Adam Przybylek
Jakub Miler
Alexander Poth
Andreas Riel (Eds.)

Lean and Agile
Software Development

5th International Conference, LASD 2021
Virtual Event, January 23, 2021
Proceedings

LNBIP 408

@ Springer

Lecture Notes
in Business Information Processing 408

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of lllinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Adam Przybylek - Jakub Miler -
Alexander Poth - Andreas Riel (Eds.)

Lean and Agile
Software Development

5th International Conference, LASD 2021
Virtual Event, January 23, 2021
Proceedings

@ Springer

Editors
Adam Przybylek

Gdansk University of Technology
Gdansk, Poland

Alexander Poth
Volkswagen AG
Wolfsburg, Germany

Jakub Miler
Gdansk University of Technology
Gdansk, Poland

Andreas Riel
Université Grenoble Alpes
Grenoble, France

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing

ISBN 978-3-030-67083-2 ISBN 978-3-030-67084-9 (eBook)
https://doi.org/10.1007/978-3-030-67084-9

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8231-709X
https://orcid.org/0000-0003-2946-002X
https://orcid.org/0000-0002-2868-5633
https://orcid.org/0000-0001-9859-019X
https://doi.org/10.1007/978-3-030-67084-9

Preface

As COVID-19 swept the world in early 2020, countries began putting their citizens
under partial or total lockdown, while software companies started implementing
remote-working policies for many or all of their employees. The pandemic had an
almost immediate effect on agile software development, since agile work practices are
harder to perform when casual conversations are limited due to the online nature of
meetings and interactions. Nevertheless, more than ever before, the agile mindset and
practices have turned out to be vital for organizations to navigate through the new
terrain. In this setting, the LASD (Lean and Agile Software Development) conference
series and the community feel particularly proud of their contributions to research and
practice investigating how to stay Agile while working remotely during the pandemic.

In 2021, LASD separated from FedCSIS and became a standalone conference that
took place virtually on 23 January 2021 as an online event. As everyone involved in
LASD 2021 worked voluntarily, the conference was fully free of charge. LASD 2021
received 32 submissions. After a rigorous review process, which included at least 3
reviews per submission, 10 high-quality full papers and 2 short papers were selected.
The accepted papers were presented to a well-focused audience, thus the discussion
provided the authors with new ideas and directions for further research. Topics dis-
cussed in this volume range from teams under COVID-19 through women in Agile, to
product roadmapping and non-functional requirements.

Corresponding authors of all accepted papers received a complimentary 1 year
membership in Agile Alliance. Agile Alliance is a nonprofit global member organi-
zation dedicated to promoting the concepts of Agile software development as outlined
in the Agile Manifesto. With more than 75,000 members and subscribers around the
globe, Agile Alliance is driven by the principles of Agile methodologies and the value
delivered to developers, business, and end users. Agile Alliance organizes and supports
events to bring the Agile community together on an international scale. Besides, the
corresponding author of the best paper received a prize of a TeamRetro single team
access for 12 months.

The high quality of the LASD 2021 technical program was enhanced by two
keynote lectures delivered by outstanding guests: Philipp Diebold (“Agility Yesterday,
Today & Tomorrow”) and Sanjay Misra (“Pair Programming: An Empirical investi-
gation in an Agile Software Development environment”).

To live the agile mindset, the LASD conference focuses on highly relevant research
outcomes and fosters their way into practice. We believe the highest value produced by
a conference is that researchers’ outcomes are pulled by practitioners from industry to
integrate them into innovative products and services.

We would like to express our gratitude to everyone who made LASD 2021 suc-
cessful. First of all, we thank all authors for their contributions, the members of the
Program Committees for taking the time and effort to provide insightful remarks, as
well as both keynote speakers for their impressive speeches. We are also deeply

https://www.agilealliance.org/
https://www.teamretro.com/?rc=lasd21

vi Preface

grateful to Ivan Lukovi¢ for the opportunity to publish an extended version of the best
paper in Computer Science and Information Systems (ComSIS). Furthermore, we
acknowledge Dominik Grzegorzek for LaTeX typesetting assistance. Finally, we
would like to thank the team at Springer (especially Ralf Gerstner, Christine Reiss,
Alfred Hofmann, Anna Kramer, Guido Zosimo-Landolfo, Ramvijay Subramani, and
Anja Seibold) for making this volume possible.

We hope that you find this monograph useful for your professional and academic
activities, and we wish you a stimulating read. We also cordially invite you to visit our
conference website at https://lasd.pl, and to join us for the upcoming edition.

January 2021 Adam Przybylek
Jakub Miler

Alexander Poth

Andreas Riel

http://www.comsis.org/
https://lasd.pl

Organization

Conference and Program Committee Chair

Adam Przybylek

Program Committee

Muhammad Ovais Ahmad
Ibrahim Akman

Sikandar Ali

Fernando Almeida
Mohammad Alshayeb

Samuil Angelov

Irena Bach-Dabrowska
Alessandra Bagnato
Woubshet Behutiye
Alvine Boaye Belle
Nourchene Elleuch

Ben Ayed
Mario Bernhart
Vikram Bhadauria
Nik Nailah Binti Abdullah
Miklés Bird

Jan Olaf Blech
Markus Borg
Alena Buchalcevova

Jim Buchan

Luigi Buglione
Daniela Cruzes
Wiktor Bohdan Daszczuk
Igor Dejanovié
Anna Derezinska
Philipp Diebold
Arpita Dutta

Maria Jose Escalona
Imane Essebaa
Fabian Fagerholm

Gdansk University of Technology, Poland

Karlstad University, Sweden
Atilim University, Turkey
China University of Petroleum, China
University of Porto & INESC TEC, Portugal
King Fahd University of Petroleum and Minerals,
Saudi Arabia
Fontys University of Applied Sciences,
The Netherlands
WSB Gdansk, Poland
SOFTEAM R&D Department, France
University of Oulu, Finland
Ecole de Technologie Supérieure, Canada
Higher Colleges of Technology, UAE

Vienna University of Technology, Austria

Texas A&M University Texarkana, USA

Monash University Malaysia, Malaysia

Software Competence Center Hagenberg and Johannes
Kepler University Linz, Austria

Aalto University, Finland

SICS Swedish ICT AB, Sweden

Prague University of Economics and Business,
Czech Republic

Auckland University of Technology, New Zealand

Engineering Ingegneria Informatica SpA, Italy

SINTEF ICT, Norway

Warsaw University of Technology, Poland

Faculty of Technical Sciences, Serbia

Warsaw University of Technology, Poland

Bagilstein GmbH, Germany

T Kharagpur, India

Universidad de Sevilla, Spain

Hassan II University of Casablanca, Morocco

Aalto University, Finland

viii Organization

Fernando Marques
Figueira Filho
Gabriel Alberto
Garcia-Mireles
Javad Ghofrani
Krzysztof Goczyta
Sangharatn Godboley
Javier Gonzalez Huerta
Peggy Gregory
Janusz Gorski
Ridewaan Hanslo

Sebastian Heil
Andreas Hinderks
Uwe Hohenstein
Philipp Hohl
Marko Ikonen
Irum Inayat

Andrea Janes
Aleksander Jarzebowicz
Milo§ Jovanovié¢
Janne Jéarvinen
George Kakarontzas
Kalinka Kaloyanova
Benjamin Kanagwa
Georgia Kapitsaki
Matéj Karolyi
Aleksandra Karpus
Mohamad Kassab
Marija Kati¢

Wiem Khlif

Sylwia Kopczyfska
Martin Kropp

Pasi Kuvaja

Maarit Laanti

Timo O. A. Lehtinen
Valentina Lenarduzzi
Grischa Liebel

Ivan Lukovi¢

ITlaria Lunesu
Katarzyna Lukasiewicz
Viljan Mahni¢

George Mangalaraj
Bartosz Marcinkowski

Universidade Federal do Rio Grande do Norte, Brazil
Universidad de Sonora, Mexico

University of Applied Sciences Dresden, Germany

Gdansk University of Technology, Poland

NIT Rourkela, India

Blekinge Institute of Technology, Sweden

University of Central Lancashire, UK

Gdansk University of Technology, Poland

Council for Scientific and Industrial Research,
South Africa

Chemnitz University of Technology, Germany

University of Seville, Spain

Siemens AG, Germany

ZF Friedrichshafen AG, Germany

Projektivarikko Oy, Finland

National University of Computer and Emerging
Sciences, Pakistan

Free University of Bozen-Bolzano, Italy

Gdansk University of Technology, Poland

University of Novi Sad, Serbia

F-Secure Corporation, Finland

Aristotle University of Thessaloniki, Greece

Sofia University, Bulgaria

Makerere University, Uganda

University of Cyprus, Cyprus

Masaryk University, Czech Republic

Gdansk University of Technology, Poland

Innopolis University, Russia

Birkbeck, University of London, UK

University of Sfax, Tunisia

Poznan University of Technology, Poland

University of Applied Sciences and Arts Northwestern
Switzerland, Switzerland

University of Oulu, Finland

Nitor, Finland

Aalto University, Finland

LUT University, Finland

Reykjavik University, Iceland

University of Novi Sad, Serbia

Universita degli Studi di Cagliari, Italy

Gdansk University of Technology, Poland

University of Ljubljana, Slovenia

Western Illinois University, USA

University of Gdansk, Poland

Christoph Matthies

Manuel Mazzara

Antoni-Lluis Mesquida
Calafat

Jakub Miler

Gloria Miller

Sanjay Misra

Durga Prasad Mohapatra

Miguel Ehecatl Morales
Trujillo

Richard Mordinyi

Karolina Muszynska

Mirna Munoz

Jiirgen Miinch

Yen Ying Ng

Anh Nguyen-Duc

Arne Noyer

Hanna Oktaba
Marco Ortu
Tosin Daniel Oyetoyan

Necmettin Ozkan
Subhrakanta Panda

Rui Humberto R. Pereira
Kesava Pillai

Aneta
Poniszewska-Maranda

Alexander Poth

Michatl Przybytek

Raman Ramsin

Andreas Riel

Sonja Risti¢

Bruno Rossi

Zdenek Rybola

Dina Salah

Mattia Salnitri

Wylliams Barbosa Santos

Eva-Maria Schon

Jorge Sedeno

Mali Senapathi

Organization ix

Hasso Plattner Institute at the University of Potsdam,
Germany

Innopolis University, Russia

University of the Balearic Islands, Spain

Gdansk University of Technology, Poland, Poland
Skema Business School, France

Covenant University, Nigeria

NIT Rourkela, India

University of Canterbury, New Zealand

Vienna University of Technology, Austria

University of Szczecin, Poland

Centro de Investigacion en Matematicas, Mexico

Reutlingen University, Germany

Nicolaus Copernicus University, Poland

University of South-Eastern Norway, Norway

Osnabriick University and Willert Software Tools
GmbH, Germany

National Autonomous University of Mexico, Mexico

University of Cagliari, Italy

Western Norway University of Applied Sciences,
Norway

Kuveyt Tiirk Participation Bank, Turkey

Birla Institute of Technology and Science, Pilani, India

Instituto Politécnico do Porto - ISCAP, Portugal

Asia Pacific University of Technology and Innovation,
Malaysia

Lodz University of Technology, Poland

Volkswagen AG, Germany

University of Warsaw, Poland

Sharif University of Technology, Iran

Grenoble Alpes University, France

University of Novi Sad, Serbia

Masaryk University, Czech Republic

FIT CTU in Prague, Czech Republic

Sadat Academy for Management Sciences, Egypt
University of Trento, Italy

University of Pernambuco, Brazil

University of Seville, Spain

University of Seville, Spain

Auckland University of Technology, New Zealand

X Organization
Illia Shkroba
Marcin Sikorski

Michel Soares

Alvaro Soria

Maria Spichkova

Olga Springer

Christoph Johann Stettina
Tor Stélhane

Julian Szymanski
Michat Smiatek

Davide Taibi

Ayca Tarhan

Adel Taweel

Sven Theobald

Jorg Thomaschewski
Carlos Torrecilla Salinas
Michael Unterkalmsteiner
Andrzej Wardzinski
Pawel Weichbroth

Jan Werewka
Dominique Winter
Michat Wrobel
Wilodzimierz Wysocki
Murat Yilmaz

Nacer Eddine Zarour

Additional Reviewers

Jannik Fangmann
Hanna Looks
Pawel Markowski

Polish-Japanese Academy of Information Technology,
Poland

Polish-Japanese Academy of Information Technology,
Poland

Federal University of Sergipe, Brazil

ISISTAN Research Institute, Argentina

RMIT University, Australia

Gdansk University of Technology, Poland

Leiden University, The Netherlands

Norwegian University of Science and Technology,
Norway

Gdansk University of Technology, Poland

Politechnika Warszawska, Poland

Free University of Bozen-Bolzano, Italy

Hacettepe University, Turkey

Birzeit University, Palestine

Fraunhofer IESE, Germany

University of Applied Sciences Emden/Leer, Germany

University of Seville, Spain

Blekinge Institute of Technology, Sweden

Gdansk University of Technology, Poland

Gdansk University of Technology, Poland

AGH University of Science and Technology, Poland

University of Applied Sciences Emden/Leer, Germany

Gdansk University of Technology, Poland

West Pomeranian University of Technology, Poland

Cankaya University, Turkey

Constantine 2 University, Algeria

University of Applied Sciences Emden/Leer, Germany

University of Applied Sciences Emden/Leer, Germany

Polish-Japanese Academy of Information Technology,
Poland

Contents

Full Papers

Women in Agile: The Impact of Organizational Support for Women’s

Advancement on Teamwork Quality and Performance in Agile Software

Development Teamst e
Asli Yiiksel Aksekili and Christoph Johann Stettina

The State of Agile Software Development Teams During
the Covid-19 Pandemic
Krzysztof Marek, Ewelina Winska, and Wiodzimierz Dgbrowski

The Sars-Cov-2 Pandemic and Agile Methodologies in Software
Development: A Multiple Case Study in Germany
Michael Neumann, Yevgen Bogdanov, Martin Lier, and Lars Baumann

Agile Project Development Issues During COVID-19
Shariq Aziz Butt, Sanjay Misra, Muhammad Waqas Anjum,
and Syed Areeb Hassan

Achieving Agility in IT Project Portfolios — A Systematic
Literature Review
Joseph Puthenpurackal Chakko, Tim Huygh, and Steven De Haes

A Systematic Literature Review on Implementing Non-functional

Requirements in Agile Software Development: Issues

and Facilitating Practices
Aleksander Jarzgbowicz and Pawel Weichbroth

Product Roadmapping Processes for an Uncertain Market Environment:

A Grey Literature Review
Stefan Trieflinger, Jiirgen Miinch, Jan Schneider, Emre Bogazkéy,
Patrick Eifler, Bastian Roling, and Dominic Lang

Experience vs Data: A Case for More Data-Informed
Retrospective ACHVIHES o vttt e e
Christoph Matthies and Franziska Dobrigkeit

Reducing the Uncertainty of Agile Software Development Using a Random
Forest Classification Algorithm.
Ewelina Winska, Estera Kot, and Wlodzimierz Dgbrowski

Xii Contents

MSFL: A Model for Fault Localization Using
Mutation-Spectra Technique L .. 156
Arpita Dutta and Sangharatna Godboley

Short Papers

Implementing Lean Principles in Scrum to Adapt to Remote Work
in a Covid-19 Impacted Software Team. 177
Leigh Griffin

Business-Oriented Approach to Requirements Elicitation
inaScrum Project 185
Michat Sosnowski, Michal Bereza, and Yen Ying Ng

Keynote Paper

Pair Programming: An Empirical Investigation in an Agile Software
Development Environment 195
Sanjay Misra

Author Index e 201

Full Papers

®

Check for
updates

Women in Agile: The Impact of
Organizational Support for Women’s
Advancement on Teamwork Quality
and Performance in Agile Software

Development Teams

Asli Yiiksel Aksekili2®™) and Christoph Johann Stettinal-2

! Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2 Accenture—SolutionsIQ Netherlands,
Orteliuslaan 1000, 3528 BD Utrecht, The Netherlands
yukselaksekili@gmail.com

Abstract. In this research we investigate how organizational support
for women’s advancement and gender diversity as a headcount is related
to teamwork quality and team performance based upon Hoegl and
Gemuenden’s teamwork quality model (TWQ). Using an online survey
we obtained data from 77 professionals working in agile software devel-
opment teams. The results show that organizational support for women’s
advancement has a positive impact on all TWQ dimensions, while gen-
der diversity expressed as an equal headcount number has only a posi-
tive impact on coordination and balance of member contributions in our
data set. Further, in line with previous research, our data shows that all
dimensions of the TWQ model have a positive impact on team perfor-
mance in agile software development teams. Our findings indicate that
an organization’s mindset towards gender diversity has a stronger effect
on team performance than gender diversity as a headcount number only.

Keywords: Gender diversity - Gender equality - Teamwork quality -
Team performance - Agile software development

1 Introduction

Practically every one of us has had to deal with the gender equality question
in teams in one way or another. While several studies point out the impact of
gender headcount on teamwork in general as well as in software development in
particular, the support of an organization for women’s advancement is a critical
aspect of gender equality that is far less understood [1].

Understanding the impact of an organization’s mindset towards support-
ing women’s career advancement rather than looking only at gender headcount
number as a snapshot in time is interesting in the context of agile teams. Agile

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 3-23, 2021.
https://doi.org/10.1007/978-3-030-67084-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_1

4 A. Y. Aksekili and C. J. Stettina

frameworks put a strong emphasis on the social nature of work and the impact of
human factors on team performance, and rely heavily on self-management, com-
munication, and coordination [2—4]. Evidence suggests that gender diversity in
software teams is positive and significant predictors of productivity [5], but the
presence of women in software teams generally also reduces the amount of com-
munity smells like Organizational Silo effects (overly disconnected subgroups) or
Lone Wolves (defiant community members) [6]. These effects are interesting for
the long-term performance of agile teams.

In this paper, we examine the impact of gender diversity as a headcount and
the organizational support for women’s advancement on the teamwork quali-
ties of agile software development teams. Hoegl and Gemuenden’s [7] teamwork
quality and performance model provides relevant variables for the purpose of this
study and with its suitability to agile software development teams [8]. Based on
responses of 77 agile software development professionals, our findings suggest
that (1) gender diversity has a significant impact on the coordination and bal-
ance of member contributions in agile teams, and (2) organizational support for
women’s advancement has a significant effect on all variables.

In the remainder of the paper, we review the related work, explain the vari-
ables of the selected model in detail and the hypotheses on the conceptual model,
outline the methodology and data collection, and demonstrate the descriptive
statistics and the statistical analysis of the results. Finally, we discuss the results
and give final comments on the direction of research.

2 Related Work

In this section, we discuss the social nature of agile teams, provide an overview
of previous research on women’s skills in relation to software development and
agile methodologies, and elaborate the research gap.

2.1 Gender Diversity in Software Teams

The relation of women to studies and to work in general as well as to agile
software development in particular has been studied by numerous researchers [9—
15]. Various aspects such as differences in the work and leadership styles of men
and women [12] or the impact of gender diversity on the ongoing project results
have been analyzed qualitatively and quantitatively.

While many organizations introduce gender equality programs including tar-
gets for a gender balanced workforce (e.g. a workforce that is equally 50 percent
women and 50 percent men, or specific targets for senior management/leadership
roles) [16,17], available studies suggest that the effect of gender diversity on per-
formance varies significantly across countries and industries due to differences in
institutional contexts [13]. In some contexts, for example, studies indicate that
teams with a rather unbalanced gender composition outperformed teams with a
balanced (50/50) or all-male and all-female teams [14,15].

Women in Agile 5

Although some studies have concluded that men and women show more sim-
ilarities than disparities, differences have been shown by empirical research do
exist due to biological, neurological, and psychological dimensions [18]. For exam-
ple, a meta-analysis conducted by Eagly and Johnson [19] of more than 160
studies of sex-related differences found that women in the workplace engage in
a more collaborative and democratic and less commanding and directive style
than men do. This tendency does, however, decline in highly male-dominated
environments. Beranek et al. [20] found that in software development teams, a
female management style centered on the communication and creation of team
interactions, more often assuming a team-building and maintenance role than
males in the same positions.

Agile methodologies require software development teams to possess an
advanced level of teamwork qualities to perform better, in addition to an aptitude
in testing, short releases, customer satisfaction, and a sustainable work-pace [21].
Considering that recent research studies defined women’s style of management
as typically collaborative and communicative, agile software development can
therefore benefit from the gender diversity in this respect. A study conducted by
the Israel Institute of Technology [22] showed how the agile approach towards
software development creates an environment in which women and men com-
municate similarly and therefore support gender diversity. Many organizations
relying on virtual collaboration apply agile methods [23].

Weilemann and Brune [24] investigated the behavior of female Scrum Masters
with an exploratory qualitative study of a student’s software project. They found
that female Scrum Masters understood the real needs of the team members,
respected them, and made accurate judgments while including everyone in the
decision-making process.

2.2 Organizational Support for Women’s Advancement

Involving more women does not automatically generate a better team; the exper-
tise of its members must of course be considered. But if females see that they
are rewarded for what they do, they are more likely to find the incentive to align
their expertise with their role responsibilities.

According to Ruderman and Ohlott [25], organizational environments are
themselves gendered, adjusting themselves to accommodate and develop their
male members, while females’ contribution, performance, and success are mea-
sured and evaluated differently [18]. This trend continues despite the preponder-
ance of studies suggesting that the most successful organizations are the ones
that value the contributions made by females and provide development opportu-
nities for their talents [26]. Moreover, Jawahar and Hemmasi [1] introduced an
empirical work with their study among members of US-based national women’s
associations on the impact on turnover intentions of the perceived organizational
support for women’s advancement. In this study, based on the social exchange
theory of Blau [27], they claimed that the organizations might be sacrificing
their female talents by failing to support career advancements. According to
this theory, the relationship with the organization is of great significance for the

6 A. Y. Aksekili and C. J. Stettina

motivation of the employee. Jawahar and Hemmasi found that if women do not
perceive the support of the organization, they might be less likely to remain with
it. In addition, they observed a positive and significant relationship between the
organization’s support for women’s advancement and women’s job satisfaction
and employer satisfaction respectively.

Previous studies had underlined the absence of available career paths drawn
for females in organizations [10]. To attract and retain female professionals, e.g.
organizations must support diversity in their promotion policies. Thus, their
suggestion was that software development teams should be built with considera-
tion for gender roles. Moreover, they underlined that in general, the companies’
understanding of gender diversity is to hire more women IT professionals without
paying attention to specific gender roles.

2.3 Gaps in the Literature and Research Objectives

Gender equality in organizations has been a commonly addressed topic in com-
panies’ agendas in the past few decades and every organization’s approach to
this issue has differed. However, the general focus has been on closing the head-
count gap, which is the most obvious change to implement after several years of
male domination. Razavian and Lago [10] placed an emphasis on the less visible
yet more harmful aspects of gender inequality, which perhaps can also be defined
as the next step in the issue. Studies indicate that inequality also stems from
organizations’ failure to support women’s advancement that in turn leads to an
unwillingness to perform to their best, job and employer dissatisfaction [1] and
ultimately to a loss of talent. This is a disadvantage for the organization itself,
but is a direct result of the prevailing culture of the organization itself.

Despite a few studies exploring the impact of gender on agile software devel-
opment teams, published works on this relationship is limited. Hence, we pose
the following two research questions: (1) Are gender diversity as a headcount and
the organizational support for women’s advancement related to communication,
coordination, balance of member contributions, mutual support, effort, cohesion,
and agility in agile software development teams? (2) How are these teamwork
qualities individually related to the team’s performance in such environments?

3 Conceptual Model

In this section, we propose our conceptual model associated with our research
questions and then describe the selected variables used with its operationaliza-
tion based on previous studies. For each variable, we first define it and explain its
relation with both agile software development and women’s capabilities before
putting forward the hypotheses.

This study proposes a research model in combination with Hoegl and
Gemuenden’s [7] team performance model to investigate both the impact of gen-
der diversity as a headcount and the organization’s support for the advancement
of women individually on teamwork quality variables and team agility which

Women in Agile 7

constituted the Phase I of the study. In Phase II, the impact of these teamwork
quality and agility variables on the team performance is also examined. In total,
21 hypotheses were tested. Figure 1 presents a visual representation of the model.

Gender Diversity as a Headcount. Does gender diversity matter for team
process? While this question has been studied previously (cf. [5,28,29]), the
common finding was that the social orientation of women diminishes team
conflicts by reducing egocentric listening and allowing for a higher quality of
teamwork [14] with equal participation of men and women [30-32]. Thus, the
socio-emotional behavior and non-aggressive strategies associated with women
in teams can lead to an improved teamwork and agility as the gender headcount
approaches equal numbers in agile software development teams. We test this
impact of gender diversity in this study.

Organizational Support for Women’s Advancement. Jawahar and Hem-
masi [1] described perceived organizational support as the degree to which
employees perceive that the organization values their work, respects them and
is concerned for their well being. They studied its impact in terms of women’s
advancement on the females’ intentions to leave the organization. They found
a negative relationship and observed that an organization’s support had a posi-
tive impact on the women’s degree of job and employer satisfaction. Since several
earlier studies had found positive correlation between performance and job satis-
faction [33], it seems reasonable to claim a similar relationship for the teamwork
qualities of agile teams, and organizations’ support for women’s advancement.

Communication. Communication has been discussed as a factor of teams’
project success within several studies [34,35] as well as in agile software develop-
ment [36,37]. In 2015, Razavian and Lago’s [10] study revealed that in software
architecture teams, the quality of communication is seen as a result of the femi-
nine expertise of eliciting the real needs of the team and questioning the problems
and constraints. Therefore, we expect both gender diversity as a headcount and
the organization’s support for women’s advancement to have a positive impact
on the quality of communication in agile teams. Hypothesis 1: Gender diversity
as a headcount has a positive impact on the quality of communication. Hypoth-
esis 2: Organizational support for women’s advancement is positively related to
the quality of communication.

Coordination. Coordination, one important component of the quality of team-
work, can be defined as a common understanding of the interrelatedness and
current status of members’ contributions within teams [7]. In agile teams, tasks
are often selected and delegated when planning a new iteration which are then
assigned to members who are expected to execute them in coordination with
each other [8]. In 2015, research by Weilemann and Brune [24] showed that
when females are assigned to Scrum master roles within software development

8 A. Y. Aksekili and C. J. Stettina

teams, they demonstrate superior coordinating skills than male Scrum mas-
ters. Hence, by assuming that females are capable of improving the coordination
within teams we argued that agile teams’ coordination skills can be positively
affected by gender diversity as a headcount and the organization’s support for
women’s advancement can also have a positive impact on coordination. Hypoth-
esis 3: Gender diversity as a headcount has a positive impact on the quality of
coordination. Hypothesis 4: Organizational support for women’s advancement is
positively related with the quality of a team’s coordination.

Balance of Member Contributions. It is an advantage for teams to know
what task-related knowledge and experience are possessed by members to con-
tribute to the decision-making process [38]. For agile software development teams
with members who have different expertise (core development, system architec-
ture, testing, etc.), balanced contribution throughout project works is critical [8].
The work of Rogelberg and Rumery [14] found that gender diverse teams have
a superior quality of decision-making especially with the contribution of socio-
emotional behavior of females. Therefore, for this study, the expectation is that
agile teams have a better balance of member contributions as gender diversity as
a headcount increases and also as organizations’ support for the advancement of
women increases. Hypothesis 5: Gender diversity as a headcount has a positive
impact on the balance of member contributions. Hypothesis 6: Organizational
support for women’s advancement is positively related to the balance of member
contributions.

Mutual Support. The intensive collaboration of individuals in agile teams is
dependent on cooperation rather than competition. Tjosvold [39] argued that for
interdependent tasks, mutual support is very important for productivity. Thus,
displaying mutual respect, granting assistance when needed, and further devel-
oping the ideas of other members through discussion rather than trying to outdo
each other should be expected for a high-level team performance. The study of
Eagly and Johannesen-Schmidt [12] argued that the behavior of females is more
interpersonally oriented and democratic while in contrast, the behavior of males
may be more autocratic and competitive. Thus, the equal presence of females
can increase the mutual support in agile teams. Moreover, we also argue that as
an organizations’ support increases for the advancement of women, the mutual
support in an agile team can increase. Hypothesis 7: Gender diversity as a head-
count has a positive impact on mutual support within the team. Hypothesis 8:
Organizational support for women’s advancement is positively related to mutual
support within the team.

Effort. Knowing that all team members are doing their best to support the
tasks of the team is an aspect of teamwork quality [38]. Sharing the workload
and prioritizing the team’s work over other obligations are indicators of team
members’ commitments to common tasks. Within an organization where the

Women in Agile 9

employees perceive that everyone is being equally supported in their advance-
ment, it is reasonable to expect a more open interaction and shared commitment
that can create the conditions for a mutually supportive effort. Moreover, pre-
vious research indicates that teams, with equal participation and performance
of males and females, lead to the best outcome. Therefore, we expect gender
diversity to have a positive impact on effort in agile teams. Hypothesis 9: Gen-
der diversity as a headcount has a positive impact on team effort. Hypothesis 10:
Organizational support for women’s advancement is positively related to team
effort.

Cohesion. Mudrack [40] defined team cohesion as a dynamic process that
involves the tendency of the group to stick together and remain united towards
common goals and objectives. It is also referred to by Cartwright [35] as the
degree to which team members desire to stay with the team. Within an agile
team context, constant feedback mechanism is one of the factors that contributes
to team awareness and commitment to the team goal which consequently leads
to a cohesive team. Previous research suggests that females are more socially ori-
ented in teams [41]. An enhanced level of interpersonal attraction among team
members, and therefore a more cohesive environment can be expected when a
gender diverse team is present. Moreover, considering the negative impact of
organizational support for women’s advancement on intentions of females to
leave the organization [1] and also its positive impact on job and employer sat-
isfaction, it is reasonable to expect its positive impact on cohesiveness in agile
teams. Hypothesis 11: Gender diversity as a headcount has a positive impact on
cohesion within the team. Hypothesis 12: Organizational support for women’s
advancement is positively related to cohesion within the team.

Team Agility. Team agility can be defined as the aptitude of a team to respond
to rapidly changing business conditions and achieve successful exploration of
competitive bases in a timely manner (e.g. speed, flexibility) [42] and empow-
erment is especially important for team agility [43]. Within a team context,
members with stronger empowerment can become cognitively more flexible and
more likely to respond to urgent issues with concrete and creative solutions,
hence contribute into the team agility [44]. Based on these considerations, pro-
viding an equal work environment in terms of equal hiring and equal support
for advancement, the agility of teams can be significantly higher. Hypothesis 13:
Gender diversity as a headcount has a positive impact on team agility. Hypothe-
sis 14: Organizational support for women’s advancement is positively related to
team agility.

Team Performance. Hoegl and Gemuenden [7] defined team performance as
a team’s ability to meet its established quality, cost, and time objectives and
showed the positive impact of the quality of teamwork on it. In their 2016 study,
Lindsjern et al. [8] adapted the same model for agile teams and observed a

10 A.Y. Aksekili and C. J. Stettina

similar impact of teamwork quality on performance. Hence, they reported that
the model scales are suitable for both traditional and agile software development.
In this study, we examine the impact of each teamwork quality subconstructs
and the team agility on a team’s performance and expect positive relationships.
Hypothesis 15, 16, 17, 18, 19, 20, 21: The quality of communication (H15),
coordination (H16), balance of member contributions (HI7), mutual support
(H18), effort (H19), cohesion (H20), and team agility (H21) are positively related
to team performance.

4 Method

The conceptual model is tested with survey data collected from professionals
who are working in agile software development teams. The reason for pursuing
this methodology is that the surveys are reliable tools to collect real-world data
and easy to execute. No limitation is set in terms of gender, years of experi-
ence, geography, or company. The online tool Qualtrics was used to write and
distribute the survey through an anonymous link.

Participants. The target respondents of the survey were the practitioners work-
ing in agile software development teams with roles such as Software Developer,
Scrum Master, Product Owner, etc. In total, 164 responses were received of
which 77 were completed and 87 were incomplete. Among these 77 complete
surveys, 33 respondents preferred to state their organization’s name. Those 33
respondents named 17 different companies with the majority coming from the
following sectors: Technology (57%), Consulting (24%), and Financial Services
(12%). Five respondents preferred not to answer the demographics questions but
since they had completed the first section, we included their data. Key charac-
teristics of the participant data is shown on Table 1.

Table 1. Participant demographics

Roles N | Gender (%) Experience (Mean, in years)
M F Other | Work | Agile methods

Business analyst 17130% |70% | 0% 4 2

Scrum master 16 125% |69% |6% 15 3

Developer 14/ 71% 29% | 0% 4 2

Product owner/product manager |7 |29% |71% |0% 16 3

Tester/QA 6 |33% |67% |0% 7 3

Agile coach 6 50% |50% |0% 20 7

Project manager 2 |50% [50% |0% 8 4

Data scientist 2 |50% [50% |0% 2 2

DevOps lead/architect 1 [100% 0% |0% 6 5

Junior technician 1 [100% 0% |0% 2 1

N/A 5 [N/A |N/A|N/A |[N/A [N/A

All 77,40% |53% 6% 9 3

Women in Agile 11

Among the participants, there were five respondents who didn’t report their
personal information (e.g. role, gender, experience). However, we included their
answers as they were complete otherwise.

Data Collection. All respondents received an eight-page online survey with an
anonymous link distributed through social media posts and emails. The average
time to complete the survey was about 8-10 min.

The entry page of the survey contained an introduction to the focus of the
research, the target audience, duration, a confidentiality statement, and con-
tact information. The first section included the research measures with several
items. The second section of the survey collected demographic information. This
included gender, organization name, total work experience and experience with
agile practices in years, percentage of female participation in their teams and
job title.

Measures. Existing validated survey items from literature were used to measure
the selected variables. All items for the selected variables were measured on a
five-point Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree).
While many research instruments are available to assess teamwork quality in
agile teams (e.g. [4]), we applied the model of Hoegl and Gemuenden [7] due to
its wide application, validity and inclusion of team performance measures.

Gender Diversity as a Headcount: We measured the gender diversity as a head-
count using the Blau Index [27] which was defined as (1 — (m? + f2)), where m
denotes the fraction of males and f denotes the fraction of female team members.
The Blau Index is a well-established diversity measure for categorical variables.
However, in this study, we consider the perfect diversity as 50%. Thus, we re-
organized this formula by dividing it by 0,5 to obtain the largest index 1 for 50%
gender participation.

Organizational Support for Women’s Advancement: Jawahar and Hemmasi [1]
developed an instrument to measure the perceptions of employees for organiza-
tional support for women’s advancement with 12 items. Three of the items were
found to be cross-loaded in the three-factor solution of Jawahar and Hemmasi [1]
and those items were eliminated in the hypothesis testing. Hence, the nine-item
version of the scale was adapted for this study.

Communication: The quality of communication was measured by five items,
based on Hoegl and Gemuenden [7]. Specifically, we adapted the Liang et al. [45]
version for this study, which is a shorter and consolidated version of the scale for
the ease of the respondents. Questions included statements about the frequency
of conversations, spontaneity of conversations, and the perceived efficiency of
communication between team members.

Coordination: Team-level coordination was measured by three items, adapted
from Hoegl and Gemuenden [7]. Participants were asked about their perceptions

12 A. Y. Aksekili and C. J. Stettina

for their team’s capabilities to develop and agree upon a common task-related
goal structure that has sufficiently clear sub-goals for each team member.

Balance of Member Contributions: The three-item measure was adapted from
the work of Hoegl and Gemuenden [7] to understand the contribution of the
task-relevant knowledge and experience of all members to the decision-making
processes of the team.

Mutual Support: The quality of mutual support was measured by five items also
adapted from Hoegl and Gemuenden [7]. Two of the items from the original
scale were removed in order to increase the internal consistency and avoid the
repetition of questions with similar meanings.

Effort: It is important that interaction between members minimizes social loafing
and instead promotes a shared commitment among members to the team and
its work. To measure the quality of the effort at a team level, the respondents
answered three items adapted from Hoegl and Gemuenden [7]. One of the items
from the original scale, that is “the team put(s) much effort into the teamwork”
was removed due to its similarity with the first item, “Every team member fully
pushes the teamwork.”

Cohesion: The team-level quality of cohesion is measured with items adapted
from the work of Hoegl and Gemuenden [7]. The original scale included ten
items. However, to reduce the number of items to achieve a more aggregated
scale, two of three similar items were dropped.

Team Agility: To measure the flexible capability of responding to unpredicted
environmental changes in a timely manner, Liu et al.’s [43] measure with eight
items were adapted for this study. Participants were asked about their team’s
reflexes in adapting to new skills and answering to changes in customer needs
and organizational conditions. However, after discussion with participants, we
observed that two of the original items were perceived differently in their mean-
ings. Therefore, we eliminated them and proceeded with the six-items.

Team Performance: Hoegl and Gemuenden [7] described team performance in
terms of effectiveness and efficiency. Effectiveness refers to the degree to which
the team meets the expectations regarding quality of the outcome. In case of
software development projects, effective performance is regularly attributed to
predefined qualitative properties of the product to be developed, e.g. function-
ality, robustness, reliability, performance, etc. On the other hand, the team’s
efficiency is assessed in terms of adherence to schedules and budgets. In order
to assess the team-level performance with the self-assessment, we adapted Hoegl
and Gemuenden’s [7] scale which included items.

Data Analysis. Before starting the analyses, we did preparatory cleaning of
the data and several pre-processing analyses to show the descriptive statistics
of the investigated variables and the correlations between them (Table 2). After
finishing this organization of the data, we imported the Excel file into Stata

Women in Agile 13

Table 2. Correlations between investigated variables (*p < 0.05)

Variable 1 2 3 4 5 6 7 8 9 10 |Alpha
1 |Gender diversity as a 1,00 N/A
headcount
2 |Organizational support |0,26*|1,00 0,88
for women’s
advancement
3 |Communication 0,14 |0,33* /1,00 0,90
4 |Coordination 0,29%0,37*|0,74*|1,00 0,85
5 |Balance of member 0,41*/0,43*/0,52*/0,67*|1,00 0,58
contributions
6 |Mutual support 0,25 0,64*0,63*|0,63*|0,74* 1,00 0,85
7 |Effort 0,20 0,48*|0,40*|0,53*0,62*|0,65*|1,00 0,79
8 |Cohesion 0,27 |0,64*/0,57*/0,55%/0,77*/0,80* 0,71*|1,00 0,91
9 |Team agility 0,33 |0,63*/0,61*/0,58*/0,69*|0,76* 0,60*0,78%* 1,00 0,91
10| Team performance 0,23 |0,63*/0,54%0,60*0,74*0,79*0,65*|0,79* 0,84*|1,00/0,94

software where we conducted all the analyses for this research. Tables3 and 4
show the detailed statistics for the ten variables and the additional three demo-
graphic variables included as control variables, years of working experience, years
of working with agile methodologies and gender. Each variable is represented as
one-factor solution of the individual items that comprise the variable. The fac-
tor analysis of the items is further discussed in the next section. Because of the
standardized factors, the calculated means of the variables were so small, so we
approximated them to zero.

Cronbach’s alpha coefficients are also reported in Table4. Each coefficient
was calculated by including the measurement items of the respective variable.
Nunnally and Bernstein [46] consider a Cronbach’s alpha greater than 0.7 as
satisfactory. All variables were thus satisfactory, except balance of member con-
tribution which had an alpha value of 0.58. This is the same Cronbach’s alpha
value for the balance of member contributions reported in the Lindsjrn et al.’s [§]
study.

Reliance on self-reported data can create concern about common source
bias [47]. Doty and Glick [48] reported that the bias is typically not large enough
to affect theoretical interpretations of substantive relationships. Nonetheless,
Harman’s one-factor test [49] was used to assess the extent to which intercor-
relations among the variables might be an artefact of common source bias. The
test requires all items to be entered into a factor analysis. The basic assump-
tion of the technique is that if a substantial amount of common source bias is
present, either a single factor emerges from the factor analysis or one general
factor accounts for the majority of the variance [47]. Accordingly, all 54 items
were factor analyzed. The analysis resulted in a nine-factor solution as evidenced
by the Scree test. Hence, no general factor emerged from the analysis. The result
of the test indicated that common source bias is not a serious threat. This inter-
pretation is consistent with the conclusion of [50] in which the authors reported
the bias as existing only at low and usually inconsequential levels.

14 A.Y. Aksekili and C. J. Stettina

5 Results

In this study, cross-sectional regression analyses were conducted. However, first
we predicted the scores of the variables using factor analysis for each participant.
Furthermore, in Phase I and Phase II of the conceptual model, the hypotheses
were tested with multivariate regression analysis for each proposed hypothesis.
In this chapter, the prediction of variables and the results of the regression tests
are discussed.

5.1 Factor Analysis

Prior to testing the conceptual model, factor analysis was conducted to predict
the variables measured with multi-item scales. The purpose of the factor analysis
is to identify the lowest possible number of constructs needed to reproduce the
original data [51]. The desired result for this study, therefore, was that all items
measuring the same variable are scored together to give the best estimate of
each participant’s score on that variable. All items of each of the nine variables
was factor-analyzed and following the Kaiser criterion, the eigenvalues above 1.0
and the scree plot suggested a one-factor unrotated solution for each variable.
Table 3 provides the eigenvalues of the one-factor solutions and the percentage
of variance explained.

Table 3. One - factor solution of the variables, eigenvalues and percentage of variables
explained

One-factor solution
Variable Eigenvalue | % of variance explained
Organizational support for women’s advancement | 4,66 51,8%
Communication 3,19 63,8%
Coordination 1,86 61,9%
Balance of member contributions 1,06 35,5%
Mutual support 2,64 52,9%
Effort 1,67 55,6%
Cohesion 4,18 59,8%
Team agility 3,85 64,1%
Team performance 6,63 60,3%

5.2 Regression Results

To test the hypotheses in Phase I, regressions were conducted including the gen-
der as control variable. According to results reported in Table4, while gender
diversity as a headcount has no significant impact on communication, mutual

Women in Agile 15

Table 4. Summary of regression analysis for each dependent variable

Dependent variables Gender diversity as a Organizational support R-squared
headcount for women’s advancement
B SE | p-value B SE | p-value
Communication -0,23/0,64 /0,57 0,29/0,130,03 0,13
Coordination 0,10/0,56 | 0,04 0,29/0,11|0,01 0,19
Balance of member contributions| 1,18|0,44|0,00 0,37/0,09 | 0,00 0,36
Mutual support -0,40/0,47 0,36 0,61/0,09|0,00 0,46
Effort -0,23/0,53 /0,07 0,48/0,11 0,00 0,28
Cohesion 0,49/0,52 /0,21 0,600,10| 0,00 0,42
Team agility 0,84/0,50 /0,10 0,600,10 0,00 0,45

support, effort, cohesion and team agility, it has positive and significant impact
on coordination and balance of member contributions at 5% level and 1% level
respectively. Hence, only H2 and H3 were supported among the hypotheses.
Interestingly, beta values of gender diversity as a headcount for communication,
mutual support, and effort were negative. However, based on their p-values, we
can say that there is no significant evidence to support a negative impact of
gender diversity as a headcount on these variables. On the other hand, organi-
zational support for women’s advancement has a significant positive impact on
the balance of member contributions, mutual support, effort, cohesion, and team
agility at 1% level and a positive and significant impact on communication and
coordination at 5% level. Thus, all hypotheses regarding the organizational sup-
port for women’s advancement were supported. Furthermore, on each regression,
the control variable gender had insignificant effects.

In the second phase of the model, we tested if communication, coordination,
balance of member contributions, mutual support, effort, cohesion, and team
agility had a significant impact on team performance by adding the total years
of experience and the years of experience with agile as control variables. As we
discussed, the first six variables were defined as teamwork quality sub-constructs
in Hoegl and Gemuenden’s study [7]. However, in this study, we are concerned
with their individual effects since they had high correlation coefficients among
each other as demonstrated in Table2. In each regression, we added the total
years of experience and the years of experience with agile as control variables.

In each regression, the teamwork quality variables and the team agility had
a significantly positive impact on team performance at 1% level, thus supported
the all hypotheses in Phase II. Moreover, except in the regression with team
agility, the control variable, years of experience with agile methodologies had a
positive and significant impact on all regressions at 5% level, but the total years
of experience had no significant impact in all regressions.

6 Discussion

Our results, as summarized in Fig. 1, indicate that the organization’s support
for women’s advancement has a stronger impact on teamwork quality and even-
tually team performance, than gender diversity as a headcount only. While our

16 A. Y. Aksekili and C. J. Stettina

results imply that team-level coordination and balance of member contribu-
tions is affected by gender diversity at (p < 0.05), organizational support for
women’s advancement has a positive correlation with all of the TW(Q dimensions
at p < 0.01.

This indicates that while organizational policies to support career growth of
women have a positive impact on teamwork quality and indirectly on perfor-
mance through TWQs, the impact of gender composition on team performance
is much more contextual. This is in line with previous studies that concluded
that an equal team composition of males and females does not automatically lead
to better performance. Rogelberg and Rumery [14] studied five gender composi-
tions (all-male, lone-female, balanced-gender, lone-male, and all-female teams),
and found that for a male-oriented task (winter survival exercise), lone-female
teams outperformed all other gender compositions in decision quality, time on
task and cohesion. Experimental studies in business settings indicate groups of
two men and one women were most successful [15]. Turban et al. [13] found that
the effect of gender diversity on performance varies significantly across countries
and industries due to differences in institutional contexts.

In the following subsections we will further discuss our findings in line with
the existing literature.

6.1 Organizational Support for Women’s Advancements vs. Gender
Diversity as a Head Count

While perceived organizational support (POS) for women’s advancement has
been previously established as a strong predictor of job satisfaction and turnover
intentions [1], with previous studies pointing to a positive impact of POS [1],
or the effect of human resource management practices promoting equal career
opportunities and work-family integration [52] on the turnover intentions of
female managers (intentions to leave an organization), our findings indicate its
impact on team-level performance in agile teams.

One interpretation of this finding could be that the organizational support
for women’s advancement affects the cultural dimensions of an organization and
creates a longer lasting effect rather than a practical measure or even coincidental
fact of having a gender diverse team, as perceived by our participants. Previous
research as well as agile practitioner frameworks, reiterate the importance of
an organizational culture being compatible with agile methods for those to be
effective in context [53]. In that sense our findings could be understood that the
support for women’s advancement being in line with the broader agile mindset,
which might make it interesting to look at further effects within the organization
beyond teamwork quality and performance.

These results are quite interesting and in a way show the nature of agile
methodologies - the mindset of agile enables the members of software develop-
ment teams to explicitly embrace teamwork qualities just as much as the product
development [3]. Hence, for the teamwork qualities of the unsupported hypothe-
ses, an equal gender involvement might not be necessary as it is an integrated
part of the agile teamwork.

Women in Agile 17

Phase | Phase Il

A |
[\ \

Balance of Member

Contributions

Gender Diversity
as a Headcount

Team Performance

Organizational
Support for Women’s
Advancement

Supported (p<0,01) ~ = =——————1 Supported (p<0,05) ~ rreeeseessees.. Unsupported

Fig. 1. Resulting research model

There can be several reasons for not observing a significant relationship
between gender diversity and communication. As we have already mentioned,
Razavian and Lago’s [10] study suggested that a strong level of communica-
tion could be attributed to feminine expertise in software development teams
which would mean assigning holders of feminine expertise to activities to which
they could really contribute. In this study, we defined the perfect diversity as
50% female representation. Therefore, these results may suggest that to promote
communication through feminine communication skills, reaching an equal gender
head count might not be necessary to empower communication. A similar result
was also reached by the study of Catolino et al. [6] in which they found that
Organizational Silo, defined as a common community smell in software devel-
opment teams as a result of ineffective communication, was not significantly
reduced with equal gender participation (p < 0.1).

We observed that both gender diversity and organizational support for
women’s advancement have a significant relationship to coordination. Combin-
ing this observation with Weileman and Brune’s [24] suggestion that female
leadership provides an advantage for enhanced team coordination, it can be
said that coordinating skills of females becomes more effective when they are
involved in agile teams with higher equal representation. Moreover, being in an
organizational culture where equal opportunities are provided, a high quality of
coordination in agile teams can be expected.

The results of gender diversity for the team-level balance of member contri-
butions is consistent with the argument made by Weilemann and Brune [24],
which discussed female leadership as being more democratic and encouraging a

18 A. Y. Aksekili and C. J. Stettina

more shared decision-making environment. In addition, in an organization where
the advancement of female employees is supported, a better balance of member
contributions can be expected.

We developed H4 based on the findings of Eagly and Johannessen-
Schmidth [12] on the superior empathetic behavior of females. However, con-
sidering the results, it can be suggested that for women to promote mutual
support in agile teams, equal participation of men and women is not necessary
but the organizational support for women’s advancement is important.

The contradictory findings of gender diversity in relation to effort with the
proposed hypothesis can be linked to the conclusion that an equal gender com-
position is not necessary for team members to put their full effort into pushing
projects in agile teams. However, it is clear that perceiving the inclusive atti-
tude of organizations who support women’s advancement may be necessary to
generate sufficient effort in agile teams.

In accordance with the results, to improve cohesion in agile teams, increasing
gender diversity by means of headcount is not important. Our expectation was
that social orientation of females would be more influential and thus enhance
the interpersonal cohesion among agile team members; however, we concluded
with a similar result to the findings of Rogelberg and Rumery [14]. In their study
of interpersonal cohesion conducted among psychology students, no significant
differences were observed between gender-diverse and lone female/male teams.

Team agility is not affected by an increase in gender diversity but it can be
higher in organizations where females’ career development is supported within
the organization. As a consequence, these findings partially confirm the evidence
in the existing literature [24] that agile development may particularly benefit
from an organizational culture that promotes equality.

6.2 Linking Teamwork Quality to Team Performance

In phase IT of the study, we tested the impact of teamwork quality variables and
the team agility variable on individual team performance (see Fig. 1), thus, com-
paring our data to the previously established results of Hoegl and Gemuenden [7]
and Lindsjrn et al. [8] applying the Teamwork Quality model.

Each variable has a significantly positive impact on team performance in agile
software development teams. In the studies by Hoegl and Gemuenden [7] and
Lindsjgrn et al. [8], these individual variables were used to construct teamwork
quality as a higher-order construct and its significant impact on team perfor-
mance at 1% level was demonstrated, leading us to expect significant relations
between its sub-constructs and team performance. Moreover, in the study by
Liu et al. [43], the significant impact of team agility on team performance was
also reported at 1% level.

Thus, to achieve high-quality teamwork and high performance, organizations
can intervene by increasing diverse gender representation and enhancing sup-
port for career development by adopting policies, procedures and programs to
engender support within the agile teams and the organization as a whole. This
might require a mindset shift not only at the team level but in all levels of the

Women in Agile 19

organization. Support for the advancement of women could be improved by over-
coming barriers (e.g. good old-boy networks, subconscious bias), treating men
and women equally, providing mentoring relationships, increasing women’s access
to important networks and monitoring promotion decisions. Such adjustments
might also influence male employees’ attitudes towards the organization; our
survey found that male respondents were aware of support mechanisms within
the organization and able to pass accurate judgment on it. From the results,
it seems that organizations’ support for women’s advancement can be a strong
determinant of both teamwork quality and team agility variables. Moreover, as
we disucssed in relation to Table 2, organizations’ support for women’s advance-
ment has a greater correlation and significant correlation with team performance
(0,63) while gender diversity has an insignificant and thus weak correlation (0,23)
with it.

6.3 Potential Limitations and Directions for Future Research

Potential limitations of this research should be recognized to pave the way for
any future studies. First of all, due to the small-sized data set containing the
responses of 77 professionals, conclusions have had to be carefully drawn. We
have therefore, paid particular attention to the quality of our collected data by
encouraging participants to give realistic answers and emphasizing the anony-
mous treatment of data to establish a reasonable level of trust. However, given
the limited number of answers, we were unable to cluster the sample based on
country, title, or sector which could have provided detailed results for compari-
son. Thus, for future research, we would advise that the data set be expanded to
increase the generalizability of the findings and to decrease the risk of selective
effect bias.

Another limitation could be that this study is cross-sectional, and this may
limit the ability to achieve causal inferences from the data. Longitudinal studies
are needed if gender diversity or organizational support for women’s advance-
ment changes over time, and to establish whether they are of significant influ-
ence on teamwork quality variables and agility. In addition, these could provide
insights into differences between teams that are working with agile methodolo-
gies over a longer period of time and those that have just been established. It
would be interesting to examine whether the teamwork qualities, agility, and
performance change over time with different projects.

6.4 Conclusion

In this paper we have presented the results of our quantitative study to explore
the impact of gender equality on agile software development teams. In particular,
by incorporating the two aspects of gender equality in the teamwork quality and
performance model of Hoegl and Gemuenden [7] we have analyzed the impact
of gender diversity and organizations support for the advancement of women on
teamwork quality and degree of agility, and further tested the role of teamwork
quality and agility on team performance.

20 A. Y. Aksekili and C. J. Stettina

Our study suggests that gender equality and its impact on team performance
is not strictly related to a 50/50 gender composition of teams, but that organiza-
tional policies that support the advancement of women, and the perceptions of
these policies do have an impact on teamwork quality (TWQ) and team perfor-
mance. Specifically, the findings imply that policies and organizational structures
providing equal career opportunities and equal respect have an impact on team-
work quality and eventually team performance. By supporting the advancement
of female employees, organizations may improve the quality of communication,
coordination, balance of member contributions, mutual support, effort, cohesion,
and agility.

Such efforts may need to be coordinated with efforts to overcome the existing
barriers standing in the way of women’s equal participation in agile teams. Of
course, this investigation is still strongly limited due to the sample size, but we
consider these concerns worth studying further. To the best of our knowledge
this is the first work that provides empirical evidence that teamwork quality and
agility of agile software development teams are affected by both gender diversity
and organizations’ support for women’s advancement. With this paper we hope
to encourage other researchers to build up research in this area and further
develop strategies to promote the inclusion of females.

Acknowledgments. The authors would like to thank the survey participants and
anonymous reviewers for generously contributing to this study.

References

1. Jawahar, 1., Hemmasi, P.: Perceived organizational support for women’s advance-
ment and turnover intentions. Women Manag. Rev. 21, 643-661 (2006)

2. Hoda, R., Noble, J., Marshall, S.: Organizing self-organizing teams. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, vol, 1,
pp. 285-294 (2010)

3. Whitworth, E., Biddle, R.: The social nature of agile teams. In: Agile 2007 (AGILE
2007), pp. 26-36. IEEE (2007)

4. Stettina, C.J., Heijstek, W.: Five agile factors: helping self-management to self-
reflect. In: OConnor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS,
vol. 172, pp. 84-96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22206-1_8

5. Vasilescu, B., et al.: Gender and tenure diversity in Github teams. In: Proceedings
of the 33rd annual ACM Conference on Human Factors in Computing Systems,
pp. 3789-3798 (2015)

6. Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Ferrucci, F.: Gender
diversity and women in software teams: how do they affect community smells? In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS), pp. 11-20 (2019)

7. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435-449
(2001)

https://doi.org/10.1007/978-3-642-22206-1_8
https://doi.org/10.1007/978-3-642-22206-1_8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Women in Agile 21

Lindsjgrn, Y., Sjgberg, D.I., Dingsgyr, T., Bergersen, G.R., Dyba, T.: Teamwork
quality and project success in software development: a survey of agile development
teams. J. Syst. Softw. 122, 274-286 (2016)

Bear, J.B., Woolley, A.W.: The role of gender in team collaboration and perfor-
mance. Interdisc. Sci. Rev. 36(2), 146-153 (2011)

Razavian, M., Lago, P.: Feminine expertise in architecting teams. IEEE Softw.
33(4), 64-71 (2015)

Werner, L.L., Hanks, B., McDowell, C.: Pair-programming helps female computer
science students. J. Educ. Res. Comput. (JERIC) 4(1), 4-es (2004)

Eagly, A.H., Johannesen-Schmidt, M.C.: The leadership styles of women and men.
J. Soc. Issues 57(4), 781-797 (2001)

Turban, S., Wu, D., Zhang, L..: When gender diversity makes firms more productive
(2019)

Rogelberg, S.G., Rumery, S.M.: Gender diversity, team decision quality, time on
task, and interpersonal cohesion. Small Group Res. 27(1), 79-90 (1996)
Apesteguia, J., Azmat, G., Iriberri, N.: The impact of gender composition on team
performance and decision making: evidence from the field. Manag. Sci. 58(1), 78—
93 (2012)

Accenture: Creating a culture of equality in the workplace (2020)

McKinsey: Women in the workplace 2020 (2020)

Hopkins, M.M., O’Neil, D.A., Passarelli, A., Bilimoria, D.: Women’s leadership
development strategic practices for women and organizations. Consult. Psychol. J.
Pract. Res. 60(4), 348 (2008)

Eagly, A.H., Johnson, B.T.: Gender and leadership style: a meta-analysis. Psychol.
Bull. 108(2), 233 (1990)

Beranek, G., Zuser, W., Grechenig, T.: Functional group roles in software engineer-
ing teams. In: Proceedings of the 2005 Workshop on Human and Social Factors of
Software Engineering, pp. 1-7 (2005)

Blum, L., Frieze, C., Hazzan, O., Dias, M.B.: A cultural perspective on gender
diversity in computing. Reconfiguring the firewall, pp. 109-129 (2007)

Dubinsky, Y., Hazzan, O.: A framework for teaching software development meth-
ods. Comput. Sci. Educ. 15(4), 275-296 (2005)

Katzy, B.R., Stettina, C.J., Groenewegen, L.P., de Groot, M.J.: Managing weak
ties in collaborative work. In: 2011 17th International Conference on Concurrent
Enterprising, pp. 1-9. IEEE (2011)

Weilemann, E., Brune, P.: Less distress with a scrum mistress? On the impact of
females in agile software development teams. In: Proceedings of the ASWEC 2015
24th Australasian Software Engineering Conference, pp. 3-7 (2015)

Ruderman, M.N., Ohlott, P.J.: Leading roles: what coaches of women need to know.
Leadersh. Action Publ. Center Creative Leadersh. Jossey-Bass 25(3), 3-9 (2005)
Hewlett, S.A., et al.: The athena factor: reversing the brain drain in science, engi-
neering, and technology. Harvard Bus. Rev. Res. Rep. 10094, 1-100 (2008)

Blau, P.M.: Inequality and Heterogeneity: A Primitive Theory of Social Structure,
vol. 7. Free Press, New York (1977)

Myaskovsky, L., Unikel, E., Dew, M.A.: Effects of gender diversity on performance
and interpersonal behavior in small work groups. Sex Roles 52(9-10), 645-657
(2005)

Ely, R.J., Thomas, D.A.: Cultural diversity at work: the effects of diversity per-
spectives on work group processes and outcomes. Adm. Sci. Q. 46(2), 229-273
(2001)

22

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

A. Y. Aksekili and C. J. Stettina

Carli, L.L.: Gender and social influence. J. Soc. Issues 57(4), 725-741 (2001)
Craig, J.M., Sherif, C.W.: The effectiveness of men and women in problem-solving
groups as a function of group gender composition. Sex Roles 14(7-8), 453-466
(1986)

Taps, J., Martin, P.Y.: Gender composition, attributional accounts, and women’s
influence and likability in task groups. Small Group Res. 21(4), 471-491 (1990)
Mirvis, C.: Lawer (1977) job satisfaction and job performance in bank tellers. J.
Soc. Psychol. 133(4), 564-587 (1980)

Shaw, M.E.: Group Dynamics: The Psychology of Small Group Behavior. McGraw-
Hill College, New York (1981)

Cartwright, D.: The nature of group cohesiveness. Group Dyn. Res. Theory 91,
109 (1968)

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of
agile practices on communication in software development. Empirical Softw. Eng.
13(3), 303—337 (2008)

Mackenzie, A., Monk, S.: From cards to code: how extreme programming re-
embodies programming as a collective practice. Comput. Support. Coop. Work
(CSCW) 13(1), 91-117 (2004)

Hackman, J.R.: Groups that work and those that don’t. Number E10 H123. Jossey-
Bass (1990)

Tjosvold, D.: Cooperative and competitive goal approach to conflict: accomplish-
ments and challenges. Appl. Psychol. 47(3), 285-313 (1998)

Mudrack, P.E.: Defining group cohesiveness: a legacy of confusion? Small Group
Behav. 20(1), 37-49 (1989)

Anderson, L.R., Blanchard, P.N.: Sex differences in task and social-emotional
behavior. Basic Appl. Soc. Psychol. 3(2), 109-139 (1982)

Christopher, M.: The agile supply chain: competing in volatile markets. Ind. Mark.
Manag. 29(1), 3744 (2000)

Liu, M.L., Liu, N.T., Ding, C.G., Lin, C.P.: Exploring team performance in high-
tech industries: future trends of building up teamwork. Technol. Forecast. Soc.
Change 91, 295-310 (2015)

Conrad, L.: Employee empowerment in services: a framework for analysis. Pers.
Rev. 28(3), 169-191 (1999)

Liang, T.P., Wu, J.C.H., Jiang, J.J., Klein, G.: The impact of value diversity on
information system development projects. Int. J. Project Manag. 30(6), 731-739
(2012)

Nunnally, J.C.: Psychometric Theory 3E. Tata McGraw-Hill Education, New York
(1994)

Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., Podsakoff, N.P.. Common method
biases in behavioral research: a critical review of the literature and recommended
remedies. J. Appl. Psychol. 88(5), 879 (2003)

Doty, D.H., Glick, W.H.: Common methods bias: does common methods variance
really bias results? Organ. Res. Methods 1(4), 374-406 (1998)

Podsakoff, P.M., Organ, D.W.: Self-reports in organizational research: problems
and prospects. J. Manag. 12(4), 531-544 (1986)

Keeping, L.M., Levy, P.E.: Performance appraisal reactions: measurement, model-
ing, and method bias. J. Appl. Psychol. 85(5), 708 (2000)

Gorsuch, R.L.: Exploratory factor analysis: its role in item analysis. J. Pers. Assess.
68(3), 532-560 (1997)

52.

53.

Women in Agile 23

Nie, D., Lamsa, A.M., Pucétaite, R.: Effects of responsible human resource man-
agement practices on female employees’ turnover intentions. Bus. Ethics Eur. Rev.
27(1), 29-41 (2018)

Tivari, J., livari, N.: The relationship between organizational culture and the deploy-
ment of agile methods. Inf. Softw. Technol. 53(5), 509-520 (2011)

)

Check for
updates

The State of Agile Software Development Teams
During the Covid-19 Pandemic

Krzysztof Marek! ® @, Ewelina Wiriska? ®, and Wlodzimierz Dabrowski1

I Warsaw University of Technology, 00-661 Warsaw, Poland
krzysztof .marek@pw.edu.pl
2 Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland

Abstract. The Covid-19 pandemic in 2020 forced Agile Software Development
Teams (ASDT) to rapidly transition to remote work and adapt to new business
circumstances. The focus of this research was to investigate the impact of the
Covid-19 pandemic on ASDT work and what tools and metrics are used by ASDT.
A global survey was performed with 120 answers from different software engi-
neering teams. The results of the research indicate that the work of ASDT wasn’t
significantly impacted. Most of the ASDT had experience with working in a dis-
tributed or remote environment. Therefore, most of the ASDT were able to tran-
sitioned to full remote work. Results indicate the Covid-19 pandemic didn’t have
much impact on Product Backlog and Vision. Moreover, most ASDT didn’t change
their Definition of Done and release frequency, indicating that the pace and qual-
ity of work wasn’t disturbed during the Covid-19 pandemic. The few ASDT that
changed their work organization did it together with changes to Product Backlog
and Vision. Results indicate that the prevalence of distributed teams and remote
work among ASDT helped with the transition to fully remote work during the
Covid-19 pandemic. Additionally, this article presents gathered data of popularity
of different online cooperation tools and metrics used by ASDT.

Keywords: Agile software development - SAFe - LeSS - Scrum - Kanban -
Collaboration tools - Agile metrics - Distributed teams - Remote work - Survey -
Covid-19

1 Introduction

Currently the different Agile approaches are used worldwide to develop software, with
distributed Agile teams becoming more and more common. A recent study performed
at the end of 2019 by VersionOne on “The State of Agile” [1] reports that 95% of
interviewed companies use agile development methods with 51% respondents stating

that it is used in more than half of their teams.

The study performed by Sharma et al. [2] indicates that the Scrum framework is
the most popular of all Agile frameworks and methodologies both in industrial use
and in scientific research. According to Sharma’s research Scrum is constantly gaining
popularity in the industry. Many teams have adopted the Scrum framework. This natu-
rally led to the scaling up of Scrum or other frameworks, as well as their adaptation to

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 24-39, 2021.
https://doi.org/10.1007/978-3-030-67084-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_2&domain=pdf
http://orcid.org/0000-0003-0199-4839
http://orcid.org/0000-0002-3363-2106
http://orcid.org/0000-0002-8060-1580
https://doi.org/10.1007/978-3-030-67084-9_2

The State of Agile Software Development Teams During the Covid-19 25

distributed teams. However, introducing Agile practices to a distributed team requires
overcoming multiple communication obstacles [3] and creating a transformation strategy
[4]. The initial agile frameworks like Scrum or Extreme Programing (XP) were created
for small, co-located teams. Teams small size and co-location facilitates communica-
tion, cooperation, self-organization and allows for quick reactions to rapid changes on
the market. However, as globalization progressed, distributed teams started becoming
a worldwide standard. In order to still benefit from the advantages provided by Agile
frameworks and methodologies the practices needed to be adjusted to the new character-
istic of distributed teams. Such transformations were already successful in the past [5,
6], usually Agile Software Development Teams (ASDT) were using a mixed approach
in order to facilitate communication, increase transparency and reinforce feedback loops
in distributed environment.

The core of these mixed strategies were online tools. Their introduction allowed for
maintaining communication and knowledge sharing between distributed team members
[7]. However, communication facilitation is not sufficient on its own in distributed teams.
The transparency of teams’ work is significantly reduced in distributed environment.
The initial solution was to introduce tools to visualize tasks and to track everyone’s
work [8, 9]. Such solutions worked, however they turned out to be insufficient for more
matured ASDT. These teams and organizations started to introduce different metrics [10],
customized to the individual characteristic of the team and organization. Today, due to
automatization and the use of online tools, such metrics sourced additional information
from already existing data, without impacting team members’ every-day work.

Therefore, the best results can be achieved by the use of both communication tools
and metrics, as they complement each other. By using both, the team can easily commu-
nicate, visualize current work and observe their progress, effectiveness, quality of the
product and distribution of effort. This enables the ASDT to make data driven decisions
at any time.

1.1 Problem Statement

In early 2020 the global Covid-19 pandemic started. Multiple countrywide lockdowns
and market uncertainty forced small [11] and large [12] organizations to reevaluate
their business plans. Moreover, all the software development teams were forced to start
working from home, creating an additional challenge for management and teams to
organize remote work in a very short time. This was an unprecedented situation. All
the teams, almost instantaneously had to start working remotely, making every team
distributed at least within a single country.

1.2 Objective

The work presented in this paper aims to build an initial understanding of Covid-19’s
influence on ASDT’ organization of work. The objective of this work is to determine
what metrics and tools are used by ASDT and how the Covid-19 pandemic impacted the
work organization of ASDT. The following research questions were created:

26 K. Marek et al.

e How the ASDT responded to the circumstances of the Covid-19 pandemic?
e What tools and metrics are used by ASDT?

1.3 Contribution

For the purpose of this study a total of 120 answers from different Agile software
development practitioners were examined. The respondents fulfilled different roles from
regular team members to C-level management and came from a wide spread of industries
and organization sizes. The survey consisted of questions investigating the characteristic
of the organization, the impact of Covid-19 on the teams’ work and what tools and metrics
are used.

1.4 Overview

In the second chapter an overview of related works was presented. The third chapter
describes the research design and methodology. The forth chapter presents the survey
results and was divided into three subsections. The first subsection presents the respon-
dents characteristics, the second section describes the Covid-19 pandemic impact on
ASDT, the last subsection presents the tools and metrics used by ASDT. The fifth chapter
presents the discussion of the survey results and indicates possible future work. The last
chapter contains the conclusions of the survey study.

2 Related Work

Not much research has been published describing the Covid-19 pandemic’s influence on
ASDT as the issue is new. In the history of software development there is no precedent
for such a forced, rapid, global, industrywide move to remote work. A recent survey
performed by RaiSiené et al. [13] pictures the influence of rapid introduction of remote
work, also known as telework, on Lithuanian workers in many different occupations.
However, these interesting findings don’t shed much light on the situation of ASDT and
how the tools and practices from distributed teams helped with the rapid transition to
remote work.

The possible impact of Covid-19 on Agile was discussed by Mancl et al. [14] in
his article based on a panel discussion during the XP2020 conference. Based on their
experience they emphasize the importance of carefully selected online tools facilitating
the communication and self-organization of the ASDT. The possibility of simulating
conditions similar to an in-person meeting with a whiteboard is described as critical for
the success of an Agile team. The importance of online telecommunication tools: text,
audio and visual in distributed ASDT was brought up in an article by Robinson [6]. As
described by Mancl et al. [14] proper use of tools turned out to be crucial when all teams
became distributed.

The use of metrics in software development has been a subject of research for a
long time. A few years before the Agile Manifesto was signed Schwaber [15] puts
emphasis on the importance of measurements in empirical process, the base of Scrum
framework. In this work the need for the development of metrics for empirical processes

The State of Agile Software Development Teams During the Covid-19 27

was indicated. Later Hartmann et al. [16] stressed the benefits of measuring Velocity
in Scrum projects and proposed a set of additional useful metrics. Metrics can deliver
additional information for decision making and monitoring without putting a constrain
of ASDT work, therefore Downey et al. [10] proposed a set of metrics for fast working
ASDT. Ladas in his book “Scrumban” [17] proposed to use elements of Kanban in
ASDT using Scrum as a way to support the software development process and enable
ASDT to transition to Kanban in the future. Anderson in his book [18] describes a set
of Agile metrics inspired by Toyota Production System [19] as a core of the Kanban
Method. Literature studies performed in recent years by Kupiainen et al. [20] and Kurnia
etal. [21] indicate that ASDT use different metrics in their work and measuring different
aspects of Agile software development is becoming a standard practice.

The state of Agile practices before the Covid-19 pandemic in different teams was
well described in the “State of Agile” industry survey performed by VersionOne [1].
This survey was performed between August and December 2019 and gathered 1121
responses from around the world. The resulting report allows for a better understanding
of the Agile practices in use, including the use of frameworks, tools and metrics. However
only 63% of respondents work in Software Development or IT. Therefore, it provides
an insight to all types of Agile teams, not specifically the ASDT.

3 Research Design and Methodology

For the purpose of the empiric study a survey was designed. The initial pool of questions
was created by the authors, then the first version was reviewed by 4 independent Agile
practitioners working as experts in international software development companies. The
remarks to the first version were included in the final version. The final survey, composed
of 22 questions with 18 closed-ended and 4 open-ended questions, was divided into
four parts. The first nine questions characterized the participant by asking about their
country of origin, role in their organization, level of teams’ distribution, used frameworks,
remote work pre and post the Covid-19 pandemic, as well as their organization’s size,
industry and type. The second group of questions investigated the impact of the Covid-19
pandemic on Product Backlog and Vision, changes in: stakeholders’ involvement; release
frequency and Definition of Done. The third group of questions collects information
about used metrics and reasons behind their use. It also asks if any new metrics were
introduced during the Covid-19 pandemic. The last questions ask about tools used by
the teams.

The anonymous survey was created in Google Forms and distributed through a
direct approach and social media channels including Facebook and LinkedIn researchers
professional networks, Agile software development practitioners groups and pages. The
responses were gathered from 01.09.2020 to 11.09.2020. A total of 120 answers were
submitted during this period. No partial answer was submitted, because all close-ended
questions were obligatory. During the answers inspection no obviously biased or fake
answer was detected, therefore no answer was deleted or omitted. The results were
exported from Google Forms and imported to Excel. With the use of a spreadsheet tool
the data was explored and visual figures were generated.

28 K. Marek et al.

4 Results

In this section the 120 results of the survey are presented. The first subsection presents an
overview of respondents teams. The next subsection presents the influence of Covid-19
on ASDT work. The last subsection presents tools and metrics used by ASDT.

4.1 Teams Characteristic

The first group of questions was designed to characterize the surveyed organization
and team. The first question asked about the frameworks and methodologies used in
the project. Respondents could select multiple options, with many choosing to do so.
As shown in Fig. 1 the most common framework was Scrum (108 answers, 90% of
respondents), followed by Kanban (50; 41.7%), DSDM or AgilePM (10; 8.3%), SAFe
(8; 6.7%), Nexus and LeSS (4; 3.3% each), XP (3; 2.5%) Scrum@Scale, LeanSD and
Waterfall (2; 1.7% each). There were 4 other responses (3.3 % of respondents) mentioning
self-developed frameworks. The most commonly combined frameworks were Scrum and
Kanban with 38 concurrent occurrences (31.7% of respondents). Kanban, despite being
the second most popular framework, is mostly used together with other frameworks.
Only 8 respondents used Kanban exclusively (6.7% of respondents, 16% of Kanban
practitioners). On the other hand Scrum, the most popular framework, is used on its own
by 48 respondents (40% of respondents, 44.4% of Scrum practitioners). Moreover, we
can also divide Scrum into two categories: Scaled and Nonscaled Scrum. If we count
scaled Scrum frameworks (Nexus, LeSS, SAFe, Scrum@Scale) as one it shows that 18
respondents scale Scrum (15% of respondents, 16.7% of Scrum practitioners). On the
other hand Scrum is not scaled by 90 respondents (75% of respondents, 83.3% of Scrum
practitioners).

The second question asked about the participant’s country of origin. Respondents
were from 14 different countries: Bulgaria, Canada, China, Denmark, France, Gibraltar,
Hong Kong, India, Ireland, Poland, Singapore, Spain, the United Kingdom and the United
States. Most of the respondents (85% of all results) were from Poland, the country where
the research team was based.

The third question investigated the distribution of the team. As shown in Fig. 2, the
most common continent was Europe with 94 answers (78.3% of all answers), then Asia
with 39 answers (32.5%) and North America with 38 answers (31.7%). A total of 8
respondents had team members in Australia (6.7%), 2 in South America (1.7%) and 1 in
Africa (0.8%). Off all the polled teams 21 (17.5%) were not distributed, 50 (41.7%) were
distributed within a single continent, 23 (19.2%) were distributed across two continents,
19 (15.8%) were distributed across three continents and 7 (6%) were distributed across
four or more continents as shown in Fig. 3.

The fourth and fifth question asked about remote work before and after the start of
the Covid-19 pandemic. The results have been presented in Fig. 4. Before the pandemic
exactly half of respondents were working in a mixed model, a few days remotely, a few
days onsite. Only 10 (8.3%) of the respondents were working fully remotely and 50
(41.7%) of the respondents were working fully onsite. After the start of the pandemic
no one was working fully onsite. The majority, in total 103 (85.8%) of the respondents,
was working fully remotely. Only 17 (14.2%) of the respondents were working in a

The State of Agile Software Development Teams During the Covid-19 29

Scrum (108 in total, 90%)

NonScaledScrum (90 in total, 75%)

Kanban (50 in total, 42%),

Only Scrum (48 in total, 40%)

Scrum+Kanban (38 in total, 32%)

|

ScaledScrum (18 in total, 15%)

DSDM/AgilePM (10 in total, 8%)

Only Kanban (8 in total, 7%)

SAFe (8 in total, 7%}
]

Other (4 in total, 3%)
LeSS {4 in total, 3%}
Nexus (4 in total, 3%)
XP (3 in total, 2%)
Waterfall (2 in total, 2%)

u
LeanSD (2 in total, 2%)

Scrum @ Scale (2 in total, 2%)
20 40 60 80 100 120

o

Fig. 1. Usage of different methodologies and frameworks in ASDT

Europe (94 in total, 78%)

Asia (39 in total, 32%)

North America (38 in total, 32%)

Australia (8 in total, 7%)

South America (2 in total, 2%)
Africa (1 in total, 1%)
10 20 30 40 50 60 70 80 9 100

=]

Fig. 2. Distribution of surveyed teams between different continents

mixed model, 8 of these 17 people used to work in a mixed model and 9 used to work
fully onsite before Covid-19 pandemic. Therefore, from the 60 people that used to work
in the mixed model 86.6% were able to transition into fully remote work. From the 50
people working only onsite, 82% were able to transition into full remote work, with the
remaining 18% transitioning to a mixed model. All fully remote workers stayed fully
remote.

30 K. Marek et al.

Four and more continents
(7 in total, 6%)_
,'//

Not distributed
(21 in total, 17%)

Three continents 4
(19in total, 16%)

Two continents
(23 in total, 19%)

Single continent
(50 in total, 42%)

Fig. 3. Levels of surveyed teams’ distribution

Remote (86%, 103 in total)

Onsite (42%, 50 in total)

Before Covid-19 Pandemic
During Covid-19 Pandemic

Remote (8%, 10 in total) Hybrid (14%, 17 in total)

Fig. 4. Remote and onsite work in ASDT before and during the Covid-19 pandemic

In Fig. 5 the industries of the respondents have been presented. Respondents could
select multiple answers. A wide spread of different industries can be observed. The most
popular industries were “Financial Services, Banking & Insurance” and “High-tech,
Electronics & Industrial Engineering” with 33 representatives each. The respondent’s
organizations size is also diverse. A total of 39 (32.5%) respondents work in an organi-
zation with more than 5000 employees. The other four categories were: 1-50, 51-300,
301-1000, 1001-5000. They each contained between 15.8% and 18.3% of respondents.
Moreover, 16 respondents (13.3%) identify their organization as a start-up, with one
employing over 5000, one 1001-5000, two 301-1000, two 51-300 and ten 1-50.

In the ninth question participants were asked to select roles they fulfil in the team.
They could select multiple options. As shown in Fig. 6, the most common role was a Team
Member with 47 answers (39.2%). The next two were Team Leader (23 answers, 19.2%)

The State of Agile Software Development Teams During the Covid-19 31

Finance Services, Banking & Insurance (33 in total, 27%)

High-tech, Electronics & Industrial Engineering (33 in total, 27%)

Retail, Logistics & Consumer products (26 in total, 22%)

Telecomunication (18 in total, 15%)

Media , Communication & Entertainment (16 in total, 13%)

Public & Utilities (13 in total, 11%)

Healthcare (7 in total, 6%)

|
Other (6 in total, 5%)

H

Automotive, Rail & Aeronautics (3 in total, 2%)
5 10 15 20 25 30 35

Fig. 5. Industries in which surveyed ASDT work

Team Member (47 in total. 39%)

Team Leader (23 in total, 19%)

| |
Stakeholder (1 in total, 1%)

Scrum Master / Agile Coach (14 in total, 12%)
Release Manager (2 in total, 2%)

|
Portfolio / Program Manager (10 in total, 8%)

Product Owner (15 in total, 12%)
|

Consultant (22 in total, 18%)
et——

CTO (5 in total, 4%)

(—

CIO (3 in total, 2%)

||
CEO (4 in total, 3%)
5 10 N 20 25 30 35 40 45 50

=]

Fig. 6. Participants’ roles in their organizations

and Consultant (22, 18.3%), then Product Owner with 15 representatives, Scrum Mas-
ter/Agile Coach with 14 representatives, C-level with 12, Portfolio/Program Manager
with 10, Release Manager with 2 and a single Stakeholder.

4.2 Pandemic Impact on ASDT Work

To measure the impact of the Covid-19 pandemic on the ASDT, the respondents were
asked if the Covid-19 pandemic impacted the content of the Product Backlog or the
Product Vision. Every respondent stated that they have easy access to the Product Back-
log while working remotely, and therefore should be aware of any Covid-19 influence.

32 K. Marek et al.

As shown in Fig. 7, 59 of the respondents (49.2%) stated that both the Product Back-
log and the Product Vision were not impacted. In 16 cases the Product Backlog was
not impacted, despite the Product Vision being influenced by the pandemic. In a single
case it was a significant impact, in the other 15 cases Product Vision was only slightly
impacted. In 37 cases the Product Backlog was slightly impacted, in 12 of these cases
the Product Vision was not impacted and in the other 25 cases the Product Vision was
slightly impacted. A drastic change in Product Backlog happened in only 8 cases of
which 4 cases also reported a significant impact on the Product Vision, 2 reported a
slight impact and the other 2 reported no impact on Product Vision.

|
Product Backlog and Vision not impacted (59 in total, 49%)
Product Backlog and Vision slightly impacted (25 in total, 21%)

|

Only Product Vision slightly impacted (15 in total, 12%)

Only Product Backlog slightly impacted (12 in total, 10%)

Product Backlog and Vision significantly impacted (4 in total, 3%)

\
Product Backlog significantly and Vision slightly impacted (2 in total, 2%)

Only Product Backlog significantly impacted (2 in total, 2%)

Only Product Vision significantly impacted (1 in total, 1%)
0 10 20 30 40 50 60 70

Fig. 7. The Covid-19 pandemic’s impact on product backlog and vision

Figure 8 shows the change in stakeholders’ involvement during the Covid-19 pan-
demic. In over half the cases the involvement remained the same. Stakeholders involve-
ment increased in 25 cases (20.8%). Only in 6 of the 25 cases, where the stakeholders’
involvement increased, did Product Vision and Product Backlog stay the same. On the
other hand in 10 of 25 cases, where stakeholders’ involvement increased, both the Prod-
uct Vision and Backlog were impacted. The stakeholder’s involvement decreased in 20
cases (16.7%). In 7 of these cases no impact on Product Backlog or Product Vision was
reported. In 5 of these 20 cases both the Product Vision and Backlog were impacted.

The release frequencies of surveyed ASDT have been shown in Fig. 9. There is no
dominant release frequency. Almost three quarters of the teams release at least every
month. Almost half of the ASDT is releasing every 2 weeks or more often. Only 16%
of the respondents are releasing every quarter.

Figure 10 shows the change in release frequency during the Covid-19 pandemic.
Only 8 (6.6%) of respondents, state that they started releasing more frequently during
the Covid-19 pandemic. In all of these cases the Product Backlog was changed, though
only slightly in all cases but one (in which it changed significantly). In 6 of these cases
the Product Vision changed slightly, only in 2 did it remained the same. Moreover 4 of
these 8 cases where the release frequency was increased report that the Definition of
Done (DoD) was made more liberal, in 3 cases it didn’t change and in the last case the

The State of Agile Software Development Teams During the Covid-19 33

Not applicable
(7 in total, 5%)."~ Increased involvement

(25 in total, 21%)

_.-":: Decreased involvement
4 (20 in total, 17%)

Involvement remained the same
(68 in total, 57%)

Fig. 8. Change in stakeholders’ involvement during the Covid-19 pandemic

More often than every two weeks
(29 in total, 24%)

. Not applicable
\(15 in total, 12%)

Every quarter
(19 in total, 16%)

Every 2 weeks 3
(25 in total, 21%)

Every month
(32 in total, 27%)

Fig. 9. Release frequencies of surveyed ASDT

team didn’t have a DoD. Only 3 respondents report that during the Covid-19 pandemic
they are releasing less frequently. In 2 of these cases they used to release more often than
every 2 weeks and the third team was releasing every 2 weeks. In all of these 3 teams
the DoD was not changed.

In Fig. 11 changes in DoD have been presented. The DoD was changed in only 14
cases. In 6 of these cases it became more liberal and was accompanied by a change in
either Product Vision or Product Backlog. The DoD became more strict in 8 teams. All
of these 8 teams didn’t work fully remotely before the Covid-19 pandemic and changed
to fully remote work. As many as 18 teams don’t have a DoD, all of these teams except
one use the Scrum framework.

In an open question respondents were asked what was the best change introduced
in their work because of the Covid-19 pandemic. This question was not obligatory,
consequently only 42 meaningful answers were gathered. Most of the respondents (30
from 42) indicated the introduction or maturing of remote work as the best change.
From the rest 5 respondents see an increase in communication as the biggest positive

34 K. Marek et al.

Not applicable
{11 in total,

Releasing more p
frequently (8 in total, 7%) ,

Releasing less frequently
@Bintotal, 2%) £ \

Stayed the same
(98 in total, 82%)

Fig. 10. Change in release frequencies because of the Covid-19 pandemic

We don't have a Deffinition
of Done (18 in total, 15%)

It became more liberal
(6 in total, 5%)

It became more strict |
{8intotal, 7%) |

It didn't change
(88 in total, 73%)

Fig. 11. Change in definition of done because of the Covid-19 pandemic

and another 4 indicated increased productivity. The remaining mentioned positive aspects
were: reduced number of meetings, increased accountability, more automatization and
more pair programing. According to the gathered answers, the communication increase
was caused by moving all communication to online tools. Therefore, everyone had access
to every discussion, while before people were omitted because they were remote at that
moment or just not in the room where the discussion took place.

4.3 Metrics and Tools Used by ASDT

In the survey participants were asked to mark metrics used by their team and add any
missing metrics. The total number of users for each metric has been presented in Fig. 12.
The most popular metric was Velocity, with over half of the teams using it. The next
most popular metrics were Quality, Work in Progress, Sprint Goal success Rate and
Value Delivered. Only 13 out of 120 respondents did not report using any metrics, 8 of
these 13 work in pure Scrum, 2 work in SAFe, 2 in pure Kanban and the last one uses
both Scrum and Kanban.

The State of Agile Software Development Teams During the Covid-19

Velocity (65 in total, 54%)

Quality (39 in total, 33%)

Work in Progress (34 in total, 28%)

Sprint Goal success Rate (29 in total, 24%)

Value Delivered (28 in total, 23%)
Productivity (23 in total, 19%)
Sustainability (22 in total, 18%)
Delivery Rate (19 in total, 16%)

\

Lead Time (16 in total, 13%)

Focus Factor (15 in total, 13%)

Cycle Time (10 in total, 8%)

Throughput (9 in total, 8%)

Work Item Age (6 in total, 5%)

O\I

ost of Delay (4 in total, 3%)

Other (5 in total, 4%)
10

30 40 50 60

Fig. 12. Popularity of different metrics among respondents

35

In the next question respondents were asked if their team introduced any new metrics
because of Covid-19. Only 5 participants reported that a new metric was introduced.
These new metrics were:

Focus Factor;

Vanity Metrics;

Daily resolved defects per team member;

Skills gained and shared with the team;

Weekly work hours reporting instead of monthly reporting.

The next question investigated what collaboration tools are used by the team. The
answers have been presented in Fig. 13. Every ASDT uses at least one collaboration tool.
The most popular tool is Jira, a task management tool, used by 77.5% of respondents. The
second most popular tool is Confluence, a knowledge management tool closely integrated
with Jira. The most popular communication tool is Teams (50%) with Slack (42.5%)
being a close second. Another common tool is GitHub with its alternative GitLab behind
it. These tools also have simple task and knowledge management functionalities in their
primary feature of being a code repository. Next is less popular tool Azure DevOps
which is both a task and knowledge management tool and a code repository. Later with
18 users there is Trello, a simple task management tool, and online whiteboard like

36 K. Marek et al.

Miro and Conceptboard. The last of the commonly used tools is Mural, also an online
whiteboard.

Jira (93 in total, 77%)

Confluence (65 in total, 54%)

Teams (60 in total, 50%)

Slack {51 in total, 42%)

GitHub (45 in total, 37%)

GitLab (27 in total, 22%)

Azure DevOps (22 in total, 18%)

|
Miro or Conceptboard (18 in total, 15%)

1
Trello (18 in total, 15%)

Mural (16 in total, 13%)

Zoom (4 in total, 3%)

Asana (4 in total, 3%)

Zeplin (3 in total, 2%)
Discord (3 in total, 2%)
Custom Tools (2 in total, 2%)
]

Hangouts (2 in total, 2%)
Bitbucket (2 in total, 2%)
Hansoft (2 in total, 2%)
RocketChat (1 in total, 1%)
Whereby (1 in total, 1%)

YouTrack (1 in total, 1%)

Redmine (1 in total, 1%)
0 10 20 30 10 50 60 70 80 90 100

Fig. 13. Popularity of collaboration tools in ASDT

5 Discussion and Future Work

Obtained results may indicate that the ASDT were able to adapt to the new circumstances
caused by Covid-19. The most common change that was observed is a shift towards
remote work for almost all of the ASDT (85% of teams currently work fully remotely

The State of Agile Software Development Teams During the Covid-19 37

in response to Covid-19). The cause of such good adaptation can be found in the tools
already used by the teams. The popularity of distributed teams, that have a similar
characteristic to remote teams, resulted in the adaptation of commonly used tools and
the development of features supporting work in distributed teams. Consequently, non-
distributed non-local teams were already using tools supporting remote work prior to
the Covid-19 pandemic. This minimalized the need to implement new tools or practices
while transitioning to full remote work.

The popularity of different tools among ASDT indicates a significant need for more
advanced knowledge sharing. The most popular tool was Jira, a task management tool.
However, the second most popular tool was Confluence, used by over a half of the sur-
veyed ASDT. This knowledge management tool, closely integrated with Jira, provides
more advanced means of communication, supplementing simpler forms of direct mes-
sages and e-mails. Knowledge management functionalities can also be found in other
tools popular among the participants including GitHub, GitLab and Azure DevOps. All
of these tools offer multiple features including code repository, task management and
knowledge management. Therefore, they can be used for different purposes in the ASDT.
Exact use of these tools was not addressed in this study and should be further inves-
tigated in the future. Investigating which exact functionalities are used by the ASDT
should allow for a better understanding of what ASDT need from their tools and provide
input for their further improvement.

The disturbance in the business sphere of ASDT was surprisingly low. Almost half
of the teams didn’t change either their Product Backlog or their Product Vision. The
release frequency and the DoD in most cases remained unchanged. The few ASDT that
changed the workflow probably did so to address changes to the Product Backlog and
Vision that were also reported by those teams. Despite the turbulence caused by the
transition to remote work, most of the ASDT continued to deliver at the same rate and
with the same quality. This may indicate that most of the products developed by the
ASDT were not impacted by the pandemic and that the ASDT were able to transition
to remote work without significant interference to their work. The lack of change in the
business aspect of ASDT work can have multiple causes. The simplest one is a lack
of influence of the pandemic on the products. The other reason may be the insufficient
maturity of the Agile mindset among project managers and stakeholders. It is possible
that ASDT have adapted the Agile frameworks but the formal restrictions don’t allow
for or don’t require the ASDT to adjust the Product Vision or Backlog. Therefore ASDT
are developing a product accordingly to the pre-pandemic circumstances. Investigating
the cause for such small changes is a matter for future research.

Most of the ASDT didn’t introduce any new metrics during the Covid-19 pandemic.
Most of the teams used at least one metric, therefore they should be aware of the value
metrics bring to the team and transparency of work. The lack of new metric introduction
can be related to rather small changes in the organization of ASDT work during the
pandemic. The other explanation can be a lack of understanding and recognition of metric
usefulness in ASDT. Many of the respondents answered in the open question about why
they use such metrics that they were chosen by the management or the organization,
not by the ASDT themself. Few of the answers suggested a deeper understanding of the

38 K. Marek et al.

motivation behind the usage of metrics. The ASDT understanding and appreciation of
metrics in software development should be further investigated in a future study.

6 Conclusion

The main objective of our research was to identify the impact of the Covid-19 pandemic
and a rapid transition to remote work on the ASDT. Survey results prove the work of
ASDT was not significantly impacted in most cases. The ASDT were able to transition
to remote work without much turbulence. This smooth transition was possible due to
the popularity of distributed and remote ASDT prior to the Covid-19 pandemic. Only
9% of all surveyed teams didn’t work in a distributed team and didn’t work remotely
at all. The prevalence of distributed teams and remote work resulted in the popularity
of online tools supporting it. Even the non-distributed, non-remote teams were already
using online tools which support distributed teams. Therefore, the need to implement
new tools in the ASDT was limited, which led to an easier transition to fully remote work.
Accordingly, as not much was changed in the organization of ASDT work, most of the
teams didn’t feel a need to introduce new metrics. The business sphere of ASDT work
was also not significantly impacted. In few cases the surveyed ASDT responded to the
changes in Product Backlog and Vision by accelerating the work flow. They increased
the release frequency and in a few cases lowered the overall quality for a short term speed
gain. Such behavior could help with a quicker response to new market opportunities.

Results indicate that the transition to remote work didn’t disrupt ASDT” communi-
cation. Rather, respondents state that fully remote work reduced the amount of unnec-
essary meetings, which were reducing their productivity. Moreover, fully remote work
prevented the exclusion of remote or distributed team members from on-site, in-person
discussions and meeting. Therefore, fully remote work improved communication in
teams that were distributed and non-remote before the pandemic by moving all com-
munication to online tools. Co-located team members couldn’t exclude their distributed
colleagues by discussing issues in person.

Over 89% of surveyed ASDT use at least one metric. The use of metrics supports
their software development process and allows for making data driven decisions. The
most commonly used metric was Velocity, used by over half of surveyed ASDT.

Results show that every surveyed ASDT uses at least one cooperation tool, including
all the non-distributed, co-located ASDT. The most commonly used tool is Jira, a task
management tool, and Confluence, a knowledge management tool. This shows that a
need for more advanced cooperation tools is well known among ASDT and they are
using them even when working in a non-distributed, co-located environment. The use
of online tools allows each of the 120 respondents to have easy access to the Product
Backlog while working remotely.

References

1. State of Agile Homepage. https://www.stateofagile.com/. Accessed 30 Sept 2020

2. Sharma, S., Hasteer, N.: A comprehensive study on state of Scrum development In: 2016
International Conference on Computing, Communication and Automation ICCCA), pp. 867—
872. IEEE, Noida (2016)

https://www.stateofagile.com/

10.

12.

13.

14.

15.

16.

17.

20.

21.

The State of Agile Software Development Teams During the Covid-19 39

. Berczuk, S.: Back to basics: the role of agile principles in success with an distributed scrum

team. In Agile 2007, pp. 382-388. IEEE (2007)

Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile transformation
at Ericsson: a case study. Empirical Softw. Eng. 23(5), 2550-2596 (2018). https://doi.org/10.
1007/s10664-017-9555-8

Nevo, S., Chengalur-Smith, I.: Enhancing the performance of software development virtual
teams through the use of agile methods: a pilot study. In: 2011 44th Hawaii International
Conference on System Sciences, pp. 1-10. IEEE (2011)

Robinson, P.T.: Communication network in an agile distributed software development team.
In: 2019 ACM/IEEE 14th International Conference on Global Software Engineering, pp. 100—
104. IEEE (2019)

Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! using enterprise social networking
tools in virtual agile teams. In: 2019 ACM/IEEE 14th International Conference on Global
Software Engineering, pp. 111-121. IEEE (2019)

Vax, M., Michaud, S.: Distributed agile: growing a practice together. In: Agile 2008, pp. 310-
314. IEEE (2008)

Cristal, M., Wildt, D., Prikladnicki, R.: Usage of Scrum practices within a global company.
In 2008 IEEE International Conference on Global Software Engineering, pp. 222-226. IEEE
(2008)

Downey, S., Sutherland, J.: Scrum metrics for hyperproductive teams: how they fly like fighter
aircraft. In 2013 46th Hawaii International Conference on System Sciences, pp. 4870-4878.
IEEE (2013)

. Bartik, A.W,, Bertrand, M., Cullen, Z., Glaeser, E.L., Luca, M., Stanton, C.: The impact of

COVID-19 on small business outcomes and expectations. Proc. Natl. Acad. Sci. 117(30),
17656-17666 (2020)

McKibbin, W.J., Roshen, F.: The Global Macroeconomic Impacts of COVID-19: Seven
Scenarios. CAMA Working Paper No. 19/2020 (2020)

who is happy? A survey of Lithuania’s employees during the covid-19 quarantine period.
Sustainability 12(13), 5332 (2020)

Mancl, D., Fraser, Steven D.: COVID-19’s influence on the future of agile. In: Paasivaara, M.,
Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 309-316. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_32

Schwaber, K.: SCRUM development process. In: Sutherland, J., Casanave, C., Miller, J.,
Patel, P, Hollowell, G. (eds.) Business Object Design and Implementation. Springer, London
(1997). https://doi.org/10.1007/978-1-4471-0947-1_11

Hartmann, D., Dymond, R.: Appropriate agile measurement: using metrics and diagnostics
to deliver business value. In: AGILE 2006, pp. 126-131. IEEE (2006)

Scrumban, L.C., et al.: Essays on Kanban Systems for Lean Software Development. A
Division of Modus Cooperandi. Inc.—Seattle, USA (2008)

. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business.

Blue Hole Press (2010)

. Ohno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Abingdon (1988)

Kupiainen, E., Méntyld, M. V., Itkonen, J.: Using metrics in agile and lean software develop-
ment—a systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143—-163
(2015)

Kurnia, R., Ridi F., Sunu W.: Software metrics classification for agile scrum process: a lit-
erature review. In: 2018 International Seminar on Research of Information Technology and
Intelligent Systems, pp. 174-179. IEEE (2018)

https://doi.org/10.1007/s10664-017-9555-8
https://doi.org/10.1007/978-3-030-58858-8_32
https://doi.org/10.1007/978-1-4471-0947-1_11

)

Check for
updates

The Sars-Cov-2 Pandemic and Agile
Methodologies in Software Development:
A Multiple Case Study in Germany

Michael Neumann®, Yevgen Bogdanov, Martin Lier, and Lars Baumann

Hochschule Hannover, Ricklinger Stadtweg 120, 30459 Hannover, Germany
michael.neumann@hs-hannover.de

Abstract. Inrecent years, agile methodologies have been established in software
development. Today, many companies use agile or hybrid approaches in software
development projects. The Sars-Cov-2 pandemic has led to a paradigm shift in
the way people work in Germany. While it was customary for German software
development teams to work co-located before the pandemic, teams have been
working on a distributed remote basis since March 2020. Studies show that dis-
tributed work impacts the performance of agile software development teams. To
examine the effects of the Sars-Cov-2 pandemic on agile software development
in Germany, we planned, carried out, and evaluated a multiple case study with
three cases. The results show that the majority of teams did not experience any
loss in performance. We present some problems and challenges and derive specific
suggestions for software development practice from the results of the study.

Keywords: Agile methodologies - Agile software development - Distributed
agile software development - Influencing factors - Success factors - Case study

1 Introduction

The Sars-Cov-2 pandemic has led to significant changes in social life. In Germany,
many companies with a software development context have enabled their staff to work
remotely since March 2020. Since then, more and more software development teams
have been working distributed. Many of these teams were not accustomed to distributed
work and were confronted with new challenges.

Agile and lean methodologies such as Scrum, Extreme Programming, or Kanban are
established approaches in software development and are correspondingly widespread (cf.
[22, 42]). Communication and collaboration are important aspects of agile approaches.
The agile manifesto describes values and principles of interaction and collaboration and
assigns them great importance. Consequently, these aspects are taken into account in the
guidelines of agile methodologies (e.g. [35]). Many studies confirm the importance of
various facets of communication and collaboration by identifying and describing them
as success factors:

o Communication (cf. [24, 27, 33, 39])

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 40-58, 2021.
https://doi.org/10.1007/978-3-030-67084-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_3

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 41

e Integration and collaboration with the customer (cf. [5-7, 16, 19, 27, 29, 34, 39, 40])
e Aspects of teamwork (cf. [13, 16, 25])
e The development of self-organization (cf. [7, 39])

Various studies show the connection between distributed software development and
project success. Nguyen et al. examine in [28] the possibilities of remote communica-
tion and the associated effects on cooperation within the software development team.
Karolak describes in [21] the virtual leadership of software development teams and
compliance with quality standards as a challenge of distributed software development.
In addition, other aspects are presented in literature, such as knowledge management
in distributed teams [14] or ensuring high-quality communication [28]. Therefore, we
initially assumed that an ad hoc switch to distributed remote work would negatively
impact the performance of agile software development teams. After discussions with
practitioners, however, a different picture emerged. The perception is that the teams are
at least as performant as before. Despite the potential increase in motivation, due to
the nature of this pandemic, or the potential increase in working hours, we identify the
following new challenges for the teams:

e Lack of Face-to-face communication
e Analog tools (such as physical task boards) must be digitized
e Integration and involvement of stakeholders is more difficult
e Set up effective training and coaching on agile methods
e Training of new employees is more difficult

Currently, no known publication addresses this topic of how the performance of agile
software development teams is affected by challenges which arised from the Sars-Cov-2
pandemic. Furthermore, previous research is limited to the context of global software
development in which software development teams are usually considered at companies
in the outsourcing environment and are often used for distributed software development.
However, this context cannot be immediately compared with the situation in Germany
since the Sars-Cov-2 pandemic arose. Agile software development teams were usually
co-located and are not used to working in a distributed environment. These agile teams
had to transition quickly and effectively to the new distributed way of work. Also, studies
on remote work in agile software development were published in the past, but the effects
of the Sars-Cov-2 pandemic were not taken into account. One of these effects is the
adhoc switch to the remote activity of entire teams, departments or even companies. It
should also be noted that the changes in the remote activity of permanent nature of at least
several months and at times no possibility to work as a co-located team existed. From
our perspective, the conditions caused by the Sars-Cov-2 are therefore not comparable
with the context of investigations at that time.

The paper is organized as follows: First, in Sect. 2, we summarize related work in
distributed and remote agile software development as well as agile software development
teams during the Sars-Cov-2 pandemic. In Sect. 3, we describe the research questions and
methodology of the multiple case study. The results are presented in Sect. 4. Section 5
covers the limitations of this paper. Finally, in Sect. 6, we summarize the results and
give an outlook on our future work.

42 M. Neumann et al.

2 Related Work

2.1 Agile Methodologies in Distributed and Remote Working Software
Development

The basis of agile methodologies in software development is the agile manifesto [2]. The
core idea behind creating the agile manifesto, encompassing the four value statements
and twelve principles, was to offer a uniform philosophy for agile methodologies in
software development.

According to Abrahamson et al. in [1], agile approaches are characterized by the
following properties:

Incremental: Small software releases in short cycles

Cooperative: Customers and software developers constantly work closely together
Straightforward: The process is easy to learn, adapt and well documented
Adaptable: It is possible to make changes to the product at the last possible moment

Beck describes agile approaches as efficient, flexible, low-risk and predictable [3].
Agile methodologies are iteratively structured and aim for fast response times during
the project period [17].

In this article’s context, a distinction must first be made between distributed and
remote working agile software development. In distributed software development, the
connection to global software development (GSD) is usually considered. At GSD, soft-
ware development projects are implemented in international cooperation [11, 18, 23].
This international cooperation arises, for example, through the outsourcing of software
development projects [9]. Software is usually not implemented in the same geographical
region in which it is commissioned or used. This is often described as distributed soft-
ware development, in which the members of software development teams work at several
locations [41]. Various challenges and problems accompany distributed software devel-
opment. Effective communication is necessary for successful software development [31].
Shah et al. address how this can be ensured in global software development [38]. Nguyen
et al. explain in [28] the possibilities of remote communication and the associated effects
on cooperation within the software development team. Ebert and Neve [15] point out,
among other things, that different languages or language levels can represent a potential
barrier in communication. Furthermore, the challenges of virtual leadership of software
development teams, as well as ensuring a working development environment and com-
pliance with quality standards, should be mentioned [21]. Dingsoyr and Smite [14] also
present the special features of knowledge management in global software development
and recommend which approach should be used in this context.

Due to the Sars-Cov-2 pandemic, a fundamental change in working has been
observed in Germany. While before the pandemic, work was mostly co-located in the
software development environment, and the home office, for example, was a rarity, this
has been different since the beginning of Sars-Cov-2. Many companies have switched
to enabling or allowing parts of the workforce to work remotely. Software development
teams are also increasingly affected by this. This change has led to a distributed activ-
ity of software development teams in Germany as well. Incidentally, this also prevails

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 43

when parts of the team are in the office. The reason for this is that it has effects on the
entire team if individual team members work from other locations. These effects can
manifest themselves, for example, through the virtualization of the implementation of
agile practices (such as daily meetings) or artifacts (e.g., Kanban boards).

It seems problematic to distinguish the differences between distributed teams and
remote work clearly. Some of the challenges of distributed agile software development
in the context of GSD, such as language barriers or time zone differences, are certainly
negligible in the current situation in Germany. Other aspects, for example, concerning
virtual communication and collaboration, are relevant. In literature, remote work is also
described with the characteristics of distributed teams [12]. However, the distributed
activity in software development projects poses a particular challenge when using agile
approaches. The agile manifesto and various guidelines of agile approaches emphasize
the importance of communication and collaboration. However, as explained above, this
is more difficult with distributed activity. Various studies confirm that communication
influences the success of agile methodologies in software development. Sinha et al. rep-
resent the effectiveness of communication as a success factor in [39] in global software
development. The effectiveness of the communication channels is particularly relevant
at different development locations. The authors Borrego et al. also point to the impor-
tance of communication in agile global software development [4]. In [10], Chow and
Cao name another aspect of communication: direct “face to face” communication in
daily meetings. Considering the communication and interaction of agile software devel-
opment teams, the choice and use of the right agile practices are also important. In [37],
Senapathi and Srinivasan relate this choice of agile practices, among other things, to
the continuous optimization of the development team’s approach. The authors state that
the in-depth use of agile practices is important. This in-depth use is described by the
example of Kanban practices and, according to the authors, leads to positive effects
on performance. They also describe the individualization of agile practices in different
teams (also within a company). This individualization can arise for different reasons, for
example the experience of the teams with an agile approach. In their qualitative study,
Senapathi and Drury-Grogan in [36] confirm the importance of the right choice of agile
practices as a success factor.

2.2 Agile Software Development Teams During the Sars-Cov-2 Pandemic

The challenges of agile software development teams triggered by the Sars-Cov-2 pan-
demic are the subject of initial publications in the literature. Various papers deal with
how agile software development teams have mastered the initial challenges of distributed
remote work [8, 26]. For this purpose, the teams used Microsoft Teams, Slack or zoom
to maintain communication and digital whiteboards were used to ensure continued
collaboration within the team.

A concrete procedure in the distributed remote activity describes da Camara et al. in
[8] using the example of a Brazilian start-up that maintains agile software development
teams. In Action Research, the authors present 23 specific measures intended to support
agile software development teams in meeting the challenges of distributed remote work.
The measures are both of an organizational nature (e.g., the provision of necessary hard-
ware and software) and the process-specific nature of the agile approach (e.g., selecting

44 M. Neumann et al.

a tool for the sprint retrospective or the introduction of code reviews). They find that the
measures taken have had positive effects. For this, they state the source code’s quality, the
sharing of knowledge within the team, or the understanding of the project requirements.

Poth et al. present in [30] a digital service approach to increase the distribution of
knowledge in companies and to increase team autonomy. To do this, use the Self-Service
Kit (SSK), which the authors define as a combination of various learning and training
methods. The SSK activates teams and departments at any hierarchical level to share
or build up existing and new knowledge, despite distributed organizational forms. Poth
et al. also refer in [30] to the effects of the Sars-Cov-2 pandemic on the intensified
relevance of the SSK, as it supports the teams in meeting the challenges of distributed
remote work. They also point out that social interaction is still preferred, while remote
activity is accepted as a form of work.

Also, other effects on work organization in companies and administrations are
described (e.g. in [20, 26]). Some companies are already starting to let their employees
decide where they want to work and live remotely. Reference is also made to the risks
of remote work, for example, in the context of occupational safety. In addition to these
aspects of work organization, reference is also made because of the effects on the recruit-
ing of new employees and the subsequent integration of these new team members into
the agile software development teams require optimized strategies for virtual induction.

The literature presents concrete results in the context of the new challenges of agile
software development teams due to the Sars-Cov-2 pandemic. Even if these present
valuable insights, the context or the objective of the individual publications is different.

3 Research Design

3.1 Research Approach

We use the multiple case study approach. For the planning, preparation, implementation,
and evaluation of the study, we use the guidelines from Runeson and Host from [32]. The
authors describe how the case study method is suitable for gaining a deep understanding
of the “phenomena under study” [32]. Additionally, they state that case studies are
suitable for field research. Runeson and Host describe in [32] various characteristics of
case studies. We choose the exploratory case study for the present paper because existing
literature helps formulate the research object concretely and narrow down the context.
According to Runeson and Host in [32], the exploratory case study is suitable for this as
it enables “... finding out what is happening, seeking new insights and generating ideas
and hypotheses for new research...” [32].

The research context is limited to organizations in Germany that use agile or hybrid
methodologies in distributed software development and already used these approaches
before the Sars-Cov-2 pandemic. We justify this contextual limitation as follows. In Ger-
many, we can understand the change from co-located work to distributed software devel-
opment due to the Sars-Cov-2 pandemic. The cases included in the study are selected
accordingly. Secondly, we can precisely describe the time period, i.e. the second half of
March 2020, in which the teams started their transition to distributed software develop-
ment. Further contextual restrictions, e.g., to industries, are not considered relevant. This

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 45

is because the challenges mentioned above are classified as relevant regardless of indus-
try. For this study, we choose a holistic approach. The multiple case study comprises
three cases, each representing a company in Germany. In these cases, we understand the
agile-organized software development team as a unit of analysis. This approach enables
us to collect maximum data from the agile software development of a company (case).
We assume that software development in the respective cases is similarly impacted by the
ad hoc switching to distributed agile software development. The three cases are different
companies that operate in different industries and markets. They also differ in size and
corporate culture. Case 1 is a group that, among other things, operates the end-customer
business in e-commerce. Case 2 is a medium-sized company that offers various soft-
ware products (including Enterprise Resource Planning applications) and consulting for
business customers. Case 3 is also a medium-sized company that develops websites and
mobile apps for its business customers.

3.2 Research Questions

As explained in Sect. 2, various studies show that the use of agile methodologies in
distributed software development entails multiple challenges, for example, in communi-
cation or collaboration. We also describe above that some of these aspects influence the
success of agile methodologies. Due to the distributed activity in software development,
triggered by the Sars-Cov-2 pandemic in Germany, we assume that the performance
of agile teams has changed. Furthermore, we want to investigate what effects can be
observed on certain success factors in agile software development. We focus this work
on the communication of the team, the integration and cooperation with the customer,
and the adaptation (and selection) of agile practices. The research questions specify the
objectives of this paper as follows:

e RQ 1: Has the performance of agile software development teams changed since the
beginning of the Sars-Cov-2 pandemic?

First of all, we seek verify whether the performance of agile software development
teams has changed during the Sars-Cov-2 pandemic.

e RQ 2: Were agile practices or roles adapted during the implementation of distributed

software development? If so, which practices or roles are affected, and how have they
been changed?
We assume that the use of agile practices has changed during the Sars-Cov-2 pan-
demic. This is justified by the empirical and self-optimizing approach in agile software
development. In this context, we examine which practices have been adapted and how.
Furthermore, we aim to identify and understand any newly introduced practices.

e RQ 3: How has communication and collaboration in agile software development

teams changed due to the pandemic?
Communication and collaboration are subject to changes due to the shift to distributed
software development. We aim to understand precisely how communication and col-
laboration in agile software development teams have changed and what effects this
has on their success (e.g. in terms of productivity or customer satisfaction).

e RQ 4: What has changed in terms of the collaboration and involvement of the
customer/stakeholder?

46 M. Neumann et al.

The integration and cooperation with the customer are emphasized in agile software
development. Moving to distributed software development, it can be assumed that this
aspect is also subject to changes.

3.3 Data Collection

In exploratory case studies, the qualitative data collection is common (cf. [32, 43, 44]).
According to Runeson and Host in [32], triangulation is of great importance in qual-
itative research approaches. The authors justify this in [32] because qualitative data
is “... broader and richer, but less precise than quantitative data.”. With the help of
triangulation, the validity and reliability of the data should be improved.

In this paper, we use both direct methods, such as semi-structured interviews and the
observation of agile practices, and independent analysis to collect data. As part of this
analysis, we sift through, for example, project documentation and artifacts from the agile
software development teams. We have developed interview guidelines for conducting
the semi-structured interviews (see Appendix A). The interview guidelines include both
open and closed questions. The interviews follow an identical organizational scheme.
First, the interviewing researcher presents the goals and context of the study and explains
how the interview data is processed. This is followed by the interview, in which general
questions are asked first. For example, we inquire about the experience in software
development projects, the current role in the team and the agile or hybrid methodologies
currently in use. The content of the rest of the guideline is based on the research questions
(see Sect. 3.2). These questions are, therefore, more specific to the objectives of this
study. If further questions arise, these can be asked by the interviewer. If this occurs,
these questions will be documented in the interview by the protocol officer. If possible,
the interviews will be carried out by two researchers. While one researcher conducts the
interview, the second researcher logs the interview. Further researchers are involved in
the subsequent data evaluation to reduce potential bias and increase objectivity.

As stated above, we also collect data by observing agile practices. These can include,
for example, meetings described in the literature, such as a sprint retrospective, but
also adapted practices. The observations are documented with the help of a prepared
protocol (see Appendix B). During the observations, we try to assume a passive role
and trigger little to no interaction with the respective team. In conjunction with these
direct methods of data collection, we also examine various artifacts of the teams. In
addition to product backlogs or Kanban boards, this can include project documentation
such as team performance evaluations. The data was collected during August and the
first half of September 2020. We assume that the performance (RQ1) and the factors
influencing adapted agile elements (roles, artifacts, practices), as well as communication
and collaboration in the team and with the customer (RQ 2 to RQ 4), were not stable
in the first weeks after the Sars-Cov-2 pandemic hit Germany in March 2020. The agile
teams had the chance to react to the (organizational) changes which occurred after the
switch to distributed software development. We expect that in the meantime the teams
adapted their agile approach to this new situation and that the performance is now in a
stable state.

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 47

3.4 Data Analysis

We have structured the analysis of the data based on the guidelines by Runeson and
Host from [32]. We extracted the data from the interview and observation protocols
and structured it in tabular form and defined different areas of the evaluation tables
using the research questions as a structural basis. Next, we assigned data from the
interviews to the questions in the interview guidelines and also structured the protocols
of the observations accordingly. This enabled a structured overview of the data. Based
on these tables, we initially looked for similarities in the data. Each researcher did so
individually and commented on the mentioned similarities accordingly. If we identified
at least three data points (interviews, observations, or document reviews) with similar or
identical statements, these data were marked appropriately and revised by at least one
other researcher. If the quality could be assured, the data were then extracted. We used
Miro to visually represent our extracted data, employing virtual whiteboards, which met
the needs of our own distributed activities. We verified the extracted data on our virtual
whiteboard together. Finally, we analyzed the extracted data on the structural basis of
the research questions.

4 Results

4.1 Overview of the Results

Scrum is the dominant agile methodology in practice (see Sect. 1). This is also confirmed
in this multiple case study (see Table 1). Cases 2 and 3 work with Scrum. Case 1 uses a
mixed approach with Kanban.

Table 1. Agile methodologies used per case

Case | Agile methodologies in use

Case 1 | Kanban, mixed approach of Scrum and Kanban

Case 2 | Scrum

Case 3 | Scrum

To get a more detailed insight into the application of the used agile methodologies
in the cases, we asked the interview partner which agile practices and artifacts were
being used. The results are summarized in Table 2. The assignment of the agile practice
or the artifact to the respective case is shown with an x. It has been shown here that
practices that we know, for example, from Scrum (such as the daily stand-up, planning,
or even the retrospective) take place in all three cases. We were also able to identify pair
programming in all three cases. The use of the Kanban board correlates with the use
of the hybrid process model in Case 1 (see Table 1). We only identified the practice of
Continuous Deployment in Case 1.

It should be noted at this point that the artifact practices can also differ in the way
they are acted out within a case depending on the team. This applies to both the use and

48 M. Neumann et al.

Table 2. Identified agile practices and artifacts

Agile artifacts and practices in use | Case 1 | Case 2 | Case 3
Code review X X X
Continuous deployment X

Coding standards X X X
Daily stand up X X X
Definition of done X X X
Estimation X

Kanban board X

Pair programming X X X
Planning meeting X X X
Product backlog X X X
Retrospective meeting X X X
Review meeting X X X
Sprint backlog X X X
Test driven development X X

the specific application. The specific application is not decisive at this point. Rather, we
wanted an overview of which practices and artifacts are used in the respective teams.
This helps us get an impression of how the respective team operates.

Interestingly, certain agile practices in distributed work have a double-edged char-
acter. An example of this is pair programming, which is perceived as challenging by the
software developer in the distributed activity. On the other hand, it helps to maintain
the exchange between team members, has a positive influence on the product quality
and ensures an exchange of information. The team members also benefit from inter-
nal transfer of experience and skills. The requirements for the data collection, e.g. data
anonymization, were coordinated with the contact persons at the respective companies
(cases). The perception of different aspects of this study, such as communication, can
vary depending on the role and point of view. Therefore, it is sensible to consider all roles
directly involved in the agile approach in the survey. This requirement was successfully
taken into account. An overview of the profiles of the interviewed persons is shown in
Table 3.

We also deliberately omitted the specific terms relating to experience, such as junior
or senior software developer. These are not defined uniformly across different companies.
Instead, we decided to consider the experience in software development projects and with
methodologies in software development.

We conducted a total of 22 interviews, eight each for Cases 1 and 2, and six more
for Case 3. As explained in Sect. 3, we also collected data through observations of agile
practices. We observed various teams performing 18 agile practices. A summary of these
observations is presented in Table 4.

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 49

Table 3. Interview profiles

Case |ID | Actual role Years of Years of Team
experience | experience in
in SD ASD?
Case 1 | PO1 | Product owner 21 9 Cl-A
Case 1 | PO2 | Product owner 15 10 C1-B
Case 1 | PO3 | Software developer | 10 8 C1-C
Case 1 | PO4 | Software developer | 6 6 C1-D
Case 1 | PO5 | Software developer | 10 10 Cl1-E
Case 1 | P06 | Agile coach 24 5 C1-F
Case 1 | PO7 | Product owner 12 9 C1-G
Case 1 | PO8 | Agile coach 17 15 C1-B
Case 2 | P09 | Software developer | 4 4 C2-A
Case 2 | P10 | Scrum master 15 6 C2-B
Case 2 | P11 | Software developer | 7 3 C2-B
Case 2 | P12 | Software developer | 6 4 C2-C
Case 2 | P13 | Software developer | 15 10 C2-D
Case 2 | P14 | Scrum master 22 22 C2-E
Case 2 | P15 | Software developer | 23 7 C2-B
Case 2 | P16 | Product owner 28 3 C2-F
Case 3 | P17 | Product owner 1 1 C3-A
Case 3 | P18 | Software developer | 3 3 C3-A
Case 3 | P19 | Software developer | 10 8 C3-A
Case 3 | P20 | Scrum master 4 4 C3-A
Case 3 | P21 | Software developer | 7 2 C3-B
Case 3 | P22 | Scrum master 4 2 C3-B

4Years of experience in agile software development is part of total
experience in software development

It is not surprising that Scrum practices were most represented in the observations,
as Scrum is the dominating approach in this case study (it is used in two out of three
cases; see Table 1). In addition to these common practices, such as daily Scrum, sprint
reviews or planning and refinements, we also observed other practices such as a coding
session and an estimation meeting.

4.2 Answering the Research Questions

In the following, we will present the concrete results of this multiple case study. For
readability, we structure the results based on the research questions from Sect. 3.2:

50 M. Neumann et al.

Table 4. Observed agile practices

Case |ID | Agile practice Team
Case 1 | EO1 | Team time out CIl-A
Case 1 | E02 | Daily stand up C2-B
Case 1 | EO3 | Estimation C2-B
Case 1 | EO4 | Coding session C2-B
Case 1 | EO5 | Retrospective C2-B
Case 2 | E06 | Daily scrum C2-A
Case 2 | EO7 | Sprint retrospective | C2-B
Case 2 | EO8 | Sprint review C2-B

Case 2 | E09 | Sprint planning C2-B
Case 2 | E10 | Sprint planning C2-A
Case 3 | E11 | Sprint review C3-A
Case 3 | E12 | Sprint retrospective | C3-A
Case 3 | E13 | Sprint planning C3-A

Case 3 | E14 | Refinement C3-A
Case 3 | E15 | Daily scrum C3-B
Case 3 | E16 | Refinement C3-B
Case 3 | E17 | Daily scrum C3-B
Case 3 | E18 | Sprint review C3-B

RQ 1: Has the performance of agile software development teams changed since the
beginning of the Sars-Cov-2 pandemic?

The efficiency and performance of agile teams in the three cases of this multiple case
study have not decreased. In the interviews, ten people said that the performance had
increased (P03, POS, P06, P07, P11, P14, P15, P17, P18, P22). Twelve people stated that
the performance was similar (P01, P02, P04, P08, P09, P10, P12, P13, P16, P19, P20,
P21). These statements were verified and confirmed by viewing documentation such as
Sprint Goal attainments in all three cases.

This finding is interesting insofar as we assumed that the challenges of switching
to distributed agile software development would negatively affect performance. Hence,
we investigated what the teams in this case study were doing to prevent these harmful
effects. Based on the data collected, this can be narrowed down to three aspects:

1. Increased transparency of the process

In several interviews in all three cases, the conclusion could be made, that the agile
approach became more transparent. This increased transparency is exemplified, e.g., by

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 51

digitizing Kanban boards (P06), which visualizes the changes in the processing status of
individual items ad hoc. Likewise, more people after the transition to distributed work
have access to the board, increasing transparency even beyond the team. Another aspect
that has increased transparency are the forms of communication (see also RQ3). Thanks
to the digitized team-wide communication through tools, more team members receive
questions and clarifications (P08). Additionally, communication is more factual and,
therefore, the result is more precise (P04).

Agile approaches are usually based on empirical procedures. The Scrum Guide
names transparency as one of the three pillars of empiricism [32]. Transparency enables
the teams to examine their approach in a targeted manner (cf. Scrum Guide [32]; inspect)
and to adapt or optimize based on the findings (cf. Scrum Guide [32]; adapt). In the agile
approach, transparency is a decisive factor for the performance of the teams. Based on
this case study, we assume that the increased transparency had a positive effect on the
agile approach. The teams had the opportunity to optimize their procedures in a more
targeted manner so that potentially negative aspects of the distributed activity were at
least offset. This can also be seen in the interviews (including (P03, PO4) and observation
of meetings (EO1), especially retrospectives (E12, E18).

2. Working time is used more efficiently

At the beginning of the study, we made the assumption that the members of the teams
worked quantitatively more hours. The interviews did not confirm this assumption.
Instead, the current working time is used more efficiently in terms of quality (P03,
P05, P06, P07, P08, P09, P13, P14, P17, P18, P19). This can be attributed to fewer
interruptions during work than was previously the case in everyday office life. The team
members can better control potential disruptions by using the present status in the com-
munication tool (such as MS Teams; see RQ 3). Also, it was pointed out in interviews
that the team members are sensitized to disturbing a colleague with questions or prob-
lems. In addition to this aspect, there are effects on social exchange (see RQ 3). This
effect can also be demonstrated in the respective meetings. Since the beginning of the
pandemic, meetings have been more goal oriented, factual, and more efficient.

3. Optimized integration of the Product Owner

The interviews also showed that tool-supported and virtual communication improves
the integration of the product owner in some teams (see RQ 4). It can be assumed that
clear communication adds to this.

RQ 2: Were agile practices or roles adapted during the implementation of distributed
software development? If so, which practices or roles are affected, and how have they
been changed?

In all three cases, we can attribute specific changes in agile practices to the pandemic or
the switch to distributed work. These adaptations relate, for example, to the digitization
of practices and artifacts such as Kanban boards that were administered and used anal-
ogously before the pandemic (P01, P03, P06). Changes have occurred in agile practices

52 M. Neumann et al.

that were previously carried out at the team level in a room. This affects, among other
things, the Daily Stand Up Meeting (Daily Scrum), which is now carried out daily at the
team level to increase the synchronization of the team (P21). Previously, only weekly
meetings were held for the team. Other teams have introduced another meeting after the
Daily Stand Up Meeting to promote the exchange within the team (C19DE-C1-P03).
The procedure was (compulsorily) digitized in planning and retrospectives. While pre-
viously estimates were made using Planning Poker cards (P20, P22), this is now done
in communication applications (such as MS Teams, Slack). To avoid bias in estimates,
the Scrum Master or a team member verbally counts down from three. Only then are the
estimates published in the Team Channel and visible to everyone (E03, E09, E13, E14,
P11, P18). For retrospectives, some teams use tools such as Retrium (E12, E18). Other
teams document the results of the retrospective in MS-Word (E07). The methodology
of the retrospectives, however, has not changed due to the pandemic. The practice of
pair programming has changed in terms of decreased frequency, sequence, and intensity
(P02, P03, P06, P19). Some test persons also stated that the quality of pair programming
has decreased (P04). This is justified in particular by the effects of the distributed activity,
such as restrictions due to digital collaboration (P04).

Other interviewed persons noted that no or only marginal changes had been made to
agile practices, artifacts, or roles (P01, P04, P09, P10, P12, P15, P16, P17, P18).

We examined whether changes to the agile approach can be specifically attributed
to the pandemic from the perspective of the test persons. This was partly denied; it
was pointed out much more than it is often the usual optimization when using the agile
methodology (P05, P11, P13). Examples of this are the adaptation of the iteration length
(P13). By anchoring the constant optimization of most of these approaches, the change
of practices, artifacts, and roles in the agile approach is not uncommon. In this respect,
the realization that only a few adjustments to practices, artifacts, or roles have been made
is also quite interesting. However, investigating this was not the focus of this paper and
we refer the reader to the description of further research (Sect. 6).

RQ 3: How has communication and collaboration in agile software development teams
changed due to the pandemic?

First and foremost, it can be stated that communication has become more objective and
efficient (P01, P06, P08, P12, P13, P19, P20, P21, P22). This means that social exchange
and togetherness have decreased or have almost entirely ceased. Situations like getting
a coffee with a team member, taking a break in the tea kitchen, or undertaking joint
activities as a team (such as lunch) are not possible in distributed software development.
Some teams in Case 1 and 2 have, therefore, created meetings which primarily serve
the purpose of social interaction and exchange. While these meetings are still being
held for Case 1, they have now been discontinued for Case 2. In various interviews in
Case 1 and 2, although the positive intention of these discussions was acknowledged,
the purpose was also questioned. Nevertheless, these social practices seem to be a way
to maintain social interaction in teams and mitigate some negative influence of the
distributed work. In the interviews, we also raised the question of whether there has
been an increase, decrease or no change in the number of conflicts in the agile teams
since the beginning of the distributed activity (Appendix 1). The majority of the test

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 53

subjects in all three cases confirmed that the number of conflicts has not changed (P07,
POS8, P09, P10, P13, P14, P15, P16 to P22). Strategies similar to those used before
the pandemic (and distributed activity) are used to resolve these conflicts (PO1, P06,
P22). Individual interviewed persons, however, point out that non-verbal communication
should accelerate the resolution of conflicts (PO1, PO7). Concerning the collaboration
of agile software development teams, the technical infrastructure, especially in software
applications for communication, play an essential role. An overview of which tools are
used in the respective cases is shown in Table 5. It should be noted that companies
deal differently with the availability and acquisition of such applications. In Case 1, for
example, there are clear guidelines about which tools may be used (PO1 to P08). In Case
2, it was pointed out which tools are already licensed and available in the company (P12
to P14). Although there are no specific restrictions, the intent is to prevent the purchase
and use of too many different tools. There are no specifications for Case 3 (P17 to P22).

Table 5. Used tools for collaboration and communication

Case Tools

Case 1 | Confluence, Jira, Microsoft Outlook (Mails), Microsoft Planner, Microsoft Teams,
Miro, Slack, Threema, Visual Studio Code, WhatsApp, Zoom

Case 2 | Yammer, Microsoft Outlook (Mails), Microsoft Teams, Microsoft Team Foundation
Server, VoIP phones

Case 3 | Confluence, Jira, Microsoft Outlook (Mails), Microsoft Teams, Slack, Zoom

Agile teams in all three cases examined use Microsoft Teams. Other common tools
are Zoom and Slack. It must be taken into account which agile practices have a signifi-
cant influence on the collaboration. For example, the agile practice of pair programming
is used in all three cases (see Table 2). Pair programming is carried out in very different
ways. Some pairs use screen sharing via MS Teams, Zoom, or other applications. Other
agile teams also evaluated specific plug-ins for the development environment. This eval-
uation is still on-going. It can be seen here that the agile teams attach great importance
to pair programming in all three cases.

RQ 4: What has changed in terms of the collaboration and involvement of the
customer/stakeholder?

In this case study, we consider the involvement of customers and stakeholders in partic-
ular in the context of the role of the product owner. In the interviews, it was said several
times that this involvement was intensified (PO1, P03, P17, P20). This is justified by the
introduction of communication tools. Through the use of these tools, the product owner
appears more accessible and, through the communication in these tools, also has a direct
channel to his team members (P05, P08, P10, P16). This is true despite the prevailing
asynchronous communication. Interestingly, some interview partners also note that the
product owners are less involved in their teams (P17, P20). This is justified, among other
things, by better self-organization (P07).

54 M. Neumann et al.

5 Threats to Validity

Although we followed the guidelines according to Runeson and Host (see Sect. 3), some
threats to validity must be taken into consideration for the present study.

Construct Validity: According to Runeson and Hoest in [32] “This aspect of validity
reflect to what extent the operational measures that are studied really represent what the
researcher have in mind...”.

Here we see a threat related to our interview guidelines. The guideline contains many
questions and may lead to the respondents answering shorter or less extensive answers
as the interview lasts. This can lead to misinterpretations. We always made sure to ask
questions in the interviews when uncertainties of understanding occurred. Besides, the
interview guidelines are structured based on the research questions.

Internal Validity: The internal validity focuses on the aspects of the study design and on
issues relating to data collection and evaluation. A significant challenge in qualitative
research projects in particular is securing the chain of evidence [32]. We have, therefore,
carried out structured data analysis. During the data collection, we also applied a four-
eyes principle and worked in pairs. The procedure and the results of the data analysis
were adopted by researchers from our team who did not experience any bias from
participating in the data collection. We also triangulated in different dimensions. When
selecting the cases, we initially paid attention to the differences in industry, size, and
company structure. When collecting the data, we took various methods into account
with semi-structured interviews, observations of agile practices, and reviewing project
documents. We always took into account the origin (based on the survey method and
the case) of the data to triangulate the respective extracted data and the findings derived
from it.

External Validity: The external validity refers to the generalization of the study results.
Only three cases could be considered in this study. This can be an external threat. From
our point of view, however, we have implemented a systematic approach. Also, it must
be taken into account that the three cases are active in different industries and are also not
comparable in terms of other aspects such as size or company form. We have, therefore,
tried to achieve the most heterogeneous setting of the cases to be able to examine the
effects of the pandemic on different companies and agile software development teams.
Nevertheless, we have already started the second iteration of data collection in which we
are integrating three further cases to validate the results (see Sect. 6). We are planning
a quantitative study to be able to verify the findings in an international context and we
assume that a change to distributed agile software development has also occurred in
other countries.

6 Conclusion and Future Work

Sars-Cov-2 pandemic has changed the way we work. This is evident in Germany, through
the change from co-located work to distributed work in the home office. Distributed
remote agile software development goes hand in hand with various challenges posed by
this transition (see Sect. 2). Some of these challenges can be related to specific success

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 55

factors (see Sect. 1). Based on this, we examined in a multiple case study to what extent
the transition to distributed and remote work, due to the Sars-Cov-2 pandemic, affects
the performance of agile software development teams and specific aspects of the agile
approach (see Sect. 3.2). The multiple case study comprises three different cases. We
collected the data qualitatively with semi-structured interviews, observations of agile
practices, and viewing documentation (such as performance evaluations) (see Sect. 3).

In this paper, we present our qualitative multiple case study (see Sect. 3.1). We
have found that the performance of agile software development teams has remained the
same or even improved since March 2020 (see Sect. 4.2). We can justify this result with
observations of increased transparency in the agile approach, qualitatively more efficient
working hours, and the optimized integration and involvement of the product owner (see
Sect. 4.2; RQ 1).

We alsorecorded various adjustments to agile practices, artifacts, and roles such as the
necessary digitization of analog artifacts (Kanban boards) when switching to distributed
activity. Other adjustments can be traced back to the expected striving for optimization in
agile approaches (see Sect. 4.2; RQ 2). Concerning practices, artifacts, and roles that have
not or only slightly adapted (see Sect. 4.2), further research is necessary. Specifically, we
would like to address whether fundamental changes in the organization of agile teams,
such as the switch to distributed software development, affect the team’s motivation
for the change of the process. This can also be influenced by other factors such as the
maturity of agile methodologies in the respective team or company, or how long the
team has been working together.

We also examined the impact of communication. We first analyzed which tools
are used in the teams for communication and collaboration. Besides MS Teams, these
are especially Zoom and Slack. We also looked at the effects of this digital commu-
nication and collaboration. Since the personal character of distributed communication
through these tools is often left by the wayside, some teams have, for example, create
new meetings for this specific purpose to continue to ensure personal exchange. We
have also found that communication is more objective and transparent. There are fewer
misunderstandings, which helps increase efficiency (see Sect. 4.2; RQ 3).

Lastly, we dealt with the involvement of and cooperation with the product owner. In
many teams, this is has improved. One reason is that there is better accessibility in the
asynchronous availability of the product owner in the respective communication tools
(see Sect. 4.2; RQ 4).

We have already started the second iteration of this case study, in which we are
integrating three more cases. The three new cases differ to those of this case study in
industry, size, and structure. This second iteration aims, in addition to the aspects men-
tioned above, to validate the findings in other contexts (companies). We hope this will
give us more information about the extent to which our results can be transferred to
different organizations. In addition to the second iteration of this multiple case study,
we plan to conduct a quantitative investigation to validate our findings. We are consid-
ering carrying out this quantitative study in other countries to validate the results in an
international context.

56

M. Neumann et al.

Appendix 1

We have made the interview guideline used available in the Academic Cloud: Download
Link (https://sync.academiccloud.de/index.php/s/gjffQ8 AFDsEA77Rx).

Appendix 2

The observation protocol template is available in Academic Cloud: Download Link
(https://sync.academiccloud.de/index.php/s/CPcOGKnsCOZV VOv).

References

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

. Abrahamsson, P, et al.: Agile software development methods: review and analysis, pp. 7-94

(2002)

Beck, K., et al.: Agile Manifesto. https://agilemanifesto.org/

Beck, K.: Extreme Programming Explained. Embrace Change. Addison-Wesley, Boston
(2000)

Borrego, G., et al.: Towards a reduction in architectural knowledge vaporization during agile
global software development. Inf. Softw. Technol. 112, 68-82 (2019)

Bjarnason, E., et al.: A theory of distances in software engineering. Inf. Softw. Technol. 70,
204-219 (2016)

Bermejo, P.H.d.S., et al.: Agile principles and achievement of success in software devel-
opment. A quantitative study in brazilian organizations. Procedia Technol. 16, 718-727
(2014)

Barzilay, O., Urquhart, C.: Understanding reuse of software examples. A case study of
prejudice in a community of practice. Inf. Softw. Technol. 56, 1613-1628 (2014)

Camara, R., Marinho, M.L., Sampaio, S., Cadete, S.: How do Agile Software Startups deal
with uncertainties by Covid-19 pandemic? Int. J. Softw. Eng. Appl. (2020)

Conchiir, E.()., et al.: Global software development: where are the benefits? Commun. ACM
52, 127 (2009)

Chow, T., Cao, D.-B.: A survey study of critical success factors in agile software projects. J.
Syst. Softw. 81, 961-971 (2008)

Chadee, D., Raman, R., Michailova, S.: Sources of competitiveness of offshore IT service
providers in India: towards a conceptual framework. Compet. Chang. 15, 196-220 (2011)
Deshpande, A., Barroca, L., Sharp, H., Gregory, P.: Remote working and collaboration in
agile teams. In: International Conference on Information Systems (2016)

Drury-Grogan, M.L.: Performance on agile teams. Relating iteration objectives and critical
decisions to project management success factors. Inf. Softw. Technol. 56, 506-515 (2014)
Dingsoyr, T., Smite, D.: Managing knowledge in global software development projects. IT
Prof. 16, 22-29 (2014)

Ebert, C., de Neve, P.: Surviving global software development. IEEE Softw. 18, 62—-69 (2001)
Gren, L., Knauss, A., Stettina, C.J.: Non-technical individual skills are weakly connected to
the maturity of agile practices. Inf. Softw. Technol. 99, 11-20 (2018)

Flora, H.K., Chande, S.v.: A systematic study on agile software development methodologies
and practices. Int. J. Comput. Sci. Inf. Technol. 5, 3627-3637 (2014)

Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18, 16-20 (2001)
Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer collaboration on self-
organizing Agile teams. Inf. Softw. Technol. 53, 521-534 (2011)

https://sync.academiccloud.de/index.php/s/gjfQ8AFDsEA77Rx
https://sync.academiccloud.de/index.php/s/CPc0GKnsC0ZVV0v
https://agilemanifesto.org/

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development 57

Janssen, M., van der Vorrt, H.: Agile and adaptive governance in crisis response: lessons from
the COVID-19 pandemic. Int. J. Inf. Manag. 55 (2020)

Karolak, D.W.: Global software development. Managing virtual teams and environments.
IEEE Comput. Soc. (1998)

Kuhrmann, M., et al.: Hybrid software and system development in practice: waterfall, Scrum,
and beyond. In: Proceedings of the 2017 International Conference on Software and System
Process, pp. 30-39. ACM (2017)

Krishna, S., Sahay, S., Walsham, G.: Managing cross-cultural issues in global software
outsourcing. Commun. ACM 47, 62-66 (2004)

Liu, J.-W., et al.: The role of Sprint planning and feedback in game development projects:
implications for game quality. J. Syst. Softw. 154, 79-91 (2019)

Lindsjgrn, Y., et al.: Teamwork quality and project success in software development. A survey
of agile development teams. J. Syst. Softw. 122, 274-286 (2016)

Mancl, D., Fraser, S.D.: COVID-19’s influence on the future of agile. In: Paasivaara, M.,
Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 309-316. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_32

Misra, S.C., Kumar, V., Kumar, U.: Identifying some important success factors in adopting
agile software development practices. J. Syst. Softw. 82, 1869—1890 (2009)

Nguyen, T., Wolf, T., Damian, D.: Global software development and delay: does distance still
matter? In: 3rd IEEE International Conference on Global Software Engineering Proceedings,
pp. 45-54 (2008)

Ochodek, M., Kopczyriska, S.: Perceived importance of agile requirements engineering
practices — a survey. J. Syst. Softw. 143, 29-43 (2018)

Poth, A., Kottke, M., Riel, A.: The implementation of a digital service approach to fostering
team autonomy, distant collaboration, and knowledge scaling in large enterprises. Hum. Syst.
Manag. 39, 573-588 (2020)

Purna Sudhakar, G.: A model of critical success factors for software projects. J. Enterp. Inf.
Manag. 25, 537-558 (2012)

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14(2), 131-164 (2009)

Ram, P, etal.: Success factors for effective process metrics operationalization in agile software
development: a multiple case study. In: IEEE/ACM International Conference on Software and
System Processes, pp. 14-23 (2019)

Schon, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a
systematic literature review. Comput. Stand. Interfaces 49, 79-91 (2017)

Schwaber, K., Sutherland, J.: The Scrum Guide. https://www.scrumguides.org/scrum-guide.
html

Senapathi, M., Drury-Grogan, M.L.: Refining a model for sustained usage of agile method-
ologies. J. Syst. Softw. 132, 298-316 (2017)

Senapathi, M., Srinivasan, A.: Understanding post-adoptive agile usage. An exploratory cross-
case analysis. J. Syst. Softw. 85, 1255-1268 (2012)

Shah, Y., Raza, M., Ulhaq, S.: Communication issues in GSD. Int. J. Adv. Sci. Technol.,
69-75 (2012)

Sinha, R., Shameem, M., Kumar, C.: SWOT: strength, weaknesses, opportunities, and threats
for scaling agile methods in global software development. In: Proceedings of the 13th Innova-
tions in Software Engineering Conference on Formerly Known as India Software Engineering
Conference, pp. 1-10. ACM (2020)

Tam, C., et al.: The factors influencing the success of on-going agile software development
projects. Int. J. Proj. Manag. 38, 165-176 (2020)

https://doi.org/10.1007/978-3-030-58858-8_32
https://www.scrumguides.org/scrum-guide.html

58

41.

42.

43.
44.

M. Neumann et al.

Vanzin, M.-A., et al.: Global software processes definition in a distributed environment.
In: 29th Annual IEEE/NASA Software Engineering Workshop, pp. 57-65. IEEE Computer
Society (2005)

VersionOne; Collabnet. 14th Annual State of Agile Survey Report (2020). https://www.sta
teofagile.com

Yin, R.K.: Applications of Case Study Research. Sage, Thousand Oaks (2008)

Yin, R.K.: Case Study Research. Design and Methods. Sage, Los Angeles (2009)

https://www.stateofagile.com

®

Check for
updates

Agile Project Development Issues During
COVID-19

Shariq Aziz Butt! ® @, Sanjay Misra?, Muhammad Waqas Anjum?,
and Syed Areeb Hassan®

1 University of Lahore, Lahore, Pakistan
Sharig2315@gmail.com
2 Covenant University, Ota, Nigeria
sanjay.misra@covenantuniversity.edu.ng
3 NCBA&E, Lahore, Pakistan
wagasch.065@gmail.com
4 Superior University, Lahore, Pakistan
s.areebhassan@gmail .com

Abstract. Today’s software development business is very much dynamic, and
industries are changing their software development and requirements ways to
meet the new changes in the environment. The environment also demands the
rapid development and delivery of the product. In fast-changing environment and
demands, agile methodology is the most useful development method. It gains
fame due to its unique features that facilitate the software development more effi-
ciently, client developer relation, rapid delivery of the product, and allow changes
at any stage of the project, and client satisfaction. Currently, the world is suffer-
ing under a pandemic situation due to the COVID-19 disease. The disease spread
with the close interaction with the human, for this reason many thousands of
developers started working from home. The software industries working with the
agile methodology are facing many issues to meet the development objectives.
For this line of research, we have conducted this study on many different software
industries using the agile methodology. In this study, we interviewed many devel-
opers using the questionnaire to determine the significant reasons for the failure of
agile methodology during the current pandemic situation. We applied regression
analysis, Cronbach alpha, and descriptive analysis statistical methods to the data
set.

Keywords: Agile methodology - Software development - Work from home -
Pandemic situation - Productivity in COVID-19

1 Introduction

The agile manifesto was introduced in 2001 by the research community working on soft-
ware development to overcome the development issues [1]. Other development mod-
els have problems and no more beneficial for efficient software development. There-
fore, to restore efficient software development, agile with its complete techniques were

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 59-70, 2021.
https://doi.org/10.1007/978-3-030-67084-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_4&domain=pdf
http://orcid.org/0000-0002-5820-4028
https://doi.org/10.1007/978-3-030-67084-9_4

60 S. A. Butt et al.

introduced. Several studies [23-25] proved agile software development as more effi-
cient amongst other software development methodologies. The agile presents various
methodologies like Scrum, Extreme Programming, Crystal, and DSDM [2]. Amongst
all available agile methods, Scrum [26] and extreme programming are more popular
than others. Even Scrum is combined with other methods like Lean for getting better
performance and productivity [27]. Scrum works in sprints, delivered within a specific
time slot. In this present work, whenever we will talk about agile software development,
although we consider all various agile methods, our main focus will be on the Scrum
and Xtreme programming. The main objectives of Scrum methodology are as follows
[3-5]:

e Divide the project into sprints, i.e., in user stories, to develop the modules.

e The most important goal of the agile model is the client’s satisfaction. The main cause
of the fame of agile methodology is the client preferences and satisfaction. It suggests
client meeting on each sprint completion.

o Agile methodology prefers the change of request stage at any stage of the project/sprint
by the client. It always welcomes the change request and gives priority to each request
to complete in the net sprint.

e Agile enhances the collaboration of team/s to produce more productivity. It facilitates
the team/s member/s to discuss the whole project and set a time slot and decide the
project complexity.

e It improves the client and developer/s relation. It enables them to sit together and

discuss work.

It removes the obstacles of efficient software development.

It delivers the project’s modules rapidly.

Urgently get feedback from the client on the developed sprint.

Enable the self-organizing team/s.

Less documentation.

During the COVID-19 pandemic, the whole world has been affected. Software devel-
opment, which is a human-centric teamwork activity is also affected [28-30]. Agile soft-
ware development, which is an effective way of producing software involves, customers
in the development process [23, 24]. Scrum [26], one of the very popular agile methods,
works in sprints and various types of meetings for solving issues and problems during
development are part of that. During the COVID-19 pandemic, it became impossible to
organize such physical meetings among software development team members and with
customers. This present study aims to find issues while using agile software develop-
ment during the pandemic situation. We identified the gaps and problems while evaluat-
ing the quality of the agile development methodology during this pandemic period. We
don’t found any study in the literature that highlights the difficulties in agile software
development during COVID-19 pandemic.

The main objective of the study is to find the major factors that influence the agile
productivity in the pandemic situation. In this line of research, we design some hypothe-
ses as research questions and conduct a survey. We adopted three statistical techniques
on the collected data set and concluded the study with the result’s findings. We reveal
that in the pandemic situation, the agile reduced the software’s productivity.

Agile Project Development Issues During COVID-19 61

The structure of the paper is as follows. A survey modelling adopted for this study
is provided in Sect. 2. Section 3 contains the experimental design and methodology, and
Sect. 4 presents the statistical results applied to the collected data set and reveals the
findings of the study.

2 Survey Modelling

The main focus of the study is to explore the use of agile methodology during the
pandemic situation and its impact on productivity either in positive or negative ways. It
means the pandemic situation boosted the productivity of development or reduced it. If
boosted then how and if reduce, then what are the causes of it. In this line of research,
we conducted this survey, we designed the 10 Hypotheses mentioned in Table 2 [10],
and the research model is shown in Fig. 1. Each hypotheses is associated with a variable
that predicts the impact of the pandemic situation on these variables. The main variables
of the study are (1) Coordination, (2) Time, (3) Client Meeting, (4) Cost, (5) Remote
Working, and (6) Work Satisfaction. All hypotheses set for the study are evaluated
and measured under these defined variables. The variable coordination is covering the
Hypotheses H3 and H9, as these Hypotheses are directly influenced by the coordination
of team/s and software developer/s [3, 6, 7]. Variable cost impact on Hypotheses H4
and H5 cost increase relation is to the late delivery of sprints and work from home that
makes the developers lazy. The variable Client Meeting has a strong relationship with
the Hypotheses H1, H2, and H10 [8—10]. The reason is the client has a concern with the
product’s outcome, frequent meetings with clients such as agile always support, and agile
effectiveness due to COVID-19. The variable time has a concern with the Hypotheses
H4, HS, and H7. Furthermore, the variables Remote working and Work satisfaction have
an impact on Hypotheses H6, H8, and H10 [8, 11, 12]. We conducted a survey amongst
different software industries and many professionals working for many years in the agile
model. The data gathering and sourcing for this analysis are mentioned in Table 1.

[Coordination] [Time] [Client Meeting]

Agile Development Issues in COVID-19

[Cost] [Remotely Working] [Work Satisfaction]

Fig. 1. Research model for predicted variables

62 S. A. Butt et al.

Table 1. Specification of data, survey goals, data sourcing, and gathering.

Purpose of the study To recognize the main issues while using agile development
during the COVID-19

Subject area Agile effectiveness during a pandemic

Main research Question To find the main problems and research questions in agile
project development during the pandemic period and how to
solve it?

More specification subject area | Pandemic for agile in software industries

Data type Hypotheses

How data is acquired From analysis of hypotheses

Data format Examined and statistical data

Investigational factors Hypotheses model is created with the help of software
developers who are working in the pandemic situation at
home

Experimental features Agile work at home effectiveness

Data source location Software Industries

Table 2. Hypotheses

H1 Do you think quality agile methodology still has a positive outcome in the pandemic
situation?

H2 Do you think the COVID-19 has a negative effect on software development in agile?

H3 | Do you think that the Pandemic situation creates issues for team/s coordination?

H4 | Do you agree that the cost of projects increases during the work home?

HS Do you agree that the projects/Sprints deliver late to the client while working from
home?

H6 | Do you think that productivity decrease during the COVID-19?

H7 | Do you think an influence of work pressure in COVID-19 has a positive effect?

H8 | Do you feel that the work satisfaction rate among the developet/s becomes low?

H9 | Do you agree with that the team/s face issues for the remote meeting in the pandemic
situation?

H 10 | Do you feel that the meeting with the client is suffering during work from home?

3 Experimental Design and Methodology

For the survey conduct, we visited 10 software industries to get responded for our
hypotheses as shown in the Appendix. Here we use the inclusion and exclusion criteria
for software industry. We only include the software industries which are using the agile
model for software development in the current pandemic situation, and the others are

Agile Project Development Issues During COVID-19 63

excluded from our survey results that are not using agile for development. Therefore, to
conduct the survey, we selected four software industries using agile for software devel-
opment during the pandemic situation (COVID-19). Table 3 is presenting the companies
selected for the survey session. We selected the companies that are using the agile model
for development. Only those companies are selected which have international offices,
a high number of employees, and developing some software applications [13, 14]. We
include only software industries that have some high years of experience using agile,
therefore, they can respond more accurately to our hypotheses. The survey modeling is
summarized in Table 4.

Table 3. Survey industries

Companies | No. employees | Type of services Location | Sub-locations
Company 1 | 300400 IT business solutions Pakistan | Dubai
Company 2 | 250-300 Software applications development | Pakistan | UAE
Company 3 | 200-250 Govt. software applications Pakistan | Australia
Company 4 | 200-220 IT Solutions consultancy Pakistan | UK

Table 4. Survey modeling

Objective Use of agile during the pandemic situation in software industries
Supporting audience Software Developers, Team Leaders, and Project Managers
Data collection mode Questionnaire

No of Industries for survey | 4

Total questions 10

Participants 250+

4 Results and Analysis

We arranged this survey session in many reputed software industries. A 250+ number
of participants joined the survey sessions and responded to the questions. We send all
EMPLOYEES to the software industries, but only the mentioned participants respond the
hypotheses. For the respond number of days given to participants. The Hypotheses are
arranged according to their suggestions. We eliminate the responses that are mistakable
and not appropriately filled. We also did’t consider the missing data in our results as
output. Instead of starting and applying any statistical technique on data, we try to
check the validation of the Hypotheses through the Cronbach Alpha test. We apply this
technique to the variables mentioned in the research model. The analysis of this test on
Composite Reliability and Cronbach Alpha are >0.7. Additionally, the Average Variance

64 S. A. Butt et al.

Extract is also more than 0.60. This result shows that the variables with the mentioned
Hypotheses are statistically reliable and legitimate for this study [20, 21]. The outcome
is shown in Table 5.

Table 5. Cronbach Alpha.

Predictive variable | Cronbach’s Alpha | Composite reliability | Average variance extract
Coordination .62 .84 72
Time .92 .82 .65
Cost .63 74 73
Work satisfaction .61 .81 .63
Client meeting .83 73 .64
Remotely working | .71 .90 .70

After the Cronbach Alpha results, we used two statistical techniques on the data
set generated through the survey results. The descriptive analysis technique applied to
Hypotheses [22] is shown in Table 6. The means and mode of all Hypotheses are 1
and the calculations of the SES and SEK are 0.824 and 0.152, respectively. Table 5
presents that almost 81% of developers stated that the agile work quality for efficient
software development has a negative impact rather than a positive under the response
of Hypotheses H1 and H2. The participants stated that agile has a significant role in
software development in positive ways, but now, due to the pandemic situation, the agile
values go down. In the agile, coordination of team/s plays a significant role because the
coordination supports the participants to work together for the project. It also makes the
team/s dependent on each other.

In our study, Hypotheses H3 reveals that the coordination of team/s and participants
within the team becomes low. 80% of developers stated that the coordination is almost
non-existent due to the pandemic situation. Everyone is at home; thus, the discussions
about the user stories, and complexity of the project are about to zero. Just some of the
participants take part in the discussion and decide parameters about the project. Dur-
ing the agile project development in the pandemic situation, the project’s cost under
the evaluation of Hypotheses H4 stated that the cost increase. The main causes of the
increase of cost are: not properly responded by the developers during the sprints, low
working hours of developers, there was no work pressure on them, there is no sprint
Scrum meeting and mentally disturbed due to pandemic situation. On the other hand,
agile has worked for cost management during project development. It improved cost-
saving of project development. A few studies reported that agile has no control over
cost, and its features increase the cost of projects. In our study, 75% of participants
revealed that the cost becomes increased due to COVID-19. As we have done surveys
individually with all participants, therefore nobody knows about the response of others.
This methodology reveals the outcomes against the Hypotheses H5, 84% used for the
evaluation of variables Remotely Working, it greatly impacts on the agile project devel-
opment. The participant does not know about the responses of each other, so everyone

Agile Project Development Issues During COVID-19 65

stated that other developers worked slowly from home. On asking the developer/s, they
gave some non-professional reasons for the late delivery of sprints and not attend the
online meeting. Their remote working behavior changes the working practice of agile
for any project that makes the agile less effective. Anyhow, the literature shows that the
agile builds professional attitudes and behaviors among the developer/s. The Hypotheses
H6 and H7 are evaluated using the variable time; the survey results reveal that the devel-
oper/s take more time to complete the user stories that are not enough complex. Due to
sprint deliveries being late at the client’s, ultimately the project time increases. While
in the pandemic situation COVID-19, every stakeholder is shifting to the E-business but
the agile delivers projects late. Participants 75-65% stated that agile is not proficient in
the work from home scenario. It even becomes the worst for development rather than the
traditional development approaches. Hypotheses H8 and H9 are designed and used to
examine how the developer/s feels about the work at home as per their satisfaction level.
As agile increases the work satisfaction level of developer/s due to its unique features that
support to increase productivity. Due to stress and emotional, mental instability affects
their productivity level. Work pressure and home life have a strong conflict which is the
leading cause of less productive team/s. Agile always supports client satisfaction as the
priority of the software industry, but in the current pandemic situation human can’t meet
physically, therefore the meetings with the client suffers a lot. The developer/s stated that
the meetings are less scheduled due to time issues with the client, low internet speed,
and availability of both to discuss the project. Most of the feedback from the client was
taken via email or on story cards. Hypotheses H10 revealed 77% of participants stated
that the client suffered a lot in pandemic situations [15-17].

Table 6. Descriptive analysis of hypotheses.

Hypotheses | Mean | SE | SD |SK KU

H1 0.81 |0.52/0.56 —0.7 1.5
H2 0.78 1046032 -0.8 |—-1.5
H3 0.82 |0.46|0.54|-0.7 | —2.0
H4 0.76 10.51{0.30|—-1.1 | —.13
H5 0.84 10.32{0.37, —.30 —-0.7
H6 0.76 041,046, —31|-27
H7 0.64 /0.30(047, —.06 —1.2
HS 0.77 1041|058 —.21 —19
H9 0.73 10.31]0.33 | —1.5 35
H 10 0.77 10.42|0.43 —-0.6 2.8

We have done the Regression Analysis test on the data set to find the Anova, coef-
ficients and Model Summary. We used regression analysis for the quality outcomes as
shown in Table 7. In our study, the regression analysis test is used to explain the connec-
tion between the defined variables and the impact of Hypotheses on the agile use during

66 S. A. Butt et al.

Table 7. Regression analysis.

Model summary | ANOVA Un-standardized Standardized |t Sig. t
coefficients coefficients

Multiple |[RZ | F SigF B SE B8

R
H1/0.82 56 | 77.62 |0.00 | .86 .09 0.80 9.99 10.00
H2/0.73 37 5556 [0.00 .88 .06 0.73 6.35 |0.00
H3 0.80 .S58 5578 [0.00 |.70 .09 0.80 6.90 |0.00
H41|0.77 6 127.10 [0.00 |.45 .18 0.77 4.37 |0.00
H5{0.80 .29 13.32 /0.00 |.66 .07 0.80 593 10.00
H6/|0.79 45 41.40 |0.00 | .60 .06 0.79 5.53 10.00
H7 0.66 43 40.24 10.00 |.56 .10 0.66 4.59 10.00
HS8 0.75 36 2837 [0.00 |.63 .10 0.75 4.02 |0.00
H9{0.78 40 4342 10.00 |.78 27 0.78 5.58 10.00
H |0.76 52 [5574 10.00 |.69 .06 0.76 6.70 |0.00
10

the pandemic situation. We adopted model summary in the regression test which the
Multiple R is the square of the R square, and it picks an association coefficient amongst
the picked predicted variables. The Multiple R has the highest value of the Hypotheses
H1, 80%. As well, the lowest value is Hypotheses H7 with 67%. The values show that the
agile during the COVID-19 has a negative impact on software development. It reduces
its fame in the software industry. In the regression analysis, the correlation coefficient
is continuously going between +1 and —1. Correlation coefficient with respect to (0
to .3) is considered as a weak coordinate association, between (.3 to .7) that reveals
the workable relationship between (0.7 to 1) exhibits a solid association [17-19, 29].
In the test, R Square (R2) is stated as the weight to predict the variables defined in the
survey model and measure the effectiveness of Hypotheses under the model. However,
the Anova F-test in the regression analysis shows that the impact of predicted variables
by the defined Hypotheses against it. There is also a need that the F-Sig test value should
be higher than the 0.05, thus in our case, the F-Sig value is (p-esteem <0.05). The B
coefficient shows the H4 to 0.45. The 8 estimation of each predicted variable is the same
as Multiple R regard. It is utilized to identify the invalid or null theory. The 8 is coupled
with t-value and the significance of t-regard to confirm whether the coefficient is below
and more than 0 and subject to this, B can be either 4+ or —. The prediction variables
were established based on the un-standardized beta coefficient for the Hypotheses.

5 Discussion and Analysis

The results reveal that the software industries using the agile methodology during the
pandemic situation have a negative impact with 82% reducing the influence of agile

Agile Project Development Issues During COVID-19 67

model. The agile does not work effectively during the COVID-19 pandemic. Hypotheses
H7 has the lowest value with 66% that shows there was no work pressure, so it impacts
the productivity of the project development using the agile methodology, decreased in
the COVID-19 period. There is a massive downfall in software productivity compared
to normal. As the agile has the fame to control the cost and time during the project
development, but in the case of COVID-19 the cost and time of projects during the
situation become increased by 77 and 80%. The other cause is less coordination among
the team/s and developer/s during the work at home. As the COVID-19 places everybody
at home, therefore the individual have less ambitious and work satisfaction. 75% of
participants stated that they feel less satisfied with their input on any user story. The
major reason is spending time with family, no official environment to work, the stress of
CORONA virus, health and mental stress, no work pressure, and less talk with others.
During the COVID-19 period, the most suffered individual/s clients 76%, who faced
a delay in the project delivery time and cost increase, the output of user story is not
according to need, fewer meetings with the developer/s, and less satisfaction of work.
Figure 2 is explaining the overall results of the Hypotheses.
The threats to the validity of the study are as follows:

Internal Threats
This threat refers to whether or not something influenced the results of the study.

Selection: The selection of participants is a threat due to the pandemic situation. We
were unable to contact more accurate persons for our survey study. Therefore, we set
criteria for the selection of parson who has a background of development with agile
and can be a developer, project manager, team lead, and principal software design and
architect.

Techniques: To remove any error from the results, we only selected the statistical
methods that are discussed in the literature for survey studies.

External Threats
The survey study has been validated by the participants. As we don’t include any missing
or non-satisfactory response of any hypotheses in our data set.

H1 H2 H3 H4 H5 H6 H7 H8 HJ9 H10

Fig. 2. Results of the hypotheses.

100
80

(o))
o

4

N
o O o

68 S. A. Butt et al.

6 Conclusion

The agile methodology is the most famous development model for efficient software
development. Its unique techniques make it more viable for adoption in the software
industry. However, during the pandemic situation, the agile methodology faced so many
issues that impact software development negatively. We used three statistical techniques
on the collected data set to reveal the study results. The most factors in agile not useful
for the pandemic situation are work from home, less satisfaction of work, fewer meet-
ings with the client, mental and health stress, less work pressure, and an increase in
cost and time. Besides, this examination is remarkable in a few different ways: (1) the
survey utilized recently approved scales, which we re-approved using both head part
investigation and corroborative factor examination; (2) the information was dissected
utilizing profoundly advanced strategies (for example, basic condition demonstrating),
which seldom have been used in programming building research; (3) the examination
explores a rising wonder, giving convenient guidance to associations and experts. We
selected four software industries and 250+ participants, but it can be increased with
more industries and participants to participate in this study for more data set and accu-
rate results. This limited our study to engage more and more people in our survey. We
trust that this examination reuses more exploration of how programming improvement
is influenced by emergencies, pandemics, lockdowns, and other antagonistic conditions.

The limitation of the study is that due to the pandemic situation, we are unable to
engage more participants from software companies in survey data collection. However,
this survey study reveals that agile needs some amendments to make it more proficient
for development. These amendments make it more adaptable and feasible in the case of
a pandemic.

Appendix

List of Companies.

Companies | No. employees | Type of services Location | Sub-locations
Company 1 | 300400 IT business solutions Pakistan | Dubai
Company 2 | 250-300 Software applications development | Pakistan | UAE
Company 3 | 200-250 Govt. software applications Pakistan | Australia
Company 4 | 200-220 IT solutions consultancy Pakistan | UK
Company 5 | 150-200 Software applications development | Pakistan | Romania
Company 6 | 200-300 Learning applications development | Pakistan | Austria
Company 7 | 200-350 Health applications development Pakistan | UK
Company 8 | 150-230 IT solutions consultancy Pakistan | UAE
Company 9 | 200-250 Govt. software applications Pakistan | USA
Company 10 | 150-300 Business solutions Pakistan | UAE

Agile Project Development Issues During COVID-19 69

References

10.

12.

14.

15.

16.

18.
19.

20.

. Steghofer, J.P., Knauss, E., Alégroth, E., Hammouda, 1., Burden, H., Ericsson, M.: Teaching

agile-addressing the conflict between project delivery and application of agile methods. In:
2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-
O), pp- 303-312. IEEE (2016)

Meyer, B.: Making sense of agile methods. IEEE Softw. 35(2), 91-94 (2018)

Khalid, A., Butt, S.A., Jamal, T., Gochhait, S.: Agile scrum issues at large-scale distributed
projects: scrum project development at large. Int. J. Softw. Innov. (IJSI) 8(2), 85-94 (2020)
Martin, A., Anslow, C., Johnson, D.: Teaching agile methods to software engineering profes-
sionals: 10 years, 1000 release plans. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP
2017. LNBIP, vol. 283, pp. 151-166. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57633-6_10

Butt, S.A.: Study of agile methodology with the cloud. Pac. Sci. Rev. B Humanit. Soc. Sci.
2(1),22-28 (2016)

Fuchs, C.: Adapting (to) agile methods: exploring the interplay of agile methods and
organizational features (2019)

. Winska, E., Dabrowski, W.: Software development artifacts in large agile organizations: a

comparison of scaling agile methods. In: Poniszewska-Maranda, A., Kryvinska, N., Jarzabek,
S., Madeyski, L. (eds.) Data-Centric Business and Applications. LNDECT, vol. 40, pp. 101-
116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34706-2_6

. Tessem, B.: The customer effect in agile system development projects. A process tracing case

study. Procedia Comput. Sci. 121, 244-251 (2017)

Butt, S.A., Abbas, S.A., Ahsan, M.: Software development life cycle & software quality
measuring types. Asian J. Math. Comput. Res. 11, 112-122 (2016)

Butt, S.A., Jamal, T.: Frequent change request from user to handle cost on project in agile
model. Proc. Asia Pac. J. Multi. Res. 5(2), 2642 (2017)

. Kim, S.I., Lee, J.Y.: Walk-through screening center for COVID-19: an accessible and efficient

screening system in a pandemic situation. J. Korean Med. Sci. 35(15), e154 (2020)

Tariq, M.1., Diaz-Martinez, J., Butt, S.A., Adeel, M., De-la-Hoz-Franco, E., Dicu, A.M.:
A learners experience with the games education in software engineering. In: Balas, V.E.,
Jain, Lakhmi C., Balas, M.M., Shahbazova, Shahnaz N. (eds.) SOFA 2018. AISC, vol. 1222,
pp- 379-395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-52190-5_27

. Janssen, M., van der Voort, H.: Agile and adaptive governance in crisis response: lessons from

the COVID-19 pandemic. Int. J. Inf. Manage. 55, 102180 (2020)

Asare, A.O., Addo, P.C., Sarpong, E.O., Kotei, D.: COVID-19: optimizing business perfor-
mance through agile business intelligence and data analytics. Open J. Bus. Manage. 8(5),
2071-2080 (2020)

da Camara, R., Marinho, M., Sampaio, S., Cadete, S.: How do agile software startups deal
with uncertainties by COVID-19 pandemic? arXiv preprint arXiv:2006.13715 (2020)

Goel, S., et al.: Resilient and agile engineering solutions to address societal challenges such
as coronavirus pandemic. Mater. Today Chem. 17, 100300 (2020)

. Ralph, P, et al.: Pandemic programming: how COVID-19 affects software developers and

how their organizations can help (2020). arXiv preprint arXiv:2005.01127

Ratner, B.: The Correlation Coefficient: Definition, DM Stat-1 Articles, vol. 11a (2007)
Lawal, B.: Applied Statistical Methods in Agriculture, Health, and Life Sciences. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05555-8

Alzoubi, H., Yanamandra, R.: Investigating the mediating role of information sharing strategy
on agile supply chain. Uncertain Supply Chain Manage. 8(2), 273-284 (2020)

https://doi.org/10.1007/978-3-319-57633-6_10
https://doi.org/10.1007/978-3-030-34706-2_6
https://doi.org/10.1007/978-3-030-52190-5_27
http://arxiv.org/abs/2006.13715
http://arxiv.org/abs/2005.01127
https://doi.org/10.1007/978-3-319-05555-8

70

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. A. Butt et al.

Igbal, T., Jajja, M.S.S., Bhutta, M.K., Qureshi, S.N.: Lean and agile manufacturing:
complementary or competing capabilities? J. Manuf. Technol. Manage. 31(4), 749-774 (2020)
Kumar, R., Singh, K., Jain, S.K.: Agile manufacturing: a literature review and Pareto analysis.
Int. J. Qual. Reliab. Manage. 37, 207-222 (2019)

Patel, A., Seyfi, A., Taghavi, M., Wills, C., Na, L., Latih, R., Misra, S.: A comparative
study of agile, component-based, aspect-oriented and mashup software development methods.
Tehnicki Vjesnik 19(1), 175-189 (2012)

de la Barra, C.L., Crawford, B., Soto, R., Misra, S., Monfroy, E.: Agile software development:
it is about knowledge management and creativity. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7973, pp. 98-113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39646-5_8

Pham, Q.T., Nguyen, A.V., Misra, S.: Apply agile method for improving the efficiency of
software development project at VNG company. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7972, pp. 427-442. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39643-4_31

Mundra, A., Misra, S., Dhawale, C.A.: Practical scrum-scrum team: way to produce successful
and quality software. In: 2013 13th International Conference on Computational Science and
Its Applications, pp. 119-123. IEEE (2013)

Correia, A., Gongalves, A., Misra, S.: Integrating the scrum framework and lean six sigma.
In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 136-149. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24308-1_12

Mishra, A., Misra, S.: People management in the software industry: the key to success. ACM
SIGSOFT Softw. Eng. Notes 35(6), 14 (2010)

Fernandez-Sanz, L., Gémez-Pérez, J., Diez-Folledo, T.I., Misra, S.: Researching human and
organizational factors impact for decisions on software quality. In: Proceedings of the 11th
International Conference on Software Engineering and Applications, pp. 283-289 (2016)
Fernandez-Sanz, L., Misra, S.: Influence of human factors in software quality and productivity.
In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, Bernady O. (eds.) ICCSA
2011. LNCS, vol. 6786, pp. 257-269. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21934-4_22

https://doi.org/10.1007/978-3-642-39646-5_8
https://doi.org/10.1007/978-3-642-39643-4_31
https://doi.org/10.1007/978-3-030-24308-1_12
https://doi.org/10.1007/978-3-642-21934-4_22

®

Check for
updates

Achieving Agility in IT Project Portfolios
— A Systematic Literature Review

Joseph Puthenpurackal Chakko!® @, Tim Huygh? ®, and Steven De Haes!

1 Antwerp Management School, Antwerp, Belgium
josephpc@yahoo.com, steven.dehaes@uantwerpen.be
2 Open University of the Netherlands, Heerlen, The Netherlands
tim.huygh@ou.nl

Abstract. Over the past two decades, enterprise IT functions have enjoyed con-
tinued success in projects using agile development methods. However, the lack of
ample empirical research on achieving portfolio level agility can potentially inhibit
their ability to effectively govern IT investments while scaling agile practices to
derive more significant benefits. This study examines the impact of agile deliv-
ery efforts on project portfolio management at the enterprise level and identifies
approaches adopted to foster agility in portfolio practices. We conducted a system-
atic literature review to explore existing scientific knowledge around agile methods
and portfolio management in an enterprise IT context. An analysis of the 21 pri-
mary studies found relevant to this research identified six portfolio management
aspects impacted by agile delivery practices and a variety of approaches adopted
to support them. While these identified portfolio management aspects guide prac-
titioners on areas to focus on while scaling agile efforts across an enterprise, the
specific practices/approaches observed present opportunities to consider within
their respective organizational contexts. Portfolio processes need an exploratory
focus to sense environmental change to support agility, utilize a systems-thinking
approach for a holistic view of potential interactions within and across portfolio
components, and consider the effect of existing organizational processes to support
portfolio agility. This study contributes to academic knowledge by synthesizing
current knowledge on how portfolio management contributes to IT agility while
incorporating agile delivery efforts and by identifying a set of future research
directions in this space.

Keywords: Agile methods - IT agility - Portfolio management - Systematic
literature review

1 Introduction

Today’s enterprises face increasing pressure from the complex dynamics of their markets,
forcing them to critically examine their business models to stay ahead of their compe-
tition [1]. As a result, information technology (IT) capabilities are being called on to
enable options to drive business model innovation [2]. IT agility, the two-dimensional
capability to sense and respond to changing IT environments, enables IT functions

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 71-90, 2021.
https://doi.org/10.1007/978-3-030-67084-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_5&domain=pdf
http://orcid.org/0000-0002-8079-3551
http://orcid.org/0000-0003-4564-7994
http://orcid.org/0000-0001-7114-4093
https://doi.org/10.1007/978-3-030-67084-9_5

72 J. Puthenpurackal Chakko et al.

to influence their “position to impact strategic business decisions” [3]. Enterprise IT
functions are increasingly adopting agile delivery practices leading to improved project
delivery efficiency, product quality, stakeholder satisfaction, and project performance
[4]. The success of agile methods has led enterprises to consider applying them at a
larger scale, with support from several scaling frameworks introduced in the practitioner
space to align these development efforts to business strategies.

There is extensive research on the use of agile methods to deliver project outcomes.
In comparison, the investigation into scaling agile practices to the enterprise level has
been less prevalent. Given that agile practices focus on shorter planning/delivery cycles
that continually adapt to and align with evolving customer needs, portfolio management
structures and processes need adjustments to preserve IT agility. Although portfolio
management is considered a critical aspect of large-scale agile development [5], there
is limited research conducted into the structures and processes supporting portfolio
activities governing agile environments [6].

This literature review brings together our current understanding of how project port-
folios enable IT agility while incorporating agile delivery efforts and is a unique con-
tribution by being the first to explore the current state of knowledge at the intersection
of portfolio management and agile practices. This review aims to understand better
how enterprises can achieve agility in their IT portfolio management process. It iden-
tifies impacts on portfolio areas from agile delivery methods and describes approaches
adopted to address these impacts. This review is part of a broader effort to design an
agile portfolio management framework, and the review findings will form the basis for
future studies on portfolio management practices enabling IT agility.

Section 2 of this paper provides a conceptual background to facilitate the literature
review, and Sect. 3 describes the systematic literature review process. The review results
in Sect. 4 present a set of themes crucial to achieving agility in IT portfolios. Section 5
discusses the implications of these findings, while Sect. 6 concludes by summarizing
the contributions and calling out future research directions.

2 Background

This section explores key concepts in IT project portfolio management and agile software
development principles to frame the literature review.

2.1 Project Portfolio Management

Levine [7] describes project portfolio management (PPM) as a set of practices binding
traditional operations management and project management disciplines to ensure project
contributions are maximized and aligned to enterprise success. PPM is the means to
realize enterprise strategies [8] by screening, selecting, continuously prioritizing, and
allocating resources to projects in line with strategic priorities [9]. Extensive research
conducted on portfolio practices across various enterprises [10] identified maximizing
portfolio value, achieving a balance in the mix of projects, and ensuring alignment to
business strategies as portfolio management’s goals. Miiller et al. [11] categorize PPM
activities into three groups of top-down methods that (1) align projects with business

Achieving Agility in IT Project Portfolios 73

strategy and prioritizes them (portfolio selection), (2) continuously monitor and com-
municate project priorities and progress at the portfolio-level (portfolio reporting) and
(3) make rational and objective choices to accelerate, kill or reprioritize projects within
the portfolio (portfolio decision-making).

McFarlan [12] suggested using the portfolio model to manage overall risk exposures
for information technology (IT) projects in a manner analogous to applying the mod-
ern portfolio theory [13] to an investment portfolio of diversified financial securities.
The US General Accounting Office [14] recommends a portfolio investment approach
to select, control, and evaluate IT projects by defining and applying a set of decision
criteria across benefits, costs, and risks associated with the competing project invest-
ment options. Maizlish and Handler [15] describe IT PPM as “a combination of people,
processes, and corresponding information and technology that sensed and responded to
change by reprioritizing/rebalancing investments and assets, value-based risk assessment
of existing assets, eliminating redundancies while maximizing reuse, optimal resource
allocation, and continuous monitoring & measuring.”

Project portfolio management is an essential IT governance practice [16] to realize the
expected business value from IT-enabled investments by aligning business objectives and
IT strategies. A review of project governance literature [17] identifies two perspectives
for project governance — an external system of governance that focuses on centralized
monitoring and controls to ensure project outcomes stay aligned to strategic objectives
and an internal one that builds organizational capabilities to achieve shared project
goals. Kujala et al. [18] propose a framework to support project governance across six
dimensions (goal setting, incentives, monitoring, coordination, decision-making, and
capability building).

2.2 IT Agility and Agile Software Development

Leonhardt et al. [3] view IT agility as a capability that, on the one hand, proactively
senses and assesses emergent developments and opportunities, and on the other hand,
maintains an IT landscape that enables swift response and adaptation to the changing
business needs. The 14 Annual State of Agile Survey indicates that enterprises adopt
agile software development methods to accelerate their software delivery (71%), to
enhance their ability to manage changing priorities (63%), and to increase productivity
(51%) [19]. Agile methods, like Scrum [20] based on agile values/principles [21] and
concepts of empirical process control, were conceptualized to improve the way software
development projects are organized and executed.. They use iterative and incremental
delivery of project results with self-organized cross-functional teams using patterns
of actions like daily stand-up meetings for team coordination and frequent reviews
with close customer contact [22]. Studies indicate that agile delivery methods positively
impact efficiency, stakeholder satisfaction, and perception of overall project performance
[4] and reduce overall project delivery timelines [23].

2.3 Agile Portfolio Management

Agile portfolio management extends existing portfolio activities [11] by connecting agile
software development teams to enterprise strategies allowing for rapid reconfigurations

74 J. Puthenpurackal Chakko et al.

of portfolio components in response to changing environments, thereby enabling IT
agility [3]. This view of applying agile principles to the portfolio level is consistent with
Krebs’ approach to dynamically manage portfolios using flexible financial models [24]
or the Scaled Agile Framework’s direction for lean portfolios [25]. Traditional portfolio
management often takes a linear, top-down approach and focuses on long-term-planning
and control [26], while agile principles highlight the need to be iterative and responsive
to change [27]. There is a difference in the granularity of planning (informal vs. formal
and a priori vs. evolutionary) within agile efforts [28], particularly while considering
resource allocations, ranging from smaller projects to complex enterprise-level portfolios
[29]. Elements like team autonomy and diversity advocated in agile methods indicate a
people-centric approach [30] compared to the more resource-oriented view of traditional
portfolio management.

An exploration of existing agile scaling frameworks, like the Scaled Agile Frame-
work! (SAFe), Large Scale Scrum? (LeSS), and Disciplined Agile Delivery3 (DAD),
indicated little consistency in their recommendations to scale agile efforts to the portfolio
level [6, 31, 32].

Table 1 lists literature reviews identified during the preliminary search relat-
ing to large-scale agile practices. Although none of these reviews directly address
portfolio-level impacts while scaling agile practices, they provided relevant background
information to identify themes for use during the data synthesis process.

Table 1. Past literature reviews identified

No. | Reference Focus area

1 Lappi et al. [33] Mapping traditional governance practices to agile contexts
using the project governance model proposed by Kujala et al.
[18]

2 Alqudah and Razali [32] | Comparing the roles and practices of six common
frameworks to scaling agile practices

3 Dikert et al. [34] Identifying challenges/success factors for large-scale agile
transformations
4 Ahmad et al. [35] Explores the use of Kanban in support of software

engineering practices

3 Review Method

The aim of a literature review is “to map and to assess the existing intellectual territory”,
to incorporate a degree of rigor into the inquiry process, and to develop a comprehensive

I See https://scaledagileframework.com for more details.
2 See https://less.works for more details.
3 See https://pmi.org/disciplined-agile for more details.

https://scaledagileframework.com
https://less.works
https://pmi.org/disciplined-agile

Achieving Agility in IT Project Portfolios 75

knowledge-base for practitioners from a range of past studies [36]. Established practices
of conducting literature reviews in the information systems space [37, 38] guide the
protocols described in this section. The literature review protocol covers detailed research
questions, identifying literature sources, search strategy, inclusion, exclusion, and quality
assessment criteria, processes to extract and synthesize data from identified studies, and
reporting findings.

The research objective to better understand how enterprises can achieve agility in
their IT portfolio management process is addressed through two research questions that
guide and direct the review.

RQ1 — How have agile software delivery methods impacted existing enterprise portfolio
management practices

RQ2 — What approaches/practices have enterprises adopted to achieve agility in meeting
portfolio objectives?

3.1 Inclusion and Exclusion Criteria

Based on the various aspects of inquiry derived from the research questions, Table 2
provides guidance for inclusion and exclusion decisions for this review to ensure that
only studies relevant to the research questions are selected.

Table 2. Inclusion and exclusion criteria

RQ Aspect Inclusion examples Exclusion examples

Portfolio Management | IT Portfolio Management; Financial securities,
Governance of IT project product/service portfolios; Focus
investments; Multi-project on IT aspects like strategy &
practices planning, architecture, process &

performance, capabilities, culture

Agile Lean/agile software development | Agile manufacturing, contracting
methods used in teams and or supply chain practices;
product groups; Use of agile Descriptions of or experiences
scaling frameworks with specific agile methods

Enterprise IT Context | Multiple s/w dev teams, Solution | Individual or single team settings;
delivery against business plans; | Non-IT related business processes

Structures, and processes for (e.g., training methods, business
project delivery processes)

Empirical Qualitative & quantitative Conceptual papers, grey
studies; Peer-reviewed journal literature, vendor/analyst
articles & conference papers whitepapers, and other

non-academic sources

76 J. Puthenpurackal Chakko et al.

3.2 Data Sources and Search Strategy

This study’s topic cuts across research in information systems, computer science, soft-
ware engineering, and project management. The search used six electronic databases
— ACM Digital Library, AIS Electronic Library, IEEE Xplore, Elsevier ScienceDirect,
Scopus, and Web of Science — to accommodate topics’ breadth.

The preliminary search process used multiple combinations of terms for inclu-
sion (like “agile,” “agility,” “lean,” “large scale,” “enterprise,” ‘“‘governance,’
“scaling,” “transformation,” “portfolio,” “project,” and “software”) and exclusion (like
“manufacturing,” “supply chain,” and “contract”) to observe patterns and relevance in
search outputs and to evolve suitable search criteria for the review. The final search string
applied against the Title, Abstract, and Keywords in each database® is as follows:

9 <

“agile” AND “portfolio” AND (“software” OR “information” OR “governance”
OR “scale” OR “lean”)

3.3 Study Selection Process

After removing duplicate results from the initial search (Stage 1), citations (n = 516) are
loaded into an EndNote library. The metadata to support retrieval and inclusion decisions
is maintained and tracked as review records in Microsoft Excel worksheets. The study
selection process spans three stages, as shown in Fig. 1.

Final
Select
21

Stage 1 —Identify Studies Stage 2 — Practical Screening
Import into EndNote & Excel, Review of titles, abstracts and
removal of duplicates keywords for context/relevance

Stage 3 — Quality Assessment
Review 33 (= 27 + 6) papers for
rigor, credibility, and relevance

Forward / Backward
Referencing

Fig. 1. The multi-stage study selection process

During Stage 2, the reviewer examined titles, abstracts, and keywords of each selected
paper using the inclusion and exclusion criteria (described in Table 2) to establish their
relevance to this review. After removing obvious exclusions (based on publication chan-
nels, research topics, and non-empirical papers), abstracts were scanned for factors such
as domain under investigation (describing portfolio management in the contexts other
than IT, like financial securities or product/service portfolios) and IS focus area (related
to IT strategy & planning, IT architecture, IT processes, IT capabilities, culture, and
performance instead of IT portfolio management or multi-project practices) to identify
papers that need to be eliminated from the review process. There were 27 papers selected
at the end of this second stage.

4 The search string was implemented in the syntax unique to each database. Database searches
were conducted in early June 2020.

Achieving Agility in IT Project Portfolios 77

The review employs a forward and backward snowballing process [39] using Google
Scholar® to examine the citations and the references included in the 27 selected papers.
This exercise identified six additional studies relevant to the topic that did not appear in
the search process.

Stage 3 performs a detailed full-text review of the 33 selected papers (27 papers
included from Stage 2 and six papers from the snowballing process) for their method-
ological rigor, the credibility of their results, and the relevance of their findings based on
quality assessment criteria guided by recommendations from Kitchenham and Charters
[37]. Of the six criteria identified, the first one (‘The research objective of this study is
pertinent to the review’) is used to eliminate studies where the objectives do not map to
the review’s objectives. The other five criteria describe factors relating to rigor, credibil-
ity, and relevance of the studies and are scored on a 5-point Likert response format from
‘Strongly Disagree’ (1) to ‘Strongly Agree’ (5) based on each study’s overall quality
and strength of evidence. Studies with mean scores lower than 2.5 (indicating quality
issues across most criteria) were removed from further review.

Based on the quality assessment results shown in Table 3, five studies were found
irrelevant to the review. Seven studies of insufficient quality were eliminated, resulting
in a final selection of 21 papers for further review.

3.4 Data Extraction and Synthesis of Findings

The final 21 studies selected for this review forms the input to the data extraction and
thematic synthesis [40] stage (see Appendix for the list of selected studies). The initial
data extraction captured bibliographic (author, year, source, and type of publication)
and contextual (the focus area, research objective, research design, study setting, data
collection & analysis methods, findings, and conclusions) information for each paper into
a structured Microsoft Excel spreadsheet. The EndNote library, including the associated
full-text files, was imported into nVivo to perform content analysis.

Each study is coded in nVivo for its setting, theoretical basis, findings, and results
using a set of code families based on the two research questions (‘impact to portfolio
practices’ and ‘approaches to support agile practices’) and on concepts from the theo-
retical framework like portfolio management [10, 11], agile principles [21] and project
governance [33]. These codes were reviewed and organized to represent conceptual
hierarchies that translated into themes.

3.5 Threats to Validity

We use factors such as internal validity, construct validity, external validity, and con-
clusion validity [41] to explore threats to this review’s validity. Since this review aims
to identify those portfolio management aspects impacted by agile delivery methods and
not to determine any causal factors, threats relating to internal validity are considered
irrelevant. Threats to construct validity relates to not having the right operational mea-
sures for the concepts under study. The study uses a formal review protocol created using
well-accepted guidelines for literature reviews [37, 38] and includes explicitly defined

5 https://scholar.google.com.

https://scholar.google.com

78 J. Puthenpurackal Chakko et al.

Table 3. Quality assessment criteria and results

No. Criteria Possible responses Results
1 The research (0) No 0 1 Five studies
objective of this (1) Yes eliminated
study is pertinent to 5 28
the review
1 2 4
2 The study describes | (1) Strongly Disagree 6 2 8 10
its context in (2) Disagree
sufficient detail (3) Neither
3 The research design Agree/Disagree 7 5 8 5 3
addresses study (4) Agree
objectives (5) Strongly Agree
4 The research 8 3 9 6 2

methods are
described with
adequate clarity

5 The findings & 6 3 7 9 3
results lead to
justifiable
conclusions

6 The study’s 4 3 9 8 4
outcomes
contribute to
knowledge or
practice

Distribution of mean scores across Criteria 2 to 5 6 1 13 6 2
(papers with mean scores < 2.5 eliminated)

data collection methods with clear inclusion/exclusion criteria and data extraction pro-
cess. The authors individually validated this review protocol to help ensure conceptual
relevance and mitigate potential threats to construct validity.

This systematic approach to the review enables reproducibility and enhances the
reliability of the review. It also makes the review context very visible and makes the
findings from selected studies amenable for generalization (or external validity). Hav-
ing incorrect search methods, inappropriate search terms and time-spans, biases in data
extraction and study selection, publication bias, and papers’ inaccessibility are the lead-
ing causes for missing relevant primary studies [41]. Search terms are kept aligned to
the research questions and selected based on agile software development and project
portfolio management concepts. The search string is kept generic enough to include
as many studies as possible that refer to the key terms of “agile” and “portfolio.” The
snowballing process and the searches across the six databases have helped minimize the
risk of missing out on relevant studies.

Achieving Agility in IT Project Portfolios 79

Issues in the interpretation of data could lead to potential threats to the study’s con-
clusion validity. An “audit trail” of review records maintained on an Excel spreadsheet
capturing detailed reasons for including or excluding a study mitigates against threats of
bias during data extraction. Studies varied in the detail provided around their methods,
their settings, analyses performed, and the conclusions drawn. These are reflected in the
quality assessment carried out in Stage 3, leading to the elimination of 12 studies (from
the 33 studies available for quality assessment) due to inadequate rigor and detail, thus
minimizing the risk of inaccuracy during data extraction.

4 Findings

The literature review identified 21 empirical studies relating to portfolio management
in environments using agile software development practices (Source studies are listed
in the Appendix and are referred to in upcoming sections using their identifiers ranging
from SO1 to S21). Figure 2 shows summarized bibliometric information.

o}

No. of Studies
A o
°
o
o
w
. :

Journal Article Conference
Paper

Publication Year —————— Publication Outlet

20 19 Agile Portfolio _ 9
Management
g 15 Transformation - 6
Experiences
Inter-team 3 @
Coordination -

No. of Studies
=y

5 Project Portfolio . 2
1 1 Management
0 I — Strategic 1
Management I
Qualitative Quantitative ~ Mixed
Methods 0 5 10
Research Methods ——————— Focus Areas

Fig. 2. Summarized bibliometric information

The distribution of publication dates (Fig. 2 — graph 1) reveals that research into
this area is sporadic and that much of the limited work in this area appears in the last
five years®. The selected studies included nine journal articles (43%) and 12 conference
papers (57%) (Fig. 2 — graph 2).

Most studies (19 studies or 90%) were based on qualitative research designs (Fig. 2
— graph 3). The case study method was by far the most common approach used to explore

6 Note that the search strategy had not used any date filters and the results include all available
papers until early June 2020 when the search was conducted.

80 J. Puthenpurackal Chakko et al.

portfolio management in agile environments (17 studies or 80%), with the researcher(s)
closely affiliated to the case organization(s).

The reviewed studies’ focus areas were classified into five groups to appreciate the
diversity of topics under research (Fig. 2 — graph 4). Nine studies (43%) investigated
agile portfolio management practices; six studies (29%) described enterprise-level agile
transformation efforts directly impacting portfolio management practices; three studies
(14%) researched implications of inter-team coordination in agile environments; two
studies (9%) explore project portfolio practices to enhance agility (although not directly
referring to agile methods) and one (5%) that delves into areas of strategic management
in context of portfolio management.

The studies called out potential effects of existing organizational mechanisms for
managing IT investments (19 studies —90%), human resources (15 studies — 71%), third-
party vendor management (14 studies — 67%) and cultural aspects like acceptance by
development teams and senior management commitment (21 studies — 100%) as crucial
factors to consider while modifying portfolio processes. These general observations are
similar to findings from past literature reviews on large-scale agile practices [32-35].
However, this review goes further to highlight a consistent need for portfolio processes
to mature further to enable agility at the enterprise level.

4.1 Impacts on Portfolio Practices

In response to the research question RQI1, the review process studied the reported
impacts on portfolio management practices and conceptually aggregated them into six
key themes. These themes represent IT portfolio management aspects impacted by agile
delivery methods and can be perceived as challenges in practice. Table 4 lists these
impacted portfolio areas.

Table 4. Impacted portfolio areas

No. | Impacted portfolio areas Source studies Count

Portfolio strategic alignment | SO1, S02, S03, S05, S06, S09, S10, S11, |15 (71%)
S13, S14, S16, S18, S19, S20, S21

2 Continuous delivery S03, S05, S07, S09, S13, S14, S17 7 (33%)
3 Adaptive nature S01, S04, S07, S09, S12, S13, S20 7 (33%)
4 Learning through feedback S03, S04, S07, S09, S14, S16, S17, S18, | 8 (38%)
5 Financial processes S01, S04, S06, S12, S13, S20 6 (29%)
6 Performance indicators S09, S13, S15, S16, S18, S19, S20 7 (33%)

Portfolio Strategic Alignment. Agileteams are characterized by increased interactions
within and across portfolio components and actors (like customers and stakeholders),
which increases portfolio level complexities (SO1, S05, S10, S18). Similarly, interde-
pendencies and conflicts across multiple agile development teams are resolved through

Achieving Agility in IT Project Portfolios 81

direct interactions across teams (S03, S21). Portfolio management practices need to
evolve to keep these interactions aligned to the strategic business objectives (S18) and
address project interdependencies (S11) within the portfolio.

While the emergent strategy can be supported through portfolio rebalancing or recon-
figuration (S09, S11, S13, S14, S16, S19), some studies highlight applying a continuous
improvement mindset to portfolio processes to enhance their capabilities to explore,
sense, and respond to emergent strategy (S10, S18, S20). Portfolio processes should
adequately communicate business strategy to all constituent teams (S01, S06, S18) to
make dependencies visible, to create shared mental models to facilitate coordination
(502), and for planning project resourcing (SO01, S09).

Continuous Delivery. Agile teams require ongoing portfolio prioritization and selec-
tion to maintain the constant cadence in delivering business outcomes through their back-
logs for each cycle (S05, S09, S13, S17) and to better support inter-team coordination of
dependencies (S14). This continuous portfolio process of “feeding the machine” (S03)
maintains the overall project delivery schedule and release plans. Portfolio processes
need streamlining and simplification to synchronize planning cycles across technical
iterations and business (S16) to help agile teams obtain adequate backlog information
just-in-time for upcoming delivery cycles (S07, S09, S13) and to avoid build-up of work
items that could rapidly become obsolete over time (S05).

Adaptive Nature. The review observes a need for a leaner business case process (SO1,
S04, S07, S09, S12, S13, S20) to accommodate the adaptive and self-organizing nature
of agile projects. Agile business cases provide “just enough” content needed to con-
sider an IT investment option with details getting incorporated as requirements emerge
with higher confidence (S12, S20) impact traditional portfolio governance and control
processes relying on detailed business case assessment using project characteristics like
scope, timelines, costs, benefits, and risks defined a priori [42]. Portfolio processes
need to bridge gaps between existing organizational processes aligned with traditional
stage-gate approaches and agile development processes (S04).

Learning Through Feedback. The classical portfolio management approach of mea-
suring project outcomes against pre-defined success (or failure) criteria based on upfront
plans is contrary to the agile way and can inhibit the organization from learning from its
project experiences (S04, S18). Concepts like lean-startup and learning through exper-
imentation (S17) in agile teams require portfolios to use continuous feedback mecha-
nisms across the development lifecycle (S09) on projects constructed as proof-of-concept
hypotheses (S04). Portfolio processes should extend the feedback-based learning mech-
anism from agile teams to adjacent business and management domains (S14) and sustain
organizational learning (S03).

Traditional portfolio approaches assume resources to be fungible and continually
(re)allocates them based on business priorities resulting in frequent context switching
that can create unrest (S14) and limit learning ability (S16).

Financial Processes. Portfolio mechanisms need to bridge the gap between shorter
and adaptive planning cycles required for agile development with the longer horizons
and stable plans mandated by the business (S04, S06, S12, S13). Traditional project

82 J. Puthenpurackal Chakko et al.

valuation methods (using measures like Net Present Value and Earned Value Analysis)
do not adequately support the use of agile value metrics (like Net Promoter Score, product
demo feedbacks, or metrics like cycle-time and throughput). (SO1, S04) The evolving
business case process also reflects this need to raise funding to a level higher than an
individual project (S20).

Performance Indicators. Portfolio metrics need to reflect enterprise performance at
the highest level to reflect the business impact of projects implemented (S09), and not
just be considered output control mechanisms (S13). Many of the traditional metrics,
like the Schedule Performance Index (SPI) and the Cost Performance Index (CPI), have
no relevance in an agile environment, requiring portfolio management to identify more
insightful metrics (S20). The sole study focusing on reporting in agile portfolios describes
it as an “information exchange mechanisms across boundaries of knowledge domains”
(S15). The portfolio could institute appropriate structures and routines (like a PMO) to
coordinate this knowledge exchange (S16, S19) and periodically assess how well the IT
portfolio and its constituent projects adapt to environmental changes (S18).

4.2 Agility Approaches in Practice

The review identified various portfolio practices that enterprises adopt to address (or at
least minimize) impacts from agile development methods to address the research ques-
tion RQ2. The respective organizational context plays a role in adopting these practices.
Since most studies in the review had an exploratory or descriptive focus, they do not
provide any causal insights into how a specific practice contributes to portfolio agility.
Table 5 shows these practices mapped to their respective portfolio areas of impact.

Portfolio Strategic Alignment. Portfolio backlogs showing strategic investment
themes and how they relate to portfolio components like epics, features, and stories
(509, S11), often implemented as Kanban (SO1) or portfolio walls (S09), provide end-to-
end portfolio visibility to enterprise stakeholders. They allow portfolios to continuously
adapt to upstream changes in business strategy or product line directions and ensure
appropriate downstream adaptations within teams (S05). End-to-end portfolio visibility
also aids in streamlining coordination across teams (S06, S11, S16, S21), strengthens
the communication process, facilitates joint decision-making, builds trust, and enhances
collaboration within the team and across stakeholders (S04, S13, S14). The PMO is an
enabling structure to manage this visibility (S14, S19, S20).

Continuous Delivery. Agile portfolios advocate short portfolio cycles (S10, S20) syn-
chronized at multiple integration points (S06) with project approvals and epic/solution
details provided just-in-time for immediately upcoming cycles (SO1, S03, S05, S09)
to ensure adequate utilization of the development pipeline and to avoid requirements
or projected benefits becoming stale while in the development pipeline. Collaborative
and visual planning led to better continuous planning outcomes (S11, S17). Continuous
prioritization of the portfolio (S04, S09) based on ongoing feedback keeps development
teams aligned to portfolio objectives (S13).

Achieving Agility in IT Project Portfolios 83

Table 5. Portfolio level approaches adopted to support agile methods

No. Portfolio area Approach adopted Source studies Count
1 Portfolio Strategic | Portfolio backlogs S01, S02, S04, S06, S07, 14 (67%)
Alignment provide end-to-end S09, S10, S11, S13, S14,
visibility S16, S19, S20, S21
PMO structures to S14, S19, S20 3 (14%)
facilitate visibility
2 Continuous Delivery | Shorter portfolio S06, S10, S20 3 (14%)
cycles
Collaborative S11, S17 2 (10%)
planning
JIT approvals S01, S03, S05, S09 4 (19%)
Continuous S04, S09, S13 3 (14%)
Prioritization
3 Adaptive nature Customer value as S01, S06, S09, S13 4 (19%)
the basis for
evaluation
Shorter planning S10, S20 2 (10%)
cycles
Planning at higher S04, S09, S14, S20 4 (19%)
levels of abstraction
4 Learning through None None
feedback
Financial Processes | Continuous forecasts | S09, S12, S13, S20 4 (19%)
Performance PMO structures to S13, S15, S19 3 (14%)
indicators facilitate reporting

Adaptive Nature. Business case evaluation and prioritization utilize portfolio parame-
ters based on customer value (S01, S06, S09, S13), although portfolio practitioners have
found it difficult to evolve acceptable, consistent, and measurable definitions of “value”
(S11). Traditional portfolio practices can support the adaptive nature of agile methods
by having shorter portfolio cycles (S06, S10, S20) and by defining projects as features
or value propositions (S04) at higher levels of abstraction (S20).

Learning Through Feedback. While agile methods applied at the team level facili-
tates learning through feedback cycles, none of the studies reported any conscious port-
folio practice to facilitate portfolio level learning. One study recommended knowledge
replication as a potential practice (SO7) but did not offer any further detail.

Financial Processes. Agile organizations are moving from budget controls to more of
an emergent outcome control model (S13). Rolling wave forecasts, where a continuous
cadence of forecasts replaces the traditional fixed horizon budget process, is a significant
shift in the way enterprises manage project funding (S09, S12, S20). Another meaningful

84 J. Puthenpurackal Chakko et al.

change is the shift towards funding product/feature teams instead of projects (S12) and
moving cost center planning to a more aggregated level (S11).

Performance Indicators. One study identifies a set of reporting practices used in port-
folios to share information across knowledge domain boundaries (S15) effectively. PMOs
have a role in consolidating and disseminating metrics across the portfolio, especially
end-to-end metrics like “Time to Market Improvement” and “Customer Satisfaction”
(S13, S15, S19).

5 Discussion

This literature review identifies six portfolio management aspects impacted by incorpo-
rating agile efforts in the portfolio (Sect. 4.1) to answer the first research question (RQ1).
The various antecedents linked to the challenges identified provide the background to
frame further research studies into these areas. In response to the second research ques-
tion (RQ2), the review recognizes practices/approaches adopted by enterprises to achieve
agility in their IT portfolios (Sect. 4.2). These practices/approaches are mapped to the
six aspects impacted by agile projects (RQ1) to reflect potential resolutions to the chal-
lenges identified. This review does not attempt to evaluate their relative merits due to the
varying level of exploratory detail across studies. Further empirical evaluation of these
practices and their contribution to portfolio success and agility through each of the six
portfolio management aspects is recommended.

Many studies in this review (SO01, S05, S06, S11, S13, S14, S18) have observed that
the field of agile portfolio management is relatively unexplored. This literature survey
shares the same view based on the low number of empirical studies (21 studies) identified.
An analysis of overall scores’ from the quality assessment conducted in Stage 3 leads to
an inference around the relatively low strength of evidence across many studies, possibly
requiring further research to validate their theoretical contribution claims.

5.1 Implications of Findings

Practitioners involved in scaling agile practices across an enterprise should view the
six portfolio management aspects impacted by agile delivery efforts as crucial fac-
tors in enabling portfolio level agility. Enterprises should reflect on the identified
practices/approaches using their respective organizational context since the reviewed
literature does not identify any specific causal relationship.

There are three implications to research and practice from the findings in this review.

1. Shifting from reactive to proactive approaches. Portfolio management literature
[10, 43, 44] acknowledges that maintaining strategic alignment is one of portfo-
lio management’s key objectives, achieved through top-down approaches aligning

7 Some descriptive statistics of the overall quality assessment scores are as follows: n = 21, mean
= 3.50, median = 3.20, min = 2.6, max = 4.8.

Achieving Agility in IT Project Portfolios 85

enterprise objectives to IT priorities [11]. This traditional approach towards portfo-
lio management appears reactive as it focuses on reconfiguring its components as
a response to business strategy changes. Studies in this review describe portfolio
backlogs and Kanban as tools to provide visibility into portfolio components, their
alignment to strategic themes, and their priorities (SO1, S09, S11), allowing for an
effective response to changes, once sensed. It is unclear how these tools help portfo-
lios become proactive in sensing changes to their dynamic environments to enable
enterprise agility.

One of the reviewed studies (S11) indicates that it could take months before a new
project is accepted into a supposedly agile portfolio — inhibiting the ability to enable
continuous delivery. Two studies (S06, S18) offer recommendations around continuous
portfolio exploration, and further investigation is needed to explain how portfolios could
shift to more proactive approaches to support continuous delivery expectations.

2. Adopting a systems-thinking approach. Sweetman et al. (S18) present a unique view
of an agile portfolio as a complex adaptive system. Cao et al. [45] had proposed the
study of agile software development projects as a dynamic, integrated system, given
its use of autonomous teams, frequent iterations incorporating feedback, and contin-
uous adaptation of product features. Therefore, a portfolio system, characterized by
its routines, structures, and values (S14), essentially becomes a “system of systems”
consisting of various individual agile efforts.

A systems-thinking approach could explore a portfolio system as a set of interactions
across multiple interconnected and interdependent components to collectively achieve
the portfolio objectives.

3. Changes to existing organizational processes. Studies indicate that existing strate-
gic planning and investment management processes impact agile portfolio imple-
mentations (S09, S12, S13, S20). Cao et al. [46] suggest that agile efforts require
modified enterprise project budgeting structures and processes due to limitations of
traditional project appraisal, expense capitalization, and contract valuation methods
[47]. Beyond Budgeting [48], Multi-Level Budgeting [49], and Real Options [50] are
alternate options to be further explored. Krebs [24] recommends the use of dynamic
financial models to drive portfolio agility, while the Scaled Agile Framework (SAFe)
advocates the practice of lean portfolio management [25], applying principles from
lean systems [51] to align strategy and execution. Dikert et al. [34] recognize the
crucial role of non-IT functions in successfully scaling agile practices across the
enterprise and recommends further research into this area.

5.2 Limitations of This Study

The explicitly defined review protocol detailing the various stages of the process miti-
gates most limitations related to potential biases in study selection and data extraction.
The more experienced researchers independently validated this review protocol to reduce

86 J. Puthenpurackal Chakko et al.

bias in the process. Although a sole researcher conducted the multi-stage study selection
process due to resource constraints, the “audit trail” of inclusion/exclusion decisions
helped traceability while reviewing the work.

Despite a widened search process to accommodate as many studies as possible across
the field of inquiry, only a few empirical studies (21 studies) were identified, meeting all
the pre-defined selection criteria. Coupled with the relatively low scores observed in the
quality assessment process, this indicates a need for further empirical research in this
area.

6 Conclusions and Future Research Directions

The six aspects of portfolio management identified in this review as impacted by agile
delivery (in response to RQ1) and the various solution approaches described (in response
to RQ2) present opportunities for future exploration to identify causal explanations, con-
figurational patterns, and the nature/extent of their relationships to agility and portfolio
success. While some of the reviewed studies illustrated how portfolios are reconfigured
to ‘respond’ to changes, there was no depiction of how portfolios ‘sense’ changes or
‘learn’ from these changes to optimize future responses. Future studies are needed to
understand the “sensing’ and ‘learning’ aspects of portfolio agility.

Using a systems-thinking lens to model and diagnose agile portfolio structures,
processes, and interactions is another potential research avenue, leading to the definition
and analysis of possible portfolio methods enabling agility at different levels of the
organization. Another research direction for the future could be around the systemic
interfaces and dependencies of adjacent organizational processes (like HR and Finance)
on portfolio practices and their impacts on agility.

This literature review makes three contributions to academic knowledge. Firstly, it
synthesizes current knowledge of how project portfolios enable IT agility while incorpo-
rating agile delivery efforts. Secondly, it responds to the specific questions by identifying
six portfolio management aspects impacted by agile delivery practices and a set of current
practices used within enterprises to contribute to portfolio agility. Finally, the implica-
tions of these findings have helped identify possible future research directions, some of
which are explored by the authors in the upcoming stages of designing an agile portfolio
management framework.

Appendix - Selected Studies

ID Citation

SO01 | Ahmad, M.O., Lwakatare, L.E., Kuvaja, P., Oivo, M., Markkula, J.: An empirical study
of portfolio management and Kanban in agile and lean software companies. Journal Of
Software: Evolution and Process 29(6), 1-16 (2017)

S02 | Bjgrnson, F.O., Wijnmaalen, J., Stettina, C.J., Dingsg@yr, T.: Inter-team coordination in
large-scale agile development: A case study of three enabling mechanisms. In:
International Conference on Agile Software Development 2018, pp. 216-231. Springer
(2018)

(continued)

Achieving Agility in IT Project Portfolios 87

(continued)

1D

Citation

S03

Dingsgyr, T., Moe, N.B., Fegri, T.E., Seim, E.A.: Exploring software development at
the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empirical Software Engineering 23(1), 490-520 (2018)

S04

Hansen, L.K., Brandt, C.J., Svejvig, P., Kampf, C.E.: Agile project portfolio
management, new solutions and new challenges: findings from four agile organizations.
In: EURAM Conference (2020)

S05

Hoffmann, D., Ahlemann, F., Reining, S.: Reconciling alignment, efficiency, and agility
in IT project portfolio management: Recommendations based on a revelatory case
study. International Journal of Project Management 38(2), 124-136 (2020)

S06

Horlach, B., Schirmer, 1., Drews, P.: Agile portfolio management: Design goals and
principles. In: 27th European Conference on Information Systems (ECIS),
Stockholm-Uppsala, Sweden 2019. AIS Electronic Library (AISeL) (2019)

S07

Imbrizi, F.G., Maccari, E.A.: Agile Software Development and Project Portfolio
Management in Dynamic Environments: An exploratory case study. In: International
Association for Management of Technology (2014)

S08

Kaufmann, C., Kock, A., Gemiinden, H.G.: Emerging strategy recognition in agile
portfolios. International Journal of Project Management (2020)

S09

Laanti, M., Sirki4, R., Kangas, M.: Agile Portfolio Management at Finnish
Broadcasting Company Yle. In: Scientific Workshop Proceedings of the XP2015,
pp. 1-7. ACM (2015)

S10

Petit, Y.: Project portfolios in dynamic environments: Organizing for uncertainty.
International Journal of Project Management 30(5), 539-553 (2012)

S11

Rautiainen, K., Von Schantz, J., Vihéniitty, J.: Supporting scaling agile with portfolio
management: Case Paf.com. In: 44th Hawaii International Conference on System
Sciences 2011, pp. 1-10. IEEE (2011)

S12

Sirkid, R., Laanti, M.: Adaptive Finance and Control: Combining Lean, Agile, and
Beyond Budgeting for Financial and Organizational Flexibility. In: 48th Hawaii
International Conference on System Sciences 2015, pp. 5030-5037 (2015)

S13

Smeekes, 1., Borgman, H., Heier, H.: A Wheelbarrow Full of Frogs: Understanding
Portfolio Management for Agile Projects. In: 51st Hawaii International Conference on
System Sciences 2018, pp. 5473-5482. IEEE (2018)

S14

Stettina, C.J., Horz, J.: Agile portfolio management: An empirical perspective on the
practice in use. International Journal of Project Management 33(1), 140-152 (2015)

S15

Stettina, C.J., Schoemaker, L.: Reporting in agile portfolio management: Routines,
metrics and artefacts to maintain an effective oversight. In: International Conference on
Agile Software Development 2018, pp. 199-215 (2018)

S16

Stettina, C.J., Smit, M.N.W.: Team portfolio scrum: An action research on multitasking
in multi-project scrum teams. In: International Conference on Agile Software
Development 2016, pp. 79-91 (2016)

(continued)

88

J. Puthenpurackal Chakko et al.

(continued)

1D

Citation

S17 | Suomalainen, T., Kuusela, R., Tihinen, M.: Continuous planning: an important aspect of

agile and lean development International Journal of Agile Systems and Management
8(2), 132-162 (2015)

S18 | Sweetman, R., Conboy, K.: Portfolios of Agile Projects A Complex Adaptive Systems’

Agent Perspective. Project Management Journal 49(6), 18-38 (2018)

S19 | Tengshe, A., Noble, S.: Establishing the Agile PMO: Managing variability across

Projects and Portfolios. In: Proceedings of Agile 2007, pp. 188-193. IEEE (2007)

S20 | Thomas, J.C., Baker, S.W.: Establishing an agile portfolio to align IT investments with

business needs. In: Proceedings of Agile 2008, pp. 252-258. IEEE (2008)

S21

Vlietland, J., van Vliet, H.: Towards a governance framework for chains of Scrum
teams. Information and Software Technology 57, 52-65 (2015)

References

10.
11.
12.

13.
14.

. Weill, P, Woerner, S.L.: Thriving in an increasingly digital ecosystem. MIT Sloan Manag.

Rev. 56(4), 27 (2015)

Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the enabling role of
information technology. Eur. J. Inf. Syst. 15(2), 120-131 (2006)

Leonhardt, D., Haffke, 1., Kranz, J., Benlian, A.: Reinventing the IT function: the role of IT
agility and IT ambidexterity in supporting digital business transformation. In: Proceedings of
the 25th European Conference on Information Systems (ECIS), pp. 968-984 (2017)
Serrador, P., Pinto, J.K.: Does Agile work?—A quantitative analysis of agile project success.
Int. J. Project Manag. 33(5), 1040-1051 (2015)

. Dingsgyr, T., Moe, N.B.: Towards principles of large-scale agile development. In: Dingsgyr,

T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP, vol.
199, pp. 1-8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14358-3_1
Horlach, B., Bohmann, T., Schirmer, L., Drews, P.: IT governance in scaling agile frameworks.
In: Proceedings of the Multikonferenz Wirtschaftsinformatik, Liineburg 2018, pp. 1789-1800
(2018)

. Levine, H.A.: Project Portfolio Management: A Practical Guide to Selecting Projects,

Managing Portfolios, and Maximizing Benefits. Jossey-Bass, San Francisco (2005)

. Meskendahl, S.: The influence of business strategy on project portfolio management and its

success—a conceptual framework. Int. J. Project Manag. 28(8), 807-817 (2010)

. Blichfeldt, B.S., Eskerod, P.: Project portfolio management—there’s more to it than what

management enacts. Int. J. Project Manag. 26(4), 357-365 (2008)

Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: New problems, new solutions: making portfolio
management more effective. Res.-Technol. Manag. 43(2), 18-33 (2000)

Miiller, R., Martinsuo, M., Blomquist, T.: Project portfolio control and portfolio management
performance in different contexts. Proj. Manag. J. 39(3), 28-42 (2008)

McFarlan, E.W.: Portfolio approach to information systems. Harvard Bus. Rev. 59(5), 9 (1981)
Markowitz, H.: Portfolio selection. J. Finance 7(1), 15 (1952)

US General Accounting Office (GAO): Improving Mission Performance through Strate-
gic Information Management and Technology (1994). https://www.gao.gov/special.pubs/ai9
4115.pdf

https://doi.org/10.1007/978-3-319-14358-3_1
https://www.gao.gov/special.pubs/ai94115.pdf

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Achieving Agility in IT Project Portfolios 89

. Maizlish, B., Handler, R.: IT (Information Technology) Portfolio Management Step-by-step:

Unlocking the Business Value of Technology. Wiley, Hoboken (2005)

. De Haes, S., Van Grembergen, W.: An exploratory study into IT governance implementations

and its impact on business/IT alignment. Inf. Syst. Manag. 26(2), 123-137 (2009)

Ahola, T., Ruuska, L., Artto, K., Kujala, J.: What is project governance and what are its origins?
Int. J. Project Manag. 32(8), 1321-1332 (2014)

Kujala, J., Aaltonen, K., Gotcheva, N., Pekuri, A.: Key dimensions of project network gover-
nance and implications to safety in nuclear industry projects. In: EURAM 2016: Manageable
Cooperation? (2016)

Digital.ai: The 14th Annual State of Agile Survey (2020). https://explore.digital.ai/state-of-
agile/14th-annual-state-of-agile-report

Sutherland, J., Schwaber, K.: The Scrum Guide. scrumguides.org (2017). https://www.scr
umguides.org/scrum-guide-2017.html

Beck, K., et al.: Manifesto for Agile Software Development (2001). https://agilemanifesto.
org/

Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodologies.
Commun. ACM 50(3), 79-83 (2007)

Budzier, A., Flyvbjerg, B.: Making sense of the impact and importance of outliers in
project management through the use of power laws. In: Proceedings of IRNOP (International
Research Network on Organizing by Projects), Oslo (2013)

Krebs, J.: Agile Portfolio Management. Microsoft Press, Redmond (2008)

Scaled Agile Framework: SAFe 5.0 Framework - SAFe Big Picture. Scaled Agile Framework
(2020). https://www.scaledagileframework.com/

Hansen, L.K., Kremmergard, P.: Discourses and theoretical assumptions in IT project port-
folio management: a review of the literature. Int. J. Inf. Technol. Proj. Manag. (IJITPM) 5(3),
39-66 (2014)

Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: 2010 Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and
Applications, pp. 74-88. ACM (2010)

Karlstrom, D., Runeson, P.: Integrating agile software development into stage-gate managed
product development. Empir. Softw. Eng. 11(2), 203-225 (2006). https://doi.org/10.1007/s10
664-006-6402-8

Abrantes, R., Figueiredo, J.: Resource management process framework for dynamic NPD
portfolios. Int. J. Project Manag. 33(6), 1274-1288 (2015)

Lee, G., Xia, W.: Toward agile: an integrated analysis of quantitative and qualitative field data
on software development agility. MIS Q. 34(1), 87-114 (2010)

Theobald, S., Schmitt, A., Diebold, P.: Comparing scaling agile frameworks based on under-
lying practices. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 88-96. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_11

Alqudah, M., Razali, R.: A review of scaling agile methods in large software development.
Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 828-837 (2016)

Lappi, T., Karvonen, T., Lwakatare, L.E., Aaltonen, K., Kuvaja, P.: Toward an improved
understanding of agile project governance: a systematic literature review. Proj. Manag. J.
49(6), 39-63 (2018)

Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87-108 (2016)

Ahmad, M.O., Dennehy, D., Conboy, K., Oivo, M.: Kanban in software engineering: a
systematic mapping study. J. Syst. Softw. 137, 96-113 (2018)

Tranfield, D., Denyer, D., Smart, P.: Towards a methodology for developing evidence-
informed management knowledge by means of systematic review. Br. J. Manag. 14(3),
207-222 (2003)

https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://www.scrumguides.org/scrum-guide-2017.html
https://agilemanifesto.org/
https://www.scaledagileframework.com/
https://doi.org/10.1007/s10664-006-6402-8
https://doi.org/10.1007/978-3-030-30126-2_11

90

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

J. Puthenpurackal Chakko et al.

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering (2007)

Okoli, C.: A guide to conducting a standalone systematic literature review. Commun. Assoc.
Inf. Syst. 37(1), 43 (2015)

Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in soft-
ware engineering. In: 2014 Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 1-10 (2014)

Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: 2011 International Symposium on Empirical Software Engineering and Measurement,
pp. 275-284. IEEE (2011)

Zhou, X., Jin, Y., Zhang, H., Li, S., Huang, X.: A map of threats to validity of systematic
literature reviews in software engineering. In: 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), pp. 153-160. IEEE (2016)

Archer, N.P., Ghasemzadeh, F.: An integrated framework for project portfolio selection. Int.
J. Project Manag. 17(4), 207-216 (1999)

Killen, C.P., Hunt, R.A., Kleinschmidt, E.J.: Managing the new product development project
portfolio: a review of the literature and empirical evidence. In: PICMET 2007 Portland Inter-
national Conference on Management of Engineering & Technology 2007, pp. 1864—-1874.
IEEE (2007)

Martinsuo, M., Lehtonen, P.: Role of single-project management in achieving portfolio
management efficiency. Int. J. Project Manag. 25(1), 56-65 (2007)

Cao, L., Ramesh, B., Abdel-Hamid, T.: Modeling dynamics in agile software development.
ACM Trans. Manag. Inf. Syst. (TMIS) 1(1), 1-26 (2010)

Cao, L., Mohan, K., Ramesh, B., Sarkar, S.: Adapting funding processes for agile IT projects:
an empirical investigation. Eur. J. Inf. Syst. 22(2), 191-205 (2013)

Moran, A.: Managing Agile: Strategy, Implementation, Organisation and People. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16262-1

Sahota, M., Bogsnes, B., Nyfjord, J., Hesselberg, J., Drugovic, A.: Beyond Budgeting: a
Proven Governance System Compatible with Agile Culture. BBRT (2014). http://bbrt.co.uk/
bbfiles/BeyondBudgetingAgileWhitePaper_2014.pdf

Knaster, R., Leffingwell, D.: SAFe 4.5 Distilled: Applying the Scaled Agile Framework for
Lean Enterprises. Addison-Wesley Professional, Boston (2018)

Racheva, Z., Daneva, M.: Using measurements to support real-option thinking in agile soft-
ware development. In: Proceedings of the 2008 International Workshop on Scrutinizing Agile
Practice (Shoot-out at the agile corral), pp. 15-18. ACM (2008)

Reinertsten, D.G.: The Principles of Product Development Flow: Second Generation Lean
Product Development. Celeritas, Redondo Beach (2009)

https://doi.org/10.1007/978-3-319-16262-1
http://bbrt.co.uk/bbfiles/BeyondBudgetingAgileWhitePaper_2014.pdf

®

Check for
updates

A Systematic Literature Review
on Implementing Non-functional
Requirements in Agile Software
Development: Issues and Facilitating
Practices

Aleksander Jarzebowicz®)@® and Pawel Weichbroth

Gdarnsk University of Technology, Faculty of Electronics,
Telecommunications and Informatics, Department of Software Engineering,
11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
{aleksander. jarzebowicz,pawel.weichbroth}@pg.edu.pl
http://wuw.pg.edu.pl

Abstract. Agile Software Development methods have become a
widespread approach used by the software industry. Non-functional
requirements (NFRs) are often reported to be a problematic issue for such
methods. We aimed to identify (within the context of Agile projects): (1)
the issues (challenges and problems) reported as affecting the implemen-
tation of NFRs; and (2) practices that facilitate the successful imple-
mentation of NFRs. We conducted a systematic literature review and
processed its results to obtain a comprehensive summary. We were able
to present two lists, dedicated to issues and practices, respectively. Most
items from both lists, but not all, are related to the requirements engi-
neering area. We found out that the issues reported are mostly related to
the common themes of: NFR documentation techniques, NFR traceabil-
ity, elicitation and communication activities. The facilitating practices
mostly cover similar topics and the recommendation is to start focusing
on NFRs early in the project.

Keywords: Non-functional Requirements - Quality requirements -
Agile Software Development - Agile requirements engineering -
Systematic literature review

1 Introduction

Agile Software Development (ASD) is an iterative approach to delivering soft-
ware products. The term “agility” implies adaptability [1], flexibility [2], and close
collaboration with the customer [3]. An Agile approach assumes sensible values
such as trust [4], responsibility [5] and loyalty [6]. Around half of organizations
have now been applying Agile practices for over three years to adopt change and
transformation management [7]. Moreover, the results from a survey conducted

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 91-110, 2021.
https://doi.org/10.1007/978-3-030-67084-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_6&domain=pdf
http://orcid.org/0000-0003-3181-4210
http://orcid.org/0000-0002-1645-0941
https://doi.org/10.1007/978-3-030-67084-9_6

92 A. Jarzebowicz and P. Weichbroth

in 2018 among software industry practitioners show that 97% of respondents
declared using Agile methods [8]. In fact, the benefits of adopting Agile prac-
tices have been reported in many studies [9-11], indicating an increase of team
productivity, motivation and discipline, as well as overall software quality, just
to name a few.

Indeed, software quality is an important aspect to be considered during the
software lifecycle [12,13], usually defined in terms of high-level attributes [14].
Alternatively, one can impose additional constraints on the behavior of the sys-
tem. In other words, the required properties (attributes and constraints) are
specified as non-functional requirements (hereafter, NFRs), in addition to func-
tional requirements (FRs). Since the beginning of software development as a job
role, NFRs have been recognized as critical factors that affect the acceptance
and use of the products by the users [15].

In fact, to mitigate the risk of users’ dissatisfaction by misunderstanding or
disregarding their expectations and needs, active user involvement is imperative
in ASD [16-18]. However, one question arises naturally: Does this user engage-
ment bring other risks, and does the development team need to find a balance
between risk and benefits?

Undeniably, the search for the answer to this question has been the sub-
ject of vast research [19-21], since the introduction of the Agile Manifesto [22].
Nevertheless, few studies provide an evidence-based review and analysis on the
subject of implementing NFRs, in particular regarding the issues that could arise
with the advance of ASD, as well as the practices that have been documented
as successful facilitators.

The values and principles followed in ASD also result in practices different
than those used in more traditional software development methods. It includes
requirements engineering practices [23], which e.g. assume continuous close coop-
eration with the customer [24], put more emphasis on face-to-face communication
[25], and use less formal techniques like collaborative games [26].

Both researchers and practitioners have repeatedly noted the challenges in
Agile requirements engineering. For example, the results from a Delphi study
[27], performed in 2017 in a group of 26 experts, show that one of the recognized
challenges is to “establish non-functional requirements”, which has been reported
by prior other studies [25,28,29]. The comprehensive know-how with regard to
the more detailed challenges and relevant counteractions is not available though.
The only available secondary study focusing on NFRs in ASD at the time we
started our research was the SLR by Alsaquaf et al. [30]. That SLR was consid-
ered by its authors as a starting point for further empirical studies and several
primary studies were published since then. To systematize the current state of
the art, in this paper, we put forward these two following research questions

(RQs):

1. What issues affect the identification and implementation of non-functional
requirements in ASD?

2. What practices facilitate the successful identification and implementation of
non-functional requirements in ASD?

An SLR on Implementing NFRs in Agile Software Development 93

Therefore, the goal of this study is to review and analyze the existing studies
and their outcomes and to summarize the documented issues and applied prac-
tices, in the extent of NFR identification and implementation, within the ASD
context. To provide evidence-based and state-of-the-art answers to the above
questions we conducted a systematic literature review (SLR).

By design, the results of this study are complementary to the existing body
of knowledge by providing the following contributions to the software engineer-
ing discipline: the collections of (i) the current issues (challenges and problems),
and (%) the explicit practices that, respectively, affect and facilitate the identifi-
cation and implementation of NFRs within ASD. Moreover, the findings in this
paper entail useful implications for researchers and practitioners alike. In this
context, while the former group might be interested in investigating the impact
of particular issues on the success (failure) of ASD projects, the latter group
might be willing to mitigate those issues by adopting the practices in the scope
and content due to the current needs and priorities.

The remainder of this paper is laid out as follows. Section 2 describes the
rationale behind implementing NFRs. Section 3 provides the description of the
research methodology, applied to conduct the systematic literature review. The
results are given in Sect. 4, followed by their discussion in Sect.5. Finally, the
paper is concluded in Sect. 6.

2 Rationale Behind Implementing NFRs

Generally speaking, non-functional requirements (NFRs), also known as qual-
ity requirements, define the users’ expectations and needs regarding a software
product, as well as their particular notions of its qualities. According to Svens-
son et al. [31], the most important quality attributes in industrial practice relate
to usability, performance, reliability, stability, safety, security/integrity, compli-
ance, maintainability, reusability and interoperability. Unmistakably, NFRs have
great importance in software product development [31-33].

Besides this, NFRs can also impose global constraints on a software product
[34], arising from all of its parts as well as from interdependencies between them
[35]. In other words, NFRs put constraints on how the product’s functions must
work [36]. Overlooking or even neglecting information related to quality facets
negatively affects the final product. Ironically, although it might be surprisingly
different from common sense, NFR-related errors are still claimed to be the most
difficult to correct, and the most expensive [37]. It is a major risk, especially
considering that in recent years software defects have become the dominant
cause of user outage [38].

Undeniably, both researchers and practitioners from ASD communities have
seen the need to capture, document and prioritise NFRs [39]. For instance,
Microsoft, the largest software and programming company worldwide [40], rec-
ommends capturing functional and non-functional requirements alike, since the
former indicate whether the application does the right thing, while the latter
determine whether the application does those things well [41]. Oracle, the sec-
ond largest software corporation, argues that “the key to successful software

94 A. Jarzebowicz and P. Weichbroth

development is that all stakeholders develop a clear and uniform understanding
of application requirements” [42].

Furthermore, we also acknowledge the importance of NFRs as the major
external quality facets of the software products from the user’s perspective [43].
The questions addressed in this study are narrowed to ASD, which assumes
having the user(s) actively involved. If one compares Agile with traditional
approaches, this involvement is not limited to the early stages of the devel-
opment process. On the contrary, Agile development principles encourage active
user involvement, being generally considered to contributing to user satisfaction
[44,45] and project success [46].

3 Methodology

We designed and executed the systematic literature review following the guide-
lines for SLR studies in software engineering elaborated by Kitchenham and
Charters [47]. The definition of the search query and query execution in Scopus
(phase 1 of SLR process) are shared with our other study aimed at identification
of particular NFR-related requirements engineering techniques [48]. The inclu-
sion/exclusion criteria were however defined with respect to this study’s aim and
subsequent phases of the SLR process were conducted separately in each of two
studies.

We chose to rely on a single publication database (Elsevier Scopus). Scopus
was selected because it indexes a large number of journals and conferences [49]
and enables a single search query to access items from a broad variety of publish-
ers [50]. It is worth noting here that in several other SLR studies similar to ours
(e.g. [30,51]) similar strategies were applied, in particular exclusively relying on
the Scopus database.

3.1 Inclusion and Exclusion Criteria
The papers were eligible based on the five following inclusion criteria:

— peer-reviewed papers (I1);

— papers in English (I12);

— papers published since 2008 (13);

— papers related to the software engineering domain (14);
— papers covering Agile development and NFRs (I5).

The papers were screened prior to acceptance and were further rejected if
they had any of the following exclusion criteria:

— papers not providing any information about NFR issues or practices in ASD
(E1);

— papers not available for download, despite extensive search (E2);

— papers reporting the same results covered by another source included in SLR
- in such cases the latest paper was included (E3);

An SLR on Implementing NFRs in Agile Software Development 95

— papers dedicated to a very specific subarea of NFRs (e.g. with proposals of
advanced methods of establishing security requirements) (E4).

We focused on papers published since 2008 to include all works published
in the last 12years before the conduction of the SLR. We also decided to
include papers dedicated to a specific project context (e.g. large-scale distributed
development), but to exclude papers with very narrow scope (E4) e.g. with
advanced dedicated analysis methods suggested as facilitating practices for secu-
rity requirements, which are hard to consider as an issue or practice regarding
the whole category of NFRs.

3.2 Search Query Definition

As we had performed some initial searches before planning the SLR, we were
aware that sources dedicated to this topic of interest are rather scarce. This led
us to the decision to cast a wider net and try to identify all sources focusing
on NFRs in Agile, thus we used more generic keywords instead of those exactly
matching our RQs (e.g. “challenges” or “practices”).

The following search string was used:

TITLE-ABS-KEY ((agile OR scrum OR lean OR xp OR kanban) AND (nfr
OR “non-functional requirements” OR “quality requirements”)) AND PUBYEAR
> 2007 AND (LIMIT-TO(DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”,
OR LIMIT-TO (DOCTYPE, “ch”)) AND (LIMIT-TO (SUBJARFEA, “COMP”)
OR LIMIT-TO (SUBJARFEA, “ENGI”) OR LIMIT-TO (SUBJAREA, “MATH”)
OR LIMIT-TO (SUBJAREA, “BUSI”) OR LIMIT-TO (SUBJAREA, “DECI”))
AND (LIMIT-TO (LANGUAGE, “English”))

The string includes various methods that could possibly be mentioned in
the title, keywords etc. instead of the generic “Agile” term. We also provided
alternative terms commonly used to denote an NFR. The types of documents
mentioned in the search string match peer-reviewed papers. The specification of
subject areas resulted from our knowledge, in particular on how some sources
(especially the series that include conference proceedings as its volumes) are
classified and indexed by Scopus. The search in titles, abstracts and keywords
was chosen as the most comprehensive option available (Scopus does not enable
searching the contents of full texts).

3.3 Search Strategy
We defined a process that comprised 3 main phases:

1. Execution of the search query.

2. Manual review of titles, keywords and abstracts of the papers retrieved from
the search to exclude those not related to the topic of NFR in an Agile context.

3. Manual review of each remaining paper’s full text in order to decide whether
to finally include it or not. Identification of information pieces relevant to our
RQs and assigning codes to them.

96 A. Jarzebowicz and P. Weichbroth

3.4 Search Execution

The results of the 3 phases defined in the previous section were as follows:

Phase 1: The search was executed on November 28th 2019. Despite including
several alternative keywords in the search string, the search returned only 159
papers. This confirmed our initial suspicions that the topic of “NFR in Agile” is
not widely addressed in the scientific papers, at least those indexed by Scopus.

Phase 2: The results retrieved by the Scopus search engine (that include
title, keywords and the abstract of each paper found) were manually reviewed.
It allowed us to verify the findings against I5 criterion more precisely than in the
case of relying on an automated search and to reject papers that reported nothing
on NFRs (for example, several papers referring to “quality requirements” turned
out to interpret this term as “well-documented/valid requirements” instead of
“requirements regarding system quality”). As a result, 71 papers were retained
at the end of this phase.

Phase 3: In this phase, the papers were reviewed and checked against exclu-
sion criteria E1-E4. Finally, 44 papers were qualified to extract information.
Moreover, we evaluated the papers with regard to (i) the use of appropriate and
rigorous research methods, (i) clarity and coherence of the research findings,
and (i) providing a validation of the proposed approach. During the review,
apart from just deciding on the paper’s final classification, the fragments relevant
to the RQs were identified and provided with codes to summarize the findings.
Next, the codes were reviewed to identify similarities, and related codes were
grouped into the more generic ones presented in the Results section.

4 Results

The final results of the SLR are presented in Tables1 and 2. For each issue
reported and facilitating practice suggested, a list of papers mentioning it is pro-
vided (“Sources” column). We also explicitly distinguish issues/practices related
to requirements engineering activities (“RE” column) from those that should
rather be associated with e.g. testing, architectural design or project manage-
ment. Both tables are sorted starting from with the items quoted by the most
sources. The elaboration of results with respect to the answers they provide to
RQs is provided in 4.1 and 4.2.

4.1 What Issues Affect the Identification and Implementation of
Non-functional Requirements in ASD?

The most frequently reported issue concerns neglecting NFRs (I1) i.e. the situa-
tion in which developers and/or stakeholders focus on the system’s functionality
and do not identify NFRs in a sufficient manner, often postponing such task to
a later stage of the project. Unfortunately, it often results in significant rework
effort, as NFRs are not necessarily simple additions and are likely to substantially
affect the system architecture. It should be stated that this issue, while men-
tioned by many papers, is not always based on experience or empirical findings

Table 1. Problems and challenges affecting development of NFRs in ASD

An SLR on Implementing NFRs in Agile Software Development

ID | Problem/challenge RE |Sources
I1 |Neglecting NFRs (usually while focusing on FR) + 1]25], [52], [53], [54],
[55], [56], [57], [58],
[59], [60], [61], [62],
[63], [64], [65], [66],
167]
I2 |Misunderstandings regarding NFRs specified as + |[62], [68], [69], [70],
User Stories (or similar simplified representation) [71], [72], [73]
I3 |Lack of recognition of NFRs by stakeholders + |[25], [52], [55], [60],
[74], |75]
I4 |Difficulties with documenting the NFRs in a way |+ |[52], [55], [63], [65],
that exposes their dependencies [67]
I5 |Lack of traceability mechanisms of NFRs + |[58], [67], [76], [77]
I6 |Inadequate NFR test specification to verify their |+ |[[52], [57], [74], [78]
implementation
I7 |Insufficient knowledge/competencies (advanced + [52], [55], [75]
NFR concepts) in the project team
I8 | Overlooking sources of NFRs (stakeholders) + |[52], [55], [74]
19 |Unclear conceptual definition of NFRs (how to + 1[25], [52], [79]
document them)
110 | NFRs are affected by changes in FRs + 1167], [80], [81]
I11 | Sporadic adherence to quality guidelines by Agile [52], [55], [74],
teams
112 | Suboptimal inter-team organization (around [52], [55], [74]
components, scenarios or functional teams e.g.
testers) leading to poor implementation of NFRs
113 | Late detection of NFRs’ infeasibility + [[52], [74]
114 | Ambiguous NFRs communication process + [[52], [67]
115 | NFRs stored outside of backlog, in an external + 1139, [71]
document and thus not always addressed
116 | Hidden assumptions regarding NFRs [52], [74]
implementation in inter-team collaboration (in a
large scale project)
117 | Misunderstanding the architecture drivers [52], [74]
(priorities of NFRs) between teams
118 | Lengthy NFR acceptance checklist (e.g. DoD) + 1[52]
119 | Agile process does not include a feedback loop + [[55]
regarding NFRs
120 | Unmanaged architecture changes [52]
121 | Lack of cost-effective real integration test [52]
122 | Adopting legacy architectural decisions complicate [74]
the implementation of NFRs of the new system
123 | Moving to Agile with a waterfall mind-set [74]
124 | Difficult testing to verify NFRs as it requires [82]

associated FR to be already implemented

97

98

A. Jarzebowicz and P. Weichbroth

Table 2. Practices facilitating implementing NFRs in ASD

ID |Practice RE | Sources

P1 |Use modified or additional specification techniques |+ |[60], [61], [62], [63], [65],
for NFRs (including those adopted from [66], [67], [70], [71], [75]
plan-driven approaches)

P2 |Maintain traceability between FRs and NFRs + |[58], [63], [65], [76], [77],

(80], [81], [83]
P3 |Start focusing on NFRs early in the project + |[61], [64], [66], [79], [84],
85], [86]

P4 |Document NFRs using standard ARE specification |+ |[55], [56], [71], [73], [84],
techniques (e.g. US, DoD, AC) [87], [88]

P5 | Use automated monitoring tools, e.g. SONAR, to [52], [53], [54], [55], [74],
monitor quality of software under development [87], [89]

P6 |Involve NFR specialists (e.g. a team of specialists |+ |[52], [55], [57], [67], [74]
that ensures proper implementation of NFRs or an
NFR stakeholder)

P7 |Involve multiple roles and viewpoints to elicit + |[62], [66], [67], [78], [90]
and/or review NFRs

P8 |Educate and raise awareness about the importance |4+ |[55], [79], [90]
of (particular) NFRs

P9 |Use patterns/templates catalogue to specify NFRs |+ |[53], [62], [91]

P10 | Establish preparation team (responsible for NFRs, [52], [74], [87]
architecture and distribution of backlog items to
development teams)

P11 | Use abstract but easy to grasp terms by user + 78], [84]
and/or alternatives to elicit NFRs from
stakeholders

P12 | Use multiple product backlogs to include + |[52], [74]
requirements of different viewpoints

P13 | Use supporting systems providing NFR + | [54], [92]
recommendations

P14 | Instead of specifying NFRs as epics, user stories + |[69], [93]
etc., use a similar but distinct structure dedicated
to NFRs

P15 | Reserve part of the sprint for important NFRs [52], [74]

P16 | Introduce Sprint allocation based on multiple [52], [74]
Product Backlogs (e.g. 1 - FRs, 2 - NFRs, 3 -
CI/CD requirements)

P17 | Establish components teams (each team solely [52], [74]
responsible for a given component and its quality)

P18 | Introduce innovation and planning iteration (IP, [52], [74]
term from SAFe) to resolve technical debts related
to NFRs

P19 | Conduct NFR-oriented code reviews [55], [87]

P20 | Explain to the stakeholders the consequences of + |[84]
overspecified NFRs

P21 | Maintain an assumption wiki-page + |[52]

P22 | Use CI environment to utilize automated NFR [82]
testing

P23 | Establish an independent team to test NFRs’ [79]

implementation

An SLR on Implementing NFRs in Agile Software Development 99

but sometimes treated as “common knowledge” or quoted from other referenced
papers. On the other hand, the frequent occurrence of such issue is confirmed
by more general studies not dedicated to NFRs but listing the general problems
and challenges related to ASD and/or requirements engineering (examples are
given in Sect.5.1).

A number of issues can be attributed to limitations of the simplified require-
ments documentation techniques (e.g. user stories, story cards) commonly used
in Agile methods. In application to NFRs, such techniques can turn out to be
insufficient to express NFRs in an unambiguous way (I2). Another reported
shortcoming of such techniques is the difficulty in representing the dependencies
between a given NFR and other related requirements (I4). An open issue of how
to represent NFRs is also reported as a doubt explicitly expressed by Agile teams
(I9). While in some projects, a workaround in the form of a separate document
dedicated to NFRs is used, it can also cause difficulties as the project team can
focus on the FRs typically stored in the product backlog and do not sufficiently
rely on external documents including that for NFRs (I15).

NFRs are more difficult to capture and cause problems both for stakeholders
and for the project team. The stakeholders may even not recognize their needs
that have to be captured as NFRs (I3). The project team may in turn lack the
knowledge and competencies necessary to identify and implement some NFRs,
especially when advanced concepts related to e.g. security or performance need
to be used (I7).

The elicitation and communication of NFRs is another category of issues.
Requirements elicitation can fail to involve all of the relevant stakeholders (I8)
and result in NFRs that do not reflect all viewpoints or even omit some important
requirements. NFRs are also quite hard to express, thus their communication
(both from the stakeholder to the project team, and between team members)
can be prone to errors (I14). Moreover, in large scale development projects,
involving multiple teams, additional communication problems are likely to arise
(I12, 116, I17). Several drawbacks in handling NFRs can result in a situation
of late detection of NFR infeasibility (I13), especially considering the lack of a
feedback loop regarding NFRs (I19).

Several issues related to NFR traceability and verifiability are reported as
well. A lack of NFR traceability mechanisms is claimed in general (I5), but also
several more specific issues are described. Traceability of NFRs is even more
important as NFRs are frequently affected by changes in FRs (110). It is difficult
to develop test specifications associated with NFRs, which are intended to verify
their implementation (I6). Moreover the execution of such tests requires the
associated FRs to be already implemented (I24). The cost-effectiveness of some
tests is also disputed (I21). The manual verification of DoD can be cumbersome
as well, especially in case of a lengthy checklist (I18).

The remaining issues are either related to project team members’ attitudes
(111, 123) or architectural design activities (120, 122).

100 A. Jarzebowicz and P. Weichbroth

4.2 What Practices Facilitate the Successful Identification and
Implementation of Non-functional Requirements in ASD?

A number of practices dedicated to the documentation of NFRs can be found
in the literature, even though some of them seem to be mutually contradictory.
The issue of the insufficiency of the popular Agile requirements documentation
techniques can be addressed by utilizing modified or additional specification
techniques (P1). Such techniques are to be applied to NFRs only (while FRs are
still recorded as e.g. user stories). Some proposals include techniques adopted
from plan-driven approaches.

Alternatively, other sources recommend making sure that NFRs are docu-
mented together with FRs, using the same, typical representations, e.g. user
stories, Definition of Done, Acceptance Criteria (P4). There is also a kind of
intermediate solution suggested - instead of specifying NFRs as epics, user sto-
ries etc. and mixing them with FRs, a similar but distinct structure dedicated
to NFRs can be used (P14). Also, assumptions related to the implementation of
NFRs are worth documenting using, e.g. a wiki-page (P21).

Focusing on NFRs in an early phase of the project (P3) is a suggestion that
can possibly minimize the rework caused by omitted NFRs. Multiple roles and
viewpoints should be involved to elicit and/or review NFRs (P7). A number
of more detailed practices facilitating requirements elicitation from stakehold-
ers can also be found, e.g. using proper terms (P11) or explaining the con-
sequences of NFRs expressed by stakeholders (P20), especially in the case of
“over-specification”. Another good idea is to educate and raise awareness about
importance of NFRs (P8) - in general or with respect to some categories of
NFRs which are not sufficiently recognized. Both stakeholders and project team
members can be educated in such a manner.

As NFRs can be difficult to identify and even harder to implement, it is pos-
sible to strengthen the competencies of the project team by involving NFR spe-
cialists (P6). For example, a security expert can enable the elicitation of relevant
security requirements and later verify their implementation. As the stakehold-
ers may not be able to identify the NFRs themselves, external resources such
as catalogues of NFR patterns/templates (P9) or dedicated supporting systems
providing recommendations (P13) can be used as additional sources of NFRs.

Maintenance of traceability between FRs and NFRs is a frequently recom-
mended practice (P2) that enables proper requirements management activities,
including configuration and change management. Various solutions, including
tool support, are proposed to ensure traceability maintenance. There are also
other practices including the use of automated tools, in particular: tools to
monitor the quality of the software under development, including the aspects
expressed in NFRs (P5) and CI environments facilitating automated NFR test-
ing (P22). Apart from tool-based testing, NFR~oriented code reviews (P19) and
external tests conducted by an independent team (P23) can be practiced.

To minimize the risk of neglecting NFRs, several actions in the software
project organization can be undertaken. They can concern the organization of
the project team(s) (P10, P17); the development process - dedicating an iteration

An SLR on Implementing NFRs in Agile Software Development 101

(P18) or a part of each iteration (P15) to the implementation of NFRs; or using
multiple requirements registers, which make NFRs (or specific NFR categories)
more visible (P12, P16).

5 Discussion

Non-functional requirements (NFRs) have become an important research area,
mainly due to the abundance of project failures caused by neglecting quality
attributes related to user values. While there is no consensus on the reasons for
this, Maxim and Kessentini point out that NFRs “are not easy for stakeholders
to articulate, but they know that the software will not be usable without some
of these non-functional characteristics” [94]. Similarly, the four most frequent
issues identified in our study concern neglecting (I1), a lack of (I3), or misun-
derstanding (I12) NFRs. Further to this, even when one manages to write them
down, difficulties are encountered along the way while attempting to document
particular qualities and their dependencies (14).

Notwithstanding these observations, one question arises: Why have been
NFRs disregarded? The first reason is the insufficient knowledge and low com-
petence of the employees (I7), particularly in terms of their analytical skills and
professional experience, reflected by their inability to perform a required task at
a targeted level of proficiency. Moreover, their incompetence is also demonstrated
by overlooking sources of NFRs (I8), vague definitions and obscure descriptions
(19). These burdens might be considered to be a result of ambiguous communi-
cation (I14).

The remaining aspects of the discussion, namely: comparison to works by
other authors (5.1), study limitations (5.2) and implications (5.3) are respectively
given below.

5.1 Comparison with Related Works

There are only a few sources dedicated to identification of NFR-related issues
and/or practices in ASD. Alsaquaf et al. consider NFRs in a more specific con-
text of Agile Large-Scale Distributed projects. These authors conducted an SLR
study to summarize the challenges and practices mentioned in the literature [30]
and further investigated additional challenges through a series of interviews with
industry practitioners [52]. Behutiye et al. [85] consider NFRs in the generic con-
text of ASD. They used situational method engineering to analyze NFR man-
agement practices and interviews to identify challenges and practices of NFR
documentation [71].

The SLR by Alsaquaf et al. [30] uncovered 12 NFR-related issues and 13
practices used as solutions. We were able to identify more items of both cate-
gories. The results of both above-mentioned primary studies ([52] and [85]) were
retrieved in our SLR study and included in its results, together with a wider
set of issues/practices from other sources. It is worth to notice that 16 out of
24 issues found in our SLR were identified in a series of interviews dedicated

102 A. Jarzebowicz and P. Weichbroth

to NFRs challenges in Agile Large-Scale Distributed (ALSD) development [52],
which indicates that such challenges are not limited to ALSD, but apply to
ASD projects in general. Such findings are also corroborated by reports in other
sources we were able to retrieve in our SLR study.

A larger number of research studies on issues and/or practices is available,
however their scope is wider and concerns e.g. the challenges of Agile require-
ments engineering in general. An SLR study by Inayat et al. summarizes existing
requirements engineering challenges, Agile practices that address such challenges
as well as additional challenges related to Agile practices [28]. Heikilla et al. iden-
tified, through a mapping study, Agile requirements engineering benefits as well
as its problematic areas [95]. Medeiros et al. conducted a mapping study focused
on Agile requirements engineering practices and techniques dedicated to require-
ments elicitation and documentation [51]. Schon et al. focuses on introducing
the user’s perspective to ASD and joint application of ASD and User-Centered
Design (UCD). They conducted an SLR study to summarize the related prac-
tices and identify essential aspects of Agile requirements engineering in the UCD
context [27].

Apart from [30], [71] and [85], none these studies considers NFRs specifically
and as such, they do not address detailed practices nor issues. Some of them
enumerate single NFR-related issues, mostly mentioning the risk of neglecting
NFRs in ASD projects [27,28] and to the typical Agile documentation insufficient
to successfully capture NFRs [28,95]. It is worth noting here that usually, the
issues/practices mentioned in such papers are not explicitly assigned to NFRs
but to requirements in general, also including FRs, constraints, business goals
etc. With respect to this, our study has a much more narrow scope, but within
this scope provides much more detailed findings.

Finally, there are studies that focus on a single issue and/or practice, as they
propose a new method, technique or practice to address some known issue, e.g.
a lack of NFR traceability or difficulty in documenting NFRs of some kind. In
our study, we made an attempt to include such contributions into the summary
lists that provide the reader with an overview of the state of the art on NFRs in
the ASD topic.

5.2 Limitations

While we try to minimize risks by following the guidelines by Kitchenham
and Charters [47], we are aware that our study has several possible limitations
remaining. A limitation of any SLR study is the potential bias in selecting the
sources. This starts with the decisions regarding the publication databases to be
searched and the search string to be used for this purpose.

Our study conducted the search in Elsevier Scopus only. Scopus is known to
enable a single search query to access items from a large number of journals and
conferences [49,50]. However, it is possible that it misses some sources that could
in turn be found in other databases. Moreover, scientific databases do not include
so called “grey literature” which can potentially include industry experiences in
non-scientific publications, such as reports and web articles.

An SLR on Implementing NFRs in Agile Software Development 103

We paid attention to the construction of the search string and included sev-
eral synonyms and alternative terms to increase our chances of finding all of the
relevant sources. The SLR is, however, strongly dependent on vocabulary and we
cannot rule out that some authors used less common expressions which would
lead to failure to find their papers. Moreover, as our search string implied that
NFRs must be explicitly mentioned in the paper’s title, abstract or keywords,
more generic papers (e.g. dedicated to ASD challenges or practices), which just
mention an issue or practice related to NFRs among many others, could be
missed.

The extraction of the data from the sources is also a task prone to bias, as
it is done by humans, who interpret the contents of the sources. Following SLR
guidelines minimizes such a threat, but cannot entirely eliminate it.

5.3 Implications for Research and Practice

This study has several implications for both researchers and practitioners. For
researchers, the relatively small number of sources retrieved for the SLR indicates
that there is a need for more studies regarding NFRs in ASD projects. Moreover,
the issues and practices listed in the findings of our study can be considered by
researchers as potential subjects of dedicated empirical studies, further exploring,
e.g. the root causes of reported issues or the effectiveness of the facilitating
practices.

Industrial practitioners can use our findings to anticipate issues in projects
they participate in, and to select facilitating practices to be applied in their
projects. Our study can also be used to raise awareness on NFRs in ASD, the
related issues and practices as well as the overall importance of such a topic -
which still tends to be neglected or lack sufficient attention.

6 Conclusions

In this paper, we explored the topic of the implementation of non-functional
requirements (NFRs) in Agile Software Development (ASD), focusing on the
issues and facilitating practices, gathered from the existing body of literature.
The main motivation underpinning this study was to investigate the state-of-the-
art in implementing NFRs within ASD projects, through a systematic literature
review (SLR), in order to identify what issues have been documented, as well as
by what means one can facilitate the implementation of NFRs. This research was
driven by the guidelines elaborated by Kitchenham and Charters, a well-known
and widely-applied research framework in the field of software engineering.

The number of industrial projects that deliver different and specific lessons
regarding NFRs, makes comparison of the studies a time-consuming and intricate
task, since they do not frequently deal with the same focus or goals. Nevertheless,
we were able to collect and unambiguously classify a bulk of issues and practices,
extracted from peer-reviewed scientific sources. Obviously, our report neither
exhausts the topic nor provides external validity. However, we believe that the

104 A. Jarzebowicz and P. Weichbroth

obtained results may serve as a useful reference repository to be used by both
experienced and novice researchers, as well as senior and junior practitioners.

Moreover, a number of open issues and related research directions were iden-
tified through this study, which can be considered as an input for future work. A
clear lack of consensus on which requirements documentation techniques should
be used in order to specify NFRs. Some sources suggest using the techniques
available in Agile methods e.g. User Stories (possibly with some adjustments),
while others recommend introducing additional techniques (including those used
in more traditional, plan-driven approaches). Such selection of the suitable tech-
niques may be a context-dependent issue and requires further investigation.
Other areas we identify as potential future work directions are: the relation-
ship between requirements engineering and testing areas (test specifications to
verify the implementation of NFRs, which can also be considered as part of NFRs
documentation); and the facilitation of an unambiguous NFRs communication
process.

We plan to address the latter topic by designing and testing an ontology-
based approach, using Controlled Natural Language (CNL) [96] and the Fluent
Editor [97], simulating and modelling requirements specification. Our observa-
tions gathered during professional work indicate that there is still a need to
implement suitable methods and tools to support communication among differ-
ent groups of stakeholders and development teams.

References

1. Amjad, S., et al.: Calculating completeness of agile scope in scaled agile develop-
ment. IEEE Access 6, 5822-5847 (2017)

2. Adnan, M., Afzal, M.: Ontology based multiagent effort estimation system for
Scrum agile method. IEEE Access 5, 25993-26005 (2017)

3. Strandberg, P.E., Enoiu, E.P., Afzal, W., Sundmark, D., Feldt, R.: Information
flow in software testing—an interview study with embedded software engineering
practitioners. IEEE Access 7, 46434-46453 (2019)

4. Tjgrnehgj, G., Fransgard, M., Skalkam, S.: Trust in agile teams in distributed
software development. In: Information System Research Seminar in Scandinavia
2012 Information Systems Research Seminar in Scandinavia, pp. 1-15 (2012)

5. Martin, R.C.: Agile Software Development: Principles, Patterns and Practices.
Prentice Hall, Upper Saddle River (2002)

6. Roy, S., Raju, A., Mandal, S.: An empirical investigation on e-retailer agility, cus-
tomer satisfaction, commitment and loyalty. Bus. Theory Pract. 18, 97-108 (2017)

7. Consultancy.eu: Half of companies applying agile methodologies & practices
(2020). Accessed 10 Nov 2020. https://www.consultancy.eu/news/4153/half-of-
companies-applying-agile-methodologies- practices

8. Version One: 13th annual state of agile report (2019). Accessed 10 Nov 2020.
https://stateofagile.com/

9. Bjarnason, E., Wnuk, K., Regnell, B.: A case study on benefits and side-effects of
agile practices in large-scale requirements engineering. In: 1st Workshop on Agile
Requirements Engineering, pp. 1-5 (2011)

https://www.consultancy.eu/news/4153/half-of-companies-applying-agile-methodologies-practices
https://www.consultancy.eu/news/4153/half-of-companies-applying-agile-methodologies-practices
https://stateofagile.com/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

An SLR on Implementing NFRs in Agile Software Development 105

Kaur, K., Jajoo, A., et al.: Applying agile methodologies in industry projects:
benefits and challenges. In: 2015 International Conference on Computing Commu-
nication Control and Automation, pp. 832-836. IEEE (2015)

Diebold, P., Mayer, U.: On the usage and benefits of agile methods & practices.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
243-250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 16
Guzmén, L., Oriol, M., Rodriguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How
can quality awareness support rapid software development? — a research preview.
In: Griinbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167-173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0 12

Guaman, D.S., Del Alamo, J.M., Caiza, J.C.: A systematic mapping study on
software quality control techniques for assessing privacy in information systems.
IEEE Access 8, 74808-74833 (2020)

Jarzebowicz, A., Polocka, K.: Selecting requirements documentation techniques
for software projects: a survey study. In: 2017 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 1189-1198. IEEE (2017)

Ryan, A.J.: An approach to quantitative non-functional requirements in software
development. In: 34th Annual Government Electronics and Information Associa-
tion Conference, pp. 13-20 (2000)

Kautz, K.: Customer and user involvement in agile software development. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 168-173.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4 22
Jarzebowicz, A., Marciniak, P.: A survey on identifying and addressing business
analysis problems. Found. Comput. Decis. Sci. 42(4), 315-337 (2017)
Jarzebowicz, A., Slesinski, W.: What Is troubling IT analysts? A survey report
from Poland on requirements-related problems. In: Kosiuczenko, P., Zielinski, Z.
(eds.) KKIO 2018. AISC, vol. 830, pp. 3-19. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-99617-2 1

Mohammadi, S., Nikkhahan, B., Sohrabi, S.: Challenges of user involvement in
extreme programming projects. Int. J. Softw. Eng. Appl. 3(1), 19-32 (2009)
Bano, M., Zowghi, D.: A systematic review on the relationship between user
involvement and system success. Inf. Softw. Technol. 58, 148-169 (2015)
Schmitz, K., Mahapatra, R., Nerur, S.: User engagement in the era of hybrid agile
methodology. IEEE Softw. 36(4), 32-40 (2018)

Beck, K., et al.: The agile manifesto (2001). Accessed 10 Nov 2020, https://
agilemanifesto.org/

Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, Boston (2010)
Miler, J., Gaida, P.: On the agile mindset of an effective team-an industrial opin-
ion survey. In: 2019 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 841-849. IEEE (2019)

Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449-480 (2010)

Zakrzewski, M., Kotecka, D., Ng, Y.Y., Przybylek, A.: Adopting collaborative
games into agile software development. In: Damiani, E., Spanoudakis, G., Maci-
aszek, L.A. (eds.) ENASE 2018. CCIS, vol. 1023, pp. 119-136. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22559-9 6

Schon, E.-M., Winter, D., Escalona, M.J., Thomaschewski, J.: Key challenges in
agile requirements engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 37-51. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6 3

https://doi.org/10.1007/978-3-319-57633-6_16
https://doi.org/10.1007/978-3-319-54045-0_12
https://doi.org/10.1007/978-3-642-01853-4_22
https://doi.org/10.1007/978-3-319-99617-2_1
https://doi.org/10.1007/978-3-319-99617-2_1
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-030-22559-9_6
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-319-57633-6_3

106

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

A. Jarzebowicz and P. Weichbroth

Inayat, 1., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Human Behav. 51, 915-929 (2015)

Soares, H.F., Alves, N.S., Mendes, T.S., Mendonga, M., Spinola, R.O.: Investigating
the link between user stories and documentation debt on software projects. In:
2015 12th International Conference on Information Technology-New Generations,
pp. 385-390. IEEE (2015)

Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects — a systematic literature review. In: Griinbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219-234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 17

Svensson, R.B., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.:
Quality requirements in industrial practice—an extended interview study at eleven
companies. IEEE Trans. Softw. Eng 38(4), 923-935 (2011)

Umar, M., Khan, N.A.: Analyzing non-functional requirements (NFRs) for software
development. In: 2011 IEEE 2nd International Conference on Software Engineering
and Service Science, pp. 675-678. IEEE (2011)

Zhang, X., Wang, X.: Tradeoff analysis for conflicting software non-functional
requirements. IEEE Access 7, 156463156475 (2019)

Weichbroth, P.: Delivering usability in IT products: empirical lessons from the
field. Int. J. Softw. Eng. Knowl. Eng. 28(07), 10271045 (2018)

Suryawanshi, T., Rao, G.: A survey to support NFRs in agile software development
process. Int. J. Comput. Sci. Inf. Technol. 6(6), 5487-5489 (2015)

Rosa, N.S., Justo, G.R., Cunha, P.R.: A framework for building non-functional
software architectures. In: 2001 ACM Symposium on Applied Computing, pp. 141—
147 (2001)

Mizouni, R., Salah, A.: Towards a framework for estimating system NFRs on
behavioral models. Knowl.-Based Syst. 23(7), 721-731 (2010)

Charette, R.N.: The biggest IT failures of 2018 (2018). Accessed 18 Sept
2020. https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-
old-familiar-faces

Maiti, R.R., Mitropoulos, F.J.: Capturing, eliciting, predicting and prioritizing
(CEPP) non-functional requirements metadata during the early stages of agile
software development. In: SoutheastCon 2015, pp. 1-8. IEEE (2015)

Statista: Largest software and programming companies worldwide by sales rev-
enue from 2017 to 2020 (2017). Accessed 10 Nov 2020. https://www.statista.com/
statistics /790179 /worldwide-largest-software-programming-companies-by-sales/
Microsoft. Build for the mneeds of the business (2020). Accessed 19
Sept 2020. https://docs.microsoft.com/en-us/azure/architecture/guide/design-
principles/build-for-business

Oracle. Best practices for WLI application life cycle (2020). Accessed
10 Nov 2020. https://docs.oracle.com/cd/E13214 01 /wli/docs102/bestpract/
requirements.html

Ossowska, K., Szewc, L., Weichbroth, P., Garnik, I., Sikorski, M.: Exploring an
ontological approach for user requirements elicitation in the design of online virtual
agents. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2016. LNBIP, vol. 264, pp. 40-55.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46642-2 3

Redlarski, K.: The impact of end-user participation in IT projects on product
usability. In: 2013 International Conference on Multimedia, pp. 1-8. Interaction,
Design and Innovation (MIDI) (2013)

https://doi.org/10.1007/978-3-319-54045-0_17
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-old-familiar-faces
https://spectrum.ieee.org/riskfactor/computing/it/it-failures-2018-all-the-old-familiar-faces
https://www.statista.com/statistics/790179/worldwide-largest-software-programming-companies-by-sales/
https://www.statista.com/statistics/790179/worldwide-largest-software-programming-companies-by-sales/
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/build-for-business
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/build-for-business
https://docs.oracle.com/cd/E13214_01/wli/docs102/bestpract/requirements.html
https://docs.oracle.com/cd/E13214_01/wli/docs102/bestpract/requirements.html
https://doi.org/10.1007/978-3-319-46642-2_3

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

An SLR on Implementing NFRs in Agile Software Development 107

Redlarski, K., Weichbroth, P.: Hard lessons learned: delivering usability in IT
projects. In: 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 1379-1382. IEEE (2016)

Buchan, J., Bano, M., Zowghi, D., MacDonell, S., Shinde, A.: Alignment of stake-
holder expectations about user involvement in agile software development. In: 21st
International Conference on Evaluation and Assessment in Software Engineering,
pp. 334-343 (2017)

Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01 (2007)
Jarzebowicz, A., Weichbroth, P.: A qualitative study on non-functional require-
ments in agile software development. Submitted, under review (2020)

Scopus: Scopus content coverage guide (2020). Accessed 10 Nov 2020. https://www.
elsevier.com/ data/assets/pdf file/0007,/69451/Scopus ContentCoverage
Guide WEB.pdf

Daneva, M., Damian, D., Marchetto, A., Pastor, O.: Empirical research method-
ologies and studies in requirements engineering: how far did we come? J. Syst.
Softw. 95, 1-9 (2014)

Medeiros, J., Alves, D.C., Vasconcelos, A., Silva, C., Wanderley, E.: Requirements
engineering in agile projects: a systematic mapping based in evidences of industry.
In: XVIII Ibero-American Conference on Software Engineering (CIBSE), pp. 460—
476 (2015)

Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the
context of large-scale distributed agile: an empirical study. Inf. Softw. Technol.
110, 39-55 (2019)

Oriol, M., et al.: Data-driven elicitation of quality requirements in agile companies.
In: Piattini, M., Rupino da Cunha, P., Garcia Rodriguez de Guzman, 1., Pérez-
Castillo, R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 49-63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29238-6 4

Ramos, F.B.A., Costa, A.A.M., Perkusich, M., Almeida, H.O., Perkusich, A.: A
non-functional requirements recommendation system for Scrum-based projects. In:
30th International Conference on Software Engineering & Knowledge Engineering
(SEKE), pp. 149-148 (2018)

Terpstra, E., Daneva, M., Wang, C.: Agile practitioners’understanding of secu-
rity requirements: insights from a grounded theory analysis. In: 25th International
Requirements Engineering Conference Workshops (REW), pp. 439-442. IEEE
2017

éachd)eva7 V., Chung, L.: Handling non-functional requirements for big data and
IOT projects in Scrum. In: 7th International Conference on Cloud Computing,
Data Science & Engineering-Confluence, pp. 216-221. IEEE (2017)

Schoén, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
a systematic literature review. Comput. Stand. Interfaces 49, 79-91 (2017)
Aljallabi, B.M., Mansour, A.: Enhancement approach for non-functional require-
ments analysis in agile environment. In: 2015 International Conference on Comput-
ing, Control, Networking, Electronics and Embedded Systems Engineering (ICC-
NEEE), pp. 428-433. IEEE (2015)

Kapyaho, M., Kauppinen, M.: Agile requirements engineering with prototyping: a
case study. In: 23rd International Requirements Engineering Conference (RE), pp.
334-343. IEEE (2015)

Domah, D.; Mitropoulos, F.J.: The NERV methodology: a lightweight process for
addressing non-functional requirements in agile software development. In: South-
eastCon 2015, pp. 1-7. IEEE (2015)

https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
https://doi.org/10.1007/978-3-030-29238-6_4

108

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

A. Jarzebowicz and P. Weichbroth

Dragicevic, S., Celar, S., Novak, L.: Use of method for elicitation, documentation,
and validation of software user requirements (MEDoV) in agile software devel-
opment projects. In: 6th International Conference on Computational Intelligence,
Communication Systems and Networks, pp. 65-70. IEEE (2014)

Nawrocki, J., Ochodek, M., Jurkiewicz, J., Kopczynska, S., Alchimowicz, B.: Agile
requirements engineering: a research perspective. In: Geffert, V., Preneel, B.,
Rovan, B., Stuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
40-51. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 5
Farid, W.M., Mitropoulos, F.J.: Visualization and scheduling of non-functional
requirements for agile processes. In: SoutheastCon 2013, pp. 1-8. IEEE (2013)
Bourimi, M., Kesdogan, D.: Experiences by using AFFINE for building collabora-
tive applications for online communities. In: Ozok, A.A., Zaphiris, P. (eds.) OCSC
2013. LNCS, vol. 8029, pp. 345-354. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39371-6 39

Farid, W., Mitropoulos, F.: Novel lightweight engineering artifacts for modeling
non-functional requirements in agile processes. In: SoutheastCon 2012, pp. 1-7.
IEEE (2012)

Um, T., Kim, N., Lee, D., In, H.P.: A quality attributes evaluation method for
an agile approach. In: 1st ACIS/JNU International Conference on Computers,
Networks, Systems and Industrial Engineering, pp. 460-461. IEEE (2011)
Bourimi, M., Barth, T., Haake, J.M., Ueberschér, B., Kesdogan, D.: AFFINE for
enforcing earlier consideration of NFRs and human factors when building socio-
technical systems following agile methodologies. In: Bernhaupt, R., Forbrig, P.,
Gulliksen, J., Larusdottir, M. (eds.) HCSE 2010. LNCS, vol. 6409, pp. 182-189.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16488-0 15
Boehm, B., Rosenberg, D., Siegel, N.: Critical quality factors for rapid, scalable,
agile development. In: 19th International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), pp. 514-515. IEEE (2019)

Tonita, D., van der Velden, C., Ikkink, H.J.K., Neven, E., Daneva, M., Kuipers, M.:
Towards risk-driven security requirements management in agile software devel-
opment. In: Cappiello, C., Ruiz, M. (eds.) Information Systems Engineering in
Responsible Information Systems, CAiSE 2019. Lecture Notes in Business Infor-
mation Processing, vol. 350, pp. 133-144. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-030-21297-1 12

Medeiros, J., Vasconcelos, A., Gouldo, M., Silva, C., Aratjo, J.: An approach based
on design practices to specify requirements in agile projects. In: ACM Symposium
on Applied Computing, pp. 1114-1121 (2017)

Behutiye, W., Karhapii, P., Costal, D., Oivo, M., Franch, X.: Non-functional
requirements documentation in agile software development: challenges and solu-
tion proposal. In: Felderer, M., Méndez Fernandez, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 515-522.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 41

Patel, C., Ramachandran, M.: Story Card Maturity Model (SMM): a process
improvement framework for agile requirements engineering practices. J. Softw.
(JSW) 4(5), 422435 (2009)

Patel, C., Ramachandran, M.: Bridging best traditional SWD practices with XP
to improve the quality of XP projects. In: International Symposium on Computer
Science and its Applications, pp. 357-360. IEEE (2008)

https://doi.org/10.1007/978-3-319-04298-5_5
https://doi.org/10.1007/978-3-642-39371-6_39
https://doi.org/10.1007/978-3-642-39371-6_39
https://doi.org/10.1007/978-3-642-16488-0_15
https://doi.org/10.1007/978-3-030-21297-1_12
https://doi.org/10.1007/978-3-030-21297-1_12
https://doi.org/10.1007/978-3-319-69926-4_41

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

An SLR on Implementing NFRs in Agile Software Development 109

Alsaqaf, W., Daneva, M., Wieringa, R.: Understanding challenging situations in
agile quality requirements engineering and their solution strategies: insights from
a case study. In: 26th International Requirements Engineering Conference (RE),
pp. 274-285. IEEE (2018)

Younas, M., Jawawi, D., Ghani, I., Kazmi, R.: Non-functional requirements elicita-
tion guideline for agile methods. J. Telecommun. Electron. Comput. Eng. (JTEC)
9(3-4), 137-142 (2017)

Jawawi, D., Arbain, A., Kadir, W., Ghani, [.: Requirement traceability model for
agile development: results from empirical studies. Int. J. Innov. Technol. Explor.
Eng. 8(8S), 402-405 (2019)

Arbain, A.F., Jawawi, D.N.A., Ghani, I., Kadir, W.M.W.: Non-functional require-
ment traceability process model for agile software development, J. Telecommun.
Electron. Comput. Eng. (JTEC) 9(3-5), 203—211 (2017)

Macasaet, R.J., Chung, L., Garrido, J.L., Noguera, M., Rodriguez, M.L.: An agile
requirements elicitation approach based on NFRs and business process models for
micro-businesses. In: 12th International Conference on Product-Focused Software
Development and Process Improvement (PROFES), pp. 50-56 (2011)

Ambler, S.W.: Beyond functional requirements on agile projects-strategies for
addressing nonfunctional requirements. Dr. Dobb’s J. (2008)

Firdaus, A., Ghani, I., Jawawi, D.N.A., Kadir, W.M.N.W.: Non functional require-
ments (NFRs) traceability metamodel for agile development. Jurnal Teknologi
77(9) (2015)

Arbain, A.F.B., Ghani, I., Kadir, W.M.N.W.: Agile non functional requirements
(NFR) traceability metamodel. In: 8th Malaysian Software Engineering Conference
(MySEC), pp. 228-233. IEEE (2014)

Yu, L., Alégroth, E., Chatzipetrou, P., Gorschek, T.: Utilising CI environment for
efficient and effective testing of NFRs. Inf. Softw. Technol. 117, 106199 (2020)
Sinnhofer, A.D., Oppermann, F.J., Potzmader, K., Orthacker, C., Steger, C.,
Kreiner, C.: Increasing the visibility of requirements based on combined variability
management. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 203-220.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8 13
Kopczyniska, S., Ochodek, M., Nawrocki, J.: On importance of non-functional
requirements in agile software projects—a survey. In: Jarzabek, S., Poniszewska-
Maranda, A., Madeyski, L. (eds.) Integrating Research and Practice in Software
Engineering. SCI, vol. 851, pp. 145-158. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-26574-8 11

Lopez, L., Behutiye, W., Karhapia, P., Ralyté, J., Franch, X., Oivo, M.: Agile
quality requirements management best practices portfolio: a situational method
engineering approach. In: Felderer, M., Méndez Fernandez, D., Turhan, B., Kali-
nowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp.
548-555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 45
Alsaqaf, W.: Engineering quality requirements in large scale distributed agile
environment. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ) Workshops (2016)

Mohagheghi, P., Aparicio, M.E.: An industry experience report on managing prod-
uct quality requirements in a large organization. Inf. Softw. Technol. 88, 96-109
2017

éilva,)A., Aratjo, T., Nunes, J., Perkusich, M., Dilorenzo, E., Almeida, H., Perku-
sich, A.: A systematic review on the use of definition of done on agile software
development projects. In: 21st International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), pp. 364-373 (2017)

https://doi.org/10.1007/978-3-319-94214-8_13
https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-319-69926-4_45

110

89.

90.

91.

92.

93.

94.

95.

96.

97.

A. Jarzebowicz and P. Weichbroth

Lopez, L., et al.: Q-rapids tool prototype: supporting decision-makers in manag-
ing quality in rapid software development. In: Mendling, J., Mouratidis, H. (eds.)
CAIiSE 2018. LNBIP, vol. 317, pp. 200-208. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92901-9 17

Camacho, C.R., Marczak, S., Cruzes, D.S.: Agile team members perceptions on
non-functional testing: influencing factors from an empirical study. In: 11th Inter-
national Conference on Availability, Reliability and Security (ARES), pp. 582-589.
IEEE (2016)

Franch, X., et al.: Data-driven elicitation, assessment and documentation of quality
requirements in agile software development. In: Krogstie, J., Reijers, H.A. (eds.)
CAISE 2018. LNCS, vol. 10816, pp. 587-602. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91563-0 36

Ramos, F.B.A., et al.: Evaluating software developers’ acceptance of a tool for sup-
porting agile non-functional requirement elicitation. In: 31st International Confer-
ence on Software Engineering & Knowledge Engineering (SEKE), pp. 26—42 (2019)
Pecchia, C., Trincardi, M., Di Bello, P.: Expressing, managing, and validating
user stories: experiences from the market. In: Ciancarini, P., Sillitti, A., Succi,
G., Messina, A. (eds.) Proceedings of 4th International Conference in Software
Engineering for Defence Applications. AISC, vol. 422, pp. 103-111. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-27896-4 9

Maxim, B.R., Kessentini, M.: An introduction to modern software quality assur-
ance. In: Software Quality Assurance, pp. 19-46. Elsevier (2016)

Heikkild, V.T., Damian, D., Lassenius, C., Paasivaara, M.: A mapping study on
requirements engineering in agile software development. In: 41st Euromicro SEAA
Conference, pp. 199-207. IEEE (2015)

Kaptanski, P.: Controlled English interface for knowledge bases. Studia Informatica
32(2A), 485-494 (2011)

Weichbroth, P.: Fluent editor and controlled natural language in ontology devel-
opment. Int. J. Artif. Intell. Tools 28(04), 1940007 (2019)

https://doi.org/10.1007/978-3-319-92901-9_17
https://doi.org/10.1007/978-3-319-92901-9_17
https://doi.org/10.1007/978-3-319-91563-0_36
https://doi.org/10.1007/978-3-319-91563-0_36
https://doi.org/10.1007/978-3-319-27896-4_9

®

Check for
updates

Product Roadmapping Processes
for an Uncertain Market Environment: A Grey
Literature Review

Stefan Trieﬂinger1 (g), Jiirgen Miinch! , Jan Schneider! , Emre Bogazktjy1 s
Patrick EiBler!, Bastian Roling?, and Dominic Lang?

1 Reutlingen University, Alteburgstrale 150, 72762 Reutlingen, Germany
{stefan.trieflinger, juergen.muench}@reutlingen-university.de,
{jan_philip.schneider, emre.bogazkoey,
patrick_denis.eissler}@student.reutlingen-university.de
2 Viastore Software GmbH, Magirusstrale 13, 70469 Stuttgart, Germany
b.roling@viastore.com
3 Robert Bosch GmbH, HoferstraBe 30, 71636 Ludwigsburg, Germany
Dominic.lang2@bosch.com

Abstract. Context: Currently, most companies apply approaches for product
roadmapping that are based on the assumption that the future is highly predica-
ble. However, nowadays companies are facing the challenge of increasing market
dynamics, rapidly evolving technologies, and shifting user expectations. Together
with the adaption of lean and agile practices it makes it increasingly difficult to
plan and predict upfront which products, services or features will satisfy the needs
of the customers. Therefore, they are struggling with their ability to provide prod-
uct roadmaps that fit into dynamic and uncertain market environments and that can
be used together with lean and agile software development practices. Objective:
To gain a better understanding of modern product roadmapping processes, this
paper aims to identify suitable processes for the creation and evolution of product
roadmaps in dynamic and uncertain market environments. Method: We performed
a Grey Literature Review (GLR) according to the guidelines from Garousi et al.
Results: 32 approaches to product roadmapping were identified. Typical charac-
teristics of these processes are the strong connection between the product roadmap
and the product vision, an emphasis on stakeholder alignment, the definition of
business and customer goals as part of the roadmapping process, a high degree
of flexibility with respect to reaching these goals, and the inclusion of validation
activities in the roadmapping process. An overall goal of nearly all approaches is
to avoid waste by early reducing development and business risks. From the list of
the 32 approaches found, four representative roadmapping processes are described
in detail.

Keywords: Product roadmap - Product roadmapping - Product management -
Agile methods - Product strategy - UX strategy

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 111-129, 2021.
https://doi.org/10.1007/978-3-030-67084-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_7

112 S. Trieflinger et al.

1 Introduction

For the success of a company is it essential to provide a strategic direction in which
product offerings will be developed over time to achieve a corporate vision. Product
roadmaps can be used as a mechanism to develop and describe such a strategic direction
[1]. Cooper and Edge [2] define product roadmaps as a tool that lays out the major
initiatives and platforms a business will undertake in the future [3, 4]. The purpose of
a product roadmap is to provide an essential understanding, proximity, direction, and
some degree of certainty regarding the future direction of the development of a product
or a product portfolio [1].

The process to create a product roadmap is called product roadmapping [5]. Figure 1
embeds the product roadmapping process into an overall macro process. Here, the prod-
uct strategy is derived from the product vision. The product vision mainly describes the
reason for creating a product. One level below, a product strategy can be seen as an
approach to make or keep a product successful. Consequently, a product strategy should
include a product’s target group, the key needs to be addressed, the stand-out features of
the solution, and the most important business goals. On this basis, the development of
the product roadmap can take place. The aim of a product roadmap is to show how the
product strategy is put into action. Moreover, it provides the context for making tactical
decisions such as deriving the content of the product backlog and its prioritization.

In the following, selected product roadmapping processes are described. It should
be noted that a product roadmapping process usually requires customization as every
company, product, and set of stakeholders is different [6]. It should be stressed that this
article refers to product roadmaps and not to roadmaps in general.

Product Strategy Process

|
[\
Product Product Product
Strategy Roadmap Backlog

Fig. 1. Product strategy process according to Pichler [6]

A recent study [7] on the state of the practice has shown that the most common
product roadmap approach of many software-intensive companies (most of them apply-
ing agile and lean practices) consists mainly of specific products, features, or services
together with precise release dates for long time horizons (usually one year). This app-
roach can be characterized as feature-based roadmaps, i.e., feature-by-feature wish lists.
Feature-based roadmaps are created to inform stakeholders or customers about the point
in time a product, feature or service is expected to be delivered [8]. This approach works
well in market environments that are predictable, stable, and reliable [7]. However, the
market environment often has changed and is now dynamic, complex and uncertain [9].
The main reasons therefore are the high availability of knowledge and resources due the
globalization, rapidly evolving technologies and fast changing customer behaviors [8].
Together with the adoption of lean and agile practices this situation makes it increas-
ingly difficult to plan and predict upfront which products, services, or features should be

Product Roadmapping Processes for an Uncertain Market Environment 113

developed, especially in the mid- and long-term [3, 7]. Thus, companies are struggling
more and more with their ability to create reliable product roadmaps [7, 8]. As a result of
the mismatch between feature-based roadmaps and dynamic and uncertain market envi-
ronments, most companies have realized that new approaches and procedures regarding
the development and handling of product roadmaps are necessary. Consequently, they
have to find new approaches to improve their current product roadmapping capabilities
[4].

It should be noted that the Grey Literature Review (GLR) presented in this article
is part of a comprehensive GLR on the topic “product roadmapping in a dynamic and
uncertain market environment”. This means that we searched for relevant articles using
a broad search string. After applying our defined inclusion and exclusion criteria, we
obtained 170 relevant articles. The analysis of the relevant articles showed that these
articles can be divided into the five subcategories: 1) product roadmapping processes,
2) product roadmap alignment, 3) product roadmap formats, 4) product roadmap pri-
oritization techniques, and 5) challenges and pitfalls regarding product roadmapping.
We therefore decided to slice the presentation of the results among different articles.
We have already published the two papers “Product Roadmap Alignment — Achieving
the Vision Together” [10] and the paper ‘“Product Roadmap Formats for an Uncertain
Future: A Grey Literature Review” [11]. The latter paper aims to identify structures and
contents of a product roadmap that are suitable for operating in a dynamic and uncertain
market environment, while the former paper focuses on the identification of measures,
methods and techniques that help companies to achieve alignment around the product
roadmap. In contrast, the paper at hand strives for identifying suitable processes that
provide information on how to create and update product roadmaps in a dynamic and
uncertain market environment. Since these papers are outcomes of the broad search and
analysis mentioned above, the section “research approach” and the section “threats of
validity” are similar to those papers.

The main reason for conducting a grey literature review is the following: a system-
atic review of the scientific literature on product roadmapping [12] revealed that the
available scientific literature offers only little knowledge which processes are suitable
to produce a product roadmap for dynamic market environments. To fill this gap and to
support companies in improving their product roadmapping processes, this paper aims
at identifying such processes based on the analysis of the so-called “grey literature”
(i.e., white papers, articles, blogs, business books etc.). The “grey literature” promises
to provide more information on how to develop product roadmaps in dynamic market
environments. One reason is that companies and experts often communicate their expe-
riences more easily and quickly through grey literature than through scientific literature.
Detailed information why we have chosen the grey literature review as research method
can be found in Subsect. 3.1 in the section “identification of the need of a GLR”.

The outline of this paper is as follows: Sect. 2 presents related work. Section 3 dis-
cusses the research approach including a description of the search strategy, the research
questions, the search string we used, the applied inclusion and exclusion criteria, the
applied selection process as well as the quality assessment we performed. Afterwards,
the results of the study are described, and the threats to validity are discussed. Finally, a
summary is given.

114 S. Trieflinger et al.

2 Related Work

Kappel defines roadmaps as forecasts of what is possible or likely to happen, as well as
plans that articulate a course of action [13]. In a similar way, DeGregorio [14] points
out that roadmaps are visualizations of a forecast, which can be applied in several key
areas such as technology, capability, parameter, feature, product, platform, system, envi-
ronment or threat and business opportunity. Albright [15] considers a roadmap as a
document that describes a future environment, objectives to be achieved within that
environment, and plans for how those objectives will be achieved over time. Besides,
the author points out to review and update a roadmap over time. Otherwise, it is not seen
as useful [15]. The verb “roadmapping” describes the process of roadmap development
[1]. According to Phaal et al. [16], the most suitable roadmapping process for a com-
pany depends on many factors such as the level of available resources (e.g., people, time,
budget), the nature of the issue being addressed (e.g., purpose and scope), the available
information regarding the market and technology, and other relevant processes and man-
agement methods (e.g., strategy, new product development, project management, and
market research). Typically, the practice of roadmapping involves social mechanisms,
as this process brings together stakeholders from different functions of the organization
to plan and make decisions. The roadmap then represents the decisions made [1, 5].
The roadmapping process will differ from one company to the other because companies
serve different markets and have different cultures [17].

In the following, examples for conducting the roadmapping process are sketched,
which can be found in the scientific literature:

Vihiniitty et al. [18] developed a four-step process for creating and updating product
roadmaps, especially in small companies. The process consists of the phases 1) define
the strategic mission and vision of the company and outline the product vision, 2) scan
the environment, 3) revise and distill the product vision as product roadmaps, and 4)
estimate the product life cycle and evaluate the mix of development efforts planned. The
author points out that the steps in the process should be performed periodically to adjust
the roadmap to new information and changing market situations. Minor updates should
also be made to ensure that the roadmap always contains up-to-date information.

Fenwick et al. [19] present an approach to technology roadmapping by integrating
marketing and decision-making methodologies. Value drivers are determined to reflect
the customer’s current needs and future expected needs. These drivers lead to a technol-
ogy roadmap, which defines technologies to purchase, lease, or develop. The process
of developing a value-driven technology roadmap consists of the phases: 1) assessment
(evaluation of the company’s internal capabilities as well as the external industry envi-
ronment), 2) market analysis (the understanding of the value proposition for customers),
3) service availability (the creation of an offer of desirable products and services and
necessary technologies) and 4) roadmap which is created to link technology to future
market opportunities.

Beeton et al. [20] present a roadmapping process to capture and structure insights
of supply chains and to develop future views of the competitive issues facing a diverse
industrial area. The process includes three main steps, with each main step comprising
several sub steps: 1) planning (establish a steering committee, articulate the need for
the roadmap, set system boundaries, design the roadmap architecture, recruit experts

Product Roadmapping Processes for an Uncertain Market Environment 115

and miscellaneous preparatory work), 2) insight collection (choose a workshop format,
characterize the strategic landscape, conduct a voting process to identify issues from the
content of the strategic landscape and rank the identified issues), and 3) insight processing
(collate and transcript the insights collected in the roadmapping workshop, develop of
visual representations and a working document). The application of the process aims at
producing a roadmap that provides useful information, structure and context for strategic
planning and innovation in a complex multi-stakeholder industry.

The existing studies that we identified do not explicitly address how to conduct prod-
uct roadmapping in order to fulfill the requirements of a dynamic and uncertain market
environment. There is a lack of documented practical experience and best practices
regarding product roadmapping processes that are suitable for the operation in dynamic
and uncertain market environments. This is the focus of this study.

An exception is the “design roadmapping process” proposed by Kim et al. [21]. It
aggregates design experience elements along a timeline and associates key user needs
with the products, services, and/or systems the organization wishes to deliver. The pro-
cess consists of the steps 1) gather comprehensive user data, experience, and trends, 2)
extract core design principles from the user needs, experience and trends, 3) gather an
exhaustive list of technologies containing core feature sets of the design concept and
prioritize them, 4) map projects to design principles, and 5) create the design roadmap.
The author emphasizes that the process should encourage teams to focus on experience-
driven planning early, thereby increasing the likelihood of a product desired by the
customers. However, the findings of this study are derived from only one case study and
the concept of a design roadmap is not directly comparable with the concept of a product
roadmap.

3 Research Approach

As this study aims to gain new insights, it was conducted exploratively. To conduct
the study in a systematic and repeatable manner, it follows the guidelines according
to Garousi et al. [22], which consider three main phases: 1) planning the review, 2)
conducting the review and 3) reporting the review (see Table 1).

Table 1. Design of the grey literature review

Planning the review * Identification of the need of a GLR

* Formulation of the research questions and scope of the study

* Definition and refinement of the search string

¢ Determination of the inclusion and exclusion criteria

Conducting the review | » Performance of the study selection process

* Data extraction and conduction of the quality assessment

Reporting the review » Writing down the findings as documentation (see Sect. 4)

116 S. Trieflinger et al.

3.1 Planning the Review

Identification of the Need of a GLR: First, we assessed whether a GLR is the appropri-
ate method for our study. Therefore we used the checklist according to Garousi et al. [22]
as shown in Table 2. The authors of the checklist propose that if one or more questions
can be answered positively, the conduction of a GLR is recommended, otherwise a Sys-
tematic Literature Review should be performed. Table 2 shows our answers regarding
this study. The first question has been answered by a Systematic Literature Review [12].
This review revealed that the scientific articles describe product roadmapping on a quite
abstract level and do not address the demands of an increasingly digital and dynamic
market environment with high uncertainty. Based on the checklist, a Grey Literature
Review is an appropriate research approach. Furthermore, an initial review of the grey
literature and the conduction of expert interviews [7] indicate that there is a high level
of interest in insights about the topic “processes for product roadmapping in dynamic
and uncertain market environments”. Therefore, a Grey Literature Review contributes
to the transfer of practical knowledge to the scientific community and practitioners in
industry.

Table 2. Checklist according to Garousi et al. [22] to decide whether a grey literature review
should be performed

ID | Question Answer
1 Is the subject “complex” and not solvable by considering only the formal Yes
literature?
2 Is there a lack of volume or quality of evidence, or a lack of consensus of Yes
outcome measurement in the formal literature?
Is the contextual information relevant to the subject under study? Yes
Is it the goal to validate or corroborate scientific outcomes with practical No
experiences?

5 Is it the goal to challenge assumptions or falsify results from practice using No
academic research or vice versa?

6 Would a synthesis of insights and evidence from the industrial and academic | Yes
community be useful to one or even both communities?

7 Is there a large volume of practitioner sources indicating high practitioner Yes
interest in a topic?

Research Question and Scope of the Study: Our study focuses on identifying suitable
processes to create and evolve product roadmaps in dynamic and uncertain market
environments. Based on this objective, the following research question was defined:

e RQ1: Which processes are reported in the grey literature to create and evolve a product
roadmap in a dynamic and uncertain market environment?

Product Roadmapping Processes for an Uncertain Market Environment 117

Identification of the Search String: The initial set of our search string was developed in
a brainstorming session that aimed at identifying grey literature about product roadmaps
in general. The reason is that we wanted to do a broader analysis of the grey literature
that does not only focus on the topic “product roadmapping processes”. Based on this
broader analysis, further analyses with respect to different specific topics were derived.
Therefore, “processes” is not part of the search string. To obtain sufficient results and
cover our objectives we evolved the search term iteratively. After evaluating different
options, we have defined the following search terms:

Al: Innovation, A2: Product*, A3: Product Management, A4: Agile, AS: Outcome*
driven, A6: Outcome* oriented, A7: Goal* oriented, A8: Theme*, A9: Roadmap*

The complete search string used in our study was:
(A1 OR A2 OR A3 OR A4 OR A5 OR A6 OR A7 OR AS8) AND A9

At the end of the search process we filtered all results that fit to the topic “product
roadmapping processes”.

Definition of the Inclusion and Exclusion Criteria: In order to filter relevant from irrel-
evant articles, we defined the following inclusion and exclusion criteria as shown in
Table 3.

Table 3. Inclusion and exclusion criteria

Inclusion * The article discusses the application of product roadmapping in practice

* The article was published in English

* The URL is working and freely available

Exclusion * The source is non text-based

* The article contains duplicated content of a previously examined article

* The article is not related to software engineering

3.2 Conducting the Review

Study Selection Process: The data retrieval process was performed by using the prede-
fined search string and applying it to the Google search engine (google.com). To avoid
biased results based on past activities the search was conducted in the incognito mode of
the browser. Further, a VPN service was used to anonymize the location from which the
search was conducted. Moreover, the relevance ranking was applied, which ranks the
results according to the Google PageRank algorithm. These steps intend that a minimum
of influence of historical search could affect the results. To increase the amount of avail-
able URL’s the Google option to include similar results was activated. The search was
conducted on January 17", 2020 and yielded in 426 hits. In addition to the search pro-
cess, we conducted snowballing (i.e., considering further articles that are recommended

http://google.com

118 S. Trieflinger et al.

in an article). This led to 53 further articles. After the application of the selection process
we obtained 170 relevant articles which address the main topic product roadmapping.

On this basis we have categorized these 170 articles according to their differ-
ent subject areas (product roadmapping processes, product roadmap formats, prod-
uct roadmap prioritization techniques, alignment of different stakeholders around the
product roadmap, and challenges and pitfalls regarding product roadmapping).

This led to 32 relevant articles that deal with the topic “product roadmapping pro-
cesses”. The list of these 32 articles can be found in the Appendix. Moreover a detailed
overview of what the different approaches focus on can be found on Figshare [23].
Based on an analysis of these 32 articles, four essential approaches that represent typical
roadmapping processes are presented in more detail in the results section of this paper.
Our applied search process is shown in Fig. 2.

Apply search . Removal of Incl./excl.
[string Sl duplicates criteria

Forward

search

Scan title and
first paragrah

Separation Inclusion Scan full-text
by sub-topics
J\
/ Product roadmap alignment Product roadmap formats Challenges and pitfalls \
Product roadmap prioritization techniques Product roadmapping processes

Fig. 2. Study selection process

Quality Assessment and Data Extraction: The criterion for the quality assessment was
that the authors were able to comprehend the suggested approach based on their practical
experience. The practical experience of each reviewer is shown in Table 4. In the case
that the individual reviews led to different results, the process was carried out by a third
reviewer to make an inclusion/exclusion decision. Afterwards the results were presented
to one practitioner of the Robert Bosch GmbH, who has 7 years of experience regarding
product roadmapping and is also co-author of this article. This review did not lead to the
exclusion of an identified approach. In the next step, a data extraction was conducted
by performing a content analysis for each article and extracting the information needed
to answer our research questions. This data extraction serves as input for the reporting,
i.e., we documented the findings of each included article (see Sect. 4).

Product Roadmapping Processes for an Uncertain Market Environment 119

Table 4. Practical experience of the authors regarding product roadmapping

Author | Practical experience regarding product roadmapping

Author 1 | 8 years

Author 2 | 3 years

Author 3 | 2 years

Author 4 | 1,5 years

Author 5 | 1 year

Author 6 | 1 year

Author 7 | 7 years

4 Results

To answer our research question, we analyzed the selected articles and identified suitable
processes that can be used to create and work with a product roadmap in a dynamic and
uncertain market environment. A list of the 32 relevant articles can be found in the
Appendix. Moreover a detailed overview of what the different approaches focus on can
be found on Figshare [23]. Each of these articles deals with an approach for creating and
evolving a product roadmap in a dynamic and uncertain market environment. Most of
the product roadmapping processes that were found in the grey literature are segmented
into three to seven steps. Figure 3 shows the frequency of important components that
are described in the identified articles. Most of the product roadmapping practices that
were found in the grey literature include the steps 1) setting goals, 2) uncovering and
selecting customer needs, 3) assessing the impacts of the feature to be developed to the
customer and business goals, and 4) prioritization methods. In contrast the identified
articles provide less information about the topics “discovering and experimenting” and
“MVP creation and solution building”. Moreover the processes found are not sequential
but describe the development of a product roadmap and related activities as an iterative
process. The product roadmap itself is treated as a variable in these processes, that is, it
can change over time.

From this list of the 32 relevant articles, the authors have selected four essential
approaches, which fulfill essential requirements for product roadmapping in uncertain
and dynamic market environments. The requirements that were used for this selection
are derived from an empirical study and described in Trieflinger et al. [24]. In addition, it
should be noted that the identified processes are recommendations for the conduction of
product roadmapping. Thus, the approaches might need to be adapted to the respective
business context or corporate culture.

Lombardo et al. [3] propose a comprehensive process which results in so-called
theme-based roadmaps. In order to create a theme-based roadmap the authors recom-
mend using primarily the following components: 1) product vision, 2) business objec-
tives, 3) themes (i.e., high-level customer or system needs) and 4) timeframes. The
detailed steps of the process are described in the following:

120

S. Trieflinger et al.

Setting goals

Uncovering and selecting customer needs

Assessing the contribution to the customer and
business goals

Prioritizing

Establishing the product vision and strategy
Gathering inputs from stakeholders
Achieving alignment and buy-in

Discovering and experimenting

MVP creation and solution building

o
(92}

10 15 20 25 30

Fig. 3. Frequency of important steps mentioned in the identified articles

Gathering inputs: The aim of this step is to ensure that all relevant information is
available in order to develop a product roadmap. Usually, this input is generated by
involving customers or stakeholders. Typical examples for such information are the
knowledge about the ecosystem, in which the company operates, the description of
the problem that the product should solve, or the expected outcome of the solution.
Establishing the ‘why’ with product vision and strategy: This phase focuses on the
formulation of the product vision and product strategy. This is important in order to
align all stakeholders with the product roadmap and to obtain the agreement of the key
stakeholders. A product vision should describe the “why” behind a product, i.e. the
impact a product will have on the lives of people and the organization. Furthermore,
the product vision is the justification for all subsequent efforts and forms the basis
for the roadmap. If an organization has several products, the product vision is likely
to be different from the corporate vision but should still be supportive and derived
from it. The product strategy is the bridge that connects the product vision with the
components of the roadmap and should describe how a product vision should be
achieved.

Uncovering customer needs: This step is a very important aspect of the roadmapping
process. The reason is that a suitable product roadmap for a dynamic and uncertain
market environment should not only describe what will be build but also how it
connects to the “why”. This provides a clear direction that can be achieved in a
number of ways. Usually, this connection is made by identifying the tasks that the
customer has to fulfill or the problems that the customer has to solve. The components
of the roadmap should be derived from these customer needs. One practice to uncover
customer needs is the creation of “User Journey Maps”. This involves analyzing the
paths taken by customers through typical situations in which problems may arise
(for example, online shopping).

Product Roadmapping Processes for an Uncertain Market Environment 121

4. Deepening the product roadmap: In this step, additional components can be added
to the product roadmap according to the needs of the different stakeholders. The
authors mention the following secondary components that can be added: 1) features
and solutions (they should only be added for the short-term planning or for the inter-
nal communication purposes), 2) stage of development (e.g., “product discovery”,
“in development” or “testing”), 3) confidence (i.e., a percentage that indicates the
probability of a roadmap component that it fulfils its expectations), 4) the target
customer(s) and 5) the different product areas. For instance, the engineering teams
can use product areas as an organizing principle for their internal teams. It should
be noted that a product roadmap is valuable even without these components. One
should be careful when adding secondary components, as they can increase com-
plexity. Sometimes it makes more sense to create different documents instead of
including all the details in the product roadmap. A product roadmap should not be
arelease plan.

5. Prioritization: The prioritization process should aim at finding the most efficient and
effective way to deliver value to the customer and the business. A clear prioritization
process helps to integrate all stakeholders’ needs at an early stage and align these
needs with the priorities.

6. Achieve buy-in and alignment: The product roadmap will not fulfill its purpose with-
out alignment and buy-in of the key stakeholders. Examples for suitable approaches
in order to gain alignment are the definition and communication of clear objec-
tives based on the product vision or the conduction of shuttle diplomacy or mission
briefing. More detailed processes and techniques can be found in Lombardo et al.
[3].

7. Presenting and sharing the roadmap: Sharing the roadmap helps to obtain buy-in
from a variety of stakeholders as well as from customers. It should be noted that
different stakeholders require different kinds of information. For this reason, it is
important to adjust the content of the presentation technique to the respective target

group.

Another important aspect is that a product roadmap is subjected to frequent adjust-
ments due to the dynamic market environment with high uncertainties. These adjustments
should only be done in a systematic and justified way. Otherwise, this would result in
a lot of rework and other negative consequences. Therefore, it is essential to establish a
process for reassessing the product roadmap on a regular basis as well as to communicate
the reason for changing the roadmap.

Holmes [25] suggests using a 3-step approach to create a roadmap which consists of
the following phases: 1) collect input, 2) curate the inputs, and 3) create the roadmap.
The phase “collect inputs” typically includes the collection of feedback (e.g., from exter-
nal stakeholders or internal team members), the analysis of key metrics (e.g., to identify
trends which help to build the roadmap), or the discussion of ideas in the product team.
In order to generate ideas, the author recommends conducting a so-called “product coun-
cil”. A product council is a meeting with all key stakeholders to discuss different ideas
and their priorities, and each stakeholder argues what they need and why. This approach
fosters not only the communication between the product team and the stakeholders but
also the communication and discussion between the stakeholders themselves. Before an

122 S. Trieflinger et al.

idea is included into the product roadmap, it has to be evident that each idea contributes
to achieving the product vision and goals and that the most valuable idea is implemented
first. This is the starting point of the phase “curate the inputs”. In order to validate
that each idea is aligned with the product vision and the objectives, the author recom-
mends asking the following questions: 1) How does the product contribute to achieving
the objectives? 2) What problem does the product solve? 3) What happens if we do
not develop the product, and 4) what evidence exists that indicates the success of the
product? Regarding prioritization, Holmes [25] proposes for instance an “Impact Effort
Prioritization Matrix”. For the phase “creation of the product roadmap”, the author
recommends using the following guiding principles: 1) Keep it clear and simple: The
primary purpose of the product roadmap it to communicate the strategic plan across the
organization to stakeholders and if required to other parts of the business. If the roadmap
is not simple and clear it is more difficult to communicate it. 2) Pick the right tool: Not
every tool for product roadmapping is suitable for every team. For example, some teams
like to work with a digital tool (e.g., Roadmunk, ProductPlan, or Trello), while some
teams prefer to use a whiteboard. 3) Be disciplined: Regular updates of the roadmap
should be made, otherwise it is not useful. This requires discipline in order to keep the
roadmap updated and evolve it over time.

Van Os [26] recommends combining product roadmapping with design thinking.
The author defines design thinking as framework for defining the problems that the end
users are currently facing, which in turn uncovers potential opportunities for creating
value. The process to create a product roadmap using the principles of design thinking
consists of the following steps:

1) Define the problems: Talk to users in order to identify which problems cause
them the most pain. The more pain a product can eliminate, the more valuable the user
will find it. 2) Determine the risks: Prioritize the identified problems from the previous
phase in order of importance. To conduct this step, the author recommends using the
following questions: Is the money available to solve the problem or would it be better to
spend the money elsewhere? Is there a team available to focus on the development of a
solution in order to solve the problem? Is the problem in competition with other business
objectives? Will people use what is being built and how likely are people willing to pay
for the solution? 3) Solutions and prototypes: Determine possible solutions and create
prototypes in order to gather feedback with respect to the current status of the proposed
solution. This should be done by involving different teams (e.g., product management,
engineering, sales) as different perspectives can be brought into the picture. Furthermore,
more perspectives reduce the bias that could influence the proposed solution. The level of
detail of the prototype should be based on the previously identified risks. Solutions with
a high level of risk require detailed prototypes and more thorough testing than solutions
with a low level of risk. In addition, when creating a prototype, care should be taken to
ensure to create the minimum version of the solution required, as this limits the time
wasted. 4) Build the roadmap: Prioritize the value and risk of each problem. Therefore,
the author recommends using the value/risk mapping as shown in Fig. 4.

In order to make a decision on the different issues, the author recommends using the
following guidelines:

Product Roadmapping Processes for an Uncertain Market Environment 123

Build it Testit
()]
>
S
Consider it Scrapit
for later
Risk

Fig. 4. Prioritization of roadmap items according to van Os [26]

e High value/low risk: Add the issue to the roadmap as they offer high value for the
customer while the risk is low.

e Highvalue/high-risk: Perform further testing to gather evidence about value creation.

e Lowvalue/low risk: Leave the issues in consideration, but off the roadmap. The reason
is that for the customers these issues are not important.

e Low value/high risk: Exclude these issues from the product roadmap as they provide
only little value to the customer but are associated with a high risk.

Perri [27] proposes to consider product roadmaps as problem roadmaps (see Fig. 5).
To create a problem roadmap Perri suggests the following 8-step approach: 1) Problem
identification: identify and list the problems customers or users are facing now; 2)
Prioritization: prioritize the list of problems with the strongest on top; 3) Assignment:
assign product teams to the problems to tackle it in a timeframe (e.g., one problem to
one team in a quarter) and a KPI to measure their progress in solving the problem; 4)
Problem validation: each team should be responsible for validating its problems (i.e., to
test if the problem exists and is worth solving). In the case that a problem turns out to be
not relevant for the customers, the team can move on to the validation of the next problem
on the list; 5) Development and validation of a Minimum-Viable Product: after the initial
user research and first validation results the teams will start to develop an MVP and test
it in the market. It should be noted, that this step starts shortly after the previous step and
runs mostly parallel; 6) Validation of the MVP: Once a MVP has been validated, i.e. has
met the goals, the next step is to start building a solution in the timeframe left. The focus
is on minimum feature sets and on releasing often to get customer feedback as basis for
further iterations; 7) Decision about the next steps: based on the customer feedback the
teams can decide whether more investment is required, regarding the evolvement of the
current solution or whether another set of problems should be solved. At the beginning
of the next iteration the process repeats; 8) Next iteration: the prioritization of the list of
problems should be revisited and potentially changed. New problems might be added.

124 S. Trieflinger et al.

Quarter 1

Discover &
Experiment

-

Build & Validate
D

Quarter 2

Discover &
Experiment

Build & Validate

Fig. 5. Process to create a problem roadmap according to Perri [27].

The purpose of a problem roadmap is to support teams in changing their mindset
from a feature-driven mindset to an outcome-oriented mindset. The problem roadmap
consists of the two phases 1) discover and experiment, and 2) build and validate.

To compare the different product roadmap processes, Table 5 shows what the different

approaches focus on.

Table S. Important components of a roadmap process

Process component

Lombardo et al. [3]

Holmes [25]

Van Os [26]

Perri [27]

Achieving alignment and
buy-in

X

X

Gathering inputs from
stakeholders

Establishing the product
vision and strategy

Setting goals

Uncovering and selecting
customer needs

Discovering and
experimenting

Prioritizing

MVP creation and solution
building

Assessing the contribution
to the customer and
business goals

X

5 Threats to Validity

We use the framework from Wohlin et al. [28] as the basis for the discussion of the
validity of our study. Construct validity: The construct validity considers to what extent

Product Roadmapping Processes for an Uncertain Market Environment 125

the operational measures represent what is investigated in the context to the research
question [29]. First the construct validity is threatened by the Google search engine
regarding the accessibility of search results. This means that Google does not allow
the access to all identified articles by the search engine itself. Therefore, it is not known
whether the articles returned by Google is representative of the total population of search
results. Moreover, the search string itself poses a threat to the construct validity. There
may be articles that deal with product roadmapping but use terms that were not covered
by our search string. Therefore, we may have missed some relevant articles. In addition, a
bias regarding the search history due to the Google’s identify tracking mechanism cannot
completely be excluded. This means that Google may return slightly different results if
the search has been conducted repeatedly with our search string and the application of
the same measures (conduction of the search in the incognito mode of the browser, usage
of a VPN service, application of the relevance ranking and the activation of the option
“inclusion of similar results”). Internal validity: The internal validity concerns the
validity of the methods used to examine and analyze the data. To mitigate this threat, the
quality assessment was conducted by two reviewers independently to limit confirmation
bias and interpretation bias. In the case that the individual reviews led to different results,
the process was repeated by a third reviewer to make a final decision. External Validity:
The external validity considers to what extend it is possible to generalize the findings. The
results and conclusion relate to product roadmapping in a dynamic market environment
with high uncertainties (e.g., the software-intensive business). Therefore, the results are
not directly transferable to other industry sectors. Conclusion validity: The validity of
conclusions concerns the degree to which the conclusions of a study are based on the
available data. To mitigate this risk, we have presented and discussed our findings with
practitioners of the software-intensive business. In this context, no major ambiguities or
inconsistencies were found [28, 29].

6 Summary

In this study, we conducted areview of the grey literature and identified processes suitable
for the development and implementation of product roadmaps in dynamic and uncertain
market environments. Overall, we identified 32 approaches that are similar in sequence
and content. Therefore, we presented four representative roadmapping processes in this
paper. An important common characteristic of the roadmapping processes found is that
they establish a link between the “why” (i.e., the product vision and/or goals) and the
“what” (i.e., the items to be delivered) of a product roadmap. The processes also focus on
defining business and customer goals and keep how these goals can be achieved largely
flexible. Finally, the processes support the validation of the items (i.e., through discovery,
experimentation, prototyping, or assessing of the contribution to the goals). This should
ideally be done before roadmap items are implemented, so that waste by developing the
wrong items can be avoided and the odds of product success can be raised.

126

S. Trieflinger et al.

Appendix. Articles Identified by the Grey Literature Review

L.

IL.

1L

IV.

VL

VIL

VIIL.

IX.

XI.

XII.

XIII.

XIV.

XV.

280Group: What is a Product Roadmap?, available at https://280group.com/
what-is-product-management/documents-templates/product-roadmap/, last
accessed 1% October 2020.

Abate, S.: A Guide to Assembling a Product Roadmap, available at
https://www.productplan.com/assembling-a-product-roadmap/, last accessed
1%t October 2020.

Aha!: How Do Product Managers Build an Agile Roadmap?, avail-
able at https://www.aha.io/roadmapping/guide/product-roadmap/how-do-pro
duct-managers-build-an-agile-roadmap, last accessed 1st October 2020.
Blueprint: Agile Product Roadmap, available at https://www.blueprintsys.
com/agile-planning/agile-product-roadmap, last accessed 13 October 2020.
Choudhary, N.: Best Practices for Creating a Compelling Product Roadmap,
available at https://www.tothenew.com/blog/best-practices-for-creating-a-
compelling-product-roadmap/, last accessed 1%t October 2020.

Holmes, R: Product roadmaps — an essential guide, available at https://
www.departme tofproduct.com/blog/product-roadmaps-guide/, last accessed
1%t October 2020.

Justinmind: What is an agile roadmap? Product development tips, available
at https://blog.prototypr.io/what-is-an-agile-roadmap-product-development-
tips-3d81fcb59¢88, last accessed 1% October 2020.

Kukhnavets, P.: How to Make a Product Roadmap from Scratch?, avail-
able at https://hygger.io/blog/make-product-roadmap-scratch/, last accessed
1%t October 2020.

Layton, M. C.: Four Steps to Creating an Agile Product Roadmap, available
at https://www.dummies.com/careers/project-management/four-steps-to-cre
ating-an-agile-product-roadmap/, last accessed 1% October 2020.

Mitra, M.: Don’t let your roadmapping process put you in handcuffs, available
at https://www.productboard.com/blog/improve-your-product-roadmapping-
process/, last accessed 1% October 2020.

Perri, M.: Rethinking the product roadmap, available at https://melissape
rri.com/blog/2014/05/19/rethinking-the-product-roadmap, last accessed 1%
October 2020.

Pichler, R.: Working with the GO Product Roadmap, available at https://
www.romanpichler.com/blog/working-go-product-roadmap/, last accessed
1%t October 2020.

ProductPlan: What is a Software Roadmap?, available at https://www.produc
tplan.com/what-is-a-software-roadmap/, last accessed 1%t October 2020.
Product Manager HQ: How To Build A Product Roadmap Everyone Under-
stands, available at https://productmanagerhq.com/how-to-build-a-product-
roadmap-everyone-understands/, last accessed 15 October 2020.

Lombardo, C. T., McCarthy, B., Ryan, E., Conners, M.: Product roadmaps
relaunched - How to set direction while embracing uncertainty. O’Reilly
Media, Inc., Gravenstein Highway North, Sebastopol, CA, USA (2017).

https://280group.com/what-is-product-management/documents-templates/product-roadmap/
https://www.productplan.com/assembling-a-product-roadmap/
https://www.aha.io/roadmapping/guide/product-roadmap/how-do-product-managers-build-an-agile-roadmap
https://www.blueprintsys.com/agile-planning/agile-product-roadmap
https://www.tothenew.com/blog/best-practices-for-creating-a-compelling-product-roadmap/
https://www.departme
https://blog.prototypr.io/what-is-an-agile-roadmap-product-development-tips-3d81fcb59c88
https://hygger.io/blog/make-product-roadmap-scratch/
https://www.dummies.com/careers/project-management/four-steps-to-creating-an-agile-product-roadmap/
https://www.productboard.com/blog/improve-your-product-roadmapping-process/
https://melissaperri.com/blog/2014/05/19/rethinking-the-product-roadmap
https://www.romanpichler.com/blog/working-go-product-roadmap/
https://www.productplan.com/what-is-a-software-roadmap/
https://productmanagerhq.com/how-to-build-a-product-roadmap-everyone-understands/

XVL

XVIL

XVIIL

XIX.

XX.

XXI.

XXIIL

XXTII.

XXIV.

XXV.

XXVL

XXVIIL

XXVIIL

XXIX.

XXX.

Product Roadmapping Processes for an Uncertain Market Environment 127

Melone, J.: How to successfully marry design sprints and product devel-
opment, available at https://www.invisionapp.com/inside-design/how-to-suc
cessfully-marry-design-sprints-and-product-development/, last accessed 1%
October 2020.

Roadmunk: A 5-step guide to agile product roadmap planning,
available at https://roadmunk.com/guides/a-5-step-guide-to-agile-product-
roadmap-planning/, last accessed 15 October 2020.

Rai, A.: How to Build a Product Roadmap, available at https://hacker
noon.com/how-to-build-a-product-roadmap-76b538923¢6f, last accessed 1
October 2020.

Seet, C.: Developing a strategy roadmap with design thinking, lean startup
and agile, available at https://www.jibility.com/design-thinking-lean-startup-
agile-strategy-roadmap/, last accessed 1%t October 2020.

Sharma, R.: How to Craft the Perfect Product Roadmap, available at https://
blog.hubspot.com/service/product-roadmap, last accessed 1% October 2020.
Shymansky, S.: Product Development Roadmap — Your Guide Through the
Product Strategy, available at https://railsware.com/blog/product-roadmap/,
last accessed 15t October 2020.

Smartsheet: Best Practices and Expert Tips for Creating Product Roadmaps,
available at https://www.smartsheet.com/best-practices-and-expert-tips-cre
ating-product-roadmaps, last accessed 1% October 2020.

Svitla: Revealing the secrets of creating an efficient Agile Roadmap, avail-
able at https://svitla.com/blog/revealing-the-secrets-of-creating-an-efficient-
agile-roadmap, last accessed 13 October 2020.

Tech at GSA: 3 Steps to Develop an Agile Product Roadmap, avail-
able at https://tech.gsa.gov/guides/develop_an_agile_product_roadmap/, last
accessed 1% October 2020.

Theus, A.: Building Your First Product Roadmap from Scratch, avail-
able at https://www.productplan.com/building-your-first-product-roadmap/,
last accessed 15t October 2020.

Trackmind.com: Creating a strategic product roadmap, available at https://
www.trackmind.com/creating-strategic-product-roadmap/, last accessed 1%
October 2020.

Tsui, W.: How to use design sprints to push your company roadmap, avail-
able at https://medium.com/gusto-design/how-to-use-design-sprints-to-push-
your-company-roadmap-f085bc9d9a7c, last accessed 1%t October 2020.
Umbach, H.: 8 Steps to a Successful Product Roadmap, avail-
able at https://www.freshtilledsoil.com/8-steps-to-a-successful-product-roa
dmap/, last accessed 1% October 2020.

Van Os: The art of the strategic product roadmap, available at https://produc
tcoalition.com/the-art-of-the-strategic-product-roadmap-c88 126 1b4eb, last
accessed 1% October 2020.

Walton, M.: Creating Good Roadmaps: 6 Practical Steps for Product Leaders,
available at https://www.mindtheproduct.com/creating-good-roadmaps-6-pra
ctical-steps-product-leaders/, last accessed 1% October 2020.

https://www.invisionapp.com/inside-design/how-to-successfully-marry-design-sprints-and-product-development/
https://roadmunk.com/guides/a-5-step-guide-to-agile-product-roadmap-planning/
https://hackernoon.com/how-to-build-a-product-roadmap-76b538923c6f
https://www.jibility.com/design-thinking-lean-startup-agile-strategy-roadmap/
https://blog.hubspot.com/service/product-roadmap
https://railsware.com/blog/product-roadmap/
https://www.smartsheet.com/best-practices-and-expert-tips-creating-product-roadmaps
https://svitla.com/blog/revealing-the-secrets-of-creating-an-efficient-agile-roadmap
https://tech.gsa.gov/guides/develop_an_agile_product_roadmap/
https://www.productplan.com/building-your-first-product-roadmap/
https://www.trackmind.com/creating-strategic-product-roadmap/
https://medium.com/gusto-design/how-to-use-design-sprints-to-push-your-company-roadmap-f085bc9d9a7c
https://www.freshtilledsoil.com/8-steps-to-a-successful-product-roadmap/
https://productcoalition.com/the-art-of-the-strategic-product-roadmap-c881f261b4eb
https://www.mindtheproduct.com/creating-good-roadmaps-6-practical-steps-product-leaders/

128

S. Trieflinger et al.

XXXI. Weiss, E.: Build the Right Things - A 5 Step Plan to a Rock-Solid Prod-

uct Roadmap, available at https://hackernoon.com/build-the-right-things-a-5-
step-plan-to-a-rock-solid-product-roadmap-23a7c3fbd8d7, last accessed 1%
October 2020.

XXXII. Zinchenko, P.: Agile product roadmap: pros, cons, and best practices, available

at https://www.mindk.com/blog/product-roadmap/, last accessed 1% October
2020.

References

10.

11.

12.

13.

. Kostoff, R.N., Schaller, R.: Science and technology roadmaps. IEEE Trans. Eng. Manage.

48(2), 132-143 (2001)

Cooper, R.G., Edge, J.: Developing a product innovation and technology strategy for your
business. Res. Technol. Manag. 53(3), 33—40 (2015)

Lombardo, C.T., McCarthy, B., Ryan, E., Conners, M.: Product Roadmaps Relaunched - How
to Set Direction While Embracing Uncertainty. O’Reilly Media, Inc., Sebastopol (2017)
Miinch, J., Trieflinger, S., Lang, D.: The product roadmap maturity model DEEP: validation of
a method for assessing the product roadmap capabilities of organizations. In: Hyrynsalmi, S.,
Suoranta, M., Nguyen-Duc, A., Tyrviinen, P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP,
vol. 370, pp. 97-113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_9
Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements engineering
long-term product planning by roadmapping. In: 13th IEEE International Conference on
Requirements Engineering, pp. 439-443. IEEE (2005)

Pichler, R.: Establishing an effective product strategy process. https://dzone.com/articles/est
ablishing-an-effective-product-strategy-process. Accessed 1 Oct 2020

Miinch, J., Trieflinger, S., Lang, D.: What’s hot in product roadmapping? Key practices and
success factors. In: Franch, X., Ménnisto, T., Martinez-Fernandez, S. (eds.) PROFES 2019.
LNCS, vol. 11915, pp. 401-416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35333-9_29

Miinch, J., Trieflinger, S., Lang, D.: Why feature based roadmaps fail in rapidly changing mar-
kets: a qualitative survey. In: Proceedings of International Workshop on Software-Intensive
Business: Start-Ups, Ecosystems and Platforms (SiBW 2018), pp. 202-2018. CEUR-WS
(2018)

Bowen, G., Bowen, D.: Strategy formulation and uncertainty in environments. J. Bus. Econ.
5(12), 2315-2326 (2014)

Trieflinger, S., Miinch, J., Bogazkdy, E., Eifller, P., Schneider, J., Roling, B.: Product roadmap
alignment — achieving the vision together: a grey literature review. In: Paasivaara, M.,
Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 50-57. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_6

Miinch, J., Trieflinger, S., Bogazkdy, E., Eifler, P., Roling, B., Schneider, J.: Product roadmap
formats for an uncertain future: a grey literature review. In: Proceedings of Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA 2020), pp. 284-291.
1EEE (2020)

Miinch, J., Trieflinger, S., Lang, D.: From vision to reality: a systematic literature review. In:
Proceedings of ICE/IEEE ITMC International Conference on Engineering, Technology and
Innovation, Valbonne, France (2019)

Kappel, T.: Perspectives on roadmaps: how organizations talk about the future. J. Prod. Innov.
Manag. Int. Publ. Prod. Dev. Manag. Assoc. 18(1), 39-50 (2001)

https://hackernoon.com/build-the-right-things-a-5-step-plan-to-a-rock-solid-product-roadmap-23a7c3fbd8d7
https://www.mindk.com/blog/product-roadmap/
https://doi.org/10.1007/978-3-030-33742-1_9
https://dzone.com/articles/establishing-an-effective-product-strategy-process
https://doi.org/10.1007/978-3-030-35333-9_29
https://doi.org/10.1007/978-3-030-58858-8_6

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Product Roadmapping Processes for an Uncertain Market Environment 129

. DeGregorio, G.: Technology management via a set of dynamically linked roadmaps. In:

Proceedings of the 2000 IEEE Engineering Management Society, EMS 2000 (Cat. No.
00CH37139), pp. 184-190. IEEE (2000)

Albright, R.E.: A unifying architecture for roadmaps frames a value scorecard. In: IEMC
2003 Proceedings. Managing Technologically Driven Organizations: The Human Side of
Innovation and Change. IEEE (2003)

Phaal, R., Farrukh, C.J.P., Probert, D.R.: Technology roadmapping—a planning framework
for evolution and revolution. Technol. Forecast. Soc. Chang. 71(1-2), 5-26 (2004)
Groenveld, P.: Roadmapping integrates business and technology. Res. Technol. Manag. 40(5),
48-55 (1997)

Vihiniitty, J., Lassenius, C., Rautiainen, K.: An approach to product roadmapping in small
software product businesses. In: Proceedings of the 7th European Conference on Software
Quality (ECSQ 2002), pp. 12—-13. Springer, Heidelberg (2002)

Fenwick, D., Daim, T.U., Gerdsri, N.: Value driven technology road mapping (VTRM) pro-
cess integrating decision making and marketing tools: case of Internet security technologies.
Technol. Forecast. Soc. Chang. 76(8), 1055-1077 (2009)

Beeton, D., Phaal, R., Probert, D.R.: Exploratory roadmapping: capturing, structuring and
presenting innovation insights. In: Moehrle, M.G., Isenmann, R., Phaal, R. (eds.) Technology
Roadmapping for Strategy and Innovation, pp. 225-240. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-33923-3_14

Kim, E., Chung, J., Beckman, S., Agogino, A.M.: Design roadmapping: a framework and
case study on planning development of high-tech products in Silicon Valley. J. Mech. Des.
138(10), 101106 (2016)

Garousi, V., Felderer, M., Mintyld, M. V.: Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineering. Inf. Softw. Technol. 106, 101-121
(2019)

Published on Figshare. https:/figshare.com/s/109e070bd713512da5b0. Accessed 17 Nov
2020

Trieflinger, S., Miinch, J., Knoop, V., Lang, D.: Facing the challenges with product roadmaps
in uncertain markets: experience from industry. In: Proceedings of International Conference
on Engineering, Technology and Innovation (ICE/ITMC 2020), pp. 1-8. IEEE (2020)
Holmes, R.: Product roadmaps — an essential guide. https://www.departmen-tofproduct.com/
blog/product-roadmaps-guide/. Accessed 1 Oct 2020

Van Os: The art of the strategic product roadmap. https://productcoali-tion.com/the-art-of-
the-strategic-product-roadmap-c881f261b4eb. Accessed 1 Oct 2020

Perri, M.: Rethinking the product roadmap. https://melissaperri.com/blog/2014/05/19/rethin
king-the-product-roadmap. Accessed 1 Oct 2020

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic Publishers, Dordrecht (2000)
Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14(2), 131-164 (2009). https://doi.org/10.1007/s10664-008-
9102-8

https://doi.org/10.1007/978-3-642-33923-3_14
https://figshare.com/s/109e070bd713512da5b0
https://www.departmen-tofproduct.com/blog/product-roadmaps-guide/
https://productcoali-tion.com/the-art-of-the-strategic-product-roadmap-c881f261b4eb
https://melissaperri.com/blog/2014/05/19/rethinking-the-product-roadmap
https://doi.org/10.1007/s10664-008-9102-8

q

Check for
updates

1

Agile development methods, particularly Scrum, which focus on managing the
collaboration of self-organizing, cross-functional teams working in iterations [1],
have become standards in industry settings. The most recent survey of Agile
industry practitioners by Digital.ai', conducted between August and Decem-
ber 2019, showed that Scrum continued to be the most widely-practiced Agile
method: 75% of respondents employed Scrum or a Scrum hybrid [2]. In the
survey, which included 1,121 full responses, both of the top two Agile tech-
niques employed in organizations were focused on communication and gather-
ing feedback: the Daily Standup (85%) and Retrospective meetings (81%). The

Experience vs Data: A Case for More
Data-Informed Retrospective Activities

Christoph Matthies®™® and Franziska Dobrigkeit

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{christoph.matthies,franziska.dobrigkeit}@hpi.de

Abstract. Effective Retrospective meetings are vital for ensuring pro-
ductive development processes because they provide the means for Agile
software development teams to discuss and decide on future improve-
ments of their collaboration. Retrospective agendas often include activ-
ities that encourage sharing ideas and motivate participants to discuss
possible improvements. The outcomes of these activities steer the future
directions of team dynamics and influence team happiness. However,
few empirical evaluations of Retrospective activities are currently avail-
able. Additionally, most activities rely on team members experiences and
neglect to take existing project data into account. With this paper we
want to make a case for data-driven decision-making principles, which
have largely been adopted in other business areas. Towards this goal
we review existing retrospective activities and highlight activities that
already use project data as well as activities that could be augmented to
take advantage of additional, more subjective data sources. We conclude
that data-driven decision-making principles, are advantageous, and yet
underused, in modern Agile software development. Making use of project
data in retrospective activities would strengthen this principle and is a
viable approach as such data can support the teams in making decisions
on process improvement.

Keywords: Retrospective + Scrum - Agile methods - Data-driven
decision making - Data-informed processes

Introduction

! Formerly CollabNet VersionOne.

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 130-144, 2021.
https://doi.org/10.1007/978-3-030-67084-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_8&domain=pdf
http://orcid.org/0000-0002-6612-5055
http://orcid.org/0000-0001-9039-8777
https://doi.org/10.1007/978-3-030-67084-9_8

Experience vs Data 131

importance of these meetings was also stated in a previous, similar survey by the
Scrum Alliance. A vast majority of respondents (81%) to this 2018 survey stated
that their teams held a Retrospective meeting at the end of every Sprint, while
87% used Daily Scrum meetings [3]. A prototypical, generalized flow through the
Scrum method, depicting the different prescribed meetings and process artifacts,
i.e. the context of Retrospectives, is represented in Fig. 1.

\ ,I-N\

¢ Daily

\ Scrum
~

-

Sprint
Iteration
Stakeholder

- -

-—— Vs ~
Input s A Sprint] . \
I Planning \ Review
G . /»ll Backlog AR
Product
2 Backlog

3
4

“ Backlog > — ’th(:r's: ‘ ! Retrosgectlve\ ‘ Product
\Reflnement, Increment

Fig. 1. Prototypical flow through the Scrum process, based on [4]. Process meetings
are represented by circles, process artifacts and outcomes as squares. Scrum’s process
improvement meeting, the Retrospective, is highlighted.

In this research, we focus on the popular Retrospective meeting, which forms
the core practice of process improvement approaches in the Scrum method, and
the activities that are used in it. Retrospectives are a realization of the “inspect
and adapt” principle [1] of Agile software development methods [5].

1.1 Retrospective Meetings

Recent research has pointed to Retrospective meetings as crucial infrastructure
in Scrum [6]. Similarly, Retrospectives have also been recognized as one of the
most important aspects of Agile development methods by practitioners [7]. The
seminal work on Scrum, the Scrum Guide, defines the goal of Retrospectives
to ascertain “how the last Sprint went” regarding both people doing the work,
their relationships, the employed process, and the used tools [1]. As such, Retro-
spectives cover improvements of both technical and social/collaboration aspects.
Teams are meant to improve their modes of collaboration and teamwork, thereby
also increasing the enjoyment in future development iterations [8]. The Scrum
framework prescribes Retrospectives at the end of each completed iteration.
Teams are meant to generate a list of improvement opportunities, i.e. “action
items” [8], to be tackled in the next iteration. Retrospective meetings focus less
on the quality of the produced product increment, but more on how it was pro-
duced and how that process can be made smoother and more enjoyable for all
involved parties in the next iteration.

132 C. Matthies and F. Dobrigkeit

While Scrum is a prescriptive process framework, suggesting concrete meet-
ings, roles, and process outcomes, the Scrum Guide also points out: “Specific
tactics for using the Scrum framework vary and are described elsewhere” [1]. For
Retrospectives, this means that while the meeting’s goal of identifying improve-
ment opportunities is clear, the concrete steps that teams should follow are not
and are up to the individual, self-organizing Scrum teams [9,10]. One of the
easiest and most effective ways to generate the types of process insights that
Retrospectives require is by relying on those most familiar with the teams’ exe-
cuted processes: team members themselves. Their views and perceptions of the
previous, completed development iteration are, by definition, deeply relevant as
inputs for process improvement activities. Furthermore, these data points are
collectible with minimal overhead, e.g. by facilitating a brainstorming session in
a Retrospective meeting, and they are strongly related to team satisfaction [11].

1.2 Data Sources Used in Retrospective Meetings

Most of the data that forms the basis of improvement decisions in current Ret-
rospectives is, at present, based on the easily collectible perceptions of team
members. However, modern software development practices and the continu-
ing trend of more automated and integrated development tools have opened
another avenue for accessing information on teams’ executed process: their
project data [12-14]. This project data includes information from systems used
for such diverse purposes as version control (what was changed, why, when?),
communication (what are other working on?), code review (feedback on changes),
software builds (what is the testing status?), or static analysis (are standards
met?). The data is already available, as modern software engineers continuously
document their actions as part of their regular work [15,16]. The development
processes of teams, their successes as well as their challenges, are “inscribed”
into the produced software artifacts [17]. This type of information, which can
be used in Retrospectives, in addition to the subjective assessments of team
members, has been identified as “a gold-mine of actionable information” [18].
More comprehensive, thorough insights into teams’ process states, drawn from
activities that make use of both project data and team members’ perceptions,
can lead to even better results in Retrospectives [8].

1.3 Research Goals

In this research, we focus on the integration of project data sources into Agile
Retrospective meetings. In particular, we investigate to which extent project
data analyses are already provided for in Retrospective activities and how more
of them could benefit from data-informed approaches in the future. We provide
an overview of popular activities and review the types of data being employed
to identify action items, i.e. possible improvements. We highlight those activities
that already rely on software project data in their current descriptions as well as
those that could be augmented to take advantage of the information provided by

Experience vs Data 133

project data sources. We argue that the principles of data-driven decision mak-
ing, which have already been adopted in many business areas [19], are suitable
and conducive, yet underused, in the context of modern Agile process improve-
ment.

2 Retrospective Activities

The core concept of Retrospectives is not unique to Scrum. These types of meet-
ings, focusing on the improvement of executed process and collaboration strate-
gies, have been employed since before Agile methods became popular. Similarly,
team activities or “games” that meeting participants can play to keep sessions
interesting and fresh have been used in Retrospectives since their inception [20].
These, usually time-boxed, activities are interactive and designed to encourage
reflection and the exchange of ideas in teams. Derby and Larsen describe the pur-
pose of Retrospective activities as to “help your team think together” [8]. Retro-
spective games have been shown to improve participants’ creativity, involvement,
and communication as well as make team members more comfortable participat-
ing in discussions [10]. The core idea is that meeting participants already have
much of the information and knowledge needed for future process improvements,
but a catalyst is needed to start the conversation.

In 2000, Norman L. Kerth published a collection of Retrospective activi-
ties [20]. Additional collections were published in the following years by different
practitioners as well as researchers [21-24]. Table 1 presents an overview of the
literature containing collections of Retrospective activities.

Table 1. Sources of Retrospective activities in literature.

Year | Reference | Name of reference

2006 | [8] Agile retrospectives - making good teams great
2006 | [21

Innovation games

]
2013 | [22] The retrospective handbook
2014 | [23] Getting value out of agile retrospectives
2015 | [24] Agile retrospective kickstarter
2015 | [11] Fun retrospectives
2018 | [25] Retromat: run great agile retrospectives!

A generalized meeting agenda for Retrospective was proposed in 2006 by
Derby and Larsen. It features five consecutive phases: (i) set the stage (define
the meeting goal and giving participants time to “arrive”), (ii) gather data (cre-
ate a shared pool of information), (iii) generate insight (explore why things
happened, identify patterns within the gathered data), (iv) decide what to do
(create action plans for select issues), and (v) close (focus on appreciations and

134 C. Matthies and F. Dobrigkeit

future Retrospective improvements) [8]. This plan has since established itself
and has been accepted by other authors [25]. Retrospective activities remain an
open area of investigation and continued learning, with current research further
exploring the field [4,26,27].

While research articles and books offer extensive collection efforts regarding
Retrospective activities, Agile practitioners rely on up-to-date web resources in
their daily work, rather than regularly keeping up with research literature [27,
28]. The Retromat? [25] is a popular, comprehensive and often referenced 7,27,
29], online repository of Retrospective activities for meeting agendas. It currently
contains 140 different activities for five Retrospective meeting phases?.

3 Review of Retrospective Activities

As the Retromat repository represents the currently best updated, most com-
plete list of Retrospective activities in use by practitioners [27,29,30], we employ
its database as the foundation of our review. Our research plan contains the fol-
lowing steps:

— Extract activities that provide or generate inputs for discussion in Retrospec-
tives

— Identify the specific data points being collected

Categorize data points by their origin

— Study those activities in detail which already (or are close to) taking project
data into account

3.1 Activity Extraction

The Retromat, following Derby and Larsen’s established model [8], features
activities and games for the five Retrospective phases® set the stage, gather
data, generate insight, decide what to do and close the Retrospective. As this
research focuses on the types of gathered inputs employed for meetings, we ini-
tially collected all activities classified by the Retromat as suitable for the gather
data phase. This meeting phase aims to help participants remember and reflect
and is aimed at collecting the details of the last iteration, in order to establish
a shared understanding within the team. We extracted 35 activities intended
for the gather data from the Retromat repository. These activities are listed in
Table 4 in the Appendix.

Additionally, we reviewed the Retromat activities prescribed for all other
phases to ensure that we did not miss any activities that gathered data as part
of their proceedings. These could have been classified under different phases, as
data gathering and analysis steps are often intertwined, or because the activity’s
main focus is broader than data collection. This step yielded an additional four

2 Available at https://retromat.org.
3 https://retromat.org/blog/history-of-retromat,/.
4 https:/ /retromat.org/blog/what-is-a-retrospective/.

https://retromat.org
https://retromat.org/blog/history-of-retromat/
https://retromat.org/blog/what-is-a-retrospective/

Experience vs Data 135

activities that, at least partly, base their procedures on collected data: “3 for
1 - Opening” (assessments of iteration results and number of communications),
“Last Retro’s Actions Table” (collecting assessments of previous action items),
“Who said it?” (collecting memorable quotes), and “Snow Mountain” (using the
Scrum burndown chart)®. The first three of these were classified in the Retromat
under the set the stage phase, the last as generate insights.

3.2 Identification of Retrospective Inputs

We analyzed the textual descriptions provided within the Retromat collection
for each of the extracted activities of the previous research step. We manually
tagged each of the activities with labels regarding the specific data points that
are collected and used as inputs for the following actions. Many activity descrip-
tions featured subsequent aggregation and synthesis actions, e.g. dot-voting or
clustering, from which we abstracted. The generated short data labels describe
the specific outcomes of the initial data acquisition within activities. Exam-
ples include “numerical ratings of performed meetings”, “notes on what team
members wish the team would learn”, or “collection of all user stories handled
during the iteration”. Multiple activity descriptions contained mentions of phys-
ical representations of collected data points, which we generalized. For example,
we consider “index cards” and “sticky notes” filled by meeting participants with
their ideas to be instances of the more general “notes”. The results of this tagging
step are shown in Table 2.

3.3 Classification of Retrospective Data Sources

We categorized activities based on the origins of their data inputs, using the
generated descriptions. We distinguish whether the gathered data is (i) drawn
solely from team members’ perceptions (no mention/reliance on software project
data), (ii) is directly extracted from project data sources, or (iii) is ambiguous,
i.e. could be drawn from either source, depending on team context and inter-
pretation. We consider the term “project data” as an overarching collection of
software artifacts. We follow Fernandez et al.’s definition of the term “software
artifacts” [31], in that we consider them “deliverables that are produced, mod-
ified, or used by a sequence of tasks that have value to a role”. These artifacts
are often subject to quality assurance and version control and have a specific
type [31].

The vast majority, i.e. 86% (30 of 35), of proposed gather data activities in
the Retromat collection make no mention of software project data and do not
take advantage of it. It should be noted that most of these gather data activities
are very similar in terms of the type of collected data. They tend to deal with
team members’ answers to varying prompts or imagined scenarios, aimed at
starting discussions. Examples of such prompts include “mad, sad, glad*“, “start,
stop, continue“, “good, bad, ugly” or “proud and sorry”. All of these activities

5 https:/ /retromat.org/en/?id=70-84-106-118.

https://retromat.org/en/?id=70-84-106-118

136 C. Matthies and F. Dobrigkeit

Table 2. Overview of the types of inputs employed in the selected Retrospective activ-
ities. Activities above the divide are part of the gather data phase, those below are
included after reviewing the activities of other phases. The categories of activities that
gather data through specific prompts are italicized.

Shortened name

‘ # ‘ Type of activity input (regarding last iteration)

Activities from the gather data Retrospective phase

Timeline 4 | List of memorable/personally significant events

Analyze Stories 5 | Collection of user stories handled during the iteration

Like to like 6 Notes on things to start doing, keep doing and stop doing

Mad Sad Glad 7 | Notes on events when team members felt mad, sad or glad

Speedboat /Sailboat 19 | Notes on what drove the team forward & what kept it back

Proud & Sorry 33 | Notes of instances of proud and sorry moments

Self-Assessment 35 | Assessments of team state regarding Agile checklist items

Mailbox 47 | Reports of events or ideas collected during the iteration

Lean Coffee 51 | List of topics team members wish to be discussed

Story Oscars 54 | Physical representations of completed user stories

Expectations 62 | Text on what team members expect from each other

Quartering 64 | Collection of everything the team did during iteration

Appreciative Inquiry 65 | Answers to positive questions, e.g. best thing that happened

Unspeakable 75 | Text on the biggest unspoken taboo in the company

4 Ls 78 | Notes on what was loved, learned, lacked & longed for

Value Streams 79 | Drawing of a value stream map of a user story

Repeat & Avoid 80 | Notes on what practices to avoid and which to repeat

Comm. Lines 86 | Visualization of the ways information flows in the process

Satisfaction Hist. 87 | Numerical (1-5) ratings of performed meetings

Retro Wedding 89 | Notes on categories something old, new, borrowed & blue

Shaping Words 93 | Short stories on iteration, including a ’shaping word’

#tweetmysprint 97 | Short texts/tweets commenting on the iteration

Laundry Day 98 | Notes on clean (clear) & dirty (unclear/confusing) items

Movie Critic 110 | Notes on movie critic-style categories: Genre, Theme, Twist, Ending,
Expected?, Highlight, Recommend?

Genie in a Bottle 116 | Notes on 3 wishes: for yourself, your team and all people

Hit the Headlines 119 | Short headlines on newsworthy aspects of the iteration

Good, Bad & Ugly 121 | Notes on categories good, bad & ugly concerning the iteration

Focus Principle 123 | Assessments on relative importance of Agile Manifesto principles

1 like, I wish 126 | Notes on likes and wishes concerning the iteration

Delay Display 127 | Notes on team destination, delay & announcement

Learning Wish List 128 | Text on what team members wish the team would learn

Tell me something I don’t know | 133 | Facts and questions, in game show fashion, on something that only one
team member knows and most others do not

Avoid Waste 135 | Notes on the 7 categories of waste in the process

Dare, Care, Share 137 | Notes on bold wishes, worries & feedback/news

Room Service 139 | Notes on the prompts Our work space helps me/us... and Our work

space makes it hard to...

Activities from phases set the stage and generate insights

3 for 1 70 | Points in coordinate plane of satisfaction with results and
communication

Retro Actions Table 84 | List of last Retrospectives action items

Who said it? 106 | Quotes collected from project artifacts

Snow Mountain 118 | Burndown chart of problematic Sprint

Experience vs Data 137

are, by default, drawn from the individual perceptions and experiences of team
members.

The nine activities that we identified in our review as featuring (possible)
connections to development data—five from the gather data, three from set the
stage and a single one from the gemerate insights phase—are shown in Table 3
and are discussed in the following two sections.

Table 3. Overview of Retromat activities not solely reliant on team members’ percep-
tions. Activities which could be connected to project data, depending on how they are
executed, are marked as Possible.

| Activity Name Data used as (partial) input for the activity and subsequent steps Project data

5 | Analyze Stories Collection of all user stories handled during the iteration Yes

54 | Story Oscars Physical representation of all stories completed in the last iteration Yes

84 | Last Retro’s Actions Table List of outcomes of the last Retrospective, i.e. action Yes
items/improvement plans

106 | Who said it? Literal quotes of team members extracted from communication Yes
channels, e.g. emails, chat logs or ticket discussions

35 | Agile Self-Assessment Assessments of team state regarding Agile checklist items Possible

64 | Quartering-identify boring stories | Collection of “everything” the team did in the last iteration Possible

70 |3 for1 Number of times team members coordinated in the last iteration Possible

79 | Value Stream Mapping Drawing of a value stream map concerning a particular user story Possible

118 | Snow Mountain The shape of the Scrum Burndown chart of a problematic iteration Possible

4 Activities Already Reliant on Project Data

Of the overall nine activities identified in this research that feature (possible)
connections to project data, four make direct mentions of specific development
artifacts in their descriptions on Retromat:

— Analyze Stories

— Story Oscars

— Last Retro’s Actions Table
Who said it?

These are marked as Yes regarding the use of project data in Table 4. Of
these four activities, two employ the user stories of the last iteration as inputs,
which are analyzed and graded by meeting participants in the following steps.
The other two are concerned with the outcomes of the last Retrospective meet-
ing and an extract of intra-team communications. The user stories/work items
of modern Agile teams are usually contained in an issue tracker system [32] or
can be acquired in printed form from a shared workspace or board [7]. Persisting
the outcomes of Retrospectives, i.e. making note of the resulting action items
and documenting meeting notes, is a common practice of Agile processes [6]
and enables the tracking of progress towards these goals. Furthermore, digital
communication tools, e.g. bug reports, mailing lists, or online forums, and the
artifacts that result from their usage form a core part of modern software devel-
opment [33]. The fact that these project artifacts are already present and are

138 C. Matthies and F. Dobrigkeit

produced as part of the regular tasks of modern software developers, means that
they can be collected with minimal overhead [34].

The four Retrospective activities we identified in this review as already
employing project data represent only a small fraction of the 140 overall activ-
ities included in the Retromat. However, these are the activities that explicitly
follow Derby and Larsen’s principle of having the gather data phase of Ret-
rospective meetings “start with the hard data” [8]. The authors consider this
“hard data” to include iteration events, collected metrics, and completed fea-
tures or user stories. They point out that while it “may seem silly to gather data
for an iteration that lasted a week or two”, being absent for a single day of a
week-long iteration already results in missing 20% of events. As such, reflecting
on the completed iteration through the lens of project data can ensure a more
complete overview for all team members. Furthermore, even when nothing was
missed through absence, perceptions of iteration events vary between observers
and different people exhibit different perspectives and understandings regarding
the same occurrences [8]. Lastly, by focusing on project data, in addition to the
“soft data” usually employed, teams can optimize their Retrospective meetings.
The roles in teams tasked with facilitating Retrospectives are able to prepare
the inputs for meeting activities beforehand, without relying on the presence
of others. Team members are able to focus their attention on interpreting data
instead of trying to remember the details of the last iteration. The time gained
by reviewing, e.g. an already existing list of user stories rather than having to
reconstruct it collaboratively, frees up more time for the actual Retrospective
work of reflecting on process improvements using Retrospective activities.

5 Towards Data-Informed Retrospective Activities

The activities that we identified, depending on interpretation and context, as
having a possible connection to project data, i.e. depending on concrete execution
in teams, are “Agile Self-Assessment”, “Quartering - Identify boring stories”,
“3 for 1”7, “Value Stream Mapping” and “Snow Mountain”, see Table 3. In the
following paragraphs, we discuss these activities and their relations with software
project data in detail.

Agile Self-Assessment involves assessments of team members regarding the state
of their own team, based on a checklist of items. Depending on the employed
checklist, these assessments might involve quantifiable measurements, e.g. “time
from pushing code changes until feedback from a test is received”® or can rely on
entirely team members’ perceptions, e.g. “the team delivers what the business
needs most” 7. By switching to a checklist featuring measurements based on Agile
practice usage and project data [35], this activity can be modified to present a
more objective, data-based process view.

5 https://finding-marbles.com/2011/09/30/assess-your-agile-engineering- practices,/.
7 https://www.crisp.se/gratis-material-och-guider /scrum-checklist.

https://finding-marbles.com/2011/09/30/assess-your-agile-engineering-practices/
https://www.crisp.se/gratis-material-och-guider/scrum-checklist

Experience vs Data 139

Quartering - Identify boring stories assumes a collection of “everything a team
did” in the last iteration. The activity’s description does not mention how this
overview is achieved or how the data points are collected. By brainstorming
all their activities, this overview can be collaboratively reconstructed from the
memories of participants. Relying on project data could significantly speed up
this (error-prone) method of data collection. Dashboards featuring all interac-
tions with the version control system by team members, e.g. using GitHub?®, can
present activity audits with minimal overhead, leaving more time in Retrospec-
tives for discussion. Furthermore, the goal of quartering is to identify boring
stories. While the “boringness” of a story/work item is, by definition, in the eye
of the beholder, data from project issue trackers could provide an additional level
of analysis: Stories with no discussion that were closed rapidly, needing only a
few commits by a single author, might be ideal candidates to be discussed for
this Retrospective activity.

8 for 1 combines, as the name suggests, the assessments of meeting participants
regarding three categories: iteration results, team communication, and mood.
Team members are asked to mark their spot in a coordinate plane using the axes
“satisfaction with iteration result” and “number of times we coordinated” with
an emoticon representing their mood. While satisfaction with iteration results
and mood are hard to gauge using project data, the frequency of communication
within a team can be extracted from the team’s employed communication tools.
As more communication moves to digital tools, such as chat or ticket systems,
the wealth of information in this domain is steadily increasing [36]. If a digital
tool is used, the number of contacts and touch points between team members
can be counted and quantified. The input for one axis of the 8 for I activity
can therefore be automated or augmented with project data analyses. Further-
more, variations of this exercise include varying the employed categories, such as
replacing communication frequency with the frequency of pair programming [37]
in the team. Relying more heavily on project data analyses for this activity can
simplify both data collection and substitution of employed categories.

Value Stream Mapping attempts to create a value stream map (VSM) [38,39] of
a team’s process based on the perspective of a single user story. While the details
of the story might still be in participants’ memories, gathering additional data,
based on project artifacts, can provide additional context to improve the map’s
accuracy. One of the main goals of a VSM is to identify delays, choke points,
and bottlenecks in the process. In a software development process, these are
measurable using project data, e.g. by calculating the time it took from pushing
code for a story until the code was reviewed or by assessing its lead time [40].
A more complete VSM can be generated by relying on these metrics, leading to
improved subsequent analysis and improvement steps in a team.

Snow Mountain uses the shape of the Scrum Burndown chart regarding a prob-
lematic iteration to draw an image that is used as a reflection prompt. Using the

8 https://github.blog/changelog/2018-08-24-profile-activity-overview/.

https://github.blog/changelog/2018-08-24-profile-activity-overview/

140 C. Matthies and F. Dobrigkeit

metaphor of a snowy mountain ridge, meeting participants describe their percep-
tions of the iteration with kids sledging down the slopes. The Burndown chart is
a measurement tool for planning and monitoring of progress in Scrum teams [41]
They are based on the amount of work left to do versus remaining time during
an iteration. Depending on the team, the amount of outstanding work can be
represented by time units, story points or other effort measures (e.g. “gummy
bear” [42]). If sophisticated project management software is used by the team
and work items are entered into it with the required level of detail, burndown
charts can be created and extracted from the project data’. These digital images
can then be printed or otherwise transformed into the snowy mountains required
for the activity, without expending team members’ time in creating them.

6 Conclusion

We present a review and analysis of current Retrospective activities, with a
focus on the gather data meeting phase. We discuss the role of software project
data, i.e. development artifacts produced by developers in their day-to-day work,
within existing Retrospective meeting structures. This type of data has previ-
ously been identified in the literature as an extremely valuable source of insight
and actionable information [18,34]. However, we show that the vast major-
ity, i.e. 86%, of activities explicitly proposed for the gather data phase in a
popular Retrospective agenda collection [25], lack explicit connections to this
software project data. Of these data-gathering activities, many share a simi-
lar process of collecting participant perceptions and improvement ideas through
structured prompts in the general form of start, stop, continue. Most current
Retrospective activities rely on the perceptions of meeting participants as their
sole inputs. However, software project data, in particular requirements informa-
tion or insights from version control systems, show promise as additional data
sources for Retrospective techniques. Integrating the principles of data-driven
decision-making, based on project data, into Agile processes enables “evidence-
based decision making” [38] in Retrospective meetings.

These concepts are not foreign (or new) to Agile methods but seem to have
fallen by the wayside recently. The Scrum Guide states, “Scrum is founded on
empirical process control theory [...] knowledge comes from experience and mak-
ing decisions based on what is known. [...]” [1]. We argue that these concepts
are still important, yet underused, in current implementations of Agile methods
in general and Retrospectives in particular.

We identify four meeting activities in the Retromat collection that already
explicitly take project data into consideration. Of these, only two are listed for
the gather data phase of Retrospectives. We then focus on employing software
project data in additional activities to augment Retrospective meetings, decreas-
ing manual efforts by Agile development teams, and process facilitators. We pro-
pose modifications to five other activities, which are suited to take advantage of

9 https://support.atlassian.com /jira-software-cloud /docs/view-and-understand-the-
burndown-chart/.

https://support.atlassian.com/jira-software-cloud/docs/view-and-understand-the-burndown-chart/
https://support.atlassian.com/jira-software-cloud/docs/view-and-understand-the-burndown-chart/

Experience vs Data 141

the process knowledge contained within project data. These proposals present
initial steps towards more evidence-based, data-informed decision making by
participants of Retrospectives.

Appendix

Table 4. List of activities extracted from the Retromat repository [25] for the gather
data phase of Retrospectives, as of Oct. 2020.

| Name & Activity Tagline

4 Timeline: Write down significant events and order them chronologically

5 | Analyze stories: Walk through a team’s stories and look for possible improvements

6 Like to like: Match quality cards to their own Start-Stop-Continue-proposals

7 | Mad sad glad: Collect events of feeling mad, sad, or glad and find the sources

19 | Speedboat/Sailboat: Analyze what forces push you forward and pull you back

33 | Proud & sorry: What are team members proud or sorry about?

35 | Agile self-assessment: Assess where you are standing with a checklist

47 | Empty the mailboz: Look at notes collected during the iteration

51 | Lean coffee: Use the Lean Coffee format for a focused discussion of the top topics

54 | Story oscars: The team nominates stories for awards and reflects on the winners

62 | Expectations: What can others expect of you? What can you expect of them?

64 | Quartering: Categorize stories in 2 dimensions to identify boring ones

65 | Appreciative Inquiry: Lift everyone’s spirit with positive questions

75 | Writing the unspeakable: Write down what you can never ever say out loud

78 | 4 Ls: Explore what people loved, learned, lacked and longed for individually

79 | Value stream mapping: Draw a value stream map of your iteration process

80 | Repeat & avoid: Brainstorm what to repeat and what behaviours to avoid

86 | Lines of communication: Visualize information flows in, out and around the team

87 | Meeting satisfaction histogram: Create a histogram on how well ritual meetings went during the iteration

89 | Retro wedding: Collect examples for something old, new, borrowed and blue

93 | Tell a story with shaping words: Each participant tells a story about the last iteration that contains
certain words

97 | #tweetmysprint: Produce the team’s twitter timeline for the iteration

98 | Laundry day: Which things are clear & feel good and which feel vague & implicit?

110 | Mowie critic: Imagine your last iteration was a movie and write a review about it

116 | Genie in a bottle: Playfully explore unmet needs

119 | Hit the headlines: Which sprint events were newsworthy?

121 | The good, the Bad, and the ugly: Collect what team members perceived as good, bad and non-optimal

123 | Find your focus principle: Discuss the 12 agile principles & pick one to work on

126 | I like, © wish: Give positive, as well as non-threatening, constructive feedback

127 | Delay display: What’s the current delay? And where are we going again?

128 | Learning wish list: Create a list of learning objectives for the team

133 | Tell me something I don’t know: Reveal hidden knowledge with a game show

135 | Avoid waste: Tackle the 7 Wastes of Software Development

137 | Dare, care, share: Collect topics in three categories: ‘Dare’, ‘Care’ and ‘Share’

139 | Room service: Take a look at the team room: Does it help or hinder?

142

C. Matthies and F. Dobrigkeit

References

10.

11.

12.

13.

14.

15.

. Schwaber, K., Sutherland, J.: The scrum guide - the definitive guide to scrum: the

rules of the game. Technical report, scrumguides.org (2017). http://scrumguides.
org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

. Digital.ai (formerly CollabNet VersionOne). 14th Annual State of Agile

Report. Technical report (2020). https://explore.digital.ai/state-of-agile/14th-
annual-state-of-agile-report

. Scrum Alliance. State of Scrum 2017-2018: Scaling and Agile Transformation. Tech-

nical report (2018). http://info.scrumalliance.org/State-of-Scrum-2017-18.html

. Matthies, C., Dobrigkeit, F.: Towards empirically validated remedies for scrum ret-

rospective headaches. In: Proceedings of the 53rd Hawaii International Conference
on System Sciences (2020). http://hdl.handle.net/10125/64504

. Andriyani, Y., Hoda, R., Amor, R.: Reflection in agile retrospectives. In: Baumeis-

ter, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp. 3-19.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_1

. Dingsgyr, T., Mikalsen, M., Solem, A., Vestues, K.: Learning in the large - an

exploratory study of retrospectives in large-scale agile development. In: Garbajosa,
J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 191-198. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91602-6_13

. Kniberg, H.: Scrum and XP From the Trenches, vol. 2. C4Media, Toronto (2015).

ISBN 9781430322641

. Esther, D., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Prag-

matic Bookshelf (2006). ISBN 0-9776166-4-9

. Matthies, C., Kowark, T., Uflacker, M.: Teaching agile the agile way — employing

self-organizing teams in a university software engineering course. In: American
Society for Engineering Education (ASEE) International Forum, ASEE (2016).
https://peer.asee.org/27259

Przybylek, A., Kotecka, D.: Making agile retrospectives more awesome. In: Pro-
ceedings of the 2017 Federated Conference on Computer Science and Information
Systems, vol. 11, pp. 1211-1216 (2017). https://doi.org/10.15439/2017F423. ISBN
9788394625375

Caroli, P., Caetano, T.. Fun retrospectives-activities and ideas for making
agile retrospectives more engaging. Leanpub.com (2016). https://leanpub.com/
funretrospectives

Matthies, C., Dobrigkeit, F., Hesse, G.: Mining for process improvements: analyzing
software repositories in agile retrospectives. In: Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, pp. 189-190.
ACM (2020). https://doi.org/10.1145/3387940.3392168. ISBN 9781450379632
Zaitsev, A., Gal, U., Tan, B.: Coordination artifacts in agile software develop-
ment. Inf. Organ. 30(2), 100288 (2020). https://doi.org/10.1016/.infoandorg.2020.
100288. ISSN 14717727

Wohlrab, R.: Living boundary objects to support agile inter-team coordination at
scale. Ph.D. thesis (2020).https://research.chalmers.se/en/publication/515968
Ying, A.T. T., Wright, J.L., Abrams, S.: Source code that talks: an exploration of
eclipse task comments and their implication to repository mining. ACM SIGSOFT
Softw. Eng. Notes 30(4), 1 (2005). https://doi.org/10.1145/1082983.1083152. ISSN
0163-5948

http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
http://info.scrumalliance.org/State-of-Scrum-2017-18.html
http://hdl.handle.net/10125/64504
https://doi.org/10.1007/978-3-319-57633-6_1
https://doi.org/10.1007/978-3-319-91602-6_13
https://peer.asee.org/27259
https://doi.org/10.15439/2017F423
https://leanpub.com/funretrospectives
https://leanpub.com/funretrospectives
https://doi.org/10.1145/3387940.3392168
https://doi.org/10.1016/.infoandorg.2020.100288
https://doi.org/10.1016/.infoandorg.2020.100288
https://research.chalmers.se/en/publication/515968
https://doi.org/10.1145/1082983.1083152

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Experience vs Data 143

Matthies, C., Kowark, T., Richly, S., Uacker, M., Plattner, H.: ScrumLint: identify-
ing violations of agile practices using development artifacts. In: Proceedings of the
9th International Workshop on Cooperative and Human Aspects of Software Engi-
neering, pp. 40-43. ACM (2016). https://doi.org/10.1145/2897586.2897602. ISBN
9781450341554

de Souza, C., Froehlich, J., Dourish, P.: Seeking the source: software source code
as a social and technical artifact. In: Proceedings of the 2005 International ACM
SIGGROUP Conference on Supporting Group Work, pp. 197. ACM Press (2005).
https://doi.org/10.1145/1099203.1099239. ISBN 1595932232

Guo, J., Rahimi, M., Cleland-Huang, J., Rasin, A., Hayes, J.H., Vierhauser, M.:
Cold-start software analytics. In: Proceedings of the 13th International Workshop
on Mining Software Repositories, pp. 142-153. ACM Press (2016). https://doi.org/
10.1145/2901739.2901740. ISBN 9781450341868

Matthies, C., Hesse, G.: Towards using data to inform decisions in agile software
development: views of available data. In: Proceedings of the 14th International
Conference on Software Technologies, pp. 552-559. SciTePress (2019). https://doi.
org/10.5220/0007967905520559. ISBN 978-989-758-379-7

Kerth, N.L.: The ritual of retrospectives: how to maximize group learning by under-
standing past projects. Softw. Test. Qual. Eng. 2(5), 53-57 (2000)

Hohmann, L.: Innovation Games: Creating Breakthrough Products through Col-
laborative Play. Addison-Wesley, Boston (2006)

Kua, P.: The Retrospective Handbook: A Guide for Agile Teams. Leanpub.com
(2013). https://leanpub.com/the-retrospective-handbook. ISBN 78-1480247871
Gongalves, L., Linders, B.: Getting Value out of Agile Retrospectives - A Tool-
box of Retrospective Exercises. Leanpub.com (2014). https://www.infoq.com/
minibooks/agile-retrospectives-value/. ISBN 9781304789624

Krivitsky, A.: Agile Retrospective Kickstarter. Leanpub.com (2015). https://
leanpub.com/agile-retrospective-kickstarter

Baldauf, C.: Retromat - Run great agile retrospectives! Leanpub.com (2018).
https://leanpub.com/retromat-activities-for-agile-retrospectives

Jovanovié, M., Mesquida, A.-L., Radakovié, N., Mas, A.: Agile retrospective games
for different team development phases. J. Univ. Comput. Sci. 22(12), pp. 1489-1508
(2016). https://doi.org/10.3217 /jucs-022-12-1489

Loeffer, M.: Improving Agile Retrospectives: Helping Teams Become More Effi-
cient. Addison-Wesley Professional, Boston (2017). ISBN 978-0134678344
Beecham, S., O’Leary, P., Baker, S., Richardson, I., Noll, J.: Making software
engineering research relevant. Computer 47(4), 80-83 (2014). https://doi.org/10.
1109/MC.2014.92. ISSN 0018-9162

Northwood, C.: Planning Your Work, pp. 11-46. Apress, New York (2018). https://
doi.org/10.1007/978-1-4842-4152-3_2. ISBN 978-1-4842-4152-3

Stalesen, A.M., Dglvik, B.: Agile retrospectives: an empirical study of character-
istics and organizational learning. Master thesis, Norwegian University of Science
and Technology (2015)

Méndez Fernandez, D., et al.: Artefacts in software engineering: what are they after
all? (2018). http://arxiv.org/abs/1806.00098

Dimitrijevié¢, S., Jovanovié, J., Devedzié¢, V.: A comparative study of software tools
for user story management. Inf. Softw. Tech. 57(1), 352-368 (2015). https://doi.
org/10.1016/j.infsof.2014.05.012. ISSN 09505849

Nazar, N., Hu, Y., Jiang, H.: Summarizing software artifacts: a literature review.
J. Comput. Sci. Technol. 31(5), 883-909 (2016). https://doi.org/10.1007/s11390-
016-1671-1. ISSN 1000-9000

https://doi.org/10.1145/2897586.2897602
https://doi.org/10.1145/1099203.1099239
https://doi.org/10.1145/2901739.2901740
https://doi.org/10.1145/2901739.2901740
https://doi.org/10.5220/0007967905520559
https://doi.org/10.5220/0007967905520559
https://leanpub.com/the-retrospective-handbook
https://www.infoq.com/minibooks/agile-retrospectives-value/
https://www.infoq.com/minibooks/agile-retrospectives-value/
https://leanpub.com/agile-retrospective-kickstarter
https://leanpub.com/agile-retrospective-kickstarter
https://leanpub.com/retromat-activities-for-agile-retrospectives
https://doi.org/10.3217/jucs-022-12-1489
https://doi.org/10.1109/MC.2014.92
https://doi.org/10.1109/MC.2014.92
https://doi.org/10.1007/978-1-4842-4152-3_2
https://doi.org/10.1007/978-1-4842-4152-3_2
http://arxiv.org/abs/1806.00098
https://doi.org/10.1016/j.infsof.2014.05.012
https://doi.org/10.1016/j.infsof.2014.05.012
https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1007/s11390-016-1671-1

144

34.

35.

36.

37.

38.

39.

40.

41.

42.

C. Matthies and F. Dobrigkeit

Ortu, M., Destefanis, G., Adams, B., Murgia, A., Marchesi, M., Tonelli, R.: The
JIRA repository dataset. In: Proceedings of the 11th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 1-4. ACM Press
(2015). https://doi.org/10.1145/2810146.2810147. ISBN 9781450337151
Matthies, C., Kowark, T., Uacker, M., Plattner, H.: Agile metrics for a university
software engineering course. In: 2016 IEEE Frontiers in Education Conference, pp.
1-5. IEEE (2016). https://doi.org/10.1109/FIE.2016.7757684. ISBN 978-1-5090-
1790-4

Stray, V., Moe, N.B.: Understanding coordination in global software engineering;:
a mixed-methods study on the use of meetings and Slack. J. Syst. Softw. 170,
110717 (2020). https://doi.org/10.1016/j.jss.2020.110717. ISSN 01641212
Kniberg, H.: Scrum and XP from the Trenches. C4Media (2007). ISBN 978-1-4303-
2264-1

Fitzgerald, B., Musia, M., Stol, K.-J.: Evidence-based decision making in lean
software project management. In: Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE Companion 2014, pp. 93-102, New
York, USA (2014). ACM Press. https://doi.org/10.1145/2591062.2591190. ISBN
9781450327688

Kupiainen, F., Méantyla, M.V., Itkonen, J.: Using metrics in agile and lean soft-
ware development - a systematic literature review of industrial studies. Inf. Softw.
Technol. 62(1), 143-163 (2015). https://doi.org/10.1016/j.infsof.2015.02.005. ISSN
09505849

Ahmad, M.O, Markkula, J., Oivo, M.: Kanban in software development: a system-
atic literature review. In: 2013 39th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pp. 9-16. IEEE (2013). https://doi.org/10.1109/
SEAA.2013.28. ISBN 978-0-7695-5091-6

Scott, E., Pfahl, D.: Exploring the individual project progress of scrum software
developers. In: Felderer, M., Méndez Fernandez, D., Turhan, B., Kalinowski, M.,
Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 341-348.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_24

Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05155-0

https://doi.org/10.1145/2810146.2810147
https://doi.org/10.1109/FIE.2016.7757684
https://doi.org/10.1016/j.jss.2020.110717
https://doi.org/10.1145/2591062.2591190
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1007/978-3-319-69926-4_24
https://doi.org/10.1007/978-3-319-05155-0

®

Check for
updates

Reducing the Uncertainty of Agile Software
Development Using a Random Forest
Classification Algorithm

Ewelina Wiriska! ® @, Estera Kot? ®, and Wtodzimierz Dabrowski2

I Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
ewelinawinska@pjwstk.edu.pl
2 Warsaw University of Technology, 00-661 Warsaw, Poland

Abstract. Background: Companies operating in the software industry or those
which rely on new technologies are facing a rising level of complexity in build-
ing products. To address these new circumstances, enterprises are investing more
resources in modern approaches to software delivery, such as agile methodologies.
Amongst these methodologies, relative effort estimation is widely adopted. Out-
comes of the estimation process are often not predictable or reliable. Aims: The
objective of this paper is to research the random forest classification algorithm’s
effectiveness for high-level effort estimating. Method: Authors are focusing on
defining complexity factors that are treated as model features. In addition, the
authors have empirically tested the proposed solution in a commercial environ-
ment. Besides these, authors have analyzed the effective impact of each complexity
factor. The analysis was done on the set of seventy thousands of Jira work items.
Observation has been made empirically across four major releases. Results: The
results indicate that the empirical way of defining model features has a significant
impact on effort estimation accuracy. During research, the authors have found
several key factors that have a significant impact on model accuracy. Teams that
are using agile techniques or methods for effort estimation can enhance planning
outcomes with tools supporting high-level estimation. Finding out and fine-tuning
such tools needs a structured process for finding the most significant key complex-
ity factors. Conclusion: Usage of metrics such as effort estimations and their accu-
racy in the software development process in agile organizations could lead to more
accurate planning and forecasting of project outcomes. Problems with planning
on program level could also be actioned with a structured estimation framework,
enhanced by modern tools such as classification models. We should remember
that complexity is growing with scaling delivery structures within companies.

Keywords: Effort estimation - Decision tree classifier - Extra tree classifier -
Random forest classifier - Relative estimation - Software effort estimation - Agile
software development

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 145-155, 2021.
https://doi.org/10.1007/978-3-030-67084-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_9&domain=pdf
http://orcid.org/0000-0002-3363-2106
http://orcid.org/0000-0001-8308-7129
http://orcid.org/0000-0003-0199-4839
https://doi.org/10.1007/978-3-030-67084-9_9

146 E. Winska et al.

1 Introduction

We are living in a fast-paced environment, where changes are not always predictable. To
accommodate for this uncertainty, companies are turning their focus on Agile method-
ologies. Changes in product requirements are not the problem, but rather the unneces-
sary effort that is committed for functionalities that are not needed, which results in the
waste of resources [14]. Companies are shifting from following a waterfall approach to
software delivery with a specific implementation like PRINCE2™ in order to incor-
porate shorter iterations that can deliver product increments of high-priority features
and decrease Time-to-Market Value [12]. Via collaboration between Product Owner and
Development Team and frequent feedback cycles, Scrum tends to produce high-quality
deliverables with high transparency over the project. The reason behind large corpora-
tions shifting their focus towards agile practices and changing ways of working is to
increase capabilities to react fast enough in the new changing environment. Predicting
the cost of development is a complex task that depends on a variety of factors.

Due to its complexity, predictive effort estimation of effort forecasting could be
misleading [7]. Relative estimations are commonly used by mature Agile Teams. It is
a process of estimating task completion by comparing them to previously completed
work items. There is no mention of a time requirement, just that is more or less complex
than others. A method consistent with estimation in units other than time avoids some
of the pitfalls associated with guessing estimations: unwarranted precision, confusing
estimates for commitments. The human brain is naturally hard-wired to work better with
relative comparison, an inbuilt sense of something being relatively bigger or smaller than
something else. This explains why the development teams are much more comfortable
with relative estimation. They are aware that they do not have all the necessary infor-
mation at the time of estimating, and so they don’t feel confident to say how long a task
will take.

Program managers or stakeholders often mistakenly take time estimates as commit-
ments putting trust in team expertise which leads to the expectation that features will be
completed at this time. Miranda [8] presents a chart with data suggesting that comparing
complexity leads to more accurate judgments than “ad hoc” estimates. Vicinanaza et al.,
claims that experts are more accurate in relative estimations than in absolute. Study [10]
shows that a sample of five managers, shown data from past projects. One at a time was
asked to estimate their effort, and they were more accurate than estimates derived from
traditional lines of code estimation used in COCOMO which is an example of software
engineering cost estimation model.

Instead of forecasting the precise amount of effort or time needed to accomplish
the project goals, practitioners should focus on relative estimation using story points.
Traditional software teams give estimates in a time format: days, weeks, months. Many
agile teams, however, have transitioned to story points. Story points rate the relative
effort of work in a Fibonacci-like format: 0, 0.5, 1, 2, 3, 5, 8, 13, 20, 40, 100. It may
sound counter-intuitive, but that abstraction is actually helpful because it pushes the
team to make tougher decisions around the difficulty of work.

This leads to the hypothesis that instead of attempting precise forecasting of the time
needed for delivering specific pieces of work, effort estimation could be resolved as a
classification problem. Strong estimates are very important, especially in predictable

Reducing the Uncertainty of Agile Software Development 147

product development [1]. The effort needed to deliver business value is the most impor-
tant cause that is affecting the budget, and product roadmap. To achieve better general-
ization, organizations are using relative effort estimation instead of trying to predict the
exact amount of time to deliver a whole product. Relative estimation is highly depen-
dent on a given context but could lead to better outcomes than forecasting or predicting
needed effort, even for long term planning. Such an approach to the effort estimation
process could be resolved as a classification problem where relative measures would be
treated as several imbalanced classes and random forest.

For this research, the authors favor three decision tree techniques, based on empirical
experience. It is also worth mentioning that not only decision trees can resolve classifica-
tion problems. Classification can be also resolved with a single hidden layer perceptron
neural network, support vector machines, or k-means clustering [2]. The authors have
researched three classifiers: decision tree classifier, extra tree classifier.

Decision tree classifier [3]. A decision tree algorithm could be explained as a logical
model. Following, decision tree classifier is a kind of model that resolves classification
problems with a decision based on predefined conditions and possible outcomes. The
decision tree, in general, could be used for both classification and regression [4] prob-
lems. A decision tree can be visualized as having a flow diagram like structure, where
each internal node is modeling a test against one of the predefined attributes. Each branch
of the classifier resolves an outcome of the test, and each leaf holds a class label.

Extra tree classifier, which is an ensemble learning method fundamentally based
on decision trees. Extra tree classifier, like random tree classifier, randomizes certain
decisions and subsets of data to minimize overfitting. This example of a tree-based
classifier essentially utilizes the randomizing of both attribute and cut-point choice while
splitting a tree node. In some cases, the model is building random trees whose structures
are independent of the output values of the learning sample. This could lead to a positive
outcome of the randomization process, and in general a better model performance [5].

Random forest is another ensemble learning-based [6] model that could be used
for both classification and regression problems. A model during the learning process is
building a number of decision trees. Classes generated by distinctive trees are selected
by the model throughout the training process. The ensemble model combines the results
from the different decision trees. It is also important to mention that the model, in general,
is able to obtain more accurate outcomes than the model based on single decision tree
models.

2 Related Work

Software effort estimation is not a new practice; however, it differs through the industries.
Based on experience, and with supporting research, authors would like to show how effort
estimation is important. In the HELENA (Hybrid dEveLopmENt Approaches) survey
researchers were studying software development on hybrid development approaches in
software development from regulated domains to emerging and innovative sectors. The
goal was to investigate what is the current state of the practice in software and system
development. Focusing on practices that are used in the practice or production envi-
ronments, and how experts are combining them together, how such combinations were

148 E. Winska et al.

developed over time, and how standards affect the development process. The HELENA
survey has been designed as three-staged international research. The first stage was
aimed at preparing the data collection and to test the survey instrument. The authors were
focusing on four research [15, 16]. In [15] authors received responses from Swedish
companies. With response rate at level 37% 513 responses were collected. What is inter-
esting for us is that the survey was asking respondents which practices related to Agile
methodologies they are using. Authors would like to focus on responses around plan-
ning and estimating software effort. While 80% of respondents claim that they always or
often use release planning practice, 70% of respondents were using guess-based expert or
team-based estimation, formal estimation was used in 58% of cases, and Velocity based
planning practice was used only in 32% of cases. In [16] authors had conducted detailed
industry analysis from a large-scale online survey among practitioners. The survey was
grounded with 1467 data points from large-scale online surveys. Survey results ended
with an overview of the practices, it appeared that 85% of practices have been using
common agreement in hybrid development methods. What is interesting for us: whilst
all respondents reported that they are planning releases, no one claimed Velocity based
planning nor formal estimation. Expert estimation was reported when using a combina-
tion of Scrum, Lead Software Development, Iterative Development, Kanban, and Devops
frameworks. Authors are having an interesting conclusion that satisfaction correlates to
the usage of agile software development methods. Research has shown a very high sat-
isfaction rate, both for companies and individual professionals, with very similar values
relates to methodologies used. Companies report high satisfaction while professionals
are not contented with ways of working. It was stated by the authors in [16] lack of user
stories, story mapping, lack of estimation appears strongly related to low satisfaction.
Considering all these together suggest satisfaction relates to concern for quality work,
team cohesion, and support for tracking progress. In [1] authors were researching the
precision and reliability of the estimation of the effort of software projects. They found
that the quality of estimates plays a very important role in the management of software
projects or building software products. In their paper, authors have introduced a new
method based on machine learning which gives the estimation of the effort together with
a confidence interval for it. In their method, researchers proposed to employ confidence
intervals that are independent of a probability distribution. In [11] Magne Jorgensen and
Martin Shepperd have identified 304 software cost estimation papers in 76 journals and
classified those papers according to the research topics: estimation approach, research
approach, study context, and data sets. Researchers were aiming to provide a foundation
for the improvement of software estimation research through a systematic review of
previous work. In [3] authors are identifying the effort estimation process as one of the
most complex problems faced by the software industry. One of the findings in the paper
is that software planning estimation of the effort is one of the most critical responsibil-
ities which is crucial for successful product delivery. Researchers are also mentioning
that it is necessary to have good effort estimation in order to propose a well-prepared
project budget. The accuracy of the effort estimation of software projects is vital for the
competitiveness of companies that are working in the software industry. For better more
accurate forecasting or estimating the effort needed for software project delivery, it is
important to select the correct software effort estimation techniques.

Reducing the Uncertainty of Agile Software Development 149

3 Company Landscape and Research Environment

Research has been made during the realization of a transformation project in a commer-
cial environment. The project was realized in one of the biggest European investment
banks with departments distributed around the world. The main goal of the project was to
deliver two hundred of new services and capabilities within the self-service portal based
on ServiceNow IT service management platform. Project life span was initially planned
for a two-year horizon. One of the initial assumptions was that it is possible to deliver
most of the new services with ServiceNow out of the box functionalities and without
a big number of complicated customizations. During an initial couple of months, the
Product Owner was focusing on preparing the product road map and defining the goal.
Initially, effort relative estimation was based on small, medium, and high complexity
ratings. This approach was not given enough insight and was not useful in terms of
road map monitoring or high-level planning. The actual team velocity did not match
the initial estimates based. It has emerged that estimates were far from being accurate
and this has led to not reliable plans and forecasts. After a number of releases, program
management has decided to move to story points as an effort relative estimation unit of
measure. Together with the introduction of story points as effort relative estimation units
of measure, it appeared that a structured approach to estimation process is needed. The
main purpose behind having a dedicated tool for enhancing the estimation process is to
bring more understanding to the complexity of requested features or in this particular
case, service that is needed for a self-service portal. Initially after gathering the answers
a simple algorithm with defined weights was able to assign a complexity rating, as shown
in Table 1. The purpose of the program development team was to maintain a library of
reusable components. With such an approach, it was possible to address the increase of
complexity over time.

Table 1. Table shows complexity used for high level estimation of features divided into five
complexity classes.

Complexity | Rate = effort estimate in Story points

Very Low | 50-99

Low 100-149
Medium 150-199
High 200-249

Very High | 250-300

Initially the most common complexity rating was very high or high complexity. But
gradually, together with better understanding of dependencies between new require-
ments analysis of work items complexity have been approached with higher attention
to details. Responsible analysts were putting more effort into breaking down complex
items into more independent work items. Together with this approach, the number of
low complexity items has started to grow and at the end of the experiment, has stabilized
around 40% of items estimated with the automated tool.

150 E. Winska et al.

4 Research Method

As stated in the introduction, high-level effort estimation is a process that can be resolved
as a classification problem with several imbalanced classes. Questions for determining
complexity of the requested services have been designed as binary decisions on pur-
pose. Thanks to the closed character of each question, it was easier to gather needed
data, and the processing of the gathered dataset was straightforward. Also, with having
only two possible answers it was easy to complete questionnaires for each of the new
services. Keeping in mind the classification nature of given problems and a history of
generalization complexity as a set of binary decisions it seems compelling to use the
decision tree-based approach for such problems. As a next stage in achieving stable and
reproducible processes for software development effort estimation it was decided to start
development of random forest classifier as a classification model. During the research,
authors have compared the accuracy of three different approaches to the classification
problem. Those methods are respectively: decision tree classifier, extra tree classifier,
and random forest classifier. Each of the classifiers has been implemented with Python
and scikit-learn library. The data set used for training was a set of epics collected during
ongoing digital transformation in the major investment banks. Data was collected across
three major releases which contained twelve two-week sprints. The project goal was
about providing digitization and automation of existing business processes within the
bank, with ServiceNow as a primary automation engine. In total, 957 epics were gath-
ered. This data set has been split into five classes: Class-0 story points in a range between
50-99 (123 epics), Class-1 story points in a range between 100-149 (387 epics), Class-2
story points in a range between 150-199 (151 epics), Class-3 story points in a range
between 200-249 (117 epics) and Class-4 story points in a range between 250-300 (179
epics). Class distribution diagram is visualizing data used for the research, visualization
is shown in Fig. 1. Values proportions for each of the features are presented in Fig. 2.
The data set has been split into training and testing sets in nine to one ratio. For all
the classifiers binary features described in 4.1. were used. Each of the models has been
trained for one hundred times on the same data set and when possible, using the same
hyperparameters. Training was done with the usage of the whole training set. Testing
was not split into test and validation sets. One of the authors’ hypothesis was that models
based on implementation of random forest classifiers should have the best performance
as ensemble-based models are well known to have promising outcomes [13]. Desirable
target of accuracy that researchers have aimed for was set to 80% accuracy.

4.1 List of Features Used for Classifiers Training, Listed by Representation
in Train/Test Sets

o Feature X1
— Is a new form needed?
— Possible answer: Yes/No,

— A parameter that is indicating if a requirement relates to the creation of a new form

o Feature X2

Reducing the Uncertainty of Agile Software Development

Very High
18.7

High
12.2

Medium
15.8

Fig. 1. Class distribution diagram

W yes no
1000

829
788
750 694
489 505
500
250 169
105
i B]
0 S
x1 x2 x5 x6 x7 x8

x3 x4

Fig. 2. Features values proportions diagram.

— Is a new field needed?
— Possible answer: Yes/No,

151

— This question refers to a new component for a portal form like in the past there
have been created a list collector, table, solution, or any other macro or any field
type which is not available currently on portal forms. Also, in the future, we might

create an interactive map like a new component end to end.
e Feature X3

— Is its enhancement of existing feature?
— Possible answer: Yes/No,

— This question refers to an existing component enhancement for portal forms like in

the past we have enhanced table component in case of Load Balancing Epic

152 E. Winska et al.

o Feature X4

— Is logic implementation needed?

— Possible answer: Yes/No,

— This question refers to any new functionality which is needed in portal forms, for
example in the past we have implemented resubmit functionality

e Feature X5

— Is a number of fields in the form greater than eighteen, as this is median of fields
needed per new epic?

— Possible answer: 0-18/19 +,

— This question refers to the number of questions asked to a user on the portal form

o Feature X6

— Is an enhancement of existing logic needed?

— Possible answer: Yes/No,

— This parameter is checking if more complexity is planned for the already existing
solution.

e Feature X7

— Is an implementation of new integration needed?

— Possible answer: Yes/No,

— Integration was identified as high risk and complex requirement. This is hard to
estimate as most of the integrations need to be done with third-party vendors. With
historical data, the team was able to predict that any integration will increase time
to delivery

o Feature X8

— Is the enhancement of existing integration needed?

— Possible answer: Yes/No,

— Any enhancement should be treated with similar complexity to new integration as
it is dependent on a third party.

5 Results

During the study, research has been able to prove base hypotheses as true. As expected at
the beginning of the experiment, in our research authors found that the best performing
model is a random forest classifier. The training process was the longest, but the model
performance was also best out of three verified models. Mean accuracy after training
the model is around 78.1%. Authors were expecting a bigger difference in preference in
comparison to the two other classifiers used during research which respectively achieve

Reducing the Uncertainty of Agile Software Development 153

mean accuracy around 77, 9% for extra tree classifier and mean accuracy around 73.6%
for decision tree classifier. Table 2 is containing the experiment results. After getting such
promising outcomes of the experiment, the program management board has decided to
give a green light for commercial solution implementation.

Table 2. Experiment results

Metric Value
Mean accuracy for random forest classifier 0.781
Mean accuracy for extra tree classifier 0.779
Mean accuracy for decision tree classifier 0.736
Median accuracy for random forest classifier 0.787
Median accuracy for extra tree classifier 0.781
Median accuracy for decision tree classifier 0.744

Accuracy standard deviation for random forest classifier | 0.033

Accuracy standard deviation for extra tree classifier 0.014

Accuracy standard deviation for decision tree classifier | 0.042

Accuracy variance for random forest classifier 0.001
Accuracy variance for extra tree classifier 0.001
Accuracy variance for decision tree classifier 0.002

5.1 Key Findings

The authors have come up with several interesting findings. The researched method
performed with acceptable accuracy, which was 2% below the desired target of 80%.
It is also needed to mention that the feature selection process is not generic. There is a
high probability that outcomes could be hard to reproduce in different projects, teams, or
company setup. It is important to be aware of the fact that complexity can be affected by
many independent factors. The process of selecting features should be well designed and
adjusted to specific circumstances. While defining the process of software development
effort estimation, it appeared requested services with complexity a level of low or very
low could be treated as reference points and be included in a library of base reusable
components. Thanks to this approach, during release planning the product owner was
able to plan more complex features out of less collated building blocks. Another benefit
of having a library of reusable reference components was to have the possibility to choose
between scope and time to production delivery. As an outcome of all above average lead
time for new feature delivery has shortened by 32%. As this sounds really promising, it
is important that teams’ velocity was almost constant and what actually have changed
was that during the planning sessions it was possible to break down new feature requests
into smaller work items with lower complexity.

154 E. Winska et al.

6 Discussion

A new service has been implemented with a backend solution implementing the model.
For the rest of the project, during the high-level effort estimation for the purposes of road
map planning, the implemented model has been used. After the production implemen-
tation authors have registered accuracy of effort estimation around 78%. During their
research authors have not focused on automated feature selection algorithms. Algo-
rithms such as extreme gradient boosting or fuzzy trees classifiers can be incorporated
for the automated feature selection process. Such an approach, together with a broader
spectrum of features can lead to better accuracy and overall model performance. Auto-
mated effort estimation should not always be treated as an accurate method for creating
high-level plans and project road maps. Such techniques are highly dependent on the
feature selection process, size of training data set, or quality of the data itself, but at
the same time tools such as automated classifiers can help with a better understanding
of problems complexity. The method was introduced to help understand the complex-
ity of the high-level requirements and to understand external dependencies. Significant
positive outcome to discuss complexity and dependencies between development teams
which have impact on time delivery. This leads to more accurate planning approaches
and more predictable road maps. Practitioners and researchers that would like to achieve
similar results should pay attention to initial feature selection, independence between
estimated work items and environment setup.

7 Conclusion

This research aim is to improve on task effort estimation in agile software development
processes. Findings suggest that using a random forest classifier based on yes/no ques-
tions that are tailored for the project leads to a better effort estimation in comparison to
expert based estimation. After the review of the commitment for 2019 delivery, it was
clear that the roadmap needs to be planned again and the scope should be adjusted to a
given timeline. The high-level effort estimation tool was also having a positive impact
on improved transparency across program teams. It was possible to have an estimated
effort to plan more accurately services & capabilities onboarding. Going further, with
the known capacity, it was easier for the Product Owner to plan specific releases and
place them at the specific point of time. Authors understood that there is no silver bul-
let and each company has its different flavors that the software engineering industry
has. Looking closely at the estimation practices used across the software industry for
decades, it appears that more companies overtime is turning to modern management
techniques such as agile methodologies. At the same time software development effort
estimation starts to play a more and more important role in achieving desirable project
outcomes. That’s why it is important to have a structured and reproducible approach to
this problem.

Acknowledgements. Authors are eager to share their experience regarding model implementa-
tion. Anonymized data used for training and testing the models could be shown upon request to
the authors.

Reducing the Uncertainty of Agile Software Development 155

References

11.

12.

13.

15.

. Braga, P.L., Oliveira, A.L.I.: Software effort estimation using machine learning techniques

with robust confidence intervals. In: 19th IEEE International Conference on Tools with
Artificial Intelligence (2007)

. Patel, B.N., Prajapati, S.G., Lakhtaria, K.I.: Efficient classification of data using decision tree.

Bonfring Int. J. Data Min. 2(1), 06-12 (2012)

. Bhatia, S., Attri, V.K.: Implementing decision tree for software development effort esti-

mation of software project. International Journal of Innovative Research in Computer and
Communication Engineering, vol. 3, no. 5, May 2015

. Kumari, S.: Comparison and analysis of different software cost estimation methods. (IJACSA)

International Journal of Advanced Computer Science and Applications, vol. 4, no. 1 (2013)

. Geurts, P, Ernst, D., Wehenkel, L.: Extremely randomized trees. Springer Science + Business

Media, 2 March 2006

. Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
. Shepperd, M., Schofield, C.: Estimating software project effort using analogies. IEEE Trans.

Softw. Eng. 23(11), 736-743 (1997). https://doi.org/10.1109/32.637387

. Miranda, E.: Improving subjective estimates using paired comparisons. IEEE Softw. 18(1),

87-91 (2001)

. Vicinanaza, S., Mukhopadhyay, T., Prietula, M.: Software-effort estimation: an explaratory

study of expert performance. Inform. Syst. Res. 2(4), 243-262 (1991)

. Boehm, B., et al.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood

Cliffs (2000)

Jorgensen, M.: Methods for estimating agile software projects: a systematic review. In: The
30th International Conference on Software Engineering and Knowledge Engineering (2018)
West, D., Kong, P., Bittner, K.: Nexus framework for scaling scrum, the: continuously
delivering an integrated product with multiple scrum teams. Addison-Wesley Professional
(2017)

Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv.
Space Res. 41(12), 1955-1959 (2008)

. Winska, E., Dabrowski, W.: Software development artifacts in large agile organizations: a

comparison of scaling agile methods. In: Poniszewska-Maranda, A., Kryvinska, N., Jarzabek,
S., Madeyski, L. (eds.) Data-Centric Business and Applications. LNDECT, vol. 40, pp. 101—
116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34706-2_6

Scott, E., Pfahl, D., Hebig, R., Heldal, R., Knauss, E.: Initial results of the HELENA survey
conducted in estonia with comparison to results from sweden and worldwide. In: Felderer,
M., Méndez Fernandez, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES
2017. LNCS, vol. 10611, pp. 404—412. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-69926-4_29

. Tell, P, et al.:What are hybrid development methods made of? an evidence-based character-

ization. In: International Conference on Software and Systems Process (2019)

https://doi.org/10.1109/32.637387
https://doi.org/10.1007/978-3-030-34706-2_6
https://doi.org/10.1007/978-3-319-69926-4_29

l‘)

Check for
updates

1

Agile software testing involves all stakeholders of the team, with special expertise
contributed by software testers. Software testing is one the software development
phases such as requirements, design and coding. Software testing takes place
simultaneously through the Software Development Life Cycle (SDLC). Agile
software testing covers all the levels of testing and all types of testing. Agile

MSFL: A Model for Fault Localization
Using Mutation-Spectra Technique

Arpita Dutta' and Sangharatna Godboley?(®)

! Indian Institute of Technology Kharagpur, Kharagpur, India
arpitad10j@iitkgp.ac.in
2 National Institute of Technology Warangal, Hanamkonda, India
sanghu@nitw.ac.in

Abstract. Fault localization (FL) is the most time-consuming and
tedious task, while debugging. Several good techniques have been pro-
posed for effective fault localization. These effective techniques justify
the Lean methodology, where the waste process usually been avoided.
However, most of the techniques are suffering with the problem of lim-
ited accuracy. To overcome the weakness of a technique there is a need of
refinement and up-gradation of that technique. To achieve this, we can
hybridize two different techniques to take advantages of both the tech-
niques. In this paper, we propose to hybridize Mutation based testing
with Spectrum based fault localization. This is a fact that both the tech-
niques are rich in their domains. In our work, we are combining best of
these techniques. We first create several mutants and drive along with the
test cases to produce spectra for each mutant. This process is accountable
under Agile Software Testing. These generated spectra for all mutants
are supplied to fault localization techniques such as Tarantula, Barinel,
Ochiai, and DStar to generate the statement ranking sequence for each
mutant. Similarly, we compute the spectra for faulty program and also
the statement ranking sequence. Based upon the similarity between the
statement ranking sequence of faulty program and mutants, the bug is
localized to most similar mutated line. We have experimented with nine
open-source programs and achieved 36.48% improvement over existing
FL techniques.

Keywords: Fault localization + Mutation testing - Debugging - Agile
software testing

Introduction

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 156-173, 2021.
https://doi.org/10.1007/978-3-030-67084-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_10

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 157

software testing is a software testing practice that follows the principles of agile
software development.

With the increasing size and complexity of software systems, faults have
become inevitable [43]. During software maintenance [26], the task of software
bug localization is typically the most tedious and time-consuming [30,46]. There-
fore, any improvements to the localization process can help to significantly reduce
the software maintenance costs. Fault localization is also an essential part of
automatic program repair (APR) techniques [26]. APR techniques rely on FL
techniques to generate the search space at statement level granularity. Hence,
there is a pressing need for development of an effective fault localizer. It is there-
fore not surprising that in the past few decades, several researchers have focused
on this problem [1,3,4,12,14,19,25,30].

Weiser [1] proposed program slicing as an effective FL technique. Later, Korel
et al. [2] extended Weiser’s approach by considering the run-time information
of test cases and named their approach as dynamic slicing. Other extensions
to the slicing technique such as hybrid slicing, critical slicing, etc. [6] have also
been reported. Jones et al. [12] proposed the spectrum-based fault localization
(SBFL) technique. In the SBFL technique, run-time execution information of
program elements (such as statements, branches, predicates, functions, etc.) is
collected for different test cases along with the test execution results (success or
failure). With this information, SBFL methods generate a ranked list of program
elements using a mathematical formula. Tarantula [12], DStar [25], Crosstab [19],
Ochiai [17], are some of the well-known SBFL techniques.

Machine learning techniques such as support vector machine [15], decision
trees [13], ensemble classifiers [31] etc. have been also used to solve the problem of
fault localization. Using statement coverage and test case execution information,
different neural network (NN) models such as, back-propagation [14], radial basis
neural network [20], deep neural network (DNN) [28], contextual information
appended DNN [29], hierarchical DNN [30], convolution neural networks [32]
have been used to localize the faulty statement. Though NN based techniques
are popular, they require considerable training time and estimation of several
parameters.

Over the last few decades, mutation testing has became very popular [33].
However, mutation testing technique has rarely been used for software fault
localization. Papadakis et al. [21] reported that mutant testing is useful for fault
localization as they generate appropriate substitutes for real faults. Only a few
methods, such as, Metallaxis-FL [24], MUSE [23] have used mutation as a tool
for locating bugs in programs.

Existing fault localization techniques make use of coverage information and
test case execution results [4,12,26]. Also, the available FL techniques require
examination of at least 35%—40% of program code to localize a bug [25].

In the light of these limitations, we propose a mutation testing-based fault
localization technique. In this technique, we generate almost all possible mutants
for a program and store them for the further use. After a new release of the
system, if any test failure is reported, the similarity between faulty program

158 A. Dutta and S. Godboley

spectra and test execution results with spectra and execution results of the
program mutants is compared to localize the faulty statement. At present, we
have considered programs with single faults only. Our proposed technique can
be intuitively argued to be efficient as it only requires comparison among the
raking sequences only.

In Agile process, the software is written in cycles and test cases are devel-
oped to ensure the software is correct and to protect against regression testing.
However, software tests might give a false sense of security. The Mutation Test-
ing is a technique which analyses the thoroughness of a test suite and helps
identify which lines are not tested exhaustively. As we have discussed above the
Mutation Testing is very costly both in terms of execution time and the time it
takes a developer to analyse mutation results. In our work we tried to solve the
issues and evaluate the concept of Localised Mutation (faults). Fault Localisation
exploits the fact that in this modern age of agile software development, software
is written in iterations. By only considering the additions or modifications to
the source code, the number of mutants generated is drastically reduced. This
makes Mutation Testing more feasible and in turn reduces the cost of software
development as Mutation Testing can be used to detect bugs in earlier stages
of development where bugs cost much less to fix. In this work we will try to
answer the question, “RQ: Can Hybrid Mutation Testing be made efficient to
be practical for everyday use, particularly for agile environments?”

Rest of the paper is organized as follows: we first review the literature of
fault localization techniques in Sect. 2. In Sect. 3, we present our proposed app-
roach. Experimental results are discussed in Sect.4. In Sect.5, we present the
comparison of our proposed techniques with related FL approaches. Finally, we
conclude this article in Sect. 6 with some future insights.

2 Related Work

Weiser [1] introduced the concept of program slicing for localizing software faults.
Program slicing is based on the idea that if a test case fails to generate the correct
value for a variable at a given statement. Then, the fault must exists in the static
backward slice associated with the variable-statement pair. Later, Korel et al.
[2] extended Weiser’s approach by adding the run-time execution information of
the test cases and named it dynamic slicing. A dynamic slice includes only those
statements that are executed by the failed test case. It reduces the search domain
space for localizing the fault. Another extensions for slicing such as hybrid slicing
[6], thin slicing [44] etc. have been proposed.

A shortcoming of slicing based techniques is that, many times the faulty
statement is not present in the slice. Also, when the faulty statement is present
in the slice, too much code is required to be examined. Another limitation is
that, it does not assign any ranking to the statements.

Another family of fault localization techniques is spectrum based. They are
popularly known as SBFL (Spectrum Based Fault Localization) techniques. In
this, coverage information of program elements such as statements, blocks, func-
tions etc. and test case success/failure information are used as inputs. These

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 159

techniques calculate the suspiciousness scores of statements using different math-
ematical formulas. Tarantula [12] is a well-known SBFL technique. An exper-
imental study over Siemens suite [40] suite reported that Tarantula performs
more effectively than set-union [8], cause-transition [11], set-intersection [8], and
nearest-neighbor [10] methods for FL. Later on, several other SBFL techniques
such as Ample [26], Crosstab [19], Barinel [42], Ochiai [17] etc. are reported.
DStar(D*) [25] is a prominent SBFL technique. It is based on binary similar-
ity coefficient and derived by Kulczynki coefficient. The * present in the D* is
a numerical value and it varies from 2 to 50. Wong et al. [25] shows that for
(¥=2), D* performs better than all the existing SBFL techniques for most of the
programs.

SBFL techniques are both effective and efficient. But, these techniques suffer
with the problem of ties [18]. A tie occur when the same suspiciousness score is
assigned to two or more number of statements. The probability of the assignment
of same suspiciousness scores to different statements is increases with the increase
of the program size.

Machine learning techniques are also used to solve the problem of fault local-
ization. Wong et al. [14] introduced the usage of back-propagation neural network
(BPNN) model for FL. But, due to the limitations like local-minima [7,27] and
paralysis [5] of BPNN, Wong et al. [20] shifted to radial basis function neural
network (RBFNN) model. However, both the BPNN and RBFNN models are
shallow in architecture and unable to perform well with limited training data.
To solve these issues, Zhang et al. [29] proposed to use deep-neural network
(DNN) models for FL. Zheng et al. [28] improved the DNN based FL approach
by appending contextual information into it. Dutta et al. [30] proposed a hierar-
chical approach for effective fault localization using DNN. They first localize the
faults at the function level and next to the statement level. Zhang et al. [32] pro-
posed to use convolution neural network (CNN) model for FL. Machine learning
based FL techniques are effective but they require large time for training and
parameter fixation.

Despite wide usage of the available FL techniques, these methods suffer from
the problem of coincidental correctness. In coincidental correctness, statements
executed by failed tests may not have caused the test to fail and also faulty
statements may get executed by passed tests coincidentally [33]. To mitigate
this gap, mutation-based fault localization (MBFL) techniques were introduced.
Mutation testing is a popular technique for test case generation and bug pre-
diction, but it is rarely used for fault localization [24]. It was believed that
mutation is very expensive and difficult to scale. However, mutation testing has
a strong capability to replicate real-world bugs. Now-a-days, several open source
mutation testing tools such as MILU!, PIT?, Javalanche® are available. Also the
computational capability of computers have increased phenomenally.

! https://github.com /yuejia/Milu.
2 https://pitest.org/.
3 http://www.javalanche.org/.

https://github.com/yuejia/Milu
https://pitest.org/
http://www.javalanche.org/

160

Zhang et al. [22] proposed a framework to combine the potential impacts
of edits as well as the spectrum information of edits for more accurate fault
localization. The potential impacts of edits are simulated by mutation changes.
Whereas, the spectrum information of edits are obtained using FAULTRACKER
application [16], a tool developed by the authors. Later, Moon et al. [23] intro-
duced an FL technique entirely based on mutation testing, i.e., MUSE. The key
idea of MUSE is to identify the statements in the faulty program for which the
created mutant generates less number of failed test cases and more pass test cases
than the actual faulty program. They have also proposed an evaluation metric
for FL methods based on the concepts from information theory and named it as
LIL (Locality of information loss).

A. Dutta and S. Godboley

Original
C-program

Mutator

Statement Ranking
Generator using
Tarantula

Statement Ranking
Generator using
Barinel

Test Suite

Program Spectra €
Generator

SM;) 000 (SMn

Statement Ranking
Generator using
Ochiai

Statement Ranking
Generator using
DStar

Tarantula Ranking
Similarity Calculator

Barinel Ranking
Similarity Calculator

Ochiai Ranking
Similarity Calculator

DStar Ranking
Similarity Calculator

ST M; 000 SBM; (XX

O%OMj/“'/ SDM;

Average similarity generator of Tarantula, Barinel, Ochiai, and DStar

¥

Map mutants to the statements and assign the maximum similarity of
the generated mutants as suspiciousness of the statement

Mapper & Sorter

v

Sort statements based on suspiciousness

Ranked list of statements

Fig. 1. Schematic representation of MSFL (Mutation-Spectra for Fault Localisation)

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 161

3 Proposed Approach

In this section, we discuss our proposed MSFL approach in detail. We named
our approach as MSFL which stands for Mutation-Spectrum based Fault
Localization.

3.1 Overview

We assume that the original program has been thoroughly tested and therefore
is fault-free and the test suite is available. Later, due to maintenance, bugs get
introduced in the program, and we need to localize those bugs. Figure 1 presents
the basic idea of our proposed MSFL using a flow chart. As it has been shown
in Fig. 1, the input to the MSFL is a faulty program, and output is a ranked list
of statements based on their suspiciousness of containing a fault.

First, the original program is executed with available test suite and all the
outputs are saved in separate files. We create large number of mutants for the
original C-program using the developed tool mutator. Let us consider, for a bug-
free C-program P, we create m number of mutants. The i*” mutant is represented
as M;. The value of i is between 1 to m. The faulty program for which we have to
localize the bug is represented as F. In Fig. 1, the solid lines represent the flow
of execution of the mutated versions and the dotted line shows the activities
performed over the faulty program F. All the mutants along with the faulty
program is supplied to the Program Spectra Generator (SPG). SPG generates
the statement coverage information and test execution results for each mutant
and the faulty program using available test suite. SM; and SF represent the
spectra generated for the i* mutant and the faulty program respectively.

All the generated program spectra are supplied to the Statement Ranking
Generators (SRG). SRG module is loaded with a SBFL (Spectrum Based Fault
Localization) technique to generate the ranking sequence of the statements. In
our MSFL model, we use four SBFL techniques: Tarantula [12], Barinel [42],
Ochiai [17], and DStar [25]. Tarantula [12] is a widely accepted fault localiza-
tion technique and it performs better than set intersection [8], set union [§],
cause-transition [11], and nearest neighbour [10] techniques of FL. Ochiai [17]
is reported to be more effective than Tarantula [8,12] and many other SBFL
techniques. Barinel [19] is another prominent SBFL technique. DStar [25] is
considered as state-of-the-art SB-fault localization techniques.

In the Fig.1, RTM;, RBM;, ROM;, and RDM;,, represent the ranking
sequence generated by Tarantula, Barinel, Ochiai, and DStar techniques for the
it" mutant respectively. Similarly, RT'F, RBF, ROF, and RDF, shows the rank-
ing sequences generated for the faulty program by Tarantula, Barinel, Ochiai,
and DStar methods respectively. Subsequently, the raking sequences generated
for the mutants and the faulty program is supplied to the Ranking Similarity
Calculator (RSC). This module computes similarity between the statement rak-
ing sequence of faulty program with statement ranking sequence of each mutant
using Kendall’s tau correlation coefficient [45]. Followed by this, we get four
similarity score for each mutant corresponding to the four SBFL techniques

162 A. Dutta and S. Godboley

undertaken. STM;, SBM;, SOM;, and SDM;, represent the similarity scores
obtained by Tarantula, Barinel, Ochiai, and DStar techniques for the i** mutant
respectively.

Further, the scores of generated by these four techniques are supplied to
the Average Similarity Generator (ASG) module. ASG module combines these
scores by taking the average of them and outputs the average similarity of each
mutant with the faulty program. Based on the average similarity score, the bug
is localized to the mutated statement for which the failed program has the most
similar behavior.

A number of mutants may get generated for a single statement. So, the simi-
larity score of the mutant with the highest value is assigned to the suspiciousness
score of the corresponding statement. Subsequently, the statements are sorted
based on their similarity scores in decreasing order and the ranked list of the
statements is returned as output.

3.2 Detailed Description

Mutator. The first module used in our approach is the mutator. It takes a
C-program as an input and creates different mutants for the input program. We
consider only those faults for which the possible number of valid substitutes is
fixed (finite). For example, valid mutants for the relational operator (‘<’) are
only the five other operators from that group (‘>’, ‘<’, ‘>, ‘==’ ‘| =7) without
inducing any syntactic error. Table 1 shows the fault classes used for generating
mutants.

Table 1. Mutation operators

Operator | Description Example

AOR Arithmetic operator replacement |a + b — a — b
LOR Logical operator replacement allb—a &&b
ROR Relational operator replacement |a < b —a > b
CNF Condition negation fault allb—la]|lb
PNF Predicate negation fault al|lb—!(al]|b)

Table 2. Sample program spectra with test case execution results

Test case | Sy | So| S3| Sy | Ss5| Sg| Sy | Ss| So| Si0| Result
TC, 1 0 0 0 0 0 1 1 0 0 P
TCo 1 1 1 1 1 1 1 0 0 1 F
TCs 1 0 0 0 0 0 1 1 0 1 F
TCy 1 1 1 1 1 1 1 0 1 1 P
TCs 1 0 1 0 0 0 0 1 1 1 P
TCs 1 1 1 1 1 1 1 0 0 1 F
TC 1 0 1 0 0 0 0 1 1 1 P
TCg 1 1 1 1 0 0 0 0 1 1 F

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 163

Program Spectra Generator (PSG). It takes a C-program and its test
suite as input and generates the statement coverage information (spectra) and
test execution result as outputs. If a statement is executed by a test case then
it is represented as ‘1’ otherwise as ‘0’ in the spectra. The test case execution
result shows whether the test case is pass or failed. If the actual output of the
test case is equivalent to the expected output then the test case is considered
as pass otherwise considered as failed. A pass test case is represented as ‘P’
and failed test case is represented as ‘F’. Table 2 shows an example of program
spectra with test execution result. In this example, the C-program contains ten
executable statements and the test suite size is eight. Among the eight test
cases, four test cases (T'Cy, TC5,TCq, and TCy) are failed and remaining four
test cases (T'C1,TCy,TC5, and TCy) are passed. It can be also observed that
only the statements (S7,S7, and Sg) are executed by the T'C; and remaining
statements are not covered by it.

Table 3. Symbols used in the paper

N Total number of test cases

Np(s) | Total number of passed test cases

N¢(s) | Total number of failed test cases

Nec(s) | Total number of test cases executed statement s

Ny, (s) | Total number of test cases not executed statement s

Total number of passed test cases executed statement s

o
bS]
—~
V)
~

Total number of failed test cases executed statement s

[
<
—~
»
~—

s) | Total number of passed test cases not invoked statement s
)

Total number of failed test cases not invoked statement s

Statement Ranking Generator (SRG). It takes the program spectra infor-
mation along with the test execution result as an input. Then, it generates the
statement ranking sequences based upon an SBFL technique as output. Table 4
shows the formulas of the four SBFL techniques used in our proposed MSFL
technique. The notations used in Table 4 are defined in Table 3. The SRG compo-
nent, first computes the suspiciousness scores of the statements using an SBFL
technique. Subsequently, it ranks the statements based on the suspiciousness
scores. Since, SBFL techniques assign same suspiciousness scores to two or more
number of statements, we assign worst case rank to those statements in that
situation. Table 5 shows the example statement ranking sequences generated for
the five example mutants using the Tarantula SBFL technique. Similarly, SRG
generates the statement rankings for the faulty program too.

164 A. Dutta and S. Godboley

Table 4. Spectrum based fault localization techniques and their formulas

S. No | SBFL technique | Formula
Neyg(s)
1 Tarantula [12] s
Nef () FNp7(8) T Nep @+ Nnp (@)
.. N r(s)
2 Ochiai [17 L
chiai [17] VN (Net (51 Nep(5))

3 Barinel [42] 1'1\761,(1\3])6+(J\51)f(5)

* (Nes(s)™
4 DStar(D) [25] (Nep(s))f*(an(s))

Ranking Similarity Generator (RSG). It computes the similarity between
the ranking sequence of faulty programs and mutants. It uses the Kendall
Tau Rank Correlation Coeflicient (7) [45] to measure the ordinal connectivity
between two ranking sequences. The value of these coefficient lies in the range of
[—1, 1]. If any two sequences are fully correlated or similar, then the 7 value is
1. On the other hand, for completely dissimilar sequences, it results in —1. The
value of 7 is computed using Eq. 1.

= nc(iz_—dj) (1)

Where, ct and dt represent the number of concordant and discordant pairs
respectively and n shows the number of elements present in the ranking sequence.

Table 5. Example Statement Ranking Sequences generated by Tarantula

Mutants | RS1 | RS2 | RSs | RSs | RSs | RSs | RS7 | RSs | RSe | RS0
M 10 3 8 8 1 4 5 2 6 10
Mo 10 1 3 3 4 8 5 6 7 10
M3 10 3 5 5 1 2 7 6 5 10
My 10 1 4 4 2 3 6 7 8 10
Ms 10 5 7 7 2 1 3 4 8 10

Let us consider, the ranking sequence generated for the faulty program is
given in Table6. The similarity of ranking sequence of faulty program with
ranking sequences of mutants is ((M1, 0.2558), (M2, 0.8606), (M3, 0.3954), (M4,
0.5349), (M5, 0.1163))

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 165

Table 6. Example Statement Ranking Sequence for faulty program

Faulty program | RS1 RSo RS3 RSy RS RSg RS7 RSs RSy RS0
F 10 1 3 3 6 8 5 4 7 10

Average Similarity Generator (ASG). ASG takes the similarity scores for
each mutant generated for all the four SBFL techniques as input. It combines
the similarity scores of all the SBFL techniques and assign the average score of
all these four techniques as to the mutant. The average similarity score of the
i*" mutant is computed using Eq. 2.

Avg_score(M;) = STM; + SBM; 'Z SOM; + SDM,; @

Where, STM;, SBM;, SOM;, and SDM;, represent the similarity scores
obtained by Tarantula, Barinel, Ochiai, and DStar techniques for the i** mutant
respectively.

Mapper and Sorter. It takes the similarity scores for each mutant generated
from ASG as input. More than one mutant is generated for a statement. There-
fore, the mapper part first maps all the mutants to their respective statements.
It assigns the maximum of the similarity score of the mutants as the suspicious-
ness value of the statement. For example, let M;, M;11, M; 42, ..., M;4) are the k
mutants generated for a statement S;. The suspiciousness value of statement S}
is calculated using Eq. 3.

Susp_val(S;) = max(Avg-score(M;), ..., Avg_score(M; 1)) (3)

where, Avg_score(M;) shows the average similarity score of the i** mutant with
faulty program and Susp_val(S;) is a function to compute the suspiciousness
value of statement S;. Subsequently, Sorter sorts the statements based on their
suspiciousness values and outputs a ranked list of statements.

4 Experimental Results

In this section, we first discuss the used experimental setup. Followed by this, we
present the details of considered subject programs and used evaluation metric.
Subsequently, we present an overview of obtained results. Last, we discuss some
threats to the validity of our approach.

4.1 Setup

All the experiments are performed on a 64-bit Ubuntu 18.04.3 LTS machine with
16 GB RAM and Intel ¥ Core™™ processor. All the input programs considered
for our study are written in ANSI-C format. We compiled the input programs

166 A. Dutta and S. Godboley

with GCC-7.4.0 compiler. Program spectra (i.e., statement coverage informa-
tion) and test case execution results are collected using GCOV [39] tool. GCOV
is a statement by statement profiling and code coverage analysis tool. It is utility
package and freely available with GNU compiler suite. For creating mutants, we
have developed a mutator and it is publicly available here [34]. To developed all
the modules, python is used as a scripting language.

4.2 Data-Set Used

To evaluate the effectiveness of our proposed technique, we have experimented
using three different program suites comprises of total nine programs. Five pro-
grams are belong to Siemens suite and they are downloaded from SIR repository
[40]. Another four programs are from NTS benchmark suite and were down-
loaded from NTS repository [41]. The benchmark programs were downloaded
along with their corresponding test suites and faulty versions. Table 7 presents
the characteristics of all the considered programs. Program name, number of
faulty versions considered, lines of code, number of functions, total executable
lines of code, number of test cases, and the number of mutants generated are
shown in Columns 2, 3, 4, 5, and 6 respectively.

Siemens suite [40] is considered as a benchmark for evaluating effectiveness
of FL techniques [12,20,25,30]. Tcas and Tot_info are used in air traffic colli-
sion systems and information measurement machines respectively. Schedule and
Schedule2 are priority schedulers. Last four programs (Sl. no. 5-8) are taken
from NTS repository [30,41]. adpem [35] is an adaptive differential pulse code
modulation program. Merge2BST [36] combines two binary search trees with
limited extra space. nextDate [37] calculates the date on adding a number of
days to a particular date. quick_sort [38] is program for sorting input numbers.
Space program was developed at FEuropean Space Agency. It takes Array Defi-
nition Language (ADL) statements, and checks for there adherence to the ADL
grammar and consistency rules [40].

Table 7. Program characteristics

S. no. | Program No. of Lines of | No. of Executable | No. of No. of
fty. code functions | LOC test cases | mutants
versions

1 Tcas 36 173 9 65 1608 216

2 Tot_info 19 406 7 122 1052 447

3 Schedule 7 412 18 152 2650 206

4 Schedule2 9 307 16 128 2710 250

5 adpcm 7 916 17 270 1600 638

6 Merge2BST | 8 226 7 93 197 176

7 nextDate 14 204 6 81 378 223

8 quicksort 6 99 7 59 128 102

9 Space 38 9123 136 3656 13585 17521

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 167

4.3 Evaluation Metric

To compute the effectiveness of a fault localization technique, we use EXAM
Score metric [10]. It shows the percentage of statements are examined to localize
the faulty line in the whole program. EXAM Score is mathematically defined
using Eq. 4.

Semamine
EXAM Score = [Sezamined| * 100 (4)
|Stotal|

Where, Seramined and Siotqr are sets which contains the statements examined
to localize the fault and statements presents in the program respectively. For
a faulty program P, if the EXAM Score of FL technique; is lesser than FL
techniques, then FL technique; is more effective than FL techniques.

The average improvement achieved using an FL technique, say Tech,, over
another FL technique, Techy, is calculated using Eq. 5.

Avg.ES, — Avg.ES,,
Avg.ES,,

1A, = x 100 (5)
Where, IA,; shows is the improvement achieved using Tech, over Techs.
Avg.ES,, and Avg.ES, present the average E'S obtained by Tech, and Tech,
respectively. Lesser the average EX AM _Score better the technique is. For exam-
ple, for a program suite P, Avg.ES, and Avg.ES), are 10 and 15 and the resultant
ITAup is 50%. We can say that Tech, is 50% more effective than Tech,, for fault
localization.

4.4 Results Obtained

We present the comparative results of MSFL with five spectrum based fault
localization techniques viz., Tarantula [12], Crosstab [19], Ochiai [17], DStar [25]
and Barinel [42]. We have already mentioned the importance of Tarantula [12],
Ochiai [17], Barinel [42] and DStar [25] techniques. The fifth prominent technique
is Crosstab [19] and is a statistical analysis based method from SBFL family.

Figures 2, 3, 4, 5, 6 and 7 present the results obtained for MSFL and the
other FL techniques over different program suite using EXAM_Score metric. In
each line graph, the x-axis and y-axis represent the percentage of executable
statements examined and the faulty versions localized respectively. A point (x,
y) in the graph shows that the y% of faulty versions are successfully localised
by examining an amount of code less than or equal to x% of total program
statements. Since, SBFL techniques assign same suspiciousness scores to two
or more number of statements. It results in two different types of effectiveness
viz., Best case effectiveness ad the Worst case effectiveness. The best case occurs
when the faulty statement is the first to be examined among the statements with
the same suspiciousness score. Similarly, the faulty statement is examined last
in the worst case. Two different plots have been used to represent the Best case
and the Worst case effectiveness, DStar [25], Tarantula [12], Ochiai [17], Barinel
[42] and Crosstab [19] fault localization techniques. A single line graph will be
used to present the MSFL technique.

168 A. Dutta and S. Godboley

% faulty versions
% faulty versions

’ —¥— DStar(Best)
== Tarantula(Worst)) —=— Dstar(Worst))

—¥— Tarantula(Best)

0o 20 40 60 80 100 o 20 40 60 80 100
% statements examined % statements examined

Fig. 2. Effectiveness comparison of MSFL. Fig. 3. Effectiveness comparison of MSFL
against Tarantula against DStar

Figure 2 shows the effectiveness comparison of our proposed MSFL approach
with Tarantula over the selected set of Siemens and NTS suite programs. It can
be observed from the figure that by examining less than 2% of code, MSFL
technique localizes bugs in 26.42% of faulty versions. On the other hand, Taran-
tula (Best) and Tarantula (Worst) localize bugs in only 15.09% and 2.83% of
faulty versions by examining the same amount of program code. On an average,
MSFL technique is 35.63% and 61.49% more effective than Tarantula (Best) and
Tarantula (Worst) respectively.

Figure 3 represents the effectiveness comparison of DStar and MSFL tech-
niques for Siemens and N'T'S suites. It shows that 75% of faulty versions are local-
ized by examining only 20% of program code by MSFL. Whereas, for the localiza-
tion of faults in same percentage of faulty versions, DStar (Best) and DStar (Worst)
require to examine at least 28.81% and 75.27% of program code respectively. In
the worst case, MSFL technique requires 8.51% and 29.69% less code examination
than DStar (Best) and DStar (Worst). On an average, MSFL is 15.44% and 47.46%
more effective than DStar (Best) and DStar (Worst) respectively.

Figure 4 shows the comparison of MSFL and Ochiai techniques over Siemens
and NTS suites. It can be observed from the figure that by examining only 20%
of code MSFL localizes bugs in 79% of faulty versions whereas, Ochiai (Best)
and Ochiai (Worst) localize bugs in only 71% and 34% of faulty versions. In
the worst case, MSFL requires 12.72% and 29.69% of less code examination
than Ochiai (Best) and Ochiai (Worst) respectively. On an average, MSFL is
36.31% more effective than Ochiai. Figure 5 shows the effectiveness comparison
of our MSFL technique with Crosstab for fault localization for Siemens and
NTS suites. It can be observed from the figure that 35% of faulty versions are
localized by examining only 4% of program code by MSFL. Whereas, for the
localization of faults in same percentage of faulty versions, Crosstab (Best) and
Crosstab (Worst) respectively require to examine at least 28.81% and 75.27%
of program code. In the worst case, MSFL technique requires 29.69% less code
examination than both Crosstab (Best) and Crosstab (Worst). On an average,
MSFL is 26.74% and 58.74% more effective than Crosstab (Best) and Crosstab
(Worst) respectively.

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 169

% faulty versions
% faulty versions

|I —— MSFL ’l -~ MSFL
e =¥ Ochiai(Best) | —¥— Crosstab(Best)
== Ochiai(Worst)) ’,’ == Crosstab(Worst))
0 T T T T 0
0 20 40 60 80 100 0 20 40 60 80 100

% statements examined % statements examined

Fig. 5. Effectiveness comparison of MSFL
against Crosstab

Fig. 4. Effectiveness comparison of MSFL
against Ochiai

100

80

=% Tarantula(Best)
== Tarantula(Worst))
=>— DStar(Best)
== DStar(Worst)
Ochiai(Best)
Ochiai(Worst)
=% Crosstab(Best)
== Crosstab(Worst))
Barinel(Best)
Barinel(Worst))
—+— MSFL(Best)

% faulty versions
% faulty versions

f -8~ MSFL
P —%— Barinel(Best)
X == Barinel(Worst))

0 20 40 60 80 100 0 10 20 30 40 50 60 70 80

% statements examined

Fig. 6. Effectiveness comparison of MSFL
against Barinel

% statements examined

Fig. 7. Effectiveness comparison of MSFL
with different FL techniques over Space

Figure 6 show the effectiveness comparison of MSFL with Barinel for Siemens
and NTS suite. It can be observed from the figure that by examining 10% of
faulty versions only MSFL localizes bugs in 63.21% faulty versions. On the other
hand for the same code examination, Barinel (Best) localizes bugs in only 50%
of versions. In the worst case, MSFL technique requires 19.67% and 29.69% less
code examination than Barinel (Best) and Barinel (Worst) respectively. On an
average, MSFL is 50.04% better than Barinel.

Figure7 shows the effectiveness comparison result of MSFL with DStar,
Tarantula, Ochiai, Crosstab, and Barinel over the Space suite programs. It
can be observed from the Fig.7 that MSFL performs better than Tarantula,
Ochiai, DStar and Crosstab for almost all the faulty versions. Only for a few
versions, MSFL is less effective than Berinal. Average Exam_Score of Taran-
tula, DStar, Ochiai, Crosstab, Barinel and MSFL are 20.42%, 30.03%, 28.83%,
30.15%, 15.94%, and 12.46%. In the worst case, MSFL is 12.23%, 5.54%, 2.75%,

170 A. Dutta and S. Godboley

25.59%, and 4.70% better than Tarantula, DStar, Ochiai, Crosstab, and Barinel
respectively.

4.5 Threats to the Validity

— At present, we have considered only a limited set of programs to evaluate the
effectiveness of proposed approach. It is possible that our proposed technique
may not work effectively for other set of programs. However, to mitigate this
risk, we have considered programs with different size, application domain and
complexity.

— The effectiveness of our approach is low if no mutants available for the faulty
line. In this case, a lesser rank is assigned to the faulty compared to the
non-faulty statements for which mutants are already available.

5 Discussion

Cleve et al. [11] proposed a state-model based FL technique known as cause-
transition. They compared the states of different passed and failed runs to locate
the cause of failure. This method is an extension of their previous work propos-
ing delta debugging [9]. Jones et al. [8] reported that Tarantula [12] requires
less number of statements to be examined for localizing faults compared to the
cause-transitions [11], set-union [8], nearest-neighbor [10] and set-intersection [8].
From our experimental results, it can be observed that our proposed approach
examines, on an average, 48.56% less statements than Tarantula [12].

Renieris et al. [10] proposed the nearest-neighbor approach for FL. They tar-
geted to find the most similar trace generated from the successful test cases with
a failed test case trace. Further, they applied a set difference to eliminate the
irrelevant statements from the failed test case trace and returns a list of suspi-
cious statements. The effectiveness of their approach is completely dependent on
the used test suite. Also, in some cases, it returns a null set of suspected state-
ments. Whereas, our proposed approach generates a ranked list of statements
based on their suspiciousness of containing a fault.

A number of slicing based techniques have been reported in the literature
for FL and have became popular [1,4,6]. The main drawback of this approach is
sometimes it returns the complete program as a slice and thereby nullifying the
effectiveness of the approach. Also, these techniques do not assign any ranks to
the statements. On the other hand, our proposed approach provides a rank to
each executable statement for which mutants are generated.

We have compared our proposed work MSFL with four prominent SBFL
techniques: DStar [25], Tarantula[12], Ochiai [17], and Crosstab [19]. Our results
indicate that our proposed approach performs 31.45%, 48.56%, 36.31%, and
42.46% better than the respective techniques. DStar is the state-of-the-art for
fault localization techniques based on the program spectrum information. How-
ever, DStar excludes the information of successful test cases which do not cover
the statement while calculating the suspiciousness score. On the other hand, our

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 171

proposed approach took the complete information of both pass and failed test
cases to calculate the suspiciousness of a statement. It helps our approach to
distinguish the behavior of the statement to localize the faults.

Wong et al. [14] was the first to use neural network models for FL. First,
they used BPNN [14] and later RBFNN [20] for the same. Zheng et al. [2§]
used a deep neural network, and Zhang et al. [29] extended [28] approach by
adding the contextual information to localize the faults. Neural networks can
model extremely complex functions, but there are problems of non-deterministic
parameter estimation and feedback loop. Neural network models require a long
time for training and parameter fixing (of the order of tens of minutes). On the
other hand, the time required in each step of our proposed approach is order of
seconds, even for a large-sized program.

6 Conclusion

We have presented a hybrid technique of mutation testing and spectrum-based
fault localization. The proposed MSFL technique generates several mutants and
compares the program spectra and test execution results to locate suspicious
statements by measuring the distance with four different spectrum-based FL
techniques. We have compared the effectiveness of our proposed technique with
SBFL methods over nine different open-source programs. On an average, our
proposed technique MSFL is 36.48% more effective than existing fault localiza-
tion techniques. Finally, we justify our RQ, and we have showed that Hybrid
Mutation Testing is efficient to be practical for everyday use like agile process.

At present, we have considered programs with single faults only. We plan
to extend our proposed approach by mutating multiple statements at the same
time and localize the multiple-fault programs. Also, we will considered machine
learning approaches in addition to the SBFL techniques for generating different
statement ranking sequences. It will help to improve the effectiveness of fault
localization.

References

1. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352-357 (1984).
https://doi.org/10.1109/TSE.1984.5010248

2. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155-163
(1988)

3. Agrawal, H., et al.: Design of mutant operators for the C programming language.
Technical report SERC-TR-41-P, Software Engineering Research Center, Purdue
University (1989)

4. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language Design and Implementation,
pp. 246-256. White Plains, New York (1990)

5. Wasserman, P.D.: Advanced Methods in Neural Computing. Wiley, Hoboken
(1993)

https://doi.org/10.1109/TSE.1984.5010248

172

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A. Dutta and S. Godboley

Gupta, R., Soffa, M.L.: Hybrid slicing: an approach for refining static slices using
dynamic information. In: Symposium on Foundations of Software Engineering, pp.
29-40 (1995)

Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

Jones, J.A., Harrold, M.J., Stasko, J.: Visualization for fault localization. In: Pro-
ceedings of ICSE 2001 Workshop on Software Visualization, Ontario, BC, Canada,
May 2001, pp. 71-75 (2001)

Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183-200 (2002)

Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Pro-
ceedings of the 18th IEEE International Conference on Automated Software Engi-
neering, Montreal, Canada, October 2003, pp. 30-39 (2003)

Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, St. Louis, Missouri, USA,
May 2005, pp. 342-351 (2005)

Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault
localization technique. In: Proceedings of the 20th IEEE/ACM Conference on
Automated Software Engineering, Long Beach, California, USA, pp. 273-282
(2005). https://doi.org/10.1145/1101908.1101949

Briand, L.C., Labiche, Y., Liu, X.: Using machine learning to support debugging
with Tarantula. In: The 18th IEEE International Symposium on Software Relia-
bility (ISSRE 2007), pp. 137-146. IEEE (2007)

Wong, W.E., Qi, Y.: BP neural network-based effective fault localization. Int.
J. Softw. Eng. Knowl. Eng. 19(4), 573-597 (2009). https://doi.org/10.1142/
S021819400900426X

Ascari, L.C., Araki, L.Y., Pozo, A.R., Vergilio, S.R.: Exploring machine learning
techniques for fault localization. In: 10th Latin American Test Workshop, pp. 1-6.
IEEE (2009)

Zhang, L., Kim, M., Khurshid, S.: Localizing failure-inducing program edits based
on spectrum information. In: 27th IEEE International Conference on Software
Maintenance (ICSM), pp. 23-32. IEEE (2011)

Naish, L., Jie, L.J., Kotagiri, R.: A model for spectra-based software diagnosis.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(3), 1-32 (2011)

Xu, X., Debroy, V., Wong, W.E., Guo, D.: Ties within fault localization rank-
ings: exposing and addressing the problem. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 21(06), 803-827 (2011)

Wong, W.E., Debroy, V., Xu, D.: Towards better fault localization: a crosstab-
based statistical approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
42(3), 378-396 (2011)

Wong, W.E., Debroy, V., Golden, R., Xu, X., Thuraisingham, B.: Effective software
fault localization using an RBF neural network. IEEE Trans. Reliab. 61(1), 149-
169 (2012). https://doi.org/10.1109/TR.2011.2172031

Papadakis, M., Traon, Y.L.: Using mutants to locate “unknown” faults. In: 5th
International Conference on Software Testing, Verification and Validation, pp. 691—
700. IEEE (2012)

Zhang, L., Zhang, L., Khurshid, S.: Injecting mechanical faults to localize developer
faults for evolving software. ACM SIGPLAN Not. 48(10), 765-784 (2013)

Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: mutating faulty programs
for fault localization. In: 2014 IEEE 7th International Conference on Software
Testing, Verification and Validation, pp. 153-162. IEEE (2014)

https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1109/TR.2011.2172031

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

46.

MSFL: A Model for Fault Localization Using Mutation-Spectra Technique 173

Papadakis, M., Traon, Y.L.: Metallaxis-FL: mutation-based fault localization.
Softw. Test. Verif. Reliability. 25(5-7), 605-628 (2015)

Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290-308 (2016). https://doi.org/10.
1109/TR.2013.2285319

Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707-740 (2016). https://doi.org/10.
1109/TSE.2016.2521368

Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Edu-
cation India (2016)

Zheng, W., Hu, D., Wang, J.: Fault localization analysis based on deep neural
network. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/1820454
Zhang, Z., Yan, L., Qingping, T., Xiaoguang, M., Ping, Z., Xi, C.: Deep learning-
based fault localization with contextual information. IEICE Trans. Inf. Syst.
100(12), 3027-3031 (2017)

Dutta, A., Manral, R., Mitra P., Mall, R.: Hierarchically localizing software faults
using DNN. IEEE Trans. Reliab. (2019). (Early Access)

Dutta A., Pant N., Mitra P., Mall R.: Effective fault localization using an ensemble
classifier. In: International Conference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering: QR2MSE-2019. Zhangjiajie, Hunan, China (2019)
Zhang, Z., Lei, Y., Mao, X., Li, P.: CNN-FL: an effective approach for localizing
faults using convolutional neural networks. In: 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), China, pp.
445-455. IEEE (2019)

Li, X., Li, W., Zhang, Y., Zhang, L.: DeepFL: integrating multiple fault diagnosis
dimensions for deep fault localization. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 169-180 (2019)
https://github.com/ArpitaDutta/Mutator_
http://www.mrtc.mdh.se/projects/wcet /wcet_bench/adpcm/
https://www.geeksforgeeks.org/merge-two-bsts-with-limited-extra-space/
https://www.geeksforgeeks.org/date-after-adding-given-number-of-days-to-the-
given-date/
https://www.tutorialspoint.com/data_structures_algorithms/quick_sort_program_
in_c.htm

http://man7.org/linux/man-pages/manl/gcov-tool.1.html
https://sir.csc.ncsu.edu/portal /index.php
https://github.com/ArpitaDutta/NTS_Repository

Abreu, R., Zoeteweij, P., Van Gemund, A.J.: Spectrum-based multiple fault local-
ization. In: 2009 IEEE/ACM ICSE, pp. 88-99. IEEE, November 2009

Dutta, A., Kumar, S., Godboley, S.: Enhancing test cases generated by concolic
testing. In: Proceedings of the 12th Innovations on Software Engineering Confer-
ence, pp. 1-11, February 2019

Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
112-122, June 2007

Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped
data. J. Am. Stat. Assoc. 61(314), 436-439 (1966)

Cui, Z., Jia, M., Chen, X., Zheng, L., Liu, X.: Improving software fault localization
by combining spectrum and mutation. IEEE Access 8, 172296-172307 (2020)

https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1155/2016/1820454
https://github.com/ArpitaDutta/Mutator_
http://www.mrtc.mdh.se/projects/wcet/wcet_bench/adpcm/
https://www.geeksforgeeks.org/merge-two-bsts-with-limited-extra-space/
https://www.geeksforgeeks.org/date-after-adding-given-number-of-days-to-the-given-date/
https://www.geeksforgeeks.org/date-after-adding-given-number-of-days-to-the-given-date/
https://www.tutorialspoint.com/data_structures_algorithms/quick_sort_program_in_c.htm
https://www.tutorialspoint.com/data_structures_algorithms/quick_sort_program_in_c.htm
http://man7.org/linux/man-pages/man1/gcov-tool.1.html
https://sir.csc.ncsu.edu/portal/index.php
https://github.com/ArpitaDutta/NTS_Repository

Short Papers

®

Check for
updates

Implementing Lean Principles in Scrum
to Adapt to Remote Work in a Covid-19
Impacted Software Team

Leigh Griffin®9)

Waterford Institute of Technology, Waterford, Ireland
20006077@mail .wit.ie
http://wuw.wit.ie

Abstract. Agile Frameworks are a mainstay of Software Engineering
teams, with Scrum having risen to prominence over the last decade.
Teams are experimenting more with variants of Scrum, with inspirations
coming largely from other process improvement methodologies. However,
the prevalent mode of executing Scrum assumes that the team are in
colocation. In early 2020, a global pandemic has shifted the world unex-
pectedly into remote work. The heavyweight nature of Scrum is leading
to fatigue within teams, as the remote nature of video conferencing and
asynchronous communication bring an overhead not experienced before.
The result is a weakening of the Scrum fundamentals in teams, with
modifications being made to accommodate the new normal that teams
are experiencing. Not all of the changes are positive and a lot of waste
has emerged within teams. Lean principles can be applied to Scrum with
minor adjustments and minimal friction. The end result is a variant of
Scrum designed with remote teams in mind. This paper will explore some
of the challenges remote teams are facing, the modifications proposed and
the result of those changes in a remote Software Engineering Team.

Keywords: Covid-19 - Lean - Remote teams - Scrum

1 Introduction

Software Development, compared to more established industries, is still in it’s
infancy. The frameworks to guide the creation of a software product are matur-
ing rapidly, with inspirations drawn from other industries shaping and evolving
the models over time. Scrum, has grown in popularity in recent years and a
trend has emerged to move away from a pure Scrum approach, Robinson and
Beecham (2019), which is Scrum as per the Scrum Guide (Schwaber and Suther-
land (2018)), to move towards a hybrid model. The hybrid aspect often involves
modifying some of the core ceremonies or bringing in additional changes, often
inspired by other frameworks. One of the most popular hybrid approaches is the
introduction of Kanban. The term Scrumban, as mentioned in Nikitina et al.
(2012) has emerged to describe this model with some of the key benefits being

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 177-184, 2021.
https://doi.org/10.1007/978-3-030-67084-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_11

178 L. Griffin

increased visualization of work and a focus on Work in Progress (WiP) limits.
This has the affect of pulling work through the system at a faster flow rate, by
focusing teams on a finite number of items. The Agile Manifesto (Beck (2001))
talks about people and interactions over processes and tools. Scrum advocates
strongly for in person execution for the most optimal results and control for
the team, with a strong motivator being the presence of the customer and team
in colocation. The enhancements or modifications to Scrum, particularly those
inspired by Kanban, focus on a visual way of implementing and running the
team, lending itself to in person interactions. Minimal research, such as Fani-
ran et al. (2017), Smits and Pshigoda (2007) and Paasivaara et al. (2012) have
investigated remote friendly Scrum, but no standard tools and techniques have
emerged for teams to follow. In addition, the unprecedented nature of this unex-
pected and first global pandemic in the history of the digital era, means that the
world is learning how to adapt.

Several online tools are emerging that are proving to be more than adequate
to replicate in person interactions, however, teams have not fully embraced or
invested in them. In early 2020, a global pandemic named covid-19, caused a
paradigm shift for the worlds workforce. With global health advice advising
against in person business, most industries moved into a remote way of working.
A subsequent scramble to form an IT strategy that was conducive to sustained
performance was now needed. This brought several challenges for teams who
had a heavy focus on in person interactions and this shift to remote work came
with the expectation that performance and delivering the same output would
be maintained. This paper will focus on the lessons learned from a software
engineering team that had a mix of remote and in office team members before
covid-19 where a culture of remote first work was already prevalent. This team
had been working in an Agile manner for almost 18 months, were trying to follow
the Scrum Framework and had a full time Product Owner and ScrumMaster.
The team executed Quarterly Planning (QP), a process whereby stakeholders
would help prioritize multiple sprints worth of work to execute a larger piece of
functionality in order to align across the enterprise. The team as a whole num-
bered 26 people divided into 4 delivery teams, each responsible for delivering
standalone functionality. The work from home enforcement of family members
and house mates created an environment that put strain on our team. Of par-
ticular focus was the waste generated by following the Scrum framework and
this paper will focus on the key waste elements identified in both the ceremonies
and the key inputs to the team, with recommended adaption to minimize waste
provided.

2 Remote Scrum Challenges

A number of challenges have emerged for remote teams running Scrum in the
current environment. Scrum operates on a predicable multi week cadence, broken
down into ceremonies that are designed to continiously feed a team relevant work,
be highly collaborative with the customer in mind and ultimately to deliver
incremental value.

Lean Scrum 179

2.1 Scrum Ceremonies

Daily Scrums are timeboxed at 15 min. In person interactions can allow for better
facilitation and control of the communication and to ensure that the timebox
is adhered to. Using online video conferencing tools introduces technology as
a factor, chiefly audio/visual and network issues making the tighter timebox
difficult to stay within or compromises the quality of the discussion within the
team

Sprint Planning is timeboxed at a maximum of 8 h for a 4 week Sprint, with
that ratio of hours to sprint duration scaling appropriately. While held in person,
engagement can remain high for a longer period of time than working from home
can achieve. Best practices for ergonomics, as seen in Bontrup et al. (2019)
states a minimum of 5 min away from the screen every hour. This can be highly
disruptive to the flow of a long running meeting like Sprint Planning, where a
full Agenda cannot be set ahead of time. The natural breaks in person are more
difficult to translate to that ergonomic recommendation, with meetings often
running to close out a section of the planning successfully. The Sprint Review
suffers from a similar timeboxing issue as it recommends a 4h meeting for a
4 week Sprint, this, however, is less of a concern in shorter sprint durations.
Sprint Retrospective is one of the most valuable tools for a Scrum team to
inspect and adapt. Psychological Safety is one of the hallmarks of a strong Agile
team (Edmondson (2018)), that is in part detected, and acted upon by the
ScrumMaster. In person, the use of body language is a key tool to help discover
and assess psychological safety. In a remote world, where web-cameras may not
be available for everyone, it is impossible to gain that sense of how safe the
team are. This can have a major impact on the quality of the contributions and
hampers the retrospective longer term.

2.2 Distractions

While participating in any of the Scrum Ceremonies, having the team present
in a mental capacity is hugely important. That diminishes quickly in a remote
environment, as team members are on their laptops with a plethora of noisy
distractions from emails, to instant messages through to web surfing. The result
is a lack of focus within the team, and while the ceremonies are executed as close
to the Scrum Framework as possible, the result is a mechanical version of Scrum,
rather than the Agile mindset which results in a longer term transformation.
While the impact here is hard to quantify, 6 months into the pandemic, the
longer term impact will be a follow on to this research paper.

2.3 Fatigue

In person interactions allow for a lot of time away from a desk and by extension
from the work at hand. A trend in recent years in the IT industry is to have an
office with collaboration focused areas, wellness rooms, games rooms and multi-
ple social interaction touchpoints in common spaces like the canteen. This has

180 L. Griffin

a noticeable impact on human collaboration as noted by Bernstein and Turban
(2018) and the passive result is a workplace that has a social element to it, which
increases staff happiness. This is an important element of a team and company
culture, which results in the teams weekly contribution to their project, versus
their contractual obligation, being reduced. That reduction is often passively
factored into project and release plans. In a work from home environment, per-
sonal and professional spaces may collide, with variable working hours. Another
factor is the narrowing of the social interactions to just that of your immediate
team and extended functions critical to your day job. This focused social group,
coupled with the work day being closer to the contracted hours, has a magnified
intensity to the work day that workers have never experienced before. Pairing
this with meeting fatigue and burnout is a real possibility within the team. That
can impact the overall team and the product may suffer.

3 Waste Within Scrum: Key Inputs

A focal point here is on observations about waste, or muda, in the Lean termi-
nology, that our team have identified for later actions.

3.1 Requirements

Working with Stakeholders is a core facet of the Product Owner role, often
bringing in key technical members to fore-run on feature requests to stock the
Backlog. Good Product Owners often work several Sprints ahead of the devel-
opment team to ensure that Sprint Planning is a smooth and efficient process
(Sverrisdottir et al. (2014)). The Quarterly Planning (QP) approach used by
our team helps to indicate the delivery goals for customers. QP is a maturity
indication for Agile teams, where the teams velocity, their sizing analysis and
overall execution are capable of predicting 12 weeks (multiple sprints) with a
high degree of confidence. With this in mind, QP brings stakeholders to analyse
the User Stories scoped at the right size to be delivered in that timebox. Mature
products often have longer term functionality that needs to be built upon quar-
ter after quarter, to achieve the ultimate end goal. An element of waste here
is the involvement of stakeholders in the lead up to, and the execution of QP,
when the teams capacity might be a fraction of their true potential due to longer
running initiatives. In our team, this has been the case for 3 Quarters running
due to long term initiatives that have an overarching need to deliver a complex
system.

Roadmaps are a very popular sales tool to entice Customers into longer
term investment in a product offering as described in Munch et al. (2019). That
involves future projection to showcase longer term direction of the Product.
This involves engaging with Customers, who are attracted to some of the future
roadmap, with the view to try and accelerate features by building out require-
ments. Roadmaps, however, are often a marketing mechanism, talking about
longer term future branch points that may not align to the Product Vision or

Lean Scrum 181

the direction the company are trying to take. This involves the Product Owner
and key team members engaging on in depth requirements gathering for features
that might never be realised for a variety of reasons from technical, to product
positioning through to investment required in skills, people and infrastructure.

3.2 Backlogs

With the default separation of a Sprint and Product Backlog, Scrum has a
funneled approach to take items into a Sprint and allow the team break them
out in more detail for consumption. The granularity of the tasks matches the
Definition of Done, ensuring that multiple, often very similar in nature pieces of
work being identified. While the need for Quality is undeniable in software, the
process for the team to take time to create tickets (a generic term for work items
to progress) to capture the items needed to complete a User Story to done, is
an exercise in repetition. The risk of not doing this level of breakdown is the
team missing some of their Definition of Done criteria when it comes to Sprint
Review.

Multiple teams often work together on a product. Mature, complex products
are often viewed as sub-products, as the functionality has grown to a level of
complexity that a dedicated team owns the feature set. This creates siloed back-
logs, with feature teams drawing select User Stories from the Product Backlog
to stock their sub-team backlog. This approach sees the members of that team
attend wider Backlog refinement, and while the knowledge sharing can be invalu-
able, it is viewed as muda once their subsection User Stories are discussed and
agreed upon. Layers of complexity build on top of this to ensure that cross sub-
team coordination can exist, with Scaled Scrum Frameworks emerging which
bring multiple additional meetings and coordination in an attempt to get back
to a singular product view of the world. The larger the organisation, the larger
the waste footprint becomes.

4 Adaptions to the Scrum Process

While the onset of the pandemic forced many of the adaptations to accelerate, the
team had already worked on modifications to the Scrum framework to become
a more hybrid Scrum team.

4.1 Scrum Ceremonies

Small changes remove a lot of waste and free up precious calendar time for the
teams by defaulting some of the updates to an asynchronous manner. The Daily
Scrum, as an example, can be delivered over instant messaging applications
for consumption by the team at their own pace. Blockers and escalations can
still be elevated to calls, however, the majority of Daily Scrum conversations
are coordination of work. While the Scrum Guide emphasizes a focal point on
Blockers, teams use the call to align on the goals for the day and recap the prior

182 L. Griffin

days work, this is a relic of the original intent of the Daily Scrum that prevails
as it is attractive to teams for coordination benefits. Sprint Reviews often come
with demos, which can be time consuming to setup and establish. Pre-recording
demos and making them available to the team to consume in their own time
is another key removal of waste, allowing the team focus a conversation on the
demo over other communication channels.

4.2 Backlog Adaption

Backlog refinement looks at the longer term horizon for the team from a product
perspective, ordering the backlog and allowing for Sprint Planning to proceed
with the certainty that the highest value items will be progressed. At Sprint
Planning time, the breakdown of those tickets selected into smaller, consumable
pieces for the team is a necessary step. Typically, the entire team gathers for
this process to benefit from the knowledge sharing, however, a percentage of a
cross functional team will have no input or real value taken from the discus-
sion on Stories outside of their immediate skillset. While the more experienced
developer leads the conversation, most of the team enter a silent observation
mode. Discussing the tickets in a just in time format is a heavy team burden,
as the technical depth of conversations required to articulate the needs is time
consuming. The adjustment proposed was to merge the backlogs from a granular-
ity perspective, which some Scrum variants recommend Gancarczyk and Griffin
(2019). The team have the certainty of the next several sprints worth of work
and this allows the technical leads to investigate the User Stories as individu-
als, documenting their observations, their recommended implementation details
and finally sharing this with the team. Over the duration of a Sprint, the team
established 1h Backlog Refinement calls, to go in and discuss at a high level
the implementation detail as documented ahead of time, to answer any ques-
tions that could not have been resolved on the tickets and to finalize their plan.
Strict timeboxing ensures that the team do not feel burned out and the frequent
cadence of the meetings allows team members to dip in and out as necessary, with
the option of watching the recording of the meeting and following the detailed
breakdown in the ticket and raise questions there. The benefits here have helped
streamline the QP process as a more in depth backlog view is possible, allowing
for more informed decisions on what to prioritise and when and no sense of loss
was reported by the move away from a Product Backlog view.

5 Process and Tools

The Agile Manifesto clearly states individuals and interactions over processes
and tools. As remote teams, tooling is important and issue trackers provide a
number of ease of life improvements with APIs and plugins capable of eliminating
a lot of waste. Our team implemented their Definition of Done (as defined in
Schwaber and Sutherland (2018)) in an automated manner by auto creating
tickets for documentation, testing validation and release readiness as part of the

Lean Scrum 183

new ticket creation. This, when combined with static code analysis tools that
can provide a gating mechanism before code merge, ensures lower technical debt
all around and that the DoD is adhered to. The waste removal here is significant
in backlog refinement sessions and a far safer method from a quality perspective.

Software teams spend a lot of time debugging and tracking down issues and
bugs reported by their users. The ability to observe the system and quickly
understand where a fault might reside represents a saving in debugging time,
context switching and a quicker resolution, which ultimately allows the developer
to get back to more value add work faster. The investment by our team in
Observability and Monitoring stacks has provided a reassuring level of Quality
to complement already expansive test coverage and eliminated a large amount
of muda that the team were experiencing.

The Product Owner introduced the concept of an Epic Brief — a one page
summary proposal — for stakeholders and team members to simplify the process
of funneling work into the team. Previously, stakeholders would have engaged
with multiple groups as they evolved their idea, resulting in a lot of wasteful
meetings and often the end result was discovering that the work was not aligned
with the teams mission statement or simply beyond the scope of what they could
deliver. This minimal required information allows the Product Owner engage
more efficiently. The benefit of this approach is a fail fast approach, to discover
that the work proposed was not a good fit for the team for a number of reasons.
Combining this with QP, the Product Owner is able to ascertain the workload
on the team as well as the size and scope of incoming requests. This helps level
set expectations before too much time and effort is put into an Epic Brief that
might be important to that particular stakeholder, but that will ultimately be
a lower priority for the team as a whole and several quarters away based on
current trending velocity and in flight needs.

6 Conclusion and Future Work

The paradigm shift to work from home is putting a strain on teams like no other
experience in their lifetime. The Scrum Framework has multiple prescribed rou-
tines that are optimized for in person interactions and that when followed to the
spirit of the Scrum Guide, result in the generation of waste. Having recognized
this, our team has taken the first steps in eliminating this waste and moving
towards a more Lean inspired version of Scrum. As this global situation is still
evolving, the work from home approach looks set to remain the status quo for
years to come. More work is planned by our team on investigating the tooling
from a production line viewpoint, where requirements and code eventually get
baked into a workable product. Deeper statistics are being gathered to make
informed changes, with the more obvious waste, as documented in this paper,
eliminated already. The key constituent roles of Product Owner and ScrumMas-
ter also generate a lot of waste within a Scrum team and is a planned future
research topic.

184 L. Griffin

References

Beck, K.: Manifesto for agile software development (2001). http://www.agilemanifesto.
org/

Bernstein, E., Turban, S.: The impact of the ‘open’ workspace on human collaboration.
Philos. Trans. R. Soc. B Biol. Sci. 373, 20170239 (2018)

Bontrup, C., et al.: Low back pain and its relationship with sitting behaviour among
sedentary office workers. Appl. Ergon. 81, 102894 (2019)

Edmondson, A.C.: The Fearless Organization: Creating Psychological Safety in the
Workplace for Learning, Innovation, and Growth. John Wiley & Sons, New Jersey
(2018)

Faniran, V.T., Badru, A., Ajayi, N.: Adopting scrum as an agile approach in distributed
software development: a review of literature. In: 2017 1st International Conference
on Next Generation Computing Applications (NextComp), pp. 3640 (2017)

Gancarczyk, A., Griffin, L.: Small scale scrum. Agile Alliance Experience Reports
(2019)

Munch, J., Trieflinger, S., Lang, D.: Product roadmap - from vision to reality: a sys-
tematic literature review (2019)

Nikitina, N., Kajko-Mattsson, M., Strale, M.: From scrum to scrumban: a case study
of a process transition. In: Proceedings of the International Conference on Software
and System Process, ICSSP ’12, IEEE Press, pp. 140-149 (2012)

Paasivaara, M., Lassenius, C., Heikkild, V.T.: Inter-team coordination in large-scale
globally distributed scrum: do scrum-of-scrums really work?. In: Proceedings of the
2012 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 235-238 (2012)

Robinson, P.T., Beecham, S.: Twins: this workflow is not scrum: agile process adapta-
tion for open source software projects. In: Proceedings of the International Confer-
ence on Software and System Processes, ICSSP ’19, IEEE Press, pp. 24-33 (2019)

Schwaber, K., Sutherland, J.: The scrum guide (2018). https://www.scrumguides.org/

Smits, H., Pshigoda, G.: Implementing scrum in a distributed software development
organization. In: Agile 2007 (AGILE 2007), pp. 371-375 (2007)

Sverrisdottir, H., Ingason, H., Jénasson, H.: The role of the product owner in scrum-
comparison between theory and practices. Procedia - Soc. Behav. Sci. 119, 257-267
(2014)

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://www.scrumguides.org/

®

Check for
updates

Business-Oriented Approach to Requirements
Elicitation in a Scrum Project

Michat Sosnowski', Michat Bereza!, and Yen Ying Ng?®)

1 Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Gdansk, Poland
sosna32l@gmail.com, michalberl1998@gmail.com
2 Department of English Studies, Nicolaus Copernicus University, Torun, Poland
nyysang@gmail .com

Abstract. As agile methods allow requirements to emerge throughout the devel-
opment process, requirements engineering activities span the entire life cycle of
a system. However, requirements elicitation is poorly performed in agile teams.
Instead, agile teams rely fundamentally on the use of validation. In this paper, we
demonstrate that on the contrary to what agilists say, creating a requirements doc-
ument up front may not necessarily be a waste of time and can be done in a light
way. We report on a Scrum project in which we adopted the Business-Oriented
approach to Requirements Elicitation (BORE) proposed by Przybytek [12]. In
this approach, system requirements are derived from business process models.
Accordingly, the system requirements meet real business needs and there are no
superfluous requirements.

Keywords: Requirements engineering - Business process modelling - Use
cases - Agile

1 Introduction

Agile methods emerged as a reaction to traditional ways of software development and
acknowledged that customers are unable to definitively express their needs up front [9,
11, 17]. Accordingly, in agile software development, requirements evolve through the
project lifetime [15, 19]. Although agile software development has become mainstream
inindustry [8, 9, 13, 14], the role of requirements engineering is still challenging in agile
projects. Hard-core agilists believe that creating a requirements document at the begin-
ning of a project is a waste of time because of the ever-changing terrain of the project.
Hence, they neglect the usage of comprehensive requirement elicitation techniques [1,
6] and rely fundamentally on the use of validation and refactoring. However, several
authors have recently pointed out that it is necessary to establish a balance between
agility and intensive up-front activities in order to avoid high amount of refactoring,
which would cause an escalation of development costs in later stages, possibly jeopar-
dizing the whole project [7, 16]. Furthermore, practitioners recognize insufficient time
for business analysis and problem examination as one of the serious problems, which

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 185-191, 2021.
https://doi.org/10.1007/978-3-030-67084-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_12&domain=pdf
http://orcid.org/0000-0001-5388-2025
https://doi.org/10.1007/978-3-030-67084-9_12

186 M. Sosnowski et al.

results in inadequate requirements. On top of that, requirements sometimes tend to be
generated without a deeper reflection of their actual utility [3].

Although we agree that requirements are rarely to be found well-defined, and ready
to be collected [10, 15, 18, 19], we believe that capturing initial requirements up front is
a good idea. Furthermore, we share the view of Przybylek [12] who claims that an infor-
mation system should be developed with explicit consideration of the business processes
it is supposed to support. Therefore, we have integrated his Business-Oriented approach
to Requirements Elicitation (BORE) with Scrum. In BORE, system requirements are
derived from business process models, which ensures that the system requirements meet
real business needs and there are no superfluous requirements [12]. Further evidence indi-
cates that process modelling can be used as a requirements documentation technique in
agile projects [5].

Although BORE uses UML Activity Diagram to provide a seamless transition from
business process models to use case models, we have decided to switch to BPMN (Busi-
ness Process Model and Notation). The motivation for this change has been the growing
importance of BPMN [2], which continues to dominate the process standards space [4].
BPMN is a standard for business process modelling that provides a graphical notation
for specifying the end-to-end flow of a business process. The aim of this paper is to
demonstrate that specifying initial requirements up front can be done in an agile and
light way.

2 Case Study

This section reports on a Scrum project, named NiceAnt, in which we employed the
aforementioned approach. The project was conducted in OKE Poland, which creates
new multi-screen looks and functionalities including software for TV platforms and
hybrid TV services. Before the NiceAnt project started, the project originator met with
an analyst to discuss his vision and motivation. The motivation was based on a market
analysis and feasibility study. The aim of the project was to create an advertisement
website specialized in short-term exchange of employees between companies. That is, if
Company A has a permanent employee who currently does not have any tasks assigned,
he or she will be temporarily transferred to Company B, providing that specific require-
ments are met. Obviously, Company B is obliged to pay remuneration in the given
period.

At the beginning of the project, the originator and analyst met several times to define
the product backlog. Since the requirements were not out there in the project space
waiting to be captured, they started by modelling the business processes. The created
model helped them to pinpoint any possible errors in the workflow. Later on, the model
was used to discover the real requirements represented by use cases, which served as
a basis for further system development. In subsequent iterations, a few use cases were
selected based on their priority for further analysis and implementation. The details of
both models are presented in the succeeding subsections.

Business-Oriented Approach to Requirements Elicitation 187

2.1 To-Be Process Model

Three business processes to be supported by the system are as follows: employee regis-
tration, employee sharing, and employee hiring. When Company A decides to share its
employees, it has to register them into the system. An employee is added to the system
by filling in information, including personal data, years of experience, education, type
of employment (i.e. stationary or remote), position held, expected salary, place of resi-
dence, industry, skills, and foreign language proficiency. Next, the company can place
this employee’s offer immediately on the market. In addition, the following information
will be provided, namely the period when the offer is valid and expected salary. Then,
the new offer will be issued in the system and make available for searching by other
companies.

The employee search process begins when the representative of another company
uses the portal to search for an employee by specifying certain search criteria. Based
on the query, the results are returned in a sorted way according to their relevance. If the
user wants to see the full profile of a candidate, he or she has to pay service fee. After
that, the user can start the negotiation process, which is further presented on Fig. 1.

Payment
system

Getting to
know the
details

Specify
search
criteria

Pay service
charge

Search for Select
offers an offer

Start

Notification
subscription

ake O ¢ Receive N W Collect sign Send
offer? = decision documents documents documents
End

No No

Continue search Continue search

E
g
=
8
®
£
i

Continue search End

Receive send N send Collect
request decision Yes documents documents
End
No

'
|
|
'
|
)

>
2
4
£
8
=
£
4
5

selecta Specify the Specify the Submit the
registered available expected

: offer
employee period salary

Start

Fig. 1. Employee search and hiring processes

188 M. Sosnowski et al.

2.2 Use Case Model

The next step was to create a use case diagram (Fig. 2) based on the business process
model. As a result, five actors and eighteen use cases were distinguished. Then, each
element of the diagram was thoroughly described.

NiceAnt Portal

Mail notification about
a proposition

Contract types
management
Empl °
. mployee
|- Browsing own employees SSEESENMIET by ploy
management

<<extend>>

Adninistrator
Users management
Creating an employee
sharing offer

Acceptance/rejection

Sharing
company

Browsing own offers SElSONTII i

[] of the hiring proposal
Payment status S
updating <<extend>>

Payment Offer management
system

Employee evaluation
Skills profile

Submission of T EEELE
a proposal

Service charge payment !
ERRS <<extend>>

~ i
<<extend>> - [J

Employee search /w

/
Hiring <<extend>> Registration Guest
company Browsing own 4
roposals
prop Notification subscription

Fig. 2. Use case diagram

Description of the Actors:

e Sharing company — a company registered on portal NiceAnt, whose representatives
provide sharing offers and accepts or rejects proposals from hiring companies.

e Hiring company — a company registered on portal NiceAnt, whose representatives
search for temporary employees and negotiate contracts.

e Administrator — the one who manages system and its resources (e.g. offers, users,
etc.).

e Guest — the one who can only search for available offers.

e Payment system — an external payment system for processing payment.

Business-Oriented Approach to Requirements Elicitation 189

Description of the Use Cases:

¢ Browsing own employees — the sharing company browses the list of profiles created.

e Employee management — the sharing company manages employees’ profiles (i.e.,
add, edit, and delete profiles).

e Creating an employee sharing offer — for the selected employee, a sharing offer
including expected salary is created.

e Browsing own offers — the sharing company browses the list of offers it posted.

e Acceptance/rejection of the hiring proposal — the sharing company decides whether
to accept the hiring company’s proposal and then, proceed to negotiations.

e Offer management — the sharing company can update or remove out-of-date offers.

e Registration — a person who does not have an account can register in the system.

o Employee search — the hiring company or a guest can specify search criteria to find
suitable candidates.

e Notification subscription — the hiring company subscribes to the notification for a
specific offer or specifies an employee profile in which it is interested.

e Submission of a proposal — the hiring company responds to an interesting sharing
offer.

e Service charge payment — the hiring company pays service charge in order to view
an employee’s detailed information and starts negotiations.

e Employee evaluation — the hiring company can assess an employee. The assessment
will be visible to his or her employer.

e Users management — the administrator can update the users’ data or remove the user
accounts.

e SKkills profile management — the administrator can add, remove, and edit the skills
profiles.

e Contract types management — the administrator can add, remove, and edit the forms
of employment that will be available in the system.

e Payment status updating — the payment system sends information confirming that
the hiring company has paid the service charge.

3 Discussion

As aresult of the analysis, the business process model was created for the three processes
that were to be supported by the NiceAnt portal. The model presents the main activities
performed in the system. A use case diagram was created based on the business process
model and was further enriched with use cases that emerged as a result of discussions
with the originator. Afterwards, the use case diagram was provided with descriptions of
each actor and use case.

The agile team that developed the project expected quick results, as its originator was
keen on creating a functional prototype as soon as possible. If the main objective was
to reengineering processes of the existing system, the analyst could spend more time on
scrutinizing the situation, which would produce richer models. Due to the urgency of the
situation, a simpler approach had to be undertaken, that is, creating a business process
and use case models in the most basic form. It turned out that a few meetings were

190 M. Sosnowski et al.

enough to create both models and discuss them. Indeed, the discussion revealed new
use cases. After the meetings, the analyst and the originator developed more systematic
knowledge of the project. It shows that our approach brought added value to the project.

It should be remarked that the approach could be improved by inviting the devel-
opment team to discuss the processes from their perspective. Nevertheless, the models
were presented to the entire team, which also led to heated discussions.

4 Conclusion

The incorporation of requirements engineering practices is still an issue in agile devel-
opment projects. Thereby, many information systems still do not fulfil the real needs of
business. One of the problems detected in practice is the lack of overall understanding of
the organization. As a remedy to this problem, we adopted BORE [12], which is a sys-
tematic approach to guide the process of generating use cases from the business process
model. The approach allows system analysts to properly understand the organization
and its environment in a participative way with all stakeholders. In this paper, we have
demonstrated how the approach can be used to identify a set of requirements aligned
with business objectives, in an agile project. The approach has turned out to be especially
effective when requirements are not fully knowable up front and must be discovered.
Moreover, the approach has been well accepted by the participant company. To improve
the external validity of our findings, another case study is under way.

References

1. Eberlein, A., Leite, J.C.S.P.: Agile requirements definition: a view from requirements engi-
neering. In: International Workshop on Time-Constrained Requirements Engineering, Essen
(2002)

2. Gawin, B., Marcinkowski, B.: How close to reality is the “as-is” business process simulation
model? Organizacija 48(3), 155-175 (2015). https://doi.org/10.1515/orga-2015-0013

3. Gawin, B., Marcinkowski, B.: Making IT global — what facility management brings to the
table? Inf. Tech. Dev. 25(1), 151-169 (2019). https://doi.org/10.1080/02681102.2017.135
3943

4. Harmon, P., Wolf, C.: State of Business Process Management. A BPTrends Report (2016)

5. Jarzgbowicz, A., Potocka, K.: Selecting requirements documentation techniques for software
projects: a survey study. In: 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 1189-1198, IEEE (2017).. https://doi.org/10.15439/2017f387

6. Jarzgbowicz, A., Marciniak, P.: A survey on identifying and addressing business analysis
problems. Found. Comput. Decis. Sci. 42(4), 315-337 (2017). https://doi.org/10.1515/fcds-
2017-0016

7. Matkovic, P., Maric, M., Tumbas, P., Sakal, M.: Traditionalisation of agile processes: archi-
tectural aspects. Comput. Sci. Inf. Syst. 15(1), 79-109 (2018). https://doi.org/10.2298/CSI
S$160820038M

8. Mich, D., Ng, Y.Y.: Retrospective games in Intel Technology Poland. In: 15th Conference on
Computer Science and Information Systems (FedCSIS), Sofia, Bulgaria (2020). https://doi.
org/10.15439/2020f62

https://doi.org/10.1515/orga-2015-0013
https://doi.org/10.1080/02681102.2017.1353943
https://doi.org/10.15439/2017f387
https://doi.org/10.1515/fcds-2017-0016
https://doi.org/10.2298/CSIS160820038M
https://doi.org/10.15439/2020f62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Business-Oriented Approach to Requirements Elicitation 191

. Ng, Y.Y., Skrodzki, J., Wawryk, M.: Playing the sprint retrospective: a replication study. In:

Przybytek, A., Morales-Trujillo, M.E. (eds.) LASD/MIDI -2019. LNBIP, vol. 376, pp. 133—
141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37534-8_7

Ossowska, K., Szewc, L., Weichbroth, P., Garnik, I., Sikorski, M.: Exploring an ontological
approach for user requirements elicitation in the design of online virtual agents. In: Wrycza,
S. (ed.) SIGSAND/PLAIS 2016. LNBIP, vol. 264, pp. 40-55. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46642-2_3

Przybyltek, A.: The integration of functional decomposition with UML notation in business
process modelling. In: Magyar, G., Knapp, G., Wojtkowski, W., Wojtkowski, W.G., Zupanci¢,
J. (eds.) Advances in Information Systems Development, vol 1, pp. 85-99 (2007). https://doi.
org/10.1007/978-0-387-70761-7_8

Przybylek, A.: A business-oriented approach to requirements gathering. In: 9th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014),
Lisbon (2014)

Przybylek, A., Kotecka, D.: Making agile retrospectives more awesome. In: 2017 Federated
Conference on Computer Science and Information Systems (FedCSIS 2017), Prague, Czech
Republic, (2017). http://dx.doi.org/10.15439/2017F423

Przybytek, A., Kowalski, W.: Utilizing online collaborative games to facilitate Agile Software
Development. In: 2018 Federated Conference on Computer Science and Information Systems
(FedCSIS 2018), Poznan, Poland (2018). https://doi.org/10.15439/2018f347

Przybylek, A., Zakrzewski, M.: Adopting collaborative games into agile requirements engi-
neering. In: 13th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2018), Funchal, Madeira, Portugal (2018)

Stal, M.: Refactoring Software Architectures. In: Agile Software Architecture, pp. 63-82.
Morgan Kaufmann (2014). https://doi.org/10.1016/b978-0-12-407772-0.00003-4

Wawryk, M., Ng, Y.Y.: Playing the sprint retrospective. In: 14th Federated Conference on
Computer Science and Information Systems, Leipzig, Germany (2019). https://doi.org/10.
15439/20191284

Weichbroth, P.: Delivering usability in IT products: empirical lessons from the field. Int. J.
Software Eng. Knowl. Eng. 28(07), 1027-1045 (2018)

Zakrzewski, M., Kotecka, D., Ng, Y.Y., Przybylek, A.: Adopting collaborative games into
agile software development. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE
2018. CCIS, vol. 1023, pp. 119-136. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22559-9_6

https://doi.org/10.1007/978-3-030-37534-8_7
https://doi.org/10.1007/978-3-319-46642-2_3
https://doi.org/10.1007/978-0-387-70761-7_8
http://dx.doi.org/10.15439/2017F423
https://doi.org/10.15439/2018f347
https://doi.org/10.1016/b978-0-12-407772-0.00003-4
https://doi.org/10.15439/2019f284
https://doi.org/10.1007/978-3-030-22559-9_6

Keynote Paper

®

Check for
updates

Pair Programming: An Empirical Investigation
in an Agile Software Development Environment

Sanjay Misra®?

Covenant University, Ota, Nigeria
Sanjay.misra@covenantuniversoty.edu.ng

Abstract. Several experiments carried out on Pair Programming (PP) in a con-
trolled environment by researchers and practitioners have been said to have a
positive effect on software quality and time of delivery. Pair programming can be
applied in all phases of software development. Although few empirical studies
have shown the benefits of pair programming, not so much work has been done
on maintainability of codes in a real agile environment. Therefore, in this work,
we experimented using industry-based practitioners (working at an agile software
development environment) to correct errors that were introduced deliberately into
a set of python codes. Data was collected by recording the time to correct the mis-
takes. One hundred software practitioners were paired randomly and one hundred
individual junior programmers to work on the same set of codes. Data obtained
were analyzed, and we got very interesting results.

Keywords: Agile software development - Pair programming

1 Introduction

Several researchers have presented a comparison between existing software development
models [1, 2]. In all those studies, one can find that a traditional software development
approach, like the waterfall model, is not very practical in the situation of those projects
where requirements are frequently changing. Furthermore, in conventional development,
customers’ requirements are fixed at the beginning of the project, and once the develop-
ment has started, it is not possible to include new requirements. Therefore, more modern
approaches to software development that will be dynamic enough to handle the present-
day changing requirements were needed [3]. Hence, the emergence of Agile Software
Development (ASD) method, which is a group of software development methods that
gives room for software improvement because of its flexible response to change. ASD
aims at delivering software products faster with high quality [4] and satisfying customer
needs, adopting the principles of lean production to software development [5]. There are
several benefits in ASD which overcome the shortcomings of the traditional software
development as it focuses on keeping code simple, testing often and ensuring delivery
of functional bits of the application as soon as they are ready. ASD is now a proved
methodology for knowledge management and creativity [6].

© Springer Nature Switzerland AG 2021
A. Przybytek et al. (Eds.): LASD 2021, LNBIP 408, pp. 195-199, 2021.
https://doi.org/10.1007/978-3-030-67084-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67084-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-67084-9_13

196 S. Misra

Since the inception of agile software development (ASD) in 2001, a consider-
able number of software organizations have adopted and implemented various ASD
methods for multiple tasks [7-9]. Amongst different ASD methodologies, Scrum [10]
and Extreme programming (XP) are widely used agile methodologies. Researches are
ongoing for increasing efficiency and productivity by combining various methods [11].

Pair programming is a practice used in XP - a popular agile software development
methodology. In pair programming, two programmers are paired together to work on the
same task (codes) using one system. They put ideas together on the same algorithm, same
code and testing. One of the pair serves as the ‘driver’; he types the input into the computer
taking cognizance of the design or code while the other party acts as the ‘navigator’,
who observes the work of the driver to pick errors and contributes objectively on how
to rectify the mistakes [12]. Tactical and strategic defects detection and correction is the
responsibility of the navigator [13]. Studies on pair programming have shown results in
favour of quality and productivity. However, past findings show that pair programming
is yet to be widely accepted practice, especially in industries.

Generally, it is believed and observed that there are numerous benefits of pair pro-
gramming. According to [14], only about 22% of sampled programmers have practiced
pair programming, but its application on a real project is just 3.5%. There are a number
of benefits that can be derived from pair programming which include;

Very few bugs are found in the software.

Programmers end up producing very high-quality software.
Pairs reason better than individuals.

Partners have the benefit of exchanging ideas.

Pairs can also gather experience from each other.
Programmers’ understanding of codes become better.

As good as these benefits are, there are salient but very important issues that
if not looked into carefully and critically, may annul the numerous benefits of pair
programming, making it unacceptable on real projects in software industries such as:

Conflict of ideas — not being able to reach a consensus on time, hence spending more
time in discussion.

Inequality in the skill level of partners — one partner may not be as smart as the other;
hence, he slows him down.

Personality incompatibility — these differences have a negative impact on produc-
tivity. Differences in lifestyle, temperament and value systems have bad effect on the
process of software development in terms of product quality and time of delivery.

Distraction is another problem often encountered in pair programming as the nav-
igator calls the attention of the driver to every little observation hence, slowing him
down.

Programming and debugging style of pairs differ. There must be an agreement on
what best style to adopt, and this is not quickly arrived at hence, having a serious impact
on time.

By considering the above issues which reflect that apart from the several benefits of
pair programming, there are several factors which hinder and reduce its efficiency and
productivity. This point is the motivation of this present work. We have investigated how

Pair Programming: An Empirical Investigation in an ASD Environment 197

much pair programming is useful in tracing and rectifying the mistakes in real software
development. Rigorous experimentations were carried out by combining various pairs
and observing the impact of various types of pairing on identifying and rectifying the
erTors.

Previous studies and experiments in pair programming were carried out in an aca-
demic environment with students as the pair programmers. The involvement of students
as pair programmers cannot be compared with professional pair programmers in a real
environment as the productivity, quality and satisfaction of stakeholders will be com-
pletely different. Moreover, costs will be very difficult to estimate in a non-commercial
academic environment.

The paper is structured in 3 sections. Section 2 presents the research methodology
and conclusions on results. Conclusion drawn is presented in Sect. 3.

2 Research Methodology and Experimentation

The experiments were performed among software developers where data was acquired
for the analysis. Deliberate errors were introduced into python codes and given to
one hundred industry-based software practitioners to correct. These practitioners were
located in North Central Nigeria (mostly in the capital city of Nigeria- Abuja). The
time taken to correct the errors was recorded. The pairing was done randomly as shown
in Table 1 with no regard to the expertise of the pairs in pair programming and then
thereafter, only those with less than five years’ experience (individual juniors) were
examined.

Table 1. Grouping of software programmers

Grouping Remark
Random pairs Irrespective of their years of experience in pair programming
Individual junior Less than five years of experience in agile programming

2.1 Results of Comparisons of Debugging Time for Various Pairs and Individual
Programmers

Experimental results reflect the trend for the comparison in the time spent to debug 1 to
100 errors between Random pair and individual junior programmers (Fig. 1). The result
shows (for 1-10 errors) that time spent by individual junior programmer was consistently
higher than the random pair programmers although following a similar pattern. However,
as soon as we move more than 10 bugs, the trend changed and debugging time for random
programmer now became consistently higher than the individual junior programmers.
This trend continued for up to 100 bugs [15]. The bugs were classified into groups of
intervals of ten and averages of each group for different programmers were obtained to
give the time taken per bug. Figure 1, shows the comparative average time of debugging

198 S. Misra

for random pair and individual junior programmers. It was observed that between 1 to
50 bugs, individual junior requires higher debugging time than the random pair. The
reverse is the case between 50 to 100 bugs.

25

® Random W Individual (Junior)

'5Minutes;

1--10 11--20 21--30 31--40 41--50 51--60 61--70 71--80 81--90 91--100
Number of Bugs

Fig. 1. Average time of debugging for grouped bugs

3 Conclusion

The result of the experiment on debugging different error complexities by random pairs
and individual junior programmers revealed that the random pair spent the highest time of
21.88 min/bug on the average while individual junior spent 16.57 min/bug on the average
[15]. The correlation analysis between the number of errors and time of debugging shows
that the time spent increased significantly as the number of errors increased.

References

1. Misra, S., Omorodion, M., Ferndndez-Sanz, L., Pages, C.: A brief overview of software
process models: benefits, limitations, and application in practice. In: Agile Estimation Tech-
niques and Innovative Approaches to Software Process Improvement, pp. 258-271. 1GI Global
(2014). https://doi.org/10.4018/978-1-4666-5182-1

2. Patel, A., etal.: A comparative study of agile, component-based, aspect-oriented and mashup
software development methods. Tehnicki Vjesnik 19(1), 175-189 (2012)

3. Highsmith, J., Cockburn, A.: Agile software development. Bus. Innov. Comput. 34(9), 120-
127 (2001). https://doi.org/10.1109/2.947100

https://doi.org/10.4018/978-1-4666-5182-1
https://doi.org/10.1109/2.947100

10.

11.

12.

13.

14.

Pair Programming: An Empirical Investigation in an ASD Environment 199

Poppendieck, T., Poppendieck, M.: Lean Software Development: An Agile Toolkit for
Software Development Managers. Addison-Wesley, Boston (2003)

Cockburn, A.: Agile Software Development, p. 304. Addison Wesley Longman, Boston
(2002). ISBN-10: 0201699699

de la Barra, C.L., Crawford, B., Soto, R., Misra, S., Monfroy, E.: Agile software development:
it is about knowledge management and creativity. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7973, pp. 98-113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39646-5_8

Pham, Q.T., Nguyen, A.V., Misra, S.: Apply agile method for improving the efficiency of
software development project at VNG company. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7972, pp. 427-442. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39643-4_31

Zamudio, L., Aguilar, J.A., Tripp, C., Misra, S.: A requirements engineering techniques review
in agile software development methods. In: Gervasi, O., et al. (eds.) [CCSA 2017. LNCS,
vol. 10408, pp. 683—698. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-
450

Rodriguez, G., Glessi, M., Teyseyre, A., Gonzalez, P., Misra, S.: Gamifying users’ learning
experience of Scrum In: Proceedings of ICTA 2020, CCIS. Springer, Heidelberg (2020)
Mundra, A., Misra, S., Dhawale, C.A.: Practical scrum-scrum team: way to produce successful
and quality software. In: 2013 13th International Conference on Computational Science and
Its Applications, pp. 119-123. IEEE, June 2013

Correia, A., Gongalves, A., Misra, S.: Integrating the scrum framework and lean Six Sigma.
In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 136-149. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24308-1_12

Beck, K.: Extreme Programming Explained: Embrace Change, Reading, Mass, pp. 10-70.
Addison-Wesley, Boston (1999)

Bryant, S., Pablo R., Benedict, duB.: Pair programming and the mysterious role of the naviga-
tor. Int. J. Hum. Comput. Stud. 66(7), 519-529 (2008). https://doi.org/10.1016/].ijhcs.2007.
03.005

Begel, A., Nagappan, N.: Pair programming: what’s in it for me? In: Proceedings of the second
AC-IEEE International Symposium on Empirical Software Engineering and Measurement.
9-10, October 2008, Kaiserlautern, Germany (2008)

. Ajiboye, M.A.: Development of quality model metrics for agile software engineering, Ph.D.

thesis, Federal University of Technology, Minna, Nigeria (2017)

https://doi.org/10.1007/978-3-642-39646-5_8
https://doi.org/10.1007/978-3-642-39643-4_31
https://doi.org/10.1007/978-3-319-62404-4_50
https://doi.org/10.1007/978-3-030-24308-1_12
https://doi.org/10.1016/j.ijhcs.2007.03.005

Author Index

Aksekili, Asli Yiksel 3 Kot, Estera 145
Anjum, Muhammad Waqas 59
Lang, Dominic 111

Baumann, Lars 40 Lier, Martin - 40

Bereza, Michat 185 Marek, Krzysztof 24
Bogazkdy, Emre 111 Matthies, Christoph 130
Bogdanov, Yevgen 40 Misra, Sanjay 59, 195

Butt, Shaﬁq Aziz 59 MﬁnCh, Jﬁrgen 111

Dabrowski, Wiodzimierz 24, 145 Neumann, Michael 40

De Haes, Steven 71 Ng, Yen Ying 185

Dobrigkeit, Franziska 130

Dutta, Arpita 156 Puthenpurackal Chakko, Joseph 71
EiBler, Patrick 111 Roling, Bastian 111

Godboley, Sangharatna 156 Schneider, Jan 111
Griffin, Leigh 177 Sosnowski, Michat 185

Stettina, Christoph Johann 3

Hassan, Syed Areeb 59

- Trieflinger, Stefan 111
Huygh, Tim 71

Weichbroth, Pawet 91
Jarzebowicz, Aleksander 91 Winska, Ewelina 24, 145

	Preface
	Organization
	Contents
	Full Papers
	Women in Agile: The Impact of Organizational Support for Women's Advancement on Teamwork Quality and Performance in Agile Software Development Teams
	1 Introduction
	2 Related Work
	2.1 Gender Diversity in Software Teams
	2.2 Organizational Support for Women's Advancement
	2.3 Gaps in the Literature and Research Objectives

	3 Conceptual Model
	4 Method
	5 Results
	5.1 Factor Analysis
	5.2 Regression Results

	6 Discussion
	6.1 Organizational Support for Women's Advancements vs. Gender Diversity as a Head Count
	6.2 Linking Teamwork Quality to Team Performance
	6.3 Potential Limitations and Directions for Future Research
	6.4 Conclusion

	References

	The State of Agile Software Development Teams During the Covid-19 Pandemic
	1 Introduction
	1.1 Problem Statement
	1.2 Objective
	1.3 Contribution
	1.4 Overview

	2 Related Work
	3 Research Design and Methodology
	4 Results
	4.1 Teams Characteristic
	4.2 Pandemic Impact on ASDT Work
	4.3 Metrics and Tools Used by ASDT

	5 Discussion and Future Work
	6 Conclusion
	References

	The Sars-Cov-2 Pandemic and Agile Methodologies in Software Development: A Multiple Case Study in Germany
	1 Introduction
	2 Related Work
	2.1 Agile Methodologies in Distributed and Remote Working Software Development
	2.2 Agile Software Development Teams During the Sars-Cov-2 Pandemic

	3 Research Design
	3.1 Research Approach
	3.2 Research Questions
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	4.1 Overview of the Results
	4.2 Answering the Research Questions

	5 Threats to Validity
	6 Conclusion and Future Work
	Appendix 1
	Appendix 2
	References

	Agile Project Development Issues During COVID-19
	1 Introduction
	2 Survey Modelling
	3 Experimental Design and Methodology
	4 Results and Analysis
	5 Discussion and Analysis
	6 Conclusion
	Appendix
	References

	Achieving Agility in IT Project Portfolios – A Systematic Literature Review
	1 Introduction
	2 Background
	2.1 Project Portfolio Management
	2.2 IT Agility and Agile Software Development
	2.3 Agile Portfolio Management

	3 Review Method
	3.1 Inclusion and Exclusion Criteria
	3.2 Data Sources and Search Strategy
	3.3 Study Selection Process
	3.4 Data Extraction and Synthesis of Findings
	3.5 Threats to Validity

	4 Findings
	4.1 Impacts on Portfolio Practices
	4.2 Agility Approaches in Practice

	5 Discussion
	5.1 Implications of Findings
	5.2 Limitations of This Study

	6 Conclusions and Future Research Directions
	Appendix – Selected Studies
	References

	A Systematic Literature Review on Implementing Non-functional Requirements in Agile Software Development: Issues and Facilitating Practices
	1 Introduction
	2 Rationale Behind Implementing NFRs
	3 Methodology
	3.1 Inclusion and Exclusion Criteria
	3.2 Search Query Definition
	3.3 Search Strategy
	3.4 Search Execution

	4 Results
	4.1 What Issues Affect the Identification and Implementation of Non-functional Requirements in ASD?
	4.2 What Practices Facilitate the Successful Identification and Implementation of Non-functional Requirements in ASD?

	5 Discussion
	5.1 Comparison with Related Works
	5.2 Limitations
	5.3 Implications for Research and Practice

	6 Conclusions
	References

	Product Roadmapping Processes for an Uncertain Market Environment: A Grey Literature Review
	1 Introduction
	2 Related Work
	3 Research Approach
	3.1 Planning the Review
	3.2 Conducting the Review

	4 Results
	5 Threats to Validity
	6 Summary
	Appendix. Articles Identified by the Grey Literature Review
	References

	Experience vs Data: A Case for More Data-Informed Retrospective Activities
	1 Introduction
	1.1 Retrospective Meetings
	1.2 Data Sources Used in Retrospective Meetings
	1.3 Research Goals

	2 Retrospective Activities
	3 Review of Retrospective Activities
	3.1 Activity Extraction
	3.2 Identification of Retrospective Inputs
	3.3 Classification of Retrospective Data Sources

	4 Activities Already Reliant on Project Data
	5 Towards Data-Informed Retrospective Activities
	6 Conclusion
	References

	Reducing the Uncertainty of Agile Software Development Using a Random Forest Classification Algorithm
	1 Introduction
	2 Related Work
	3 Company Landscape and Research Environment
	4 Research Method
	4.1 List of Features Used for Classifiers Training, Listed by Representation in Train/Test Sets

	5 Results
	5.1 Key Findings

	6 Discussion
	7 Conclusion
	References

	MSFL: A Model for Fault Localization Using Mutation-Spectra Technique
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Overview
	3.2 Detailed Description

	4 Experimental Results
	4.1 Setup
	4.2 Data-Set Used
	4.3 Evaluation Metric
	4.4 Results Obtained
	4.5 Threats to the Validity

	5 Discussion
	6 Conclusion
	References

	Short Papers
	Implementing Lean Principles in Scrum to Adapt to Remote Work in a Covid-19 Impacted Software Team
	1 Introduction
	2 Remote Scrum Challenges
	2.1 Scrum Ceremonies
	2.2 Distractions
	2.3 Fatigue

	3 Waste Within Scrum: Key Inputs
	3.1 Requirements
	3.2 Backlogs

	4 Adaptions to the Scrum Process
	4.1 Scrum Ceremonies
	4.2 Backlog Adaption

	5 Process and Tools
	6 Conclusion and Future Work
	References

	Business-Oriented Approach to Requirements Elicitation in a Scrum Project
	1 Introduction
	2 Case Study
	2.1 To-Be Process Model
	2.2 Use Case Model

	3 Discussion
	4 Conclusion
	References

	Keynote Paper
	Pair Programming: An Empirical Investigation in an Agile Software Development Environment
	1 Introduction
	2 Research Methodology and Experimentation
	2.1 Results of Comparisons of Debugging Time for Various Pairs and Individual Programmers

	3 Conclusion
	References

	Author Index

