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Abstract. Hyperproperties lift conventional trace properties in a way
that describes how a system behaves in its entirety, and not just based
on its individual traces. We generalize this notion to multi-properties,
which describe the behavior of not just a single system, but of a set of
systems, which we call a multi-model. We demonstrate the usefulness
of our setting with practical examples. We show that model-checking
multi-properties is equivalent to model-checking hyperproperties. How-
ever, our framework has the immediate advantage of being compositional.
We introduce sound and complete compositional proof rules for model-
checking multi-properties, based on over- and under-approximations of
the systems in the multi-model. We then describe methods of computing
such approximations. The first is abstraction-refinement based, in which
a coarse initial abstraction is continuously refined using counterexam-
ples, until a suitable approximation is found. The second, tailored for
models with finite traces, finds suitable approximations via the L∗ learn-
ing algorithm. Our methods can produce much smaller models than the
original ones, and can therefore be used for accelerating model-checking
for both multi-properties and hyperproperties.

1 Introduction

Temporal logics, such as LTL, are widely used for specifying program behaviors.
An LTL property characterizes a set of traces, each of which satisfies the property.
It has recently been shown that trace properties are insufficient for characterizing
and verifying security vulnerabilities or their absence.

The notion of hyperproperties [9], a generalization of trace properties, pro-
vides a uniform formalism for specifying properties of sets of traces. Hyperprop-
erties are particularly suitable for specifying security properties. For instance,
secure information flow may be characterized by identifying low-security vari-
ables that may be observable to the environment, and high-security variables
that should not be observable outside. Secure information flow is maintained in
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a system if for every two traces, if their low-security inputs are identical then so
are their low-security outputs, regardless of the values of high-security variables.
This property cannot be characterized via single traces.

While hyperproperties are highly useful, they are still limited: they can only
refer to the system as a whole. Systems often comprise several components, and
it is desired to relate traces from one component to traces of another. A promi-
nent such example is diversity [16]. Diversity generalizes the notion of security
policies by considering policies of a set of systems. The systems are all required
to implement the same functionality but to differ in their implementation details.
As noticed in [9], such a set of policies could, in principle, be modeled as a hyper-
property on a single system, which is a product of all the systems in the set.
This, however, is both unnatural and highly inefficient.

We remedy this situation by presenting a framework which explicitly
describes the system as a set of systems called a multi-model, and provides a
specification language, MultiLTL, which explicitly relates traces from the dif-
ferent components in the multi-model. Our framework enables to directly and
naturally describe properties like diversity, while avoiding the need for a complex
translation.

Our framework also has the immediate advantage of being compositional.
We thus suggest a sound and complete compositional model-checking rule.
The rule is based on abstracting each of the components by over- and under-
approximations, thus achieving additional gain.

We then suggest methods of computing such approximations. The first is
based on abstraction-refinement, in which a coarse initial abstraction is continu-
ously refined by using counterexamples, until a suitable approximation is found.
The second, tailored for models with finite traces, finds suitable approximations
via the L∗ learning algorithm. Our methods can produce much smaller models
than the original ones, and can therefore be used for accelerating model-checking
for both multi-properties and hyperproperties.

We now describe our work in more detail. Our framework consists of multi-
models, which are tuples of Kripke structures. The logic we focus on, called
MultiLTL, is an extension of HyperLTL [8]. MultiLTL allows indexed quantifica-
tions, ∀i and ∃i, referring to the i’th component-model in the multi-model.

We show that there is a two-way reduction between the model-checking prob-
lem for HyperLTL and the model-checking problem for MultiLTL. We empha-
size, that even though the two model-checking problems are equivalent, our new
framework is clearly more powerful as it enables a direct specification and veri-
fication of the whole system by explicitly referring to its parts.

We exploit this power by introducing two compositional proof rules, which are
based on over- and under-approximations for each system component separately.
These proof rules are capable of proving a MultiLTL property or its negation for
a given multi-model.

We suggest two approaches to computing these approximations for the com-
positional proof rules. The first approach is based on abstraction-refinement. The
approximations are computed gradually, starting from coarse approximations
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and refined based on counterexamples. The abstraction-refinement approach is
implemented using one of two algorithms. In both algorithms, when model-
checking the abstract multi-model is successful, we conclude that model-checking
for the original multi-model holds. Otherwise, a counterexample is returned.

The first algorithm is based on counterexamples from the multi-model only.
For each component-model, we find a behavior that should be eliminated from
an over-approximated component-model or added to an under-approximated
component-model, and refine the components accordingly.

The second algorithm is applicable for a restricted type of MultiLTL proper-
ties, in which the quantification consists of a sequence of ∀ quantifiers followed
by a sequence of ∃ quantifiers. In hyperproperties, this is a useful fragment which
allows specifying noninterference and generalized noninterference, observational
determinism, and more. The counterexamples in this case come directly from the
unsuccessful model-checking process, and therefore refer both to the model and
to the property. Notice that, since the abstract component-models are typically
much smaller than the original component-models, their model-checking is much
faster.

The logics of MultiLTL and the model of Kripke structure are designed for
describing and modeling the behavior of on-going systems. However, to do the
same for terminating programs with finite traces, a more suitable description is
needed. Therefore, we turn our attention to multi-models and multi-properties
with finite traces. In this context, we use nondeterministic finite automata (NFA)
to describe a system, and a set of NFAs (multi-NFA) to describe a set of such sys-
tems. For the specification language, we use nondeterministic finite-word hyper-
automata (NFH) suggested in [7]. NFH can be thought of as the regular-language
counterpart of HyperLTL, and are able to describe the regular properties of sets
of finite-word languages, just as HyperLTL is able to describe the properties of
a language of infinite traces. Also like HyperLTL, NFH can be easily adjusted to
describe multi-properties, a model that we call multi-NFH.

We show that, as in the infinite-trace case, there is a two-way reduction
between the model-checking problem for NFH and the model-checking prob-
lem for multi-NFH. We then proceed to present a compositional model-checking
framework for multi-NFH. As in the case of infinite-traces, this framework is
based on finding approximations for the NFAs in the multi-model. The method
for finding these approximations for this case, however, is learning-based.

Learning-based model-checking [15] seeks candidate approximations by run-
ning an automata learning algorithm such as L∗ [2]. In the L∗ algorithm, a
learner constructs a finite-word automaton for an unknown regular language L,
through a sequence of membership queries (“is the word w in L?”) and equiva-
lence queries (“is A an automaton for L?”), to which it receives answers from a
teacher who knows the language. The learner continually constructs and submits
candidate automata, until the teacher confirms an equivalence query.

In our algorithm, the learner constructs a set of candidate automata in every
iteration, one for every NFA in the multi-model. The key idea is treating these
candidate automata as candidate approximations. When an equivalence query



58 O. Goudsmid et al.

is submitted, we (as the teacher) check whether the NFAs that the learner sub-
mitted are suitable approximations. If they are not, we return counterexamples
to the learner, based on the given multi-NFA, which it uses to construct the
next set of candidates. If they are suitable approximations, we model-check the
multi-NFA of the approximations against the multi-NFH. Since the automata
that the learner constructs are relatively small, model-checking the candidates
multi-model is much faster than model-checking the original multi-model.

In [15], the learning procedure aims at learning the weakest assumption W ,
which is a regular language that contains all the traces that under certain condi-
tions satisfy the specification. The construction of W relies on counterexample
words provided by the model checking. We can derive such counterexamples
for a certain fragment of multi-NFH. Moreover, we define a suitable weakest
assumption for this case, prove that it is regular, and use it as a learning goal in
an improved algorithm. Both of these improvements – extracting counterexam-
ples from the model-checker, and learning the weakest assumption rather than
the model itself – allow for an even quicker convergence of the model-checking
process for this type of multi-properties.

Related Work. Hyperproperties, introduced in [9], provide a uniform formal-
ism for specifying properties of sets of traces. Hyperproperties are particularly
suitable for specifying security properties, such as secure information flow and
non-interference. Two logics for hyperproperties are introduced in [8]: HyperLTL
and hyperCTL∗, which generalize LTL and CTL∗, respectively. Other logics for
hyperproperties have been studied in [1,5,6,10,13,14,20].

One of the first sound and complete methods for model-checking hyperprop-
erties is called self-composition [4]. Self-composition combines several disjoint
copies of the same program, allowing to express relationships among multiple
traces. This reduces the k-trace hyperproperty model-checking to trace property
model-checking. Unfortunately, the size of the product model increases expo-
nentially with the number of copies. Thus, reasoning directly on the product
program is prohibitive.

Many approaches have been suggested for dealing with the high complexity
of self-composition. Methods to increase the efficiency of SMT solvers for hyper-
propery model-checking have been suggested in [3,19], while a generalization of
Hoare triplets for safety-hyperproperties has been presented in [18].

Different approaches to avoid the construction of the full product are pre-
sented in [17,21]. The former exploits taint analysis or Bounded Model Checking.
The latter infers a self-composition function together with an inductive invariant,
suitable for verification.

An automata based algorithm for HyperLTL and HyperCTL∗ is proposed
in [12]. It combines self-composition with ideas from LTL model-checking using
alternating automata. A representation of hyperproperties in a form of finite-
word automata is developed in [11]. This work introduces a canonical automata
representation for regular-k-safety hyperproperties, which are only-universally-
quantified safety-hyperproperties.
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The first representation of general hyperproperties using finite automata is
introduced in [7]. This representation, called hyperautomata, allows running mul-
tiple quantified words on an automaton. The authors show that hyperautomata
can express regular hyperproperties and explore the decidability of nonemptiness
(satisfiability) and membership (model-checking) problems. Additionally, they
describe an L∗-based learning algorithm for some fragments of hyperautomata.

2 Preliminaries

Kripke Structures are a standard model for ongoing finite-state systems.

Definition 1. Given a finite set of atomic propositions AP , a Kripke structure
is a 4-tuple M = (S, I,R, L), where S is a finite set of states, I ⊆ S is a
non-empty set of initial states, R ⊆ S × S is a total transition relation and
L : S → 2AP is a labeling function.

A path in M is an infinite sequence of states p = s0, s1, s2, . . . such that
(si, si+1) ∈ R for every i ∈ N. A trace over AP is an infinite sequence τ ∈(
2AP

)ω. We sometimes refer to a trace as a word over 2AP . A trace property
over AP is a set of traces over AP .

The trace that corresponds to a path p is the trace τ(p) = τ0, τ1, τ2, . . . in
which τi = L(si) for every i ∈ N. Notice that since R is total, there exists an
infinite path from every state. We denote by τ i the trace τi, τi+1, . . . .

Given a word w = w0, w1, · · · ∈ (2AP )ω, a run of M on w is a path p =
s0, s1 . . . in M such that L(sn) = wn for every n ∈ N. The language L(M) of
M is the set of all traces corresponding to paths in M that start in I. The prefix
language Lf (M) of M is the set of all finite prefixes of traces in L(M). For two
Kripke structures M,M′, we write M |= M′ to denote that L(M) ⊆ L(M′).

The following is a known result, which can be proven by König’s Lemma.

Lemma 1. For Kripke structures M and M′, it holds that L(M) = L(M′) iff
Lf (M) = Lf (M′).

2.1 Hyperproperties and HyperLTL

Trace properties and the logics that express them are commonly used to describe
desirable system behaviors. However, some behaviors cannot be expressed by
referring to each trace individually. In [9], properties describing the behavior of
a combination of traces are formalized as hyperproperties. Thus, a hyperproperty
is a set of sets of traces: all sets that behave according to the hyperproperty.
HyperLTL [8] is an extension of linear temporal logic (LTL), a widely used tem-
poral logic for trace properties, to hyperproperties. The formulas of HyperLTL
are given by the following grammar:

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ for every a ∈ AP
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Intuitively, ∃π.ϕ means that there exists a trace that satisfies ϕ and ∀π.ϕ means
that ϕ holds for every trace. aπ means that a holds in the first state of π. The
semantics of X,U and the Boolean operators are similar to those in LTL: Xψ
means that ψ holds in the next state and ψ1Uψ2 means that ψ1 holds until
ψ2 holds. Based on these operators we define additional operators commonly
defined in LTL: Fψ means that ψ holds eventually and Gψ means that ψ holds
throughout the entire trace.

The semantics of HyperLTL is defined as follows. Let T ⊆ (2AP )ω be a set
of traces over AP , let V be a set of trace variables, and Π : V → T be a trace
assignment. Let Π[π → t] be the function obtained from Π, by mapping π to t.
Let Πi be the function defined by Πi(π) = (Π(π))i.

Π |=T ∃π.ψ iff there exists t ∈ T such that Π[π → t] |=T ψ

Π |=T ∀π.ψ iff for every t ∈ T , Π[π → t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ϕ iff Π �|=T ϕ

Π |=T ϕ1 ∨ ϕ2 iff Π |=T ϕ1 or Π |=T ϕ2

Π |=T Xϕ iff Π1 |=T ϕ

Π |=T ϕ1Uϕ2 iff there exists i ≥ 0 such that Πi |=T ϕ2

and for all 0 ≤ j < i, Πj |=T ϕ1

Notice that when all trace variables of a HyperLTL formula P are in the scope
of a quantifier (i.e, when P is closed), then the satisfaction is independent of
the trace assignment, in which case we write T |= P. Given a Kripke structure
M and a HyperLTL formula P, the model-checking problem is to decide whether
L(M) |= P (which we denote by M |= P).

By abuse of notation, given traces w1, . . . , wk over AP , we write
〈w1, . . . , wk〉 |= Q1π1 . . .Qkπkψ(π1, . . . , πk) if Π |= ψ(π1, . . . , πk), where
Π(πi) = wi.

3 Multi-models and Multi-properties

We generalize hyperproperties to multi-properties, which reason about the con-
nections between several models, which we call a multi-model.

Definition 2. Given k ∈ N, a k-multi-model is a k-tuple M =
〈M1,M2, . . . ,Mk〉 of Kripke structures over a common set of atomic propo-
sitions AP . A k-multi-property is a set of tuples P ⊆ (2(2

AP )ω

)k.
M is a multi-model if it is a k-multi-model for some k, and similarly P is a

multi-property.

Intuitively, in a multi-property P, every T ∈ P is a tuple of k sets of traces,
each interpreted in a model.
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We now present MultiLTL, a logic for describing multi-properties. A MultiLTL
formula is interpreted over a multi-model M = 〈M1, . . . ,Mk〉. We use [a, b],
where a ≤ b are integers, to denote the set {a, a + 1, . . . , b}. MultiLTL formulas
are defined inductively as follows.

ϕ ::= ∃jπ. ϕ | ∀jπ. ϕ | ψ where j ∈ [1, k]
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

The only difference in syntax from HyperLTL is that trace quantifiers are now
indexed. This index is taken from the set [1, k] for some k ∈ N. The formula
∃jπ.ϕ means that there exists a trace in Mj that satisfies ϕ and ∀jπ.ϕ means
that ϕ holds for every trace in Mj .

The semantics of MultiLTL is defined as follows. Let T = 〈T1, . . . Tk〉 be a
multi-model over AP . Let V be a set of trace quantifiers, and let Π : V →⋃

i∈[1,k] Ti.

Π |=T ∃iπ.ψ iff there exists t ∈ Ti such that Π[π → t] |=T ψ

Π |=T ∀iπ.ψ iff Π[π → t] |=T ψ for every t ∈ Ti

The semantics of the temporal operators is defined as in HyperLTL. Since every
MultiLTL formula describes a multi-property, we refer to the formulas themselves
as multi-properties.

As with HyperLTL, when a MultiLTL formula P is closed, satisfaction is inde-
pendent of Π, and we denote M |= P for a multi-model M. The model-checking
problem for MultiLTL is to decide whether M |= P.

For a MultiLTL formula P = Q
1
i1

. . .Qn
in

ϕ, we define I∃(P) = {i | Q
i
ij

=
∃ and ij ∈ [1, n]}, and I∀(P) = {i | Qi

ij
= ∀ and ij ∈ [1, n]}. We write I∃ and I∀

when P is clear from the context.

3.1 Examples

We demonstrate the usefulness of MultiLTL and multi-models with several exam-
ples. The multi-models we consider consist of models that interact with each
other via an asynchronous communication channel (which is not modeled). This
assumption is not necessary outside the scope of the examples, where other forms
of interactions across models can take place (e.g., shared variables).

Example 1. Consider a multi-model consisting of a client model C and a server
model S. We would like to check whether 〈C,S〉 |= ∀Cπ1∀Sπ2.G(r sentπ1 →
Fr receivedπ2). In this formula, r sentπ1 means that a request is sent in C and
r receivedπ2 means that a request is received in S. The formula specifies that
for every run of the client and for every run of the server, every request sent
by the client is eventually received by the server. This is a form of a liveness
property that specifies that messages are guaranteed to eventually arrive at their
destination. Note that, whether this property holds or not depends in fact on
the reliability of the asynchronous communicating channel, connecting the client
and the server.
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Example 2. Consider again the multi-model of Example 1. Assume that the
interaction between the client and the server is as follows. At the beginning
of the interaction, the client sends its username and password to the server.
Immediately afterwards the server updates its authentication flag and informs
the client whether the authentication was successful or not. The client gets this
notification one clock cycle after the server authentication flag has been updated.
Consider the specification P2.

P2 = ∀Sπ1∃Cπ2∀Cπ3. (userDBπ1 = userπ2 ) ∧ (passDBπ1 = passπ2 ) ∧ (Xautπ1 ∧ XXautπ2)

∧ ((userDBπ1 = userπ3 ) ∧ ((passDBπ1 �= passπ3 )) → (X¬autπ1 ∧ XX¬autπ3 )

The first line of P2 states that for every trace of the server there is a trace of the
client whose username and password match the username and password in the
server database. If so, the authentication succeeds. The second line assures that
for each username in the server database there is only one valid password with
which the authentication succeeds.

Note that in this example, we describe a property which cannot be described
using LTL. Further, it cannot be expressed naturally in HyperLTL. MultiLTL,
which explicitly refers to traces in different models within a multi-model, natu-
rally expresses it.

Example 3. We demonstrate again the power of MultiLTL to naturally express
properties that are not naturally expressible in HyperLTL. Diversity [16] refers
to security policies of a set of systems. The systems constitute different imple-
mentations of the same high-level program. They differ in their implementa-
tion details1, but are equivalent with respect to the input-output they produce.
In [16], diversity has been advocated as a successful way to resist attacks that
exploit memory layout or instruction sequence specifics.

Assume that we are given a high-level program P and two low-level imple-
mentations M1 and M2. The following MultiLTL properties describe the fact that
all implementations are equivalent to P .

P1 = ∀P π∃M1π1∃M2π2.(inputπ = inputπ1 = inputπ2)∧
G(endπ ∧ endπ1 ∧ endπ2 → outputπ = outputπ1 = outputπ2)

P2 = ∀M1π1∃P π.(inputπ1 = inputπ) ∧ G(endπ1 ∧ endπ → outputπ1 = outputπ)

P3 = ∀M2π2∃P π.(inputπ2 = inputπ) ∧ G(endπ2 ∧ endπ → outputπ2 = outputπ)

Note that these properties cannot naturally be expressed in HyperLTL since
they require an explicit reference to the models from which the related traces
are taken.

1 For instance, the call stack of procedures is obfuscated by changing the order of
variables, the specific memory location of arguments and local variables, etc. The
obfuscations differ in the different implementations.
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3.2 Model-Checking MultiLTL

We now show that although MultiLTL is a generalization of HyperLTL, the model-
checking problems for these logic types is equivalent.

For the first direction, it is easy to see that the model-checking problem
for a model M and a HyperLTL formula P is equivalent to the model checking
problem for 〈M〉 and the MultiLTL formula obtained from P by indexing all of
its quantifiers with the same index 1.

For the other direction, we first introduce some definitions. We use the nota-
tion  for disjoint union.

Definition 3. Given a multi-model M = 〈M1, . . . ,Mk〉 over AP , its union
model denoted ∪M is (n

i=1Si,n
i=1Ii,n

i=1Ri, L), where L(s) = Li(s)  {i} for
every i and s ∈ Si.

The indexing by i of a trace τ = t0, t1, . . . over AP is the trace indi(τ) =
t0 ∪ {i}, t1 ∪ {i}, . . .

Notice that for a trace τ and a multi-model M = 〈M1, . . . ,Mk〉, it holds
that τ ∈ L(Mi) ⇐⇒ indi(τ) ∈ L(∪M).

Theorem 1. The model-checking problem for MultiLTL is polynomialy reducable
to the model-checking problem for HyperLTL.

Proof Sketch. Let M = 〈M1, . . . ,Mn〉 be a multi-model over AP , and P ∈
MultiLTL. We assume that P is of the form Q

1
1π1 . . .Qn

nπnϕ, where ϕ is in negation
normal form. Note that this means that each model is quantified exactly once2.
Define M = ∪M. Each (indexed) trace in M corresponds to one model in M by
its index. Let P = Q1π1 . . .Qnπnϕ′, where ϕ′ is obtained from ϕ by applying
the following changes: for every a ∈ AP , we replace every occurrence of a literal
l = aπ or l = ¬aπ by i → l if π is quantified by ∀i, and by i ∧ l if π is quantified
by ∃i. Intuitively, for ∀i, for every trace τ ∈ M, if τ originates from Mi then we
require that τ fulfill the formula and otherwise we require nothing. For ∃i, we
require the existence of a trace in M that originates from Mi that fulfills the
formula. It can be shown by induction that M |= P iff M |= P. ��

In [12], the authors presented an algorithm for model-checking HyperLTL that
can be easily adjusted for MultiLTL. Thus, there is no need to use the reduction
in Theorem 1. The algorithm relies roughly on the repeated intersection of the
models under ∃ with an automaton for ϕ, the quantifier-free part of the for-
mula, or, in the case of ∀ quantifiers, for ¬ϕ (which involves complementation).
Accordingly, the complexity is a tower in the number of models, and the size of
the models greatly influences the run-time. In case of a model under ∀, a word
that is accepted by the intersection is a counterexample for the satisfaction of
the ∀ requirement. Therefore, in case that the formula P begins with a sequence
of ∀ quantifiers followed by a sequence of ∃ quantifiers (a fragment which we
denote by ∀∗∃∗MultiLTL), it is possible to extract a counterexample for every
model under ∀ in the multi-model. To summarize, we have the following.
2 This can be achieved by duplicating components of the multi-model and reordering

them so that they match the order of quantification.
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Lemma 2. 1. There is a direct algorithm for model-checking M |= P.
2. For P ∈ ∀∗∃∗MultiLTL with n quantifiers such that |I∀(P)| = k, if M �|= P then

the model-checking algorithm can also extract a counterexample 〈w1, . . . , wk〉
such that wi ∈ L(Mi) for i ∈ [1, k]. For 〈w1, . . . , wk〉 it holds that there are
no wi ∈ L(Mi) for i ∈ [k + 1, n] such that 〈w1, . . . , wn〉 |= P.

Note 1. For ∃ quantifiers, there is no natural counterexample in the form of a
single word. Indeed, a counterexample in this case would need to convince of the
lack of existence of an appropriate word.

4 Compositional Proof Rules for Model-Checking
MultiLTL

We present two complementing compositional proof rules for the MultiLTL
model-checking problem. Let M be a k-multi-model, and let P =
Q

i1
1 π1 . . .Qim

m πmϕ be a MultiLTL formula. The rule (PR) aims at proving M |= P,
and (PR) aims at proving the contrary, that is, M |= ¬P. Every model Ai in the
rules is an abstraction. Since some models may be multiply quantified, a model
Mi may have several different abstractions, according to the quantifiers under
which Mi appears in P.

∀i ∈ I∀. Mij
|= Ai ∀i ∈ I∃. Ai |= Mij

〈A1, . . . ,Am〉 |= Q
i1
1 π1 . . .Qim

m πmϕ

〈M1, . . . ,Mk〉 |= Q
i1
1 π1 . . .Qim

m πmϕ
(PR)

∀i ∈ I∀. Ai |= Mij
∀i ∈ I∃. Mij

|= Ai 〈A1, . . . ,Am〉 |= ¬(Qi1
1 π1 . . .Qim

m πmϕ)

〈M1, . . . ,Mk〉 |= ¬(Qi1
1 π1 . . .Qim

m πmϕ)
(PR)

Intuitively, in (PR), we use an over-approximation for every model under ∀, and
an under-approximation for every model under ∃. The rule (PR) behaves dually
to (PR) for the negation of P.

Lemma 3. The proof rules (PR) and (PR) are sound and complete.

Proof Sketch. For completeness, we can choose Ai = Mij
for every i ∈ [1,m].

For soundness of (PR), let A1, . . . ,Am be models for which the premise of (PR)
holds. For every universally quantified model Mij

, its abstraction Ai includes
all of its traces (and maybe more). For every existentially quantified model Mij

,
a subset of its traces are included in Ai. Therefore, by the semantics of the
quantifiers, it is “harder” for each Ai to satisfy P than it is for Mij

. Since
〈A1, . . . ,Am〉 |= P, we conclude that M |= P.

For (PR), notice that ¬P ≡ Q
i1
1 π1 . . .Q

im

1 πm¬ϕ, where ∀ = ∃ and ∃ = ∀,
conforming to (PR). ��
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5 Abstraction-Refinement Based Implementation of (PR)
and (PR)

In this section, we present methods for constructing over- and under-
approximations using an abstraction-refinement based approach. We first define
the notion of simulation.

Definition 4. Let M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) be Kripke
structures over AP . A simulation from M1 to M2 is a relation H ⊆ S1 × S2

such that for every (s1, s2) ∈ H:

– L(s1) = L(s2)
– For every (s1, s′

1) ∈ R1 there exists s′
2 ∈ S2 such that (s2, s′

2) ∈ R2 and
(s′

1, s
′
2) ∈ H.

If additionally, for every s0 ∈ I1 there exists s′
0 ∈ I2 such that (s0, s′

0) ∈ H,
we denote M1 ≤H M2. We denote M1 ≤ M2 if M1 ≤H M2 holds for some
simulation H.

Lemma 4. Let M1,M2 be two Kripke structures such that M1 ≤ M2. Then
M1 |= M2.

Lemma 4 is a well-known property of simulation. Next, we describe how
to construct sequences of over- and under-approximations for a given model
M. Each approximation in these sequences is closer to the original model than
its previous. We later incorporate these sequences in a MultiLTL abstraction-
refinement based model-checking algorithm using our proof rules.

5.1 Constructing a Sequence of Over-Approximations

Given a Kripke structure M = (S, I,R, L) over AP , we construct an over-
approximations sequence A0 ≥ A1 ≥ · · · Ak ≥ M, where Ai+1 is a refinement
of Ai, which we compute by using counterexamples. A counterexample is a word
w ∈ L(Ai) yet w /∈ L(M). By Lemma 1, it suffices to consider finite prefixes of
w, since there is an index j for which w0, w1, . . . , wj−1 ∈ L(Ai) \ L(M).

We use a sequence of abstraction functions h0, . . . , hk, each defining an
abstract model.

Definition 5. Let Ŝ be a finite set of abstract states. A function h : S → Ŝ is an
abstraction function if h is onto, and for every ŝ ∈ Ŝ, it holds that L(s1) = L(s2)
for every s1, s2 ∈ h−1(ŝ) .

Definition 6. For an abstraction function h : S → Ŝ, the ∃∃ abstract model
induced by h is Ah = (Ŝ, Î, R̂, L̂), where Î = {ŝ | ∃s0 ∈ I, h(s0) = ŝ}, where for
every ŝ ∈ Ŝ we set L̂(ŝ) = L(s) for some s such that h(s) = ŝ, and (ŝ, ŝ′) ∈ R̂
iff there exist s, s′ ∈ S such that (s, s′) ∈ R, h(s) = ŝ and h(s′) = ŝ′.3

3 L̂ is well defined since by Definition 5, only equilabeled states are mapped to the
same abstract state.
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Lemma 5. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂)
be the ∃∃ abstract model induced by an abstraction function h : S → Ŝ. Then,
M ≤ Ah.

Proof. The relation H = {(s, h(s))|s ∈ S} is a simulation from M to Ah. ��
Definition 7. Let M and M′ be Kripke structures such that M ≤ M′ by a sim-
ulation H, and let r′ = s′

0, s
′
1, . . . be a run of M′ on w. The run r = s0, s1, . . . , sj

is a maximal induced run of r′ in M, if for every i ∈ [0, j] it holds that
(si, s

′
i) ∈ H, and for every i ∈ [0, j − 1] it holds that (si, si+1) ∈ R. More-

over, there is no state s∗ ∈ S such that (s∗, s′
j+1) ∈ H and (sj , s

∗) ∈ R. If no
such j exists then r is infinite, and for every i ≥ 0 it holds that (si, s

′
i) ∈ H and

(si, si+1) ∈ R.

In the sequel, we fix a Kripke structure M = (S, I,R, L).

Over-Approximation Sequence Construction
Initialization. Define Ŝ0 = {sP | P ⊆ AP and ∃s ∈ S : L(s) = P}. That is,
there is a state in Ŝ0 for every labeling in M. The initial over-approximation A0

is the ∃∃ model induced by h0 : S → Ŝ0 defined by h0(s) = sL(s). Since h0 is an
abstraction function, by Lemma 5 we have that M ≤ A0.

Refinement. Let hi : S → Ŝi be an abstraction function. Let Ai =
(Ŝi, Îi, R̂i, L̂i) be the ∃∃ model induced by hi. By Lemma 5 we have that M ≤ Ai.
Let w ∈ L(Ai)\L(M) be a counterexample. Let r̂i = ŝ0, ŝ1 . . . be a run of Ai on
w, and r = s0 . . . , sj be a maximal induced run of M on w. Since w /∈ L(M),
we have that r is finite. We define Ai+1 to be the ∃∃ model induced by hi+1,
where hi+1 : S → Ŝi+1 for Ŝi+1 = Ŝi  {ŝ′}, defined as follows, for every s ∈ S.

hi+1(s) =

⎧
⎪⎨

⎪⎩

hi(s), if hi(s) �= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s
′) = ŝj+1 and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s
′) = ŝj+1 and (s, s′) ∈ R

The intuition for the refinement is presented in Fig. 1 (a). Concrete states are
the full circles and abstract states are the dashed ovals. The purple line is a
maximal induced run of ŝ0, ŝ1 . . . in M, which ends at ŝj . Since there is an
infinite run in the abstract model, we can split ŝj into two abstract states: one
that includes all states that can continue to ŝj+1, and another that includes all
the states with no such transitions. Clearly, the former set includes only states
that are not reachable by the maximal induced run of ŝ0, ŝ1 . . . , else the induced
run would not have been maximal.

Lemma 6. For every i ∈ N, for every state ŝ ∈ Ŝi, there exists a state s ∈ S
such that hi(s) = ŝ.

Proof. By induction on i. Base: By construction, for every ŝP ∈ Ŝ0 there exists
a state s ∈ S such that L(s) = P , and so h0(s) = ŝP .
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...

ŝ0 ŝ1 ŝj ŝj+1

(a)

...

ŝ0 ŝ1 ŝj ŝj+1

(b)

Fig. 1. Refinements (a) ∃∃, and (b) ∀∃.

Step: Assume towards contradiction that there is an abstract state ŝ ∈ Ŝi+1

such that for every s ∈ S, it holds that hi+1(s) �= ŝ. Since Ai fulfills the required
property, ŝ /∈ Ŝi. Then ŝ is the new state ŝ′. Let s0, . . . , sj be a maximal induced
run of M on the counterexample w. There is no state s′ ∈ h−1

i (ŝj+1) such that
(sj , s

′) ∈ R. Thus, by construction, hi+1(sj) = ŝ′, a contradiction. ��
Lemma 7. For every i ≥ 0, it holds that M ≤ Ai+1 ≤ Ai

Proof. According to Lemma 5, it is left to show is that Ai+1 ≤ Ai. The relation
H ⊆ Ŝi+1 × Ŝi, defined by H = {(ŝ, ŝ′) | h−1

i+1(ŝ) ⊆ h−1
i (ŝ′)} is a simulation from

Ai+1 to Ai. ��
Following Lemma 7, we have that M ≤ · · · ≤ A1 ≤ A0. Thus, the refinements

get more precise with every refinement step. Moreover, for i > 0, the model Ai is
obtained from Ai−1 by splitting a state. In a finite-state setting, this guarantees
termination at the latest when reaching Ai = M.

Lemma 8. Let M be a Kripke structure and let A0 ≥ A1 · · · ≥ M be our
sequence of over-approximations. Then, there exists m ∈ N for which Am =
Am+1.

5.2 Constructing a Sequence of Under-Approximations

Given M = (S, I,R, L) over AP , we construct a sequence of under-
approximations A0 ≤ A1 ≤ · · · ≤ Ak ≤ M via a sequence of abstraction func-
tions using counterexamples. In this case, a counterexample is a word w /∈ L(A),
yet w ∈ L(M). Again, we can consider a prefix of w.

Definition 8. Given an abstraction function h : S → Ŝ, the ∀∃ abstract model
induced by h is Ah = (Ŝ, Î, R̂, L̂), where Î and L are as in Definition 6, and
(ŝ, ŝ′) ∈ R̂ iff for every s ∈ S such that h(s) = ŝ there exists s′ ∈ S such that
(s, s′) ∈ R and h(s′) = ŝ′.

Notice that the transition relation R̂ of the ∀∃ abstract model might not be
total, i.e., there may exist a state with no outgoing transitions.

Lemma 9. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂)
be the ∀∃ abstract model induced by an abstraction function h : S → Ŝ. Then,
Ah ≤ M.
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Proof. H = {(h(s), s)|s ∈ S} is a simulation from Ah to M. ��

Under-approximation Sequence Construction
Initialization. Let Ŝ0 and h0 be as in Sect. 5. We set the initial under-
approximation A0 of M to be the ∀∃ abstract model induced by h0. By Lemma
9, we have A0 ≤ M.

Refinement. Let Ai = (Ŝi, Îi, R̂i, L̂i) be an ∀∃ abstract model induced by an
abstraction function hi : S → Ŝi. Recall that Ai ≤ M. Let w ∈ L(M)\L(Ai) be
a counterexample. Let r = s0, s1, . . . be a run of M on w, and let r̂ = ŝ0, . . . , ŝj

be a maximal induced run of Ai on w. We define Ai+1 to be the ∀∃ abstract
model induced by hi+1 : S → Ŝi+1 where Ŝi+1 = Ŝi  {ŝ′}, and where:

hi+1(s) =

⎧
⎪⎨

⎪⎩

hi(s), if hi(s) �= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s
′) = hi(sj+1) and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s
′) = hi(sj+1) and (s, s′) ∈ R

The idea behind this refinement is represented in Fig. 1 (b). The purple states
and lines represent the run in M. Note that in ŝj there is a red state with no
transition to states in hi(sj+1). Thus there is no ∀∃ abstract transition from ŝj

to hi(sj+1). To add such a transition, we split ŝj into two states: one with all
states that have a transition to a state in hi(sj+1), and another with all states
that have no such transition. As a result, Ai+1 includes a ∀∃ transition from ŝj

to hi(sj+1).
Similarly to over-approximation, we have the following, which assures cor-

rectness and termination.

Lemma 10. Let M be a model and let A0,A1, . . . be the sequence of under-
approximations described above. Then, the following holds.

– A0 ≤ A1 ≤ · · · ≤ M.
– There exists m ∈ N such that Am = Am+1.

5.3 Abstraction-Refinement Guided MultiLTL Model-Checking
Using (PR) and (PR)

Following Sects. 5.1 and 5.2, we present an abstraction-refinement inspired app-
roach for model-checking multi-properties. We are given a MultiLTL formula
P = Q

1
1π1 . . .Qn

nπn ϕ and a multi-model M = 〈M1, . . . ,Mn〉 over AP (see foot-
note 2). The model-checking procedure for M |= P is described in Algorithm 1,
which we detail next.

The procedure mmc(M,P) performs model-checking as per Lemma 2 (1) and
returns true if M |= P, and false otherwise. refine refines every approxima-
tion Ai for which there is a counterexample wi in the vector 〈w1, . . . , wn〉 of
counterexamples.
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Algorithm 1: Abstraction-refinement based MultiLTL model-checking
Input: M = 〈M1, . . . , Mn〉, P = Q

1
1π1 . . .Qn

nπn ϕ(π1, . . . , πn).
Output: M |= P?

1 A,B = initialize(M,P)
2 while true do
3 res = mmc(A,P)
4 if res == true then
5 return M |= P

6 else
7 〈w1, . . . , wn〉 = Get cex(A,M, PR)
8 A = refine(〈w1, . . . , wn〉 ,A)

9 res = mmc(B, ¬P)
10 if res == true then
11 return M �|= P

12 else

13 〈w1, . . . , wn〉 = Get cex(B,M, PR)
14 B = refine(〈w1, . . . , wn〉 ,B)

15 endwhile

Initialization. In initialize (Line 1), for every model Mi such that Qi
i = ∀, we

initialize abstract models Ai and Bi as described Sects. 5.1 and 5.2, respectively.
For every model Mi such that Q

i
i = ∃, we initialize abstract models Ai and Bi

as described in Sects. 5.2 and 5.1, respectively. Thus, Bi ≤ Mi ≤ Ai for every
i ∈ I∀ and Ai ≤ Mi ≤ Bi for every i ∈ I∃. In Algorithm 1, A = 〈A1, . . . ,An〉 is
used for (PR) and B = 〈B1, . . . Bn〉 for (PR).

Abstraction-Refinement. Lines 3–8 apply the rule (PR). When reaching line
3, it is guaranteed that Mi ≤ Ai for every i ∈ I∀ and Ai ≤ Mi for every i ∈ I∃.
Thus, we try to apply (PR). We model-check A |= P (Line 3). If the result is
true, then by the correctness of (PR), we have M |= P (Line 5). Otherwise,
A �|= P. As noted in Note 1, for Ai where i ∈ I∃, no single word counterexample
can be obtained from the model-checking. Instead, we call Get cex (Line 7),
which returns a sequence of words that lead to more precise abstractions. For
(PR), Get cex returns an arbitrary wi ∈ L(Ai) \ L(Mi) for every i ∈ I∀ and
an arbitrary wi ∈ L(Mi) \ L(Ai) for every i ∈ I∃. For (PR), Get cex behaves
dually on B for I∀ and I∃. If for some i such a word wi does not exist, Get cex
returns null as wi. refine uses 〈w1, . . . , wn〉 to refine each abstraction in A as
described in Sects. 5.1, 5.2, obtaining closer abstractions to the original models.

Lines 9–14 apply the rule (PR). When we reach line 9, it is guaranteed that
Bi ≤ Mi for every i ∈ I∀ and Mi ≤ Bi for every i ∈ I∃. Thus, we try to apply
(PR) in a similar manner as before. We model-check B |= ¬P. If the result is
true, then by the correctness of (PR), we have M |= ¬P which implies M �|= P.
Otherwise, we call Get cex (Line 13) and refine B using 〈w1, . . . , wn〉 (Line 14).

In the worst case, all approximations converge to their respective models (as
per Lemmas 8, 10), upon which no further counterexamples are found. Therefore,
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the run is guaranteed to terminate. Of course, the run terminates much earlier
in case that appropriate approximations are found. Correctness follows from the
correctness of (PR) and (PR). Hence, we have the following.

Lemma 11. Algorithm 1 terminates with the correct result.

Example. Consider M1,M2 (Fig. 2) and P = ∀1π∃2τ. G(pπ ⊕ Xpπ ⊕ XXpπ) ∧
G(pπ → qτ ), where ⊕ denotes XOR. For brevity, we ignore B since 〈M1,M2〉 |=
P. When running Algorithm 1 for 〈M1,M2〉 |= P, we first construct A0

1,A0
2 as

over- and under-approximations of M1,M2, respectively (Fig. 2). Then, we check
whether

〈A0
1,A0

2

〉 |= P. This does not hold, and MMC returns counterexamples
〈∅p∅ω, ∅qω〉. We refine the abstractions according to these counterexamples.

Next, we find the maximal induced run of ∅p∅ω in M1, which is the path
1,2,3,1⊥. Since the path for ∅p∅ω is 4,5,4,4ω in A0

1, we need to refine the
state 4 in A0

1. By similar analysis of ∅qω, state 8 is to be split in A0
2. Thus, we

split state 4 from A0
1 to states 6,7 in A1

1. In A0
2, we split state 8 to states 9,10 in

A1
2. Then, model-checking

〈A1
1,A1

2

〉 |= P passes, and we return 〈M1,M2〉 |= P.

pM1 ::

qM2 ::

q

p

A0
1 ::

A0
2 ::

pA1
1 ::

q

qA1
2 ::

1

2

3

4 5 6

7

8 9

10

Fig. 2. Model-Checking for 〈M1, M2〉 |= P

5.4 Counterexample Guided MultiLTL Model-Checking Using (PR)

Algorithm 1 is guided by the difference between the abstract models and the
original models. We now consider the ∀∗∃∗ fragment of MultiLTL. By Lemma 2,
when model-checking ∀∗∃∗MultiLTL fails, we can get counterexamples for the
models under ∀. We use these counterexamples to further improve our model-
checking scheme for this fragment.

We are given a ∀∗∃∗MultiLTL formula P = ∀1
1π1 . . . ∀k

kπk∃k+1
k+1 . . . ∃n

nπn ϕ and
a multi-model M = 〈M1, . . . ,Mn〉 over AP as input. Our model-checking pro-
cedure is described in Algorithm 2.
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Algorithm 2: CEGAR-based ∀∗∃∗MultiLTL model-checking

Input: M = 〈M1, . . . , Mn〉, P = ∀1
1π1 . . . ∀k

kπk∃k+1
k+1 . . . ∃n

nπn ϕ(π1, . . . , πn).
Output: M |= P?

1 A = initialize∀∗∃∗(M,P)
2 while true do
3 (res, cex) = mmc(A,P)
4 if res == true then
5 return M |= P

6 spuriousList = spurious(cex, M)
7 if isEmpty(spuriousList) then
8 return M �|= P

9 A = refine(cex, spuriousList,A,M)

10 endwhile

The procedure mmc(M,P) performs multi-property model-checking, and
returns (true, ∅) if M |= P, and otherwise returns (false, cex), where cex is
a counterexample vector 〈w1, . . . , wk〉 such that wi ∈ L(Mi) for every i ∈ [1, k]
and there are no wi ∈ L(Mi) for i ∈ [k + 1, n] such that 〈w1, . . . , wn〉 |= P, as
per Lemma 2 (2). We fix every Ai under ∃ to be Mi. Thus, it is guaranteed
that the model-checking failure is not caused by words that are missing from the
under-approximations, yet do exist in the concrete models. A counterexample wi

from 〈w1, . . . , wk〉 is spurious if wi ∈ L(Ai) yet wi /∈ L(Mi). That is, wi cannot
serve as proof that M �|= P. refine refines every approximation Ai for which
there is a tuple (i, wi) in spuriousList, the list of spurious counterexamples, by
removing wi from Ai.

Initialization. In initialize∀∗∃∗ (Line 1), for every model Mi such that Qi
i =

∀, we initialize an abstract model Ai as described in 5.1. For every model Mi

such that Q
i
i = ∃, we fix Ai to be Mi. Thus, Mi ≤ Ai for every i ∈ [1, k] and

Ai ≤ Mi for every i ∈ [k + 1, n].

Model-Checking. When we reach line 3, it is guaranteed that Mi ≤ Ai for
every i ∈ I∀ (and Ai ≤ Mi for every i ∈ I∃, since Ai = Mi). Thus, we try
to apply the proof rule (PR), and model-check 〈A1, . . . ,An〉 |= P (Line 3) by
running mmc. If the result is true, then by (PR), we have M |= P (Line 5).
Otherwise, we get a counterexample vector of the form 〈w1, . . . , wk〉.
Counterexample Analysis. (Lines 6–9). The procedure spurious iterates
over the words in the counterexample 〈w1, . . . , wk〉, and returns a list of tuples
(i, wi) such that wi /∈ L(Mi). Note that since 〈w1, . . . , wk〉 is a counterexam-
ple, it holds that wi ∈ L(Ai) for every i ∈ [1, k]. Thus, every wi in the list
of (i, wi) is spurious. If there are no spurious counterexamples, then we return
M �|= P (Line 8). Otherwise, we refine the approximations based on the spurious
counterexamples.

In the worst case, the run iterates until Mi = Ai for every i ∈ [1, n], in which
case there are no spurious counterexamples. Of course, termination may happen
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much earlier. Correctness follows from the correctness of (PR). Hence, we have
the following.

Lemma 12. Algorithm 2 terminates with the correct result.

Algorithm 2 improves Algorithm 1 in several ways. First, in order to compute the
counterexamples there is no need to complement the models, which comes with
an exponential price. Second, the counterexamples are provided by the model-
checking process. As such, they are of “higher quality”, in the sense that they
take into account the checked property and are guaranteed to remove refuting
parts from the abstractions. This, in turn, leads to faster convergence.

6 Multi-properties for Finite Traces

We now consider models whose traces are finite. This setting is natural, for
example, when modeling terminating programs. In this case, a model is a finite-
word language, and hyperproperties can be expressed by nondeterminisitic finite
hyperautomata (NFH) [7]. To explain the idea behind NFH, we first review
nondeterministic automata.

Definition 9. A nondeterministic finite-word automaton (NFA) is a tuple A =
(Σ,Q,Q0, δ, F ), where Σ is an alphabet, Q is a nonempty finite set of states,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and
δ ⊆ Q × Σ × Q is a transition relation.

Given a word w = σ1σ2 · · · σn over Σ, a run of A on w is a sequence of states
(q0, q1, . . . qn), such that q0 ∈ Q0, and for every 0 < i ≤ n, it holds that
(qi−1, σi, qi) ∈ δ. The run is accepting if qn ∈ F . The language of A, denoted
L(A), is the set of all words on which A has an accepting run. A language L is
called regular if there exists an NFA such that L(A) = L.

An NFA A is called deterministic (DFA) if |Q0| = 1, and for every q ∈ Q and
σ ∈ Σ, there exists exactly one q′ for which (q, σ, q′) ∈ δ. It is well-known that
every NFA has an equivalent DFA.

We now turn to explain NFH. An NFH A consists of a set of word variables, an
NFA nfa(A) that runs on words that are assigned to these variables (which is akin
to the unquantified LTL formula in a HyperLTL formula), and a quantification
condition that describes the requirements for these assignments (which is akin
to the quantifiers in a HyperLTL formula). Thus, NFH can be thought of as
the regular-language counterpart of HyperLTL. We demonstrate NFH with an
example.

Example 4. Consider the NFH A in Fig. 3 (left) over the alphabet Σ = {a, b}
and two word variables x and y. The NFA part nfa(A) of A reads two words
simultaneously: one is assigned to x and the other to y. Accordingly, the letters
that nfa(A) reads are tuples of the form {σx, σ′

y}, where σ is the current letter
in the word that is assigned to x, and similarly for σ′ and y. The symbol # is
used for padding at the end if one of the words is shorter than the other. In
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the example, for two words w1, w2 that are assigned to x and y, respectively,
nfa(A) requires that (1) w1, w2 agree on their a positions, and (2) once one of the
words has ended, the other must only contain b letters. Since the quantification
condition of A is ∀x∀y, in a language S that A accepts, every two words agree on
their a positions. As a result, all the words in S must agree on their a positions.
The hyperlanguage of A is then the set of all finite-word languages in which all
words agree on their a positions.

Fig. 3. The NFH A (left) and the MNFH B (right).

The model-checking problem for NFH is to decide, given a language S and an
NFH A, whether A accepts S, in which case we denote S |= A. When S is given
as an NFA, the model-checking problem is decidable (albeit, as for HyperLTL,
by a nonelementary algorithm) [7].

6.1 Multi-languages and Multi-NFH

As in the case of models with infinite traces, we generalize languages and NFH
to multi-languages and multi-NFH (MNFH). Thus, a multi-language is a tuple
〈S1, S2, . . . Sk〉 of finite-word languages, and an MNFH A is an NFH with indexed
quantifiers. The semantics is similar to that of Sect. 3, i.e., a quantifier Qi in the
quantification condition of A refers to Si (rather than all quantifiers referring to
the same language in the case of standard NFH).

We consider multi-languages that consist of regular languages. We
can express such a multi-language 〈L1, L2, . . . , Lk〉 by a tuple M =
〈M1,M2, . . . ,Mk〉 of NFAs, where L(Mi) = Li for every i ∈ [1, k]. We call
M a multi-NFA (MNFA). We define the model-checking problem for MNFA
accordingly, and denote M |= P if an MNFH P accepts M.

Example 5. Consider an MNFA 〈S,C〉, where S models a server and C models
a client, and the MNFH B of Fig. 3 (right) over Σ = {req, grt, τ}, where req
is a request sent to the server, grt is a grant given to the client and τ is a
non-communicating action.

The multi-model 〈S,C〉 satisfies B iff for every run of C there exists a run of
S such that every request by C is eventually granted by S. This means that the
server does not starve the client.
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From now on, we assume without loss of generality that the quantification
conditions of the MNFH that we consider are of the form Q

1
1x1Q

2
2x2 . . .Qk

kxk.
We now show that the model-checking problem for MNFH is equivalent to

the model-checking problem for NFH. For the first direction, it is easy to see
that a language S is accepted by an NFH A iff 〈S〉 is accepted by the MNFH A′

obtained from A by indexing all quantifiers in the quantification condition of A
by the same index 1. We now show the second direction.

Theorem 2. Let P be an MNFH, and let M = 〈M1, . . . Mn〉 be an MNFA.
Then there exist an NFA M and an NFH P such that M |= P iff M |= P.

Proof Sketch. We first mark the individual traces of every NFA in M by adding
its index to all its letters. That is, we replace every letter σ in Mi with (σ, i).
Then, we union all the NFAs in the updated MNFA M to a single NFA M. Now,
every word w in L(M) is marked with the index of the NFA in M from which
it originated.

We translate the MNFH P to an NFH P as follows. First, we remove the
indices from the quantifiers in the quantification condition α of P. Next, recall
that a letter in nfa(P) is in fact a letter-set of the form {σ1x1

, . . . σkxk
}. We update

these letters according to M: for every variable x, if x is under the quantifier
Q

ix in α, then we replace every occurrence of σx in nfa(P) with (σ, i)x.
Every ∃ix in α requires the existence of a word w ∈ L(Mi) that is assigned

to x and is accepted by nfa(P) (along with other words assigned to the other
variables). Accordingly, P now requires the existence of a word w ∈ L(M) that
originates from L(Mi) that is assigned to x and is accepted by nfa(P). That is,
the requirement for ∃ quantifiers is maintained.

To maintain the requirements for ∀ quantifiers, we add a new accepting sink q
to nfa(P), and add transitions to q from every state with every letter-set in which
a letter (σ, j)x occurs, where α includes ∀ix for i �= j. Intuitively, ∀ quantifiers
in P require that every word from L(M) that is assigned to x is accepted by
nfa(P). Since in P we only required every word from L(Mi) to be accepted, we
use q to accept words from all the other NFAs in M that are assigned to x. ��

The construction in the proof of Theorem 2 uses an alphabet whose size is
polynomial in the original alphabet. The model M that we construct is linear
in the size of M, and the state space of P is linear in that of P. However, since
the size of the alphabet is larger, and the letters of P are set-letters, there may
be exponentially many transitions in P compared with P.

However, the model-checking algorithm from [7] can be easily altered to han-
dle MNFH, without going through the reduction. Additionally, when M �|= P, it
is possible to extract a counterexample 〈w1, . . . , wk〉 when Qi = ∀ for i ∈ [1, k].

Lemma 13. There is a direct algorithm for model-checking MNFH.

7 Learning-Based Multi-property Model-Checking

We now describe ways of finding approximations according to the proof rules
(PR) and (PR) described in Sect. 4, for the multi-models of MNFA and
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multi-properties of MNFH of Sect. 6. The correctness of our rules stems only
from the semantics of the quantifiers and so still holds.

The L∗ algorithm [2] is a learning algorithm that finds a minimal DFA for an
unknown regular language U . We exploit the fact that MNFA consist of regular
languages to introduce an L∗-based algorithm for constructing approximations
for the languages in the MNFA and for model-checking MNFH. To explain the
idea behind our method, we first describe the L∗ algorithm.

The L∗ Algorithm. L∗ consists of two entities: a learner, whose goal is to
construct a DFA for U , and a teacher, who helps the learner by answering mem-
bership queries – “is w ∈ U?”, and equivalence queries – “is A a DFA for U?”.
In case that L(A) �= U , the teacher also returns a counterexample: a word which
is accepted by A and is not in U , or vice versa.

The learner maintains an observation table T that contains words for which
a membership query was issued, along with the answers the teacher returned
for these queries. Once T fulfills certain conditions (in which case we say that
T is steady), it can be translated to a DFA AT whose language is consistent
with T . If L(AT ) = U then L∗ terminates. Otherwise, the teacher returns a
counterexample with which the learner updates T , and the run continues.

In each iteration, the learner is guaranteed to steady T , and L∗ is guaranteed
to terminate successfully. The sizes of the DFAs that the learner produces grow
from one equivalence query to the next (while never passing the minimal DFA
for U). The runtime of L∗ is polynomial in the size of a minimal DFA for U and
in the length of the longest counterexample that is returned by the teacher.

The main idea behind learning-based model-checking algorithms is to use
the candidates produced by the learner as potential approximations. Since these
candidates may be significantly smaller than the original models, model-checking
is accelerated.

We first introduce our algorithm for the general case, in which L∗ aims to
learn the models themselves. Then, we introduce an improved algorithm in case
that the quantification condition is of the type ∀∃, in which case we can both
define stronger learning goals, and use the counterexamples provided by the
model-checker to reach these goals more efficiently.

7.1 Learning Assumptions for General Multi-properties

Consider an MNFA M = 〈M1,M2, . . . Mk〉, and an MNFH P with a quan-
tification condition α = Q

1
1x1Q

2
2x2 · · ·Qk

kxk. Algorithm L∗
MNFH, described in

Algorithm 3, computes an over-approximation for every Mi under ∀, and an
under-approximation for every Mi under ∃. It does so by running L∗ for every
Mi in parallel, aiming to learn Mi. Thus, the learner maintains a set T1, . . . Tk

of observations tables, one for every Mi. Whenever all tables are steady, the
learner submits the DFAs AT1 , . . . ATk

that it produces as candidates for the
approximations via an equivalence query. The result of the equivalence query
either resolves M |= P according to (PR) and (PR), or returns counterexam-
ples with which the learner updates the tables to construct the next round of
candidates.
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In Algorithm 3, The methods Initialize and steady are learner functions
used for initializing an observation table, and reaching a steady observation table,
respectively. The method AddCex updates the table when a counterexample is
returned from an equivalence query.

Handling membership queries is rather straightforward: when the learner
submits a query w for an NFA Mi, we return true iff w ∈ L(Mi). We now
describe how to handle equivalence queries.

Equivalence Queries. The learner submits its candidate A, which includes
its set of candidates. We first check that they are approximations for (PR), by
checking whether Mi |= ATi

for every over-approximation and ATi
|= Mi for

every under-approximation.
If all checks pass, then we model-check A |= P. If the check passes, we return

M |= P. If the candidates are not approximations for (PR) but are approxima-
tions for (PR), we model-check A |= ¬P. If the check passes, we return M �|= P.

If none of the above has triggered a return value, then there exists at least one
candidate Ai such that L(Ai) �= L(Mi). We can locate these candidates during
the over- and under-approximation checks, while computing a word w ∈ L(Mi)\
L(Ai) (in case that we found Ai not to be an over-approximation), or a word
w ∈ L(Ai)\L(Mi) (in the dual case). We then return the list of counterexamples
according to the candidates for which we found a counterexample.

Algorithm 3: L∗
MNFH

Input: M = 〈M1, . . . , Mk〉, P with α = Q
1
1π1 . . .Qk

kπk.
Output: M |= P?

1 Initialize(T1, . . . Tk)
2 while true do
3 foreach i ∈ [1, k] do
4 Ti = steady(Ti)
5 Construct ATi from Ti

6 A = 〈AT1 , AT2 , . . . ATk〉
7 (CexList, pass) = equiv(A,M,P)
8 if CexList == null then
9 if pass then

10 return M |= P

11 else
12 return M �|= P

13 foreach (wi, i) ∈ CexList do
14 AddCex(Ti, wi)

15 endwhile

Since L∗ is guaranteed to terminate when learning a regular language, Algo-
rithm 3 is guaranteed to terminate. The correctness of (PR) and (PR) guarantee
that L∗

MNFH terminates correctly at the latest after learning M (and terminates
earlier if it finds smaller appropriate approximations).
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7.2 Weakest Assumption for ∀∃
We introduce a weakest assumption in the context of multi-properties with a
quantification condition ∀∃. Intuitively, a weakest assumption is the most general
language that can serve as an over-approximation. We prove that the weakest
assumption is regular, and show how to incorporate it in a learning-based multi-
property model-checking algorithm based on (PR).

We denote MNFH with a quantification condition of the form ∀1
1x∃2

2y by
MNFH∀∃. The weakest assumption is the goal of the learning Algorithm 4 below.

Definition 10. Let M = 〈M1,M2〉 be an MNFA and let P be an MNFH∀∃.
The weakest assumption for P w.r.t. M2 is as follows.

WM2:P =
⋃

A s.t. 〈A,M2〉|=P

L(A)

That is, WM2:P is the union of all languages that along with M2 satisfy P.

Lemma 14. Let A and M2 be NFA, and P be an MNFH∀∃. Then L(A) ⊆
WM2:P iff 〈A,M2〉 |= P.

Proof. If 〈A,M2〉 |= P then the claim holds by the definition of WM2:P.
For the other direction, if L(A) ⊆ WM2:P, then for every w ∈ L(A) there
exists an NFA Aw, with L(Aw) = {w} s.t. 〈Aw,M2〉 |= P. Therefore, for every
w ∈ L(A), there exists a word w′ ∈ L(M2) s.t. P accepts {wx, w′

y}, and so by
the semantics of MNFH, we have that 〈A,M2〉 |= P. ��

We note that a similar approach to Lemma 14 cannot work for general quan-
tification conditions, since their satisfying assignments are generally not closed
under union.

To justify using WM2:P as the objective of a learning algorithm, we show
that WM2:P is regular.

In the following Lemma, AΣ∗ is an NFA that accepts all words over Σ, and
∩ denotes the intersection construction for NFA. Also, for NFA A and B, the
NFA A × B denotes the NFA over letters of the type {σx, σ′

y} where σx is from
A and σ′

y is from B that is formed by running both NFA in parallel, each with
its own word (with # padding the end of the shorter word), and ↓i denotes the
projection of the parallel construction to the i’th NFA.

Lemma 15. Let P be an MNFH∀∃ and let M = 〈M1,M2〉 be an MNFA. Then
w ∈ WM2:P iff w ∈ L((nfa(P) ∩ (AΣ∗ × M2)) ↓1).

That is, we can derive WM2:P by taking the lefthand-side projection of the
parallel run of nfa(P) with a multi-language consisting of an NFA that accepts all
words in Σ∗, and M2 (while ignoring the # symbols). Intuitively, this projection
includes all the words which can be matched with a word in M2 in a way that
is accepted by nfa(P). We can therefore deduce the following.

Corollary 1. WM2:P is regular.
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Algorithm 4: L∗
∀∃

Input: An MNFH∀∃ P, an MNFA M = 〈M1, M2〉.
Output: M |= P?

1 Initialize(T )
2 while true do
3 T = steady(T )
4 Construct AT from T
5 (cex, pass) = Equiv(AT ,M,P)
6 if cex then
7 AddCex(T, cex)
8 else
9 if pass then

10 return 〈M1, M2〉 |= P

11 else
12 return 〈M1, M2〉 �|= P

13 endwhile

7.3 Learning Assumptions for ∀∃
Let P be an MNFH∀∃ and let M = 〈M1,M2〉 be an MNFA. We now intro-
duce our L∗

∀∃ learning-based algorithm for model-checking M |= P. As we have
mentioned in 7.2, the learning goal in our L∗

∀∃ algorithm is WM2:P, as it is an
over-approximation of M1 (when M |= P). However, in this case, notice that
every A such that L(M1) ⊆ L(A) ⊆ WM2:P suffices. L∗

∀∃ then runs L∗ while
using every DFA A that is produced by the learner during the run as a candidate
for an over-approximation of M1.

We now describe our implementation for answering the membership and
equivalence queries.

Membership Queries. When the learner submits a membership query w ∈?

L(A), we model-check 〈Aw,M2〉 |= P, where Aw is a DFA whose language is {w}.
If the check passes, then there exists a word w′ ∈ L(M2) such that 〈w,w′〉 |= P.
Therefore, we return true. Otherwise, 〈w,w′〉 �|= P for every w′ ∈ L(M2), and
thus we do not include w in L(A), and return false.

Equivalence Queries. We first check that A is a potential over-approximation,
by checking if M1 |= A. If not, then we return a counterexample w ∈ L(M1) \
L(A). Otherwise, we model-check 〈A,M2〉 |= P. If the model-checking passed,
then we can conclude M |= P. Otherwise, a counterexample w is returned for a
word in L(M1) which has no match in L(M2). We now need to check if w is
spurious. If w /∈ L(M1), then we return w as a counterexample to the learner.
Otherwise, we can conclude that M �|= P.

Since L∗ is guaranteed to terminate when learning a regular language, L∗
∀∃ is

guaranteed to terminate. In both cases, when M |= P or M �|= P, the correctness
of PR and the properties of WM2:P guarantee that the algorithm terminates
with a correct answer, at most after learning WM2:P (and may terminate earlier
if it finds a smaller appropriate over-approximation).
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There are several advantages to using Algorithm 4 over Algorithm 3. First,
WM2:P may be smaller than M1 which leads to quicker convergence. Second,
there is no need to complement M1 for the equivalence query, since we only
check if M1 is contained in the candidate submitted by the learner (which is
a DFA and can be easily complemented). Finally, we can now use the more
targeted counterexample provided by the model-checking process, again leading
to quicker convergence.

While we have defined the weakest assumption and Algorithm 4 for a quan-
tification condition of the type ∀∃, both can be easily extended to handle a
sequence of ∃ quantifiers rather than a single one.

8 Conclusion

We have introduced multi-models and multi-properties – useful notions that
generalize hyperproperties to handle multiple systems. We have formalized these
notions for both finite- and infinite-trace systems, and presented compositional
proof rules for model-checking multi-properties.

For infinite-trace systems, we have introduced MultiLTL, a generalization
of HyperLTL, and have applied our proof rules in abstraction-refinement and
CEGAR based algorithms. For finite-trace systems, we have introduced multi-
NFH, which offer an automata-based specification formalism for regular multi-
properties. Here, we have applied our proof rules in automata-learning algo-
rithms. The algorithms for both approaches accelerate model-checking by com-
puting small abstractions, that allow avoiding model-checking the full multi-
model.
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