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Abstract. Given a verification problem for a concurrent program (with
a fixed number of threads) over infinite data domains, we can construct
a model checking problem for an abstraction of the concurrent program
through a Petri net (a problem which can be solved using McMillan’s
unfoldings technique). We present a method of abstraction refinement
which translates Floyd/Hoare-style proofs for sample traces into addi-
tional synchronization constraints for the Petri net.
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1 Introduction

The verification of concurrent programs is an active topic of research, and since
it is also an old topic of research, there is a large body of literature covering
a wide area of aspects of the problem; see, e.g., [2,3,7,8,10,11,15,17,19,21]. In
this paper, we address the verification problem for programs composed of a fixed
number of threads over an infinite data domain.

This verification problem poses two major challenges. First, the challenge of
interleavings. In contrast to sequential programs, the control-flow of concurrent
programs is much more permissive: an execution trace is not a cohesive sequence
of statements from one process but an interleaved sequence of execution traces
of all processes. Hence we have to account for a gigantic number of possible
orderings of statements of the system’s independent processes. For finite state
systems the problem has been successfully approached by Petri net unfoldings.
If the finite state system is represented by a bounded Petri net (i.e., a Petri
net where each place can only take a pre-defined fixed amount of tokens), an
unfolding is a mathematical structure that allows us to see all reachable states
without exploring all interleavings explicitly. Unfoldings explicitly preserve the
concurrent nature of Petri nets and can be exponentially more concise than a
naive reachability graph.

The second challenge that we are facing is that our variables take their
value from an infinite data domain and hence we cannot directly apply algo-
rithms for finite state systems. For sequential programs this second challenge is
often approached by abstracting the program by a finite state system. If such
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an abstraction represents all executions of the program but does not have any
erroneous execution, we know that the program is correct. Finding a suitable
abstraction is difficult. Algorithms for finding abstractions usually follow the
counterexample-guided abstraction refinement scheme (CEGAR). There, the
algorithm constructs abstractions iteratively. In each iteration the algorithm
uses Floyd/Hoare-style annotations obtained from counterexamples to refine the
abstraction.

In this paper, we present a method of abstraction refinement which, given
a verification problem for a program composed of a fixed number of threads
over an infinite data domain, constructs a model checking problem for a Petri
net. The idea is to translate Floyd/Hoare-style annotations into synchronization
constraints; by adding synchronization constraints to the Petri net, we refine the
abstraction of the concurrent program through the Petri net. In summary, the
method of abstraction refinement constructs a bounded Petri net and thus gives
us the possibility to use Petri net unfoldings for the verification of programs
composed of a fixed number of threads over an infinite data domain.

Let us motivate our approach by illustrating shortcomings of naive sequential-
ization, a straightforward approach to the verification of concurrent programs.
Sequentialization means that we translate the concurrent program into a sequen-
tial program which allows us to apply all verification techniques for sequential
programs. In its most basic form, the sequentialization produces a control flow
graph (CFG) that is the product of the CFGs of the concurrent program’s
threads. However, this basic approach does not scale well: The product CFG
must explicitly represent the many different interleavings. Hence the number of
locations in the CFG grows exponentially with the number of threads. As an
example, consider the schema for a concurrent program shown in Fig. 1. Given
a number N , this yields a concurrent program with N threads. After the vari-
able x is initially set to 0, the different threads all repeatedly modify x for a
nondeterministically chosen number of times. The control flow graph for each
thread is simple, it only requires 3 locations (loop head, location between both
assignments, and loop exit). But the resulting product CFG has 3N locations, it
grows exponentially in the number of threads. For large N , even the construction
of the product CFG may thus run out of time and memory. In our approach we
do not construct this product but a Petri net that has for each thread one token
and whose places are the locations of all CFGs. Hence our Petri net grows only
linearly in the number of threads.

This paper is organized as follows. In Sect. 2 we demonstrate our approach on
the example above and another example. Section 3 introduces our notation and
terminology for finite automata and Petri nets. We use Petri nets to introduce
the considered verification problem formally in Sect. 4. In Sect. 5 we present our
algorithm for this verification problem, and in Sect. 6 we present an automata-
theoretic difference operation required by our verification algorithm. In Sect. 7
we discuss how the difference operation introduces synchronization constraints.
Finally, we discuss related work in Sect. 8 and conclude with Sect. 9.
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Fig. 1. A concurrent program schema with a scalable (but fixed) number of threads N

2 Examples

In this section we illustrate two aspects of our method of abstraction refinement.
Our method takes as input a verification problem for a concurrent program (i.e.,
a program composed of a fixed number of threads over an infinite data domain).
The program’s control flow is represented by a bounded Petri net. The property
to be verified is encoded as unreachability of a special error place �err in this
Petri net. Our method proceeds by iteratively adding synchronization to the
input Petri net, in order to represent data constraints over the infinite program
state space, i.e., the constraints on the control flow that are due to updates and
tests of data values.

We begin by examining the example in Fig. 1 a bit closer, and we will demon-
strate on this example the strength of our approach: Through its lazy synchro-
nization and the use of unfoldings, we verify the program efficiently, regardless
of the number of threads. The second example will illustrate how our approach
adds synchronization where necessary.

2.1 Retaining Concurrency of Different Threads

Consider again the concurrent program schema in Fig. 1. This program schema
can be instantiated for any number of threads N . In Fig. 2a we see the instantia-
tion of the schema in Fig. 1 for N = 2 threads. In our approach, we represent such
a concurrent program in the form of a Petri net, in this case shown in Fig. 2b.
Each transition of the Petri net is labeled with a statement of the concurrent
program. Here, the first transition is labeled with the initialization statement
for the global variable x. This transition starts the two threads. After some
number of iterations, the threads can decide nondeterministically to exit their
respective loops. Then, the last transition is enabled, which is labeled with the
negated postcondition and leads to the error place �err. This Petri net is our
initial abstraction of the concurrent program. The term abstraction refers to the
fact that the actions labeling the transitions of the Petri net serve as reference;
they are not interpreted for the operational semantics of the Petri net. The state
of the Petri is purely defined by the number of tokens on each of its places.
Hence, in Fig. 2b, the error place �err is reachable.
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Fig. 2. Example. Parsimoniously added synchronization (reflecting data constraints)
reveals the unreachability of an error place in the program. Synchronization is avoided
when the interleavings between actions of different threads are irrelevant in the abstract
– even though they may be relevant in the concrete.
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The verification task now consists of showing that, when the statement
semantics are taken into account, no firing sequence that reaches �err actually cor-
responds to a program execution. We pick one such firing sequence and analyse
the corresponding sequence of statements, taking into account the operational
semantics of the statements. This yields the following two data constraints:

1. After executing the statement x:=0 , the program is in a state where x ≥ 0
holds.

2. If the program is in a state where x ≥ 0 holds, it cannot execute the assume
statement x<0 .

Next, our algorithm constructs the Petri net depicted in Fig. 2c by adding syn-
chronization that reflects the two data constraints above to the initial Petri net
of Fig. 2b. The synchronization constraints are implemented by adding three
additional places (labeled by true, x ≥ 0 and false) that represent the knowl-
ege about the program’s data that we want to replicate. Intuitively, the places
are used to abstract the program’s data values. The transitions labeled x:=0

and x<0 are connected to the new places. The order in which the statements
x:=x+1 , x:=x*1 , x:=x+2 and x:=x*2 are executed is relevant for the

concurrent program (i.e., for the final value of x). It is, however, irrelevant for
the correctness proof that uses the state assertion x ≥ 0. Since these four state-
ments are not relevant for establishing the state assertion x ≥ 0, and this state
assertion is preserved by these statements, our algorithm does not connect the
transitions labeled with these statements with one of the new places.

In the resulting refined Petri net Fig. 2c, the transition labeled x:=0 can
fire if there is a token in the true place, and moves this token to the place labeled
x ≥ 0. Now the transitions in the two threads can fire repeatedly, without moving
the token in x ≥ 0. When at some point both the places �5 and �12 have a token,
the transition labeled x < 0 could fire. However, this would put a token in the
place labeled false, representing a violation of the data constraints. Hence we
prevent this transition from ever firing by adding a blocking place as predecessor,
which will never have a token. As a result, the place �err is unreachable, and we
conclude that the concurrent program satisfies its specification.

Our approach proceeds in the same way for all instantiations of the con-
current program of Fig. 1, for every number of threads N : The state assertions
true, x ≥ 0 and false are added to the Petri net, and synchronized only with
the statements x:=0 and x<0 . However, synchronization with each thread
is not necessary. As a result, the size of the final refined Petri net grows only
linearly in the number of threads N . Through the use of unfoldings, we can check
the reachability of the error place efficiently, without explicitly considering all
interleavings of transitions in the Petri net.
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Fig. 3. Example. Our approach represents the concurrent program in Fig. 3a as the
Petri net in Fig. 3b. To this initial abstraction, we add synchronization reflecting data
constraints on the control flow of the concurrent program. The resulting Petri net is
shown in Fig. 3c.
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2.2 Adding Synchronization Lazily

Consider now the concurrent program depicted in Fig. 3a. Here, the first thread
sets a global variable x to the value 42, and then asserts that it holds said value.
The second thread on the other hand increments x. We represent this program
through the Petri net depicted in Fig. 3b. Once again, transitions are labeled by
statements of the concurrent program, which only serve as reference; they are
not interpreted for the operational semantics of the Petri net. The transition
labeled with the negation of the assertion condition leads to the error place �err.
The place �err is reachable by a firing sequence of the Petri net.

As before, our algorithm analyses the sequence of statements along a firing
sequence that reaches �err, for instance the sequence x:=42 x!=42 . The anal-
ysis of this sequence of statements, taking into account the operational semantics
of the statements, yields the following two data constraints:

1. After executing the assignment x:=42 , the program is in a state where
x = 42 holds.

2. If the program is in a state where x = 42 holds, the assertion condition is not
violated, i.e., the assume statement x!=42 cannot be executed.

Next, the algorithm constructs the Petri net depicted in Fig. 3c, by adding syn-
chronization to the initial Petri net. As before, we add three additional places
(labeled by true, x = 42 and false) to reflect our data constraints. However,
in this example, the order and number of firings of the transitions in the two
threads is not irrelevant to our data constraints: In particular, if the program
is in a state where x = 42 holds and the second thread now executes x:=x+1 ,
then it is no longer guaranteed that x = 42 holds. Hence, we must connect
the transitions to the new places. We have two copies of the transition labeled
x:=x+1 : One copy can fire if there is a token in the true place, and puts the

token back into the true place. The second copy can fire if there is a token in the
place labeled x = 42, and moves that token into the true place. Similarly for the
two copies of the transition labeled x!=42 : One copy takes a token from the
true place and puts it back, the other takes a token from the x = 42 place and
moves it to the false place. This however would represent a violation of the data
constraints, and thus we again add a blocking place to prevent this transition
from firing. The transition labeled x:=42 moves a token from the true place to
the x = 42 place. We omit the second copy of this transition (with predecessor
x = 42), as it would be unreachable.

In the resulting Petri net Fig. 3c, an execution of the Petri net labeled
with the sequence x:=42 x!=42 is no longer possible. However, the �err
place is still reachable through a firing sequence labeled with the statements
x:=42 x:=x+1 x!=42 . Hence our algorithm now analyses this sequence,

taking into account the semantics, and determines that there are no data con-
straints preventing the execution of this sequence of statements. We conclude
that the concurrent program is incorrect: The assertion may indeed be violated.
Because of the introduced synchronization, the reachability check in this exam-
ple has to explicitly consider the different orderings between transitions from



Verification of Concurrent Programs Using Petri Net Unfoldings 181

the two threads. This explains our focus on avoiding synchronization wherever
possible, in order to maintain the efficiency of our approach. However, in this
case a separate consideration of the different orderings is inevitable, as exactly
one of them can be executed and leads to an error.

3 Petri Net and Finite Automata

In this section we introduce our notation and terminology for Petri nets and
finite automata. Analogously to finite automata we will introduce Petri nets as
acceptors of languages. Throughout this paper we will only work with bounded
Petri nets, but we will define a bounded Petri net as a special case of a (general)
Petri net.

3.1 Finite Automata

A finite automaton A = (Σ,Q, δ, qinit, Qacc) consists of an alphabet Σ, a finite
set of states Q, a transition relation δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q and
a set of accepting states Qacc ⊆ Q. The elements of Σ are called letters, and
sequences w ∈ Σ∗ are words. We say that a word w = a1 . . . an ∈ Σ∗ is accepted
by A iff there exists a corresponding run of states q0 . . . qn such that

– q0 = qinit is the initial state,
– for all i ∈ {1, . . . , n}, it holds that (qi−1, ai, qi) ∈ δ,
– and qn ∈ Qacc is accepting.

The set of all words accepted by A is the language L(A) recognized by the
automaton.

We say that A is deterministic iff for all q ∈ Q and a ∈ Σ, there exists at
most one q′ such that (q, a, q′) ∈ δ. Dually, we say that A is total iff there always
exists at least one such q′. Hence, the transition relation of a deterministic total
automaton is a function, and we write δ(q, a) = q′ in place of (q, a, q′) ∈ δ. It
is well-known that for every finite automaton A, one can compute a determin-
istic total automaton A′ that recognizes the same language, L(A) = L(A′). We
abbreviate deterministic total automaton as DFA.

We call a transition (q, a, q′) ∈ δ a self-loop iff q = q′.

3.2 Petri Nets as Language Acceptors

We define a Petri net as a 7-tuple N = (Σ,P, T, F,minit, λ, Pfin) where Σ is an
alphabet, P are places, T are transitions with P ∩T = ∅, F ⊆ (P ×T )∪ (T ×P )
is a flow relation, minit : P → N is an initial marking, λ : T → Σ is a labeling of
transitions, and Pfin ⊆ P is a set of accepting places. We will sometimes use an
infix notation for the flow relation and write e.g. p F t instead of (p, t) ∈ F .
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We define a marking as a map m : P → N that assigns a token count to each
place. We write M to denote that set of all markings over P . A marking m ∈ M
covers a place p ∈ P iff m assigns at least one token to p.

m covers p ⇔ m(p) > 0

We call a marking m ∈ M accepting iff it covers at least one accepting place.
With m �t m′ we denote that transition t ∈ T can be fired from marking m,

i.e., all predecessor places have a token, and the firing of t results in the marking
m′. Formally, we define the firing relation �⊆ M × T × M as

m �t m′ ⇔ ∀p ∈ P : p F t → m(p) > 0 and
∀p ∈ P : m′(p) = m(p) − |{t ∈ T | p F t}| + |{t ∈ T | t F p}|

A firing sequence in N is then an alternating sequence m0 �t1 m1 �t2

. . . �tn
mn of markings mi ∈ M and transitions ti ∈ T , such that (a) m0 = minit

is the initial marking and (b) the sequence adheres to the firing relation, i.e.
mi−1 �ti

mi for all i ∈ {1, . . . , n}. A firing sequence ending in an accepting
marking is called accepting. We say that a marking m is reachable iff there
exists a firing sequence m0 �t1 m1 �t2 . . . �tn

mn with mn = m.
We define the language that is recognized by a Petri net as follows:

L(N ) :=

⎧
⎨

⎩

∃ accepting firing sequence
a1a2 . . . an ∈ Σ∗ | m0 �t1 m1 �t2 . . . �tn

mn

such that ∀ i ∈ {1, . . . n} : λ(ti) = ai

⎫
⎬

⎭

A net is bounded (also known as 1-safe or just safe) iff all reachable markings
have at most one token per place. In this paper we consider only bounded Petri
nets and we will often use Petri net as a synonym for bounded Petri net. We
identify markings m : P → N with sets m′ ⊆ P .

m ≡ m′ ⇔ ∀p ∈ P : m(p) = 1 ↔ p ∈ m′

4 Petri Programs

In this section we describe our formal setting, based on the notion of Petri
nets as language acceptors as presented in Sect. 3.2. We then make precise the
verification problem solved by our algorithm.

4.1 Program Semantics

We assume a fixed set of program variables Var and a language of statements
Stmt. A program state s ∈ State maps program variables to their values, which
may lie in an infinite data domain (such as Z). Each statement st ∈ Stmt is
assigned a semantics [[st]] ⊆ State×State, which relates input states to possible
output states. We call a sequence of statements τ ∈ Stmt∗ a trace, and extend
the semantics in a straightforward way:
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Definition 1 (Trace Semantics, Infeasibility). The semantics of a trace
τ ∈ Stmt∗ is recursively defined as

[[ε]] = id [[st.τ ]] = [[st]] ◦ [[τ ]]

We call τ infeasible iff [[τ ]] = ∅.
The semantics of a trace is hence exactly the set of all pairs of program

states (s, s′) such that, starting from s, τ can be executed in its entirety, and
can (depending on nondeterministic choices) reach the state s′. If no such pair
exists, it follows that data constraints prevent the execution of the trace: It is
infeasible.

A state assertion is a logical formula ϕ over variables in Var. We write
s |= ϕ to signify that program state s satisfies the state assertion ϕ. A valid
Hoare triple {ϕ} st {ψ} consists of state assertions ϕ,ψ and a statement st, such
that for each pair (s, s′) ∈ [[st]] it holds that s |= ϕ implies s′ |= ψ. An infeasibility
proof for a trace τ = st1 . . . stn is a sequence of state assertions ϕ0 . . . ϕn such
that ϕ0 = true, ϕn = false and {ϕi} sti+1 {ϕi+1} is a valid Hoare triple for
i ∈ {0, . . . , n − 1}. As the name implies, if there exists an infeasibility proof for
a trace τ , then τ is infeasible. In a sense, an infeasibility proof consists of data
constraints blocking the execution of the trace τ .

Our algorithm considers bounded Petri nets N over a finite alphabet Σ ⊆
Stmt. We use the term Petri net when we want to stress that it is only viewed as
a language acceptor, ignoring the semantics of statements. By contrast, the term
Petri program refers to the infinite-state program, which is derived by assigning
semantics to the alphabet statements. The Petri net represents the control flow
of this program. In fact, it could be called the program’s control flow Petri net,
in analogy to control flow graphs for sequential programs.

4.2 Verification Problem

In addition to the control flow, a Petri net N also encodes its correctness specifi-
cation. This is achieved by the accepting places of the Petri net, which represent
error locations, i.e., locations that should not be reached by any execution of the
corresponding Petri program. In the program text from which the net is derived,
these error locations are typically expressed as assert statements.

Example 2 (Specifications). For instance, the net in Fig. 3b encodes the program
with the assert statement assert x==42. If this assert condition is violated, i.e.,
x �= 42, the error location �err is reached.

An accepted trace τ ∈ L(N ) is thus a trace for which at least one thread
would reach an error location, provided the trace actually has a corresponding
execution in the Petri program. We thus call these traces error traces. It now
becomes clear that the verification task must consist of showing that no error
trace has a corresponding execution in the Petri program, i.e., all error traces
are infeasible.
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Example 3 (Infeasible and Error Traces). Consider again the example shown in
Fig. 2b. Here, the trace x:=0 x:=x+2 x:=x*2 x<0 is an error trace. It is
however infeasible, as there is no output state s of x:=0 x:=x+2 x:=x*2

which can execute x<0 .
Conversely, the trace x:=0 x:=x+1 x:=x+2 of Fig. 2b is feasible, its

semantics contains for instance the pair of states ({x �→ 17}, {x �→ 3}). It is
however not an error trace.

While the language L(N ) accepted by the Petri net represents the Petri
program’s control flow aspects, the semantic relation additionally takes into
account the program’s data and summarizes the program’s semantics:

Definition 4 (Semantic Relation). Let N be a Petri program. The semantic
relation [[N ]] of N is defined as

[[N ]] :=
⋃

τ∈L(N )

[[τ ]]

We conclude the section by formally stating the verification task:

Definition 5 (Petri Program Correctness). A Petri program N is correct
if and only if its semantic relation is empty:

[[N ]] = ∅

i.e., if and only if all error traces are infeasible.

5 Verification Algorithm

We now describe our verification algorithm. It is an adaptation of the Trace
Abstraction approach [16] to Petri programs.

As defined above, the verification algorithm must determine if the semantic
relation of a given Petri program N is empty, i.e., [[N ]] = ∅. The simplest case
where this holds is the case where the Petri net recognizes the empty language,
i.e., L(N ) = ∅. This holds if and only if no accepting marking is reachable in N .
This reachability problem can be solved efficiently using the algorithm for the
construction of complete finite prefixes of the unfolding of a Petri net proposed
by McMillan [9,20]. This prefix is a finite initial part of the unfolding which
contains full information about the reachable markings of the Petri net.

Our algorithm aims to reduce every verification problem to the simple case
L(N ) = ∅, and thus to purely automata-theoretic reasoning. It does so by itera-
tively transforming the Petri program N to a Petri program N ′ that is equiva-
lent, i.e., it has the same semantic relation: [[N ]] = [[N ′]]. The transformed Petri
net N ′ accepts only a subset of the traces accepted by N , i.e., L(N ′) ⊆ L(N ). If
the algorithm eventually reaches a Petri net N ′ with L(N ′) = ∅, as determined
by the unfolding algorithm, then it holds that [[N ]] = [[N ′]] = ∅, and the original
Petri program N is correct.
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Fig. 4. Trace Abstraction CEGAR loop.

In order to achieve this iterative refinement, the algorithm employs a counter-
example guided abstraction refinement (CEGAR) loop, illustrated in Fig. 4. In
each iteration, the complete finite prefix of the unfolding of N is constructed in
order to search for an error trace τ accepted by the current Petri net N , the
(possibly spurious) counterexample. Our algorithm then checks this counterex-
ample for feasibility using an SMT solver. If the counterexample is feasible, i.e.,
non-spurious, then the program is incorrect and the verification is stopped. If
τ is infeasible on the other hand, the algorithm constructs a finite automaton
Aτ that accepts at least τ and possibly infinitely many other infeasible traces.
The refined Petri net is then constructed as the difference N �Aτ of the current
N and Aτ . We will describe the automata-theoretic difference operation � in
Sect. 6. For the moment, suffice it to say that this difference operation takes as
input a Petri net N and a finite automaton A. It then constructs a version of
the Petri net with additional synchronization, as seen in Sect. 2. The resulting
Petri net satisfies L(N � A) = L(N ) \ L(A).

We now discuss how to construct the automaton Aτ . This automaton extracts
the data constraints from an infeasibility proof of the trace τ and generalizes
them to other traces. To this end, we introduce the following class of automata:

Definition 6 (Floyd/Hoare-Automata). A Floyd/Hoare-automaton is a
finite automaton A = (Σ,Q, δ, qinit, Qacc) over the alphabet of program state-
ments Σ, such that there exists a mapping β that assigns each automaton state
q ∈ Q a state assertion β(q) with

– β(qinit) = true,
– if (q, st, q′) ∈ δ, then {β(q)} st {β(q′)} is a valid Hoare triple,
– and for all q ∈ Qacc, β(q) = false.

For each trace τ accepted by a Floyd/Hoare-automaton A, there exists an infea-
sibility proof, given by application of β to the accepting run of states. Hence A
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Fig. 5. Examples of deterministic total Floyd/Hoare-automata for the examples from
Sect. 2.

can only accept infeasible traces. For details on how to construct a Floyd/Hoare-
automaton Aτ from an infeasible trace τ , we refer the reader to Heizmann et
al. [16]. Note that in particular, one can always construct a deterministic total
Floyd/Hoare-automaton, assuming the set of state assertions used to label states
is closed under conjunctions.

Example 7 (Floyd/Hoare-Automata). Consider again an error trace from Fig. 2b,
for instance x:=0 x:=x+1 x:=x+2 x:=x*2 x:=x*1 x<0 . A possible
infeasibility proof is true, x ≥ 0, x ≥ 0, x ≥ 0, x ≥ 0, x ≥ 0, false. A Floyd/Hoare-
automaton corresponding to this infeasibility proof is shown in Fig. 5a. Subtrac-
tion of this Floyd/Hoare-automaton from the Petri net yields the Petri net shown
in Fig. 2c.

Similarly, the error trace x:=42 x!=42 from Fig. 3b is proven infeasible
by the sequence true, x = 42, false. A corresponding Floyd/Hoare-automaton is
given in Fig. 5b. The Petri net shown in Fig. 3c represents the difference of the
original net and this Floyd/Hoare-automaton.

After presenting the difference operation in Sect. 6, we will discuss in Sect. 7 how
its usage combined with Floyd/Hoare-automata achieves the additional synchro-
nization using data constraints. We conclude this section with a discussion of
soundness of our approach. We begin by showing that the subtraction of a Floyd-
Hoare automaton does not modify the Petri program’s semantics.

Lemma 8 (Semantics-Preserving Refinement). Let Aτ be an automaton
accepting only infeasible traces, and let N ′ = N � Aτ . Then N is equivalent to
N ′, i.e., [[N ]] = [[N ′]].
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Proof. Since L(N ′) ⊆ L(N ), it follows that [[N ′]] ⊆ [[N ]]. On the other hand,
L(N ) ⊆ L(N ′) ∪ L(Aτ ). It follows that

[[N ]] ⊆ [[N ′]] ∪
⋃

τ∈L(Aτ )

[[τ ]] = [[N ′]] ∪
⋃

τ∈L(Aτ )

∅ = [[N ′]]

Thus it holds that [[N ]] = [[N ′]].

Intuitively, the argument for the equivalence of N and N ′ is this: We only
remove traces τ ∈ L(Aτ ) which are accepted by the Floyd/Hoare-automaton Aτ .
But then such traces τ must be infeasible, i.e., there do not exist corresponding
executions of the Petri program. Hence we only remove traces that are artefacts
of the finite-state abstraction given by the Petri net, we never remove actual
feasible program traces. In other words, we refine the abstraction N to the
equivalent, but strictly less coarse abstraction N ′. We arrive at the soundness
result for our algorithm:

Theorem 9 (Soundness). Our verification algorithm is sound, i.e., whenever
it concludes that a given input Petri program N is correct, then [[N ]] = ∅.
Proof. The algorithm iteratively transforms N to some Petri program N ′. By
repeated application of Lemma 8, we have that [[N ]] = [[N ′]]. The algorithm con-
cludes correctness only if L(N ′) = ∅ (by soundness of McMillan’s unfolding
algorithm [9,20]), and hence [[N ]] = [[N ′]] = ∅.

6 Difference Operation

In this section we present a difference operation N � A for a Petri net N and
a finite automaton A. This difference operation implements the addition of syn-
chronization discussed in Sect. 2, and is used by our verification algorithm as
presented in Sect. 5. We give a purely automata theoretic presentation of this
operation here, and we discuss in Sect. 7 how this operation implements the
addition of synchronization constraints.

The inputs of our operation are a bounded Petri net N =
(Σ,P, T, F,m0, λ, Pfin) and a deterministic total finite automaton A =
(Σ,Q, δ, q0, Qacc) over the same alphabet which satisfies the property

L(A) = L(A) ◦ Σ∗

i.e., the language of A is closed under concatenation with Σ∗. We call the Petri
net N the minuend of the operation and we call the finite automaton A the
subtrahend of the operation.

The basic idea of the construction is to run the Petri net and the DFA
in parallel and to let the result block as soon as the DFA is going to enter a
accepting state. The basic construction rule is illustrated in Fig. 6: For each Petri
net transition t with predecessor places p1, . . . pn and successor places p′

1, . . . p
′
m,

and for each edge in the finite automaton that has predecessor q, successor q′
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Fig. 6. Basic construction rule for the difference operation whose minuend is a Petri
net, whose subtrahend is a deterministic total finite automaton and whose result is a
Petri net.

and is labeled by λ(t), we add a transition that is labeled by labeled by λ(t) and
has predecessor places are p1, . . . pn, q and successor places p′

1, . . . p
′
m, q′. There

are however two exceptions to this basic construction rule.

E1: If the successor state q′ is an accepting state, the transition must never fire.
Hence we add a special blocking place as predecessor, which can never have
a token.

E2: If a letter a ∈ Σ occurs only in self-loops of the DFA, then we just copy
the Petri net transitions that are labeled by a without adding an additional
predecessor or successor.

The exception E1 ensures that words of L(A) are not accepted by the result.
The exception E2 is an optimization that reduces the number of transitions
and the elements of the flow relation. While this optimization is not directly
necessary for the correctness of the operation, we will discuss in Sect. 7 why it
is crucial to our approach. In order to implement exception E2, we define the
subset Σlooper ⊆ Σ that consists of all letters a ∈ Σ that occur only in self-loops
of the subtrahend A.

Σlooper := {a ∈ Σ | δ(q, a) = q for all q ∈ Q}

We define the result of the synchronization operation N ′ := N � A formally as

N ′ := (Σ,P ′, T ′, F ′,m′
0, λ

′, P ′
fin)

The set of places is the disjoint union of the minuend’s places, the subtrahend’s
states and one auxiliary place.

P ′ := P ∪̇ Q ∪̇ {pblock}
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The set of transitions and the flow relation is defined according to the construc-
tion rule of Fig. 6 and the exceptions E1 and E2.

T ′ := {t | t ∈ T, λ(t) ∈ Σlooper}
∪ {(q, t, q′) | t ∈ T, λ(t) /∈ Σlooper, q ∈ Q, δ(q, λ(t)) = q′}

F ′ := {(p, t′), (t′, p′) | t′ ∈ T, (p, t) ∈ F, (t, p′) ∈ F}
∪ {(q, t′), (t′, q′) | t′ = (q, t, q′), q ∈ Q, t ∈ T, q′ ∈ Q}
∪ {(p, t′), (t′, p′) | t′ = (q, t, q′), (p, t) ∈ F, (t, p′) ∈ F}
∪ {(pblock, t′) | t′ = (q, t, q′), q′ ∈ Qacc}

Transition labels are copied from the minuend.

λ(t′) :=

{
λ(t′) if t′ ∈ T

λ(t) if t′ = (q, t, q′) for some q ∈ Q, t ∈ T, q′ ∈ Q

The initial marking is the disjoint union of the minuend’s initial marking and
the initial state of the subtrahend.

m′
0 := m0 ∪̇ {q0}

The set of accepting places is the minuend’s set of accepting places.

P ′
fin := Pfin

We show that this operation does indeed implement the language-theoretic
difference between the given Petri net and the automaton:

Theorem 10. Given a Petri net N and a DFA A. If A is total and closed under
concatenation with Σ∗, then the Petri net N � A recognizes the set theoretic
difference of L(N ) and L(A), i.e.,

L(N � A) = L(N )\L(A).

Proof. Let N = (Σ,P, T, F,m0, λ, Pacc), A = (Σ,Q, δ, q0, Qacc), and N ′ =
N � A = (Σ,P ′, T ′, F ′,m′

0, λ
′, P ′

acc). Let a1 . . . an ∈ Σ∗ be a word. We prove
by induction over the length n the following: The sequence m0 ∪ {q0} �t′

1

m1 ∪ {q1} �t′
2

. . . �t′
n

mn ∪ {qn} is a firing sequence of N ′ iff m0 �t1 m1 �t2

. . . �tn
mn is a firing sequence of N and q0, q1, . . . , qn is a run of A such that

no qi is an accepting state, where t′i = ti if ai ∈ Σlooper and t′i = (qi−1, ti, qi) if
ai /∈ Σlooper. In the induction step, we use that the DFA A is total and that our
auxiliary place pblock ensures that the firing sequence of N ′ cannot contain an
accepting state of A. Since A is total it cannot block and since it is deterministic
and closed under concatenation with Σ∗ is can never leave the set of accepting
states once it entered an accepting state. Together with the fact that the accept-
ing places of N ′ are the accepting places of N we conclude that a1 . . . an ∈ L(N ′)
iff a1 . . . an ∈ L(N ) and a1 . . . an /∈ L(A).
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7 Discussion

The approach we have presented avoids eager synchronization: It does not ini-
tially represent the many different interleavings of a concurrent program explic-
itly, and hence avoids the associated state explosion. Instead, synchronization
is added lazily, only where it is needed: We derive data constraints from the
analysis of infeasible interleavings, represented as a finite automaton. Our dif-
ference operation then uses this automaton to add synchronization to the Petri
net. Here too we carefully avoid unnecessary synchronization.

Example 11 (Synchronization based on data constraints). Let us discuss the syn-
chronization based on data constraints on our example programs. Consider the
Petri net in Fig. 2c, the result of our difference construction applied to the
Petri net in Fig. 2b and the Floyd/Hoare-automaton in Fig. 5a. Observe that
there is no synchronization between the transitions labeled x:=x+1 , x:=x*1 ,
x:=x+2 and x:=x*2 . While the ordering between these statements does have

an impact on the behaviour of the program (in particular, on the final value of
x), it is irrelevant to the data constraint x ≥ 0, which prevents the program
from reaching the error place. Correspondingly, these statements only occur as
self-loops in the Floyd/Hoare-automaton, and are thus not synchronized by our
difference operation (exception E2). By contrast, the statement x:=0 estab-
lishes the data constraint x ≥ 0, and x<0 contradicts it. Hence, the transitions
labeled with these statements are modified to have additional predecessor and
successor places corresponding to the automaton states. If the transition labeled
x<0 was to fire, the token would move to the place labeled false. This place

corresponds to an accepting state of the Floyd/Hoare-automaton, or in other
words, a violation of the data constraints. Hence the transition must not fire: It
requires a token from the blocking place, which never has a token. In summary,
we only synchronize the initialization statement and the check of the postcondi-
tion. The two threads however remain completely unsynchronized.

Compare this to our second example program, and to the difference of Fig. 3b
and Fig. 5b, as shown in Fig. 3c. Here, synchronization between all three state-
ments has been introduced: Each transition has as predecessor and as successor
a place corresponding to an automaton state, resp. a data constraint. The reason
for this lies in the fact that none of the statements is irrelevant to the data con-
straints. Hence synchronization is necessary to keep track of these constraints.
The statement x:=42 establishes the data constraint x = 42, and hence moves
a token from the true place to the place labeled x = 42. The statement x!=42

contradicts the data constraint x = 42, and hence we have a transition labeled
with this statement, which takes a token out of the x = 42 place and puts it in
the false place. However, we again prevent this transition from firing through
the addition of a blocking place. Note that we have a second transition with the
same statement: If the constraint x = 42 has not been established, the statement
may execute without contradicting the trivial constraint true. No such second
transition is necessary for the statement x:=42 , as it is not possible to reach
the data constraint x = 42 and then execute the statement (again). Finally, the
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statement x:=x+1 is also synchronized: While it neither establishes nor contra-
dicts the data constraint, this synchronization is necessary as it can invalidate
the constraint. Here too we have two copies of the transition: If no constraint on
the data has been established (a token is in the true place), the statement can
execute and establishes no new data constraint (the token is put back into the
true place). On the other hand, if the data constraint x = 42 holds (i.e., there is
a token in the place labeled with this constraint), then x:=x+1 invalidates the
constraint (and moves the token into the true place). As a result of the added
synchronization, only one (out of three) interleavings of the statements remains
possible in the Petri net.

Optimization E2. Through the use of McMillan’s unfolding technique, we are
able to check emptiness of the refined Petri net resulting from our difference
operation. The efficiency of this check and our whole approach relies crucially
on the optimization E2 in the definition of the difference operation. Unfoldings
do not explicitly consider the many different orderings between concurrent tran-
sitions, i.e., transitions t1, t2 that are both enabled in a reachable marking m
and have disjoint sets of predecessors. The ability to preserve the concurrency
of such transitions is the source of the efficiency of the unfolding technique.
Without exception E2, the difference Petri net would not have any concurrent
transitions: If the marking m can be reached from the initial marking through a
firing sequence labeled with a word w, then by Theorem 10, m contains exactly
one place corresponding to a state q of the finite automaton, namely the state
that the automaton reaches after reading w. Without exception E2, q would be a
predecessor place for both transitions t1 and t2, and hence the transitions would
not be concurrent. Since unfoldings explicitly consider the ordering between
non-concurrent transitions, they would suffer the same exponential explosion as
naive sequentialization. Thus, our difference operation is specifically designed to
optimize for the application of the unfolding technique.

Scalability. The result is a verification algorithm that, for many concurrent pro-
grams, is significantly more efficient than classical Trace Abstraction based on
sequentialization. We demonstrate this efficiency improvement using our exam-
ple concurrent program schema from Fig. 1. To this effect, we analyzed instances
of this program schema for up to 60 threads, both with classical Trace Abstrac-
tion and with the method presented here. We ran both analyses on a machine
with an AMD EPYC 7351P 16-Core CPU 2.4 GHz and 128 GB RAM running
Linux 5.8.12 und Java 1.8.0 202 64bit, and monitored them using the bench-
marking tool benchexec [4]. The results can be seen in Fig. 7. The classical,
automata-based Trace Abstraction (shown in red) falls victim to the state explo-
sion problem, and reaches the timeout (15 min) for 12 threads or more. On the
other hand, our approach (shown in blue) scales much better, and can anal-
yse even the 60-thread instance in approximately 15 s. Similarly, the memory
consumption of classical Trace Abstraction explodes quickly, while the memory
consumption of our approach scales well. The erratic memory consumption of
the classical approach for more than 12 threads is due to the timeouts.
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Fig. 7. Resources used in the analysis of instantiations of the program schema from
Fig. 1 for up to 60 threads, with classical (automata-based) Trace Abstraction and with
our Petri net-based approach.

8 Related Work

Partial Order Reduction (POR) is another technique used to deal with the com-
plex control flow of concurrent systems, and has recently been applied for infinite-
state program verification [5,6,12,13,22]. Closest to our approach are the works
that combine POR with Trace Abstraction, such as the work by Cassez and
Ziegler [5] as well as the works of Farzan and Vandikas [12,13]. Cassez and
Ziegler apply a variant of POR, where two statements that do not write to com-
mon variables are independent. They apply this POR to the sequentialization
of the concurrent program once, and then verify the resulting program using
classical Trace Abstraction. Farzan and Vandikas on the other hand use a form
of Büchi tree automata to represent an infinite range of reductions of the pro-
gram and use an adaptation of Trace Abstraction to find a proof for one of these
infinitely many reductions. We share the general idea of POR, namely to avoid
explicitly representing many different interleavings. However, POR selects rep-
resentative interleavings, while we consider all interleavings but represent them
concisely. Furthermore, the works of Farzan and Vandikas in particular focus
on proof simplicity . By contrast, our focus is on the combinatorial explosion of
interleavings.

Bounded model checking (BMC) is among the most popular techniques for
concurrent program verification. The basic idea in BMC is to search for a coun-
terexample in executions whose length is bounded by some integer k. This prob-
lem can be efficiently reduced to a satisfiability problem, and can therefore be
solved by SAT or SMT methods. BMC has the disadvantage of not being able
to prove the absence of errors in general. There are many program verification
tools based on bounded model checking, e.g., Cbmc [1], Dartagnan [14], Lazy-
CSeq [18], and Yogar-cbmc [23]. Cbmc implements a bit-precise bounded
model checking for C programs and uses POR to deal with the problem
of interleavings. Yogar-cbmc uses a scheduling constraint based abstraction
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refinement method for bounded model checking of concurrent programs. In order
to obtain effective refinement constraints, two graph-based algorithms have been
devised over the so-called Event Order Graph for counterexample validation and
refinement generation. Lazy-CSeq translates a multi-threaded C program into a
nondeterministic sequential C program that preserves reachability for all round-
robin schedules with a given bound on the number of rounds and re-uses existing
BMC tools as backends for the sequential verification problem.

Thread-Modular Abstraction Refinement [17] performs thread-modular
assume-guarantee reasoning to overcome the challenge of the large number of
interleavings of multithreaded programs. Thread modularity means that one
explores the state space of one thread at a time, making assumptions about
how the environment can interfere. This approach uses counterexample-guided
predicate-abstraction refinement to overcome the challenge of the infinite state
space.

Inductive data flow graphs [11] consist of data flow graphs with incorpo-
rated inductive assertions. They consider a set of dependencies between data
operations in interleaved thread executions and generate the set of concurrent
program traces which give rise to these dependencies. The approach first con-
structs an inductive data flow graph and then checks whether all program traces
are represented.

Slab [8] is a certifying model checker for infinite-state concurrent systems.
For a given transition system and a safety property it either delivers a coun-
terexample or generates a certificate of system correctness in the form of an
inductive verification diagram. Slab considers the control-flow constraints of a
program as data constraints over program counter variables. Hence Slab can
also abstract the control-flow of a program and does not have to build a product
of CFGs initially. The abstraction is iteratively refined by predicates that are
obtained from Craig interpolation.

9 Conclusion

We presented a verification approach for concurrent programs composed of a
fixed number of threads over an infinite data domain. The contribution of the
paper is to propose a solution to the two challenges raised by this verification
problem: find a finite state abstraction for the concurrent program and deal with
the problem of interleavings. Our solution is to use bounded Petri nets as finite
state abstractions of the concurrent program. This enables us to apply algorithms
based on unfoldings [9,20], i.e., algorithms that are used to analyze concurrent
systems without falling victim to the problem of interleavings. Our algorithm for
finding abstractions is based on the scheme of counterexample-guided abstraction
refinement, specifically in the automata-based setting of Trace Abstraction [16].
We have shown that the automata-theoretic difference operation used in this
setting can be implemented through the addition of (automatically generated)
synchronization constraints to a Petri net.
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