
Incremental Search for Conflict
and Unit Instances of Quantified

Formulas with E-Matching

Jochen Hoenicke(B) and Tanja Schindler(B)

University of Freiburg, Freiburg im Breisgau, Germany
{hoenicke,schindle}@informatik.uni-freiburg.de

Abstract. We present a new method to find conflicting instances of
quantified formulas in the context of SMT solving. Our method splits
the search for such instances in two parts. In the first part, E-matching
is used to find candidate instances of the quantified formulas. In principle,
any existing incremental E-matching technique can be used. The incre-
mentality avoids duplicating work for each small change of the E-graph.
Together with the candidate instance, E-matching also provides an exist-
ing node in the E-graph corresponding to each term in this instance. In
the second part, these nodes are used to evaluate the candidate instance,
i.e., without creating new terms. The evaluation can be done in con-
stant time per instance. Our method detects conflicting instances and
unit-propagating instances (clauses that propagate new literals). This
makes our method suitable for a tight integration with the DPLL(T)
framework, very much in the style of an additional theory solver.

1 Introduction

Satisfiability Modulo Theories (SMT) solving is the problem of finding solutions
for first-order formulas or proving unsatisfiability and has many applications,
e. g., in software verification, scheduling, program synthesis. Many SMT solvers
are based on the DPLL(T) framework, where a DPLL engine assigns truth values
to ground literals, thereby creating a partial model. Specialized solver modules
for each theory check the feasibility of the model or report conflicting literal
assignments or new facts (ground literals) that are implied by the theory. Usually,
these theory solvers handle only the quantifier-free fragment of the corresponding
theory. A common approach to deal with quantified formulas is to add instances
of the quantified formulas to the ground part of the problem in order to prove
unsatisfiability. A challenge is to select those instances that are useful for the
solving process, as adding too many formulas overloads the solver. Finding the
most promising instances is an active topic of research [1,4,5,8,13–15].

In the context of the DPLL(T) framework, a conflicting instance that refutes
the partial model provided by the DPLL engine is most useful [15]. Other useful

Partially supported by the German Research Council (DFG) under HO 5606/1-2.

c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 534–555, 2021.
https://doi.org/10.1007/978-3-030-67067-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67067-2_24&domain=pdf
http://orcid.org/0000-0002-6314-1041
http://orcid.org/0000-0002-7462-8445
https://doi.org/10.1007/978-3-030-67067-2_24

Incremental Search for Conflict and Unit Instances 535

instances are unit-propagating instances that show that a literal is implied by
the partial model and allow the solver to assign the literal correctly. We present
a new method for finding such conflicting or unit-propagating instances on the
fly as the DPLL engine builds the partial model. This enables a tight integration
of quantifier reasoning with the DPLL(T) framework.

The basic idea in DPLL(T) based solvers is to separate Boolean reasoning
from theory reasoning. A DPLL engine searches for a solution of the Boolean
core of the formula by guessing literals that should be true and propagating con-
sequences from these guesses. The theory solvers guide the search by constantly
checking if there is a model in the corresponding theory for the partial Boolean
solution. If a theory solver finds a conflict, i.e., a subset of literals that together
are unsatisfiable in the theory, then this is immediately reported to the DPLL
engine in form of a lemma that states that one of the literals must be false.
The DPLL engine backtracks decisions that lead to the conflict, and continues
the search for a solution of the Boolean core augmented with the new lemma.
This allows the DPLL engine to skip huge parts of the search space. Moreover,
theory solvers can provide unit clauses that show that a literal must be true in
the current context. This also reduces the search space considered by the DPLL
engine, and has been shown to be effective for several quantifier-free logics [11].

We think that this approach is applicable for quantifier reasoning for the same
reasons. Instead of adding many instances at a time, we consider a quantifier
solver as one of the theory solvers in the DPLL(T) framework. That is, the
quantifier solver actively participates in the search for a satisfying solution of a
given problem by providing useful instances that guide the search in the right
direction. A useful instance can be a conflicting instance that shows that the
search took a wrong branch, or a unit-propagating instance that propagates a
new fact. The core of our method is an incremental search for such conflicting and
unit instances, that uses an incremental E-matching module. The incrementality
is essential for the quantifier solver to find new instances without repeating the
full search after each step in the solving process.

E-matching is the problem of finding ground terms that match a so-called
pattern, i.e., a term that may contain variables. A term matches a pattern if
it is equal, up to congruence, to the pattern instantiated with a suitable vari-
able substitution. E-matching is used in many existing solvers as a heuristic
to find potentially useful instances. The idea is to choose a set of patterns (a
multi-pattern) for a quantified formula such that all variables are contained. An
instance of a quantified formula is considered to be relevant if all patterns match
for a common variable substitution. The success of E-matching based instan-
tiation is strongly influenced by the choice of patterns. If the patterns are too
restrictive, a relevant instance may not be found; if the patterns are too general,
many irrelevant instances may be produced.

536 J. Hoenicke and T. Schindler

To illustrate E-matching based instantiation and its shortcoming, we consider
the following example formula.

f(a, b) = a ∧ f(b, b) = b ∧ f(b, c) = c ∧ a = c ∧ b �= c

∧ (∀x, y, z. f(x, y) �= c ∨ f(y, z) �= c ∨ f(x, z) = c)

A multi-pattern suitable for E-matching in the universally quantified subfor-
mula is f(x, y), f(y, z). The E-matching engine matches each pattern with
the terms in the ground part of the formula, to find values for x, y, and z,
such that both instantiated patterns have an existing congruent term. One
potential match yields the ground terms f(b, c), f(a, b) and the substitution
{x �→ b, y �→ c, z �→ b}. This is a valid match: the instantiated second pattern
f(c, b) is congruent to f(a, b) since a = c is part of the ground formula. The
instantiated clause f(b, c) �= c ∨ f(c, b) �= c ∨ f(b, b) = c leads to a contradiction
with the ground part and shows that the formula is unsatisfiable.

However, E-matching also finds a lot of instances that are not useful to
show unsatisfiability. In the above example, also {x �→ a, y �→ b, z �→ b} is
matching the pattern. The corresponding instance is already satisfied as the
last literal of the clause, f(a, b) = c, is already true. In total, E-matching finds
five instances in this small example, of which three are already true, one is a
conflict, and one derives some fact about the non-existing ground term f(a, a).
The main problem with producing irrelevant instances is that they can trigger
new matches. This may even lead to so-called matching loops, e.g., if a new term
from an instantiated formula matches the pattern again leading to increasingly
larger variable substitutions.

E-matching is not only useful to find candidates for conflicting instances, it
also provides congruent terms that can be used to evaluate the instances without
any extra work. In the example above, f(c, b) �= c can be evaluated using the
congruent term f(a, b) for f(c, b). This insight is the core of our method to find
conflicting instances fast enough to be used as a DPLL(T) theory solver.

Our incremental search for conflicting and unit-propagating clauses is subdi-
vided into two parts. First we search for candidate substitutions for quantified
clauses by using E-matching for the quantified terms in the clause. We use the
congruent terms provided by E-matching in the second part to evaluate the
clause instance without actually building the instantiated terms. Only if the
instance is found to be conflicting or unit-propagating, it is created. The app-
roach of splitting this search into two parts has the advantage that the search
for candidate substitutions using E-matching can be done incrementally [3] and
does only little work each time a new ground literal is set or removed. The
clause evaluation can be done literal by literal, which allows to not only detect
conflicting instances, but also instances that propagate new literals.

We introduce the notation and basic definitions in Sect. 2. In Sect. 3, we
give a brief overview of the DPLL(T) framework. We describe the congruence
closure algorithm which is a decision procedure for the theory of equality, and
outline E-matching based instantiation. In Sect. 4, we present our approach to

Incremental Search for Conflict and Unit Instances 537

find conflicting and unit-propagating instances of quantified formulas, and give
theoretical results on correctness and completeness of the approach. Experimen-
tal evidence of the usefulness of our approach is given in Sect. 5. Finally, we
mention related work in Sect. 6, and discuss future work in Sect. 7.

2 Notation and Basic Definitions

We assume standard sorted first-order logic with equality. A first-order theory is
defined by its signature consisting of constant, function and predicate symbols,
and a set of axioms for its interpreted symbols. We consider in the following
mainly the theory of equality and uninterpreted functions TE . The axioms of TE

establish reflexivity, symmetry and transitivity for the equality symbol =, and
congruence for each uninterpreted function symbol.

A term is a variable, a constant, or the application of an n-ary function to n
terms. An atom is the application of an n-ary predicate to n terms. A literal is
an atom or its negation. A clause is a disjunction of literals. A term, literal or
clause is ground if it does not contain variables.

In the following, we assume w.l.o.g. that every formula is in conjunctive nor-
mal form (CNF), i.e., it is a conjunction of clauses. We also assume that every
variable occurring in the formula is universally quantified. The latter can be
established by introducing Skolem variables or functions for existentially quanti-
fied variables [12]. Thus, the formula is a conjunction of clauses and each clause
implicitly universally quantifies over its free variables.

We use the letters a, b, c to denote constant symbols, the letters f, g, h to
denote uninterpreted function symbols, and the letters x, y, z to denote univer-
sally quantified variables. We use the letter t to denote ground terms and the
letter p to denote terms that may contain free variables (patterns). We use the
letter � for literals, F and ϕ for formulas, and C for clauses. We use the symbol ⊥
to denote the formula that is always false. We write p[x1, . . . , xn], �[x1, . . . , xn],
ϕ[x1, . . . , xn], and C[x1, . . . , xn] for terms, literals, formulas, and clauses, respec-
tively, containing at most the variables x1, . . . , xn. For a formula F , we write TF

to denote the set of all terms occurring in F .
A substitution is a mapping from variables to terms, and it is a ground substi-

tution if it maps all variables to ground terms. We write σ = {x1 �→ t1, . . . , xn �→
tn} for the substitution that maps variable xi to term ti for i ∈ {1, . . . , n}. We
also use the notation p[x �→ t] to denote the term that results from replacing the
variable x in p with the term t.

3 Preliminaries

In this section, we outline standard methods in SMT solvers that are the basis for
our approach, namely the DPLL(T) framework that separates Boolean reasoning
from theory reasoning in SMT solvers, the congruence closure algorithm which
is an efficient decision procedure for the quantifier-free fragment of the theory of
equality TE , and finally the technique of E-matching based instantiation which
is a common approach to find useful instances of quantified formulas.

538 J. Hoenicke and T. Schindler

3.1 DPLL(T)

Many SMT solvers are based on the DPLL(T) framework. The basic idea is to
separate Boolean reasoning from theory reasoning. The DPLL engine takes care
of the propositional core of the CNF formula by assigning truth values to literals.
In particular, it tries to satisfy each clause in the formula by assigning at least
one literal to true. A clause where all literals are assigned to false is called a
conflict clause. A clause where all but one literals are assigned to false, and
this literal has not yet been assigned, is called a unit clause, and can be used
to propagate this literal. If no unit clauses exist, the DPLL engine must make
decisions on literals which may have to be backtracked if they lead to a conflict.

During the solving process, the currently assigned literals are passed to theory
solvers that use specialized decision procedures. If a theory solver finds that
the conjunction of literals is in conflict with the theory axioms, it returns a
corresponding conflict clause (a subset of literals that are unsatisfiable) to the
DPLL engine. The theory solver can also propagate literals that must be true
in the theory under the current partial literal assignment by providing a unit
clause. Conflict clauses may only contain existing literals, but theory solvers can
create new literals that may be propagated by a unit clause to the DPLL engine
or to other theories. In order to determine that a satisfying assignment has been
found, a theory solver must also be able to provide a complete model.

The interaction between the DPLL engine and the theory solvers can happen
in several stages. While it is enough to report any conflicts once all literals have
been assigned, finding conflicts early and propagating literals implied by the
theory during the search for a Boolean model can often help the DPLL engine
to significantly reduce the search space [11]. However, theory reasoning comes
with a certain cost, which is why it does not always make sense to compute all
theory conflicts and propagations in each step of the solving process. Finding
the right compromise between efficiency and completeness of theory propagation
is the key in building an efficient solver.

3.2 Congruence Closure

The quantifier-free conjunctive fragment of the theory of equality TE can be
decided by computing the congruence closure for the equality relation on a graph
representing the involved terms [10].

An E-graph is a graph with nodes (vertices) and two kind of edges. Figure 1
shows an example. Each node in the graph represents a term and for every term
there is at most one node. If the term is a function application, it is labelled by
the function symbol and solid edges point from the node to the arguments of
the function application. Dashed edges, the so-called equality edges, represent
equalities between these terms that were decided by the DPLL engine or that
are propagated congruences. Let ∼ denote the transitive closure of all equality
edges, i.e., t1 ∼ t2 is true if and only if t1 and t2 are connected by a sequence
of equalities. The connected components [t]= = {t′ | t ∼ t′} are called the
congruence classes. There is an efficient algorithm based on union-find data

Incremental Search for Conflict and Unit Instances 539

Fig. 1. E-graph for the formula f(a, b) = a ∧ f(b, b) = b ∧ f(b, c) = c ∧ a = c. Nodes
represent terms, solid arrows between nodes symbolize function-argument relations,
and dashed lines symbolize equality.

structures that builds the E-graph in O(n log n). The lookup whether t1 ∼ t2
holds for two nodes t1 and t2 in the graph is in O(1).

The congruence closure algorithm works incrementally in a DPLL setting.
It starts with the empty E-graph that does not have any equality edge. When
the DPLL engine decides or propagates an equality, the corresponding nodes are
connected with an equality edge. If a disequality is decided, it is remembered
for the corresponding pair of congruence classes (this information is updated
whenever congruence classes are merged by a new equality edge).

Whenever congruence classes are merged, the congruence closure algorithm
also propagates all implied congruences. For each pair of function application
terms f(t1, . . . , tn) and f(t′1, . . . , t

′
n) on the same function symbol, the algorithm

checks whether ti ∼ t′i holds for 1 ≤ i ≤ n. If this is the case, the congruent
function applications are connected by an equality edge. There are efficient data
structures to quickly find the candidate application terms that may be affected
by a previous merge of two congruence classes.

When a disequality is set between two terms with t1 ∼ t2 or if two con-
gruence classes are merged that already have a disequality between them, the
congruence closure algorithm reports a conflict. This conflict can be explained
by the disequality t1 �= t2 and the path of equality edges between t1 and t2.

For terms t1, t2 existing as nodes in the E-graph, it can be determined in con-
stant time (each node remembers its representative) whether the literals decided
by the DPLL engine imply an equality t1 = t2. For literals t1 �= t2, the algo-
rithm can check if there a disequality set between the corresponding congruence
classes. In that case the literals decided by the DPLL engine imply the disequal-
ity. However, not all implied disequalities can be found this way. For example,
the literal f(a, b) �= f(b, a) implies a �= b but the congruence closure algorithm
would not find this disequality.

3.3 E-Matching Based Instantiation

A common approach in SMT solvers to handle problems containing quantified
formulas is to add instances of the quantified formulas to the ground part of
the problem, and solve the resulting ground formula. A heuristic method to
find instances that help the solving process is based on E-matching. It was first
implemented in the Simplify theorem prover [5]. An incremental version has been
presented for instance in [3].

540 J. Hoenicke and T. Schindler

E-matching is the problem of finding terms in the E-graph that match a
given pattern (a term with free variables) up to congruence. The idea of E-
matching based instantiation is that an instance ϕσ of a universally quantified
formula ∀x1, . . . , xn. ϕ[x1, . . . , xn] is useful to solve the problem if it contains
enough terms that are congruent to terms in the current E-graph, as such an
instance allows for deriving new information about existing terms. In order to
find such instances, non-ground terms p1, . . . , pn, a so-called multi-pattern (or
trigger), from the formula ϕ are selected. They should contain all free variables
of ϕ in order to extract a substitution from a match. The E-matching algorithm
then searches for terms t1, . . . , tn in the E-graph, and a substitution σ, such
that t1 ∼ p1σ, . . . , tn ∼ pnσ holds, where ∼ denotes the congruence closure of
the equality edges of the E-graph.1 We say that each ti matches the pattern pi.
Here, ti and piσ need not be the same term, but congruent terms. In particular,
ti occurs explicitly in the E-graph, while piσ does not necessarily occur there.
For pi = f(p′

1, . . . , p
′
m), this means that the congruence class of ti contains a

term f(t′1, . . . , t
′
m) such that t′j ∼ p′

jσ holds.

Example 1. Let F : f(a) = b ∧ g(b) = c ∧ ∀x. g(f(x)) = d. A useful pattern for
E-matching is p : g(f(x)). Figure 2 shows the E-graph for the ground part, and
how the pattern p is matched. The result of applying E-matching is σ = {x �→ a}
and the term t with t ∼ pσ is g(b). Note that pσ = g(f(a)) does not exist in the
E-graph.

Fig. 2. E-matching for F : f(a) = b∧ g(b) = c∧∀x. g(f(x)) = d. The left part displays
the E-graph for the ground part of F , the right part displays the pattern g(f(x)) for
the quantified part. Solid arrows symbolize function-argument relations, dashed lines
symbolize equality, and the dotted arrows display which terms in the E-graph match
with which subterm of the pattern.

E-matching is usually used as a basis for a heuristic instantiation procedure.
For a quantified formula ϕ and a corresponding multi-pattern p1, . . . , pn, when-
ever matching terms t1, . . . tn and a substitution σ with ti ∼ piσ are found, the
instance ϕσ is added to the ground problem. One problem with E-matching is to

1 From now on ∼ denotes the congruence closure of the equality edges in the E-graph
and not the transitive closure as in the previous section. Note that this is also defined
for pσ, if it does not exist in the E-graph.

Incremental Search for Conflict and Unit Instances 541

choose the right multi-pattern. If the pattern is too strict, important instances
may be missed. If the pattern is too loose, it creates too many irrelevant instances
which may cause new matches. In general, E-matching cannot be used to show
satisfiability for a quantified formula; although there are quantified formulas with
patterns for which E-matching is complete.

4 Finding Conflict and Unit Instances

In this section we describe our algorithm to find conflict and unit instances
for quantified clauses. We assume that the input formula was preprocessed into
conjunctive normal form and that existential quantifiers were skolemized by
introducing fresh constants or function symbols [12]. All variables occurring in
clauses are universally quantified. Thus, a quantified clause always is of the form

∀x1, . . . , xn. �1[x1, . . . , xn] ∨ . . . ∨ �m[x1, . . . , xn]

where �1, . . . , �m are literals containing at most the variables x1, . . . , xn. We
omit the universal quantifier and implicitly see all free variables in a clause as
universally quantified.

The quantified clauses are handled by a separate quantifier theory. Given a
quantified clause C[x1, . . . , xn], the theory searches for a ground substitution σ
for x1, . . . , xn such that the resulting instance Cσ is in conflict with the current
partial model, or leads to a propagation. We define such instances as follows.

Definition 1. Let M be a (partial) literal assignment and let C := �1 ∨ . . .∨ �m

be the body of a quantified clause containing the free variables x1, . . . , xn.

1. A ground instance Cσ for a substitution σ over x1 . . . xn is conflicting if
M ∪ {Cσ} |=T ⊥, or, equivalently, M |=T ¬�iσ for all i ∈ {1, . . . , m}. (This
definition follows [15].)

2. A ground instance Cσ is unit-propagating if there is an i such that M |=T
¬�jσ for all j �= i.

Note that this definition does not require a clause instance resulting from a
conflicting or unit-propagating instance to be in conflict with the Boolean model,
i.e., it is not a conflict or unit clause for the DPLL engine. Theory reasoning may
be necessary to derive that the clause instance is unsatisfiable for the current
partial assignment M . In particular, the literal instances do not always exist,
and the definition of unit-propagating instances also allows new terms in �iσ.

In the next section, we explain how to find conflicting and unit-propagating
instances in the theory of equality TE . In Sect. 4.2, we then describe how the
approach can be extended to the combination with linear arithmetic.

4.1 Finding Substitutions in the Theory of Equality

In the following we describe how to find conflicting and unit-propagating
instances for quantified clauses in the theory of equality TE . As mentioned in

542 J. Hoenicke and T. Schindler

the beginning of Sect. 4, the input formulas are preprocessed into conjunctive
normal form. An uninterpreted predicate is treated as a function returning a
Boolean and converted to an equality with the constant true. The preprocessor
also applies destructive equality resolution (DER): clauses of the form x �= p∨C
where p does not contain x are replaced by the equivalent clause C[x �→ p]
where all occurrences of x are replaced by p. Also trivially false literals x �= x
are removed from the clause. These formula simplifications are important for
completeness as explained in Theorem 1 on page 14. From now on, let F be the
preprocessed formula, and C := C[x1, . . . , xn] be a quantified clause in F with
free variables x1, . . . , xn.

Our approach to find conflicting and unit-propagating instances consists of
three steps.

1. For each non-ground literal p = p′ or p �= p′ in C, solve the E-matching
problem for the multi-pattern p, p′. This finds ground substitutions σ for the
variables in p, p′ and congruent ground terms t ∼ pσ, t′ ∼ p′σ.

2. Evaluate the equivalent literal t = t′ or t �= t′ using information from the
congruence closure theory solver.

3. Extract the common substitutions σ for all variables in C that are conflicting
or unit-propagating.

We illustrate our approach with the help of the following example.

Example 2. We assume that the DPLL engine has already set the following
literals to true.

M : f(a, b) = a, f(b, b) = b, f(b, c) = c, a = c

This literal assignment results in the E-graph displayed in Fig. 1. In the follow-
ing we will show how to find conflicting and unit-propagating instances for the
quantified clause

C : f(x, y) �= c ∨ f(y, z) �= c ∨ f(x, z) = c

with free variables x, y, z.

Step 1: Find Substitutions and Congruent Terms. The first step to find conflict-
ing and unit-propagating instances for a quantified clause is to detect substitu-
tions for which the value of the resulting instance in the current partial model
can be determined without building the instance. This is the case if there exists
a ground term t ∈ TF for each quantified term p[x1, . . . , xn] ∈ TC such that t
and p[x1, . . . , xn] are congruent under the substitution σ, i.e., t ∼ p[x1, . . . , xn]σ.

We search for such substitutions for each literal separately. In particular, for
an equality or disequality literal in TE , i.e., a literal � with underlying atom
p[x1, . . . , xn] = p′[x1, . . . , xn], we search for a substitution σ such that there
exist terms t ∈ TF and t′ ∈ TF with t ∼ p[x1, . . . , xn]σ and t′ ∼ p′[x1, . . . , xn]σ.
These substitutions can be found by applying E-matching on the multi-pattern
p[x1, . . . , xn], p′[x1, . . . , xn]. If one of the two patterns p, p′ is ground, then we

Incremental Search for Conflict and Unit Instances 543

use only the other as a pattern. The substitutions found by E-matching are
then stored in a table, which we will refer to as substitution table, where each
row stands for a substitution σ and also stores the terms t, t′ ∈ TF with t ∼
p[x1, . . . , xn]σ and t′ ∼ p′[x1, . . . , xn]σ. If a variable appearing in the clause C
does not appear in the literal �, the substitution for this variable is irrelevant for
the literal, and the column corresponding to the variable is filled with asterisks.

E-matching can be implemented to work incrementally, and therefore, the
substitution tables can be built up incrementally as well.

Example 3. Consider again the literal assignment M and the quantified clause
C from Example 2. After E-matching with the patterns f(x, y), f(y, z), and
f(x, z), respectively, the substitution tables for the literals look as follows.

f(x, y) �= c
x y z congruent
a b ∗ f(a, b), c
b b ∗ f(b, b), c
b c ∗ f(b, c), c

f(y, z) �= c
x y z congruent
∗ a b f(a, b), c
∗ b b f(b, b), c
∗ b c f(b, c), c

f(x, z) = c
x y z congruent
a ∗ b f(a, b), c
b ∗ b f(b, b), c
b ∗ c f(b, c), c

Step 2: Evaluate Literal Instances. For each literal, we can now determine which
value the literal instance resulting from a substitution would have in the current
partial assignment. The value of a literal under a given substitution can be
determined by checking equality or disequality for the congruent terms t, t′ ∈ TF

with t ∼ pσ and t′ ∼ p′σ. As mentioned in Sect. 3.2, the partial assignment for
the theory of equality is represented by the E-graph, together with a set of
disequality literals that are currently set to true by the DPLL engine.

If the literal is implied by the current partial assignment, the corresponding
instance is irrelevant for the current state as the clause is already satisfied. If the
negation of the literal is implied, it can lead to a conflicting or unit-propagating
instance. If neither the literal nor its negation is implied, it is a possible candidate
for unit-propagation. For an equality literal � : p[x1, . . . , xn] = p′[x1, . . . , xn], the
value valσ(�) under a substitution σ with congruent terms t ∼ p[x1, . . . , xn]σ
and t′ ∼ p′[x1, . . . , xn]σ is defined as follows.

valσ(�) =

⎧
⎪⎪⎨

⎪⎪⎩

irrel if the congruence classes [t]= and [t′]= are equal
false if a disequality t1 �= t2 between terms t1 ∈ [t]=

and t2 ∈ [t′]= is set
unit otherwise

For a disequality literal � : p �= p′, the value valσ(�) is defined analogously with
first and second case swapped.

We evaluate each row of the substitution table and get a literal value table
where each row represents a substitution and the corresponding literal value. As
in the substitution tables, a column full of asterisk indicates a variable that does
not appear in the literal. We add a row full of asterisks in the end of the table that
represents all substitutions where E-matching has not found congruent terms.

544 J. Hoenicke and T. Schindler

If all other literals evaluate to false under such a substitution, this substitution
leads to a unit-propagating instance that propagates a literal on new terms.
While it may sometimes be helpful to propagate these literals, it often leads to
many unnecessary propagations and can even lead to matching loops. Therefore,
we have an option to either mark this row as unit or as irrelevant depending on
whether equalities on unknown terms should be propagated.

Example 4. The tables T1, T2, and T3 below are the literal value tables corre-
sponding to the substitution tables of f(x, y) �= c, f(y, z) �= c, and f(x, z) = c,
respectively, from Example 3.

T1

x y z value
a b ∗ false
b b ∗ unit
b c ∗ false
∗ ∗ ∗ unit/irrel

T2

x y z value
∗ a b false
∗ b b unit
∗ b c false
∗ ∗ ∗ unit/irrel

T3

x y z value
a ∗ b irrel
b ∗ b unit
b ∗ c irrel
∗ ∗ ∗ unit/irrel

Step 3: Evaluate Clause Instances and Extract Substitutions. Once a table for
each literal has been built, these tables are combined in order to determine the
value of the clause instances under the substitutions found for the literals. As
we are only interested in conflicting and unit-propagating instances, we consider
substitutions where a literal instance has value irrel, or where two or more
literals have value unit, to be irrelevant. Thus, we distinguish three values for
the clause tables: false if all literals evaluate to false under a substitution, unit
if all but one literal evaluate to false under a substitution and the remaining
literal evaluates to unit, and irrel for all other cases.

The clause value tables are computed as follows. A new clause table starts
with a row full of asterisks mapping to the value false, i.e., it looks as follows.

x1 . . . xn value
∗ . . . ∗ false

Then for each row in the clause table and the next literal table, we check if
they are compatible and combine them. Compatible means, for each variable
the terms are currently congruent, or for one table the variable does not occur
in the substitution, i.e., there is an asterisk in the corresponding column. If the
rows are compatible, the substituted terms are combined by keeping the terms
from the first table, except for the positions marked with an asterisk, where
we use the terms from the second row. The values of the tables are combined
according to the mapping

(x, false) �→ x

(false, x) �→ x

else �→ irrel

Incremental Search for Conflict and Unit Instances 545

A row becoming irrelevant can be dropped. The clause table is combined with
the literal table for each literal in the clause.

The result is a table that contains a row for each conflicting or unit-
propagating instance with values false or unit, respectively, and a row full
of asterisks with value irrel.

Example 5. We now combine the literal value tables from Example 4 step by
step, i.e., in the first step we combine the default clause table T0 with the table
T1 for f(x, y) �= c, then we combine the result with the table T2 for f(y, z) �= c
and finally with T3 for f(x, z) = c.

T0 + T1

x y z value
a b ∗ false
b b ∗ unit
b c ∗ false
∗ ∗ ∗ unit/irrel

T0 + T1 + T2

x y z value
a b b unit
a b c false
a b ∗ unit/irrel
b b c unit
b c b false
b c ∗ unit/irrel
∗ a b unit/irrel
∗ b c unit/irrel
∗ ∗ ∗ irrel

T0 + T1 + T2 + T3

x y z value
a b c unit/irrel
b c b unit
∗ ∗ ∗ irrel

Note that the row for the substitution {x �→ b, y �→ c, z �→ b} in T0 +T1 +T2 and
T0 + T1 + T2 + T3 results from combining {x �→ b, y �→ c, z �→ ∗} from T0 + T1

with {x �→ ∗, y �→ a, z �→ b} from T2, which are compatible because a ∼ c holds.
The substitution σ = {x �→ b, y �→ c, z �→ b} produces a unit-propagating

instance for C containing the term f(c, b) which is a new term, but congruent
to the term f(a, b) found for the literal f(y, z) �= c. The substitution σ = {x �→
a, y �→ b, z �→ c} also produces a unit-propagating instance for C, but this
instance contains the new term f(a, c) that is not congruent to any known term
so far.

If we consider M ′ : M,a �= b, the table T ′
3 for the literal f(x, z) = c changes

and so does the final clause table.

T ′
3

x y z value
a ∗ b irrel
b ∗ b false
b ∗ c irrel
∗ ∗ ∗ unit/irrel

T0 + T1 + T2 + T ′
3

x y z value
a b c unit/irrel
b c b false
∗ ∗ ∗ irrel

The instance Cσ with σ = {x �→ b, y �→ c, z �→ b} is conflicting for M ′.

Instantiation. After computing the clause value tables, the conflicting instances
are built. These instances often create new terms and literals, because with
E-matching the term pσ may not exist in the E-graph. However, in this case
the solver for congruence closure can propagate these new literals to false.

546 J. Hoenicke and T. Schindler

The quantifier theory waits until all literals are propagated by the theory of
equality and only then returns the instance as conflict clause.

If no conflicting instances are found, the unit-propagating instances are built.
Again these may contain new terms and literals that the solver for congruence
closure will propagate to false. Only when the instances become unit clauses,
they will be returned by the quantifier theory solver.

Theoretical Results. The presented method is incomplete in the sense that it can-
not detect all conflicting or unit-propagating instances for the theory of equality
TE . There are two reasons for the incompleteness:

1. The congruence closure algorithm does not propagate all implied disequalities.
For example if f(a) �= f(b) is set, the disequality a �= b cannot be detected
in the E-graph. Thus, when evaluating the literal a = b it may incorrectly be
classified as unit instead of false.

2. Some congruences cannot be found by E-matching because no congruent
terms exist in the E-graph. In particular, the equality (f(p1, . . . , pn) =
f(p′

1, . . . , p
′
n))σ holds if piσ and p′

iσ are congruent for 1 ≤ i ≤ n, but
there need not be congruent terms in the E-graph for f(p1, . . . , pn)σ and
f(p′

1, . . . , p
′
n)σ.

The first reason can be avoided. Instead of just asking for the existence of
a disequality edge between two terms, one could check if adding an equality
between the terms and propagating all congruences leads to a conflict. However,
this contradicts our main goal, which is to make the solver fast enough that it
can find conflicting instances eagerly.

To understand the second reason, we investigate the cases in which an
instance of a literal is conflicting, i.e., where M |=TE

¬�σ holds. We distin-
guish four cases. In the first case, E-matching is sufficient to find the conflicting
instance. The second to fourth cases can be avoided by preprocessing as explained
later.

Lemma 1. Let M be a consistent (partial) literal assignment, and let � be a
literal. Assume that all ground terms occurring in the literals in M and in the
literal � are present in the E-graph.

If M |=TE
¬�σ holds for a substitution σ, then

1. the literal � is an equality p = p′ or a disequality p �= p′, there are terms t, t′

in the E-graph with t ∼ pσ and t′ ∼ p′σ, and the corresponding disequality or
equality between t and t′ is implied by M , or

2. the literal � is a disequality x �= p, where p does not contain x, or
3. the literal � is a disequality x �= x, or
4. the literal � is a disequality f(p1, . . . , pn) �= f(p′

1, . . . , p
′
n) and for all corre-

sponding subterms, M |=TE
(pi = p′

i)σ holds.

Proof. M |=TE
¬�σ holds, iff M ∪{�σ} |=TE

⊥. It is well-known that the congru-
ence closure algorithm can find all ground conflicts. First, consider the case that
� : p = p′ is an equality literal. The congruence closure algorithm would create

Incremental Search for Conflict and Unit Instances 547

new terms pσ, p′σ and add an equality edge between them. Assume that case 1
does not apply. This means, pσ or p′σ are not congruent to an existing term;
we assume w.l.o.g. that this holds for pσ. So before the equality literal pσ = p′σ
is considered, the node pσ would not be equivalent to any other term in the E-
graph and there would not be any function application on pσ. Hence, the step in
the congruence algorithm that merges pσ and p′σ would not introduce any more
congruences and it would only merge the fresh node pσ. Thus, any conflict found
by the congruence closure algorithm for M ∪ {�σ} would already be present in
M . We assumed that M is consistent, so this is a contradiction.

Let now � : p �= p′ be a disequality literal. We assume that M is consistent,
but M ∪ {�σ} is not. Hence, adding pσ and p′σ to the E-graph would derive
an equality between these terms. If there is an equality between the new terms
and some already existing terms, then we are in case 1. Otherwise, the equality
can only follow by congruence, or pσ and pσ′ are identical. If they are identical
constants, the literal � must be of form x �= y or x �= x, as we assume that all
ground terms are present in the E-graph. Hence, we are in case 2 or 3. Otherwise,
both pσ and p′σ are function applications and their arguments are equal. Assume
that we are not in case 4. Then either p or p′ must be a variable, w.l.o.g. assume
p = x. If we are not in case 2 or 3, then p′ is a function application on a term
that contains x. But then σ(x) = p′(σ(x)) must follow from M . This can only
be the case if M contains an equality for a term congruent to σ(x) or one of its
parents. But then σ(x) must have a congruent term t in the E-graph, so we were
in case 1 all along. ��

This lemma shows that the following preprocessing is sufficient to find all
conflicting instances. Let C be a set of quantified clauses. We create a new set of
preprocessed clauses preprocess(C) by exhaustively applying the following rules
on C:

1. If there is a clause C ∈ C of the form C : x �= x ∨ C ′, remove it and add the
clause C ′ instead.

2. If there is a clause C ∈ C of the form C : x �= p∨C ′ where p does not contain
x, remove it and add C ′[x �→ p] instead (DER).

3. If there is a clause C ∈ C of the form C : f(p1, . . . , pn) �= f(p′
1, . . . , p

′
n) ∨ C ′,

copy it and add the clause p1 �= p′
1 ∨ · · · ∨ pn �= p′

n ∨ C ′.

Note that the third rule is sound because f(p1, . . . , pn) �= f(p′
1, . . . , p

′
n) implies

the disjunction
∨

pi �= p′
i. The preprocessor must still keep the original clause,

in case the literal is false due to an explicit disequality that can be found by
E-matching.

After preprocessing, every conflict on a single clause instance can be found
with E-matching:

Theorem 1. Let M be a consistent (partial) literal assignment and C a set
of quantified clauses. Let there be a clause C ∈ C and a substitution σ with
M |=TE

¬Cσ. Then there is a clause C ′ ∈ preprocess(C), such that for each literal
in C ′ of the form p = p′ (resp. p �= p′) there are E-matching equivalent terms
t, t′ with t ∼ pσ and t′ ∼ p′σ and M |=TE

¬(t = t′) (resp. M |=TE
¬(t �= t′)).

548 J. Hoenicke and T. Schindler

4.2 Extension to Linear Arithmetic

The approach described in the previous section can be extended to formulas
in other theories. In this section we consider the extension of our approach to
linear arithmetic. Finding congruent terms in general is difficult and costly, in
particular for literals containing terms that mix arithmetic and functions like,
e. g., f(g(x)+h(y)). In the following, we describe some extensions that we think
are useful and can still be treated with reasonable cost.

The first extension is to treat literals that contain arithmetic only at top level,
i.e., literals of the form c0+

∑
cipi[x1, . . . , xn] = 0 or c0+

∑
cipi[x1, . . . , xn] ≤ 0,

where the pi are terms of TE . In Step 1, we take the multi-pattern p1, p2, . . .
to find congruent terms with E-matching. In Step 2, the value of the literal
under a substitution σ with congruent terms ti ∼ pi[x1, . . . , xn] can then be
determined as follows. For � : c0 +

∑
cipi[x1, . . . , xn] ≤ 0, we check if there exist

any bounds on the term c0 +
∑

citi. If the term has an upper bound u ≤ 0,
then valσ(�) = true, if it has a lower bound l > 0, then valσ(�) = false, and
valσ(�) = unit otherwise. For � : c0 +

∑
cipi[x1, . . . , xn] = 0, if c0 +

∑
citi has

an upper bound u and a lower bound l, and u = l = 0, then valσ(�) = true. If
it has a lower bound l > 0 or an upper bound u < 0, then valσ(�) = false, and
valσ(�) = unit otherwise. Our solver is based on the Simplex algorithm described
in [7]. It uses the bound refinement method described there to propagate bounds
that are implied by the current state of the tableau. While this is inherently
incomplete, it is fast and the bounds are refined incrementally.

Another important extension is to treat arithmetical literals such as x < t.
These literals occur frequently when reasoning about arrays, and fall into the
decidable array property fragment [2]. In principle, any substitution for x can
be evaluated using upper and lower bounds as above, but we restrict the sub-
stitutions to consider as follows. For a clause C containing arithmetical literals
and other literals of the types above, we first build the partial clause value table
by evaluating the other literals as described before. Then for each variable x in
C, we collect a set Rx of relevant terms as follows:

1. Rx := Rx ∪ {t | σ(x) = t for σ with partial clause value false or unit}.
2. If the clause contains a literal x < t or t < x, then Rx := Rx ∪ {t}.
3. If the clause contains a literal x = t, then Rx := Rx ∪ {t + 1, t − 1}.
4. If the clause contains x < y or y < x, then Rx := Rx ∪ Ry.

This is inspired by [8]. Given those sets, the substitutions we consider for an
arithmetical literal � of form x < t, t < x or x = t are {σ� = {x �→ t} | t ∈ Rx},
and for � : x < y they are {σ� = {x �→ t, y �→ t′} | t ∈ Rx, t′ ∈ Ry}.

5 Implementation and Experiments

We implemented the presented method in the SMT solver SMTInterpol.2

SMTInterpol is a DPLL(T)/CDCL based solver that supports the ground
2 https://ultimate.informatik.uni-freiburg.de/smtinterpol/

https://ultimate.informatik.uni-freiburg.de/smtinterpol/

Incremental Search for Conflict and Unit Instances 549

fragments of the theory of equality, the theory of linear integer arithmetic, linear
rational arithmetic, mixed linear integer-rational arithmetic, the theory of arrays
with extensionality and constant arrays, and their combinations.

We implemented the quantifier support as a theory solver in the DPLL(T)
framework. The DPLL engine informs all theory solvers about the literals that
are currently set to true. Before each decision, all theory solvers search for con-
flicts and unit clauses in a checkpoint. If a theory solvers returns a new unit
clause, it can be used to propagate new literals and thus avoid wrong decisions.
Similarly, a conflict clause allows to backtrack immediately without doing fur-
ther decisions. When the DPLL engine has assigned a truth value to all literals,
a final check is performed where the theory solvers should check their model.

The solver for quantified formulas keeps a list of all quantified clauses and
creates instances of them on the fly. The quantifier solver has two different
settings to determine when to create new clauses. In the eager setting, it creates
new clauses in the checkpoint before each decision of the DPLL engine, in the
lazy setting, it only creates new clauses in the final check when all existing ground
literals were decided by the DPLL engine. When our method finds a conflicting
or unit-propagating instance, this instance is built. If the instance is a conflict in
the sense that all literals are already set to false, it is returned immediately. If the
instantiation creates new terms and literals, it will cause other theory solvers,
in particular the congruence closure solver, to propagate congruences and truth
values for the new literals. As soon as all but one literal in the instance are
propagated to false, our quantifier solver can give the instantiated clause to the
DPLL engine as a unit clause.

If our E-matching based procedure does not find any conflict or unit clauses
in the final check, our new quantifier solver has to do more extensive checks
to determine if the formula is satisfied. It checks the instances created from
the substitution set described in [8] for formulas in the almost uninterpreted
fragment. To ensure completeness it tries substitutions on “older” terms first in
order to enumerate the terms in a systematic way, similarly to [13]. In particular
this means that substitution with terms that occur in the input formula are
preferred over terms that are created by the quantifier solver itself during the
solving process. For terms with the same age, the final check prefers instances
that are unit-propagating (and that were not found earlier, because they create
new terms that are not equivalent to existing terms). If no such instances are
found, any instance that is not yet satisfied is created, preferring substitutions
that do not create new terms. This allows the solver to return “satisfiable” for
formulas within the almost uninterpreted fragment when it has checked that
all instances resulting from these substitution are satisfied. In case a problem
contains literals outside the almost uninterpreted fragment, the solver will never
return “satisfiable”, but “unknown” if it cannot derive a conflict.

We implemented E-matching to find substitutions as described in Step 1 in
Sect. 4 to work in an incremental way, similar to [3]. For each quantified clause,
we choose as multi-pattern the set of all sub-terms occurring in the clause, i.e.,
the instantiation only creates a new term if there is an equivalent existing term.

550 J. Hoenicke and T. Schindler

It uses triggers within the solver for the theory of equality, that report new
terms for sub-patterns as they are merged into the relevant congruence class, and
cause the matching process to continue only then. As soon as the multi-pattern
is matched, the substitution is saved. Any substitution found by E-matching
is kept until a conflict is detected and the DPLL engine backtracks to a point
where the pattern no longer matches.

To efficiently implement the substitution tables, the literal value tables and
the clause value tables, we use directed acyclic word graphs (DAWGs). These
are useful to quickly combine a clause value table with the next literal value
table, especially in the presence of columns with asterisks.

In order to evaluate the usefulness of our algorithm, we compare our imple-
mentation against E-matching based instantiation. We tested four different set-
tings: The settings “conflict/unit-eager” and “conflict/unit-lazy” use the pre-
sented algorithm to search for conflicting and unit-propagating instances. Both
settings do not create new terms (up to congruence) and always prefer conflict-
ing instances over unit-propagating instances. As the names suggest, the setting
“conflict/unit-eager” runs our algorithm as described above in the checkpoint.
The setting “conflict/unit-lazy” runs our algorithm in the final check, i.e., after
a complete ground model has been built. The settings “E-matching-eager” and
“E-matching-lazy” use our implementation of the E-matching algorithm in a
more traditional way. They use the same multi-pattern as our presented algo-
rithm, and build all instances where the multi-pattern was matched. This means
that no new terms (up to congruence) are built in these settings. As above,
the setting “E-matching-eager” searches for instances in the checkpoint while
“E-matching-lazy” searches for instances in the final check.

We did two experiments to evaluate these algorithms [9]. First, we ran them
on all SMT-LIB benchmarks in the logic UF on an AMD Ryzen Threadripper
3970X 32-Core CPU with 3.7 GHz, using 8 cores in total, and 15 GB RAM
given to the solver. We set the timeout to 24 s. Second, we ran the UF division
with the settings used for the SMT-COMP 20203 on the StarExec cluster4 [16],
including the same benchmark selection and the same scrambler with the same
seed. The only difference was that we reduced the timeout to 10 min (instead of
20 min). The SMT-COMP benchmarks omit all benchmarks that were solved by
all solvers in less than one second in the previous years and randomly selected
40 % of the remaining benchmarks. We also ran the solvers cvc4 version 1.8
and z3 version 4.8.8 on the SMT-COMP benchmarks with the default settings.
The results are summarized in Tables 1 and 2.

Table 1 shows that the settings that produce only conflict/unit instances solve
more benchmarks than the settings that produce all E-matching instances. The
difference is even more pronounced on the SMT-COMP benchmark set where
easy benchmarks were removed. The difference between eager and lazy settings is
only small, but in our experiments eager was slightly better. This shows that the
additional overhead from doing conflict search before each decision is more than

3 https://smt-comp.github.io/2020/
4 https://www.starexec.org

https://smt-comp.github.io/2020/
https://www.starexec.org

Incremental Search for Conflict and Unit Instances 551

compensated by the reduced search space. The evaluation also shows that our
solver is not yet competitive with cvc4 and z3. The simple E-matching strategy
that requires all subterms to exists and the simple enumeration of terms by age
as fallback strategy is no match to the more fine-tuned and diverse strategies in
cvc4 and z3.

Table 1. Number of benchmarks solved for each solver setting, with 24 s timeout (on all
UF benchmarks) and with 10 min timeout (on the SMT-COMP 2020 UF selection). The
settings “c/u” use our presented method to produce only conflict and unit-propagating
instances. The setting “eager” produces all E-matching instances before every decision,
“lazy” only when all literals were decided.

Solver Setting UF(all)
24 s timeout

UF(SMT-COMP)
10 min timeout

SMTInterpol c/u-eager 2120/7668 211/2291

SMTInterpol c/u-lazy 2105/7668 207/2291

SMTInterpol eager 2011/7668 165/2291

SMTInterpol lazy 1998/7668 161/2291

cvc4 – 514/2291

z3 – 408/2291

In Table 2 we compare the number of instances produced by SMTInter-
pol in the different settings and by cvc4 and z3. The numbers were obtained
by dumping the statistics after the run. To make the numbers comparable, we
only consider those benchmarks from the SMT-COMP benchmark set where all
solvers in all settings could prove unsatisfiability. For SMTInterpol we also
count the number of instances that were used in the final proof of unsatisfiability.
The first apparent result is that only a fraction of the instances were needed.
This shows the importance of choosing the right instances. The settings that pro-
duce only conflict/unit-propagating instances save a lot of instances that were
not needed in the proof of unsatisfiability. Interestingly, cvc4 creates even fewer
instances. Note that cvc4 also uses conflict based instantiation techniques. One
reason that it needs even fewer instances than our approach might be that our
enumeration strategy in the final check needs longer to find the right instances.
Another reason is that cvc4 does not split large quantified formulas into several
clauses (and thus needs only one instance where we may need one instance for
each produced clause). The solver z3, which does not use conflict based instan-
tiation techniques, produces many more instances. The average is exaggerated
due to one benchmark where it produces more than 5.7 million instances, but
the median is also higher than in our conflict/unit-propagating settings.

For SMTInterpol we distinguish instances created by E-matching or by
conflict/unit-propagation from instances created by the final enumeration step.
This is depicted in the table as 588(230+358) denoting that 230 instances were

552 J. Hoenicke and T. Schindler

Table 2. Average and median number of instances created by the solvers on SMT-
COMP 2020 benchmarks. For SMTInterpol also the average number of instances
used in the proof of unsatisfiability is given. This statistic was generated for the 86
benchmarks that every solver could solve.

Solver Setting Avg. created
instances

Median created
instances

Avg. used
instances

SMTInterpol c/u-eager 588(230 + 358) 56 8(3 + 5)

SMTInterpol c/u-lazy 545(195 + 351) 56 8(3 + 5)

SMTInterpol eager 1455(1121 + 333) 195 8(3 + 5)

SMTInterpol lazy 1450(1123 + 327) 217 8(3 + 5)

cvc4 – 216 14 ?

z3 – 83186 129 ?

created by conflict/unit-propagation and 358 by the final enumeration. The
results show that several necessary instances can only be found by enumera-
tion, because they need to create new terms that are not equivalent to existing
terms.

6 Related Work

Closest related to the presented approach is the work of Reynolds et al. [15].
The authors present a method to find conflicting substitutions for the theory of
equality and show the effectiveness of their approach. For a quantified formula,
they construct a set of equalities and disequalities such that a solution for the
constraints in this set yields a conflicting substitution. While our method works
only on clauses, their method works on general quantified formulas. The clas-
sification is done implicitly while constructing those constraint sets, but avoids
introducing auxiliary functions. Some of the constructed equality constraints
represent the problem of matching subterms of more complicated non-ground
terms, but the algorithm does not use E-matching. The types of literals that
pose a problem to our approach (i.e., congruences without congruent existing
terms) cannot be detected by their method either. The authors also describe
how the method can be used to find so-called constraint-inducing substitutions
that produce instances that are not conflicting, but that can derive new infor-
mation about existing terms. This is similar to our search for unit-propagating
instances, but does not allow to find propagations on new terms. The main dif-
ference is that our approach is incremental and can therefore detect conflicting
and unit-propagating instances early in the solving process.

Congruence closure with free variable (CCFV) [1] is a calculus for solving the
so-called E-ground (dis)unification problem. Given a ground model, it tries to
build a substitution for a quantified formula such that the ground model satisfies
the corresponding instance, by decomposing the goal into smaller constraints. It
can also be used to search for a conflicting substitution and can find all conflicting

Incremental Search for Conflict and Unit Instances 553

substitutions for the theory of equality, if the congruence closure propagates all
disequalities. The method is not incremental, i.e., it needs to rerun completely
if an equality or disequality literal is added.

A completely different approach to derive new facts from quantified clauses
is the DPLL(Γ) calculus [4]. This approach combines the superposition calcu-
lus tightly with the DPLL(T) framework. Literals decided by the DPLL engine
are used in the superposition solver to derive new quantified clauses. When the
superposition solver finds a conflict, it can build by collecting all ground equali-
ties used to derive the conflict. DPLL(Γ) can also propagate new ground literals
using quantified clauses. While the approach is much more powerful and can
even detect conflicts involving several clauses, this comes at the price of mem-
ory overhead. The superposition solver can propagate an arbitrary number of
derived clauses when searching for conflicts. This is in contrast to the DPLL(T)
framework where only a detected conflict triggers learning a new clause.

7 Conclusion and Future Work

We presented a new approach to find conflicting and unit-propagating instances
of quantified formulas. The basic idea is to split this search in a part that searches
for ground terms that are congruent to the quantified terms in a clause, and then
evaluate the instances with the use of these terms before creating them. For the
first part, we use E-matching, which can be implemented in an incremental
way and avoids duplicating work when the E-graph changes. The evaluation
can be done per literal such that the method can also detect instances that
propagate literals on both known and new terms. The presented method has
been implemented in the SMT solver SMTInterpol. We showed that by only
producing conflicting and unit-propagating instances we can solve more bench-
marks than by producing all instances found by E-matching. We also showed
that the overhead to find these conflicting instances is small enough to run it in
an eager setting before every decision. Therefore, we can tightly integrate quan-
tifier reasoning in the DPLL(T) framework. We believe that the method can
easily be implemented into other solvers using E-matching based instantiation,
since E-matching can already report the equivalent terms needed for evaluating
instances.

We also presented some extensions to the theory of linear arithmetic, and
plan to extend the method further. For instance, with a solver for the theory of
equality that supports offset equalities [6], literals such as f(x) = g(x + 1) can
easily be evaluated as described in Sect. 4.

The method is incomplete and must be complemented with a method that
checks the model once all literals are assigned a truth value by the DPLL
engine. This complementary method can have a strong influence on our presented
method, in particular, if it creates many new terms. We plan to implement a
version of model-based quantifier instantiation [8] in the future.

We also plan to implement a version of our method that does not create new
literals for conflicting instances at all. Instead of creating the conflicting instance,

554 J. Hoenicke and T. Schindler

it creates the clause with the existing equivalent literals enriched by the equality
literals from the E-graph that were needed to prove the equivalence. Currently
the quantifier solver has to wait for the congruence closure to prove that the
conflicting instance is a conflict clause. We also expect that this approach keeps
the E-graph small by not creating many congruent terms.

References

1. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp.
214–230. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 13

2. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 28

3. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

4. de Moura, L., Bjørner, N.: Engineering DPLL(T) + Saturation. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
475–490. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-
7 40

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

6. Dutertre, B., de Moura, L.: The Yices SMT solver. Technical report, SRI Interna-
tional (2006). https://yices.csl.sri.com/papers/tool-paper.pdf

7. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

8. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
ability modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

9. Hoenicke, J., Schindler, T.: Artifacts for incremental search for conflict and unit
instances of quantified formulas with E-matching. Technical report, Zenodo (2021).
https://doi.org/10.5281/zenodo.4277777

10. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

11. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

12. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes),
pp. 335–367. Elsevier and MIT Press, New York (2001)

13. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018, Part II. LNCS, vol. 10806, pp. 112–
131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 7

14. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Form. Methods Syst. Des. 51(3), 500–532
(2017). https://doi.org/10.1007/s10703-017-0290-y

https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-71070-7_40
https://doi.org/10.1007/978-3-540-71070-7_40
https://yices.csl.sri.com/papers/tool-paper.pdf
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.5281/zenodo.4277777
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/s10703-017-0290-y

Incremental Search for Conflict and Unit Instances 555

15. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quan-
tified formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, 21–24 October 2014, pp. 195–202. IEEE (2014)

16. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28

	Incremental Search for Conflict and Unit Instances of Quantified Formulas with E-Matching
	1 Introduction
	2 Notation and Basic Definitions
	3 Preliminaries
	3.1 DPLL(T)
	3.2 Congruence Closure
	3.3 E-Matching Based Instantiation

	4 Finding Conflict and Unit Instances
	4.1 Finding Substitutions in the Theory of Equality
	4.2 Extension to Linear Arithmetic

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

