
Eliminating Message Counters in
Synchronous Threshold Automata

Ilina Stoilkovska1,2(B), Igor Konnov2, Josef Widder2, and Florian Zuleger1

1 TU Wien, Vienna, Austria
{stoilkov,zuleger}@forsyte.at

2 Informal Systems, Vienna, Austria
{igor,josef}@informal.systems

Abstract. In previous work, we introduced synchronous threshold
automata for the verification of synchronous fault-tolerant distributed
algorithms, and presented a verification method based on bounded model
checking. Modeling a distributed algorithm by a threshold automaton
requires to correctly deal with the semantics for sending and receiving
messages based on the fault assumption. This step was done manually
so far, and required human ingenuity. Motivated by similar results for
asynchronous threshold automata, in this paper we show that one can
start from a faithful model of the distributed algorithm that includes
the sending and receiving of messages, and then automatically obtain a
threshold automaton by applying quantifier elimination on the receive
message counters. In this way, we obtain a fully automated verification
pipeline. We present an experimental evaluation, discovering a bug in our
previous manual encoding. Interestingly, while quantifier elimination in
general produces larger threshold automata than the manual encoding,
the verification times are comparable and even faster in several cases,
allowing us to verify benchmarks that could not be handled before.

1 Introduction

Formal modeling and automated verification of fault-tolerant distributed algo-
rithms [2,28] received considerable attention recently, e.g., [8,20,29,32,38]. In the
more classic approach towards distributed algorithms’ correctness, algorithms
are described in pseudo code, using send and receive operations whose seman-
tics are typically not formalized, but given in English. As a result, this may
lead to ambiguities that are an obstacle both for implementing distributed algo-
rithms faithfully, as well as for computer-aided verification. Threshold automata
were introduced as a formalization of fault-tolerant distributed algorithms with
precise semantics [5,23,26], and effective automated verification methods have
been introduced both for the asynchronous [22] and for the synchronous [36]
case. While they are a concise model that allows to capture precisely the non-
determinism distributed systems exhibit due to the communication model and

Partially supported by: Interchain Foundation, Switzerland; Austrian Science Fund
(FWF) via doctoral college LogiCS W1255.
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 196–218, 2021.
https://doi.org/10.1007/978-3-030-67067-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67067-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-67067-2_10

Eliminating Message Counters in Synchronous Threshold Automata 197

partial faults, threshold automata in fact constitute a manual abstraction: a
threshold automaton has to capture two major ingredients of a distributed sys-
tem: (i) the local program control flow that is based on received messages and (ii)
the semantics of send and receive operations in a fault-prone environment. For
many classical distributed algorithms, this manual abstraction is quite imme-
diate, but as has been observed in [37], more involved distributed algorithms
are harder to abstract manually. This manual process consists in understanding
how a fault assumption—that typically is well-understood but not formalized—
changes the semantics of sending and receiving messages, which is a formaliza-
tion step that typically requires human ingenuity. The more desirable approach
is to have a precise and formal description of (i) and (ii), and to construct the
abstraction automatically. This also allows to reuse (ii), that is, the formaliza-
tion of given distributed computing model for new benchmarks. Indeed, in [37],
for asynchronous algorithms, we introduced a method that takes as input for-
malizations of (i) and (ii) and automatically constructs threshold automata. By
this, we have reduced the required expertise of the user, increased the degree of
automation on the verification process, and indeed found some bugs in manual
abstractions of asynchronous algorithms. However, the approach in [37] focuses
on (asynchronous) interleaving semantics, and asynchronous message passing,
which pose different challenges than the synchronous setting.

While distributed algorithms are mostly designed for asynchronous systems,
there exists a considerable amount of literature that focuses on synchronous
distributed algorithms. The synchronous computation model is relevant, both
theoretically and practically: (a) a well-known impossibility result [18] reveals
a class of problems for which a solution in the asynchronous model does not
exist, but which can be solved in the synchronous model, (b) some real-time sys-
tems are actually built on top of synchronous distributed algorithms [24], and
(c) several verification approaches reduce the asynchronous to the synchronous
setting [4,12,13,15,19,25], enabling the transfer of verification techniques. For
these reasons, verification in the synchronous setting received significant inter-
est recently [1,17,29]. Applying verification techniques discovered a bug in an
already published synchronous consensus algorithm, as reported in [27].

In [36], we proposed a synchronous variant of threshold automata along with
an automated verification method based on bounded model checking. We exper-
imentally evaluated our approach on a large number of benchmarks coming from
the distributed systems literature. However, the framework in [36] is based on
the manual abstraction described above.

Our Contributions. In this paper, we bring the automatic generation of thresh-
old automata to the synchronous setting. We propose a synchronous threshold
automata (STA) framework that allows us to:

1. model a given algorithm with an STA, whose guards are linear integer
arithmetic expressions over the number of received messages, such that the
obtained STA is in one-to-one correspondence with the pseudo code,

198 I. Stoilkovska et al.

2. model the implicit assumptions imposed by the computation and fault models
explicitly, using a so-called environment assumption, which is specific to the
respective fault model and can be reused for different algorithms,

3. automatically translate the guards over the local receive variables into guards
over the number of globally sent messages, using quantifier elimination,

4. pass the output of the translation as input to the verification tool proposed
in [36], which implements a semi-decision procedure for computing the diam-
eter, and performs bounded model checking.

In [36], the STA given as input to the verification tool was produced man-
ually, that is, the steps 1–3 above were done by the user. By automating these
steps, we reduce the ingenuity required by the user. We encoded the control
flow and the environment assumptions of several synchronous algorithms in our
framework and compared the resulting STA with the existing manual encodings
from [34]. We confirm that manual abstraction is error-prone, as we discovered
glitches in previous manually encoded STA. For all benchmarks, the automati-
cally generated STA are comparable with the manual encodings. For some, the
automatically generated STA could be verified faster. Thus in addition to increas-
ing the degree of automation, we also gained in performance.

2 Our Approach at a Glance

Synchronous Distributed Algorithms. A distributed algorithm is a collection of n
processes that perform a common task and exchange messages. At most t of the n
processes can be faulty, and f processes are actually faulty. The numbers n, t, f
are parameters, where n and t are “known”, that is, they appear in the code
(see Fig. 1), while f may differ according to the individual executions. In the
synchronous computation model, the actions that a process takes locally depend
on the messages that the process has received in the current round by other
processes. Often, a process checks whether a quorum has been obtained (e.g.,
majority, two-thirds, etc.) by counting the number of messages it has received.
Obtaining a quorum means that the number of received messages has to pass a
given threshold, which should guarantee that it is safe for a correct process to
take an action, and move to a new local state.

The threshold automata framework [23] is based on the observation that
from the viewpoint of enabled transitions in a transition system, we may sub-
stitute the check whether a quorum of messages has been received with a check
whether enough messages have been sent. For some algorithms, this substitution
is straightforward, but others have more complicated guard expressions over the
number of received messages. Consider, for example, the pseudo code of the algo-
rithm PhaseQueen [6,9], presented in Fig. 1. The algorithm operates in phases,
with two rounds per phase (lines 3–8 and 9–11). In round 1, all processes broad-
cast their value stored in the variable v (line 3), receive messages from other
processes (line 4), and count the number of messages with value 0 (line 5) and
value 1 (line 6). If a process received more than 2t messages with value 1, then
it sets its value to 1 (line 7), otherwise it sets its value to 0 (line 8). In round 2,

Eliminating Message Counters in Synchronous Threshold Automata 199

Fig. 1. The pseudo code of the Byzantine consensus algorithm PhaseQueen

a process i acts as a queen, if the number of the current phase is equal to i
(line 9), and it is the only process that broadcasts (line 9). Each process receives
the queen’s value vq (line 10), and checks if in round 1, it received less than n− t
messages with value equal to its own value v. If this is the case, the process
sets its value to the value vq received from the queen (line 11). This algorithm
satisfies the property agreement : it ensures that after phase t + 1, i.e., after the
loop on line 2 terminates, all correct processes have the same value v.

Receive Synchronous Threshold Automata. In Sect. 3, we propose a new variant
of synchronous threshold automata, rSTA, with guards expressed over receive
variables. Figure 2 shows the rSTA of the algorithm PhaseQueen. It corresponds
to the control flow of the pseudo code in Fig. 1 as follows. The following locations
capture local states of correct processes that are currently not a queen:

– vi encodes that a process has the value i ∈ {0, 1},
– r1vi encodes that after the first round a process sets its value to i ∈ {0, 1},

and that it has received at least n − t messages that have its value (i.e., the
condition from line 11 evaluates to false),

– r1viq encodes that after the first round a process sets its value to i ∈ {0, 1},
and that it has received less than n − t messages that have its value. Such
a process will use the queen’s message to update its value at the end of the
second round (that is, the condition in line 11 evaluates to true),

– r2vi encodes that after the second round a process sets its value to i ∈ {0, 1}.

From the location r2vi, we have outgoing rules that bring the process back to
the beginning of the next phase, i.e., to vi, for i ∈ {0, 1}. Additionally, a process
might move from the location r2vi to qvi, for i ∈ {0, 1}, and thus become
a queen in the next phase. The locations qvi,r1qvi,r2qvi, for i ∈ {0, 1},
capture the behavior of a correct process acting as a queen in the current phase.
The Byzantine processes can act arbitrary, and their behavior is not explicitly
modeled in the automaton. However, in some phase, the queen may be Byzantine.
To capture this, we introduce locations, populated by a single Byzantine process,
namely the locations F = {f, . . . ,r2qf}. The queen is Byzantine in some phase,
if the single Byzantine process moves from the location r2f to the location qf.

200 I. Stoilkovska et al.

Fig. 2. The rSTA for the algorithm PhaseQueen [6], where n > 4t ∧ t ≥ f .

Processes in locations vi,qvi send messages of type mi, that is, messages
containing the value i ∈ {0, 1}. The message types mqi are used to encode that
the queen in the current phase sent a message with value i ∈ {0, 1}. When the
queen process is Byzantine, it can send messages of type mq0 or mq1. We write
sent(m) to denote the set of locations where processes send a message of type
m, and #sent(m) for the number of sent messages of type m.

The receive guards ϕ1, . . . , ϕ8 express conditions over the number of received
messages of some message type, and capture expressions which appear in the
pseudo code. We denote by nr(mi) and nr(mqi) the number of messages contain-
ing the value i ∈ {0, 1} that a process received from all processes in the first
round of the phase (i.e., the value C[i] in the pseudo code, lines 5, 6) and by the
queen in the second round of the phase, respectively. For example, the receive
guard ϕ1, occurring on rules that move processes to the location r1v0, checks
if a process received at most 2t messages of type m1 (the else branch is taken in
line 8), and at least n − t messages of type m0 (the condition in line 11 is false).

We explicitly encode the relationship between the number of received and
sent messages using an environment assumption Env, which bounds the num-
ber of received messages: (i) from below by the number of messages sent by
the correct processes, and (ii) from above by the number of messages sent by
both the correct and faulty processes. The bound (i) captures the assumptions
of the synchronous communication, which requires that all messages sent by
correct processes in a round are received in the same round, and the bound (ii)
captures the non-determinism introduced by the faulty processes. E.g., in the

Eliminating Message Counters in Synchronous Threshold Automata 201

algorithm PhaseQueen, we have f Byzantine processes, which may send mes-
sages of arbitrary types. For the receive variable nr(mi), we have the constraint
#sent(mi) ≤ nr(mi) ≤ #sent(mi) + f in the environment assumption Env.

The agreement property stated above is a safety property. To check if it holds,
it suffices to check that after t + 1 phases, either all processes are in locations
v0,qv0, or in locations v1,qv1. The precise formalization of the properties we
are interested in verifying can be found in [36].

Our Approach. In Sect. 6, we eliminate the receive variables in an rSTA using
quantifier elimination for Presburger arithmetic [14,30,31]. We strengthen the
receive guards by the environment assumption Env that imposes bounds on the
values of the receive variables, which are existentially quantified. As a result, a
quantifier-free guard expression over the number of sent messages is obtained.
For example, the result of applying quantifier elimination to the guard ϕ1 over
the receive variables from Fig. 2, strengthened by the upper and lower bounds
in the environment assumption Env, is the guard ϕ̂1 with no receive variables:

ϕ̂1 ≡ #sent(m1) ≤ 2t ∧ #sent(m0) + f ≥ n − t ∧ ̂Env

where ̂Env are the residual constraints from eliminating the receive variables from
the environment assumption Env. The condition nr(m1) ≤ 2t in the guard ϕ1 is
translated to #sent(m1) ≤ 2t, and the condition nr(m0) ≥ n− t to #sent(m0)+
f ≥ n − t. That is, when translating the guards, the number of the faulty
processes f is used in guards that check if the number of sent messages passes
a threshold, whereas f is not used in guards that check if the number of sent
messages is below a threshold. (Byzantine processes send messages arbitrarily.)

The STA where all guards over the receive variables are replaced by the
automatically generated guards over the number of sent messages constitutes a
valid input to the bounded model checking technique for STA from [36], which
we use to verify their safety properties. We show that this method is sound
and complete by showing the existence of a bisimulation between the composi-
tion of n copies of rSTA and the composition of n copies of the produced STA.
Thus, eliminating the receive message counters preserves temporal properties.
We implemented this technique and used it to automatically generate STA for a
set of benchmarks, and compared them to the existing manually encoded STA
for the same benchmarks. We discuss our the experimental results in Sect. 7.

3 Synchronous Threshold Automata

We recall synchronous threshold automata from [36] and extend them with
receive variables below. A synchronous threshold automaton (STA) is the tuple
STA = (L, I,R,Π,RC,Env), whose locations L, initial locations I, rules R,
parameters Π, and resilience condition RC are defined below. We define the
environment assumption Env in Sect. 3.2.

Parameters Π, Resilience Condition RC. We assume that the set Π of parame-
ters contains at least the parameter n, denoting the total number of processes.

202 I. Stoilkovska et al.

The resilience condition RC is a linear arithmetic expression over the parame-
ters from Π. We call the vector π = 〈π1, . . . , π|Π|〉 the parameter vector, and the
vector p = 〈p1, . . . , p|Π|〉 ∈ N

|Π| a valution of π. The set PRC = {p ∈ N
|Π| |

p is a valuation of π and p satisfies RC} contains the admissible valuations of π.
The mapping N : PRC → Nmaps an admissible valuationp ∈ PRC to the number
N(p) ∈ N of participating processes, i.e., the number of processes whose behavior is
modeled using the STA. We denote by N(π) the linear combination of parameters
that defines the number of participating processes.

Locations L, I. The locations � ∈ L encode the current value of the local variables
of a process, together with information about the program counter. We assume
that each local variable and the program counter ranges over a finite set of values,
that is, we assume that the set L of locations is a finite set. The initial locations
in I ⊆ L encode the initial values of the local variables.

Message Types M. Let M denote the set of message types. To encode sending
messages in the STA, we define a mapping sent : M → 2L, that maps a message
type m ∈ M to a set sent(m) ⊆ L of locations, such that sent(m) = {� ∈ L |
a process in � sends message of type m}.

Let L ⊆ L denote a set of locations, and let #L denote the number of
processes in locations from the set L. To define guards over the sent messages
and express temporal properties, we define c-propositions:

#L ≥ a · π + b for L ⊆ L, a ∈ Z
|Π|, and b ∈ Z

We denote by CP the set of c-propositions. If the set L of locations in the c-
proposition is equal to the set sent(m), for some m ∈ M, the c-proposition
is used to check whether the number of messages of type m ∈ M is greater
than or equal to a linear combination of the parameters, also called a threshold.
Formally, the c-propositions are evaluated in tuples (κ,p), where κ ∈ N

|L| is an
|L|-dimensional vector of counters, and p ∈ PRC is an admissible valuation:

(κ,p) |= #L ≥ a · π + b iff
∑

�∈L

κ[�] ≥ a · p+ b (1)

Rules R. A rule r ∈ R is a tuple (from, to, ϕ), where: from, to ∈ L are locations,
and ϕ is a guard, i.e., a Boolean combination of c-propositions. The guards r.ϕ,
for r ∈ R, analogously to (1), are evaluated in tuples (κ,p), and the semantics
of the Boolean connectives is standard.

3.1 Receive Synchronous Threshold Automata

A receive STA is the tuple rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ), whose loca-
tions L, initial locations I, parameters Π, and resilience condition RC are
defined as for STA. We define the receive variables Δ and rules RΔ below, and
the environment assumption EnvΔ in Sect. 3.2.

Eliminating Message Counters in Synchronous Threshold Automata 203

Receive Variables Δ. The set Δ contains receive variables nr(m) that store the
number of messages of type m ∈ M that were received by a process. Thus,
|Δ| = |M|, as in Δ there is exactly one receive variable nr(m) per message type
m ∈ M. The values of the receive variables depend on the number of messages
sent in a given round (discussed in more detail in Sect. 3.2).

Let M ⊆ M denote a set of message types, and let #M denote the total
number of messages of types m ∈ M , received by some process. Observe that the
notation #M is a shorthand for

∑

m∈M nr(m). We will use these two notations
interchangeably. Further, when M is a singleton set, that is, when M = {m}, we
will simply use the notation nr(m) to denote #{m}. For the purpose of expressing
guards over the receive variables nr(m), for m ∈ M, we define r-propositions:

#M ≥ a · π + b, such that M ⊆ M,a ∈ Z
|Π|, b ∈ Z

We denote by RP the set of r-propositions. The intended meaning of the r-
propositions is to check whether the total number of messages of types m ∈ M
received by some process i passes some threshold. Formally, they are evaluated
in tuples (d,p), where d ∈ N

|M| is a vector of values assigned to each receive
variable nr(m), for m ∈ M, and p ∈ PRC . We define:

(d,p) |= #M ≥ a · π + b iff
∑

m∈M

d[m] ≥ a · p+ b (2)

Rules RΔ. Similarly to the way we defined rules of STA above, the rules rΔ ∈ RΔ

in rSTA are tuples rΔ = (from, to, ϕ), where rΔ.from, rΔ.to ∈ L are locations,
and rΔ.ϕ is a receive guard, which is a Boolean combination of c-propositions
and r-propositions. The receive guards rΔ.ϕ, for rΔ ∈ RΔ, are evaluated in
tuples (d,κ,p). Given a tuple (d,κ,p), where d ∈ N

|M| is a vector of valuations
of the receive variables nr(m), for m ∈ M, κ ∈ N

|L| is an |L|-dimensional vector
of counters, and p ∈ PRC is an admissible valuation, we evaluate c-propositions
and r-propositions (the semantics of the Boolean connectives is standard):

(d,κ,p) |= #L ≥ a · π + b iff (κ,p) |= #L ≥ a · π + b (cf. (1))
(d,κ,p) |= #M ≥ a · π + b iff (d,p) |= #M ≥ a · π + b (cf. (2))

3.2 Environment Assumption and Modeling Faults

Depending on the fault model, when constructing a (receive) STA that models
the behavior of a process running a given algorithm, we typically need to intro-
duce additional locations or rules that are used to capture the behavior of the
faulty processes. Additionally, to faithfully model the faulty environment, we will
introduce constraints on the number of processes in given locations in both STA
and rSTA, expressed using c-propositions, as well as constraints on the values of
the receive variables of the rSTA, expressed using e-propositions:

#M ≥ #L + a · π + b, such that M ⊆ M, L ⊆ L,a ∈ Z
|Π|, b ∈ Z

204 I. Stoilkovska et al.

We denote by EP the set of e-propositions. The e-propositions are evaluated in
tuples (d,κ,p) where d ∈ N

|M| is a vector of valuations of the receive variables,
κ ∈ N

|L| is an |L|-dimensional vector of counters, and p ∈ PRC . We say that:

(d,κ,p) |= #M ≥ #L + a · π + b iff
∑

m∈M

d[m] ≥
∑

�∈L

κ[�] + a · p+ b

The e-propositions will be used to express that the number of received messages
is in the range from the number of messages sent by correct processes to the
total number of sent messages (sent by both correct and faulty processes).

For STA, the environment assumption Env is a conjunction of c-propositions
and their negations. For rSTA, the environment assumption EnvΔ is a conjunc-
tion of c-propositions, e-propositions and their negations. The c-propositions
restrict the number of processes in certain locations, while the e-propositions
restrict the values of the receive variables by relating them to the number of sent
messages of the same type. We define the environment assumptions Env and EnvΔ

of the STA and rSTA, respectively, as Env ≡ EnvCP and EnvΔ ≡ EnvCP ∧ EnvEP,
where EnvCP and EnvEP are conjunctions of c-propositions and e-propositions
and their negations, respectively, such that:

EnvCP ≡ C1 ∧ C2 ∧ EnvCP,∗ and EnvEP ≡ E1 ∧ EnvEP,∗

where, irrespective of the fault model, we have the following constraints:

(C1)
∧

�∈L #{�} ≥ 0, i.e., the number of processes in a location � is non-negative,
(C2) #L = N(π), i.e., the number of processes in all locations L is equal to the

number of participating processes,
(E1)

∧

m∈M #sent(m) ≤ nr(m), i.e., the number nr(m) of received messages of
each message type m ∈ M is bounded from below by the number #sent(m)
of messages of type m, sent by correct processes.

The formulas EnvCP,∗ and EnvEP,∗ for ∗ ∈ {cr, so, byz}, depend on the fault
model, i.e., on whether we model crash, send omission, or Byzantine faults.

Crash Faults. Crash-faulty processes stop executing the algorithm prematurely
and cannot restart. To model the behavior of the crash-faulty processes, the set
L of locations of the (receive) STA is the set: L = Lcorr ∪ Lcr ∪ {�fld}, where
Lcorr is a set of correct locations, Lcr = {�cr | �cr is a fresh copy of � ∈ Lcorr}
is a set of crash locations, and �fld is a failed location. The crash locations
�cr ∈ Lcr model the same values of the local variables and program counter as
their correct counterpart � ∈ Lcorr. The difference is that processes in the crash
locations �cr ∈ Lcr are flagged by the environment to crash in the current round.
After crashing, they move to the failed location �fld, where they remain forever.
This models that the crashed processes cannot restart.

A crash-faulty process may send a message to a subset of the other processes
in the round in which it crashes. To model this, we introduce the mapping sentcr :
M → 2Lcr , which defines, for each m ∈ M, the set of crash locations sentcr(m) ⊆

Eliminating Message Counters in Synchronous Threshold Automata 205

Fig. 3. The pseudo code of the algorithm FloodMin for k = 1 [28], which tolerates crash
faults, and the receive STA encoding its loop body.

Lcr where processes send a message of type m. Then, #(sent(m) ∪ sentcr(m))
denotes the number of messages sent by correct and crash-faulty processes. In
addition to the new locations, we add the following new rules:

(cr1) for every rule r ∈ R, if r.from ∈ Lcorr and r.to ∈ Lcorr, then we add the
rule (r.from, �cr, r.ϕ), where �cr ∈ Lcr is the crash location corresponding
to r.to,

(cr2) for every crash location �cr ∈ Lcr, we add the rule (�cr, �fld,),
(cr3) for the failed location �fld, we add the rule (�fld, �fld,).

The rules (cr1) move processes from the correct to the crash locations, in
rounds where the environment flags them as crashed. The rules (cr2) move pro-
cesses from the crashed locations to the failed location, where they can only
apply the self-loop rule (cr3), which keeps them in the failed location.

We model the behavior of crash-faulty processes explicitly, that is, we have
N(π) = n. The constraints EnvCP,cr and EnvEP,cr for the crash fault model are:

EnvCP,cr = #(Lcr ∪ {�fld}) ≤ f

EnvEP,cr ≡
∧

m∈M
nr(m) ≤ #(sent(m) ∪ sentcr(m))

The formula EnvCP,cr ensures that there are no more than f faults. The formula
EnvEP,cr restricts the values of the receive variables by ensuring that the number
of received messages of type m ∈ M for each process is a value, bounded from
above by the number #(sent(m) ∪ sentcr(m)) of messages of type m, sent by the
correct processes and the processes flagged as crashed in the current round.

Figure 3 depicts the pseudo code and the rSTA of the crash-tolerant k-
set agreement algorithm FloodMin, for k = 1 [28]. We identify the sets
Lcorr = {v0,v1} of correct locations, Lcr = {cr0,cr1} of crash locations,
M = {m0,m1} of message types. The location vi encodes that a correct process
has its variable best set to i ∈ {0, 1}, the location cri encodes that the value
of best of a crashed process is i ∈ {0, 1}, and the message type mi encodes a
message containing the value i ∈ {0, 1}. The failed location is �fld. We define
sent(mi) = {vi} and sentcr(mi) = {cri}, for i ∈ {0, 1}. The two receive guards

206 I. Stoilkovska et al.

Fig. 4. The receive STA encoding the loop body of the algorithm FMinOmit for k = 1,
which tolerates send omission faults and whose pseudo code is given in Fig. 3.

ϕ1 ≡ nr(m0) ≥ 1 and ϕ2 ≡ nr(m0) < 1 check if a process received at least one
message of type m0 (i.e., if the minimal value 0 has been received in line 5 of the
pseudo code) and no message of type m0, respectively. The constraint EnvCP,cr
ensures that there are not more than f processes in the locations cr0,cr1, and
�fld together. The constraint EnvEP,cr bounds the values of the receive variables
nr(mi) from above by the number of processes in locations vi,cri, for i ∈ {0, 1}.

Send Omission Faults. A send-omission-faulty process may omit to send a
message, but acts as a correct process on the receiving side. We model algo-
rithms tolerating send omission faults similarly to crash faults: the set L of
locations is L = Lcorr ∪ Lso, where Lcorr is a set of correct locations and
Lso = {�so | �so is a fresh copy of � ∈ Lcorr} is a set of send-omission locations.
For every rule r ∈ R connecting two locations �, �′ ∈ Lcorr, there exists a rule
(�so, �′

so, r.ϕ) ∈ R, connecting their two corresponding send-omission locations
�so, �

′
so ∈ Lso. We introduce the mapping sentso : M → 2Lso , which defines the

set of send-omission locations where processes send a message of type m ∈ M.
As there are no rules that connect the locations from Lcorr to the locations

from Lso, the automaton consists of two parts: one used by the correct processes,
and one used by the send-omission-faulty processes. The behavior of the send-
omission-faulty processes is encoded explicitly, using locations and rules in the
automaton, hence, we define N(π) = n. The constraint EnvCP,so ensures that the
number of processes populating the correct locations is n−f , and the number of
processes populating the send-omission locations is f . The constraint EnvEP,so
ensures that the number of received messages of type m ∈ M for each process
is bounded from above by the number #(sent(m) ∪ sentso(m)) of messages of
type m, sent by the correct and the send-omission-faulty processes. Formally:

EnvCP,so = #Lcorr = n − f ∧ #Lso = f

EnvEP,so ≡
∧

m∈M
nr(m) ≤ #(sent(m) ∪ sentso(m))

Figure 4 depicts the rSTA for the k-set agreement algorithm FMinOmit, for
k = 1, which is a variant of the algorithm FloodMin (Fig. 3) that tolerates
send omission faults. We identify the sets Lcorr = {v0,v1} of correct locations,
Lso = {so0, so1} of send-omission locations, and M = {m0,m1} of message
types. We define sent(mi) = {vi} and sentso(mi) = {soi}, for i ∈ {0, 1}. The

Eliminating Message Counters in Synchronous Threshold Automata 207

Fig. 5. The pseudo code of the algorithm RB [21], which tolerates Byzantine faults,
and the receive STA encoding its loop body.

constraint EnvCP,so ensures that there are exactly n − f processes in the correct
locations v0,v1, and exactly f processes in the send-omission locations so0, so1.
The receive guards ϕ1 and ϕ2 are the syntactically same as in the rSTA for the
crash-tolerant version of the algorithm FloodMin, for k = 1. However, the envi-
ronment constraint EnvEP,so differs from EnvEP,cr: it restricts the number nr(mi)
of received messages of type mi to a value which is less than or equal to the
number of processes in locations vi, soi, for i ∈ {0, 1}.

Byzantine Faults. To model the behavior of the Byzantine-faulty processes,
which can act arbitrary, no new locations and rules are introduced in the (receive)
STA. Instead, the (receive) STA is used to model the behavior of the correct pro-
cesses, and the effect that the Byzantine-faulty processes have on the correct
ones is captured in the guards (and environment assumption). The number of
messages sent by Byzantine-faulty processes is overapproximated by the param-
eter f , which denotes the number of faults. That is, for a message type m ∈ M,
the number #sent(m) + f is the upper bound on the number of messages sent
by correct and Byzantine-faulty processes.

The (receive) STA for Byzantine faults is used to model the behavior of the
correct processes, hence N(π) = n− f . As we do not introduce new locations or
rules, we have EnvCP,byz ≡ . The constraint EnvEP,byz encodes the effect that
the Byzantine-faulty processes have on the correct processes, by bounding the
receive variables nr(m) by sent(m) + f from above, for m ∈ M:

EnvEP,byz ≡
∧

m∈M
nr(m) ≤ sent(m) + f

Figure 5 shows the pseudo code of the Byzantine reliable broadcast algorithm
RB [21]. The locations L = {v0,v1, se,ac} model the behavior of the correct
processes. The location vi encodes that a process has value i ∈ {0, 1}, the loca-
tion se that a process has sent an ECHO message, and the location ac that a
process sets its value to 1 in line 12. There is a single message type, mE, which
encodes a message containing the value ECHO. There are four receive guards,
ϕ1, . . . , ϕ4. The guard ϕ2, for example, checks that at least t+1 ECHO messages

208 I. Stoilkovska et al.

are received, capturing line 8 of the pseudo code. The set of processes that send
an ECHO message is sent(mE) = {v1, se,ac}. The constraint EnvEP,byz ensures
that there are not more than #{v1, se,ac} + f received messages of type mE.

Remark on Algorithms with a Coordinator. When modeling Byzantine-tolerant
algorithms where a process acts as a coordinator (such as, e.g., the algorithm
PhaseQueen in Fig. 1), we need to take into account that at some point, the coor-
dinator will be Byzantine. Thus, we add locations Lbyz ⊆ L for a single Byzantine
process, disjoint from the locations that are used by the correct processes. The
new locations do not encode any values of the local variables; they ensure that
the Byzantine process (which may become a coordinator) moves synchronously
with the other processes. In the rSTA for the algorithm PhaseQueen (Fig. 2),
we defined Lbyz = F = {f, . . . ,r2qf}. As we model the behavior of a single
Byzantine process explicitly, we have N(π) = n − f + 1.

In this case, we define the constraints EnvCP,co, which restrict the number
of processes in given locations. We also identify locations Lco ⊆ L, which only
a (correct or Byzantine) coordinator is allowed to populate. The environment
constraint EnvCP,co for Byzantine-tolerant algorithms with a coordinator is:

EnvCP,co ≡ #Lco = 1 ∧ #Lbyz = 1

where #Lco = 1 (resp. #Lbyz = 1) ensures that there is exactly one process in
the coordinator locations Lco (resp. in the Byzantine locations Lbyz).

Additionally, we have message types mco ∈ M that model the coordinator
messages, and denote by �F the location where the Byzantine process performs
the coordinator broadcast. The constraint EnvEP,co states that the number of
received coordinator messages of type mco does not exceed the total number of
coordinator messages of type mco sent by the correct and Byzantine coordinators:

EnvEP,co ≡ EnvEP,byz ∧
∧

mco∈M
nr(mco) ≤ #(sent(mco) ∪ {�F })

Thus, for the algorithm PhaseQueen, whose rSTA we depicted in Fig. 2:

EnvCP,co ≡ #{qv0, . . . ,r2qv1,qf, . . . ,r2qf} = 1 ∧ #{f, . . . ,r2qf} = 1

EnvEP,co ≡
∧

i∈{0,1}
(nr(mi) ≤ #sent(mi) + f ∧ nr(mqi) ≤ #(sent(mqi) ∪ {r1qf}))

4 Counter Systems

For an STA = (L, I,R,Π,RC,Env) and an admissible valuation p ∈ PRC , we
recall the definition of a counter system from [36]. A counter system w.r.t. an
admissible valuation p ∈ PRC and an STA = (L, I,R,Π,RC,Env) is the tuple
CS(STA,p) = (Σ(p), I(p), R(p)), representing a system of N(p) processes whose
behavior is modeled using the STA, where Σ(p) is the set of configurations, I(p)
is the set of initial configurations, and R(p) is the transition relation.

Eliminating Message Counters in Synchronous Threshold Automata 209

A configuration σ ∈ Σ(p) is a tuple (κ,p), where p ∈ PRC is an admissible
valuation, and κ ∈ N

|L| is an |L|-dimensional vector of counters, such that
σ |= Env. For every σ ∈ Σ(p), we have

∑

�∈L σ.κ[�] = N(p). This follows from
σ |= Env, in particular from σ |= #L = N(π), the definition of N(p), and
the semantics of the c-propositions. A configuration σ ∈ Σ(p) is initial, i.e.,
σ ∈ I(p) ⊆ Σ(p), iff σ.κ[�] = 0, for every � ∈ L \ I. That is, the value σ.κ[�] of
the counter for each non-initial location � ∈ L \ I is set to 0 in σ ∈ I.

To define the transition relation R(p), we first define the notion of a transi-
tion. A transition is a function tr : R → N that maps each rule r ∈ R to a factor
tr(r) ∈ N. Given a valuation p of π, the set Tr(p) = {tr | ∑

r∈R tr(r) = N(p)}
contains transitions whose factors sum up to N(p). For a transition tr and a
rule r ∈ R, the factor tr(r) denotes the number of processes that act upon
this rule. By restricting the set Tr(p) to contain transitions whose factors sum
up to N(p), we ensure that in a transition, every process takes a step. This
captures the semantics of synchronous computation. A transition tr ∈ Tr(p) is
enabled in a tuple (κ,p), where κ is an |L|- dimensional vector of counters and
p ∈ PRC an admissible valuation, iff for every r ∈ R, such that tr(r) > 0, it holds
that (κ,p) |= r.ϕ, and for every � ∈ L, we have κ[�] =

∑

r∈R∧r.from=� tr(r). The
former condition ensures that processes only use rules whose guards are satisfied,
and the latter that every process moves in an enabled transition.

Given a transition tr ∈ Tr(p), we define the origin o(tr) = (κ,p) of tr,
where for every location � ∈ L, we have κ[�] =

∑

r∈R∧r.from=� tr(r), and
the goal g(tr) = (κ′,p) of tr, where for every location � ∈ L, we have
κ′[�] =

∑

r∈R∧r.to=� tr(r). The origin o(tr) is the unique tuple (κ,p) where
the transition tr is enabled, while its goal g(tr) is the unique tuple (κ′,p) that is
obtained by applying the transition tr to its origin o(tr). The transition relation
R(p) is the relation R(p) ⊆ Σ(p) × Tr(p) × Σ(p), such that 〈σ, tr, σ′〉 ∈ R(p)
iff σ = o(tr) is the origin and σ′ = g(tr) is the goal of the transition tr.

5 Synchronous Transition Systems

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, and p ∈ PRC an
admissible valuation of the parameter vector π. A synchronous transition system
(or system), w.r.t. an admissible valuation p ∈ PRC and an rSTA is the triple
STS(rSTA,p) = 〈S(p), S0(p), T (p)〉, representing a system of N(p) processes
whose behavior is modeled using the rSTA, where S(p) is the set of states, S0(p)
is the set of initial states, and T (p) is the transition relation.

Recall that the environment assumption EnvΔ of the rSTA is the conjunction
EnvΔ ≡ EnvCP ∧ EnvEP. A state s ∈ S(p) is a tuple s = 〈�,nr1, . . . ,nrN(p),p〉,
where � ∈ LN(p) is an N(p)-dimensional vector of locations, and nri ∈ N

|M|,
for 1 ≤ i ≤ N(p), is a vector of valuations of the receive variables nr(m), with
m ∈ M, for each process i, such that s |= EnvCP. In a state s ∈ S(p), the vector �
of locations is used to store the current location s.�[i] ∈ L for each process i,
while the vector nri ∈ N

|M| stores the values of the receive variables for each
process i, with 1 ≤ i ≤ N(p). Further, each state s ∈ S(p) satisfies EnvCP.

210 I. Stoilkovska et al.

To formally define that a state s ∈ S(p) satisfies the environment con-
straint EnvCP, we define the semantics of c-propositions w.r.t. states s ∈ S(p).
Let countersp : S(p)×L → N denote a mapping that maps a state s ∈ S(p) and
a location � ∈ L to the number of processes that are in location � in the state s,
that is, countersp(s, �) = |{i | 1 ≤ i ≤ N(p)∧s.�[i] = �}|. Further, let κ(s) ∈ N

|L|

denote the |L|-dimensional vector of counters w.r.t. the state s ∈ S(p), where
for every location � ∈ L, we have that κ(s)[�] stores the number of processes that
are in location � in the state s, that is, κ(s)[�] = countersp(s, �). We say that
s |= #L ≥ a · π + b iff (κ(s), s.p) |= #L ≥ a · π + b. A state s ∈ S(p) satisfies
the environment constraints EnvCP, that is, s |= EnvCP iff (κ(s), s.p) |= EnvCP.

In an initial state s0 ∈ S0(p), the vector � of locations stores only initial
locations, i.e., �[i] ∈ I, for 1 ≤ i ≤ N(p), and all receive variables of all processes
are initialized to 0. Formally, a state s0 = 〈�,nr1, . . . ,nrN(p),p〉 is initial, i.e.,
s0 ∈ S0(p), if s0.� ∈ IN(p) and s0.nri[m] = 0, for 1 ≤ i ≤ N(p) and m ∈ M.

We now define the transition relation T (p) ⊆ S(p)×S(p), where we will use
the environment constraint EnvEP to restrict the values of the receive variables.
A transition (s, s′) ∈ T (p) encodes one round in the execution of the distributed
algorithm. In a round, the processes send and receive messages, and update their
variables based on the received messages. Further, all the messages sent in the
current round are received in the same round. The process variable updates are
captured by moving processes from one location to another, based on the values
of the receive variables. The transition relation T (p) is a binary relation T (p) ⊆
S(p) × S(p), where (s, s′) ∈ T (p) iff for every process i, with 1 ≤ i ≤ N(p):

1. 0 ≤ s′.nri[m] ≤ N(p), such that (s′.nri,κ(s), s.p) |= EnvEP, for m ∈ M,
2. there exists rΔ ∈ RΔ such that:

– s.�[i] = rΔ.from,
– (s′.nri,κ(s), s.p) |= rΔ.ϕ,
– s′.�[i] = rΔ.to.

3. s′.p = s.p and s′ |= EnvCP.

In a transition (s, s′) ∈ T (p), the receive variables and locations of each pro-
cess are updated. That is, the value s′.nri[m] of the receive variable nr(m) of
process i is assigned a value in the range from 0 to N(p) non-deterministically,
such that the environment constraint EnvEP is satisfied. This ensures that the
number of received messages of type m is non-negative, that it does not exceed
the number of participating processes, and that the receive variables of each pro-
cess are assigned values that satisfy the constraints of the environment assump-
tion. In the case of the synchronous computation model, this captures that all
messages sent by correct processes in a round are received in the same round,
and that the number of messages of type m, received by process i, is bounded
by above by the total number of messages of type m, sent by both correct and
faulty processes. To update the locations, each process i picks a rule rΔ ∈ RΔ

that it applies to update its location, if the process i is in location rΔ.from in the
state s, and if the newly assigned values of the receive variables of process i in the
state s′ satisfy the receive guard rΔ.ϕ. If this is the case, the process i updates

Eliminating Message Counters in Synchronous Threshold Automata 211

its location to rΔ.to in the state s′. The parameter values remain unchanged,
and we require that the state s′ satisfies EnvCP, i.e., it is a valid state.

6 Abstracting rSTA to STA

Given an rSTA, our goal is to construct an STA, which differs from the rSTA
only in the guards on its rules and the environment assumption. For each rule
rΔ ∈ RΔ in the rSTA, whose guard rΔ.ϕ is a receive guard, we will construct a
rule r ∈ R in the STA, such that the guard r.ϕ is a Boolean combination of c-
propositions. We will perform the abstraction in two steps: (i) we will strengthen
each receive guard rΔ.ϕ, occurring on the rules rΔ ∈ RΔ of the rSTA, with the
constraints imposed by the faulty environment and the synchronous computation
model, encoded in the environment assumption EnvΔ, and (ii) we will eliminate
the receive variables from the receive guards and environment assumptions of
rSTA to obtain the guards and environment assumption of STA.

6.1 Guard Strengthening

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, where the rules rΔ ∈
RΔ have guards containing expressions over the receive variables nr(m) ∈ Δ, and
where the environment assumption EnvΔ ≡ EnvCP∧EnvEP is a conjunction of two
environment constraints, EnvCP and EnvEP, where the latter restricts the values
of the receive variables. Recall that in Sect. 3.2, we defined different environment
constraints EnvEP for the different fault models. In general, these constraints
express that for each message type m ∈ M, the receive variable nr(m) is assigned
a value which is greater or equal to the number of messages of type m sent by
correct processes, and which is smaller or equal to the total number of messages
of type m, sent by both correct and faulty processes (e.g., #sent(m) ≤ nr(m) ≤
#sent(m) + #sentcr(m) for crash faults). As a first step towards eliminating
the receive variables from the receive guards, we strengthen the rules from the
set RΔ, such that we add the environment constraints EnvEP to their guards in
order to bound the values of the receive variables.

Definition 1. Given rΔ ∈ RΔ, its strengthened rule is r̂Δ = strengthen(rΔ),
such that: r̂Δ.from = rΔ.from, r̂Δ.to = rΔ.to, r̂Δ.ϕ = rΔ.ϕ ∧ EnvEP.

We denote by ̂RΔ = {strengthen(rΔ) | rΔ ∈ RΔ} the set of strengthened
rules in rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ), where EnvΔ ≡ EnvCP ∧ EnvEP.

6.2 Eliminating the Receive Variables

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, and let ̂RΔ be the set
of strengthened rules (Definition 1). We define an STA = (L, I,R,Π,RC,Env)
whose locations, initial locations, and parameters are the same as in rSTA, while
we construct the rules R and the environment assumption Env of the STA below.

Recall that EnvΔ ≡ EnvCP ∧ EnvEP. To define the environment assump-
tion Env of the constructed STA, we set Env ≡ EnvCP. Before we define the rules
of the constructed STA, we define the mapping eliminate.

212 I. Stoilkovska et al.

Definition 2. Let φ be a propositional formula over r-, c-, and e-propositions.
Let δ = 〈nr(m1), . . . , nr(m|M|)〉 denote the |M|-dimensional receive variables
vector, and QE denote the quantifier elimination procedure for Presburger arith-
metic. The formula eliminate(φ) = QE(∃δ φ) is a quantifier-free formula, with no
occurrence of receive variables nr(m) ∈ Δ, which is logically equivalent to ∃δ φ.

To construct a rule r ∈ R of an STA, given a rule rΔ ∈ RΔ of an rSTA, we will
apply the mapping eliminate to each guard of the strengthened rule r̂Δ ∈ ̂RΔ,
where r̂Δ = strengthen(rΔ). The result of quantifier elimination is a quantifier-
free formula over c-propositions, which is logically equivalent to ∃δ r̂Δ.ϕ.

Definition 3. Given rΔ ∈ RΔ, its constructed rule is r = construct(rΔ) ∈ R,
such that: r.from = rΔ.from, r.to = rΔ.to, r.ϕ = eliminate(r̂Δ.ϕ), where r̂Δ =
strengthen(rΔ).

Proposition 1. For every strengthened rule r̂Δ ∈ ̂RΔ and every tuple (d,κ,p),
where d ∈ N

|M|, κ ∈ N
|L|, and p ∈ PRC , we have:

(d,κ,p) |= r̂Δ.ϕ implies (κ,p) |= eliminate(r̂Δ.ϕ)

Proposition 1 is a consequence of quantifier elimination. Note that the
converse of this proposition does not hold in general. That is, (κ,p) |=
eliminate(r̂Δ.ϕ) does not imply that (d,κ,p) |= r̂Δ.ϕ, for every d ∈ N

|M|. How-
ever, by quantifier elimination, we have that (κ,p) |= eliminate(r̂Δ.ϕ) implies
(κ,p) |= ∃δ r̂Δ.ϕ.

6.3 Soundness and Completeness

This construction of an STA is sound and complete. That is, given a rSTA and
an admissible valuation p ∈ PRC , we show that there exists a bisimulation
relation between the system STS(rSTA,p), induced by rSTA and p, and a counter
system CS(STA,p), induced by the constructed STA and p. The existence of a
bisimulation implies that STS(rSTA,p) and CS(STA,p) satisfy the same CTL∗

formulas [3]. To express temporal formulas, as atomic propositions we use the c-
propositions from the set CP. We define two labeling functions, λS(p) and λΣ(p),
where λS(p) : S(p) → 2CP assigns to a state s ∈ S(p) the set of c-propositions
that hold in it (the function λΣ(p) : Σ(p) → 2CP is defined analogously).

We introduce an abstraction mapping αp : S(p) → Σ(p) that maps states
s ∈ S(p) of STS(rSTA,p) to configurations σ ∈ Σ(p) of CS(STA,p), such that
σ = αp(s) iff σ = (κ(s), s.p). By the definition of the abstraction mapping αp

and the semantics of c-propositions, we have that a state and its abstraction
satisfy the same c-propositions. Further, given a configuration σ ∈ Σ(p), we
can construct a state s ∈ S(p), such that σ = αp(s). While this is always
possible, the constructed state s might not be reachable in any execution of the
system STS(rSTA,p). However, we can use the constraint EnvEP to restrict the
value of the receive variables in the constructed state s, such that it is a valid
state in the system STS(rSTA,p). The main result of this section is stated below.
The detailed proof of this result can be found in the first author’s PhD thesis.

Eliminating Message Counters in Synchronous Threshold Automata 213

Theorem 1. The binary relation B(p) = {(s, σ) | s ∈ S(p), σ ∈ Σ(p), σ =
αp(s)} is a bisimulation relation.

7 Experimental Evaluation

To show the usefulness of translating rSTA to STA, we: (i) encoded synchronous
fault-tolerant distributed algorithms using rSTA, (ii) implemented the method
from Sect. 6 in a prototype, (iii) compared the output to the existing manual
encodings from [34], some of which are artifacts of the experimental evaluation
from [36] and were given as examples throughout this paper, and (iv) verified
the properties of the generated STA using the technique from [36].

Encoding Algorithms as rSTA. We extended the STA encoding from [36], to
support (i) declarations of receive variables and (ii) constraints given by the
environment assumption. The algorithms we encoded are listed in Table 1, and
their rSTA can be found in [35]. For each of them, there already existed a man-
ually produced STA [34]. The manually produced rSTA and STA have the same
structure w.r.t. locations and rules, and differ only in the guards that occur on
the rules: in the rSTA, we have receive guards, which are Boolean combinations
of r-propositions and c-propositions, while in the manually encoded STA, the
guards are Boolean combinations of c-propositions.

Applying Quantifier Elimination. We implemented a script that parses the input
rSTA and creates an STA whose rules have guards that are Boolean combina-
tions of c-propositions, according to the abstraction from Sect. 6. To automate
the quantifier elimination step, we applied Z3 [16] tactics for quantifier elimi-
nation [10,11], to formulas of the form ∃δ r̂Δ.ϕ, where r̂Δ.ϕ ≡ rΔ.ϕ ∧ EnvEP

is the strengthened guard of the receive guard rΔ.ϕ, for rΔ ∈ RΔ. For all our
benchmarks, the STA is generated within seconds, as reported in Table 1.

Analyzing the Automatically Generated STA. We compared the guards of
the automatically generated STA (autoSTA) to the manually encoded STA
(manSTA). Syntactically, the guards of autoSTA are larger in general, as they
contain additional constraints that result from quantifier elimination. Seman-
tically, we check whether the guards for the autoSTA imply the guards of the
manSTA. For each automatically generated guard ϕauto, we check whether its
corresponding guard ϕman from the manual encoding is implied by ϕauto, for all
values of the parameters and number of sent messages by checking the validity
of the formula:

∀p ∈ PRC ∀L1 . . . ∀L|M| ϕauto(L1, . . . , L|M|) → ϕman(L1, . . . , L|M|) (3)

where Lj = sent(mj), for mj ∈ M and 1 ≤ j ≤ |M|, denotes the set of locations
where processes send messages of type mj . We automate the validity check of (3)
using an SMT solver, such as Z3, to check the unsatisfiability of its negation.
With this check we are able to either verify that the earlier manSTA faithfully
model the benchmark algorithms, or detect discrepancies, which we investigated

214 I. Stoilkovska et al.

Table 1. The algorithms we encoded as rSTA and the results of applying the verification
technique from [36]. The column QE states the time needed to produce an autoSTA from
an rSTA. The column ⇒ states if (3) is valid all, some, or none of guards. We report on
the time it took the solvers Z3 and CVC4 to (i) check the guard implications (only Z3),
(ii) compute the diameter for the autoSTA, and (iii) check the safety properties of the
autoSTA, (iv) compute the diameter for the manSTA, (v) check the safety properties
of the manSTA, using the SMT-based procedure from [36].

further. Our translation technique produces the strongest possible guards, due
to the soundness and completeness result. Hence, we expected that the impli-
cation holds for all the guards of all the benchmarks we considered. This is
however not the case for the algorithms HybridKing and HybridQueen which are
designed to tolerate hybrid faults, in particular, send omissions and Byzantine
faults. There, we found that one automatically generated guard does not imply
its corresponding manual guard, and concluded that this is due to a flaw in
the manual encoding by manual inspection. We found a similar problem with
a missing rule in the (purely) Byzantine versions of these algorithms, namely
ByzKing and ByzQueen. By adding these rules and correcting the appropriate
manual guards, we were able to establish the validity of (3) for all guards.

Model Checking of Safety Properties. We gave the STA we obtained as out-
put of our translation procedure as input to the bounded model checking tool
from [36], which computes a diameter of a counter system and performs bounded
model checking for safety properties. The experiments were run on a machine
with 2.8GHz Quad-Core Intel(R) Core(TM) i7 CPU and 16GB. The results of
applying the SMT-based procedure from [36] to the autoSTA, as well as to the
extended set [34] of manSTA from [36], are presented in Table 1. The timeout,

Eliminating Message Counters in Synchronous Threshold Automata 215

denoted by t.o. in the table, was set to 24 h. For all algorithms, we note that
bounded model checking with both Z3 and CVC4 performs similarly for both
autoSTA and manSTA. For computing the diameter, we observe that for the
algorithms: RB [21] (Fig. 5), HybridRB, OmitRB [9], FairCons [33], FloodMin, for
k = 1 (Fig. 3) and k = 2 [28], FMinOmit, for k = 1 (Fig. 4) and k = 2 [28], kSe-
tOmit, for k = 2 [33], FloodSet [28], PhaseKing [7], and PhaseQueen [6] (Fig. 1),
we obtain comparable results on both the autoSTA and manSTA. For the other
algorithms, we found:

– computing the diameter for the autoSTA of kSetOmit, with k = 1 [33], is
slightly slower with Z3 and slightly faster with CVC4 than for the manSTA;

– Z3 performs better when computing the diameter for the autoSTA than for
the manSTA of both ByzKing and ByzQueen [9], while CVC4 performs worse.
Note that in Table 1 we report the times for the manSTA of ByzKing and
ByzQueen that have missing rules. After adding the rules to the manSTA,
computing the diameter on the autoSTA is still faster with both solvers;

– Z3 and CVC4 compute the diameter for the autoSTA of HybridKing and
HybridQueen [9] within seconds, in contrast to both timing out for the
manSTA;

– computing the diameter with Z3 is significantly faster for the autoSTA than
for the manSTA of OmitKing [9]. CVC4 computes the diameter for autoSTA
of OmitKing, while for manSTA it times out. The computed diameter d = 4
for autoSTA is smaller than the diameter 8, computed for manSTA;

– Z3 and CVC4 compute the diameter for the autoSTA of OmitQueen [9] faster
than for manSTA.

8 Conclusions

We established a fully automated pipeline that for a synchronous distributed
algorithm: (1) starts from a formal model that captures its pseudo code, (2) pro-
duces a formal model suitable for verification, and (3) automatically verifies its
safety properties. Our technique thus closes the gap between the original descrip-
tion of an algorithm (using received messages) and the synchronous threshold
automaton of the algorithm given as an input to a verification tool.

There are two major differences to the asynchronous case considered in [37].
First, the asynchronous model uses interleaving semantics, while in the syn-
chronous model all processes take a step in a transition. Second, in the asyn-
chronous model, there are no limitations when a message will be delivered. The
lower bound on the number of received messages, given in the synchronous model
by the number of sent messages by correct processes, is only eventually satisfied
in the asynchronous model, and thus is not used in the process of eliminating
the receive variables from the receive guards.

We did extensive experimental evaluation of our method. We attribute the
better performance of the bounded model checking technique from [36] on the
automatically generated STA to the fact that the automatically generated guards
contain more additional constraints, coming from the environment assumption,

216 I. Stoilkovska et al.

which help guide the SMT solvers. Moreover, not only do we obtain the diameter
bounds faster, we also obtain better bounds for the automatically generated STA
of some benchmarks. These findings confirm the conjecture that manual encoding
of distributed algorithms is a tedious and error-prone task and suggest that there
is a real benefit of producing guards automatically.

References

1. Aminof, B., Rubin, S., Stoilkovska, I., Widder, J., Zuleger, F.: Parameterized
model checking of synchronous distributed algorithms by abstraction. VMCAI
2018. LNCS, vol. 10747, pp. 1–24. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8_1

2. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. Wiley, Hoboken (2004)
3. Baier, C., Katoen, J.P.: Principles of Model Checking. MITP, United States (2008)
4. Bakst, A., von Gleissenthall, K., Kici, R.G., Jhala, R.: Verifying distributed pro-

grams via canonical sequentialization. PACMPL 1(OOPSLA), 1–27 (2017)
5. Balasubramanian, A.R., Esparza, J., Lazić, M.: Complexity of verification and

synthesis of threshold automata. In: ATVA (2020)
6. Berman, P., Garay, J.A., Perry, K.J.: Asymptotically Optimal Distributed Con-

sensus. Technical report, Bell Labs (1989). http://plan9.bell-labs.co/who/garay/
asopt.ps

7. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus
(Extended Abstract). In: FOCS, pp. 410–415 (1989)

8. Bertrand, N., Konnov, I., Lazić, M., Widder, J.: Verification of randomized con-
sensus algorithms under round-rigid adversaries. In: CONCUR, pp. 1–15 (2019)

9. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and
link failures. Theor. Comput. Sci. 412(40), 5602–5630 (2011)

10. Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 316–330.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_27

11. Bjørner, N., Janota, M.: Playing with quantified satisfaction. LPAR 35, 15–27
(2015)

12. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2_23

13. Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theorem for the veri-
fication of round-based distributed algorithms. In: Bournez, O., Potapov, I. (eds.)
RP 2009. LNCS, vol. 5797, pp. 93–106. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04420-5_10

14. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91–99), 300 (1972)

15. Damian, A., Drăgoi, C., Militaru, A., Widder, J.: Communication-closed asyn-
chronous protocols. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp.
344–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_20

https://doi.org/10.1007/978-3-319-73721-8_1
https://doi.org/10.1007/978-3-319-73721-8_1
http://plan9.bell-labs.co/who/garay/asopt.ps
http://plan9.bell-labs.co/who/garay/asopt.ps
https://doi.org/10.1007/978-3-642-14203-1_27
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1007/978-3-030-25543-5_20

Eliminating Message Counters in Synchronous Threshold Automata 217

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54013-4_10

18. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

19. Gleissenthall, K.V., Gökhan Kici, R., Bakst, A., Stefan, D., Jhala, R.: Pretend
synchrony. In: POPL (2019)

20. Hawblitzel, C., et al.: Ironfleet: proving safety and liveness of practical distributed
systemsp. Commun. ACM 60(7), 83–92 (2017)

21. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645
(1987)

22. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL,
pp. 719–734 (2017)

23. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017). https://doi.org/10.1016/j.ic.2016.03.006

24. Kopetz, H., Grünsteidl, G.: TTP - a protocol for fault-tolerant real-time systems.
IEEE Comput. 27(1), 14–23 (1994). https://doi.org/10.1109/2.248873

25. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In: CON-
CUR, pp. 1–17 (2018)

26. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized systems: all
flavors of threshold automata. In: CONCUR. LIPIcs, vol. 118, pp. 1–17 (2018)

27. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: FTCS, pp. 402–411 (1993)

28. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
29. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:

Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_12

30. Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. Comptes
Rendus du I congres de Mathématiciens des Pays Slaves, pp. 92–101 (1929)

31. Pugh, W.: A practical algorithm for exact array dependence analysis. Commun.
ACM 35(8), 102–114 (1992)

32. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal specification, veri-
fication, and implementation of fault-tolerant systems using EventML. ECEASST
72 (2015)

33. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems.
Synth. Lect. Distrib. Comput. Theory 1(1), 1–189 (2010)

34. Stoilkovska, I.: Manually Encoded Synchronous Threshold Automata. https://
github.com/istoilkovska/syncTA/algorithms. Accessed Oct 2020

35. Stoilkovska, I.: Receive Synchronous Threshold Automata. https://github.com/
istoilkovska/syncTA/receiveSTA. Accessed Oct 2020

36. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety of synchronous
fault-tolerant algorithms by bounded model checking. In: Vojnar, T., Zhang, L.
(eds.) TACAS 2019. LNCS, vol. 11428, pp. 357–374. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1_20

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.1109/2.248873
https://doi.org/10.1007/978-3-319-63390-9_12
https://github.com/istoilkovska/syncTA/algorithms
https://github.com/istoilkovska/syncTA/algorithms
https://github.com/istoilkovska/syncTA/receiveSTA
https://github.com/istoilkovska/syncTA/receiveSTA
https://doi.org/10.1007/978-3-030-17465-1_20

218 I. Stoilkovska et al.

37. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Eliminating message counters
in threshold automata. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS,
vol. 12302, pp. 196–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59152-6_11

38. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: PLDI, pp. 357–368 (2015)

https://doi.org/10.1007/978-3-030-59152-6_11
https://doi.org/10.1007/978-3-030-59152-6_11

	Eliminating Message Counters in Synchronous Threshold Automata
	1 Introduction
	2 Our Approach at a Glance
	3 Synchronous Threshold Automata
	3.1 Receive Synchronous Threshold Automata
	3.2 Environment Assumption and Modeling Faults

	4 Counter Systems
	5 Synchronous Transition Systems
	6 Abstracting rSTA to STA
	6.1 Guard Strengthening
	6.2 Eliminating the Receive Variables
	6.3 Soundness and Completeness

	7 Experimental Evaluation
	8 Conclusions
	References

