
A Systematic Literature Review
on Implementing Non-functional
Requirements in Agile Software

Development: Issues and Facilitating
Practices

Aleksander Jarzębowicz(B) and Paweł Weichbroth

Gdańsk University of Technology, Faculty of Electronics,
Telecommunications and Informatics, Department of Software Engineering,

11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
{aleksander.jarzebowicz,pawel.weichbroth}@pg.edu.pl

http://www.pg.edu.pl

Abstract. Agile Software Development methods have become a
widespread approach used by the software industry. Non-functional
requirements (NFRs) are often reported to be a problematic issue for such
methods. We aimed to identify (within the context of Agile projects): (1)
the issues (challenges and problems) reported as affecting the implemen-
tation of NFRs; and (2) practices that facilitate the successful imple-
mentation of NFRs. We conducted a systematic literature review and
processed its results to obtain a comprehensive summary. We were able
to present two lists, dedicated to issues and practices, respectively. Most
items from both lists, but not all, are related to the requirements engi-
neering area. We found out that the issues reported are mostly related to
the common themes of: NFR documentation techniques, NFR traceabil-
ity, elicitation and communication activities. The facilitating practices
mostly cover similar topics and the recommendation is to start focusing
on NFRs early in the project.

Keywords: Non-functional Requirements · Quality requirements ·
Agile Software Development · Agile requirements engineering ·
Systematic literature review

1 Introduction

Agile Software Development (ASD) is an iterative approach to delivering soft-
ware products. The term “agility” implies adaptability [1], flexibility [2], and close
collaboration with the customer [3]. An Agile approach assumes sensible values
such as trust [4], responsibility [5] and loyalty [6]. Around half of organizations
have now been applying Agile practices for over three years to adopt change and
transformation management [7]. Moreover, the results from a survey conducted
c© Springer Nature Switzerland AG 2021
A. Przybyłek et al. (Eds.): LASD 2021, LNBIP 408, pp. 91–110, 2021.
https://doi.org/10.1007/978-3-030-67084-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_6&domain=pdf
http://orcid.org/0000-0003-3181-4210
http://orcid.org/0000-0002-1645-0941
https://doi.org/10.1007/978-3-030-67084-9_6


92 A. Jarzębowicz and P. Weichbroth

in 2018 among software industry practitioners show that 97% of respondents
declared using Agile methods [8]. In fact, the benefits of adopting Agile prac-
tices have been reported in many studies [9–11], indicating an increase of team
productivity, motivation and discipline, as well as overall software quality, just
to name a few.

Indeed, software quality is an important aspect to be considered during the
software lifecycle [12,13], usually defined in terms of high-level attributes [14].
Alternatively, one can impose additional constraints on the behavior of the sys-
tem. In other words, the required properties (attributes and constraints) are
specified as non-functional requirements (hereafter, NFRs), in addition to func-
tional requirements (FRs). Since the beginning of software development as a job
role, NFRs have been recognized as critical factors that affect the acceptance
and use of the products by the users [15].

In fact, to mitigate the risk of users’ dissatisfaction by misunderstanding or
disregarding their expectations and needs, active user involvement is imperative
in ASD [16–18]. However, one question arises naturally: Does this user engage-
ment bring other risks, and does the development team need to find a balance
between risk and benefits?

Undeniably, the search for the answer to this question has been the sub-
ject of vast research [19–21], since the introduction of the Agile Manifesto [22].
Nevertheless, few studies provide an evidence-based review and analysis on the
subject of implementing NFRs, in particular regarding the issues that could arise
with the advance of ASD, as well as the practices that have been documented
as successful facilitators.

The values and principles followed in ASD also result in practices different
than those used in more traditional software development methods. It includes
requirements engineering practices [23], which e.g. assume continuous close coop-
eration with the customer [24], put more emphasis on face-to-face communication
[25], and use less formal techniques like collaborative games [26].

Both researchers and practitioners have repeatedly noted the challenges in
Agile requirements engineering. For example, the results from a Delphi study
[27], performed in 2017 in a group of 26 experts, show that one of the recognized
challenges is to “establish non-functional requirements”, which has been reported
by prior other studies [25,28,29]. The comprehensive know-how with regard to
the more detailed challenges and relevant counteractions is not available though.
The only available secondary study focusing on NFRs in ASD at the time we
started our research was the SLR by Alsaquaf et al. [30]. That SLR was consid-
ered by its authors as a starting point for further empirical studies and several
primary studies were published since then. To systematize the current state of
the art, in this paper, we put forward these two following research questions
(RQs):

1. What issues affect the identification and implementation of non-functional
requirements in ASD?

2. What practices facilitate the successful identification and implementation of
non-functional requirements in ASD?



An SLR on Implementing NFRs in Agile Software Development 93

Therefore, the goal of this study is to review and analyze the existing studies
and their outcomes and to summarize the documented issues and applied prac-
tices, in the extent of NFR identification and implementation, within the ASD
context. To provide evidence-based and state-of-the-art answers to the above
questions we conducted a systematic literature review (SLR).

By design, the results of this study are complementary to the existing body
of knowledge by providing the following contributions to the software engineer-
ing discipline: the collections of (i) the current issues (challenges and problems),
and (ii) the explicit practices that, respectively, affect and facilitate the identifi-
cation and implementation of NFRs within ASD. Moreover, the findings in this
paper entail useful implications for researchers and practitioners alike. In this
context, while the former group might be interested in investigating the impact
of particular issues on the success (failure) of ASD projects, the latter group
might be willing to mitigate those issues by adopting the practices in the scope
and content due to the current needs and priorities.

The remainder of this paper is laid out as follows. Section 2 describes the
rationale behind implementing NFRs. Section 3 provides the description of the
research methodology, applied to conduct the systematic literature review. The
results are given in Sect. 4, followed by their discussion in Sect. 5. Finally, the
paper is concluded in Sect. 6.

2 Rationale Behind Implementing NFRs

Generally speaking, non-functional requirements (NFRs), also known as qual-
ity requirements, define the users’ expectations and needs regarding a software
product, as well as their particular notions of its qualities. According to Svens-
son et al. [31], the most important quality attributes in industrial practice relate
to usability, performance, reliability, stability, safety, security/integrity, compli-
ance, maintainability, reusability and interoperability. Unmistakably, NFRs have
great importance in software product development [31–33].

Besides this, NFRs can also impose global constraints on a software product
[34], arising from all of its parts as well as from interdependencies between them
[35]. In other words, NFRs put constraints on how the product’s functions must
work [36]. Overlooking or even neglecting information related to quality facets
negatively affects the final product. Ironically, although it might be surprisingly
different from common sense, NFR-related errors are still claimed to be the most
difficult to correct, and the most expensive [37]. It is a major risk, especially
considering that in recent years software defects have become the dominant
cause of user outage [38].

Undeniably, both researchers and practitioners from ASD communities have
seen the need to capture, document and prioritise NFRs [39]. For instance,
Microsoft, the largest software and programming company worldwide [40], rec-
ommends capturing functional and non-functional requirements alike, since the
former indicate whether the application does the right thing, while the latter
determine whether the application does those things well [41]. Oracle, the sec-
ond largest software corporation, argues that “the key to successful software



94 A. Jarzębowicz and P. Weichbroth

development is that all stakeholders develop a clear and uniform understanding
of application requirements” [42].

Furthermore, we also acknowledge the importance of NFRs as the major
external quality facets of the software products from the user’s perspective [43].
The questions addressed in this study are narrowed to ASD, which assumes
having the user(s) actively involved. If one compares Agile with traditional
approaches, this involvement is not limited to the early stages of the devel-
opment process. On the contrary, Agile development principles encourage active
user involvement, being generally considered to contributing to user satisfaction
[44,45] and project success [46].

3 Methodology

We designed and executed the systematic literature review following the guide-
lines for SLR studies in software engineering elaborated by Kitchenham and
Charters [47]. The definition of the search query and query execution in Scopus
(phase 1 of SLR process) are shared with our other study aimed at identification
of particular NFR-related requirements engineering techniques [48]. The inclu-
sion/exclusion criteria were however defined with respect to this study’s aim and
subsequent phases of the SLR process were conducted separately in each of two
studies.

We chose to rely on a single publication database (Elsevier Scopus). Scopus
was selected because it indexes a large number of journals and conferences [49]
and enables a single search query to access items from a broad variety of publish-
ers [50]. It is worth noting here that in several other SLR studies similar to ours
(e.g. [30,51]) similar strategies were applied, in particular exclusively relying on
the Scopus database.

3.1 Inclusion and Exclusion Criteria

The papers were eligible based on the five following inclusion criteria:

– peer-reviewed papers (I1);
– papers in English (I2);
– papers published since 2008 (I3);
– papers related to the software engineering domain (I4);
– papers covering Agile development and NFRs (I5).

The papers were screened prior to acceptance and were further rejected if
they had any of the following exclusion criteria:

– papers not providing any information about NFR issues or practices in ASD
(E1);

– papers not available for download, despite extensive search (E2);
– papers reporting the same results covered by another source included in SLR

- in such cases the latest paper was included (E3);



An SLR on Implementing NFRs in Agile Software Development 95

– papers dedicated to a very specific subarea of NFRs (e.g. with proposals of
advanced methods of establishing security requirements) (E4).

We focused on papers published since 2008 to include all works published
in the last 12 years before the conduction of the SLR. We also decided to
include papers dedicated to a specific project context (e.g. large-scale distributed
development), but to exclude papers with very narrow scope (E4) e.g. with
advanced dedicated analysis methods suggested as facilitating practices for secu-
rity requirements, which are hard to consider as an issue or practice regarding
the whole category of NFRs.

3.2 Search Query Definition

As we had performed some initial searches before planning the SLR, we were
aware that sources dedicated to this topic of interest are rather scarce. This led
us to the decision to cast a wider net and try to identify all sources focusing
on NFRs in Agile, thus we used more generic keywords instead of those exactly
matching our RQs (e.g. “challenges” or “practices”).

The following search string was used:
TITLE-ABS-KEY ((agile OR scrum OR lean OR xp OR kanban) AND (nfr

OR “non-functional requirements” OR “quality requirements”)) AND PUBYEAR
> 2007 AND (LIMIT-TO(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)
OR LIMIT-TO (DOCTYPE, “ch”)) AND (LIMIT-TO (SUBJAREA, “COMP”)
OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “MATH”)
OR LIMIT-TO (SUBJAREA, “BUSI”) OR LIMIT-TO (SUBJAREA, “DECI”))
AND (LIMIT-TO (LANGUAGE, “English”))

The string includes various methods that could possibly be mentioned in
the title, keywords etc. instead of the generic “Agile” term. We also provided
alternative terms commonly used to denote an NFR. The types of documents
mentioned in the search string match peer-reviewed papers. The specification of
subject areas resulted from our knowledge, in particular on how some sources
(especially the series that include conference proceedings as its volumes) are
classified and indexed by Scopus. The search in titles, abstracts and keywords
was chosen as the most comprehensive option available (Scopus does not enable
searching the contents of full texts).

3.3 Search Strategy

We defined a process that comprised 3 main phases:

1. Execution of the search query.
2. Manual review of titles, keywords and abstracts of the papers retrieved from

the search to exclude those not related to the topic of NFR in an Agile context.
3. Manual review of each remaining paper’s full text in order to decide whether

to finally include it or not. Identification of information pieces relevant to our
RQs and assigning codes to them.



96 A. Jarzębowicz and P. Weichbroth

3.4 Search Execution

The results of the 3 phases defined in the previous section were as follows:
Phase 1: The search was executed on November 28th 2019. Despite including

several alternative keywords in the search string, the search returned only 159
papers. This confirmed our initial suspicions that the topic of “NFR in Agile” is
not widely addressed in the scientific papers, at least those indexed by Scopus.

Phase 2: The results retrieved by the Scopus search engine (that include
title, keywords and the abstract of each paper found) were manually reviewed.
It allowed us to verify the findings against I5 criterion more precisely than in the
case of relying on an automated search and to reject papers that reported nothing
on NFRs (for example, several papers referring to “quality requirements” turned
out to interpret this term as “well-documented/valid requirements” instead of
“requirements regarding system quality”). As a result, 71 papers were retained
at the end of this phase.

Phase 3: In this phase, the papers were reviewed and checked against exclu-
sion criteria E1-E4. Finally, 44 papers were qualified to extract information.
Moreover, we evaluated the papers with regard to (i) the use of appropriate and
rigorous research methods, (ii) clarity and coherence of the research findings,
and (iii) providing a validation of the proposed approach. During the review,
apart from just deciding on the paper’s final classification, the fragments relevant
to the RQs were identified and provided with codes to summarize the findings.
Next, the codes were reviewed to identify similarities, and related codes were
grouped into the more generic ones presented in the Results section.

4 Results

The final results of the SLR are presented in Tables 1 and 2. For each issue
reported and facilitating practice suggested, a list of papers mentioning it is pro-
vided (“Sources” column). We also explicitly distinguish issues/practices related
to requirements engineering activities (“RE” column) from those that should
rather be associated with e.g. testing, architectural design or project manage-
ment. Both tables are sorted starting from with the items quoted by the most
sources. The elaboration of results with respect to the answers they provide to
RQs is provided in 4.1 and 4.2.

4.1 What Issues Affect the Identification and Implementation of
Non-functional Requirements in ASD?

The most frequently reported issue concerns neglecting NFRs (I1) i.e. the situa-
tion in which developers and/or stakeholders focus on the system’s functionality
and do not identify NFRs in a sufficient manner, often postponing such task to
a later stage of the project. Unfortunately, it often results in significant rework
effort, as NFRs are not necessarily simple additions and are likely to substantially
affect the system architecture. It should be stated that this issue, while men-
tioned by many papers, is not always based on experience or empirical findings



An SLR on Implementing NFRs in Agile Software Development 97

Table 1. Problems and challenges affecting development of NFRs in ASD

ID Problem/challenge RE Sources

I1 Neglecting NFRs (usually while focusing on FR) + [25], [52], [53], [54],
[55], [56], [57], [58],
[59], [60], [61], [62],
[63], [64], [65], [66],
[67]

I2 Misunderstandings regarding NFRs specified as
User Stories (or similar simplified representation)

+ [62], [68], [69], [70],
[71], [72], [73]

I3 Lack of recognition of NFRs by stakeholders + [25], [52], [55], [60],
[74], [75]

I4 Difficulties with documenting the NFRs in a way
that exposes their dependencies

+ [52], [55], [63], [65],
[67]

I5 Lack of traceability mechanisms of NFRs + [58], [67], [76], [77]

I6 Inadequate NFR test specification to verify their
implementation

+ [52], [57], [74], [78]

I7 Insufficient knowledge/competencies (advanced
NFR concepts) in the project team

+ [52], [55], [75]

I8 Overlooking sources of NFRs (stakeholders) + [52], [55], [74]

I9 Unclear conceptual definition of NFRs (how to
document them)

+ [25], [52], [79]

I10 NFRs are affected by changes in FRs + [67], [80], [81]

I11 Sporadic adherence to quality guidelines by Agile
teams

[52], [55], [74],

I12 Suboptimal inter-team organization (around
components, scenarios or functional teams e.g.
testers) leading to poor implementation of NFRs

[52], [55], [74]

I13 Late detection of NFRs’ infeasibility + [52], [74]

I14 Ambiguous NFRs communication process + [52], [67]

I15 NFRs stored outside of backlog, in an external
document and thus not always addressed

+ [39], [71]

I16 Hidden assumptions regarding NFRs
implementation in inter-team collaboration (in a
large scale project)

[52], [74]

I17 Misunderstanding the architecture drivers
(priorities of NFRs) between teams

[52], [74]

I18 Lengthy NFR acceptance checklist (e.g. DoD) + [52]

I19 Agile process does not include a feedback loop
regarding NFRs

+ [55]

I20 Unmanaged architecture changes [52]

I21 Lack of cost-effective real integration test [52]

I22 Adopting legacy architectural decisions complicate
the implementation of NFRs of the new system

[74]

I23 Moving to Agile with a waterfall mind-set [74]

I24 Difficult testing to verify NFRs as it requires
associated FR to be already implemented

[82]



98 A. Jarzębowicz and P. Weichbroth

Table 2. Practices facilitating implementing NFRs in ASD

ID Practice RE Sources

P1 Use modified or additional specification techniques
for NFRs (including those adopted from
plan-driven approaches)

+ [60], [61], [62], [63], [65],
[66], [67], [70], [71], [75]

P2 Maintain traceability between FRs and NFRs + [58], [63], [65], [76], [77],
[80], [81], [83]

P3 Start focusing on NFRs early in the project + [61], [64], [66], [79], [84],
[85], [86]

P4 Document NFRs using standard ARE specification
techniques (e.g. US, DoD, AC)

+ [55], [56], [71], [73], [84],
[87], [88]

P5 Use automated monitoring tools, e.g. SONAR, to
monitor quality of software under development

[52], [53], [54], [55], [74],
[87], [89]

P6 Involve NFR specialists (e.g. a team of specialists
that ensures proper implementation of NFRs or an
NFR stakeholder)

+ [52], [55], [57], [67], [74]

P7 Involve multiple roles and viewpoints to elicit
and/or review NFRs

+ [62], [66], [67], [78], [90]

P8 Educate and raise awareness about the importance
of (particular) NFRs

+ [55], [79], [90]

P9 Use patterns/templates catalogue to specify NFRs + [53], [62], [91]

P10 Establish preparation team (responsible for NFRs,
architecture and distribution of backlog items to
development teams)

[52], [74], [87]

P11 Use abstract but easy to grasp terms by user
and/or alternatives to elicit NFRs from
stakeholders

+ [78], [84]

P12 Use multiple product backlogs to include
requirements of different viewpoints

+ [52], [74]

P13 Use supporting systems providing NFR
recommendations

+ [54], [92]

P14 Instead of specifying NFRs as epics, user stories
etc., use a similar but distinct structure dedicated
to NFRs

+ [69], [93]

P15 Reserve part of the sprint for important NFRs [52], [74]

P16 Introduce Sprint allocation based on multiple
Product Backlogs (e.g. 1 - FRs, 2 - NFRs, 3 -
CI/CD requirements)

[52], [74]

P17 Establish components teams (each team solely
responsible for a given component and its quality)

[52], [74]

P18 Introduce innovation and planning iteration (IP,
term from SAFe) to resolve technical debts related
to NFRs

[52], [74]

P19 Conduct NFR-oriented code reviews [55], [87]

P20 Explain to the stakeholders the consequences of
overspecified NFRs

+ [84]

P21 Maintain an assumption wiki-page + [52]

P22 Use CI environment to utilize automated NFR
testing

[82]

P23 Establish an independent team to test NFRs’
implementation

[79]



An SLR on Implementing NFRs in Agile Software Development 99

but sometimes treated as “common knowledge” or quoted from other referenced
papers. On the other hand, the frequent occurrence of such issue is confirmed
by more general studies not dedicated to NFRs but listing the general problems
and challenges related to ASD and/or requirements engineering (examples are
given in Sect. 5.1).

A number of issues can be attributed to limitations of the simplified require-
ments documentation techniques (e.g. user stories, story cards) commonly used
in Agile methods. In application to NFRs, such techniques can turn out to be
insufficient to express NFRs in an unambiguous way (I2). Another reported
shortcoming of such techniques is the difficulty in representing the dependencies
between a given NFR and other related requirements (I4). An open issue of how
to represent NFRs is also reported as a doubt explicitly expressed by Agile teams
(I9). While in some projects, a workaround in the form of a separate document
dedicated to NFRs is used, it can also cause difficulties as the project team can
focus on the FRs typically stored in the product backlog and do not sufficiently
rely on external documents including that for NFRs (I15).

NFRs are more difficult to capture and cause problems both for stakeholders
and for the project team. The stakeholders may even not recognize their needs
that have to be captured as NFRs (I3). The project team may in turn lack the
knowledge and competencies necessary to identify and implement some NFRs,
especially when advanced concepts related to e.g. security or performance need
to be used (I7).

The elicitation and communication of NFRs is another category of issues.
Requirements elicitation can fail to involve all of the relevant stakeholders (I8)
and result in NFRs that do not reflect all viewpoints or even omit some important
requirements. NFRs are also quite hard to express, thus their communication
(both from the stakeholder to the project team, and between team members)
can be prone to errors (I14). Moreover, in large scale development projects,
involving multiple teams, additional communication problems are likely to arise
(I12, I16, I17). Several drawbacks in handling NFRs can result in a situation
of late detection of NFR infeasibility (I13), especially considering the lack of a
feedback loop regarding NFRs (I19).

Several issues related to NFR traceability and verifiability are reported as
well. A lack of NFR traceability mechanisms is claimed in general (I5), but also
several more specific issues are described. Traceability of NFRs is even more
important as NFRs are frequently affected by changes in FRs (I10). It is difficult
to develop test specifications associated with NFRs, which are intended to verify
their implementation (I6). Moreover the execution of such tests requires the
associated FRs to be already implemented (I24). The cost-effectiveness of some
tests is also disputed (I21). The manual verification of DoD can be cumbersome
as well, especially in case of a lengthy checklist (I18).

The remaining issues are either related to project team members’ attitudes
(I11, I23) or architectural design activities (I20, I22).



100 A. Jarzębowicz and P. Weichbroth

4.2 What Practices Facilitate the Successful Identification and
Implementation of Non-functional Requirements in ASD?

A number of practices dedicated to the documentation of NFRs can be found
in the literature, even though some of them seem to be mutually contradictory.
The issue of the insufficiency of the popular Agile requirements documentation
techniques can be addressed by utilizing modified or additional specification
techniques (P1). Such techniques are to be applied to NFRs only (while FRs are
still recorded as e.g. user stories). Some proposals include techniques adopted
from plan-driven approaches.

Alternatively, other sources recommend making sure that NFRs are docu-
mented together with FRs, using the same, typical representations, e.g. user
stories, Definition of Done, Acceptance Criteria (P4). There is also a kind of
intermediate solution suggested - instead of specifying NFRs as epics, user sto-
ries etc. and mixing them with FRs, a similar but distinct structure dedicated
to NFRs can be used (P14). Also, assumptions related to the implementation of
NFRs are worth documenting using, e.g. a wiki-page (P21).

Focusing on NFRs in an early phase of the project (P3) is a suggestion that
can possibly minimize the rework caused by omitted NFRs. Multiple roles and
viewpoints should be involved to elicit and/or review NFRs (P7). A number
of more detailed practices facilitating requirements elicitation from stakehold-
ers can also be found, e.g. using proper terms (P11) or explaining the con-
sequences of NFRs expressed by stakeholders (P20), especially in the case of
“over-specification”. Another good idea is to educate and raise awareness about
importance of NFRs (P8) - in general or with respect to some categories of
NFRs which are not sufficiently recognized. Both stakeholders and project team
members can be educated in such a manner.

As NFRs can be difficult to identify and even harder to implement, it is pos-
sible to strengthen the competencies of the project team by involving NFR spe-
cialists (P6). For example, a security expert can enable the elicitation of relevant
security requirements and later verify their implementation. As the stakehold-
ers may not be able to identify the NFRs themselves, external resources such
as catalogues of NFR patterns/templates (P9) or dedicated supporting systems
providing recommendations (P13) can be used as additional sources of NFRs.

Maintenance of traceability between FRs and NFRs is a frequently recom-
mended practice (P2) that enables proper requirements management activities,
including configuration and change management. Various solutions, including
tool support, are proposed to ensure traceability maintenance. There are also
other practices including the use of automated tools, in particular: tools to
monitor the quality of the software under development, including the aspects
expressed in NFRs (P5) and CI environments facilitating automated NFR test-
ing (P22). Apart from tool-based testing, NFR-oriented code reviews (P19) and
external tests conducted by an independent team (P23) can be practiced.

To minimize the risk of neglecting NFRs, several actions in the software
project organization can be undertaken. They can concern the organization of
the project team(s) (P10, P17); the development process - dedicating an iteration



An SLR on Implementing NFRs in Agile Software Development 101

(P18) or a part of each iteration (P15) to the implementation of NFRs; or using
multiple requirements registers, which make NFRs (or specific NFR categories)
more visible (P12, P16).

5 Discussion

Non-functional requirements (NFRs) have become an important research area,
mainly due to the abundance of project failures caused by neglecting quality
attributes related to user values. While there is no consensus on the reasons for
this, Maxim and Kessentini point out that NFRs “are not easy for stakeholders
to articulate, but they know that the software will not be usable without some
of these non-functional characteristics” [94]. Similarly, the four most frequent
issues identified in our study concern neglecting (I1), a lack of (I3), or misun-
derstanding (I2) NFRs. Further to this, even when one manages to write them
down, difficulties are encountered along the way while attempting to document
particular qualities and their dependencies (I4).

Notwithstanding these observations, one question arises: Why have been
NFRs disregarded? The first reason is the insufficient knowledge and low com-
petence of the employees (I7), particularly in terms of their analytical skills and
professional experience, reflected by their inability to perform a required task at
a targeted level of proficiency. Moreover, their incompetence is also demonstrated
by overlooking sources of NFRs (I8), vague definitions and obscure descriptions
(I9). These burdens might be considered to be a result of ambiguous communi-
cation (I14).

The remaining aspects of the discussion, namely: comparison to works by
other authors (5.1), study limitations (5.2) and implications (5.3) are respectively
given below.

5.1 Comparison with Related Works

There are only a few sources dedicated to identification of NFR-related issues
and/or practices in ASD. Alsaquaf et al. consider NFRs in a more specific con-
text of Agile Large-Scale Distributed projects. These authors conducted an SLR
study to summarize the challenges and practices mentioned in the literature [30]
and further investigated additional challenges through a series of interviews with
industry practitioners [52]. Behutiye et al. [85] consider NFRs in the generic con-
text of ASD. They used situational method engineering to analyze NFR man-
agement practices and interviews to identify challenges and practices of NFR
documentation [71].

The SLR by Alsaquaf et al. [30] uncovered 12 NFR-related issues and 13
practices used as solutions. We were able to identify more items of both cate-
gories. The results of both above-mentioned primary studies ([52] and [85]) were
retrieved in our SLR study and included in its results, together with a wider
set of issues/practices from other sources. It is worth to notice that 16 out of
24 issues found in our SLR were identified in a series of interviews dedicated



102 A. Jarzębowicz and P. Weichbroth

to NFRs challenges in Agile Large-Scale Distributed (ALSD) development [52],
which indicates that such challenges are not limited to ALSD, but apply to
ASD projects in general. Such findings are also corroborated by reports in other
sources we were able to retrieve in our SLR study.

A larger number of research studies on issues and/or practices is available,
however their scope is wider and concerns e.g. the challenges of Agile require-
ments engineering in general. An SLR study by Inayat et al. summarizes existing
requirements engineering challenges, Agile practices that address such challenges
as well as additional challenges related to Agile practices [28]. Heikilla et al. iden-
tified, through a mapping study, Agile requirements engineering benefits as well
as its problematic areas [95]. Medeiros et al. conducted a mapping study focused
on Agile requirements engineering practices and techniques dedicated to require-
ments elicitation and documentation [51]. Schon et al. focuses on introducing
the user’s perspective to ASD and joint application of ASD and User-Centered
Design (UCD). They conducted an SLR study to summarize the related prac-
tices and identify essential aspects of Agile requirements engineering in the UCD
context [27].

Apart from [30], [71] and [85], none these studies considers NFRs specifically
and as such, they do not address detailed practices nor issues. Some of them
enumerate single NFR-related issues, mostly mentioning the risk of neglecting
NFRs in ASD projects [27,28] and to the typical Agile documentation insufficient
to successfully capture NFRs [28,95]. It is worth noting here that usually, the
issues/practices mentioned in such papers are not explicitly assigned to NFRs
but to requirements in general, also including FRs, constraints, business goals
etc. With respect to this, our study has a much more narrow scope, but within
this scope provides much more detailed findings.

Finally, there are studies that focus on a single issue and/or practice, as they
propose a new method, technique or practice to address some known issue, e.g.
a lack of NFR traceability or difficulty in documenting NFRs of some kind. In
our study, we made an attempt to include such contributions into the summary
lists that provide the reader with an overview of the state of the art on NFRs in
the ASD topic.

5.2 Limitations

While we try to minimize risks by following the guidelines by Kitchenham
and Charters [47], we are aware that our study has several possible limitations
remaining. A limitation of any SLR study is the potential bias in selecting the
sources. This starts with the decisions regarding the publication databases to be
searched and the search string to be used for this purpose.

Our study conducted the search in Elsevier Scopus only. Scopus is known to
enable a single search query to access items from a large number of journals and
conferences [49,50]. However, it is possible that it misses some sources that could
in turn be found in other databases. Moreover, scientific databases do not include
so called “grey literature” which can potentially include industry experiences in
non-scientific publications, such as reports and web articles.



An SLR on Implementing NFRs in Agile Software Development 103

We paid attention to the construction of the search string and included sev-
eral synonyms and alternative terms to increase our chances of finding all of the
relevant sources. The SLR is, however, strongly dependent on vocabulary and we
cannot rule out that some authors used less common expressions which would
lead to failure to find their papers. Moreover, as our search string implied that
NFRs must be explicitly mentioned in the paper’s title, abstract or keywords,
more generic papers (e.g. dedicated to ASD challenges or practices), which just
mention an issue or practice related to NFRs among many others, could be
missed.

The extraction of the data from the sources is also a task prone to bias, as
it is done by humans, who interpret the contents of the sources. Following SLR
guidelines minimizes such a threat, but cannot entirely eliminate it.

5.3 Implications for Research and Practice

This study has several implications for both researchers and practitioners. For
researchers, the relatively small number of sources retrieved for the SLR indicates
that there is a need for more studies regarding NFRs in ASD projects. Moreover,
the issues and practices listed in the findings of our study can be considered by
researchers as potential subjects of dedicated empirical studies, further exploring,
e.g. the root causes of reported issues or the effectiveness of the facilitating
practices.

Industrial practitioners can use our findings to anticipate issues in projects
they participate in, and to select facilitating practices to be applied in their
projects. Our study can also be used to raise awareness on NFRs in ASD, the
related issues and practices as well as the overall importance of such a topic -
which still tends to be neglected or lack sufficient attention.

6 Conclusions

In this paper, we explored the topic of the implementation of non-functional
requirements (NFRs) in Agile Software Development (ASD), focusing on the
issues and facilitating practices, gathered from the existing body of literature.
The main motivation underpinning this study was to investigate the state-of-the-
art in implementing NFRs within ASD projects, through a systematic literature
review (SLR), in order to identify what issues have been documented, as well as
by what means one can facilitate the implementation of NFRs. This research was
driven by the guidelines elaborated by Kitchenham and Charters, a well-known
and widely-applied research framework in the field of software engineering.

The number of industrial projects that deliver different and specific lessons
regarding NFRs, makes comparison of the studies a time-consuming and intricate
task, since they do not frequently deal with the same focus or goals. Nevertheless,
we were able to collect and unambiguously classify a bulk of issues and practices,
extracted from peer-reviewed scientific sources. Obviously, our report neither
exhausts the topic nor provides external validity. However, we believe that the



104 A. Jarzębowicz and P. Weichbroth

obtained results may serve as a useful reference repository to be used by both
experienced and novice researchers, as well as senior and junior practitioners.

Moreover, a number of open issues and related research directions were iden-
tified through this study, which can be considered as an input for future work. A
clear lack of consensus on which requirements documentation techniques should
be used in order to specify NFRs. Some sources suggest using the techniques
available in Agile methods e.g. User Stories (possibly with some adjustments),
while others recommend introducing additional techniques (including those used
in more traditional, plan-driven approaches). Such selection of the suitable tech-
niques may be a context-dependent issue and requires further investigation.
Other areas we identify as potential future work directions are: the relation-
ship between requirements engineering and testing areas (test specifications to
verify the implementation of NFRs, which can also be considered as part of NFRs
documentation); and the facilitation of an unambiguous NFRs communication
process.

We plan to address the latter topic by designing and testing an ontology-
based approach, using Controlled Natural Language (CNL) [96] and the Fluent
Editor [97], simulating and modelling requirements specification. Our observa-
tions gathered during professional work indicate that there is still a need to
implement suitable methods and tools to support communication among differ-
ent groups of stakeholders and development teams.

References

1. Amjad, S., et al.: Calculating completeness of agile scope in scaled agile develop-
ment. IEEE Access 6, 5822–5847 (2017)

2. Adnan, M., Afzal, M.: Ontology based multiagent effort estimation system for
Scrum agile method. IEEE Access 5, 25993–26005 (2017)

3. Strandberg, P.E., Enoiu, E.P., Afzal, W., Sundmark, D., Feldt, R.: Information
flow in software testing–an interview study with embedded software engineering
practitioners. IEEE Access 7, 46434–46453 (2019)

4. Tjørnehøj, G., Fransgård, M., Skalkam, S.: Trust in agile teams in distributed
software development. In: Information System Research Seminar in Scandinavia
2012 Information Systems Research Seminar in Scandinavia, pp. 1–15 (2012)

5. Martin, R.C.: Agile Software Development: Principles, Patterns and Practices.
Prentice Hall, Upper Saddle River (2002)

6. Roy, S., Raju, A., Mandal, S.: An empirical investigation on e-retailer agility, cus-
tomer satisfaction, commitment and loyalty. Bus. Theory Pract. 18, 97–108 (2017)

7. Consultancy.eu: Half of companies applying agile methodologies & practices
(2020). Accessed 10 Nov 2020. https://www.consultancy.eu/news/4153/half-of-
companies-applying-agile-methodologies-practices

8. Version One: 13th annual state of agile report (2019). Accessed 10 Nov 2020.
https://stateofagile.com/

9. Bjarnason, E., Wnuk, K., Regnell, B.: A case study on benefits and side-effects of
agile practices in large-scale requirements engineering. In: 1st Workshop on Agile
Requirements Engineering, pp. 1–5 (2011)

https://www.consultancy.eu/news/4153/half-of-companies-applying-agile-methodologies-practices
https://www.consultancy.eu/news/4153/half-of-companies-applying-agile-methodologies-practices
https://stateofagile.com/


An SLR on Implementing NFRs in Agile Software Development 105

10. Kaur, K., Jajoo, A., et al.: Applying agile methodologies in industry projects:
benefits and challenges. In: 2015 International Conference on Computing Commu-
nication Control and Automation, pp. 832–836. IEEE (2015)

11. Diebold, P., Mayer, U.: On the usage and benefits of agile methods & practices.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_16

12. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How
can quality awareness support rapid software development? – a research preview.
In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0_12

13. Guamán, D.S., Del Alamo, J.M., Caiza, J.C.: A systematic mapping study on
software quality control techniques for assessing privacy in information systems.
IEEE Access 8, 74808–74833 (2020)

14. Jarzębowicz, A., Połocka, K.: Selecting requirements documentation techniques
for software projects: a survey study. In: 2017 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 1189–1198. IEEE (2017)

15. Ryan, A.J.: An approach to quantitative non-functional requirements in software
development. In: 34th Annual Government Electronics and Information Associa-
tion Conference, pp. 13–20 (2000)

16. Kautz, K.: Customer and user involvement in agile software development. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 168–173.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4_22

17. Jarzębowicz, A., Marciniak, P.: A survey on identifying and addressing business
analysis problems. Found. Comput. Decis. Sci. 42(4), 315–337 (2017)

18. Jarzębowicz, A., Ślesiński, W.: What Is troubling IT analysts? A survey report
from Poland on requirements-related problems. In: Kosiuczenko, P., Zieliński, Z.
(eds.) KKIO 2018. AISC, vol. 830, pp. 3–19. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-99617-2_1

19. Mohammadi, S., Nikkhahan, B., Sohrabi, S.: Challenges of user involvement in
extreme programming projects. Int. J. Softw. Eng. Appl. 3(1), 19–32 (2009)

20. Bano, M., Zowghi, D.: A systematic review on the relationship between user
involvement and system success. Inf. Softw. Technol. 58, 148–169 (2015)

21. Schmitz, K., Mahapatra, R., Nerur, S.: User engagement in the era of hybrid agile
methodology. IEEE Softw. 36(4), 32–40 (2018)

22. Beck, K., et al.: The agile manifesto (2001). Accessed 10 Nov 2020, https://
agilemanifesto.org/

23. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, Boston (2010)

24. Miler, J., Gaida, P.: On the agile mindset of an effective team-an industrial opin-
ion survey. In: 2019 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 841–849. IEEE (2019)

25. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2010)

26. Zakrzewski, M., Kotecka, D., Ng, Y.Y., Przybyłek, A.: Adopting collaborative
games into agile software development. In: Damiani, E., Spanoudakis, G., Maci-
aszek, L.A. (eds.) ENASE 2018. CCIS, vol. 1023, pp. 119–136. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22559-9_6

27. Schön, E.-M., Winter, D., Escalona, M.J., Thomaschewski, J.: Key challenges in
agile requirements engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 37–51. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6_3

https://doi.org/10.1007/978-3-319-57633-6_16
https://doi.org/10.1007/978-3-319-54045-0_12
https://doi.org/10.1007/978-3-642-01853-4_22
https://doi.org/10.1007/978-3-319-99617-2_1
https://doi.org/10.1007/978-3-319-99617-2_1
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-030-22559-9_6
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-319-57633-6_3


106 A. Jarzębowicz and P. Weichbroth

28. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Human Behav. 51, 915–929 (2015)

29. Soares, H.F., Alves, N.S., Mendes, T.S., Mendonça, M., Spínola, R.O.: Investigating
the link between user stories and documentation debt on software projects. In:
2015 12th International Conference on Information Technology-New Generations,
pp. 385–390. IEEE (2015)

30. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects – a systematic literature review. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0_17

31. Svensson, R.B., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.:
Quality requirements in industrial practice–an extended interview study at eleven
companies. IEEE Trans. Softw. Eng 38(4), 923–935 (2011)

32. Umar, M., Khan, N.A.: Analyzing non-functional requirements (NFRs) for software
development. In: 2011 IEEE 2nd International Conference on Software Engineering
and Service Science, pp. 675–678. IEEE (2011)

33. Zhang, X., Wang, X.: Tradeoff analysis for conflicting software non-functional
requirements. IEEE Access 7, 156463–156475 (2019)

34. Weichbroth, P.: Delivering usability in IT products: empirical lessons from the
field. Int. J. Softw. Eng. Knowl. Eng. 28(07), 1027–1045 (2018)

35. Suryawanshi, T., Rao, G.: A survey to support NFRs in agile software development
process. Int. J. Comput. Sci. Inf. Technol. 6(6), 5487–5489 (2015)

36. Rosa, N.S., Justo, G.R., Cunha, P.R.: A framework for building non-functional
software architectures. In: 2001 ACM Symposium on Applied Computing, pp. 141–
147 (2001)

37. Mizouni, R., Salah, A.: Towards a framework for estimating system NFRs on
behavioral models. Knowl.-Based Syst. 23(7), 721–731 (2010)

38. Charette, R.N.: The biggest IT failures of 2018 (2018). Accessed 18 Sept
2020. https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-
old-familiar-faces

39. Maiti, R.R., Mitropoulos, F.J.: Capturing, eliciting, predicting and prioritizing
(CEPP) non-functional requirements metadata during the early stages of agile
software development. In: SoutheastCon 2015, pp. 1–8. IEEE (2015)

40. Statista: Largest software and programming companies worldwide by sales rev-
enue from 2017 to 2020 (2017). Accessed 10 Nov 2020. https://www.statista.com/
statistics/790179/worldwide-largest-software-programming-companies-by-sales/

41. Microsoft. Build for the needs of the business (2020). Accessed 19
Sept 2020. https://docs.microsoft.com/en-us/azure/architecture/guide/design-
principles/build-for-business

42. Oracle. Best practices for WLI application life cycle (2020). Accessed
10 Nov 2020. https://docs.oracle.com/cd/E13214_01/wli/docs102/bestpract/
requirements.html

43. Ossowska, K., Szewc, L., Weichbroth, P., Garnik, I., Sikorski, M.: Exploring an
ontological approach for user requirements elicitation in the design of online virtual
agents. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2016. LNBIP, vol. 264, pp. 40–55.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46642-2_3

44. Redlarski, K.: The impact of end-user participation in IT projects on product
usability. In: 2013 International Conference on Multimedia, pp. 1–8. Interaction,
Design and Innovation (MIDI) (2013)

https://doi.org/10.1007/978-3-319-54045-0_17
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-old-familiar-faces
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-old-familiar-faces
https://www.statista.com/statistics/790179/worldwide-largest-software-programming-companies-by-sales/
https://www.statista.com/statistics/790179/worldwide-largest-software-programming-companies-by-sales/
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/build-for-business
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/build-for-business
https://docs.oracle.com/cd/E13214_01/wli/docs102/bestpract/requirements.html
https://docs.oracle.com/cd/E13214_01/wli/docs102/bestpract/requirements.html
https://doi.org/10.1007/978-3-319-46642-2_3


An SLR on Implementing NFRs in Agile Software Development 107

45. Redlarski, K., Weichbroth, P.: Hard lessons learned: delivering usability in IT
projects. In: 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 1379–1382. IEEE (2016)

46. Buchan, J., Bano, M., Zowghi, D., MacDonell, S., Shinde, A.: Alignment of stake-
holder expectations about user involvement in agile software development. In: 21st
International Conference on Evaluation and Assessment in Software Engineering,
pp. 334–343 (2017)

47. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01 (2007)

48. Jarzębowicz, A., Weichbroth, P.: A qualitative study on non-functional require-
ments in agile software development. Submitted, under review (2020)

49. Scopus: Scopus content coverage guide (2020). Accessed 10 Nov 2020. https://www.
elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_
Guide_WEB.pdf

50. Daneva, M., Damian, D., Marchetto, A., Pastor, O.: Empirical research method-
ologies and studies in requirements engineering: how far did we come? J. Syst.
Softw. 95, 1–9 (2014)

51. Medeiros, J., Alves, D.C., Vasconcelos, A., Silva, C., Wanderley, E.: Requirements
engineering in agile projects: a systematic mapping based in evidences of industry.
In: XVIII Ibero-American Conference on Software Engineering (CIBSE), pp. 460–
476 (2015)

52. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the
context of large-scale distributed agile: an empirical study. Inf. Softw. Technol.
110, 39–55 (2019)

53. Oriol, M., et al.: Data-driven elicitation of quality requirements in agile companies.
In: Piattini, M., Rupino da Cunha, P., García Rodríguez de Guzmán, I., Pérez-
Castillo, R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 49–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29238-6_4

54. Ramos, F.B.A., Costa, A.A.M., Perkusich, M., Almeida, H.O., Perkusich, A.: A
non-functional requirements recommendation system for Scrum-based projects. In:
30th International Conference on Software Engineering & Knowledge Engineering
(SEKE), pp. 149–148 (2018)

55. Terpstra, E., Daneva, M., Wang, C.: Agile practitioners’understanding of secu-
rity requirements: insights from a grounded theory analysis. In: 25th International
Requirements Engineering Conference Workshops (REW), pp. 439–442. IEEE
(2017)

56. Sachdeva, V., Chung, L.: Handling non-functional requirements for big data and
IOT projects in Scrum. In: 7th International Conference on Cloud Computing,
Data Science & Engineering-Confluence, pp. 216–221. IEEE (2017)

57. Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
a systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)

58. Aljallabi, B.M., Mansour, A.: Enhancement approach for non-functional require-
ments analysis in agile environment. In: 2015 International Conference on Comput-
ing, Control, Networking, Electronics and Embedded Systems Engineering (ICC-
NEEE), pp. 428–433. IEEE (2015)

59. Käpyaho, M., Kauppinen, M.: Agile requirements engineering with prototyping: a
case study. In: 23rd International Requirements Engineering Conference (RE), pp.
334–343. IEEE (2015)

60. Domah, D., Mitropoulos, F.J.: The NERV methodology: a lightweight process for
addressing non-functional requirements in agile software development. In: South-
eastCon 2015, pp. 1–7. IEEE (2015)

https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://doi.org/10.1007/978-3-030-29238-6_4


108 A. Jarzębowicz and P. Weichbroth

61. Dragicevic, S., Celar, S., Novak, L.: Use of method for elicitation, documentation,
and validation of software user requirements (MEDoV) in agile software devel-
opment projects. In: 6th International Conference on Computational Intelligence,
Communication Systems and Networks, pp. 65–70. IEEE (2014)

62. Nawrocki, J., Ochodek, M., Jurkiewicz, J., Kopczyńska, S., Alchimowicz, B.: Agile
requirements engineering: a research perspective. In: Geffert, V., Preneel, B.,
Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
40–51. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5_5

63. Farid, W.M., Mitropoulos, F.J.: Visualization and scheduling of non-functional
requirements for agile processes. In: SoutheastCon 2013, pp. 1–8. IEEE (2013)

64. Bourimi, M., Kesdogan, D.: Experiences by using AFFINE for building collabora-
tive applications for online communities. In: Ozok, A.A., Zaphiris, P. (eds.) OCSC
2013. LNCS, vol. 8029, pp. 345–354. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39371-6_39

65. Farid, W., Mitropoulos, F.: Novel lightweight engineering artifacts for modeling
non-functional requirements in agile processes. In: SoutheastCon 2012, pp. 1–7.
IEEE (2012)

66. Um, T., Kim, N., Lee, D., In, H.P.: A quality attributes evaluation method for
an agile approach. In: 1st ACIS/JNU International Conference on Computers,
Networks, Systems and Industrial Engineering, pp. 460–461. IEEE (2011)

67. Bourimi, M., Barth, T., Haake, J.M., Ueberschär, B., Kesdogan, D.: AFFINE for
enforcing earlier consideration of NFRs and human factors when building socio-
technical systems following agile methodologies. In: Bernhaupt, R., Forbrig, P.,
Gulliksen, J., Lárusdóttir, M. (eds.) HCSE 2010. LNCS, vol. 6409, pp. 182–189.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16488-0_15

68. Boehm, B., Rosenberg, D., Siegel, N.: Critical quality factors for rapid, scalable,
agile development. In: 19th International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), pp. 514–515. IEEE (2019)

69. Ionita, D., van der Velden, C., Ikkink, H.J.K., Neven, E., Daneva, M., Kuipers, M.:
Towards risk-driven security requirements management in agile software devel-
opment. In: Cappiello, C., Ruiz, M. (eds.) Information Systems Engineering in
Responsible Information Systems, CAiSE 2019. Lecture Notes in Business Infor-
mation Processing, vol. 350, pp. 133–144. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-030-21297-1_12

70. Medeiros, J., Vasconcelos, A., Goulão, M., Silva, C., Araújo, J.: An approach based
on design practices to specify requirements in agile projects. In: ACM Symposium
on Applied Computing, pp. 1114–1121 (2017)

71. Behutiye, W., Karhapää, P., Costal, D., Oivo, M., Franch, X.: Non-functional
requirements documentation in agile software development: challenges and solu-
tion proposal. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 515–522.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_41

72. Patel, C., Ramachandran, M.: Story Card Maturity Model (SMM): a process
improvement framework for agile requirements engineering practices. J. Softw.
(JSW) 4(5), 422–435 (2009)

73. Patel, C., Ramachandran, M.: Bridging best traditional SWD practices with XP
to improve the quality of XP projects. In: International Symposium on Computer
Science and its Applications, pp. 357–360. IEEE (2008)

https://doi.org/10.1007/978-3-319-04298-5_5
https://doi.org/10.1007/978-3-642-39371-6_39
https://doi.org/10.1007/978-3-642-39371-6_39
https://doi.org/10.1007/978-3-642-16488-0_15
https://doi.org/10.1007/978-3-030-21297-1_12
https://doi.org/10.1007/978-3-030-21297-1_12
https://doi.org/10.1007/978-3-319-69926-4_41


An SLR on Implementing NFRs in Agile Software Development 109

74. Alsaqaf, W., Daneva, M., Wieringa, R.: Understanding challenging situations in
agile quality requirements engineering and their solution strategies: insights from
a case study. In: 26th International Requirements Engineering Conference (RE),
pp. 274–285. IEEE (2018)

75. Younas, M., Jawawi, D., Ghani, I., Kazmi, R.: Non-functional requirements elicita-
tion guideline for agile methods. J. Telecommun. Electron. Comput. Eng. (JTEC)
9(3–4), 137–142 (2017)

76. Jawawi, D., Arbain, A., Kadir, W., Ghani, I.: Requirement traceability model for
agile development: results from empirical studies. Int. J. Innov. Technol. Explor.
Eng. 8(8S), 402–405 (2019)

77. Arbain, A.F., Jawawi, D.N.A., Ghani, I., Kadir, W.M.W.: Non-functional require-
ment traceability process model for agile software development, J. Telecommun.
Electron. Comput. Eng. (JTEC) 9(3–5), 203–211 (2017)

78. Macasaet, R.J., Chung, L., Garrido, J.L., Noguera, M., Rodríguez, M.L.: An agile
requirements elicitation approach based on NFRs and business process models for
micro-businesses. In: 12th International Conference on Product-Focused Software
Development and Process Improvement (PROFES), pp. 50–56 (2011)

79. Ambler, S.W.: Beyond functional requirements on agile projects-strategies for
addressing nonfunctional requirements. Dr. Dobb’s J. (2008)

80. Firdaus, A., Ghani, I., Jawawi, D.N.A., Kadir, W.M.N.W.: Non functional require-
ments (NFRs) traceability metamodel for agile development. Jurnal Teknologi
77(9) (2015)

81. Arbain, A.F.B., Ghani, I., Kadir, W.M.N.W.: Agile non functional requirements
(NFR) traceability metamodel. In: 8th Malaysian Software Engineering Conference
(MySEC), pp. 228–233. IEEE (2014)

82. Yu, L., Alégroth, E., Chatzipetrou, P., Gorschek, T.: Utilising CI environment for
efficient and effective testing of NFRs. Inf. Softw. Technol. 117, 106199 (2020)

83. Sinnhofer, A.D., Oppermann, F.J., Potzmader, K., Orthacker, C., Steger, C.,
Kreiner, C.: Increasing the visibility of requirements based on combined variability
management. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 203–220.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_13

84. Kopczyńska, S., Ochodek, M., Nawrocki, J.: On importance of non-functional
requirements in agile software projects—a survey. In: Jarzabek, S., Poniszewska-
Marańda, A., Madeyski, L. (eds.) Integrating Research and Practice in Software
Engineering. SCI, vol. 851, pp. 145–158. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-26574-8_11

85. López, L., Behutiye, W., Karhapää, P., Ralyté, J., Franch, X., Oivo, M.: Agile
quality requirements management best practices portfolio: a situational method
engineering approach. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kali-
nowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp.
548–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_45

86. Alsaqaf, W.: Engineering quality requirements in large scale distributed agile
environment. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ) Workshops (2016)

87. Mohagheghi, P., Aparicio, M.E.: An industry experience report on managing prod-
uct quality requirements in a large organization. Inf. Softw. Technol. 88, 96–109
(2017)

88. Silva, A., Araújo, T., Nunes, J., Perkusich, M., Dilorenzo, E., Almeida, H., Perku-
sich, A.: A systematic review on the use of definition of done on agile software
development projects. In: 21st International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), pp. 364–373 (2017)

https://doi.org/10.1007/978-3-319-94214-8_13
https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-319-69926-4_45


110 A. Jarzębowicz and P. Weichbroth

89. López, L., et al.: Q-rapids tool prototype: supporting decision-makers in manag-
ing quality in rapid software development. In: Mendling, J., Mouratidis, H. (eds.)
CAiSE 2018. LNBIP, vol. 317, pp. 200–208. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92901-9_17

90. Camacho, C.R., Marczak, S., Cruzes, D.S.: Agile team members perceptions on
non-functional testing: influencing factors from an empirical study. In: 11th Inter-
national Conference on Availability, Reliability and Security (ARES), pp. 582–589.
IEEE (2016)

91. Franch, X., et al.: Data-driven elicitation, assessment and documentation of quality
requirements in agile software development. In: Krogstie, J., Reijers, H.A. (eds.)
CAiSE 2018. LNCS, vol. 10816, pp. 587–602. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91563-0_36

92. Ramos, F.B.A., et al.: Evaluating software developers’ acceptance of a tool for sup-
porting agile non-functional requirement elicitation. In: 31st International Confer-
ence on Software Engineering & Knowledge Engineering (SEKE), pp. 26–42 (2019)

93. Pecchia, C., Trincardi, M., Di Bello, P.: Expressing, managing, and validating
user stories: experiences from the market. In: Ciancarini, P., Sillitti, A., Succi,
G., Messina, A. (eds.) Proceedings of 4th International Conference in Software
Engineering for Defence Applications. AISC, vol. 422, pp. 103–111. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-27896-4_9

94. Maxim, B.R., Kessentini, M.: An introduction to modern software quality assur-
ance. In: Software Quality Assurance, pp. 19–46. Elsevier (2016)

95. Heikkilä, V.T., Damian, D., Lassenius, C., Paasivaara, M.: A mapping study on
requirements engineering in agile software development. In: 41st Euromicro SEAA
Conference, pp. 199–207. IEEE (2015)

96. Kapłański, P.: Controlled English interface for knowledge bases. Studia Informatica
32(2A), 485–494 (2011)

97. Weichbroth, P.: Fluent editor and controlled natural language in ontology devel-
opment. Int. J. Artif. Intell. Tools 28(04), 1940007 (2019)

https://doi.org/10.1007/978-3-319-92901-9_17
https://doi.org/10.1007/978-3-319-92901-9_17
https://doi.org/10.1007/978-3-319-91563-0_36
https://doi.org/10.1007/978-3-319-91563-0_36
https://doi.org/10.1007/978-3-319-27896-4_9

	A Systematic Literature Review on Implementing Non-functional Requirements in Agile Software Development: Issues and Facilitating Practices
	1 Introduction
	2 Rationale Behind Implementing NFRs
	3 Methodology
	3.1 Inclusion and Exclusion Criteria
	3.2 Search Query Definition
	3.3 Search Strategy
	3.4 Search Execution

	4 Results
	4.1 What Issues Affect the Identification and Implementation of Non-functional Requirements in ASD?
	4.2 What Practices Facilitate the Successful Identification and Implementation of Non-functional Requirements in ASD?

	5 Discussion
	5.1 Comparison with Related Works
	5.2 Limitations
	5.3 Implications for Research and Practice

	6 Conclusions
	References




