model, it is easy to check for the properties for a spectrum of consistency models.

Verifying Weakly Consistent Transactional Programs 275

Table 2. Experimental results for the benchmarks for varying consistency models.

Benchmark T SER SI PSI PC CC

#q t φ #q t φ #q t φ #q t φ #q t φ

Auction
V1 4 14000 360 ✓ 15134 490 ✗ 14414 418 ✗ 13982 381 ✗ 13262 300 ✗

V2 4 17993 1578 ✓ 18001 1393 ✓ 18349 1653 ✓ 17945 1495 ✓ 17897 1533 ✓

Courseware
B1 2 1073 23 ✓ 833 19 ✗ 593 13 ✗ 739 15 ✗ 499 9 ✗

B2 2 1514 353 ✓ 949 95 ✓ 589 62 ✓ 843 94 ✗ 483 34 ✗

B3 3 1745 509 ✓ 1325 298 ✓ 1257 323 ✓ 977 160 ✓ 881 82 ✓

FusionTicket
B1 3 1340 35 ✓ 1329 35 ✓ 1322 34 ✓ 1318 35 ✗ 1311 31 ✗

B2 2 956 31 ✓ 825 24 ✓ 753 21 ✓ 765 22 ✗ 693 17 ✗

SimpleBank B1 2 446 26 ✓ 348 16 ✗ 314 12 ✗ 280 12 ✗ 246 8 ✗

5 Related Work

A vast amount of work is devoted to relaxing the consistency in the context of
both databases and weak memory. Here we limit our focus to the correctness of
weakly consistent programs assuming the correctness of the underlying system.

A line of existing work reason about the correctness of weakly consistent
programs based on the serializability of the transactions [10,11,15,28,33]. The
notion of robustness against consisteny models [7] is introduced to characterize
whether the program produces the same behavior on a weakly consistent or seri-
alizable system. The serializability of weakly consistent transactions is analyzed
using both dynamic and static methods. The work in [10] builds a dynamic ana-
lyzer which incorporates commutativity and absorption properties of operations,
and [11] presents a static analysis tool for detecting non-serializable behaviors.
The work in [28] reduces serializability checking to a satisfiability problem for
automated detection of serializability violations. Focusing on widely used consis-
tency models, recent work presents algorithms for verifying robustness against SI
[4] and CC [5]. The robustness notion is also extended for different consistency
models (e.g., robustness against PSI towards SI) [17]. While these definitions
relax the serializability requirement, robustness towards a consistency model is
still restrictive for checking the correctness of applications.

Some works verify the application properties of the specifications of weakly
consistent programs. The work in [20,30] propose a proof system for showing
the application invariants hold under some choice of consistency guarantees of
distributed operations. While this work requires low level operational reasoning,
the work in [22] presents a system for compositional rely-guarantee style proof
system for concurrent transactions running on weakly consistent systems. The
work in [23] presents a program transformation based technique for verifying
transactional programs with relaxed operations. With a motivation of preserv-
ing program invariants, Explicit Consistency [2] is proposed as a variant of weak
consistency that exploits static analysis techniques to infer conflicting operations.
In a recent work, [29] presents a proof rule to verify specifications of distributed

276 B. K. Ozkan

objects. Differently, our method verifies implementations of transactional pro-
grams by modeling the behavior of underlying weakly consistent system.

In the context of exploring program behaviors, Repliss tool [34] exercises exe-
cutions of an application with randomized invocations. Commander [18] explores
the execution of a weakly consistent program using a bounded scheduler parame-
terized in both the schedule exploration strategy and also the consistency model.
Different from execution based approaches which runs the system for differ-
ent possible executions, we present an encoding which symbolically captures all
behaviors of the program implementation under a consistency specification.

6 Conclusion

We presented a satisfiability based method for the verification of transactional
programs running on weak consistency models. Our method summarizes the
transactions by using symbolic execution, encodes the set of possible program
executions under a consistency model into a satisfiability formula and checks the
program assertions in the symbolic set of program states satisfying the formula.
To the best of our knowledge, our work is the first to utilize symbolic execution
techniques for the analysis of weakly consistent transactions.

Acknowledgements. We would like to thank Rupak Majumdar for his feedback and
contribution during various stages of this work.

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
definitions, implementation, and programming. Distributed Comput. 9(1), 37–49
(1995)

2. Balegas, V., et al.: Putting consistency back into eventual consistency. In: The 10th
European Conference on Computer Systems, EuroSys, pp. 6:1–6:16. ACM (2015)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

4. Beillahi, S.M., Bouajjani, A., Enea, C.: Checking robustness against snapshot iso-
lation. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 286–304.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 17

5. Beillahi, S.M., Bouajjani, A., Enea, C.: Robustness against transactional causal
consistency. In: 30th International Conference on Concurrency Theory, CONCUR.
LIPIcs, vol. 140, pp. 30:1–30:18 (2019)

6. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: ACM SIGMOD International Conference
on Management of Data, pp. 1–10. ACM Press (1995)

7. Bernardi, G., Gotsman, A.: Robustness against consistency models with atomic
visibility. In: 27th International Conference on Concurrency Theory, CONCUR.
LIPIcs, vol. 59, pp. 7:1–7:15 (2016)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-030-25543-5_17

Verifying Weakly Consistent Transactional Programs 277

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

9. Brewer, E.A.: Towards robust distributed systems (abstract). In: The 9th Annual
ACM Symposium on Principles of Distributed Computing, p. 7. ACM (2000)

10. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Serializability for eventual
consistency: criterion, analysis, and applications. In: The 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL, pp. 458–472. ACM
(2017)

11. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Static serializability analy-
sis for causal consistency. In: The 39th ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLD, pp. 90–104. ACM (2018)

12. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014)

13. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pp. 271–284. ACM
(2014)

14. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence protocol:
a robust abstraction for replicated shared state. In: 29th European Conference on
Object-Oriented Programming, ECOOP, LIPIcs, vol. 37, pp. 568–590 (2015)

15. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
ACM Trans. Database Syst. 34(4), 20:1–20:42 (2009)

16. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: 26th International Conference on Concurrency
Theory, CONCUR. LIPIcs, vol. 42, pp. 58–71 (2015)

17. Cerone, A., Gotsman, A.: Analysing snapshot isolation. J. ACM 65(2), 11:1–11:41
(2018)

18. Dabaghchian, M., Rakamaric, Z., Kulahcioglu Ozkan, B., Mutlu, E., Tasiran, S.:
Consistency-aware scheduling for weakly consistent programs. ACM SIGSOFT
Softw. Eng. Notes 42(4), 1–5 (2017)

19. Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.E.: Making snap-
shot isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

20. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause i’m strong
enough: reasoning about consistency choices in distributed systems. In: The 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, pp. 371–384. ACM (2016)

21. Holt, B., Bornholt, J., Zhang, I., Ports, D.R.K., Oskin, M., Ceze, L.: Disciplined
inconsistency with consistency types. In: The 7th ACM Symposium on Cloud Com-
puting, pp. 279–293. ACM (2016)

22. Kaki, G., Nagar, K., Najafzadeh, M., Jagannathan, S.: Alone together: composi-
tional reasoning and inference for weak isolation. In: Proceedings ACM Program-
ming Language, vol. 2(POPL), pp. 27:1–27:34 (2018)

23. Kuru, I., Kulahcioglu Ozkan, B., Mutluergil, S.O., Tasiran, S., Elmas, T., Cohen,
E.: Verifying programs under snapshot isolation and similar relaxed consistency
models. In: The 9th ACM SIGPLAN Workshop on Transactional Computing
(2014)

24. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
Operating Syst. Rev. 44(2), 35–40 (2010)

25. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

278 B. K. Ozkan

26. Liew, D., Cadar, C., Donaldson, A.F.: Symbooglix: a symbolic execution engine
for boogie programs. In: 2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST, pp. 45–56. IEEE Computer Society (2016)

27. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: The 23rd
ACM Symposium on Operating Systems Principles 2011, SOSP, pp. 401–416. ACM
(2011)

28. Nagar, K., Jagannathan, S.: Automated detection of serializability violations under
weak consistency. In: 29th International Conference on Concurrency Theory, CON-
CUR. LIPIcs, vol. 118, pp. 41:1–41:18 (2018)

29. Nair, S.S., Petri, G., Shapiro, M.: Proving the safety of highly-available distributed
objects. ESOP 2020. LNCS, vol. 12075, pp. 544–571. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44914-8 20

30. Najafzadeh, M., Gotsman, A., Yang, H., Ferreira, C., Shapiro, M.: The CISE tool:
proving weakly-consistent applications correct. In: The 2nd Workshop on the Prin-
ciples and Practice of Consistency for Distributed Data, pp. 2:1–2:3. ACM (2016)

31. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29

32. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: The 23rd ACM Symposium on Operating System Principles
2011, SOSP, pp. 385–400. ACM (2011)

33. Zellag, K., Kemme, B.: How consistent is your cloud application? In: ACM Sym-
posium on Cloud Computing, SOCC, p. 6 (2012)

34. Zeller, P.: Testing properties of weakly consistent programs with repliss. In: The 3rd
International Workshop on Principles and Practice of Consistency for Distributed
Data. pp. 3:1–3:5 (2017)

https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

NetSheriff: Sheltering Software-Defined
Networks from Rogue Switches

Paolo Laffranchini1,2(B) , João Miranda1, Nuno Machado3, Lúıs Rodrigues1,
Etienne Rivière2, and Ramin Sadre2

1 INESC-ID, IST, ULisboa, Portugal
{paolo.laffranchini,joaoshmiranda,ler}@tecnico.ulisboa.pt

2 ICTEAM, UCLouvain, Belgium
{paolo.laffranchini,etienne.riviere,ramin.sadre}@uclouvain.be

3 Teradata, San Diego, USA
nuno.machado@teradata.com

Abstract. We present NetSheriff – a system to automatically isolate
faulty switches in Software-Defined Networks. To pinpoint the devices
responsible for network misbehaviors, NetSheriff performs a differential
analysis between expected paths of packets (obtained from a formal
model of the network forwarding specification) and the corresponding
observed paths taken by flows (obtained through network monitoring).
We have built a prototype of NetSheriff supporting both OpenFlow and
P4 Programmable devices and evaluated it on different network topolo-
gies, simulating real traffic behavior following recent data center stud-
ies. Our results show that NetSheriff is able to accurately identify the
switch(es) responsible for different types of errors.

1 Introduction

The Software-Defined Networking (SDN) paradigm has emerged as an appeal-
ing and powerful approach for simplified network management [23,28] and trou-
bleshooting [11,16], by allowing a logically centralized view of the network,
through which network operators can apply fine-grained routing policies to net-
work traffic. It provides a clear separation between the data plane, a collec-
tion of switches in charge of forwarding packets, and the control plane, which
defines the actual network behavior by installing routing rules specifying how
the packet-handling is performed at each switch. The controller entity communi-
cates these rules using a standard API such as OpenFlow [24]. Recent advances

This work was supported by national funds through Fundação para a Ciência e
a Tecnologia (FCT) via projects COSMOS (via the OE with ref. PTDC/EEI-
COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua com-
ponente FEDER” with ref. Lisboa-01-0145-FEDER-029271) and UIDB/50021/2020.
Paolo Laffranchini was supported by a fellowship from the Erasmus Mundus Joint
Doctorate in Distributed Computing (EMJD-DC) program funded by the European
Commission (EACEA) (FPA 2012-0030).

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 279–295, 2021.
https://doi.org/10.1007/978-3-030-67087-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_18&domain=pdf
http://orcid.org/0000-0003-1059-2129
https://doi.org/10.1007/978-3-030-67087-0_18

280 P. Laffranchini et al.

in programmable switching hardware also allow programming custom forwarding
behavior and monitoring algorithms via a high-level language such as P4 [6].

The well-defined architecture of SDN along with a clear-cut semantics of
the control protocol offers new capabilities for automatic testing and verifica-
tion of different layers of the SDN stack [12]. A large body of recent work in
SDN has been devoted to the development of such tools [1,7,10,15–17,25,26,29].
Despite these advances, debugging SDNs still remains a daunting task. In fact,
errors such as forwarding loops, black holes, suboptimal routing, and access
control violations can potentially stem from firmware and hardware bugs in
the equipment[14,30] that prevent the forwarding devices from operating as
expected. The root causes of these errors are not easily identifiable [13,21]. Ver-
ification tools are not adequate for this type of situations, because they are
based on high-level models, derived from static configuration analysis, and rely
on predictable models of the network to detect problems. Due to their non-
deterministic nature, errors caused by hardware faults can only be detected at
runtime. To help network operators identify misbehaving devices, tools such as
OFRewind [29], ndb [10] and EverFlow [33] typically resort to instrumentation,
event logging, and replay mechanisms. However, inspecting the event trace in
order to isolate the faulty component(s) is usually time-consuming [8,26].

In this paper, we propose NetSheriff, a system that combines features from
both verification and debugging tools to automatically isolate faulty switches
in SDNs. NetSheriff achieves its goal by comparing the expected path of a flow
(computed statically) against the actual route followed in the network (cap-
tured dynamically). Concretely, NetSheriff leverages its knowledge of the network
model and exploits the forwarding rules issued by the controller to compute the
path expected to be followed by the packets as they traverse the network. Then,
at runtime, NetSheriff records the actual sequence of switches a packet traverses
and performs an analysis between the expected and the observed paths to check
whether they match. If a mismatch is detected, NetSheriff searches for the loca-
tion where the two paths began to diverge and reports the faulty components
responsible for the error. Since issues are characterized by peculiar differences
between the expected and observed paths, NetSheriff is also able to indicate the
nature of the error (e.g., suboptimal routing or black hole). This helps network
operators diagnose and fix problems in a more timely manner. We evaluated our
prototype of NetSheriff on networks with different topologies and facing different
bugs. The results of our experiments show that NetSheriff is able to accurately
and efficiently identify faulty switches.

NetSheriff is built upon existing tools and systems, namely VeriFlow [16],
NetSight [11], VeriDP [32], and MAFIA [20]. Each of these systems have limita-
tions when used in isolation. VeriFlow cannot detect run-time errors; NetSight
and MAFIA can extract debug information from the switches but leave up to the
network administrator the work of analyzing the logs to detect the root cause of
a bug; VeriDP can only detect a limited number of bugs. The main contribution
of our work is to show that, by combining these tools, it is possible to create
a system that detects bugs in a more efficient and comprehensive manner than
with previous work.

NetSheriff 281

2 Related Work

Over the past few years a number of solutions have been proposed to improve
the reliability of Software Defined Networks. In this section, we overview some
of the prior efforts on this topic that are most related to our work.

An important line of research is represented by approaches whose goal is to
capture and replay sequences of events in order to reproduce an issue. Interesting
systems that follow in this category are NetSight [11], OFRewind [29], STS [26]
and EverFlow [33]. OFRewind is a debugging tool that allows the record and
replay of packets flowing in the network. A network operator can then repro-
duce the bug multiple times in an attempt to isolate the root cause. NetSight
records the packet histories and offers an interactive debugger (ndb [10]) that
eases the navigation through different states of the network in order to help net-
work operators identify which sequences of events cause the incorrect behavior.
Note that both NetSight and OFRewind offer the means to inspect a sequence of
packets that lead to a failure, but do not provide any clue about the switch(es)
that actually caused the error. As a consequence, network operators still have
to progressively inspect these sequences in order to isolate the problem. Ever-
Flow permits fine-grained recording of specific packets by marking them with a
“debug” flag. EverFlow is then able to inject the recorded packet as an exact
copy of the original and trace its behavior in the network. Although the gran-
ularity of the recording allows for precise identification of errors, operators still
need to detect the issues before being able to trace the behavior of the probe
in the network. STS [26], on the contrary, aims at reducing the effort spent on
troubleshooting SDN control software by automatically eliminating from buggy
traces the events that are not related to the error. This curated trace, denoted
minimal causal sequence, contains the smallest amount of events responsible for
triggering the bug. STS is, however, unable to detect errors outside the control
software (for instance, hardware problems in switches).

Several tools focus on verifying the correctness of Software Defined Net-
works [3,7]. Some follow a static approach, usually prior to deployment, per-
forming either symbolic execution of controller and switch implementations or
thorough testing against a model of the network. For instance, NICE [7] com-
bines model checking and symbolic execution to automatically discover errors in
SDN controller programs, by generating a sequence of carefully crafted packets
that triggers the flaw. VeriCon [3] verifies SDN programs at compilation time,
validating their correctness not only for any admissible topology but also for all
possible sequences of network events. VeriCon has the advantage of guaranteeing
that a given SDN program is indeed free of errors. In turn, SOFT [17] is a tool
designed to find bugs in OpenFlow implementations or interoperability problems
among switches from different vendors. VeriFlow [16] is a real-time approach that
intercepts commands issued by the controller and certifies, by building a static
model of the forwarding policy, whether the forwarding rules installed do not
violate network invariants. VeriFlow is able to detect flawed configurations in
real-time but its outcome only highlights issues intrinsic to the policies, as it
does not take into account the actual switch runtime behavior.

282 P. Laffranchini et al.

Conversely to static tools, systems that employ a dynamic approach perform
verification of the forwarding behavior of the network at runtime. ATPG [30] fre-
quently generates probe packets that verify reachability policies and performance
health in the data plane, however, it does not check the trajectory of probes. In
contrast, SDN Traceroute [1] is a tool to collect information about the path taken
by probes forged with specific header fields that mimick real data packets in the
network. However, it does not provide automatic checking for the whole network
model, thus not relieving the user from the burden of checking the correctness
of the network configuration. Monocle [25] takes similar concepts a step forward
and aims at verifying whether the switch actions over the packets are consistent
with the ones intended by the set of rules installed. It does so by periodically
generating probes whose goal is to test the appropriate matching of all rules
installed in each switch. However, the probes may be treated differently from
real packets. PathletTracer [31] and CherryPick [27], instead, perform tagging of
switch identifiers directly in the packets to be able to reconstruct their paths.
However, they do not perform any verification that packets actually respect the
routing policy specified from the controller. VeriDP [32] checks if the routing
policies are being applied by having the switches tag packets with their identi-
fier (and input/output port) as they flow. The path a packet takes is directly
encoded in its header by means of a Bloom filter updated at each hop. When
the packet leaves the network, a report is sent to a centralized collector which
then verifies the path. However, it may suffer limitations in the presence of a
switch hardware fault which prevents a packet from completing the processing
pipeline. In this case, the report for the packet may never be generated and the
problem might remain indefinitely in the network.

3 Motivation and Fault Scenarios

To motivate our work, we illustrate how hardware and/or software faults can
cause forwarding errors in current networks. These bugs are common reasons for
network failures according to a survey of network operators [30].

Inconsistent Routing. Due to limited hardware resources (and in particular
memory), modern SDN switches typically split forwarding tables between hard-
ware and software [14]. While hardware innovations will eventually enable larger
memory capacity, there still exists a fundamental trade-off between the size
of the rules table, power consumption, and costs. A hybrid hardware-software
implementation of forwarding tables requires, however, the usage of rule evic-
tion policies which may fail to respect dependencies among multiple forwarding
rules [14]. Furthermore, some implementations lack features such as rule prior-
ity ordering [19,32]. All of these issues may cause a switch to handle a packet
using an incorrect forwarding rule, thus causing a mismatch between the routing
policy known by the controller and its actual execution in the network.

Connectivity Loss. The process of reliably updating the network data plane
is challenging in SDN [18]. Switches might fail in correctly installing or updat-
ing forwarding rules [25], causing a mismatch between the routing behavior and

NetSheriff 283

the controller’s policy. This issue typically stems from an incorrect execution of
the acknowledgment protocol between the switch and the controller [19,32]. An
overloaded switch might even indefinitely delay the execution of controller com-
mands [9]. These problems could inevitable cause packet losses or reachability
issues, hence degrading performance and the overall quality of service.

4 NetSheriff

NetSheriff is a system that automatically detects incorrect traffic paths and
pinpoints the network devices responsible for the network misconfiguration.
NetSheriff relies on features from model checking to compute the expected path
of a packet, as well as tracing mechanisms to efficiently obtain the respective
observed path. NetSheriff supports two different tracing mechanisms. The first,
only requiring standard SDN switches, is based on an extension of NetSight [11]
and relies on the online generation of postcards. The second is designed to work
with programmable switches and uses the MAFIA [20] interface to implement a
robust P4-based variant of VeriDP [32]. While the first implementation is more
general, the second is able to trace paths more efficiently.

NetSheriff comprises four components: (1) the seer, (2) the instrumenter
proxies, (3) the collector, and (4) the checker. These components, depicted in
Fig. 1, are described in the following paragraphs.

Seer. The seer component in NetSheriff is responsible for computing in real-
time the expected path of a packet. The seer is built upon VeriFlow [16], which
models the network’s behavior as a set of forwarding graphs. A forwarding graph
is a representation of how packets belonging to the same equivalence class should
traverse the network. Any two packets p1 and p2 are said to belong the same
equivalence class (EC) if and only if, for any network device R, the forwarding
action at R is identical for p1 and p2. Forwarding graphs indicate, therefore, how
the traffic is expected to flow across the network. Vertices in a forwarding graph
represent switches, while edges model network links and indicate forwarding
decisions between pairs of switches. To maintain the network model consistent,
VeriFlow intercepts OpenFlow messages exchanged between the controller and
the switches and updates forwarding graphs according to the newly installed
rules. Results are then reported to the NetSheriff checker, which will store them
to perform the differential analysis between expected and observed packet flows.

Instrumenter. After being processed by the seer, OpenFlow messages are then
intercepted by the instrumenter. The role of the instrumenter is to setup actions
in the switches that allow NetSheriff to trace the actual path followed by packets
of a given flow. These actions force switches to create, in certain conditions, a
postcard for an incoming packet that matches an installed rule. These postcards
are forwarded to the NetSheriff’s collector for analysis. Currently, NetSheriff
supports two different technologies to generate postcards when packets of a tar-
get flow are forwarded by a given switch. The first is based on NetSight [11]
and works with any SDN compliant switch. The second uses the MAFIA [20]
interface and only works with programmable switches.

284 P. Laffranchini et al.

switch

controller

command

postcard

packet

forwarding
graph

packet
history

differential
analysis

Seer
1

Instrumenter
2

Collector
3

Checker
4

Fig. 1. Overview of NetSheriff building blocks

Collector. The collector component consists of a server (centralized or dis-
tributed) that receives the postcards sent from the switches and reorganizes
them in order to create multiple distinct collections called packet histories [11].
The collector can run on the same host as the SDN controller, assuming it is capa-
ble to handle the additional load of processing packet histories. A packet history
corresponds to the set of all postcards generated by a packet while traversing the
network. The packet history allows to (1) reconstruct the path taken by a given
packet, and (2) understand which switches performed any header modifications.
The propagation of postcards can be performed in two different modes: in-band
or out-of-band. With the former, postcards share the same network used by nor-
mal traffic and therefore consume part of the available bandwidth; with the latter
postcards are instead routed via dedicated links that connect each switch to the
collector, avoiding bandwidth reservation at the expense of additional hardware
dedicated to this purpose.

Checker. The checker component is responsible for comparing the expected
and observed graphs of packets and signaling unexpected forwarding decisions,
pinpointing the switch that misbehaved. To this end, the checker leverages both
the forwarding graphs generated by the seer and the packet histories assem-
bled by the collector to perform a differential analysis. The differential analysis
consists in projecting the expected path of a packet (given by the forwarding
graph) against its actual path (indicated by the packet history) and in check-
ing for potential divergences. If the projection of the two paths yields a per-
fect match, then the packet was correctly forwarded across the network and
NetSheriff does not report any anomaly. On the other hand, when a mismatch
is detected NetSheriff reports the issue indicating the switch where the diver-
gence occurred. This switch is then deemed as responsible for the fault. As an
example, consider the scenario in Fig. 2, which depicts a network of five switches:
A,B,C,D, and E and assume that a given packet is expected to be routed from
A to E via A → D → E (Fig. 2b). If the actual trajectory of the packet ends to

NetSheriff 285

Fig. 2. Differential analysis performed by NetSheriff’s checker.

be A → D → B → E (Fig. 2c), the checker would be able to notice the mismatch
while performing the differential analysis between the two paths and, as a result,
report an error identifying switch D as the source of the problem.

Depending upon the pattern of the mismatch in the path projection,
NetSheriff is able to report additional information regarding the type of the
error, e.g., a black hole or suboptimal routing. Section 5 further details the algo-
rithm allowing to infer the type of error according to the projection. NetSheriff
can also handle scenarios where there are multiple correct paths for a given flow
(e.g., when using load balancing); however, in the current implementation, we
only assume that a single correct path exists. An extension to cover the use of
multiple paths is planned for future work.

5 Implementation

We have built NetSheriff’s by leveraging upon the features provided by previous
works: VeriFlow [16], NetSight [11], VeriDP [32], and MAFIA [20]. In particular,
the seer component is built upon VeriFlow, adding the necessary code to com-
municate the computed graphs to NetSheriff. One version of the instrumenter is
based on NetSight. The other is a variant of VeriDP [32] that uses MAFIA [20]1.
The NetSheriff collector and checker are built on top of NetSight’s server. Since
both VeriFlow and NetSight have been implemented by introducing a proxy
layer between the SDN controller and the switches, our implementation follows
this approach and connects the two proxies together. Forwarding rules issued
by the controller are thus first intercepted by VeriFlow, which uses them to
compute the expected graphs that will then be notified to NetSheriff. Then, the
rules are relayed to the instrumenter, that uses NetSight or MAFIA to create
the actions required to generate postcards. Only the packet headers are sent
to the collector and the payload is stripped. In the current implementation, we

1 Hybrid setups can also be supported by instrumenting P4 compliant switches using
MAFIA code, whereas the remaining switches would be configured using NetSight.

286 P. Laffranchini et al.

install postcard generation rules to track all flows. Clearly, the system is flexible
to allow fine-grained monitoring of a selection of flows and reducing network
overheads. Postcards generated by switches are sent to the collector which will
perform the differential analysis and identify possible forwarding mismatches. In
the following, we describe the implementation of these steps.

5.1 NetSight-Based Instrumentation

The first implementation of the instrumenter is an extension of NetSight’s Flow
Table State Recorder [11] and has the goal of enabling the capture of the informa-
tion required to reconstruct the path that packets follow at runtime. To achieve
this, it intercepts forwarding rule modifications sent to the switches and aug-
ments them with two new actions. The first action instructs the switch to create
a postcard for any incoming packet that matches the newly installed rule. The
postcard consists of a copy of the original packet extended to carry additional
information, namely the identity of the switch, an identifier indicating the version
of the switch’s flow table, and the input port and then truncated to the minimum
network packet size. The second action, in turn, instructs the switch to forward
the postcard to the NetSheriff’s collector. In this case, postcards are created for
every packet of the flow being analyzed, and at every switch. The advantage of
this implementation is that it works with any SDN compliant switch, although
with a non-negligible signaling overhead (discussed in the evaluation).

5.2 MAFIA-Based Instrumentation

The second implementation of the instrumenter uses the MAFIA [20] interface
to implement a robust variant of VeriDP [32]. This method significantly reduces
the number of postcards generated, but only works with programmable switches.
This implementation requires switches to have the ability to inspect and change
packet fields on the fly, something that is supported by P4 [6] compliant switches.

In this implementation, the instrumenter instructs the ingress switch to sam-
ple packets of the flow. A fraction of these packets are tagged to be processed
by other switches in a horizon that is set to a value from 1 to the maximum
path length (different sampled packets use different horizons). Packets that have
been tagged will be processed by other switches in their path until the horizon
is reached. When the horizon is reached, a postcard is generated and sent to
the collector. This simple mechanism allows to implement a simplified version
of traceroute in the SDN context [1], without requiring much involvement from
the SDN controller and generating way less probing traffic.

In order to setup the action in each switch, we leverage the MAFIA [20]
language, that has been designed to simplify the development of monitoring
solutions for SDN networks. MAFIA, that stands for Measurements As FIrst-
class Artifacts, defines a set of reusable primitive building blocks that can be
composed to express measurement tasks in a concise way. MAFIA code associ-
ated with the NetSheriff instrumentation described above is presented in Figs. 3
and 4. It consists of a brief state declaration and the operations to be executed

NetSheriff 287

1 // Code executed at ingress switch
2 flowid = key(ip . src , ip .dest ,tcp. src ,tcp.dest , ip .proto)
3 // Current horizon values
4 horizons =HashMap(key=flowid , size=1024, type=Counter(width=4)) ;
5 // Per−flow horizon values . Configured by the controller
6 horizons max =HashMap(key=flowid , size=1024, type=Counter(width=4)) ;
7
8 pkts
9 � tag(pkt.mafia.monitor, 0x1)

10 � match(horizons.read() == horizons max.read()) � horizons. reset()
11 � horizons.set(horizons.read() + 1)
12 � tag(pkt.mafia.horizon, horizons.read()))

Fig. 3. MAFIA code for ingress switches.

1 // Code executed at al l switches (including the ingress)
2 location = key(pkt. input port , switch. id , pkt.output port)
3 trajectory = BloomFilter(alg=”membership”, nhash=4, key=location , size=16);
4 horizon = Counter(width=4);
5
6 pkts
7 � match(pkt.mafia.monitor== 0x1)
8 �
9 (

10 � trajectory . insert()
11 � tag(pkt.mafia.path bf , pkt.mafia.path bf | trajectory .read()))
12 � trajectory . reset())
13 +
14 (� horizon.set(pkt.mafia.horizon − 1)
15 � tag(pkt.mafia.horizon, horizon.read())
16 � match(pkt.mafia.horizon == 0) � duplicate(reports))
17 reports
18 � collect()

Fig. 4. MAFIA code to generate the path Bloom filter.

for each incoming packet. The packets that need to be traced are tagged with
two control fields: a Bloom filter that captures the path followed by the packet
and a horizon field that indicates when a postcard needs to be generated.

Figure 3 depicts the relevant code that runs at the ingress switch. Two
hashmaps indexed by the flow 5-tuple (Lines 4 and 6) are used as persistent state
about the flow horizons. The former will store the latest value used while the lat-
ter will hold its max value as configured by the controller (e.g., the expected path
length). The switch sets the monitor flag to 1 and sets the horizon counter to a
value in the interval [1, path length]. The current horizon value is incremented for
each packet (Line 11). Each packet is tagged, therefore, with a different horizon
in a round-robin manner.

Figure 4 depicts the relevant code to generate the Bloom filter representation
of the packet’s path. It is executed at all switches, including the ingresses. Persis-
tent state includes a Bloom filter (Line 3) which is constructed on a per-packet
basis and a counter (Line 4) to handle the packet’s horizon. Only packets that
have the monitor flag set to 1 are processed (Line 7), by executing the follow-
ing sequence of actions: first, the trajectory Bloom filter is computed using the

288 P. Laffranchini et al.

switch identifier and the current packet’s input and (expected) output port(Line
10); then, its value written back in the packet into the path bf field (Line 11)
and finally reset (locally). Afterwards, the horizon counter is decremented (Line
14) and, if the horizon has reached the value 0, a postcard is generated (Line
16). Postcards are finally sent to a pre-configured collector (Lines 17–18).

5.3 Postcard Consolidation and Construction of GO

NetSheriff works by comparing a graph GE representing its expected path PE

and the graph GO representing its observed path PO. The observed path is con-
structed by consolidating multiple postcards associated with multiple individual
packets. Consolidation is mandatory in the MAFIA-based version of NetSheriff
because postcards are generated for different packets at different points in the
path (depending on the horizon parameter, as described above). Thus multiple
postcards need to be combined to create a complete observed path. However,
even with the NetSight implementation postcards can be lost in the network and
by consolidating postcards generated by multiple individual packets it is possible
to obtain a more reliable observation of the actual path.

Postcard consolidation is performed by the collector as follows. First, post-
cards produced by the MAFIA instrumentation are unfolded by creating a sep-
arate postcard for every switch included in the Bloom filter, as if an individual
postcard has been sent by each of these switches. This allows to process MAFIA
postcards in the same way as NetSight postcards. Then, postcards associated
with the same packet are grouped. The sets of postcards from the same packet
are then fed to the algorithm that constructs the observed path. The graph GO

representing the observed path PO is constructed as follows. Let vi and vj be
two adjacent vertices of the physical network graph (i.e., they represent switches
that are directly connected to each other). If in the set of consolidated postcards
there is a postcard from vi and one from vj , such that both postcards belong
to the same packet, then both vi, vj , and the edge between these vertices are
added to GO. This process is performed for all adjacent vertices.

5.4 Differential Analysis

Depending upon the divergences between the expected and the observed paths,
NetSheriff categorizes different forwarding errors. Routing flaws appear as pecu-
liar patterns in the observed graphs when compared to the expected one. Con-
sider, for a packet of a given EC, a graph GE representing its expected path PE

and the graph GO representing its observed path PO. We can distinguish four
macro-situations:

1. GE ≡ GO: if the expected and observed graphs match, then the packet tra-
versed the network topology correctly and no error is reported.

2. GE ⊃ GO: if the observed path is a subgraph of the expected, then packets
have been incorrectly dropped at some switch. This typically captures the
existence of a black hole in the network.

NetSheriff 289

3. GE ⊂ GO: if the expected path is a subgraph of the observed, then a switch
might have forwarded a packet to a switch it was not expected to. This
error may cause an access control violation as packets may reach a protected
network segment and/or network congestion since switch and link resources
may be used by unexpected flows.

4. GE �≡ GO: if the observed path is not equivalent to the expected, meaning
that they diverge in some vertex, then the packet traversed the network via
switches it was not supposed to use. The packet might however reach its
destination, although not along the path that was defined by the rules defined
by the controller. This may cause suboptimal routing in the network, possibly
affecting its overall performance and efficacy.

6 Evaluation

We evaluated NetSheriff’s prototype in terms of its efficacy in identifying faulty
switches and differentiate multiple types of errors. The experiments were per-
formed on an Intel i7-720QM with 8GB RAM DDR3, 250 GB SSD and Ubuntu
14.04, using Mininet [22]. To evaluate NetSheriff’s efficiency in detecting errors,
we randomly injected different faults in switches.

We evaluate the impact of NetSheriff’s instrumentation overhead, i.e., how
long it takes to compute expected paths and configure the switches tables and
actions, in terms of the delay to setup a TCP connection. Finally, we measure
the efficiency at which NetSheriff is able to process packet histories to detect
forwarding errors. Unless otherwise specified, we employ simple linear topolo-
gies for the microbenchmarks since the number of hops in a path is the only
factor affecting the experiments. Different topologies variate features such as
the number of back-up paths or the average network diameter, but NetSheriff
mechanisms are independent of these characteristics.

6.1 Proxy Overhead

When a new path is setup, NetSheriff requires SDN commands to be intercepted
by the seer and by the instrumenter, such that the expected graph is extracted
and the actions to generate postcards are installed at the switches. In the case
of the MAFIA implementation, postcard generation code is embedded in the
P4 MAFIA program loaded on the switch but requires initial state (e.g., flow
horizons) to be set up by the measurement controller. We measure the delay of
performing these steps by establishing a TCP connection between two hosts and
monitoring the TCP handshaking phase. Figure 5 depicts the average overhead
across ten runs (variance negligible) for the various approaches. As it can be seen,
the overhead increases with the number of switches. This happens because, in
the current prototype, the deployment of the required rules at each individual
switch in the path is done sequentially.

Thus, the longer the path, the larger the impact of both a non-instrumented
system and of a system using NetSheriff during routing policy changes (e.g., new

290 P. Laffranchini et al.

●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

Number of hops

D
el

ay
 (

m
illi

se
co

nd
s

)

● NetSight + VeriFlow
No proxy
MAFIA P4

Fig. 5. The impact of NetSight and NetSheriff proxies on TCP handshaking. Both
include VeriFlow’s graph computation times.

flow setup or steering), because both forwarding graph and switch configuration
need to be updated. Note that even in a system without instrumentation, the
setup of a path also grows proportionally with the number of hops. In the figure,
it is possible to see that the NetSight implementation is slower than the MAFIA
implementation, because with NetSight the postcard generation actions are gen-
erated and deployed on the fly while the corresponding code is pre-installed in
the MAFIA implementation.

6.2 Performance of the Differential Analysis

To evaluate the performance of NetSheriff while processing the postcards it
receives, we conducted various experiments recording the time it takes to fully
check the history of a packet. We vary the path length up to a maximum of ten
switches, which is a fair upper bound for the average diameter of most modern
networks, with topologies that can even be optimized down to a diameter of
2–3 [5]. Figure 6 shows the CDF of the processing latency of one million packets
injected into the network. The history processing time stays below 6 microsec-
onds for paths up to 5 hops, while it may require up to 10 and 15 microseconds
as the length increases to 7 and 10 switches, respectively. For fat trees topologies,
which experience an average path length less than 5 hops, hence, the verification
throughput stays between 14 · 106 and 16 · 106 histories per second in 90% of the
cases. However, as our implementation is still non-optimized and single-threaded,
we expect a higher verification throughput in the future.

NetSheriff 291

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

0.2

0.4

0.6

0.8

1.0

Verification Time (microseconds)

C
D

F

● 3 hops
5 hops
7 hops
10 hops

Fig. 6. CDF of the history processing delay in NetSheriff.

6.3 Error Identification

We have run an extensive evaluation of the tool, by manually injecting several
types of faults in different configurations of fat-tree network topologies [2], com-
monly adopted in data centers. Figure 7 illustrates the forwarding errors gener-
ated by the faults (using a simplified network view). The faults were injected by
modifying directly the forwarding tables in the switches. In all cases, NetSheriff
was able to pinpoint the faulty switch responsible for the errors.

Table 1 shows the error detection latency for the various bugs. To detect a
routing error, in a NetSight-based instrumentation, we need to wait for a single
packet to traverse its path consisting of N hops (NTd) and for the correspond-
ing postcards to arrive at the collector (Tc). The MAFIA-based instrumentation
adds an additional Nδ to the latency, because it needs to collect postcards from
N packets, until a complete path is formed (each packet generates a postcard at
a different hop). The latency for detecting partial and total drops is dominated
by a timeout (which can be configured), since postcard generation is interrupted
after the misbehaving hop. If the network gets congested due to a spike in traffic,
postcards might get delayed and received after the timeout is expired, causing
false positives; this can be easily solved by raising an alarm after multiple, sub-
sequent packet histories indicate the presence of a forwarding error.

6.4 Overhead

Figure 8 shows the traffic increase due to the postcard generation. We use the
same metric as in the original NetSight paper [11]. The plot shows the traffic
increase in percentage for the two different versions of NetSheriff, namely the

292 P. Laffranchini et al.

(a) Total unexpected forwarding (b) Partial unexpected forwarding (c) Unexpected partial drop

(d) Unexpected total drop (e) Suboptimal routing

A DCB E

F

G

A DCB E

F

G

A DCB E

F

G

A B C D E

F

G

Faulty switch

Expected path

Observed path

A DCB E

F

G H

Fig. 7. Forwarding bugs detected by NetSheriff. Green arrows depict the expected
paths; red arrows the faulty observed paths. (Color figure online)

Table 1. Error detection latency (N: correct path length; Td: single hop latency; δ:
inter-packet arrival time; Tc: time for a postcard to reach the collector).

Bug NetSheriff

NetSight-based Mafia-based

Routing errors NTd + Tc Nδ + NTd + Tc

Partial/Total drop NTd + Tc + Timeout Nδ + NTd + Tc + Timeout

NetSight based implementation (lines tagged as “NS”) and the MAFIA based
implementation (lines tagged as “M”). Naturally, the overhead is a function
of the average packet size in the network and the size of the postcard. Both
implementations generate postcards that are truncated to the minimum net-
work packet size, which in this case is 64 Bytes. We have also considered three
different average network packet sizes, namely 1,031 Bytes, as reported in the
NetSight paper [11], 850 Bytes, a value observed in datacenters [4], and a net-
work with a smaller average packet size of 576 Bytes. In the x-axis we varied the
number of hops of the flow path. As expected, with the NetSight implementa-
tion, traffic increase is larger for paths with larger number of hops, given that a
postcard is generated at every hop for every packet. Conversely, in the MAFIA
implementation, a single postcard is generated for each data packet at determin-
istic points in the path, as deep as the current horizon value for the flow. Thus,
the overhead of the MAFIA implementation is below 12%, even in networks with
a small average packet size. The overhead for the NetSight implementation is
31% for a network with average packet size of 1,031 Bytes and paths of 5 hops
(as detailed by Handigol et al. [11]), but can be substantially larger in networks
with smaller average packet size.

Table 2 shows the additional switch resources consumed by NetSheriff. If
NetSight-based, instrumenting the switch to generate the postcards requires 4
additional OpenFlow actions (3 tagging, 1 sampling); we couldn’t characterized
the amount of stages required because it varies between OpenFlow implementa-
tions. If MAFIA-based, the resource overhead consists of 4 packet manipulations

NetSheriff 293

Fig. 8. Traffic increase due to postcards.

Table 2. NetSheriff processing overhead.

Overhead NetSheriff

NetSight-based MAFIA-based

Stateful computations 4 OpenFlow actions 4 pkt manipulations + 14 mem. read/write

Pipeline stages NA 7

actions (same as OpenFlow), plus 14 stateful memory read/write associated to
the generation of the path bloom filter and horizon updating. These actions are
spread across 7 stages of the P4 switch pipeline. The resource overhead for the
MAFIA case is low given its capability to drastically reduce postcard traffic.

7 Conclusions

We proposed and evaluated NetSheriff, an automatic debugging tool for SDN.
NetSheriff combines formal validation techniques and packet recording mech-
anisms with the goal of monitoring the consistency between the forwarding
behavior and the policies defined by the SDN controller. NetSheriff works with
standard SDN switches and with programmable switches, offering different cov-
erage/efficiency trade-offs. We experimentally evaluated NetSheriff with different
types of errors, showing that NetSheriff was able to pinpoint the faulty switch
and categorize the errors.

Acknowledgments. We thank the anonymous reviewers and Elad Schiller for their
constructive feedback, that allowed us to improve this paper.

References

1. Agarwal, K., Rozner, E., Dixon, C., Carter, J.: SDN traceroute: tracing sdn for-
warding without changing network behavior. In: HotSDN (2014)

294 P. Laffranchini et al.

2. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: SIGCOMM (2008)

3. Ball, T., et al.: Vericon: towards verifying controller programs in software-defined
networks. In: SIGPLAN Not (2014)

4. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic
characteristics. SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)

5. Besta, M., Hoefler, T.: Slim fly: a cost effective low-diameter network topology.
In: SC 2014: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2014)

6. Bosshart, P., et al.: P4: programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev. 44(3), 87–95 (2014)

7. Canini, M., Venzano, D., Perešıni, P., Kostić, D., Rexford, J.: A nice way to test
openflow applications. In: NSDI (2012)

8. Cisco Systems Inc.: Spanning tree protocol problems and related design considera-
tions. http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-
protocol/10556-16.html (2005)

9. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee,
S.: DevoFlow: scaling flow management for high-performance networks. In: SIG-
COMM (2011)

10. Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D., McKeown, N.: Where is the
debugger for my software-defined network? In: HotSDN (2012)

11. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., McKeown, N.: I know what
your packet did last hop: using packet histories to troubleshoot networks. In: NSDI
(2014)

12. Heller, B., et al.: Leveraging SDN layering to systematically troubleshoot networks.
In: HotSDN (2013)

13. Hendriks, L., Schmidt, R., Sadre, R., Bezerra, J., Pras, A.: Assessing the quality
of flow measurements from openflow devices. In: TMA (2016)

14. Katta, N., Alipourfard, O., Rexford, J., Walker, D.: Cacheflow: dependency-aware
rule-caching for software-defined networks. In: SOSR (2016)

15. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: NSDI (2012)

16. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: verifying network-
wide invariants in real time. In: HotSDN (2012)

17. Kuzniar, M., Peresini, P., Canini, M., Venzano, D., Kostic, D.: A soft way for
openflow switch interoperability testing. In: CoNEXT (2012)

18. Kuzniar, M., Peresini, P., Kostić, D.: Providing reliable fib update acknowledg-
ments in SDN. In: CoNEXT (2014)

19. Kuźniar, M., Pereš́ıni, P., Kostić, D.: What you need to know about SDN flow
tables. In: PAM (2015)

20. Laffranchini, P., Rodrigues, L., Canini, M., Krishnamurthy, B.: Measurements as
first-class artifacts. In: IEEE InfoCom (2019)

21. di Lallo, R., Gradillo, M., Lospoto, G., Pisa, C., Rimondini, M.: On the practical
applicability of SDN research. In: NOMS (2016)

22. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: HotNets IX (2010)

23. McKeown, N.: How SDN will shape networking, October 2011. https://www.
youtube.com/watch?v=c9-K5O qYgA

24. McKeown, N., et al.: OpenFlow enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
https://www.youtube.com/watch?v=c9-K5O_qYgA
https://www.youtube.com/watch?v=c9-K5O_qYgA

NetSheriff 295

25. Pereš́ıni, P., Kuźniar, M., Kostić, D.: Monocle: dynamic, fine-grained data plane
monitoring. In: CoNEXT (2015)

26. Scott, C., et al.: Troubleshooting blackbox SDN control software with minimal
causal sequences. In: SIGCOMM (2014)

27. Tammana, P., Agarwal, R., Lee, M.: CherryPick: tracing packet trajectory in
software-defined datacenter networks. In: SOSR (2015)

28. Wang, R., Butnariu, D., Rexford, J.: Openflow-based server load balancing gone
wild. In: Hot-ICE2011 (2011)

29. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.: OFRewind: enabling
record and replay troubleshooting for networks. In: ATC (2011)

30. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test packet gen-
eration. In: CoNEXT (2012)

31. Zhang, H., Lumezanu, C., Rhee, J., Arora, N., Xu, Q., Jiang, G.: Enabling layer
2 pathlet tracing through context encoding in software-defined networking. In:
HotSDN (2014)

32. Zhang, P., et al.: Mind the gap: monitoring the control-data plane consistency in
software defined networks. In: CoNEXT (2016)

33. Zhu, Y., et al.: Packet-level telemetry in large datacenter networks. In: SIGCOMM
(2015)

Self-stabilizing Uniform Reliable
Broadcast

Oskar Lundström1, Michel Raynal2, and Elad M. Schiller1(B)

1 Chalmers University Technology, Gothenburg, Sweden
osklunds@student.chalmers.se, elad@chalmers.se

2 Institut Universitaire de France IRISA, Rennes, France
michel.raynal@irisa.fr

Abstract. We study a well-known communication abstraction called
Uniform Reliable Broadcast (URB). URB is central in the design and
implementation of fault-tolerant distributed systems, as many non-trivial
fault-tolerant distributed applications require communication with prov-
able guarantees on message deliveries. Our study focuses on fault-tolerant
implementations for time-free message-passing systems that are prone
to node-failures. Moreover, we aim at the design of an even more
robust communication abstraction. We do so through the lenses of self-
stabilization—a very strong notion of fault-tolerance. In addition to node
and communication failures, self-stabilizing algorithms can recover after
the occurrence of arbitrary transient faults; these faults represent any vio-
lation of the assumptions according to which the system was designed to
operate (as long as the algorithm code stays intact). We propose the first
self-stabilizing URB algorithm for asynchronous (time-free) message-
passing systems that are prone to node-failures. The algorithm recovers
within O(bufferUnitSize) (in terms of asynchronous cycles) from transient
faults, where bufferUnitSize is a predefined constant. Also, the communi-
cation costs are similar to the ones of the non-self-stabilizing URB. The
main differences are that our proposal considers repeated gossiping of
O(1) bits messages and deals with bounded space (which is a prerequisite
for self-stabilization). Moreover, each node stores up to bufferUnitSize · n
records of size O(ν + n log n) bits, where n is the number of nodes and
ν is the number of bits needed to encode a single URB instance.

1 Introduction

We propose a self-stabilizing implementation of a communication abstraction
called Uniform Reliable Broadcast (URB) for time-free message-passing systems
whose nodes may fail-stop.

Context and Motivation. Fault-tolerant distributed systems are known to
be hard to design and verify. Such complex challenges can be facilitated by
high-level communication primitives. These high-level primitives can be based
on low-level ones, such as the one that allows nodes to send a message to only
one other node at a time. When an algorithm wishes to broadcast message m

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 296–313, 2021.
https://doi.org/10.1007/978-3-030-67087-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_19

Self-stabilizing URB 297

to all nodes, it can send m individually to every other node. Note that if the
sender fails during this broadcast, it can be the case that only some of the nodes
receive m. Even in the presence of network-level support for broadcasting or
multicasting, failures can cause similar inconsistencies. To the end of simplifying
the design of fault-tolerant distributed algorithms, such inconsistencies need to
be avoided.

There are many examples that show how reliable broadcasts significantly sim-
plify the development of fault-tolerant distributed systems, e.g., State Machine
Replication [24,30], Atomic Commitment [27], Virtual Synchrony [6] and Set-
Constrained Delivery Broadcast [23], to name a few. The weakest variance,
named Reliable Broadcast (RB), lets all non-failing nodes agree on the set of
delivered messages. Stronger RB variants specify additional requirements on the
delivery order. Such requirements can simplify the design of fault-tolerant dis-
tributed consensus, which allows reaching, despite failures, a common decision
based on distributed inputs. Consensus algorithms and RB are closely related
problems [22,28], which have been studied for more than three decades.

Task Description. Uniform Reliable Broadcast (URB) is a variance of the reli-
able broadcast problem, which requires that if a node (faulty or not) delivers a
message, then all non-failing nodes also deliver this message [22]. The task speci-
fications consider an operation for URB broadcasting of message m and an event
of URB delivery of message m. The requirements include URB-validity, i.e., there
is no spontaneous creation or alteration of URB messages, URB-integrity, i.e.,
there is no duplication of URB messages, as well as URB-termination, i.e., if
the broadcasting node is non-faulty, or if at least one receiver URB-delivers a
message, then all non-failing nodes URB-deliver that message. Note that the
URB-termination property considers both faulty and non-faulty receivers. This
is the reason why this type of reliable broadcast is named uniform. This work
considers a URB implementation that is quiescent in the sense that every URB
operation incurs a finite number of messages. Moreover, our implementation uses
a bounded amount of local memory.

Fault Model. We consider a time-free (a.k.a asynchronous) message-passing
system that has no guarantees on the communication delay, no notion of global
clocks nor does the algorithm can explicitly access the local clock (or time-
out mechanisms). Our fault model includes (i) detectable fail-stop failures of
nodes, and (ii) communication failures, such as packet omission, duplication,
and reordering. In addition, to the failures captured in our model, we also aim to
recover from arbitrary transient faults, i.e., any temporary violation of assump-
tions according to which the system and network were designed to operate, e.g.,
the corruption of control variables, such as the program counter, packet payload,
and operation indices, which are responsible for the correct operation of the stud-
ied system. Since the occurrence of these failures can be arbitrarily combined,
we assume that these transient faults can alter the system state in unpredictable
ways. In particular, when modeling the system, we assume that these violations
bring the system to an arbitrary state from which a self-stabilizing system should
recover.

298 O. Lundström et al.

Related Work. The studied problem can be traced back to Hadzilacos and
Toueg [22] who consider asynchronous message-passing systems, where nodes
may crash. They solved a number of variants to the studied problem with respect
to the delivery order, e.g., FIFO (first in, first out), CO (causal order), and TO
(total order). They also showed that TO-URB and consensus have the same
computability power in the context above. We offer the basic version of URB
(with a FIFO extension in the technical report [26]). To the end of satisfying
the quiescent property, we consider a more advanced model, see the remark in
[28, Section 4.2.1]. For a detailed presentation of existing non-self-stabilizing
URB solutions and their applications, we refer the reader to [1,28] and our
summary in Sect. 3. We follow the design criteria of self-stabilization, which was
proposed by Dijkstra [10] and detailed in [4,11]. Delaët et al. [9] present a self-
stabilizing algorithm for propagation of information with feedback (PIF) that
can be the basis for implementing a self-stabilizing URB. However, Delaët et
al. do not consider node failures [9, Section 6]. To the best of our knowledge,
there is no self-stabilizing algorithm that solves the studied problem for the
studied fault-model. Moreover, set-constraint delivery (SCD) broadcast [28] is
an extension to uniform reliable broadcast with FIFO message delivery. The
set of applications to SCD broadcast includes snapshot objects and distributed
shared counters. We note the existence of self-stabilizing SCD broadcast algo-
rithm and these two application [25], which serve as alternative manners for
implementing self-stabilizing snapshot objects [21] and vector-clocks [29]. Fur-
thermore, there are earlier proposals for self-stabilizing high-level communication
abstractions [18–20].

Contributions. We present an important module for dependable distributed
systems: a self-stabilizing algorithm for Uniform Reliable Broadcast (URB) for
time-free message-passing systems that are prone to node failures. To the best
of our knowledge, we are the first to provide a broad fault model that includes
detectable fail-stop failures, communication failures, such as packet omission,
duplication, and reordering as well as arbitrary transient faults. The latter can
model any violation of the assumptions according to which the system was
designed to operate (as long as the algorithm code stays intact).

The stabilization time of the proposed solution is in O(bufferUnitSize) (in
terms of asynchronous cycles), where bufferUnitSize is a predefined constant.
Our solution uses only a bounded amount of space, which is a prerequisite for
self-stabilization. Specifically, each node needs to store up to bufferUnitSize · n
records and each record is of size O(ν + n log n) bits, where n is the number of
nodes in the system and ν is the number of bits needed to encode a single URB
instance. Moreover, the communication costs of our algorithm are similar to the
ones of the non-self-stabilizing state-of-the-art. The main difference is that our
proposal considers repeated gossiping of O(1) bits messages. Our solution uses
a novel self-stabilizing deterministic flow control scheme that itself deserves an
independent interest when designing, for example, transport layer protocols. We
also show a self-stabilizing extension for FIFO order delivery that, due to the

Self-stabilizing URB 299

page limit, appears in the technical report version of this work [26] along with
more proof details, such as the closure proof.

2 System Settings

We consider a time-free message-passing system that has no guarantees on the
communication delay. Moreover, there is no notion of global (or universal) clocks
and the algorithm cannot explicitly access the local clock (or timeout mecha-
nisms). The system consists of a set, P, of n fail-prone nodes (or processors)
with unique identifiers. Any pair of nodes pi, pj ∈ P have access to a bidi-
rectional communication channel, channelj,i, that, at any time, has at most
channelCapacity ∈ N packets on transit from pj to pi (this assumption is due to
a well-known impossibility [11, Chapter 3.2]). Note that we do not require the
communication channels to be reliable [14,15].

Our analysis considers the interleaving model [11], in which the node’s pro-
gram is a sequence of (atomic) steps. Each step starts with an internal computa-
tion and finishes with a single communication operation, i.e., a message send or
receive. The state, si, of node pi ∈ P includes all of pi’s variables and channelj,i.
The term system state (or configuration) refers to the tuple c = (s1, s2, · · · , sn).
We define an execution (or run)R = c[0], a[0], c[1], a[1], . . . as an alternating
sequence of system states c[x] and steps a[x], such that each c[x + 1], except for
the starting one, c[0], is obtained from c[x] by a[x]’s execution.

Task Specifications. The set of legal executions (LE) refers to all executions
in which the task requirements hold. Let TURB denote the task of Uniform Reli-
able Broadcast (URB) and LEURB denote the set of executions in which the
system fulfills TURB’s requirements, which Definition 1 specifies and considers
the operation, urbBroadcast(m), and the event urbDeliver(m). When node pi ∈ P
URB-broadcasts message m, it does so by calling urbBroadcast(m). The specifi-
cations assume that every broadcasted message is unique, say, by associating a
message identity, i.e., the pair (sender identifier , sequnce number), where the
sequence number is an (integer) index that is locally generated by the sender.

Definition 1 (Uniform Reliable Broadcast [28]). Let R be a system exe-
cution. We say that the system demonstrates in R a URB construction if the
validity, integrity and termination requirements are satisfied. (Validity) Suppose
that pi URB-delivers message m in step ai ∈ R with pj as a sender. There
is a step aj ∈ R that appears in R before ai in which pj URB-broadcasts m.
(Integrity) Every message can be delivered at most once. I.e., R includes at most
one step in which node pi URB-delivers message m. (Termination) Suppose that
a non-faulty pi takes a step in R that URB-broadcasts or URB-delivers message
m. Each non-faulty pj ∈ P URB-delivers m during R.

The URB implementation considered in this paper also satisfies the quies-
cent property (in a self-stabilizing manner). Our implementation uses MSG and

300 O. Lundström et al.

Frequency

Duration Rare Not rare

Any violation of the assumptions according to Packet failures: omissions,
Transient which the system operates (but the code stays duplications, reordering

intact). This can result in state corruption. (yet fair communications).

Permanent Detectable fail-stop failures.

Legal execution (LE)Recovery periodPrior to the system
start, consider all faults

Satisfied task requirements start here

Consider all benign faults

System execution starts here

Fair execution needed, i.e., only packet failures

Fig. 1. The table above details our fault model and the chart illustrates when each
fault set is relevant. The chart’s gray shapes represent the system execution, and the
white boxes specify the failures considered to be possible at different execution parts
and recovery guarantees of the proposed self-stabilizing algorithm. The set of benign
faults includes both packet failures and fail-stop failures.

MSGack messages for conveying data added to the system via urbBroadcast oper-
ations. We say that execution R satisfies the quiescent property if every URB-
broadcast message that was URB-delivered incurs a finite number of MSG and
MSGack messages. We note that the quiescent property does not consider all the
messages that the proposed solution uses. Specifically, we use GOSSIP messages
of constant size that the algorithm sends repeatedly. Note that self-stabilizing
systems can never stop sending messages, because if they did, it would not be
possible for the system to recover from transient faults [11, Chapter 2.3].

Fault Model. We model failures as environment (rather than algorithm) steps.

Benign Failures. When the occurrence of a failure cannot cause the system exe-
cution to lose legality, we refer to that failure as a benign one (Fig. 1).

Node Failure. We consider fail-stop failures, in which nodes stop taking steps
in a way that can be detected, say, via unreliable failure detectors [8].

Communication Failures and Fairness. We consider time-free message-passing
systems that are oblivious to the time in which the packets arrive and departure.
We assume that the communication channels are prone to packet failures, such
as omission, duplication, reordering. However, if pi sends a message infinitely
often to pj , node pj receives that message infinitely often. We refer to the latter
as the fair communication assumption. For example, the proposed algorithm
sends infinitely often GOSSIP messages from any node to any other. Despite the
possible loss of messages, the communication fairness assumption implies that
every node receives infinitely often GOSSIP messages from any non-failing node.

Self-stabilizing URB 301

Arbitrary Transient Faults and Self-stabilization. We consider any vio-
lation of the assumptions according to which the system was designed to oper-
ate. We refer to these violations and deviations as arbitrary transient faults and
assume that they can corrupt the system state arbitrarily (while keeping the pro-
gram code intact). The occurrence of an arbitrary transient fault is rare. Thus,
our model assumes that the last arbitrary transient fault occurs before the system
execution starts [11]. Moreover, it leaves the system to start in an arbitrary state.
An algorithm is self-stabilizing with respect to LE’s task, when every execution
R of the algorithm reaches eventually a suffix Rlegal ∈ LE that is legal. That is,
Dijkstra [10] requires that ∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ N,
where the operator ◦ denotes that R = R′ ◦ R′′ concatenates R′ with R′′. The
main complexity measure of self-stabilizing algorithms, called stabilization time,
is the time it takes the system to recover after the occurrence of the last transient
fault. We say that a system execution is fair when every step that is applica-
ble infinitely often is executed infinitely often and fair communication is kept.
Since asynchronous systems do not consider the notion of time, we use the term
(asynchronous) cycles as an alternative way to measure the period between two
system states in a fair execution. The first (asynchronous) cycle (with round-
trips) of a fair execution R = R′◦R′′ is the shortest prefix R′ of R, such that each
non-failing node executes at least one complete iteration in R′. The second cycle
in execution R is the first cycle in execution R′′, and so on. Note that, in the
absence of transient faults, no fairness assumptions are required in any practical
settings. Also, existing non-self-stabilizing solutions (Sect. 3) do not make any
fairness assumption, but they do not consider recovery from arbitrary transient
faults regardless of whether the execution eventually becomes fair or not.

Building-Blocks: Self-stabilizing Unreliable Failure Detectors. As
in [28], unreliable failure detectors are used for providing the quiescent property.
We denote by Faulty ⊆ P the set of nodes that eventually fail-stop during execu-
tion R and Correct = P\Faulty(F). We assume the availability of self-stabilizing
Θ failure detectors [28], which [7] has implemented. I.e., the locally accessible
set trusted satisfies the Θ-accuracy and Θ-liveness requirements. The former
implies that at any time, trusted i includes at least one non-faulty node, which
may change over time, and the latter implies that eventually trusted i includes
only non-faulty processors. We also assume the availability of a class of self-
stabilizing HB (heartbeat) failure detectors [28], which has the HB -completeness
and HB -liveness properties. The former implies that any faulty node is eventu-
ally suspected by every non-failing node and the latter there is a time after which
only the faulty nodes are suspected. A self-stabilizing HB failure detector lets
pi ∈ P broadcast its heartbeat information on a periodic basis. When pj ∈ P
receives a heartbeat message from pi, it takes the maximum of the locally stored
and received entries. Moreover, once any entry reaches the value of the maximum
integer, MAXINT , a global reset procedure is used (see Sect. 6).

302 O. Lundström et al.

3 Non-self-stabilizing URB Algorithms

For the reader’s assistance, we briefly review existing URB solutions. In the
absence of failures, one can substitute urbBroadcast(m) with {foreach pj ∈ P send
MSG(m) to pj} and raise urbDeliver(m) upon pj ’s reception of m. The following
algorithms are from [2,3]. We follow here their description as given in [28]. Algo-
rithm1 considers undetectable fail-stop failures but with reliable communications.
Node pi broadcasts message m by sending MSG(m) to itself (line 1). Upon the
arrival of a fresh message (line 3), the receiver propagates MSG(m) to all other
nodes (except itself and the sender) before raising urbDeliver(m) (line 4).

Algorithm 1: URB assuming reliable communications; code for pi ∈ P
1 operation urbBroadcast(m) do send MSG(m) to pi;
2 upon MSG(m) arrival from pk begin
3 if first reception of m then
4 {foreach pj ∈ P \ {pi, pk} do send MSG(m) to pj}; urbDeliver(m);

Algorithm 2 considers a system in which at most t < n/2 nodes may crash
undetectability and unreliable communications. Node pi broadcasts m by send-
ing MSG(m) to itself (line 5) while assuming it has a reliable channel to itself.
Upon MSG(m)’s first reception (line 7), pi creates the set recBy [m] = {i, k} to
contain the identities of nodes that have received MSG(m), before activating the
Diffuse(m) task. In case this is not MSG(m)’s first arrival (line 8), pi merely
adds the sender identity, k, to recBy [m]. The task Diffuse(m) is responsible for
transmitting (and retransmitting) MSG(m) to at least a majority of the nodes
before URB-delivering m (lines 11 to 12).

Algorithm 2: URB for t < n/2 undetectable node failures; pi’s code
5 operation urbBroadcast(m) do send MSG(m) to pi;
6 upon MSG(m) arrival from pk begin
7 if not the first reception of m then recBy [m] ← recBy [m] ∪ {k};
8 else allocate recBy [m]; recBy [m] ← {i, k}; activate Diffuse(m) task;

9 do forever begin
10 foreach active Diffuse(m) task do
11 foreach pj ∈ P : j /∈ recBy [m] do send MSG(j, seq) to pj ;
12 if (|recBy [m]| ≥ t + 1) ∧ (pi has not URB-delivered m) then

urbDeliver(m);

Note that the task Diffuse(m) never stops transmitting messages. Using Θ
failure detectors (Sect. 2), Algorithm 3 avoids such infinite number of retrans-
missions by enriching Algorithm 2 as follows. (i) The URB-delivery condition,

Self-stabilizing URB 303

Algorithm 3: Quiescent URB using Θ-failure detectors; code for pi ∈ P
13 operation urbBroadcast(m) do send MSG(m) to pi;
14 upon MSG(m) arrival from pk begin
15 if not the first reception of m then recBy [m] ← recBy [m] ∪ {k};
16 else allocate recBy [m]; recBy [m] ← {i, k}; activate Diffuse(m) task;
17 send MSGack(m) to pk;

18 upon MSGack(m) arrival from pk do {recBy [m] ← recBy [m] ∪ {k}}
19 do forever begin
20 foreach active Diffuse(m) task do
21 foreach j ∈ trusted \ recBy [m] do send MSG(m) to pj ;
22 if trusted ⊆ recBy [m] ∧ (pi has not URB-delivered m) then

urbDeliver(m);

trusted ⊆ recBy [m], (line 22) substitutes the condition |recBy [m]| ≥ t + 1
(line 12). (ii) Upon MSG(m) reception, pi replies with MSGack(m). Moreover,
when pi receives MSGack(m) from pk, it marks the fact that pk received m by
adding k to recBy [m]. (iii) Node pi can eventually avoid sending messages to
a faulty node pj since pi repeatedly transmits MSG(m) to pj as long as pj is
trusted and j /∈ recBy [m] (line 21). Eventually, either pj receives MSG(m) and
acknowledges it, or in case pj is faulty, j /∈ trusted i due to the Θ-completeness.
Moreover, due to the strong Θ-accuracy, j /∈ trusted i cannot hold before pj fails
(if it is faulty).

Algorithm 4 adds the quiescent property to Algorithm3 by allowing pi to
transmit MSG(m) to pj only when j ∈ recBy [m] (because from pi’s perceptive,
pj has not yet received MSG(m)) and HB [j] has increased since the previous
iteration (because from pi’s perspective, pj is not failing).

4 Unbounded Self-stabilizing Uniform Reliable Broadcast

Algorithm 5 is a self-stabilizing quiescent URB algorithm. This first transient-
fault tolerance solution uses bounded space, thus, it is more evolved than
Algorithm 4.

Local Variables and their Purpose (lines 36 to 41). Algorithm 5 main-
tains unique message numbers, seq, which is incremented upon urbBroadcast
invocations. The buffer variable stores all active messages as records with the
fields: (i) msg, which is a URB message, (ii) id, which is the URB-broadcaster
identifier, (iii) seq is the message number, (iv) delivered , which holds True
only after message delivery, (v) recBy , which is a set of identifiers of nodes
that have acknowledged msg, and (vi) prevHB , which is a failure detector
value used for deciding when to re-transmit msg. Every node stores at most
n · bufferUnitSize records, where bufferUnitSize can be set according to the avail-
able memory. When accessing buffer records, we use a query-oriented notation,

304 O. Lundström et al.

Algorithm 4: Quiescent URB via Θ-&HB -failure detectors; code for pi

23 operation urbBroadcast(m) do send MSG(m) to pi;
24 upon MSG(m) arrival from pk begin
25 if not the first reception of m then recBy [m] ← recBy [m] ∪ {k};
26 else allocate recBy [m];recBy [m]←{i,k}; activate Diffuse(m, [-1, . . . , -1])

task;
27 send MSGack(m) to pk;

28 upon MSGack(m) arrival from pk do {recBy [m] ← recBy [m] ∪ {k}}
29 do forever begin
30 foreach active Diffuse(m, prevHB) task do
31 let curHB := HB ;
32 foreach j ∈ trusted \ recBy [m] ∧ prevHB [m][j] < curHB [m][j] do
33 send MSG(m) to pj

34 prevHB [m] ← curHB [m];
35 if trusted ⊆ recBy [m] ∧ (pi has not URB-delivered m) then

urbDeliver(m);

e.g., (•, id = j, seq = s, •) ∈ buffer considers all records that their id and seq
fields hold j and s, respectively.

A Self-stabilizing Flow Control Scheme for Bounding buffer . Algorithm 5
bounds buffer using a flow control technique. In a nutshell, every sender keeps
track of the buffer space at the receiver-side and defer URB broadcasts whenever
it does not know that all trusted receivers have the space for new messages. To
that end, receivers and senders share, via gossip messages, the message sequence
numbers that their buffers store. This allows the nodes to detect inconsistencies.
For example, the sender makes sure that it never creates any new sequence
number that is not greater than all sequence number stored at the receiver-
sides. Also, the sender checks that it stores the entire window of messages so
that it could retransmit any messages that the receiver is missing.

On the receiver-side, there is a need to keep track of the highest sequence
number that was removed from the buffer. We say a record, with sequence num-
ber s, is obsolete if it had received acknowledgments from all trusted nodes and
then it was URB-delivered. Moreover, since pi needs to remove obsolete records
from its buffer, we also define that any record with sequence number lower than
s to be also obsolete. This way, pi can keep track of all the obsolete records it has
deleted using a single counter rxObsS [k], per sender pk, which stores the high-
est sequence number of records that pi considered to be obsolete. The counter
array txObsS i[] facilitates the sender, pi, control over its sending flow since it
can receive rxObsS i[k] from pk and store it at txObsSk[k]. (We denote variable
X’s value at node pi by Xi.) The flow control mechanism can simply defer the
processing a new URB-message when pk’s sequence number minus the minimum
value stored in txObsS [] (that arrived from a node that pk trusts) is smaller than
the maximum number of records, bufferUnitSize, that a receiver can buffer.

Self-stabilizing URB 305

maxSeqk(i)seqi
max

for all receivers

minTxObsSi() rxObsSk[i]txObsSi[k] maxSeqk(i)-bufferUnitSize
max

per sender pi
maxmin

for all receivers max
per receiver pk

rmaxSeq(i)

rmaxSeq(i)-1…

rrxObsS[i]+2

rrxObsS[i]+1

pk maintains per sender

rseq

rseq-1…

rminTxObsS()-1

rminTxObsS()

pi maintains for all receivers

assert: minTxObsSi() ≤ seqi ≤
minTxObsSi+ bufferUnitSize

receiver
pk

sender
pi

MSG(•,k,txObsS[k]+1)

MSGack(•)

Fig. 2. The self-stabilizing flow control scheme. The arrays on the figure sides represent
the portion of peers’ buffer variables that include records rs, where s is a sequence
number of a message sent from pi to pk. The single line arrows (dashed or not) and the
text next to them represent a logical update, e.g., x

max←−− y stands for x ← max{x, y}.
The text that appears below the arrow clarifies whether a single variable aggregates
these update or different entries in the array store the updated values. The dashed
arrows refer to updates that require communication between pi and pk. Note that all
communications occur concurrently.

Figure 2 describes our flow control scheme. The receiver pk repeatedly sends
to the sender, pi, the maximum pi’s sequence number, maxSeqk(i), that it stores
in its buffer, see the top dashed left arrow. This allows pi to make sure that seqi
is greater than any sequence number in the system that is associated with pi, as
shown by Theorem 1’s Argument (3). The buffer of pk cannot store more than
bufferUnitSize with messages from pi. Therefore, pk stores only messages that
their sequence numbers are between maxSeqk(i) and maxSeqk(i)−bufferUnitSize
and reports to pi the highest sequence number, rxObsSk[i], of its obsolete records
that are associated with pi, see the lowest dashed arrow. The latter stores this
value in rxObsS i[k] and makes sure it has the latest value from pk by sharing
rxObsS i[k] with it. The sender, pi, also uses rxObsS i[k] for bounding buffer i.
Specifically, minTxObsSi() aggregates the minimum value in rxObsS i[k] for any
trusted receiver pk (line 44). Using minTxObsSi(), the sender, pi, can assert that
minTxObsSi() < seqi ≤ minTxObsSi() + bufferUnitSize and buffer i includes all
the records that their sequence numbers are between minTxObsSi() and seqi
(line 550). Since, due to a transient fault, pi’s state might indicate the reception
of acknowledgment for a message that pk’s state shows that it has never received,
pi repeatedly resends the message that has the sequence number s, such that
s = rxObsS i[k] + 1 (line 61), cf. double dashed line arrows between pi and pk.

Algorithm 5’s Description. Upon urbBroadcast(m)’s invocation, Algorithm 5
lets pi process m without blocking as long as there is available space at all trusted
receivers (line 45). If so, then pi creates a unique operation index, seq and calls
update(m, j, s, k). The latter considers first the case in which buffer i does not
include a record with the identifier (j, s) of message m, which was forwarded from
pk. In this case, pi adds to buffer i the record (m, j, s,False, {j, k}, [-1, . . . , -1])

306 O. Lundström et al.

(line 49), which stands for the application message and its unique identifier, as
well as stating that it was not yet been delivered but that the identifiers of the
sending (j) and forwarding (k) nodes appear in recBy . Also, the record holds a
vector that is smaller than any value of the HB failure detector. If buffer i has
the record, pi adds to recBy the identifiers of the sending and forwarding nodes
(line 50). Algorithm 5’s do forever loop performs: (i) removal of stale informa-
tion (lines 53 to 64), (ii) processing of arriving messages (lines 58 to 62), and
(iii) gossiping of information that is needed for flow control and transient fault
recovery (line 65).

(i) The removal of stale information includes emptying the buffer whenever
there are records for which the msg field is ⊥ or when there are two records
with the same message identifier (line 53). Lines 55 to 63 implement recovery
strategies that facilitate the bounds on the buffer size. Algorithm 5 tests for the
case in which, due to an arbitrary transient fault, the sender does not store all of
its messages such that their sequence number is between mS+1 and seq (line 55),
where mS := minTxObsS() is the smallest obsolete number that pi had received
from a trusted receiver. The recovery here is done by sending up to bufferUnitSize
of the newest messages that can flush stale messages on the receiver-side. On the
receiver-side, Algorithm 5 makes sure that the gap between the largest obsolete
record, rxObsS [k] (of pk’s messages) and the largest buffered sequence number,
maxSeq(k), is not larger than bufferUnitSize (line 57). Algorithm 5 updates the
receiver-side counter that stores the highest obsolete message number per sender
(line 63). To the end of bounding buffer i, node pi keeps any message, m, that it
has not yet received an indication from all trusted receivers that they consider
m to be obsolete. It also keeps all non-obsolete messages.

(ii) pi delivers messages that their recBy has acknowledgments from all
trusted nodes (line 59) and mark them as delivered. Otherwise, it samples the HB
failure detector (line 60) and decides when a retransmission is needed (line 61)
in case acknowledgments are missing or because the message sequence num-
ber is greater by one than the largest obsolete message number known to the
sender. (The latter information facilitate to recover from arbitrary transient
faults.) These messages are received (line 66) and acknowledged to the sender,
cf. line 67.

(iii) pi gossips to pk control information about the maximum seq value that
pi stores in a pk record as well as pk’s obsolete records (lines 65 and 68). The
former allows pk to maintain the correctness invariant, i.e., seqk is not smaller
than any other seq value in the system that is associated with pk. The latter lets
pk to control the flow of URB broadcasts according to the available space.

5 Correctness

Theorem 1 shows that Algorithm 5 recovers after the occurrence of transient
faults. Theorem 2 shows that Algorithm 5 satisfies the task specifications.
Definition 2 presents Theorem 1’s conditions for bringing the system to a legal
execution.

Self-stabilizing URB 307

Algorithm 5: Self-stabilizing uniform reliable broadcast; code for pi

36 global constants: bufferUnitSize; /* max records per node in buffer */

37 local variables: (Initialization is optional in the context of self-stabilization.)
38 seq := 0; /* message index num. */

39 buffer := ∅; /* set of (msg, id, seq, delivered , recBy , prevHB) records */

40 rxObsS [1..n] := [0, . . . , 0]; /* highest receiver’s obsolete seq a node */

41 txObsS [1..n] := [0, . . . , 0]; /* highest sender’s obsolete seq a node */

42 macro nxtObs(r):=(rxObsS [r.id] + 1 = r.seq ∧ trusted ⊆ r.recBy ∧ r.delivered);
43 macro maxSeq(k) := max({s : (•, id = k, seq = s, •) ∈ buffer});
44 macro minTxObsS() := min{txObsS [k] : k ∈ trusted};
45 operation urbBroadcast(m) do {wait(seq < minTxObsS() + bufferUnitSize);

seq ← seq + 1; update(m, i, seq, i);}
46 procedure update(m, j, s, k) begin
47 if s ≤ rxObsS [j] then return ;
48 if (•, id = j, seq = s, •) /∈ buffer ∧ m
= ⊥ then
49 buffer ← buffer ∪ {(m, j, s, False, {j, k}, [-1, . . . , -1])};

50 else foreach (•, id = j, seq = s, •, recBy = r, •) ∈ buffer do r ← r ∪ {j, k};

51 do forever begin
52 if (∃r,r′∈buffer :r.msg=⊥∨(r
=r′∧((r.id,r.seq)=(r′.id,r′.seq)))) then
53 buffer←∅
54 if ¬((mS < seq ≤ mS+bufferUnitSize)∧({mS + 1, . . . , seq}⊆ {s : (•, id =

i, seq = s, •)∈ buffer}) where mS := minTxObsS() then
55 txObsS [] ← [seq, . . . , seq]

56 foreach pk ∈ P do
57 rxObsS [k] ← max{rxObsS [k], maxSeq(k) − bufferUnitSize}
58 foreach (msg=m,id=j,seq=s,delivered=d,recBy=r,prevHB=e)∈buffer do
59 if (trusted ⊆ r) ∧ (¬d) then urbDeliver(m); d ← True;
60 let u := HB ;
61 foreach pk ∈ P : (k /∈ r ∨ (i = j ∧ s = txObsS [k] + 1)) ∧ (e[k] < u[k]) do
62 e[k]←u[k]; send MSG(m, j, s) to pk; /* piggyback ll. 62-65 */

63 while ∃r ∈ buffer : nxtObs(r) do rxObsS [r.id] ← rxObsS [r.id] + 1;
64 buffer ← {(•, id = i, seq = s, •)∈buffer :minTxObsS()<s} ∪ {(•, id = k, seq

= s, •)∈buffer :pk∈P ∧ ((rxObsS [k]<s ∧ maxSeq(k) − bufferUnitSize ≤ s))};
65 foreach pk ∈ P do send GOSSIP(maxSeq(k), rxObsS [k], txObsS [k]) to pk;

66 upon MSG(m,j,s) arrival from pk do {update(m,j,s,k); send MSGack(j,s) to
pk;}

67 upon MSGack(j, s) arrival from pk do {update(⊥, j, s, k);}
68 upon GOSSIP(seqJ ,rxObsSJ ,txObsSJ) arrival from pj do (seq,rxObsS [j],

txObsS [j])←(max{seqJ ,seq},max{rxObsSJ ,rxObsS [j]},max{txObsSJ ,txObsS [j]})

Definition 2 (Algorithm 5’s consistent sequence and buffer values).
Let c be a system state and pi ∈ P a non-faulty node. Suppose that (i) (�r, r′ ∈
buffer : r.msg = ⊥ ∨ (r �= r′ ∧ ((r.id, r.seq) = (r′.id, r′.seq)))), ((mS ≤ seqi ≤
mS +bufferUnitSize)∧(mS+1, . . . , seqi} ⊆ {s : (•, id = i, seq = s, •) ∈ buffer i}),

308 O. Lundström et al.

∀pk ∈ P : (maxSeqi(k) − rxObsS i[k]) ≤ bufferUnitSize, �r ∈ buffer i : nxtObs(r),
∀(•, id = i, seq = s, •) ∈ buffer i : mS < s, ∀(•, id = k, seq = s, •) ∈
buffer i : pk ∈ P ∧ rxObsS i[k] < s ∧ maxSeqi(k) ≤ (s + bufferUnitSize), where
mS := minTxObsSi(). Moreover, (ii) seqi is greater than or equal to any pi’s
sequence values in the variables and fields related to seq (including pi’s records
in bufferk, where pk ∈ P is non-failing, and incoming messages to pk) and
∀pj ∈ P : sMj ≤ rxObsS j [i], where sMj is either txObsS i[j] or the value of
the fields txObsSJ and rxObsSJ in a GOSSIP(•, txObsSJ , •) message in transit
from pj to pi, and respectively, GOSSIP(•, rxObsSJ) message in transit from pi
to pj. Also, (iii) ∀k ∈ trusted i : |{(•, id = i, •) ∈ bufferk}| ≤ bufferUnitSize and
seqi ≤ minTxObsSi()+bufferUnitSize. In this case, we say that pi’s values in the
variables and fields related to seq’s values and buffer are consistent in c.

Not any system state that satisfies Definition 2 starts a legal execution. E.g.,
consider a system with P = {pi, pj} and an execution R that starts in a state
in which buffer i = {(m, i, 1, •)}, buffer j = {(m′, i, 1, •)}, and m �= m′. The
deliveries of m and m′ violate Definition 1’s validity requirement. Theorem 2
circumvents this difficulty using the conditions of Definition 3.

Definition 3 (Complete execution with respect to urbBroadcast). Let R
be an Algorithm 5’s execution. Let c, c′′ ∈ R denote the starting system states
of R, and respectively, R′′, for some suffix R′′ of R. We say that message m is
completely delivered in c if (i) the channels do not include MSG(msg = m, •)
messages (or MSGack messages with a message identifier (id, seq) that refers to
m), and (ii) for any non-failing pj ∈ P and r = (msg = m, •) ∈ buffer j, it holds
that r.delivered = True and for any non-failing pk ∈ P, we have k ∈ r.recBy.
Suppose that R = R′◦R′′ has a suffix R′′, such that for any urbBroadcast message
m that is not completely delivered in c′′, it holds that m either does not appear
in c or it is completely delivered in c. Then, we say that R′′ is complete with
respect to R’s urbBroadcast invocations.

Theorems 1 and 2 consider Definition 4 and use Lemma 1.

Definition 4 (The diffuse() predicate). The predicate diffusei(m) : pi ∈ P
holds in c ∈ R if, and only if, ∃(msg = m, •, delivered = False, •) ∈ buffer i.

Lemma 1. Let R be an Algorithm 5’s execution and pi, pj ∈ P be non-failing
processors. Suppose that in any system state c ∈ R, diffusei(m) holds, such that
(msg �= ⊥, •, recBy = r, •) ∈ buffer i is true, but j ∈ r is not. (i) Node pi sends,
infinitely often, MSG(m, j, s) messages to pj and pj replies, infinitely often,
via MSGack(j, s) messages to pi. (ii) The reception of such replies guarantees
j ∈ r eventually. (iii) If R is fair, invariants (i) and (ii) occur within O(1)
asynchronous cycles.

Proof of Lemma. Since j ∈ Correct ∧ j /∈ r in c, pi sends MSG(m, j, s) to pj
infinitely often (lines 58 to 62 and HB -liveness). Also, pj receives pi’s message
(line 66), and replies, infinitely often, so that pi receives pj ’s replies (line 67),

Self-stabilizing URB 309

infinitely often, while making sure that j is included in r (line 50). Invariant (iii)
is implied by the fairness assumption and Invariant (ii). �

Theorem 1 shows that the system reaches a state that satisfies Definition 2.

Theorem 1 (Convergence). Let R be Algorithm 5’s fair execution. Within
O(bufferUnitSize) asynchronous cycles, the system reaches a state, c ∈ R, after
which a suffix R′ of R starts, such that R′ is complete with respect to its
urbBroadcast invocations. Also, seq and buffer are consistent in any c′ ∈ R′.

Proof. The proof is implied by arguments (1) to (5).

Argument (1): The case in which MSG(m, •) (or its correspondent MSGack(•))
appears in a communication channel at R’s starting system state. Suppose that
in R’s starting system state, it holds that MSG(m, •) appears in an incoming
channel to pk. Since R is fair, within O(1) asynchronous cycles, MSG(m, •), or
respectively, MSGack(•) arrives to pk. For the case of MSG(m, •), this causes
line 66’s execution and then line 49 if m’s record was not already in bufferk.
For the case of MSGack(•) and (m, •) ∈ bufferk, line 67 has a similar effect,
and the case of MSGack(•) and (m, •) /∈ bufferk does not change pk’s state.
Thus, w.l.o.g., the rest of the proof assumes that ∃pk∈P : (m, •) ∈ bufferk in R’s
starting state.

Argument (2): Definition 2’s Invariant (i) holds. Within O(1) asynchronous
cycles, pk runs lines 51 to 62. Invariant (i) is implied by lines 53 to 64.

Argument (3): Definition 2’s Invariant (ii) holds in c′. Within O(1) asyn-
chronous cycles, any message that was in transit in R’s starting system state
arrives. Thus, w.l.o.g., the proof focuses on seqi’s value at the non-failing nodes
pi, pk ∈ P. Other than in seqi, every pi’s sequence value can only be stored in
(•, id = i, seq = s′, •) ∈ bufferk records. Suppose that in R’s starting system
state, it holds that s′ > seqi. By lines 65 and 68, within O(1) asynchronous
cycles, pk gossips sk ≥ s′ to pi and the latter updates seqi upon reception. The
proof is done since only pi (line 45) can have new seq values for pi. Thus, the first
part of Invariant (ii) holds. Within an asynchronous cycle, all message arrive,
and thus, w.l.o.g., we focus on sMj’s values at the non-failing node pi ∈ P. Sup-
pose that in R’s starting system state, txObsS i[j] ≤ rxObsS j [i] does not hold for
pj ∈ P : j ∈ trusted i. By lines 65 and 68, within O(1) asynchronous cycles, pj
gossips rxObsS j [i] to pi and the latter updates txObsS i[j] upon reception as well
as pi gossips txObsS i[j] to pj and the latter updates rxObsS j [i] upon reception.
Thus, the second part of Invariant (ii) holds is any system state that follows.

The rest of the proof assumes, w.l.o.g., that Definition 2’s invariants (i) and
(ii) hold throughout R. Generality is not lost due to arguments (1) to (3).

Argument (4): first part of Definition 2’s Invariant (iii). Let pi, pk ∈ P be two
non-faulty nodes. For the case of pk’s records in buffer i, Definition 2’s Invariant
(i) says ∀(•, id = k, seq = sk, •) ∈ buffer i : max{s′

k : (•, id = k, seq = s′
k, •) ∈

buffer i} ≤ (sk + bufferUnitSize). I.e., the largest sequence number of a pk’s
records in buffer i minus bufferUnitSize is smaller than sk of any pk’s records in
buffer i.

310 O. Lundström et al.

Argument (5): second part of Definition 2’s Invariant (iii). Let c ∈ R and xc =
(seqi−minTxObsSi()). Assume, towards a contradiction, that xc ≥ bufferUnitSize
for at least O(bufferUnitSize) asynchronous cycles. Let Ac = ∪k∈trustedi

{r ∈
bufferk : r.id = i ∧ ¬nxtObsk(r)} and Bc = ∪k∈trustedi

{r ∈ buffer i : r.id =
i ∧ txObsS i[k] < r.seq} as well as rec ∈ Ac and rec′ ∈ Bc be the records
with the smallest sequence number (among all the records with id = i) that
pk, and respectively, pi stores in c. We start the proof by showing that, within
O(1) asynchronous cycles, the system reaches c′ ∈ R for which rec /∈ Ac′ and
rec′ /∈ Bc′ hold. We then show that xc′ < bufferUnitSize holds.

Showing rec /∈ Ac′ since nxtObs(rec) holds. Let pi ∈ P : i ∈ Correct . Suppose
∃pk ∈ P : (•, id = i, delivered = dk, recBy = rk, •) ∈ bufferk∧k ∈ trusted i∧dk =
False holds for some rk in c. For any pj ∈ P for which j ∈ trustedk holds during
R’s first O(1) asynchronous cycles, j ∈ rk (invariants (i) and (ii) of Lemma 1).
Once ∀j ∈ trustedk : j ∈ rk holds, pk assigns True to dk (line 59). Thus, within
O(1) asynchronous cycles, rec /∈ Ac′ and nxtObs(rec) hold due to rec’s choice.

Showing rec′ /∈ Bc′ . Since rec′ ∈ Bc, pi sends MSG(rec′.msg, rec′.id, rec′.seq)
infinitely often to pk (line 62). Within an asynchronous cycle, pk receives it.
Lines 66 and 47 to 50 imply that either (rec′.msg, rec′.id, rec′.seq, •) ∈ Ac′ or
rec′.seq ≤ rxObsSk[i]. Then (rec′.msg, rec′.id, rec′.seq, •) /∈ Ac′ and nxtObs(rec)
hold (due to the proof of the rec /∈ Ac′ case), within O(1) asynchronous cycles
and rxObsSk[rec′.id] ≥ rec′.seq (line 63). Also, rec′ /∈ Bc′ due to the fact that
txObsSk[rec′.id] ≥ rec′.seq and Argument (3).

Showing a contradiction, i.e., xc′ < bufferUnitSize. Due to the assumption in
the proof start, during R’s first O(bufferUnitSize) asynchronous cycles, pi does
not increment seqi and call update() (line 45). Thus, on the one hand, no new
pi’s record enters bufferk during R’s first O(bufferUnitSize) asynchronous cycles,
while on the other hand, within O(1) asynchronous cycles, either pi stops includ-
ing pk in trusted i or it removes at least one record from Ac and Bc. The latter can
repeat itself at most bufferUnitSize times due to Argument (5). This completes
the argument and the theorem proofs.

Theorem 2 considers system executions that reach suffixes, R, that satisfy
Definitions 2 and 3. Theorem 2 shows that R satisfies Definition 1. Due to the
page limit, the proof of Theorem 2 appears in [26].

Theorem 2 (Closure). Let R be an Algorithm 5’s execution that is complete
w.r.t. urbBroadcast invocations (or R is a suffix of an execution R = R′ ◦ R for
which R is complete with respect to urbBroadcast invocations in R) as well as
sequence values and buffers are consistent in c ∈ R. R is a URB construction.

6 Bounded Self-stabilizing Uniform Reliable Broadcast

In this section, we explain how to transform our unbounded self-stabilizing URB
algorithm to a bounded one. We note the existence of several such techniques,

Self-stabilizing URB 311

e.g., Awerbuch et al. [5], Georgiou et al. [21], and Dolev et al. [17, Section 10].
The ideas presented in these papers are along the same lines. They present a
transformation that takes a self-stabilizing algorithm for message passing sys-
tems that uses unbounded operation indices and transforms it into an algorithm
that uses bounded indices. The transformation uses a predefined maximum index
value, say, MAXINT = 264 − 1, and it has two phases. (Phase A) As soon as
pi discovers an index that is at least MAXINT, it disables new invocations of
operations. (Phase B) Once all non-failing nodes have finished processing their
operations, the transformation uses an agreement-based global restart for ini-
tializing all system variables. After the end of the global restart, all operations
are enabled. For further details, please see [5,17,21]. We note the existence of
alternative solutions to the above, such as the ones that uses epoch numbers [13].
Yet, such solutions provide a weaker notion of self-stabilization since they do not
guarantee recovery within a bounded time. Another solution worth mentioning
is self-stabilizing reconfiguration [12], which can allow dealing with crashes.

7 Conclusions

We showed how non-self-stabilizing algorithms [1,22,28] for (quiescent) uniform
reliable broadcast can be transformed into one that can recover after the occur-
rence of arbitrary transient faults. This requires non-trivial considerations that
are imperative for self-stabilizing systems, such as the explicit use of bounded
buffers. To that end, we developed a flow control scheme. Since URB is the basis
for a number of important applications [28], such as consensus, state-machine
replication, set-constraint delivery, to name a few, our bounded URB solution
can serve as a basis for explicitly bounding such applications, whether they are
self-stabilizing or not. The need to have this new scheme shows that currently
there is no “meta” self-stabilizing scheme that transfers all non-self-stabilizing
algorithms from the textbooks into self-stabilizing ones.

Acknowledgments. M. Raynal was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing. E.M. Schiller was partially supported by the Swedish Vinnova
(FFI) project AutoSPADA (reference number 2019-05884) devoted for automotive
stream processing and distributed analytics. We thank Oskar Jedvert, Chibin Kou,
and Chaiyapruek Muangsiri for helpful discussions.

References

1. Kawazoe Aguilera, M., Chen, W., Toueg, S.: Heartbeat: a timeout-free failure
detector for quiescent reliable communication. In: Mavronicolas, M., Tsigas, P.
(eds.) WDAG 1997. LNCS, vol. 1320, pp. 126–140. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0030680

2. Aguilera, M.K., Chen, W., Toueg, S.: On quiescent reliable communication. SIAM
J. Comput. 29(6), 2040–2073 (2000)

https://doi.org/10.1007/BFb0030680

312 O. Lundström et al.

3. Kawazoe Aguilera, M., Toueg, S., Deianov, B.: Revisiting the weakest failure detec-
tor for uniform reliable broadcast. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693,
pp. 19–34. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9 2

4. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Mor-
gan & Claypool Publishers, San Rafael (2019)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Bounding the unbounded. In INFO-
COM 1994, pp. 776–783. IEEE Computer Society (1994)

6. Birman, K.P.: A review of experiences with reliable multicast. Softw. Pract. Exper.
29(9), 741–774 (1999)

7. Blanchard, P., Dolev, S., Beauquier, J., Delaët, S.: Practically self-stabilizing paxos
replicated state-machine. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS,
vol. 8593, pp. 99–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09581-3 8

8. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

9. Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-
passing systems. J. Parallel Distrib. Comput. 70(12), 1220–1230 (2010)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
12. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing reconfigura-

tion. In: NETYS, pp. 51–68 (2017)
13. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Practically-self-stabilizing

virtual synchrony. J. Comput. Syst. Sci. 96, 50–73 (2018)
14. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end

communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic
networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp.
133–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-
5 14

15. Dolev, S., Liba, O., Schiller, E.M.: Self-stabilizing byzantine resilient topology dis-
covery and message delivery. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013.
LNCS, vol. 7853, pp. 42–57. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40148-0 4

16. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. Acta Inf. 36(6), 447–462 (1999)

17. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared
atomic memory in seldomly fair message passing networks. CoRR abs, 1806.03498,
: http://arxiv.org/abs/1806.03498. An earlier version appeared as Robust and Pri-
vate Distributed Shared Atomic Memory in Message Passing Networks in PODC
2015, 311–313 (2018)

18. Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership
service. IEEE Trans. Parallel Distrib. Syst. 14(7), 709–720 (2003)

19. Dolev, S., Schiller, E.: Self-stabilizing group communication in directed networks.
Acta Inf. 40(9), 609–636 (2004)

20. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group commu-
nication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905 (2006)

21. Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for
asynchronous failure-prone networked systems. In: Atig, M.F., Schwarzmann, A.A.
(eds.) NETYS 2019. LNCS, vol. 11704, pp. 113–130. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31277-0 8

https://doi.org/10.1007/3-540-48169-9_2
https://doi.org/10.1007/978-3-319-09581-3_8
https://doi.org/10.1007/978-3-319-09581-3_8
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-40148-0_4
https://doi.org/10.1007/978-3-642-40148-0_4
http://arxiv.org/abs/1806.03498
https://doi.org/10.1007/978-3-030-31277-0_8

Self-stabilizing URB 313

22. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Cornell University, Ithaca, NY, USA, Technical report (1994)

23. Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broad-
cast: definition, abstraction power, and computability limits. In: 19th Distributed
Computing and Networking, ICDCN, pp. 1–10. ACM (2018)

24. Lamport, L.: The implementation of reliable distributed multiprocess systems.
Comput. Netw. 2, 95–114 (1978)

25. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing set-constraint delivery
broadcast. In: 40th IEEE International Conference on Distributed Computing Sys-
tems, (ICDCS) (2020), to appear

26. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing uniform reliable broad-
cast. CoRR abs/2001.03244 (2020). https://arxiv.org/abs/2001.03244

27. Raynal, M.: A case study of agreement problems in distributed systems: Non-
blocking atomic commitment. In: 2nd High-Assurance Systems Engineering Work-
shop (HASE ’97), pp. 209–214. IEEE Computer Society (1997)

28. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic
Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94141-7

29. Salem, I., Schiller, E.M.: Practically-self-stabilizing vector clocks in the absence of
execution fairness. In: 6th Networked Systems, NETYS, pp. 318–333 (2018)

30. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

https://arxiv.org/abs/2001.03244
https://doi.org/10.1007/978-3-319-94141-7

Fully Anonymous Consensus and Set
Agreement Algorithms

Michel Raynal1,2 and Gadi Taubenfeld3(B)

1 Univ Rennes IRISA, Rennes, France
2 Department of Computing, Polytechnic University, Hong Kong, China

3 The Interdisciplinary Center, Herzliya, Israel
tgadi@idc.ac.il

Abstract. Process anonymity has been studied for a long time. Memory
anonymity is more recent. In an anonymous memory system, there is
no a priori agreement among the processes on the names of the shared
registers they access. As an example, a shared register named A by a
process p and a shared register named B by another process q may
correspond to the very same register X, while the same name C may
correspond to different shared registers for the processes p and q. This
article focuses on solving the consensus and set agreement problems in
the fully anonymous model, namely a model in which both the processes
and the registers are anonymous. It is shown that consensus, and its
weak version called set agreement, can be solved despite full anonymity,
in the presence of any number of process crashes. As far as we know,
this is the first time where non-trivial concurrency-related problems are
solved in such a strong anonymity context. A noteworthy property of the
proposed algorithms lies in their conceptual simplicity.

Keywords: Anonymity · Anonymous shared memory · Anonymous
processes · Asynchrony · Atomic read/write register · Atomic
read/modify/write register · Concurrency · Consensus · Crash failure ·
Process crash · Set agreement · Obstruction-freedom · Wait-freedom

1 Introduction: Computing Model

1.1 On the Process Side

Process Anonymity. The notion of process anonymity has been studied for a
long time from an algorithmic and computability point of view, both in message-
passing systems (e.g., [4,8,32]) and shared memory systems (e.g., [6,9,13]). Pro-
cess anonymity means that processes have no identity, have the same code and
the same initialization of their local variables (otherwise they could be distin-
guished). Hence, in a process anonymous system, it is impossible to distinguish
a process from another process.

A few of the results were mentioned in a brief announcement published in SSS’19 [25].

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 314–328, 2021.
https://doi.org/10.1007/978-3-030-67087-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_20

Fully Anonymous Consensus and Set Agreement Algorithms 315

Process Model. The system is composed of a finite set of n ≥ 2 asynchronous,
anonymous sequential processes denoted p1, .., pn. Each process pi knows n, the
number of processes, and m, the number of registers. The subscript i in pi is
only a notational convenience, which is not known by the processes. Sequential
means that a process executes one step (instruction) at a time. Asynchronous
means that each process proceeds in its own speed, which may vary with time
and always remains unknown to the other processes. On the failure side, any
number of processes may crash (a crash is a premature stop of a process).

1.2 On the Memory Side

Memory Anonymity. The notion of memory anonymity has been recently intro-
duced in [30]. Let us consider a shared memory R made up of m atomic registers.
Such a memory can be seen as an array with m entries, namely R[1..m]. In a
non-anonymous memory system, for each index x, the name R[x] denotes the
same register whatever the process that accesses the address R[x]. Hence in a
non-anonymous memory, there is an a priori agreement on the names of the
shared registers. This facilitates the implementation of the coordination rules
the processes have to follow to progress without violating the safety properties
associated with the application they solve [17,23,29].

The situation is different in an anonymous memory, where there is no a
priori agreement on the name of each register. Moreover, all the registers of an
anonymous memory are assumed to be initialized to the same value (otherwise,
their initial values could provide information allowing processes to distinguish
them). In [24], the interested reader may find an introductory survey on models
where (1) only processes are anonymous, and (2) only the memory is anonymous.
This paper which considers agreement problems, and [26] which considers the
mutual problem, are the first to introduce the notion of fully anonymous shared
memory systems, where both processes and memory are anonymous.

Anonymous Shared Memory. The shared memory is made up of m ≥ 1 atomic
anonymous registers denoted R[1...m]. Hence, all the registers are anonymous.
As already indicated, due to its anonymity, R[x] does not necessarily indicate
the same object for different processes. More precisely, a memory-anonymous
system is such that:

– For each process pi an adversary defined a permutation fi() over the set
{1, 2, · · · ,m}, such that when pi uses the address R[x], it actually accesses
R[fi(x)],

– No process knows the permutations, and
– All the registers are initialized to the same default value denoted ⊥.

An example of anonymous memory is presented in Table 1. To make apparent
the fact that R[x] can have a different meaning for different processes, we write
Ri[x] when pi invokes R[x].

316 M. Raynal and G. Taubenfeld

Table 1. Illustration of an anonymous memory model

Identifiers for an
external observer

Local identifiers for
process pi

Local identifiers for
process pj

R[1] Ri[2] Rj [3]

R[2] Ri[3] Rj [1]

R[3] Ri[1] Rj [2]

Permutation fi() : [2, 3, 1] fj() : [3, 1, 2]

Anonymous Register Model. We consider three types of anonymous register mod-
els.

– RW (read/write) model. In this model, all the registers can be read or written
by any process.

– RW/Snapshot (in short RW/Snap) model. In this model, all the registers
can be read or written by any process. In addition, each process can apply
an atomic snapshot operation to obtain the values of all the registers in
one atomic step. Thus, for example, assuming that processes communicate
through a memory anonymous array R[1..m], the operation R.snapshot()
obtains the values of all the m entries of the array R in one instantaneous
step.1

– RMW (read/modify/write) model. In this model, each register can be read,
written or accessed by an operation that atomically reads the register and
(according to the value read) possibly modifies it. More precisely, this oper-
ation denoted compare&swap(R[x], old, new) has three input parameters, a
register R[x] and two values old and new, and returns a Boolean value. It has
the following effect: if R[x] = old the value new is assigned to R[x], and the
value true is returned (the compare&swap() operation is then successful). If
R[x] �= old, R[x] is not modified, and the value false is returned.

In these models, atomic [19] means that the operations on the registers appear
as if they have been executed sequentially, each operation appearing between its
start event and its end event, and for any x ∈ {1, ...m}, each read operation of
a register R[x] returns the value v, where v is the last value written in R[x] by
a write or a successful compare&swap(R[x],−,−) operation (we also say that
the execution is linearizable [18]). We notice that the RMW model is at least as
strong as the RW model.

1.3 Motivation and Content of the Paper

Motivation. This article addresses consensus and set agreement in fully anony-
mous systems, and has two primary motivations. The first is related to the
1 For a model where the registers are non-anonymous, it is known that the compu-

tational power of the RW model and the RW/Snap model are the same despite
asynchrony and any number of process crashes [1,3]. For fully anonymous systems,
this question is open.

Fully Anonymous Consensus and Set Agreement Algorithms 317

basics of computing, namely, computability and complexity lower/upper bounds.
Increasing our knowledge of what can (or cannot) be done in the context of full
anonymity (i.e., when both the processes and the memory are anonymous), and
providing associated necessary and sufficient conditions, helps us determine the
weakest system assumptions under which fundamental problems, such as con-
sensus and set agreement can be solved.

The second motivation is application-oriented. It appears that the concept of
an anonymous memory allows epigenetic cell modification to be modeled from a
computing point of view [27]. In [27] the authors model histone modifiers (which
are a specific type of proteins) as two different types of writer processors and two
different types of eraser processors that communicate by accessing an anonymous
shared memory array which corresponds to a stretch of DNA, and for such
a setting formally define the epigenetic consensus problem. Hence, anonymous
shared memories could be useful in biologically inspired distributed systems
[21,22]. If this is the case, mastering agreement problems in such an adversarial
context could reveal to be important from an application point of view.

Consensus. Consensus is the most important agreement problem of fault-
tolerant distributed computing. Let us consider that any number of processes
may crash. A crash is a premature halting (hence, until it possibly crashes, a
process behaves correctly, i.e., reliably executes its code). The consensus prob-
lem consists in building a one-shot operation, denoted propose(), which takes
an input parameter (called proposed value) and returns a result (called decided
value). One-shot means that a process can invoke the operation at most once.
The meaning of this operation is defined as follows:

– Validity: A decided value is a proposed value.
– Agreement: No two processes decide different values.
– Liveness (Wait-freedom): If a process does not crash, it decides a value.

Algorithms solving consensus in different types of non-anonymous shared mem-
ory systems are described in several textbooks (e.g.,[17,23,29]). In this paper, we
consider the multi-valued version of consensus (i.e., the domain of proposed val-
ues is not restricted to be binary). While consensus can be solved from registers
in a non-anonymous RMW memory [14], it cannot be solved in a non-anonymous
RW memory [12,20]. It is, however, possible to solve a weaker version of consen-
sus in non-anonymous RW system, when the progress condition is weakened as
follows [15]:

– Liveness (Obstruction-freedom): If a process does not crash, and executes
alone during a long enough period, it decides. I.e., if a process runs alone
starting from some point in the execution then it eventually decides.

Set agreement. Set agreement captures a weaker form of consensus in which the
agreement property is weakened as follows:

– At most n − 1 different values are decided upon.

318 M. Raynal and G. Taubenfeld

Table 2. Structure of the article

Problem Section Crashes Register Progress # of processes # of registers

possible? model condition n m

Set agreement 2 Yes RW Obstruction-
freedom

n > 1 m ≥ 3

Consensus 3 Yes RW Obstruction-
freedom

n = 2 m ≥ 3

Consensus 4 Yes RW/Snap Obstruction-
freedom

n > 1 m ≥ 2n − 1

Consensus 5 Yes RMW Wait-
freedom

n > 1 m ≥ 1

That is, in any given run, the size of the set of the decision values is at most n−1.
In particular, in runs in which the n processes propose n different values, instead
of forcing the processes to agree on a single value, set agreement forces them to
eliminate one of the proposed values. The set agreement problem as defined
above is also called the (n − 1)-set agreement problem [10]. While much weaker
than consensus, as consensus, set agreement cannot be solved in crash-prone non-
anonymous RW memory systems [7,16,28] (and consequently cannot be solved
in a crash-prone anonymous memory systems either), but, as consensus, it can
be solved when considering the weaker obstruction-freedom progress condition.

Content of the paper. Table 2 describes the technical content of the paper. As an
example, the first line associated with set agreement, states that Sect. 2 presents
a set agreement algorithm for an anonymous RW system for any number of n > 1
processes and m ≥ 3 registers.

The paper leaves open the interesting question of whether there exists a fully
anonymous obstruction-free consensus algorithm for n ≥ 3 processes using RW
registers.

2 Fully Anonymous Obstruction-Free Set Agreement
Using RW Registers

Considering any number n > 1 of processes, this section presents an obstruction-
free set agreement algorithm for a crash-prone anonymous n-process system,
where communication is through m ≥ 3 anonymous RW registers.

2.1 A Fully Anonymous RW Set Agreement Algorithm

The algorithm is described in Fig. 1. Each anonymous RW register can store
the preference of a process. Each participating process pi scans the m registers
trying to write its preference (myprefi) into each one of the m registers.

Before each write, the process scans the shared array (line 3), and operates
as follows:

Fully Anonymous Consensus and Set Agreement Algorithms 319

– If its preference appears in all the m registers (line 8), it decides on its pref-
erence and terminates.

– Otherwise, if some preference appears in more than half of the registers
(line 4), the process adopts this preference as its new preference (line 5).

Afterward, the process finds some arbitrary entry in the shared array that does
not contain its preference (line 6) and writes it into that entry (line 7). Once the
process finishes writing it repeats the above steps.

2.2 Proof of the Algorithm

Lemma 1 (Set agreement and Termination under Obstruction-
freedom). Any participating process that runs alone for a sufficiently long
time, eventually decides. Moreover, the processes that decide, decide on at most
n − 1 different values.

Proof. Clearly, in all the runs in which less than n processes decide, they decide
on at most n − 1 different values. So, we have to prove that in runs in which all
the n processes participate and decide, the n processes decide on at most n − 1
different values.

Let ρ be an arbitrary run in which all the n processes participate and decide.
Each one of the n processes, before deciding (line 9), must first read all the
m registers (line 3), find out that its preference appears in all the m registers
(line 8), decide on its preference and terminate. We call this last reads of the
m registers by a specific process a successful collect (SC) of that process. We
emphasize that from the moment a process starts its successful collect until it
decides, it does not write.

Let us denote by pi and pj the last two processes which start their SC in the
run ρ. Clearly, by definition, during these two last SCs, each one of the other
processes has either decided and terminated or has already started it SC, and
hence does not write during pi and pj SCs. We show that pi and pj must decide
on the same value which implies, as required, that the n processes decide on at
most n − 1 different values in ρ.

From now on we focus only on the processes pi and pj . Assume w.l.o.g. that
pi has started its (last and only) SC before process pj has started its (last and
only) SC. Let t0 and t1 denote: the last time pi enters the repeat loop just before
reading the m registers (between lines 2–3), and the last time at which pi exits
the repeat loop (between lines 8–9), respectively. At the time interval [t0, t1], pi
never writes, and it completes an SC. That is, pi reads the array once, and finds
out that its preference (i.e., myprefi) appears in all the m registers. Let v be the
value that pi reads in its last SC. There are two possible cases.

1. At time t0, the values of all the m registers equal v. After time t0, and before
executing line 3, process pj might write at most once into one of the m
registers possibly overwriting the v value. Thus, when executing line 4, pj
will find that v appears in at least m − 1 of the entries of myview j [1..m].
Since m ≥ 3, this means that pj will find that v appears in more than half

320 M. Raynal and G. Taubenfeld

Fig. 1. Fully anonymous obst.-free set agr. algorithm for n ≥ 2 proc. and m ≥ 3 RW
registers

of the entries of myview j [1..m]. Thus, pj will set its preference to v (line
5). From that point on, since pi does not write anymore, the only possible
decision value for pj is v.

2. At time t0, not all the values of the m registers equal v. Since in the time
interval [t0, t1], pi has found that the value of each one of the m registers
equals v, it must be that process pj has written the value v into all the
registers with values other than v. Thus, pj when writing v pj ’s preference
must be v. Since pi does not write anymore, the only possible decision value
for pj is v.

As both pi and pj decide on the same value v in ρ, it follows that the n processes
together decide on at most n − 1 different values in ρ.

Let us now show that, under obstruction-freedom (that is, if it runs alone for
a sufficiently long time), each process eventually decides (and terminates). When
a process, say process pi, runs alone from some point on in a computation, pi
will read the shared array (line 3) and set its preference to some value v. From
that point on, in each iteration of the repeat loop, pi will set one more entry
of the shared array to v. Thus, after at most m iterations the values of all the
m entries will equal v, and pi will be able to exit the repeat loop, decide v and
terminate. ��

Fully Anonymous Consensus and Set Agreement Algorithms 321

Lemma 2 (Validity). The decision value is the input of a participating pro-
cess.

Proof. At each point, the current preference of a process is either its initial input
or a value (different from ⊥), it has read from a register. Since a process may
only write its preference into a register, the result follows. ��
Theorem 1. Algorithm 1 solves obstruction-free set agreement in a fully anony-
mous system made up of n ≥ 2 processes and m ≥ 3 RW registers.

Proof. The proof that the algorithm satisfies the Validity, Agreement, and
Obstruction-freedom properties (which define set agreement) follows directly
from Lemma 1 and Lemma 2. ��

3 Fully Anonymous Obstruction-Free Consensus Using
RW Registers

As the reader can easily check, instantiating Algorithm 1 with n = 2 provides
us with 2-process obstruction-free consensus built using m ≥ 3 RW registers.

Corollary 1. Algorithm 1 solves consensus in a fully anonymous system made
up of two processes and m ≥ 3 anonymous RWregisters. (In the case of binary
consensus, the registers are 3-valued registers.)

It is interesting to note that while it is possible to solve binary consensus
for two processes in a fully anonymous system using only 3-valued registers.
It is not possible to do so using only 2-valued registers (i.e., bits). It was
recently proved in [31] that there is no obstruction-free consensus algorithm for
two non-anonymous processes using only anonymous bits. Thus, as was shown
in [31], anonymous bits are strictly weaker than anonymous (and hence also
non-anonymous) multi-valued registers.

Let us consider a modified version of Algorithm 1, which assumes n ≥ 3, in
which the requirement m ≥ 3 is strengthened to m ≥ 2n − 1. It is tempting to
think that the resulting algorithm solves obstruction-free consensus for n ≥ 3
processes.

The (incorrect) supporting argument may go like this. Assume some process
p is the first to decide on the value v, after reading that the values of all the
m ≥ 2n − 1 registers equal v. Each of the remaining n − 1 processes, before
reading the array (line 3), may write at most once into one of the m registers
possibly overwriting the v value. Thus, at most n − 1 of the values might be
overwritten (leaving a majority of v values), before the processes will execute
line 3 and find that v appears in more than half of the entries of myview i[1..m].
Each process that finds that v appears in more than half of the entries will set
its preference to v (line 5) and must later decide on v.

However, this argument is wrong, and as we prove below the resulting algo-
rithm does not even solve obstruction-free consensus for three processes using
five registers.

322 M. Raynal and G. Taubenfeld

Theorem 2. Let A(n,m) be Algorithm 1, in which n is the number of processes
and m is the number of anonymous RW registers. Then, for any n ≥ 3 and any
m ≥ 1, A(n,m) does not solve obstruction-free consensus in a fully anonymous
system.

Proof. The proof is by contradiction. Assume n = 3 and m ≥ 1 registers. Clearly,
a result for n = 3 implies the result for n ≥ 3. Let us call the processes p0, p1,
and p2. Assume that p0, p1, p2 start with inputs 0,1,0, respectively. Furthermore,
we prove the result even under the assumption that, in Algorithm 1, R[1..m] is
an array of non-anonymous registers. So, below we assume that the registers are
non-anonymous.

We first build an infinite run, ρ, which involves p0 and p1 only, in which the
values of each one of the m registers changes from 0 to 1 and vice versa infinitely
many times. To this end, we use the function dist(a1, a2) = (a2 − a1) mod m,
defined for a1, a2 ∈ {1, ...,m}. If we think of the m numbers 1, ...,m as being
arranged clockwise in a circle, then dist(a1, a2) is the distance one must travel
clockwise around the circle starting from a1 before reaching a2. In the special
case that a1 = a2, the distance is 0. Thus, 0 ≤ dist(a1, a2) ≤ m − 1, and
a1 + dist(a1, a2) ≡ a2 mod m.

For j ∈ {1, ...,m} and v ∈ {0, 1}, we define the function next(j, v) to be the
value k such that (1) R[k] �= v, and (2) for every � ∈ {1, ...,m} where R[�] �= v,
d(k, j) ≤ d(�, j). If we think of the m registers R[1], ..., R[m] as being arranged
clockwise in a circle, then next(j, v) is the closest register to R[j] whose value
is different than v, where the distance is measured as the number of steps one
must travel clockwise around the circle starting from R[j] before reaching R[k].
In the special case that R[j] �= v, next(j, v) = j.

The run ρ, which involves processes p0 and p1, is constructed as follows:

v → 0
repeat forever

for j = 1 to m do
�0 ← next(j, 0); �1 ← next(j, 1)
pv writes v into R[�v], scans the array and does not change its preference
p1−v writes 1 − v into R[�1−v], scans the array and does not change its preference
v ← 1 − v

end do
end repeat.

We notice that until all the m registers are written once, in each iteration of the
for loop the two processes write into the same register, and thereafter in each
iteration they write into different registers. None of the two processes ever needs
to change its preference, and each process writes infinitely many times into each
one of the registers. Thus, the above procedure produces the required run ρ.

Since the algorithm is only obstruction-free, the existence of such an infinite
run is not yet a problem. To produce the counterexample, consider the run ρ.
Now let’s interleave read operations of the third process p2 into the run ρ, such
that whenever p2 reads a register it will see the value 0. Thus, at some point,

Fully Anonymous Consensus and Set Agreement Algorithms 323

according to the algorithm, p2 must decide 0 (without ever writing). At that
point, let p1 continue to run alone and, it will decide on 1. A contradiction. ��

We point out that (1) this counterexample will not work if the scan of p2 (reading
the m registers) is done in one atomic step (that is using a snapshot operation),
and (2) the counterexample applies for the case where the registers are non-
anonymous (and hence also for the case where they are anonymous).

It is known that obstruction-free consensus can be solved for n anonymous
processes using O(n) non-anonymous RW registers [9,13]. It is also known that
(symmetric) obstruction-free consensus can be solved for n non-anonymous pro-
cesses using O(n) anonymous RW registers [30]. We leave open the question of
whether there exists a fully anonymous obstruction-free consensus algorithm for
n ≥ 3 processes using RW registers.

4 Fully Anonymous Obstruction-Free Consensus Using
RW/Snapshot Registers

For any number n > 1 of processes, we present an obstruction-free consensus
algorithm for a crash-prone anonymous n-process system, where communica-
tion is through m ≥ 2n − 1 anonymous RW registers which support snapshot
operations.

4.1 A Fully Anonymous Consensus Algorithm

The algorithm is described in Fig. 2. It is similar to that from Fig. 1, where the
scan of the array (line 3) is replaced with a snapshot operation. The anonymous
memory is made up of m ≥ 2n − 1 registers. Each anonymous register can store
the preference of a process. Each participating process pi takes a snapshot of
the m registers trying to write its preference (myprefi) into each one of the m
registers. Before each write, the process takes a snapshot of the shared array
(line 4), and operates as follows:

– If its preference appears in all the m registers (line 8), it decides on its pref-
erence and terminates.

– Otherwise, if some preference appears in more than half of the registers
(line 4), the process adopts this preference as its new preference (line 5).

Afterward, the process finds some arbitrary entry in the shared array that does
not contain its preference (line 6) and writes it into that entry (line 7). Once the
process finishes writing it repeats the above steps.

4.2 Proof of the Algorithm

Lemma 3 (Consensus and Termination under Obstruction-freedom).
Any participating process that runs alone for a sufficiently long time, eventu-

ally decides. Moreover, the processes that decide, decide on the same value and
terminate.

324 M. Raynal and G. Taubenfeld

Fig. 2. Fully anony. obst.-free consensus for n ≥ 2 proc. and m ≥ 2n−1 RW/Snapshot
re.g.

Proof. Let process pi be the first process to decide, and denote the value that
pi decides on by v. This means that, before deciding, after taking a snapshot
of the anonymous memory, process pi has found that, at a certain moment in
time, the value of each one of the m registers equals v. Each one of the other
n − 1 processes might write into one of the registers overwriting the v value.
Since m ≥ 2n − 1, all the other processes, when executing line 7, will find that
v appears in more than half of the entries of R[1..m] (i.e., v appears in at least
m − n + 1 entries), and each one of them will change its preference to v (line 5).
From that point on, the only possible decision value is v.

Let us now show that each process eventually decides (and terminates) under
the obstruction-freedom assumption. When a process, say process pi, runs alone
from some point on in a computation, pi will take a snapshot of the shared array
(line 3) and set its preference to v (if it is not v already). From that point on,
in each iteration of the repeat loop, process pi will set one additional entry of
the shared array to v. Thus, after at most m ≥ 2n − 1 iterations the values of
all the m entries will equal v, and process pi will be able to exit the repeat loop,
decide v and terminate. ��
Lemma 4 (Validity). The decision value is the input of a participating pro-
cess.

Fully Anonymous Consensus and Set Agreement Algorithms 325

Proof. At each point, the current preference of a process is either its initial input
or a value (different from ⊥), it has read from a register. Since a process may
only write its preference into a register, the result follows. ��
Theorem 3. Algorithm 2 solves obstruction-free consensus in a fully anony-
mous system made up of n ≥ 2 processes and m ≥ 2n − 1 RW/Snapshot regis-
ters.

Proof. The proof that the algorithm satisfies the Validity, Agreement, and
Obstruction-freedom properties (which define set agreement) follows directly
from Lemma 3 and Lemma 4. ��

Remark. Algorithm 1 and Algorithm 2 are actually two instances of an
agreement-oriented generic algorithm suited for the crash-prone fully asyn-
chronous model, which ensures termination under the obstruction-freedom
assumption. The genericity dimension resides in line 3, which states the way
a process reads the content of the anonymous memory, namely an asynchronous
scan (Algorithm 1) or a snapshot (Algorithm 2). When m ≥ 2n − 1 (condition
for Algorithm 2), the atomicity of the snapshot operation is powerful enough to
go from set-agreement (Algorithm 1) to consensus (Algorithm 2).

5 Fully Anonymous Wait-Free Consensus Using RMW
Registers

When considering a fully anonymous system of size m = 1, consensus can be
easily solved with the compare&swap() operation: the first process that writes
its value in the single register R[1] (initialized to ⊥) imposes it as the decided
value (actually, when m = 1 the memory is not really anonymous). When using
anonymous objects, the fact that a given problem can be solved using only one
object (i.e., m = 1) does not imply that the problem can also be solved using
any finite number of m ≥ 1 objects [5]. For a fully anonymous system, we prove
the following simple result,

Theorem 4. There is a fully anonymous wait-free consensus algorithm for n
processes using m RMW registers, for any n ≥ 1 and m ≥ 1.

Proof. The simple algorithm described in Fig. 3 presents a simple consensus
algorithm for any size m ≥ 1 of the anonymous RMW memory. This algorithm
assumes that the set of values that can be proposed is totally ordered. Each pro-
cess tries to write the value it proposes into each anonymous register. Assuming
that at least one process that does not crash invokes propose(), there is a finite
time after which, whatever the concurrency/failure pattern, each anonymous
register contains a proposed value. Then, using the same deterministic rule the
processes decide the same value (let us notice that there is an a priori statically
defined agreement on the deterministic rule used to select the decided value). ��

326 M. Raynal and G. Taubenfeld

Fig. 3. Consensus for n ≥ 2 anonymous processes and m ≥ 1 anonymous RMW
registers

6 Conclusion

This article has several contributions. The first is the introduction, together with
[26], of the notion of fully anonymous shared memory systems, namely systems
where the processes are anonymous, and there is no global agreement on the
names of the shared registers (any register can have different names for distinct
processes). The article has then addressed the design of agreement algorithms
(consensus and set agreement) in specific contexts where the anonymous regis-
ters are read/write (RW) registers, RW/snapshot registers, or read/modify/write
(RMW) registers. We leave open the interesting question of whether there exists
a fully anonymous obstruction-free consensus algorithm for three or more pro-
cesses using RW registers.

Last but not least, let us notice that, despite the strong adversary context
(full anonymity and failures), the proposed algorithms are relatively simple to
understand2. However, some of their proofs are subtle.

Acknowledgments. M. Raynal was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Aigner, M., Ziegler, G.M.: Probability makes counting (sometimes) easy. Proofs
from THE BOOK, p. 274. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-57265-8 45. ISBN 978-3-642-00856-6

2 Let us remind that simplicity is a first class property [2,11]. A stated by J. Perlis
(the recipient of the first Turing Award) “Simplicity does not precede complexity,
but follows it”.

https://doi.org/10.1007/978-3-662-57265-8_45
https://doi.org/10.1007/978-3-662-57265-8_45

Fully Anonymous Consensus and Set Agreement Algorithms 327

3. Anderson, J.H.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195
(1994)

4. Angluin D., Local and global properties in networks of processes. In: Proceedings
12th Symposium on Theory of Computing (STOC’80), pp. 82–93. ACM Press
(1980)

5. Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., Woelfel, P.: Optimal memory-
anonymous symmetric deadlock-free mutual exclusion. In: Proceedings 38th ACM
Symposium on Principles of Distributed Computing (PODC’19), p. 10. ACM Press
(2019)

6. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared-memory systems. Inf. Comput. 173(2), 162–183 (2002)

7. Borowsky E. and Gafni E., Generalized FLP impossibility results for t-resilient
asynchronous computations. In: Proceedings 25th ACM Symposium on Theory of
Computing (STOC’93), pp. 91–100 . ACM Press (1993)

8. Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure
detectors. Distrib. Comput. 26(3), 141–158 (2013)

9. Bouzid, Z., Raynal, M., Sutra, P.: Anonymous obstruction-free (n, k)-set agreement
with (n−k+1) atomic read/write registers. Distrib. Comput. 31(2), 99–117 (2018)

10. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

11. Dijkstra, E.W.: Some beautiful arguments using mathematical induction. Algo-
rithmica 13(1), 1–8 (1980)

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

13. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
putations. Distrib. Comput. 20, 165–177 (2007)

14. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Programm. Lang. Syst.
13(1), 124–149 (1991)

15. Herlihy M.P., Luchangco V., Moir M.: Obstruction-free synchronization: double-
ended queues as an example. In: Proceedings 23th International IEEE Conference
on Distributed Computing Systems (ICDCS 2003), pp. 522–529. IEEE Press (2003)

16. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

17. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, p. 508. Morgan
Kaufmann, Cambridge (2008). ISBN 978-0-12-370591-4

18. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Programm. Lang. Syst. 12(3), 463–492 (1990)

19. Lamport, L.: On interprocess communication, part I: basic formalism. Distrib.
Comput. 1(2), 77–85 (1986)

20. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res. 4, 163–183. JAI Press (1987)

21. Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems
biology and computational thinking. Mol. Syst. Biol. 7(546), 1–11 (2011)

22. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Communi. ACM 58(1), 94–102 (2015)

23. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations,
p. 515. Springer, Dordrecht (2013). https://doi.org/10.1007/978-3-642-32027-9.
ISBN 978-3-642-32026-2

24. Raynal, M., Cao, J.: Anonymity in distributed read/write systems: an introductory
survey. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp. 122–
140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 9

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-030-05529-5_9

328 M. Raynal and G. Taubenfeld

25. Raynal, M., Taubenfeld, G.: Brief announcement: fully anonymous shared memory
algorithms. In: Ghaffari, M., Nesterenko, M., Tixeuil, S., Tucci, S., Yamauchi, Y.
(eds.) SSS 2019. LNCS, vol. 11914, pp. 301–306. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34992-9 24

26. Raynal, M., Taubenfeld, G.: Mutual exclusion in fully anonymous shared memory
systems. Inf. Process. Lett. 158, 105938 (2020)

27. Rashid S., Taubenfeld G., Bar-Joseph, Z.: Genome wide epigenetic modifications as
a shared memory consensus problem. In: 6th Workshop on Biological Distributed
Algorithms (BDA’18), London (2018)

28. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

29. Taubenfeld, G.: Synchronization algorithms and concurrent programming, p. 423.
Prentice Hall, Pearson Education (2006). ISBN 0-131-97259-6

30. Taubenfeld G.: Coordination without prior agreement. In: Proceeding 36th ACM
Symposium on Principles of Distributed Computing (PODC 2017), pp. 325–334.
ACM Press (2017)

31. Taubenfeld, G.: Set agreement power is not a precise characterization for obliv-
ious deterministic anonymous objects. In: Censor-Hillel, K., Flammini, M. (eds.)
SIROCCO 2019. LNCS, vol. 11639, pp. 293–308. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24922-9 20

32. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I -
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996)

https://doi.org/10.1007/978-3-030-34992-9_24
https://doi.org/10.1007/978-3-030-34992-9_24
https://doi.org/10.1007/978-3-030-24922-9_20
https://doi.org/10.1007/978-3-030-24922-9_20

Cutoffs for Symmetric Point-to-Point
Distributed Algorithms

Thanh-Hai Tran1, Igor Konnov2(B), and Josef Widder2

1 TU Wien, Vienna, Austria
2 Informal Systems, Vienna, Austria

igor@informal.systems

Abstract. Distributed algorithms are typically parameterized in the
number of participants. While in general, parameterized verification
is undecidable, many distributed algorithms such as mutual exclusion,
cache coherence, and distributed consensus enjoy the cutoff property,
which reduces the parameterized verification problem to verification of a
finite number of instances. Failure detection algorithms do not fall into
one of the known classes. While consensus algorithms, for instance, are
quorum-based, failure detectors typically rely on point-to-point commu-
nication and timeouts. In this paper, we formalize this communication
structure and introduce the class of symmetric point-to-point algorithms.
We show that the symmetric point-to-point algorithms have a cutoff.
As a result, one can verify them by model checking small instances.
We demonstrate the feasibility of our approach by specifying the failure
detector by Chandra and Toueg in TLA+, and by model checking them
with the TLC and the APALACHE model checkers.

Keywords: TLA+ · Parameterized model checking · Failure
detectors · Symmetry · Point-to-point communication

1 Introduction

Nowadays, many high-reliability systems are distributed and parameterized in
some manner, e.g. the number of participants, or the size of message buffers.
Since the number and the cost of failures of these systems increases [2], industry
has applied many automated techniques to reason about their correctness at
the design and implementation levels, such as model checking [6,17,24,28], and
testing [19]. While these methods report positive results in analyzing individual
system configurations with fixed parameter values, the real goal is to verify all
configurations, i.e., with infinitely many vectors of parameter values.

Unfortunately, the parameterized verification problem is typically undecid-
able, even if every participant follows the same code [1,3,27]. This negative result
has led naturally to two approaches of algorithm analyses: (a) semi-automated

Supported by Interchain Foundation (Switzerland) and the Austrian Science Fund
(FWF) via the Doctoral College LogiCS W1255.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 329–346, 2021.
https://doi.org/10.1007/978-3-030-67087-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_21

330 T.-H. Tran et al.

methods based on user-guided invariants and proof assistants, and (b) automatic
techniques for restricted classes of algorithms and properties. A particularly fas-
cinating case is the cutoff property that guarantees that analyzing a few small
instances is sufficient to reason about the correctness of all instances [8,15]. In a
nutshell, given a property ξ and a system that has a parameter m, there exists
a number B ≥ 1 such that whenever all instances that assign a value not greater
than B to a parameter m satisfy ξ, then all instances which assign an arbitrary
number to m satisfy ξ. Hence, verification of algorithms that enjoy the cutoff
property can be done by model checking of finite instances.

In this paper, we introduce the class of symmetric point-to-point algorithms
that enjoys the cutoff property. Informally, an instance in this class contains N
processes that follow the same algorithm, and communicate with each other by
sending and receiving messages through point-to-point communication channels.
At each process, local memory can be partitioned into regions such that one
region corresponds one-to-one with a remote process, e.g. the array element
timeout [p, q] at a process p stores the maximum waiting time for a process q by
the process p. The failure detector [5] is one example of this class. Let 1..N be
a set of indexes. We show two cutoffs for these algorithms:

1. Let i be an index, and ω{i} be an LTL\X (the stuttering-insensitive linear
temporal logic) formula in which every predicate takes one of the forms: P1(i)
or P2(i, i). Properties of the form

∧
i∈1..N ω{i} has a cutoff of 1.

2. Let i and j be different indexes, and ψ{i,j} be an LTL\X formula in which
every predicate takes one of the (syntactic) forms: Q1(i), or Q2(j), or Q3(i, j),
or Q4(j, i). Properties of the form

∧i�=j
i,j∈1..N ψ{i,j} has a cutoff of 2.

For instance, by the second cutoff result, we can verify the following property
called the strong completeness property of the failure detector in [5] by model
checking of an instance of size 2.

FG(∀i, j ∈ 1..N : (Correct(i) ∧ ¬Correct(j)) ⇒ Suspected(i, j))

This formula means that every crashed process is eventually permanently sus-
pected by every correct process. We are writing F and G to denote “eventually”
and “globally” operators of linear temporal logic (LTL), see [9]. We demonstrate
the feasibility of our approach by specifying Chandra and Toueg’s failure detec-
tors [5] in the language TLA+ [22], and model checking the specification with
two model checkers: TLC [28] and APALACHE [20].

Related work. Our work is inspired by the cutoff results for various mod-
els of computation: ring-based message-passing systems [14,15], purely disjunc-
tive guards and conjunctive guards [12,13], token-based communication [8], and
quorum-based algorithms [23]. Additionally, there are semi-decision procedures
based on invariants, induction, and abstraction that are successful in many inter-
esting cases [4,7,18,21,25]. Interactive verification methods with proof assis-
tants [10,16,26] have produced positive results in proving distributed algorithms.

The paper is organized as follows. Section 2 presents our motivating example -
Chandra and Toueg’s failure detector [5], and challenges in verification of these
algorithms. Section 3 defines the model of computation as a transition system.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 331

Section 4 shows our main contributions: two cutoff results in the class of symmetric
point-to-point distributed algorithms. Section 5 presents how we encode the model
of computation, and the failure detector of [5] in TLA+, and the model checking
results. Section 6 concludes the paper with a discussion of future extensions.

2 Motivating Example

This section starts with a description of our motivating example – Chandra and
Toueg’s failure detector [5]. Then, we present challenges in verification of the
failure detector, and state-of-the-art verification techniques.

Algorithm 1 presents the pseudo-code of the failure detector of [5]. A system
instance has N processes that communicate with each other by sending-to-all and
receiving messages through N2 point-to-point communication channels. A process
performs local computation based on these messages (we assume that a process
also receives the messages that it sends to itself). In one system step, all processes
may take up to one step. Some processes may crash, i.e., stop operating. Correct
processes follow Algorithm 1 to detect crashes in the system. Initially, every cor-
rect process sets a default value for a timeout of each other, i.e. how long it should
wait for others and assumes that no processes have crashed (Line 4). Every correct
process p has three tasks: (i) repeatedly sends an “alive” message to all (Line 6),
and (ii) repeatedly produces predictions about crashes of other processes based on
timeouts (Line 8), and (iii) increases a timeout for a process q if p has learned that
its suspicion on q is wrong (Line 12). Notice that a process p raises suspicion on
the operation of a process q (Line 8) by considering only information related to q:
timeout [p, q] , suspected [p, q], and messages that p has received from q recently. In
other words, its suspicions about other processes grow independently.

Let Correct(p) be a predicate whether a process p is correct. (However, p can
crash later. A crashed process p1 satisfies ¬Correct(p1).) Let Suspected(p, q) be
a predicate whether a process p suspects a process q. The failure detector should
guarantee the following properties [5]:

– Strong completeness: Every crashed process is eventually permanently sus-
pected by every correct process.

FG(∀p, q ∈ 1..N : (Correct(p) ∧ ¬Correct(q)) ⇒ Suspected(p, q))

– Eventual strong accuracy: There is a time after which correct processes are
not suspected by any correct processes.

FG(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q))

In the asynchronous model, Algorithm 1 does not satisfy eventually strong accu-
racy since there exists no bound on message delay, and messages sent by correct
processes might always arrive after the timeout expires. The correctness of failure
detectors is based on two implicit time constraints: (1) the transmission delay
of messages and (2) the relative speeds of different processes [5]. Even if these
upper bounds exist but are unknown, failure detectors can satisfy both strong
completeness and eventually strong accuracy.

332 T.-H. Tran et al.

Algorithm 1. The eventually perfect failure detector algorithm in [5]
1: Every process p ∈ Π executes the following :
2: for all q ∈ Π do � Initalization step
3: timeout [p, q] = default-value
4: suspected [p, q] = ⊥ }
5:
6: Send “alive” to all q ∈ Π � Task 1: repeat periodically
7:
8: for all q ∈ Π do � Task 2: repeat periodically
9: if suspected [p, q] = ⊥ and not hear q during last timeout [p, q] ticks then

10: suspected [p, q] = �
11:
12: if suspected [p, q] then � Task 3: when receive “alive” from q
13: timeout [p, q] ← timeout [p, q] + 1
14: suspected [p, q] = ⊥

Note that the symmetry exists in both the failure detectors of [5] and the
above correctness properties. First, every process is isomorphic under renam-
ing. A correct process p always sends a message to all and raises suspicion on
a process q by considering only information related to q. Second, there are only
point-to-point communication channels. Third, the contents of in-transit mes-
sages is identical. They are merely “keep-alive” messages that may arrive at
different times. Finally, all variables in both properties strong completeness and
eventual strong accuracy are variables over process indices, and they are bound
by universal quantifiers. The symmetry is captured by our model of computation
and is the key point in our proofs of the cutoff results.

As a result, verification of failure detectors faces the following challenges:

1. Algorithms are parameterized by the number of processes. Hence, we need to
verify infinitely many instances of algorithms.

2. Its model of computation lies between synchrony and asynchrony since mul-
tiple processes can take a step in a global transition.

3. The algorithm relies on a global clock and local clocks. A straightforward
encoding of a clock with an integer would produce an infinite state space.

4. The algorithm is parameterized with the upper bounds on transmission time
of messages, and the relative speeds of different processes. These upper bounds
are called Δ and Φ, respectively.

In this paper, we focus on Challenges 1–2: Our model of computation in Sect. 3
does not restrict the number of processes that simultaneously take a step, and we
show cutoffs on the number of processes in Sect. 4. Our cutoff results apply for
checking LTL\X formulas of the forms

∧
i∈1..N ω{1} and

∧i�=j
i,j∈1..N ψ{1,2}. Hence,

we can verify the failure detector of [5] by model checking its few instances. We
demonstrate the feasibility of our approach by specifying and model checking the
failure detector in the synchronous case. Our specification contains optimizations
for Challenge 3, which allows us to efficiently encode global and local clocks. In
the synchronous case, we can skip Challenge 4, which we leave for furture work.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 333

3 Model of Computation

In this section, we formalize a distributed system as a transition system. This
formalization captures the semantics of the theoretical model of [5,11], but does
not consider the restrictions on the execution space given by Δ and Φ. A global
system is a composition of N processes, N2 point-to-point outgoing message
buffers, and N control components that capture what processes can take a step.
Every process is identified with a unique index in 1..N , and follows the same
deterministic algorithm. Moreover, a global system allows: (i) multiple processes
to take (at most) one step in one global transition, and (ii) some processes to
crash. Every process may execute three kinds of transitions: internal, round, and
stuttering. Notice that in one global transition, some processes may send a mes-
sage to all, and some may receive messages and do computation. Hence, we need
to decide which processes move, and what happens to the message buffers. We
introduce four sub-rounds: Schedule, Send, Receive, and Computation. The tran-
sitions for these sub-rounds are called internal ones. A global round transition is
a composition of four internal transitions. We formalize sub-rounds and global
transitions later. As a result of modeling, there exists an arbitrary sequence of
global configurations which is not accepted in [5,11]. We define so-called admissi-
ble sequences of global configurations that are accepted in [5,11]. We did encode
our formalization in TLA+, and our specification is presented in Sect. 5.

Since every process follows the same algorithm, we first define a process tem-
plate that captures the process behavior. This formalization focuses on symmet-
ric point-to-point algorithms parameterized by N . Every process is an instance
of the process template. Then, we present the formalization of a global system.

3.1 The Process Template

We fix a set of process indexes as 1..N . Moreover, we assume that the message
content does not have indexes of its receiver and sender. We let Msg denote a set
of potential messages, and Set(Msg) denote a set of sets of messages.

We model a process template as a transition system UN =
(QN ,TrN ,RelN , q0

N) where QN = Loc × Set(Msg)N × DN is a set of template
states, TrN is a set of template transitions, RelN ⊆ QN × TrN × QN is a tem-
plate transition relation, and q0

N ∈ QN is an initial state. These components of
UN are defined as follows.

States. A template state ρ is a tuple (�, S1, . . . , SN , d1, . . . , dN) where:

– � ∈ Loc refers to a location of a program counter, and Loc is a set of locations.
We assume that Loc = Locsnd ∪ Locrcv ∪ Loccomp ∪ {�crash}, and three sets
Locsnd , Locrcv , Loccomp are disjoint, and �crash is a special location of crashes.
To access the program counter, we use a function pc : QN → Loc that takes a
template state at its input, and produces its program counter as the output.
Let ρ(k) denote the kth component in a template state ρ. For every ρ ∈ QN ,
we have pc(ρ) = ρ(1) .

– Si ∈ Set(Msg) refers to a set of messages. It is to store the messages received
from a process pi for every i ∈ 1..N . To access a set of received messages from

334 T.-H. Tran et al.

a particular process whose index in 1..N , we use a function rcvd : QN ×1..N →
Set(Msg) that takes a template state ρ and a process index i at its input, and
produces the (i + 1)th component of ρ at the output, i.e. for every ρ ∈ QN ,
we have rcvd(ρ, i) = ρ(1 + i) .

– di ∈ D refers to a local variable related to a process pi for every i ∈ 1..N .
To access a local variable related to a particular process whose index in 1..N ,
we use a function lvar : QN × 1..N → D that takes a template state ρ and a
process index i at its input, and produces the (1 + N + i)th component of ρ
as the output, i.e. lvar(ρ, i) = ρ(1 + N + i) for every ρ ∈ QN .

Initial State. The initial state q0
N is a tuple q0

N = (�0, ∅, . . . , ∅, d0, . . . , d0) where
�0 is a location, every box for received messages is empty, and every local variable
is assigned a constant d0 ∈ D.

Transitions. We define TrN = CSnd ∪ CRcv ∪ {comp, crash, stutter} where

– CSnd is a set of transitions. Every transition in CSnd refers to a task that
does some internal computation, and sends a message to all. For example,
in task 1 in Algorithm 1, a process increases its local clock, and performs an
instruction to send “alive” to all. We let csnd(m) denote a transition referring
to a task with an action to send a message m ∈ Msg to all.

– CRcv is a set of transitions. Every transition in CRcv refers to a task that
receives N sets of messages, and does some internal computation. For exam-
ple, in task 2 in Algorithm 1, a process increases its local clock, receives mes-
sages, and remove false-negative predictions. We let crcv(S1, . . . , SN) denote
a transition referring to a task with an action to receive sets S1, . . . , SN of
messages. These sets S1, . . . , SN are delivered by the global system.

– comp is a transition which refers to a task with purely local computation. In
other words, this task has neither send actions nor receive actions.

– crash is a transition for crashes.
– stutter is a transition for stuttering steps.

Transition Relation. For two states ρ, ρ′ ∈ QN and a transition tr ∈ TrN , we
write ρ

tr−→ ρ′, instead of (ρ,
tr−→, ρ′). In the model of [5,11], each process follows

the same deterministic algorithm. Hence, we assume that for every ρ0
tr0−−→ ρ′

0

and ρ1
tr1−−→ ρ′

1, if ρ0 = ρ1 and tr0 = tr1, then it follows that ρ′
0 = ρ′

1. Moreover,
we assume that there exist the following functions which are used to define
constraints on the template transition relation:

– A function nextLoc : Loc → Loc takes a location at its input and produces
the next location as the output.

– A function genMsg : Loc → Set(Msg) a location at its input, and produces
a singleton set that contains the message that is sent to all processes in the
current task. The output can be an empty set. For example, if a process is
performing a receive task, the output of genMsg is an empty set.

– A function nextVar : Loc × Set(Msg) × D → D takes a location, a set of
messages, and a local variable’s value, and produces a new value of a local
variable as the output.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 335

Let us fix functions nextLoc, genMsg and nextVar . We define the template tran-
sitions as follows.

1. For every m ∈ Msg, for every pair of states ρ, ρ′ ∈ QN , we have ρ
csnd (m)−−−−−→ ρ′

if and only if
(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ {m} = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ, i) = rcvd(ρ′, i)
(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar

(
pc(ρ), rcvd(ρ′, i), lvar(ρ, i)

)

Constraint (a) implies that the update of a program counter and the con-
struction of a sent message m depend on only the current value of a program
counter, and a process wants to send only m to all in this step. Constraint
(b) is that no message was delivered. Constraint (c) implies that the value of
lvar(ρ′, i) depends on only the current location, a set of messages that have
been delivered and stored in rcvd(ρ′, i), and the value of lvar(ρ, i).

2. For every S1, . . . , SN ⊆ Msg, for every pair of states ρ, ρ′ ∈ QN , we have

ρ
crcv (S1,...,SN)−−−−−−−−−−→ ρ′ if and only if the following constraints hold:

(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ ∅ = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ′, i) = rcvd(ρ, i) ∪ Si

(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar
(
pc(ρ)), rcvd(ρ′, i), lvar(ρ, i)

)

Constraint (a) in crcv is similar to constraint (a) in csnd , except that no
message is sent in this sub-round. Constraint (b) refers that messages in a
set Si are from a process indexed i, and have been delivered in this step.
Constraint (c) in crcv is similar to constraint (c) in csnd .

3. For every pair of states ρ, ρ′ ∈ QN , we have ρ
comp−−−→ ρ′ if and only if the

following constraints hold:
(a) pc(ρ′) = nextLoc(pc(ρ)) ∧ ∅ = genMsg(pc(ρ))
(b) ∀i ∈ 1..N : rcvd(ρ′, i) = rcvd(ρ, i)
(c) ∀i ∈ 1..N : lvar(ρ′, i) = nextVar

(
pc(ρ), rcvd(ρ′, i), lvar(ρ, i)

)

Hence, this step has only local computation. No message is sent or delivered.
4. For every pair of states ρ, ρ′ ∈ QN , we have ρ

crash−−−→ ρ′ if and only if the
following constraints hold:
(a) pc(ρ) �= �crash ∧ pc(ρ′) = �crash
(b) ∀i ∈ 1..N : rcvd(ρ, i) = rcvd(ρ′, i) ∧ lvar(ρ, i) = lvar(ρ′, i)
Only the program counter is updated by switching to �crash .

5. For every pair of states ρ, ρ′ ∈ QN , we have ρ
stutter−−−−→ ρ′ if and only if ρ = ρ′.

3.2 Modeling the Distributed System

Given N processes which are instantiated from the same process template UN =
(QN ,TrN ,RelN , q0

N), the global system is a composition of (i) these processes,
and (ii) N2 point-to-point buffers for in-transit messages, and (iii) N control
components that capture what processes can take a step. We formalize the global
system as a transition system GN =

(CN , TN , RN , g0
N

)
where CN = (QN)N ×

Set(Msg)N ·N × BoolN is a set of global configurations, and TN is a set of global
internal, round, and stuttering transitions, and RN ⊆ CN × TN × CN is a global

336 T.-H. Tran et al.

transition relation, and g0
N is an initial configuration. These components are

defined as follows.

Configurations. A global configuration κ is defined as a following tuple κ =(
q1, . . . , qN , S1

1 , S2
1 . . . , Sr

s , . . . SN
N , act1, . . . , actN

)
where:

– qi ∈ QN : This component is a state of a process pi for every i ∈ 1..N . To access
a local state of a particular process, we use a function lstate : CN × 1..N →
QN that takes input as a global configuration κ and a process index i, and
produces output as the ith component of κ which is a state of a process pi. Let
κ(i) denote the ith component of a global configuration κ. For every i ∈ 1..N ,
we have lstate(κ, i) = κ(i) = qi.

– Sr
s ∈ Set(Msg): This component is a set of in-transit messages from a process

ps to a process pr for every s, r ∈ 1..N . To access a set of in-transit messages
between two processes, we use a function buf : CN × 1..N × 1..N → Set(Msg)
that takes input as a global configuration κ, and two process indexes s, r,
and produces output as the (s · N + r)th component of κ which is a message
buffer from a process ps (sender) to a process pr (receiver). Formally, we have
buf (κ, s, r) = κ(s · N + r) = Sr

s for every s, r ∈ 1..N .
– acti ∈ Bool: This component says whether a process pi can take one step in a

global transition for every i ∈ 1..N . To access a control component, we use a
function active : CN × 1..N → Bool that takes input as a configuration κ and
a process index i, and produces output as the ((N + 1) · N + i)th component
of κ which refers to whether a process pi can take a step. Formally, we have
active(κ, i) = κ((N + 1) · N + i) = bi for every i ∈ 1..N . The environment
sets the values of act1, . . . , actN in the sub-round Schedule defined later.

We will write κ ∈ (QN)N × Set(Msg)N ·N × BoolN or κ ∈ CN .

Initial Configuration. The global system GN has one initial configuration g0
N ,

and it must satisfy the following constraints:

1. ∀i ∈ 1..N : ¬active(g0
N , i) ∧ lstate(N, i) = q0

N

2. ∀s, r ∈ 1..N : buf (g0
N , s, r) = ∅

Global Round Transitions. Intuitively, every round transition is a sequence
of a Sched−−−→ transition, a Snd−−→ transition, a Rcv−−→ transition, and a

Comp−−−→ transition
defined below. We let � denote round transitions. The semantics of round tran-
sitions is defined as follows: for every pair of global configurations κ0, κ4 ∈ CN ,
we say κ0 � κ4 if there exist three global configurations κ1, κ2, κ3 ∈ CN such
that κ0

Sched−−−→ κ1
Snd−−→ κ2

Rcv−−→ κ3
Comp−−−→ κ4. Notice that every correct process

can make at most one global internal transition in every global round transition.
Moreover, round transitions allow some processes to crash only in the sub-round
Schedule. We call these faults clean-crashes.

Global Stuttering Transition. In the proof of Lemma 5 presented in Section 4,
we do projection. Therefore, we extend the relation � with stuttering: for every
configuration κ, we allow κ � κ.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 337

Admissible Sequences. An infinite sequence π = κ0κ1 . . . of global configura-
tions in GN is admissible if the following constraints hold:

1. κ0 is the initial state, i.e. κ0 = g0
N , and

2. π is stuttering equivalent with an infinite sequence π′ = κ′
0κ

′
1 . . . such that

κ′
4k

Sched−−−→ κ′
4k+1

Snd−−→ κ′
4k+2

Rcv−−→ κ′
4k+3

Comp−−−→ κ′
4k+4 for every k ≥ 0.

Notice that it immediately follows by this definition that if π = κ0κ1 . . . is an
admissible sequence of configurations in GN , then κ′

4k � κ′
4k+4 for every k ≥ 0.

From now on, we only consider admissible sequences of global configurations.

Global Internal Transitions. In the model of [5], many processes can take
a step in a global transition. We assume that a computation of the distributed
system is organized in rounds, i.e.global ticks, and every round is organized as
four sub-rounds called Schedule, Send, Receive, and Computation. To model that
as a transition system, for every sub-round we define a corresponding transition:
Sched−−−→ for the sub-round Schedule, Snd−−→ for the sub-round Send, Rcv−−→ for the sub-
round Receive,

Comp−−−→ for the sub-round Comp. These transitions are called global
internal transitions. We define the semantics of these sub-rounds as follows.

1. Sub-round Schedule. The environment starts with a global configuration
where every process is inactive, and move to another by non-deterministically
deciding what processes become crashed, and what processes take a step in
the current global transition. Every correct process takes a stuttering step,
and every faulty process is inactive. If a process p is crashed in this sub-
round, every incoming message buffer to p is set to the empty set. Formally,
for κ, κ′ ∈ CN , we have κ

Sched−−−→ κ′ if the following constraints hold:
(a) ∀i ∈ 1..N : ¬active(κ, i)
(b) ∀i ∈ 1..N : lstate(κ, i) stutter−−−−→ lstate(κ′, i) ∨ lstate(κ, i) crash−−−→ lstate(κ′, i)
(c) ∀i ∈ 1..N : pc(lstate(κ′, i)) = �crash ⇒ ¬active(κ′, i)
(d) ∀s, r ∈ 1..N : pc(lstate(κ′, r)) �= �crash ⇒ buf (κ, s, r) = buf (κ′, s, r)
(e) ∀r ∈ 1..N : pc(lstate(κ′, r)) = �crash ⇒ (∀s ∈ 1..N : buf (κ′, s, r) = ∅)

2. Sub-round Send. Only processes that perform send actions can take a step in
this sub-round. Such processes become inactive at the end of this sub-round.
Fresh sent messages are added to corresponding message buffers. To define
the semantics of the sub-round Send, we use the following predicates:

Enabled(ψ, i, L) � active(κ, i) ∧ pc(lstate(κ, i)) ∈ L

FrozenS(ψ1, ψ2, i) � ∧ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
∧ active(κ, i) = active(κ′, i)
∧ ∀r ∈ 1..N : buf (κ, i, r) = buf (κ′, i, r)

Sending(ψ1, ψ2, i,m) � ∧ ∀r ∈ 1..N : m /∈ buf (κ, i, r)
∧ ∀r ∈ 1..N : buf (κ′, i, r) = {m} ∪ buf (κ, i, r)

∧ lstate(κ, i)
csnd (m)−−−−−→ lstate(κ′, i)

Formally, for κ, κ′ ∈ CN , we have κ
Snd−−→ κ′ if the following constraints hold:

338 T.-H. Tran et al.

(a) ∀i ∈ 1..N : ¬Enabled(κ, i,Locsnd) ⇔ FrozenS(κ, κ′, i)
(b) ∀i ∈ 1..N : Enabled(κ, i,Locsnd) ⇔ ∃m ∈ Msg : Sending(κ, κ′, i,m)
(c) ∀i ∈ 1..N : Enabled(κ, i,Locsnd) ⇒ ¬active(κ′, i)

3. Sub-round Receive. Only processes that perform receive actions can take a
step in this sub-round. Such processes become inactive at the end of this sub-
round. Delivered messages are removed from corresponding message buffers.
To define the semantics of this sub-round, we use the following predicates:

FrozenR(ψ1, ψ2, i) � ∧ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
∧ active(κ, i) = active(κ′, i)
∧ ∀s ∈ 1..N : buf (κ, s, i) = buf (κ′, s, i)

Receiving(κ, κ′, i, S1, . . . , SN) � ∧ ∀s ∈ 1..N : Ss �⊆ buf (κ′, s, i)
∧ ∀s ∈ 1..N : buf (κ′, s, i) ∪ Ss = buf (κ, s, i)

∧ lstate(κ, i)
crcv (S1,...,SN)−−−−−−−−−−→ lstate(κ′, i)

Formally, for κ, κ′ ∈ CN , we have κ
Rcv−−→ κ′ if the following constraints hold:

(a) ∀i ∈ 1..N : ¬Enabled(κ, i,Locrcv) ⇔ FrozenR(κ, κ′, i)
(b) ∀i ∈ 1..N : Enabled(κ, i,Locrcv)

⇔ ∃S1, . . . , SN ⊆ Msg : Receiving(κ, κ′, i, S1, . . . , SN)
(c) ∀i ∈ 1..N : Enabled(κ, i,Locrcv) ⇒ ¬active(κ′, i)

4. Sub-round Computation. Only processes that perform internal computation
actions can take a step in this sub-round. Such processes become inactive at
the end of this sub-round. Every message buffer is unchanged. Formally, for
κ, κ′ ∈ CN , we have κ

Comp−−−→ κ′ if the following constraints hold:
(a) ∀i ∈ 1..N : Enabled(κ, i,Loccomp) ⇔ lstate(κ, i)

comp−−−→ lstate(κ′, i)
(b) ∀i ∈ 1..N : ¬Enabled(κ, i,Loccomp) ⇔ lstate(κ, i) stutter−−−−→ lstate(κ′, i)
(c) ∀s, r ∈ 1..N : buf (κ, s, r) = buf (κ′, s, r)
(d) ∀i ∈ 1..N : Enabled(κ, i,Loccomp) ⇒ ¬active(κ′, i)

Remark 1. Observe that the definitions of κ
Snd−−→ κ′, and κ

Rcv−−→ κ′, and κ
Comp−−−→ κ′

allow κ = κ′, that is stuttering. This captures, e.g. global transitions in [5,11]
where no process sends a message.

4 Cutoff Results

Let A be a symmetric point–to–point algorithm. In this section, we show two
cutoff results for the number of processes in the algorithm A. With these cutoff
results, one can verify the strong completeness and eventually strong accuracy
of the failure detector of [5] by model checking two instances of sizes 1 and 2.

Theorem 1. Let A be a symmetric point–to–point algorithm. Let G1 and GN

be instances of 2 and N processes respectively for some N ≥ 1. Let Path1 and
PathN be sets of all admissible sequences of configurations in G1 and in GN ,
respectively. Let ω{i} be a LTL\X formula in which every predicate takes one of
the forms: P1(i) or P2(i, i) where i is an index in 1..N . Then,

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 339

(
∀πN ∈ PathN : GN , πN |=

∧

i∈1..N

ω{i}
)

⇔
(
∀π1 ∈ Path1 : G1, π1 |= ω{1}

)
.

Theorem 2. Let A be a symmetric point–to–point algorithm. Let G2 and GN

be instances of 2 and N processes respectively for some N ≥ 2. Let Path2 and
PathN be sets of all admissible sequences of configurations in G2 and in GN ,
respectively. Let ψ{i,j} be an LTL\X formula in which every predicate takes one
of the forms: Q1(i), or Q2(j), or Q3(i, j), or Q4(j, i) where i and j are different
indexes in 1..N . It follows that:

(∀πN ∈ PathN : GN , πN |=
i�=j∧

i,j∈1..N

ψ{i,j}
) ⇔ (∀π2 ∈ Path2 : G2, π2 |= ψ{1,2}

)
.

Since the proof of Theorem 1 is similar to the one of Theorem 2, we focus
on Theorem 2 here. Its proof is based on the symmetric characteristics in the
system model and correctness properties, and on the following lemmas.

– Lemma 1 says that every transposition on a set of process indexes 1..N pre-
serves the structure of the process template UN .

– Lemma 2 says that every transposition on a set of process indexes 1..N pre-
serves the structure of the global transition system GN for every N ≥ 1.

– Lemma 5 says that G2 and GN are trace equivalent under a set AP{1,2} of
predicates that take one of the forms: Q1(i), or Q2(j), or Q3(i, j), or Q4(j, i).

In the following, we present definitions and constructions to prove these lemmas.
We end this section with the proof sketch of Theorem 2.

4.1 Index Transpositions And symmetric point–to–point systems

We first recall the definition of transposition. Given a set 1..N of indexes, we
call a bijection α : 1..N → 1..N a transposition between two indexes i, j ∈ 1..N
if the following properties hold: α(i) = j, and α(j) = i, and ∀k ∈ 1..N : (k �=
i ∧ k �= j) ⇒ α(k) = k. We let (i ↔ j) denote a transposition between two
indexes i and j.

The application of a transposition to a template state is given in Definition 1.
Informally, applying a transposition α = (i ↔ j) to a template state ρ gener-
ates a new template state by switching only the evaluation of rcvd and lvar
at indexes i and j. The application of a transposition to a global configuration
is provided in Definition 2. In addition to process configurations, we need to
change message buffers and control components. We override notation by writ-
ing αS(ρ) and αC(κ) to refer the application of a transposition α to a state ρ
and to a configuration κ, respectively. These functions αS and αC are named a
local transposition and a global transposition, respectively.

340 T.-H. Tran et al.

Definition 1 (Local Transposition). Let UN be a process template with pro-
cess indexes 1..N , and ρ = (�, S1, . . . , SN , d1, . . . , dN) be a state in UN . Let
α = (i ↔ j) be a transposition on 1..N . The application of α to ρ, denoted as
αS(ρ), generates a tuple (�′, S′

1, . . . , S
′
N , d′

1, . . . , d
′
N) such that

1. � = �′, and Si = S′
j, and Sj = S′

i, and di = d′
j and dj = d′

i, and
2. ∀k ∈ 1..N : (k �= i ∧ k �= j) ⇒ (Sk = S′

k ∧ dk = d′
k)

Definition 2 (Global Transposition). Let GN be a global system with process
indexes 1..N , and κ be a configuration in GN . Let α = (i ↔ j) be a transposition
on 1..N . The application of α to κ, denoted as αC(κ), generates a configuration
in GN which satisfies following properties:

1. ∀i ∈ 1..N : lstate(αC(κ), α(i)) = αS(lstate(κ, i)).
2. ∀s, r ∈ 1..N : buf (αC(κ), α(s), α(r)) = buf (κ, s, r)
3. ∀i ∈ 1..N : active(αC(κ), α(i)) = active(κ, i)

Since the content of every message in Msg does not have indexes of the receiver
and sender, no transposition affects the messages. We define the application of
a transposition to one of send, compute, crash, and stutter template transitions
return the same transition. We extend the application of a transposition to a
receive template transition as in Definition 3.

Definition 3 (Receive-transition Transposition). Let UN be a process
template with process indexes 1..N , and α = (i ↔ j) be a transposition on
1..N . Let crcv(S1, . . . , SN) be a transition in UN which refers to a task with
a receive action. We let αR(crcv(S1, . . . , SN)) denote the application of α to
crcv(S1, . . . , SN), and this application returns a new transition crcv(S′

1, . . . , S
′
N)

in UN such that:

1. Si = S′
j, and Sj = S′

i, and
2. ∀k ∈ 1..N : (k �= i ∧ k �= j) ⇒ (Sk = S′

k ∧ dk = d′
k)

We let αU (UN) and αG(GN) denote the application of a transposition α
to a process template UN and a global transition GN , respectively. Since these
definitions are straightforward, we skip them in this paper. We prove later that
αS(UN) = UN and αC(GN) = GN (see Lemmas 1 and 2).

Lemma 1 (Symmetric Process Template). Let UN = (QN ,TrN ,
RelN , q0

N) be a process template with indexes 1..N . Let α = (i ↔ j) be a trans-
position on 1..N , and αS be a local transposition based on α (from Definition 1).
The following properties hold:

1. αS is a bijection from QN to itself.
2. The initial state is preserved under αS, i.e. αS(q0

N) = q0
N .

3. Let ρ, ρ′ ∈ UN be states such that ρ
crcv (S1,...,SN)−−−−−−−−−−→ ρ′ for some sets of messages

S1, . . . , SN ∈ Set(Msg). It follows αS(ρ)
αR(crcv(S1,...,SN))−−−−−−−−−−−−−→ αS(ρ′).

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 341

4. Let ρ, ρ′ be states in UN , and tr ∈ TrN be one of send, local computation,
crash and stutter transitions such that ρ

tr−→ ρ′. Then, αS(ρ) tr−→ αS(ρ′).

Lemma 2 (Symmetric Global System). Let UN = (QN ,TrN ,RelN , q0
N) be

a process template, and GN =
(CN , TN , RN , g0

N

)
be a global transition system

such that the process indexes is a set 1..N , and every process is instantiated with
UN . Let α be a transposition on 1..N , and αC be a global transposition based on
α (from Definition 2). The following properties hold:

1. αC is a bijection from CN to itself.
2. The initial configuration is preserved under αC , i.e. αC(g0

N) = g0
N .

3. Let κ and κ′ be configurations in GN , and tr ∈ TN be either a internal tran-
sition such that κ

tr−→ κ′. It follows αC(κ) tr−→ αC(κ′).
4. Let κ and κ′ be configurations in GN . If κ � κ′, then αC(κ) � αC(κ′).

4.2 Trace Equivalence of G2 and GN Under AP{1,2}

Let G2 and GN be two global transition systems whose processes follow the
same symmetric point–to–point algorithm. In the following, our goal is to prove
Lemma 5 that says G2 and GN are trace equivalent under a set AP{1,2} of predi-
cates which take one of the forms: Q1(1), Q2(2), Q3(1, 2), or Q4(2, 1). To do that,
we first present two construction techniques: Construction 1 to construct a state
in U2 from a state in UN , and Construction 2 to construct a global configuration
in G2 from a given global configuration in GN . Then, we present two Lemmas 3
and 4. These lemmas are required in the proof of Lemma 5.

To keep the presentation simple, when the context is clear, we simply write
UN , instead of fully UN =

(
QN ,TrN ,RelN , q0

N

)
. We also write GN , instead of

fully GN =
(CN , TN , RN , g0

N

)
.

Construction 1 (State Projection). Let A be an arbitrary symmetric
point–to–point algorithm. Let UN be a process template of A for some N ≥
2, and ρN be a process configuration of UN . We construct a tuple ρ2 =
(pc1, rcvd1, rcvd2, v1, v2) based on ρN and a set {1, 2} of process indexes in the
following way:

1. pc1 = pc(ρN).
2. For every i ∈ {1, 2}, it follows rcvdi = rcvd(ρN , i).
3. For every i ∈ {1, 2}, it follows vi = lvar(ρN , i).

Construction 2 (Configuration Projection). Let A be a symmetric point–
to–point algorithm. Let G2 and GN be two global transitions of two instances of
A for some N ≥ 2, and κN ∈ CN be a global configuration in GN . We construct
a tuple κ2 = (s1, s2, buf1

1 , buf2
1 , buf1

2 , buf2
2 , act1, act2) based on the configuration

κN and a set {1, 2} of indexes in the following way:

1. For every i ∈ {1, 2}, a component si is constructed from lstate(κN , i) with
Construction 1 and indexes {1, 2}.

342 T.-H. Tran et al.

2. For every s, r ∈ {1, 2}, it follows bufr
s = buf (κN , s, r).

3. For every process i ∈ {1, 2}, it follows acti = active(κN , i).

Note that a tuple ρ2 constructed with Construction 1 is a state in U2, and
a tuple κ2 constructed with Construction 2 is a configuration in G2. We call ρ2

(and κ2) the index projection of ρN (and κN) on indexes {1, 2}. The following
Lemma 3 says that Construction 2 allows us to construct an admissible sequence
of global configurations in G2 based on a given admissible sequence in GN .

Lemma 3. Let A be a symmetric point–to–point algorithm. Let G2 and GN be
two transition systems such that all processes in G2 and GN follow A, and N ≥
2. Let πN = κN

0 κN
1 . . . be an admissible sequence of configurations in GN . Let

π2 = κ2
0κ

2
1 . . . be a sequence of configurations in G2 such that κ2

k is the index
projection of κN

k on indexes {1, 2} for every k ≥ 0. Then, π2 is admissible in G2.

The proof of Lemma 3 is based on the following observations:

1. The application of Construction 1 to an initial template state of UN constructs
an initial template state of U2.

2. Construction 1 preserves the template transition relation.
3. The application of Construction 2 to an initial global configuration of GN

constructs an initial global configuration of G2.
4. Construction 2 preserves the global transition relation.

Moreover, Lemma 4 says that given an admissible sequence π2 = κ2
0κ

2
1 . . . in

G2, there exists an admissible sequence πN = κN
0 κN

1 . . . in GN such that κ2
i is

the index projection of κN
i on indexes {1, 2} for every 0 ≤ i.

Lemma 4. Let A be an arbitrary symmetric point–to–point algorithm. Let G2

and GN be global transition systems of A for some N ≥ 2. Let π2 = κ2
0κ

2
1 . . . be an

admissible sequence of configurations in G2. There exists an admissible sequence
πN = κN

0 κN
1 . . . of configurations in GN such that κ2

i is index projection of κN
i

on indexes {1, 2} for every i ≥ 0.

Lemma 5. Let A be a symmetric point–to–point algorithm. Let G2 and GN be
its instances for some N ≥ 2. Let AP{1,2} be a set of predicates that take one
of the forms: Q1(1), Q2(2), Q3(1, 2) or Q4(2, 1). It follows that G2 and GN are
trace equivalent under AP{1,2}.

4.3 Cutoff Results Of symmetric point–to–point algorithms

In the following, we prove the cutoff result in Theorem 2 (see Page 10). A proof
of another cutoff result in Theorem 1 is similar.

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 343

Proof sketch of Theorem 2. We have
(∀πN ∈ PathN : GN , πN |=

i�=j∧

i,j∈1..N

ψ{i,j}
)

⇔ (∧i�=j
i,j∈1..N (∀πN ∈ PathN : GN , πN |= ψ{i,j})

)
. Let i and j be two pro-

cess indexes in a set 1..N such that i �= j. It follows that α1 = (i ↔ 1)
and α2 = (j ↔ 2) are transpositions on 1..N (*). By Lemma 2, we have:
(i) ψ{α1(i),α2(j)} = ψ{1,2}, and (ii) α2((α1(GN))) = α2(GN) = GN , and (iii)
α2((α1(g0

N))) = α2(g0
N) = g0

N .
Since ψ{i,j} is an LTL\X formula, Aψ{i,j} is a CTL*\X formula where A

is a path operator in CTL*\X (see [9]). By the semantics of the operator A,
it follows ∀πN ∈ PathN : GN , πN |= ψ{i,j} if and only if GN , g0

N |= Aψ{i,j}. By
point (*), it follows GN , g0

N |= Aψ{i,j} if and only if GN , g0
N |= Aψ{1,2}. We have

that GN , g0
N |= ∧i�=j

i,j∈1..N Aψ(i, j) if and only if GN , g0
N |= Aψ(1, 2), because both

i and j are arbitrary and different. By the semantics of the operator A, we have
GN , g0

N |= Aψ(1, 2) if and only if ∀πN ∈ PathN : GN , πN |= ψ(1, 2). It follows
∀πN ∈ PathN : GN , πN |= ψ(1, 2) if and only if ∀π2 ∈ Path2 : G2, π2 |= ψ(1, 2) by
Lemma 5. Then, Theorem 2 holds. ��

5 Experiments

To demonstrate the feasibility of our approach, we specified the failure detec-
tor [5] in TLA+ [22] 1. Our specification follows the model of computation in
Section 3. It is close to the pseudo-code in 1, except that these tasks are orga-
nized in a loop: task 1, task 2, and task 3. Moreover, our encoding contains the
upper bounds on transmission time of messages and on the relative speeds of
different processes, called Δ and Φ respectively. The user can verify our speci-
fication with different values of Δ and Φ by running model checkers TLC [28]
and APALACHE [20]. Our experiments were set up in the synchronous case
where Δ = 0 and Φ = 1. To reduce the state space, we apply abstractions to a
global clock, local clocks, and received messages. Our abstractions are explained
in detail in our TLA+ specification.

We ran the following experiments on a laptop with a core i7-6600U CPU and
16GB DDR4. Table 1 presents the results in model checking the failure detec-
tors [5] in the synchronous model. From the theoretical viewpoint, an instance
with N = 1 is necessary, but we show only interesting cases with N ≥ 2 in
Table 1. (We did check an instance with N = 1, and there are no errors in
this instance.) The strong accuracy property is the following safety property:
G(∀p, q ∈ 1..N : (Correct(p) ∧ Correct(q)) ⇒ ¬Suspected(p, q)). The column
“depth” shows the maximum execution length used by our tool as well as the
maximum depth reached by TLC while running breadth-first search. For the
second and forth benchmarks, we used the diameter bound that was reported
by TLC, which does exhaustive state exploration. Hence, the verification results
with APALACHE are complete. The abbreviation “TO” means timeout of 10 h.

1 Our specification is available at https://github.com/banhday/netys20.git.

https://github.com/banhday/netys20.git

344 T.-H. Tran et al.

Table 1. Checking the failure detector [5] in the synchronous case

Property N Tool Runtime Memory Depth

1

Strong accuracy

2 TLC 2 s 112M 36

2 2 APALACHE 1 m 1.12G 37

3 4 TLC 17 m 774M 40

4 4 APALACHE 72 m 2.27G 41

5 6 TLC TO 943M 2

6 6 APALACHE TO 3M 31

7
Eventually strong

accuracy

2 TLC 2 s 140M 36

8 4 TLC 20 m 683M 40

9 6 TLC TO 839M 2

10

Strong completeness

2 TLC 2 s 134M 36

11 4 TLC 23 m 678M 40

12 6 TLC TO 789M 3

13

Inductive invariant

2 TLC 20 s 192M

14 2 APALACHE 1 m 674M

15 3 TLC TO 1.1G

16 3 APALACHE 3 m 798M

17 4 APALACHE 31 m 1.14G

The inductive invariant is on the transition �, and contains type invariants,
constraints on the age of in-transit messages, and constraints on when a process
executes a task.

6 Conclusion

We have introduced the class of symmetric point-to-point algorithms that cap-
ture some well-known algorithms, e.g. failure detectors. The symmetric point-
to-point algorithms enjoy the cutoff property. We have shown that checking
properties of the form ω(i) has a cutoff of 1, and checking properties of the form
ψ(i, j) has a cutoff of 2 where ω(i) is an LTL\X formula whose predicates inspect
only variables with a process index i, and ψ(i, j) is an LTL\X formula whose
predicates inspect only variables with two different process indexes i �= j. We
demonstrated the feasibility of our approach by specifying and model checking
the failure detector by Chandra and Toueg under synchrony with two model
checkers TLC and APALACHE.

We see two directions for future work. The first is to find new cutoffs for
checking other properties in symmetry point-to-point algorithms. For example,
given a correctness property with k universal quantifiers over process index vari-
ables, we conjecture that checking k small instances whose size is less than or
equal to k is sufficient to reason about the correctness of all instances. The second

Cutoffs for Symmetric Point-to-Point Distributed Algorithms 345

is to extend our results to the model of computation under partial synchrony.
This model has additional time constraints on message delay Δ and the relative
process speed Φ. Algorithms under partial synchrony are parameterized by Δ
and Φ. We explore techniques to deal with these parameters.

References

1. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. IPL 15, 307–309 (1986)

2. Bailis, P., Kingsbury, K.: The network is reliable. Queue 12(7), 20–32 (2014)
3. Bloem, R., et al.: Decidability of parameterized verification. Syn. Lect. Dist. Com-

put. Theory 6(1), 1–170 (2015)
4. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:

Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. CAV. LNCS 2404, 359–364 (2002)

7. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 4

8. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-
8 18

9. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model checking.
MIT press (2018)

10. Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in theheard-of
model. Archive of Formal Proofs 2012 (2012)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

12. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000). https://doi.org/10.1007/10721959 19

13. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache
coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol.
2860, pp. 247–262. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39724-3 22

14. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message
passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol.
3210, pp. 325–339. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30124-0 26

15. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. pp.
85–94 (1995)

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-540-78800-3_4
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/10721959_19
https://doi.org/10.1007/978-3-540-39724-3_22
https://doi.org/10.1007/978-3-540-39724-3_22
https://doi.org/10.1007/978-3-540-30124-0_26
https://doi.org/10.1007/978-3-540-30124-0_26

346 T.-H. Tran et al.

16. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: Proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

17. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

18. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

19. Kingsbury, K.: Jepsen: Testing the partition tolerance of postgresql, redis, mongodb
and riak, 2013

20. Konnov, I., Kukovec, J., Tran, T.H.: TLA+ model checking made symbolic. Pro-
ceedings of the ACM on Programming Languages 3(OOPSLA), 1–30 (2019)

21. Kurshan, R.P., McMillan, K.: A structural induction theorem for processes. In:
Proceedings of the eighth annual ACM Symposium on Principles of distributed
computing. pp. 239–247 (1989)

22. Lamport, L.: Specifying systems: The TLA+ language and tools for hardwareand
software engineers. Addison-Wesley (2002)

23. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 12

24. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Comm. ACM 58(4), 66–73 (2015)

25. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 7

26. Schiper, N., Rahli, V., Van Renesse, R., Bickford, M., Constable, R.L.: Devel-
oping correctly replicated databases using formal tools. In: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. pp.
395–406. IEEE (2014)

27. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

28. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1007/3-540-45319-9_7
https://doi.org/10.1007/3-540-48153-2_6

Short Papers

Stateless Distributed Ledgers

François Bonnet1, Quentin Bramas2(B), and Xavier Défago1

1 School of Computing, Tokyo Institute of Technology, Tokyo, Japan
{bonnet,defago}@c.titech.ac.jp

2 ICUBE, University of Strasbourg, CNRS, Strasbourg, France
bramas@unistra.fr

Abstract. In public distributed ledger technologies (DLTs), such as
Blockchains, nodes can join and leave the network at any time. A major
challenge occurs when a new node joining the network wants to retrieve
the current state of the ledger. Indeed, that node may receive conflict-
ing information from honest and Byzantine nodes, making it difficult to
identify the current state.

In this paper, we are interested in protocols that are stateless, i.e., a
new joining node should be able to retrieve the current state of the ledger
just using a fixed amount of data that characterizes the ledger (such as
the genesis block in Bitcoin).

We define three variants of stateless DLTs: weak, strong, and proba-
bilistic. Then, we analyze this property for DLTs using different types of
consensus.

Keywords: Distributed ledger technology · Blockchain · Consensus

1 Introduction

Distributed Ledger Technologies (DLTs) are usually partitioned depending on
the type of consensus used to order incoming transactions. Here, we consider the
three most used classes of technologies: Byzantine agreement, Proof of Work, and
Proof of Stake.

Byzantine agreement protocols [7] are used to maintain consistent states
replicated over multiple servers. It can tolerate crash or Byzantine faults, up to
a number that depends on the synchrony assumption of the communications.
Such protocols are executed by known servers in a fixed network environment,
a setting called permissioned. They can easily be used by nodes to maintain a
ledger of transactions. Every insertion in the ledger is the result of a consensus
among participating nodes.

Blockchains based on Proof of Work (PoW) are the first distributed ledger
technologies that work in an environment where nodes can join and leave and
any node can participate to the protocol. Nodes are elected randomly propor-
tionally to their computational power, and an elected node can append transac-
tions to the ledger. All current PoW Blockchains, including Bitcoin, work with

This research is partly supported by Japan Science and Technology Agency (JST)
OPERA Grant Number JY280149.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 349–354, 2021.
https://doi.org/10.1007/978-3-030-67087-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_22

350 F. Bonnet et al.

synchronous communications, and assume correct nodes to have strictly more
computational power than Byzantine nodes.

Blockchains based on Proof of Stake (PoS) are similar to the PoW based ones,
but nodes are elected proportionally to the amount of tokens they own in the
blockchain itself. In protocols based on PoS, a well-known concern is called long-
range attacks [2], where a group of nodes create an alternative chain extending an
old block. This is made possible because block generation is not computationally
heavy, and if a node can extend a block at a given time, nothing prevents it from
extending the same block in a different way at a later time. This attack becomes
even worse when the nodes owning a majority of tokens at a previous time, do
not have stake at the current time. Performing such attacks could be appealing
as they have nothing to lose. This problem is known as posterior corruption [1].

Existing Proof of Stake based protocols such as SnowWhite [1], Algorand [4],
Ouroboros [6], have identified such risks. The main solution proposed is to have
some sort of checkpointing mechanism to avoid considering past majorities of
stake holders. A variant of this attack is called stake-bleeding attacks [3]. It uses
other mechanisms such as block rewards and transaction fees to allow even a
past minority of stake holders to execute long-range attacks.

Contributions. In this paper we aim at defining a general model to capture
the main difference between various kind of Distributed Ledger Technologies
(DLTs). Our model is abstract enough to be independent of the implementation
and capture only the main mechanisms of the DLTs. Then, we focus on one
property that we call the Stateless Property. We define this property in our
general DLT model and show whether existing technologies satisfies it or not. In
particular the fact that Proof of Stake based DLTs are not Stateless implies the
existence of the long-range attack vulnerability.

We believe that our model could be use independently to capture other prop-
erties and compare technologies in an abstract way.

2 Model

We consider that time is discrete and at each time t ∈ N, Nt represents the
set of nodes in the network. We consider that communication is instantaneous
and there is a communication link between any two nodes in the network at any
given time. We also assume that each node is identified, and is able to securely
sign messages.

A distributed ledger is a data structure with an “append” function. It is
maintained by a set of processing nodes. The network receives events and the
nodes react to the events according to the distributed ledger protocol. Each time
the ledger is updated, a new time instant begins. Formally, a DLT is characterized
by its initial state I and a state transition function σ that takes a current state
St, the events Et, and the network Nt containing all the nodes that are online at
least once before the next “append”. Then σ returns a new state St+1 when the
“append” function is called at time t + 1. A state can be seen as a sequence of

Stateless Distributed Ledgers 351

“append” and we write S � S′ when state S is a prefix of state S′, i.e., S′ can
be obtained from S by appending data. The state S−k denotes the truncated
state S where the last k occurrences of “append” of S are omitted.

Given a DLT (I, σ), a sequence of N = (Nt)t∈N of networks and a
sequence E = (Et)t∈N of events, we can construct the sequence of states
States(I, σ,N , E) = (St)t∈N in the following way S0 = I and ∀t ∈ N, St+1 =
σ(St,Nt, Et).

Stateless DLT. When a new node joins the network, it obtains the current state
from the other nodes in the network. Informally, we say a DLT is stateless if a
new joining node is able to deduce what is the current state of the DLT from the
information received from the current network and by knowing the initial state.

At a given time t, each node u ∈ Nt has a local state LS(u). For a correct
node, the local state is exactly the current state St (communications are supposed
instantaneous so all correct nodes agree on the current state at any time). For
Byzantine nodes, the local state is constructed by an adversary. The set of pairs
(u,LS(u)) for all nodes u in Nt is denoted St i.e., St = {(u,LS(u)) |u ∈ Nt}.

Definition 1 (Weakly Stateless DLT). A DLT is weakly stateless if there
exists a function f such that f(I,St) = St.

Definition 2 (Strongly Stateless DLT). A DLT is strongly stateless if there
exists a function f such that f(I,St) = St and, for any subset A ⊂ St, f(I,A) =
St or ⊥.

Definition 3 (Probabilistically Stateless DLT). A DLT is probabilistically
stateless if there exists a function f such that ∀k, t, t′ ∈ N, with k ≤ t ≤ t′,
f(I,St)−k � St′ with probability greater than 1 − O(e−ck) for some constant
c > 0.

3 Examples of Stateless DLTs

Byzantine Agreement Protocols. It is well-known that, in a fixed network
C of known nodes where communication is synchronous, consensus is possible
and can tolerate up to (|C|−1)

2 Byzantine nodes [7].
We denote by σBA the transition function of a Byzantine agreement protocol

among the nodes in C. σBA represents the fact that, at time t, the nodes in
C ⊂ Nt perform a Byzantine agreement to order the transactions received in Et

and update the state St accordingly to obtain St+1. In the Byzantine agreement
protocol, we consider that the state contains the information about the set C of
nodes participating in the consensus protocol.

Interestingly, when a majority of nodes in C are correct, any node u outside
C can ask the nodes in C for the current state. Then, the current state is the
one received by a majority of nodes in C, and is guaranteed to be correct. From
this we deduce the following theorem:

352 F. Bonnet et al.

Theorem 1. For a set of nodes C and an initial state I (which contains the
information of C), if ∀t ∈ N, C ⊂ Nt and at most (|C|−1)

2 nodes in C are
Byzantine, then the DLT (I, σBA) is strongly stateless.

Proof. Assuming at most (|C|−1)
2 nodes are Byzantine, for any sequence N and

E, all the correct nodes in C agree on all the state St ∈ States(I, σBA,N , E)
for any t ∈ N. The function f returns the local state that appears in at least
|C|+1

2 pairs associated with a node in C. If no such state exists (if the set of local
states is only a subset of S), f returns ⊥. Formally, we have
f(I,A) = S if |{u ∈ C|(u, S) ∈ A}| > |C|

2 , and f(I,A) = ⊥ otherwise. ��

Proof of Work Blockchains. In PoW Blockchains, there are no assumptions
about the nodes in the network, except that at any time t, in Nt, the compu-
tational power of the correct nodes is strictly greater than the computational
power of the Byzantine nodes. Then, the transition function σPoW applies an
ordering on the transactions received in Et (decided by some node in the net-
work) and appends the block of transactions to state St resulting in St+1. In
addition, from state St, one can compute the proof of work performed until time
t, denoted PoW (St). So PoW (St+1) is the sum of PoW (St) and the proof of
work corresponding to the last “append”. For the initial state I, PoW (I) = 0.

Theorem 2. For an initial state I, if for all t the computational power of correct
nodes in Nt is strictly greater than the computational power of Byzantine nodes
in Nt, then the DLT (I, σPoW) is probabilistically stateless.

Proof. Let f be the function returning the local state that maximizes the Proof
of Work, f(I,St) = argmaxS({PoW (S)|∃u, (u, S) ∈ St}). Such a local state
could have been generated by an adversary. If k denotes the number of blocks
we have to truncate to obtain a prefix of the correct state St, then the probability
decreases exponentially fast when k tends to infinity. Indeed, let pt, resp. qt, be
the computational power of the correct nodes, resp. of the adversary, at time t.
By assumption, ∀t, pt > qt. Let λt = maxt′≤t(pt′qt′).

From [5] (Th.2), we deduce that, at a given time t, the probability that an
adversary rewrites the last k blocks is in O(e−cz) with c = log(1/(4λt)) > 0. ��

4 Impossibility of Stateless Proof of Stake Blockchains

In PoS Blockchains, the consensus at a given time t is possible assuming the
nodes owning a majority of the tokens are correct. So we can assume that the
state transition function σPoS is performed by those correct nodes, owning a
majority of the tokens, creating a new state St+1 from state St and incoming
events Et. However nothing prevents the nodes in N0 to create an alternative
state after time 0.

Theorem 3. Even if, at each time, all the nodes owning tokens are correct, the
PoS DLT is not weakly stateless.

Stateless Distributed Ledgers 353

Proof. To simplify, assume that, at some time t > 0, all nodes in N0 are owned
by the adversary. Indeed, there is no assumption on the correctness of N0 after
time 0. Then, the adversary can simulate an execution of the DLT in a sequence
of networks N ′

t where each node in N ′
t is owned by the adversary and such

that there is a bijection m mapping any nodes in u ∈ Nt to a malicious node
m(u) ∈ N ′

t , for all t ∈ N (m(u) = u if u is already malicious). Hence, the
sequences of networks (N ′

t)t and (Nt)t differ only in the addresses that identify
nodes. The adversary can execute the same DLT using the same sequence of
events (Et)t but in the malicious sequence of networks N ′ = (N ′

t)t, which gives
a different sequence of states States(I, σPoS ,N ′, E)
= States(I, σPoS ,N , E).

At time t, the adversary can connect all nodes N ′
t to the network so that the

set of local states is St = {(u,LS(u))|u ∈ Nt} ∪ {(u,LS(u))|u ∈ N ′
t}. The set

is symmetric as half of the local states contain St and the other half contain S′
t

and both states differ only in the addresses used to identify nodes.
States(I, σPoS ,N ′, E) is a valid sequence of states if the sequence of networks

was N ′ and if the adversary creates symmetrically the state St using the sequence
of networks Nt. A function f should answer St in the first case and S′

t in the
second case, with exactly the same input, which is a contradiction. ��

One way to make the PoS DLT stateless is to assume that any set of nodes
owning a majority of the token at a given time t are correct at any time t′ > t.
This is a very strong assumption as for instance, it gives the same kind of trust
in the initial set of nodes as in the Byzantine agreement protocol. Indeed, if the
nodes in N0 are still connected at time t then, they act as a trusted committee.
We could even remove the proof of stake entirely and only rely on standard
Byzantine agreement between nodes in N0. In the case where nodes in N0 go
offline, they can select replacement nodes (using any method including election
or simply one-to-one replacement), and include a signed message that define
their choice in the state so that any joining node could identify the current set
of trusted nodes. In future work, we plan to identify other sufficient conditions
for the existence of Stateless DLTs.

References

1. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive 2016, 919 (2016)

2. Deirmentzoglou, E., Papakyriakopoulos, G., Patsakis, C.: A survey on long-range
attacks for proof of stake protocols. IEEE Access 7, 28712–28725 (2019)

3. Gaži, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake
blockchains. In: 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), pp. 85–92. IEEE (2018)

4. Yossi, G., Rotem, H., Silvio, M., Georgios, V., Nickolai, Z.: Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

5. Grunspan, C., Pérez-Marco, R.: Double spend races. Int. J. Theor. Appl. Finance
21(08), 1850053 (2018)

354 F. Bonnet et al.

6. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

7. Michel, R.: Distributed algorithms for message-passing systems. Springer, Heidel-
berg (2013)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

Stability Under Adversarial Injection
of Dependent Tasks
(Extended Abstract)

Vicent Cholvi1(B), Juan Echagüe1, Antonio Fernández Anta2,
and Christopher Thraves Caro3

1 Universitat Jaume I, Castellón de la Plana, Spain
{vcholvi,echague}@uji.es

2 IMDEA Networks Institute, Madrid, Spain
antonio.fernandez@imdea.org

3 Departamento de Ingenieŕıa Matemática, Facultad de Ciencias F́ısicas y
Matemáticas, Universidad de Concepción, Concepción, Chile

cthraves@ing-mat.udec.cl

Abstract. In this work, we consider a computational model of a dis-
tributed system formed by a set of servers in which jobs, that are con-
tinuously arriving, have to be executed. Every job is formed by a set
of dependent tasks (i. e., each task may have to wait for others to be
completed before it can be started), each of which has to be executed
in one of the servers. The arrival and properties of jobs are assumed to
be controlled by a bounded adversary, whose only restriction is that it
cannot overload any server. This model is a non-trivial generalization of
the Adversarial Queuing Theory model of Borodin et al. and, like that
model, focuses on the stability of the system: whether the number of
jobs pending to be completed is bounded at all times. We show multiple
results of stability and instability for this adversarial model under differ-
ent combinations of the scheduling policy used at the servers, the arrival
rate, and the dependence between tasks in the jobs.

Keywords: Tasks scheduling · Task queuing · Dependent tasks ·
Adversarial queuing models · Stability

1 Introduction

In this work, we consider a model of jobs formed by dependent tasks that have
to be executed in a set of servers. The dependencies among the tasks of a job
restrict the order and time of their execution. For instance, a task q may need
some information from another task p, so that the latter must complete before

This submission is a short paper. This work was partially funded by the Spanish
grant PID2019-109805RB-I00 (ECID), the Region of Madrid EdgeData-CM program
(P2018/TCS-4499), and the NSF of China grant 61520106005.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 355–360, 2021.
https://doi.org/10.1007/978-3-030-67087-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_23

356 V. Cholvi et al.

q can be executed. This model embodies, for instance, the dynamics of Net-
work Function Virtualization (NFV) systems [2,5] or Osmotic Computing (OC)
[4]. In a NFV system, network services (which are job types) are specified as
service chains, obtained by the concatenation of network functions. These net-
work functions are dependent computational tasks to be executed in the NFV
Infrastructure (e.g., servers distributed over the network). In an OC system, an
application is divided into microservices that are distributed and deployed on
an edge/cloud server infrastructure. The user requests (jobs) involve process-
ing (tasks) in several of these microservices, as defined by an orchestrator that
takes into account the dependencies between the microservices. In that line,
it also encompasses a number of features of Orchestration Languages (see, for
instance, [3]), which propose a way to relate concurrent tasks to each other in a
controlled fashion: the invocation of tasks to achieve a goal, the synchronization
between tasks, managing priorities, etc.

In our model, we consider a dynamic system in which job requests (or jobs
for short) are continuously arriving. Each job contains the whole specification
of its dependent tasks: the collection of tasks to be executed, the server that
must execute each task, the time the execution incurs, the dependencies among
tasks, etc. In our model we assume the existence of an adversary that has full
control of the job requests arrivals, and the specification of their tasks. The only
restriction on the adversary is that no server can be overloaded in the long run
(while some burstiness in the load is allowed). In this adversarial framework, the
objective is to achieve stability in the system. This means that the system is
able to cope with the adversarial arrivals, maintaining the number of pending
job requests in the system bounded at all times. (This usually also implies that
all the job requests are eventually completed.)

The study of the quality of service that can be provided under worst-case
assumptions in a given system (NFV or OC, for instance) is important in order
to be able to honor Service Level Agreements (SLA). The positive results we
obtain in this paper show that it is possible to guarantee a certain level of
service even under pessimistic assumptions. These results can also be used to
separate resource allocation and scheduling as long as the resource allocation
guarantees that servers are not overloaded, since we prove that it is possible to
guarantee stability in this case.

2 Model

In this section, we define the Adversarial Job Queueing (AJQ) model. The AJQ
model is designed to analyze systems of queueing jobs. The three main compo-
nents of an AJQ system (S, P,A) are:

– a set S = {s1, s2, . . . , sn} of n servers,
– an adversary A who injects jobs in the system, and
– a scheduling policy P , which is the criteria used by servers to decide which

task to serve next among the tasks waiting in their queues.

Stability Under Adversarial Injection of Dependent Tasks 357

The system evolves over time continuously. In each moment, the adversary may
inject jobs to the system while the servers process those jobs. In each moment as
well, some tasks may be waiting to be executed, others may be in process, and
others may be completed. A job is considered completed when all its tasks are
completed. When a job is completed, all its tasks disappear from the system.

Each job 〈K, fK〉 consists of a finite set K of tasks and a function fK that
determines dependencies among the tasks. (For simplicity we will denote the job
〈K, fK〉 by its task set K.) Let K = {k1, k2, k3, . . . , klK} be a job, where each ki

is a task of K. The integer lK denotes the number of tasks of K. Each task ki

is defined by three parameters 〈sK
i , dK

i , tKi 〉. The parameter sK
i ∈ S is the server

in which ki must be executed. The parameter dK
i ≥ 0 is the activation delay of

ki. The parameter tKi > 0 is the processing time of ki, i. e., the time server sK
i

takes to execute task ki.
Let (S, P,A) be an AJQ system. Let Tmax := maxi,K{tKi }, Tmin :=

mini,K{tKi }, Dmin := mini,K{dK
i } ≥ 0, and Dmax := maxi,K{dK

i }, be the
maximum and minimum time required to complete a task, and minimum and
maximum activation delay, respectively, among all tasks of any job injected in
the system. We assume that all these quantities are bounded and do not depend
on the time.

Feasibility. Let P(K) be the power set of K, i. e., the set of all subsets of K.
Furthermore, let P2(K) be the second power set of K, i. e., the set of all subsets
of P(K). Given a job K, a feasibility function fK : K → P2(K) determines
which tasks of K are feasible, which means that they are ready to be executed,
once the activation delay has passed. Let fK(ki) be equal to {A1, A2, . . . , A�i}.
The sets Ax for 1 ≤ x ≤ �i are called feasibility sets for ki. Then, the task ki is
feasible at a time t if there exists a feasibility set Ax for ki such that all tasks
in Ax have been completed by time t. Otherwise, ki is blocked, and still has to
wait for some other tasks of K to complete before becoming feasible.

The activation delay dk
i of a task ki represents a setup cost, expressed in

time, that ki must incur once it becomes feasible and before it can start to be
processed. If t is the time instant at which ki becomes feasible, then ki will incur
its activation delay during time interval [t, t + dk

i]. Hence, it cannot be executed
during such interval, in which we say that task ki is a delayed feasible task (or
only delayed task). When ki completes its activation delay at time t + dk

i , it can
be served, and since that moment will be referred to as an active feasible task,
or simply active task. Equivalently, a feasible task is active if it has been feasible
for at least dk

i time. A job with at least one feasible (resp., active) task will be
referred to as a feasible (resp., active) job.

The feasibility function provides the AJQ model with a high level of flexibility
at the time of forcing the execution sequence of the tasks of a job. For instance,
it allows the coexistence of AND dependencies and OR dependencies.

Doability. Let K be a job and ki be a task of K. We say that ki is an initial task
of K if ∅ ∈ fK(ki). Observe that all initial tasks ki are automatically feasible at
the time the job K is injected, and they become active dK

i time later.

358 V. Cholvi et al.

We assign a layer λ(K, i) to the tasks ki of a job K as follows. All initial tasks
have layer λ(K, i) = 1. For any j > 1, a task ki is assigned layer λ(K, i) = j if it
is not feasible when all tasks of layers 1, ..., j − 2 are completed, but it becomes
feasible when additionally the tasks of layer j − 1 are completed. Let λK ≤ lK
denote the number of layers of job K. If a task ki has layer λ(K, i) = �, then there
is a feasibility set Ax ∈ fK(ki) for ki such that Ax ⊆ {kj ∈ K : λ(K, j) < �}.

Observe that the above definition does not guarantee that all tasks of a job
will be assigned a layer. In fact, it is not hard to create jobs that have tasks
dependencies (e.g., cyclic dependencies) that prevent some tasks from being
assigned a layer. This will prevent a job to complete. We want every job to
be potentially completed. Therefore, we impose some restrictions over every
feasibility function.

Definition 1. Let K be a job and fK : K → P2(K) be its feasibility function.
We say that K is doable if every task ki of K can be assigned a layer.

It is worth mentioning that, deciding whether a job is doable or not as defined
can be computed in polynomial time with respect to the size of the job (that
takes into account the number of tasks and the size of the feasibility function).
Indeed, layer 1 can be computed by checking which tasks have the empty set as
a feasibility set. Then, a simple recursive algorithm computes all tasks in layer
i using all the tasks in layers 1, 2, . . . , i − 1.

The next proposition says that the doable condition is necessary for a job
to be completed, and that it is also sufficient if it is the only job injected in a
system and the scheduling policy is work conserving.

Proposition 1. Let (S, P,A) be a system where the adversary A injects only
one job K and P is work conserving. Then, K can be completed if and only if
K is doable.

Topologies. Let K be a job, and tasks ki, kj ∈ K. We say that ki depends on kj

if there exists a feasibility set Ax ∈ fK(ki) for ki such that kj ∈ Ax. The skeleton
of a job K is the directed graph HK = (V,E), where V (HK) := {k1, k2, . . . , klK}
and E(HK) := {(kj , ki) : ki depends on kj}. It is worthwhile to mention that a
skeleton does not define the feasibility function of a job.

The topology of a job K is the directed graph obtained by mapping the
skeleton of K into the set of servers, where each task ki is mapped into its
corresponding server sK

i . Given a system (S, P,A), the topology of the system is
the directed graph obtained by overlapping the topology of all jobs injected by
A in the system.

Scheduling policy. We assume that each server has an infinite buffer to store
its own queue of tasks. Every active task waits in the queue of its corresponding
server. In each server, a scheduling policy P specifies which task of all active tasks
in its queue to serve next. We assume that scheduling policies are greedy/work
conserving (i. e., a server always decides to serve if there is at least one active task
in its queue). Examples of policies are First-In-First-Out (FIFO) which gives

Stability Under Adversarial Injection of Dependent Tasks 359

priority to the task that first came in the queue, or Last-In-First-Out (LIFO)
which gives priority to the task that came last in the queue.

Adversary. We assume that there is an adversary A who injects doable jobs
into the system. In order to avoid trivial overloads, the adversary is bounded in
the following way. Let Ns(I) be the total load injected by the adversary during
time interval I in server s (i. e., Ns(I) =

∑
tKi over all jobs K injected during

I and tasks ki such that sK
i = s). Then, for every server s and interval I the

adversary is bounded as
Ns(I) ≤ r|I| + b, (1)

where 0 < r ≤ 1 is called the injection rate, and b > 1 is called the burstiness
allowed to the adversary. Observe that (1) implies maxi,K{tKi } ≤ b, since jobs
are injected instantaneously. An adversary that satisfies (1) is called a bounded
(r, b)-adversary, or simply an (r, b)-adversary.

The system formed by an (r, b)-adversary A injecting doable jobs in the set
of servers S using the scheduling policy P is called an AJQ system (S, P,A).
The number of active tasks in the queue of server s at time t is denoted Qs(t).

Definition 2. An AJQ system (S, P,A) is stable if there exists a value M such
that Qs(t) ≤ M for all t and for all s ∈ S, where M may depend on the system
parameters (adversary, servers, and jobs characteristics) but not on the time.

Definition 3. A policy P is universally stable, if any system (S, P,A) is stable
against any (r, b)-adversary A with rate r < 1.

3 Our Results

Finally, we present our results. Due to lack of space, we omit the proofs. The
proofs and complementary figures are shown in [1].

Theorem 1. Let LIS (Longest-In-System) be the scheduling policy that gives
priority to the task (and hence the job) that has been in the system for the
longest time. Then an AJQ system (S,LIS,A), where A is an (r, b)-adversary
with r < Tmin/(Tmax + Dmax), is stable.

Theorem 2. FIFO and LIFO are unstable for every r > 0.

These two theorems prove for AJQ systems that the scheduling policy used
has an important impact on performance. In particular, they show that popular
policies like FIFO and LIFO may not be the best choice. These were facts known
for packet scheduling in networks, but it was not obvious they would also hold
in AJQ systems. In the following theorem, we show that a feed-forward topology
(i.e., a topology where there are no cycles) is a sufficient condition for stability
in a system.

Theorem 3. Let (S, P,A) be an AJQ system with feed-forward topology. Then,
for any (greedy) policy P and any (r, b)-adversary A with injection rate r ≤ 1,
the system (S, P,A) is stable.

360 V. Cholvi et al.

This result has implications in the design of distributed systems. For instance,
it implies that, if an order is defined among servers, and jobs order their tasks
always respecting this order, then the system is stable using any scheduling
policy, even at full load.

References

1. Cholvi, V., Echagüe, J., Fernández Anta, A., Caro, C.T.: System stability under
adversarial injection of dependent tasks. arXiv:1910.01869v1 (2019)

2. Herrera, J.G., Botero, J.F.: Resource allocation in nfv: a comprehensive survey.
IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)

3. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02138-1 1

4. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

5. Yi, B., Wang, X., Li, K., Huang, M., et al.: A comprehensive survey of network
function virtualization. Comput. Netw. 133, 212–262 (2018)

http://arxiv.org/abs/1910.01869v1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-02138-1_1

Collaborative Filtering: Comparative Study
Between Matrix Factorization and Neural

Network Method

Driss El Alaoui1(B), Jamal Riffi1, Badraddine Aghoutane2, Abdelouahed Sabri1,
Ali Yahyaouy1, and Hamid Tairi1

1 LISAC Laboratory, Department of Informatics, Faculty of Sciences Dhar El Mahraz,
Sidi Mohamed Ben Abdellah University, Fez-Atlas, 1796 Fez, Morocco

El-Alaoui-Driss@hotmail.com
2 Team of Processing and Transformation of Information, Polydisciplinary

Faculty of Errachidia, Moulay Ismaïl University, Zitoune, 11201 Meknes, Morocco
http://fsdmfes.ac.ma/, http://www.fpe.umi.ac.ma/

Abstract. With the rise of the Web and technological developments, the amount
of data to use or analyse has become very large. It has therefore become difficult
to knowwhat data to look for and where to find it. This problem has contributed to
the establishment of recommendation systems that allow users to access relevant
resources as quickly as possible according to their preferences. Collaborative Fil-
tering (CF) is the most well-known technique for recommendation. CF technique
uses the user’ behaviour in formof user-item ratings, as their information source for
prediction. This article presents a comparison study between two methods of col-
laborative filtering: the Singular Value Decomposition (which is considered as the
most powerful matrix factorization technique to reduce dimensionality) and deep
multilayer perceptron (is a class of feedforward artificial neural network, it can
add the non-linear transformation to existing recommendation system approaches
and interpret them into neural extensions). Both systems are evaluated on a dataset
with metrics: recall at top k, NDCG@k.

Keywords: Recommender systems · Collaborative filtering · Model-based ·
Matrix factorization · Singular value decomposition · Neural networks method ·
Multilayer perceptron

1 Introduction

Collaborative filtering (CF) is a technique used by recommender systems, this term [1]
was first coined byDavid Goldberg et al. [2] in 1992 to describe an email filtering system
called “Tapestry”. These kinds of systems utilize user interactions to filter for items of
interest. We can visualize the set of interactions with a matrix, where each entry (i, j)
represents the interaction between user i and item j. Collaborative systems is classified
based on the way in which the collective preferences are aggregated; as Memory-based
or model based approaches (Fig. 1).

© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 361–367, 2021.
https://doi.org/10.1007/978-3-030-67087-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-67087-0_24

362 D. El Alaoui et al.

(u1 i1) = 5

(u2 i1) = 3

(u2 i2) = 4

(u3 i2) = 1

(u3 i3) = 2

(u3 i4) = 4
… … … …

item

us
er

 1 2 3 4
1 5 ? ? ? … …
2 3 4 ? ? … …
3 ? 1 2 4 … …
 … … … … … …

Interaction Matrix

1.Memory-based CF: Predict by
memorizing similar users’ (or
items’) ratings

2. Model-based CF: Predict by
inferring from an underling model.

Fig. 1. Collaborative filtering (CF)

It should be noted that we have usedmodel-based CFmethod to set up a collaborative
filtering recommendation system. The algorithms of this method can be broken down
into several sub-types [3] (Fig. 2):

Fig. 2. Types of models based on collaborative filtering

This document is organized as follows: Sect. 2 is devoted to discuss about two
methods used in collaborative filtering model-based: Singular Value decomposition
(SVD) and neural collaborative filtering by deepMultilayer perceptron (MLP). Section 3
explains the evaluationmetrics applied to themodels. The description of the dataset used
in this study, the results obtained from these experiments, their interpretations and anal-
yses are the subject of Sect. 4. While the last section focuses on conclusions and future
work.

2 Matrix Factorization vs Neural Network

2.1 Singular Value Decomposition (SVD)

The singular value decomposition [4] is a factorization of a real or complexmatrix [5] that
generalizes the Eigen decomposition of a square normal matrix to any m × n matrix via
an extension of the polar decomposition. This technique first reduces the dimensionality

Collaborative Filtering: Comparative Study 363

of amatrix, before using the result of this process to approximate the original scores. SVD
decomposes a matrix (m × n) into three matrices, U, S and V:

Y =USVT (1)

Where U andV arem×mand n× n orthogonal matrices respectively, S is them× n sin-
gular orthogonal matrix with non-negative elements and contains all the singular values
of Y.

As the decomposition is only partial; the solution is not exact, but it would be for
k = rank (Y) (i.e. we have to find k which constitutes the low rank approximation of the
matrixY).Oncewe have obtainedUk ∈Rm × k andVk ∈Rn × k for the first k factors of the
decomposition corresponding to the k largest singular values,we reconstruct thematrixY
as follows:

Yk= UkSkV
T
k (2)

With Sk is the k × k principle diagonal sub-matrix of S, Uk and Vk are m × k and
n × k the matrices containing the singular vectors associated with the singular values of
Y respectively.

Once the transformation is completed, user and items can be thought off as points
in the k-dimensional space, which saves space and computing power in addition to
suppressing the noise data of Y [6].

2.2 Neural Collaborative Filtering

Despite the effectiveness of matrix factorization for collaborative filtering, its perfor-
mance is hindered by the simple multiplication of latent features (inner product), and
that may not be sufficient to capture the complex structure of user interaction data, for
this reason it is necessary to design a better interaction function for modeling the latent
feature interaction between users and items. Neural Collaborative Filtering (NCF) aims
to solve this through neural network architecture. It utilizes a Multi-Layer Perceptron
(MLP) to learn user-item interactions. This is an upgrade over MF asMLP can (theoreti-
cally) learn any continuous function and has high level of nonlinearities (due to multiple
layers) making it well-endowed to learn user-item interaction function.

We can explain this model adopted by (Xue et al. 2017) [7], which is based on MLP
in this way: They use feed-forward neural networks to model a (user, item) interaction
y
∧

ui, as shown in Fig. 3. This model consists of three layers, the bottom embedding layer,
the middle hidden layers and the output prediction layer.

1) Embedding Layer: The goal of this layer is to transform both users and items into
some shared low-dimensional latent feature space. After embedding, we acquire a
dense vector representation for each user and item.

2) Hidden Layers: Those layers are a stack of fully connected layers built above the
embedding layer. The obtained dense vectors from embedding layer are concate-
nated together, resulting in a dense vector jointly encoding user preference and
item attribute. Then the concatenated vector is fed into the hidden layers. Hidden
layers are the key to endow our model with the capacity to learn highly nonlinear
interactions between latent features.

364 D. El Alaoui et al.

Fig. 3. Neural collaborative filtering

3) Prediction Layer: Or output layer, it maps previous layers’ output to the prediction
score y

∧

ui, which expresses the extent user u prefers item i. The prediction score given
by this network neural can be formulated as follows:

y
∧

ui = f
(
UTsuseru ,VTsitemi |U,V, θ

)
(3)

Where: U ∈ Rmxk and V ∈ Rnxk , denoting the latent factor matrix for users and items,
respectively; suseru , One-hot identifier of user u, (u= 1,…,M); sitemi , One-hot identifier of
item i, (i= 1,…,N), f(·): multilayer perceptron, θ: themodel parameters of the interaction
function f.

The function f can be formulated as:

f
(
UTsuseru ,VTsitemi

)
= ϕout

(
ϕX

(
. . . ϕ2

(
ϕ1

(
UTsuseru ,VTsitemi

))
. . .

))
(4)

Where ϕout and ϕX respectively denote the mapping function for the output layer and
x-th neural collaborative filtering (NCF) layer, and there are X neural CF layers in total.

3 Experiments

3.1 Evaluation Metrics

In this study, we use the recall at k where k is integer that match the number of items
that we consider most relevant for a user. It must be remembered that the Recall at k [8]
is the proportion of relevant items found in the top-k recommendations. Mathematically
Recall@k is defined as follows:

Recall@k = (Recommended items@k that are relevant)

(Total number of relevant items)
(5)

Our recommendation system returns a result as a classified list of items; it is desirable to
also take into account the order in which the returned items are presented. Normalized

Collaborative Filtering: Comparative Study 365

Cumulative Discounted Gain (NDCG) [9] is popular method for measuring the quality
of a set of search results. NDCG at position n is defined as:

NDCG@n = 1

IDCG
×

n∑

i=1

2ri−1

log2(i + 1)
(6)

Where ri is the relevance rating of document at position i. IDCG is set so that the perfect
ranking has a NDCG value of 1. In our problem, ri is 1 if the document is recommended
correctly.

3.2 Dataset

In this work, we used two datasets that are shared on Kaggle Datasets: Articles Sharing
and Reading from CI&T Deskdrop:

The first file contains information about articles shared between the employees in
an internal communications platform of a company. Each article has its sharing date
(timestamp), the original url, title, content in plain text, and information about the user
who shared the article (author). There are two possible event types at a given timestamp:

– CONTENT SHARED: The article was shared in the platform and is available for
users.

– CONTENTREMOVED: The article was removed from the platform and not available
for further recommendation. The second file contains logs of user interactions on
shared articles. It can be joined to articles_shared.csv by contentId column.

The eventType values are:

– VIEW: The user has opened the article.
– LIKE: The user has liked the article.
– COMMENT CREATED: The user created a comment in the article.
– FOLLOW: The user chose to be notified on any new comment in the article.
– BOOKMARK: The user has bookmarked the article for easy return in the future.

3.3 Comparing the Methods

In our experiments, we have 1139 users processed and 3047 articles.
Through the Figure (Fig. 4):we see that theNeuralCollaborative Filtering has a better

performance: (recall@5 = 44% and recall@10 = 62,4%), compared to Collaborative
Filtering approach by SVD: (recall@5 = 33,4% and recall@10 = 46,8%). In addition,
we can see some increase in the recall value, for both models when the value of k goes
from 5 to 10.

366 D. El Alaoui et al.

Fig. 4. Recall@k for each model

The Fig. 5 represents a graph that reveals the difference between the two models
(collaborative filtering based on SVD, Neural collaborative filtering). Each point on the
NDCG@k curves corresponds to the first k items that interests a user, with k ∈ [1; 80].
We note that the value of NDCG varies for the two models, depending on the value of
k. Sometimes we record superiority of the SVD-based system if k < 40. Whereas if
k ≥ 40 the curves intersect and the collaborative neural filtering system begins to give
better results than the other model. Depending on the performance results obtained, we
can deduce that Neural collaborative filtering is the most accurate system, on the other
hand if we take into account the order of the relevant items returned; we find that the CF
system based on SVD is the most effective when given a few ranks, but around k = 40
it levels off. Neural collaborative filtering approach gains an upper hand when provided
with more ranks. However, since the users care more about recommendations at low
ranks, we can say that the SVD method gives better results.

Fig. 5. NDCG@k according to the number of items

4 Conclusion and Future Work

In this paper, our goal was to make a comparative study between two types of model-
based collaborative filtering approaches, both of which are considered themost powerful
and the most used in the recommendation systems of this kind.

Collaborative Filtering: Comparative Study 367

We showed that: despite the priority of the neural collaborativefiltering system (NCF)
in terms of recall, we can’t reduce the value of a recommendation system to a good recall
score, which has pushed us to measure the NDCG@k to take into account the order in
the search for information and we found in this case that the model CF based on SVD
generally gives better results. Finally, it should be mentioned that this field is constantly
evolving and that it is impossible to conduct an exhaustive study of recommendation
algorithms. The work presented here is only an overview of some existing methods in
this area of recommendation and information retrieval, but this does not preclude further
improvements and more testing on other algorithms and to use other deep networks like
(CNN, LSTM) for sequential recommender systems, so that you can perform a more
complete analysis, comprehensive and reliable study possible, to combine the algorithms
giving the best results and to find a more efficient hybrid solution.

References

1. Konstan, J.A., et al.: GroupLens: applying collaborative filtering to Usenet news. Commun.
ACM 40(3), 77–87 (1997)

2. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an
information tapestry. Commun. ACM 35(12), 61–70 (1992)

3. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advances in
Artificial Intelligence archive (2009)

4. Karypis, G., Konstan, J., Riedl, J., Sarwar, B.: Incremental singular value decomposition
algorithms for highly scalable recommender systems. GroupLens Research Group (2000)

5. Koren, Y.: Matrix factorization techniques for recommender systems. IEEE Comput. Soc.
42(8), 30–37 (2009)

6. Girase, S., Mukhopadhyay, D., Bokde, D.: Role of matrix factorization model in collaborative
filtering algorithm: a survey. In: IJAFRC (2014)

7. Xinyu, D., Jianbing, Z., Shujian, H., Jiajun, C., Hong-Jian, X.: Deep matrix factorization
models for recommender systems. In: IJCAI, pp. 3203–3209 (2017)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
university press (2008)

9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans.
Inf. Syst. (TOIS) 20(4), 422–446 (2002)

Routing in Generalized Geometric
Inhomogeneous Random Graphs

(Extended Abstract)

Andrés Sevilla1(B) and Antonio Fernández Anta2

1 Dpto. de Sistemas Informáticos, Technical University of Madrid, Madrid, Spain
andres.sevilla@upm.es

2 IMDEA Networks Institute, Madrid, Spain
antonio.fernandez@imdea.org

Abstract. In this paper we study a new random graph model that we denote
(κ, π)-KG and new greedy routing algorithms (of deterministic and probabilistic
nature). The (κ, π)-KG graphs have power-law degree distribution and small-
world properties. (κ, π)-KG roots on the Geometric Inhomogeneous Random
Graph (GIRG) model, and hence they both preserve the properties of the hyper-
bolic graphs and avoid the problems of using hyperbolic cosines. In order to con-
struct (κ, π)-KG graphs, we introduce two parameters κ and π in the process
of building a (κ, π)-KG graph. With these parameters we can generate Klein-
berg and power-law networks as especial cases of (κ, π)-KG. Also, we propose
two new greedy routing algorithms to reduce the fail ratio and maintaining a
good routing performance. The first algorithm is deterministic and the second is,
in essence, a weighted random walk. We use simulation techniques to test our
network model, and evaluate the new routing algorithms on the two graph mod-
els (GIRG and (κ, π)-KG). In our simulations, we evaluate the number of hops
to reach a destination from a source and the routing fail ratio, and measure the
impact of the parameters (κ and π) on the performance of the new routing algo-
rithms. We observe that our graph model (κ, π)-KG is more flexible than GIRG,
and the new routing algorithms have better performance than the routing algo-
rithms previously proposed.

1 Introduction

In the latest years, geometric approaches have been used to build scale-free networks for
modeling complex/large networks [1,7,9]. In particular, hyperbolic geometric models
have been used to construct these networks [9]. In these models, each node is assigned
a virtual coordinate in the hyperbolic space, and nodes are linked using a probability
distribution based on a distance function. For instance, Boguñá et al. [1] proposed a
method to embed Internet in a hyperbolic disc of radius R, where the node density
grows exponentially with the distance from the disk center. The nodes are linked with a

This submission is a short paper. This work was partially funded by the Spanish grant TIN2017-
88749-R (DiscoEdge), the Region of Madrid EdgeData-CM program (P2018/TCS-4499), and the
NSF of China grant 61520106005.

c© Springer Nature Switzerland AG 2021
C. Georgiou and R. Majumdar (Eds.): NETYS 2020, LNCS 12129, pp. 368–373, 2021.
https://doi.org/10.1007/978-3-030-67087-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67087-0_25&domain=pdf
http://orcid.org/0000-0001-8867-5528
http://orcid.org/0000-0001-6501-2377
https://doi.org/10.1007/978-3-030-67087-0_25

Routing in Generalized Geometric Inhomogeneous Random Graphs 369

probability according to the product of their expected degrees (drawn from a power-law
distribution) and re-scaled by their distance. Using this embedding, the authors claim a
97% of path success with a geographic greedy routing algorithm1.

Graphs embedded in hyperbolic spaces are also frequently used to propose new
routing algorithms. For instance, Kleinberg [8] uses the hyperbolic coordinates to
implement a geographic routing algorithm for ad-hoc wireless networks with guaran-
tee of successfully reach a destination from a source. On their hand, Cassagnes et al.
[4] propose a dynamic P2P overlay embedded in a hyperbolic space in which a node
computes its coordinates without global knowledge of the graph topology.

The GIRG Model. Brigmann et al. [2] proposed an alternative model of hyperbolic
graphs called Geometric Inhomogeneous Random Graphs (GIRG). It is inspired in the
Chung-Lu [5,6] random graphs and basically is a model for scale-free networks with
an underlying geometry. The GIRG model assigns to each node a weight which is used
by a probabilistic process to link the nodes.

More formally, a GIRG is a graph G = (V,E) where each node v ∈ V has an uni-
form random position (xv) in a geometric space T δ and a weightwv ∈ R+. The weights
are drawn from a power-law distribution. The linksE are also random, so that two nodes
are linked with a probability that increases with the node weight (power-law factor) and
decreases with the distance between nodes (Kleinberg [7] factor). Concretely, two nodes
u and v are linked with probability

Puv =
(

1
duv

)δα (
wuwv

W

)α

, (1)

where duv is the distance between node u and v, α > 1 is a decay parameter, δ is
the dimension of the geometric space, and W is the aggregated weight of all nodes. In
particular, the nodes are placed in a δ-dimensional torus (T δ = Rδ/Zδ), and as distance
metric the ∞-norm on T δ is used (the authors claim that other metrics can be used).
The GIRG model avoids the use of cosines and preserves the properties of a hyperbolic
random graphs.

With the graph model, Brigmann et al. [3] proposed a new greedy routing algorithm
with constant probability of success, that we denote GIRG-Φ. The GIRG greedy routing
algorithm [3] is used to send a message from a source node to a destination node.
In addition to the position of the destination (which is part of the message), it only
uses local information at the current node holding the message (i.e., the weights and
coordinates of its neighbors). The routing algorithm works in rounds. In each round,
an objective function Φ (Eq. 2) is evaluated to obtain the objective value for the current
node and each of its neighbors. If no neighbor has larger objective value than the current
node, the routing fails, and the message is dropped. Otherwise the message is sent to
the neighbor with largest objective value.

The objective function proposed in [3] is

Φ(v, t) =
wv

N · wmin · dδ
ut

, (2)

1 A geographic algorithm routes a message to the neighbor closest to the destination.

370 A. Sevilla and A. Fernández Anta

where t is the destination node, wmin = minv∈V {wv} is the minimum weight drawn
from the weight power-law distribution, N is the number of nodes of the graph, and δ
is the dimension of the geometric space (δ = 2 by default).

Contributions. In this paper we present a new model, denoted (κ, π)-KG, to build
graphs with power-law and small-world properties, inspired on the Kleinberg [7] and
GIRG [3] models. As in the former, our model uses an underlying complete torus T δ,
in which (unlike GIRG) all torus links are preserved (short links). One long link is
added per node (like in Kleinberg model), using a probability expression similar GIRG’s
(Eq. 1). In this new probability expression, we have introduced two parameters, κ and π,
in order to tune and evaluate separately the role and impact of Kleinberg and power-law
factors. For example, this modification allows giving more influence to the Kleinberg
(resp., power-law) factor in order to study its influence in the topology, the degree dis-
tribution, or the performance of routing algorithms.

Then, we propose greedy routing algorithms that could be used in both GIRG and
(κ, π)-KG graphs. The routing algorithms proposed are inspired in GIRG’s. They are
fully distributed, and try to find a tradeoff between a low stretch factor (the maximum
ratio between the length of the paths obtained by the routing algorithm and the distance
between the source and the destination) and a small fail ratio.

The first algorithm is deterministic, guided by an objective function that has to be
increased in each step until reaching the destination. The algorithm is based on GIRG’s
[3], but adapted so that the route never fails if the message gets close enough to the
destination node. This reduces significantly the fail ratio without increasing the stretch.
Additionally, we propose a second probabilistic routing algorithm. This algorithm uses
the objective function as a weight for a probabilistic decision, in a similar way to a
traditional random walk. This algorithm never fails, and shows by simulation route
lengths very close to the lengths obtained with the deterministic routing algorithm.

2 (κ, π)-KG Model

In the (κ, π)-KG model, the nodes of a graph G = (V,E) are those of a complete torus
T δ, as Kleinberg [7] used in his model. For simplicity, we assume δ = 2 in the rest
of the presentation. Hence, each node u ∈ V has a pair of coordinates (xu, yu) and
four local neighbors2, so that there is always a route for all pair of nodes (which is not
guaranteed in GIRG). The weight wu ≥ 0 of a node u ∈ V is drawn from a power-
law probability distribution with parameter β ∈ (2, 3), with maximum and minimum
weights wmax and wmin > 0, respectively. Then, each node u ∈ V chooses an extra
neighbor v �= u independently with probability

Puv =
(

1
duv

)δκ (
wv

W

)π

. (3)

As can be observed, this probability has two factors (as in Eq. 1): the Kleinberg
factor is a function of the distance duv between nodes3, while the power-law factor

2 All links are considered bidirectional.
3 The distance can be Euclidean, Manhattan, or based on the ∞ − norm.

Routing in Generalized Geometric Inhomogeneous Random Graphs 371

depends on the node weights (wu and wv). (κ, π)-KG introduces the parameters π ≥
0 and κ ≥ 0 in the probability expression (3) in order to modulate the two factors
independently. Given different values to these parameters it is possible to build networks
with different properties and test on them the behavior of greedy routing algorithms.

3 Routing Algorithms

We present in this section two routing algorithms for GIRG and (κ, π)-KG graphs.

Deterministic Routing. We propose first a new greedy routing algorithm denoted τ -Det,
where τ is a parameter of the algorithm. τ -Det works as GIRGS’s greedy routing with
a new objective function

Φ1(u, t) = wu/dk
ut, (4)

where k = τ ln(wmax/wmin) and dut ∈ N is the distance from u to the destination
t. Function Φ1 uses the parameter τ (via k) to ensure greedy routing success. It makes
sure a message reaches the destination when it is at a distance no higher than a threshold
τ , as the following lemma shows.

Lemma 1 Let u, t ∈ V be nodes such that dut ≤ τ , then for any v ∈ V such that
dvt < dut it holds that Φ1(v, t) > Φ1(u, t).

Proof. We want to prove that Φ1(v, t) = wv/dk
vt > Φ1(u, t) = wu/dk

ut. In the extreme
case, wv = wmin and wu = wmax. Hence, it is enough to prove that wmin/wmax >
(dvt/dut)k. We have that dvt ≤ dut − 1, dut ≤ τ , and x−1

x is strictly increasing for

x > 0. Hence, it is enough to prove that wmin/wmax >
(

τ−1
τ

)k = (1 − 1/τ)k. Now,
since 1 − x < e−x for x �= 0, it is enough that wmin/wmax ≥ ek/τ , which holds since
k = τ ln(wmax/wmin). ��

The value of k in Eq. 4 is a function of the maximum and minimum weights, and
the threshold value. The successful ratio of the greedy routing increases with τ (and k),
making this ratio tunable. Unfortunately, we have observe that the route length increases
with τ as well.

Probabilistic Routing. We present now a second distributed routing algorithm for GIRG
and (κ, π)-KG denoted τ -RW. With the new algorithm a message follows a random
walk. When the message is at a node u ∈ V , the next hop is selected among its neigh-
bors with probabilities proportional to their value of the objective function Φ1 (Eq. 4).

In can be proven that with this new algorithm all messages eventually reach their
destinations, since the graph is connected. This is the main difference with the deter-
ministic algorithm (and GIRG’s algorithm), with which the routing process can fail. We
will study the route length with this new algorithm by simulation, and compare it with
the route length with the deterministic algorithms. We observe that the removal of failed
routing comes as a very low cost in route length.

372 A. Sevilla and A. Fernández Anta

Table 1. Comparing the best average hops and fail ratio on GIRG and (κ, π)-KG graphs using
deterministic and probabilistic routing algorithms. In a table entry h/f means h hops and f fail
ratio. Values in bold represent the best result of the routing algorithms.

GIRG (α = 1.5) (κ = 1, π = 2)-KG

Deterministic Geo 12.82 / 0.00 8.92 / 0.00

GIRG-Φ 12.03 / 0.90 5.88 / 0.50

τ -Det (τ = 1) 10.36 / 0.39 6.51 / 0.19

τ -Det (τ = 2) 10.71 / 0.26 7.24 / 0.16

τ -Det (τ = 3) 10.97 / 0.19 7.59 / 0.13

τ -Det (τ = 4) 11.15 / 0.13 7.79 / 0.11

Random Walk Geo 131.79 / 0.00 60.32 / 0.00

GIRG-Φ 71.68 / 0.00 17.19 / 0.00

τ -RW (τ = 1) 11.33 / 0.00 6.68 / 0.00

τ -RW (τ = 2) 11.02 / 0.00 7.24 / 0.00

τ -RW (τ = 3) 11.11 / 0.00 7.56 / 0.00

τ -RW (τ = 4) 11.25 / 0.00 7.77 / 0.00

4 Experimental Evaluation

We have developed a tool for creating multiple GIRG and (κ, π)-KG graphs, and simu-
lating the routing of messages in them with the described algorithms. In all the graphs
created, we have simulated the following routing algorithms.

– Deterministic algorithms: GIRG-Φ, τ -Det, and geographic.
– Probabilistic algorithms: GIRG-Φ, τ -RW, and geographic random walks4.

We have introduced a little change in the algorithm GIRG-Φ. As describe above, in the
original algorithm when the objective function (Eq. 2) reaches a local minimum, the
message is dropped. In our version, geographic routing is used to continue the routing
to the destination node.

Simulation Parameters. We run the simulations on graphs obtained from a 2-
dimensional torus 101 × 101. The node weights are drawn from a power-law distri-
bution p(w) ∼ w−β with β = 2.1, wmin = 1 and wmax = 105. The distance threshold
τ of the Φ1 objective function will take the following value 3, 10, 30, 100 (100 is largest
distance for the Manhattan and the ∞-norm metrics, and it is larger than the Euclidean
maximum distance). Note that this parameter is only relevant for the τ -Det and τ -RW
routing algorithms. Each simulation includes the routing of 50.000 messages. Every
message is routed from a source to a destination chosen uniformly at random.

4 The next hop is chosen with probability inversely proportional to the distance to the destina-
tion.

Routing in Generalized Geometric Inhomogeneous Random Graphs 373

Simulation Results. Table 1 shows the average results using Manhattan distance of the
routing algorithms on GIRG (with α = 1.5) and (κ, π)-KG (with κ = 1 and π = 2)
graphs. These graphs yield the best routing algorithm results among the collection of
values of α, κ and π explored (not shown due to space limit). Comparing the graphs,
(κ, π)-KG presents better performance than GIRG both in hops and fail ratio. Regarding
routing algorithms, while deterministic routing algorithms have the best performance in
hops, they have a positive fail ratio. Among them, the algorithm τ -Det outperforms the
other deterministic algorithms, both in hops and fail ratio (excluding Geo). Probabilis-
tic algorithms never fail at the cost of longer routes. However, the τ -Det and τ -RW
algorithms show almost identical results in number of hops.

References

1. Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping.
Nat. Commun. 1(62), 1–8 (2010)

2. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. Theor.
Comput. Sci. 760, 35–54 (2019)

3. Bringmann, K., Keusch, R., Lengler, J., Maus, Y., Molla, A.R.: Greedy routing and the algo-
rithmic small-world phenomenon. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, New York, NY, USA, pp. 371–380. ACM (2017)

4. Cassagnes, C., Tiendrebeogo, T., Bromberg, D., Magoni, D.: Overlay addressing and routing
system based on hyperbolic geometry. In: IEEE Symposium on Computers and Communica-
tions (ISCC), pp. 294–301 (2011)

5. Chung, F., Linyuan, L.: The average distances in random graphs with given expected degrees.
Proc. Natl. Acad. Sci. 99(25), 15879–15882 (2002)

6. Chung, F., Linyuan, L.: Connected components in random graphs with given expected degree
sequences. Ann. Comb. 6(2), 125–145 (2002)

7. Kleinberg, J.M.: Navigation in a small world. Nature 406(6798), 845 (2000)
8. Kleinberg, R.: Geographic routing using hyperbolic space. In: IEEE INFOCOM 2007–26th

IEEE International Conference on Computer Communications, pp. 1902–1909 (2007)
9. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of

complex networks. Phys. Rev. E 82, 036106 (2010)

Author Index

Abdulla, Parosh Aziz 47
Aghoutane, Badraddine 361
Aiswarya, C. 3
Amoussou-Guenou, Yackolley 60
Anjana, Parwat Singh 77
Atig, Mohamed Faouzi 47
Attiya, Hagit 77, 227

Baarir, Souheib 60
Bannour, Boutheina 94
Bischoff, Daniel 11
Bonnet, François 349
Bonomi, Silvia 112
Bouajjani, Ahmed 47
Bramas, Quentin 129, 349
Bu, Gewu 146

Cholvi, Vicent 355

Damaskinos, Georgios 170
Défago, Xavier 349
Delporte-Gallet, Carole 183
Derevenetc, Egor 47
Devismes, Stéphane 129
Dice, Dave 192

Echagüe, Juan 355
El Alaoui, Driss 361
Eles, Petru 209

Farina, Giovanni 112
Fatourou, Panagiota 227
Fauconnier, Hugues 183
Fernández Anta, Antonio 11, 355, 368

Ganjei, Zeinab 209
Guerraoui, Rachid 170

Hans, Sandeep 227

Kanellou, Eleni 227
Kogan, Alex 192
Konnov, Igor 329
Kowalski, Dariusz R. 244
Kumari, Sweta 77

Laffranchini, Paolo 279
Lafourcade, Pascal 129
Lapitre, Arnault 94
Le Gall, Pascale 94
Le Merrer, Erwan 170
Leonardsson, Carl 47
Lundström, Oskar 296

M. Schiller, Elad 296
Machado, Nuno 279
Meuser, Tobias 11
Meyer, Roland 47
Miranda, João 279
Mosteiro, Miguel A. 244

Neumann, Christoph 170

Ojo, Oluwasegun Taiwo 11
Ozkan, Burcu Kulahcioglu 261

Peng, Zebo 209
Peri, Sathya 77
Potop-Butucaru, Maria 28, 60, 146

Rabie, Mikaël 146
Raynal, Michel 296, 314
Rezine, Ahmed 209
Riffi, Jamal 361
Rivière, Etienne 279
Rodrigues, Luís 279

Sabri, Abdelouahed 361
Sadre, Ramin 279
Safir, Mouna 183
Sevilla, Andrés 368

Somani, Archit 77
Stavrakakis, Ioannis 11
Steinmetz, Ralf 11
Sznajder, Nathalie 60

Tairi, Hamid 361
Taubenfeld, Gadi 314
Thraves Caro, Christopher 355

Tible, Léo 60
Tixeuil, Sébastien 60, 112
Tran, Thanh-Hai 329

Wadhwa, Krutika 244
Widder, Josef 329

Yahyaouy, Ali 361

376 Author Index

	Preface
	Organization
	Abstracts
	Reasoning About Concurrent Data Types
	Security and Privacy for Distributed Optimization and Learning
	Contents
	Invited Papers
	On Network Topologies and the Decidability of Reachability Problem
	1 Introduction
	2 Distributed Systems, Topology, Reachability Problem
	3 Boundaries of Decidability
	4 Conclusions
	References

	Hide Me: Enabling Location Privacy in Heterogeneous Vehicular Networks
	1 Introduction
	2 System Model
	3 Game-Theoretic Model for Privacy-Sensitive Communication
	3.1 Game-Theoretic Solution
	3.2 Deriving the Utility-Optimal Strategy

	4 Evaluation
	5 Conclusion
	References

	Blockchains and the Commons
	1 Introduction
	2 State of the Art
	3 Explore Novel Models of Reliability for Blockchains
	3.1 Blockchain Robustness to Dynamic Adversaries
	3.2 Robustness to Rationality and Irrationality

	4 Formal Abstractions for Blockchains Consistency
	4.1 Defining New Consistency Abstractions for Blockchains
	4.2 Design and Formally Prove New Consistency Algorithms Tolerant to Complex Behaviors

	5 Develop Correct-by-Construction Agreement Algorithms for Blockchains
	5.1 Feasibility of Blockchain Agreement Face to Complex Faults and Behaviors
	5.2 New Abstractions for Blockchain Agreement

	6 Develop Correct-by-Construction Overlays and Routing Algorithms for Blockchains
	6.1 New Abstractions for Blockchain Overlays
	6.2 New Formally Verified Routing Protocols for Blockchains

	7 Blockchains Interoperability
	8 Conclusions
	References

	Regular Papers
	On the State Reachability Problem for Concurrent Programs Under Power
	1 Introduction
	1.1 Related Work

	2 Programming Model
	2.1 Programs
	2.2 Power Semantics

	3 Undecidability
	4 Conclusion
	References

	On the Encoding and Solving of Partial Information Games
	1 Introduction
	2 Preliminaries
	3 Resolution of Partial Information Games, with Memoryless Strategies
	3.1 Complexity Results
	3.2 Encoding a Partial Information Game as a SAT Problem

	4 Application: Automatic Synthesis of Strategies for Swarms of Autonomous Oblivious Robots
	4.1 Model for the Robots
	4.2 Definition of the Arena

	5 Conclusion
	References

	Efficient Concurrent Execution of Smart Contracts in Blockchains Using Object-Based Transactional Memory
	1 Introduction
	2 System Model
	3 Proposed Mechanism
	3.1 The Block Graph
	3.2 Multi-threaded Miner
	3.3 Multi-threaded Validator
	3.4 Detection of Malicious Miners by Smart Multi-threaded Validator (SMV)

	4 Experimental Evaluation
	5 Conclusion and Future Directions
	References

	Exploring IoT Trickle-Based Dissemination Using Timed Model-Checking and Symbolic Execution
	1 Introduction
	2 Network of Extended Timed Automata
	3 Trickle Models
	4 Exploring Trickle with UPPAAL and DIVERSITY
	5 Conclusion
	References

	Broadcasting Information in Multi-hop Networks Prone to Mobile Byzantine Faults
	1 Introduction
	2 Related Works
	3 System Model
	3.1 Graph Metrics

	4 Mobile Byzantine Reliable Communication Problem Specification
	5 Reliable Communication in Asynchronous Systems
	6 Reliable Communication in Synchronous Systems
	6.1 Reliable Communication Correctness Conditions
	6.2 Graph Parameters Comparison

	7 Conclusion
	References

	Infinite Grid Exploration by Disoriented Robots
	1 Introduction
	2 Model
	3 Impossibility Results
	4 Infinite Grid Exploration with =1
	4.1 An Algorithm Using Six Robots and Three Fixed Colors
	4.2 An Algorithm Using Five Robots and Five Modifiable Colors

	5 Infinite Grid Exploration with =2 and No Light
	6 Conclusion and Perspectives
	References

	Wireless Broadcast with Short Labels
	1 Introduction
	2 Model and Problem Definition
	3 Level-Separable Networks
	3.1 Formal Definition of Level-Separable Networks

	4 Broadcast in Level-Separable Network
	4.1 Broadcast with 1-bit Labelling
	4.2 1-bit Labelling Scheme LS
	4.3 Correctness of Algorithm LS

	5 Broadcast with ACK in Level-Separable Network
	5.1 2-bits Labelling Broadcast with ACK
	5.2 2-bits Labelling Scheme LSACK
	5.3 Correctness of Algorithm LSACK

	6 Hardness of Level Separation
	7 Conclusion
	References

	The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders
	1 Introduction
	2 RecRank
	3 Evaluation
	4 Related Work
	5 Discussion and Limitations
	6 Concluding Remarks
	References

	Byzantine k-Set Agreement
	1 Introduction
	2 Model and Definitions
	2.1 Computation Models
	2.2 The k-Set Agreement Problem

	3 Algorithms
	4 Impossibility
	5 Conclusion
	References

	Fissile Locks
	1 Introduction
	2 The Fissile Algorithm
	2.1 Specialized CNA

	3 Related Work
	4 Empirical Evaluation
	4.1 MutexBench
	4.2 Std::atomic
	4.3 FIFO Support

	5 Conclusion
	References

	Verifying Safety of Parameterized Heard-Of Algorithms
	1 Introduction
	2 Motivating Example
	3 Heard-Of Programs
	4 Symbolic Representation
	5 A Symbolic Verification Procedure
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Staleness and Local Progress in Transactional Memory
	1 Introduction
	2 Definitions
	2.1 Basic TM Concepts
	2.2 TM Consistency
	2.3 Progress Conditions

	3 Impossibility Result
	3.1 Stale Values in TM
	3.2 Impossibility of k-staleness and Local Progress

	4 Discussion
	References

	Generic Framework for Optimization of Local Dissemination in Wireless Networks
	1 Introduction
	2 Model and Problems
	2.1 Local Dissemination Problems

	3 Generic Framework
	3.1 Integer Linear Program Formulation
	3.2 Correctness

	4 Simulations
	5 Discusion of Results and Conclusions
	References

	Verifying Weakly Consistent Transactional Programs Using Symbolic Execution
	1 Introduction
	2 Transactions on Weakly Consistent Systems
	2.1 Abstract Executions
	2.2 Axioms for Weak Consistency
	2.3 Weak Consistency Models

	3 Encoding Weakly Consistent Executions
	3.1 Symbolic Execution of Transactions
	3.2 Encoding the Executions
	3.3 Encoding the Consistency Model

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	NetSheriff: Sheltering Software-Defined Networks from Rogue Switches
	1 Introduction
	2 Related Work
	3 Motivation and Fault Scenarios
	4 NetSheriff
	5 Implementation
	5.1 NetSight-Based Instrumentation
	5.2 MAFIA-Based Instrumentation
	5.3 Postcard Consolidation and Construction of `3́9`42`"̇613A``45`47`"603AGO
	5.4 Differential Analysis

	6 Evaluation
	6.1 Proxy Overhead
	6.2 Performance of the Differential Analysis
	6.3 Error Identification
	6.4 Overhead

	7 Conclusions
	References

	Self-stabilizing Uniform Reliable Broadcast
	1 Introduction
	2 System Settings
	3 Non-self-stabilizing URB Algorithms
	4 Unbounded Self-stabilizing Uniform Reliable Broadcast
	5 Correctness
	6 Bounded Self-stabilizing Uniform Reliable Broadcast
	7 Conclusions
	References

	Fully Anonymous Consensus and Set Agreement Algorithms
	1 Introduction: Computing Model
	1.1 On the Process Side
	1.2 On the Memory Side
	1.3 Motivation and Content of the Paper

	2 Fully Anonymous Obstruction-Free Set Agreement Using RW Registers
	2.1 A Fully Anonymous RW Set Agreement Algorithm
	2.2 Proof of the Algorithm

	3 Fully Anonymous Obstruction-Free Consensus Using RW Registers
	4 Fully Anonymous Obstruction-Free Consensus Using RW/Snapshot Registers
	4.1 A Fully Anonymous Consensus Algorithm
	4.2 Proof of the Algorithm

	5 Fully Anonymous Wait-Free Consensus Using RMW Registers
	6 Conclusion
	References

	Cutoffs for Symmetric Point-to-Point Distributed Algorithms
	1 Introduction
	2 Motivating Example
	3 Model of Computation
	3.1 The Process Template
	3.2 Modeling the Distributed System

	4 Cutoff Results
	4.1 Index Transpositions And symmetric point–to–point systems
	4.2 Trace Equivalence of G2 and GN Under AP{1, 2}
	4.3 Cutoff Results Of symmetric point–to–point algorithms

	5 Experiments
	6 Conclusion
	References

	Short Papers
	Stateless Distributed Ledgers
	1 Introduction
	2 Model
	3 Examples of Stateless DLTs
	4 Impossibility of Stateless Proof of Stake Blockchains
	References

	Stability Under Adversarial Injection of Dependent Tasks (Extended Abstract)
	1 Introduction
	2 Model
	3 Our Results
	References

	Collaborative Filtering: Comparative Study Between Matrix Factorization and Neural Network Method
	1 Introduction
	2 Matrix Factorization vs Neural Network
	2.1 Singular Value Decomposition (SVD)
	2.2 Neural Collaborative Filtering

	3 Experiments
	3.1 Evaluation Metrics
	3.2 Dataset
	3.3 Comparing the Methods

	4 Conclusion and Future Work
	References

	Routing in Generalized Geometric Inhomogeneous Random Graphs
	1 Introduction
	2 (,)-KG Model
	3 Routing Algorithms
	4 Experimental Evaluation
	References

	Author Index

