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Preface

Welcome to the proceedings of VMCAI 2021, the 22nd International Conference on
Verification, Model Checking, and Abstract Interpretation.

Nonlocation. VMCAI 2021 was held January 17–19, 2021, jointly with the 48th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2021).
In contrast to previous years, VMCAI took place entirely online due to the COVID-19
pandemic, after originally being planned to be held at Hotel Scandic Copenhagen in
Copenhagen, Denmark, colocated with POPL 2021.

Conference description. VMCAI provides a forum for researchers working on
verification, model checking, and abstract interpretation and facilitates interaction,
cross-fertilization, and advancement of hybrid methods that combine these and related
areas.

The topics of the conference include program verification, model checking, abstract
interpretation, program synthesis, static analysis, type systems, deductive methods,
decision procedures, theorem proving, program certification, debugging techniques,
program transformation, optimization, and hybrid and cyber-physical systems.

Focus on reproducibility of research sesults. For the second time, VMCAI 2021
included an optional artifact evaluation (AE) process for submitted papers. Repro-
ducibility of results is of the utmost importance to the VMCAI community. Therefore,
we encouraged all authors to submit an artifact for evaluation. An artifact is any
additional material (software, data sets, machine-checkable proofs, etc.) that substan-
tiates the claims made in a paper and ideally makes them fully replicable. The eval-
uation and archiving of artifacts improves replicability and traceability for the benefit of
future research and the broader VMCAI community.

Paper selection. VMCAI 2021 received a total of 50 paper submissions, of which 2
were rejected without a full review for being out of scope and 1 was withdrawn during
the reviewing period. After a rigorous review process, with each paper reviewed by at
least three program committee members and a subsequent online discussion, the pro-
gram committee eventually accepted 23 papers for publication in the proceedings and
for presentation at the conference: 20 regular papers, 2 case studies, and 1 tool paper.
The main selection criteria were quality, relevance, and originality.

Invited talks and papers. The conference program included three invited keynote
presentations. They were by Bernd Finkbeiner (Universität des Saarlandes and CISPA
Helmholtz Center for Information Security) on Model Checking Algorithms for
Hyperproperties, by Laura Kovács (TU Wien) on Algebra-Based Synthesis of Loops
and their Invariants, and by Bernhard Steffen (TU Dortmund) on Generative Program
Analysis and Beyond: The Power of Domain-Specific Languages.

Each of the keynote presentations is accompanied by a paper the speakers were
invited to contribute to these proceedings. David Schmidt (Kansas State University),
who was jointly invited, elected to defer to and support Bernhard Steffen’s invited talk
and paper.



No winter school. In contrast to previous years there was no winter school pre-
ceding the conference. The organizers figured that the interactive spirit and intensity of
a winter school would be too difficult to achieve in the purely online setting necessi-
tated by COVID-19.

Artifact evaluation process. VMCAI 2021 continued the artifact evaluation pro-
cess established by VMCAI 2020. The goals of artifact evaluation are: (1) to get more
substantial evidence for the claims in the papers, (2) to simplify the replication of
results in the paper, and (3) to reward authors who create artifacts. Artifacts are any
additional material that substantiates the claims made in the paper. Examples of arti-
facts are software, tools, frameworks, data sets, test suites, and machine-checkable
proofs.

Authors of submitted papers were encouraged to submit an artifact to the VMCAI
2021 artifact evaluation committee (AEC). We also encouraged the authors to make
their artifacts publicly and permanently available. Artifacts had to be provided as .zip
or .tar.gz files and had to contain all necessary software for artifact evaluation as
well as a README file that describes the artifact and provides instructions on how to
replicate the results. Artifact evaluation had to be possible in the VMCAI 2021 virtual
machine, which ran Ubuntu 20.04 and was made publicly and permanently available
on Zenodo1.

All 22 submitted artifacts were evaluated in parallel with the papers. We assigned
three members of the AEC to each artifact and assessed it in two phases. First, the
reviewers tested whether the artifacts were working, e.g. there were no corrupted or
missing files and the evaluation did not crash on simple examples. For those artifacts
that did not work, we sent the issues to the authors. The authors’ answers to the
reviewers were distributed among the reviewers, and the authors were allowed to
submit an updated artifact to fix issues found during the test phase. In the second phase,
the assessment phase, the reviewers aimed at reproducing any experiments or activities
and evaluated the artifact based on the following questions:

1. Is the artifact consistent with the paper and the claims made by the paper?
2. Are the results of the paper replicable through the artifact?
3. Is the artifact well documented?
4. Is the artifact easy to use?

21 of the 22 submitted artifacts passed this second phase. Of these, 12 artifacts also
had their corresponding paper accepted, and were rewarded with the ‘Functional’
VMCAI artifact evaluation badge. Ten of these further consisted of artifacts that were
made permanently and publicly available; they were awarded the ‘Available’ VMCAI
artifact evaluation badge. Four of these were further considered remarkably well
structured, well documented and easy to adapt to future experiments or comparisons,
and received the ‘Reusable’ badge.

Acknowledgments. We would like to thank, first of all, the authors for submitting
their papers and, in many cases, supporting artifacts to VMCAI 2021.

1 https://zenodo.org/record/4017293.
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The program committee and the artifact evaluation committee did a great job of
reviewing: they contributed informed and detailed reports and engaged conscientiously
in the discussions and, in 3 cases, shepherding that eventually led to the decisions
which submissions to accept for presentation at the conference and for inclusion in the
present proceedings.

We warmly thank the keynote speakers for their participation and contributions.
We also thank the organizational committee of POPL 2021, in particular POPL

General Chair Andreas Podelski, for the umbrella organization they provided for the
entire POPL 2021 conference week.

Special thanks go to Clowdr for providing an online conference platform that not
only provided live audio/video transmission of the presentations, but also facilitated
low-carbon interactive and social participation from around the world.

We thank Christine Reiss and her publication team at Springer for their support, and
EasyChair for facilitating an efficient reviewing process.

The VMCAI steering committee and the previous year’s PC co-chairs, Dirk Beyer
and Damien Zufferey, have provided helpful advice, assistance, and support. Special
thanks go to Andreas Podelski for his experienced supervision and support from initial
planning to execution and finalization of VMCAI 2021.

Last but not least, we thank the sponsors, Amazon Web Services, Cadence, and
Springer, for their financial contributions. They made it possible for students and others
without the financial means to cover the registration fee to participate in VMCAI 2021.

November 2020 Fritz Henglein
Sharon Shoham

Yakir Vizel
Klaus von Gleissenthall

Troels Henriksen
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Model Checking Algorithms
for Hyperproperties (Invited Paper)

Bernd Finkbeiner(B)

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
finkbeiner@cispa.saarland

Abstract. Hyperproperties generalize trace properties by expressing
relations between multiple computations. Hyperpropertes include poli-
cies from information-flow security, like observational determinism or
noninterference, and many other system properties including prompt-
ness and knowledge. In this paper, we give an overview on the model
checking problem for temporal hyperlogics. Our starting point is the
model checking algorithm for HyperLTL, a reduction to Büchi automata
emptiness. This basic construction can be extended with propositional
quantification, resulting in an algorithm for HyperQPTL. It can also be
extended with branching time, resulting in an algorithm for HyperCTL∗.
However, it is not possible to have both extensions at the same time:
the model checking problem of HyperQCTL∗ is undecidable. An attrac-
tive compromise is offered by MPL[E], i.e., monadic path logic extended
with the equal-level predicate. The expressiveness of MPL[E] falls strictly
between that of HyperCTL∗ and HyperQCTL∗. MPL[E] subsumes both
HyperCTL∗ and HyperKCTL∗, the extension of HyperCTL∗ with the
knowledge operator. We show that the model checking problem for
MPL[E] is still decidable.

1 Introduction

In recent years, the linear-time and branching-time temporal logics have been
extended to allow for the specification of hyperproperties [3,5,7,8,11]. Hyper-
properties are a generalization of trace properties. Instead of properties of indi-
vidual computations, hyperproperties express relations between multiple com-
putations [4]. This makes it possible to reason uniformly about system properties
like information flow, promptness, and knowledge.

In model checking, hyperproperties have played a significant role even before
these new logics became available. An early insight was that the verification of a
given system against properties that refer to multiple traces can be reduced to the
verification of a modified system against properties over individual traces. The
idea is to self-compose the given system a sufficient number of times. The result-
ing traces contain in each position a tuple of observations, each resulting from a
different computation of the system. With this principle, certain hyperproperties
like observational determinism and noninterference can be verified using model
checking algorithms for standard linear and branching-time logics [1,13,18].
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-67067-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67067-2_1&domain=pdf
http://orcid.org/0000-0002-4280-8441
https://doi.org/10.1007/978-3-030-67067-2_1


4 B. Finkbeiner

The development of new logics specifically for hyperproperties considerably
broadened the range of hyperproperties that can be checked automatically.
HyperLTL is an extension of linear-time temporal logic (LTL) with quantifiers
over trace variables, which allow the formula to refer to multiple traces at the
same time. For example, noninterference [12] between a secret input h and a
public output o can be specified in HyperLTL by requiring that all pairs of
traces π and π′ that have, in every step, the same inputs except for h (i.e., all
inputs in I \{h} are equal on π and π′) also have the same output o at all times:

∀π.∀π′. G
( ∧

i∈I\{h}
iπ = iπ′

) ⇒ G (oπ = oπ′)

By combining universal and existential quantification, HyperLTL can also
express properties like generalized noninterference (GNI) [15], which requires
that for every pair of traces π and π′, there is a third trace π′′ that agrees with
π on h and with π′ on o:

∀π.∀π′.∃π′′. G (hπ = hπ′′) ∧ G (oπ′ = oπ′′)

HyperLTL is the starting point of an entire hierarchy of hyperlogics, depicted
in Fig. 1 and analyzed in detail in [5]. The hyperlogics are obtained from their
classic counterparts with two principal extensions. The temporal logics LTL,
QPTL, and CTL∗ are extended with quantifiers and variables over traces or
paths, such that the formula can refer to multiple traces or paths at the same
time; the first-order and second-order logics FO, S1S, MPL, and MSO are
extended with the equal-level predicate E, which indicates that two points hap-
pen at the same time (albeit possibly on different computations of the system).

A key limitation of HyperLTL, as first pointed out by Bozzelli et al. [2], is
that it is not possible to express promptness requirements, which say that there
should exist a common deadline over all traces by which a certain eventuality
is satisfied. Such properties can be expressed in FO[<,E], monadic first-order
logic of order extended with the equal-level predicate. FO[<,E] is subsumed by
the temporal logic HyperQPTL, which extends HyperLTL with quantification
over propositions. The following HyperQPTL formula specifies the existence of
a common deadline over all traces by which a certain predicate p must become
true on all traces. The quantification over the proposition d, which expresses the
common deadline, introduces a valuation of d that is independent of the choice
of trace π:

∃d.∀π.¬d U (pπ ∧ F d)

HyperQPTL captures the ω-regular hyperproperties [9]. Even more expressive
is S1S[E], monadic second order logic with one successor equipped with the
equal-level predicate. While the model checking problem of HyperQPTL is still
decidable, it becomes undecidable for S1S[E]. This is different from the case
of trace properties, where S1S is equally expressive to QPTL, and both have
decidable model checking problems.
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Extending HyperLTL to branching time leads to the temporal logic Hyper-
CTL∗ [3], which has the same syntax as HyperLTL, except that the quantifiers
refer to paths, rather than traces, and that path quantifiers may occur in the
scope of temporal modalities. HyperCTL∗ is subsumed by monadic path logic
equipped with the equal-level predicate (MPL[E]), which is a second-order logic
where second-order quantifiers are restricted to full computation paths. MPL[E]
in turn is contained in HyperQCTL∗, the extension of HyperCTL∗ with proposi-
tional quantification. HyperQCTL∗ is as expressive as full monadic second-order
logic with the equal-level predicate (MSO[E]) [5].

In this paper, we study this hierarchy of logics from the perspective of the
model checking problem. Our starting point is the model checking algorithm for
HyperLTL, which reduces the model checking problem to the language empti-
ness problem of a Büchi automaton [10]. The construction is similar to the idea
of self-composition in that for every trace variable a separate copy of the sys-
tem is introduced. Quantifiers are then eliminated by existential and universal
projection on the language of the automaton. This basic construction can be
extended with propositional quantification, which is also handled by projection.
The construction can also be extended to branching time, by tracking the pre-
cise state of each computation, rather than just the trace label. However, it is
not possible to implement both extensions at the same time: the model checking
problem of HyperQCTL∗ is undecidable [5].

S1S[E]

HyperQPTL

FO[<,E]

HyperLTL

<
<

<

(a)

MSO[E]MSO[E]
=

HyperQCTL∗

MPL[E]

HyperCTL∗

<
<

(b)

Fig. 1. The hierarchy of hyperlogics [5]: (a) linear time, (b) branching time.

The undecidability of HyperQCTL∗ is unfortunate, because many interesting
properties, such as branching-time knowledge, can be expressed in HyperQCTL∗,
but not in HyperCTL∗. It turns out, however, that MPL[E], whose expres-
siveness lies strictly between HyperCTL∗ and HyperQCTL∗, still has a decid-
able model checking problem. As the only original contribution of this paper
(everything else is based on previously published results), we present the first
model checking algorithm for MPL[E]. MPL[E] is a very attractive compro-
mise. MPL[E] subsumes both HyperCTL∗ and HyperKCTL∗ [5], the extension
of HyperCTL∗ with the knowledge operator.
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2 HyperLTL

HyperLTL is a generalization of linear-time temporal logic (LTL). We quickly
review the syntax and semantics of LTL and then describe the extension to
HyperLTL. Let AP be a finite set of atomic propositions. A trace over AP is a
map t : N → 2AP, denoted by t(0)t(1)t(2) · · · . Let (2AP)ω denote the set of all
traces over AP.

LTL. The formulas of linear-time temporal logic (LTL) [16] are generated by
the following grammar:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where a ∈ AP is an atomic proposition, the Boolean connectives ¬ and ∧ have
the usual meaning, X is the temporal next operator, and U is the temporal
until operator. We also consider the usual derived Boolean connectives, such
as ∨, →, and ↔, and the derived temporal operators eventually Fϕ ≡ ttUϕ,
globally Gϕ ≡ ¬F¬ϕ, and weak until : ϕW ψ ≡ (ϕUψ)∨Gϕ. The satisfaction
of an LTL formula ϕ over a trace t at a position i ∈ N, denoted by t, i |= ϕ, is
defined as follows:

t, i |= a iff a ∈ t(i),
t, i |= ¬ϕ iff t, i �|= ϕ,
t, i |= ϕ1 ∧ ϕ2 iff t, i |= ϕ1 and t, i |= ϕ2,
t, i |= Xϕ iff t, i + 1 |= ϕ,
t, i |= ϕ1Uϕ2 iff ∃k ≥ i : t, k |= ϕ2 ∧ ∀i ≤ j < k : t, j |= ϕ1.

We say that a trace t satisfies a sentence ϕ, denoted by t |= ϕ, if t, 0 |= ϕ. For
example, the LTL formula G (a → F b) specifies that every position in which a
is true must eventually be followed by a position where b is true.

HyperLTL. The formulas of HyperLTL [3] are generated by the grammar

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where a is an atomic proposition from a set AP and π is a trace variable from
a set V. Further Boolean connectives and the temporal operators F , G , and W
are derived as for LTL. A sentence is a closed formula, i.e., the formula has no
free trace variables.

The semantics of HyperLTL is defined with respect to a trace assignment, a
partial mapping Π : V → (2AP)ω. The assignment with empty domain is denoted
by Π∅. Given a trace assignment Π, a trace variable π, and a trace t, we denote
by Π[π → t] the assignment that coincides with Π everywhere but at π, which is
mapped to t. The satisfaction of a HyperLTL formula ϕ over a trace assignment
Π and a set of traces T at a position i ∈ N, denoted by T,Π, i |= ϕ, is defined
as follows:
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T,Π, i |= aπ iff a ∈ Π(π)(i),
T,Π, i |= ¬ψ iff T,Π, i �|= ψ,
T,Π, i |= ψ1 ∧ ψ2 iff T,Π, i |= ψ1 and T,Π, i |= ψ2,
T,Π, i |= Xψ iff T,Π, i + 1 |= ψ,
T,Π, i |= ψ1 Uψ2 iff ∃k ≥ i : T,Π, k |= ψ2

∧∀i ≤ j < k : T,Π, j |= ψ1,
T,Π, i |= ∃π. ϕ iff ∃t ∈ T : T,Π[π → t], i |= ψ,
T,Π, i |= ∀π. ϕ iff ∀t ∈ T : T,Π[π → t], i |= ψ.

We say that a set T of traces satisfies a sentence ϕ, denoted by T |= ϕ, if
T,Π∅, 0 |= ϕ.

System Properties. A Kripke structure is a tuple K = (S, s0, δ,AP, L) consisting
of a set of states S, an initial state s0, a transition function δ : S → 2S , a set
of atomic propositions AP, and a labeling function L : S∗ → 2AP that assigns a
set of atomic propositions that are true after a given sequence of states has been
traversed. We require that each state has a successor, that is δ(s) �= ∅, to ensure
that every execution of a Kripke structure can always be continued to infinity.
In a finite Kripke structure, S is a finite set. We furthermore assume that in a
finite Kripke structure, L only depends on the last state, so that L can also be
given as a function S → 2AP.

A path of a Kripke structure is an infinite sequence s0s1 . . . ∈ Sω such that s0
is the initial state of K and si+1 ∈ δ(si) for all i ∈ N. By Paths(K, s), we denote
the set of all paths of K starting in state s ∈ S. A trace of a path σ = s0s1 . . .
is a sequence of labels l0l1 . . . with li = L(s0s1 . . . si) for all i ∈ N. Tr(K, s)
is the set of all traces of paths of a Kripke structure K starting in state s. A
Kripke structure K with initial state s0 satisfies an LTL formula ϕ, denoted
by K |= ϕ iff for all traces π ∈ Tr(K, s0), it holds that π |= ϕ. Likewise, the
Kripke structure satisfies a HyperLTL formula ϕ, also denoted by K |= ϕ, iff
Tr(K, s0) |= ϕ.

Model Checking. The HyperLTL model checking problem is to decide, for a
given finite Kripke structure K and a given HyperLTL formula ψ, whether or
not K |= ψ. The following basic construction (described in more detail in [10])
reduces the model checking problem to the language emptiness problem of a
Büchi automaton: the given Kripke structure satisfies the formula if and only if
the language of the resulting automaton is empty.

The construction starts by negating ψ, so that it describes the existence of
an error. Since we assume that a HyperLTL formula begins with a quantifier
prefix, this means that we dualize the quantifiers and then negate the inner
LTL formula. Let us assume that the resulting HyperLTL formula has the form
Qnπn−1Q2πn−1 . . . Q1π1. ϕ where Q1, Q2, . . . Qn are trace quantifiers in {∃,∀}
and ϕ is a quantifier-free formula over atomic propositions indexed by trace
variables {π1, . . . πn}.
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Similar to standard LTL model checking, we convert the LTL formula ϕ
into an equivalent Büchi automaton A0 over the alphabet (2AP)n. Each letter
is a tuple of n sets of atomic propositions, where the ith element of the tuple
represents the atomic propositions of trace πi.

Next, the algorithm eliminates the quantifiers. For this purpose, it carries out
n steps that each eliminate one component from the tuple of the input alphabet.
In the ith step, we eliminate the ith component, corresponding to trace vari-
able πi. Let us consider the ith step. Over the previous steps, the automaton
Ai−1 over alphabet (2AP)(n−i) has been constructed, and now the first com-
ponent of the tuple corresponds to πi. If the trace quantifier Qi is existential,
we intersect Ai−1 with the Kripke structure K so that, in the sequence of let-
ters, the first component of the tuple is chosen consistently with some path in
K. Subsequently, we eliminate the first component of the tuple by existential
projection on the automaton. If Qi is universal, then we combine Ai−1 with the
Kripke structure K so that only sequences in which the first component is chosen
consistently with some path in K need to be accepted by Ai−1. Subsequently,
we eliminate the first component of the tuple by universal projection on the
automaton. This results in the next automaton Ai.

After n such steps, all quantifiers have been eliminated and the language
of the resulting automaton is over the one-letter alphabet (consisting of the
empty tuple). The HyperLTL formula is satisfied if and only if the language of
automaton An is empty.

3 HyperQPTL

HyperQPTL [5,17] extends HyperLTL with quantification over atomic proposi-
tions. To easily distinguish quantification over traces ∃π,∀π and quantification
over propositions ∃p,∀p, we use boldface for the latter. The formulas of Hyper-
QPTL are generated by the following grammar:

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ | ∃p. ϕ | ∀p. ϕ | ψ

ψ ::= aπ | p | ¬ψ | ψ ∧ ψ | Xψ | Fψ

where a, p ∈ AP and π ∈ V. The semantics of HyperQPTL corresponds to the
semantics of HyperLTL with additional rules for propositional quantification:

T,Π, i |= ∃q. ϕ iff ∃t ∈ (2{q})ω. T,Π[πq �→ t], i |= ϕ

T,Π, i |= ∀q. ϕ iff ∀t ∈ (2{q})ω. T,Π[πq �→ t], i |= ϕ

T,Π, i |= q iff q ∈ Π(πq)(i).

Expressiveness. As discussed in the introduction, HyperQPTL can express
promptness [14], which states that there is a bound, common for all traces, until
which an eventuality has to be fulfilled. Another common type of property that
can be expressed in HyperQPTL is knowledge. Epistemic temporal logics extend
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temporal logics with a so-called knowledge operator KAϕ, denoting that an agent
A knows ϕ. HyperQPTL can be extended to HyperQPTLK as follows [17]:

T,Π, i |= KA,πϕ iff ∀t′ ∈ T.Π(π)[0, i] =A t′[0, i] → T,Π[π �→ t′], i |= ϕ

In this definition, t[0, i] denotes the prefix of a trace t up to position i. Two
sequences t, t′ are equivalent with respect to agent A, denoted by t = At′, if
A cannot distinguish t and t′. We assume that A is given as a set of atomic
propositions A ⊆ AP. Then t =A t′ holds if t and t′ agree on all propositions
in A.

As shown in [17], the knowledge operator can be eliminated, resulting in an
equivalent HyperQPTL formula. The idea is to replace an application of the
knowledge operator KA,πψ with an existentially quantified proposition u and
add the following requirement to ensure that u is only true at positions where
the knowledge formula is satisfied:

∀r.∀π′. ((r U (u ∧ r ∧ ¬r)) ∧ (r → Aπ = Aπ′) → (r ∧ ¬r → ψ[π′/π]))

In this definition, Aπ = Aπ′ is an abbreviation for the conjunction over all
propositions in A that ensures that each proposition has the same value in π
and in π′. For each position where the knowledge formula is claimed to be true,
the universally quantified proposition r changes from true to false at exactly that
position, thus marking the prefix leading to this point. The knowledge formula
is then true iff ψ holds on all traces π′ that agree with respect to A on the prefix.

HyperQPTL is also strictly more expressive than FO[<,E], the extension of
the first-order logic of order with the equal-level predicate E [5]. Given a set V1

of first-order variables, the formulas ϕ of FO[<,E] are generated by the following
grammar [11]:

ϕ ::= ψ | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x.ϕ

ψ ::= Pa(x) | x < y | x = y | E(x, y),

where a ∈ AP and x, y ∈ V1. We interpret FO[<,E] formulas over a set of traces
T . We assign first-order variables to elements from the domain T ×N. We define
the satisfaction relation T,V1 |= ϕ with respect to a valuation V1 assigning all
free variables in V ′

1 as follows:

T, V1 |= Pa(x) iff a ∈ t(n) where (t, n) = V1(x)

T, V1 |= x < y iff t1 = t2 ∧ n1 < n2 where (t1, n1) = V1(x) and (t2, n2) = V1(y)

T, V1 |= x = y iff V1(x) = V1(y)

T, V1 |= E(x, y) iff n1 = n2 where (t1, n1) = V1(x) and (t2, n2) = V1(y)

T, V1 |= ¬ϕ iff T, V1 �|= ϕ

T, V1 |= ϕ1 ∨ ϕ2 iff T, V1 |= ϕ1 or T, V1 |= ϕ2

T, V1 |= ∃x.ϕ iff ∃(t, n) ∈ T × N.

T, V1[x �→ (t, n)] |= ϕ,

where V1[x �→ v] updates a valuation. A trace set T satisfies a closed FO[<,E]
formula ϕ, written T |= ϕ, if T, ∅ |= ϕ, where ∅ denotes the empty valuation.
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Model Checking. The only required modification to the model checking algorithm
described in Sect. 2 is the treatment of the propositional quantifiers. Since the
valuation of the propositions is not restricted by the given Kripke structure, we
omit the intersection with the Kripke structure for quantified propositions, and
instead eliminate the quantifier by existential or universal projection only.

4 Beyond HyperQPTL

The model checking problems of linear-time hyperlogics beyond HyperQPTL
quickly become undecidable. Two examples of such logics are HyperQPTL+ and
S1S[E].

HyperQPTL+. HyperQPTL+ [9] differs from HyperQPTL in the role of the
propositional quantification. Rather than interpreting the quantified proposi-
tions with an additional sequence of values, HyperQPTL+ modifies the inter-
pretation on the existing traces. The syntax of HyperQPTL+ is thus slightly
simpler, because also the quantified propositions appear indexed with trace
variables:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ∀a. ϕ | ∃a. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | Fψ .

In the semantics, the rules for propositional quantification are changed
accordingly:

T,Π, i |= ∃a. ϕ iff ∃T ′ ⊆ (2AP)ω. T ′ =AP\{a} T ∧ T ′,Π, i |= ϕ

T,Π, i |= ∀a. ϕ iff ∀T ′ ⊆ (2AP)ω. T ′ =AP\{a} T → T ′,Π, i |= ϕ .

S1S[E]. S1S[E] is monadic second-order logic with one successor (S1S) extended
with the equal-level predicate. Let V1 = {x1, x2, . . .} be a set of first-order vari-
ables, and V2 = {X1,X2, . . .} a set of second-order variables. The formulas ϕ of
S1S[E] are generated by the following grammar:

τ ::= x | min(x) | Succ(τ)
ϕ ::= τ ∈ X | τ = τ | E(τ, τ) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ,

where x ∈ V1 is a first-order variable, Succ denotes the successor relation, and
min(x) indicates the minimal element of the traces addressed by x. Furthermore,
E(τ, τ) is the equal-level predicate and X ∈ V2 ∪ {Xa | a ∈ AP}. We interpret
S1S[E] formulas over a set of traces T . As for FO[<,E], the domain of the
first-order variables is T × N. Let V1 : V1 → T × N and V2 : V2 → 2(T×N) be
the first-order and second-order valuation, respectively. The value of a term is
defined as follows:

[x]V1 = V1(x)
[min(x)]V1 = (proj 1(V1(x)), 0)

[S(τ)]V1 = (proj 1([τ ]V1), proj 2([τ ]V1) + 1),
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where proj 1 and proj 2 denote the projection to the first and second component,
respectively. Let ϕ be an S1S[E] formula with free first-order and second-order
variables V ′

1 ⊆ V1 and V ′
2 ⊆ V2 ∪ {Xa | a ∈ AP}, respectively. We define the

satisfaction relation T,V1,V2 |= ϕ with respect to two valuations V1,V2 assigning
all free variables in V ′

1 and V ′
2 as follows:

T,V1,V2 |= τ ∈ X iff [τ ]V1 ∈ V2(X)
T,V1,V2 |= τ1 = τ2 iff [τ1]V1 = [τ2]V1

T,V1,V2 |= E(τ1, τ2) iff proj 2([τ1]V1) = proj 2([τ2]V1)
T,V1,V2 |= ¬ϕ iff T,V1,V2 �|= ϕ

T,V1,V2 |= ϕ1 ∨ ϕ2 iff T,V1,V2 |= ϕ1 or T,V1,V2 |= ϕ2

T,V1,V2 |= ∃x.ϕ iff ∃(t, n) ∈ T × N.

T,V1[x �→ (t, n)],V2 |= ϕ

T,V1,V2 |= ∃X.ϕ iff ∃A ⊆ T × N.

T,V1,V2[X �→ A] |= ϕ,

where Vi[x �→ v] updates a valuation. A trace set T satisfies a closed S1S[E]
formula ϕ, written T |= ϕ, if T, ∅,V2 |= ϕ, where ∅ denotes the empty first-order
valuation and V2 assigns each free Xa in ϕ to the set {(t, n) ∈ T ×N | a ∈ t[n]}.

Model Checking. The model checking problems of HyperQPTL+ and S1S[E] are
both undecidable, as shown in [9] and [5], respectively.

5 HyperCTL∗

Extending the path quantifiers of CTL∗ by path variables leads to the logic
HyperCTL∗, which subsumes both HyperLTL and CTL∗. The formulas of Hyper-
CTL∗ are generated by the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕUϕ | ∃π. ϕ

We require that temporal operators only occur inside the scope of path quanti-
fiers. The semantics of HyperCTL∗ is given in terms of assignments of variables
to paths, which are defined analogously to trace assignments. Given a Kripke
structure K, the satisfaction of a HyperCTL∗ formula ϕ at a position i ∈ N,
denoted by K,Π, i |= ϕ, is defined as follows:

K,Π, i |= aπ iff a ∈ L
(
Π(π)[0 . . . i]

)
,

K,Π, i |= ¬ϕ iff Π,K, i �|= ϕ,
K,Π, i |= ϕ1 ∨ ϕ2 iff K,Π, i |= ϕ1 or K,Π, i |= ϕ2,
K,Π, i |= ϕ iff K,Π, i + 1 |= ϕ,
K,Π, i |= ϕ1 Uϕ2 iff ∃k ≥ i : K,Π, k |= ϕ2 and

∀i ≤ j < k : K,Π, j |= ϕ1,
K,Π, i |= ∃π. ϕ iff ∃p ∈ Paths(K,Π(ε)(i)) :

K,Π[π �→ p, ε �→ p], i |= ϕ,
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where ε is a special path variable that denotes the path most recently added to
Π (i.e., closest in scope to π). For the empty assignment Π∅, we define Π∅(ε)(i)
to yield the initial state. A Kripke structure K = (S, s0, δ,AP, L) satisfies a
HyperCTL∗ formula ϕ, denoted with K |= ϕ, iff K,Π∅ |= ϕ.

Expressiveness. HyperCTL∗ can express the flow of information that appears in
different branches of the computation tree. Consider, for example, the following
Kripke structure (taken from [8]):

s0:

a

...

a

...
...

...

An observer who sees a can infer which branch was taken in the first nondeter-
ministic choice, but not which branch was taken in the second nondeterministic
choice. This is expressed by the HyperCTL∗ formula

∀π.X ∀π′.X (aπ ↔ aπ′).

Model Checking. The modification to the model checking algorithm from Sect. 2
needed to take care of branching time is to change to alphabet of the automata
from (2AP)n, i.e., tuples of sets of atomic propositions, to Sn, i.e., tuples of
states of the Kripke structure. The model checking algorithm is described in
detail in [10]. The algorithm again starts by translating the inner LTL formula
ϕ of the negated specification into an equivalent Büchi automaton A0 over the
alphabet (2AP)n; this automaton is then translated into an automaton over
alphabet Sn by applying the labeling function L to the individual positions of
the tuple. The algorithm then proceeds as described in Sect. 2, eliminating in
each step one path quantifier. In the elimination of the quantifier, the automaton
is combined as before with the Kripke structure, ensuring that the state sequence
corresponds to a path in the Kripke structure. After n steps, all quantifiers have
been eliminated, and the language of the resulting automaton is, as before. over
the one-letter alphabet (consisting of the empty tuple). The HyperCTL∗ formula
is satisfied if and only if the language of the resulting automaton is empty.

6 HyperQCTL∗

HyperQCTL∗ [5] extends HyperCTL∗ with quantification over atomic proposi-
tions. The formulas of HyperQCTL∗ are generated by the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕUϕ | ∃π. ϕ | ∃p. ϕ

where a, p ∈ AP and π ∈ V. The semantics of HyperQCTL∗ corresponds to the
semantics of HyperCTL∗ with an additional rule for propositional quantification.
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In QPTL, a propositional quantifier over a proposition p determines a sequence in
(2p)ω; i.e., the value of the proposition depends on the position in the sequence.
In HyperQCTL∗, the quantification modifies the interpretation on the entire
computation tree.

K,Π, i |= ∃q.ϕ iff ∃L′ : S∗ → 2AP∪{q}. ∀w ∈ S∗.
L′(w) =AP\{q} L(w) ∧ K[L′/L],Π, i |= ϕ.

We say that a Kripke structure K satisfies a HyperQCTL∗ formula ϕ, written
K |= ϕ, if K, ∅, 0 |= ϕ.

Expressiveness. HyperQCTL∗ is strictly more expressive than HyperCTL∗. In
particular, HyperQCTL∗ subsumes the extension of HyperCTL∗ with the knowl-
edge operator. The formula KA,πϕ states that the agent who can observe the
propositions A ⊆ AP on path π knows that ϕ holds. The semantics of KA,π is
defined (analogously to the linear-time version in Sect. 3) as follows:

K,Π, i |= KA,πϕ iff ∀p ∈ Paths(K, s0).Π(π)[0, i] =A p[0, i] →
T,Π[π �→ p], i |=K ϕ

HyperQCTL∗ also has the same expressiveness as second-order modadic logic
equipped with the equal-level predicate (MSO[E]), i.e., the extension of FO[<,E]
(as defined in Sect. 3) with second-order quantification [5].

Model Checking. The model checking problem of HyperQCTL∗ is
undecidable [5].

7 Monadic Path Logic

Monadic path logic equipped with the equal-level predicate (MPL[E]) is the
extension of FO[<,E] (as defined in Sect. 3) with second-order quantification,
where the second-order quantification is restricted to full paths in the Kripke
structure.

Let V1 = {x1, x2, . . .} be a set of first-order variables, and V2 = {X1,X2, . . .}
a set of second-order variables. The formulas ϕ of MPL[E] are generated by the
following grammar:

ϕ ::= ψ | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x.ϕ | ∃X.ϕ

ψ ::= Pa(x) | x < y | x = y | x ∈ X | E(x, y),

where a ∈ AP , x, y ∈ V1, and X ∈ V2. In the semantics of MPL[E], we assign
first-order variables to sequences of states that form a prefix of a path in the
Kripke structure, and second-order variables to the infinite prefix-closed sets of
prefixes of the paths of the Kripke structure.
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We define the satisfaction relation K,V1,V2 |= ϕ for a Kripke structure K
and two valuations V1,V2 as follows:

K,V1,V2 |= Pa(x) iff a ∈ L(V1(x))
K,V1,V2 |= x < y iff V1(x) � V1(y)
K,V1,V2 |= x = y iff V1(x) = V1(y)
K,V1,V2 |= x ∈ X iff V1(x) ∈ V2(X)
K,V1,V2 |= E(x, y) iff |V1(x)| = |V1(y)|
K,V1,V2 |= ¬ϕ iff K,V1,V2 �|= ϕ

K,V1,V2 |= ϕ1 ∨ ϕ2 iff K,V1,V2 |= ϕ1 ∨ K,V1,V2 |= ϕ2

K,V1,V2 |= ∃x.ϕ iff ∃p ∈ S∗, p′ ∈ Paths(K, s0). p � p′∧
K,V1[x �→ p],V2 |= ϕ

K,V1,V2 |= ∃X.ϕ iff ∃p ∈ Paths(K, s0). V1,V2[X �→ Prefixes(p)] |= ϕ

where Vi[x �→ v] updates a valuation, p1 � p2 denotes that p1 is a prefix of
p2, and Prefixes(p) is the set of prefixes of p. A Kripke structure K satisfies
a closed MPL[E] formula ϕ, written K |= ϕ, if T, ∅,V2 |= ϕ, where ∅ denotes
the empty first-order valuation and V2 assigns each free Xa in ϕ to the set
{p ∈ S∗ | a ∈ L(p)}.

Expressiveness. The expressiveness of MPL[E] falls strictly between HyperCTL∗

and HyperQCTL∗. Like HyperQCTL∗, MPL[E] can, however, express the prop-
erties of HyperKCTL∗, i.e., the extension of HyperCTL∗ with the knowledge
operator [5].

Model Checking. Similar to the model checking algorithm of Sect. 2, we reduce
the model checking problem of MPL[E] to the language emptiness problem of a
Büchi automaton. Let ϕ be the negation of the given formula. We translate ϕ into
an automaton A over the tuple alphabet (S ∪{⊥})V1∪V2 such that the language
of A is empty iff the original formula is satisfied by the Kripke structure. The
automaton is constructed recursively as follows:

– If ϕ = Pa(x), then A accepts all infinite sequences where the first time the
component of component of x becomes ⊥ at some point, and stays ⊥ from
thereon after, and a is contained in L(w) where w is the sequence of states
in x’s component up to that point.

– If ϕ = x < y, then A accepts all infinite sequences where the components of
x and y each become and stay ⊥ at some point, and until x becomes ⊥ the
components are the same.

– If ϕ = x=y, then A accepts all infinite sequences where the components
of x and y each become and stay ⊥ at the same point, and until then the
components are the same.

– If ϕ = x ∈ X, then A accepts all infinite sequences where the component of
x becomes and stays ⊥ at some point, and until then the components of x
and X are the same.
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– If ϕ = E(x, y), then A accepts all infinite sequences where the components
of x and y become and stay ⊥ at the same point.

– If ϕ = ¬ψ, then we first compute and negate the automaton for ψ. A is then
the intersection of that automaton with an automaton that ensures that, for
every x ∈ V1, the component of x eventually becomes and stays ⊥.

– If ϕ = ∃x.ψ, then we first compute the automaton for ψ. We then combine
the automaton with the Kripke structure to ensure that the component for
x forms a prefix of a path in the Kripke structure and ends in ⊥. A is then
the existential projection of that automaton, where the component for x is
eliminated.

– If ϕ = ∃X.ψ, then we also first compute the automaton for ψ. We then com-
bine the automaton with the Kripke structure to ensure that the component
for X forms a full path in the Kripke structure. A is then the existential
projection of that automaton, where the component for X is eliminated.

8 Conclusions

We have studied the hierarchy of hyperlogics from the perspective of the model
checking problem. For the logics considered here, HyperQPTL is clearly the
most interesting linear-time logic, because it can still be checked using the basic
model checking algorithm, while for more expressive logics like HyperQPTL+

and S1S[E] the model checking problem is already undecidable. Among the
branching-time logics, MPL[E] has a similar position, more expressive than
HyperCTL∗, but, unlike HyperQCTL∗, still with a decidable model checking
problem.

From a practical point of view, the key challenge that needs to be addressed
in all these logics is the treatment of quantifier alternations. In the model check-
ing algorithm quantifier alternations lead to alternations between existential and
universal projection on the constructed automaton. Such alternations can in the-
ory be implemented using complementation; in practice, however, the exponen-
tial cost of complementation is too expensive. Model checking implementations
like MCHyper therefore instead rely on quantifier elimination via strategies [6].
In this approach, the satisfaction of a formula of the form ϕ = ∀π1.∃π2.ψ is ana-
lyzed as a game between a universal player, who chooses π1, and an existential
player, who chooses π2. The formula ϕ is satisfied if the existential player has a
strategy that ensures that ψ becomes true.

Acknowledgement. Most of the work reported in this paper has previously appeared
in various publications [3,5,6,9–11]. I am indebted to my coauthors Michael R. Clark-
son, Norine Coenen, Christopher Hahn, Jana Hofmann, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, César Sánchez, Leander Tentrup, and Martin Zimmermann.
This work was partially supported by the Collaborative Research Center “Foundations
of Perspicuous Software Systems”(TRR: 248, 389792660) and the European Research
Council (ERC) Grant OSARES (No. 683300).



16 B. Finkbeiner

References

1. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

2. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying Hyper and Epistemic Temporal
Logics. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 167–182. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 11

3. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

4. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

5. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24–27, 2019, pp. 1–13. IEEE (2019)

6. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

7. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

8. Finkbeiner, B.: Temporal hyperproperties. Bulletin of the EATCS, 123 (2017)
9. Finkbeiner, B., Hahn, C., Hofmann, J., Tentrup, L.: Realizing ω-regular hyper-

properties. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
40–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 4

10. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
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Abstract. Provably correct software is one of the key challenges in our
software-driven society. While formal verification establishes the correct-
ness of a given program, the result of program synthesis is a program
which is correct by construction. In this paper we overview some of our
results for both of these scenarios when analysing programs with loops.
The class of loops we consider can be modelled by a system of linear
recurrence equations with constant coefficients, called C-finite recur-
rences. We first describe an algorithmic approach for synthesising all
polynomial equality invariants of such non-deterministic numeric single-
path loops. By reverse engineering invariant synthesis, we then describe
an automated method for synthesising program loops satisfying a given
set of polynomial loop invariants. Our results have applications towards
proving partial correctness of programs, compiler optimisation and gen-
erating number sequences from algebraic relations.

1 Introduction

The two most rigorous approaches for providing correct software are given by
formal program verification and program synthesis [43]. The task of formal veri-
fication is to prove correctness of a given program with respect to a given logical
specification [6,9,17]. On the other hand, program synthesis aims at generating
programs which adhere to a given specification [2,34]. The result of a synthesis
problem is therefore a program which is correct by construction with respect to
the specification. While formal verification has received considerable attention
with impressive results, for example, in ensuring safety of device drivers [3] and
security of web services [7], program synthesis turns out to be an algorithmically
much more difficult challenge [33].

Both in the setting of verification and synthesis, one of the main challenges is
to verify or synthesise programs with loops/recursion. In formal verification, solv-
ing this challenge requires for example synthesising loop invariants [20,30,39].
Intuitively, a loop invariant is a formal description of the behaviour of the loop,
expressing loop properties that hold at arbitrary loop iterations. For the purpose
of automating formal verification, synthesising loop invariants that are induc-
tive is of critical importance, as inductive invariants describe program proper-
ties/safety assertions that hold before and after each loop iteration.
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 17–28, 2021.
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Fig. 1. Algebra-based synthesis of loops and their invariants.

In program synthesis, reasoning with loops requires answering the question
whether there exists a loop satisfying a given loop invariant and synthesising a
loop with respect to a given invariant. We refer to this task of synthesis as loop
synthesis. As such, we consider loop synthesis as the reverse problem of loop
invariant generation/synthesis: rather than generating invariants summarising
a given loop, we synthesise loops whose summaries are captured by a given
invariant property.

In this paper, we overview algebra-based algorithms for automating reason-
ing about loops and their invariants. The key ingredients of our work come with
deriving and solving algebraic recurrences capturing the functional behaviour
of loops to be verified and/or synthesised. To this end, we consider additional
requirements on the loops to be verified/synthesised, in particular by impos-
ing syntactic constraints on the form of loop expressions. The imposed con-
straints allow us to reduce the verification/synthesis task to the problem of
solving algebraic recurrences of special forms. Here, we mainly focus on loops
whose functional summaries are precisely captured by so-called C-finite recur-
rences [27], that is linear recurrences with constant coefficients, for which closed
form solutions always exist. We use symbolic summation techniques over C-finite
recurrences to compute closed forms and combine these closed forms with addi-
tional constraints to ensure that (i) algebraic relations among closed forms yield
polynomial loop invariants and (ii) loops synthesised from such polynomial loop
invariants implement only affine assignments.

Figure 1 overviews our approach towards synthesising loops and/or their
invariants. In order to generate invariants, we extract a system of C-finite recur-
rence equations describing loop updates. We then compute the polynomial ideal,
called the polynomial invariant ideal, containing all polynomial equality invari-
ants of the loop, by using recurrences solving and Gröbner basis computation [4].
Any polynomial invariant of the given loop is then a logical consequence of the
polynomials from the computed polynomial ideal basis [31]. On the other hand,
for loop synthesis, we take a basis of the polynomial invariant ideal generated by
given polynomial loop invariants and construct a polynomial constraint problem.
This constraint problem precisely characterises the set of all C-finite recurrence
systems for which the given polynomial invariants yield algebraic relations among
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requires N > 0

(x, y, z) ← (0, 0, 0)
while y < N do

x ← x+ z + 1
z ← z + 2
y ← y + 1

end

ensures x = N2

(a) Invariant synthesis for partial correctness.

requires N > 0

(x, y) ← (0, 0)
while y < N do

x ← x+ 2y + 1
y ← y + 1

end

ensures x = N2

(b) Loop synthesis to “optimize” Figure 2a.

Fig. 2. Motivating example for invariant and loop synthesis.

the induced C-finite number sequences. Every solution of the constraint problem
gives thus rise to a system of C-finite recurrence equations, which is then turned
into a loop for which the given polynomial relations are loop invariants [23].

In the rest of this paper, we first motivate our results on examples for invari-
ant and loop synthesis (Sect. 2). We then report on algebra-based approaches for
invariant generation (Sect. 3) and loop synthesis (Sect. 4), by summarising our
main results published at [23,31].

2 Motivating Examples for Synthesising Invariants and
Loops

Loop Invariant Synthesis. Verifying safety conditions and establishing partial
correctness of programs is one use case of invariant generation. Consider for
example the program in Fig. 2a, annotated with pre- and post-conditions spec-
ified respectively by the requires and ensures constructs. The program of
Fig. 2a is clearly safe as the post-condition is satisfied when the loop is exited.
However, to prove program safety we need additional loop properties, i.e. induc-
tive loop invariants, that hold at any loop iteration. It is not hard to derive that
after any iteration n of the loop (assuming 0 ≤ n ≤ N), the linear invariant
relation y ≤ N holds. It is also not hard to argue that, upon exiting the loop,
the value of y is N . However, such properties do not give us much information
about the (integer-valued) program variable x. For proving program safety, we
need to derive loop invariants relating the values of x, y, z at an arbitrary loop
iteration n. Our work in [31] generates such loop invariants by computing the
polynomial ideal I = 〈x − y2, z − 2y〉 as the so-called polynomial invariant ideal.
The conjunction x = y2 ∧ z = 2y of the polynomial relations corresponding to
the basis polynomials of I is an inductive loop invariant, which together with
the invariant y ≤ N is sufficient to prove partial correctness of Fig. 2a.

Loop Synthesis. One use case of loop synthesis is program optimisation. To
reduce execution time spent within loops, compiler optimisation techniques, such
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(x, y) ← (0, 2)
while y < N do
x ← x+ y
y ← y + 1

end
aaa

(a) Erroneous loop

(x, y, z ) ← (0, 0, 0 )
while y < N do

x ← x+ z + 1
z ← z + 2
y ← y + 1

end

(b) Synthesised loop

(x, y) ← (0, 0 )
while y < N do

x ← x+ 2y + 1
y ← y + 1

end
aaa

(c) Synthesised loop

Fig. 3. Program repair via loop synthesis. Figures b–c, corresponding also to the pro-
grams of Figs. 2a–2b, are revised versions of Fig. a such that x = y2 is an invariant of
Figs. b–c.

as strength reduction [8], aim at replacing expensive loop operations with seman-
tically equivalent but less expensive operations and/or reducing the number of
loop variables used within loops. The burden of program optimisation in the
presence of loops comes however with identifying inductive loop variables and
invariants to be used for loop optimisation. Coming back to the loop in Fig. 2a, as
argued before, x = y2 ∧ z = 2y ∧ y ≤ N is a loop invariant of Fig. 2a. Moreover,
only x = y2 is already a loop invariant of Fig. 2a. Our loop synthesis procedure
can be used to synthesise the affine loop of Fig. 2b from the polynomial invari-
ant x = y2, such that the synthesised loop uses less variables and arithmetic
operations than Fig. 2a. Note that program repair can also be considered as an
instance of program optimisation: while maintaining a given polynomial loop
invariant, the task is to revise and repair a given program such that it satisfies
the given invariant. Our synthesis approach therefore also provides a solution to
program repair, as illustrated in Fig. 3.

3 Algebra-Based Synthesis of Loop Invariants

Overview of State-of-the-Art. One of the most related approaches to our work in
automating the synthesis of polynomial loop invariants comes with the seminal
work of [14], where a method for refining a user-given partial invariant was
introduced to prove partial correctness of a given program. One of the first fully
automatic invariant generation procedures was then given by [26] for inferring
affine relations within affine programs. Since then, loop invariant generation was
intensively studied and the level of automation and expressivity with respect
to programs and their invariants steadily increased. Here we overview the most
related techniques to our work.

The approach of [35] generalised [26] and provided a method for computing
all polynomial equality relations for affine programs up to an a priori fixed
degree. Recently, [18] constructively proved that the set of all polynomial equality
invariants is computable for affine programs.

The works of [40] and [11] fix a polynomial template invariant and derive
a constraint problem that encodes properties of loop invariants, such as induc-
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tiveness. These constraint problems are then solved by linear or polynomial
algebra. The methods of [36] and [38] use abstract interpretation in combina-
tion with Gröbner bases computations for computing polynomial invariants of
bounded degree. In [5], the abstract interpretation approach from [36] and the
constraint-based approach from [40] is combined, yielding a procedure for com-
puting invariants of bounded degree without resorting to Gröbner bases.

The techniques in [12,28–30] approximate an arbitrary loop by a single-path
loop and then apply recurrence solving to infer nonlinear invariants. They include
guards in loops and conditionals in their reasoning, and are also able to infer
inequalities as loop invariant. A data-driven approach to invariant generation is
given in [41] using the guess-and-check methodology. Linear algebra is used to
guess candidate invariants from data generated by concrete program executions
where an upper bound on the polynomial degree of the candidate is user-given.
An SMT solver is then used to validate the candidates with respect to the prop-
erties of loop invariants. If this is not the case, then the candidate is refined
based on the output of the SMT solver.

Our work for invariant generation does neither use abstract interpretation
nor constraint solving, and does not fix an a priori bound on the degree of the
polynomial invariants to be synthesised. Instead, we restrict the class of loops
our work can handle to non-deterministic loops whose loop updates yield special
classes of algebraic recurrences in the loop counter, and hence we cannot handle
loops with arbitrary nestedness as in [30]. We rely on results of [39] proving that
the set of all polynomial equality invariants for a given (non-deterministic) loop
forms a polynomial ideal. In [31], we use the ideal-theoretic result of [39] and
compute all polynomial invariants of the class of non-deterministic loops that can
be modelled by C-finite recurrence equations. Our results can further be extended
to more complex recurrences equations by allowing restricted multiplications,
and hence restricted classes of linear recurrences with polynomial coefficients,
among loop variables - as detailed in [20,22].

Algebra-Based Synthesis of Loop Invariants. We now summarise our algebra-
based algorithm for synthesising polynomial loop invariants. To this end, we
define our task of loop invariant synthesis as follows:

LOOP INVARIANT SYNTHESIS

• Given: A non-deterministic single-path loop L with program variables
x such that each variable from x induces a C-finite number sequence in
L;
• Generate: A polynomial ideal I of all polynomials p(x) such that
p(x) = 0 is a loop invariant of L.
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The main steps of our algorithm for loop invariant synthesis are as follows:

1. The non-deterministic single-path loop L is transformed into the regular
expression π∗, where π is the block of assignments from the loop body of
L and π∗ denotes an arbitrary number of executions of π.

2. We extract a system of C-finite recurrence equations for π∗, by describing
the C-finite number sequences for each program variable xi ∈ x of L via a
C-finite recurrence equation. To this end, we write xi(n) to denote the value
of the program variable xi ∈ x at an arbitrary loop iteration n ≥ 0 as well as
to refer to the number sequence xi(n) induced by the values of xi at arbitrary
loop iterations n ≥ 0.

3. We solve the resulting C-finite recurrences of π∗, yielding a functional repre-
sentation of values of xi(n) depending only on n and some initial values.

4. As a result, we derive closed forms xi(n) = fi(n), where fi are linear combi-
nations of polynomial and exponential expressions in n. We also compute
algebraic relations ai(n) as valid polynomial relations among exponential
expressions in n.

5. A polynomial ideal I of all polynomials p(x) such that p(x) = 0 is a loop
invariant of L is then computed by using Gröbner basis computation to elim-
inate n from the ideal generated by 〈xi − fi(n), ai(n)〉. The ideal I is called
the polynomial invariant ideal of L.

Example 1 (Loop invariant synthesis). We illustrate our algorithm for loop
invariant synthesis on the loop of Fig. 2a. The loop guard of Fig. 2a is ignored.
Using matrix notation, the block π of loop body assignments induces the follow-
ing coupled system of C-finite recurrence equations for π∗, with n ≥ 0:

⎛
⎝

x(n + 1)
z(n + 1)
y(n + 1)

⎞
⎠ =

⎛
⎝

2 0 1
0 1 0
0 0 1

⎞
⎠

⎛
⎝

x(n)
z(n)
y(n)

⎞
⎠ +

⎛
⎝

1
2
1

⎞
⎠

The closed form solutions of the above recurrence system are given by
⎧⎨
⎩

x(n) = x(0) + n2

z(n) = z(0) + 2n
y(n) = y(0) + n

with x(0) = 0, y(0) = 0 and z(0) = 0 from the initial value assignments of
Fig. 2a. By eliminating n from 〈x − n2, z − 2n, y − n〉, we derive the polynomial
invariant ideal I = 〈x − y2, z − 2y〉 of π∗, yielding the polynomial loop invariant
x = y2 ∧ z = 2y.

Automation and Implementation. Our algorithm for loop invariant synthesis is
fully automated within the open-source Julia package Aligator, which is available
at:

https://github.com/ahumenberger/Aligator.jl.

For experimental summary and comparisons with other tools, in particular
with [30], we refer to [19,21].

https://github.com/ahumenberger/Aligator.jl
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4 Algebra-Based Synthesis of Loops

Overview of State-of-the-Art. The classical setting of program synthesis has
been to synthesise programs from proofs of logical specifications that relate the
inputs and the outputs of the program [34]. Thanks to recent successful trends in
formal verification based on automated reasoning [10,32], this traditional view
of program synthesis has been refined to the setting of syntax-guided synthesis
(SyGuS) [2]. In addition to logical specifications, SyGuS approaches consider
further constraints on the program template to be synthesised, limiting thus the
search space of possible solutions. A wide range of efficient applications of SyGuS
have so far emerged, for example programming by examples [16], component-
based synthesis [24] with learning [13] and sketc.hing [37].

Most synthesis approaches exploit counterexample-guided synthesis [2,13,37,
42] within the SyGuS framework. These methods take input-output examples sat-
isfying a given property and synthesise a candidate program that is consistent with
the given inputs. Correctness of the candidate program with respect to the given
property is then checked using formal verification, in particular using SMT-based
reasoning. Whenever verification fails, a counterexample violating the given prop-
erty is generated as an additional input and a new candidate program is generated.
Our work does not use an iterative refinement of the input-output values satisfying
a given property p(x) = 0. Rather, we consider a precise characterisation of the
solution space of loops with invariant p(x) = 0 to describe all, potentially infinite
input-output values of interest. Similarly to sketches [37,42], we consider loop tem-
plates restricting the search for solutions to synthesis. Yet, our templates support
non-linear arithmetic, which is not yet the case in [13,37].

The programming by example approach of [15] learns programs from input-
output examples and relies on lightweight interaction to refine the specification of
programs to be synthesised. The approach has further been extended in [25] with
machine learning, allowing to learn programs from just one (or even none) input-
output example by using a simple supervised learning setup. Program synthesis
from input-output examples is shown to be successful for recursive programs [1],
yet synthesising loops and handling non-linear arithmetic is not yet supported
by this line of research. Our work precisely characterises the solution space of
all loops to be synthesised by a system of algebraic recurrences and does not use
statistical models supporting machine learning.

To the best of our knowledge, existing synthesis approaches are restricted to
linear invariants, see e.g. [43], whereas our work supports loop synthesis from
non-linear polynomial properties. We note that many interesting program prop-
erties can be best expressed using non-linear arithmetic, for example programs
implementing powers (see e.g. Fig. 2), square roots and/or Euclidean divison
require non-linear invariants.

Algebra-Based Synthesis of Loops. Our work in [23] addresses the challenging
task of loop synthesis, by relying on algebraic recurrence equations and con-
straint solving over polynomials. Following the SyGuS setting, we consider addi-
tional requirements on the loop to be synthesised and define the task of loop



24 A. Humenberger and L. Kovács

synthesis as follows:

LOOP SYNTHESIS

• Given: A polynomial ideal I containing polynomials p(x) over a set x
of variables;
• Generate: A loop L with program variables x such that
(i) p(x) = 0 is an invariant of L for every p ∈ I, and
(ii) each variable from x in L induces a C-finite number sequence.

The main steps of our loop synthesis algorithm are summarised below.

1. We take a basis B of the polynomial invariant ideal I as our input.
2. We fix a non-deterministic loop template T whose loop updates define a

C-finite recurrence system template S, over variables x and of size s. If not
specified, the size s of S is considered to be the number of variables in x.

3. We construct a polynomial constraint problem (PCP) which can be divided
into two clause sets C1 and C2. The first set C1 describes the closed form
solutions of the C-finite recurrence system S. To this end, we exploit prop-
erties of C-finite recurrences and define templates for the closed forms of x
by ensuring a one-to-one correspondence between the recurrence template S
and the closed form templates of x. Intuitively, the clause set C1 mimics the
procedure for computing the closed forms for the recurrence system S. The
second clause set C2 of our PCP makes sure that, for every p ∈ B, p(x) is an
algebraic relation for the closed form templates of x. Since B is a basis of I
it follows that p(x) = 0 for all p ∈ I. The solution space of our PCP C1 ∧C2

captures thus the set of all C-finite recurrence systems of the form S such
that p(x(n)) = 0 holds for all n ≥ 0 and for all p ∈ I, where x(n) denotes
the number sequences induced by the loop variables in x (as discussed on
page 5).

4. By solving our PCP, we derive C-finite recurrence systems of the form S.
These instances of S can however be considered as non-deterministic pro-
grams with simultaneous updates. Thus, any C-finite recurrence system solu-
tion of our PCP can directly be translated into a non-deterministic loop L
with sequential updates, by introducing auxiliary variables. Solving our PCP
yields therefore a solution to our task of loop synthesis.

In [23], we prove that our approach to loop synthesis is both sound and
complete. By completeness we mean, that if there is a loop L with at most s
variables satisfying the invariant p(x) = 0 such that the loop body meets the C-
finite syntactic requirements of S, then this loop L is synthesised by our method.
As show-cased by Fig. 3, given a loop invariant p(x) = 0, one can synthesise
a potentially infinite set of loops such that each loop (i) has p(x) = 0 as its
invariant and (ii) is “better” with respect to a user-defined preference/measure.
Our loop synthesis approach can thus be used to synthesise loops with respect
to some pre-defined measure.
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Example 2 (Loop invariant synthesis). We illustrate our algorithm for loop syn-
thesis on Fig. 2b. To this end, we are interested in synthesising loops from the
non-linear polynomial relation x = y2. The invariant we consider is therefore
p(x, y) = x − y2 = 0.

We start by (initially) setting s = 2 and defining a loop template T of the
form

(x, y) ← (a1, a2)
while true do

x ← b11x + b12y + b13
y ← b21x + b22y + b23

end

(1)

where the ai and bij are rational-valued symbolic constants. By denoting with
n ≥ 0 the loop counter, the loop body of (1) can then be modeled by the following
C-finite recurrence system:

(
x(n + 1)
y(n + 1)

)
=

(
b′
11 b′

12

b′
21 b′

22

) (
x(n)
y(n)

)
+

(
b′
13

b′
23

)
, (2)

where x(n) and y(n) represent the values of variables x and y at iteration n
(as discussed on page 5), with x(0) = a1 and y(0) = a2. Note that the values
of bij and b′

ij might differ as the sequential assignments of (1) correspond to
simultaneous assignments in the algebraic representation (2) of the loop.

We next exploit properties of C-finite recurrences. For simplicity and w.l.o.g,
we set up the following closed form templates for x(n) and y(n):

(
x(n)
y(n)

)
=

(
c1
c2

)
ωn +

(
d1
d2

)
ωnn +

(
e1
e2

)
ωnn2 (3)

where ci, di, ei are rational-valued symbolic constants and ω are symbolic alge-
braic numbers. We then generate the clause set C1 that ensures that we have
a one-to-one correspondence between the number sequences described by the
recurrence equations and the closed forms. For making sure that the equa-
tion x − y2 = 0 is indeed a polynomial invariant, we plug the closed form tem-
plates (3) into the equation, and get

c1ω
n + d1ω

nn + e1ω
nn2 − (c2ωn + d2ω

nn + e2ω
nn2)2 = 0. (4)

The above Eq. (4) has to hold for all n ∈ N as x − y2 = 0 should be a loop
invariant. That is, we want to find c1, c2, d1, d2, e1, e2 and ω such that (4) holds
for all n ∈ N. The properties of C-finite number sequences allow us to reduce this
∃∀ problem containing exponential expressions into a finite set of polynomials

C2 = {c1ω − c22ω
2 = 0, d1ω − 2c2d2ω

2 = 0,

e1ω − (2c2e2 − d22)ω
2 = 0, 2d2e2ω

2 = 0, e22ω
2 = 0}

In summary, we get a PCP consisting of clause sets C1 and C2 containing 27
polynomial constraints over the unknowns ai, b

′
ij , ci, di, ei, ω from (1)–(3). The
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solution space of our PCP captures the set of all C-finite recurrence systems
of the form (2) such that x(n) − 2y(n)2 = 0 holds for all n ≥ 0. That is, any
solution of our PCP yields a loop with an invariant x = y2.

Figures 3(b)–(c) illustrate two solutions of the PCP problem of our example:
each program of Fig. 3(b)–(c) is an instance of (1), has x − 2y2 = 0 as its invari-
ant and can be synthesised using our work. The loop of Fig. 3(b), and thus of
Fig. 2b, is synthesised by considering the size s of (1) to be 2, whereas Fig. 3(c)
is computed by increasing the size s of (1) to 3.

Automation and Implementation. We implemented our approach to loop syn-
thesis in the new open-source Julia package Absynth, available at

https://github.com/ahumenberger/Absynth.jl.

Our experiments using academic benchmarks on loop analysis as well as on
generating number sequences in algorithmic combinatorics are available in
[19,23].

5 Conclusions

We overviewed algebra-based algorithms for loop invariant synthesis and loop
synthesis. The key ingredient of our work comes by modeling loops as algebraic
recurrences, in particular by C-finite recurrences. To this end, we consider non-
deterministic loops whose loop updates induce C-finite number sequences among
loop variables. In the case of loop invariant synthesis, our work generates the
polynomial ideal of all polynomial invariants of such loops by using symbolic
summation in combination with properties of polynomial ideals. Extending this
approach to (multi-path) loops inducing more complex recurrence equations sup-
porting for example arbitrary multiplications among (some of the) variables is an
interesting line for future work. When synthesising loops from polynomial invari-
ants, we use symbolic summation to generate polynomial constraints whose solu-
tions yield loops that exhibit the given invariant. Solving our constraint system
requires satisfiability solving in non-linear arithmetic, opening up new directions
for SMT-based reasoning with polynomial constraints. For example, we believe
searching for solutions over finite domains would improve the scalability of our
loop synthesis method. Extending our loop synthesis task to generate loops that
are optimal with respect to a user-specified measure is another challenge to fur-
ther investigate. To this end, understanding and efficiently encoding the best
optimisation measures into our approach is an interesting line for future work.
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Abstract. In this paper we position Linear Time Temporal Logic
(LTL), structural operational semantics (SOS), and a graphical gener-
alization of BNF as central DSLs for program analysis and verification
tasks in order to illustrate the impact of language to the mindset: (1)
Specifying program analyses in LTL changes the classical algorithmic
‘HOW’ thinking into a property-oriented ‘WHAT’ thinking that allows
one to logically combine analysis goals and eases proofs. (2) Playing with
the original store component in SOS configurations allows one to ele-
gantly realize variants of abstract program interpretations, and to align
different aspects, like e.g., the symbolic values of variables and path con-
ditions. (3) Specializing languages by refining their BNF-like meta mod-
els has the power to lift certain verification tasks from the program to
the programming language level. We will illustrate the advantages of the
change of mindset imposed by these three DSLs, as well as the fact that
these advantages come at low price due to available adequate generator
technology.

Keywords: Generative programming · Domain-specific languages ·
Meta modelling · Program analysis · (Second-order) model checking ·
Modal transition systems · Context-free/procedural transition
systems · Modal refinement · Predicate/property transformers · Binary
decision diagram

1 Introduction

Languages influence and reflect the way of thinking. This is known for natural
languages, but it is even more true for artificial languages like programming
or modeling languages. E.g., programming in imperative or object-oriented lan-
guages requires a completely different mindset from thinking in functional or
logical languages. Domain-specific languages (DSLs, [58]) aim at leveraging this
effect in order to support specific purposes, e.g., SQL [6] has been designed to
query data bases, BNF [26] is the de facto standard for defining syntax, Struc-
tural Operational Semantics (SOS, [39]) allows one to conveniently define opera-
tional semantics without the burden of dealing with machine architectures, and
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 29–51, 2021.
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temporal logics [3] are the language of choice for specifying properties of reactive
systems.

In this paper we position Linear Time Temporal Logic (LTL, [40]), SOS,
and a graphical generalization of BNF as central DSLs for program analysis and
verification tasks. We will argue that

– (Bi-directional) LTL [54] is a mindset-changing DSL for specifying program
analysis [43,44,47,48]: LTL does not only allow very concise specifications of
data flow analyses from which highly efficient implementations can be auto-
matically generated. Rather, it changes the perspective from the HOW, the
required fixpoint computation, to the WHAT, the desired property. Think-
ing in properties, i.e., in logical terms, which allows one to stepwise refine
the desired properties using logical connectors. We will illustrate the power
of this thinking in Sect. 2 via the development of our lazy code motion algo-
rithm [24]: The corresponding WHAT perspective is so natural that the formal
correctness and optimality proofs are quite straightforward.

– SOS is particular powerful in combination with abstract interpretation (cf.
also [54]): Abstracting from data naturally provides a correct-by-construction
flow graph construction, symbolic execution simply needs a symbolic treat-
ment of data, and varying forms of semantics-based structural refinements can
be realized simply by providing adequate domains. An illustrative example is
given by using the powerset of program expressions for modeling redundancy
information which immediately solved an old problem: how to eliminate all
partial redundancies (c.f. Sect. 3).

– Our graphical BNF generalization allows one to lift certain analysis tasks
from the program level up to the programming language level [52]: As will
be illustrated in Sect. 4, this allows one, e.g., to verify interesting properties
for an entire programming language. The impact of this method grows with
the specificity of the language making it particularly suitable in the context
of domain-specific languages as it allows one to validate certain guarantees
already at the corresponding meta level (c.f. Sect. 4). Together with a suitable
notion of language refinement this leads to a concept of property preserving
language refinement [52] that guarantees that properties that have been ver-
ified for some DSL remain valid under further language specialization.

It is the goal of the following three sections to illustrate by example the advan-
tages of the change of mindset imposed by these three DSLs, as well as the fact
that these advantages come at low price due to available adequate generator
technology. All this can be regarded as a development that started with using
temporal logics for program analysis in the early nineties [47,48].1 We will include
some original slides in order to also provide some feeling about the correspond-
ing chronological development. The paper closes in Sect. 5 with a conclusion and
some directions to future work.

1 This work was based on bi-directional branching time temporal logics, which has
later been replaced by bi-directional LTL.
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Fig. 1. LTL and Busy&Lazy Code Motion.

2 The LTL Mindset

The syntax of bi-directional LTL is shown in Fig. 1(a) and its semantics is defined
as follows:

Definition 1 (Semantics of Linear Time Logic (LTL) [8,40]). Let AP be
a set of atomic propositions. A model σ for a formula φ is an infinite sequence
of truth assignments to atomic propositions. Given a model σ = σ0, σ1, . . ., we
denote by σi the set of atomic propositions at position i. For a formula φ and a
position i ≥ 0, we say that φ holds at position i of σ, written σ, i � φ, and define
it inductively as follows:

– For p ∈ AP, σ, i � p iff p ∈ σi

– σ, i � ¬φ iff σ, i �� φ
– σ, i � φ ∨ ψ iff σ, i � φ or σ, i � ψ
– σ, i � Xφ iff σ, i + 1 � φ
– σ, i � bXφ iff i > 0 and σ, i − 1 � φ
– σ, i � φ W ψ iff (there exists k ≥ i such that σ, k � ψ andσ, j � φ for all j, i ≤

j < k) or (σ, j � φ for all j, 0 < j ≤ |σ|)
– σ, i � φ bW ψ iff (there exists k, 0 ≤ k ≤ i such that σ, k � ψ and σ, j �

φ for all j, k < j ≤ i) or (σ, j � φ for all j, 0 ≤ j ≤ i)
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If σ, 0 � φ, then we say that φ holds on σ and denote it by σ � φ. A set of models
M , often represented by a Kripke structure, satisfies φ, denoted M � φ, if every
model in M satisfies φ.

Remark: This definition coincides with the definition given in [8] except for the
use of W for Weak Until (or Unless) in contrast to U (Strong Until).2 Of
course, due to duality, each of these notions of Until allows one to define the
other. Focusing here on weak Until in the definition is just a matter of emphasis.
In fact, for program analysis based on (non-deterministic) flow graphs (Strong
Until does not make much sense, because loops immediately cause violation.
In contrast, relative liveness, in the sense that some property must hold before
some other property may become valid resembles an adequate notion of ‘partial
correctness’ (cf. the definitions of Downsafety and Earliest in Fig. 1b).

We experienced the power of temporal logics for specifying program analyses
first in the context of partial redundancy elimination [24,25]:

An expression t occurring on an edge (u, v) of the control flow graph is
called redundant, if there is a t-occurrence on every program path reaching u
such that no operand of t is modified in between these occurrences. Redundant
computations can be eliminated by storing the computed value into a temporary
variable which is then accessed instead of recomputing the redundant expression.
If in the above definition of redundancy a weaker requirement is considered where
t-occurrences have to be present only on some paths reaching u, the t-occurrence
on the edge (u, v) is called partially redundant [33].

Classically, partially redundant computations were eliminated by code
motion [21,22,24,25,33], a technique based on the observation that moving com-
putations against the direction of the control flow may move computations into
positions where they are totally redundant and can thus be eliminated.

Figure 2 shows the algorithm for partial redundancy elimination as presented
by Morel and Renvoise [33] in 1979. This algorithm is rather involved as it
comprises intertwined forward and backward computations as well as minimal
and maximal fixpoint computations:

– Σ indicates maximal fixpoints, whereas Π indicates minimal fixpoint.
– The reference ‘pred’ to predecessors indicates forward computations, where

‘succ’ indicates backward computation.

It is therefore not surprising that the corresponding correctness proof is rather
involved and really takes some effort to be digested.

Things change quite a bit when moving to the LTL formulation shown in
Fig. 1(b) which directly specifies the idea behind partial redundancy elimination:
Move computations up as far as possible without violating safety, i.e., without
introducing computations in paths where they have not been originally:

– Downsafety guarantees the second property: on each path starting at a down-
safe point it is guaranteed that the considered computation has to happen

2 φ Uψ, in contrast to φ Wψ, requires ψ to hold eventually.
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Morel Renvoise Classical Formulation
Local Predicates

Availability

(a) Availability.

Partial Availability

Anticipability

(b) Anticipability.

Placement Possible

Truly Bi-Directional
(c) Placement Possible.

Initialization

(d) Initialization.

Fig. 2. Morel Renvoise classical formulation.

before termination: comp indicates that the considered expression will be eval-
uated before the arguments change value, indicated by mod, or the program
terminates. For the correctness of the specification this strengthening causes
no problem, only for the optimality which was not even considered by Morel
and Renvoise. Showing that the strengthening to Downsafety has no effect in
conjunction with Earliest is in fact the most tricky part of the optimality
proof which is otherwise straightforward.

– Earliest guarantees that the computation cannot be moved up further with-
out violating downsafety. This is not quite as general as formulated above,
because it uses downsafety instead of safety. However, as mentioned above,
this strengthening has no effect.

Remark: [47,48] are based on a variant of CTL and labelled transitions systems
as program models which complicates the formal treatment. The transformation
into Kripke structures that introduce a separate node for each statement as
done here combined with using LTL allows the elegant formulation shown here.
This formulation confirms that both forward and backward computations as
well as minimal and maximal fixpoint computations are required, but they need
not be intertwined. In fact, the minimal fixpoint only arises as the negation
of Downsafety in the definition of Earliest, and there is just one forward
computation followed by one backward computation.

Of course, our algorithm can also be ‘coded’ in Morel/Renvoise style and
thereby disentangle the complicated structure as shown in Fig. 3. In retrospect
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Busy Code Motion: Morel Renvoise-Style

Local Predicates

Up-Safety

(a) Local Predicates, Up-Safety.

Down-Safety

Insertion Points   („Earliestness“) 

(b) Down-Safety, Inserion Points.

Fig. 3. Busy code motion: Morel Renvoise-style

one might ask why Morel and Renvoise came up with such a complicated algo-
rithm where there is such a simple solution. For us the answer is clear: They
had an inadequate mindset. They where thinking in terms of information flow
and how it has to be combined rather than in terms properties that can nicely
be composed.

The superiority of the LTL mindset can be nicely illustrated along an algo-
rithmic refinement. One major criticism of Morel/Renvoise’s algorithm (and sim-
ilarly of busy code motion) is that it imposes high register pressure. Moving
computations up as far as possible means that the corresponding values have to
be stored (ideally in registers) for a long time before they are actually used. The
attempts to reduce the register pressure led to heuristics that complicated the
original algorithmic formulation even more [11,12]. The, indeed optimal solution
to this problem in the LTL mindset is, however, quite easy. In a sense similar to
Earliest, one has to define a predicate Delayed that intuitively indicates how
far the previously hoisted computations can be moved down again without miss-
ing any original computation (cf. Fig. 1d). Computation points are then simply
the endpoints of such a delay process.

It should be noted, however, that what is considered simple or intuitive is a
very personal matter. Indeed we were able to publish our results only in Morel
Renvoise style because the program analysis community was not used to tem-
poral logics at that time.

SA: for some Property P: Program

MC: Temporal Formula F Model Nodes satisfying F

Program Points satisfying P

manual SOS Obvious

*

Fig. 4. Static analysis generation.
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As a proper DSL for specifying program analyses, LTL also comes with cor-
responding automatic code generation, in fact in two possible ways:

– Figure 4 sketches a way that exploits a corresponding model checker. This
requires a straightforward transformation of the program into a Kripke struc-
ture, e.g., via a flow graph construction as indicated in the next section, as
well as a global model checker that solves the model checking problem for
each state.

– An alternative way is to generate code for program analysis frameworks in
the way indicated in Fig. 3.

The presented algorithm is optimal as long as we forbid to change the structure
of the original flow graph. The next section will show, in particular, how all
partial redundancies can be eliminated when we drop this constraint.

3 The SOS Mindset

Structural operational semantics (SOS) [39] is an intuitive and elegant method
for describing the semantics of programming languages. In this section we will
see that the underlying ‘design pattern’ can be exploited much more generally,
and that it can be combined nicely with abstract interpretation [10]: already
the trivial abstraction to the one point domain resembles classical control flow
analysis. We will illustrate the specification power of the SOS language format in
various scenarios which, additionally, allows one to automatically generate quite
universal interpreters from SOS-based rule systems [2,9].

3.1 Standard SOS

Let us consider sequential programs from a simple imperative while language:

S ::= x = a | skip | S; S | if (b) {S} else {S} | while (b) {S}
SOS assigns meaning to programs in terms of partially defined state transform-
ers3 Σ

part−→ Σ. States σ ∈ Σ map variables to integer values. We inductively
extend the notion of states to arithmetic expressions. For the sake of simplicity
we further abuse 1 and 0 as Boolean values true and false.

The core of SOS is given in terms of syntax-oriented rules which define a
small-step transition relation among configurations. Configurations are either
pairs 〈S, σ〉 capturing a residual statement and a state which occurs during a
program’s execution or in case of final configurations states alone. For our model
language the standard SOS-rules are as follows:

3 Please note that the meaning of ‘state’ in this section only concerns Σ, in contrast
to the other sections, where ‘state’ denotes nodes of a transitions system.
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−
〈skip, σ〉 ⇒ σ

−
〈x = a, σ〉 ⇒σ{σ(a)/x}

〈S1, σ〉 ⇒ 〈S′
1, σ

′〉
〈S1;S2, σ〉 ⇒ 〈S′

1;S2, σ
′〉

〈S1, σ〉 ⇒σ′

〈S1;S2, σ〉 ⇒ 〈S2, σ
′〉

−
〈if (b) {S0} else {S1}, σ〉 ⇒ 〈Si, σ〉 i = 1 − σ(b)

−
〈while (b) {S}, σ〉 ⇒ 〈if (b) {S;while (b) {S}} else {skip}, σ〉

Based on the above rules the standard SOS-semantics [[ S ]] of our model language
is given by:

[[ S ]](σ) =
{

σ′ if 〈S, σ〉 ⇒∗ σ′

undefined otherwise

Hence for a given state σ the program either reaches a final configuration σ′ or
diverges with an infinite sequence of non-final configurations.

Due to infinite data domains, SOS’s for realistic programming languages
typically define infinite transitions systems, and are therefore more a concept
than an actual tool. This may change, however, when considering finite abstract
interpretations [10].

3.2 Control Flow Analysis: The One Point Domain

Collapsing Σ to just one point, •, and adding the chosen elementary statement
as transitions label, we obtain:

−
〈skip, •〉 skip

=⇒ •
−

〈x = a, •〉 x = a=⇒ •

〈S1, •〉 α=⇒ 〈S′
1, •〉

〈S1;S2, •〉 α=⇒ 〈S′
1;S2, •〉

〈S1, •〉 α=⇒ •
〈S1;S2, •〉 α=⇒ 〈S2, •〉

−
〈if (b) {S0} else {S1}, •〉 i=⇒ 〈Si, •〉

i ∈ {0, 1}

−
〈while (b) {S}, •〉 skip

=⇒ 〈if (b) {S;while (b) {S}} else {skip}, •〉

This rule set can be used to automatically generate control flow graphs in tran-
sition system format, in our experience a format superior to the classical node-
centric formats, where data flow information needs to be qualified as pre and



Generative Program Analysis and Beyond 37

post. We used this fact for our Fixpoint Analysis Machine [50] for front end gen-
eration. The effect can be nicely illustrated using the following simple sample
program Sfac for computing the factorial of an argument variable n:

f = 1;
while (n != 1){
f = f * n;
n = n-1

}
Using abbreviations

S1 = while (n != 1) {f = f*n; n=n-1},
S2 = if (n != 1) {f = f*n; n = n-1; S1} else skip,
S3 = (f = f*n; n = n-1; S1) and
S4 = (n = n-1; S1)

we obtain the control flow graph depicted in Fig. 5.

Fig. 5. Stateless SOS unrolls the control flow graph of the factorial program.

Flow graphs obtained in this way can easily be refined by replacing the one
point domain to some abstract domain. This has been illustrated in [54] for the
odd/even analysis. Flow graph refinements like this were called property-oriented
expansions in [49], where it was shown how to elegantly obtain powerful join-free
(which, in some sense, means loss-free) program analyses, as will be discussed in
the next section.

3.3 Property Oriented Expansion via SOS

Classical SOS can be regarded as a typically infinite refinement of the pure con-
trol flow graph of Fig. 5. Finite refinements that result from abstract interpre-
tation, like the abovementioned odd/even analysis, are called Property-Oriented
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Expansions (POE) [49]. POE applies to any (flow) graph structure and any (data
flow) property. Indeed, classical SOS can be regarded as such an expansion of the
control flow graph with the standard semantics taken as property. Moreover, any
set of data flow properties together with its transfer functions defines a POE,
which can be regarded as a meet/join-free data flow analysis, as no merging of
information is required: Properties (e.g. data flow facts) are simply propagated
along paths in the control flow graph, and whenever ambivalent information is
propagated to a join point separate copies of the node annotated by their prop-
erties are created. This simple procedure has nice applications, as for example:

Eliminating All Partial Redundancies: Figure 6(a) shows an example pro-
gram where all the computations of a + b except the first one are partially
redundant. However, the computations cannot be eliminated via code motion as
the rightmost a + b-free path prohibits any sound code movement.4

In contrast to classical partial redundancy elimination (cf. Sect. 2), POE has
no problems with this worst-case pattern for partial redundancy elimination. One
simply needs to exploit the corresponding redundancy information (typically just
bit vectors indicating whether a certain computation is redundant or not) as a
driver for the expansion, with the result that at each node of the expanded graph
each computation is either totally redundant of fully required. All ‘partiality’ is
automatically eliminated (the quality aimed for here)! Subsequently, one simply
needs to eliminate the total redundancies as usual in order to arrive at Fig. 6(b).
Applying classical automata minimization, as proposed in [49] together with the
first solution for eliminating all partial redundancies results in Fig. 6(c).5

Perhaps even more illuminating than the worst-case pattern for partial redun-
dancy elimination of Fig. 6 is the treatment of the one state irreducible program
graph of Fig. 7(a) which our POE transforms into the optimal three state pro-
gram graph of Fig. 7(b) without any need of automata minimization.

POE straightforwardly applies to forward oriented program analyses with
finite domains. However, in the original paper [49] the extension towards back-
wards oriented problems, like partial dead code elimination [21], is also addressed,
and in [23] we extended POE based redundancy elimination towards the much
more general notion of semantic redundancies, a problem with an infinite data
domain [42,46].

In fact, also symbolic execution is naturally realized via SOS as indicated
in Fig. 8, where path conditions and the symbolic values of each variable are
explicitly recorded. This is, however, just one possible version of representing
the corresponding information. One could, e.g., also provide a single equiva-
lent logic term in order to avoid redundancy and to support minimization via
SMT solving. More involved is the symbolic execution underlying our aggres-

4 For the sake of simplicity, we use an uniform assignment pattern x = a + b in the
example. This allows us to eliminate complete statements without keeping track on
temporaries. A detailed discourse on the issue of assignment vs. expression motion
can be found in [22].

5 In a realistic setting minimization would take conditions of branching into account.
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Fig. 6. a) Partially redundant computations that cannot be eliminated by standard
techniques. b) Complete redundancy elimination by POE. Nodes are expanded accord-
ing to the attached redundancy sets. c) Expanded model after minimization.

Fig. 7. a) Irreducible program loop with partially redundant computations. b) Optimal
program due to POE.

Fig. 8. SOS semantics wrt. symbolic execution.
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sive aggregation paradigm [14] which aims at clearly separating the conditional
structure underlying the control flow from the computational aspects in order
to enable powerful optimizations. The conceptual idea in all these cases is the
same: incrementally explore the symbolic execution tree, and, if wished, apply
abstraction/aggregation to obtain sound finite representations.

4 The Modal Meta Mindset

In this section, we present Context-Free Modal Transition Systems (CFMTSs)
which can be regarded as a conceptual generalization of BNF as a graphical DSL
for meta-level reasoning and variation control. CFMTSs extend Modal Transi-
tion Systems (MTSs) [29] to mutually recursive systems of MTSs (see [52] for
the corresponding formal definition).6 We will illustrate our approach by con-
sidering a hierarchy of families of sub-languages of PL/0 [59]: The point here
is to show the impact of property preserving language refinement in terms of
modal refinement [52,55].7 This is particular interesting in the context of DSL
engineering where it guarantees that further specialization preserves established
guarantees.
The programming language PL/0 introduced by Niklaus Wirth [59] is a
general-purpose language which was intended to be used for educational purpose.
Its Extended Backus-Naur form (EBNF) is given below.

Program = Block "."
Block = ["const" Ident "="Number {"," Ident "="Number} ";"]

["var" Ident {","Ident} ";"]
{"procedure" Ident ";" Block ";"} Statement

Statement = [Ident ":=" Expression | "call" Ident | "?" Ident
| "!" Expression
| "begin" Statement {";" Statement } "end"
| "if" Condition "then" Statement
| "while" Condition "do" Statement]

Condition = "odd" Expression
| Expression ("=" | "#" | "<" | "<=" | ">" | ">=" ) Expression

Expression = ["+" | "-"] Term {("+" | "-") Term}
Term = Factor {("*"|"/") Factor}
Factor = Ident | Number | "("Expression")"

This specification can straightforwardly be transformed into a CFMTS
which comprises one procedural modal transition system (PMTS) for each
non-terminal. Figure 9 shows the PMTSs for the non-terminals Factor and
Expression.

6 Alternatively, one can regard CFMTSs also as extensions of Context-Free Process
Systems [5] to allow may transitions.

7 Modal refinement preserves properties specified in branching-time temporal
logic [30].
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Fig. 9. Factor and Expression as PMTSs.

Figures 9 and 10 should suffice to get an impression of the DSL aspect of the
graphical modeling language: We are just dealing with systems of named PMTS,
like Factor, Expression and Statement that

– have PMTS names as action labels that, semantically, represent calls to the
respective PMTS (cf. the occurrences of Expression in the Factor and
Statement PMTS), and

– that possess so-called may transitions that are indicated by dotted lines, like
the dotted call transition in the Statement PMTS. This dotted line means
that languages conforming to this meta model may provide call statements,
but they are not required to.

Whereas the first property allows one to specify context-free systems, the second
property supports a refinement relation that preserves branching time temporal
logics [30]. During refinement, may transitions may be eliminated or turned into
must transitions (just the normal transitions). [52] provides the corresponding
formal details also comprising the model checking aspects.

For the remainder of the section the following intuition about modal refine-
ment should suffice:

– CFMTS containing may transitions are in fact families of languages. The
elements of these families arise from refinement, i.e., either by eliminating the
may transitions or turning them into must transitions. Please note that modal
refinement is insensitive to loop unrolling which may result in a CFMTS where
an original may transitions occurs many times which can all be individually
either eliminated or turned into must transitions.
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Fig. 10. The Statement PMTS.

– Modal refinement preserves properties specified in branching time tempo-
ral logics like CTL [7] or the μ-calculus [27]. Thus all languages, i.e., CFMTS
without may transitions, that are refinements of some CFMTS share the prop-
erties of that CFMTS. This ‘meta’ property of preservation is very useful for
the management of variants.

Playing with Variations of PL/0. This section considers eleven families of
variants of Wirth’s PL/0 in order to illustrate the impact of may transitions and
how modal meta model checking (M3C) [52] can provide vital feedback when
engineering (specification/programming) languages (cf. Table 13). The theme of
our discussion is set by the popular property that no call to a procedure is possible
unless the called procedure is declared.

For the ease of presentation we will assume for the rest of the section that
there is just one procedure which is declared via procedure and called by call.
In this simplified setting, property A of Fig. 15 is a μ-calculus formalization of
the considered (intuitive) property.8

For our discussion, we introduced a further non-terminal, Decl, with corre-
sponding PMTS (cf. Fig. 14) to abbreviate the declaration part for the PMTS
in Fig. 11 and the transformed PMTS of Fig. 12. Important is the difference

8 The treatment of multiple procedures can be achieved either via a preprocess that
constructs individual ‘A’-like properties for each procedure, or by enhancing the
modeling language towards an adequate notion of Context-Free Modal Register
Automata (cf. [16] for the definition of register automata). Whereas the former app-
roach is rather straightforward the latter approach is part of our envisioned future
work which, in particular, concerns the corresponding model checking problems.
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between the two block PMTSs: The PMTS of Fig. 12 results from a three step
transformation which will be denoted by t in the following:

1. Unroll the Decl may loop, which does not change the semantics.
2. Disallow call statements which are not guaranteed to be preceded by a may

Decl transition. This imposes the required semantical change: call state-
ments are now ‘guarded’ by a Decl transition.

3. Minimize the PMTS up to bisimulation equivalence [4].

Transformations like this lie at the core of ‘DSL-engineering’ which is character-
ized by enforcing vital properties with syntactical means.

Fig. 11. The Block PMTS of variant
Nr.8 dC.

Fig. 12. The Block PMTS of variant
Nr.9 dCt.

In the reminder of the section we use the following notation for identifying
the different families of PL/0 variants based on the procedure declaration and
calling potential. The letter d stands for declaration (Decl in the block PMTS),
and c for call (call in the Statement PMTS). Are these letters capitalized the
corresponding transitions in the respective CFMTSs are must transitions, other-
wise they are may transitions. Figure 13 summarizes the corresponding families
we considered in our study: Four families arise simply from the d-c classification
described above, and additional four families result from applying the transfor-
mation ‘t’ to their CFMTSs. The remaining three families have either only D
(denoted WD) or C (denoted WC) as must transitions, or neither of them at
all (denoted W). Please note, in this notation DC corresponds to the family
that just contains full PL/0 and W to the family that only contains its while
sub-language.

Not all of these languages make sense. E.g., every program of WC that is not
already in W is deemed to violate property A, and any program in WD that is
not in W has redundant declarations. The situation is not as bad for dC and Dc,
as they allow for language implementations that permit programs with correct
calls.
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Nr. Variant Decl call

1) WHILE(W) - -
2) WD Must -
3) WC - Must
4) DC Must Must
5) DCt Must Must
6) dc May May
7) dct May May
8) dC May Must
9) dCt May Must
10) Dc Must May
11) Dct Must May

Fig. 13. The eleven PL/0 variants. Fig. 14. The Decl PMTS.

Figure 16 provides an overview of the considered landscape partially ordered
by modal refinement: dc as the most general family can be refined to all the other
families, and, in particular to all the leaves of the refinement DAG.9 Please note
that this refinement hierarchy resembles set inclusion between language families
which guarantees that properties proved for some family also holds for each of
its refinements.

In order to illustrate this let us consider the following four properties spec-
ified in the modal μ-calculus where we use the following conventional notation
[¬α]φ =

∧
β∈Act,α�=β [β]φ where Act is the action alphabet and φ is an arbitrary

formula of the modal μ-calculus [27]:

A) : νX.([call]ff ∧ [¬procedure]X)
B) : μX.(〈call〉tt ∨ 〈·〉X) (In CTL:EF 〈call〉tt)
C) : μX.(〈procedure〉tt ∨ 〈·〉X) (In CTL:EF 〈procedure〉tt)
D) : νX.[procedure](μY.〈call〉tt ∨ 〈·〉Y ) ∧ [·]X

Fig. 15. The properties to be checked on the PL/0 CFMTS.

Property A is the formalization of our central property no call to a pro-
cedure is possible unless the called procedure is declared. Of course this simple
formalization hinges on the restriction to programs with at most one procedure,
which we made for the ease of presentation. Property B and C simply state that
a call transition respectively a procedure transition is eventually possible.
Finally, Property D states the universal extension of Property B that whenever
a procedure transition is traversed, at all times a call transition is eventually
possible.
9 Directed Acyclic Graph [56].
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We have already briefly discussed that property A of Fig. 15 does not hold for
‘standard’ PL/0 and how to overcome this problem by an easy transformation
here indicated by ‘t’. In fact this holds even independently from the other choices:
the entire sub-DAG of dct satisfies A. Moreover, Fig. 16 illustrates that further
specialization, i.e., narrowing of the language family, allows one to successively
decide more properties, until, at the leaves of the DAG, all properties can be
decided.

dc
(?, ?, ?, ?)

dC
(0, 1, ?, 1)

Dc
(?, ?, 1, ?)

dct

(1, ?, ?, ?)

Dct

(1, ?, 1, ?)
dCt

(1, ?, ?, 1)

WC
(0, 1, 0, 1)

DC
(0, 1, 1, 1)

WD
(1, 0, 1, 0)

DCt

(1, 1, 1, 1)
W

(1, 0, 0, 1)

Fig. 16. Hasse-Diagram: Refinement ordering of variations.

Thus, CFMTSs provide DSL engineers with a nice framework to tailor their
DSLs according to their needs within a property-preserving, meta-level refine-
ment hierarchy. In particular, it is possible to use M3C [52] to model check
properties in branching time temporal logic in order to arrive at overviews as
indicated by Fig. 16 where the various languages families are associated with
their respective properties. In this figure, going down the DAG structure means
refinement and the four tuples associated with each of the DAG nodes record
the model checking result for each of the four formulas of Fig. 15. E.g., the 1
in the first component of the dct means that property A holds, and the three
subsequent question marks that none of the other properties can be decided for
this family, as some of its members satisfy these properties, but other do not.

Figure 16 indicates a number of insights:

1. Refinement is property preserving: Going down the DAG, digits are not
changed, only question marks may successively turn into digits. Property
preservation is a proven fact!

2. The t transformation is effective: All families that result from a t transforma-
tion satisfy property A. In the given case, t is effective for the most general
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language family dc. Thus the property preservation of refinement guarantees
that t is indeed effective also for all the refinements of dc.

3. As refinements can be interpreted as projections to a subset of the considered
family of languages, the refinement hierarchy is, indeed, a sub lattice of the
powerset lattice.

4. Refinement stops at the one language family for which all the properties can
be decided.

5. Model checking of refinement hierarchies should aim at proving properties as
far up in the hierarchy as possible in order to exploit property preservation.
This means, in particular, that it is economic to search for and refine the
lowest adequate spot in the refinement hierarchy when designing a new DSL
in order to profit from the already gathered knowledge.

In [53] we call properties that can be enforced directly by an appropriate meta
model rigid archimedean points. As grammar-based syntax specifications cer-
tainly are considered part of a meta model, the four properties discussed here
can all be made rigid without imposing unwanted additional constraints. More-
over, using adequate language workbenches like Xtext/EMF [1], MPS [57],
Spoofax [19], Marama [15], MetaEdit [20], and Cinco [35], entire IDEs for the
resulting DSLs can automatically be generated.

5 Conclusions and Perspectives

We have positioned Linear Time Temporal Logic (LTL), structural operational
semantics (SOS), and a graphical generalization of BNF as central DSLs for
program analysis and verification tasks in order to illustrate the impact of lan-
guage to the mindset: (1) Specifying program analyses in LTL changes the classi-
cal algorithmic ‘HOW’ thinking into a property-oriented ‘WHAT’ thinking that
allows one to logically combine analysis goals and eases proofs. (2) Playing with
the original store component in SOS configurations allows one to elegantly real-
ize variants of abstract program interpretations, and to align different aspects,
like e.g., the symbolic values of variables and path conditions. (3) Specializing
languages by refining their BNF-like meta models has the power to lift certain
verification tasks from the program up to the programming language level.

Common in all cases is the aim for simplicity for ‘the many’ (the users of the
DSL) on the price of some difficulties for ‘the few’ [31] that make these DSLs
operational, e.g. via some integrated development environment (IDE), a task
that is today supported by language workbenches like MPS [57], Spoofax [19],
and Cinco [35]. This concerns, e.g., the easy refinement of specifications in LTL
using logical operators, the incremental extension of SOS for new language con-
structs by just adding some additional rules or for new semantical aspects by
adding some (abstract) semantic domains, and the modal refinement of language
family specifications in CFMTS for a property-preserving variation management.

Interesting is the self-application aspect inherent in DSL development. In
fact, all three proposed DSLs are at the heart of language workbench design:
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meta modeling and the specification of semantics must be supported by each lan-
guage workbench which typically also provides numerous static analyses. Thus
improvements of one of the considered DSLs may directly enter some language
workbench in order to ease further improvements also of this very DSL.

Currently, we are investigating different application scenarios where a change
of mindset imposed by one of the described direction may be profitable. One of
these scenarios concerns the family of temporal logics comprising, e.g., the μ-
calculus [27], CTL [7], LTL [40], and CTL* [13]. There are numerous variants
both of linear time and branching time temporal logics, e.g., concerning the
underlying model structure (LTS [32], Kripke structures [28], or Kripke tran-
sitions systems [34]) or some syntactic restrictions like excluding the nexttime
operator. The modal meta mindset might help here both, to systematically orga-
nize this landscape and to achieve efficient implementations, e.g., by moving
otherwise additional constraints directly into the meta model.

This is not an entirely new idea. The side condition that variables in the μ-
calculus have to appear within the range of an even number of negations can, e.g.,
be enforced via the so-called positive normal form [3], i.e., via syntactic restric-
tion. The same trick also applies to ACTL [36] which is defined by (semantically)
forbidding existential path quantification. Moving the side conditions like this
(which may impose interesting user-level properties of the logic) into the syntax
has various benefits, e.g., concerning corresponding IDEs.

The property that variables in the μ-calculus have to appear within the range
of an even number of negations can well be expressed as a temporal formula
itself. Thus M3C would allow one to automatically verify whether the considered
logical language (family) guarantees this property, with the consequence that the
property is guaranteed to be taken care of by the syntax checker for the logic.

The modal meta mindset can also profitably be applied in completely differ-
ent scenarios, e.g., DTD-based shop configurations10 [41]: The conceptual idea
here is to specify processes via (DTD-based) requirements on their respective
documentation which is meant to comprise the actual protocol of its execution.
Successful process executions are then characterized by documentations that
conform to the underlying DTD.11 As DTDs can well be translated in CFMTS
we can use M3C to automatically check these DTDs for vital properties, like,
e.g., that the goods are not send before the payment is confirmed. If this is
proved for the DTD, successful process execution is guaranteed whenever the
corresponding document is DTD-conform [55].

We are convinced that DSLs will have a major economic impact in the future
[51]. They narrow the semantic gap – ideally, the application expert can use it
herself in her own mindset – and they typically come with efficient code gener-
ators. Thus the move from the WHAT to the HOW is essentially for free. And
where it is not, we simply have to develop an appropriate DSL for getting it done

10 DTD stands for Document Type Descriptions.
11 This leads to very tolerant process specifications, similar to what is aimed at it with

CMMN [38] in order to overcome the over specification easily imposed when using
e.g. BPMN [37].
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(cf. e.g., [17,18,45,51]). This way DSLs become a means to extend the typically
very generic language guaranteed correctness-by-construction, e.g. in terms of
typing, to also comprise application-specific structural properties.

Acknowledgements. We would like to thank David Schmidt for his constructive
comments that helped us to significantly improve the readability of the paper.
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Abstract. Hyperproperties lift conventional trace properties in a way
that describes how a system behaves in its entirety, and not just based
on its individual traces. We generalize this notion to multi-properties,
which describe the behavior of not just a single system, but of a set of
systems, which we call a multi-model. We demonstrate the usefulness
of our setting with practical examples. We show that model-checking
multi-properties is equivalent to model-checking hyperproperties. How-
ever, our framework has the immediate advantage of being compositional.
We introduce sound and complete compositional proof rules for model-
checking multi-properties, based on over- and under-approximations of
the systems in the multi-model. We then describe methods of computing
such approximations. The first is abstraction-refinement based, in which
a coarse initial abstraction is continuously refined using counterexam-
ples, until a suitable approximation is found. The second, tailored for
models with finite traces, finds suitable approximations via the L∗ learn-
ing algorithm. Our methods can produce much smaller models than the
original ones, and can therefore be used for accelerating model-checking
for both multi-properties and hyperproperties.

1 Introduction

Temporal logics, such as LTL, are widely used for specifying program behaviors.
An LTL property characterizes a set of traces, each of which satisfies the property.
It has recently been shown that trace properties are insufficient for characterizing
and verifying security vulnerabilities or their absence.

The notion of hyperproperties [9], a generalization of trace properties, pro-
vides a uniform formalism for specifying properties of sets of traces. Hyperprop-
erties are particularly suitable for specifying security properties. For instance,
secure information flow may be characterized by identifying low-security vari-
ables that may be observable to the environment, and high-security variables
that should not be observable outside. Secure information flow is maintained in
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a system if for every two traces, if their low-security inputs are identical then so
are their low-security outputs, regardless of the values of high-security variables.
This property cannot be characterized via single traces.

While hyperproperties are highly useful, they are still limited: they can only
refer to the system as a whole. Systems often comprise several components, and
it is desired to relate traces from one component to traces of another. A promi-
nent such example is diversity [16]. Diversity generalizes the notion of security
policies by considering policies of a set of systems. The systems are all required
to implement the same functionality but to differ in their implementation details.
As noticed in [9], such a set of policies could, in principle, be modeled as a hyper-
property on a single system, which is a product of all the systems in the set.
This, however, is both unnatural and highly inefficient.

We remedy this situation by presenting a framework which explicitly
describes the system as a set of systems called a multi-model, and provides a
specification language, MultiLTL, which explicitly relates traces from the dif-
ferent components in the multi-model. Our framework enables to directly and
naturally describe properties like diversity, while avoiding the need for a complex
translation.

Our framework also has the immediate advantage of being compositional.
We thus suggest a sound and complete compositional model-checking rule.
The rule is based on abstracting each of the components by over- and under-
approximations, thus achieving additional gain.

We then suggest methods of computing such approximations. The first is
based on abstraction-refinement, in which a coarse initial abstraction is continu-
ously refined by using counterexamples, until a suitable approximation is found.
The second, tailored for models with finite traces, finds suitable approximations
via the L∗ learning algorithm. Our methods can produce much smaller models
than the original ones, and can therefore be used for accelerating model-checking
for both multi-properties and hyperproperties.

We now describe our work in more detail. Our framework consists of multi-
models, which are tuples of Kripke structures. The logic we focus on, called
MultiLTL, is an extension of HyperLTL [8]. MultiLTL allows indexed quantifica-
tions, ∀i and ∃i, referring to the i’th component-model in the multi-model.

We show that there is a two-way reduction between the model-checking prob-
lem for HyperLTL and the model-checking problem for MultiLTL. We empha-
size, that even though the two model-checking problems are equivalent, our new
framework is clearly more powerful as it enables a direct specification and veri-
fication of the whole system by explicitly referring to its parts.

We exploit this power by introducing two compositional proof rules, which are
based on over- and under-approximations for each system component separately.
These proof rules are capable of proving a MultiLTL property or its negation for
a given multi-model.

We suggest two approaches to computing these approximations for the com-
positional proof rules. The first approach is based on abstraction-refinement. The
approximations are computed gradually, starting from coarse approximations
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and refined based on counterexamples. The abstraction-refinement approach is
implemented using one of two algorithms. In both algorithms, when model-
checking the abstract multi-model is successful, we conclude that model-checking
for the original multi-model holds. Otherwise, a counterexample is returned.

The first algorithm is based on counterexamples from the multi-model only.
For each component-model, we find a behavior that should be eliminated from
an over-approximated component-model or added to an under-approximated
component-model, and refine the components accordingly.

The second algorithm is applicable for a restricted type of MultiLTL proper-
ties, in which the quantification consists of a sequence of ∀ quantifiers followed
by a sequence of ∃ quantifiers. In hyperproperties, this is a useful fragment which
allows specifying noninterference and generalized noninterference, observational
determinism, and more. The counterexamples in this case come directly from the
unsuccessful model-checking process, and therefore refer both to the model and
to the property. Notice that, since the abstract component-models are typically
much smaller than the original component-models, their model-checking is much
faster.

The logics of MultiLTL and the model of Kripke structure are designed for
describing and modeling the behavior of on-going systems. However, to do the
same for terminating programs with finite traces, a more suitable description is
needed. Therefore, we turn our attention to multi-models and multi-properties
with finite traces. In this context, we use nondeterministic finite automata (NFA)
to describe a system, and a set of NFAs (multi-NFA) to describe a set of such sys-
tems. For the specification language, we use nondeterministic finite-word hyper-
automata (NFH) suggested in [7]. NFH can be thought of as the regular-language
counterpart of HyperLTL, and are able to describe the regular properties of sets
of finite-word languages, just as HyperLTL is able to describe the properties of
a language of infinite traces. Also like HyperLTL, NFH can be easily adjusted to
describe multi-properties, a model that we call multi-NFH.

We show that, as in the infinite-trace case, there is a two-way reduction
between the model-checking problem for NFH and the model-checking prob-
lem for multi-NFH. We then proceed to present a compositional model-checking
framework for multi-NFH. As in the case of infinite-traces, this framework is
based on finding approximations for the NFAs in the multi-model. The method
for finding these approximations for this case, however, is learning-based.

Learning-based model-checking [15] seeks candidate approximations by run-
ning an automata learning algorithm such as L∗ [2]. In the L∗ algorithm, a
learner constructs a finite-word automaton for an unknown regular language L,
through a sequence of membership queries (“is the word w in L?”) and equiva-
lence queries (“is A an automaton for L?”), to which it receives answers from a
teacher who knows the language. The learner continually constructs and submits
candidate automata, until the teacher confirms an equivalence query.

In our algorithm, the learner constructs a set of candidate automata in every
iteration, one for every NFA in the multi-model. The key idea is treating these
candidate automata as candidate approximations. When an equivalence query
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is submitted, we (as the teacher) check whether the NFAs that the learner sub-
mitted are suitable approximations. If they are not, we return counterexamples
to the learner, based on the given multi-NFA, which it uses to construct the
next set of candidates. If they are suitable approximations, we model-check the
multi-NFA of the approximations against the multi-NFH. Since the automata
that the learner constructs are relatively small, model-checking the candidates
multi-model is much faster than model-checking the original multi-model.

In [15], the learning procedure aims at learning the weakest assumption W ,
which is a regular language that contains all the traces that under certain condi-
tions satisfy the specification. The construction of W relies on counterexample
words provided by the model checking. We can derive such counterexamples
for a certain fragment of multi-NFH. Moreover, we define a suitable weakest
assumption for this case, prove that it is regular, and use it as a learning goal in
an improved algorithm. Both of these improvements – extracting counterexam-
ples from the model-checker, and learning the weakest assumption rather than
the model itself – allow for an even quicker convergence of the model-checking
process for this type of multi-properties.

Related Work. Hyperproperties, introduced in [9], provide a uniform formal-
ism for specifying properties of sets of traces. Hyperproperties are particularly
suitable for specifying security properties, such as secure information flow and
non-interference. Two logics for hyperproperties are introduced in [8]: HyperLTL
and hyperCTL∗, which generalize LTL and CTL∗, respectively. Other logics for
hyperproperties have been studied in [1,5,6,10,13,14,20].

One of the first sound and complete methods for model-checking hyperprop-
erties is called self-composition [4]. Self-composition combines several disjoint
copies of the same program, allowing to express relationships among multiple
traces. This reduces the k-trace hyperproperty model-checking to trace property
model-checking. Unfortunately, the size of the product model increases expo-
nentially with the number of copies. Thus, reasoning directly on the product
program is prohibitive.

Many approaches have been suggested for dealing with the high complexity
of self-composition. Methods to increase the efficiency of SMT solvers for hyper-
propery model-checking have been suggested in [3,19], while a generalization of
Hoare triplets for safety-hyperproperties has been presented in [18].

Different approaches to avoid the construction of the full product are pre-
sented in [17,21]. The former exploits taint analysis or Bounded Model Checking.
The latter infers a self-composition function together with an inductive invariant,
suitable for verification.

An automata based algorithm for HyperLTL and HyperCTL∗ is proposed
in [12]. It combines self-composition with ideas from LTL model-checking using
alternating automata. A representation of hyperproperties in a form of finite-
word automata is developed in [11]. This work introduces a canonical automata
representation for regular-k-safety hyperproperties, which are only-universally-
quantified safety-hyperproperties.
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The first representation of general hyperproperties using finite automata is
introduced in [7]. This representation, called hyperautomata, allows running mul-
tiple quantified words on an automaton. The authors show that hyperautomata
can express regular hyperproperties and explore the decidability of nonemptiness
(satisfiability) and membership (model-checking) problems. Additionally, they
describe an L∗-based learning algorithm for some fragments of hyperautomata.

2 Preliminaries

Kripke Structures are a standard model for ongoing finite-state systems.

Definition 1. Given a finite set of atomic propositions AP , a Kripke structure
is a 4-tuple M = (S, I,R, L), where S is a finite set of states, I ⊆ S is a
non-empty set of initial states, R ⊆ S × S is a total transition relation and
L : S → 2AP is a labeling function.

A path in M is an infinite sequence of states p = s0, s1, s2, . . . such that
(si, si+1) ∈ R for every i ∈ N. A trace over AP is an infinite sequence τ ∈(
2AP

)ω. We sometimes refer to a trace as a word over 2AP . A trace property
over AP is a set of traces over AP .

The trace that corresponds to a path p is the trace τ(p) = τ0, τ1, τ2, . . . in
which τi = L(si) for every i ∈ N. Notice that since R is total, there exists an
infinite path from every state. We denote by τ i the trace τi, τi+1, . . . .

Given a word w = w0, w1, · · · ∈ (2AP )ω, a run of M on w is a path p =
s0, s1 . . . in M such that L(sn) = wn for every n ∈ N. The language L(M) of
M is the set of all traces corresponding to paths in M that start in I. The prefix
language Lf (M) of M is the set of all finite prefixes of traces in L(M). For two
Kripke structures M,M′, we write M |= M′ to denote that L(M) ⊆ L(M′).

The following is a known result, which can be proven by König’s Lemma.

Lemma 1. For Kripke structures M and M′, it holds that L(M) = L(M′) iff
Lf (M) = Lf (M′).

2.1 Hyperproperties and HyperLTL

Trace properties and the logics that express them are commonly used to describe
desirable system behaviors. However, some behaviors cannot be expressed by
referring to each trace individually. In [9], properties describing the behavior of
a combination of traces are formalized as hyperproperties. Thus, a hyperproperty
is a set of sets of traces: all sets that behave according to the hyperproperty.
HyperLTL [8] is an extension of linear temporal logic (LTL), a widely used tem-
poral logic for trace properties, to hyperproperties. The formulas of HyperLTL
are given by the following grammar:

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ for every a ∈ AP
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Intuitively, ∃π.ϕ means that there exists a trace that satisfies ϕ and ∀π.ϕ means
that ϕ holds for every trace. aπ means that a holds in the first state of π. The
semantics of X,U and the Boolean operators are similar to those in LTL: Xψ
means that ψ holds in the next state and ψ1Uψ2 means that ψ1 holds until
ψ2 holds. Based on these operators we define additional operators commonly
defined in LTL: Fψ means that ψ holds eventually and Gψ means that ψ holds
throughout the entire trace.

The semantics of HyperLTL is defined as follows. Let T ⊆ (2AP )ω be a set
of traces over AP , let V be a set of trace variables, and Π : V → T be a trace
assignment. Let Π[π → t] be the function obtained from Π, by mapping π to t.
Let Πi be the function defined by Πi(π) = (Π(π))i.

Π |=T ∃π.ψ iff there exists t ∈ T such that Π[π → t] |=T ψ

Π |=T ∀π.ψ iff for every t ∈ T , Π[π → t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ϕ iff Π �|=T ϕ

Π |=T ϕ1 ∨ ϕ2 iff Π |=T ϕ1 or Π |=T ϕ2

Π |=T Xϕ iff Π1 |=T ϕ

Π |=T ϕ1Uϕ2 iff there exists i ≥ 0 such that Πi |=T ϕ2

and for all 0 ≤ j < i, Πj |=T ϕ1

Notice that when all trace variables of a HyperLTL formula P are in the scope
of a quantifier (i.e, when P is closed), then the satisfaction is independent of
the trace assignment, in which case we write T |= P. Given a Kripke structure
M and a HyperLTL formula P, the model-checking problem is to decide whether
L(M) |= P (which we denote by M |= P).

By abuse of notation, given traces w1, . . . , wk over AP , we write
〈w1, . . . , wk〉 |= Q1π1 . . .Qkπkψ(π1, . . . , πk) if Π |= ψ(π1, . . . , πk), where
Π(πi) = wi.

3 Multi-models and Multi-properties

We generalize hyperproperties to multi-properties, which reason about the con-
nections between several models, which we call a multi-model.

Definition 2. Given k ∈ N, a k-multi-model is a k-tuple M =
〈M1,M2, . . . ,Mk〉 of Kripke structures over a common set of atomic propo-
sitions AP . A k-multi-property is a set of tuples P ⊆ (2(2

AP )ω

)k.
M is a multi-model if it is a k-multi-model for some k, and similarly P is a

multi-property.

Intuitively, in a multi-property P, every T ∈ P is a tuple of k sets of traces,
each interpreted in a model.
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We now present MultiLTL, a logic for describing multi-properties. A MultiLTL
formula is interpreted over a multi-model M = 〈M1, . . . ,Mk〉. We use [a, b],
where a ≤ b are integers, to denote the set {a, a + 1, . . . , b}. MultiLTL formulas
are defined inductively as follows.

ϕ ::= ∃jπ. ϕ | ∀jπ. ϕ | ψ where j ∈ [1, k]
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

The only difference in syntax from HyperLTL is that trace quantifiers are now
indexed. This index is taken from the set [1, k] for some k ∈ N. The formula
∃jπ.ϕ means that there exists a trace in Mj that satisfies ϕ and ∀jπ.ϕ means
that ϕ holds for every trace in Mj .

The semantics of MultiLTL is defined as follows. Let T = 〈T1, . . . Tk〉 be a
multi-model over AP . Let V be a set of trace quantifiers, and let Π : V →⋃

i∈[1,k] Ti.

Π |=T ∃iπ.ψ iff there exists t ∈ Ti such that Π[π → t] |=T ψ

Π |=T ∀iπ.ψ iff Π[π → t] |=T ψ for every t ∈ Ti

The semantics of the temporal operators is defined as in HyperLTL. Since every
MultiLTL formula describes a multi-property, we refer to the formulas themselves
as multi-properties.

As with HyperLTL, when a MultiLTL formula P is closed, satisfaction is inde-
pendent of Π, and we denote M |= P for a multi-model M. The model-checking
problem for MultiLTL is to decide whether M |= P.

For a MultiLTL formula P = Q
1
i1

. . .Qn
in

ϕ, we define I∃(P) = {i | Q
i
ij

=
∃ and ij ∈ [1, n]}, and I∀(P) = {i | Qi

ij
= ∀ and ij ∈ [1, n]}. We write I∃ and I∀

when P is clear from the context.

3.1 Examples

We demonstrate the usefulness of MultiLTL and multi-models with several exam-
ples. The multi-models we consider consist of models that interact with each
other via an asynchronous communication channel (which is not modeled). This
assumption is not necessary outside the scope of the examples, where other forms
of interactions across models can take place (e.g., shared variables).

Example 1. Consider a multi-model consisting of a client model C and a server
model S. We would like to check whether 〈C,S〉 |= ∀Cπ1∀Sπ2.G(r sentπ1 →
Fr receivedπ2). In this formula, r sentπ1 means that a request is sent in C and
r receivedπ2 means that a request is received in S. The formula specifies that
for every run of the client and for every run of the server, every request sent
by the client is eventually received by the server. This is a form of a liveness
property that specifies that messages are guaranteed to eventually arrive at their
destination. Note that, whether this property holds or not depends in fact on
the reliability of the asynchronous communicating channel, connecting the client
and the server.
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Example 2. Consider again the multi-model of Example 1. Assume that the
interaction between the client and the server is as follows. At the beginning
of the interaction, the client sends its username and password to the server.
Immediately afterwards the server updates its authentication flag and informs
the client whether the authentication was successful or not. The client gets this
notification one clock cycle after the server authentication flag has been updated.
Consider the specification P2.

P2 = ∀Sπ1∃Cπ2∀Cπ3. (userDBπ1 = userπ2 ) ∧ (passDBπ1 = passπ2 ) ∧ (Xautπ1 ∧ XXautπ2)

∧ ((userDBπ1 = userπ3 ) ∧ ((passDBπ1 �= passπ3 )) → (X¬autπ1 ∧ XX¬autπ3 )

The first line of P2 states that for every trace of the server there is a trace of the
client whose username and password match the username and password in the
server database. If so, the authentication succeeds. The second line assures that
for each username in the server database there is only one valid password with
which the authentication succeeds.

Note that in this example, we describe a property which cannot be described
using LTL. Further, it cannot be expressed naturally in HyperLTL. MultiLTL,
which explicitly refers to traces in different models within a multi-model, natu-
rally expresses it.

Example 3. We demonstrate again the power of MultiLTL to naturally express
properties that are not naturally expressible in HyperLTL. Diversity [16] refers
to security policies of a set of systems. The systems constitute different imple-
mentations of the same high-level program. They differ in their implementa-
tion details1, but are equivalent with respect to the input-output they produce.
In [16], diversity has been advocated as a successful way to resist attacks that
exploit memory layout or instruction sequence specifics.

Assume that we are given a high-level program P and two low-level imple-
mentations M1 and M2. The following MultiLTL properties describe the fact that
all implementations are equivalent to P .

P1 = ∀P π∃M1π1∃M2π2.(inputπ = inputπ1 = inputπ2)∧
G(endπ ∧ endπ1 ∧ endπ2 → outputπ = outputπ1 = outputπ2)

P2 = ∀M1π1∃P π.(inputπ1 = inputπ) ∧ G(endπ1 ∧ endπ → outputπ1 = outputπ)

P3 = ∀M2π2∃P π.(inputπ2 = inputπ) ∧ G(endπ2 ∧ endπ → outputπ2 = outputπ)

Note that these properties cannot naturally be expressed in HyperLTL since
they require an explicit reference to the models from which the related traces
are taken.

1 For instance, the call stack of procedures is obfuscated by changing the order of
variables, the specific memory location of arguments and local variables, etc. The
obfuscations differ in the different implementations.
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3.2 Model-Checking MultiLTL

We now show that although MultiLTL is a generalization of HyperLTL, the model-
checking problems for these logic types is equivalent.

For the first direction, it is easy to see that the model-checking problem
for a model M and a HyperLTL formula P is equivalent to the model checking
problem for 〈M〉 and the MultiLTL formula obtained from P by indexing all of
its quantifiers with the same index 1.

For the other direction, we first introduce some definitions. We use the nota-
tion  for disjoint union.

Definition 3. Given a multi-model M = 〈M1, . . . ,Mk〉 over AP , its union
model denoted ∪M is (n

i=1Si,n
i=1Ii,n

i=1Ri, L), where L(s) = Li(s)  {i} for
every i and s ∈ Si.

The indexing by i of a trace τ = t0, t1, . . . over AP is the trace indi(τ) =
t0 ∪ {i}, t1 ∪ {i}, . . .

Notice that for a trace τ and a multi-model M = 〈M1, . . . ,Mk〉, it holds
that τ ∈ L(Mi) ⇐⇒ indi(τ) ∈ L(∪M).

Theorem 1. The model-checking problem for MultiLTL is polynomialy reducable
to the model-checking problem for HyperLTL.

Proof Sketch. Let M = 〈M1, . . . ,Mn〉 be a multi-model over AP , and P ∈
MultiLTL. We assume that P is of the form Q

1
1π1 . . .Qn

nπnϕ, where ϕ is in negation
normal form. Note that this means that each model is quantified exactly once2.
Define M = ∪M. Each (indexed) trace in M corresponds to one model in M by
its index. Let P = Q1π1 . . .Qnπnϕ′, where ϕ′ is obtained from ϕ by applying
the following changes: for every a ∈ AP , we replace every occurrence of a literal
l = aπ or l = ¬aπ by i → l if π is quantified by ∀i, and by i ∧ l if π is quantified
by ∃i. Intuitively, for ∀i, for every trace τ ∈ M, if τ originates from Mi then we
require that τ fulfill the formula and otherwise we require nothing. For ∃i, we
require the existence of a trace in M that originates from Mi that fulfills the
formula. It can be shown by induction that M |= P iff M |= P. ��

In [12], the authors presented an algorithm for model-checking HyperLTL that
can be easily adjusted for MultiLTL. Thus, there is no need to use the reduction
in Theorem 1. The algorithm relies roughly on the repeated intersection of the
models under ∃ with an automaton for ϕ, the quantifier-free part of the for-
mula, or, in the case of ∀ quantifiers, for ¬ϕ (which involves complementation).
Accordingly, the complexity is a tower in the number of models, and the size of
the models greatly influences the run-time. In case of a model under ∀, a word
that is accepted by the intersection is a counterexample for the satisfaction of
the ∀ requirement. Therefore, in case that the formula P begins with a sequence
of ∀ quantifiers followed by a sequence of ∃ quantifiers (a fragment which we
denote by ∀∗∃∗MultiLTL), it is possible to extract a counterexample for every
model under ∀ in the multi-model. To summarize, we have the following.
2 This can be achieved by duplicating components of the multi-model and reordering

them so that they match the order of quantification.
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Lemma 2. 1. There is a direct algorithm for model-checking M |= P.
2. For P ∈ ∀∗∃∗MultiLTL with n quantifiers such that |I∀(P)| = k, if M �|= P then

the model-checking algorithm can also extract a counterexample 〈w1, . . . , wk〉
such that wi ∈ L(Mi) for i ∈ [1, k]. For 〈w1, . . . , wk〉 it holds that there are
no wi ∈ L(Mi) for i ∈ [k + 1, n] such that 〈w1, . . . , wn〉 |= P.

Note 1. For ∃ quantifiers, there is no natural counterexample in the form of a
single word. Indeed, a counterexample in this case would need to convince of the
lack of existence of an appropriate word.

4 Compositional Proof Rules for Model-Checking
MultiLTL

We present two complementing compositional proof rules for the MultiLTL
model-checking problem. Let M be a k-multi-model, and let P =
Q

i1
1 π1 . . .Qim

m πmϕ be a MultiLTL formula. The rule (PR) aims at proving M |= P,
and (PR) aims at proving the contrary, that is, M |= ¬P. Every model Ai in the
rules is an abstraction. Since some models may be multiply quantified, a model
Mi may have several different abstractions, according to the quantifiers under
which Mi appears in P.

∀i ∈ I∀. Mij
|= Ai ∀i ∈ I∃. Ai |= Mij

〈A1, . . . ,Am〉 |= Q
i1
1 π1 . . .Qim

m πmϕ

〈M1, . . . ,Mk〉 |= Q
i1
1 π1 . . .Qim

m πmϕ
(PR)

∀i ∈ I∀. Ai |= Mij
∀i ∈ I∃. Mij

|= Ai 〈A1, . . . ,Am〉 |= ¬(Qi1
1 π1 . . .Qim

m πmϕ)

〈M1, . . . ,Mk〉 |= ¬(Qi1
1 π1 . . .Qim

m πmϕ)
(PR)

Intuitively, in (PR), we use an over-approximation for every model under ∀, and
an under-approximation for every model under ∃. The rule (PR) behaves dually
to (PR) for the negation of P.

Lemma 3. The proof rules (PR) and (PR) are sound and complete.

Proof Sketch. For completeness, we can choose Ai = Mij
for every i ∈ [1,m].

For soundness of (PR), let A1, . . . ,Am be models for which the premise of (PR)
holds. For every universally quantified model Mij

, its abstraction Ai includes
all of its traces (and maybe more). For every existentially quantified model Mij

,
a subset of its traces are included in Ai. Therefore, by the semantics of the
quantifiers, it is “harder” for each Ai to satisfy P than it is for Mij

. Since
〈A1, . . . ,Am〉 |= P, we conclude that M |= P.

For (PR), notice that ¬P ≡ Q
i1
1 π1 . . .Q

im

1 πm¬ϕ, where ∀ = ∃ and ∃ = ∀,
conforming to (PR). ��
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5 Abstraction-Refinement Based Implementation of (PR)
and (PR)

In this section, we present methods for constructing over- and under-
approximations using an abstraction-refinement based approach. We first define
the notion of simulation.

Definition 4. Let M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) be Kripke
structures over AP . A simulation from M1 to M2 is a relation H ⊆ S1 × S2

such that for every (s1, s2) ∈ H:

– L(s1) = L(s2)
– For every (s1, s′

1) ∈ R1 there exists s′
2 ∈ S2 such that (s2, s′

2) ∈ R2 and
(s′

1, s
′
2) ∈ H.

If additionally, for every s0 ∈ I1 there exists s′
0 ∈ I2 such that (s0, s′

0) ∈ H,
we denote M1 ≤H M2. We denote M1 ≤ M2 if M1 ≤H M2 holds for some
simulation H.

Lemma 4. Let M1,M2 be two Kripke structures such that M1 ≤ M2. Then
M1 |= M2.

Lemma 4 is a well-known property of simulation. Next, we describe how
to construct sequences of over- and under-approximations for a given model
M. Each approximation in these sequences is closer to the original model than
its previous. We later incorporate these sequences in a MultiLTL abstraction-
refinement based model-checking algorithm using our proof rules.

5.1 Constructing a Sequence of Over-Approximations

Given a Kripke structure M = (S, I,R, L) over AP , we construct an over-
approximations sequence A0 ≥ A1 ≥ · · · Ak ≥ M, where Ai+1 is a refinement
of Ai, which we compute by using counterexamples. A counterexample is a word
w ∈ L(Ai) yet w /∈ L(M). By Lemma 1, it suffices to consider finite prefixes of
w, since there is an index j for which w0, w1, . . . , wj−1 ∈ L(Ai) \ L(M).

We use a sequence of abstraction functions h0, . . . , hk, each defining an
abstract model.

Definition 5. Let Ŝ be a finite set of abstract states. A function h : S → Ŝ is an
abstraction function if h is onto, and for every ŝ ∈ Ŝ, it holds that L(s1) = L(s2)
for every s1, s2 ∈ h−1(ŝ) .

Definition 6. For an abstraction function h : S → Ŝ, the ∃∃ abstract model
induced by h is Ah = (Ŝ, Î, R̂, L̂), where Î = {ŝ | ∃s0 ∈ I, h(s0) = ŝ}, where for
every ŝ ∈ Ŝ we set L̂(ŝ) = L(s) for some s such that h(s) = ŝ, and (ŝ, ŝ′) ∈ R̂
iff there exist s, s′ ∈ S such that (s, s′) ∈ R, h(s) = ŝ and h(s′) = ŝ′.3

3 L̂ is well defined since by Definition 5, only equilabeled states are mapped to the
same abstract state.
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Lemma 5. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂)
be the ∃∃ abstract model induced by an abstraction function h : S → Ŝ. Then,
M ≤ Ah.

Proof. The relation H = {(s, h(s))|s ∈ S} is a simulation from M to Ah. ��
Definition 7. Let M and M′ be Kripke structures such that M ≤ M′ by a sim-
ulation H, and let r′ = s′

0, s
′
1, . . . be a run of M′ on w. The run r = s0, s1, . . . , sj

is a maximal induced run of r′ in M, if for every i ∈ [0, j] it holds that
(si, s

′
i) ∈ H, and for every i ∈ [0, j − 1] it holds that (si, si+1) ∈ R. More-

over, there is no state s∗ ∈ S such that (s∗, s′
j+1) ∈ H and (sj , s

∗) ∈ R. If no
such j exists then r is infinite, and for every i ≥ 0 it holds that (si, s

′
i) ∈ H and

(si, si+1) ∈ R.

In the sequel, we fix a Kripke structure M = (S, I,R, L).

Over-Approximation Sequence Construction
Initialization. Define Ŝ0 = {sP | P ⊆ AP and ∃s ∈ S : L(s) = P}. That is,
there is a state in Ŝ0 for every labeling in M. The initial over-approximation A0

is the ∃∃ model induced by h0 : S → Ŝ0 defined by h0(s) = sL(s). Since h0 is an
abstraction function, by Lemma 5 we have that M ≤ A0.

Refinement. Let hi : S → Ŝi be an abstraction function. Let Ai =
(Ŝi, Îi, R̂i, L̂i) be the ∃∃ model induced by hi. By Lemma 5 we have that M ≤ Ai.
Let w ∈ L(Ai)\L(M) be a counterexample. Let r̂i = ŝ0, ŝ1 . . . be a run of Ai on
w, and r = s0 . . . , sj be a maximal induced run of M on w. Since w /∈ L(M),
we have that r is finite. We define Ai+1 to be the ∃∃ model induced by hi+1,
where hi+1 : S → Ŝi+1 for Ŝi+1 = Ŝi  {ŝ′}, defined as follows, for every s ∈ S.

hi+1(s) =

⎧
⎪⎨

⎪⎩

hi(s), if hi(s) �= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s
′) = ŝj+1 and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s
′) = ŝj+1 and (s, s′) ∈ R

The intuition for the refinement is presented in Fig. 1 (a). Concrete states are
the full circles and abstract states are the dashed ovals. The purple line is a
maximal induced run of ŝ0, ŝ1 . . . in M, which ends at ŝj . Since there is an
infinite run in the abstract model, we can split ŝj into two abstract states: one
that includes all states that can continue to ŝj+1, and another that includes all
the states with no such transitions. Clearly, the former set includes only states
that are not reachable by the maximal induced run of ŝ0, ŝ1 . . . , else the induced
run would not have been maximal.

Lemma 6. For every i ∈ N, for every state ŝ ∈ Ŝi, there exists a state s ∈ S
such that hi(s) = ŝ.

Proof. By induction on i. Base: By construction, for every ŝP ∈ Ŝ0 there exists
a state s ∈ S such that L(s) = P , and so h0(s) = ŝP .
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...

ŝ0 ŝ1 ŝj ŝj+1

(a)

...

ŝ0 ŝ1 ŝj ŝj+1

(b)

Fig. 1. Refinements (a) ∃∃, and (b) ∀∃.

Step: Assume towards contradiction that there is an abstract state ŝ ∈ Ŝi+1

such that for every s ∈ S, it holds that hi+1(s) �= ŝ. Since Ai fulfills the required
property, ŝ /∈ Ŝi. Then ŝ is the new state ŝ′. Let s0, . . . , sj be a maximal induced
run of M on the counterexample w. There is no state s′ ∈ h−1

i (ŝj+1) such that
(sj , s

′) ∈ R. Thus, by construction, hi+1(sj) = ŝ′, a contradiction. ��
Lemma 7. For every i ≥ 0, it holds that M ≤ Ai+1 ≤ Ai

Proof. According to Lemma 5, it is left to show is that Ai+1 ≤ Ai. The relation
H ⊆ Ŝi+1 × Ŝi, defined by H = {(ŝ, ŝ′) | h−1

i+1(ŝ) ⊆ h−1
i (ŝ′)} is a simulation from

Ai+1 to Ai. ��
Following Lemma 7, we have that M ≤ · · · ≤ A1 ≤ A0. Thus, the refinements

get more precise with every refinement step. Moreover, for i > 0, the model Ai is
obtained from Ai−1 by splitting a state. In a finite-state setting, this guarantees
termination at the latest when reaching Ai = M.

Lemma 8. Let M be a Kripke structure and let A0 ≥ A1 · · · ≥ M be our
sequence of over-approximations. Then, there exists m ∈ N for which Am =
Am+1.

5.2 Constructing a Sequence of Under-Approximations

Given M = (S, I,R, L) over AP , we construct a sequence of under-
approximations A0 ≤ A1 ≤ · · · ≤ Ak ≤ M via a sequence of abstraction func-
tions using counterexamples. In this case, a counterexample is a word w /∈ L(A),
yet w ∈ L(M). Again, we can consider a prefix of w.

Definition 8. Given an abstraction function h : S → Ŝ, the ∀∃ abstract model
induced by h is Ah = (Ŝ, Î, R̂, L̂), where Î and L are as in Definition 6, and
(ŝ, ŝ′) ∈ R̂ iff for every s ∈ S such that h(s) = ŝ there exists s′ ∈ S such that
(s, s′) ∈ R and h(s′) = ŝ′.

Notice that the transition relation R̂ of the ∀∃ abstract model might not be
total, i.e., there may exist a state with no outgoing transitions.

Lemma 9. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂)
be the ∀∃ abstract model induced by an abstraction function h : S → Ŝ. Then,
Ah ≤ M.
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Proof. H = {(h(s), s)|s ∈ S} is a simulation from Ah to M. ��

Under-approximation Sequence Construction
Initialization. Let Ŝ0 and h0 be as in Sect. 5. We set the initial under-
approximation A0 of M to be the ∀∃ abstract model induced by h0. By Lemma
9, we have A0 ≤ M.

Refinement. Let Ai = (Ŝi, Îi, R̂i, L̂i) be an ∀∃ abstract model induced by an
abstraction function hi : S → Ŝi. Recall that Ai ≤ M. Let w ∈ L(M)\L(Ai) be
a counterexample. Let r = s0, s1, . . . be a run of M on w, and let r̂ = ŝ0, . . . , ŝj

be a maximal induced run of Ai on w. We define Ai+1 to be the ∀∃ abstract
model induced by hi+1 : S → Ŝi+1 where Ŝi+1 = Ŝi  {ŝ′}, and where:

hi+1(s) =

⎧
⎪⎨

⎪⎩

hi(s), if hi(s) �= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s
′) = hi(sj+1) and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s
′) = hi(sj+1) and (s, s′) ∈ R

The idea behind this refinement is represented in Fig. 1 (b). The purple states
and lines represent the run in M. Note that in ŝj there is a red state with no
transition to states in hi(sj+1). Thus there is no ∀∃ abstract transition from ŝj

to hi(sj+1). To add such a transition, we split ŝj into two states: one with all
states that have a transition to a state in hi(sj+1), and another with all states
that have no such transition. As a result, Ai+1 includes a ∀∃ transition from ŝj

to hi(sj+1).
Similarly to over-approximation, we have the following, which assures cor-

rectness and termination.

Lemma 10. Let M be a model and let A0,A1, . . . be the sequence of under-
approximations described above. Then, the following holds.

– A0 ≤ A1 ≤ · · · ≤ M.
– There exists m ∈ N such that Am = Am+1.

5.3 Abstraction-Refinement Guided MultiLTL Model-Checking
Using (PR) and (PR)

Following Sects. 5.1 and 5.2, we present an abstraction-refinement inspired app-
roach for model-checking multi-properties. We are given a MultiLTL formula
P = Q

1
1π1 . . .Qn

nπn ϕ and a multi-model M = 〈M1, . . . ,Mn〉 over AP (see foot-
note 2). The model-checking procedure for M |= P is described in Algorithm 1,
which we detail next.

The procedure mmc(M,P) performs model-checking as per Lemma 2 (1) and
returns true if M |= P, and false otherwise. refine refines every approxima-
tion Ai for which there is a counterexample wi in the vector 〈w1, . . . , wn〉 of
counterexamples.
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Algorithm 1: Abstraction-refinement based MultiLTL model-checking
Input: M = 〈M1, . . . , Mn〉, P = Q

1
1π1 . . .Qn

nπn ϕ(π1, . . . , πn).
Output: M |= P?

1 A,B = initialize(M,P)
2 while true do
3 res = mmc(A,P)
4 if res == true then
5 return M |= P

6 else
7 〈w1, . . . , wn〉 = Get cex(A,M, PR)
8 A = refine(〈w1, . . . , wn〉 ,A)

9 res = mmc(B, ¬P)
10 if res == true then
11 return M �|= P

12 else

13 〈w1, . . . , wn〉 = Get cex(B,M, PR)
14 B = refine(〈w1, . . . , wn〉 ,B)

15 endwhile

Initialization. In initialize (Line 1), for every model Mi such that Qi
i = ∀, we

initialize abstract models Ai and Bi as described Sects. 5.1 and 5.2, respectively.
For every model Mi such that Q

i
i = ∃, we initialize abstract models Ai and Bi

as described in Sects. 5.2 and 5.1, respectively. Thus, Bi ≤ Mi ≤ Ai for every
i ∈ I∀ and Ai ≤ Mi ≤ Bi for every i ∈ I∃. In Algorithm 1, A = 〈A1, . . . ,An〉 is
used for (PR) and B = 〈B1, . . . Bn〉 for (PR).

Abstraction-Refinement. Lines 3–8 apply the rule (PR). When reaching line
3, it is guaranteed that Mi ≤ Ai for every i ∈ I∀ and Ai ≤ Mi for every i ∈ I∃.
Thus, we try to apply (PR). We model-check A |= P (Line 3). If the result is
true, then by the correctness of (PR), we have M |= P (Line 5). Otherwise,
A �|= P. As noted in Note 1, for Ai where i ∈ I∃, no single word counterexample
can be obtained from the model-checking. Instead, we call Get cex (Line 7),
which returns a sequence of words that lead to more precise abstractions. For
(PR), Get cex returns an arbitrary wi ∈ L(Ai) \ L(Mi) for every i ∈ I∀ and
an arbitrary wi ∈ L(Mi) \ L(Ai) for every i ∈ I∃. For (PR), Get cex behaves
dually on B for I∀ and I∃. If for some i such a word wi does not exist, Get cex
returns null as wi. refine uses 〈w1, . . . , wn〉 to refine each abstraction in A as
described in Sects. 5.1, 5.2, obtaining closer abstractions to the original models.

Lines 9–14 apply the rule (PR). When we reach line 9, it is guaranteed that
Bi ≤ Mi for every i ∈ I∀ and Mi ≤ Bi for every i ∈ I∃. Thus, we try to apply
(PR) in a similar manner as before. We model-check B |= ¬P. If the result is
true, then by the correctness of (PR), we have M |= ¬P which implies M �|= P.
Otherwise, we call Get cex (Line 13) and refine B using 〈w1, . . . , wn〉 (Line 14).

In the worst case, all approximations converge to their respective models (as
per Lemmas 8, 10), upon which no further counterexamples are found. Therefore,
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the run is guaranteed to terminate. Of course, the run terminates much earlier
in case that appropriate approximations are found. Correctness follows from the
correctness of (PR) and (PR). Hence, we have the following.

Lemma 11. Algorithm 1 terminates with the correct result.

Example. Consider M1,M2 (Fig. 2) and P = ∀1π∃2τ. G(pπ ⊕ Xpπ ⊕ XXpπ) ∧
G(pπ → qτ ), where ⊕ denotes XOR. For brevity, we ignore B since 〈M1,M2〉 |=
P. When running Algorithm 1 for 〈M1,M2〉 |= P, we first construct A0

1,A0
2 as

over- and under-approximations of M1,M2, respectively (Fig. 2). Then, we check
whether

〈A0
1,A0

2

〉 |= P. This does not hold, and MMC returns counterexamples
〈∅p∅ω, ∅qω〉. We refine the abstractions according to these counterexamples.

Next, we find the maximal induced run of ∅p∅ω in M1, which is the path
1,2,3,1⊥. Since the path for ∅p∅ω is 4,5,4,4ω in A0

1, we need to refine the
state 4 in A0

1. By similar analysis of ∅qω, state 8 is to be split in A0
2. Thus, we

split state 4 from A0
1 to states 6,7 in A1

1. In A0
2, we split state 8 to states 9,10 in

A1
2. Then, model-checking

〈A1
1,A1

2

〉 |= P passes, and we return 〈M1,M2〉 |= P.

pM1 ::

qM2 ::

q

p

A0
1 ::

A0
2 ::

pA1
1 ::

q

qA1
2 ::

1

2

3

4 5 6

7

8 9

10

Fig. 2. Model-Checking for 〈M1, M2〉 |= P

5.4 Counterexample Guided MultiLTL Model-Checking Using (PR)

Algorithm 1 is guided by the difference between the abstract models and the
original models. We now consider the ∀∗∃∗ fragment of MultiLTL. By Lemma 2,
when model-checking ∀∗∃∗MultiLTL fails, we can get counterexamples for the
models under ∀. We use these counterexamples to further improve our model-
checking scheme for this fragment.

We are given a ∀∗∃∗MultiLTL formula P = ∀1
1π1 . . . ∀k

kπk∃k+1
k+1 . . . ∃n

nπn ϕ and
a multi-model M = 〈M1, . . . ,Mn〉 over AP as input. Our model-checking pro-
cedure is described in Algorithm 2.
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Algorithm 2: CEGAR-based ∀∗∃∗MultiLTL model-checking

Input: M = 〈M1, . . . , Mn〉, P = ∀1
1π1 . . . ∀k

kπk∃k+1
k+1 . . . ∃n

nπn ϕ(π1, . . . , πn).
Output: M |= P?

1 A = initialize∀∗∃∗(M,P)
2 while true do
3 (res, cex) = mmc(A,P)
4 if res == true then
5 return M |= P

6 spuriousList = spurious(cex, M)
7 if isEmpty(spuriousList) then
8 return M �|= P

9 A = refine(cex, spuriousList,A,M)

10 endwhile

The procedure mmc(M,P) performs multi-property model-checking, and
returns (true, ∅) if M |= P, and otherwise returns (false, cex), where cex is
a counterexample vector 〈w1, . . . , wk〉 such that wi ∈ L(Mi) for every i ∈ [1, k]
and there are no wi ∈ L(Mi) for i ∈ [k + 1, n] such that 〈w1, . . . , wn〉 |= P, as
per Lemma 2 (2). We fix every Ai under ∃ to be Mi. Thus, it is guaranteed
that the model-checking failure is not caused by words that are missing from the
under-approximations, yet do exist in the concrete models. A counterexample wi

from 〈w1, . . . , wk〉 is spurious if wi ∈ L(Ai) yet wi /∈ L(Mi). That is, wi cannot
serve as proof that M �|= P. refine refines every approximation Ai for which
there is a tuple (i, wi) in spuriousList, the list of spurious counterexamples, by
removing wi from Ai.

Initialization. In initialize∀∗∃∗ (Line 1), for every model Mi such that Qi
i =

∀, we initialize an abstract model Ai as described in 5.1. For every model Mi

such that Q
i
i = ∃, we fix Ai to be Mi. Thus, Mi ≤ Ai for every i ∈ [1, k] and

Ai ≤ Mi for every i ∈ [k + 1, n].

Model-Checking. When we reach line 3, it is guaranteed that Mi ≤ Ai for
every i ∈ I∀ (and Ai ≤ Mi for every i ∈ I∃, since Ai = Mi). Thus, we try
to apply the proof rule (PR), and model-check 〈A1, . . . ,An〉 |= P (Line 3) by
running mmc. If the result is true, then by (PR), we have M |= P (Line 5).
Otherwise, we get a counterexample vector of the form 〈w1, . . . , wk〉.
Counterexample Analysis. (Lines 6–9). The procedure spurious iterates
over the words in the counterexample 〈w1, . . . , wk〉, and returns a list of tuples
(i, wi) such that wi /∈ L(Mi). Note that since 〈w1, . . . , wk〉 is a counterexam-
ple, it holds that wi ∈ L(Ai) for every i ∈ [1, k]. Thus, every wi in the list
of (i, wi) is spurious. If there are no spurious counterexamples, then we return
M �|= P (Line 8). Otherwise, we refine the approximations based on the spurious
counterexamples.

In the worst case, the run iterates until Mi = Ai for every i ∈ [1, n], in which
case there are no spurious counterexamples. Of course, termination may happen
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much earlier. Correctness follows from the correctness of (PR). Hence, we have
the following.

Lemma 12. Algorithm 2 terminates with the correct result.

Algorithm 2 improves Algorithm 1 in several ways. First, in order to compute the
counterexamples there is no need to complement the models, which comes with
an exponential price. Second, the counterexamples are provided by the model-
checking process. As such, they are of “higher quality”, in the sense that they
take into account the checked property and are guaranteed to remove refuting
parts from the abstractions. This, in turn, leads to faster convergence.

6 Multi-properties for Finite Traces

We now consider models whose traces are finite. This setting is natural, for
example, when modeling terminating programs. In this case, a model is a finite-
word language, and hyperproperties can be expressed by nondeterminisitic finite
hyperautomata (NFH) [7]. To explain the idea behind NFH, we first review
nondeterministic automata.

Definition 9. A nondeterministic finite-word automaton (NFA) is a tuple A =
(Σ,Q,Q0, δ, F ), where Σ is an alphabet, Q is a nonempty finite set of states,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and
δ ⊆ Q × Σ × Q is a transition relation.

Given a word w = σ1σ2 · · · σn over Σ, a run of A on w is a sequence of states
(q0, q1, . . . qn), such that q0 ∈ Q0, and for every 0 < i ≤ n, it holds that
(qi−1, σi, qi) ∈ δ. The run is accepting if qn ∈ F . The language of A, denoted
L(A), is the set of all words on which A has an accepting run. A language L is
called regular if there exists an NFA such that L(A) = L.

An NFA A is called deterministic (DFA) if |Q0| = 1, and for every q ∈ Q and
σ ∈ Σ, there exists exactly one q′ for which (q, σ, q′) ∈ δ. It is well-known that
every NFA has an equivalent DFA.

We now turn to explain NFH. An NFH A consists of a set of word variables, an
NFA nfa(A) that runs on words that are assigned to these variables (which is akin
to the unquantified LTL formula in a HyperLTL formula), and a quantification
condition that describes the requirements for these assignments (which is akin
to the quantifiers in a HyperLTL formula). Thus, NFH can be thought of as
the regular-language counterpart of HyperLTL. We demonstrate NFH with an
example.

Example 4. Consider the NFH A in Fig. 3 (left) over the alphabet Σ = {a, b}
and two word variables x and y. The NFA part nfa(A) of A reads two words
simultaneously: one is assigned to x and the other to y. Accordingly, the letters
that nfa(A) reads are tuples of the form {σx, σ′

y}, where σ is the current letter
in the word that is assigned to x, and similarly for σ′ and y. The symbol # is
used for padding at the end if one of the words is shorter than the other. In
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the example, for two words w1, w2 that are assigned to x and y, respectively,
nfa(A) requires that (1) w1, w2 agree on their a positions, and (2) once one of the
words has ended, the other must only contain b letters. Since the quantification
condition of A is ∀x∀y, in a language S that A accepts, every two words agree on
their a positions. As a result, all the words in S must agree on their a positions.
The hyperlanguage of A is then the set of all finite-word languages in which all
words agree on their a positions.

Fig. 3. The NFH A (left) and the MNFH B (right).

The model-checking problem for NFH is to decide, given a language S and an
NFH A, whether A accepts S, in which case we denote S |= A. When S is given
as an NFA, the model-checking problem is decidable (albeit, as for HyperLTL,
by a nonelementary algorithm) [7].

6.1 Multi-languages and Multi-NFH

As in the case of models with infinite traces, we generalize languages and NFH
to multi-languages and multi-NFH (MNFH). Thus, a multi-language is a tuple
〈S1, S2, . . . Sk〉 of finite-word languages, and an MNFH A is an NFH with indexed
quantifiers. The semantics is similar to that of Sect. 3, i.e., a quantifier Qi in the
quantification condition of A refers to Si (rather than all quantifiers referring to
the same language in the case of standard NFH).

We consider multi-languages that consist of regular languages. We
can express such a multi-language 〈L1, L2, . . . , Lk〉 by a tuple M =
〈M1,M2, . . . ,Mk〉 of NFAs, where L(Mi) = Li for every i ∈ [1, k]. We call
M a multi-NFA (MNFA). We define the model-checking problem for MNFA
accordingly, and denote M |= P if an MNFH P accepts M.

Example 5. Consider an MNFA 〈S,C〉, where S models a server and C models
a client, and the MNFH B of Fig. 3 (right) over Σ = {req, grt, τ}, where req
is a request sent to the server, grt is a grant given to the client and τ is a
non-communicating action.

The multi-model 〈S,C〉 satisfies B iff for every run of C there exists a run of
S such that every request by C is eventually granted by S. This means that the
server does not starve the client.
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From now on, we assume without loss of generality that the quantification
conditions of the MNFH that we consider are of the form Q

1
1x1Q

2
2x2 . . .Qk

kxk.
We now show that the model-checking problem for MNFH is equivalent to

the model-checking problem for NFH. For the first direction, it is easy to see
that a language S is accepted by an NFH A iff 〈S〉 is accepted by the MNFH A′

obtained from A by indexing all quantifiers in the quantification condition of A
by the same index 1. We now show the second direction.

Theorem 2. Let P be an MNFH, and let M = 〈M1, . . . Mn〉 be an MNFA.
Then there exist an NFA M and an NFH P such that M |= P iff M |= P.

Proof Sketch. We first mark the individual traces of every NFA in M by adding
its index to all its letters. That is, we replace every letter σ in Mi with (σ, i).
Then, we union all the NFAs in the updated MNFA M to a single NFA M. Now,
every word w in L(M) is marked with the index of the NFA in M from which
it originated.

We translate the MNFH P to an NFH P as follows. First, we remove the
indices from the quantifiers in the quantification condition α of P. Next, recall
that a letter in nfa(P) is in fact a letter-set of the form {σ1x1

, . . . σkxk
}. We update

these letters according to M: for every variable x, if x is under the quantifier
Q

ix in α, then we replace every occurrence of σx in nfa(P) with (σ, i)x.
Every ∃ix in α requires the existence of a word w ∈ L(Mi) that is assigned

to x and is accepted by nfa(P) (along with other words assigned to the other
variables). Accordingly, P now requires the existence of a word w ∈ L(M) that
originates from L(Mi) that is assigned to x and is accepted by nfa(P). That is,
the requirement for ∃ quantifiers is maintained.

To maintain the requirements for ∀ quantifiers, we add a new accepting sink q
to nfa(P), and add transitions to q from every state with every letter-set in which
a letter (σ, j)x occurs, where α includes ∀ix for i �= j. Intuitively, ∀ quantifiers
in P require that every word from L(M) that is assigned to x is accepted by
nfa(P). Since in P we only required every word from L(Mi) to be accepted, we
use q to accept words from all the other NFAs in M that are assigned to x. ��

The construction in the proof of Theorem 2 uses an alphabet whose size is
polynomial in the original alphabet. The model M that we construct is linear
in the size of M, and the state space of P is linear in that of P. However, since
the size of the alphabet is larger, and the letters of P are set-letters, there may
be exponentially many transitions in P compared with P.

However, the model-checking algorithm from [7] can be easily altered to han-
dle MNFH, without going through the reduction. Additionally, when M �|= P, it
is possible to extract a counterexample 〈w1, . . . , wk〉 when Qi = ∀ for i ∈ [1, k].

Lemma 13. There is a direct algorithm for model-checking MNFH.

7 Learning-Based Multi-property Model-Checking

We now describe ways of finding approximations according to the proof rules
(PR) and (PR) described in Sect. 4, for the multi-models of MNFA and
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multi-properties of MNFH of Sect. 6. The correctness of our rules stems only
from the semantics of the quantifiers and so still holds.

The L∗ algorithm [2] is a learning algorithm that finds a minimal DFA for an
unknown regular language U . We exploit the fact that MNFA consist of regular
languages to introduce an L∗-based algorithm for constructing approximations
for the languages in the MNFA and for model-checking MNFH. To explain the
idea behind our method, we first describe the L∗ algorithm.

The L∗ Algorithm. L∗ consists of two entities: a learner, whose goal is to
construct a DFA for U , and a teacher, who helps the learner by answering mem-
bership queries – “is w ∈ U?”, and equivalence queries – “is A a DFA for U?”.
In case that L(A) �= U , the teacher also returns a counterexample: a word which
is accepted by A and is not in U , or vice versa.

The learner maintains an observation table T that contains words for which
a membership query was issued, along with the answers the teacher returned
for these queries. Once T fulfills certain conditions (in which case we say that
T is steady), it can be translated to a DFA AT whose language is consistent
with T . If L(AT ) = U then L∗ terminates. Otherwise, the teacher returns a
counterexample with which the learner updates T , and the run continues.

In each iteration, the learner is guaranteed to steady T , and L∗ is guaranteed
to terminate successfully. The sizes of the DFAs that the learner produces grow
from one equivalence query to the next (while never passing the minimal DFA
for U). The runtime of L∗ is polynomial in the size of a minimal DFA for U and
in the length of the longest counterexample that is returned by the teacher.

The main idea behind learning-based model-checking algorithms is to use
the candidates produced by the learner as potential approximations. Since these
candidates may be significantly smaller than the original models, model-checking
is accelerated.

We first introduce our algorithm for the general case, in which L∗ aims to
learn the models themselves. Then, we introduce an improved algorithm in case
that the quantification condition is of the type ∀∃, in which case we can both
define stronger learning goals, and use the counterexamples provided by the
model-checker to reach these goals more efficiently.

7.1 Learning Assumptions for General Multi-properties

Consider an MNFA M = 〈M1,M2, . . . Mk〉, and an MNFH P with a quan-
tification condition α = Q

1
1x1Q

2
2x2 · · ·Qk

kxk. Algorithm L∗
MNFH, described in

Algorithm 3, computes an over-approximation for every Mi under ∀, and an
under-approximation for every Mi under ∃. It does so by running L∗ for every
Mi in parallel, aiming to learn Mi. Thus, the learner maintains a set T1, . . . Tk

of observations tables, one for every Mi. Whenever all tables are steady, the
learner submits the DFAs AT1 , . . . ATk

that it produces as candidates for the
approximations via an equivalence query. The result of the equivalence query
either resolves M |= P according to (PR) and (PR), or returns counterexam-
ples with which the learner updates the tables to construct the next round of
candidates.
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In Algorithm 3, The methods Initialize and steady are learner functions
used for initializing an observation table, and reaching a steady observation table,
respectively. The method AddCex updates the table when a counterexample is
returned from an equivalence query.

Handling membership queries is rather straightforward: when the learner
submits a query w for an NFA Mi, we return true iff w ∈ L(Mi). We now
describe how to handle equivalence queries.

Equivalence Queries. The learner submits its candidate A, which includes
its set of candidates. We first check that they are approximations for (PR), by
checking whether Mi |= ATi

for every over-approximation and ATi
|= Mi for

every under-approximation.
If all checks pass, then we model-check A |= P. If the check passes, we return

M |= P. If the candidates are not approximations for (PR) but are approxima-
tions for (PR), we model-check A |= ¬P. If the check passes, we return M �|= P.

If none of the above has triggered a return value, then there exists at least one
candidate Ai such that L(Ai) �= L(Mi). We can locate these candidates during
the over- and under-approximation checks, while computing a word w ∈ L(Mi)\
L(Ai) (in case that we found Ai not to be an over-approximation), or a word
w ∈ L(Ai)\L(Mi) (in the dual case). We then return the list of counterexamples
according to the candidates for which we found a counterexample.

Algorithm 3: L∗
MNFH

Input: M = 〈M1, . . . , Mk〉, P with α = Q
1
1π1 . . .Qk

kπk.
Output: M |= P?

1 Initialize(T1, . . . Tk)
2 while true do
3 foreach i ∈ [1, k] do
4 Ti = steady(Ti)
5 Construct ATi from Ti

6 A = 〈AT1 , AT2 , . . . ATk〉
7 (CexList, pass) = equiv(A,M,P)
8 if CexList == null then
9 if pass then

10 return M |= P

11 else
12 return M �|= P

13 foreach (wi, i) ∈ CexList do
14 AddCex(Ti, wi)

15 endwhile

Since L∗ is guaranteed to terminate when learning a regular language, Algo-
rithm 3 is guaranteed to terminate. The correctness of (PR) and (PR) guarantee
that L∗

MNFH terminates correctly at the latest after learning M (and terminates
earlier if it finds smaller appropriate approximations).
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7.2 Weakest Assumption for ∀∃
We introduce a weakest assumption in the context of multi-properties with a
quantification condition ∀∃. Intuitively, a weakest assumption is the most general
language that can serve as an over-approximation. We prove that the weakest
assumption is regular, and show how to incorporate it in a learning-based multi-
property model-checking algorithm based on (PR).

We denote MNFH with a quantification condition of the form ∀1
1x∃2

2y by
MNFH∀∃. The weakest assumption is the goal of the learning Algorithm 4 below.

Definition 10. Let M = 〈M1,M2〉 be an MNFA and let P be an MNFH∀∃.
The weakest assumption for P w.r.t. M2 is as follows.

WM2:P =
⋃

A s.t. 〈A,M2〉|=P

L(A)

That is, WM2:P is the union of all languages that along with M2 satisfy P.

Lemma 14. Let A and M2 be NFA, and P be an MNFH∀∃. Then L(A) ⊆
WM2:P iff 〈A,M2〉 |= P.

Proof. If 〈A,M2〉 |= P then the claim holds by the definition of WM2:P.
For the other direction, if L(A) ⊆ WM2:P, then for every w ∈ L(A) there
exists an NFA Aw, with L(Aw) = {w} s.t. 〈Aw,M2〉 |= P. Therefore, for every
w ∈ L(A), there exists a word w′ ∈ L(M2) s.t. P accepts {wx, w′

y}, and so by
the semantics of MNFH, we have that 〈A,M2〉 |= P. ��

We note that a similar approach to Lemma 14 cannot work for general quan-
tification conditions, since their satisfying assignments are generally not closed
under union.

To justify using WM2:P as the objective of a learning algorithm, we show
that WM2:P is regular.

In the following Lemma, AΣ∗ is an NFA that accepts all words over Σ, and
∩ denotes the intersection construction for NFA. Also, for NFA A and B, the
NFA A × B denotes the NFA over letters of the type {σx, σ′

y} where σx is from
A and σ′

y is from B that is formed by running both NFA in parallel, each with
its own word (with # padding the end of the shorter word), and ↓i denotes the
projection of the parallel construction to the i’th NFA.

Lemma 15. Let P be an MNFH∀∃ and let M = 〈M1,M2〉 be an MNFA. Then
w ∈ WM2:P iff w ∈ L((nfa(P) ∩ (AΣ∗ × M2)) ↓1).

That is, we can derive WM2:P by taking the lefthand-side projection of the
parallel run of nfa(P) with a multi-language consisting of an NFA that accepts all
words in Σ∗, and M2 (while ignoring the # symbols). Intuitively, this projection
includes all the words which can be matched with a word in M2 in a way that
is accepted by nfa(P). We can therefore deduce the following.

Corollary 1. WM2:P is regular.
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Algorithm 4: L∗
∀∃

Input: An MNFH∀∃ P, an MNFA M = 〈M1, M2〉.
Output: M |= P?

1 Initialize(T )
2 while true do
3 T = steady(T )
4 Construct AT from T
5 (cex, pass) = Equiv(AT ,M,P)
6 if cex then
7 AddCex(T, cex)
8 else
9 if pass then

10 return 〈M1, M2〉 |= P

11 else
12 return 〈M1, M2〉 �|= P

13 endwhile

7.3 Learning Assumptions for ∀∃
Let P be an MNFH∀∃ and let M = 〈M1,M2〉 be an MNFA. We now intro-
duce our L∗

∀∃ learning-based algorithm for model-checking M |= P. As we have
mentioned in 7.2, the learning goal in our L∗

∀∃ algorithm is WM2:P, as it is an
over-approximation of M1 (when M |= P). However, in this case, notice that
every A such that L(M1) ⊆ L(A) ⊆ WM2:P suffices. L∗

∀∃ then runs L∗ while
using every DFA A that is produced by the learner during the run as a candidate
for an over-approximation of M1.

We now describe our implementation for answering the membership and
equivalence queries.

Membership Queries. When the learner submits a membership query w ∈?

L(A), we model-check 〈Aw,M2〉 |= P, where Aw is a DFA whose language is {w}.
If the check passes, then there exists a word w′ ∈ L(M2) such that 〈w,w′〉 |= P.
Therefore, we return true. Otherwise, 〈w,w′〉 �|= P for every w′ ∈ L(M2), and
thus we do not include w in L(A), and return false.

Equivalence Queries. We first check that A is a potential over-approximation,
by checking if M1 |= A. If not, then we return a counterexample w ∈ L(M1) \
L(A). Otherwise, we model-check 〈A,M2〉 |= P. If the model-checking passed,
then we can conclude M |= P. Otherwise, a counterexample w is returned for a
word in L(M1) which has no match in L(M2). We now need to check if w is
spurious. If w /∈ L(M1), then we return w as a counterexample to the learner.
Otherwise, we can conclude that M �|= P.

Since L∗ is guaranteed to terminate when learning a regular language, L∗
∀∃ is

guaranteed to terminate. In both cases, when M |= P or M �|= P, the correctness
of PR and the properties of WM2:P guarantee that the algorithm terminates
with a correct answer, at most after learning WM2:P (and may terminate earlier
if it finds a smaller appropriate over-approximation).
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There are several advantages to using Algorithm 4 over Algorithm 3. First,
WM2:P may be smaller than M1 which leads to quicker convergence. Second,
there is no need to complement M1 for the equivalence query, since we only
check if M1 is contained in the candidate submitted by the learner (which is
a DFA and can be easily complemented). Finally, we can now use the more
targeted counterexample provided by the model-checking process, again leading
to quicker convergence.

While we have defined the weakest assumption and Algorithm 4 for a quan-
tification condition of the type ∀∃, both can be easily extended to handle a
sequence of ∃ quantifiers rather than a single one.

8 Conclusion

We have introduced multi-models and multi-properties – useful notions that
generalize hyperproperties to handle multiple systems. We have formalized these
notions for both finite- and infinite-trace systems, and presented compositional
proof rules for model-checking multi-properties.

For infinite-trace systems, we have introduced MultiLTL, a generalization
of HyperLTL, and have applied our proof rules in abstraction-refinement and
CEGAR based algorithms. For finite-trace systems, we have introduced multi-
NFH, which offer an automata-based specification formalism for regular multi-
properties. Here, we have applied our proof rules in automata-learning algo-
rithms. The algorithms for both approaches accelerate model-checking by com-
puting small abstractions, that allow avoiding model-checking the full multi-
model.
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Abstract. Commutativity of data structure methods is of ongoing inter-
est in contexts such as parallelizing compilers, transactional memory,
speculative execution and software scalability. Despite this interest, we
lack effective theories and techniques to aid commutativity verification.

In this paper, we introduce a novel decomposition to improve the task
of verifying method-pair commutativity conditions from data structure
implementations. The key enabling insight—called mn-differencing—
defines the precision necessary for an abstraction to be fine-grained
enough so that commutativity of method implementations in the abstract
domain entails commutativity in the concrete domain, yet can be less pre-
cise than what is needed for full-functional correctness. We incorporate
this decomposition into a proof rule, as well as an automata-theoretic
reduction for commutativity verification. Finally, we discuss our sim-
ple proof-of-concept implementation and experimental results showing
that mn-differencing leads to more scalable commutativity verification
of some simple examples.

1 Introduction

For an object o, with state σ and methods m, n, etc., let x̄ and ȳ denote argument
vectors and m(x̄)/r̄ denote a method signature, including a vector of correspond-
ing return values r̄. Commutativity of two methods, denoted m(x̄)/r̄ �� n(ȳ)/s̄,
are circumstances where operations m and n, when applied in either order, lead
to the same final state and agree on the intermediate return values r̄ and s̄. A
commutativity condition is a logical formula ϕn

m(σ, x̄, r̄) indicating, for a given
state σ, whether the methods will always commute, as a function of parameters.

Commutativity conditions are typically much smaller than full specifications,
yet they are powerful: it has been shown that they are an enabling ingredient
in correct, efficient concurrent execution in the context of parallelizing com-
pilers [39], optimistic parallelism [33], transactional memory [16,24,29,30,36],
race detection [17], speculative execution, features [13], layered concurrent pro-
grams [31], etc. More broadly, a paper from the systems community [15] found
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that, when software fragments are implemented so that they commute, better
scalability is achieved. Commutativity captures independence and when com-
bined with linearizability proofs (e.g., [12,43]) enables concurrent execution.
Naturally, it is important that commutativity be correct and, in recent years,
growing effort has been made toward reasoning about commutativity conditions
automatically. At present, these works are either unsound [4,21] or else they rely
on data structure specifications as intermediaries [7,27] which, interestingly, can
lead to unsound commutativity conclusions (see Sect. 2).

Our goal in this paper is to improve the task of verifying a commutativ-
ity property ϕn

m directly from the data-structure source code of methods m
and n. Toward this goal, we first provide a straight-forward way to formulate
the problem as a multi-trace (2-safety) question, i.e., relating the behaviors in
one circumstance with those in another. This first automata-theoretic reduction
(called Reducen

m) is a product program, but with the pre-condition strength-
ened by only considering reachable data-structure states and the post-condition
weakened to observational equivalence. Although Reducen

m is sound, it does not
employ any commutativity-specific abstractions and, thus, reachability solvers
struggle to verify the resulting encoding, for lack of the ability to decompose the
problem in a manner suitable to commutativity.

The key idea of this paper is a decomposition geared toward improving com-
mutativity verification. We introduce the concept of an mn-differencing abstrac-
tion (α,Rα) which gives a requirement for how precise an abstraction α must be
so that one can reason in that abstract domain and relate abstract post-states
with Rα, and yet entail return value agreement in the concrete domain. Intu-
itively, Rα captures the differences between the behavior of pairs of operations
when applied in either order (e.g. how push and pop effect the top element of
stack), while abstracting away state reads or mutations that would be the same,
regardless of the order in which they are applied (e.g. those elements deeper
in the stack that are untouched). Rα relations capture return value agreement,
but they do not quite capture commutativity. We show the pieces fit together
by combining Rα with a relation C that tracks the unmodified, cloned portion
of the state and an ADT-specific observational equivalence relation Iβ . Proving
that Iβ is an observational equivalence relation is then done using a separate
ADT-specific abstraction β.

We then return to algorithms, introducing a second reduction DAReducen
m

that exploits mn-differencing. DAReducen
m emits two reachability tasks:

automata AA(m,n, ϕn
m, I) and AB(I), thus allowing reachability analyses to

synthesize separate abstractions (α,Rα) and C for AA(m,n, ϕn
m, I) and β for

AB(I). Moreover, AB(I) is independent of m,n and ϕn
m, so it can be proved safe

once and then reused for every subsequent ϕn
m query.

We implement our reductions in a simple prototype tool called CityProver,
on top of Ultimate [22] and CPAchecker [10]. CityProver takes as input simple
data structures in C (with integers, structs, arrays) and a candidate formula ϕn

m.
It then uses the reductions to discover a proof that ϕn

m is a valid commutativity
condition or else produce a counterexample. We report encouraging preliminary
results verifying commutativity properties of some simple data structures such as
a memory cell, counter, two-place Set, array stack, array queue and rudimentary
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hash table. In all examples, CityProver was able to discover α, Rα, C and β
automatically. In some cases we manually provided simple I relations. Since we
reduce to automaton reachability, there was no need for any other user input (such
as invariants, preconditions, predicates, lemmas, etc.). We further consider the
merits of users providing I relations as opposed to the pre/post-specifications in
prior work [7,27], and discuss benefits pertaining to soundness, automation, sim-
plicity and usability. Finally, our experiments show that mn-differencing improves
commutativity verification. DAReducen

m performs better than Reducen
m: it is

typically faster and suffers from timeouts less frequently.

Contributions. In summary, our contributions are:

– A reduction Reducen
m that strengthens the pre-condition to reachable ADT

states and weakens the post-condition to observational equivalence. (Sect. 4)
– A decomposition of commutativity reasoning that gives a requirement for how

precise an abstraction must be to entail concrete commutativity. (Sect. 5)
– An improved reduction DAReducen

m, which exploits mn-differencing and
observational equivalence relations. (Sect. 6)

– A proof-of-concept implementation, that uses these reductions to verify can-
didate commutativity conditions. (Sect. 7)

– Preliminary experiments showing that DAReducen
m out-performs Reducen

m

on some simple numeric data structures such as a memory cell, counter, two-
place Set, array stack, array queue and rudimentary hash table. (Sect. 7)

Some results have been abridged. An extended version is available [28].
Our verified commutativity conditions can be used with existing concurrent

implementations (compilers [39], graph algorithms [33,36], STM [16,24], etc.).
Moreover, with some further research, they could be combined with lineariz-
ability proofs and used inside parallelizing compilers. We believe this to be a
promising direction for future work.

Limitations. mn-differencing is defined semantically and could be applied to a
wide range of programs, parametric data-structures, etc. Our implementation
relies on underlying reachability solvers which are typically limited to programs
with simple arrays and simple pointers, with limited support for quantified
invariants. Thus, although mn-differencing and DAReducen

m support ADTs
with parameterized sizes (such as ArrayStack), our experiments instead com-
pared Reducen

m-vs-DAReducen
m for (infinite state) ADTs of a fixed size. We

were also limited by these tools’ capability of performing permutation reasoning
(e.g. limited disjunctive power).

2 Overview

Motivating Examples. Consider the SimpleSet data structure shown at the left
of Fig. 1. This data structure is a simplification of a Set, capable of storing up to
two natural numbers using private integers a and b. Value −1 is reserved to
indicate that nothing is stored in the variable. Method add(x) checks to see if
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class SimpleSet {
private int a, b, sz ;
SimpleSet() { a=b=−1; sz=0; }
void add(uint x) {

if (sz == 0) { a=x; sz++; ret; }
if (a==x || b==x) { ret ; }
if (a==−1) { a=x; sz++; ret; }
if (b==−1) { b=x; sz++; ret; }
ret ;

}
bool isin (uint y) { ret (a==y||b==y);}
int getsize () { ret sz ; }
void clear () { a=−1; b=−1; sz = 0; }
}

class ArrayStack {
private int A[MAX], top;
ArrayStack() { top = −1; }
bool push(int x) {
if (top==MAX−1) ret false;
A[top++] = x; ret true;
}
int pop() {
if (top == −1) ret −1;
else ret A[top−−]; }

bool isempty() { ret (top==−1); }
}

Fig. 1. On the left, a SimpleSet data structure, capable of storing up to two natural
numbers (using integer fields a and b) and tracking the size sz of the Set. On the right,
a simple ArrayStack, that implements a stack using an array A and a top index.

there is space available and that x is not already in the Set, and then stores x in
an open slot (either a or b). ret means return. Methods isin (y), getsize () and
clear () are straightforward.

A commutativity condition, written as a logical formula ϕn
m, describes the

conditions under which two methods m(x̄) and n(ȳ) commute, in terms of the
argument values and the state of the data structure σ. Two methods isin (x)
and isin (y) always commute because neither modifies the ADT, so we say
ϕ

isin (y)
isin (x) ≡ true. The commutativity condition of methods add(x) and isin (y)

is more involved: ϕ
isin (y)
add(x) ≡ x �= y ∨ (x = y ∧ a = x) ∨ (x = y ∧ b = x).

This condition specifies three situations (disjuncts) in which the two opera-
tions commute. In the first case, the methods are operating on different values.
Method isin (y) is a read-only operation and since y �= x, it is not affected by an
attempt to insert x. Moreover, regardless of the order of these methods, add(x)
will either succeed or not (depending on whether space is available) and this
operation will not be affected by isin (y). In the other disjuncts, the element
being added is already in the Set, so method invocations will observe the same
return values regardless of the order and no changes (that could be observed
by later methods) will be made by either of these methods. Note that there
can be multiple concrete ways of representing the same semantic data struc-
ture state: a = 5 ∧ b = 3 is the same as a = 3 ∧ b = 5. Other commutativity
conditions include: ϕ clear

isin (y) ≡ (a �= y ∧ b �= y), ϕ getsize
isin (y) ≡ true, ϕ clear

add(x) ≡ false,

ϕ getsize
clear ≡ sz = 0 and ϕ getsize

add(x) ≡ a = x∨b = x∨(a �= x∧a �= −1∧b �= x∧b �= −1).
As a second running example, let us consider an array based implementation

of Stack, given at the right of Fig. 1. ArrayStack maintains array A for data,
a top index to indicate end of the stack, and has operations push and pop.
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The capacity of ArrayStack, MAX is parametric. The commutativity condition
ϕpop
push(x) ≡ top > −1 ∧ A[top] = x ∧ top < MAX captures that they commute

provided that there is at least one element in the stack, the top value is the
same as the value being pushed and that there is enough space to push.

The above examples illustrate that commutativity conditions, even for small
data-structures, can quickly become tricky to reason about. Nonetheless, cor-
rectness of these conditions is important to avoid unsafe concurrency when they
are used in parallelization strategies [13,15,16,24,31,33,36]. Some prior works
have described unsound methods for verifying commutativity [4,21] and oth-
ers [7,27] have built upon ADT specifications which, as we discuss below, can
lead to unsound commutativity conditions.

What’s Hard About This Problem? Toward proving that a candidate ϕn
m is a

commutativity condition for m(x̄) �� n(ȳ), one can begin by posing the problem
as 2-safety [14], perhaps using Hoare quadruple notation [44] below on the left:

H
oa

re
Q

ua
d. {ϕn

m(σ1) ∧ σ1 = σ2}
r1m := m(ā); r2n := n(b̄);
r1n := n(b̄); r2m := m(ā);
{r1m = r2m ∧ r1n = r2n ∧ σ′

1 = σ′
2} E

xa
m

pl
e {ϕ

pop()
push(x) ∧ σ1 = σ2}

r1m := push(x); r2n := pop();
r1n := pop(); r2m := push(x);
{r1m = r2m ∧ r1n = r2n ∧ σ′

1 = σ′
2}

Intuitively, this Hoare quadruple (similar to a product program [8] or self-
composition [9,41]) involves two copies of the program, shown on either side of
the vertical bar. The pre-condition is a relation on the states of these two pro-
grams, as is the post-condition. For commutativity, we start by letting the pre-
condition require that the commutativity condition ϕn

m holds and that the two pro-
grams begin in the same ADT states. Meanwhile, the post condition asserts that
return values will agree and that the post-states are equivalent. Above on the right
is an example: ArrayStack with ϕ

pop()
push(x) ≡ A[top] = x ∧ top > 1 ∧ top < MAX.

Running an existing tool (e.g. a product program [8] and Ultimate [22]) yields
a counterexample, with starting state: A = [z, y, x, α] ∧ top = 2. The coun-
terexample shows that in this case the post states are different. Depending on the
order methods are applied, one reaches either A = [z, y, x, α] ∧ top = 2 or else
A = [z, y, x, x] ∧ top = 2. Our knowledge of stack semantics tells us that these
are the same state (because the value in the 3rd array slot does not matter), but
automated tools do not know these states are equivalent: concrete equality is too
strict. Similarly, for SimpleSet ϕ

add(y)
add(x) ≡ x �= y we would obtain a counterexample

complaining that (a = x ∧ b = y) is different from (a = y ∧ b = x).
It appears we need a better notion of equality for the post-states. We might

then be tempted to exploit specifications, as is done in prior work [7,27]. Then
we can ask whether Postm(Postn(σ)) = Postn(Postm(σ))1. Unfortunately, it is
unclear what precision is appropriate for commutativity. Let’s take, for exam-
ple, a coarse specification such as {true}push(x){true}. Using this in our Hoare

1 Note: as discussed in Sect. 3, we employ the technique discussed in Sect. 4 of Bansal
et al. [7] to avoid the need for under-approximation or quantifier alternation.
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quadruple, we might conclude a post-relation true, seemingly indicating that all
post-states are related. We would thus be inclined to incorrectly conclude that
any ϕn

m is a valid commutativity condition. When specifications are too coarse
like this one, Bansal et al. [7] would incorrectly synthesize commutativity con-
dition ϕ

push(y)
push(x) ≡ true. The problem is that abstraction does not capture effects

of push(x) that are relevant to commutativity.
Meanwhile, fine-grained specifications can be close to what is needed for full-

functional correctness and it is not clear that we need this level of granularity:
much of the post-condition is irrelevant to commutativity. When considering
push(x) and pop, the interaction is limited to the top element of the stack (as
well as whether the stack is empty or full), whereas the deeper part of the stack
is the same regardless of the order of these methods.

Decomposition and Reductions for Commutativity. We now summarize the chal-
lenges and contributions of our work in the context of these examples.

(Section 4). We first observe that we do not strictly need pre/post specifica-
tions for commutativity verification and, instead, can work with observational
equivalence relations. As a simple start, we describe a straight-forward reduction
Reducen

m from verifying commutativity conditions of an ADT to an automa-
ton reachability problem. Reducen

m emits an automaton A(ϕn
m) whose safety

entails that ϕn
m is a valid commutativity condition for methods m and n. To

this end, the reduction (i) ensures that we only concern ourselves with commu-
tativity from an over-approximation of the reachable states of the object and
(ii) weakens the post-condition to a notion of observational equivalence. While
Reducen

m is sound, it does not lead to scalable tools: reachability solvers struggle
to decompose the problem.

(Section 5). The main question we ask in this paper is: What is the right
abstraction granularity for commutativity? Not knowing this has hindered prior
works as well as the performance of Reducen

m. First, the necessary precision
depends on methods under consideration. For example, when concerned with
return values arising in commutativity of SimpleSet’s isin (y)/ clear , it is sufficient
to use an abstraction that ignores sz. We only need to reason about whether y
is stored in a or b. We can use, e.g., an abstraction with predicates a = y and
b = y (along with their negations). This also ignores all other possible values
for a and b: for showing return value agreement, the only relevant aspect of the
state is whether or not y is in the set. Similarly, for ArrayStack push(x)/pop(),
we only need to consider the top value and we can abstract away deeper parts of
the stack, that are untouched in either method order. While, on the other hand,
for pop() �� pop(), the second-from-top also matters.

Formally, we give a requirement for an abstraction α and a relation Rα in
that domain, that it be precise enough so that reasoning about return value
agreement in the abstract domain faithfully covers reasoning about agreement
in the concrete domain. We call this pair (α,Rα) an mn-differencing abstraction
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and relation. For the SimpleSet example with isin (x)/ clear (), we can define α
to be based on the above mentioned predicates, and then use the relation:

Rα(σ1, σ2) ≡ (a = x)1 ∨ (b = x)1 ⇔ (a = x)2 ∨ (b = x)2, (1)

i.e. the relation that tracks whether σ1 and σ2 agree on those predicates. (Sub-
scripts mean that the predicate holds in the correspondingly numbered state.) Rα

is a relation on abstract states and summarizes the possible pairs of post-states
that will have agreed on return values. For methods push(x)/pop on ArrayStack,
we can define an abstraction α with predicates {top ≥ 0,A[top] = x}, and use

Rα ≡ (top ≥ 0)1 = (top ≥ 0)2 ∧ (A[top] = x)1 = (A[top] = x)2 (2)

This abstraction simply tracks that the ArrayStack is non-empty and whether the
top element is x or not. Meanwhile, the remaining portion of the state is identical
between the two states because it came from cloning the reachable initial state.
The equivalence reasoning can easily be tracked with direct, inductive equality: a
cloned & unmodified frame relation C. For this example, C ≡ ∀i < top1. A1[i] =
A2[i]. We will later see that our algorithms and tools will be able to synthesize
these (α,Rα) mn-differencing abstractions/relations and cloned frame C.

While so far we have addressed return values, states that are related by Rα∧C
may not necessarily be observationally equivalent. We show the pieces fit together
by working with observational equivalence relations. For reasoning about this
equivalence, we use a separate abstraction β, more geared toward relational
equivalence, and a relation Iβ in that abstract domain. For the ArrayStack and
SimpleSet examples, we can use the following such relations:

IAS(σ1, σ2) ≡ top1 = top2 ∧ (∀i.0 ≤ i ≤ top1 ⇒ A1[i] = A2[i]) (3)
ISS(σ1, σ2) ≡ ((a1 = a2 ∧ b1 = b2) ∨ (a1 = b2 ∧ b1 = a2)) ∧ (sz1 = sz2) (4)

IAS says that the two states agree on the (ordered) values in the Stack. (top1
means the value of top in σ1, etc.) For SimpleSet, ISS specifies that two states are
equivalent provided that they are storing the same values—perhaps in different
ways—and they agree on the size. These observational equivalence relations can
sometimes be inferred and, otherwise, are typically compact. Crucially, however,
unlike pre/post specifications, if I is an observational equivalence relation, then it
is guaranteed to lead to sound commutativity conclusions. Putting it all together,
our decomposition can be posed as a proof rule on the right.

(i) : {Iβ}[sm]1(x̄) | [sm]2(ȳ){Iβ}
(ii) : {Rch ∧ ϕn

m} [sm]1(x̄);
[sn]1(x̄)

| [sn]2(ȳ);
[sm]2(ȳ)

{Rα ∧ C}
(iii) : (Rα ∧ C) =⇒ Iβ

ϕn
m is a commut. cond. for m(x̄) �� n(ȳ)

The notation [sm]1(x̄) means
the implementation of method
m, under a (standard) transla-
tion [8,9,41] to act on the σ1

copy of the state, with argu-
ments x̄. Premise (i) incorpo-
rates observational equivalence, while (ii) summarizes mn-differencing. Notice
that premise (i) does not involve ϕn

m, Rα or C. An outcome of this decomposi-
tion is that automated reasoning about Iβ (which pertains to all methods of the
ADT) can be separated from reasoning about Rα ∧C (which pertains to a given
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triple m,n, ϕn
m). Consequently, (i) can be done once globally for the ADT, and

then (ii) and (iii) can be done for each new commutativity validity query. Note
also that Rα ∧C is typically stronger than Iβ (and hence can imply Iβ) because
it is more specialized to the m/n method-pair under consideration. Meanwhile,
Iβ is a weaker relation characterizing overall ADT equivalence.

(Section 6). We next describe an improved reduction DAReducen
m,

which employs our decomposition. DAReducen
m emits a pair of automata

AA(m,n, ϕn
m, I) and AB(I), such that if we prove both are safe then ϕn

m must be
a valid commutativity condition. Again, this separation allows tools to synthesize
(α,Rα) and C separately from β and Iβ .

(Section 7). Finally, we describe a proof-of-concept implementation of
Reducen

m and DAReducen
m, and employing Ultimate and CPAchecker as

reachability solvers. We report experiments comparing the performance of
the two reductions, when applied to some simple ADTs including the
above SimpleSet, ArrayStack, Queue and a rudimentary HashTable. While
DAReducen

m has some initial overhead, its use of mn-differencing abstractions
appears to enable it to perform better than Reducen

m.

3 Preliminaries

We work with a simple model of a (sequential) object-oriented language. We will
denote an object by o. Objects can have member fields o.a and, for the purposes
of this paper, we assume them to be integers, structs or integer arrays. Methods
are denoted o.m(x̄), o.n(ȳ), . . . where x̄ is a vector of the arguments. We often
will omit the o. We use the notation m(x̄)/r̄ to refer to the return variables r̄.
We use ā to denote a vector of argument values, ū to denote a vector of return
values and m(ā)/ū or n(b̄)/v̄ to denote a corresponding invocation of a method
which we call an action. Methods’ source code is parsed from C into control-flow
automata (CFA) [23] using assume to represent branching and loops. (See [28] for
details on our CFA-based implementation.) Edges are labeled with straight-line
ASTs consisting of assume, assignment, and sequential composition. We use sm

to refer to the source code of object method m. For simplicity, we assume that
one object method cannot call another, and that all object methods terminate.

Commutativity and Commutativity Conditions. We fix a single object o, denote
that object’s concrete state space Σ, and assume decidable equality. We denote

σ
m(ā)/ū−−−−−→ σ′ for the big-step semantics in which the arguments are provided,

the entire method is reduced and return values given in ū. For lack of space,
we omit the small-step semantics [[s]] of individual statements. For the big-step
semantics, we assume that such a successor state σ′ is always defined (total) and
is unique (determinism). Programs can be transformed so these conditions hold,
via wrapping [7] and prophecy variables2 [3], respectively.

2 For example, we can use prophecy variables to translate a method such as int m(a)
{ if (nondet()) x := a; } into one that has does not have nondeterminism in its
transition system: int m(a, rho) { if (rho) x := a; }.
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Definition 1 (Observational equivalence for commutativity (e.g. [29]).
We define relation 
⊆ Σ × Σ as the following greatest fixpoint

∀m(ā) ∈ M. σ1
m(ā)/r̄1−−−−−→ σ′

1 σ2
m(ā)/r̄2−−−−−→ σ′

2 r̄1 = r̄2 σ′
1 
 σ′

2

σ1 
 σ2

The above co-inductive definition expresses that two states σ1 and σ2 of an
object are observationally equivalent 
 provided that, when any given method
invocation m(ā) is applied to both σ1 and σ2, then the respective return values
agree. Moreover, the resulting post-states maintain the 
 relation. A (logical)
observational equivalence relation I is a formula such that [[I]] ⇒
. IAS from
the previous section is one such relation. A counterexample to observational
equivalence is a finite sequence of method operations m1(ā1), ...,mk(āk) applied
to both σ1 and σ2 such that for mk(āk), the return values disagree, i.e., r̄k

1 �= r̄k
2 .

We next use observational equivalence to define commutativity. As is typ-
ical [7,17] we define commutativity first at the layer of an action, which are
particular values, and second at the layer of a method, which includes a quan-
tification over all of the possible values for the arguments and return variables.

Definition 2 (Commutativity of m and n). For values ā, b̄, we say actions
m(ā) and n(b̄) commute, denoted m(ā) �� n(b̄), if for all σ, ū1, ū2, v̄1, v̄2, σm,

σn, σmn, σnm such that σ
m(ā)/ū1−−−−−→ σm

n(b̄)/v̄1−−−−−→ σmn and σ
n(b̄)/v̄2−−−−−→ σn

m(ā)/ū2−−−−−→
σnm, then (ū1 = ū2 ∧ v̄1 = v̄2 ∧ σmn 
 σnm). Methods m and n commute
denoted m �� n provided that ∀ā b̄. m(ā) �� n(b̄).

The quantification ∀ā b̄, etc. means vectors of all possible argument values. Our
work extends to a more fine-grained notion of commutativity: an asymmetric
version called left-movers and right-movers [34], where a method commutes in
one direction and not the other.

We will work with commutativity conditions for methods m and n as logical
formulae over initial states and the arguments of the methods. We denote a
logical commutativity formula as ϕn

m and assume a computable interpretation
of formulae: [[ϕn

m]] : (σ, x̄, ȳ) → B. (We tuple the arguments for brevity.) The
first argument is the initial state. Commutativity post- and mid -conditions can
also be written over return values [27] but here, for simplicity, we focus on
commutativity pre-conditions. We may write [[ϕn

m]] as ϕn
m when it is clear from

context that ϕn
m is meant to be interpreted.

Definition 3 (Commutativity Condition). Logical formula ϕn
m is a commu-

tativity condition for m and n provided that ∀σ ā b̄. [[ϕn
m]] σ ā b̄ ⇒ m(ā) �� n(b̄).

4 One-Shot Reduction to Reachability

We now take a first stab at the goal of reducing commutativity verification to
reachability (i.e., verifying non-reachability of an error location). The problems
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do not exactly align because commutativity verification is instead defined over an
object implementation, method pairs, a formula ϕn

m and a notion of equivalence
for objects. We thus pose commutativity as reachability intuitively as follows:

Pre-condition :

⎧
⎪⎪⎨

⎪⎪⎩

σ1.init();
while(∗){[sm]1(ā); where m(ā) chosen nondeterministically }
assume(ϕn

m(σ1, ā, b̄));
σ2 = σ1.clone();

Product :
{

r1m := [sm]1(ā); r2n := [sn]2(b̄);
r1n := [sn]1(b̄); r2m := [sm]2(ā);

Post-condition :

⎧
⎪⎪⎨

⎪⎪⎩

assert(r1m = r2m ∧ r1n = r2n);
while(∗){ for any m(ā) chosen nondetermistically:

r1 = [sm]1(ā); r2 = [sm]2(ā);
assert(r1 = r2); }

(A formalization can be found in the extended version [28].) Ignoring the pre/-
post conditions, in the above quadruple, we have used a product program [8],
which encodes two programs (one for each order of method implementations sm

and sn), each applied to a replica of the state σ, similar to self-composition and
other techniques [6,8,9,18–20,40,41].

Strengthening the Pre-condition for Reachable ADT States σ1 and σ2. Above the
pre-condition: (i) loops, symbolically applying an arbitrary number of method
implementations on σ1, (ii) assumes ϕn

m of the resulting state and (iii) duplicates
that state to σ2. This has the effect that σ1 and σ2 will be identical, restricted
to only reachable ADT states, and ϕn

m will hold. That is, the precondition can
be thought of as: {Reachable(σ1) ∧ ϕn

m(σ1, ā, b̄) ∧ σ1 = σ2}. Verification tools
will typically over-approximate Reachable.

Weakening the Post-condition to Observational Equivalence. Meanwhile, the
post-condition asserts return value agreement, and then loops, symbolically exe-
cuting a nondeterministically chosen method and argument values on both σ1

and σ2, and then asserting that return values agree. Thus the post-condition
ensures return value agreement and that there is no sequence of methods that
could be applied to both of them, witnessing further disagreement. That is, the
postcondition can be thought of as: {r1m = r2m ∧ r1n = r2n ∧ ObsEq(σ1, σ2)}.

Formally, Reducen
m(ϕn

m,m, n,M) is a transformation over an input object
implementation CFA to an output CFA automaton A(ϕn

m) with an error state
qer. We prove that if qer is unreachable in the output encoding A(ϕn

m), then ϕn
m

is a valid commutativity condition for m and n. That is, if A(ϕn
m) is safe, then

ϕn
m is a commutativity condition. (Detail in the extended version [28]).

Example. Figure 2 is a pseudo-code illustration of A(ϕ isin (y)
add(x) ), the output gen-

erated when Reducen
m is applied to methods add(x) and isin (y) of SimpleSet

from Sect. 2. When a candidate formula ϕ
isin (y)
add(x) is supplied and a program anal-

ysis tool for reachability is applied, the tool performs the reasoning necessary for
commutativity. In sum, Reducen

m uses the implementation of the ADT itself
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(including other methods such as clear ) in order to symbolically represent reach-
able states s1 and s2 for the Pre-condition and require that the post-state pairs
be observationally equivalent in the Post-condition.

1 SimpleSet s1 = new SimpleSet(); Pre-cond.
2 while(*) { int t = *; assume (t>0); switch(*) {
3 case 1: [add]1(t); case 2: [isin]1(t);
4 case 3: [size]1(); case 4: [clear]1(); }}
5 int x = *; int y = *;
6 assume( ϕ

isin (y)

add(x) (s1,x,y) );
7 SimpleSet s2 = s1.clone();

8
r1m = [add]1(x); r2n = [isin]2(y); Quad.
r1n = [isin]1(y); r2m = [add]2(x);

9 assert(r1m=r2m && r1n=r2n);

Post-cond.
10 while(true){ int t=*; assume(t>0); switch(*) {
11 case 1: assert([add]1(t) == [add]2(t));
12 case 2: assert([isin]1(t) == [isin]2(t));
13 case 3: assert([clear]1() == [clear]2());
14 case 4: assert([size]1() == [size]2()); } }

Fig. 2. Reducen
m applied to add(x)/ isin (y).

Multiple Commutations.
Relational reasoning is
needed for post-state equiv-
alence but, when commu-
tativity proofs are used
in (most) compilers or
runtime systems, only
one method ordering will
actually be executed. The
pair-wise commutativity
proofs generalize to mul-
tiple commutations due
to the fact that each pos-
sible post-state in one
pair’s proof is another
possible reachable initial
state for another pair.

While Reducen
m is

sound we show in Sect. 7
that tools don’t scale well
at proving the safety of Reducen

m’s output. In the next Sect. 5 we describe an
abstraction targeted at proving commutativity to better enable automated rea-
soning. In the subsequent Sect. 6, we employ that abstraction in an improved
reduction DAReducen

m.

5 Decomposing Commutativity with mn-differencing

The problem with reductions like Reducen
m, is that general-purpose reachability

tools do not know how to find the right abstraction for commutativity reason-
ing and those tools end up veering toward searching for unnecessarily intricate
abstractions for full-functional verification. We now present a decomposition to
mitigate this problem.

Consider the ArrayStackpush(x)/pop example and a (symbolic) state such as
[a, b, c] with top = 2 and condition ϕpop

push(x) ≡ x = A[top]. When applying a
general-purpose reachability solver to Reducen

m, it will consider deep stack val-
ues such as a and b because those values could be reachable in a post-state after a
further sequence of pop operations. But the solver is actually doing unnecessary
work and is not inherently capable of noticing that those deep stack values will
be the same, regardless of the order that push(x) and pop are applied.

Even with the sophisticated and automatic abstraction techniques available
in today’s tools, we do not currently have a notion of what is the right abstrac-
tion for commutativity and consequently, today’s tools often end up diverging
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searching for an overly precise abstraction. In this section we address this prob-
lem and answer the question: how coarse-grained can an abstraction be, while
still being fine-grained enough to reason about commutativity?

σ̂1 σ̂′
1

σ1 σ′
1

σ̂2 σ̂′
2

σ2 σ′
2

(σ
1
=

σ
2
) X

Rα

r1m := m(ā); r1n := n(b̄)

r2n := n(b̄); r2m := m(ā)

r̂1m := m̂(ā); r̂1n := n̂(b̄)

r̂2n := n̂(b̄); r̂2m := m̂(ā)

α α

α
α

The idea of mn-differencing can
be visualized via the diagram on
the right. We start with two states
σ1 and σ2 that are exactly equal.
The product program leads to post
states σ′

1 and σ′
2. For these post

states, we require return value
agreement, denoted X ≡ r1m =
r2m ∧ r1n = r2n. Next, we have an
abstraction α, specific to this m/n pair, and a product program in this abstract
domain.

The key idea is that (i) relation Rα relates abstract post-states whose return
values agree in the abstract domain, and (ii) α is required to be precise enough
that return values agree for all state pairs in the concretization of Rα. We can
then check whether an initial assumption of ϕn

m on σ1 implies such an Rα, i.e.,
checking return value agreement using α which is just precise enough to do so.
For isin (x)/ clear , define an abstraction α with predicates {a = x, a �= x, b =
x, b �= x} that tracks whether x is in the set. Then

R1
α(σ1, σ2) ≡ (a = x)1 ∨ (b = x)1 ⇔ (a = x)2 ∨ (b = x)2,

i.e. the relation that tracks if σ1 and σ2 agree on those predicates. Meanwhile,
for pop/pop on ArrayStack, we can define a different α with predicates {top >
1,A[top − 1] = A[top]}, and use the relation

R2
α ≡ (top > 1)1 = (top > 1)2 ∧ (A[top − 1] = A[top])1 = (A[top − 1] = A[top])2

This relation characterizes state pairs which agree on the stack having at least
two elements, and agree that the top and penultimate elements are the same.
As we will see, these abstractions and relations, although they are quite weak,
are just strong enough so that they capture whether return values will agree.

5.1 Formal Definition

We now formalize mn-differencing. Where noted below, some definitions are
omitted and can be found in the extended version [28]. First, we define a set
of state pairs denoted posts(σ,m, ā, n, b̄) to be the set of all pairs of post-states
(each denoted (σmn, σnm) originating from σ after the methods are applied in
the two alternate orders:

posts(σ, m, ā, n, b̄) ≡ {(σ1, σ2) | σ
m(ā)/r̄1

m−−−−−−→ σ′ n(b̄)/r̄1
n−−−−−→ σ1 ∧ σ

n(b̄)/r̄2
n−−−−−→ σ′′ m(ā)/r̄2

m−−−−−−→ σ2}
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We also define return value agreement denoted rvsagree(σ,m, ā, n, b̄) as a predi-
cate indicating that all such post-states originated from σ agree on return values:

rvsagree(σ, m, ā, n, b̄) ≡
∀r̄1m, r̄1n, r̄2n, r̄2m such that (σ

m(ā)/r̄1
m−−−−−−→ σ1

n(b̄)/r̄1
n−−−−−→ σ′

1 ∧ σ
n(b̄)/r̄2

n−−−−−→ σ2
m(ā)/r̄2

m−−−−−−→ σ′
2).,

r̄1m = r̄2m ∧ r̄2n = r̄1n

Definition 4 (mn-differencing Abstraction (α,Rα)). For an object with
state space Σ, and two methods m and n. Let α : Σ → Σα be an abstraction
of the states, and γ : Σα → P(Σ) the corresponding concretization. A relation
Rα ⊆ Σα × Σα with its abstraction (α,Rα) is an mn-differencing abstraction if

∀σα
1 , σα

2 ∈ Σα.Rα(σα
1 , σα

2 ) ∧ ∀σ ā b̄. posts(σ,m, ā, n, b̄) ∈ γ(σα
1 ) × γ(σα

2 ) ⇒
rvsagree(σ,m, ā, n, b̄)

The above definition requires that α be a precise enough abstraction so that
Rα can discriminate in the abstract domain between pairs of post-states where
return values will have agreed versus disagreed in the concrete domain.

A relation Rα may not hold for every initial state σ. For example, the above
R2

α for pop/pop does not hold when the stack is empty. Hence, we need to ask
whether Rα holds, under the assumption that ϕn

m holds in the pre-condition. We
say that ϕn

m implies (α,Rα) if

∀σ ā b̄. ϕn
m(σ, ā, b̄) ⇒ ∀(σ1, σ2) ∈ posts(σ,m, ā, n, b̄) ⇒ Rα(α(σ1), α(σ2))

For SimpleSet isin (x)/ clear , if we let ϕ clear
isin (x) ≡ a �= x∧b �= x, this will imply R1

α

in the posts. Let’s see why. If this commutativity condition ϕ clear
isin (x) holds, then x

will not be in the set. Neither method adds x to the set and an abstract domain,
tracking only whether a = x and b = x hold, will lead to post states that agree
on whether x is in the set and this carries over to the agreeing on whether x is
in the set in the concrete domain.

Cloned and Untouched Frame. The components of the state that are abstracted
away by an mn-differencing abstraction include portions of the state that are
unmodified in either method order (or are both modified in the same way). For
example, the deeper elements of ArrayStack remain untouched regardless of the
order that methods push and pop are applied. We refer to these state components
via a cloning relation C ⊆ Σ×Σ, that we use in conjunction with Rα. Because this
relation C(σ1, σ2) always holds when σ1 = σ2, and the two method orderings both
begin from the same starting point σ, a program analysis can begin with the fact
C(σ0, σ0) and then inductively prove that posts(σ0,m, ā, n, b̄) ⇒ C. The cloning
relation can instead be thought of as simply a strengthening of Rα, but we present
it here separately to emphasize that C captures components of the states that are
directly equal, whereas Rα may abstract away unequal components.
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Post-state Equivalence. Rα ∧ C is specific to the method pair under consideration
and, as such, it can exploit the particular specific effects of the method pair. For
example, the Rα for SimpleSet clear/clear can simply say that both sets are
empty. On the other hand, these relations alone are not enough to characterize
commutativity. States that are Rα-related are not necessarily equivalent. What’s
needed is to show that method-pair-specific Rα ∧C relation on the post-states of
this method is strong enough to imply so that they are observationally equivalent.

We achieve this by using ADT-specific (rather than mn-specific) logical
observational equivalence relations Iβ and separate abstractions Iβ there for.

σ̂1 σ̂′
1

σ1 σ′
1

σ̂2 σ̂′
2

σ2 σ′
2

Iβ

(r
1
=

r 2
)
∧

I β

m′(ā)/r1

m′(ā)/r2

m̂′(ā)/r1

m̂′(ā)/r2

β β

β β

The standard concept of obser-
vational equivalence relations [11]
is visualized on the right. Impor-
tantly, we can use an abstraction β
here that is separate from α; this
will become useful in the subse-
quent sections. Formally, Iβ is an
observational equivalence relation iff: ∀σβ

1 , σβ
2 ∈ Σβ . Iβ(σβ

1 , σβ
2 ) ⇒ ∀σ1 ∈ δ(σβ

1 ),
σ2 ∈ δ(σβ

2 ). σ1 
 σ2. Relations ISS and IAS , defined earlier, are such relations.

5.2 Connecting the Pieces Together

Finally, we connect Rα and C with Iβ and show that they can be used to reason
about whether ϕn

m is a valid commutativity condition. The idea is summarized

(i) : {Iβ}[sm]1(x̄) | [sm]2(ȳ){Iβ}
(ii) : {Rch ∧ ϕn

m} [sm]1(x̄);
[sn]1(x̄)

| [sn]2(ȳ);
[sm]2(ȳ)

{Rα ∧ C}
(iii) : (Rα ∧ C) =⇒ Iβ

ϕn
m is a commut. cond. for m(x̄) �� n(ȳ)

in the proof rule on the right.
(Soundness of the rule is given in
the extended version [28].) The
first judgment (i), presented as a
Hoare quadruple, ensures that Iβ

is an observational equivalence
relation. This judgment can be concluded once per ADT and, subsequently, Iβ

can be used repeatedly, whenever we wish to verify a new commutativity condi-
tion via the other judgments. The second judgment (ii) starts from a reachable
ADT state where the commutativity condition ϕn

m holds, and has a post-relation
Rα ∧C consisting of an mn-differencing relation, along with a cloned, untouched
frame C. Finally judgment (iii) combines the mn-differencing abstraction Rα

with the cloned aspects of the state C to imply Iβ .
Although an Rα ∧ C may imply an Iβ , this does not mean that Rα is itself

an observational equivalence relation. Rα ∧ C is typically stronger than Iβ , but
specific to the method-pair. For clear / clear , Rα∧C could relate SimpleSet states
that are empty. While this implies the SimpleSet observational equivalence rela-
tion ISS (Eq. 4 in Sect. 2), this Rα is of course not an observational equivalence
relation: as soon as add(x) is added to both states, the relation is violated.
What’s important is simply that Rα implies Iβ and, separately, that Iβ itself is
an observational equivalence relation.

Semantically, this decomposition can always be done because we can use 

as the notion of observational equivalence and an overly precise Rα. Logically,
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however, completeness depends on whether a logical observational equivalence
relation exists and can be expressed in the assertion language. We leave delving
into the details of the assertion language (e.g. heap logics) as future work.

6 mn-differencing for Automata-Based Verification

As we show in Sect. 7, Reducen
m given in Sect. 4 yields encodings for which

general-purpose reachability solvers quickly diverge: the abstractions they search
for become tantamount to what’s needed for full-functional verification. In this
section, we employ mn-differencing to introduce an improved reduction called
DAReducen

m that decomposes the reasoning into two phases: (A) finding a
sufficient Rα and frame C that implies Iβ and then (B) proving that Iβ is an
observational equivalence relation. The output of DAReducen

m are a pair of
output automata AA(m,n, ϕn

m, I) and AB(I), which informally can be thought
of as follows:

AA(m,n, ϕn
m, I) AB(I)

σ1.init();
while(∗){σ1.m(ā); where m(ā) chosen nondet.}
assume(ϕn

m(σ1, ā, b̄)); σ2 = σ1.clone();
r1m := σ1.m(ā); r2n := σ2.n(b̄);
r1n := σ1.n(b̄); r2m := σ2.m(ā);
assert(r1m = r2m ∧ r1n = r2n); //Rα

assert(I(σ1, σ2)); //Rα ∧ C =⇒ I

assume(I(σ1, σ2));
let m(ā) chosen nondet. in

r1 = σ1.m(ā); r2 = σ2.m(ā);
assert(r1 = r2 ∧ I(σ1, σ2));

DAReducen
m is formalized as a transformation over CFAs in the extended ver-

sion [28]. Unlike Reducen
m, AA(m,n, ϕn

m, I) ends early with assertions that
return values agree and that I must hold. Thus, an analysis on AA(m,n, ϕn

m, I)
will construct an abstraction α and an mn-differencing relation Rα, as well as a
cloned frame C such that Rα ∧ C ⇒ I. Meanwhile, AB(I) is designed so that a
safety proof on AB(I) entails that I is an observational equivalence relation. A
pre-condition that assumes I, and then a nondeterministic choice of any ADT
method m with nondeterministically selected method arguments ā. To prove
that I is an observational equivalence relation, a reachability solver will synthe-
size an appropriate abstraction β for I in AB(I). If both AA(m,n, ϕn

m, I) and
AB(I) are safe, then ϕn

m is a valid commutativity condition (as shown in the
extended version [28].)

DAReducen
m improves over Reducen

m by decomposing the verification
problem with separate abstraction goals, making it more amenable to automa-
tion (see Sect. 7). Moreover, as in the proof rule (Sect. 5), a proof of safety of
AB(I) can be done once for the entire ADT. Then, for a given method pair and
candidate condition ϕn

m, one only needs to prove the safety of AA(m,n, ϕn
m, I).

Automation. Synthesis of α,Rα, C and β is automated. The definition of AB(I)
can be amended so that a reachability solver could potentially infer I. The below
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amended version encodes the search for a (relational) observational equivalence
as the search for a (non-relational) loop invariant.

amended AB(I) :

⎧
⎨

⎩

while(true){let m(ā) chosen nondetermistically in
r1 = σ1.m(ā); r2 = σ2.m(ā);
assert(r1 = r2); }

7 Evaluation

Our goals were to evaluate (1) whether mn-differencing abstractions ease com-
mutativity verification, i.e., whether DAReducen

m outperforms Reducen
m, and

(2) how automated our strategy can be.
We implemented a proof-of-concept tool called CityProver3. CityProver

takes, as input, C-style source code, using structs for object state. Examples are
included with the CityProver release. We have written them as C macros so
that our experiments focus on commutativity rather than testing existing tools’
inter-procedural reasoning power. Also provided as input to CityProver is a
commutativity condition ϕn

m and the method names m and n. CityProver
then implements Reducen

m and DAReducen
m via a program transformation.

Fig. 3. Verifying commutativity properties of sim-
ple benchmarks. For each, we report time to use
Reducen

m vs. DAReducen
m. A more detailed table

is in the extended version [28].

Experiments. We created
some small examples (with
integers, structs and arrays)
and ran CityProver on
them. Our experiments were
run on a Quad-Core Intel(R)
Xeon(R) CPU E3-1220 v6
at 3.00 GHz, inside a QEMU
VM. We began with single-
field objects including: (M)
a Memory cell; (A) an Accu-
mulator with increment, de-
crement, and a check whether
the value is 0; and (C)
a Counter that also has
a clear method. For each
object, we considered some
example method pairs with
both a valid commutativity
condition and an incorrect
commutativity condition (to
check that the tool discovers
a counterexample).

3 https://github.com/erickoskinen/cityprover.

https://github.com/erickoskinen/cityprover
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The objects, method pairs and commutativity conditions are shown in the
first few columns of Fig. 3, along with the Expected result. We used both
the Reducen

m (Sect. 4) and DAReducen
m (Sect. 6) algorithms and, in each

case, compared using CPAchecker [10] and Ultimate [22] as the solver. For
DAReducen

m, we report the total time taken for both Phase A and Phase
B. A more detailed version of this table can be found in the extended ver-
sion [28]. Benchmarks for which A succeed can all share the results of a single
run of Phase B; meanwhile, when A fails, the counterexample can be found
without needing B. These experiments confirm we can verify commutativity
conditions from source. In one case, CPAchecker returned an incorrect result.
While DAReducen

m often takes slightly more time (due to the overhead of start-
ing up a reachability analysis twice), it does not suffer from a timeout (in the
case of Counter inc/ isz ).

Fig. 4. Results of applying CityProver to
ArrayStack, SimpleSet and Queue. A more
detailed breakdown of DAReducen

m can be
found in the extended version [28].

We next turned to simple
data structures that store and
manipulate elements. While mn-
differencing and DAReducen

m

support parametric/unbounded
ADTs, automated reasoning about
the cloned frame C typically
requires quantified invariants.
Automata reachability tools typi-
cally do not currently have robust
support quantifiers, so we evalu-
ate these ADTs with a fixed size.
We mainly used Ultimate as we
had trouble tuning CPAchecker
(perhaps owing to our lim-
ited experience). In some cases
(marked in blue), Ultimate failed
to produce a timely response
for either reduction, so we tried
CPAchecker instead. Figure 4
shows the results of applying
Reducen

m and DAReducen
m on

these examples. In each exam-
ple, we first list the running time
for DAReducen

m’s ADT-specific
Phase B, and then list the times
for Phases Ai and Aii, as well as
the total time.

For (SS) SimpleSet (Fig. 1),
in almost all cases DAReducen

m

outperformed Reducen
m, with an

average speedup of 3.88×. For
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(AS) ArrayStack (Fig. 1), Reducen
m found some counterexamples quickly. How-

ever, in the other cases Reducen
m ran out of memory, while DAReducen

m was
able to prove all cases. For (Q) Queue, we implemented a simple array-based
queue and were able to verify all but two commutativity conditions. Finally, we
implemented a rudimentary (HT) HashTable, in which hashing is done only once
and insertion gives up if there is a collision. Some commutativity conditions are
as follows:
1ϕput

put ≡ x1 �= y1,
2ϕput

put ≡ x1 �= y1 ∧ tb[x1%cap].k = −1 ∧ tb[y1%cap].k = −1
3ϕput

put ≡ x1 �= y1 ∧ x1%cap �= y1%cap ∧ tb[x1%cap].k = −1 ∧ tb[y1%cap].k = −1

For HT, Ultimate timed out on Phase B and in some cases had some trouble
mixing modulus with array reasoning, so we used CPAchecker. We still used
Ultimate in some Phase A cases, because it can report a counterexample in
Phase A even if it timed out in B. We also could use Ultimate for Phase A,
given that CPAchecker already proved Phase B, with the same Iβ . We also had
to introduce a prophecy variable to assist the verifiers in knowing that array
index equality distributes over modulus of equal keys.

Overall, for Reducen
m there were 15 cases where it reached the 15-minute

timeout or out-of-memory. DAReducen
m performed better: it only reached the

timeout in 6 cases. In 24 cases (out of 37), CityProver returned a proof or
counterexample in under 2 min. In summary, these experiments confirm that
DAReducen

m improves over Reducen
m: in most cases it is faster, sometimes by

as much as 2× or 3×. In 7 cases, DAReducen
m is able to generate an answer,

while Reducen
m suffers from a timeout/memout. (Timeouts typically occurred

during refinement loops.)
In all examples, our implementation inferred α,Rα, C and β. For those in

Fig. 4, we provided I manually. For the Queue and HashTable, we used (fixed
size versions of) the following:

IQ ≡ front1 = front2 ∧ rear1 = rear2 ∧ sz1 = sz2 ∧ ∀i ∈ [front1, rear1].q1[i] = q2[i]
IHT ≡ keys1 = keys2 ∧ ∀i ∈ [0,max).tb1.k ≥ 0 ⇒ tb1[i].k = tb2[i].k ∧ tb1[i].v = tb2[i].v

IQ states that the queues have the same size, and that the values agree in
the range of the queue. It is possible to weaken this relation but commutativity
does not need this weakening. For the HashTable, IHT states that the HashTables
have the same number of keys and, in each non-empty slot, they agree on the key
and value. Apart from these I relations (which someday could be inferred) our
technique is otherwise completely automated: a user only provides guesses for the
commutativity conditions and CityProver returns a proof or counterexample.

Working with Observational Equivalence (Obs-Eq) Relations. As compared to
pre/post specifications, observational equivalence relations are simpler to work
with and do not suffer from the potential to lead to unsound commutativity con-
clusions. There are several points to consider. Soundness. If a relation is an obs-
eq relation then it is guaranteed to be precise enough for commutativity proofs
(Thm 5.1). By contrast (see Sect. 2) pre/post specifications run the risk of being
too coarse grained (and then unsound commutativity conclusions) or too fine
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grained (accounting for unnecessary detail). Simplicity. With an obs-eq relation,
we only need to reason about the structure of the abstraction described by that
relation. By contrast, pre/post specifications may be superfluous or unnecessar-
ily detailed for commutativity (e.g. post-condition of HashTable.clear). Methods
with branching or loops quickly veer toward detailed disjunctive post-conditions
but, for commutativity, it only matters that an obs-eq relation holds. Even with
Queue.enq, there are three cases, but these are unneeded in the obs-eq relation.
Centralized. Unlike specs, a single obs-eq relation applies to all methods, so they
are more centralized and typically less verbose. Automation. We feel that infer-
ring an obs-eq relation is a more well-defined and achievable goal, akin to how
numerous other verification techniques/tools prefer to synthesize loop invariants
rather than synthesizing specifications. Also, many specification inference tools,
to be tractable, end up with shallow specifications which, for commutativity,
runs the unsoundness risk. Usability. We aim to make commutativity verification
accessible to non-experts and, given the above mentioned unsoundness risk with
imprecise specifications, asking them to write pre/post conditions is perhaps not
the best strategy. Even if the non-expert succeeds in writing a correct pre/post
condition, they can still lead to unsound conclusions about commutativity.

Experience. In some cases CityProver caught our mistakes/typos. We also
tried to use CityProver to help us narrow down on a commutativity condi-
tion via repeated guesses. In the HashTable example the successive conditions
iϕput

put (defined in the extended version [28].) represent our repeated attempts to
guess commutativity conditions. CityProver’s counterexamples pointed out
collisions and capacity cases. Commutativity conditions are applied in practice
through the use of commutativity-based formats such as abstract locking [24],
access point specifications [17] and conflict abstractions [16].

Summary. With Reducen
m, tools often struggle to converge on appropriate

abstractions but we show that DAReducen
m (employing mn-differencing) leads

to a more plausible algorithmic strategy: DAReducen
m can promptly validate

commutativity conditions for 31 out of 37 examples. An important direction for
future work is to further improve performance and scalability.

8 Related Work

To our knowledge, mn-differencing and reductions based on mn-differencing
(e.g. DAReducen

m) have not occurred in the literature. We now survey related
works on commutativity reasoning, k-safety, product programs, etc., beyond
those that we have already mentioned.

Commutativity Reasoning. Bansal et al. [7] synthesize commutativity condi-
tions from provided pre/post specifications, rather than implementations. They
assume these specifications are precise enough to faithfully represent all effects
relevant to commutativity. As discussed in Sect. 2, if specifications are coarse,
Bansal et al. would emit unsound commutativity conditions. By contrast, our
relations capture just what is needed for commutativity. Gehr et al. [21] describe
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a method based on black-box sampling, but lack a soundness guarantee. Both
Aleen and Clark [4] and Tripp et al. [42] identify sequences of actions that com-
mute (via random interpretation and dynamic analysis, resp.). Kulkarni et al.
[32] point out that degrees of commutativity specification precision are useful.
Kim and Rinard [27] verify commutativity conditions from specifications. Com-
mutativity is also used in dynamic analysis [17]. Najafzadeh et al. [35] describe
a tool for weak consistency, that reports commutativity checking of formulae,
but not ADT implementations. Houshmand et al. [25] describe commutativ-
ity checking for replicated data types (CRDTs). This complementary work is
geared toward CRDTs written in a high-level specification language (transitions
on tuples of Sets) that can be represented in SMT with user-provided invariants.

k-safety, Product programs, Reductions. Self-composition [9,41] reduces some
forms of hyper-properties [14] to properties of a single program. More recent works
include product programs [8,18] and techniques for automated verification of k-
safety properties. Cartesian Hoare Logic [40] is a program logic for reasoning about
k-safety properties, automated via a tool called Descartes. Antonopoulos et
al. [5] described an alternative automated k-safety technique based on partition-
ing the traces within a program. Farzan and Vandikas [19] discuss a technique and
tool Weaver for verifying hypersafety properties, based on the observation that
a proof of some representative runs in a product program can be sufficient to prove
that the hypersafety property holds of the original program. Others explore logical
relational reasoning across multiple programs [6,20].

9 Discussion and Future Work

We have described a theory (mn-differencing), algorithm (DAReducen
m) and

tool for decomposing commutativity verification of ADT implementations.
mn-differencing can be instantiated to reason about heap ADTs by using,

e.g., separation logic [37,38] as an assertion language. Using the separating con-
junction, we can frame the mn-differencing relation apart from the cloning rela-
tion. For example, we can consider push(x)/pop on a list-based implementation
of a stack containing n elements: stk �→ [en, sn] ∗ · · · ∗ [e1,⊥]. We can define
mn-differencing Rα to focuses on whether two list-stack states agree on the
top element, and frame the rest with a relation C that specifies exact (shape
and value) equivalence. It is unclear whether DAReducen

m is the right strategy
for automating mn-differencing heap assertions; integrating mn-differencing into
heap-based tools (e.g. [1,2,26]) is an interesting direction for future work.

The results of our work can be used to incorporate more commutativity con-
ditions soundly and obtain speed ups in transactional object systems [16,24].
Further research is needed to use our commutativity proofs with parallelizing
compilers. Specifically, in the years to come, parallelizing compilers could com-
bine our proofs of commutativity with automated proofs of linearizability [12]
to execute more code concurrently and safely.
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Abstract. In finite-state systems, true existential properties admit wit-
nesses in form of lasso-shaped fair paths. When dealing with the infinite-
state case (e.g. software non-termination, model checking of hybrid
automata) this is no longer the case. In this paper, we propose a compo-
sitional approach for proving the existence of fair paths of infinite-state
systems. First, we describe a formal approach to prove the existence of
a non-empty under-approximation of the original system that only con-
tains fair paths. Second, we define an automated procedure that, given
a set of hints (in form of basic components), searches for a suitable com-
position proving the existence of a fair path. We experimentally evaluate
the approach on examples taken from both software and hybrid systems,
showing its wide applicability and expressiveness.

1 Introduction

LTL model checking for infinite-state systems is a well-known undecidable prob-
lem. Most of the research has concentrated on proving that the properties are
universally verified, i.e. all traces satisfy the property. In this work, we focus on
its dual problem: the falsification of LTL properties, which amounts to proving
that one trace satisfies (the negation of) the property. Notable instances of this
problem are proving software non-termination (with the fair path to be found
corresponding to a non-terminating execution) and finding counterexamples and
scenarios in hybrid systems and in infinite-state fair transition systems. Model
checking can be reduced to proving the language emptiness of an infinite-state
fair transition system. In order to prove that the LTL property does not hold it
is necessary and sufficient to prove the existence of a fair infinite execution.

The problem is conceptually harder than in the finite-state case, since fair
paths may have no regular structure. Hence, in general they cannot be presented
in lasso-shaped form as α · βω, where α and β are finite sequences of states and
βω is the infinite repetition of β.

In this paper, we propose an approach to prove the existence of fair paths
in infinite-state fair transition systems. The approach is based on the follow-
ing insights. We define an underapproximation of the given transition system,
extended with formulae describing regions of the state space of the system, which
we call R-abstraction. We identify a set of conditions over the underapproxima-
tion that are sufficient for the existence of a fair path. Such abstraction enjoys
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 104–126, 2021.
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the property that each fair loop over its regions entails the existence of a fair
path in the original system. In this sense, each lasso-shaped execution over the
regions represents a non-empty envelope containing only fair paths of the origi-
nal system. We formally present the hypotheses necessary for the R-abstraction
to represent a suitable non-empty under-approximation of the fair transition
system. This argument, based on a monolithic underapproximation, is refined
into a compositional approach. Intuitively, the monolithic underapproximation
is presented as the composition of smaller transition systems enriched with a set
of regions and assumptions. We define a set of conditions that, if satisfied by the
components, entail that the composition proves the existence of the fair path.

Based on this framework, we describe a search procedure to identify a compo-
sitional presentation of the under-approximation. The procedure takes in input
a candidate set of components, and looks for a suitable composition of a subset
of them that represents an adequate under-approximation of the original system.

We study a generalization to enforce the divergence of a specific symbol. This
is required, for example, to deal with conditions resulting from the conversion of
hybrid systems into fair transition systems, and the analysis is to be restricted
to non-zeno paths, where time diverges to infinity.

We implemented and evaluated the proposed approach. The procedure works
on symbolically represented infinite-state fair transition systems, and is able to
produce suitable compositions and to exhibit proofs of existence of fair paths
based on manual hints produced with moderate effort. The results, obtained
for benchmarks of diverse nature, derived from software termination and hybrid
automata, demonstrate the expressiveness of the framework and the effectiveness
of the approach.

The paper is organised as follows. In Sect. 2 and 3 we present the background
and a running example. In Sect. 4 and 5, we define the monolithic and compo-
sitional frameworks. The search procedure is described in Sect. 6. In Sect. 7
we discuss symbol-divergence. In Sect. 8 we contrast our approach with related
work. Section 9 reports the experimental evaluation of the approach. Section 10
concludes and outlines future works. The proofs of all the theorems are reported
in the extended version of this document1.

2 Background

We work in the setting of SMT, with the theory of quantified real arithmetic.
We assume the standard notions of interpretation, model, satisfiability, validity
and logical consequence. We write nnf(φ) for the negation normal form of φ. A
symbolic fair transition system M is a tuple 〈S, I, T, F 〉, where S is the set of
state variables; I and F are formulae over S, representing respectively the initial
and fair states; T is a formula over S and S′ representing the transitions, where
S′ =̇ {s′|s ∈ S} and the primed version of a variable refers to the next state. We
denote with S or s a total assignment over S, i.e. a state. A fair path of M is
1 The extended version is available at https://enricomagnago.com/proving the

existence of fair paths in infinite-state systems extended.pdf.

https://enricomagnago.com/proving_the_existence_of_fair_paths_in_infinite-state_systems_extended.pdf
https://enricomagnago.com/proving_the_existence_of_fair_paths_in_infinite-state_systems_extended.pdf


106 A. Cimatti et al.

an infinite sequence of states, s0, s1, . . ., such that s0 |= I, sis
′
i+1 |= T for all i,

and for each i there exists j > i such that sj |= F . A deadlock is a reachable
state that has no outgoing transitions.

We also assume the standard notions of trace, reachability, and temporal
logic model checking, using E,A for path quantifiers and G,F for “always” and
“eventually” (CTL* [17]).

We overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ
stands for entailment in SMT; when M is a fair transition system and ψ is a
temporal property, then M |= ψ is to be interpreted with the LTL semantics.

3 Running Example

For explanatory purposes, we consider a bouncing ball subject to the gravita-
tional acceleration. The ball follows the classical laws of a uniformly accelerated
motion, losing a fraction of its velocity at every bounce. The bounce is an instan-
taneous transition where v′ = −v c

c+1 , with v being the velocity and c the number
of bounces. It is also possible for the ball to get stuck to the ground. Let h be the
distance of the ball from the ground. The dynamics are partitioned into three
phases: in the first phase, the ball is falling down (v < 0 ∧ h > 0); in the second,
the ball is bouncing h = 0; finally, the ball is moving upwards (v > 0 ∧ h > 0).
Unless stopped, the ball goes infinitely through the phases, but for shorter and
shorter periods of time: the interval between two consecutive bounces c and c+1
is given by 1

c .

Fig. 1. The SMV encoding of the bouncing ball

Systems like the bouncing ball are usually described as hybrid systems. Here
we consider the corresponding infinite state transition system, presented symbol-
ically in Fig. 1 using a variant of the SMV language. The symbol delta represents
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the amount of time elapsing at each transition. The nondeterministic stop vari-
able controls the ball getting stuck to the ground. The (universal) property states
that the ball cannot bounce up infinitely often.

4 Fair Paths: Sufficient Conditions

This section presents the main argument used to prove the existence of a fair
path for a fair transition system M . First, we identify a transition system, A,
organized according to a set of regions R, each corresponding to a location. Then,
we show that if A is a non-empty under-approximation of M and satisfies some
conditions, then the existence of a fair cycle in M is ensured. When clear from
context, with a slight abuse of notation, we write R for the formula

∨m−1
i=0 Ri

denoting the region space.
We call A an R-abstraction with respect to a system M and regions R

if the following conditions hold. The region space R must be reachable in M
- intuitively, this corresponds to finding the “stem” of the fair path. A must
be an underapproximation of M , so that the transitions taken in a path in A
can be performed also in M . A must never deadlock in R, and there must be
no outgoing transitions from R, so that from every state in R there exists an
infinite path starting from it and contained in R. Finally, we require that the set
of fair locations FA is visited infinitely often. These conditions are formalised in
the following definition.

Definition 1 (R-abstraction). Let M =̇ 〈SM , IM (SM ), TM (SM , SM
′), FM

(SM )〉 be a fair transition system. A transition system A =̇ 〈SA, IA(SA),
TA(SA, S′

A)〉 is an R-abstraction of M with respect to a list of formulae
R(SA) =̇ [R0(SA), . . . , Rm−1(SA)], also called regions, iff the following hold:

H.0 SM ⊆ SA,
H.1 There exists some initial state in M from which it is possible to reach an

initial state of A, for some assignment to the SA\SM :

M �|= AG¬IA(SA)

H.2 The set of initial states of A is a subset of the union of the regions:

A |= R(SA)

H.3 The transition relation of A underapproximates the transition relation of
M :

R(SA) ∧ TA(SA, S′
A) |= TM (SM , S′

M )

H.4 Every state in R0, projected over the symbols in SM corresponds to a fair
state of M :

A |= AG(R0(SA) → FM (SM ))
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H.5 Every reachable state in A has at least one successor via its transition
relation TA:

A |= AGEX	
H.6 For each region Ri ∈ R, with i > 0, every state in Ri can remain in such

region at most a finite number of steps and must eventually reach a region
with a lower index j < i:

A |=
m−1∧

i=1

AG(Ri → A[RiU
i−1∨

j=0

Rj ])

H.7 All states reachable in one step from R0 are in R:

A |= AG(R0 → AX
m−1∨

i=0

Ri)

In order to prove the existence of a fair path in M , we seek a R-abstraction
A. This is sufficient since, as shown by the following theorem, all paths of A are
fair paths in M .

Theorem 1. Let M =̇ 〈SM , IM , TM , FM 〉 be a fair transition system. Let A be
an R-abstraction of M with respect to a sequence of regions R over S. Then M
admits a fair path, i.e. M �|= FG¬FM (SM ), and all infinite paths of A starting
from some state reachable in M correspond to a fair path of M .

Example. Consider the LTL model checking problem defined in Fig. 1 and let
M=̇〈SM , IM , TM , FM 〉 be the fair transition system whose fair executions are
counterexamples for the LTL property. Then, IM and TM are defined as in the
system described in Fig. 1 and the fairness condition is FM =̇h = 0 ∧ v > 0.

Fig. 2. R-abstraction for the running
example.

Figure 2 shows a possible R-
abstraction A for M that proves the
existence of at least one counterex-
ample for the LTL property. A has
two regions R0 and R1. The transi-
tion relation TA is shown with anno-
tations on the edges connecting the
two locations. In both regions the
ball is on the ground (h = 0), but
its velocity is negative in R1 and
positive in R0, hence the latter is
fair. More formally, A is defined as
〈S,R0 ∨ R1, TA〉 over two regions
{R0, R1}, where:
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R0=̇ c ≥ 1 ∧ delta =
1

c
∧ v =

g

2c
∧ h = 0

R1=̇ c ≥ 1 ∧ delta = 0 ∧ v = − g

2c
∧ h = 0

T0,1=̇ c′ = c ∧ delta′ = 0 ∧ v′ = v − g ∗ delta ∧ h′ = h

T1,0=̇ c′ = c + 1 ∧ delta′ =
1

c + 1
∧ v′ = −v

c

c + 1
∧ h′ = h

TA=̇
∨

i∈{0,1}
(Ri ∧ Ti,1−i ∧ R1−i

′).

It is easy to see that A is an R-abstraction and satisfies all required hypothe-
ses of Definition 1.

4.1 Comparison with Recurrent Sets

In the context of software non-termination the notion of recurrent set has been
introduced by Gupta et al. in [25]. They show that the existence of an (open)
recurrent set is a sufficient and necessary condition for a not well-founded rela-
tion. Cook et al. in [9] introduce the notion of closed recurrence sets, which is
used also in [14]. Closed recurrence sets, instead of characterising a set of states
that contain some infinite sequence, require the existence of at least one sequence
in the set and that every sequence remaining in such set is infinite. In the same
work they show that every closed recurrence set is also an open recurrent set
and that if a open recurrent set exists, then there exists a corresponding closed
recurrence set for some underapproximation of the transition relation.

These works are concerned with software non-termination and do not consider
fairness conditions. Since, as we show below, an R-abstraction corresponds to a
closed recurrent set when the fairness condition is trivial (i.e. 	), our notion of
R-abstraction is strictly more expressive than what considered in the works above.

A not well-founded relation exists iff there exists an open recurrent set [25].
Cook et al. [14] show that if a system admits some recurrent set then there exist
an underapproximation of it that admits a closed recurrence set. Therefore,
Theorem 2 below implies that a not well-founded relation exists, for a system
with trivial fairness, iff it admits an R-abstraction.

We report the definition of closed recurrence set from [9], where we explicitly
state that we are interested in an underapproximation of the transition relation.
A set G is a closed recurrence set for a transition system M=̇〈S, I(S), T (S, S′)〉,
with respect to some underapproximation TG of T iff the following hold:

∃S : G(S) ∧ I(S)
∀S∃S′ : G(S) → TG(S, S′)
∀S, S′ : G(S) ∧ TG(S, S′) → G(S′)
∀S, S′ : TG(S, S′) → T (S, S′)

Theorem 2. A system M〈S, I(S), T (S, S′),	〉 admits an R-abstraction
A=̇〈SA, IA(SA), TA(SA, S′

A)〉 if and only if there exists a closed recurrence set G.
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5 Decomposition of the Sufficient Conditions

Finding a monolithic R-abstraction satisfying all the hypotheses for some fair
transition system is a challenging problem. Here we refine the framework to
present the R-abstraction compositionally, as a network of smaller components,
by considering a subset of the symbols at a time. For each subset of the symbols
we identify some smaller components that could represent the behaviour of the
system projected only on those variables. The monolithic R-abstraction is the
composition of these smaller components, one for each subset of variables. We
describe the interaction between the components in an assume-guarantee fash-
ion. Each component, that we call AG-skeleton (for Assume-Guarantee skeleton),
describes the behaviour of a subset of the symbols while assuming some proper-
ties about the others. These properties represent the conditions that are neces-
sary for this behaviour to be enabled and we need to prove that such conditions
are ensured by some other AG-skeleton.

The following is the outline of the approach. We first formally define
AG-skeletons and a composition operator over such structures. In order to find
an R-abstraction, given a set of AG-skeletons we apply such operator until we
obtain a composed AG-skeleton with an empty set of assumptions, which, by def-
inition of the composition operator, implies that we considered one AG-skeleton
for each subset of the symbols. This AG-skeleton is a transition system associ-
ated with a list of regions that either does not allow any loop over the regions
or satisfies hypotheses H.5, H.6 and H.7. Among all possible compositions the
procedure described in Sect. 6 searches for one that admits at least one such
loop that also satisfies H.1, H.2, H.3 and H.4, hence an R-abstraction.

Formally, let M be given. Let {S0, . . . , Sn−1} be pairwise disjoint and a
covering2 of SM . Let {Hj}n−1

j=0 be a set of transition systems of the form 〈Sj ∪
S �=j , Ij , T j〉 and mj ∈ N be the number of regions of Hj . We say that Sj are
the symbols controlled by Hj or its local symbols. We also write S for

⋃n−1
j=0 Sj

and S �=i for S \ Si. Let Rj=̇{Rj
i (S)|0 ≤ i < mj} be the set of regions of Hj and

Aj=̇{Aj
i (S

�=j)|0 ≤ i < mj} the set of assumptions of Hj . Let Aj
i (S

�=j) be the
assumptions of Hj in its ith region on the other components. We assume such
assumptions are in cartesian form, by requiring

Aj
i (S

�=j) =̇
∧

k �=j

Aj,k
i (Sk)

where Aj,k
i (Sk) are (independent) assumptions on Hk of Hj in the ith region.

Notice that the regions Rj
i (S) of Hj can depend on all the variables S, while

the assumptions Aj
i (S

�=j) cannot refer to the “local variables” Sj of Hj . The
restricted region i of Hj is (Rj

i ∧ Aj
i ).

Every AG-skeleton Hj must satisfy the following condition.

I. If there is pair of states satisfying the transition relation, such that the first
one is in the restricted region i and the latter in the restricted region i′, then

2 Hence, SM ⊆ ⋃
j S

j and ∀j �= k : Sj ∩ Sk = ∅
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for every state in the restricted region i the transition relation allows for a
successor state in the restricted region i′:

∀i, i′ : 0 ≤ i < mj ∧ 0 ≤ i′ < mj →
∃S, S′ : (Rj

i (S) ∧ Aj
i (S

�=j) ∧ T j(S, S′) ∧ Rj
i′(S′) ∧ Aj

i′(S �=j ′
)) |=

∀S∃Sj ′∀S �=j ′
: Rj

i (S) ∧ Aj
i (S

�=j) ∧ Aj
i′(S �=j ′

) → Rj
i′(S′) ∧ T j(S, S′)

This is related to must-abstractions, presented for example in [36], in the
sense that for every assignment to the current state symbols S there must exist
an assignment to the next state symbols. However, in our case we restrict the
existential quantification only to the symbols local to the AG-skeleton Sj ′.

Definition 2 (compatible transitions). Let {Hj0 , . . . , Hjk} ⊆ {Hi}n−1
i=0 be a

subset of the AG-skeletons. A transition from state Ŝ to Ŝ′ is compatible iff the
transitions of the AG-skeletons, from every pair of states in the same regions,
meet the respective assumptions of the AG-skeletons.

compatible{j0,...,jk}(Ŝ, Ŝ
′)=̇∀S, S′ :

∧

0≤i0<mj0 ,0≤i′0<mj0 ,...,0≤ik<mjk ,0≤i′
k
<mjk

(Rj0
i0

(Ŝ) ∧ Aj0
i0

(Ŝ) ∧ Rj0
i′0

(Ŝ′) ∧ Aj0
i′0

(Ŝ′) ∧ . . . ∧ Rjk
ik

(Ŝ) ∧ Ajk
ik

(Ŝ) ∧ Rjk
i′
k
(Ŝ′) ∧ Ajk

i′
k
(Ŝ′) →

∧

0≤t≤k

((Rt
it(S) ∧ At

it(S
�=jt) ∧ At

i′t(S
�={js}k

s=1
′
) ∧

∧

0≤s≤k∧s �=t

T s(S, S′) ∧ Rs
i′s(S

′) ∧ As
i′s(S

�=js ′
)) →

∧

0≤h≤k∧h�=t

A
t,jh
i′t

(Sjh ′
)

)

)

Compatible holds iff the existence of a transition from some state Ŝ to Ŝ′ in
the intersection of some restricted regions, implies that every transition between
the same intersection of restricted regions implies that the assumptions made by
each AG-skeleton are met.

We now define the composition of AG-skeletons as the standard product of
transition systems restricted to the compatible transitions and show that this
operation is closed: the composition of k AG-skeletons is an AG-skeleton.

Definition 3 (composition of AG-skeletons). We define the composition of
{Hj0 , . . . , Hjk} ⊆ {Hj}n−1

j=0 , such that the sets of local symbols {Sji}k
i=0 are

pairwise disjoint, as Hc =̇
⊗k

t=0 Hjt = 〈S, Ic, T c〉 where:

– Sc=̇
⋃k

t=0 Sjt ;
– mc=̇

∏k
t=0 mjt ;

– Rc=̇{∧k
t=0 Rjt

it
(S)∧∧

0≤s≤k∧s �=t Ajt,js
it

(Sjs)|∀t ∈ {0, . . . , k}, it ∈ {0, . . . , mjt −
1} : Rjt

it
(S) ∈ Rjt and ∀s . 0 ≤ s ≤ k ∧ s �= t : Ajt,js

it
(Sjs) ∈ Ajt};

– Ac=̇{∧k
t=0

∧
js �∈{j0,...,jk} Ajt,js

it
(Sjs)|∀t ∈ {0, . . . , k}, js �∈ {j0, . . . , jk}, it ∈

{0, . . . , mjt − 1} : Ajt,js
it

(Sjs) ∈ Ajt
it

(S �=js)};
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– Ic(S)=̇
∧k

t=0 Ijt(S);
– T c(S, S′)=̇compatiblej0,...,jk(S, S′) ∧ ∧k

t=0 T jt(S, S′).

For compactness we will use S �=c for S \Sc which is equal also to
⋃k

t=0 S �=jt and
Aj

i (S
�=c) for

∧
js �∈{j0,...,jk} Aj,js

i (Sjs).

Theorem 3 (AG-skeletons are closed under ⊗). Given a set of
AG-skeletons {Hj0 , . . . , Hjk} ⊆ {Hj}n−1

j=0 , their composition Hc=̇
⊗k

t=0 Hjt =
〈S, Ic, T c〉 is still an AG-skeleton, i.e. it satisfies hypothesis I.

By composing a sequence of AG-skeletons such that their local symbols are
pairwise disjoint and cover the set of symbols SMof the fair transition system M ,
we obtain an AG-skeleton with an empty set of assumptions. By definition, the
composition satisfies I: every pair of regions either do not admit any transition
between them or from one it is always possible to reach the other in one step
and there is no deadlock. Therefore, such AG-skeleton is a transition system
associated with a list of regions such that H.5 and H.6 hold, and, in case a
region is a subset of the fair states of M , also H.7 holds. In the next section we
describe a procedure that (i) computes such a composition of AG-skeletons, and
(ii) among all possible compositions it looks for one that admits some loop over
the regions satisfying also the remaining hypotheses (H.1, H.2, H.3 and H.4),
thus ensuring that it is an R-abstraction.

5.1 Example: Decomposition

In the following, for compactness, we write Rj for Rj(S), Aj for Aj(S �=j), T j

for T j(S, S′) and Rj ′, Aj ′ for Rj(S′) and Aj(S �=j ′) respectively. We now show
how the R-abstraction in Fig. 2 can be represented as composition of smaller
AG-skeletons. Consider the partitioning of S given by SC=̇{c}, SH=̇{h} and
SDV =̇{d, v}. We define three corresponding AG-skeletons:

C=̇〈SC , c ≥ 1, c′ = c + 1 ∨ c′ = c〉
with no assumptions and a single region c ≥ 1.

H=̇〈SH , (RH
0 ∧ AH

0 ) ∨ (RH
1 ∧ AH

1 ),

(RH
0 ∧ AH

0 ∧ TH
0,0 ∧ RH

0

′ ∧ AH
0

′
)∨

(RH
0 ∧ AH

0 ∧ TH
0,1 ∧ RH

1

′ ∧ AH
1

′
)∨

(RH
1 ∧ AH

1 ∧ (TH
1,0,0 ∨ TH

1,0,1) ∧ RH
0

′ ∧ AH
0

′
)〉

where RH
0 ≡ RH

1 =̇h = 0, AH
0 =̇delta = 0, AH

1 =̇delta = 2v
g , TH

0,0 ≡ TH
0,1 ≡

TH
1,0,0=̇h′ = h and TH

1,0,1=̇h′ = h + v ∗ delta − g
2delta2. Finally we define

DV =̇〈SDV , (RDV
0 ∧ ADV

0 ) ∨ (RDV
1 ∧ ADV

1 ),

(RDV
0 ∧ ADV

0 ∧ TDV
0,1 ∧ RDV

1

′ ∧ ADV
1

′
)∨

(RDV
1 ∧ ADV

1 ∧ TDV
1,0 ∧ RDV

0

′ ∧ ADV
0 )

′〉
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where RDV
0 =̇delta = 0 ∧ v = − g

2c and RDV
1 =̇delta = 1

c ∧ v = g
2c , the two

assumptions are ADV
0 ≡ ADV

1 = c ≥ 1 ∧ h = 0 and the two components of
the transition relation are defined as TDV

0,1 =̇delta′ = 1
c+1 ∧ v′ = −v c

c+1 and
TDV
1,0 =̇delta′ = 0 ∧ v′ = v − g ∗ delta.

The three AG-skeletons satisfy I. Applying the composition operator and
removing empty regions and transitions we obtain

B=̇C ⊗ DV ⊗ H = 〈SB , RB
0 ∨ RB

1 , (RB
0 ∧ TB

0,1 ∧ RB
1

′
) ∨ (RB

1 ∧ TB
1,0 ∧ RB

0

′
)〉

with two regions {RB
0 , RB

1 } and no assumptions, where:

RB
0 =̇c ≥ 1 ∧ delta =

1
c

∧ v =
g

2c
∧ h = 0

RB
1 =̇c ≥ 1 ∧ delta = 0 ∧ v = − g

2c
∧ h = 0

TB
0,1=̇c′ = c ∧ delta′ = 0 ∧ v′ = v − g ∗ delta ∧ h′ = h

TB
1,0=̇c′ = c + 1 ∧ delta′ =

1
c + 1

∧ v′ = −v
c

c + 1
∧ h′ = h

Region RB
0 implies the fairness condition h = 0 ∧ v > 0 and we obtain

the R-abstraction 〈S, {RB
0 , RB

1 }, TB〉, where TB=̇
∨

i∈{0,1}(R
B
i ∧ TB

i,1−i ∧ RB
1−i

′)
which is exactly the definition of H shown in Fig. 2.

6 Search of the Composition

Let M=̇〈S, I(S), T (S, S′), F (S)〉 be a fair transition system and H be a set of
AG-skeletons. We want to find a subset {H0, . . . , Hn} ⊆ H, with a composition
C=̇H0 ⊗ . . . ⊗ Hn such that: (i) the symbols associated to the AG-skeletons in
the subset are pairwise disjoint and define a covering of S; (ii) C is an underap-
proximation of M ; (iii) C admits a loop over the regions such that there exists a
reachable region in the loop and one of the regions underapproximates the fair
states F (S) of M .

We propose an incomplete procedure to find such C, that relies on a reduction
to a sequence of reachability problems and SMT queries. Algorithm 1 shows the
main steps required by our procedure. The function filter-incorrect-hints

(line 1) filters the list of hints by keeping only those that satisfy condition I: a
satisfiability query checks whether two regions admit some transition between
them and if this is the case the unsatisfiability of the ∃∀∃ formula is decided
by employing a variant of the approach presented in [16]. Once the correct-
ness of the AG-skeletons has been established the problem of identifying an
R-abstraction is encoded as a reachability problem by calling the function get-

reachability-problem (line 6). Then, check-reachabilty (line 7) relies on
a model checker to identify a witness for the reachability problem. From the wit-
ness composition-from-trace (line 11) constructs a candidate composition.
At this point check-assumptions (line 12) checks whether the candidate com-
position satisfies also the compatibility requirement of the composition operator,
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via a sequence of SMT validity checks. If all those checks succeed then we found a
composition that meets all the requirements and the procedure stops; otherwise,
at least one validity check failed, and the SMT solver provides an assignment
that describes a transition for each AG-skeleton such that those transitions are
not compatible. In the pseudocode, we refer to this assignment as bad. We can
refine our reachability encoding by forbidding such composition, by adding ¬bad
as an additional invariant constraint to the reachabiliy problem. In this way, we
keep refining the encoding and asking the model checker for a candidate com-
position, until either a valid composition is found or the target state becomes
unreachable. In this second case the procedure must stop without providing a
definite answer (line 9).

Algorithm 1. find-composition(M , H)
1: H ← filter-incorrect-hints(H)

2: constr ← 	
3: bad ← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob ← get-reachability-problem(H,M, constr)
7: trace ← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp ← composition-from-trace(trace,H)
12: bad ← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

We now describe how we build the transition system and the reachability
problem returned in line 6. We begin by computing, using a sequence of SMT

validity checks, underapproximations of T and F that will allow us to construct
a composition satisfying conditions H.3 and H.4, while H.5, H.6 and H.7 are
implied by I if the composition allows for at least a loop over the regions.

Condition H.3 [resp. H.4] requires us to decide whether the transition relation
[resp. some region] of the composed AG-skeleton implies the transition relation
[resp. fairness condition] of M . The transition relation and regions of the com-
posed AG-skeleton, by definition of the composition operator, are given by the
conjunction of the transition relations and restricted regions of the AG-skeletons
involved in the composition. Therefore, we need to decide the validity of a for-
mula of shape (

∧k
j=0 cj) → φ, where φ is either the transition relation or the

fairness condition of M and the cj are, respectively, the transition relations or
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the restricted regions of the components. Assume φ is in negated normal form.
We apply the following rewriting recursively:

((
k∧

j=0

cj) → φ) �→
{

((
∧k

j=0 cj) → φ0) ∧ ((
∧k

j=0 cj) → φ1) if φ=̇φ0 ∧ φ1

((
∧k

j=0 cj) → φ0) ∨ ((
∧k

j=0 cj) → φ1) if φ=̇φ0 ∨ φ1

Notice that in the second case, if the formulae contain some non-convex the-
ory it might be the case that the original formula holds while our rewritten
formula does not. Therefore, we are guaranteed that if the rewritten formula
holds, so does the original implication, but the vice-versa might not hold. We
apply this rewriting until we obtain a formula that is the conjunction and dis-
junction of implications with a single positive or negated literal on the right hand
side. Finally, we again underapproximate the truth assignment of each implica-
tion (

∧k
j=0 cj) → l, where l is either a positive or negative literal by checking

whether for some cj the following is valid: cj → l. We rely on the SMT-solver to
decide the validity of such implications, and include such results in our encoding
of the problem such that any composition will satisfy conditions H.3 and H.4. In
the following we detail how we include these observations in the encoding of our
problem. We remark that we need to handle the case in which the SMT-solver is
unable to provide a definite answer (e.g. because it runs out of resources and/or
the support for the underlying theory is incomplete). Let PT and PF be the set
of atomic formulas occurring in nnf(T ) and nnf(F ) respectively. We introduce,
for each AG-skeleton Hj in H, for each predicate fk ∈ PF , a boolean variable
isT(fH

k , i), and for each predicate tk ∈ PT , a boolean variable isT(tHk , i, i′). We
define, for each regions Rj

i , R
j
i′ ∈ Rj ,

eval(isT(fH
k , i)) :=

⎧
⎨

⎩

	 if Rj
i ∧ Aj

i |= pF
k

⊥ if Rj
i ∧ Aj

i |= ¬pF
k

? otherwise

eval(isT(tHk , i, i′)) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

	 if Rj
i ∧ Aj

i ∧ T j∧
Rj

i′ ∧ Aj
i′ |= pF

k

⊥ if Rj
i ∧ Aj

i ∧ T j∧
Rj

i′ ∧ Aj
i′ |= ¬pF

k

? otherwise

We then combine the predicates for all AG-skeletons in H by defining

isT(fk, i)=̇(
∨

Hj∈H
isT(fHj

, i) = 	) ∧
∧

Hj∈H
isT(fHj

, i) �= ⊥

and its negated counterpart as

isF(fk, i)=̇(
∨

Hj∈H
isT(fHj

, i) = ⊥) ∧
∧

Hj∈H
isT(fHj

, i) �= 	

Similarly we define isT(tk, i, i′) and isF(tk, i, i′) over the isT(tH
j

, i, i′). The
unversal abstraction of F , denoted as F̂ , at region Ri is obtained by replacing
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in nnf(F ) every positive literal fk with isT(fk, i) and every negative literal ¬fk

with isF(fk, i). The universal abstraction of T , denoted as T̂ , between regions
Ri and Ri′ is obtained similarly by replacing in nnf(T ) every positive [negative,
resp.] occurrence tk ∈ T with isT(tk, i, i′) [isF(tk, i, i′), resp.].

Since T̂ |= T and F̂ |= F , in our encoding we need to ensure that T̂ holds in
every transition and that there exists a region in the loop that satisfies F̂ .

With the construction above, we can now define the transition system
E=̇〈SE , IE , TE , FE〉 as follows:

– SE=̇S ∪ SH ∪ SChoice ∪ {prefix} ∪ Sl2s ∪ SP , where:
• S are the symbols of the input system M ;
• SH=̇{lHj | Hj ∈ H} are symbols used to keep track of the index of the

current region of each AG-skeleton Hj ;
• SChoice=̇{enableHj | Hj ∈ H} is a set of booleans;
• prefix is an integer;
• Sl2s=̇{inLoop, fairLoop} ∪ {lBackHj | Hj ∈ H}, where the first two are

booleans and the lBackHj are used to nondeterministically choose the
loop-back region for the AG-skeleton Hj ;

• SP =̇{isT(fHj

k )|pF
k ∈ F and Hj ∈ H} ∪ {isT(tH

j

k )|pT
k ∈ T and Hj ∈ H}

are symbols with domain {	,⊥, ?};
– IE=̇I ∧ prefix > 0 ∧ ¬inLoop ∧ ¬fairLoop ∧ IChoice is the initial condition,

where IChoice constrains the assignments over SChoice such that the symbols
of the enabled components are pairwise disjoint and a covering of S (where
the set of enabled components in a state s is {Hj ∈ H | s |= enableHj}).

– TE=̇TEnable ∧ TPrefix ∧ TLoop, where:
• TEnable=̇

∧
enableH∈SChoice enable′

H = enableH ensures that the choice of
enabled components is fixed for each trace;

• TPrefix=̇prefix > 0 → T (S, S′) ∧ prefix′ = prefix − 1 ∧ ¬inLoop′ ∧
¬fairLoop′ allows E to perform prefix steps following the transition
relation of M ; this prefix ensures the reachability of the resulting compo-
sition (hypothesis H.1);

• TLoop=̇prefix = 0 → TAut ∧ T l2s ∧ T̂ ∧ prefix′ = 0 ensures that,
as soon as the prefix finishes, T̂ , which implies T , holds at every step
(hypothesis H.3) and E must follow the transition relation of the enabled
AG-skeletons, where:

∗ T l2s=̇inLoop′ = (inLoop∨ lBack)∧ fairLoop′ = (fairLoop∨ F̂ ) and
lBack=̇

∧
Hj∈H lHj = lBackHj holds iff all components are in their

loopback location.
∗ TAut=̇

∧
Hj∈H(enableHj → THjenabled

) ∧ (¬enableHj → lHj =
l′Hj ∧ ∧

pH∈SP pH = ?) defines how the AG-skeletons evolve: disabled
components never change their location and they cannot contribute
in satisfying T̂ and F̂ , whereas enabled ones evolve according to
their transition relation: THjenabled

=̇TPredAbs
Hj ∧THj

(S, S′)
∧

i,i′(lHj =

i ∧ l′Hj = i′) → RHj

i (S) ∧ AHj

i (S), where TPredAbs
Hj encodes the truth

assignments to the SP as follows: TPredAbs
Hj =̇(

∧
Ri∈RHj lHj = i →
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∧
pk∈F isT(fHj

k , i) = eval(isT(fHj

k , i))∧(
∧

Ri,Ri′ ∈RHj (lHj = i∧l′Hj =

i′) → ∧
pk∈T isT(tHk , i, i′) = eval(isT(tH

j

k , i, i′)),

where eval(isT(fHj

k , i)) and eval(isT(tH
j

k , i, i′)) are the assignments
we computed previously for the fairness and transition predicates
respectively. This transition relation requires to find an assignment
for S and S′ such that the conjunction of the enabled transitions is
satisfied, ensuring that hypothesis I is not trivially satisfied because
of the lack of any transition between the regions.

Using this encoding, the reachability problem asks whether there exists a
path in E that reaches a state in which fairLoop ∧ lBack holds. T l2s ensures
that the path found by the model checker (line 7) will be a lasso-shape over the
regions3, and there will be at least one region in the loop that satisfies F̂ , which
implies F .

If the model checker finds a path (line 7), the assignments to enableHj and
lHj for each Hj ∈ H describe the subset of AG-skeletons, the locations and
transitions to be considered at every state and transition to obtain the composed
R-abstraction. In this way we can construct the candidate composition from the
obtained trace (line 11).

In the following we show that the AG-skeleton found by Algorithm 1 meets
all the hypothesis required for an R-abstraction.

– Hypothesis H.0 holds since in the initial condition IE we ensure that the local
symbols of the AG-skeletons are pairwise disjoint and cover SM .

– Hypothesis H.1 holds since in the encoding we allow for prefix steps start-
ing from IM before reaching some conjunction of the regions of the enabled
AG-skeletons.

– Hypothesis H.2 holds since the initial condition of the R-abstraction is exactly
the state reached after prefix steps, which by construction is in one of the
regions.

– Hypothesis H.3 holds since T holds at every step in which prefix > 0, and
for prefix = 0 T̂ must hold, which implies T .

– The liveness-to-safety construction ensures that there exist a region in the
composed AG-skeleton that satisfies F̂ , and hence implies F . We call such
region R0 in the R-abstraction, hence H.4 holds.

– Hypotheses H.5, H.6 and H.7 are implied by I. The liveness-to-safety construc-
tion allows the procedure to find a sequence of regions R0, . . . , Rk, such that
R0 is fair and Rk = R0, then the encoding E ensures that for all 0 ≤ i < k,
∃S, S′ : Ri(S) ∧ T (S, S′) ∧ Ri+1(S′), hence I is not trivially satisfied due to
the lack of transitions.

7 Ensuring Divergence of a Given Symbol

In timed and hybrid systems there is an additional requirement for an infinite
counterexample to be valid: there is an explicit notion of “time” whose assign-
ments must diverge to infinity. When encoding a hybrid system as a transition
3 Note that this is the liveness-to-safety construction of [7].



118 A. Cimatti et al.

system, time is typically modeled with an additional variable δ representing the
duration of each transition (where δ = 0 for discrete transitions and δ ≥ 0 for
transitions corresponding to time elapses). In order for a transition system trace
(of infinite length) to be valid for the original hybrid system, it must not impose
any upper bound on the total time elapsed; in other words, the assignments of
δ along the trace must describe a series that diverges to infinity. We call such
traces non-zeno.

This section identifies an approach to restrict the language of an AG-skeleton
or a R-abstraction to a non-empty set such that “time” is guaranteed to diverge
to infinity in all infinite executions in the language. Theorem 4 shows that the
composition operator preserves this property.

Theorem 4. If all infinite executions of the AG-skeleton A responsible for δ
are non-zeno, then also every infinite path of every composition, involving A, is
non-zeno.

Therefore, if it is possible to prove this property locally for the AG-skeleton
we are guaranteed that the composition will preserve it. However, if the local
information is insufficient to determine whether all its traces are non-zeno, a
global analysis of the final composition is required. For this reason, we show how
to shrink the language of an AG-skeleton or a R-abstraction so that all its paths
are non-zeno, while preserving hypothesis I in the first case, and the hypotheses
required by Definition 1 of R-abstraction in the second one.

In the following we will refer generically to regions and transitions meaning
the restricted region Ri ∧ Ai in the case of an AG-skeleton and the region Ri in
the case of an R-abstraction. We write a +n b, with n ∈ N to represent the sum
of a and b modulo n. We assume that the domain of δ are the positive reals and
that the predicates involving δ in every region i and transition from region i to
i+n 1 can be written respectively as δ �� f(S \{δ}) and δ′ �� g(S \{δ}, S′ \{δ′}),
where �� ∈ {<,≤,=,≥, >}.

Consider one loop over the regions at a time. Let n ∈ N be the length
of such loop and Ri(Si) be the ith region in the loop. For each transition
Ti,i+n1(S, S′)=̇Ri(S)∧T (S, S′)∧Ri+n1(S

′) from Ri to Ri+n1 in the loop assume
we are given a function lowi,i+n1 : S → R that maps every assignment in Ri(S)
to a real value such that:

∑∞
it=0

∑n−1

i=0
lowi,i+n1(S

it
i ) = +∞

where Sit
i is the assignment prescribed by the infinite unrolling of the loop at

location i during the itth iteration. We want to restrict the paths corresponding
to our loop over the regions to only the paths such that:

n−1∧

i=0

Ri(Sit
i ) ∧ Ti,i+n1(S

it
i ,Sit

i+n1) ∧ δit
i+n1 ≥ lowi,i+n1(S

it
i )

for all iterations it and where δi+n1 is the evaluation of δ at location i +n 1.
Since the sum of the lowi,i+n1 diverges to infinity and it is a lower bound for the
assignments to δ, every path satisfying the condition above is non-zeno.
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We now identify some sufficient conditions for this additional constraint to
preserve the required hypotheses.

The sufficient condition requires lowi,i+n1 to be a lower bound for the small-
est upper bound for δi,i+n1 at every transition Ti,i+n1 for all paths starting
from some S0. We define such bound for transition Ti,i+n1 as minδ(Si, Si+n1).
minδ(Si, Si+n1) is the minimum of all g(Si, Si+n1) and f(Si+n1) such that
δ′ � g(Si, Si,i+n1) ∈ Ti,i+n1(Si, Si+n1) and δ′ � f(Si+n1) ∈ Ri+n1(Si+n1), for
some �∈ {<,≤} and functions f , g that do not contain any of δ and δ′. We
define the following condition for lowi,i+n1:

|= ∀S0, . . . , Sn−1 :(
n−1∧

i=0

Ri(Si) ∧ Ti,i+n1(Si, Si+n1) ∧ Ri+n1(Si+n1)) →

n−1∑

i=0

minδ(Si, Si+n1) > lowi,i+n1(Si)

Theorem 5. Given a loop over n ∈ N regions R0(S), . . . , Rn−1(S) and n func-
tions lowi,i+n1 : S → R that map every state in Ri(S) to a real value, such that
the following holds:

|= ∀S0, . . . , Sn−1 :(
n−1∧

i=0

Ri(Si) ∧ Ti,i+n1(Si, Si+n1) ∧ Ri+n1(Si+n1)) →

n−1∑

i=0

minδ(Si, Si+n1) > lowi,i+n1(Si)

where minδ(Si, Si+n1) is defined as above. Then replacing every transition
Ti,i+n1(Si, Si+n1) with Ti,i+n1(Si, Si+n1) ∧ δi+n1 ≥ lowi,i+n1(Si) preserves
hypothesis I in the case of an AG-skeleton and all the hypotheses of Definition 1
in the case of a R-abstraction.

7.1 Example: Diverging “Time”

Consider the AG-skeleton DV defined in Subsect. 5.1 for the bouncing ball exam-
ple. We know that in every loop of DV delta is equal to zero in region RDV

0 and
to 1

c in RDV
1 . However, we do not have any information about c and we are unable

to conclude anything about the summation of the assignments to the symbol δ
in its executions. Then, we need to consider the R-abstraction represented in
Fig. 2. In this case we also know that c ≥ 1 and its value increases by 1 in every
iteration. We can define low1,0(c)=̇ 1

c+1 and low0,1(c)=̇0. Their summation can
be written as:

∑+∞
it=0

low0,1(cit) + low1,0(cit) =
∑+∞

it=0

1
cit + 1

This corresponds to the well-known diverging harmonic series. Therefore, we can
use low0,1 and low1,0 as lower bounds for δ. In this case this has no effect on the
language of R-abstraction, hence all its executions were already non-zeno paths.
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8 Related Work

Most of the literature in verification of temporal properties of infinite-state tran-
sition systems, hybrid automata and termination analysis focuses on the univer-
sal case, while the existential one has received relatively little attention.

The most closely related works to ours are proving program non-termination.
[25] and [14] are based on the notion of closed recurrence set, that corresponds to
proving the non-termination of a relation. We compare our approach with such
techniques in Subsect. 4.1 [9] and [32] search for non-terminating executions
via a sequence of safety queries. Other approaches look for specific classes of
programs ([21] and [26] prove the decidability of termination for linear loops over
the integers), or specific non-termination arguments (in [33] non-termination is
seen as the sum of geometric series).

A first obvious difference is that these approaches rely on the existence of
a control flow graph, whereas we work at the level of transition system. More-
over, none of these works deals with fairness and our approach can be seen as
building a generalization of a closed recurrence set to the fair case. Another key
difference with all the above approaches is that they synthesize a monolithic
non-termination argument. We propose the composition of a finite number of
partial non-termination arguments to prove the non-termination of the whole
system. Assume-guarantee style compositional reasoning [23] is a broad topic
concerned with the verification of properties. Instead, we employ such kind of
reasoning for the falsification of temporal properties.

The only work that explicitly deals with fairness for infinite-state programs
is [15], that supports full CTL* and is able to deal with existential properties and
to provide fair paths as witnesses. The approach is fully automatic, but it focuses
on programs manipulating integer variables, with an explicit control-flow graph,
rather than more general symbolic transition systems expressed over different
theories (including non-linear real arithmetic). Another approach supporting
full CTL* is proposed in [28]. The work presents a model checking algorithm for
the verification of CTL* on finite-state systems and a deductive proof system
for CTL* on infinite-state systems. In the first case they reduce the verification
of CTL* properties to the verification of properties without temporal operators
and a single fair path quantifier in front of the formula. To the best of our
knowledge there is no generalisation of this algorithm, first reported in [29] and
then also in [30], to the infinite-state setting. The rules presented in the second
case have been exploited in [6] to implement a procedure for the verification of
CTL properties, while our objective is the falsification of LTL properties.

Moreover, in these settings [15,28] there is no notion of non-zenoness.
The analysis of hybrid systems deals with more general dynamics than our

setting. Most of the works focus on the computation of the set of reachable
states, with tools such as FLOW* [10], SpaceEx [20], CORA [1], PHAVer [18] and
PHAVerLite [3], that compute an overapproximation of the reachable states using
different structures, for example Taylor models, polytopes, polyhedra, support
functions. Interestingly, Ariadne [5] computes both an over and under approxi-
mation of the reachable set, and can prove and disprove a property, but limited
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to the case of reachability properties. The few works on falsification of tem-
poral properties [35,37,38] have the common trait of being the restriction to
logic fragments (bounded-time MTL, LTL safety properties) for which finite
witnesses are sufficient. Tools in this context, such as TaLiRo [2], rely on sim-
ulations to find such finite witnesses. Instead, we are interested in identifying
infinite witnesses for more general temporal properties. Finally, the HyCOMP
model checker [13] supports hybrid systems verification of LTL via a reduction
to infinite-state model checking. Its verification procedure k-zeno [12] can only
disprove the property when lasso-shaped counterexamples exist.

The works on timed automata are less relevant: although the concrete system
may exhibit no lasso-shape witnesses, due to the divergence of clocks, the prob-
lem is decidable, and lasso-shaped counterexamples exist in finite bi-simulating
abstractions. This view is adopted in Uppaal [4], CTAV [34] and LTSmin [27].
Other tools directly search for non lasso-shaped counterexamples, but the pro-
posed techniques are specific for the setting of timed automata [11,31] and lack
the generality of the method proposed in this paper.

9 Experimental Evaluation

In order to evaluate the practical feasibility of our approach, we have imple-
mented the procedure described in Sect. 6 by relying on the pysmt library [22]
to interact with SMT solvers, and the nuXmv model checker [8] to perform
the reachability checks. Our prototype tool FairFind takes as input a sym-
bolic transition system, a fairness condition and a set of AG-skeletons used as
building blocks (or hints) for constructing the R-abstraction and implements
Algorithm 1. When successful, FairFind returns a suitable set of regions R
and a R-abstraction A of M satisfying all the conditions H.0–H.7 presented in
Sect. 4. A is the result of a suitable composition of a subset of the input hints4.
The prototype does not prove the divergence of symbols and the user can rely
of the approach presented in Sect. 7 to achieve this. When successful, FairFind
is able to produce a proof of the validity of the produced R-abstraction as a

Fig. 3. Execution time of FairFind compared to Anant, AProVe and nuXmv.

4 Artifact DOI: https://doi.org/10.5281/zenodo.4271411.

https://doi.org/10.5281/zenodo.4271411
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sequence of SMT queries, which can be independently checked. This additional
check increases the confidence on the correctness of the obtained results. In our
evaluation, we have successfully verified the correctness of our results in all cases
except 3, for which this additional correctness check fails to provide a definite
answer. This fact supports the significance of the approach in the sense that it
was able to identify a R-abstraction for which we are unable to directly prove
the validity of the required hypotheses.

We have tested FairFind on 43 benchmark instances: 31 are non-linear soft-
ware non-termination problems, and 12 are LTL verification problems, 9 on
hybrid systems and 3 on infinite state transition systems. 29 of the software
benchmarks have been taken from [14], while the remaining 2 are new bench-
marks we defined. Among the hybrid systems benchmarks, 4 are variations of
our running example, whereas the remaining 5 have been taken from the ARCH
competition on hybrid systems verification [19]. In our experiment, we have
defined the hints manually. In most cases, the AG-skeletons are responsible for
the evolution of a single variable of the input system. We defined an average of
5 hints per benchmark (with a minimum of 2 and a maximum of 17). We ran
FairFind with a total timeout of 600 s per benchmark, and a timeout of 5 s for
each SMT query5. FairFind was able to produce a witness R-abstraction for
all the benchmarks, suggesting the practical viability of the approach.

We also compared FairFind with two fully automatic procedures for pro-
gram (non-)termination, Anant [14] and AProVe [24] (limited to the software
non-termination benchmarks), and with the LTL model checker nuXmv [8] (on
all the benchmarks). The objective is not to directly contrast the performance of
the various tools, as they operate under very different assumptions: FairFind is
more general, but it requires human assistance, whereas Anant and AProVe

are specialised tools for software (non-)termination, and nuXmv has very lim-
ited support for LTL counterexamples on infinite-state systems [11]. Rather, the
goal here is to assess the significance of the benchmarks w.r.t. the state of the
art. The results of this experiments are presented in the scatter plots of Fig. 3.

Fig. 4. Execution time of FairFind with
increasing number of AG-skeletons.

From the plots, we can see that
none of the other tools is able to
solve all the benchmarks solved by
FairFind, and in fact there are 13
instances that are uniquely solved by
FairFind (3 of the software bench-
marks, 1 of the transition systems
and all the hybrid benchmarks).

Figure 4 shows the increase in
execution time of FairFind as we
increase the number of AG-skeletons
provided. The objective of this eval-

5 This allows the procedure to make progress even if the solver is unable to provide a
definite answer for some query. Many of the benchmarks require reasoning in mixed
integer/real non-linear arithmetic (in general undecidable).
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uation is to test the robustness of the approach with respect to an increasing
number of unnecessary and/or redundant hints. For this reason we increase the
number of AG-skeletons such that in all cases the procedure selects the same set
of hints. We considered 3 benchmarks: our non-linear, hybrid, running example,
one of the software benchmarks taken from [14] (bench-19 ) and one of the non-
linear software benchmarks we defined (example-2 ). We let FairFind run with
a number of AG-skeletons ranging from 4 to 36. We observe a worst case linear
increase in execution time in these experiments. In addition, these benchmarks
show two different behaviours. In the bouncing ball and example-2 cases the
execution time is dominated by the time required to compute the validity of the
implications required for the approximations T̂ and F̂ . In the bench-19 case,
the execution time is much lower than in the other two cases, but FairFind

performs a higher number of refinements of candidate compositions. In all these
cases the procedure has to deal with many non-linear expressions, and this could
cause high execution times and instabilities; in fact, sometimes, by increasing the
number of AG-skeletons the required time decreases. However, the results we
obtained seem promising and we did not observe a blow-up in the time required
to identify the R-abstraction.

10 Conclusions

We tackled the problem of proving the existence of fair paths in infinite-state
fair transition systems, proposing a deductive framework based on a combination
of under-approximations. The framework also encompasses diverging fair paths,
required to deal with zenoness. Then, we defined and implemented a procedure
to search for a proof based on a suitable composition of AG-skeletons. The exper-
imental evaluation shows that the framework is highly expressive, and the pro-
cedure effectively finds fair paths on benchmarks from software non-termination
and hybrid systems falsification.

In the future, we will extend the automation of the search procedure and
integrate it with a complementary procedure to demonstrate the dual universal
property. In order to increase the automation we plan to exploit current tech-
niques in the context of software non-termination and syntax-guided approaches
as procedures to synthesise AG-skeletons. Many of the AG-skeletons that have
been used in our benchmarks could be synthesised by such techniques. How-
ever, some of them, such as the ones in our running example, require the ability
to heavily reason about non-linear systems and might be harder to synthesise
automatically. For this reason the possibility of taking and verifying hints from
the user might be relevant to successfully identify an R-abstraction for complex
systems.

We will also experiment the applicability in the finite state case, and integrate
the method into satisfiability procedures for temporal logics over hybrid traces.
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Abstract. A self-certifying compiler is designed to generate a correct-
ness proof for each optimization performed during compilation. The gen-
erated proofs are checked automatically by an independent proof valida-
tor. The outcome is formally verified compilation, achieved without for-
mally verifying the compiler. This paper describes the design and imple-
mentation of a self-certifying compilation framework for WebAssembly,
a new intermediate language supported by all major browsers.

1 Introduction

Compiling is everywhere, in astonishing variety. A compiler systematically
transforms a source program into an executable program through a series of
“optimizations”—program transformations that improve run-time performance
by, for instance, rewriting instructions or compacting memory use. It is vital that
each transform preserves input-output behavior, so that the behavior of the final
executable is identical to that of the original source program. Compiler writers
put considerable care into programming these transforms, but when mistakes
happen they are often difficult to detect.

The obvious importance of correct compilation has prompted decades of
research on compiler verification. The gold standard is a verified compiler, where
each transform is formally proved correct. Originally proposed in the 1960s [21],
verified compilers have been constructed for Lisp (the CLI stack [4]) and for
C (CompCert [18,19]). The proofs require considerable mathematical expertise
and substantial effort, of the order of multiple person-years. As an illustration,
a proof of the key Static Single Assignment (SSA) transform required about a
person-year of effort and approximately 10,000 lines of Coq proof script [36].
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Our research goal is to “democratize” this process by making it feasible for
compiler developers who are not also theorem-proving experts to build a provably
correct compiler. This requires relaxing the notion of correctness. Rather than
establish that a transform is correct for all programs, we establish that each
specific application of the transform is correct. We do so by instrumenting every
transform to additionally generate a proof object that (if valid) guarantees that
the original and transformed programs have the same input-output behavior.
Thus, the work of formal verification is divided between a compiler writer, who
writes auxiliary code to generate proofs, and an automated validation program,
which checks each proof. We call such a compiler self-certifying, for it justifies
its own correctness.

An invalid proof exposes either an error in the transform code or a gap in
the compiler-writer’s understanding of its correctness argument, which are both
valuable outcomes. It is important to note that a self-certifying compiler may still
contain latent errors: its guarantee applies only to an instance of compilation.
Yet, in practice, that is what is desired: a programmer cares (selfishly) only
about the correct compilation of their own program.

Self-certification may seem unfamiliar, but it is a recurring concept. A model
checker is self-certifying, as a counterexample trace certifies a negative result. A
SAT solver is also self-certifying, as an assignment certifies a positive result. For
the other outcomes, a deductive proof acts as a certificate: cf. [23,29] for model
checking and [35] for SAT. Self-certification for parsing is described in [15]. In
each case, the certificate is easy to check, while it justifies the outcome of a
rather complex calculation.

This paper describes the design and implementation of a self-certifying opti-
mization framework for WebAssembly, a recently-introduced intermediate lan-
guage that is supported by all major browsers [14]. Programs in C, C++, Rust,
and LLVM IR can be compiled to WebAssembly and run within a browser. We
choose to focus on WebAssembly for two main reasons: it is an open and widely-
adopted standard, and it has a compact, well-designed instruction set with a
precisely defined semantics.

Fig. 1. Self-certification overview. Trusted components are shaded gray.

Figure 1 illustrates the framework. Its core is the proof checker. That takes
as input two WebAssembly programs (the source and target of a transform) and
a purported equivalence proof, and uses SMT methods to check the validity of
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this proof. Fortunately, correctness proofs for many standard optimizations can
be expressed in logics that are well-supported by SMT solvers.

Armed with a proof validator, one can proceed to augment each optimiza-
tion with a proof generator. A typical generator records auxiliary information
during the transformation and uses it to produce an equivalence proof. In our
experience, it is an enjoyable exercise to design proof generators and straight-
forward to implement them. For instance, proof generation for SSA (described
later) requires only about 100 lines of code, and the entire certifying transform
was written in three person-weeks.

Self-certification for compilers was originally proposed by Rinard [31] as
“credible compilation” and rediscovered in [27] as “witnessing.” It is closely
related to Translation Validation (TV) [6,28,30,32] but with crucial differences.
In TV, a validator has access to only the source and target programs. As pro-
gram equivalence is undecidable, heuristics are necessary to show equivalence.
This has drawbacks: heuristics differ across transforms, and each must be sep-
arately verified. In a self-certifying compiler, although the content of a proof
depends on the transform, all proofs are checked by the same validator.

Self-certification also has a close relationship to deductive proof. In a deduc-
tive proof, the correctness of a transform τ is established by proving that for
all programs P , there exists an input-output-preserving simulation relation R
such that τ(P ) refines P via R. Through Skolemization, this is equivalent to
the existence of a function G such that for all programs P , τ(P ) refines P via
G(P ). In a self-certifying compiler, the mathematical object G is turned into a
computational proof-generator for the transform τ . The generated proof object
is the relation G(P ), and a validator is thus a generic refinement checker.

While conceptually simple, self-certification is challenging to implement.
The first implementations were for a textbook-style language [20]. The most
advanced implementation is Crellvm [16], for LLVM. In Crellvm, proofs are
syntax-directed, based on relational Hoare logic. While this suffices for many
transforms, the authors note in [16] that it cannot support transformations such
as loop unrolling that make large alterations to control structure. Our proof for-
mat can handle those transforms. An in-depth comparison is given later in the
paper.

The central contribution of this work is in defining and implementing a
self-certifying compilation framework for a widely-used language.1 The current
system is best thought of as a fledgling compiler for WebAssembly. We have
implemented a variety of optimizations, among them SSA, dead store removal,
constant propagation and loop unrolling. Experience shows that proof genera-
tion imposes only a small programming burden: the typical generator is about
a hundred lines of code. Experiments show that the run-time overhead of proof
generation is small, under 20%. Proof-checking, on the other hand, may take
substantial time (though it is easily parallelized). That is not caused by logical
complexity, it is due to the sheer number of lemmas that must be discharged.

1 The implementation is available as open source at https://github.com/nokia/web-
assembly-self-certifying-compilation-framework.
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The current system has some limitations. Proof-checking is slow, but we
believe that can be improved through careful engineering, as each proof is log-
ically simple. A technical limitation is that the proof-checker does not support
transforms with unbounded instruction reordering (such as loop tiling), or inter-
procedural transforms. This is because refinement relations for both require
quantification over unbounded auxiliary state. Those transforms can be val-
idated with specialized rules that have simpler hypotheses (cf. [1,25,34,37]).
Integrating those transforms into the system is a direction for future work.

2 Overview

We illustrate self-certification with the loop unrolling transform. A loop is given
as “loop B”. For instance, the sum of the first N natural numbers may be
expressed as follows. (For readability, this is in pseudo-code, not WebAssembly.)

sum := 0; i := 0;
loop {if i >= N then goto Exit; sum := sum + i; i := i+1;}
Exit:

The unrolling transformation simply changes the program to “loop (B;B)”.
This may appear to be of little use. However, unrolling facilitates further analy-
sis and transformation. For the example, assuming N is even, an analysis phase
computes invariants such as the assertion below. Then, control-flow simplifica-
tion applies this invariant to eliminate the second copy of the conditional. The
resulting loop executes only half as many conditional tests as the original.

assume (N is even); sum := 0; i := 0;
loop {if i >= N then goto Exit; sum := sum + i; i := i+1;

assert (i < N and i is odd); sum := sum+i; i := i+1;}
Exit:

Figure 2 illustrates the template for loop unrolling and its refinement relation.
A program is expressed here in the familiar control-flow graph (CFG) form. The
refinement relation connects the two state spaces, in this case it is simply the
identity relation. It is the responsibility of a compiler writer to think carefully
about the correctness argument for a transform and to program a proof generator
that produces the right refinement relation and any additional hints.

The proof validator tests the inductiveness of the refinement relation over
loop-free path segments by generating lemmas in SMT form. In this example,
assuming that states are identical at edges e0 and f0, they must be identical after
the path segments f0;B; f1 and e0;B; e1. Continuing from that point, the seg-
ment f1;B; f2 is matched by e1;B; e1; segment f1;B; f4 is matched by e1;B; e2;
and so forth. The proof-generator suggests the segment matches as hints, while
the validator ensures that all path segments in the target CFG are covered.

The inductiveness checks combined with segment coverage ensure that valida-
tion is sound; i.e., it never accepts an incorrect proof. The use of SMT-supported
logics to define the refinement relation ensures that a wide range of proofs can
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Fig. 2. Loop Unrolling, with refinement relation shown by horizontal lines.

be checked automatically. Fortunately, logical theories that SMT solvers handle
well—equality, uninterpreted functions, arrays and integer arithmetic—suffice
for many intra-procedural optimizations.

3 WebAssembly: Syntax and Semantics

Fig. 3. WebAssembly usage

We summarize the structure and notable features of WebAssembly2. A typi-
cal setup is shown in Fig. 3. A C program library.c is (1) compiled using

2 The full specification is at https://webassembly.github.io/spec/.

https://webassembly.github.io/spec/
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tools such as LLVM to produce a WebAssembly module, lib.wasm. This mod-
ule is (2) loaded by a browser via JavaScript to create a sandboxed instance.
Communication is bidirectional (3): the JavaScript code may invoke functions of
library.wasm, and the WebAssembly code invokes JavaScript functions through
a foreign-function interface for input and output actions.

Fig. 4. The WebAssembly instruction set of the reference interpreter: (�) denotes zero
or more occurrences, (?) denotes zero or one occurrence. The SSA transform introduces
a “phi” assignment instruction, described in Sect. 5.

3.1 The WebAssembly Instruction Set

The core WebAssembly instruction set is shown in Fig. 4. Our presentation is
closely based on that in the reference interpreter3. The instruction set is a rather
standard set of instructions designed for a stack machine with auxiliary local

3 https://github.com/WebAssembly/spec.

https://github.com/WebAssembly/spec
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and global memory. A module instance contains a stack of values, local variable
stores, a global variable store, a linear memory array, and a function table. These
spaces are disjoint from each other, a security feature.

WebAssembly programs operate on a small set of basic data types: integer
data (i32, i64) and floating point data (f32, f64). Booleans are i32 values.
The sign interpretation for integer values is determined by each operator in its
own way (e.g., LeU and LeS). The memory model is simple. Each module has a
global memory store. Each function has its own local memory store. The global
linear memory map is a contiguous, byte-addressable memory from index 0 to an
(adjustable) MemorySize. A function table stores references to functions, which
are invoked via the CallIndirect instruction. All input or output is carried out
through indirect calls to JavaScript functions.

Evaluation is stack based. Numeric instructions operate over values obtained
from the top of the evaluation stack and return the result to the top of the evalu-
ation stack. Many instructions (e.g., add) are polymorphic and could be partially
defined (e.g., no divide by 0). Execution halts (“traps”) if the next instruction is
undefined at the current state. Type-parametric instructions are used to modify
the evaluation stack. For instance, drop pops the topmost value on the stack,
while select pops the three topmost values and pushes back one chosen value.
Variable instructions are used to access the local variables of a function (which
include its parameters), and the global store. Memory instructions are used to
access the linear memory, and are parametrized with the index, offset, size, and
type of the data to be stored or retrieved.

Unusually for a low-level language, control flow in WebAssembly is struc-
tured. Break (jump) instructions like Br transfer control only to labels defined
in the surrounding scope. A branch instruction is parametrized by an i32 value
that determines the number of nested levels to break out of. The Block, Loop,
and If instructions generate new, well-nested labels. A function invocation via
Call pops the appropriate number of arguments from the top of the stack and
pushes back the return values when completed via Return. A trapping state is
entered with the Unreachable instruction, which aborts execution.

3.2 WebAssembly Semantics

The standard semantics of WebAssembly [14] is syntax-directed, combining con-
trol and execution state in a single stack. While this is mathematically con-
venient, compiler optimizations are typically framed in a control-flow graph
representation that separates control from execution: control is represented by
the edges and execution by operations labeling vertices. The translation of a
WebAssembly program to a control-flow graph is illustrated in Fig. 5.

A control-flow graph (CFG) is a labeled directed graph G = (V,E, label),
where V is the set of vertices, E ⊆ V × V is the set of edges, and label is a
labeling function. It has a single entry vertex with indegree 0 and outdegree 1
(the entry edge), and a single exit vertex with indegree 1 (the exit edge) and
outdegree 0. A path is a sequence of vertices where each adjacent pair is an edge.
Vertex m is reachable from vertex n if there is a path where the initial vertex is
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Fig. 5. Conversion from C to WebAssembly to a CFG. The factorial function is
invoked recursively as (call 0) in WebAssembly.

n and the final vertex is m. Every vertex is reachable from the entry vertex and
reaches the exit vertex.

The labeling function associates each vertex with a list of basic instructions,
called a basic block ; the entry vertex is mapped to the empty list and the exit
vertex to a single return instruction (the only block with this instruction). Each
function call is its own block, labeling a node with indegree and outdegree 1.
Every edge is labeled by a Boolean-valued function; the entry edge is labeled
true. These structural conditions simplify the validation of witnesses.

A labeled transition system (LTS for short) is defined by a tuple of the form
(S, I, T,Σ) where S is a set of states, I ⊆ S is a non-empty set of initial states,
Σ is an alphabet, and T ⊆ S × (Σ ∪ {τ}) × S is a (labeled) transition relation,
where τ is a symbol not in Σ. An (infinite) execution from a state s is an infinite
sequence of alternating states and labels s0 = s, a0, s1, a1, s2, . . . such that for
each i, the triple (si, ai, si+1) is in T . The observation sequence of this execution
is the projection of the sequence a0, a1, . . . on Σ. A computation is an execution
from an initial state. The language of an LTS is the set of observation sequences
produced by its computations.

An evaluation context for a function, denoted cxt, is a tuple (K,L,G,M)
where K is an evaluation stack for that function, L maps local variables (includ-
ing parameters) to values, G maps global variables to values, and M maps nat-
ural numbers to values, representing the linear memory.

WebAssembly Semantics. The semantics of a program P is given as an LTS
lts(P ), defined as follows. The set of states S consists of tuples of the form
(C,G,M) where C is a call stack (defined next) and G and M represent the
global and linear memory maps, respectively. There is a special trap state, with
a self-loop. A call stack is a sequence of frames (also called “activation records”).
A frame is a tuple (f,K,L, (e, k)) where f is a function name; K is an evaluation
stack (a list of values); L is a local variable map whose domain includes the
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function parameters; and (e, k) is a location within the CFG for f , where e is a
CFG edge and k is an index into the basic block associated with the vertex that
the target of e.

The initial state is (Ĉ, Ĝ, M̂). The initial call stack Ĉ contains a single acti-
vation record for the start function of a WebAssembly module. The local, global
and memory maps are initialized as defined by the WebAssembly specification,
edge e is the entry edge of the start function CFG, and k = 0.

A transition is either a local transition modifying only the top frame on the
call stack; a function call, adding a frame; or a function return, removing the
top frame. Undefined behavior (e.g., a division by 0) results in a transition to
the trap state. The precise definition of transitions is in the full paper.

Input and output in WebAssembly is via the foreign-function interface; the
browser also has access to the global and linear memories. The only observable
transitions are therefore foreign function invocations and the final transition
returning from the start function with its associated global and linear memories.

Definition 1 (Transformation Correctness). A program transformation
modifying program P to program Q is correct if the language of the transition
system for Q is a subset of the language of the transition system for P .

Transformation correctness therefore requires that calls to foreign functions
are carried out in the same order and with the same actual arguments and mem-
ory maps in both source and target programs, and that the memory values upon
termination of the WebAssembly program are identical. In our proof validator,
we strengthen the foreign call requirement to apply to all function calls.

4 Witness Structure and Validation

We consider a program transformation that changes the structure and labeling
of a CFG for a single function, keeping parameters and entry and exit nodes
unchanged. Let G denote the source CFG and H the modified CFG for that
function. A proof witness is defined by a correspondence between the execution
contexts of H and G that meets certain inductiveness conditions. We prove that
these conditions suffice to establish transformation correctness. The structure of
a witness is defined by the following components:

A witness identifies a subset of the edges of each graph, referred to as the
checkpoint edges and denoted ckpt(X) for graph X. This set must include the
entry and exit edge of the graph and form a feedback-edge set (i.e., every cycle
in the graph contains a checkpoint edge). For each node labeled with a function
call, its adjacent edges must be checkpoint edges.

From these structural conditions, it follows that every path from a checkpoint
edge must eventually cross another checkpoint edge. Let frontier(X, e) be the set
of finite paths in graph X that start at edge e and end at a checkpoint edge with
no checkpoint edges in between.
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A witness specifies a partial function W : ckpt(H) × ckpt(G) → (cxt(H) →
cxt(G) → Bool). This defines the relationship between source and target states
that holds on the given pair of edges: concretely, the value of W (f, e) for an edge
pair (f, e) is a predicate defined on target and source contexts. The entry edges
of H,G must be in the domain of W .

The final component of a witness is a function choice that maps a pair of
edges (f, e) in the domain of W and a path q in frontier(H, f) to a path p in
frontier(G, e). This relates paths in the target to paths in the source.

Fig. 6. Path matching and inductiveness. Note the mnemonic patterns: edges (e/f),
paths (p/q), and contexts (c/d) for the source/target programs.

Valid Witnesses As illustrated in Fig. 6, let (f, e) be an edge pair such that
W (f, e) is defined. Let q be a path in frontier(H, f) and let p = choice((f, e), q)
be its matching path in frontier(G, e). Let f ′, e′ be the final edges on the paths
q, p respectively.

A basic path is one where no vertex is labeled with a function call or return.
Every basic path q induces a sequence denoted actions(q) that contains only non-
call-or-return instructions labeling the vertices and Boolean guards labeling the
edges on the path. The semantics of each action a in context d is specified by (1)
predicate def(a, d) which is true if a is well-defined at d; (2) predicate en(a, d)
which is true (assuming a is well-defined) if a is enabled at d; and (3) a partial
function eval(a, d) (defined if a is well-defined and enabled) which produces a
new context. For WebAssembly instructions, eval is defined in Fig. 8; def and en
are defined in the full version of this paper.
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For an action sequence σ, the predicate enabled(σ, d) is recursively defined as
follows, where d′ = eval(a, d):

enabled(ε, d) = true
enabled(a : x, d) = def(a, d) ∧ en(a, d) ∧ enabled(x, d′).

Similarly, if σ is enabled at d, then exec(σ, d) and trapped(σ, d) are defined by

exec(ε, d) = d

exec(a : x, d) = exec(x, d′)
trapped(ε, d) = false

trapped(a : x, d) = ¬def(a, d) ∨ (en(a, d) ∧ trapped(x, d′)).

We define enabled(q, d) for a path q as enabled(actions(q), d), and similarly define
eval(q, d) and trapped(q, d). The witness validity conditions are defined as follows:

Initiality. For the entry edges f̂ , ê of H and G, respectively, W (f̂ , ê) must be
the identity relation.

Path Matching. q and p are either basic paths; or both have only a single
vertex that is labeled either with return, or with identical function calls.

Enabledness. Path p is enabled if q is enabled. That is4,

[W (f, e)(d, c) ∧ enabled(q, d) ⇒ enabled(p, c)]

Trapping. If path q leads to a trap, so does path p.

[W (f, e)(d, c) ∧ trapped(q, d) ⇒ trapped(p, c)]

Non-blocking: Basic Path. Execution of q cannot be blocked. Precisely, for a
basic path q, the Boolean guard on edges on q other than the initial and final
edge must be true for every initial context d such that W (f, e)(c, d) holds.

Inductiveness: Basic Path. The context obtained by executing the instruc-
tions on path q is related by W to the context obtained by executing instruc-
tions on path p.

[W (f, e)(d, c) ∧ enabled(q, d) ∧ d′ = exec(q, d)
∧ c′ = exec(p, c) ⇒ W (f ′, e′)(d′, c′)].

Inductiveness: Function Call. The paths have identical call instructions. The
call state (global, linear memory, and parameter values) should be identical
prior to the call. Assuming the call requires k parameters, the length k stack
prefixes d(K)[0..k) and c(K)[0..k), which represent the top k values on the
respective stacks, must be identical.

[W (f, e)(d, c) ⇒ d(G,M,K[0..k)) = c(G,M,K[0..k))]
4 The formal statements follow Dijkstra-Scholten convention [9], where [ϕ] indicates

that the expression ϕ is valid. We use d(X, Y, . . .) to abbreviate (d(X), d(Y ), . . .).
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W must also hold of the stacks obtained after removing the call arguments:

[W (f, e)(d, c) ∧ d′(L,G,M) = d(L,G,M) ∧ d′(K) = d(K[k..])
∧ c′(L,G,M) = c(L,G,M) ∧ c′(K) = c(K[k..]) ⇒ W (f, e)(d′, c′)]

These conditions ensure that corresponding calls behave identically. After the
calls, W (f ′, e′) must hold with the (unspecified but same) result v:

[W (f, e)(d, c) ∧ d′(G,M) = c′(G,M)
∧ d′(K) = v : d(K[k..]) ∧ c′(K) = v : c(K[k..])
∧ c′(L) = c(L) ∧ d′(L) = d(L) ⇒ W (f ′, e′)(d′, c′)]

Inductiveness: Function Return. The values at the top of the stack must be
identical, as must the global and linear memories. I.e.,

[W (f, e)(d, c) ⇒ d(G,M) = c(G,M) ∧ d(K)[0] = c(K)[0]]

Theorem 1. (Soundness) If there is a valid proof witness for a transformation
from program P (CFG G) to program Q (CFG H), the transformation from P
to Q is correct.

Proof. (Sketch) We have to show that the language of lts(Q) is a subset of the
language of lts(P ). This is done by setting up a simulation relation between the
(unbounded) state spaces of these transition systems. Roughly speaking, this
relation matches the sequence of frames on the source call stack with those on
the target call stack, relating frames for unmodified functions with the identity
relation, and relating frames for the modified function by W . The complete
proof (in the full paper) establishes that under the witness validity conditions,
this relation is a stuttering simulation that preserves observations. �	

5 Proof Generation

We illustrate, using the example of the SSA transform, how a compiler writer pro-
grams a proof generator by weaving it into the optimization algorithm. Besides
SSA, the system includes proof generating versions of several common optimiza-
tions, such as dead store elimination, loop unrolling, constant propagation and
folding, a “compress-locals” transform peculiar to WebAssembly which compacts
the local memory array, removing unused entries and renaming the others, and
finally the unSSA transformation that takes a program out of SSA form. In each
case, the proof generator is approximately 100 lines of code; the actual transform
is between 500–700 lines of code.

The safety net provided by the validator is analogous to the safety guarantee
provided by a strong type system. Programming can proceed as usual, with the
reassurance that validation will not allow incorrect compilation. Indeed, we have
occasionally made mistakes in programming optimizations (common mistakes
such as cut-and-paste errors and missing cases), which have been caught by the
proof validator.
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Fig. 7. Example SSA transform. Source on the left, result on the right.

SSA is a key transformation in modern compilers. It ensures that in the
target program, every variable appears on the left hand side of at most one
assignment statement (hence the name). The transformation does not improve
performance; instead, it essentially builds definition-use chains into the program
text. This structural property considerably simplifies follow-on transformations
that do optimize performance, such as dead store elimination (DSE).

For WebAssembly, we apply the SSA transformation to local memory,
accessed via LocalGet, LocalSet and LocalTee operations. An example of the
SSA transform is shown in Fig. 7. The source program is on the left, the target
on the right. Notice that the two assignments to index 2 at node n1 have been
replaced with assignments to fresh indexes 4 and 5 in the target program.

SSA introduces the new, so-called “phi” assignment statement. There are two
distinct paths in the source program that reach the node n2. The value of L[2]
differs along those paths: in the SSA version it is represented as L′[5] for the left-
hand path and as L′[2] for the right-hand path. Those values must necessarily
be merged to correctly represent the value of L[2] at source node n2. This is
the role of the phi assignment. The syntax 6 := phi (e3, 5)(e4, 2) represents that
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L′[6] should get the value of L′[5] on an execution that follows edge e3 and the
value of L′[2] on an execution that follows edge e4.

The witness validation conditions are easily adapted to take phi-instructions
into account: phi-instructions on a node of a source or target path are resolved
to a simple assignment based on the path edge that enters the node.

As should be clear from this example, the SSA transformation is in essence
a renaming of variables—but with a twist, in that the renaming is not uniform
over the program. For example, L[2] is represented at various points in the target
program by L′[2], L′[4], L′[5], and L′[6]. The correspondence between source and
target program must reflect this fact. To avoid clutter, the figure only shows the
important portions of the correspondence5. It should be easy to check that the
full correspondence is inductive and that (as the stack and global memories
are identical) the call to the obs function (short for “observable”) must obtain
identical actual parameters and thus produce identical results.

A proof generator must generate such a correspondence for the SSA trans-
formation on any program. We explain next how this is done. Proof generation
is necessarily dependent on the algorithm used for SSA conversion. We base the
explanation on the well known algorithm of Cytron et al [7], which is imple-
mented in our framework.

SSA Algorithm. The SSA conversion algorithm operates in two stages. Our
description must necessarily be brief; for more detail, please refer to the original
article [7]. In Stage 1, the location and form of the necessary phi-assignments is
determined, while Stage 2 fills in the details of those assignments.

The first stage is technically complex. First, for each local index k, the set of
nodes asgn(k) is determined, this is the set of nodes that contain an assignment
to k (through LocalSet or LocalTee). Then the iterated dominance frontier
of asgn(k) is determined; those are precisely the nodes that must have a phi-
assignment for k. Dominance is a standard notion in program analysis. In short,
node n dominates node m if every path in the CFG from the entry node to m
must pass through node n. A node m is in the dominance frontier of node n if
m is not strictly dominated by n but some predecessor of m is dominated by n.
The dominance frontier of a set X of nodes (denoted DF(X)) is the union of the
individual dominance frontiers. The iterated dominance frontier (IDF) of a set
X is defined as the least fixed point of the function (λZ : DF(X ∪ Z)).

For our source program, asgn(2) = {entry, n1}; it includes the entry node as
all variables are initialized. The IDF of this set is just the singleton {n2}. Thus
there must be a phi-assignment for L[2] at node n2. However, the details of this
assignment; in particular, which renamed versions of L[2] reach this node, is not
yet known. That information is filled in by Stage 2.

The second stage does a depth-first traversal of the CFG. For each original
index, the traversal carries a stack of fresh index values that are used to rename
it. For instance the stack for L[2] on entering edge e3 is [5; 4; 2] with index 5
5 The full correspondence for edge e3 is that K, G, M = K′, G′, M ′ (stack, global, and

main memories are identical) and that L[0] = L′[0], L[1] = L′[3], and L[2] = L′[5].
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being the top entry, while the stack for L[2] on entering edge e4 is just [2]. In
processing the instructions at a node, a (LocalGet k) instruction is replaced with
(LocalGet k′) where k′ is the index at the top of the stack for k. A (LocalSet
k) instruction is replaced with (LocalSet k′) where k′ is a fresh index, which is
pushed on to the stack for L[k]. (A similar replacement occurs for instances of
LocalTee.) For the example program, the phi-assignment 6 := phi (e3, 5)(e4, 2)
at node n2 is filled in by taking the indexes 5, 2 at the top of the stacks for L[2]
for edges e3 and e4, respectively, and generating a fresh index 6.

Proof Generation. We now turn to proof generation. First, note that the SSA
transformation does not alter CFG structure. Thus, the correspondence relates
identical edges in source and target. Moreover, the contents of the value stack K
and the memories G and M are uninfluenced by this transformation. Thus, the
focus is entirely on the local variables. The key to defining the relation on each
edge is knowing which fresh local index represents an original local index k on
that edge. Fortunately, this information is easy to obtain. In the second stage
above, the fresh index corresponding to original index k at edge e is precisely
the index at the top of the stack for L[k] when edge e is traversed (each edge is
traversed exactly once). Thus, the template for the full correspondence at edge e
is that K,G,M = K ′, G′,M ′ and for each original index k, L[k] = L′[k′] where
k′ is the fresh index at the top of the stack for L[k] at edge e.

We have implemented the SSA transformation in about 700 lines of OCaml
code (including comments). That includes the iterated dominance frontier calcu-
lation but not the calculation of the base dominance relationship, which is done
separately in about 300 lines of OCaml. Proof generation is implemented in an
additional 130 lines of OCaml (including comments). The implementation of the
SSA algorithm and the proof generator took (we estimate) about 3 person-weeks.

6 Validator Implementation

We have so far laid out the design of the self-certifying framework and shown
how to write proof generators. In this section, we describe the implementation
of the validator, which builds on the reference WebAssembly implementation.
It is about 6300 source lines of OCaml source code6, which includes the proof
checking algorithm, an interface to the Z3 SMT solver [22], code for manipulating
control flow graphs, and utility functions. The code has substantial explanatory
comments. It was developed in roughly 7 person-months of effort.

The method is defined as Algorithm 1. It receives as input two CFGs for the
same WebAssembly function (the source CFG G and the target CFG H), and
a candidate witness object (ckpt,W, frontier, choice). The algorithm then checks
the witness for validity against G and H, through a simple workset algorithm
that repeatedly invokes the back-end SMT solver to check the validity of the
given formula; the witness check fails if the formula is invalid.

6 Excluding comments. Measured with cloc: https://github.com/AlDanial/cloc.

https://github.com/AlDanial/cloc
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Fig. 8. The definition of c′ = eval(a, c), where c is the current evaluation context, a is
a local transition action label, and c′ is the following context. Basic instructions are
in the top group; branch conditions are in the bottom group; transitions not defined
are assumed to trap by default. The notation L[x �→ v] denotes a map identical to L
except at element x where its value is v.

The witness conditions defined in Sect. 4 and checked by Algorithm 1 ulti-
mately depend on the semantics of individual actions. We supply this semantics
in Fig. 8 for the context c = (K,L,G,M); this defines the resulting context
c′ = eval(a, c). Instruction semantics is defined in the top group, branch condi-
tions at the bottom. MemoryGrow has no effect; the memory is assumed to be of
a large fixed size. Label-context pairs not listed here are undefined. The bulk of
the implementation effort is in the encoding this semantics in SMT terms.
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Algorithm 1. Witness Checking Algorithm
1: procedure RefinementCheck(G, H, witness = (ckpt, W, frontier, choice))
2: Initialize workset to {(f̂ , ê)}, the entry edges
3: while workset is not empty do
4: remove checkpoint edge pair (f, e) from workset, mark it as visited
5: if (f, e) is not in domain(W ), abort (bad witness structure)
6: for all paths q in frontier(H, f) do
7: let f ′ be the final edge of q
8: let p = choice((f, e), q) be the corresponding source path, final edge e′

9: invoke an SMT solver to check witness conditions from Section 4 on q, p
10: add (f ′, e′) to the workset if not visited
11: end for
12: end while
13: end procedure

6.1 Encoding into SMT

We now describe how the action semantics can be encoded into appropriate first-
order logical theories. Conceptually, the process is straightforward; nevertheless,
an actual implementation must resolve or work around several complexities.

The fully interpreted encoding must represent the i32, i64, f32 and f64
datatypes precisely. Integer types are represented with bitvectors to properly
account for low-level bit manipulation with Xor and Rotr instructions. How-
ever, encoding floating point types is a challenge. The current fully interpreted
encoding applies only to programs over i32 values, that do not use MemoryGrow,
correctly specify MEMORY SIZE, and where load and store memory operations are
i32-aligned. This encoding is used to check proofs for constant propagation and
folding on i32 values.

On the other hand, proofs of several transformations (including all other
implemented transformations and others such as loop peeling and common
subexpression elimination) amount to reasoning about substitution under equal-
ity. For such proofs, a fully uninterpreted encoding suffices to check refinement.
A significant advantage of the uninterpreted encoding is that the validator can
handle all WebAssembly programs, without restrictions. Proof witnesses also
specify the encoding that is to be used to check their validity.

These two options naturally suggest a third, a partially interpreted SMT
encoding where, say, all int32 and int64 operations are fully interpreted in the
theory of bitvectors, while floating point operations are uninterpreted. We are
in the process of developing such an interpretation; it would remove many of the
restrictions currently placed by the fully interpreted encoding.

6.2 Evaluation

The goal of our evaluation was to test how well our prototype implementation
scales on real programs. To do this, we ran our checker against the proofs gen-
erated by proof-generating optimizations on two benchmarks: the WebAssembly
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reference interpreter’s test suite (https://github.com/WebAssembly/spec/) and the
WebP image library (https://github.com/webmproject/libwebp). We found that
nearly all proofs are easily verified, although a small percentage of checks fail
because the SMT solver is a bottleneck.

Procedure. We first gathered WebAssembly S-expression (WAST) files from each
benchmark. This was either already provided in the case of the reference inter-
preter (73 files, 3036 functions, 49113 LoC, total 2.6 MB), or in the case of
WebP’s C implementation, can be compiled to WebAssembly using Emscripten7

(1 file, 953 functions, 328780 LoC, total 6.8 MB).
Next, for each function of each module of each file we ran the following:

(1) Convert the function into a source CFG.
(2) Run an optimization (either SSA, SSA + unSSA, SSA + DSE, or Loop

unroll), which generates a target CFG and a proof witness to be checked.
(3) For each witness, generate SMT lemmas as in Algorithm 1 and pass those

to the Z3 SMT solver if they meet a heuristic size restriction. If the lemma
is too large or if the solver times out, the check is considered unsuccessful.

All experiments were run with Z3 4.8.7 on a machine with 30 GB RAM and
an AMD Ryzen 7 PRO 3700U CPU. The proof validation process is paralleliz-
able: each function of each module can be checked separately. All proof lemmas
associated with a source-target pair of CFGs can also be checked separately. We
do not, however, use parallelization in this evaluation, and this is reflected in
the relatively low CPU (typically < 30%) and RAM (typically < 25%) usage
throughout the experiments.

Results and Discussion. Our results are summarized in Fig. 9. First, 101/237460
(≈ 0.04%) of SSA + unSSA’s lemmas are potentially faulty, as the solver returns
Unknown on these instances rather than Unsat (correct) or Sat (faulty). How-
ever, upon isolating several of these cases and re-running the solver with longer
timeouts, the sampled Unknowns were in fact Unsat, and therefore correct. In a
similar vein, some lemmas are unchecked because of heuristic size restrictions.
Thus, although we have not completely verified the optimizations on the refer-
ence interpreter and WebP, we have, however, succeeded in verifying a significant
portion. Furthermore, every skipped lemma that we have manually extracted and
checked has also been valid.

Second, the solver calls dominate runtime in all experiments, which is
expected in part due to the sheer amount of queries. Fortunately the check of
each lemma is usually fast, on average we check about 11 lemmas per second, but
without timeout settings we have observed exceptional outliers. For simplicity,
SMT lemmas are written out as SMT-LIB2 strings that are piped into Z3 rather
than via Z3’s direct OCaml bindings; this reduces performance somewhat.

Finally, an obvious point is that additional machine resources would improve
the evaluation results. For one, increasing the size restriction allows more lemmas

7 https://developer.mozilla.org/en-US/docs/WebAssembly/C to wasm.

https://github.com/WebAssembly/spec/
https://github.com/webmproject/libwebp
https://developer.mozilla.org/en-US/docs/WebAssembly/C_to_wasm
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Reference Interpreter (49113 LoC)
SMT/Total Time (s) Checked/Total SMT Faulty

SSA 1412.4/1415.5 ≈ 99.8% 45376/45380 ≈ 99.9% 0
SSA + unSSA 2374.2/2377.7 ≈ 99.8% 77584/77592 ≈ 99.9% 0
SSA + DSE 1547.9/1551.3 ≈ 99.8% 49596/49604 ≈ 99.9% 0
Loop Unroll 12.6/14.6 ≈ 86.3% 488/488 = 100% 0

WebP Image Library (328780 LoC)
SMT/Total Time (s) Checked/Total SMT Faulty

SSA 13593.4/13617.5 ≈ 99.8% 135088/135156 ≈ 99.9% 0
SSA + unSSA 27339.3/27364.4 ≈ 99.9% 237460/266492 ≈ 89.1% 101?
SSA + DSE 21068.5/21095.8 ≈ 99.9% 231068/266116 ≈ 86.8% 0
Loop Unroll 3589.4/3606.0 ≈ 99.5% 38036/38036 = 100% 0

Fig. 9. We examine four optimizations on two different benchmarks. The total number
of SMT lemmas is a multiple of four because we check that the source-target paths are
(1) inductive, (2) enabled, (3) non-trapping, and (4) non-blocking. A checked lemma is
correct if the solver (Z3 with timeout = 2 sec) returns Unsat; it is considered faulty if
the solver returns Sat and potentially faulty if the solver returns Unknown. We do not
check lemmas that are too large with respect to a size heuristic.

to be checked. Additionally, Z3 and the overall pipeline would also be faster —
all this without parallelizing proof checking. In summary, the evaluation results
here give us confidence that self-certification can be feasibly adopted in practice.

7 Related Work and Conclusions

This work is inspired by and builds upon a large body of prior work on compiler
verification. We highlight the most closely related work below.

Mechanized Proof. The seminal work on mechanized proof of compiler optimiza-
tions is by McCarthy and Painter from 1960s [21]. Mechanized proofs have been
carried out in several settings, notable ones are for the Lisp compiler in the CLI
stack [4] and for the C compiler CompCert [18,19]. Such proofs require enormous
effort and considerable mathematical expertise—the CompCert and CLI proofs
each required several person-years. A proof of a roughly 800-line SSA transfor-
mation needed nearly a person-year and over 10,000 lines of Coq proof script [36],
illustrating the difficulty of the problem. As explained in the Introduction, there
are close connections between deductive proof methods and self-certification.

Translation Validation. Translation Validation (TV) [1,6,8,28,30,32,37] is a
form of result checking [5]. Compilation is treated as a black-box process; the
validator has access only to the input and output programs. As explained in the
Introduction, specialized heuristics must be crafted for each optimization. Incom-
pleteness of these heuristics shows up in missed equivalences, for instance [8]
report that about 25% of equivalences were not detected on a particular test
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suite. The complexity of some TV validators raises the question of whether the
validators are themselves correct. Unfortunately, verifying a TV validator is diffi-
cult. For instance, the verification of a 1000-line TV validator for SSA [2] needed
over a person-year of effort and 15,000 lines of Coq proof script.

Self-certification avoids the introduction of transformation-specific heuristics.
In principle, self-certification is complete. In practice, it is possible for SMT
solvers to run out of time or memory and thus produce an “unknown” result.

Self Certification. We discuss prior work on compiler self-certification in the
Introduction; we do so now in more detail. Credible compilation was first imple-
mented in [20] for a basic textbook-style intermediate language. It has proved to
be challenging to implement self-certification for languages used in practice. The
implementation of witnessing for LLVM in [11,26] handles only a small subset
of LLVM IR and simple optimizations. Validation of the LLVM SSA transform
is shown in [24], but that validator uses a simplified LLVM semantics and proof
generation is somewhat incomplete.

The most thorough implementation of certification to date is in the Crellvm
system for LLVM [16]. A Crellvm proof consists of Extended Relational Hoare
Logic (ERHL) assertions (cf. [3]) that connect corresponding source and target
program points, together with hints for instantiating inference rules. The valida-
tor applies the given hints to check the inductiveness of the supplied ERHL asser-
tions. The limitations arise from (1) the ERHL logic, which is syntax-driven, and
thus cannot be used to witness the correctness of transformations which modify
control structure, such as loop unrolling; and from (2) the large collection of
custom-built inference rules (221 in the current system), each of which must be
formally verified. In contrast, our WebAssembly validator is based on a small
set of refinement proof rules, with all of the detailed logical and arithmetic rea-
soning left to a generic SMT solver. This modular design simplifies the validator
implementation, while the proof format is sufficiently expressive to support all
of the Crellvm optimizations and more, including loop unrolling.

Regression Verification. A related line of work is that of regression verifica-
tion [12,13,17], which establishes the equivalence of structurally similar recursive
programs. Each procedure body is loop-free (loops are converted to recursion),
simplifying equivalence checking through SMT encoding. The original work bases
equivalence on a fixed relation with identical parameter values. Some of these
limitations have been overcome in later work [6,10,33] through stronger program
equivalence heuristics. The key difference is that self-certification, by design,
involves the compiler writer in the process and thus does not require heuristics.

Several enhancements are of interest. One is the extension of self-certification
to complex transformations that require specialized proof methods. Rules for
validating loop transformations were developed and implemented in the TVOC
project [1,37] and re-implemented for LLVM [25]. Rules for validating inter-
procedural transformations such as tail-recursion elimination and inlining are
developed in [34]. A second interesting project is to produce a formally verified
validator, mechanizing the soundness proof of Theorem 1.
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Abstract. Correctness verification of a concurrent history is challenging
and has been proven to be an NP-complete problem. The reason that ver-
ifying correctness cannot be solved in polynomial time is a consequence of
the way correctness is defined. Traditional correctness conditions require
a concurrent history to be equivalent to a legal sequential history. The
worst case number of legal sequential histories for a concurrent history
is O(n!) with respect to n methods invoked. Existing correctness verifi-
cation tools improve the time complexity by either reducing the size of
the possible legal sequential histories or improving the efficiency of gen-
erating the possible legal sequential histories. Further improvements to
the time complexity of correctness verification can be achieved by chang-
ing the way correctness of concurrent programs is defined. In this paper,
we present the first methodology to recast the correctness conditions
in literature to be defined in vector space. The concurrent histories are
represented as a set of method call vectors, and correctness is defined as
properties over the set of vectors. The challenge with defining correctness
in vector space is accounting for method call ordering and data structure
semantics. We solve this challenge by incorporating a priority assignment
scheme to the values of the method call vectors. Using our new definitions
of concurrent correctness, we design a dynamic analysis tool that checks
the vector space correctness of concurrent data structures in O(n2) with
respect to n method calls, a significant improvement over O(n!) time
required to analyze legal sequential histories. We showcase our dynamic
analysis tool by using it to check the vector space correctness of a variety
of queues, stacks, and hashmaps.

Keywords: Concurrent programs · Correctness condition · Dynamic
analysis

1 Introduction

Concurrent programming is difficult due to non-determinism associated with
unpredictable thread scheduling, hardware interrupts, and software interrupts.
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This challenge has motivated considerable research on tools and techniques for
verifying that a concurrent program is correct. Correctness conditions in lit-
erature [1,4,21,25,34] define correctness of a concurrent history in terms of
possible sequential histories based on allowable method call ordering. The sub-
problem of verifying correctness for a single concurrent history is also challeng-
ing. Papadimitriou [34] proves that testing a concurrent history for serializability
is NP-complete. Gibbons et al. [19] prove that verifying sequential consistency
of a concurrent history and verifying linearizability of a concurrent history are
both NP-complete problems. Proving that a concurrent system is sequentially
consistent or linearizable is undecidable [2,6].

The reason that verifying correctness for a single concurrent history cannot
be solved in polynomial time resides in the way correctness is defined. The
property shared by the correctness conditions in literature is that a concurrent
history must be equivalent to a sequential history. Consider a concurrent program
with n processes, where each process executes one method on a concurrent data
structure. If all method calls overlap, then the concurrent history could observe
the method calls in any order. This yields n! possible legal sequential histories
that this concurrent history could be equivalent to and be considered correct.
The worst case growth rate of legal sequential histories is O(n!) with respect to
n method calls invoked on the concurrent data structure. Many verification tools
address this problem by reducing the size of the sequential histories [14,27,33,39]
or generating the sequential histories more efficiently [22,28,36,37]. Of the tools
that place no constraints on the data structure type and do not require knowledge
of linearization points, the best upper bound time complexity achieved is O(p ·
nd−1), where p is the number of threads, n is the number of methods, and d is
a linearizability depth [33].

We use the vector space representation of concurrent systems introduced
by Cook et al. [10] to recast the correctness conditions in literature. Instead
of referencing sequential histories, the concurrent histories are represented as a
set of method call vectors and the correctness condition is defined as properties
over the set of vectors. We do not claim that the revised definition solves the
NP-complete problem of generating all possible legal sequential histories for
correctness verification. However, we do claim that the revised definition reframes
correctness so that correctness verification is a polynomial time problem. The
main challenge with defining concurrent correctness in vector space is handling
method call ordering and data structure semantics. We address this challenge
by incorporating a priority assignment scheme to the values of the method call
vectors. Method calls either promote or demote another method call’s priority
based on the method call ordering required by the correctness condition and the
data structure semantics. We capitalize on our proposed definitions of concurrent
correctness to design an efficient dynamic analysis tool that checks the vector
space correctness of concurrent data structures. The worst case time complexity
of our dynamic analysis tool is O(n2), where n is the number of method calls. Our
dynamic analysis tool does not require model checkers, annotations, or source
code modifications, making it applicable to real programs with large workloads.
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The contributions of this paper include:

1. We propose definitions of well-known correctness conditions [1,4,21,25,34] in
vector space.

2. We present a priority assignment scheme for the method call vectors that
captures the method call ordering required by the correctness condition and
the data structure semantics.

3. We develop an efficient dynamic analysis tool that checks the correctness of
concurrent data structures in O(n2) time. The correctness conditions incorpo-
rated in our tool include the vector space versions of linearizability, sequential
consistency, quiescent consistency, and quasi-linearizability.

4. We evaluate our tool by using it to check the correctness of queues, stacks,
and hashmaps. Additionally, we enhance our tool by enabling the vector com-
putations to be performed on the Graphics Processing Unit (GPU).

2 System Model

A concurrent system comprises sequential threads, referred to as processes, that
communicate through shared data structures called concurrent objects (or simply
objects) [21]. An item is data to be stored in a concurrent object. An abstract
data type defines a set of possible values for a concurrent object and defines the
behavior (semantics) of a set of methods that enable the processes to manipulate
the concurrent object. An event is an invocation or response of a method. An
execution of a concurrent system is modeled by a concurrent history (or simply
history), which is a finite series of events. A method call in history H is a pair
consisting of an invocation and next matching response in H [20]. A method
call m0 precedes method call m1 if the response event of m0 occurs before the
invocation event of m1. A method call m0 happens-before method call m1 if m0

takes effect before m1. An invocation is pending in history H if no matching
response follows the invocation. For a history H, complete(H) is the maximal
subsequence of H consisting only of invocations and matching responses. For a
history H, an extension of H is a history constructed by appending responses
to zero or more pending invocations of H. An object subhistory, denoted H|x,
is a subsequence of the events of H for object x. A thread subhistory, denoted
H|t, is a subsequence of the events of H for thread t. A history H is sequential
if the first event of H is an invocation and each invocation, except possibly the
last, is immediately followed by a matching response. A sequential specification
for an object is a set of sequential histories for that object. A sequential history
is legal if each object subhistory is legal for that object.

A vector is an ordered n-tuple of numbers, where n is an arbitrary positive
integer. A column vector is a vector with a n by 1 (row-by-column) dimension.
Each method call in a concurrent history is represented as a column vector, where
each position of the vector represents a unique combination of objects/items,
referred to as a configuration, encountered by the concurrent system, where this
representation is uniform among the set of vectors.

A producer is a method that generates an item to be placed in a concurrent
object. A consumer is a method that removes an item from a concurrent object.



154 C. Peterson et al.

A reader is a method that reads an item from a concurrent object. A writer is
a method that writes to an existing item in a concurrent object. A method call
set is an unordered set of method calls in a history.

3 Methodology

Our reframed correctness conditions represent method calls in a concurrent his-
tory as a set of vectors in vector space, and define correctness according to
properties over the set of vectors. We leverage the correctness conditions defined
in vector space to design an efficient dynamic analysis tool for checking the vector
space correctness of concurrent data structures.

3.1 Correctness Defined in Vector Space

The general idea of our approach is to represent the method calls in a concurrent
history as a set of vectors and determine correctness according to properties
over the set of vectors. To achieve this we must recast the standard definitions
of concurrent correctness to be in vector space. The vector space definition for
correctness condition c is denoted by the term “vector space c.” The correctness
conditions in literature establish two properties regarding a concurrent history.
First, the history of method calls must be equivalent to a legal sequential history,
i.e. the method calls appear atomic. Second, the order that the method calls
take effect is in compliance with the corresponding definition of correctness. To
define concurrent correctness in vector space, we want the vectors representing
the method calls to be able to express 1) that the method calls appear atomic,
and 2) the order that the method calls should take effect.

To illustrate our reasoning, consider a simple producer-consumer data struc-
ture where the only correctness requirement is that the method calls appear
atomic. The following value assignment scheme captures atomicity of method
calls. Let method call m be represented by vector V whose elements are ini-
tialized to zero. Let o, i be an index in V associated with the configuration for
object O and item I. If m is a producer method that produces item I in object O,
then V [o, i] = 1. If m is a consumer method that produces item I in object O,
then V [o, i] = −1. Let V sum be the sum of all vectors obtained by converting
the method calls in a concurrent history to their vector representation using the
previously described value assignment scheme. The concurrent history is atomic
if for all indices o, i, V sum[o, i] ≥ 0 because if V sum[o, i] < 0 for some index o, i,
this indicates that I is consumed from O that no longer exists in O.

Consider a producer/consumer data structure where the method calls must
appear atomic and take effect according to real-time order. The behavior of
the method calls when they take effect is dependent on the semantics of the
data structure. For example, a First-In-First-Out (FIFO) queue requires that
the items are dequeued in the same order that they are enqueued. A Last-In-
First-Out (LIFO) stack requires that the items are popped in the reverse order
that they are pushed. This expected ordering of method calls in conjunction
with the expected behavior of the method calls can be captured using a priority
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system for the value assignments of the method call vectors. We can use a similar
strategy as the value assignment for atomicity such that V [o, i] = 1 if item I has
the highest priority to be removed from object O. V [o, i] = 0 if item I has the
lowest priority to be removed from object O. An item I that is removed from
object O that does not have the highest priority will cause V sum[o, i] < 0.

The priority assignments are not static and must be updated based on data
structure semantics and the ordering of the method calls defined by the correct-
ness condition. We assign priorities using a promotion/demotion scheme based
on the geometric series 1

2 + 1
4 + 1

8 + ... + 1
2n . When an item is produced in

an object, it is initially assigned a value of 1. If an item is determined to have
a lesser priority than another item based on method call ordering and data
structure semantics, it is demoted. For every jth demotion applied to item I
in object O, V [o, i] = V [o, i] − 1

2j , where the domain of j is the set of positive

integers, Z+. Since
∞∑

n=1

(
1
2

)n = 1, the range of the sum of the demotions for

index o, i is
(−1,− 1

2

]
, guaranteeing that V [o, i] > 0. Once I is removed from

O, it must promote all items that were previously demoted due to this item.
For every jth promotion applied to I in O which has been previously demoted k
times, V [o, i] = V [o, i] + 1

2j , where the domain of j is [1, k ]. After an item has
been promoted k times, it will be assigned the highest priority value 1.

Consider the concurrent history in Fig. 1. The correctness condition for this
history is linearizability, a correctness property such that each method takes
effect at some moment between its invocation and response and the history is
equivalent to a legal sequential history. This history comprises three processes
that each enqueue an item into object x. The vector representation of the method
calls up to time t1 is shown in Eq. 1. Since x.enq(7) and x.enq(8) overlap, their
value assignment is 1 because it is unknown which of these method calls linearizes
first. The invocation of x.enq(9) occurs after the response of x.enq(7), so x.enq(9)
must demote itself resulting in a value assignment of 1

2 . Each element of the sum
of the method call vectors is greater than zero, indicating that the history is
vector space linearizable up to time t1.

The vector representation of the method calls up to time t2 is shown in Eq. 2.
The value assignment for x.deq(8) is −1. Since each element of the sum of the
method call vectors is greater than zero, the history is vector space linearizable
up to time t2. If item 9 had been dequeued instead of item 8, the sum of the
method call vectors for index x, 9 would have been −1

2 , indicating that the
history is not vector space linearizable at time t2. The vector representation of
the method calls up to time t3 is shown in Eq. 3. Since x.enq(9) was previously
demoted due to method call x.enq(7), x.enq(9) must be promoted by adding
1
21

= 1
2 to the method call vector for x.enq(9). Item 9 now has a value assignment

of 1 and has the highest priority to be dequeued next. The history is vector space
linearizable up to time t3 since each element of the sum of the method call vectors
is greater than zero. A similar evaluation can be applied when reasoning about
other correctness conditions in vector space.
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P0

P1

P2

x.enq(7) x.deq(8)

x.enq(8) x.deq(7)

x.enq(9)

t1 t2 t3

Fig. 1. FIFO queue concurrent history

t1 : conf. :

⎡
⎣

x, 7
x, 8
x, 9

⎤
⎦

method
calls

:

x.enq(7)⎡
⎣
1
0
0

⎤
⎦ +

x.enq(8)⎡
⎣
0
1
0

⎤
⎦ +

x.enq(9)⎡
⎣
0
0
1
2

⎤
⎦ =

⎡
⎣
1
1
1
2

⎤
⎦ (1)

t2 : conf.⎡
⎣

x, 7
x, 8
x, 9

⎤
⎦

x.enq(7)⎡
⎣
1
0
0

⎤
⎦ +

x.enq(8)⎡
⎣
0
1
0

⎤
⎦ +

x.enq(9)⎡
⎣
0
0
1
2

⎤
⎦ +

x.deq(8)⎡
⎣

0
−1
0

⎤
⎦ =

⎡
⎣
1
0
1
2

⎤
⎦ (2)

t3 : conf.⎡
⎣

x, 7
x, 8
x, 9

⎤
⎦

x.enq(7)⎡
⎣
1
0
0

⎤
⎦ +

x.enq(8)⎡
⎣
0
1
0

⎤
⎦ +

x.enq(9)⎡
⎣
0
0
1

⎤
⎦ +

x.deq(8)⎡
⎣

0
−1
0

⎤
⎦ +

x.deq(7)⎡
⎣

−1
0
0

⎤
⎦ =

⎡
⎣
0
0
1

⎤
⎦ (3)

Algorithm 1. Type Definitions

1: #define MAX constant � Total number of
object/item configurations

2: enum OpType
3: Producer
4: Consumer
5: Reader
6: Writer
7: enum OpResult
8: Success
9: Fail
10: struct Item
11: void* value
12: int readcount � Number of times an

item is read
13: int failcount � Number of times a

method fails
14: struct Method
15: OpType type

16: Semantics semantics � Data structure
semantics, e.g. FIFO, LIFO

17: void* obj
18: Item* item
19: Item* previtem
20: int V [MAX]
21: int exp � Number of times a method is

demoted
22: OpResult outcome
23: list <Method >promote items
24: long int invocation
25: long int response

26: function Index(void* object, void* item)

27: function ProducerMethod(int index)

28: function IsBalanced(set <Method
>methods)

The type definitions for the promotion/demotion scheme are presented in
Algorithm 1. Index on line 1.26 returns the index in the method call vector
associated with a specified object and item. ProducerMethod on line 1.27
returns the producer method that produced the item associated with a config-
uration index. Algorithm 2 presents the promotion/demotion scheme. The logic
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Algorithm 2. Promotion/Demotion Scheme
1: function PromoteDemote(set <Method > methods, Method start, long int min)

2: stack <Method > stack consumer

3: Method prev, curr

4: for curr = start; curr != methods.end(); ++curr do

5: if curr.invocation > min then min = curr.response; start = curr; break � Discard

non-overlapping methods

6: if curr.type == Producer then curr.V [Index(curr.obj, curr.item)] = 1 � Initial assignment

7: for prev = methods.begin(); prev != curr; ++prev do

8: if prev happens-before curr then

9: if prev.type == Producer and curr.semantics == FIFO then

10: prev.promote items.push(curr)

11: curr.V [Index(curr.obj, curr.item)] = curr.V [Index(curr.obj, curr.item)] −(
1
2

)++(curr.exp)
� Demote

12: else if prev.type == Producer and curr.semantics == LIFO then

13: curr.promote items.push(prev)

14: prev.V [Index(prev.obj, prev.item)] = prev.V [Index(prev.obj, prev.item)] −(
1
2

)++(prev.exp)
� Demote

15: else if curr.type == Consumer and curr.outcome == Success then

16: curr.V [Index(curr.obj, curr.item)] = −1

17: methods.remove(ProducerMethod(Index(curr.obj, curr.item)))

18: stack consumer.push(curr)

19: else if curr.type == Consumer and curr.outcome == Fail then

20: curr.V [Index(curr.obj, curr.item)] = −
(

1
2

)++(curr.item.failcount)
� Demote all items in

object for deq/pop

21: else if curr.type == Writer then

22: Method prev method = ProducerMethod(Index(curr.obj, curr.previtem))

23: curr.V [Index(curr.obj, curr.item)] = prev method.V [Index(curr.obj, curr.previtem)] � Adopt

priority

24: curr.V [Index(curr.obj, curr.previtem)] = −prev method.V [Index(curr.obj, curr.previtem)]

25: else if curr.type == Reader then

26: curr.V [Index(curr.obj, curr.item)] = −
(

1
2

)++(curr.item.readcount)
� Demote read

27: while !stack consumer.empty() do

28: Method top = stack consumer.top()

29: for int i = 0; i < top.promote items.size(); ++i do

30: int index =Index(top.promote items[i].obj, top.promote items[i].item)

31: top.promote items[i].V [index] = top.promote items[i].V [index] +(
1
2

)(top.promote items[i].exp)--
� Promote

32: methods.remove(top)

33: stack consumer.pop()

for the happens-before relation on line 2.8 varies based on the correctness con-
dition. The initial value assignment is performed on line 2.6 and the demotion
is performed on line 2.11 or line 2.14. The items to be promoted are maintained
in the promote items list, shown on lines 2.10 and 2.13. The promotion is per-
formed on line 2.31.

Reads also utilize the promotion/demotion scheme. Let method call m be
represented by vector V whose elements are initialized to zero. Let RC be a
vector such that RC[o, i] is a read count for item I in object O. When m performs
a read on I in O, it is demoted such that RC[o, i] = RC[o, i] + 1, V [o, i] =
− 1

2RC [o,i] shown on line 2.26. The sum of the reader methods will always be

between
(−1,− 1

2

]
due to

∞∑

n=1

(
1
2

)n = 1. Let V sum be the summation of the

producer, consumer, and writer methods. Let Rsum be the summation of the
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reader methods. Applying the ceiling function to V sum will cause �V sum[o, i]� =
1 for each index o, i if I exists in O and �V sum[o, i]� = 0 if I does not exist in O. If
a read is performed on I that does not exist in O, then �V sum[o, i]�+Rsum[o, i] <
0 for index o, i, indicating an incorrect history in vector space.

A write simultaneously does two actions: 1) it consumes the previous value
held by an item, and 2) it produces a new value to be held by an item. We
assume that the write does not affect its priority in the object. Let m be a
writer method that overwrites item Iprev in object O with item I in object O.
Let m be represented by vector V whose elements are initialized to zero. Let
V prev be the vector associated with the method call that produced item Iprev

for object O. Let the index corresponding to the configuration for object O and
item Iprev be position o, iprev in V . Then V [o, i] = V prev[o, iprev] shown on
line 2.23, and V [o, iprev] = −V prev[o, iprev] shown on line 2.24. Defining the
method call vector for a writer method in this way transfers the priority of the
previous item to the new item. If a write is performed on an item that hasn’t
been produced, then the value assignment depends on program semantics. If the
program allows the write to succeed by producing the corresponding item, then
the value assignment is treated as a producer. If the program requires the write
to fail, then this is an instance of conditional semantics, where the method call
will take no action and return false when reaching an undefined state of the data
structure (i.e. a dequeue applied to an empty queue).

Conditional semantics require special handling, which we now discuss. Let
method call m be represented by vector V whose elements are initialized to zero.
Let J be a count of false return values. When m attempts to perform an opera-
tion on an item I in object O that takes no action and returns false, it is demoted
such that J [o, i] = J [o, i] + 1, V [o, i] = − 1

2J [o,i] shown on line 2.20. If the con-
sume action is not for a specific item (i.e. dequeue or pop), then all elements of V
are demoted. The sum of the failed consumer methods will always be between
(−1,− 1

2

]
due to

∞∑

n=1

(
1
2

)n = 1. Let V sum be the summation of the pro-

ducer, consumer (successful), and writer methods. Let F sum be the summation
of the failed consumer methods. Applying the ceiling function to V sum will cause
�V sum[o, i]� = 1 for each index o, i if I exists in O and �V sum[o, i]� = 0 if I does
not exist in O. If a consume is performed on I and fails because I does not exist
in O, then �V sum[o, i]� + F sum[o, i] < 0. Otherwise, if a consume is performed
on I and fails even though I does exist in O, then �V sum[o, i]� +F sum[o, i] > 0.
Multiplying �V sum[o, i]� + F sum[o, i] by -1 for each index o, i if F sum[o, i] �= 0
will result in a value that is less than zero if a consumer method fails and I exists
in O, or greater than zero if a consumer method fails and I does not exist in O.

The time intervals in which method call vectors need to be checked is depen-
dent on the correctness condition. Definition 1 establishes conditions that must
be satisfied for a history to be correct in vector space at an arbitrary time t.

Definition 1. Let vectors P sum, Csum, W sum, Rsum, and F sum be the sum
of producer method vectors, successful consumer method vectors, writer method
vectors, reader method vectors, and failed consumer method vectors, respectively,
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up to time t. Let N be a vector such that N [i] = 0 if F sum[i] = 0 and N [i] = −1
if F sum[i] �= 0. A concurrent history up to time t is balanced if:

for each index i,
(P sum[i] + Csum[i] + W sum[i]) ≥ 0, and
�(P sum[i] + Csum[i] + W sum[i])� + Rsum[i] ≥ 0, and
(�(P sum[i] + Csum[i] + W sum[i])� + F sum[i]) · N [i] ≥ 0

Since applying the ceiling function to the sum of the producer, success-
ful consumer, and writer methods loses information regarding item priorities,
Definition 1 must check the sum of the producer, successful consumer, and writer
methods prior to checking the reader methods or failed consumer methods. To
revise the existing definitions of correctness to be in vector space, we define
when a method call happens-before another method call for the application of
PromoteDemote to a history, and the intervals in which a history must be
balanced. We are now ready to reframe concurrent correctness in vector space.

Linearizability. Linearizability is the correctness property such that the con-
current history is equivalent to a legal sequential history and all method calls
take effect in real-time order.

The definition of vector space linearizability is provided in Definition 2. The
PromoteDemote function is applied to method calls according to real-time
order. The history must be balanced at the end of every method response. Two
method calls are overlapping if one of the method call’s invocation event occurs
before the other method call’s response event. Overlapping methods must be
included when determining if a history is balanced since a method that overlaps
with another method could affect its outcome.

Definition 2 (Vector Space). Let H be a history. Let h be the subhistory of H
up to method response t and extension h′ includes all method calls overlapping
with t. History H is vector space linearizable if for every method response t,
1) PromoteDemote is applied to the method calls in complete(h′) such that
method call m0 happens-before method call m1 if m0 and m1 are invoked on the
same object and m0 precedes m1 in complete(h′), and 2) h is balanced up to
method response t.

Sequential Consistency. Sequential Consistency is the correctness property
such that the concurrent history is equivalent to a legal sequential history and
all method calls take effect in program order.

The definition of vector space sequential consistency is provided in
Definition 3. The PromoteDemote function is applied to method calls accord-
ing to program order or dependencies between methods called by different
threads. A dependency exists between method call m0 and method call m1 if m0

and m1 are invoked on the same object and called by different threads and m0

is consumed before m1. In this case, all methods that precede m0 and are called
by the same process as m0 must happen before all methods that occur after m0.
Enforcing the happens-before relationship between methods with dependencies
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enables the detection of non-sequentially consistent behavior due to cyclic depen-
dencies. Since sequential consistency does not enforce real-time order of method
calls, checking that the history is balanced must occur at the end of the history.

Definition 3 (Vector Space). Let H be a history. Let h be the subhistory of H
up to method response t and extension h′ includes all method calls overlapping
with t. History H is vector space sequentially consistent if for the last method
response t, 1) PromoteDemote is applied to the method calls in complete(h′)
such that method call m0 happens-before method call m1 if m0 and m1 are invoked
on the same object and m0 and m1 are called by the same process and m0 pre-
cedes m1 in complete(h′), or m0 and m1 are invoked on the same object and
m0 is called by process p0 and m1 is called by process p1 (p0 �= p1) and there
exist method calls m′

0 called by p0 and m′
1 called by p1 and m′

0 and m′
1 are

invoked on the same object and m′
0 is consumed before m′

1 and m0 precedes m′
0

in complete(h′), and 2) h is balanced up to method response t.

Quiescent Consistency. Quiescent Consistency is the correctness property
such that the concurrent history is equivalent to a legal sequential history and
all method calls take effect in real-time order when separated by a period of
quiescence (no active method calls).

The definition of vector space quiescent consistency is provided in Definition 4.
The PromoteDemote function is applied to method calls according to real-time
order when separated by a period of quiescence. The history must be balanced at
the end of every quiescent period.

Definition 4 (Vector Space). Let H be a history. Let h be the subhistory of
H up to method response t and extension h′ includes all method calls overlap-
ping with t. History H is vector space quiescently consistent if for every method
response t preceding a period of quiescence, 1) PromoteDemote is applied to
the method calls in complete(h′) such that method call m0 happens-before method
call m1 if m0 and m1 are invoked on the same object and m0 and m1 are sepa-
rated by a period of quiescence and m0 precedes m1 in complete(h′), and 2) h is
balanced up to method response t.

Quasi-Linearizability. Quasi-linearizability is the correctness property such
that the concurrent history is equivalent to a legal sequential history and all
method calls separated by a distance of length k take effect in real-time order.

The definition of vector space quasi-linearizability is provided in Definition 5.
The PromoteDemote function is applied to method calls according to real-
time order when separated by a distance of length k. The history must be bal-
anced at the end of every method response t at distance k.

Definition 5 (Vector Space) . Let H be a history. Let h be the subhistory of H
up to method response t and extension h′ includes all method calls overlapping with
t. HistoryH is vector space quasi-linearizable if for every method response t at dis-
tance k, 1) PromoteDemote is applied to the method calls in complete(h′) such
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Algorithm 3. Dynamic Analysis Algorithm
1: #define NUM THRDS constant � Total number of threads
2: function Verify(list <Method > thrd list[NUM THRDS],

int thrd list count[NUM THRDS])
3: int count[NUM THRDS]
4: list <Method > ::iterator position[NUM THRDS]
5: set <Method > methods � Sorted by response time
6: list <Method > ::iterator start, temp, start prev
7: start = temp = start prev = methods.begin()
8: long int min = LONG MAX
9: while true do
10: for int i = 0; i <NUM THRDS; ++i do
11: if count[i] < thrd list count[i].load() then
12: if count[i] == 0 then position[i] = thrd list[i].begin() else ++position[i]
13: Method m = ∗position[i]
14: temp = methods.insert(m)
15: count[i] = count[i] + 1
16: if m.response < min then min = m.response; start = start prev = temp

17: PromoteDemote(methods, start, min)
18: if ! IsBalanced(methods) then History not balanced at time min

19: if start == start prev then min = LONG MAX

20: if All threads finished then break
21: PromoteDemote(methods, start, LONG MAX )
22: if ! IsBalanced(methods) then History not balanced at final time

that method callm0 happens-before method callm1 ifm0 andm1 are invoked on the
same object and m0 and m1 are separated by a distance k and m0 precedes m1 in
complete(h′), and 2) h is balanced up to method response t.

4 Dynamic Correctness Tool Implementation

We use the correctness conditions defined in vector space to build an efficient
dynamic tool to verify program correctness. The algorithm for the dynamic cor-
rectness tool is presented in Algorithm 3. The tool runs a verification thread
simultaneously with a user program that checks the specified correctness con-
dition (vector space linearizability, vector space sequential consistency, vector
space quiescent consistency, or vector space quasi-linearizability). When a user
program thread executes a method, it writes a method object to its thread-local
list of methods. It then atomically updates a thread-local counter to indicate
the tail position of the thread-local method list. The verification thread will
continuously loop through the thread-local method lists on line 3.10 and will
insert methods in the method call set one at a time per thread as they become
available on line 3.14.

The verification step applies PromoteDemote to the current method call
set on line 3.17 and then checks that the method call set is balanced on line 3.18.
At every loop iteration, the verification thread tracks the most recent response
time that is the minimum among the threads on line 3.16, and only performs
the verification step up to this response time to prevent skipping over methods
that respond after the verification step is performed. The verification thread
maintains a method iterator on line 3.16 for the starting point of the verifica-
tion step that is updated as the method list is traversed to prevent re-checking
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methods that have already been checked. Methods that overlap with the mini-
mum response time are also included in the verification step because they could
affect the method with the minimum response time. Overlapping methods are
included in the verification step by the if-statement on line 2.5 because only
methods with an invocation greater than the minimum response time are dis-
carded. In this case, the start iterator and minimum response time are set to the
method with the earliest response time that does not overlap with the previously
recorded minimum time. If the start iterator is never updated by PromoteDe-
mote called on line 3.17, then min is reset to LONG MAX on line 3.19.

Since the method call vectors are sparse, we maintain a sum with each
Item/Object and update the sums when performing PromoteDemote to the
method call set. Using this strategy, we reduce the required space and avoid
the overhead costs of applying addition to the method call vectors at frequent
time intervals. The most expensive aspect of the tool with respect to time is
determining the happens-before relationship between methods during Promot-
eDemote. We reduce this time cost by removing consumer methods and the
corresponding producer methods that produced the consumed item since these
methods will no longer impact other methods regarding the happens-before rela-
tionship. To avoid losing precision due to floating-point numbers, we maintain
the numerator and denominator of the fraction that represents the method call
vector sum for a particular element.

4.1 Time Complexity

The while-loop on line 3.9 will continue until all n methods have been encoun-
tered. At each iteration of the while-loop, the verification thread will read one
method from each of the thread-local method lists and assign the method with
the minimum response as the start method for PromoteDemote on line 3.17.
Within the PromoteDemote function, the for-loop on line 2.4 will advance
through the method call set until it reaches the first method that does not over-
lap with the starting method on line 2.5. In this case, the starting method is set
to the current method. Since the starting method is advanced by the while-loop
on line 3.9 and the for-loop on line 2.4, both of these loops will take at most
O(n) time. The for loop on line 2.7 always starts at the beginning of the method
call set to handle the happens-before relationship between methods, which takes
at most O(n) time. Since the for-loop on line 2.7 is nested within the for-loop
on line 2.4, the total time complexity of Algorithm 3 is O(n2).

4.2 Correctness

We now demonstrate that the dynamic analysis tool is 1) sound - it reports an
error if the observed trace is non-linearizable, i.e. no false negatives, and 2) com-
plete - it reports an error only for non-linearizable traces, i.e. no false positives.
We use the term vector space linearizability to refer to our proposed definition
of linearizability and the term linearizability to refer to the standard definition
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of linearizability [21]. The soundness and completeness proofs are limited to
producer, consumer, reader, and writer methods.

Theorem 1 (Soundness). Let H be a concurrent history. If H is not lineariz-
able, then H is not vector space linearizable.

Proof A history H is not linearizable if any of the following scenarios occur: 1)
the method calls do not take effect in real-time order, or 2) the history is not
equivalent to a legal sequential history. For the first scenario, if the method calls
do not take effect in real-time order, then the following cases may occur: 1) an
item is consumed from object O that does not have the highest priority in O, 2)
an item is read before it is produced or written in object O, or 3) a consumer
method fails when the item to be consumed exists in object O. A proof by cases
is provided to show that if the method calls do not take effect in real-time order,
then H is not vector space linearizable.

Case 1. There must exist some method response t′ where an item I is consumed
that does not have the highest priority in object O. The method call vector for
the consume is set to −1 at index o, i. Since this item does not have the high-
est priority in O, the value assignment at index o, i of the method call vector
that produced the item is less than one. The sum of the method call vectors at
index o, i is less than zero, which is not vector space linearizable.
Case 2. There must exist some method response t′ where an item I is read that
does not exist in object O. The method call vector for the jth read for an item
is set to − 1

2j at index o, i. Since I does not exist in O, the sum of the method
call vectors at index o, i is less than zero, which is not vector space linearizable.
Case 3. There must exist some method response t′ where a consumer method
fails when the item I to be consumed exists in object O. The method call
vector F is set to − 1

2j at index o, i for the jth failed consume applied to
I in O. If F sum[i] �= 0, then N [i] =-1 by Definition 1. Since the item cor-
responding to index o, i exists, �(P sum[o, i] + Csum[o, i] + W sum[o, i])� = 1.
Since �(P sum[o, i] + Csum[o, i] + W sum[o, i])� + F sum[o, i] > 0, (�(P sum[o, i] +
Csum[o, i] + W sum[o, i])� + F sum[o, i]) · N [o, i] < 0, which is not vector space
linearizable.

For the second scenario, if the history is not equivalent to a legal sequential
history, then the following cases may occur for producer, consumer, reader, or
writer methods: 1) item I is consumed from object O that never existed in O, 2)
item I is read that never existed in object O, or 3) a consumer method fails and
item I to be consumed always existed in object O. A proof by cases is provided
to show that if the history is not equivalent to a legal sequential history, then H
is not vector space linearizable.

Case 1. If item I to be consumed never existed in O, then the method call vector
for the consume is set to −1 at index o, i and all other method call vectors at
index o, i are zero. The sum of the method call vectors over the entire history is
−1 at index o, i, which is not vector space linearizable.
Case 2. The same reasoning for Case 2 of the first scenario, where method
response t′ is the end of the concurrent history, applies to this case.
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Case 3. The same reasoning for Case 3 of the first scenario, where method
response t′ is the end of the concurrent history, applies to this case.

In all cases, if H is not linearizable, then H is not vector space linearizable.

Theorem 2 (Completeness). Let H be a concurrent history. If H is not vector
space linearizable, then H is not linearizable.

Proof A history H is not vector space linearizable if for some method response
t′, the subhistory h′ of H up to method response t′, including method calls that
overlap with t′, is not balanced. History h′ is not balanced if any of the following
cases occur for some index o, i: 1) P sum[o, i]+Csum[o, i]+W sum[o, i] < 0, or 2)
�(P sum[o, i] + Csum[o, i] + W sum[o, i])� + Rsum[o, i] < 0, or 3) (�(P sum[o, i] +
Csum[o, i]+W sum[o, i])�+F sum[o, i]) ·N [o, i] < 0. A proof by cases is provided
to show that if H is not vector space linearizable, then H is not linearizable.
For all cases, the priority assignments are applied to the method call vectors
according to data structure semantics and the happens-before relation, where
method call m0 happens-before method call m1 if m0 and m1 are invoked on
the same object and m0 precedes m1 in complete(h′).

Case 1. The case for P sum[o, i] + Csum[o, i] + W sum[o, i] < 0 occurs when
item I is consumed from object O that does not have the highest priority to
be removed from O. The value assignment for a consumer method call is −1 at
index o, i. The value assignment for a producer method call is 1 for the high-
est priority and less than one for all other priorities at index o, i. The sum
P sum[o, i] + Csum[o, i] + W sum[o, i] is less than zero if the value assignment of
−1 for a consumer method call is added to a priority that is less than one. Since
the item being consumed does not have the highest priority to be consumed, the
method call ordering based on the data structure semantics and the happens-
before relation is violated, which implies a non-linearizable history.
Case 2. The case for �(P sum[o, i] + Csum[o, i] + W sum[o, i])� + Rsum[o, i] < 0
occurs when I is read before it has been produced or written in O. The sum
P sum[o, i] + Csum[o, i] + W sum[o, i] is greater than zero if I exists in O. When
the ceiling function is applied to P sum[o, i]+Csum[o, i]+W sum[o, i], the result-
ing value is one if I exists in O; the resulting value is zero if I does not exist in
O. The value assignment for method call vector R performing the jth read of an
item is set to − 1

2j at index o, i. Since �(P sum[o, i] +Csum[o, i] +W sum[o, i])� +
Rsum[o, i] < 0, I does not exist in O which implies a non-linearizable history.
Case 3. The case for (�(P sum[o, i] + Csum[o, i] + W sum[o, i])� + F sum[o, i]) ·
N [o, i] < 0 occurs when a consumer method fails and item I to be consumed exists
in object O. The method call vector F at index o, i is set to − 1

2j for the jth failed
consume applied to I in O. The sum (�(P sum[o, i] + Csum[o, i] + W sum[o, i])� +
F sum[o, i]) > 0 if a consumer method fails and I to be consumed exists in O;
otherwise, (�(P sum[o, i] + Csum[o, i] + W sum[o, i])� + F sum[o, i]) < 0 if a con-
sumer method fails and I does not exist in O. The vector element N [o, i] = 0 if
F sum[o, i] = 0 by Definition 1; otherwise, N [o, i] = −1 if F sum[o, i] �= 0. Since
the sum (�(P sum[o, i] + Csum[o, i] + W sum[o, i])� + F sum[o, i]) · N [o, i] < 0, a
consumer method fails when I exists inO, which implies a non-linearizable history.
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In all cases, if H is not vector space linearizable, then H is not linearizable.
A similar logic can be applied for reasoning about soundness and completeness
of the other vector space correctness conditions.

5 Discussion

Correctness defined in vector space is not limited to only producer, consumer,
reader, and writer methods. It is possible to apply the vector space verification
technique to polling methods such as size or contains. For example, a size method
can be handled by applying the ceiling function to the method call vector sums
and computing the taxicab norm, ||x|| =

∑n
i=1 |xi|, of the resulting method call

vector sums. The taxicab norm represents the total number of items in the data
structure, which can be used to verify correctness of a size polling method. A
contains method can be handled by checking the method call vector sum at the
index corresponding to the item of interest. If contains returns false, the sum
should be zero; if contains returns true, the sum should be greater than zero.

The main limitation of verifying correctness in vector space is that it assumes
a single total order in which all threads observe operations in the same order.
This presents a challenge for weak memory concurrency models such as Total
Store Order (TSO) [32] where threads may observe updates in their local write
buffers but not observe updates in remote write buffers. To extend our approach
to support correctness conditions where threads observe a different order of
operations, the vector space analysis must be maintained on a per-thread basis.

6 Experimental Evaluation

We evaluate our dynamic analysis tool by checking the vector space correctness
of an Intel TBB Queue [23], a k-FIFO queue [24], a Boost Library [5] lock-free
stack, a Tervel Library [16] lock-free stack, an Intel TBB hashmap [23], and a
Tervel Library [16] wait-free hashmap. The data structures are checked for vector
space linearizability, vector space sequential consistency, vector space quiescent
consistency, and vector space quasi-linearizability. The tests are conducted on a
32-core AMD EPYC 7551 @ 2 GHz with Ubuntu 18.04.1 LTS operating system.
The thread count for each test is fixed at 32. We hold the thread count fixed
because our approach is unaffected by the total number of threads. We vary the
number of methods called by each thread from 10 to 10000. The number of keys
is set to the number of method calls. The method call distribution for the queue
data type is 50% enqueue and 50% dequeue. The method call distribution for
the stack data type is 50% push and 50% pop. The method call distribution
for the hashmap data type is 33% insert, 33% delete, and 34% find. We set k
(quasi-linearization factor) to 2 for the k-FIFO queue.

All data structures satisfied the evaluated correctness conditions except for
the k-FIFO queue. The k-FIFO queue satisfied vector space quasi-linearizabiltiy
when k is set to 2, but does not satisfy the other correctness conditions. The
verification time of our dynamic analysis tool is presented in Fig. 2. The n2 trend
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Fig. 2. Vector space (V. S.) verification times of concurrent data structures

line is plotted to demonstrate that all vector space correctness conditions scale
at the rate of O(n2). The n2 line is plotted as 6.25 × 10−7n2, where n is the
number of method calls.

Table 1. Vector space (V. S.) verification time (in seconds) for 320,000 method calls
(32 threads, 10,000 method calls each)

Data Structure V.S. Linearizability V. S. Sequential

Consistency

V. S. Quiescent

Consistency

V. S. Quasi-

Linearizability

Program Verify Program Verify Program Verify Program Verify

TBB Queue 0.11 8938 0.09 3473 0.10 4033 0.11 10949

k-FIFO Queue 0.21 9110 0.21 3495 0.21 2530 0.21 11294

Boost Stack 0.21 8613 0.21 3425 0.19 4109 0.19 10876

Tervel Stack 0.46 4483 0.46 3403 0.43 1312 0.47 10830

TBB Map 0.02 7831 0.01 2559 0.01 7333 0.02 9005

Tervel Map 0.72 7181 0.73 2555 0.70 1625 0.69 8381

The main factor that affects the verification time is the application of the pri-
ority scheme to the method calls due to the overhead associated with promoting
and demoting methods. The fastest correctness condition to check is vector space
quiescent consistency. Vector space quiescent consistency encounters less over-
head due to the priority scheme in comparison to the other correctness conditions
since the priority scheme is only enforced at the quiescent periods. Vector space
sequential consistency takes more time to check than vector space quiescent con-
sistency because the priority scheme is enforced when methods are called by the
same thread. Vector space linearizability takes more time to check than vector
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space sequential consistency because the priority scheme is enforced for every
method call. Vector space quasi-linearizability takes more time to check than
vector space linearizability because an additional for-loop of length k is required
to determine if methods are separated by a distance k when establishing if a
method call happens-before another method call.

We compare our dynamic analysis tool with the P-Compositionality [22]
verification technique applied to a concurrent stack. P-Compositionality is an
efficient solution to the NP-complete problem of comparing to legal sequen-
tial histories. We compare to P-Compositionality to provide motivation for the
revised definitions of correctness in vector space by showcasing the potential
performance improvements achievable when correctness verification is a poly-
nomial time problem. The thread count for each test is fixed at 32 and the
number of methods called by each thread varies from 10 to 10000. The verifica-
tion time follows an exponential trend, where 20.0004∗n−1.16 was computed using
interpolation. The approach timed out at the 10000 method calls per thread
(320K total) configuration. A stack is a particularly challenging abstract data
type because a stack history can only be partitioned at instants in which the
stack is empty. With this limitation, P-Compositionality cannot overcome the
exponential growth with respect to the number of methods called.

A snapshot of the verification time at 320,000 method calls is shown in
Table 1. The program time (in seconds) is the measured time of the slowest
thread to execute their assigned method calls. The verification time (in seconds)
is the measured time of the verification thread to check the correctness of the
tested data structure. Although the program execution time is short compared
to the verification time, the problem size with respect to the number of threads
is much larger than state-of-the-art dynamic analysis correctness tools [22,28].
There is a large amount of variance in the quiescent periods for each execu-
tion, leading to a lower consistency in the time to check vector space quiescent
consistency for each of the tested data structures. The verification time for the
other correctness conditions is generally consistent among each of the tested data
structures because the priority scheme is applied at intervals that do not deviate
between different executions. In general, the map data type takes less time to
verify than the other data types because inserting or removing items in the map
does not affect the priority of the other items in the map.

A notable observation regarding the verification time for the different cor-
rectness conditions is that some of the relaxed correctness conditions (vector
space sequential consistency and vector space quiescent consistency) are faster
to verify than vector space linearizability. This result is quite different from the
theoretical time to check correctness for standard relaxed correctness conditions
by searching for an equivalent legal sequential history since the relaxed correct-
ness conditions have more possible legal sequential histories than linearizability.

6.1 Enhancements Using the GPU

Verifying correctness in vector space is further enhanced by utilizing the Graph-
ics Processing Unit (GPU) to check that the concurrent history is balanced (i.e.
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the method call vector sums are ≥ 0) in parallel. The tests are conducted on
an AMD - Ryzen 5 2400G 3.6 GHz Quad-Core Processor with the OpenCL [30]
standard programming environment. The results for the Intel TBB queue are
shown in Fig. 3. The verification times with the label ‘OpenCL’ indicate that
the computation to determine if the concurrent history is balanced is performed
on the GPU. The verification times without the label ‘OpenCL’ indicate that
the computation to determine if the concurrent history is balanced is performed
using a for-loop. At 320, 3200, and 32K method calls, the overhead of OpenCL
outweighs the benefits of using the GPU to check if the concurrent history is
balanced. At the 320K method call configuration, the verification time is reduced
by 27% for vector space linearizability, 27% for vector space sequential consis-
tency, and 20% for vector space quasi-linearizability when performing the bal-
ance computation on the GPU. No time reduction is observed for vector space
quiescent consistency because the time required to verify vector space quiescent
consistency increases as the number of quiescent periods increases, leading to
inconsistent verification times. In general, the verification time reduction moti-
vates utilizing the GPU for large method call counts. The O(n2) time complexity
required for determining the happens-before relationship between method calls
limits the potential performance benefits of GPU computation, which provides
further motivation for the development of correctness conditions that are not
constrained by a happens-before relationship.

320 3200 32K 320K

0.01

0.1

1

10

100

1000

10000

n
2 tre

nd
lin
e

Number of Method Calls

V
er
ifi
ca
ti
on

T
im

e
(s
ec
on

ds
)

TBB QUEUE
(V. S. Lin.)
(V. S. Seq. Cons.)
(V. S. Qui. Cons.)
(V. S. Quasi-Lin.)
(V. S. Lin., OpenCL)
(V. S. Seq. Cons., OpenCL)
(V. S. Qui. Cons., OpenCL)
(V. S. Quasi-Lin., OpenCL)
n2 trend line

Fig. 3. Vector space (V. S.) verification times of Intel TBB Queue on AMD - Ryzen

7 Related Work

There is a large amount of previous research focused on checking correctness
properties of concurrent objects. The literature comprises two fundamentally
different approaches for checking correctness: static checking [3,8,11,14,15,15,
26,27,29,31,33,35,38,40,42,45] and dynamic checking [7,9,12,13,17,18,22,28,
36,37,41,43,44]. Due to space constraints, we dedicate the remainder of this
section for a direct comparison with existing correctness tools.



Concurrent Correctness in Vector Space 169

7.1 Comparison of the Proposed Dynamic Analysis Tool to Existing
Tools

The main advantage of our dynamic analysis tool over other tools for correctness
checking is that we avoid the time costs of generating all possible legal sequential
histories of a concurrent history. There is a special case of linearizability where
correctness checking of a single history can be performed in O(n) time if a single
atomic instruction can be identified as the linearization point of a method. In this
case, a concurrent history only has one possible legal sequential history which
can be checked in O(n) time. Vechev et al. [40] and Ou et al. [31] present tools
that accept user annotated linearization points, while Vafeiadis [39] and Long
et al. [27] present tools to automatically identify potential linearization points.
However, these approaches are not applicable to the common case where method
calls have non-fixed linearization points.

Table 2. Time complexity analysis of correctness verification techniques

Verification Technique Time Complexity Description

Vector Space Analysis O(n2) n is the number of method calls

Strong Hitting Schedules [33] O(p · nd−1) p is the number of threads, n is the

number of operations, d is the

linearizability depth, empirically holds

for small d, where upper bound of d is 5

Reduction to Satisfiability [14] O(nk) n is the number of clauses, k is the rank

of input-operation order signature

P-Compositionality [22] O((n/k + 1) · 2p · B) p is the number of threads, n is the

number of method calls, B is a bound on

the states of the sequential specification,

and k is the number of partitions applied

to a history

Just-In-Time [28] O((n + 1) · 2p · B) p is the number of threads, n is the

number of method calls, and B is a

bound on the states of the sequential

specification

Round-Up [44] O((1 + k)!n/(1+k)) k is the quasi factor, n is the number of

method calls

Recent dynamic analysis tools have significantly pruned the search space of
possible legal sequential histories to consider when checking correctness [22,28].
The time complexity of the dynamic analysis tool by Lowe [28] is O((n+1)·2p·B),
where p is the number of threads, n is the number of method calls, and B is
a bound on the states of the sequential specification. Horn et al. [22] optimize
Lowe’s dynamic analysis tool by a partitioning scheme that reduces n by a con-
stant factor, but the time complexity of solving the smaller partitions is still
O((n + 1) · 2p · B), which is exponential with respect to the number of threads.
The partitioning scheme is highly effective for the set and map abstract data
type because a history can be partitioned according to operations on individual
keys since these operations are commutative. However, the partitioning scheme
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has limited applicability for sets and maps if a size polling method is invoked,
or for other abstract data types such as stacks and queues where commutativity
of operations is dependent on the state of the data structure. Since our dynamic
analysis tool has a time complexity of O(n2), it is capable of checking the cor-
rectness of large method call workloads for an arbitrary number of threads more
efficiently than the tools by Horn et al. [22] and Lowe [28].

A summary of the time complexity analysis of concurrent correctness verifica-
tion techniques is presented in Table 2. Ozkan et al. [33] empirically demonstrate
that most linearizable histories have a witness schedule in a strong d-hitting fam-
ily for d ≤ 5, yielding a worst-case time complexity of O(p · n4), where p is the
number of processes. Horn et al. [22] and Lowe et al. [28] present verification
techniques that are exponential with respect to the number of threads. Round-
up [44] enumerates all possible quasi-linearizations, yielding a worst-case time
complexity that is exponentional with respect to the number of method calls.

Emmi et al. [14]’s reduction of correctness verification to a logical satisfi-
ability problem guarantees a worst-case time complexity of O(nk) for a fixed
rank k of input-operation order signature. This approach is limited to collection
abstract data types whose methods are value-invariant, local, parametric, and
reducible. Our proposed vector space analysis does not have these limitations.
The proposed vector space analysis of writer methods enables a priority adoption
for values that may be changed by method calls and can therefore handle value-
variant methods. Although the presented theory for vector space analysis is only
provided for local methods (methods that touch exactly the values appearing in
its label), it is possible to handle non-local methods such as size and contains in
vector space using mathematical strategies in Sect. 5. Our proposed vector space
analysis is not limited to parametric methods because the logic for handling
writer method calls in vector space can be applied to handle method calls where
value renaming does not yield admitted behavior. Additionally, our proposed
vector space analysis is not limited to reducible methods because the worst-case
time complexity is O(n2), where n is the number of method calls. Therefore, our
approach does not need to be characterized by small representative behaviors.

8 Conclusion

We revised the traditional correctness conditions in literature to be defined in
vector space. We use the proposed theory to design an efficient dynamic anal-
ysis tool that checks the vector space correctness of concurrent data structures
in O(n2) time, where n is the number of method calls. The key benefit of our
dynamic analysis tools is that it shines in areas where other correctness tools fall
short. For example, the dynamic analysis tools by Horn et al. [22] and Lowe [28]
have a time complexity that scales exponentially with respect to the number of
threads, while our approach is not impacted by number of threads. Additionally,
our dynamic analysis tool can check relaxed vector space correctness condi-
tions as efficiently as vector space linearizability which is much different than
the observed verification time for tools that take more time to check standard
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relaxed correctness condition due to the search space for possible legal sequen-
tial histories [44]. The experimental evaluation demonstrates that our dynamic
analysis tool can check the vector space correctness of practical concurrent data
structures for an arbitrary number of threads with large workloads.
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Abstract. Given a verification problem for a concurrent program (with
a fixed number of threads) over infinite data domains, we can construct
a model checking problem for an abstraction of the concurrent program
through a Petri net (a problem which can be solved using McMillan’s
unfoldings technique). We present a method of abstraction refinement
which translates Floyd/Hoare-style proofs for sample traces into addi-
tional synchronization constraints for the Petri net.

Keywords: Petri nets · Unfoldings · Concurrency · Verification

1 Introduction

The verification of concurrent programs is an active topic of research, and since
it is also an old topic of research, there is a large body of literature covering
a wide area of aspects of the problem; see, e.g., [2,3,7,8,10,11,15,17,19,21]. In
this paper, we address the verification problem for programs composed of a fixed
number of threads over an infinite data domain.

This verification problem poses two major challenges. First, the challenge of
interleavings. In contrast to sequential programs, the control-flow of concurrent
programs is much more permissive: an execution trace is not a cohesive sequence
of statements from one process but an interleaved sequence of execution traces
of all processes. Hence we have to account for a gigantic number of possible
orderings of statements of the system’s independent processes. For finite state
systems the problem has been successfully approached by Petri net unfoldings.
If the finite state system is represented by a bounded Petri net (i.e., a Petri
net where each place can only take a pre-defined fixed amount of tokens), an
unfolding is a mathematical structure that allows us to see all reachable states
without exploring all interleavings explicitly. Unfoldings explicitly preserve the
concurrent nature of Petri nets and can be exponentially more concise than a
naive reachability graph.

The second challenge that we are facing is that our variables take their
value from an infinite data domain and hence we cannot directly apply algo-
rithms for finite state systems. For sequential programs this second challenge is
often approached by abstracting the program by a finite state system. If such
c© Springer Nature Switzerland AG 2021
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an abstraction represents all executions of the program but does not have any
erroneous execution, we know that the program is correct. Finding a suitable
abstraction is difficult. Algorithms for finding abstractions usually follow the
counterexample-guided abstraction refinement scheme (CEGAR). There, the
algorithm constructs abstractions iteratively. In each iteration the algorithm
uses Floyd/Hoare-style annotations obtained from counterexamples to refine the
abstraction.

In this paper, we present a method of abstraction refinement which, given
a verification problem for a program composed of a fixed number of threads
over an infinite data domain, constructs a model checking problem for a Petri
net. The idea is to translate Floyd/Hoare-style annotations into synchronization
constraints; by adding synchronization constraints to the Petri net, we refine the
abstraction of the concurrent program through the Petri net. In summary, the
method of abstraction refinement constructs a bounded Petri net and thus gives
us the possibility to use Petri net unfoldings for the verification of programs
composed of a fixed number of threads over an infinite data domain.

Let us motivate our approach by illustrating shortcomings of naive sequential-
ization, a straightforward approach to the verification of concurrent programs.
Sequentialization means that we translate the concurrent program into a sequen-
tial program which allows us to apply all verification techniques for sequential
programs. In its most basic form, the sequentialization produces a control flow
graph (CFG) that is the product of the CFGs of the concurrent program’s
threads. However, this basic approach does not scale well: The product CFG
must explicitly represent the many different interleavings. Hence the number of
locations in the CFG grows exponentially with the number of threads. As an
example, consider the schema for a concurrent program shown in Fig. 1. Given
a number N , this yields a concurrent program with N threads. After the vari-
able x is initially set to 0, the different threads all repeatedly modify x for a
nondeterministically chosen number of times. The control flow graph for each
thread is simple, it only requires 3 locations (loop head, location between both
assignments, and loop exit). But the resulting product CFG has 3N locations, it
grows exponentially in the number of threads. For large N , even the construction
of the product CFG may thus run out of time and memory. In our approach we
do not construct this product but a Petri net that has for each thread one token
and whose places are the locations of all CFGs. Hence our Petri net grows only
linearly in the number of threads.

This paper is organized as follows. In Sect. 2 we demonstrate our approach on
the example above and another example. Section 3 introduces our notation and
terminology for finite automata and Petri nets. We use Petri nets to introduce
the considered verification problem formally in Sect. 4. In Sect. 5 we present our
algorithm for this verification problem, and in Sect. 6 we present an automata-
theoretic difference operation required by our verification algorithm. In Sect. 7
we discuss how the difference operation introduces synchronization constraints.
Finally, we discuss related work in Sect. 8 and conclude with Sect. 9.
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Fig. 1. A concurrent program schema with a scalable (but fixed) number of threads N

2 Examples

In this section we illustrate two aspects of our method of abstraction refinement.
Our method takes as input a verification problem for a concurrent program (i.e.,
a program composed of a fixed number of threads over an infinite data domain).
The program’s control flow is represented by a bounded Petri net. The property
to be verified is encoded as unreachability of a special error place �err in this
Petri net. Our method proceeds by iteratively adding synchronization to the
input Petri net, in order to represent data constraints over the infinite program
state space, i.e., the constraints on the control flow that are due to updates and
tests of data values.

We begin by examining the example in Fig. 1 a bit closer, and we will demon-
strate on this example the strength of our approach: Through its lazy synchro-
nization and the use of unfoldings, we verify the program efficiently, regardless
of the number of threads. The second example will illustrate how our approach
adds synchronization where necessary.

2.1 Retaining Concurrency of Different Threads

Consider again the concurrent program schema in Fig. 1. This program schema
can be instantiated for any number of threads N . In Fig. 2a we see the instantia-
tion of the schema in Fig. 1 for N = 2 threads. In our approach, we represent such
a concurrent program in the form of a Petri net, in this case shown in Fig. 2b.
Each transition of the Petri net is labeled with a statement of the concurrent
program. Here, the first transition is labeled with the initialization statement
for the global variable x. This transition starts the two threads. After some
number of iterations, the threads can decide nondeterministically to exit their
respective loops. Then, the last transition is enabled, which is labeled with the
negated postcondition and leads to the error place �err. This Petri net is our
initial abstraction of the concurrent program. The term abstraction refers to the
fact that the actions labeling the transitions of the Petri net serve as reference;
they are not interpreted for the operational semantics of the Petri net. The state
of the Petri is purely defined by the number of tokens on each of its places.
Hence, in Fig. 2b, the error place �err is reachable.
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Fig. 2. Example. Parsimoniously added synchronization (reflecting data constraints)
reveals the unreachability of an error place in the program. Synchronization is avoided
when the interleavings between actions of different threads are irrelevant in the abstract
– even though they may be relevant in the concrete.
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The verification task now consists of showing that, when the statement
semantics are taken into account, no firing sequence that reaches �err actually cor-
responds to a program execution. We pick one such firing sequence and analyse
the corresponding sequence of statements, taking into account the operational
semantics of the statements. This yields the following two data constraints:

1. After executing the statement x:=0 , the program is in a state where x ≥ 0
holds.

2. If the program is in a state where x ≥ 0 holds, it cannot execute the assume
statement x<0 .

Next, our algorithm constructs the Petri net depicted in Fig. 2c by adding syn-
chronization that reflects the two data constraints above to the initial Petri net
of Fig. 2b. The synchronization constraints are implemented by adding three
additional places (labeled by true, x ≥ 0 and false) that represent the knowl-
ege about the program’s data that we want to replicate. Intuitively, the places
are used to abstract the program’s data values. The transitions labeled x:=0

and x<0 are connected to the new places. The order in which the statements
x:=x+1 , x:=x*1 , x:=x+2 and x:=x*2 are executed is relevant for the

concurrent program (i.e., for the final value of x). It is, however, irrelevant for
the correctness proof that uses the state assertion x ≥ 0. Since these four state-
ments are not relevant for establishing the state assertion x ≥ 0, and this state
assertion is preserved by these statements, our algorithm does not connect the
transitions labeled with these statements with one of the new places.

In the resulting refined Petri net Fig. 2c, the transition labeled x:=0 can
fire if there is a token in the true place, and moves this token to the place labeled
x ≥ 0. Now the transitions in the two threads can fire repeatedly, without moving
the token in x ≥ 0. When at some point both the places �5 and �12 have a token,
the transition labeled x < 0 could fire. However, this would put a token in the
place labeled false, representing a violation of the data constraints. Hence we
prevent this transition from ever firing by adding a blocking place as predecessor,
which will never have a token. As a result, the place �err is unreachable, and we
conclude that the concurrent program satisfies its specification.

Our approach proceeds in the same way for all instantiations of the con-
current program of Fig. 1, for every number of threads N : The state assertions
true, x ≥ 0 and false are added to the Petri net, and synchronized only with
the statements x:=0 and x<0 . However, synchronization with each thread
is not necessary. As a result, the size of the final refined Petri net grows only
linearly in the number of threads N . Through the use of unfoldings, we can check
the reachability of the error place efficiently, without explicitly considering all
interleavings of transitions in the Petri net.
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Fig. 3. Example. Our approach represents the concurrent program in Fig. 3a as the
Petri net in Fig. 3b. To this initial abstraction, we add synchronization reflecting data
constraints on the control flow of the concurrent program. The resulting Petri net is
shown in Fig. 3c.
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2.2 Adding Synchronization Lazily

Consider now the concurrent program depicted in Fig. 3a. Here, the first thread
sets a global variable x to the value 42, and then asserts that it holds said value.
The second thread on the other hand increments x. We represent this program
through the Petri net depicted in Fig. 3b. Once again, transitions are labeled by
statements of the concurrent program, which only serve as reference; they are
not interpreted for the operational semantics of the Petri net. The transition
labeled with the negation of the assertion condition leads to the error place �err.
The place �err is reachable by a firing sequence of the Petri net.

As before, our algorithm analyses the sequence of statements along a firing
sequence that reaches �err, for instance the sequence x:=42 x!=42 . The anal-
ysis of this sequence of statements, taking into account the operational semantics
of the statements, yields the following two data constraints:

1. After executing the assignment x:=42 , the program is in a state where
x = 42 holds.

2. If the program is in a state where x = 42 holds, the assertion condition is not
violated, i.e., the assume statement x!=42 cannot be executed.

Next, the algorithm constructs the Petri net depicted in Fig. 3c, by adding syn-
chronization to the initial Petri net. As before, we add three additional places
(labeled by true, x = 42 and false) to reflect our data constraints. However,
in this example, the order and number of firings of the transitions in the two
threads is not irrelevant to our data constraints: In particular, if the program
is in a state where x = 42 holds and the second thread now executes x:=x+1 ,
then it is no longer guaranteed that x = 42 holds. Hence, we must connect
the transitions to the new places. We have two copies of the transition labeled
x:=x+1 : One copy can fire if there is a token in the true place, and puts the

token back into the true place. The second copy can fire if there is a token in the
place labeled x = 42, and moves that token into the true place. Similarly for the
two copies of the transition labeled x!=42 : One copy takes a token from the
true place and puts it back, the other takes a token from the x = 42 place and
moves it to the false place. This however would represent a violation of the data
constraints, and thus we again add a blocking place to prevent this transition
from firing. The transition labeled x:=42 moves a token from the true place to
the x = 42 place. We omit the second copy of this transition (with predecessor
x = 42), as it would be unreachable.

In the resulting Petri net Fig. 3c, an execution of the Petri net labeled
with the sequence x:=42 x!=42 is no longer possible. However, the �err
place is still reachable through a firing sequence labeled with the statements
x:=42 x:=x+1 x!=42 . Hence our algorithm now analyses this sequence,

taking into account the semantics, and determines that there are no data con-
straints preventing the execution of this sequence of statements. We conclude
that the concurrent program is incorrect: The assertion may indeed be violated.
Because of the introduced synchronization, the reachability check in this exam-
ple has to explicitly consider the different orderings between transitions from
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the two threads. This explains our focus on avoiding synchronization wherever
possible, in order to maintain the efficiency of our approach. However, in this
case a separate consideration of the different orderings is inevitable, as exactly
one of them can be executed and leads to an error.

3 Petri Net and Finite Automata

In this section we introduce our notation and terminology for Petri nets and
finite automata. Analogously to finite automata we will introduce Petri nets as
acceptors of languages. Throughout this paper we will only work with bounded
Petri nets, but we will define a bounded Petri net as a special case of a (general)
Petri net.

3.1 Finite Automata

A finite automaton A = (Σ,Q, δ, qinit, Qacc) consists of an alphabet Σ, a finite
set of states Q, a transition relation δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q and
a set of accepting states Qacc ⊆ Q. The elements of Σ are called letters, and
sequences w ∈ Σ∗ are words. We say that a word w = a1 . . . an ∈ Σ∗ is accepted
by A iff there exists a corresponding run of states q0 . . . qn such that

– q0 = qinit is the initial state,
– for all i ∈ {1, . . . , n}, it holds that (qi−1, ai, qi) ∈ δ,
– and qn ∈ Qacc is accepting.

The set of all words accepted by A is the language L(A) recognized by the
automaton.

We say that A is deterministic iff for all q ∈ Q and a ∈ Σ, there exists at
most one q′ such that (q, a, q′) ∈ δ. Dually, we say that A is total iff there always
exists at least one such q′. Hence, the transition relation of a deterministic total
automaton is a function, and we write δ(q, a) = q′ in place of (q, a, q′) ∈ δ. It
is well-known that for every finite automaton A, one can compute a determin-
istic total automaton A′ that recognizes the same language, L(A) = L(A′). We
abbreviate deterministic total automaton as DFA.

We call a transition (q, a, q′) ∈ δ a self-loop iff q = q′.

3.2 Petri Nets as Language Acceptors

We define a Petri net as a 7-tuple N = (Σ,P, T, F,minit, λ, Pfin) where Σ is an
alphabet, P are places, T are transitions with P ∩T = ∅, F ⊆ (P ×T )∪ (T ×P )
is a flow relation, minit : P → N is an initial marking, λ : T → Σ is a labeling of
transitions, and Pfin ⊆ P is a set of accepting places. We will sometimes use an
infix notation for the flow relation and write e.g. p F t instead of (p, t) ∈ F .
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We define a marking as a map m : P → N that assigns a token count to each
place. We write M to denote that set of all markings over P . A marking m ∈ M
covers a place p ∈ P iff m assigns at least one token to p.

m covers p ⇔ m(p) > 0

We call a marking m ∈ M accepting iff it covers at least one accepting place.
With m �t m′ we denote that transition t ∈ T can be fired from marking m,

i.e., all predecessor places have a token, and the firing of t results in the marking
m′. Formally, we define the firing relation �⊆ M × T × M as

m �t m′ ⇔ ∀p ∈ P : p F t → m(p) > 0 and
∀p ∈ P : m′(p) = m(p) − |{t ∈ T | p F t}| + |{t ∈ T | t F p}|

A firing sequence in N is then an alternating sequence m0 �t1 m1 �t2

. . . �tn
mn of markings mi ∈ M and transitions ti ∈ T , such that (a) m0 = minit

is the initial marking and (b) the sequence adheres to the firing relation, i.e.
mi−1 �ti

mi for all i ∈ {1, . . . , n}. A firing sequence ending in an accepting
marking is called accepting. We say that a marking m is reachable iff there
exists a firing sequence m0 �t1 m1 �t2 . . . �tn

mn with mn = m.
We define the language that is recognized by a Petri net as follows:

L(N ) :=

⎧
⎨

⎩

∃ accepting firing sequence
a1a2 . . . an ∈ Σ∗ | m0 �t1 m1 �t2 . . . �tn

mn

such that ∀ i ∈ {1, . . . n} : λ(ti) = ai

⎫
⎬

⎭

A net is bounded (also known as 1-safe or just safe) iff all reachable markings
have at most one token per place. In this paper we consider only bounded Petri
nets and we will often use Petri net as a synonym for bounded Petri net. We
identify markings m : P → N with sets m′ ⊆ P .

m ≡ m′ ⇔ ∀p ∈ P : m(p) = 1 ↔ p ∈ m′

4 Petri Programs

In this section we describe our formal setting, based on the notion of Petri
nets as language acceptors as presented in Sect. 3.2. We then make precise the
verification problem solved by our algorithm.

4.1 Program Semantics

We assume a fixed set of program variables Var and a language of statements
Stmt. A program state s ∈ State maps program variables to their values, which
may lie in an infinite data domain (such as Z). Each statement st ∈ Stmt is
assigned a semantics [[st]] ⊆ State×State, which relates input states to possible
output states. We call a sequence of statements τ ∈ Stmt∗ a trace, and extend
the semantics in a straightforward way:
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Definition 1 (Trace Semantics, Infeasibility). The semantics of a trace
τ ∈ Stmt∗ is recursively defined as

[[ε]] = id [[st.τ ]] = [[st]] ◦ [[τ ]]

We call τ infeasible iff [[τ ]] = ∅.
The semantics of a trace is hence exactly the set of all pairs of program

states (s, s′) such that, starting from s, τ can be executed in its entirety, and
can (depending on nondeterministic choices) reach the state s′. If no such pair
exists, it follows that data constraints prevent the execution of the trace: It is
infeasible.

A state assertion is a logical formula ϕ over variables in Var. We write
s |= ϕ to signify that program state s satisfies the state assertion ϕ. A valid
Hoare triple {ϕ} st {ψ} consists of state assertions ϕ,ψ and a statement st, such
that for each pair (s, s′) ∈ [[st]] it holds that s |= ϕ implies s′ |= ψ. An infeasibility
proof for a trace τ = st1 . . . stn is a sequence of state assertions ϕ0 . . . ϕn such
that ϕ0 = true, ϕn = false and {ϕi} sti+1 {ϕi+1} is a valid Hoare triple for
i ∈ {0, . . . , n − 1}. As the name implies, if there exists an infeasibility proof for
a trace τ , then τ is infeasible. In a sense, an infeasibility proof consists of data
constraints blocking the execution of the trace τ .

Our algorithm considers bounded Petri nets N over a finite alphabet Σ ⊆
Stmt. We use the term Petri net when we want to stress that it is only viewed as
a language acceptor, ignoring the semantics of statements. By contrast, the term
Petri program refers to the infinite-state program, which is derived by assigning
semantics to the alphabet statements. The Petri net represents the control flow
of this program. In fact, it could be called the program’s control flow Petri net,
in analogy to control flow graphs for sequential programs.

4.2 Verification Problem

In addition to the control flow, a Petri net N also encodes its correctness specifi-
cation. This is achieved by the accepting places of the Petri net, which represent
error locations, i.e., locations that should not be reached by any execution of the
corresponding Petri program. In the program text from which the net is derived,
these error locations are typically expressed as assert statements.

Example 2 (Specifications). For instance, the net in Fig. 3b encodes the program
with the assert statement assert x==42. If this assert condition is violated, i.e.,
x �= 42, the error location �err is reached.

An accepted trace τ ∈ L(N ) is thus a trace for which at least one thread
would reach an error location, provided the trace actually has a corresponding
execution in the Petri program. We thus call these traces error traces. It now
becomes clear that the verification task must consist of showing that no error
trace has a corresponding execution in the Petri program, i.e., all error traces
are infeasible.
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Example 3 (Infeasible and Error Traces). Consider again the example shown in
Fig. 2b. Here, the trace x:=0 x:=x+2 x:=x*2 x<0 is an error trace. It is
however infeasible, as there is no output state s of x:=0 x:=x+2 x:=x*2

which can execute x<0 .
Conversely, the trace x:=0 x:=x+1 x:=x+2 of Fig. 2b is feasible, its

semantics contains for instance the pair of states ({x �→ 17}, {x �→ 3}). It is
however not an error trace.

While the language L(N ) accepted by the Petri net represents the Petri
program’s control flow aspects, the semantic relation additionally takes into
account the program’s data and summarizes the program’s semantics:

Definition 4 (Semantic Relation). Let N be a Petri program. The semantic
relation [[N ]] of N is defined as

[[N ]] :=
⋃

τ∈L(N )

[[τ ]]

We conclude the section by formally stating the verification task:

Definition 5 (Petri Program Correctness). A Petri program N is correct
if and only if its semantic relation is empty:

[[N ]] = ∅

i.e., if and only if all error traces are infeasible.

5 Verification Algorithm

We now describe our verification algorithm. It is an adaptation of the Trace
Abstraction approach [16] to Petri programs.

As defined above, the verification algorithm must determine if the semantic
relation of a given Petri program N is empty, i.e., [[N ]] = ∅. The simplest case
where this holds is the case where the Petri net recognizes the empty language,
i.e., L(N ) = ∅. This holds if and only if no accepting marking is reachable in N .
This reachability problem can be solved efficiently using the algorithm for the
construction of complete finite prefixes of the unfolding of a Petri net proposed
by McMillan [9,20]. This prefix is a finite initial part of the unfolding which
contains full information about the reachable markings of the Petri net.

Our algorithm aims to reduce every verification problem to the simple case
L(N ) = ∅, and thus to purely automata-theoretic reasoning. It does so by itera-
tively transforming the Petri program N to a Petri program N ′ that is equiva-
lent, i.e., it has the same semantic relation: [[N ]] = [[N ′]]. The transformed Petri
net N ′ accepts only a subset of the traces accepted by N , i.e., L(N ′) ⊆ L(N ). If
the algorithm eventually reaches a Petri net N ′ with L(N ′) = ∅, as determined
by the unfolding algorithm, then it holds that [[N ]] = [[N ′]] = ∅, and the original
Petri program N is correct.
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Fig. 4. Trace Abstraction CEGAR loop.

In order to achieve this iterative refinement, the algorithm employs a counter-
example guided abstraction refinement (CEGAR) loop, illustrated in Fig. 4. In
each iteration, the complete finite prefix of the unfolding of N is constructed in
order to search for an error trace τ accepted by the current Petri net N , the
(possibly spurious) counterexample. Our algorithm then checks this counterex-
ample for feasibility using an SMT solver. If the counterexample is feasible, i.e.,
non-spurious, then the program is incorrect and the verification is stopped. If
τ is infeasible on the other hand, the algorithm constructs a finite automaton
Aτ that accepts at least τ and possibly infinitely many other infeasible traces.
The refined Petri net is then constructed as the difference N �Aτ of the current
N and Aτ . We will describe the automata-theoretic difference operation � in
Sect. 6. For the moment, suffice it to say that this difference operation takes as
input a Petri net N and a finite automaton A. It then constructs a version of
the Petri net with additional synchronization, as seen in Sect. 2. The resulting
Petri net satisfies L(N � A) = L(N ) \ L(A).

We now discuss how to construct the automaton Aτ . This automaton extracts
the data constraints from an infeasibility proof of the trace τ and generalizes
them to other traces. To this end, we introduce the following class of automata:

Definition 6 (Floyd/Hoare-Automata). A Floyd/Hoare-automaton is a
finite automaton A = (Σ,Q, δ, qinit, Qacc) over the alphabet of program state-
ments Σ, such that there exists a mapping β that assigns each automaton state
q ∈ Q a state assertion β(q) with

– β(qinit) = true,
– if (q, st, q′) ∈ δ, then {β(q)} st {β(q′)} is a valid Hoare triple,
– and for all q ∈ Qacc, β(q) = false.

For each trace τ accepted by a Floyd/Hoare-automaton A, there exists an infea-
sibility proof, given by application of β to the accepting run of states. Hence A
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Fig. 5. Examples of deterministic total Floyd/Hoare-automata for the examples from
Sect. 2.

can only accept infeasible traces. For details on how to construct a Floyd/Hoare-
automaton Aτ from an infeasible trace τ , we refer the reader to Heizmann et
al. [16]. Note that in particular, one can always construct a deterministic total
Floyd/Hoare-automaton, assuming the set of state assertions used to label states
is closed under conjunctions.

Example 7 (Floyd/Hoare-Automata). Consider again an error trace from Fig. 2b,
for instance x:=0 x:=x+1 x:=x+2 x:=x*2 x:=x*1 x<0 . A possible
infeasibility proof is true, x ≥ 0, x ≥ 0, x ≥ 0, x ≥ 0, x ≥ 0, false. A Floyd/Hoare-
automaton corresponding to this infeasibility proof is shown in Fig. 5a. Subtrac-
tion of this Floyd/Hoare-automaton from the Petri net yields the Petri net shown
in Fig. 2c.

Similarly, the error trace x:=42 x!=42 from Fig. 3b is proven infeasible
by the sequence true, x = 42, false. A corresponding Floyd/Hoare-automaton is
given in Fig. 5b. The Petri net shown in Fig. 3c represents the difference of the
original net and this Floyd/Hoare-automaton.

After presenting the difference operation in Sect. 6, we will discuss in Sect. 7 how
its usage combined with Floyd/Hoare-automata achieves the additional synchro-
nization using data constraints. We conclude this section with a discussion of
soundness of our approach. We begin by showing that the subtraction of a Floyd-
Hoare automaton does not modify the Petri program’s semantics.

Lemma 8 (Semantics-Preserving Refinement). Let Aτ be an automaton
accepting only infeasible traces, and let N ′ = N � Aτ . Then N is equivalent to
N ′, i.e., [[N ]] = [[N ′]].
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Proof. Since L(N ′) ⊆ L(N ), it follows that [[N ′]] ⊆ [[N ]]. On the other hand,
L(N ) ⊆ L(N ′) ∪ L(Aτ ). It follows that

[[N ]] ⊆ [[N ′]] ∪
⋃

τ∈L(Aτ )

[[τ ]] = [[N ′]] ∪
⋃

τ∈L(Aτ )

∅ = [[N ′]]

Thus it holds that [[N ]] = [[N ′]].

Intuitively, the argument for the equivalence of N and N ′ is this: We only
remove traces τ ∈ L(Aτ ) which are accepted by the Floyd/Hoare-automaton Aτ .
But then such traces τ must be infeasible, i.e., there do not exist corresponding
executions of the Petri program. Hence we only remove traces that are artefacts
of the finite-state abstraction given by the Petri net, we never remove actual
feasible program traces. In other words, we refine the abstraction N to the
equivalent, but strictly less coarse abstraction N ′. We arrive at the soundness
result for our algorithm:

Theorem 9 (Soundness). Our verification algorithm is sound, i.e., whenever
it concludes that a given input Petri program N is correct, then [[N ]] = ∅.
Proof. The algorithm iteratively transforms N to some Petri program N ′. By
repeated application of Lemma 8, we have that [[N ]] = [[N ′]]. The algorithm con-
cludes correctness only if L(N ′) = ∅ (by soundness of McMillan’s unfolding
algorithm [9,20]), and hence [[N ]] = [[N ′]] = ∅.

6 Difference Operation

In this section we present a difference operation N � A for a Petri net N and
a finite automaton A. This difference operation implements the addition of syn-
chronization discussed in Sect. 2, and is used by our verification algorithm as
presented in Sect. 5. We give a purely automata theoretic presentation of this
operation here, and we discuss in Sect. 7 how this operation implements the
addition of synchronization constraints.

The inputs of our operation are a bounded Petri net N =
(Σ,P, T, F,m0, λ, Pfin) and a deterministic total finite automaton A =
(Σ,Q, δ, q0, Qacc) over the same alphabet which satisfies the property

L(A) = L(A) ◦ Σ∗

i.e., the language of A is closed under concatenation with Σ∗. We call the Petri
net N the minuend of the operation and we call the finite automaton A the
subtrahend of the operation.

The basic idea of the construction is to run the Petri net and the DFA
in parallel and to let the result block as soon as the DFA is going to enter a
accepting state. The basic construction rule is illustrated in Fig. 6: For each Petri
net transition t with predecessor places p1, . . . pn and successor places p′

1, . . . p
′
m,

and for each edge in the finite automaton that has predecessor q, successor q′
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Fig. 6. Basic construction rule for the difference operation whose minuend is a Petri
net, whose subtrahend is a deterministic total finite automaton and whose result is a
Petri net.

and is labeled by λ(t), we add a transition that is labeled by labeled by λ(t) and
has predecessor places are p1, . . . pn, q and successor places p′

1, . . . p
′
m, q′. There

are however two exceptions to this basic construction rule.

E1: If the successor state q′ is an accepting state, the transition must never fire.
Hence we add a special blocking place as predecessor, which can never have
a token.

E2: If a letter a ∈ Σ occurs only in self-loops of the DFA, then we just copy
the Petri net transitions that are labeled by a without adding an additional
predecessor or successor.

The exception E1 ensures that words of L(A) are not accepted by the result.
The exception E2 is an optimization that reduces the number of transitions
and the elements of the flow relation. While this optimization is not directly
necessary for the correctness of the operation, we will discuss in Sect. 7 why it
is crucial to our approach. In order to implement exception E2, we define the
subset Σlooper ⊆ Σ that consists of all letters a ∈ Σ that occur only in self-loops
of the subtrahend A.

Σlooper := {a ∈ Σ | δ(q, a) = q for all q ∈ Q}

We define the result of the synchronization operation N ′ := N � A formally as

N ′ := (Σ,P ′, T ′, F ′,m′
0, λ

′, P ′
fin)

The set of places is the disjoint union of the minuend’s places, the subtrahend’s
states and one auxiliary place.

P ′ := P ∪̇ Q ∪̇ {pblock}
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The set of transitions and the flow relation is defined according to the construc-
tion rule of Fig. 6 and the exceptions E1 and E2.

T ′ := {t | t ∈ T, λ(t) ∈ Σlooper}
∪ {(q, t, q′) | t ∈ T, λ(t) /∈ Σlooper, q ∈ Q, δ(q, λ(t)) = q′}

F ′ := {(p, t′), (t′, p′) | t′ ∈ T, (p, t) ∈ F, (t, p′) ∈ F}
∪ {(q, t′), (t′, q′) | t′ = (q, t, q′), q ∈ Q, t ∈ T, q′ ∈ Q}
∪ {(p, t′), (t′, p′) | t′ = (q, t, q′), (p, t) ∈ F, (t, p′) ∈ F}
∪ {(pblock, t′) | t′ = (q, t, q′), q′ ∈ Qacc}

Transition labels are copied from the minuend.

λ(t′) :=

{
λ(t′) if t′ ∈ T

λ(t) if t′ = (q, t, q′) for some q ∈ Q, t ∈ T, q′ ∈ Q

The initial marking is the disjoint union of the minuend’s initial marking and
the initial state of the subtrahend.

m′
0 := m0 ∪̇ {q0}

The set of accepting places is the minuend’s set of accepting places.

P ′
fin := Pfin

We show that this operation does indeed implement the language-theoretic
difference between the given Petri net and the automaton:

Theorem 10. Given a Petri net N and a DFA A. If A is total and closed under
concatenation with Σ∗, then the Petri net N � A recognizes the set theoretic
difference of L(N ) and L(A), i.e.,

L(N � A) = L(N )\L(A).

Proof. Let N = (Σ,P, T, F,m0, λ, Pacc), A = (Σ,Q, δ, q0, Qacc), and N ′ =
N � A = (Σ,P ′, T ′, F ′,m′

0, λ
′, P ′

acc). Let a1 . . . an ∈ Σ∗ be a word. We prove
by induction over the length n the following: The sequence m0 ∪ {q0} �t′

1

m1 ∪ {q1} �t′
2

. . . �t′
n

mn ∪ {qn} is a firing sequence of N ′ iff m0 �t1 m1 �t2

. . . �tn
mn is a firing sequence of N and q0, q1, . . . , qn is a run of A such that

no qi is an accepting state, where t′i = ti if ai ∈ Σlooper and t′i = (qi−1, ti, qi) if
ai /∈ Σlooper. In the induction step, we use that the DFA A is total and that our
auxiliary place pblock ensures that the firing sequence of N ′ cannot contain an
accepting state of A. Since A is total it cannot block and since it is deterministic
and closed under concatenation with Σ∗ is can never leave the set of accepting
states once it entered an accepting state. Together with the fact that the accept-
ing places of N ′ are the accepting places of N we conclude that a1 . . . an ∈ L(N ′)
iff a1 . . . an ∈ L(N ) and a1 . . . an /∈ L(A).
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7 Discussion

The approach we have presented avoids eager synchronization: It does not ini-
tially represent the many different interleavings of a concurrent program explic-
itly, and hence avoids the associated state explosion. Instead, synchronization
is added lazily, only where it is needed: We derive data constraints from the
analysis of infeasible interleavings, represented as a finite automaton. Our dif-
ference operation then uses this automaton to add synchronization to the Petri
net. Here too we carefully avoid unnecessary synchronization.

Example 11 (Synchronization based on data constraints). Let us discuss the syn-
chronization based on data constraints on our example programs. Consider the
Petri net in Fig. 2c, the result of our difference construction applied to the
Petri net in Fig. 2b and the Floyd/Hoare-automaton in Fig. 5a. Observe that
there is no synchronization between the transitions labeled x:=x+1 , x:=x*1 ,
x:=x+2 and x:=x*2 . While the ordering between these statements does have

an impact on the behaviour of the program (in particular, on the final value of
x), it is irrelevant to the data constraint x ≥ 0, which prevents the program
from reaching the error place. Correspondingly, these statements only occur as
self-loops in the Floyd/Hoare-automaton, and are thus not synchronized by our
difference operation (exception E2). By contrast, the statement x:=0 estab-
lishes the data constraint x ≥ 0, and x<0 contradicts it. Hence, the transitions
labeled with these statements are modified to have additional predecessor and
successor places corresponding to the automaton states. If the transition labeled
x<0 was to fire, the token would move to the place labeled false. This place

corresponds to an accepting state of the Floyd/Hoare-automaton, or in other
words, a violation of the data constraints. Hence the transition must not fire: It
requires a token from the blocking place, which never has a token. In summary,
we only synchronize the initialization statement and the check of the postcondi-
tion. The two threads however remain completely unsynchronized.

Compare this to our second example program, and to the difference of Fig. 3b
and Fig. 5b, as shown in Fig. 3c. Here, synchronization between all three state-
ments has been introduced: Each transition has as predecessor and as successor
a place corresponding to an automaton state, resp. a data constraint. The reason
for this lies in the fact that none of the statements is irrelevant to the data con-
straints. Hence synchronization is necessary to keep track of these constraints.
The statement x:=42 establishes the data constraint x = 42, and hence moves
a token from the true place to the place labeled x = 42. The statement x!=42

contradicts the data constraint x = 42, and hence we have a transition labeled
with this statement, which takes a token out of the x = 42 place and puts it in
the false place. However, we again prevent this transition from firing through
the addition of a blocking place. Note that we have a second transition with the
same statement: If the constraint x = 42 has not been established, the statement
may execute without contradicting the trivial constraint true. No such second
transition is necessary for the statement x:=42 , as it is not possible to reach
the data constraint x = 42 and then execute the statement (again). Finally, the
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statement x:=x+1 is also synchronized: While it neither establishes nor contra-
dicts the data constraint, this synchronization is necessary as it can invalidate
the constraint. Here too we have two copies of the transition: If no constraint on
the data has been established (a token is in the true place), the statement can
execute and establishes no new data constraint (the token is put back into the
true place). On the other hand, if the data constraint x = 42 holds (i.e., there is
a token in the place labeled with this constraint), then x:=x+1 invalidates the
constraint (and moves the token into the true place). As a result of the added
synchronization, only one (out of three) interleavings of the statements remains
possible in the Petri net.

Optimization E2. Through the use of McMillan’s unfolding technique, we are
able to check emptiness of the refined Petri net resulting from our difference
operation. The efficiency of this check and our whole approach relies crucially
on the optimization E2 in the definition of the difference operation. Unfoldings
do not explicitly consider the many different orderings between concurrent tran-
sitions, i.e., transitions t1, t2 that are both enabled in a reachable marking m
and have disjoint sets of predecessors. The ability to preserve the concurrency
of such transitions is the source of the efficiency of the unfolding technique.
Without exception E2, the difference Petri net would not have any concurrent
transitions: If the marking m can be reached from the initial marking through a
firing sequence labeled with a word w, then by Theorem 10, m contains exactly
one place corresponding to a state q of the finite automaton, namely the state
that the automaton reaches after reading w. Without exception E2, q would be a
predecessor place for both transitions t1 and t2, and hence the transitions would
not be concurrent. Since unfoldings explicitly consider the ordering between
non-concurrent transitions, they would suffer the same exponential explosion as
naive sequentialization. Thus, our difference operation is specifically designed to
optimize for the application of the unfolding technique.

Scalability. The result is a verification algorithm that, for many concurrent pro-
grams, is significantly more efficient than classical Trace Abstraction based on
sequentialization. We demonstrate this efficiency improvement using our exam-
ple concurrent program schema from Fig. 1. To this effect, we analyzed instances
of this program schema for up to 60 threads, both with classical Trace Abstrac-
tion and with the method presented here. We ran both analyses on a machine
with an AMD EPYC 7351P 16-Core CPU 2.4 GHz and 128 GB RAM running
Linux 5.8.12 und Java 1.8.0 202 64bit, and monitored them using the bench-
marking tool benchexec [4]. The results can be seen in Fig. 7. The classical,
automata-based Trace Abstraction (shown in red) falls victim to the state explo-
sion problem, and reaches the timeout (15 min) for 12 threads or more. On the
other hand, our approach (shown in blue) scales much better, and can anal-
yse even the 60-thread instance in approximately 15 s. Similarly, the memory
consumption of classical Trace Abstraction explodes quickly, while the memory
consumption of our approach scales well. The erratic memory consumption of
the classical approach for more than 12 threads is due to the timeouts.
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Fig. 7. Resources used in the analysis of instantiations of the program schema from
Fig. 1 for up to 60 threads, with classical (automata-based) Trace Abstraction and with
our Petri net-based approach.

8 Related Work

Partial Order Reduction (POR) is another technique used to deal with the com-
plex control flow of concurrent systems, and has recently been applied for infinite-
state program verification [5,6,12,13,22]. Closest to our approach are the works
that combine POR with Trace Abstraction, such as the work by Cassez and
Ziegler [5] as well as the works of Farzan and Vandikas [12,13]. Cassez and
Ziegler apply a variant of POR, where two statements that do not write to com-
mon variables are independent. They apply this POR to the sequentialization
of the concurrent program once, and then verify the resulting program using
classical Trace Abstraction. Farzan and Vandikas on the other hand use a form
of Büchi tree automata to represent an infinite range of reductions of the pro-
gram and use an adaptation of Trace Abstraction to find a proof for one of these
infinitely many reductions. We share the general idea of POR, namely to avoid
explicitly representing many different interleavings. However, POR selects rep-
resentative interleavings, while we consider all interleavings but represent them
concisely. Furthermore, the works of Farzan and Vandikas in particular focus
on proof simplicity . By contrast, our focus is on the combinatorial explosion of
interleavings.

Bounded model checking (BMC) is among the most popular techniques for
concurrent program verification. The basic idea in BMC is to search for a coun-
terexample in executions whose length is bounded by some integer k. This prob-
lem can be efficiently reduced to a satisfiability problem, and can therefore be
solved by SAT or SMT methods. BMC has the disadvantage of not being able
to prove the absence of errors in general. There are many program verification
tools based on bounded model checking, e.g., Cbmc [1], Dartagnan [14], Lazy-
CSeq [18], and Yogar-cbmc [23]. Cbmc implements a bit-precise bounded
model checking for C programs and uses POR to deal with the problem
of interleavings. Yogar-cbmc uses a scheduling constraint based abstraction



Verification of Concurrent Programs Using Petri Net Unfoldings 193

refinement method for bounded model checking of concurrent programs. In order
to obtain effective refinement constraints, two graph-based algorithms have been
devised over the so-called Event Order Graph for counterexample validation and
refinement generation. Lazy-CSeq translates a multi-threaded C program into a
nondeterministic sequential C program that preserves reachability for all round-
robin schedules with a given bound on the number of rounds and re-uses existing
BMC tools as backends for the sequential verification problem.

Thread-Modular Abstraction Refinement [17] performs thread-modular
assume-guarantee reasoning to overcome the challenge of the large number of
interleavings of multithreaded programs. Thread modularity means that one
explores the state space of one thread at a time, making assumptions about
how the environment can interfere. This approach uses counterexample-guided
predicate-abstraction refinement to overcome the challenge of the infinite state
space.

Inductive data flow graphs [11] consist of data flow graphs with incorpo-
rated inductive assertions. They consider a set of dependencies between data
operations in interleaved thread executions and generate the set of concurrent
program traces which give rise to these dependencies. The approach first con-
structs an inductive data flow graph and then checks whether all program traces
are represented.

Slab [8] is a certifying model checker for infinite-state concurrent systems.
For a given transition system and a safety property it either delivers a coun-
terexample or generates a certificate of system correctness in the form of an
inductive verification diagram. Slab considers the control-flow constraints of a
program as data constraints over program counter variables. Hence Slab can
also abstract the control-flow of a program and does not have to build a product
of CFGs initially. The abstraction is iteratively refined by predicates that are
obtained from Craig interpolation.

9 Conclusion

We presented a verification approach for concurrent programs composed of a
fixed number of threads over an infinite data domain. The contribution of the
paper is to propose a solution to the two challenges raised by this verification
problem: find a finite state abstraction for the concurrent program and deal with
the problem of interleavings. Our solution is to use bounded Petri nets as finite
state abstractions of the concurrent program. This enables us to apply algorithms
based on unfoldings [9,20], i.e., algorithms that are used to analyze concurrent
systems without falling victim to the problem of interleavings. Our algorithm for
finding abstractions is based on the scheme of counterexample-guided abstraction
refinement, specifically in the automata-based setting of Trace Abstraction [16].
We have shown that the automata-theoretic difference operation used in this
setting can be implemented through the addition of (automatically generated)
synchronization constraints to a Petri net.
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Abstract. In previous work, we introduced synchronous threshold
automata for the verification of synchronous fault-tolerant distributed
algorithms, and presented a verification method based on bounded model
checking. Modeling a distributed algorithm by a threshold automaton
requires to correctly deal with the semantics for sending and receiving
messages based on the fault assumption. This step was done manually
so far, and required human ingenuity. Motivated by similar results for
asynchronous threshold automata, in this paper we show that one can
start from a faithful model of the distributed algorithm that includes
the sending and receiving of messages, and then automatically obtain a
threshold automaton by applying quantifier elimination on the receive
message counters. In this way, we obtain a fully automated verification
pipeline. We present an experimental evaluation, discovering a bug in our
previous manual encoding. Interestingly, while quantifier elimination in
general produces larger threshold automata than the manual encoding,
the verification times are comparable and even faster in several cases,
allowing us to verify benchmarks that could not be handled before.

1 Introduction

Formal modeling and automated verification of fault-tolerant distributed algo-
rithms [2,28] received considerable attention recently, e.g., [8,20,29,32,38]. In the
more classic approach towards distributed algorithms’ correctness, algorithms
are described in pseudo code, using send and receive operations whose seman-
tics are typically not formalized, but given in English. As a result, this may
lead to ambiguities that are an obstacle both for implementing distributed algo-
rithms faithfully, as well as for computer-aided verification. Threshold automata
were introduced as a formalization of fault-tolerant distributed algorithms with
precise semantics [5,23,26], and effective automated verification methods have
been introduced both for the asynchronous [22] and for the synchronous [36]
case. While they are a concise model that allows to capture precisely the non-
determinism distributed systems exhibit due to the communication model and
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partial faults, threshold automata in fact constitute a manual abstraction: a
threshold automaton has to capture two major ingredients of a distributed sys-
tem: (i) the local program control flow that is based on received messages and (ii)
the semantics of send and receive operations in a fault-prone environment. For
many classical distributed algorithms, this manual abstraction is quite imme-
diate, but as has been observed in [37], more involved distributed algorithms
are harder to abstract manually. This manual process consists in understanding
how a fault assumption—that typically is well-understood but not formalized—
changes the semantics of sending and receiving messages, which is a formaliza-
tion step that typically requires human ingenuity. The more desirable approach
is to have a precise and formal description of (i) and (ii), and to construct the
abstraction automatically. This also allows to reuse (ii), that is, the formaliza-
tion of given distributed computing model for new benchmarks. Indeed, in [37],
for asynchronous algorithms, we introduced a method that takes as input for-
malizations of (i) and (ii) and automatically constructs threshold automata. By
this, we have reduced the required expertise of the user, increased the degree of
automation on the verification process, and indeed found some bugs in manual
abstractions of asynchronous algorithms. However, the approach in [37] focuses
on (asynchronous) interleaving semantics, and asynchronous message passing,
which pose different challenges than the synchronous setting.

While distributed algorithms are mostly designed for asynchronous systems,
there exists a considerable amount of literature that focuses on synchronous
distributed algorithms. The synchronous computation model is relevant, both
theoretically and practically: (a) a well-known impossibility result [18] reveals
a class of problems for which a solution in the asynchronous model does not
exist, but which can be solved in the synchronous model, (b) some real-time sys-
tems are actually built on top of synchronous distributed algorithms [24], and
(c) several verification approaches reduce the asynchronous to the synchronous
setting [4,12,13,15,19,25], enabling the transfer of verification techniques. For
these reasons, verification in the synchronous setting received significant inter-
est recently [1,17,29]. Applying verification techniques discovered a bug in an
already published synchronous consensus algorithm, as reported in [27].

In [36], we proposed a synchronous variant of threshold automata along with
an automated verification method based on bounded model checking. We exper-
imentally evaluated our approach on a large number of benchmarks coming from
the distributed systems literature. However, the framework in [36] is based on
the manual abstraction described above.

Our Contributions. In this paper, we bring the automatic generation of thresh-
old automata to the synchronous setting. We propose a synchronous threshold
automata (STA) framework that allows us to:

1. model a given algorithm with an STA, whose guards are linear integer
arithmetic expressions over the number of received messages, such that the
obtained STA is in one-to-one correspondence with the pseudo code,
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2. model the implicit assumptions imposed by the computation and fault models
explicitly, using a so-called environment assumption, which is specific to the
respective fault model and can be reused for different algorithms,

3. automatically translate the guards over the local receive variables into guards
over the number of globally sent messages, using quantifier elimination,

4. pass the output of the translation as input to the verification tool proposed
in [36], which implements a semi-decision procedure for computing the diam-
eter, and performs bounded model checking.

In [36], the STA given as input to the verification tool was produced man-
ually, that is, the steps 1–3 above were done by the user. By automating these
steps, we reduce the ingenuity required by the user. We encoded the control
flow and the environment assumptions of several synchronous algorithms in our
framework and compared the resulting STA with the existing manual encodings
from [34]. We confirm that manual abstraction is error-prone, as we discovered
glitches in previous manually encoded STA. For all benchmarks, the automati-
cally generated STA are comparable with the manual encodings. For some, the
automatically generated STA could be verified faster. Thus in addition to increas-
ing the degree of automation, we also gained in performance.

2 Our Approach at a Glance

Synchronous Distributed Algorithms. A distributed algorithm is a collection of n
processes that perform a common task and exchange messages. At most t of the n
processes can be faulty, and f processes are actually faulty. The numbers n, t, f
are parameters, where n and t are “known”, that is, they appear in the code
(see Fig. 1), while f may differ according to the individual executions. In the
synchronous computation model, the actions that a process takes locally depend
on the messages that the process has received in the current round by other
processes. Often, a process checks whether a quorum has been obtained (e.g.,
majority, two-thirds, etc.) by counting the number of messages it has received.
Obtaining a quorum means that the number of received messages has to pass a
given threshold, which should guarantee that it is safe for a correct process to
take an action, and move to a new local state.

The threshold automata framework [23] is based on the observation that
from the viewpoint of enabled transitions in a transition system, we may sub-
stitute the check whether a quorum of messages has been received with a check
whether enough messages have been sent. For some algorithms, this substitution
is straightforward, but others have more complicated guard expressions over the
number of received messages. Consider, for example, the pseudo code of the algo-
rithm PhaseQueen [6,9], presented in Fig. 1. The algorithm operates in phases,
with two rounds per phase (lines 3–8 and 9–11). In round 1, all processes broad-
cast their value stored in the variable v (line 3), receive messages from other
processes (line 4), and count the number of messages with value 0 (line 5) and
value 1 (line 6). If a process received more than 2t messages with value 1, then
it sets its value to 1 (line 7), otherwise it sets its value to 0 (line 8). In round 2,
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Fig. 1. The pseudo code of the Byzantine consensus algorithm PhaseQueen

a process i acts as a queen, if the number of the current phase is equal to i
(line 9), and it is the only process that broadcasts (line 9). Each process receives
the queen’s value vq (line 10), and checks if in round 1, it received less than n− t
messages with value equal to its own value v. If this is the case, the process
sets its value to the value vq received from the queen (line 11). This algorithm
satisfies the property agreement : it ensures that after phase t + 1, i.e., after the
loop on line 2 terminates, all correct processes have the same value v.

Receive Synchronous Threshold Automata. In Sect. 3, we propose a new variant
of synchronous threshold automata, rSTA, with guards expressed over receive
variables. Figure 2 shows the rSTA of the algorithm PhaseQueen. It corresponds
to the control flow of the pseudo code in Fig. 1 as follows. The following locations
capture local states of correct processes that are currently not a queen:

– vi encodes that a process has the value i ∈ {0, 1},
– r1vi encodes that after the first round a process sets its value to i ∈ {0, 1},

and that it has received at least n − t messages that have its value (i.e., the
condition from line 11 evaluates to false),

– r1viq encodes that after the first round a process sets its value to i ∈ {0, 1},
and that it has received less than n − t messages that have its value. Such
a process will use the queen’s message to update its value at the end of the
second round (that is, the condition in line 11 evaluates to true),

– r2vi encodes that after the second round a process sets its value to i ∈ {0, 1}.

From the location r2vi, we have outgoing rules that bring the process back to
the beginning of the next phase, i.e., to vi, for i ∈ {0, 1}. Additionally, a process
might move from the location r2vi to qvi, for i ∈ {0, 1}, and thus become
a queen in the next phase. The locations qvi,r1qvi,r2qvi, for i ∈ {0, 1},
capture the behavior of a correct process acting as a queen in the current phase.
The Byzantine processes can act arbitrary, and their behavior is not explicitly
modeled in the automaton. However, in some phase, the queen may be Byzantine.
To capture this, we introduce locations, populated by a single Byzantine process,
namely the locations F = {f, . . . ,r2qf}. The queen is Byzantine in some phase,
if the single Byzantine process moves from the location r2f to the location qf.
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Fig. 2. The rSTA for the algorithm PhaseQueen [6], where n > 4t ∧ t ≥ f .

Processes in locations vi,qvi send messages of type mi, that is, messages
containing the value i ∈ {0, 1}. The message types mqi are used to encode that
the queen in the current phase sent a message with value i ∈ {0, 1}. When the
queen process is Byzantine, it can send messages of type mq0 or mq1. We write
sent(m) to denote the set of locations where processes send a message of type
m, and #sent(m) for the number of sent messages of type m.

The receive guards ϕ1, . . . , ϕ8 express conditions over the number of received
messages of some message type, and capture expressions which appear in the
pseudo code. We denote by nr(mi) and nr(mqi) the number of messages contain-
ing the value i ∈ {0, 1} that a process received from all processes in the first
round of the phase (i.e., the value C[i] in the pseudo code, lines 5, 6) and by the
queen in the second round of the phase, respectively. For example, the receive
guard ϕ1, occurring on rules that move processes to the location r1v0, checks
if a process received at most 2t messages of type m1 (the else branch is taken in
line 8), and at least n − t messages of type m0 (the condition in line 11 is false).

We explicitly encode the relationship between the number of received and
sent messages using an environment assumption Env, which bounds the num-
ber of received messages: (i) from below by the number of messages sent by
the correct processes, and (ii) from above by the number of messages sent by
both the correct and faulty processes. The bound (i) captures the assumptions
of the synchronous communication, which requires that all messages sent by
correct processes in a round are received in the same round, and the bound (ii)
captures the non-determinism introduced by the faulty processes. E.g., in the
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algorithm PhaseQueen, we have f Byzantine processes, which may send mes-
sages of arbitrary types. For the receive variable nr(mi), we have the constraint
#sent(mi) ≤ nr(mi) ≤ #sent(mi) + f in the environment assumption Env.

The agreement property stated above is a safety property. To check if it holds,
it suffices to check that after t + 1 phases, either all processes are in locations
v0,qv0, or in locations v1,qv1. The precise formalization of the properties we
are interested in verifying can be found in [36].

Our Approach. In Sect. 6, we eliminate the receive variables in an rSTA using
quantifier elimination for Presburger arithmetic [14,30,31]. We strengthen the
receive guards by the environment assumption Env that imposes bounds on the
values of the receive variables, which are existentially quantified. As a result, a
quantifier-free guard expression over the number of sent messages is obtained.
For example, the result of applying quantifier elimination to the guard ϕ1 over
the receive variables from Fig. 2, strengthened by the upper and lower bounds
in the environment assumption Env, is the guard ϕ̂1 with no receive variables:

ϕ̂1 ≡ #sent(m1) ≤ 2t ∧ #sent(m0) + f ≥ n − t ∧ ̂Env

where ̂Env are the residual constraints from eliminating the receive variables from
the environment assumption Env. The condition nr(m1) ≤ 2t in the guard ϕ1 is
translated to #sent(m1) ≤ 2t, and the condition nr(m0) ≥ n− t to #sent(m0)+
f ≥ n − t. That is, when translating the guards, the number of the faulty
processes f is used in guards that check if the number of sent messages passes
a threshold, whereas f is not used in guards that check if the number of sent
messages is below a threshold. (Byzantine processes send messages arbitrarily.)

The STA where all guards over the receive variables are replaced by the
automatically generated guards over the number of sent messages constitutes a
valid input to the bounded model checking technique for STA from [36], which
we use to verify their safety properties. We show that this method is sound
and complete by showing the existence of a bisimulation between the composi-
tion of n copies of rSTA and the composition of n copies of the produced STA.
Thus, eliminating the receive message counters preserves temporal properties.
We implemented this technique and used it to automatically generate STA for a
set of benchmarks, and compared them to the existing manually encoded STA
for the same benchmarks. We discuss our the experimental results in Sect. 7.

3 Synchronous Threshold Automata

We recall synchronous threshold automata from [36] and extend them with
receive variables below. A synchronous threshold automaton (STA) is the tuple
STA = (L, I,R,Π,RC,Env), whose locations L, initial locations I, rules R,
parameters Π, and resilience condition RC are defined below. We define the
environment assumption Env in Sect. 3.2.

Parameters Π, Resilience Condition RC. We assume that the set Π of parame-
ters contains at least the parameter n, denoting the total number of processes.
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The resilience condition RC is a linear arithmetic expression over the parame-
ters from Π. We call the vector π = 〈π1, . . . , π|Π|〉 the parameter vector, and the
vector p = 〈p1, . . . , p|Π|〉 ∈ N

|Π| a valution of π. The set PRC = {p ∈ N
|Π| |

p is a valuation of π and p satisfies RC} contains the admissible valuations of π.
The mapping N : PRC → Nmaps an admissible valuationp ∈ PRC to the number
N(p) ∈ N of participating processes, i.e., the number of processes whose behavior is
modeled using the STA. We denote by N(π) the linear combination of parameters
that defines the number of participating processes.

Locations L, I. The locations � ∈ L encode the current value of the local variables
of a process, together with information about the program counter. We assume
that each local variable and the program counter ranges over a finite set of values,
that is, we assume that the set L of locations is a finite set. The initial locations
in I ⊆ L encode the initial values of the local variables.

Message Types M. Let M denote the set of message types. To encode sending
messages in the STA, we define a mapping sent : M → 2L, that maps a message
type m ∈ M to a set sent(m) ⊆ L of locations, such that sent(m) = {� ∈ L |
a process in � sends message of type m}.

Let L ⊆ L denote a set of locations, and let #L denote the number of
processes in locations from the set L. To define guards over the sent messages
and express temporal properties, we define c-propositions:

#L ≥ a · π + b for L ⊆ L, a ∈ Z
|Π|, and b ∈ Z

We denote by CP the set of c-propositions. If the set L of locations in the c-
proposition is equal to the set sent(m), for some m ∈ M, the c-proposition
is used to check whether the number of messages of type m ∈ M is greater
than or equal to a linear combination of the parameters, also called a threshold.
Formally, the c-propositions are evaluated in tuples (κ,p), where κ ∈ N

|L| is an
|L|-dimensional vector of counters, and p ∈ PRC is an admissible valuation:

(κ,p) |= #L ≥ a · π + b iff
∑

�∈L

κ[�] ≥ a · p+ b (1)

Rules R. A rule r ∈ R is a tuple (from, to, ϕ), where: from, to ∈ L are locations,
and ϕ is a guard, i.e., a Boolean combination of c-propositions. The guards r.ϕ,
for r ∈ R, analogously to (1), are evaluated in tuples (κ,p), and the semantics
of the Boolean connectives is standard.

3.1 Receive Synchronous Threshold Automata

A receive STA is the tuple rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ), whose loca-
tions L, initial locations I, parameters Π, and resilience condition RC are
defined as for STA. We define the receive variables Δ and rules RΔ below, and
the environment assumption EnvΔ in Sect. 3.2.
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Receive Variables Δ. The set Δ contains receive variables nr(m) that store the
number of messages of type m ∈ M that were received by a process. Thus,
|Δ| = |M|, as in Δ there is exactly one receive variable nr(m) per message type
m ∈ M. The values of the receive variables depend on the number of messages
sent in a given round (discussed in more detail in Sect. 3.2).

Let M ⊆ M denote a set of message types, and let #M denote the total
number of messages of types m ∈ M , received by some process. Observe that the
notation #M is a shorthand for

∑

m∈M nr(m). We will use these two notations
interchangeably. Further, when M is a singleton set, that is, when M = {m}, we
will simply use the notation nr(m) to denote #{m}. For the purpose of expressing
guards over the receive variables nr(m), for m ∈ M, we define r-propositions:

#M ≥ a · π + b, such that M ⊆ M,a ∈ Z
|Π|, b ∈ Z

We denote by RP the set of r-propositions. The intended meaning of the r-
propositions is to check whether the total number of messages of types m ∈ M
received by some process i passes some threshold. Formally, they are evaluated
in tuples (d,p), where d ∈ N

|M| is a vector of values assigned to each receive
variable nr(m), for m ∈ M, and p ∈ PRC . We define:

(d,p) |= #M ≥ a · π + b iff
∑

m∈M

d[m] ≥ a · p+ b (2)

Rules RΔ. Similarly to the way we defined rules of STA above, the rules rΔ ∈ RΔ

in rSTA are tuples rΔ = (from, to, ϕ), where rΔ.from, rΔ.to ∈ L are locations,
and rΔ.ϕ is a receive guard, which is a Boolean combination of c-propositions
and r-propositions. The receive guards rΔ.ϕ, for rΔ ∈ RΔ, are evaluated in
tuples (d,κ,p). Given a tuple (d,κ,p), where d ∈ N

|M| is a vector of valuations
of the receive variables nr(m), for m ∈ M, κ ∈ N

|L| is an |L|-dimensional vector
of counters, and p ∈ PRC is an admissible valuation, we evaluate c-propositions
and r-propositions (the semantics of the Boolean connectives is standard):

(d,κ,p) |= #L ≥ a · π + b iff (κ,p) |= #L ≥ a · π + b (cf. (1))
(d,κ,p) |= #M ≥ a · π + b iff (d,p) |= #M ≥ a · π + b (cf. (2))

3.2 Environment Assumption and Modeling Faults

Depending on the fault model, when constructing a (receive) STA that models
the behavior of a process running a given algorithm, we typically need to intro-
duce additional locations or rules that are used to capture the behavior of the
faulty processes. Additionally, to faithfully model the faulty environment, we will
introduce constraints on the number of processes in given locations in both STA
and rSTA, expressed using c-propositions, as well as constraints on the values of
the receive variables of the rSTA, expressed using e-propositions:

#M ≥ #L + a · π + b, such that M ⊆ M, L ⊆ L,a ∈ Z
|Π|, b ∈ Z
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We denote by EP the set of e-propositions. The e-propositions are evaluated in
tuples (d,κ,p) where d ∈ N

|M| is a vector of valuations of the receive variables,
κ ∈ N

|L| is an |L|-dimensional vector of counters, and p ∈ PRC . We say that:

(d,κ,p) |= #M ≥ #L + a · π + b iff
∑

m∈M

d[m] ≥
∑

�∈L

κ[�] + a · p+ b

The e-propositions will be used to express that the number of received messages
is in the range from the number of messages sent by correct processes to the
total number of sent messages (sent by both correct and faulty processes).

For STA, the environment assumption Env is a conjunction of c-propositions
and their negations. For rSTA, the environment assumption EnvΔ is a conjunc-
tion of c-propositions, e-propositions and their negations. The c-propositions
restrict the number of processes in certain locations, while the e-propositions
restrict the values of the receive variables by relating them to the number of sent
messages of the same type. We define the environment assumptions Env and EnvΔ

of the STA and rSTA, respectively, as Env ≡ EnvCP and EnvΔ ≡ EnvCP ∧ EnvEP,
where EnvCP and EnvEP are conjunctions of c-propositions and e-propositions
and their negations, respectively, such that:

EnvCP ≡ C1 ∧ C2 ∧ EnvCP,∗ and EnvEP ≡ E1 ∧ EnvEP,∗

where, irrespective of the fault model, we have the following constraints:

(C1)
∧

�∈L #{�} ≥ 0, i.e., the number of processes in a location � is non-negative,
(C2) #L = N(π), i.e., the number of processes in all locations L is equal to the

number of participating processes,
(E1)

∧

m∈M #sent(m) ≤ nr(m), i.e., the number nr(m) of received messages of
each message type m ∈ M is bounded from below by the number #sent(m)
of messages of type m, sent by correct processes.

The formulas EnvCP,∗ and EnvEP,∗ for ∗ ∈ {cr, so, byz}, depend on the fault
model, i.e., on whether we model crash, send omission, or Byzantine faults.

Crash Faults. Crash-faulty processes stop executing the algorithm prematurely
and cannot restart. To model the behavior of the crash-faulty processes, the set
L of locations of the (receive) STA is the set: L = Lcorr ∪ Lcr ∪ {�fld}, where
Lcorr is a set of correct locations, Lcr = {�cr | �cr is a fresh copy of � ∈ Lcorr}
is a set of crash locations, and �fld is a failed location. The crash locations
�cr ∈ Lcr model the same values of the local variables and program counter as
their correct counterpart � ∈ Lcorr. The difference is that processes in the crash
locations �cr ∈ Lcr are flagged by the environment to crash in the current round.
After crashing, they move to the failed location �fld, where they remain forever.
This models that the crashed processes cannot restart.

A crash-faulty process may send a message to a subset of the other processes
in the round in which it crashes. To model this, we introduce the mapping sentcr :
M → 2Lcr , which defines, for each m ∈ M, the set of crash locations sentcr(m) ⊆
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Fig. 3. The pseudo code of the algorithm FloodMin for k = 1 [28], which tolerates crash
faults, and the receive STA encoding its loop body.

Lcr where processes send a message of type m. Then, #(sent(m) ∪ sentcr(m))
denotes the number of messages sent by correct and crash-faulty processes. In
addition to the new locations, we add the following new rules:

(cr1) for every rule r ∈ R, if r.from ∈ Lcorr and r.to ∈ Lcorr, then we add the
rule (r.from, �cr, r.ϕ), where �cr ∈ Lcr is the crash location corresponding
to r.to,

(cr2) for every crash location �cr ∈ Lcr, we add the rule (�cr, �fld,),
(cr3) for the failed location �fld, we add the rule (�fld, �fld,).

The rules (cr1) move processes from the correct to the crash locations, in
rounds where the environment flags them as crashed. The rules (cr2) move pro-
cesses from the crashed locations to the failed location, where they can only
apply the self-loop rule (cr3), which keeps them in the failed location.

We model the behavior of crash-faulty processes explicitly, that is, we have
N(π) = n. The constraints EnvCP,cr and EnvEP,cr for the crash fault model are:

EnvCP,cr = #(Lcr ∪ {�fld}) ≤ f

EnvEP,cr ≡
∧

m∈M
nr(m) ≤ #(sent(m) ∪ sentcr(m))

The formula EnvCP,cr ensures that there are no more than f faults. The formula
EnvEP,cr restricts the values of the receive variables by ensuring that the number
of received messages of type m ∈ M for each process is a value, bounded from
above by the number #(sent(m) ∪ sentcr(m)) of messages of type m, sent by the
correct processes and the processes flagged as crashed in the current round.

Figure 3 depicts the pseudo code and the rSTA of the crash-tolerant k-
set agreement algorithm FloodMin, for k = 1 [28]. We identify the sets
Lcorr = {v0,v1} of correct locations, Lcr = {cr0,cr1} of crash locations,
M = {m0,m1} of message types. The location vi encodes that a correct process
has its variable best set to i ∈ {0, 1}, the location cri encodes that the value
of best of a crashed process is i ∈ {0, 1}, and the message type mi encodes a
message containing the value i ∈ {0, 1}. The failed location is �fld. We define
sent(mi) = {vi} and sentcr(mi) = {cri}, for i ∈ {0, 1}. The two receive guards
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Fig. 4. The receive STA encoding the loop body of the algorithm FMinOmit for k = 1,
which tolerates send omission faults and whose pseudo code is given in Fig. 3.

ϕ1 ≡ nr(m0) ≥ 1 and ϕ2 ≡ nr(m0) < 1 check if a process received at least one
message of type m0 (i.e., if the minimal value 0 has been received in line 5 of the
pseudo code) and no message of type m0, respectively. The constraint EnvCP,cr
ensures that there are not more than f processes in the locations cr0,cr1, and
�fld together. The constraint EnvEP,cr bounds the values of the receive variables
nr(mi) from above by the number of processes in locations vi,cri, for i ∈ {0, 1}.

Send Omission Faults. A send-omission-faulty process may omit to send a
message, but acts as a correct process on the receiving side. We model algo-
rithms tolerating send omission faults similarly to crash faults: the set L of
locations is L = Lcorr ∪ Lso, where Lcorr is a set of correct locations and
Lso = {�so | �so is a fresh copy of � ∈ Lcorr} is a set of send-omission locations.
For every rule r ∈ R connecting two locations �, �′ ∈ Lcorr, there exists a rule
(�so, �′

so, r.ϕ) ∈ R, connecting their two corresponding send-omission locations
�so, �

′
so ∈ Lso. We introduce the mapping sentso : M → 2Lso , which defines the

set of send-omission locations where processes send a message of type m ∈ M.
As there are no rules that connect the locations from Lcorr to the locations

from Lso, the automaton consists of two parts: one used by the correct processes,
and one used by the send-omission-faulty processes. The behavior of the send-
omission-faulty processes is encoded explicitly, using locations and rules in the
automaton, hence, we define N(π) = n. The constraint EnvCP,so ensures that the
number of processes populating the correct locations is n−f , and the number of
processes populating the send-omission locations is f . The constraint EnvEP,so
ensures that the number of received messages of type m ∈ M for each process
is bounded from above by the number #(sent(m) ∪ sentso(m)) of messages of
type m, sent by the correct and the send-omission-faulty processes. Formally:

EnvCP,so = #Lcorr = n − f ∧ #Lso = f

EnvEP,so ≡
∧

m∈M
nr(m) ≤ #(sent(m) ∪ sentso(m))

Figure 4 depicts the rSTA for the k-set agreement algorithm FMinOmit, for
k = 1, which is a variant of the algorithm FloodMin (Fig. 3) that tolerates
send omission faults. We identify the sets Lcorr = {v0,v1} of correct locations,
Lso = {so0, so1} of send-omission locations, and M = {m0,m1} of message
types. We define sent(mi) = {vi} and sentso(mi) = {soi}, for i ∈ {0, 1}. The
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Fig. 5. The pseudo code of the algorithm RB [21], which tolerates Byzantine faults,
and the receive STA encoding its loop body.

constraint EnvCP,so ensures that there are exactly n − f processes in the correct
locations v0,v1, and exactly f processes in the send-omission locations so0, so1.
The receive guards ϕ1 and ϕ2 are the syntactically same as in the rSTA for the
crash-tolerant version of the algorithm FloodMin, for k = 1. However, the envi-
ronment constraint EnvEP,so differs from EnvEP,cr: it restricts the number nr(mi)
of received messages of type mi to a value which is less than or equal to the
number of processes in locations vi, soi, for i ∈ {0, 1}.

Byzantine Faults. To model the behavior of the Byzantine-faulty processes,
which can act arbitrary, no new locations and rules are introduced in the (receive)
STA. Instead, the (receive) STA is used to model the behavior of the correct pro-
cesses, and the effect that the Byzantine-faulty processes have on the correct
ones is captured in the guards (and environment assumption). The number of
messages sent by Byzantine-faulty processes is overapproximated by the param-
eter f , which denotes the number of faults. That is, for a message type m ∈ M,
the number #sent(m) + f is the upper bound on the number of messages sent
by correct and Byzantine-faulty processes.

The (receive) STA for Byzantine faults is used to model the behavior of the
correct processes, hence N(π) = n− f . As we do not introduce new locations or
rules, we have EnvCP,byz ≡ . The constraint EnvEP,byz encodes the effect that
the Byzantine-faulty processes have on the correct processes, by bounding the
receive variables nr(m) by sent(m) + f from above, for m ∈ M:

EnvEP,byz ≡
∧

m∈M
nr(m) ≤ sent(m) + f

Figure 5 shows the pseudo code of the Byzantine reliable broadcast algorithm
RB [21]. The locations L = {v0,v1, se,ac} model the behavior of the correct
processes. The location vi encodes that a process has value i ∈ {0, 1}, the loca-
tion se that a process has sent an ECHO message, and the location ac that a
process sets its value to 1 in line 12. There is a single message type, mE, which
encodes a message containing the value ECHO. There are four receive guards,
ϕ1, . . . , ϕ4. The guard ϕ2, for example, checks that at least t+1 ECHO messages
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are received, capturing line 8 of the pseudo code. The set of processes that send
an ECHO message is sent(mE) = {v1, se,ac}. The constraint EnvEP,byz ensures
that there are not more than #{v1, se,ac} + f received messages of type mE.

Remark on Algorithms with a Coordinator. When modeling Byzantine-tolerant
algorithms where a process acts as a coordinator (such as, e.g., the algorithm
PhaseQueen in Fig. 1), we need to take into account that at some point, the coor-
dinator will be Byzantine. Thus, we add locations Lbyz ⊆ L for a single Byzantine
process, disjoint from the locations that are used by the correct processes. The
new locations do not encode any values of the local variables; they ensure that
the Byzantine process (which may become a coordinator) moves synchronously
with the other processes. In the rSTA for the algorithm PhaseQueen (Fig. 2),
we defined Lbyz = F = {f, . . . ,r2qf}. As we model the behavior of a single
Byzantine process explicitly, we have N(π) = n − f + 1.

In this case, we define the constraints EnvCP,co, which restrict the number
of processes in given locations. We also identify locations Lco ⊆ L, which only
a (correct or Byzantine) coordinator is allowed to populate. The environment
constraint EnvCP,co for Byzantine-tolerant algorithms with a coordinator is:

EnvCP,co ≡ #Lco = 1 ∧ #Lbyz = 1

where #Lco = 1 (resp. #Lbyz = 1) ensures that there is exactly one process in
the coordinator locations Lco (resp. in the Byzantine locations Lbyz).

Additionally, we have message types mco ∈ M that model the coordinator
messages, and denote by �F the location where the Byzantine process performs
the coordinator broadcast. The constraint EnvEP,co states that the number of
received coordinator messages of type mco does not exceed the total number of
coordinator messages of type mco sent by the correct and Byzantine coordinators:

EnvEP,co ≡ EnvEP,byz ∧
∧

mco∈M
nr(mco) ≤ #(sent(mco) ∪ {�F })

Thus, for the algorithm PhaseQueen, whose rSTA we depicted in Fig. 2:

EnvCP,co ≡ #{qv0, . . . ,r2qv1,qf, . . . ,r2qf} = 1 ∧ #{f, . . . ,r2qf} = 1

EnvEP,co ≡
∧

i∈{0,1}
(nr(mi) ≤ #sent(mi) + f ∧ nr(mqi) ≤ #(sent(mqi) ∪ {r1qf}))

4 Counter Systems

For an STA = (L, I,R,Π,RC,Env) and an admissible valuation p ∈ PRC , we
recall the definition of a counter system from [36]. A counter system w.r.t. an
admissible valuation p ∈ PRC and an STA = (L, I,R,Π,RC,Env) is the tuple
CS(STA,p) = (Σ(p), I(p), R(p)), representing a system of N(p) processes whose
behavior is modeled using the STA, where Σ(p) is the set of configurations, I(p)
is the set of initial configurations, and R(p) is the transition relation.
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A configuration σ ∈ Σ(p) is a tuple (κ,p), where p ∈ PRC is an admissible
valuation, and κ ∈ N

|L| is an |L|-dimensional vector of counters, such that
σ |= Env. For every σ ∈ Σ(p), we have

∑

�∈L σ.κ[�] = N(p). This follows from
σ |= Env, in particular from σ |= #L = N(π), the definition of N(p), and
the semantics of the c-propositions. A configuration σ ∈ Σ(p) is initial, i.e.,
σ ∈ I(p) ⊆ Σ(p), iff σ.κ[�] = 0, for every � ∈ L \ I. That is, the value σ.κ[�] of
the counter for each non-initial location � ∈ L \ I is set to 0 in σ ∈ I.

To define the transition relation R(p), we first define the notion of a transi-
tion. A transition is a function tr : R → N that maps each rule r ∈ R to a factor
tr(r) ∈ N. Given a valuation p of π, the set Tr(p) = {tr | ∑

r∈R tr(r) = N(p)}
contains transitions whose factors sum up to N(p). For a transition tr and a
rule r ∈ R, the factor tr(r) denotes the number of processes that act upon
this rule. By restricting the set Tr(p) to contain transitions whose factors sum
up to N(p), we ensure that in a transition, every process takes a step. This
captures the semantics of synchronous computation. A transition tr ∈ Tr(p) is
enabled in a tuple (κ,p), where κ is an |L|- dimensional vector of counters and
p ∈ PRC an admissible valuation, iff for every r ∈ R, such that tr(r) > 0, it holds
that (κ,p) |= r.ϕ, and for every � ∈ L, we have κ[�] =

∑

r∈R∧r.from=� tr(r). The
former condition ensures that processes only use rules whose guards are satisfied,
and the latter that every process moves in an enabled transition.

Given a transition tr ∈ Tr(p), we define the origin o(tr) = (κ,p) of tr,
where for every location � ∈ L, we have κ[�] =

∑

r∈R∧r.from=� tr(r), and
the goal g(tr) = (κ′,p) of tr, where for every location � ∈ L, we have
κ′[�] =

∑

r∈R∧r.to=� tr(r). The origin o(tr) is the unique tuple (κ,p) where
the transition tr is enabled, while its goal g(tr) is the unique tuple (κ′,p) that is
obtained by applying the transition tr to its origin o(tr). The transition relation
R(p) is the relation R(p) ⊆ Σ(p) × Tr(p) × Σ(p), such that 〈σ, tr, σ′〉 ∈ R(p)
iff σ = o(tr) is the origin and σ′ = g(tr) is the goal of the transition tr.

5 Synchronous Transition Systems

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, and p ∈ PRC an
admissible valuation of the parameter vector π. A synchronous transition system
(or system), w.r.t. an admissible valuation p ∈ PRC and an rSTA is the triple
STS(rSTA,p) = 〈S(p), S0(p), T (p)〉, representing a system of N(p) processes
whose behavior is modeled using the rSTA, where S(p) is the set of states, S0(p)
is the set of initial states, and T (p) is the transition relation.

Recall that the environment assumption EnvΔ of the rSTA is the conjunction
EnvΔ ≡ EnvCP ∧ EnvEP. A state s ∈ S(p) is a tuple s = 〈�,nr1, . . . ,nrN(p),p〉,
where � ∈ LN(p) is an N(p)-dimensional vector of locations, and nri ∈ N

|M|,
for 1 ≤ i ≤ N(p), is a vector of valuations of the receive variables nr(m), with
m ∈ M, for each process i, such that s |= EnvCP. In a state s ∈ S(p), the vector �
of locations is used to store the current location s.�[i] ∈ L for each process i,
while the vector nri ∈ N

|M| stores the values of the receive variables for each
process i, with 1 ≤ i ≤ N(p). Further, each state s ∈ S(p) satisfies EnvCP.



210 I. Stoilkovska et al.

To formally define that a state s ∈ S(p) satisfies the environment con-
straint EnvCP, we define the semantics of c-propositions w.r.t. states s ∈ S(p).
Let countersp : S(p)×L → N denote a mapping that maps a state s ∈ S(p) and
a location � ∈ L to the number of processes that are in location � in the state s,
that is, countersp(s, �) = |{i | 1 ≤ i ≤ N(p)∧s.�[i] = �}|. Further, let κ(s) ∈ N

|L|

denote the |L|-dimensional vector of counters w.r.t. the state s ∈ S(p), where
for every location � ∈ L, we have that κ(s)[�] stores the number of processes that
are in location � in the state s, that is, κ(s)[�] = countersp(s, �). We say that
s |= #L ≥ a · π + b iff (κ(s), s.p) |= #L ≥ a · π + b. A state s ∈ S(p) satisfies
the environment constraints EnvCP, that is, s |= EnvCP iff (κ(s), s.p) |= EnvCP.

In an initial state s0 ∈ S0(p), the vector � of locations stores only initial
locations, i.e., �[i] ∈ I, for 1 ≤ i ≤ N(p), and all receive variables of all processes
are initialized to 0. Formally, a state s0 = 〈�,nr1, . . . ,nrN(p),p〉 is initial, i.e.,
s0 ∈ S0(p), if s0.� ∈ IN(p) and s0.nri[m] = 0, for 1 ≤ i ≤ N(p) and m ∈ M.

We now define the transition relation T (p) ⊆ S(p)×S(p), where we will use
the environment constraint EnvEP to restrict the values of the receive variables.
A transition (s, s′) ∈ T (p) encodes one round in the execution of the distributed
algorithm. In a round, the processes send and receive messages, and update their
variables based on the received messages. Further, all the messages sent in the
current round are received in the same round. The process variable updates are
captured by moving processes from one location to another, based on the values
of the receive variables. The transition relation T (p) is a binary relation T (p) ⊆
S(p) × S(p), where (s, s′) ∈ T (p) iff for every process i, with 1 ≤ i ≤ N(p):

1. 0 ≤ s′.nri[m] ≤ N(p), such that (s′.nri,κ(s), s.p) |= EnvEP, for m ∈ M,
2. there exists rΔ ∈ RΔ such that:

– s.�[i] = rΔ.from,
– (s′.nri,κ(s), s.p) |= rΔ.ϕ,
– s′.�[i] = rΔ.to.

3. s′.p = s.p and s′ |= EnvCP.

In a transition (s, s′) ∈ T (p), the receive variables and locations of each pro-
cess are updated. That is, the value s′.nri[m] of the receive variable nr(m) of
process i is assigned a value in the range from 0 to N(p) non-deterministically,
such that the environment constraint EnvEP is satisfied. This ensures that the
number of received messages of type m is non-negative, that it does not exceed
the number of participating processes, and that the receive variables of each pro-
cess are assigned values that satisfy the constraints of the environment assump-
tion. In the case of the synchronous computation model, this captures that all
messages sent by correct processes in a round are received in the same round,
and that the number of messages of type m, received by process i, is bounded
by above by the total number of messages of type m, sent by both correct and
faulty processes. To update the locations, each process i picks a rule rΔ ∈ RΔ

that it applies to update its location, if the process i is in location rΔ.from in the
state s, and if the newly assigned values of the receive variables of process i in the
state s′ satisfy the receive guard rΔ.ϕ. If this is the case, the process i updates
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its location to rΔ.to in the state s′. The parameter values remain unchanged,
and we require that the state s′ satisfies EnvCP, i.e., it is a valid state.

6 Abstracting rSTA to STA

Given an rSTA, our goal is to construct an STA, which differs from the rSTA
only in the guards on its rules and the environment assumption. For each rule
rΔ ∈ RΔ in the rSTA, whose guard rΔ.ϕ is a receive guard, we will construct a
rule r ∈ R in the STA, such that the guard r.ϕ is a Boolean combination of c-
propositions. We will perform the abstraction in two steps: (i) we will strengthen
each receive guard rΔ.ϕ, occurring on the rules rΔ ∈ RΔ of the rSTA, with the
constraints imposed by the faulty environment and the synchronous computation
model, encoded in the environment assumption EnvΔ, and (ii) we will eliminate
the receive variables from the receive guards and environment assumptions of
rSTA to obtain the guards and environment assumption of STA.

6.1 Guard Strengthening

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, where the rules rΔ ∈
RΔ have guards containing expressions over the receive variables nr(m) ∈ Δ, and
where the environment assumption EnvΔ ≡ EnvCP∧EnvEP is a conjunction of two
environment constraints, EnvCP and EnvEP, where the latter restricts the values
of the receive variables. Recall that in Sect. 3.2, we defined different environment
constraints EnvEP for the different fault models. In general, these constraints
express that for each message type m ∈ M, the receive variable nr(m) is assigned
a value which is greater or equal to the number of messages of type m sent by
correct processes, and which is smaller or equal to the total number of messages
of type m, sent by both correct and faulty processes (e.g., #sent(m) ≤ nr(m) ≤
#sent(m) + #sentcr(m) for crash faults). As a first step towards eliminating
the receive variables from the receive guards, we strengthen the rules from the
set RΔ, such that we add the environment constraints EnvEP to their guards in
order to bound the values of the receive variables.

Definition 1. Given rΔ ∈ RΔ, its strengthened rule is r̂Δ = strengthen(rΔ),
such that: r̂Δ.from = rΔ.from, r̂Δ.to = rΔ.to, r̂Δ.ϕ = rΔ.ϕ ∧ EnvEP.

We denote by ̂RΔ = {strengthen(rΔ) | rΔ ∈ RΔ} the set of strengthened
rules in rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ), where EnvΔ ≡ EnvCP ∧ EnvEP.

6.2 Eliminating the Receive Variables

Let rSTA = (L, I,RΔ,Δ,Π,RC,EnvΔ) be a receive STA, and let ̂RΔ be the set
of strengthened rules (Definition 1). We define an STA = (L, I,R,Π,RC,Env)
whose locations, initial locations, and parameters are the same as in rSTA, while
we construct the rules R and the environment assumption Env of the STA below.

Recall that EnvΔ ≡ EnvCP ∧ EnvEP. To define the environment assump-
tion Env of the constructed STA, we set Env ≡ EnvCP. Before we define the rules
of the constructed STA, we define the mapping eliminate.
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Definition 2. Let φ be a propositional formula over r-, c-, and e-propositions.
Let δ = 〈nr(m1), . . . , nr(m|M|)〉 denote the |M|-dimensional receive variables
vector, and QE denote the quantifier elimination procedure for Presburger arith-
metic. The formula eliminate(φ) = QE(∃δ φ) is a quantifier-free formula, with no
occurrence of receive variables nr(m) ∈ Δ, which is logically equivalent to ∃δ φ.

To construct a rule r ∈ R of an STA, given a rule rΔ ∈ RΔ of an rSTA, we will
apply the mapping eliminate to each guard of the strengthened rule r̂Δ ∈ ̂RΔ,
where r̂Δ = strengthen(rΔ). The result of quantifier elimination is a quantifier-
free formula over c-propositions, which is logically equivalent to ∃δ r̂Δ.ϕ.

Definition 3. Given rΔ ∈ RΔ, its constructed rule is r = construct(rΔ) ∈ R,
such that: r.from = rΔ.from, r.to = rΔ.to, r.ϕ = eliminate(r̂Δ.ϕ), where r̂Δ =
strengthen(rΔ).

Proposition 1. For every strengthened rule r̂Δ ∈ ̂RΔ and every tuple (d,κ,p),
where d ∈ N

|M|, κ ∈ N
|L|, and p ∈ PRC , we have:

(d,κ,p) |= r̂Δ.ϕ implies (κ,p) |= eliminate(r̂Δ.ϕ)

Proposition 1 is a consequence of quantifier elimination. Note that the
converse of this proposition does not hold in general. That is, (κ,p) |=
eliminate(r̂Δ.ϕ) does not imply that (d,κ,p) |= r̂Δ.ϕ, for every d ∈ N

|M|. How-
ever, by quantifier elimination, we have that (κ,p) |= eliminate(r̂Δ.ϕ) implies
(κ,p) |= ∃δ r̂Δ.ϕ.

6.3 Soundness and Completeness

This construction of an STA is sound and complete. That is, given a rSTA and
an admissible valuation p ∈ PRC , we show that there exists a bisimulation
relation between the system STS(rSTA,p), induced by rSTA and p, and a counter
system CS(STA,p), induced by the constructed STA and p. The existence of a
bisimulation implies that STS(rSTA,p) and CS(STA,p) satisfy the same CTL∗

formulas [3]. To express temporal formulas, as atomic propositions we use the c-
propositions from the set CP. We define two labeling functions, λS(p) and λΣ(p),
where λS(p) : S(p) → 2CP assigns to a state s ∈ S(p) the set of c-propositions
that hold in it (the function λΣ(p) : Σ(p) → 2CP is defined analogously).

We introduce an abstraction mapping αp : S(p) → Σ(p) that maps states
s ∈ S(p) of STS(rSTA,p) to configurations σ ∈ Σ(p) of CS(STA,p), such that
σ = αp(s) iff σ = (κ(s), s.p). By the definition of the abstraction mapping αp

and the semantics of c-propositions, we have that a state and its abstraction
satisfy the same c-propositions. Further, given a configuration σ ∈ Σ(p), we
can construct a state s ∈ S(p), such that σ = αp(s). While this is always
possible, the constructed state s might not be reachable in any execution of the
system STS(rSTA,p). However, we can use the constraint EnvEP to restrict the
value of the receive variables in the constructed state s, such that it is a valid
state in the system STS(rSTA,p). The main result of this section is stated below.
The detailed proof of this result can be found in the first author’s PhD thesis.
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Theorem 1. The binary relation B(p) = {(s, σ) | s ∈ S(p), σ ∈ Σ(p), σ =
αp(s)} is a bisimulation relation.

7 Experimental Evaluation

To show the usefulness of translating rSTA to STA, we: (i) encoded synchronous
fault-tolerant distributed algorithms using rSTA, (ii) implemented the method
from Sect. 6 in a prototype, (iii) compared the output to the existing manual
encodings from [34], some of which are artifacts of the experimental evaluation
from [36] and were given as examples throughout this paper, and (iv) verified
the properties of the generated STA using the technique from [36].

Encoding Algorithms as rSTA. We extended the STA encoding from [36], to
support (i) declarations of receive variables and (ii) constraints given by the
environment assumption. The algorithms we encoded are listed in Table 1, and
their rSTA can be found in [35]. For each of them, there already existed a man-
ually produced STA [34]. The manually produced rSTA and STA have the same
structure w.r.t. locations and rules, and differ only in the guards that occur on
the rules: in the rSTA, we have receive guards, which are Boolean combinations
of r-propositions and c-propositions, while in the manually encoded STA, the
guards are Boolean combinations of c-propositions.

Applying Quantifier Elimination. We implemented a script that parses the input
rSTA and creates an STA whose rules have guards that are Boolean combina-
tions of c-propositions, according to the abstraction from Sect. 6. To automate
the quantifier elimination step, we applied Z3 [16] tactics for quantifier elimi-
nation [10,11], to formulas of the form ∃δ r̂Δ.ϕ, where r̂Δ.ϕ ≡ rΔ.ϕ ∧ EnvEP

is the strengthened guard of the receive guard rΔ.ϕ, for rΔ ∈ RΔ. For all our
benchmarks, the STA is generated within seconds, as reported in Table 1.

Analyzing the Automatically Generated STA. We compared the guards of
the automatically generated STA (autoSTA) to the manually encoded STA
(manSTA). Syntactically, the guards of autoSTA are larger in general, as they
contain additional constraints that result from quantifier elimination. Seman-
tically, we check whether the guards for the autoSTA imply the guards of the
manSTA. For each automatically generated guard ϕauto, we check whether its
corresponding guard ϕman from the manual encoding is implied by ϕauto, for all
values of the parameters and number of sent messages by checking the validity
of the formula:

∀p ∈ PRC ∀L1 . . . ∀L|M| ϕauto(L1, . . . , L|M|) → ϕman(L1, . . . , L|M|) (3)

where Lj = sent(mj), for mj ∈ M and 1 ≤ j ≤ |M|, denotes the set of locations
where processes send messages of type mj . We automate the validity check of (3)
using an SMT solver, such as Z3, to check the unsatisfiability of its negation.
With this check we are able to either verify that the earlier manSTA faithfully
model the benchmark algorithms, or detect discrepancies, which we investigated
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Table 1. The algorithms we encoded as rSTA and the results of applying the verification
technique from [36]. The column QE states the time needed to produce an autoSTA from
an rSTA. The column ⇒ states if (3) is valid all, some, or none of guards. We report on
the time it took the solvers Z3 and CVC4 to (i) check the guard implications (only Z3),
(ii) compute the diameter for the autoSTA, and (iii) check the safety properties of the
autoSTA, (iv) compute the diameter for the manSTA, (v) check the safety properties
of the manSTA, using the SMT-based procedure from [36].

further. Our translation technique produces the strongest possible guards, due
to the soundness and completeness result. Hence, we expected that the impli-
cation holds for all the guards of all the benchmarks we considered. This is
however not the case for the algorithms HybridKing and HybridQueen which are
designed to tolerate hybrid faults, in particular, send omissions and Byzantine
faults. There, we found that one automatically generated guard does not imply
its corresponding manual guard, and concluded that this is due to a flaw in
the manual encoding by manual inspection. We found a similar problem with
a missing rule in the (purely) Byzantine versions of these algorithms, namely
ByzKing and ByzQueen. By adding these rules and correcting the appropriate
manual guards, we were able to establish the validity of (3) for all guards.

Model Checking of Safety Properties. We gave the STA we obtained as out-
put of our translation procedure as input to the bounded model checking tool
from [36], which computes a diameter of a counter system and performs bounded
model checking for safety properties. The experiments were run on a machine
with 2.8GHz Quad-Core Intel(R) Core(TM) i7 CPU and 16GB. The results of
applying the SMT-based procedure from [36] to the autoSTA, as well as to the
extended set [34] of manSTA from [36], are presented in Table 1. The timeout,
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denoted by t.o. in the table, was set to 24 h. For all algorithms, we note that
bounded model checking with both Z3 and CVC4 performs similarly for both
autoSTA and manSTA. For computing the diameter, we observe that for the
algorithms: RB [21] (Fig. 5), HybridRB, OmitRB [9], FairCons [33], FloodMin, for
k = 1 (Fig. 3) and k = 2 [28], FMinOmit, for k = 1 (Fig. 4) and k = 2 [28], kSe-
tOmit, for k = 2 [33], FloodSet [28], PhaseKing [7], and PhaseQueen [6] (Fig. 1),
we obtain comparable results on both the autoSTA and manSTA. For the other
algorithms, we found:

– computing the diameter for the autoSTA of kSetOmit, with k = 1 [33], is
slightly slower with Z3 and slightly faster with CVC4 than for the manSTA;

– Z3 performs better when computing the diameter for the autoSTA than for
the manSTA of both ByzKing and ByzQueen [9], while CVC4 performs worse.
Note that in Table 1 we report the times for the manSTA of ByzKing and
ByzQueen that have missing rules. After adding the rules to the manSTA,
computing the diameter on the autoSTA is still faster with both solvers;

– Z3 and CVC4 compute the diameter for the autoSTA of HybridKing and
HybridQueen [9] within seconds, in contrast to both timing out for the
manSTA;

– computing the diameter with Z3 is significantly faster for the autoSTA than
for the manSTA of OmitKing [9]. CVC4 computes the diameter for autoSTA
of OmitKing, while for manSTA it times out. The computed diameter d = 4
for autoSTA is smaller than the diameter 8, computed for manSTA;

– Z3 and CVC4 compute the diameter for the autoSTA of OmitQueen [9] faster
than for manSTA.

8 Conclusions

We established a fully automated pipeline that for a synchronous distributed
algorithm: (1) starts from a formal model that captures its pseudo code, (2) pro-
duces a formal model suitable for verification, and (3) automatically verifies its
safety properties. Our technique thus closes the gap between the original descrip-
tion of an algorithm (using received messages) and the synchronous threshold
automaton of the algorithm given as an input to a verification tool.

There are two major differences to the asynchronous case considered in [37].
First, the asynchronous model uses interleaving semantics, while in the syn-
chronous model all processes take a step in a transition. Second, in the asyn-
chronous model, there are no limitations when a message will be delivered. The
lower bound on the number of received messages, given in the synchronous model
by the number of sent messages by correct processes, is only eventually satisfied
in the asynchronous model, and thus is not used in the process of eliminating
the receive variables from the receive guards.

We did extensive experimental evaluation of our method. We attribute the
better performance of the bounded model checking technique from [36] on the
automatically generated STA to the fact that the automatically generated guards
contain more additional constraints, coming from the environment assumption,
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which help guide the SMT solvers. Moreover, not only do we obtain the diameter
bounds faster, we also obtain better bounds for the automatically generated STA
of some benchmarks. These findings confirm the conjecture that manual encoding
of distributed algorithms is a tedious and error-prone task and suggest that there
is a real benefit of producing guards automatically.
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Abstract. Weak adversaries are a way to model the uncertainty due to
asynchrony in randomized distributed algorithms. They are a standard
notion in correctness proofs for distributed algorithms, and express the
property that the adversary (scheduler), which has to decide which mes-
sages to deliver to which process, has no means of inferring the outcome
of random choices, and the content of the messages.

In this paper, we introduce a model for randomized distributed algo-
rithms that allows us to formalize the notion of weak adversaries. It
applies to randomized distributed algorithms that proceed in rounds
and are tolerant to process failures. For this wide class of algorithms,
we prove that for verification purposes, the class of weak adversaries can
be restricted to simple ones, so-called round-rigid adversaries, that keep
the processes tightly synchronized. As recently a verification method for
round-rigid adversaries has been introduced, our new reduction theo-
rem paves the way to the parameterized verification of randomized dis-
tributed algorithms under the more realistic weak adversaries.

Keywords: Communication closure · Reduction · Distributed
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verification

1 Introduction

Automated verification of fault-tolerant distributed algorithms faces the com-
binatorial explosion problem. The asynchronous parallel composition of many
processes leads to a huge number of executions. Recently, several verification
methods [5,6,9,11,15] are based on the idea that for many distributed algo-
rithms, instead of considering all these asynchronous executions, it is sufficient
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to consider only fewer (representative) synchronous executions. The central argu-
ment is similar to the reductions (also know as, mover analysis) by Lipton [16]
and Elrad and Francez [10]: given an arbitrary execution, by repeatedly swapping
neighboring transitions, one arrives at one of the representative (synchronous)
executions. As this argument works on executions (traces), it works for reachabil-
ity properties, and for specific stuttering-insensitive linear temporal properties.

In this paper, we extend this idea to randomized distributed algorithms and
probabilistic properties [2,4,17]. Rather than arguing on traces, probabilistic
guarantees require us to reason on Markov decision processes (MDPs). In MDPs
the non-determinism is resolved by using adversaries, that is, by functions that
map an execution prefix to the next action taken. In case the next action is a
coin toss, we obtain a branching, where each branch is associated with a prob-
ability. As a result, an MDP together with an adversary induce a computation
tree with probabilistic branching. As the adversary is a function on the prefix,
it is not clear whether in the presence of this branching, it is possible to con-
duct a swapping argument on the computation tree that maintains probabilistic
properties. The technical challenge we face is to characterize a family of adver-
saries that permits a swapping argument in order to arrive at a computation tree
that corresponds to a synchronous execution. Restricting to synchronous execu-
tions considerably decreases the verification effort, by reducing the number of
executions to check. For the analysis of distributed consensus algorithms, there
are two well-researched classes of adversaries, namely strong and weak adver-
saries. Strong adversaries have full knowledge of the execution prefix, while weak
adversaries are based on a projection (abstraction) of the execution prefix, in
particular, they do not have access to the content of the exchanged messages
and the outcomes of coin tosses. In this paper, we formalize weak adversaries,
and make explicit that they inherently impose restrictions on the local code of a
distributed algorithm, that is, they can only be defined for a class of distributed
algorithms (which was not apparent from their mathematical definition in the
literature).

Intuitively, these algorithms expose some form of symmetry regarding the
local control flow. Consider a formalization of Ben-Or’s consensus algorithm [4]
in Fig. 1. The subscript in the locations (nodes) encode the local estimate of the
consensus value, for instance D0 and D1 are locations where processes decide 0
and 1, respectively. We observe that the control flows on the 0 side and the 1
side are symmetric: if we ignore the subscripts the paths through the graph are
identical. In contrast, consider the (made-up) example in Fig. 2. If at location
J there would be a branching due to receiving messages with different consen-
sus estimates, the two paths that lead to F differ in length. An adversary may
observe whether a process has taken the left path or the right path which allows
the adversary to infer knowledge on the consensus value that led to branching
at location J . However, typical randomized consensus algorithms from the lit-
erature [4,7,17,18] have a structure similar to Fig. 1. Almost sure termination
of these algorithms have been automatically verified in [5] under synchronous
executions formalized via round-rigid adversaries. In this paper we show that
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for these distributed algorithms the computation trees that are defined by weak
adversaries can be reduced to round-rigid computation trees by a swapping argu-
ment. As a result we show that the verification results from [5] apply to a wider
class of adversaries than originally claimed.

More formally, our new reduction theorem says that for each weak adversary
there exists a round-rigid adversary that maintains the original probabilities of
properties. For strong adversaries, we were not able to derive such a reduction
argument, which indicates that the verification problem for strong adversaries is
harder. This would also explain why the mathematical proofs in the literature
for strong adversaries are considerably more involved [1].

Contributions. We present in Sect. 2 a new formalization of randomized dis-
tributed algorithms that allows us to define the weak adversary model from
the literature [2]. Our model is based on threshold automata [13] and their
probabilistic extension [5]. To faithfully express the weak adversaries, we intro-
duce a process-based semantics, i.e., rather than the counter system semantics
from [5,13], we propose semantics based on processes that exchange messages.
We then prove our reduction in two steps. First, in Sect. 3, we reduce adversaries
to communication-closed [10] adversaries, that is, adversaries that to a process
in round r only deliver messages of round r′ ≤ r. Then, in Sect. 4, we reduce
weak communication-closed adversaries to round-rigid adversaries.

2 Modeling Randomized Threshold-Based Algorithms

Probabilistic threshold automata with semantics based on counter systems were
introduced in [5]. For a discussion on the operation of threshold-based distributed
algorithms, and how they are captured by threshold automata we refer to [5].
Here we provide more concrete semantics based on processes and message buffers
(modeled as sets). A probabilistic threshold automaton with processes, PTAP, is
a tuple (L,Z,R,RC ), where

– L is a non-empty finite set of locations that contains the disjoint subsets:
initial locations I, final locations F , and border locations B, with |B| = |I|.

– Z is a disjoint union of the following five sets:
• Π is a set of parameter variables;
• P = {p1, . . . , pn}, for some n ≥ 1, is a finite set of processes; It is the
disjoint union of C and F, representing sets of correct and faulty processes,
respectively;
• T is a finite set of types of messages
• V is a finite set of values of messages, typically V = {0, 1};
• Λ ⊆ {xt,v | t ∈ T , v ∈ V} is a set of local receive variables;

– R is a finite set of rules; and
– RC , the resilience condition, is a constraint over parameter variables.
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Fig. 1. Ben-Or’s randomized consensus algorithm as a prob-
abilistic threshold automaton with processes.

Fig. 2. Asymmetric
threshold automaton
used in Example 5.

Table 1. The rules of the probabilistic threshold automaton for Ben-Or’s algorithm
from Fig. 1, where zi ∈ {x0, x1, y0, y1, y?} refers to messages of type z and value i.

Rule Guard Update

r1 true ∅
r2 true ∅
r3 true {x0}
r4 true {x1}
r5 x0+x1 ≥ n−t ∧ x0 ≥ (n+t)/2 {y0}
r6 x0+x1 ≥ n−t ∧ x1 ≥ (n+t)/2 {y1}
r7 x0+x1 ≥ n−t ∧

x0 < (n+t)/2 ∧ x1 < (n+t)/2 {y?}

Rule Guard Update

r8 y0+y1+y? ≥ n−t ∧ y0 ≥ t+1 ∅
r9 y0+y1+y? ≥ n−t ∧ y0 > (n+t)/2 ∅
r10 y0+y1+y? ≥ n−t ∧

y0 < t+1 ∧ y1 < t+1 ∅
r11 y0+y1+y? ≥ n−t ∧ y1 > (n+t)/2 ∅
r12 y0+y1+y? ≥ n−t ∧ y1 ≥ t+1 ∅
r13 true ∅
r14 true ∅

Example 1. Figure 1 depicts a PTAP that formalizes the seminal consensus algo-
rithm by Ben-Or [4]. It has locations L = B ∪ I ∪ F ∪ {SR, SP}, where
B = {I0, I1} are border locations, I = {J0, J1} are initial locations, and
F = {E0, E1,D0,D1, CT0, CT1} are final locations. The set of parameters is
Π = {n, t, f}, where n is the total set of processes, f is the number of faulty
processes, and t is an upper bound on the number of faults. The 14 rules of the
PTAP from Fig. 1 are given in Table 1 (and detailed later). There are two message
types, T = {x, y}, and three values V = {0, 1, ?}, where x-messages can only
have values 0 and 1, and y-messages all three values. The local receive variables
from Λ are thus written x0, x1, y0, y1, y? where we write shortly, e.g., type-value
pair (x, 0).

See [5] for an in-detail exposition of Ben-Or’s algorithm and its formalization
as threshold automaton. There, one can observe that the pseudo-code of this
algorithm consists of a while loop, and one loop iteration is refered to as a
round. In the threshold automaton in Fig. 1, the solid arrows represent local
transitions within a round, while dashed arrows represent local transitions to
the next round. In each round, each process starts in I0 or I1. The subscript of
the locations show what is the process’ current estimate of the consensus value.
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A process informs its peers about its consensus estimate by firing rule r3 or r4
and sending a message of type x0 or x1, respectively. Then it waits in SR until
sufficiently many—given by the guards—messages are received to fire r5, r6, and
r7, etc. If the thresholds are chosen properly, this shall ensure that if a process
enters D0 in some round, and thus decides 0, no process ever enters D1 in some
round and decided 1 (agreement of consensus). The randomization is introduced
in rule r10: this is a coin toss where a process chooses its estimate for the next
round if there was no clear majority around a value. The dashed arrows then
show how a process transitions from a final location of round r to the beginning
of round r + 1. Performing an infinite number of rounds, and (if necessary) coin
tosses, shall ensure that eventually every process decides.

Resilience Condition. Let N0 denote the set of natural numbers including
zero. A resilience condition RC defines the set of admissible parameter values
PRC = {p ∈ N

|Π|
0 : p |= RC}, for which the algorithm is designed to be correct.

For example, Ben-Or’s consensus algorithm is correct when n/5 > t ≥ f ≥ 0. We
introduce a function N : PRC → N0 that maps a vector of admissible parameters
to a number of modeled processes in the system. For instance, for the automa-
ton in Fig. 1, N is the function (n, t, f) �→ n−f , as we model only the n−f
correct processes explicitly, while the effect of Byzantine faulty processes is cap-
tured in non-deterministic choices between different guards. For crash-resilient
algorithms, where all processes are initially correct (until they crash), we model
them all explicitly, that is, N(n, t, f) = n. The set of modeled processes is then
C = {p1, . . . , pN}.

Messages. The set of all messages is M = (P×T ×V×N0). A message m is a tuple
(sen, type, val , rnd) where the process sen ∈ P is the sender, the message type
is type ∈ T , the value is val ∈ V, and the message is sent in the round rnd ∈ N0.
Note that we do not make explicit the process receiving the message, because we
focus on broadcast communications, and thus messages are sent to every process.

Let MF = F × T × V × N0 be the subset of all messages where the sender
is a faulty process, and MC = C × T × V × N0 the subset of messages sent by
correct processes. In our example from Fig. 1 we have |F| = f and |C| = n − f .

In the sequel, we assume M is equipped with a total order <M. This total
order can be naturally derived from the order on N0, and fixed orders on the
processes, on the types, and on the values.

Rules. We introduce rules in detail, and give syntactic restrictions that model
the local transitions of a distributed algorithm from/to particular locations. A
rule r is a tuple (from, δto , ϕ,u) where from ∈ L is the source location, δto ∈
Dist(L) is a probability distribution over the destination locations, u ⊆ T × V
is the update set, and ϕ is a guard, i.e., a conjunction of expressions of the form∑

v∈V(bv · xt,v) � ā · pᵀ + a0 where t ∈ T is a fixed message type; for a message
value v ∈ V, bv ∈ N0 is a non-negative integer and xt,v ∈ Λ is a local receive
variable; � ∈ {≥, <}, ā ∈ Z

|Π| is a vector of integers, a0 ∈ Z, and p is the vector
of all parameters. If a guard contains only one conjunct, we sometimes call it a
simple threshold guard (or just a simple guard). The set of all simple guards that
appear in a probabilistic threshold automaton PTAP is denoted by G(PTAP).



224 N. Bertrand et al.

If r.δto is a Dirac distribution, i.e., if there exists � ∈ L such that r.δto(�) = 1,
we call r a Dirac rule, and simply denote it (from, �, ϕ,u).

Probabilistic threshold automata model algorithms with multiple rounds that
follow the same code. They represent the behaviour each correct process fol-
lows within a round. Informally, a round happens between border locations and
final locations. The round switch rules let processes move from final locations
of a given round to border locations of the next round. From each border loca-
tion there is exactly one Dirac rule to an initial location, and it has a form
(�, �′, true, ∅) where � ∈ B and �′ ∈ I. As |B| = |I|, one can think of border
locations as copies of initial locations. It remains to model from which final
locations to which border location (that is, initial for the next round) processes
move. This is done by round switch rules. They can be described as Dirac rules
(�, �′, true, ∅) with � ∈ F and �′ ∈ B. The set of round switch rules is denoted
by S ⊆ R. A location belongs to B iff all the incoming edges are in S. Similarly,
a location is in F iff there is only one outgoing edge and it is in S.

Example 2. Back to our running example, the only rule that is not a Dirac rule
is r10, and round switch rules are represented by dashed arrows. Also the update
sets are either empty sets or singletons, where we again write shortly, e.g., x0

instead of the type-value pair (x, 0).

2.1 Symmetry in PTAP

In the distributed algorithm community, weak adversaries are typically defined
by not being able to observe message content and the outcome of coin tosses.
In the PTAP model, one can often retrieve information about the outcome of a
coin toss by the location a process ends up in, or about the message contents by
the rule that is taken. For instance, in our example, depending on the outcome
of a coin toss, a process goes either to location CT0 or CT1. Also, firing r5 or r6
reveals which messages of type x—with value 0 or 1—are in the majority. This
motivates the introduction of two equivalence relations, one on locations and
one on guards (and thus rules). In our example on the one hand, the locations
CT0 and CT1 should be equivalent, and on the other hand the rules r5 and r6
should be equivalent. In the following, we formalize weak adversaries using such
symmetries in threshold automata.

Equivalence Relations on Guards and Rules. Let us first define a correspondence
between threshold guards. Fix two simple threshold guards

ϕ1 :
∑

v∈V
(bt1,v · xt1,v) �1 ā · pᵀ + a0 and ϕ2 :

∑

v∈V
(dt2,v · xt2,v) �2 c̄ · pᵀ + c0.

We say that ϕ1 and ϕ2 correspond to each other, denoted by ϕ1 ≡ϕ ϕ2, if:

– �1 and �2 are the same relation, either ≥ or <,
– coefficients are the same, that is, ā = c̄ and a0 = c0,
– message types are the same, that is, t1 = t2,
– there exists a permutation π on the set of values V, such that bt1,v = dt2,π(v).
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We extend this definition to threshold guards. Let ϕA = ϕA
1 ∧ . . . ∧ ϕA

k and
ϕB = ϕB

1 ∧ . . . ∧ ϕB
m be threshold guards, and each ϕA

i and ϕB
j be a simple

guard. We say ϕA and ϕB correspond to each other, and write ϕA ≡ϕ ϕB , if
k = m and there is a permutation ρ on the set {1, . . . , k} such that ϕA

i ≡ϕ ϕB
ρ(i)

for every 1 ≤ i ≤ k.

Example 3. In case x, y ∈ T and 0, 1, 2 ∈ V, we have y0 ≥ n−2t ≡ϕ y1 ≥ n−2t
and y0 + 3y1 < t + 1 ≡ϕ y1 + 3y2 < t + 1. In the example from Table 1 we have
r5 ≡ϕ r6, r8 ≡ϕ r12, and r9 ≡ϕ r11.

The equivalence relation over guards, allows us to define an equivalence rela-
tion ≡R ⊆ R×R on rules. Let r1 and r2 be two rules from R. We have r1 ≡R r2
if and only if it holds that: r1.ϕ ≡ϕ r2.ϕ, and there exists a permutation π on
the set of values V, such that (t, v) ∈ r1.u if and only if (t, π(v)) ∈ r2.u.

Example 4. Consider again our example from Table 1. The rules r1, r2, r3, r4 have
trivial guards, which are therefore all in the same equivalence class of ≡ϕ. In
contrast, not all the rules are equivalent w.r.t. relation ≡R, as their update sets
are different. Thus, we have r1 ≡R r2 and r3 ≡R r4.

Equivalence Relation on Locations. We define equivalence relation ≡L ⊆ L × L
on locations inductively as follows:

– The set of border locations B is one equivalence class of ≡L, that is, for every
�1, �2 ∈ B and every �3 �∈ B it holds that �1 ≡L �2, and �1 �≡L �3.

– Let �1 and �2 be two locations from L \ B. We have �1 ≡L �2 if and only if
there exist rules r1 and r2 and locations �s

1 and �s
2 such that

• �s
i is a source location of ri, for i = 1, 2, that is, ri.from = �s

i ,
• �i is a destination location for ri, formally, ri.δto(�i) > 0, for i = 1, 2,
• �s

1 ≡L �s
2, and r1 ≡R r2.

– The set of final locations F is either one equivalence class of ≡L or a union of
finitely many equivalence classes of ≡L. As a consequence, there are no two
locations �1 ∈ F and �2 �∈ F such that �1 ≡L �2.

Let PTAP be a probabilistic threshold automaton with processes, equipped
with equivalence relations ≡L and ≡R. Assume �, �0, �1 ∈ L are locations, and
r = (from, δto , ϕ,u) ∈ R is a non-Dirac rule such that its source location is �
(r.from = �), and �0 and �1 are its destination locations. Then �0 ≡L �1. In
words, all destinations of a non-Dirac rule are equivalent locations.

Example 5. In Fig. 1 we have 7 equivalence classes w.r.t. ≡L, namely {I0, I1},
{J0, J1}, {SR}, {SP}, {E0, E1}, {D0,D1}, and {CT0, CT1}.

Such an equivalence relation does not always exist, due to the last require-
ment on final locations. For instance, on the automaton from Fig. 2, where I ∈ B,
J ∈ I, F ∈ F , where all rules have guard true and empty update set, it is not
possible to define ≡L. Intuitively, an adversary is able to infer whether the left
or the right branch is taken, and consequently in similar asymmetric automata
it may infer information about message content or coin tosses. However, typical
randomized consensus algorithms from the literature [4,7,17,18] have a structure
similar to the one in Fig. 1, and are thus symmetric.
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2.2 Semantics of a PTAP

The semantics of a probabilistic threshold automaton with processes is an
infinite-state Markov decision process (MDP), which we formally define below.

Given a PTAP and a function N (defined earlier), we define the semantics,
called probabilistic system with processes Sys(PTAP), to be infinite-state MDP
(Σ, I,Act,Δ), where Σ is the set of configurations for PTAP among which I ⊆ Σ
are initial, the set of actions is Act = P(M) × C, and Δ : Σ × Act → Dist(Σ) is
the probabilistic transition function.

Configurations. A configuration σ is a tuple (s,Sent ,Rcvd ,p), where the com-
ponents are defined as follows:

– σ.s : C → L × N0 is a function that describes the control states of processes,
that is, the location and the round of each correct process,

– σ.Sent ⊆ MC is a set of messages sent by correct processes,
– σ.Rcvd : C → P(M) is a function that keeps track of the received messages

for every correct process.
– σ.p ∈ N

|Π|
0 is a vector of parameter values.

We write σ.Rcvd [p]|t,v,k for the set of messages from σ.Rcvd [p] of type t and
value v that are sent in round k. Formally,

σ.Rcvd [p]|t,v,k = {m ∈ σ.Rcvd [p] | m.type = t ∧ m.val = v ∧ m.rnd = k}.

We write σ.sloc : C → L and σ.srnd : C → N0 for the projections to the first and
the second component of σ.s, respectively.

A configuration σ = (s,Sent ,Rcvd ,p) is initial if all processes are in border
locations of round 0, and there are no sent nor received messages in any round:

– σ.Sent = ∅,
– for every p ∈ C we have σ.Rcvd [p] = ∅,
– for every p ∈ C there is a location � ∈ B such that σ.s[p] = (�, 0).

A threshold guard evaluates to true in a configuration σ for a process p and
a round k, written σ, p, k |= ϕ, if for all its conjuncts

∑
v∈V(bv ·xt,v) ≥ ā ·pᵀ +a0

we have
∑

v∈V(bv · |σ.Rcvd [p]|t,v,k|) ≥ ā · (σ.pᵀ)+ a0, and similarly for conjuncts
of the other form, i.e.,

∑
v∈V(bv · xt,v) < ā · pᵀ + a0.

Actions. An action α = (M,p) ∈ Act stands for the atomic execution of the
following two steps: (i) process p receives the set of messages M ⊆ M, and after
that (ii) process p makes progress by executing a rule, if possible.

An action α = (M,p) is applicable to a configuration σ if each message
from M has either been sent by a correct process or it comes from a faulty
process, i.e., for every m ∈ M we have: m ∈ σ.Sent or m ∈ MF.

A rule r = (from, δto , ϕ,u) is executable by a process p in a configuration σ
with σ.s[p] = (�, k) if: (i) p is in the source location of the rule, that is, from = �,
and (ii) the guard evaluates to true in σ for p and k, that is, σ, p, k |= ϕ. In every
configuration for every process there is at most one executable rule.
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It is also important to note the role of the round number k in the definition of
an executable rule. Whether a rule r is executable by p in σ depends only on the
messages from the round in which this process is in σ. Thus, threshold automata
are communication-closed [9,10] by construction and thus provide an effective
model for many communication-closed fault-tolerant distributed algorithms in
the literature. We consider this notion in more detail in Sect. 3.

Let σ be a configuration and let action α = (M,p) be applicable to σ. When
α is applied to σ, process p receives messages from M , which results in configu-
ration σaux, and then executes a rule r that is executable by p in σaux (if there
is an executable rule), which finally results in σ′. Note that M = ∅ implies that
σ = σaux, and if there is no executable rule in σaux then we have σaux = σ′.

Let us define a function exec : Σ × Act → R ∪ {⊥} that given a configura-
tion σ and an action α = (M,p) applicable to σ, outputs (i) the unique rule r
that is executable by p in configuration σaux obtained from σ by changing only
σaux.Rcvd [p] = σ.Rcvd [p] ∪ M , if such a rule exists, and (ii) it outputs ⊥ if no
such rule exists. We define exec(σ, α) = ⊥ if α is not applicable to σ.

Let α = (M,p) be an action applicable to σ, and let � be either a poten-
tial destination location of exec(σ, α) �= ⊥, or � is the location of p in σ if
exec(σ, α) = ⊥. We write apply(σ, α, �) for the resulting configuration: param-
eters are unchanged, all messages from M are added to σ.Rcvd [p], and if
exec(σ, α) = r �= ⊥, then new messages from M are added to σ.Sent according to
the update set r.u, and finally while the location and the round of all processes
except p are unchanged, we have that location of p becomes � and its round is
unchanged (or increased by 1 if r is a round switch rule).

Formally, if α = (M,p), we have that apply(σ, α, �) = σ′ if and only if
apply(σ, α, �) is defined and the following holds:

– The parameter values do not change: σ′.p = σ.p.
– Process p receives all messages from M , formally, σ′.Rcvd [p] = σ.Rcvd [p]∪M .
– The control states of processes, that is, their locations and rounds given by

the function σ′.s, are updated as follows:
• After updating σ.Rcvd [p], if there is no executable r for p, that is, if
exec(σ, α) = ⊥, then the control states of all processes remain the same:
σ′.s = σ.s.
• Otherwise, if exec(σ, α) = r �= ⊥, then the control states for all the
processes except for p remain the same. Formally, σ′.s[q] = σ.s[q] for
every q �= p.
Process p moves to location � and either (i) it stays in the same round if
r �∈ S is not a round switch rule, or (ii) it moves to the following round if
r ∈ S. Formally, if we denote the round of p in σ by σ.srnd[p] = k, then we
have that σ′.s[p] = (�, k) if r is not a round switch, and σ′.s[p] = (�, k+1)
if r is a round switch rule.

– The set of sent messages is updated as follows:
• If exec(σ, α) = ⊥, then no rule is fired and thus no message is sent, that
is, σ′.Sent = σ.Sent .
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• If exec(σ, α) = r �= ⊥ then the rule r is fired, and the update set r.u
dictates the set of messages (their types and values) that process p sends
to all in round k = σ.srnd[p], that is, σ′.Sent = σ.Sent ∪ {(p, t, v, k) |
(t, v) ∈ r.u}.

Let α = (M,p) be applicable to σ, and let process p be in round k in configu-
ration σ, that is, σ.s(p) = (�, k) for some location � and round k. Then we define
the round of action α in configuration σ to be k, and denote this by rndσ(α) = k.
When it is clear from the context which configuration we refer to, we only write
rnd(α) instead of rndσ(α).

Probabilistic Transition Function. The probabilistic transition function Δ is
defined such that for every two configurations σ and σ′ and for every action α
applicable to σ, with exec(σ, α) = r ∈ R ∪ {⊥}, we have

Δ(σ, α)(σ′) =

{
r.δto(�) if apply(σ, α, �) = σ′ for some � ∈ L
0 otherwise.

Note that if r = ⊥ we define r.δto(�) = 1, and if there exists a location � with
apply(σ, α, �) = σ′, this location is uniquely defined.

Paths. A (finite or infinite) path in Sys(PTA) is an alternating sequence of configu-
rations and actions σ0, α0, σ1, α1 . . ., such that for i > 0, there exists a location �i

such that apply(σi−1, αi−1, �i) = σi. We denote the set of all paths by Paths and
the set of all finite paths (ending with a configuration) by Pathsfin. The length
of a finite path ρ = σ0, α0, σ1, α1 . . . , σk is the number of actions taken, that
is, |ρ| = k. Wlog if ρ is an infinite path, we let |ρ| = ∞. We sometimes consider
prefixes of a (finite or infinite) path ρ, and for s < |ρ| write ρs for σ0, α0, . . . , σs.
Also the last configuration σk of a finite path ρ = σ0, α0 . . . , αk−1, σk is written
last(ρ). As sent messages cannot be unsent, the set of sent messages can only
grow along a path. Thus, the set last(ρ).Sent contains the set σi.Sent for every
0 ≤ i ≤ k. That is why we often write ρ.Sent instead of last(ρ).Sent .

2.3 Message Identities

An adversary formalizes which messages will be received next. When formalizing
weak adversaries, we have to capture that the adversary can pick a message
without being aware of the content of the message. For this we introduce message
identities in the model. Note that every action may include sending a finite
number of messages. Therefore, in a finite path there are finitely many sent
messages, and we can assign them their identities (IDs for short). For a path
ρ ∈ Pathsfin, we define IDs of messages sent by correct processes along ρ by a
function ID[ρ] : ρ.Sent → N defined recursively on the length ρ:

Base Case. If ρ is a degenerative path ρ = σ0, then σ0 is an initial configura-
tion, and therefore, there are no sent messages in it. Formally, σ0.Sent = ∅ and
there is nothing to assign.

Recursion. Let ρ = τασ ∈ Pathsfin be a non-degenerative finite path. We
distinguish two cases depending if new messages were sent while executing α.
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– If no message is sent when applying α to last(τ), i.e., if either no rule is
executed exec(last(τ), α) = ⊥, or if there is an executed rule exec(last(τ), α) =
r �= ⊥ but r.u = ∅, then the function ID is unchanged: we set ID[ρ] = ID[τ ].

– Otherwise, let r = exec(last(τ), α) and let the set of messages sent when
executing rule r from last(τ) be r.u = {m1, . . . ,mk} for some k ≥ 1, with
m1<Mm2 · · · <Mmk. Then the function ID[ρ] is defined as follows:

ID[ρ](m) =

{
ID[τ ](m) if m ∈ τ.Sent ,
|τ.Sent | + i if m = mi ∈ r.u for 1 ≤ i ≤ k

Revealing Messages from their IDs. It is important to notice that for every
natural number n ≤ |τ.Sent | there is a unique message m ∈ τ.Sent with that
identity, that is, with ID(m) = n. We define an inverse of msg when defined.
Given a path ρ ∈ Pathsfin we define a function rev-msg[ρ] : {1, 2, . . . , |ρ.Sent |} →
ρ.Sent , such that for every n with 1 ≤ n ≤ |ρ.Sent | we have rev-msg[ρ](n) = m
if and only if ID[ρ](m) = n.

We extend this definition to a set of IDs, and define rev-msg[ρ] of a set of
natural numbers N ⊂ N to be rev-msg[ρ](N) = {rev-msg[ρ](n) | n ∈ N}.

Faulty Messages. Recall that MF = F × T × V × N0 is the set of messages m =
(p, t, v, k) ∈ M with the sender being a faulty process, that is, p ∈ F. Note
that this set has countably infinitely many elements, and therefore there exists
a bijection between the set of natural numbers and MF. We choose one such
bijection IDf : MF → N to be an enumerating function for the set of the faulty
messages.

Similarly, we define a reveal function rev-msgf : N → MF as the inverse of
the identity function, that is, rev-msgf = ID−1

f . Moreover, for a set of natural
numbers N ⊂ N we define rev-msgf (N) = {rev-msgf (n) | n ∈ N}.

2.4 Adversaries

The non-determinism in Markov decision processes is traditionally resolved
by a so-called adversary, see e.g. [3, Chap. 10]. An adversary is a function
a : Pathsfin → 2N×{c,f} × C that given a finite path ρ = σ0, α0, σ1, . . . , σk of
Sys(PTAP) selects a set of message IDs with the nature of their senders (a set of
elements from N × {c} or N × {f}) together with a correct process (thus from
C) to whom these messages are delivered.

As an adversary only gives message IDs, we need to understand which mes-
sages correspond to them. This is why we introduce the function reveal[a] :
Pathsfin → Act that reveals the next action in a path according to the choice of
the adversary a. Let a(ρ) = (N1 × {c} × {p}) ∪ (N2 × {f} × {p}), where N1 and
N2 are finite sets of natural numbers, and p ∈ C is a correct process. Then we
define reveal[a](ρ) to be the action (M1 ∪ M2, p), where M1 = rev-msg[ρ](N1)
and M2 = rev-msgf (N2).

Given a path ρ, we also define a function choice[ρ] : 2ρ.Sent×C → 2N×{c,f}×C

that tells us which choice a(ρ) should the adversary take in order to obtain the
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expected action. Let (M,p) ∈ 2ρ.Sent × C, with M = M1 ∪ M2 where M1 are
messages sent by correct processes and M2 are messages sent by faulty processes.
Let N1 = {ID[ρ](m) | m ∈ M1} and let N2 = {IDf (m) | m ∈ M2}. Then we
have choice[ρ](M,p) = (N, p), where N = (N1 × {c}) ∪ (N2 × {f}).

Given an initial configuration σ0, an adversary a generates a set paths(σ0, a)
of infinite paths σ0, α0, σ1, . . . with the following property: for every i > 0,
αi = reveal[a](σ0, σ1, . . . , σi−1) and there exists a location �i such that σi =
apply(σi−1, αi, �i). Every infinite path π ∈ paths(σ0, a), and every finite path ρ
which is a prefix of an infinite path π ∈ paths(σ0, a), are said to be induced by a.

The MDP Sys(PTAP) together with an initial configuration σ0 and an adver-
sary a induce a Markov chain, denoted by Mσ0

a . Precisely, the state space of
Mσ0

a is Pathsfin, its initial state is the initial configuration σ0—which is also a
path of length 0—and the probabilistic transition function δa,σ0 : Pathsfin →
Dist(Pathsfin) is defined for every τ ∈ Pathsfin starting in σ0 and ending in some
configuration σ, for every action α, and every σ′ ∈ Σ by:

(
δa(τ)

)
(τασ′) = Δ(σ, reveal[a](τ))(σ′).

In words, the probability in Mσ0
a to move from state τ to state τασ′ is non-zero

as soon as there exists an action α′ such that σ′ = apply(σ, α′, �) and a picks
α′. This equals the probability that the corresponding process moves to � if the
adversary a picks action α′. Note that the Markov chain Mσ0

a is acyclic, and
even has the shape of a tree, since its states are the finite paths in Pathsfin. We
write Pσ0

a for the probability measure over infinite paths starting at σ0 in Mσ0
a .

Given σ0, a and a finite path ρ = σ0, α0, . . . , σk ∈ Pathsfin, we write Mρ
a for

the Markov chain which corresponds to the part of Mσ0
a with initial state ρ. The

probability measure Pρ
a in Mρ

a is inherited from the one in Mσ0
a .

Weak Adversaries. In order to define weak adversaries, we introduce an equiva-
lence relation on paths.

For two sets of messages M1 and M2 we say they are equivalent up to message
values if there is a bijection f : M1 → M2 such that for every m ∈ M1 we have
that m and f(m) have the same sender, type and round. Formally, we have
m.sen = f(m).sen, m.type = f(m).type, m.rnd = f(m).rnd .

The weak observation relation relates two configurations that differ only in
message content and symmetric locations of processes. Formally:

Definition 1. The weak observation relation is the equivalence relation ≡w⊆
Σ2 such that σ ≡w σ′ if and only if

– for every correct process p ∈ C, if σ.s(p) = (�1, k1) and σ′.s(p) = (�2, k2),
then k1 = k2 and �1 ≡L �2.

– σ.Sent and σ′.Sent are equivalent up to message values
– for all p ∈ C, σ.Rcvd(p) and σ′.Rcvd(p) are equivalent up to message values
– σ.p = σ′.p
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We extend the relation to finite paths of the same length: if π = σ1, σ2, . . . , σk

and π′ = σ′
1, σ

′
2, . . . , σ

′
k, then we write π ≡w π′ if σi ≡w σ′

i for every 1 ≤ i ≤ k.

An adversary a is weak if for every two finite paths π and π′ with π ≡w π′

we have that a(π) = a(π′). In words, a weak adversary does not distinguish
two paths if they are equivalent, and thus makes the same choice for equivalent
paths.

Note that for threshold automata on which ≡L cannot be defined, we can
also not define ≡w. Therefore, weak adversaries are a property of only those
distributed algorithms that can be modeled by symmetric automata.

Lemma 1. Let π = σ0, . . . , σk, αk, σk+1 and π̄ = σ0, . . . , σk, αk, σ̄k+1 be two
paths such that exec(σk, αk) = r is a non-Dirac rule with two destination loca-
tions � �= �̄, with apply(σk, αk, �) = σk+1 and with apply(σk, αk, �̄) = σ̄k+1. Then
for every weak adversary a we have a(π) = a(π̄).

Proof. Fix an arbitrary weak adversary a. By definition of weak adversaries, it
is enough to show that π ≡w π̄, and thus to prove that σk+1 ≡w σ̄k+1.

We check all conditions for two configurations to be weakly-equivalent. Of
course, σk+1.p = σ̄k+1.p. Let αk = (M,p).

For every correct process q �= p, σk+1.s(q) = σ̄k+1.s(q). Writing σk+1.s(p) =
(�, k) and σ̄k+1.s(p) = (�̄, k̄), then the rounds k and k̄ are trivially equal, and
� ≡L �̄ holds by definition of the equivalence relation on locations.

Moreover, the update is defined by the rule r, and is independent of the
destination location, so that the sent messages coincide: σk+1.Sent = σk.Sent ∪
r.u = σ̄k+1.Sent .

We now compare receive sets, and again they do not depend on the desti-
nation location, but only on r. For each correct process q �= p it trivially holds
that σk+1.Rcvd(q) = σ̄k+1.Rcvd(q). Also σk+1.Rcvd(p) = σk.Rcvd(p) ∪ M =
σ̄k+1.Rcvd(p). ��

We define two more notions for adversaries: An adversary a is
communication-closed if for every finite path ρ the action reveal[a](ρ) = α =
(M,p) is such that each message m ∈ M is sent before or in the same round
in which process p is in last(ρ). Formally, m.rnd ≤ rnd(α). An adversary a is
round-rigid if for every finite path ρ the action reveal[a](ρ) = α = (M,p) has
the smallest possible round, that is, there is no applicable action α′ such that
rnd(α′) < rnd(α). In the sequel, we show that weak round-rigid adversaries are
as expressive as weak adversaries (see Theorem 1 and Theorem 2).

2.5 Atomic Propositions and Stutter Equivalence

Properties of threshold-based distributed algorithms are expressed in temporal
logic. More precisely, we consider a stutter-insensitive fragment of LTL, namely,
LTL-X [3, Chapter 7]. The atomic propositions describe the non-emptiness of a
location in a given round, i.e., whether there is at least one correct process in
location � ∈ L\B in round k [5]. The set of all such propositions for a round k ∈
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N0 is denoted by APk = {ap(�, k) : � ∈ L \ B}. For every k we define a labeling
function λk : Σ → 2APk such that ap(�, k) ∈ λk(σ) iff ∃p ∈ C. σ.s(p) = (�, k).

For a path π = σ0, α1, σ1, . . . , αn, σn, n ∈ N, and a round k, a trace tracek(π)
w.r.t. the labeling function λk is the sequence λk(σ0)λk(σ1) . . . λk(σn). Similarly,
if a path is infinite π = σ0, α1, σ1, α2, σ2, . . ., then tracek(π) = λk(σ0)λk(σ1) . . ..

We say that two finite traces are stutter equivalent w.r.t. APk, denoted
tracek(π1) � tracek(π2), if there is a finite sequence A0A1 . . . An ∈ (2APk)+,
n ∈ N0, such that both tracek(π1) and tracek(π2) are contained in the language
given by the regular expression A+

0 A+
1 . . . A+

n . If traces of π1 and π2 are infi-
nite, then stutter equivalence tracek(π1) � tracek(π2) is defined in the standard
way [3]. To simplify notation, we say that paths π1 and π2 are stutter equivalent
w.r.t. APk, and write π1 �k π2, instead of referring to specific path traces. Two
stutter equivalent paths satisfy the same LTL-X formulas [3, Theorem 7.92].

Remark. We emphasize that atomic propositions cannot check emptiness of bor-
der locations from the set B. The specifications cannot observe the moment
of transition from one round to another. This allows us to swap transitions of
adjacent rounds below.

The following lemma expresses that an action may only change atomic propo-
sitions of its own round, as it only affects a process in that round.

Lemma 2. Let π = σ0, α1, σ1, . . . , σs−1, αs, σs be a finite path. Then, for every
round k �= rnd(αs), it holds that λk(σs−1) = λk(σs).

Proof. Let ap(�, k) ∈ λk(σs−1), meaning that for some correct process p ∈ C,
σs−1.s(p) = (�, k). Since rnd(αs) �= k, we have αs = (M, q) for a set of mes-
sages M and some correct process q �= p. Thus, application of αs does not
affect p, and σs.s(p) = (�, k). In other words, ap(�, k) ∈ λk(σs). This holds for
every ap(�, k) ∈ λk(σs−1), concluding the proof. ��

Using Lemma 2, it is easy to prove that swapping two actions of different
rounds in a path yield a stutter equivalent path w.r.t. APk for every ∈ N0:

Lemma 3. Let π = σ0, . . . , σs, σs+1, σs+2 and π′ = σ0, . . . , σs, σ
′
s+1, σ

′
s+2 be two

paths with πs = π′
s = σ0, . . . , σs, and such that there are two actions α and α′

with rnd(α) �= rnd(α′), and there are locations � and �′ with

σs+1 = apply(σs, α, �) σs+2 = apply(σs+1, α
′, �′)

σ′
s+1 = apply(σs, α

′, �′) σ′
s+2 = apply(σ′

s+1, α, �)

Then σs+2 = σ′
s+2 and for every k ∈ N0, π �k π′.

Proof. Let us first prove that σs+2 = σ′
s+2. Both σs+2 and σ′

s+2 are obtained
from σs by applying α with � and α′ with �′, just in different orders. By stan-
dard communication-closure arguments [8–10], if an action from a smaller round
happens in an execution after an action of larger round, it is easy to prove that
these two actions do not affect each other. Thus, in any order they will lead to
the same configuration.
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Let us now fix an arbitrary k ∈ N0 and prove that π �k π′. As these two
paths have the same prefix of length s, it suffices to prove that σs, σs+1, σs+2 �k

σs, σ
′
s+1, σs+2. We distinguish three cases: (i) k �= rnd(α) and k �= rnd(α′), (ii)

k = rnd(α), and (iii) k = rnd(α′). Cases (ii) and (iii) are symmetrical, so that
we only prove (ii).

(i) By Lemma 2 we have λk(σs) = λk(σs+1) = λk(σ′
s+1) = λk(σs+2), which

trivially yields the required statement.
(ii) As in this case k �= rnd(α′), we can apply Lemma 2 and obtain that

λk(σs+1) = λk(σs+2) and λk(σs) = λk(σ′
s+1). Therefore, tracek(σs, σs+1, σs+2) =

λk(σs)λk(σs+2)λk(σs+2), and tracek(σs, σ
′
s+1, σs+2) = λk(σs)λk(σs)λk(σs+2),

and they are clearly stutter equivalent w.r.t. k. ��

3 Reduction to Communication-Closed Adversaries

In this section we show that in the threshold automata framework (which models
communication-closed algorithms by construction, cf. Sect. 2.2), for every adver-
sary, there exists an “equivalent” communication-closed adversary. This step is
quite intuitive: if the adversary delivers a message m of round r to a process
in round r′ �= r, this is “similar” to an adversary that instead does not deliver
m now, but delivers m later when the process enters r. However, we need to
formalize this, in order to set the stage of our central reduction in Sect. 4.

For a set of messages M and a round k we denote by M |k the set of messages
from M sent in round k, that is, M |k = {m ∈ M | m.rnd = k}. Similarly, we
define M |≤k = ∪i≤kM |i the set of messages from M sent in any round i ≤ k.

Communication-Closed Configurations and Markov Chains. The definition of
rules executable in σ in Sect. 2.2 yields that messages received from the “future”,
i.e., from a round k > σ.srnd(p), do not play a role for process p in σ. Namely,
if two configurations σ and σ′ differ only in the messages that processes have
received from future rounds, then the same rules are executable in σ and σ′. That
is why for every σ we define σ̃ to be a configuration in which each process only has
received messages from “past” and “present”, i.e., from a round k ≤ σ.srnd(p).
As border locations can be seen as borders between consecutive rounds, we
decide to let processes from border locations in σ̃ receive messages only from
the “past”, as if they were not yet in the next round. Formally, σ̃.s = σ.s
and σ̃.Sent = σ.Sent and σ̃.p = σ.p and for all p ∈ C, if sloc(p) ∈ B then
σ̃.Rcvd(p) = σ.Rcvd(p)|≤srnd(p)−1 otherwise σ̃.Rcvd(p) = σ.Rcvd(p)|≤srnd(p). A
configuration σ is communication-closed if σ = σ̃.

Recall that a path has the form σ0, α0, . . . , αs−1, σs, but given a sequence of
configurations σ0, . . . , σs of a path generated by an adversary a, we can easily
recover the missing actions. This allows us to consider the states of Markov chains
to be finite sequences of configurations rather than finite paths. Both represen-
tations are equivalent, and thus in this section we consider paths as sequences
of configurations. We can lift the notion of communication-closed configurations
to communication-closed paths, such that given a path ρ = σ0, . . . , σk we define
μ(ρ) = σ̃0, . . . , σ̃k. Finally, we obtain a communication-closed Markov chain M̃σ0

a

by replacing each state ρ in Mσ0
a by μ(ρ).



234 N. Bertrand et al.

Communication-Closed Adversaries. Given an arbitrary adversary a, we define
its corresponding communication-closed adversary cc(a) as follows. If a process p
is scheduled by a it is also scheduled by cc(a), but it receives different messages:
if p is not at the beginning of a round, cc(a) should check which messages a
would give to p, and among them cc(a) should choose only those messages that
do not come from future rounds. Once a process reaches a round (when it is
at a border location in B), it receives all the messages from that round and all
those that were previously sent to it, but the process could not receive it earlier
(because at that time these were messages from the future.)

As cc(a) has to know the behavior of a, we show how to recover a path gen-
erated by a (if it exists) if we are given a communication-closed path. Formally,
given an adversary a and a communication-closed path ρ, we define νa(ρ) to be
a path τ generated by a, such that μ(τ) = ρ, if such a path exists; otherwise,
νa(ρ) is undefined. Observe that if ρ is a path generated by a, then ρ = νa(μ(ρ)).

Finally, we define a communication-closed version of an adversary formally.
Recall that τi denotes the prefix of τ of length i.

Definition 2. Let a be an adversary. For a given finite path ρ, if νa(μ(ρ)) is
undefined then cc(a)(ρ) is an arbitrary action. Otherwise, if νa(μ(ρ)) = τ =
σ0, . . . , σs, let reveal[a](τi) = αi = (Mi, pji), for each 0 ≤ i ≤ s and some
pji ∈ C. If αs = (Ms, p), in order to define cc(a)(ρ) we distinguish two cases:

– If σs.s[p] = (�, k) with � �∈ B, then

cc(a)(ρ) = choice[τ ](Ms|≤k, p).

– If σs.s[p] = (�, k) with � ∈ B, then for Sp = {i | 1 ≤ i < s ∧ αi = (Mi, p)}
being the set of indices of the actions involving process p:

cc(a)(ρ) = choice[τ ](M,p), for M = Ms|≤k ∪
⋃

i∈Sp

Mi|k.

Theorem 1. For every adversary a, M̃σ0
a = M̃σ0

cc(a).
Moreover, for every LTL-X formula ψ, Pσ0

a (ψ) = Pσ0
cc(a)(ψ).

4 From Weak to Round-Rigid Adversaries

In this section we reduce a communication-closed weak adversary to a round-
rigid adversary. More precisely, we show that we can transform the Markov
chain defined by the weak adversary to a round-rigid Markov chain that satisfies
specific temporal logic formulas with the same probabilities.

Swapping Function for Paths and Swapped Adversaries. We first define a swap-
ping function for a path ρ = σ0, α0, σ1, . . . , σs, αs, σs+1, αs+1, σs+2 . . . and s ∈ N

a swapping index for ρ, such that rnd(αs) > rnd(αs+1). It applies to a path
ρ̄ = σ̄0, . . . , σ̄s, ᾱs, σ̄s+1, ᾱs+1, σ̄s+2, . . . such that ρ̄s ≡w ρs, and swaps its
actions (and target locations) at steps s and s+1. Formally, if �̄s, �̄s+1 are
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the destination locations at step s and s+1, i.e. apply(σ̄s, ᾱs, �̄s) = σ̄s+1 and
apply(σ̄s+1, ᾱs+1, �̄s+1) = σ̄s+2, then for σ′

s+1 = apply(σ̄s, ᾱs+1, �̄s+1) we define

sw[ρ, s](ρ̄) =

{
σ̄0, . . . , σ̄s, ᾱs+1, σ

′
s+1, ᾱs, σ̄s+2, . . . if ρ̄s ≡w ρs

ρ̄ otherwise.

Note that the configurations in ρ̄ and sw[ρ, s](ρ̄) may only differ at position s+1,
and that ρ̄ and sw[ρ, s](ρ̄) are stutter-equivalent. Hence, for every LTL-X formula
ψ, ρ̄ |= ψ iff sw[ρ, s](ρ̄) |= ψ. If ρ′ = sw[ρ, s](ρ̄), we also write sw[ρ, s]−1(ρ′) = ρ̄.

Now, given a weak communication-closed adversary a, a path ρ, and a swap-
ping index s for ρ, we define the swapped adversary a′ = swap[ρ, s](a) that,
intuitively, will implement the swapping function sw[ρ, s] over a-induced paths.
Formally, for any finite path ρ′, the definition distinguishes whether ρ′

s ≡ ρs,
and depends on the length of ρ′:

(i) if |ρ′| < s, then a′(ρ′) = a(ρ′);
(ii) if ρ′

s �≡w ρs and |ρ′| ≥ s, then a′(ρ′) = a(ρ′);
(iii) if ρ′

s ≡w ρs and |ρ′| = s, then

a′(ρ′) = choice[ρ′]
(
reveal[a](ρs+1)

)
;

(iv) if ρ′
s ≡w ρs and |ρ′| = s+1, then

a′(ρ′) = choice[ρ′]
(
reveal[a](ρs)

)
;

(v) if ρ′
s ≡w ρs and |ρ′| ≥ s+2, then

a′(ρ′) = choice[ρ′]
(
reveal[a](sw[ρ, s]−1(ρ′))

)
.

Let us give some intuition on the definition of the swapped adversary
swap[ρ, s](a). Cases (i) and (ii) concern paths that are not involved in the swap-
ping: either they are shorter than the position s at which the swap occurs, or
their prefix of length s is not weakly-equivalent to the one of ρ. In these easy
cases, a′ = swap[ρ, s](a) is defined as a. Case (iii) applies to all paths of length
s that are weakly-equivalent to ρs, and the goal is to define swap[ρ, s](a) so that
it selects action αs+1. However, under a and swap[ρ, s](a), the identities of mes-
sages may be different along paths (and their extensions) that are equivalent to
ρs. We thus need to use the reveal[a] and choice[ ] functions to define that the
action prescribed by swap[ρ, s](a) is αs+1. Case (iv) applies to paths of length
s+1, whose prefix of length s is weakly-equivalent to ρs. For them, the decision
swap[ρ, s](a) should results in action αs. Finally, (v) deals with longer paths, for
which a and swap[ρ, s](a) take the same decisions, up to the renaming of message
identities, and the earlier swapping of αs and αs+1.

Excerpts of the Markov chains Mσ0
a and Mσ0

a′ in Fig. 3 illustrate the trans-
formation to the swapped adversary. Observe that swapping αs and αs+1 relies
on the fact that a is weak. Indeed, the same action αs+1 applies after αs even
if αs induces a non-Dirac distribution. Observe that swap[ρ, s](a) is still a weak
adversary, since it is defined uniformly over weakly-equivalent paths.
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Adversaries a and swap[ρ, s](a) are tightly related. First, the successor con-
figurations in two steps after a path ρ′ ≡w ρs are the same, and they have the
same probabilities to happen. Second, the Markov chains from these points are
identical. Finally the probabilities of LTL-X formulas are preserved.

Proposition 1. Let a be a weak communication-closed adversary, ρ an a-
induced path and s a swapping index. Then, the swapped adversary a′ =
swap[ρ, s](a) is again a weak communication-closed adversary, and it satisfies:

1. for every ρ′ ≡w ρs and every σ ∈ Σ, we have

Pρ′
a (F=2σ) = Pρ′

a′ (F=2σ)

2. for every path ρ̄ with |ρ̄| = s+2, we have

Mρ̄
a = Msw[ρ,s](ρ̄)

a′

3. for every LTL-X formula ψ, we have

Pσ0
a (ψ) = Pσ0

a′ (ψ)

Proof. Remark that indeed swap[ρ, s](a) is weak, because it is defined uniformely
for weakly-equivalent paths. It is also communication-closed, as a is.

Let us now prove the three statements.

1. Let ρ′ ≡w ρs, and let σ be a configuration with Pρ′
a (F=2σ) > 0. Then there

exists an a-induced path ρ′αsσs+1αs+1σ and locations �s, �s+1 such that

σs+1 = apply(σs, αs, �s)
σ = apply(σs+1, αs+1, �s+1)

Let ρ̄ = sw[ρ, s](ρ′αsσs+1αs+1σ). By definition of swap[ρ, s](a), ρ̄ is a path
induced by swap[ρ, s](a), and it ends in σ. More precisely, letting

α′
s+1 = choice[ρ′]

(
reveal[a](ρ′)

)

σ′
s+1 = apply(σs, α

′
s+1, �s+1)

α′
s = choice[ρ′α′

s+1σ
′
s+1]

(
reveal[a′](ρ′αsσs+1)

)

σ′
s+2 = apply(σ′

s+1, α
′
s, �s)

then σ′
s+2 = σ and ρ̄ = ρ′α′

s+1σ
′
s+1α

′
sσ. Thus Pρ′

swap[ρ,s](a)(F
=2σ) > 0.

Moreover, by commutativity of multiplication, the probabilities of reaching σ

in two steps in Mρ′
a and Mρ′

swap[ρ,s](a) coincide: they are equal to αs.δto(�s) ×
αs+1.δto(�s+1).

2. To prove that the Markov chains after ρ̄ of length s+2 under a, and the
one after sw[ρ, s](ρ̄) under swap[ρ, s](a) are equal, we observe that, for paths
longer than s+2,

a′(ρ′) = choice[ρ′]
(
reveal[a](sw[ρ, s]−1(ρ′))

)
.
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Fig. 3. Parts of Markov chains Mσ0
a (above) and Mσ0

a′ (below) following Proposition 1.
We assume here αs is a non-Dirac action with two destination locations �s and �̄s, and
αs+1 is a Dirac action with destination location �s+1. If some of actions α0, . . . , αs−1 are
non-Dirac, we omit drawing branches that are irrelevant for Proposition 1. Note that
reveal[a](σ0, . . . , σs+1) and reveal[a](σ0, . . . , σ̄s+1) must be the same action αs+1, as a

is a weak adversary. This is the key insight that allows swapping, which would not be
possible for a strong adversary with reveal[a](σ0, . . . , σs+1) �= reveal[a](σ0, . . . , σ̄s+1).

This is (v) in the definition of swap[ρ, s](a), and also applies if ρ′ �≡w ρs, in
which case sw[ρ, s]−1(ρ′) = ρ′. In words, swap[ρ, s](a) consists in applying a
on the reverse swapped path. Therefore, the subsequent Markov chains are
equal, as illustrated on Fig. 3.

3. Finally, to prove that the probabilities of LTL-X formulas are preserved, we
argue that Mσ0

a and Mσ0
swap[ρ,s](a) are essentially the same, up to the swapping

of some paths at positions s and s+1. Remember that they both are tree-
shaped. First, they are equal up to depth s. Then item (i) shows that the
successors from depth s in two steps are the same, and they happen with
same probabilities. Last, item (ii) shows that the subsequent Markov chains
are identical. To conclude, we use Lemma 3 to justify that even if actions are
swapped at positions s and s+1, they satisfy the same LTL-X formulas.

��

Theorem 2. For every weak communication-closed adversary a under which
every round terminates, there exists a weak round-rigid adversary a′ such that
for every LTL-X formula ψ we have Pσ0

a (ψ) = Pσ0
a′ (ψ).

Proof (sketch). Theorem 2 is obtained by applying iteratively Proposition 1 to
consecutive actions that are in reverse order. Since every round is assumed to
terminate under a, one can start by moving towards the beginning all actions of
round 1 that happen after actions of later rounds; then one swaps all actions of
round 2, and so on, to obtain in the limit a weak adversary which is round-rigid.
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5 Conclusions

Parameterized verification of safety and almost sure termination of a class of
distributed consensus algorithms [4,7,17,18] has been recently considered in [5].
For almost sure termination, the authors limited themselves to so-called “round-
rigid” adversaries, which were introduced by the authors for that purpose. Veri-
fication under these adversaries was reduced to verification of specifications in a
linear temporal logic that can be checked (within a few minutes) with the ByMC
model checker [14].

In this paper, we have shown that automated verification under weak adver-
saries can be reduced to verification of round-rigid adversaries. More precisely,
in order to verify randomized distributed algorithms under weak adversaries,
one only needs to verify their behavior under round-rigid adversaries, which
has been done in [5] for various randomized consensus algorithms. In order to
define weak adversaries, we were forced to reason within a system model with
semantics that explicitly talks about processes with IDs and messages. In con-
trast, the standard semantics of threshold automata, namely, counter systems
is used in [5] and in ByMC. For a complete chain of proof we would need to
connect process-based semantics to counter systems. This is a rather standard
technical argument so that we do not give it here. From a theoretical viewpoint
we find our reduction from weak adversaries to round-rigid adversaries more
interesting: reductions for concurrent distributed systems is typically done for
reachability properties [10,12,16] or linear temporal properties [8,9,13]. As a
result, the reduction argument is conducted on traces generated by the system:
one shows that by swapping transitions in a trace we arrive at another, yet
“simpler” trace of the system. In this paper, we lifted this reasoning from traces
to computation trees and MDPs which shows that reductions are not only effi-
cient in non-deterministic systems but also in probabilistic systems defined by
distributed algorithms. This mirrors the recent “synchronizing” trend in the ver-
ification of non-deterministic fault-tolerant distributed algorithms [5,6,9,11,15],
and opens this domain to automated parameterized verification of randomized
distributed algorithms.
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Franck Védrine1, Maxime Jacquemin1,
Nikolai Kosmatov1,2(B) ,

and Julien Signoles1
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Abstract. Verification of numerical accuracy properties in modern soft-
ware remains an important and challenging task. One of its difficulties is
related to unstable tests, where the execution can take different branches
for real and floating-point numbers. This paper presents a new verifica-
tion technique for numerical properties, named Runtime Abstract Inter-
pretation (RAI), that, given an annotated source code, embeds into it
an abstract analyzer in order to analyze the program behavior at run-
time. RAI is a hybrid technique combining abstract interpretation and
runtime verification that aims at being sound as the former while taking
benefit from the concrete run to gain greater precision from the latter
when necessary. It solves the problem of unstable tests by surround-
ing an unstable test by two carefully defined program points, forming
a so-called split-merge section, for which it separately analyzes different
executions and merges the computed domains at the end of the section.
Our implementation of this technique in a toolchain called FLDBox relies
on two basic tools, FLDCompiler, that performs a source-to-source trans-
formation of the given program and defines the split-merge sections, and
an instrumentation library FLDLib that provides necessary primitives to
explore relevant (partial) executions of each section and propagate accu-
racy properties. Initial experiments show that the proposed technique
can efficiently and soundly analyze numerical accuracy for industrial pro-
grams on thin numerical scenarios.

1 Introduction

Verification of numerical accuracy properties of critical software is an impor-
tant and complex task. In programs with floating-point operations, the results
of computations are approximated with respect to ideal computations on real
numbers [30]. An accumulation of rounding errors can result in costly or even
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disastrous bugs1,2,3. Therefore, verifying that such behaviors do not happen,
and so that accuracy properties do hold, is of the utmost importance. It remains
a challenging research problem [28] for both dynamic and static analysis.

Abstract interpretation [8] and runtime verification [18] are two well-
established program analysis techniques for verifying program properties. The
former is a static technique that soundly over-approximates the program behav-
iors in order to verify at compile time that all of them satisfy some property
of interest P, while the latter is a dynamic technique that monitors a concrete
execution in order to check that this execution satisfies P at runtime. Both tech-
niques have many successful applications [5,33], but suffer from intrinsic limi-
tations: abstract interpretation may be too slow and imprecise to be tractable,
while runtime verification cannot soundly reason about all possible executions
and may have a hard time dealing with properties that rely on non-executable
models (e.g. real numbers) or several execution traces.

This paper presents a new verification technique for verifying numerical accu-
racy properties, named Runtime Abstract Interpretation (RAI ), as a hybrid
verification technique combining abstract interpretation and runtime verifica-
tion. Similar to [12] and modern symbolic execution tools [6], the main idea of
RAI is to turn a given program into an abstract interpreter for that program,
following—in the simplest case—the same control-flow structure. It replaces
(i) concrete values by abstract values in an abstract domain and (ii) concrete
floating-point operations and comparisons by abstract transformers and predi-
cates. By embedding an abstract interpretation engine into a runtime program
execution, it aims at being sound as the former while taking benefit from the
concrete run to retrieve the precision of the latter (even if the execution context
is unknown at compile time, e.g. in the presence of numerical inputs from an
external database). It can also take into account uncertainty of program inputs
(e.g. coming from sensors), providing guarantees on their robustness [22].

The main difficulty of numerical property verification consists in handling
unstable tests in a sound way. Indeed, an unstable test happens for instance
when the guard of a conditional statement depends on a floating-point expression
and can be evaluated to a boolean value different from the one relying on the
real values. For example, if we have x∈ [0.9, 1.1] (e.g. due to input uncertainty
or rounding errors) before the statement if(x<1.0)...else..., the theoretical
execution for the exact (real) value can follow the then branch, while the machine
(floating-point) values can lead to the else branch. In such a case, the program
execution flow diverges from the theoretical one in real numbers. For a sound
analysis of the program, both branches should be considered and a possible
imprecision of variables in the rest of the program should be computed comparing
different control flows. Some tools [14,21,39] can soundly support unstable tests,
but do not scale to large industrial code with >10,000 LOC.

1 http://www-users.math.umn.edu/arnold/disasters/patriot.html.
2 https://en.wikipedia.org/wiki/Vancouver Stock Exchange.
3 http://www-users.math.umn.edu/arnold/disasters/sleipner.html.

http://www-users.math.umn.edu/arnold/disasters/patriot.html
https://en.wikipedia.org/wiki/Vancouver_Stock_Exchange
http://www-users.math.umn.edu/arnold/disasters/sleipner.html
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RAI solves this issue by surrounding an unstable test by two carefully defined
program points, split and merge, delimiting a so-called split-merge section, for
which it separately analyzes different executions and soundly merges the com-
puted abstract values at the end of the section. To make the technique efficient,
the (partial) executions of the section are enumerated and separately analyzed
only within the section itself, without repeating each time a common execution
prefix and suffix before and after the section, thanks to storing and retrieving
the context at the split point. A split-merge section is defined as the smallest
part of the program that suits the analysis goals, while the lists of variables to
save and to merge are carefully minimized. To further reduce repeated execu-
tion segments, split-merge sections can be nested: the section defined for some
unstable test can be a strict subset of that for another test.

We have implemented FLDBox, a prototype RAI toolchain for verifying
numerical accuracy and robustness properties on C code. Numerical properties
can be specified using a set of dedicated primitives, or more generally, as anno-
tations in the ACSL specification language [2], which are then translated into
instrumented C code using these primitives by the (existing) runtime assertion
checker E-ACSL [37] recently extended for their support [25]. The main steps of
FLDBox rely on two new tools, FLDCompiler, that defines the split-merge sec-
tions, and an instrumentation library FLDLib4, that provides necessary primi-
tives to explore partial executions of a section and propagate accuracy properties.
Each component can be used separately, or can be easily replaced. For instance,
it is possible to replace FLDLib by Cadna [23] to obtain accuracy verification by
stochastic propagation instead of conservative propagation. We have evaluated
FLDBox on several small-size numerical C programs, and on two industrial case
studies of synchronous reactive systems of several dozens of thousands of lines of
code. The results show that the proposed technique can efficiently and soundly
analyze numerical accuracy for industrial programs on thin numerical scenarios
(where each input is replaced by a small interval of values around it).

Summary of Contributions:

– a new hybrid verification technique, named Runtime Abstract Interpretation,
for verifying numerical accuracy and robustness properties, that embeds an
abstract interpreter into the code and relies on split-merge sections;

– a modular prototype implementation of RAI, called FLDBox, based on two
main components: FLDCompiler and FLDLib;

– an empirical evaluation of the whole FLDBox toolchain on representative pro-
grams, including industrial case studies (artifact available at [42]).

2 Motivating Numerical Example

Floating-point operations approximate ideal computations on real numbers [30]
and, therefore, can introduce rounding errors. Accuracy properties express that

4 The source code of FLDLib is available at https://github.com/fvedrine/fldlib.

https://github.com/fvedrine/fldlib


246 F. Védrine et al.

these errors stay in acceptable bounds. Robustness of the system means that a
small perturbation of the inputs (e.g. due to possible sensor imprecision [22])
will cause only small perturbations on its outputs.

Consider for instance the C function of Fig. 1. It implements an interpolation
table tbl composed of n measures for linear approximation of a continuous
function on a point in ∈ [0, n − 1]. Such tables are quite common in numerical
analysis. We are interested in two properties:

accuracy: the round-off error of the result (out) increases the imprecision of the
input (in) by at most twice the biggest difference between two consecutive
measures of the table;

robustness: the previous property is satisfied not only for every concrete input
value in, but also near it, in [in − ε, in + ε], for a given small ε > 0.

Fig. 1. Motivating example: an interpolation table.

The first property will be (more precisely) expressed by the assertion of Fig. 4,
as we will explain in Sec. 3. Both properties are verified for in ∈ [0, n − 1], but
fail for values around −1. Indeed, for two close values −1 and −1+ε of in (with
a small ε > 0), idx is equal to −1 and 0 respectively. Therefore the result out is
equal to tbl[0] and tbl[0]+(−1+ε)×(tbl[1]−tbl[0]) ≈ 2×tbl[0]−tbl[1]
respectively: that is an obvious discontinuity. Any tool checking this property
should raise an alarm if (and, optimally, only if) such an input is encountered.

Numerical analysis of a complex computation-intensive industrial application
(typically, >10,000 lines of code) for the whole set of possible inputs is not feasible
in the majority of cases. A suitable numerical property can be complex to define
(and even in this example, the property above should be slightly corrected to
become true, as we explain in Sect. 3). Expressing such properties for a large
interval of values (like the interval in ∈ [0, n − 1] in our example) is not always
possible (e.g. for more complex properties or functions) or not sufficient to ensure
the desired precision (e.g. on irregularly-spaced interpolation data when the table
entries become greater on some sub-intervals while a more precise estimate is
required for other sub-intervals, or in the presence of singularities). A more
precise estimate can often be found on smaller intervals (as we will illustrate on
Fig. 6 in Sect. 4.2).

In practice, industrial engineers often seek to ensure accuracy and robustness
properties by considering a rich test suite and by replacing in each test case
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the concrete value of each input variable by an interval around this concrete
value, thus creating a thin numerical scenario from the test case. This approach
allows engineers to check accuracy and robustness on such thin scenarios, better
understand the numerical properties of the program, and possibly prepare their
later proof if it is required. The purpose of the present work is to provide a
practical and sound technique for this goal.

Dynamic analysis tools cannot soundly assess robustness and accuracy for
an interval of values because they do not reason on intervals and can only check
properties for a specific execution with given concrete inputs (Issue 1), and
because of unstable tests, like at lines 3–4: the branch taken at runtime for
machine values may be different from the theoretical execution with real num-
bers. The imprecision of computation of in (prior to the call to this function)
could lead to executing, say, the positive branch at runtime while the negative
branch should be executed in real numbers (Issue 2a).

Abstract interpreters may have a hard time dealing with (possibly, nested)
unstable tests [22,39] (Issue 2b). They also hardly keep precise relationships
between variables, e.g. between idx and in after the truncation from double
to int at line 3. That usually leads to imprecise analysis results (Issue 3). In
addition, a practical abstract interpreter usually requires to stub input-output
(I/O) functions such as communications with the environment in order to model
possible behaviors outside the analysis scope (Issue 4). In our example, the
interpolation table values can be read during system initialization from a file by
another function, like we often observed in industrial code.

Last but not least, the user needs to express the accuracy properties in a
formal way and the analysis tools need to understand them. For that purpose,
a formal specification language for numerical properties is required (Issue 5).

In this paper, we propose a new hybrid verification technique for verifying
accuracy and robustness properties, named Runtime Abstract Interpretation
(RAI), embedding an abstract interpretation engine into the code, where:

– a dedicated extension of a formal specification language solves Issue 5
(Sect.4.1);

– relying on concrete runs solves Issue 4, with two possibilities: either by taking
the concrete values from the environment (when these values are known to
be fixed) or by defining value and error intervals for them (when not fixed);

– Issue 3 is solved since the relations between variables are implicitly kept
by the execution flow, while the RAI toolchain automatically replaces the
concrete floating-point values and operations by their abstract counterparts
that soundly take into account round-off errors (Sect. 4.2);

– representing concrete values by abstract ones solves Issue 1;
– analyzing possible executions solves Issues 2a and 2b (Sect. 4.3).

3 Overview of Runtime Abstract Interpretation

Figure 2 describes the whole process of RAI. Bold font shows the main steps and
elements (detailed in Sect. 4) that we have designed from scratch or extended
from earlier work. We illustrate these steps for the function abs of Fig. 5a.
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Fig. 2. Principle of Runtime Abstract Interpretation.

A key element of our RAI toolchain FLDBox is FLDLib, the Abstract Analysis
Library (presented in Sect. 4.2). It implements (in C++) the required primitives
of the analyzer (e.g. abstract domain types, transfer functions, join operators of
abstract domains, split and merge instructions). Its implementation is eventually
linked to the user code to produce a Self-Analyzing Executable Code, but only
its API is required at compile time to allow calls to its primitives.

Our RAI toolchain takes as inputs a C source code with formal annotations in
the ACSL specification language [2] that express numerical properties to be veri-
fied in the code. The first step consists in encoding the annotations as additional
source code in order to evaluate them at runtime. It produces an instrumented
code, that we call here Self-evaluating Code. This step is performed by the
pre-existing runtime assertion checker of the Frama-C verification platform [24],
namely the E-ACSL tool [16,37], that we have extended to support the target
numerical properties (cf. Sect. 4.1). Alternatively, the user can manually instru-
ment the code with property checking instructions using primitives provided by
FLDLib.

For example, the assertion on lines 27–29 of Fig. 5a (stating that the absolute
error xe of x at that point is between the given bounds) will be translated by
E-ACSL into C code using the corresponding primitive (accuracy assert ferr)
of FLDLib. For short, we will give a pseudo-code translation on line 29 of Fig. 5b.

The second step of RAI is performed by FLDCompiler that embeds an abstract
analyzer into the code by extending the behavior of all numerical operations. It
leads to Self-analyzing code (in C++) able to analyze the target annotations in
addition to the normal code behavior. For that purpose, the double and float
types are overloaded and become abstract domains represented by struct types.
So, a variable float x becomes a tuple of abstract values x = (xr, xf , xe, xrel)
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whose elements represent the ideal (real) domain xr, the machine (floating-
point) domain xf , the absolute error domain xe, and the relative error domain
xrel. Numerical comparisons and operations are overloaded to soundly propa-
gate these domains (cf. Sect. 4.2). To handle unstable tests, FLDCompiler defines
split-merge sections allowing the analyzer to run some execution segments sev-
eral times when it is necessary to relate machine and real values of diverging
executions (cf. Sect. 4.3).

For the example of Fig. 5a, FLDCompiler inserts split and merge instructions
on lines 8 and 23 in order to surround the unstable test on line 14 and allow the
analyzer to re-execute the code between them when necessary. Let br, bf denote
the branches (i.e. the truth values of b) executed, resp., for a real and a machine
value of x. Basically, RAI partitions the domain of values of x into four subsets
such that (br, bf) = (0, 0), (0, 1), (1, 0) or (1, 1). The corresponding execution
paths within the limits of the section are analyzed separately for each subset, and
the results are soundly merged at the end of the section. For example, the subset
(br, bf) = (1, 0) is here defined by xr < 0, xf ≥ 0. For this subset the section will
be executed twice: once forcing the true branch b = 1 to compute the expected
real domain, and once forcing the false branch b = 0 to compute the resulting
machine domain, both being needed to soundly merge the results and compute
errors. If another unstable test is met inside the section, the tool (dynamically)
partitions the current subset into smaller subsets to explore relevant execution
flows for the domains of values that do lead to these flows. Broadly inspired by
dynamic symbolic execution [6,7] (but more complex in our case due to the need
of soundly merging/re-slitting subexecutions to make the approach efficient), this
exploration is the most technical part of the contribution. Its main ideas will be
presented below in Sect. 4.3 using Fig. 5b, the source code being available online.

The third step of RAI is “compile & link” using a standard C++ compiler.
It embeds the abstract analysis primitives’ code into the final executable. Its
execution performs the analysis, evaluates the annotations and produces the
code output as if executed in a normal way, without RAI. If an annotation fails,
the failure can be reported and, if desired, the execution can be aborted.

4 The RAI Technique in More Detail

4.1 Primitives to Express Numerical Properties

We rely on (a rich, executable subset of) the ACSL specification language [2,35]
to express accuracy properties on C programs. It is a powerful language, well
supported by the Frama-C [24] platform. Among others, it comes with a runtime
assertion checker, named E-ACSL [37], that converts the formal annotations into
C code to check them at runtime.

Specification. ACSL annotations are logical properties enclosed in special com-
ments /*@...*/. They include pre-/postconditions and assertions that may be
written before any C instruction. They can contain logical functions, predicates
and comparison operators over terms. All constants and numerical operators
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Fig. 3. Numerical built-ins extending ACSL. The first three lines are logic functions,
while the others are predicates. Their counterparts exist in FLDLib.

Fig. 4. ACSL assertion expressing—more precisely—the accuracy property of Sec. 2 for
the function of Fig. 1.

are over mathematical numbers (integers in Z, or rationals in Q, depending on
the context). C integers and floating-point values are implicitly coerced to their
mathematical counterparts.

To express numerical properties, we have extended ACSL with a rich set of
numerical built-ins presented in Fig. 3, in which F denotes either type float (if
f) or double (if d). These primitives have their C counterparts supported by the
FLDLib library. The two built-ins starting with accuracy enlarge enlarge the
intervals of values and the absolute errors to the two pairs of bounds provided
as arguments. The accuracy assert built-ins check whether the absolute or (if
rel is indicated) the relative error is included within the given bounds. The
accuracy get [rel]err built-ins return the lower and upper bounds of the
absolute or relative error, while the accuracy get real/impl built-ins return
the bounds of the real-number or implementation domain. The last built-ins
print the FLDLib representation (xr, xf , xe, xrel) of a floating-point variable x.
Thanks to these built-ins, numerical properties can be easily expressed in ACSL.

A simple ACSL assertion, stating that the absolute error is in the provided
bounds, is given on lines 27–29 of Fig. 5a. As another example, the accuracy
property stated in Sect. 2 for the program of Fig. 1 can be expressed—more
precisely—by the assertion of Fig. 4. Here, the logic function max distance
computes the maximal distance between two successive elements of y, that is,
maxi=0,...,n−2 |y[i + 1] − y[i]|. Lines 4–5 compute the upper bound for |out|,
which is used in the last terms on lines 7–8, added to take into account a small
round-off error from the addition operation on line 7 in Fig. 1. This correction
illustrates the difficulty to define correct error bounds for machine computation.
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Robustness follows from this assertion: a small input error leads to a small output
error.

Encoding for Runtime Checking. We have extended the E-ACSL tool in two
ways to support numerical properties. First, the numerical built-ins of Fig. 3
are directly compiled into their FLDLib counterparts. Second, since the ACSL
specification language relies on mathematical integers and rational numbers, the
generated code cannot soundly use standard C operators over integral or floating-
point types. Instead, E-ACSL generates special code relying on GMP library5 to
soundly represent mathematical integers and rationals. This translation has been
optimized to rely on the machine representation as much as possible, when the
values fit it, and generate GMP code only when necessary. This second extension
was presented in [25] and is outside of the main scope of this paper.

4.2 Propagating Abstract Values at Runtime

As the design of RAI is very technical, the following presentation focuses on the
key design ideas illustrated by Fig. 5 that provides a (simplified pseudo-code)
version of the resulting Self-analyzing Code for function abs. The reader can
refer to the open-source code of FLDLib for more detail.

FLDLib is an open-source instrumentation library that infers accuracy prop-
erties over C or C++ code. It implements numerical abstract domains inspired
by those implemented in the close-source tool Fluctuat [21]. Since these domains
themselves are not a key contribution of this paper, we present them briefly.

FLDLib only deals with detecting numerical errors and computing domains of
numerical variables. Discrete values (pointers included) are only enumerated. In
particular, it has no pointer analysis. Therefore, it is better used on thin scenarios
that encompass concrete test cases in small intervals. In such scenarios, pointers
have only one or two possible value(s). This way, RAI scales to large numerical
codes or pieces of code inside bigger developments (>10, 000 lines of code).

Domains. FLDLib domains combine intervals and zonotopes [20]. Zonotopes
allow to maintain linear relationships between program variables V that share
the same perturbations (noise symbols) by mapping V to affine forms. Sharing
noise symbols between variables helps at keeping precise information since it
means that the source of uncertainty is the same. We do not detail the zono-
tope domain here for lack of space, but Fig. 6 illustrates the benefits of combining
zonotopes and intervals, in particular with a domain subdivision. For instance, if
x ∈ [0, 1], an interval is more precise than a zonotope for representing x2 (provid-
ing an interval x2 ∈ [0, 1] instead of [−0.25, 1], cf. the projection of abstractions
onto the x × x axis in Fig. 6a), but less precise for representing x − x2 ([−1, 1]
instead of [0, 0.25], cf. the distance from the diagonal in Fig. 6a). The intersec-
tion of both abstractions provides more precise results (Fig. 6b). A subdivision
of the input interval into two sub-intervals significantly improves the results

5 https://gmplib.org/.

https://gmplib.org/
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(a) (b)

Fig. 5. (a) Function abs with an assertion and a split-merge section to be inserted
by FLDCompiler, and (b) the resulting (simplified) Self-analyzing Code for RAI. For
simplicity, we omit here the relative error xrel in x = (xr, xf , xe, xrel).

(Fig. 6c,d)—the orange area of Fig. 6d is much less than in Fig. 6b. As men-
tioned in Sec.2, using thin scenarios helps to keep precise relationships between
variables.

(a) (b) (c) (d)

Fig. 6. Function x2 abstracted (a) with intervals (yellow) and affine forms (orange)
shown separately, and (b) the resulting intersection. The same abstractions with a sub-
division, (c) shown separately, and (d) the resulting intersection. (Color figure online)
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Type Redefinition and Operation Overloading. A key principle of FLDLib consists
in redefining double and float types and overloading all related operations.
The float type becomes a structure that is called in this paper float fld
(cf. line 1 in Fig. 5a,b). A variable float x; becomes a variable float fld x;
that, mathematically speaking, contains a tuple of abstract values (xr, xf , xe, xrel)
whose elements represent the real domain xr as a zonotope, the floating-point
domain xf as an interval, the absolute error domain xe as a zonotope, and the
relative error domain xrel as an interval. For simplicity, we omit the relative error
computation in our examples.

Like Cadna [23] (for an execution with concrete values), FLDLib uses C++
operator overloading to propagate these domains over the program execution
(with abstract values). All arithmetic operations and comparisons, as well as
casts from floating-point to integral types are redefined as abstract transformers.

For instance, the unary operation assignment x = -x; can be replaced in the
resulting Self-analyzing Code as a primitive x = ComputeUnitOp(−, x); (cf. line
16 in Fig. 5a,b) that computes the resulting abstract values of the components
of x after the operation. Similarly, a binary operation x = x + y; is replaced
by a primitive x = ComputeBinOp(+, x, y);. Such abstract operations (transfer
functions) are well-known and we do not detail them here.

In addition to abstract versions of all numerical operations, FLDLib provides
other useful primitives for constraint propagation. In the (simplified) examples of
this paper, we also use a primitive Assume(<cond>) to assume a condition (and
propagate it to all relevant domains), a primitive Join(x′, x′′) to merge (join)
the domains coming from different execution paths, its variants Joinr(x′

r, x
′′
r )

and Joinf(x′
f, x

′′
f ) to merge the domains for real or machine numbers only, and

ComputeErr(xr, xf) to compute a new error (e.g. after such a separate merge).
Operator overloading is particularly convenient in our context since it lim-

its necessary source-to-source transformations. We also have promising initial
experiments on Ada programs that support operator overloading through the
libadalang library6. A similar approach could be applied to C programs with no
operator overloading capabilities, where such a transformation can be automat-
ically done e.g. by the Clang compiler.

4.3 Covering All Executions for Unstable Tests

Unstable Tests by Example. The key difficulty of our method is related to unsta-
ble tests. For instance, for the conditional at line 15 in Fig. 5a, if the domains and
precision of x ensure that both the real number and the machine number satisfy
x<0 and thus execute the same branch (b = 1), the Self-analyzing Code needs
to execute only this branch and perform the analysis (thanks to the overloaded
operations) along this path to obtain a sound result. In general, the evaluation of
the condition for real numbers (denoted br) can lead to the true or false branch
(we write br = 1 or 0, resp.), while the condition for machine numbers (denoted
bf) does not necessarily lead to the same branch. Therefore, the Self-analyzing

6 https://github.com/AdaCore/libadalang.

https://github.com/AdaCore/libadalang
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Code has to consider four cases: (br, bf) ∈ {0, 1}2 (cf. line 7 in Fig. 5b) which
create a partition of the set of possible values. It analyzes each case separately
(saving and restoring initial values, cf. lines 4, 10 in Fig. 5b) and finally merges
the results of all cases (cf. lines 5, 26 in Fig. 5b). For each case, the domains are
reduced to fit the assumption of the case (cf. lines 12–13 in Fig. 5b) before a new
execution starts. The domains of the four cases are indeed different: even if, say,
bf is the same, different assumptions on br lead to different domains.

We denote by bexec the branch(es) to be executed in each case. For each of
the two cases with br = bf (where real and machine numbers activate the same
branch), it is sufficient to execute only that branch, that is, bexec = br = bf , since
its execution by assumption (and thanks to the overloaded operations) computes
both the new real values and the new machine values. However, in each of the
two diverging cases (with br �= bf), we need to execute the real value flow (taking
bexec = br) to evaluate the new real values, and the machine value flow (taking
bexec = bf) to evaluate the new machine values (cf. lines 9, 14–15 in Fig. 5b). Both
subcases are then merged accordingly: real values from the real value branch,
machine values from the machine value branch (cf. line 8, 19–24 in Fig. 5b) before
being merged as a complete case (cf. line 28 in Fig. 5b). Incomplete data written
on lines 22–23 after the first subcase are ignored and overwritten by the second
subcase. So, the machine domains coming from the execution for real values
(bexec = br) and the real domains coming from the execution for machine values
(bexec = bf) are indeed ignored. Overall, line 15 is executed 6 times.

Assume we have |xe| = |xf − xr| ≤ 10−5 for the input value. Then the asser-
tion on line 29 will be satisfied. For instance, for the unstable case br = 1, bf = 0,
the Assume’s on lines 12–13 reduce domains to −xr, xf ∈ [0, 10−5]. After exe-
cuting both subcases, i.e. after lines 20–22 in the second iteration of the internal
loop, the RAI computes xtmp

r , xtmp
f ∈ [0, 10−5], hence xtmp

e ∈ [−10−5, 10−5]. The
constraint xe ∈ [−10−5, 10−5] being respected in all cases, it remains respected
after the merge on line 26. Notice that the execution of the Self-analyzing Code
after the merge point continues as a unique execution (unless a subsequent split-
merge section splits it again). In this way, RAI reruns the execution segments
only when it is necessary for a sound analysis of the program.

Split-Merge Sections. As illustrated by Fig. 5, in order to be sound, RAI encloses
each unstable test b within a loop that executes its body several times to analyze
all possible cases of evaluation of b for real and machine numbers. FLDBox pro-
vides two directives to delimit those loops: split marks the start of a block of
code B that must be run multiple times to analyze all possible executions, while
merge marks the point of convergence where all memory states after the execu-
tions of B must be joined into a unique state. Such a block B enclosed between
these directives is called a split-merge section. Such sections can include several
branches and be nested (for instance, for nested conditional statements). The
split-merge directives are provided by FLDLib and inserted into the generated
code by FLDCompiler.

In the general case, split is parameterized by the variables that must be
restored before a new execution in order to ensure that the initial memory state
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(a) (b) (c)

Fig. 7. (a) A code and (b),(c) transformation steps performed by FLDCompiler.

Fig. 8. Computation of save-list and merge-list.

is the same at each loop iteration (i.e. each execution of the section runs from
the same state), while merge is parameterized by the variables to be joined
after different executions. A simple example of a split-merge section is shown
in Fig. 5a, where the split and merge directives become, resp., lines 2–13 and
18–28 in Fig. 5b. They are parameterized by x since x must be restored before a
new execution (it may have been overwritten by a previous one at line 16) and
x is the only section’s output to be merged (cf. lines 4, 10, 26 in Fig. 5b).

For the example of Fig. 1, FLDCompiler inserts a split directive with no
argument (since in is never overwritten) before the cast at line 3, while a merge
directive parameterized by out is inserted before line 8. Indeed, a cast from a
floating-point value to an integer is a form of unstable test since the real value can
be casted to a different integer than the floating-point one. The merge directive
cannot be placed earlier because out would not be computed yet.

Annotation Criteria. FLDCompiler is a source-to-source program transformation
that automatically annotates a program with the needed split and merge direc-
tives together with their parameters. For the sake of performance and precision,
a generated split-merge section should be minimal ( as small as possible), split
should only restore what is needed, and merge should only join variables that
are modified by the section and used afterward. Positioning the split-merge sec-
tions is done by a greedy algorithm that expands them through the code until
three criteria, presented below, are satisfied. These criteria are illustrated on the
example of Fig. 7 that contains the unstable test if(2 * x + 3 < 0).
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Criterion 1. A split must strictly dominate its associated merge. Conversely,
a merge must strictly post-dominate its associated split.

Dominance and post-dominance relations [32] used in this criterion state
that all paths that go through split must go through its associated merge
and, conversely, all paths that go through merge must have gone through its
associated split. This criterion ensures that the memory allocations performed
by split are eventually freed by merge. The other way round, the memory
freed by merge must have been initially allocated by split. In our example, the
if statement is post-dominated by the while, which is dominated by the if.
Therefore, a split (resp. merge) directive is added before the if (resp. while).

Criterion 2. A split-merge section must start and end in the same block.

A split-merge section is enclosed in a loop that starts in the part generated by
split and ends in the part generated by merge. The criterion must be satisfied
to produce a syntactically valid C code, as in Fig. 5a and Fig. 7b,c.

Criterion 3. Non floating-point variables must be kept unchanged in every
memory state generated by a split and joined by its associated merge.

This criterion is mandatory because the FLDLib library has no abstraction
for non floating-point variables: merging them would lead to an error. For exam-
ple, Fig. 7b presents a first positioning attempt for the split-merge section that
actually violates Criterion 3. Indeed, because the value of the integer variable n
is modified in the if and is needed after the merge, its values must be joined. To
fix this, merge is delayed as shown in Fig. 7c. This criterion enables to prove the
robustness propety in our motivating example in Fig. 1 whereas linear domains
usually fail at keeping enough relationships between the idx variable and the
input in.

In some cases, e.g. when an integer variable depending on the result of an
unstable test is part of the outputs of the function, the split-merge section cannot
be closed inside the function. In such cases (met only in one industrial example
for <10% of unstable tests), the user may need to move the section to the caller(s)
to respect this criterion. The user can indeed adjust the split-merge directives
manually, e.g. making one section instead of two consecutive sections. This can
sometimes increase precision, since domain merging is done later on the path
and fewer times, at the cost of increasing the number of paths to analyze and
analysis time. A similar observation is true for nested sections: without a nested
section inside another one, the analysis can be more precise (with less merges)
but can take longer (since more and longer path segments are replayed).

Arguments of split and merge. As said previously, split and merge take
parameters that specify, resp., the variables to restore before a new execution
of the section, and the ones to be eventually merged after it. To minimize the
analysis cost, only necessary parameters should be generated. For example, if
a variable is never modified, restoring its value is useless. These parameters for
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split and merge are respectively computed by a save-list and a merge-list whose
computation is explained below. They are based on a dedicated data dependency
analysis inspired from [26]. More precisely, for each statement p, this analysis
gathers four sets, informally defined as follows:

mustdef (p): a set of variables necessarily modified in p (that is, all executions
modify them). For instance, variable n of Fig. 7 is in the mustdef set of if.

maydef (p): a set of pairs (x, s) where s is a sub-statement of p that may modify
the variable x. In Fig. 7, the maydef set of the while loop contains (x, x+=x).
However, x does not belong to the mustdef set of while because, if n = 0,
then x is left unchanged. An important difference in our approach w.r.t. [26] is
that the floating-point variables read in the branching conditions in p are also
considered in maydef(p) since the analysis of a branch b adds the constraints
Assume(br) and Assume(bf ) (cf. lines 12–13 in Fig. 5b) that are propagated
to these variables and may thus modify their domains.

mayref (p): a set of pairs (x, s) where s is a statement of p that may read
the variable x. In Fig. 7, x belongs to the mayref set of if because it is
read by its condition. For sequence of statements S, this set does not contain
variables that are read after being assigned in S. For instance, x (paired to any
statement) does not belong to mayref of sequence S ≡ (x = 2; y = x + 3;).

datadep(p): a set of tuples (s1, s2, x) in which s1 writes a variable x that is later
read by s2 (without intermediate writings). Its computation uses the three
previous sets. For the example of sequence S above, variable x is modified by
x = 2; and then read by y = x + 3, so (x = 2, y = x + 3, x) ∈ datadep(S).

The save-list and merge-list of a split-merge section are computed as shown in
Fig. 8. A variable x is added to the save-list of a section p if there is a statement
inside p that may modify x and another statement that may read x. Said another
way, if a new execution may depend on the value of a variable that could have
been modified in another execution, then we need to restore it before a new
execution. Dually, a variable x is added to the merge-list of a section p if there
is a statement in p that may modify x and there is another statement outside
the section that may read that modified value afterwards.

FLDCompiler is implemented as a Frama-C plug-in [36] and relies on its kernel
to pretty-print the generated code. It visits the whole source code and generates
the split-merge sections based on the declared type of variables. The basic version
has no notion of alias, so if a pointer iterates on the cells of a floating-point array,
it does not add them to the save-list and the merge-list, which may produce
unsound results. To soundly solve this problem, FLDCompiler relies on Eva [4],
the value analysis plugin of Frama-C, in order to know all possible targets of
pointers to be added to the save-list and the merge-list. It may add unnecessary
variables since Eva’s analysis by abstract interpretation is conservative. Finally,
FLDCompiler issues a warning if it tries to add to the lists something that is
dynamically allocated and thus that does not exist at compile-time.
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Path Exploration within Split-Merge Sections. The example of Fig. 5 illustrated
the key ideas of the exploration This simplified approach would not be directly
suitable though for nested conditions, loops or nested split-merge sections.

The actual implementation is much more technical (and cannot be presented
here for lack of space): it performs a depth-first exploration of path segments
inside each section, dynamically discovers new branches and records (dynami-
cally allocated) execution contexts in a worklist of executions to be explored.
Nested split-merge sections are treated by storing a section context in a stack.
Since the abstract values of outcoming variables are merged at the end of the
path segment of the inner section, they can be used to continue the considered
execution for the outer section in a transparent way. Thanks to this approach,
the directives split(id, save-list) and merge(id,merge-list), (which, in practice,
have a unique identifier id for each section) are defined as macros. The interested
reader may find all implementation details in the open-source code of FLDLib.

5 Experimental Results

Our RAI toolchain FLDBox has been evaluated [42] on (i) variations of the moti-
vating example with different sizes of the table, (ii) a benchmark of small-size
C examples, and (iii) on two large industrial case studies. They were run on an
Intel Core i7 CPU, 2.60 GHz with 32 Gb RAM (on an artifact virtual machine,
execution time can depend on the provided resources and be longer).

Motivating Example with Different Table Sizes. We first consider a version of the
motivating example of Fig. 1 that loads the measures of the interpolation table
from a file and calls interpolate with a large scenario in∈ [0, n − 1]. This is
a very frequent code pattern in industrial code. It uses an external I/O library
that is compiled with standard options and is not instrumented with our custom
floating-point domains. We compare time (see Fig. 9) and precision of the tools
supporting unstable tests (Fluctuat, Rosa and Precisa) and FLDBox for different
sizes of the table. Rosa and Precisa do not manage such examples that generate a
combinatorial explosion: with 2 elements Rosa takes 9 s, with 3 elements it takes
111 s and more than 20 min for 4 elements; Precisa takes 9.1 s for 8 elements, 37 s
for 9 elements, 131 s for 10 elements. Since FLDBox accepts dynamic values, the
Self-analyzing Executable is compiled only once and can be used with different
files, unlike Fluctuat that parses the interpolation table in the source code.

FLDBox reports an accuracy error on the result of 8 × 10−6, while Fluctuat
reports a maximal accurracy error of 0.89. Hence RAI shows that the interpolate
function is robust, whereas Fluctuat cannot show it, at least, without additional
subdivision annotations from the user that can be tricky to find.

Benchmarks. We use benchmarks from [13,22] with unstable tests and present
in [10]. They contain several small-size C examples in several categories (cf.
Fig. 10). Simple examples show basic computations that focus on accuracy prop-
erties. Unstable branches are robustness tests for unstable branch handling.
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Fig. 9. Analysis time for the motivating example. Timeout (TO) is set to 20 min.

Interpolation tables contain various ways to compute an interpolation table .
They also focus on testing robustness of unstable branches. Maths models func-
tions of math.h for error estimation. Miscellaneous contain other examples. File
filter.c is a second order linear filter that focuses on accuracy. File patriot.c
is a historical example that contains a sum of 0.1 whose error shifts over time.
File complex LU.c finds a vector X such that M(X) = (Y ) for a square matrix
M with a Lower/Upper decomposition. File complex intersect.c shows itera-
tive computations. File scanf.c shows how to manage external library functions
not related to floating-point operations. The variable whose precision is analyzed
is given after the file name.

Results. Each example has been annotated with ACSL assertions modeling the
expected properties to use our toolchain. All of them have also been run with a
timeout of 20 min in Fluctuat [21], Precisa [39] and Rosa [13]. Figure 10 presents
the accuracy and time (either on top of the whole category for very small values,
or per example otherwise). ko identifies a case where the tool failed to treat
the example. n/t means “not translated” into PVS for Precisa or into Scala for
Rosa due to the difficulty or impossibility to give an equivalent encoding of the C
version. The best accuracy for a particular example is written in bold. Therefore,
the table clearly shows that FLDBox has almost always the best accuracy.

The results of FpDebug were also recorded to show an under-approximation
of the precision, where “unstable” means that FpDebug detects an unstable test
and exits. They show that the results of our RAI toolchain, while being obtained
using over-approximations, are not very far from the results returned by FpDebug
and providing an under-approximation. Hence, on the considered examples,
FLDBox remains reasonably precise.

Since FLDLib uses the same reasoning as Fluctuat except for constraint man-
agement, many results are merely the same. However, Fluctuat has only a limited
support for unstable branches. Rosa manages them well but chains of if’s lead to
a combinatorial explosion. Rosa approximates the errors on constant values but
it is the most precise tool on non-linear computations. Precisa was used without
the SMT optimization with FPRock. It is left as future work to evaluate if it
can scale better with it. Nevertheless FLDBox aims at providing guaranteed
accuracy analysis with unstable branches on real-life C code containing
loops and thousands of lines of code, while Precisa (as Rosa) is more concerned
with robustness proofs of smaller algorithms. Finally, unlike the other two sound
tools (Fluctuat, Precisa), Rosa and FLDBox did not report any false alarms
on these examples, whereas Rosa has timed out on some.
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Fig. 10. Tool comparison over small-size C examples.

Industrial Case Studies. We also experimented FLDBox on two (non public)
industrial case studies (synchronous reactive systems of several dozens of thou-
sands of lines of code) on thin scenarios coming from existing tests with relative
error, resp, 10−6 and 10−16. The first one was automatically generated in C,
whereas the second one was manually written in C++. Thus only Fluctuat and
our tool were used on the first, and only our tool on the second. The first one
contains computations that represent physical models, with many components
like interpolation tables, but also linear filters, threshold functions. The second
one contains solving algorithms coming from the C++ template library for linear
algebra eigen7, which is very convenient for our instrumentation mechanism as
all the floating-point code is inlined.

7 https://gitlab.com/libeigen/eigen.
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Results. On the first case study, FLDCompiler added about 50 split-merge
sections whose nested depth was up to 5. Even if we only used its syntactic
version (that is not based on the Eva plug-in of Frama-C, resulting in a loss of
precision), the results were very useful. Our tool exercised all interesting split-
merge sections by performing the simulation of 80,000 loop cycles in <24h! It
took only 2s to analyze one loop cycle with FLDLib (while Fluctuat took 1h,
so did not scale). All these sections have been proved to be continuous. More
precisely, when the output absolute value was >0.1, the relative error was <10−2,
otherwise the absolute error was <10−3, that was acceptable for that case study.

The second case study with eigen demonstrated the need to extend FLD-
Compiler to provide better results on some linear algebra algorithms and some
discontinuous unstable branches. For example, the determinant computation is a
continuous formula but often internally uses a LU (Lower/Upper) matrix decom-
position that contains many unstable branches due to the choice of the best piv-
oting number. In this case, we have manually defined 25 split-merge sections (it
took only about 3 h) whose depth was up to 4. FLDBox was able to successfully
analyze between 10 and 20 cycles and validate the robustness of the unstable
tests. The relative error was proved to be < 10−10 for the first 7 cycles, and then
progressively increased, e.g., to < 10−4 for the 15th cycle.

FLDBox scales better than Fluctuat on these case studies for the rea-
sons mentioned in Sec. 2 and since it does not care about pointers. Nevertheless,
its scalability is directly related to the trade-off between precision and analysis
time: if the number of noise symbols in zonotopes is not bounded, the analysis
may be quadratic. To address this issue, FLDLib offers an option to set a bound
(typically, ∼15) for the number of noise symbols introduced in an affine form.

On the first industrial C code, FLDBox succeeds in keeping a reasonable
error for a thin scenario and thus avoiding excessive over-approximations. On the
second industrial C++ code, the guaranteed numerical error delivered by FLDLib
increases at every loop cycle, so that, for 20 cycles, false alarms appear from the
accumulation of overapproximations because more and more unstable branches
are detected. In this case, FLDLib helped to identify and better understand the
tricky numerical parts of a big code.

All in all, these industrial use cases demonstrate that FLDBox scales on
thin scenarios up to several dozens of thousands of lines of code. At worst, a
few split-merge directives have to be manually adjusted and FLDLib provides a
helpful support for this task. It is also worth noting that FLDLib can be replaced
by Cadna to obtain a stochastic analysis that scales better, even if the results are
non-necessarily sound but close to the expected ones. We also experimented the
exact part of FLDLib (without domains) that works like FpDebug, but at source
code level, and obtained the same under-approximated results as FpDebug.

6 Related Work

Many techniques and tools [1,3,9,11,13–15,17,19–21,23,27,34,38–41] have been
developed for analysis of numerical properties in the last fifteen years. They can
be roughly classified in two categories: testing and static analysis tools.
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Among testing tools, FpDebug [3] and Herbgrind [34] are based on Valgrind [31]
and detect accuracy property failures with few false alarms. FpDebug relies on
MPFR8 to associate a highly-precise value to each floating-point value of the
tested program; its results are under-approximations. Herbgrind uses symbolic
execution to detect sudden important accuracy loss. Both tools scale up on
bigger programs. However, unlike FLDBox, they cannot guarantee the absence
of failures even on thin scenarios. Verrou [19], Cadna [23], and Verificarlo [17] aim
at reporting possible instances of errors with stochastic arithmetic. The core idea
consists in randomly (with a selected probability) changing the rounding mode
used for each floating-point operation during the program execution. For each
execution, the obtained floating-point values differ, and with enough executions,
an accuracy estimation can be made with a good confidence. Like FLDBox, those
tools do not avoid false alarms because of the stochastic process, but their results
are rather realistic and robust. However, unlike RAI, they cannot guarantee the
absence of errors.

Among static analysis tools, Fluctuat [21], Gappa [15], Rosa [13,14] and Daisy
[11] use a data-flow approach with interval or zonotope abstract domains. Pre-
cisa [39], FPTaylor [38] and real2Float [27] use optimization-based approaches.
Gappa, Daisy, FPTaylor, real2Float, and Precisa allow formal verification in a the-
orem prover by generating proof scripts or certificates. Among all these tools,
only Fluctuat, Rosa and Precisa have support for unstable tests.

These last tools have different design choices and trade-offs between scala-
bility and tightness of over-approximations. Fluctuat [21] favor some scalability
with forward propagation of domains. Fluctuat scales reasonably well for pro-
grams of a few thousand lines of code. Precisa uses interval arithmetic com-
bined with branch-and-bound optimization and symbolic error computations;
Rosa uses external SMT solver like Z3 [29], while Fluctuat relies on the zono-
tope abstract domain [20] to represent values and errors. Compared to Rosa,
Precisa and Fluctuat, FLDBox scales better and can handle I/O and memory
manipulations without stubs.

FPTaylor [38] favors tightness: it handles bounding errors as an optimization
problem that is soundly solved by first-order Taylor approximations of arith-
metic expressions. FPTaylor generally provides tighter approximations than our
toolchain. However, unlike FLDBox, it cannot analyze large programs and han-
dles neither loops, nor I/O operations, nor unstable tests. Finally, Gappa [15]
presents a third possible trade-off. Indeed, Gappa is intended to help verifying
and formally proving properties on numerical programs. It is based on interval
arithmetic and rewriting rules for floating-point rounding errors expressions.

Rosa [13,14] and PVS-based tools [40,41] generate suitable optimized types
for given accuracy and manage unstable tests using constraint solvers. Rosa
optimizes the format of the floating-point variables given a required accuracy
whereas [41] generates programs with contracts to check the stability of tests.
Salsa [9] improves the accuracy of programs but it does not treat unstable tests.

8 https://www.mpfr.org.

https://www.mpfr.org
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RAI combines abstract interpretation [8] and runtime verification [18]. The
idea of computing abstract domains at runtime (but without handling unstable
tests) was proposed e.g. in [12]. Modern symbolic execution tools [6,7] also com-
bine static and dynamic analyses by replacing concrete values by symbolic ones
and exploring execution paths. But they do not need to merge/re-split/re-merge
several executions to treat unstable tests, and soundly define relevant points,
which constitutes the key difficulty of RAI.

Relying on various ideas of previous work (type overloading, abstract domains
and transformers, enriching concrete execution with additional symbolic fea-
tures, program dependency analysis), RAI combines and enriches them in order
to support unstable tests, bringing specific technical contributions on how to
efficiently and soundly analyze relevant executions segments several times, how
to define split-merge sections and find minimal lists of variables to save/merge.
To the best of our knowledge, such a combined technique for numerical anal-
ysis has never been proposed before. The main benefits of FLDBox lie in its
ability to scale up well for thin scenarios while preserving soundness, and in its
management of I/O and memory manipulations without the need of stubs.

7 Conclusion and Perspectives

Assessment of numerical accuracy in critical programs is crucial to prevent accu-
mulation of rounding errors that can provoke dangerous bugs. This work has
presented an original hybrid verification technique for verification of numerical
accuracy and robustness, Runtime Abstract Interpretation (RAI), that com-
bines abstract interpretation and runtime verification and is able to soundly
and efficiently handle unstable tests. We implemented FLDBox, a prototype RAI
toolchain, and evaluated it on a representative set of numerical C programs and
on two industrial case studies. The results show that RAI can efficiently and
soundly analyze numerical accuracy for industrial programs on thin numerical
scenarios.

An interesting work perspective is to integrate our toolchain into a continuous
integration process. For that purpose, it only requires to instrument the unit
test files. Any other file (including library files) can remain unchanged. Future
work also includes a larger evaluation on real-life programs and an extension of
FLDBox to support all features of the C programming language. It is planned to
continue the research on these topics in the ANR project Interflop.
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42. Védrine, F., Jacquemin, M., Kosmatov, N., Signoles, J.: Companion artifact evalu-
ated by the VMCAI 2021 artifact evaluation committee. Zenodoo (2020). https://
doi.org/10.5281/zenodo.4275521

https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.5281/zenodo.4275521
https://doi.org/10.5281/zenodo.4275521


Twinning Automata and Regular
Expressions for String Static Analysis

Luca Negrini1,2, Vincenzo Arceri1(B), Pietro Ferrara1, and Agostino Cortesi1

1 Ca’ Foscari University of Venice, Venice, Italy
{vincenzo.arceri,pietro.ferrara,cortesi}@unive.it

2 JuliaSoft S.r.l., Verona, Italy
luca.negrini@unive.it

Abstract. In this paper we formalize Tarsis, a new abstract domain
based on the abstract interpretation theory that approximates string val-
ues through finite state automata. The main novelty of Tarsis is that it
works over an alphabet of strings instead of single characters. On the one
hand, such an approach requires a more complex and refined definition
of the widening operator, and the abstract semantics of string opera-
tors. On the other hand, it is in position to obtain strictly more precise
results than state-of-the-art approaches. We implemented a prototype
of Tarsis, and we applied it to some case studies taken from some of
the most popular Java libraries manipulating string values. The experi-
mental results confirm that Tarsis is in position to obtain strictly more
precise results than existing analyses.

Keywords: String analysis · Static analysis · Abstract interpretation

1 Introduction

Strings play a key role in any programming language due to the many and differ-
ent ways in which they are used, for instance to dynamically access object proper-
ties, to hide the program code by using string-to-code statements and reflection,
or to manipulate data-interchange formats, such as JSON, just to name a few.
Despite the great effort spent in reasoning about strings, static analysis often
failed to manage programs that heavily manipulate strings, mainly due to the
inaccuracy of the results and the prohibitive amount of resources (time, space)
required to retrieve useful information on strings. On the one hand, finite height
string abstractions [16] are computable in a reasonable time, but precision is
suddenly lost when using advanced string manipulations. On the other hand,
more sophisticated abstractions (e.g., the ones reported in [8,14]) compute pre-
cise results but they require a huge, and sometimes unrealistic, computational
cost, making such code intractable for these abstractions. A good representation
of such abstractions is the finite state automata domain [8]. Over-approximating
strings into finite state automata has shown to increase string analysis accuracy
in many scenarios, but it does not scale up to real world programs dealing with
statically unknown inputs and long text manipulations.
c© Springer Nature Switzerland AG 2021
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In this paper we introduce Tarsis, a new abstract domain for string values
based on finite state automata (FSA). Standard FSA has been shown to provide
precise abstractions of string values when all the components of such strings are
known, but with high computational cost. Instead of considering standard finite
automata built over an alphabet of single characters, Tarsis considers automata
that are built over an alphabet of strings. The alphabet comprises a special
value to represent statically unknown strings. This avoids the creation of self-
loops with any possible character as input, which otherwise would significantly
degrade performance. We define the abstract semantics of mainstream string
operations, namely substring, length, indexOf, replace, concat and contains, either
defined directly on the automaton or on its equivalent regular expression.

Tarsis has been implemented into a prototypical static analyzer supporting a
subset of Java. By comparing Tarsis with other cutting-edge domains for string
analysis, results show that (i) when applied to simple code that causes a preci-
sion loss in simpler domains, Tarsis correctly approximates string values within
a comparable execution time, (ii) on code that makes the standard automata
domain unusable due to the complexity of the analysis, Tarsis is in position
to perform in a limited amount of time, making it a viable domain for complex
and real codebases, and (iii) Tarsis is able to precisely abstract complex string
operations that have not been addressed by state-of-the-art domains.

The rest of the paper is structured as follows. Section 2 introduces a motivat-
ing example. Section 3 defines the mathematical notation used throughout the
paper. Section 4 formalizes Tarsis and its abstract semantics. Section 5 reports
experimental results and comparison with other domains, while Sect. 6 concludes.

1.1 Related Work

The problem of statically analyzing strings has been already tackled in different
contexts in the literature [2,8,13,14,16,25,29]. The original finite state automata
abstract domain was defined in [8] in the context of dynamic languages, provid-
ing an automata-based abstract semantics for common ECMAScript string oper-
ations. The same abstract domain has been integrated also for defining a sound-
by-construction analysis for string-to-code statements [7]. The authors of [4] pro-
vided an automata abstraction merged with interval abstractions for analyzing
JavaScript arrays and objects. In [13], the authors proposed a static analysis of
Java strings based on the abstraction of the control-flow graph as a context-free
grammar. Regular strings [12] is an abstraction of the finite state automata domain
and approximates strings as a strict subset of regular expressions. Even if it is does
not tackle the problem of analyzing strings, in [28] a lattice-based generalization
of regular expressions was proposed, showing a regular expressions-based domain
parametric from a lattice of reference. An interesting automata-based model is
symbolic automata [21], that differs from the standard one having an alphabet of
predicates (that can potentially be infinite) instead of single characters. Examples
of applications of symbolic automata in the context of static analysis are regex
processing, sanitizer analysis [32] and their usage as program model for mixing
syntactic and semantic abstractions over the program [30]. Finally, orthogonally
to static analysis of strings by abstract interpretation, a big effort was spent in
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Fig. 1. A program that counts the occurrences of a string into another one

the context of string constraints verification, focusing on the study of decidable
fragments of the string constraint formulas [3] or proposing new efficient decidable
procedures or string constraints representations [3,5,11] also based on automata,
such as [33,34], or involving type conversion string constraints [1].

2 Motivating Example

Consider the code of Fig. 1 that counts the occurrences of string sub into string
str. This code is (a simplification of) the Apache commons-lang library method
StringUtils.countMatches1, one of the most popular Java libraries providing extra
functionalities over the core classes of the Java lang package (that contains class
String as well). Proving properties about the value of count after the loop is par-
ticularly challenging, since it requires to correctly model a set of string operations
(namely length, contains, indexOf, and substring) and their interaction. State-of-
the-art string analyses fail to precisely model most of such operations, since their
abstraction of string values is not rigorous enough to deal with such situations.
This loss of precision usually leads to failure in proving string-based properties
(also on non-string values) in real-world software, such as the numerical bounds
of the value returned by countMatches when applied to a string.

The goal of this paper is to provide an abstract interpretation-based static
analysis, in order to deal with complex and nested string manipulations similar
to the one reported in Fig. 1. As we will discuss in Sect. 5, Tarsis models (among
the others) all string operations used in countMatches, and it is precise enough
to infer, given the abstractions of str and sub, the precise range of values that
count might have at the end of the method.

3 Preliminaries

Mathematical Notation. Given a set S, S∗ is the set of all finite sequences
of elements of S. If s = s0 . . . sn ∈ S∗, si is the i-th element of s, |s| = n + 1
is its length, and s[x/y] is the sequence obtained replacing all occurrences of x
in s with y. When s′ is a subsequence of s, we write s′

�s s. We denote by

1 https://commons.apache.org/proper/commons-lang/.

https://commons.apache.org/proper/commons-lang/
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sn, n ≥ 0 the n-times repetition of the string s. Given two sets S and T , ℘(S)
is the powerset of S, S � T is the set difference, S ⊂ T is the strict inclusion
relation between S and T , S ⊆ T is the inclusion relation between S and T , and
S × T is the Cartesian product between S and T .

Ordered Structures. A set L with a partial ordering relation ≤⊆ L × L is a
poset, denoted by 〈L,≤〉. A poset 〈L,≤,∨,∧〉, where ∨ and ∧ are respectively
the least upper bound (lub) and greatest lower bound (glb) operators of L, is a
lattice if ∀x, y ∈ L . x ∨ y and x ∧ y belong to L. It is also complete if ∀X ⊆ L
we have that

∨
X,

∧
X ∈ L. A complete lattice L, with ordering ≤, lub ∨, glb

∧, top element �, and bottom element ⊥ is denoted by 〈L,≤,∨,∧,�,⊥〉.
Abstract Interpretation. Abstract interpretation [17,18] is a theoretical frame-
work for sound reasoning about semantic properties of a program, establishing a
correspondence between the concrete semantics of a program and an approxima-
tion of it, called abstract semantics. Let C and A be complete lattices, a pair of
monotone functions α : C → A and γ : A → C forms a Galois Connection (GC)
between C and A if ∀x ∈ C,∀y ∈ A : α(x) ≤A y ⇔ x ≤C γ(y). We denote a GC
as C −−→←−−

α

γ
A. Given C −−→←−−

α

γ
A, a concrete function f : C → C is, in general, not

computable. Hence, a function f � : A → A that must correctly approximate the
function f is needed. If so, we say that the function f � is sound. GivenC −−→←−−

α

γ
A and

a concrete function f : C → C, an abstract function f � : A → A is sound w.r.t. f if
∀c ∈ C. α(f(c)) ≤A f �(α(c)). Completeness [24] can be obtained by enforcing the
equality of the soundness condition and it is called backward completeness. Given
C −−→←−−

α

γ
A, a concrete function f : C → C and an abstract function f � : A → A,

f � is backward complete w.r.t. f if ∀c ∈ C. α(f(c)) = f �(α(c)).

Finite State Automata and Regular Expression Notation. We follow
the notation reported in [8] for introducing finite state automata. A finite state
automaton (FA) is a tuple A = 〈Q,Σ, δ, q0, F 〉, where Q is a finite set of states,
q0 ∈ Q is the initial state, Σ is a finite alphabet of symbols, δ ⊆ Q × Σ × Q is
the transition relation and F ⊆ Q is the set of final states. If δ : Q×Σ → Q is a
function then A is called deterministic finite state automaton. The set of all the
FAs is Fa. If L ⊆ Σ∗ is recognized by a FA, we say that L is a regular language.
Given A ∈ Fa, L (A) is the language accepted by A. From the Myhill-Nerode
theorem, for each regular language uniquely exists a minimum FA (w.r.t. the
number of states) recognizing the language. Given a regular language L , Min(A)
is the minimum FA A s.t. L = L (A). Abusing notation, given a regular language
L , Min(L ) is the minimal FA recognizing L . We denote as paths(A) ∈ ℘(δ∗)
the set of sequences of transitions corresponding to all the possible paths from
the initial state q0 to a final state qn ∈ F . When A is cycle-free, the set paths(A)
is finite and computable. Given π ∈ paths(A), |π| is its length, meaning the sum
of the lengths of the symbols that appear on the transitions composing the path.
Furthermore, |minPath(A)| ∈ N denotes the (unique) length of a minimum path.
If A is a cycle-free automaton, |maxPath(A)| ∈ N denotes the (unique) length of
a maximum path. Given π = t0 . . . tn ∈ paths(A), σπi

is the symbol read by the
transition ti, i ∈ [0, n], and σπ = σπ0 . . . σπn

is the string recognized by such
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Fig. 2. Imp syntax

path. Predicate cyclic(A) holds if and only if the given automaton contains a
cycle. Throughout the paper, it could be more convenient to refer to a finite
state automaton by its regular expression (regex for short), being equivalent.
Given two regexes r1 and r2, r1 || r2 is the disjunction between r1 and r2, r1r2
is the concatenation of r1 with r2, (r1)∗ is the Kleene-closure of r1.

The Finite State Automata Abstract Domain. Here, we report the neces-
sary notions about the finite state automata abstract domain presented in [8],
over-approximating string properties as the minimum deterministic finite state
automaton recognizing them. Given an alphabet Σ, the finite state automata
domain is defined as 〈Fa/≡,�Fa,�Fa,�Fa,Min(∅),Min(Σ∗)〉, where Fa/≡ is the
quotient set of Fa w.r.t. the equivalence relation induced by language equality,
�Fa is the partial order induced by language inclusion, �Fa and �Fa are the lub
and the glb, respectively. The minimum is Min(∅), that is, the automaton recog-
nizing the empty language, and the maximum is Min(Σ∗), that is, the automaton
recognizing any possible string over Σ. We abuse notation by representing equiv-
alence classes in Fa/≡ by one of its automaton (usually the minimum), i.e., when
we write A ∈ Fa/≡ we mean [A]≡. Since Fa/≡ does not satisfy the Ascending
Chain Condition (ACC), i.e., it contains infinite ascending chains, it is equipped
with the parametric widening ∇n

Fa. The latter is defined in terms of a state equiv-
alence relation merging states that recognize the same language, up to a fixed
length n ∈ N, a parameter used for tuning the widening precision [10,23]. For
instance, let us consider the automata A, A′ ∈ Fa/≡ recognizing the languages
L = {ε, a} and L ′ = {ε, a, aa}, respectively. The result of the application of
the widening ∇n

Fa, with n = 1, is A ∇n
Fa A′ = A′′ s.t. L (A′′) = { an | n ∈ N }.

Core Language and Semantics. We introduce a minimal core language Imp,
whose syntax is reported in Fig. 2. Such language supports the main operators
over strings. In particular, Imp supports arithmetic expressions (ae), Boolean
expressions (be) and string expressions (se). Primitives values are Val = Z ∪
Σ∗ ∪{true, false}, namely integers, strings and booleans. Programs states M :
Id → Val map identifiers to primitives values, ranged over the meta-variable
m. The concrete semantics of Imp statements is captured by the function � st � :
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Fig. 3. Concrete semantics of Imp string expressions

M → M. The semantics is defined in a standard way and for this reason has
been omitted. Such semantics relies on the one of expressions, that we capture,
abusing notation, as � e � : M → Val. While the semantics concerning arithmetic
and Boolean expressions is straightforward (and not of interest of this paper),
we define the part concerning strings in Fig. 3.

4 The Tarsis abstract domain

In this section, we recast the original finite state abstract domain working over an
alphabet of characters Σ, reported in Sect. 3, to an augmented abstract domain
based on finite state automata over an alphabet of strings.

4.1 Abstract Domain and Widening

The key idea of Tarsis is to adopt the same abstract domain, changing the
alphabet on which finite state automata are defined to a set of strings, namely
Σ∗. Clearly, the main concern here is that Σ∗ is infinite and this would not
permit us to adopt the finite state automata model, that requires the alphabet
to be finite. Thus, in order to solve this problem, we make this abstract domain
parametric to the program we aim to analyze and in particular to its strings.
Given an Imp program P, we denote by Σ∗

P any substring of strings appearing
in P,2 delimiting the space of string properties we aim to check only on P.

At this point, we can instantiate the automata-based framework proposed
in [8] with the new alphabet as

〈T Fa/≡,�T ,�T ,�T ,Min(∅),Min(A∗
P)〉

2 The set Σ∗
P can be easily computed collecting the constant strings in P by visiting

its abstract syntax tree and then computing their substrings.
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The alphabet on which finite state automata are defined is AP � Σ∗
P ∪ {T},

where T is a special symbol that we intend as “any possible string”. Let T Fa

be the set of any deterministic finite state automaton over the alphabet AP.
Since we can have more automata recognizing a language, T Fa/≡ is the quo-
tient set of T Fa w.r.t. the equivalence relation induced by language equality,
that is, the elements of domain are equivalence classes. For simplicity, when we
write A ∈ T Fa/≡, we intend the equivalence class of A. �T is the partial order
induced by language inclusion, �T and �T are the lub and the glb over elements
of T Fa/≡, computing the equivalence class of the union and the intersection of
the two automata representing the corresponding classes, respectively. The bot-
tom element is Min(∅), corresponding to the automaton recognizing the empty
language, and the maximum is Min(A∗

P), namely the automaton recognizing any
string over AP.

Like in the standard finite state automata domain Fa/≡, also T Fa/≡ is not
a complete lattice and, consequently, it does not form a Galois Connection with
the string concrete domain ℘(Σ∗). This comes from the non-existence, in general,
of the best abstraction of a string set in T Fa/≡ (e.g., a context-free language
has no best abstract element in T Fa/≡ approximating it). Nevertheless, this is
not a concern since weaker forms of abstract interpretation are still possible [19]
still guaranteeing soundness relations between concrete and abstract elements
(e.g., polyhedra [20]). In particular, we can still ensure soundness comparing the
concretizations of our abstract elements (cf. Section 8 of [19]). Hence, we define
the concretization function γT : T Fa/≡ → ℘(Σ∗) as γT (A) �

⋃
σ∈L (A) Flat(σ),

where Flat converts a string over AP into a set of strings over Σ∗. For instance,
Flat(a TT bb c) = { aσbbc | σ ∈ Σ∗ }. Note that, the language of strings (over the
alphabet Σ) recognized by A corresponds to the concretization function reported
above, namely L (A) = γT (A).

Widening. Similarly to the standard automata domain Fa/≡, also T Fa/≡ does
not satisfy ACC, meaning that fix-point computations over T Fa/≡ may not
converge in a finite time. Hence, we need to equip T Fa/≡ with a widening oper-
ator to ensure the convergence of the analysis. We define the widening operator
∇n

T : T Fa/≡ × T Fa/≡ → T Fa/≡, parametric in n ∈ N, taking two automata as
input and returning an over-approximation of the least upper bounds between
them, as required by widening definition. We rely on the standard automata
widening reported in Sect. 3, that, informally speaking, can be seen as a subset
construction algorithm [22] up to languages of strings of length n. In order to
explain the widening ∇n

T , consider the following function manipulating strings.3

1 f u n c t i o n f ( v ) {
2 r e s = "" ;
3 wh i l e (?)
4 r e s = r e s + " i d = " + v ;
5 r e t u r n r e s ;
6 }

3 For the sake of readability, in the program examples presented in this paper the plus
operation between strings corresponds to the string concatenation.
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Fig. 4. Example of widening application

The function f takes as input parameter v and returns variable res. Let us
suppose that v is a statically unknown string, corresponding to the automaton
recognizing T (i.e., Min({T})). The result of the function f is a string of the form
id =T, repeated zero or more times. Since the while guard is unknown, the num-
ber of iterations is statically unknown, and in turn, also the number of performed
concatenations inside the loop body. The goal here is to over-approximate the
value returned by the function f, i.e., the value of res at the end of the function.

Let A, reported in Fig. 4a, be the automaton abstracting the value of res
before starting the second iteration of the loop, and let A′, reported in Fig. 4b be
the automaton abstracting the value of res at the end of the second iteration.
At this point, we want to apply the widening operator ∇n

T , between A and A′,
working as follows. We first compute A �T A′ (corresponding to the automaton
reported in Fig. 4b except that also q0 and q2 are final states). On this automaton,
we merge any state that recognizes the same AP-strings of length n, with n ∈ N.
In our example, let n be 2. The resulting automaton is reported in Fig. 4c, where
q0 and q4 are put together, the other states are left as singletons since they
cannot be merged with no other state. Figure 4d depicts the minimized version
of Fig. 4c.

The widening ∇n
T has been proved to meet the widening requirements

(i.e., over-approximation of the least upper bounds and convergence on infi-
nite ascending chains) in [23]. The parameter n, tuning the widening precision,
is arbitrary and can be chosen by the user. As highlighted in [8], the higher n is,
the more the corresponding widening operator is precise in over-approximating
lubs of infinite ascending chains (i.e., in fix-point computations).

A classical improvement on widening-based fix-point computations is to inte-
grate a threshold [15], namely widening is applied to over-approximate lubs when
a certain threshold (usually over some property of abstract values) is overcome.
In fix-point computations, we decide to apply the previously defined widening
∇n

T only when the number of the states of the lubbed automata overcomes the
threshold τ ∈ N. This permits us to postpone the widening application, getting
more precise abstractions when the automata sizes do not overcome the thresh-
old. At the moment, the threshold τ is not automatically inferred, since it surely
requires further investigations.
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4.2 String Abstract Semantics of Imp

In this section, we define the abstract semantics of the string operators defined in
Sect. 3 over the new string domain T Fa/≡. Since Imp supports strings, integers and
Booleans values, we need a way to merge the corresponding abstract domains. In
particular, we abstract integers with the well-known interval abstract domain [17]
defined as Intv � { [a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b } ∪ {⊥Intv} and
Booleans with Bool � ℘({true, false}). As usual, we denote by �Intv and �Bool

the lubs between intervals and Booleans, respectively. In particular, we merge
such abstract domains in Val

� by the coalesced sum abstract domain [6] as

Val
� � T Fa/≡ ⊕ Intv ⊕ Bool

Informally, the coalesced sum abstract domain introduces a new bottom and top
element, and it coalesces the bottom elements of the involved domains.

The program state is represented through abstract program memories M
� :

Id → Val
� from identifiers to abstract values. The abstract semantics is captured

by the function �st� : M
� → M

�, relying on the abstract semantics of expres-
sions defined by, abusing notation, �e� : M

� → Val
�. We focus on the abstract

semantics of string operations4, while the semantics of the other expressions is
standard and does not involve strings.

In order to define the abstract semantics of Imp over Tarsis, it is worth to
highlight that one can think to reuse the one adopted in the standard finite state
automata abstract domain [8]: unfortunately, this is not possible since the one
reported in [8] only deals with automata over alphabet of single characters (not
strings), and does not handle the character T used in Tarsis alphabet, that
must be treated, as we will see soon, as a special symbol.

Length. Given A ∈ T Fa/≡, the abstract semantics of length returns an interval
[c1, c2] such that ∀σ ∈ L (A) . c1 ≤ |σ| ≤ c2. We recast the original idea of the
abstract semantics of length over standard finite state automata. Let s ∈ se,
supposing that �s�m� = A ∈ T Fa/≡. The length abstract semantics is:

�length(s)�m� �
{
[|minPath(A)|,+∞] if cyclic(A) ∨ readsTop(A)
[|minPath(A)|, |maxPath(A)|] otherwise

where readsTop(A) ⇔ ∃q, q′ ∈ Q . (q,T, q′) ∈ δ. Note that, when evaluating
the length of the minimum path, T is considered to have a length of 0. For
instance, consider the automaton A reported in Fig. 5a. The minimum path of A
is (q0, aa, q1), (q1,T, q2), (q2, bb, q4) and its length is 4. Since a transition labeled
with T is in A (and its length cannot be statically determined), the abstract
length of A is [4,+∞]. Consider the automaton A′ reported in Fig. 5b. In this
case, A′ has no cycles and has no transitions labeled with T and the length of
any string recognized by A′ can be determined. The length of the minimum path
of A′ is 3 (below path of A′), the length of the maximum path of A′ is 7 (above
path of A′) and consequently the abstract length of A′ is [3, 7].
4 The abstract semantics of concat does not add any further important technical detail

to the paper hence it is not reported.
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Fig. 5. (a) A s.t. L (A) = {bbb bbb, aa T bb}, (b) A′ s.t. L (A′) = {a b c, aa bbb cc}

Contains. Given A, A′ ∈ T Fa/≡, the abstract semantics of contains should
return true if any string of A′ is surely contained into some string of A, false if
no string of A′ is contained in some string of A and {true, false} in the other
cases. For instance, consider the automaton A depicted in Fig. 6a and suppose
we check if it contains the automaton A′ recognizing the language {aa, a}. The
automaton A′ is a single-path automaton [9], meaning that any string of A′ is a
prefix of its longest string. In this case, the containment of the longest string
(on each automaton path) implies the containment of the others, such as in our
example, namely it is enough to check that the longest string of A′ is contained
into A. Note that, a single-path automaton cannot read the symbol T. We rely
on the predicate singlePath(A) when A is a non-cyclic single-path automaton and
we denote by σsp its longest string. Let s, s′ ∈ se, supposing that �s�m� = A ∈
T Fa/≡, �s′�m� = A′ ∈ T Fa/≡. The contains abstract semantics is:

�contains(s, s′)�m� �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

false if A′ �T FA(A) = Min(∅)
true if singlePath(A′)

∧∀π ∈ paths(Aac) . σsp �s σπ

{true, false} otherwise

In the first case, we denote by FA(A) the factor automaton of A, i.e., the
automaton recognizing any substring of A. In particular, if A does not share
any substring of A′, the abstract semantics safely returns false (checking the
emptiness of the greatest lower bound between FA(A) and A′). Then, if A′ is a
single path automaton, the abstract semantics returns true if any path of Aac

reads the longest string of A′, with Aac being a copy of A where all the cycles
have been removed. Here, we abuse notation denoting with σsp �s σπ the fact
that σsp is a substring of each string in Flat(σπ). Otherwise, {true, false} is
returned.

IndexOf. Given A, A′ ∈ T Fa/≡, the indexOf abstract semantics returns an
interval of the first indexes of the strings of L (A′) inside strings of L (A), recalling
that when there exists a string of L (A′) that is not a substring of at least one
string of L (A′), the resulting interval must take into account -1 as well. Let
s, s′ ∈ se and suppose �s�m� = A and �s′�m� = A′. The abstract semantics of
indexOf is defined as:
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�indexOf(s, s′)�m� �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[−1,+∞] if cyclic(A) ∨ cyclic(A′) ∨ readsTop(A′)
[−1,−1] if ∀σ′ ∈ L (A′) �σ ∈ L (A) . σ′

�s σ
Intv⊔

σ∈L (A′)
IO(A, σ) otherwise

If one of the automata has cycles or the automaton abstracting strings we
aim to search for (A′) has a T-transition, we return [−1,+∞]. Moreover, if none
of the strings recognized by A′ is contained in a string recognized by A, we
can safely return the precise interval [−1,−1] since any string recognized by A′

is never a substring of a string recognized by A.5 If none of the aforementioned
conditions is met, we rely on the auxiliary function IO : T Fa/≡×Σ∗ → Intv, that,
given an automaton A and a string σ ∈ Σ∗, returns an interval corresponding
to the possible first positions of σ in strings recognized by A. Since A′ surely
recognizes a finite language (i.e., has no cycles), the idea is to apply IO(A, σ)
to each σ ∈ L (A′) and to return the upper bound of the resulting intervals. In
particular, the function IO(A, σ) returns an interval [i, j] ∈ Intv where, i and j
are computed as follows.

i =

⎧
⎪⎨

⎪⎩

−1 if ∃π ∈ paths(A) . σ ��s σπ

min
π∈paths(A)

{

i

∣
∣
∣
∣
∣

σf ∈ Flat(σπ)
∧σfi

. . . σfi+n
= σ

}

otherwise

j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if ∀π ∈ paths(A) . σ ��s σπ

+∞ if ∃π ∈ paths(A) . σ �s σπ

∧π reads T before σ

max
π∈paths(A)

⎧
⎪⎨

⎪⎩
i

∣
∣
∣
∣
∣
∣
∣

σf ∈ Flat(σπ)
∧σfi

. . . σfi+n
= σ

∧σ ��s σf0 . . . σfi+n−1

⎫
⎪⎬

⎪⎭
otherwise

As for the abstract semantics of contains, we abuse notation denoting with
σ �s σπ the fact that σ is a substring of each string in Flat(σπ). Given IO(A, σ) =
[i, j] ∈ Intv, i corresponds to the minimal position where the first occurrence of
σ can be found in A, while j to the maximal one. Let us first focus on the
computation of the minimal position. If there exists a path π of A s.t. σ is not
recognized by σπ, then the minimal position where σ can be found in A does not
exist and -1 is returned. Otherwise, the minimal position where σ begins across π
is returned. Let us consider now the computation of the maximal position. If all
paths of the automaton do not recognize σ, then −1 is returned. If there exists
a path where σ is recognized but the character T appears earlier in the path,
then +∞ is returned. Otherwise, the maximal index of the first occurrences of
σ across the paths of A is returned.
5 Note that this is a decidable check since A and A′ are cycle-free, otherwise the interval
[−1,+∞] would be returned in the first case.
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Fig. 6. Example of may-replacement

Replace. In order to give the intuition about how the abstract semantics of
replace will work, consider the three automata A, As, Ar ∈ T Fa/≡. Roughly
speaking, the abstract semantics of replace substitutes strings of As with strings
of Ar inside strings of A. Let us refer to As as the search automaton and to Ar as
the replace automaton. We need to specify two types of possible replacements,
by means of the following example. Consider A ∈ T Fa/≡ that is depicted in
Fig. 6a and suppose that the search automaton As is the one recognizing the
string bbb and the replace automaton Ar is a random automaton. In this case,
the replace abstract semantics performs a must-replace over A, namely substi-
tuting the sub-automaton composed by q1 and q2 with the replace automaton
Ar. Instead, let us suppose that the search automaton As is the one recognizing
bbb or cc. Since it is unknown which string must be replaced (between bbb and
cc), the replace abstract semantics needs to perform a may-replace: when a
string recognized by the search automaton is met inside a path of A it is left
unaltered in the automaton and, in the same position where the string is met,
the abstract replace only extends A with the replace automaton. An example
of may replacement is reported in Fig. 6, where A is the one reported in Fig. 6a,
the search automaton As is the one recognizing the language {bbb, cc} and the
replace automaton Ar is the one recognizing the string rr.

Before introducing the abstract semantics of replace, we define how to replace
a string into an automaton. In particular, we define algorithm RP in Algorithm 1,
that given A ∈ T Fa/≡, a replace automaton Ar and σ ∈ Σ∗ ∪ {T}, it returns a
new automaton that is identical to A except that σ is replaced with Ar.

Algorithm 1 searches the given string σ across all paths of A, collecting the
sequences of transitions that recognize the search string σ and extracting them
from the paths of A (lines 2–3): an ε-transition is introduced going from the
first state of the sequence to the initial state of A′, and one such transition is
also introduced for each final state of A′, connecting that state with the end-
ing state of the sequence (lines 4–5). Then, the list of states composing the
sequence of transitions is iterated backwards (lines 6–7), stopping at the first
state that has a transition going outside of such list. All the states traversed
in this way (excluding the one where the iteration stopped) are removed from
the resulting automaton, with the transitions connecting them (lines 8–9), since
they were needed only to recognize the string that has been replaced. Note that
RP corresponds to a must-replace. At this point, we are ready to define the
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Algorithm 1: RP algorithm
Data: Ao = 〈Qo, A, δo, qo

0 , F o〉, Ar = 〈Qr, A, δr, qr
0 , F r〉 ∈ T Fa/≡, σ ∈ Σ∗ ∪ {T}

Result: A ∈ T Fa/≡
1 Qresult ← Qo ∪ Qr; δresult ← δo ∪ δr;
2 foreach π ∈ paths(Ao) do
3 foreach (qi, σ0, qi+1), . . . , (qi+n−1, σn, qi+n) ∈ π do
4 δresult ← δresult ∪ (qi, ε, q

r
0);

5 δresult ← δresult ∪ { (qf , ε, qi+n) | qf ∈ F r };
6 foreach k ∈ [i + n − 1, i + 1] do
7 if �(qk, σ′, q) ∈ δo : q �= qk+1 then
8 Qresult ← Qresult \ {qk};
9 δresult ← δresult \ {(qk, σ′, qk+1)};

10 else break;
11 return 〈Qresult, A, δresult, qo

0 , F o〉;

replace abstract semantics. In particular, if either A or As have cycles or As

has a T-transition, we return Min({T}), namely the automaton recognizing T.
Otherwise, the replace abstract semantics is:

�replace(s, ss, sr)�m� �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A if ∀σs ∈ L (As)
�σ ∈ L (A) .

σs �s σ

RP(A, σs, Ar) if L (As) = {σs}
⊔

σ∈L (As)

RP(A, σ, Ar �T Min({σ})) otherwise

In the first case, if none of the strings recognized by the search automaton
As is contained into strings recognized by A, we can safely return the original
automaton A without any replacement. In the special case where L (As) = {σs},
we return the automaton obtained by performing a replacement calling the func-
tion RP(A, σs, Ar). In the last case, for each each string σ ∈ L (As), we perform a
may replace of σ with Ar: note that, this exactly corresponds to a call RP where
the replace automaton is Ar �T Min({σ}), namely σ is not removed. The so far
obtained automata are finally lubbed together.

Substring. Given A ∈ T Fa/≡ and two intervals i, j ∈ Intv, the abstract semantics
of substring returns a new automaton A′ soundly approximating any substring
from i to j of strings recognized by A, for any i ∈ i, j ∈ j s.t. i ≤ j.

Given A ∈ T Fa/≡, in the definition of the substring semantics, we rely
on the corresponding regex r since the two representations are equivalent and
regexes allow us to define a more intuitive formalization of the semantics of
substring. Let us suppose that �s�m� = A ∈ T Fa/≡ and let us denote by r
the regex corresponding to the language recognized by A. At the moment, let us
consider exact intervals representing one integer value, namely �a1�m

� = [i, i] and
�a2�m

� = [j, j], with i, j ∈ Z. In this case, the abstract semantics is defined as:

�substr(s, a1, a2)�m� �
⊔

Min({ σ | (σ, 0, 0) ∈ Sb(r, i, j − i) })

where Sb takes as input a regex r, two indexes i, j ∈ N, and computes the set
of substrings from i to j of all the strings recognized by r. In particular, Sb is
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Algorithm 2: Sb algorithm
Data: r regex over A, i, j ∈ N

Result: { (σ, n1, n2) | σ ∈ Σ∗, n1, n2 ∈ N }
1 if j = 0 ∨ r = ∅ then
2 return ∅;
3 else if r = σ ∈ Σ∗ then
4 if i > |σ| then return {(ε, i − |σ|, j)} ;
5 else if i + j > |σ| then return {(σi . . . σ|σ|−1, 0, j − |σ| + i)} ;
6 else return {(σi . . . σi+j , 0, 0)} ;
7 else if r = T then
8 result ← {(ε, i − k, j) : 0 ≤ k ≤ i, k ∈ N};
9 result ← result ∪ { (•k, 0, j − k) | 0 ≤ k ≤ j, k ∈ N };

10 return result;
11 else if r = r1r2 then
12 result ← ∅;
13 subs1 ← Sb(r1, i, j);
14 foreach (σ1, i1, j1) ∈ subs1 do
15 if j1 = 0 then
16 result ← result ∪ {(σ1, i1, j1)};
17 else
18 result ← result ∪ { (σ1 · σ2, i2, j2) | (σ2, i2, j2) ∈ Sb(r2, i1, j1) };
19 return result;
20 else if r = r1||r2 then
21 return Sb(r1, i, j) ∪ Sb(r2, i, j);
22 else if r = (r1)

∗ then
23 result ← {(ε, i, j)}; partial ← ∅;
24 repeat
25 result ← result ∪ partial; partial ← ∅;
26 foreach (σn, in, jn) ∈ result do
27 foreach (suff, is, js) ∈ Sb(r1, in, in + jn) do
28 if �(σ′, k, w) ∈ result . σ′ = σn · suff ∧ k = is ∧ w = js then
29 partial ← partial ∪ {(σn · suff, is, js)};
30 until partial �= ∅;
31 return result;

defined by Algorithm 2 and, given a regex r and i, j ∈ N, it returns a set of triples
of the form (σ, n1, n2), such that σ is the partial substring that Algorithm 2 has
computed up to now, n1 ∈ N tracks how many characters have still to be skipped
before the substring can be computed and n2 ∈ N is the number of characters
Algorithm 2 needs still to look for to successfully compute a substring. Hence,
given Sb(r, i, j), the result is a set of such triples; note that given an element of
the resulting set (σ, n1, n2), n2 = 0 means that no more characters are needed
and σ corresponds to a proper substring of r from i to j. Thus, from the resulting
set, we can filter out the partial substrings, and retrieve only proper substrings
of r from i to j, by only considering the value of n2. Algorithm 2 is defined by
case on the structure of the input regex r:

1. j = 0 or r = ∅ (lines 1–2): ∅ is returned since we either completed the
substring or we have no more characters to add;

2. r = σ ∈ Σ∗ (lines 3–6): if i > |σ|, the requested substring happens after
this atom, and we return a singleton set {ε, i − |σ|, j}, thus tracking the
consumed characters before the start of the requested substring; if i+j > |σ|,
the substring begins in σ but ends in subsequent regexes, and we return a
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singleton set containing the substring of σ from i to its end, with n1 = 0
since we begun collecting characters, and n2 = j − |σ| + i since we collected
|σ|− i characters; otherwise, the substring is fully inside σ, and we return the
substring of σ from i to i + j, setting both n1 and n2 to 0;

3. r = T (lines 7–10): since r might have any length, we generate substrings
that (a) gradually consume all the missing characters before the substring
can begin (line 8) and (b) gradually consume all the characters that make up
the substring, adding the unknown character • (line 9);

4. r = r1r2 (lines 11–20): the desired substring can either be fully found in r1
or r2, or could overlap them; thus we compute all the partial substrings of
r1, recursively calling Sb (line 13); for all {σ1, i1, j1} returned, substrings that
are fully contained in r1 (i.e., when j1 = 0) are added to the result (line 16)
while the remaining ones are joined with ones computed by recursively calling
Sb on r2 with n1 = j1 and n2 = j2;

5. r = r1||r2 (lines 20–21): we return the partial substring of r1 and the ones of
r2, recursively calling Sb on both of them;

6. r = (r1)∗ (lines 22–31): we construct the set of substrings through fixpoint
iteration, starting by generating {ε, i, j} (corresponding to r1 repeated 0 times
- line 23) and then, at each iteration, by joining all the partial results obtained
until now with the ones generated by a further recursive call to Sb, keeping
only the joined results that are new (lines 24–30).

Above, we have defined the abstract semantics of substring when intervals
are constant. When �a1�m

� = [i, j] and �a2�m
� = [l, k], with i, j, l, k ∈ Z, the

abstract semantics of substring is

�substr(s, a1, a2)�m� �
⊔

a∈[i,j],b∈[l,k],a≤b

⊔
Min({ σ | (σ, 0, 0) ∈ Sb(r, a, b − a) })

We do not precisely handle the cases when the intervals are unbounded (e.g.,
[1,+∞]). These cases have been already considered in [8] and treated in an ad-
hoc manner and one may recast the same proposed idea in our context. Neverthe-
less, when these cases are met, our analysis returns the automaton recognizing
any possible substring of the input automaton, still guaranteeing soundness.

5 Experimental Results

Tarsis has been compared with five other domains, namely the prefix (Pr), suf-
fix (Su), char inclusion (Ci), bricks (Br) domains (all defined in [16]), and Fa/≡
(defined in [8], adapting their abstract semantics definition for Java, without
altering their precision).

All domains have been implemented in a prototype of a static analyzer for a
subset of the Java language, similar to Imp (Sect. 3), plus the assert statement.
In particular, our analyzer raises a definite alarm (DA for short) when a failing
assert (i.e., whose condition is definitely false) is met, while it raises a possible
alarm (PA for short) when the assertion might fail (i.e., the assertion’s condition
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Fig. 7. Program samples used for domain comparison

evaluates to TBool). Comparisons have been performed by analyzing the code
through the coalesced sum domain specified in Sect. 4.2 with trace partition-
ing [31] (note that all traces are merged when evaluating an assertion), plugging
in the various string domains. All experiments have been performed on a HP
EliteBook G6 machine, with an Intel Core i7-8565U @ 1.8GHz processor and 16
GB of RAM memory.

To achieve a fair comparison with the other string domains, the subjects of
our evaluation are small hand-crafted code fragments that represent standard
string manipulations that occur regularly in software. Pr, Su, Ci and Br have
been built to model simple properties and to work with integers instead of inter-
vals, and have been evaluated on small programs: Sect. 5.1 compares them to
Tarsis and Fa/≡ without expanding the scope of such evaluations. Section 5.2
instead focuses on slightly more advanced and complex string manipulations that
are not modeled by the aforementioned domains, but that Fa/≡ and Tarsis can
indeed tackle, highlighting differences between them.

It is important to notice that performances of programs relying on automata
(highlighted in Sect. 5.3) are heavily dependent on their implementation. Both
Fa/≡ and Tarsis (whose sources are available on GitHub6,7) come as non-
optimized proof-of-concept libraries (specifically, Tarsis has been built following
the structure of Fa/≡ to ensure a fair performance comparison) whose perfor-
mances can be greatly improved.

5.1 Precision of the Various Domains on Test Cases

We start by considering programs subs (Fig. 7a) and loop (Fig. 7b). subs calls
substring on the concatenation between two strings, where the first is constant
and the second one is chosen in a non-deterministic way (i.e., nondet condition
is statically unknown, lines 3–6). loop builds a string by repeatedly appending
a suffix, which contains a user input (i.e., an unknown string), to a constant

6 Fa/≡ source code: https://github.com/SPY-Lab/fsa.
7 Tarsis source code: https://github.com/UniVE-SSV/tarsis.

https://github.com/SPY-Lab/fsa
https://github.com/UniVE-SSV/tarsis
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value. Table 1 reports the value approximation for res for each abstract domain
and analyzed program when the first assertion of each program is met, as well
as if the abstract domain precisely dealt with the program assertions. For the
sake of readability, Tarsis and Fa/≡ approximations are expressed as regexes.

When analyzing subs, both Pr and Su lose precision since the string to
append to res is statically unknown. This leads, at line 7, to a partial substring of
the concrete one with Pr, and to an empty string with Su. Instead, the substring
semantics of Ci moves every character of the receiver in the set of possibly
contained ones, thus the abstract value at line 7 is composed by an empty set
of included characters, and a set of possibly included characters containing the
ones of both strings. Finally, Br, Fa/≡ and Tarsis are expressive enough to
track any string produced by any concrete execution of subs.

When evaluating the assertions of subs, a PA should be raised on lines 9 and
10, since “p" or “f" might be in res, together with a DA alarm on line 11, since “d"
is surely not contained in res. No alarm should be raised on line 8 instead, since
“g" is part of the common prefix of both branches and thus will be included in
the substring. Such behavior is achieved when using Br, Fa/≡, or Tarsis. Since
the substring semantics of Ci moves all characters to the set of possibly contained
ones, PAs are raised on all four assertions. Since Su loses all information about
res, PAs are raised on lines 7–10 when using such domain. Pr instead tracks the
definite prefix of res, thus the PA at line 7 is avoided.

When analyzing loop, we expect to obtain no alarm at line 6 (since character
“t" is always contained in the resulting string value), and PA at lines 7 and 8.
Pr infers as prefix of res the string “Repeat: ", keeping such value for the whole
analysis of the program. This allows the analyzer to prove the assertion at line
6, but it raises PAs when it checks the ones at lines 7 and 8. Again, Su loses
any information about res since the lub operation occurring at line 3 cannot
find a common suffix between “Repeat: " and “!", hence PAs are raised on lines
6–8. Since the set of possible characters contains T, Ci can correctly state that
any character might appear in the string. For this reason, two PAs are reported
on lines 7 and 8, while no alarm is raised on line 6 (again, this is possible
since the string used in the contains call has length 1). The alternation of T
and “!" prevents Br normalization algorithm from merging similar bricks. This
will eventually lead to overcoming the length threshold kL, hence resulting in the

Table 1. Values of res at the first assert of each program

Domain Program subs Program loop

Pr ring test ✗ Repeat: ✗

Su ε ✗ ε ✗

Ci [] [abdefgilnprstu ] ✗ [:aepRt ] [!:aepRt T] �
Br [{ring test fai, ring test pas}] (1, 1) � [{T}] (0,+∞) ✗

Fa/≡ ring test (pas||fai) � Repeat: (T)∗ �
Tarsis (ring test pas||ring test fai) � Repeat: (T!)∗ �
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Fig. 8. Programs used for assessing domain precision

[{T}] (0,+∞) abstract value. In such a situation, Br returns TBool on all contains
calls, resulting in PAs on lines 6–8. The parametric widening of Fa/≡ collapses
the colon into T. In Tarsis, since the automaton representing res grows by two
states each iteration, the parametric widening defined in Sect. 4.1 can collapse
the whole content of the loop into a 2-states loop recognizing T!. The precise
approximation of res of both domains enable the analyzer to detect that the
assertion at line 6 always holds, while PAs are raised on lines 7 and 8.

In summary, Pr and Su failed to produce the expected results on both subs

and loop, while Ci and Br produced exact results in one case (loop and subs,
respectively), but not in the other. Hence, Fa/≡ and Tarsis were the two only
domains that produced the desired behavior in these rather simple test cases.

5.2 Evaluation on Realistic Code Samples

In this section, we explore two real world code samples. Method toString

(Fig. 8a) transforms an array of names that come as string values into a single
string. While it resembles the code of loop in Fig. 7b (thus, results of all the
analyses show the same strengths and weaknesses), now assertions check contains
predicates with a multi-character string. Method count (Fig. 8b) makes use of

Table 2. Values of res and count at the first assert of the respective program

Domain Program toString Program count

Pr People: { ✗ [0,+∞] ✗

Su ε ✗ [0,+∞] ✗

Ci [{}:Peopl ] [{}:,Peopl T] ✗ [0,+∞] ✗

Br [{T}] (0,+∞) ✗ [0,+∞] ✗

Fa/≡ People: {(T)∗T} � [2, 3] �
Tarsis People: {}||People: {(T,)∗T} � [2, 3] �
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Table 3. Execution times of the domains on each program

Domain subs loop toString count

Pr 11 ms 3 ms 78 ms 29 ms
Su 10 ms 2 ms 92 ms 29 ms
Ci 10 ms 3 ms 90 ms 29 ms
Br 13 ms 3 ms 190 ms 28 ms
Fa/≡ 10 ms 52013 ms 226769 ms 4235 ms
Tarsis 34 ms 38 ms 299 ms 39 ms

countMatches (reported in Sect. 2) to prove properties about its return value.
Since the analyzer is not inter-procedural, we inlined countMatches inside
count. Table 2 reports the results of both methods (stored in res and count,
respectively) evaluated by each analysis at the first assertion, as well as if the
abstract domain precisely dealt with the program assertions.

As expected, when analyzing toString, each domain showed results similar
to those of loop. In particular, we expect to obtain no alarm at line 11 (since
“People" is surely contained in the resulting string), and two PAs at line 12 and
13. Pr, Su, Ci and Br raise PAs on all the three assert statements. Fa/≡ and
Tarsis detect that the assertion at line 11 always holds. Thus, when using them,
the analyzer raises PAs on lines 12 and 13 since: comma character is part of res
if the loop is iterated at least once, and T might match “not".

If count (with the inlined code from countMatches) was to be executed,
count would be either 2 or 3 when the first assertion is reached, depending on
the choice of str. Thus, no alarm should be raised at line 6, while a DA should be
raised on line 7, and a PA on line 8. Since Pr, Su, Ci and Br do not define most
of the operations used in the code, the analyzer does not have information about
the string on which countMatches is executed, and thus abstract count with
the interval [0,+∞]. Thus, PAs are raised on lines 6–8. Instead, Fa/≡ and Tarsis

are instead able to detect that sub is present in all the possible strings represented
by str. Thus, thanks to trace partitioning, the trace where the loop is skipped
and count remains 0 gets discarded. Then, when the first indexOf call happens,
[0, 0] is stored into idx, since all possible values of str start with sub. Since the
call to length yields [10, 17], all possible substrings from [2, 2] (idx plus the length
of sub) to [10, 17] are computed (namely, “e throat", “is the", “is the", . . . , “is the
thing"), and the resulting automaton is the one that recognizes all of them. Since
the value of sub is still contained in every path of such automaton, the loop guard
still holds and the second iteration is analyzed, repeating the same operations.
When the loop guard is reached for the third time, the remaining substring of the
shorter starting string (namely “roat") recognized by the automaton representing
str will no longer contain sub: a trace where count equals [2, 2] will leave the loop.
A further iteration is then analyzed, after which sub is no longer contained in
any of the strings that str might hold. Thus, a second and final trace where
count equals [3, 3] will reach the assertions, and will be merged by interval lub,
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obtaining [2, 3] as final value for count. This allows Tarsis and Fa/≡ to identify
that the assertion at line 7 never holds, raising a DA, while the one at line 8
might not hold, raising a PA.

5.3 Efficiency

The detailed analysis of two test cases, and two examples taken from real-world
code underlined that Tarsis and Fa/≡ are the only ones able to obtain precise
results on them. We now discuss the efficiency of the analyses. Table 3 reports
the execution times for all the domains on the case studies analyzed in this
section. Overall, Pr, Su, Ci, and Br are the fastest domains with execution
times usually below 100 msecs. Thus, if on the one hand these domains failed to
prove some of the properties of interest, they are quite efficient and they might
be helpful to prove simple properties. Tarsis execution times are higher but still
comparable with them (about 50% overhead on average). Instead, Fa/≡ blows
up on three out of the four test cases (and in particular on toString). Hence,
Tarsis is the only domain that executes the analysis in a limited time while
being able to prove all the properties of interest on these four case studies.

The reason behind the performance gap between Tarsis and Fa/≡ can be
accounted on the alphabets underlying the automata. In Fa/≡, automata are
built over an alphabet of single characters. While this simplifies the semantic
operations, it also causes state and transition blow up w.r.t. the size of the
string that needs to be represented. This does not happen in Tarsis, since
atomic strings (not built through concatenation or other string manipulations)
are part of the alphabet and can be used as transition symbol. Having less
states and transitions to operate upon drastically lowers the time and memory
requirements of automata operations, making Tarsis faster than Fa/≡.

Tarsis’s alphabet has another peculiarity w.r.t. Fa/≡’s: it has a special sym-
bol for representing the unknown string. Having such a symbol requires some
fine-tuning of the algorithms to have them behave differently when the sym-
bol is encountered, but without additional tolls on their performances. Fa/≡’s
alphabet does not have such a symbol, thus representing the unknown string is
achieved through a state having one self-loop for each character in the alpha-
bet (including the empty string). This requires significantly more resources for
automata algorithms, leading to higher execution times.

6 Conclusion

In this paper we introduced Tarsis, an abstract domain for sound abstraction
of string values. Tarsis is based on finite state automata paired with their
equivalent regular expression: a representation that allows precise modeling of
complex string values. Experiments show that Tarsis achieves great precision
also on code that heavily manipulate string values, while the time needed for
the analysis is comparable with the one of other simpler domains.
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The analysis proposed in this paper is intra-procedural and we are currently
working on extending it to an inter-procedural analysis. Moreover, in order to
further improve the performance of our analysis, sophisticated techniques such
as abstract slicing [26,27] can be integrated to keep the size of automata arising
during abstract computations as low as possible, by focusing the analysis only
on the string variables of interest. Finally, in this paper, we did not investigate
completeness property of Tarsis w.r.t. the considered operations of interest.
This would ensure that no loss of information is related to T Fa/≡ due to the
input abstraction process [9]. Our future directions will include a deeper study
about T Fa/≡ completeness, and possibly the application of completion processes
when incompleteness arises for a string operation [24].
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Abstract. Modular approaches to verifying interprocedural programs
involve learning summaries for individual procedures rather than veri-
fying a monolithic program. Modern approaches based on use of Sat-
isfiability Modulo Theory (SMT) solvers have made much progress in
this direction. However, it is still challenging to handle mutual recur-
sion and to derive adequate procedure summaries using scalable meth-
ods. We propose a novel modular verification algorithm that addresses
these challenges by learning lemmas about the relationships among pro-
cedure summaries and by using bounded environments in SMT queries.
We have implemented our algorithm in a tool called Clover and report
on a detailed evaluation that shows that it outperforms existing auto-
mated tools on benchmark programs with mutual recursion while being
competitive on standard benchmarks.

Keywords: Program verification · Modular verification · Procedure
summaries · Bounded environments · CHC solvers

1 Introduction

Automated techniques for modular reasoning about interprocedural recursive
programs have a rich history with various techniques spanning interprocedu-
ral dataflow analysis [55,57], abstract interpretation [18], and software model
checking [6]. These techniques exploit the inherent modularity in a program by
deriving a summary for each procedure. Procedure summaries can be viewed as
specifications or interface contracts, where internal implementation details have
been abstracted away. In addition to aiding code understanding and mainte-
nance, they can be combined to verify the full program. A modular verification
approach that infers and composes procedure summaries may scale better than
a monolithic one that considers all procedure implementations at once.

A popular modern approach is to encode interprocedural program verifica-
tion problems as Constrained Horn Clauses (CHCs) [32], in which uninterpreted
predicates represent placeholders for procedure summaries. A CHC solver then
finds interpretations for these predicates such that these interpretations corre-
spond to summaries, enabling generation of procedure summaries.
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CHC solvers [13,27,32,39,42,49,60] query to backend SMT (Satisfiability
Modulo Theory) solvers [8] to find interpretations that make all CHC rules valid.
In addition to classic fixpoint computations,

CHC solvers use model checking techniques, e.g., counterexample guided
abstraction refinement (CEGAR) [17], interpolation [46], property-directed
reachability (PDR) [12,23], and guess-and-check procedures [25]. They can thus
find procedure summaries adequate for verification but not necessarily least or
greatest fixpoints. CHC-based verifiers have been successfully applied to a range
benchmark programs, but there remain significant challenges in handling mutual
recursion and in scalability.

We aim to address these challenges by leveraging program structure during
solving and learning relevant facts. Typical CHC-based verifiers may not main-
tain a program’s structure when encoding it into CHCs. In contrast, our method
uses the program call graph, which can be preserved easily in a CHC encoding,
to guide proof search.

For improving scalability, we ensure that the SMT queries in our method are
always bounded in size even when more of the program is explored. We wish
both to maintain scalability and to avoid learning over-specialized facts. We do
this by leveraging the call graph of the program, i.e., analyzing a procedure in
the context of a bounded number of levels in the call graph. Furthermore, such
a notion of a bounded environment enables us to refer to bounded call paths in
the program and learn special lemmas, called EC (Environment-Call) Lemmas,
to capture relationships among summaries of different procedures on such paths.
These lemmas are beneficial in handling mutual recursion.

Other techniques also trade off scalability and relevance by considering a
bounded number of levels in a call graph, e.g., in bounded context-sensitivity or
k-sensitive pointer/alias analysis [51], stratified inlining [44], and depth cutoff
[40] in program verification. However, other than Spacer [42], which is restricted
to k = 1 bounded environments, existing CHC solvers do not use bounded
environments to limit size of the SMT queries.

Summary of Contributions. This paper’s contributions are as follows:

– We propose a new CHC-solving method for generating procedure summaries
for recursive interprocedural programs (Sect. 6).

– We propose to handle mutual recursion by explicitly learning EC Lemmas to
capture relationships among different procedures on a call path (Sect. 5).

– We propose to use bounded environments (with bound k ≥ 1) (Sect. 4) to
compute individual procedure summaries. The SMT queries formulated in
our method are always bounded in size, thereby improving scalability.

– We have implemented our method in a tool called Clover and report on its
evaluation on several benchmark programs, along with a detailed comparison
against existing tools (Sect. 7).

To the best of our knowledge, EC Lemmas and bounded environments, the main
features of our algorithm, are novel for summary generation in modular verifiers.
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Fig. 1. Example: (a) source code, (b) call graph, and (c) final derivation tree.

2 Motivating Example

We illustrate the main steps of our modular algorithm on the example program
shown in Fig. 1a. To keep our focus on intuition, we describe our algorithm in
terms of the program (CHC encodings are described later).

In Fig. 1a, e and o are defined mutually recursively and return true iff their
argument is respectively even or odd. Procedure f returns the (always-even)
result of calling h on g’s result, where g returns an arbitrary odd number and
h adds one to its input. The safety specification is that e(f() − 1) never holds.
We aim to infer over-approximate procedure summaries so that the assertion’s
truth follows from replacing procedure calls in main with these summaries.

We maintain context-insensitive over- and under-approximate summaries for
all procedures , each of which captures both pre- and post-conditions of its
procedure. All over- (resp. under-) approximate summaries are initially � (resp.
⊥). At each step, we choose a target procedure p and its bounded environment,
then update p’s summaries based on the results of SMT queries on its over- or
under-approximate body. We also allow the bounded environment to be over-
or under-approximated, leading to four kinds of SMT queries. These queries let
us over- and under-approximate any procedure that is called before or after the
target, unlike Spacer [42] or Smash [31], which use two kinds of SMT queries.

Table 1 lists non-trivial verification steps that update various procedure sum-
maries. (Steps that do not update any summary are not listed.) The first column
lists the call path that is visited in each step, in which the last call is the current
target procedure whose summary is updated, and the call path is used to gener-
ate its bounded environment. The “Environment” (resp. “Target”) column shows
whether the bounded environment (resp. target) is over- or under-approximated.
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Table 1. Relevant steps to verify program in Fig. 1a.

Call graph path Environment Target Deductions (universally quantified)

main → e Over Under x = 0 ∧ y = true ⇒ e(x, y)

main → f → h Over Under y = x + 1 ⇒ h(x, y)

main → e → o Over Under x = 1 ∧ y = true ⇒ o(x, y)

main → f → g Over Under y mod 2 �= 0 ⇒ g(y)

main → f → g Under Over g(y) ⇒ y mod 2 �= 0

main → f → h Under Over h(x, y) ⇒ y = x + 1

main → f Over Under y mod 2 = 0 ⇒ f(y)

main → f Under Over f(y) ⇒ y mod 2 = 0

main → e → o → e Over Over (o(x, y) ⇒ y ⇔ ((1 + x) mod 2 = 0)) ⇒
(e(m,n) ⇒ n ⇔ (m mod 2 = 0))

main → e → o Over Over o(x, y) ⇒ y ⇔ ((1 + x) mod 2 = 0))

e(x, y) ⇒ x > 1 ∧ y ⇔ ((1 + x) mod 2 = 0)

The “Deductions” column lists deductions resulting from SMT queries in that
step. Note that formulas in this column (and in the remainder of this section)
are implicitly universally quantified over all variables and involve uninterpreted
predicates (e.g., h(x, y) in row 2). Except in row 9, all these formulas are implica-
tions that represent procedure summaries. Row 9 shows an implication between
two such formulas – this is an instance of an EC lemma (described later).

2.1 Using the Program Call Graph

Our algorithm chooses environment-target pairs based on the call graph of the
program, shown in Fig. 1b. It maintains explored paths through the call graph
in a data structure called a derivation tree, initially consisting of only one node
that represents entry procedure main. Figure 1c shows the tree just before the
algorithm converges. The subset A of nodes available to be explored is also
maintained, and it is this subset that guides exploration in our algorithm.

To improve scalability, we use bounded environments from call paths to use
in SMT queries at each step. These bounded environments include bodies of the
ancestors of the target procedure, but only up to level k above the target in the
call graph. Ancestors at l > k above the target are soundly abstracted away so
that these environments capture at least the behaviors of the program before and
after the target procedure that may lead to a counterexample. Approximations
of these environments and of the bodies of target procedures help us learn new
facts about the targets. In this example, we use k = 2. When we target the last
call to e along path main → e → o → e, main’s body will be abstracted.

2.2 Summary Updates Using SMT Queries

We now consider the four SMT queries on a chosen environment-target pair
at each step. Suppose our algorithm has already considered the path to o on
row 3 (Table 1) and now chooses node g ∈ A in path main → f → g. Here, the
bounded environment includes calls to h (called by f) and e (called by main),
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so we use their over-approximate summaries (both currently �). We under-
approximate the environment using summaries for h and e learned in rows 2
and 1, respectively. Over- and under-approximations of g are just its body with
local variables rewritten away (i.e., 2 * havoc() + 1), since it has no callees.

In checks that over-approximate the procedure body, we try to learn an inter-
polant that proves the absence of a subset of counterexamples along this path
in the program. Since target procedure body is over-approximated, any inter-
polant found that separates its encoding from the counterexample captured by
the environment will be an over-approximate summary for the target procedure,
expressing a fact about all behaviors of the procedure. Such over-approximate
summaries allow us to prove safety in a modular way. In checks that under-
approximate the procedure body, we try to find (part of) a bug. Since the tar-
get procedure body is under-approximated, the interpolant is instead an under-
approximate summary, describing behaviors the procedure may exhibit. Under-
approximate summaries allow us to construct counterexamples in the case where
the program is unsafe. Approximating the environment and target procedure
body allows us to keep queries small.

Both the over-over and under-under checks fail here, so no updates are made.
A weaker version of the under-under check is the over-under check, in which the
environment is now over-approximated. Because it is weaker, it may result in
learning under-approximate summaries that may not be necessary, since the
over-approximated environment may contain spurious counterexamples. When
our algorithm performs this check, it finds a path that goes through the over-
approximated environment and the under-approximation of g’s body and thus
augments g’s under-approximation (row 4).

A corresponding weaker version of the over-over check is the under-over
check, in which the environment is under-approximated. Because the under-
approximated environment may not capture all counterexamples, the learned
interpolant by itself could be too weak to prove safety. Our algorithm refines g’s
over-approximation with the interpolant learned in this query (row 5).

Note that these two weaker checks are crucial in our algorithm. Consider a
different main function that contains only assert(f() mod 2 = 0). To prove
safety, we would need to consider paths main → f → h and main → f → g, but
for these paths, both “stronger” checks fail. Paths through the derivation tree
must be paths through the call graph, so we would not consider the bodies of h
and g simultaneously; the “weaker” checks allow us to learn summary updates.

2.3 Explicit Induction and EC lemmas

To demonstrate the need for and use of induction and EC lemmas for handling
mutual recursion, we now consider row 9 in Table 1, where we perform an over-
over check for the final call to e in the call path. The current derivation tree has
the same structure as the final derivation tree, shown in Fig. 1c.

No Induction. At this stage, our over-approximation for f precisely describes
all possible behaviors of f (rows 7, 8), but no interpolant can be learned because
the over-approximation � of o in the body of procedure e is too coarse. Without
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using induction, we cannot make any assumptions about this call to o, and are
stuck with this coarse over-approximation. Even if we inlined the body of o, we
would similarly still have an overly-coarse over-approximation for e.

Induction with EC Lemmas. We can instead try to use induction on the body
of e. Its over-approximated environment includes counterexample paths that we
would like to prove spurious. Let formula φ(x, y) denote property e(x, y) ⇒ (y ⇔
x mod 2 = 0). The consequent in this implication is generated by examining the
environment for e, i.e., the environment implies the negation of the consequent 1.
Problems arise when trying to prove this property by induction because there is
no opportunity to apply the inductive hypothesis about e. When the else branch
is taken, facts about o are needed to finish the proof for φ(x, y) and x > 0.

If we were to inline o and assume inductive hypothesis that φ(x, y) holds for
the inner call to e, an inductive proof would succeed without using EC lemmas.
However, such an inlining approach can lead to poor scalability and precludes
inference of summaries (e.g., for o) that could be useful in other call paths.

EC Lemmas. Our algorithm discovers additional lemmas in the form of implica-
tions over certainprocedure summaries (Sect. 5). Let formula θ(m,n) def= o(m,n) ⇒
(n ⇔ (1 + m) mod 2 = 0). (Again, the consequent in this implication is generated
by examining the environment for o.) Let ψ(x, y,m, n) def= θ(m,n) ⇒ φ(x, y), i.e.,
ψ is similar to φ property, but with an additional assumption θ about o.

Validity of ψ is proved by case analysis: ψ(1, true,m, n) is trivially true, and
the proof of ψ(x, y,m, n) for x > 0 works because of the assumption θ. Thus,
the formula ψ(x, y,m, n) is learned as an EC lemma (see row 9).

Now, we reconsider the call to o along call path main → e → o. The dis-
covered EC lemma allows us to prove formula θ valid by induction. This new
over-approximate fact for o is combined with the EC lemma allowing the algo-
rithm to learn e(x, y) ⇒ (y ⇔ x mod 2 = 0). This step corresponds to row 10.

3 Preliminaries

In this section, we define our notion of a program, introduce CHC notions and
encodings, and define contexts and derivation trees.

Programs. A program P is a set of procedures with entry point main. Each
procedure p has vectors of input and output variables inp and outp and a body
bodyp , which may contain calls to other procedures or recursive calls to p. When
p is clear from context, we omit it in the variables’ subscripts, e.g., p(in, out).
We encode a program as a system of CHCs C.

1 Expressions such as x mod 2 = 0 can be generated by existentially quantifying local
variables and then performing quantifier elimination.
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Fig. 2. Unfoldings (and intermediate steps) of e in the body of main from Fig. 1a.
Program snippets are shown on the left and CHC encodings on the right.

Definition 1. A CHC C is an implicitly universally-quantified implication for-
mula in first-order logic with theories of the form body ⇒ head. Let R be a set
of uninterpreted predicates. The formula head may take either the form R(�y) for
R ∈ R or ⊥. Implications in which head =⊥ are called queries. The formula
body may take the form φ(�x) or φ(�x) ∧ R0(�x0) ∧ . . . ∧ Rn(�xn), where each Ri is
an uninterpreted predicate, and φ(�x) is a fully interpreted formula over �x (i.e.,
it contains only theory predicates), which may contain all variables in each �xi

and (if the head is of the form R(�y)) all variables in �y.

A system of CHCs for a program can be generated by introducing an unin-
terpreted predicate per procedure and encoding the semantics of each procedure
using these and theory predicates. Each application R(�x) in the body of a CHC
corresponds to a procedure call to a procedure p, where �y = (inp, outp). By anal-
ogy, we refer each such R as a callee of the predicate in the head of the CHC.
For each C ∈ C with uninterpreted predicate applications {R0(�x0), . . . , Rn(�xn)}
in its body, we let calleeC be a one-to-one mapping from 0, . . . , n to these appli-
cations.

This mapping allows us to distinguish between different applications of the
same predicate within the same CHC body, which we can understand as distin-
guishing between different callsites of the same callee within a procedure. We
abuse notation and denote the corresponding predicate for a procedure p ∈ P
in encoding C as p. We assume that in any application p(�y) in the head of
a CHC in C, �y is the same vector of variables inp, outp. We let C.body and
C.head denote the body and head of CHC C respectively. We let locC denote
fv(C.body) \ fv(C.head), where for a formula F , fv(F ) denotes the free variables
in F . We assume that all C,C ′ ∈ C are such that locC ∩ locC′ = ∅ and let locp =⋃{locC | C.head = p(�y)}. Note that disjunction

∨
i{bodyi | body i ⇒ p(�y) ∈ C}

gives the semantics of bodyp. We abuse notation to use bodyp to refer to this
disjunction.

Corresponding CHC encodings are shown in Fig. 2 for demonstration. We
assume the use of an encoding that preserves the call graph structure of the
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program in CHCs; i.e., there will be a CHC with head containing p with an
application of q in its body iff p calls q.

Definition 2 (Solution). A solution for a system of CHCs C is an interpreta-
tion M for uninterpreted predicates R that makes all CHCs in C valid.

A CHC encoding is such that if it has a solution, the original program is
safe. To remember facts learned during our algorithm, we maintain two sets of
first-order interpretations of R called O and U , functioning as mappings from
procedures to their over- and under-approximate summaries, respectively.

Definition 3 (Procedure Summaries). The over- (O) and under-approxi-
mate (U) summaries are such that all non-query CHCs body ⇒ head ∈ C are
valid under O and that implication head ⇒ body is valid under U .

From Definition 3, it is clear that for all p, O[p] = � and U [p] =⊥ are valid
summaries. We use these as initial summaries in the algorithm presented in
Sect. 6. Note that when O is a solution for the system of CHCs C (i.e., O makes
the query CHCs valid). When U is such that a query CHC is not valid, then
verification fails and a counterexample exists.

Definition 4 (Approximation). Given a formula Π and an interpretation
M ∈ {O,U}, an approximation Π̂M is defined as follows:

Π̂M
def= Π ∧

∧

p(in,out) in Π

M [p](in, out)

In addition to approximations, we can manipulate CHCs using renaming and
unfolding.

Definition 5 (Renaming). For a formula F containing variables �x, F [�x �→ �y]
denotes the simultaneous renaming of variables �x to �y in F .

Definition 6 (Unfolding). Let C be a system of CHCs. Let C ∈ C be a CHC
R0(�x0) ∧ . . . ∧ Rn(�xn) ∧ φ(�x) ⇒ R(�y) where calleeC(i) = Ri(�xi) for each i ∈
{0, . . . , n}. There is an unfolding of calleeC(k) per CHC in C whose head is an
application of predicate Rk. For such a CHC body ⇒ Rk(�yk) ∈ C, the unfolding
of Rk(�xk) in C is given by the following:

∧

i∈{0,...,n},i �=k

Ri(�xi) ∧ body [�yk �→ �xk] ∧ φ(�x) ⇒ (�y)

An unfolding is essentially a one-level inlining of one CHC in another. Figure 2
illustrates what an unfolding of CHCs correponds to on our motivating example,
where e is unfolded in main.

Definition 7 (Environment). For a CHC C of the form
∧

i∈{1..n} Ri(�xi) ∧
φ( �x1, . . . , �xn) ⇒⊥, the environment for Rk( �xk) is given by the following:

∧

i∈{1..n},i �=k

Ri(�xi) ∧ φ( �x1, . . . , �xn)
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By analogy with programs, the environment for Rk( �xk) intuitively captures
the procedure calls in C before and after the procedure call for Rk( �xk). Note that
if C is simply an encoding of a single procedure body, then the environment will
only capture the immediate callees of that procedure. On the other hand, if C is,
for example, an unfolding of the CHC representing main, then the environment
may contain any calls before and after the call corresponding to Rk( �xk) in a
full but potentially spurious counterexample run of the program so long as they
have corresponding predicate applications in the unfolding C.

Definition 8 (Derivation Tree). A derivation tree D = 〈N,E〉 for system of
CHCs P is a tree with nodes N and edges E, where each n ∈ N is labeled with
uninterpreted predicate p = proc(n), a context query CHC ctx (n), and an index
i = idx (n) such that calleectx(n)(i) is an application of p.

Our algorithm uses the derivation tree is capture the already-explored unfold-
ings starting from the encoding of main and to further guide exploration. Each
node n ∈ N represents a verification subtask, where the body of ctx (n) repre-
sents a set of (potentially spurious) counterexamples. The goal of each subtask
is to find a solution for the system of CHCs consisting of all non-query CHCs in
C with the query CHC ctx (n) and refine the over-approximation O[proc(n)] to
reflect the learned facts, or, if this cannot be done, to expand proc(n)’s under-
approximation U [proc(n)] to demonstrate (part of) a real counterexample.

A program’s initial derivation tree consists of only one node labeled with
procedure main and a query CHC from the system C. We maintain the invariant
that if s is the parent of t, then the ctx (t) must be able to be constructed
by unfolding a predicate in ctx (s). Furthermore, we require that the unfolded
predicate is one of the predicates that was added in the previous unfolding step
to get ctx (s). This notion of a derivation tree is similar to other CHC-based
work [49,60], but our invariant restricts the way in which we can expand the
tree (i.e., the way in which we can unfold from main) – every derivation tree
path corresponds to a call graph path. We let e(n) refer to the environment for
calleectx(n)(idx (n)) in ctx (n).

For a derivation tree path d (of length |d|) whose final node is n, the full
context ctx (n) can be derived by unfolding all of proc(n)’s ancestors in the root
node’s context CHC along the corresponding call graph path for the original pro-
gram2. We also denote this full context as unfold(d, |d|). For k < |d|, unfold(d, k)
corresponds to unfolding the bodies of the last k − 1 procedure calls in d into
the body of proc(n)’s kth ancestor. Note that unfold(d, k) only unfolds ancestors
on the call path; any other of the ancestors remain represented as uninterpreted
predicates. For k ≥ |d|, unfold(d , k) = unfold(d, |d|). (See also Definition 9.)

4 Bounded Contexts and Environments

Here we define bounded contexts and environments. Our algorithm uses these
bounded versions in all SMT queries described later.
2 We lift the ancestor relationship from nodes to their procedures.
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Definition 9 (Bounded context). For a given bound k, and a path d = n0 →
. . . → nm−1 → nm in a derivation tree, a k-bounded context for nm is a formula
bctx (nm) over variables bvs def= fv(unfold(d, k)), defined as follows:

bctx (nm) def= unfold(d, k).body ∧ interface(d, k) ∧ summ(d , k) ⇒⊥
Here, we also have the following:

– interface(d, k) is a formula over the inputs and outputs of the procedure for
node nm−k , k < m (or �, if k ≥ m)

– summ(d, k) is a formula over the inputs and outputs of the other callees of
the k-bounded ancestors of proc(nm).

Note unfold(d , k) ignores any restrictions due to ancestors that are more
than k-levels above proc(nm). Such restrictions are expressed in interface(d, k),
which represents the interface between the k-bounded context and the rest of
the context above it. In practice, we compute interface(d, k) as QE(∃fv(e(nm))\
bvs.̂e(nm)O,�), where QE denotes quantifier elimination. We approximate quan-
tifier elimination using the standard model-based projection technique [10]. We
can always use interface(d, k) = �, which treats ancestor procedures above
bound k as havocs; we found this choice ineffective in practice.

In what follows, we refer to unfold(d, k).body ∧ interface(d, k) as B(d, k) or
simply as B when d and k are clear. Again, we require that each bctx (nm) (and
thus each B(d, k)) can be computed from its parent nm−1’s bounded context via
a single unfolding. Given our choice of interface(d, k), using such a method to
compute a child node’s bounded context lets us avoid (approximate) quantifier
elimination on large formulas since only one procedure body’s variables need to
be eliminated when starting from the parent’s bounded context.

The summ(d, k) formula can be either � or a conjunction that adds approx-
imation constraints based on summaries for the other callee procedures. We use
bctx .body = B when summ(d, k) = �, or bctx .body = B̂M or bctx .body = b̂M

for M ∈ {O,U}, where b is the environment for calleectx(nm)(idx (nm)) (when
summ(d, k) is the conjunction from approximating with M).

Example 1. The figure shows a bounded context for predicate p with bound 2
for the derivation tree path shown with solid edges. Ancestor predicates q1, q2
are unfolded in unfold(d, 2), and summ(d, 2) approximates callees r0, r1, r2:

main

q4

q3

q2 r2

q1
r1
r0

p

interface(d, 2)

unfold(d, 2)

For scalability, our algorithm (Sect. 6) considers verification subtasks with
the bounded context of a given procedure. Our algorithm’ queries use bounded
environments, which can be computed from bounded contexts.
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Definition 10 (Bounded environment). For a node n, its bounded environ-
ment benv(n) is the environment for the predicate calleectx(n)(idx (n)) in ctx (n).

We define a bounded parent relationship between nodes s, t ∈ N , where s → t
is not necessarily in E, but where ctx (s) has proc(t) as a callee.

Definition 11 (Bounded parent). A node s is a bounded parent of node t in
derivation tree D, denoted s ∈ Bparent(t,D), iff there is some index i such that
calleectx(s)(i) is an application of proc(t) and bt ⇔ next(bs, proc(t), i), where bt

and bs are bodies of the bounded contexts of s and t.

Note that the parent of a node n is always a bounded parent for n, and that
n may have several bounded parents because the approximation of different full
environments may lead to the same bounded environment. We use bounded
parents in our algorithm (Sect. 6) to avoid considering redundant verification
subtasks.

5 EC Lemmas

We also learn a set L of EC lemmas, which are implications capturing assump-
tions under which a procedure has a particular over-approximation.

Definition 12 (Environment-Call (EC) Lemmas). Let proc(n) = p for
some node n in a derivation tree. An EC lemma for p, where n has ancestors
with procedures {qi} along a derivation tree path, is of the following form:

∀fv(Si) ∪ in ∪ out .
∧

i

Si ⇒ (p(in, out) ⇒ prop)

Here, prop is a formula with fv(prop) ⊆ in ∪ out, each Si is of the form
qi(ini, out i) ⇒ propi, where qi is some ancestor’s uninterpreted predicate, and
propi is a formula with fv(propi) ⊆ ini ∪ out i.

Intuitively, an EC lemma allows us to learn that prop is an over-
approximation of procedure p under the assumptions {Si} about its ances-
tors with procedures {qi}. Each Si itself is an assumption that propi over-
approximates qi. These ancestors are in target p’s environment, so we call these
formulas Environment-Call (EC) Lemmas. In practice, we learn EC lemmas
involving ancestors whose procedures are callees of p to help set up induction
for mutual recursion.

6 Modular Verification Algorithm

We now describe our modular verification algorithm. We first outline the top-
level procedure (Sect. 6.1) based on iteratively processing nodes in the derivation
tree. Then we describe how each node is processed using SMT queries (Sect. 6.2),
the order in which SMT queries are performed (Sect. 6.3), and how induction is
performed and how EC lemmas are learned and used (Sect. 6.4). We present the
correctness and the progress property of our algorithm and discuss limitations
(Sect. 6.5). (Additional heuristics are described in Appendix C [52].)
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Algorithm 1. Modular Verification Procedure
1: procedure Verify( )
2: N ← {n} with proc(n) = main
3: Goal ← 〈N, ∅〉, N, O, U, ∅, C � Res
4: while Goal .A �= ∅ or summaries are insufficient do
5: Goal ← ProcessNode(n,Goal) for n ∈ Goal .A

6: return Result(Goal)

6.1 Algorithm Outline

Our algorithm constructs a derivation tree based on the call graph of the pro-
gram, which is used to guide the selection of CHCs to explore. We achieve scal-
ability by considering only bounded environments in all our SMT queries. We
present these queries as part of proof rules that capture the major steps of our
algorithm. The use of induction and EC lemmas enables handling of mutually
recursive programs. The state during verification is captured by proof (sub)goals.

Definition 13 (Proof (sub)Goal). For system of CHCs C, derivation tree
D = 〈N,E〉, a subset A ⊆ N of available nodes, over- and under-approximate
summary maps O and U , a set of EC lemmas L, and Res ∈ {�,⊥}, a proof
(sub)subgoal is denoted D,A,O,U, L, C � Res.

Main Loop. Algorithm 1 shows the top-level procedure for our method. The
Verify procedure constructs an initial proof goal containing an initial derivation
tree, initial summary maps, and empty sets of lemmas. Initially all nodes in the
derivation tree are available, i.e., they are in A. It then iteratively chooses an
available node and tries to update its summaries (using routine ProcessNode),
thereby updating the current goal. The loop terminates when no more nodes are
available or when the current summaries are sufficient to prove/disprove safety.
Result returns safe if the summaries are sufficient for proving safety, unsafe if
they are sufficient for disproving safety, or unknown otherwise.

Choice of Procedures and Environments. ProcessNode can be viewed as mak-
ing queries on an environment-procedure pair. If the algorithm chooses node n,
then the pair consists of benv(n) and the procedure corresponding to proc(n).
Note that the call graph guides the choice of the target since all paths in D corre-
spond to call graph paths, and the bounded environment, which is computed by
unfolding the k-bounded ancestors of the target. Importantly, the chosen node
must be in A; this choice can be heuristic as long as no node in A is starved.

Summary Inference. Our algorithm learns new summaries for target predicates
by applying four proof rules. For ease of exposition, we first describe these proof
rules without induction (next subsection), followed by rules for induction and EC
lemma. While these proof rules resemble those in Smash [31], our queries involve
k-bounded environments with k ≥ 1 and our summaries are first-order theory for-
mulas; in Smash, queries use bounded environments with k = 1 and summaries
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are pre-/post-condition pairs over predicate abstractions. Additional proof rules
specify the removal and addition of nodes in D and A. Appendix B [52] provides
the complete set of rules, omitted here due to space constraints.

6.2 Proof Rules Without Induction

The algorithm updates the current Goal whenever a proof rule can be applied.
Note that we are building a proof tree from the bottom-up, so an application of
a rule here involves matching the conclusion to the current Goal . We abbreviate
some common premises with names as shown in Fig. 3. For a node n ∈ A, let p be
its procedure and b be its bounded environment. Also let body be the renaming
of the body of p. The distinct feature of our algorithm is that the proof rules
use only bounded environments.

Fig. 3. Abbreviated premises, where fresh(�x) returns a vector �x′ of fresh variables.

Fig. 4. Proof rules without induction.

The SAFE and UNSAFE rules (Fig. 4) allow us to conclude the safety or find
a counterexample of the original program P using over- or under-approximate
summaries, respectively. In the latter case, the underapproximate summaries
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Algorithm 2. Procedure to learn from a node.
1: procedure ProcessNode(n, Goal)
2: for C ∈ C with C.head = proc(n)(in, out) do
3: if OU(n, C, Goal) then UU(n, C, Goal)

4: if no UU call above returned true then
5: if ¬OO(n, Goal) then UO(n, Goal)

6: if no UU nor OO call above returned true then AddNodes(n,Goal)

7: updated ← any summaries were updated above
8: Processed(n, updated ,Goal)
9: return Goal

demonstrate that there is no solution for set of CHCs C. If either rule is applicable
to the proof goal, we have found sufficient summaries.

The OVER-OVER (OO) rule (Fig. 4) can be used to update a predicate p’s
over-approximate summary. If the conjunction of over-approximation of bodyp

and the bounded environment is unsatisfiable, then we can find an interpolant I

and use it to refine the map O for p.
The UNDER-OVER (UO) rule (Appendix B [52]) is similar, except it uses

an under-approximation of the environment.

Example 2. Recall the example in Fig. 1a. Row 5 in Table 1 shows the over-
approximate summary y mod 2 �= 0 for procedure g obtained as a result of UO.

The UNDER-UNDER (UU) rule (Fig. 4) can be used to update predicate p’s
under-approximation.

Let π be the body of a CHC whose head is p(�y), where variables �y have
been renamed to the variables that p is applied to in calleebctx(n)(i) and the
rest of the variables have been renamed to fresh ones. If the conjunction of the
under-approximations of π and b is satisfiable, then we can update p’s under-
approximate summary U with ∃locC .π.

If the environment were unbounded, then this check being satisfiable would
actually indicate a concrete counterexample, since the context would be an
unfolding of a query CHC and UNSAFE would hold, but since our environ-
ment is bounded, the context may not be an unfolding of the query CHC, since
it may be missing some constraints. We can only conclude that there might
be a counterexample that involves unfolding this application of p. We want to
remember the part that goes through p so that we do not need to unfold it
in the full context and thus add ∃locp.π to U [p]. The OVER-UNDER (OU)
rule (Appendix B [52]) is the same as UU but over-approximates the bounded
environment.

Example 3. Recall the example in Fig. 1a. Row 7 in Table 1 shows the under-
approximate summary y mod 2 = 0 for procedure f obtained as a result of OU.
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6.3 Ordering and Conditions for SMT Queries

The way in which proof rules are applied to process a node is shown in
Algorithm 2. In the pseudocode, OO, UO, OU, and UU refer to attempts to
apply the corresponding rules (e.g., OO(n,Goal) tries to apply the OO rule
with n ∈ A as the AVAIL premise). Rules that update under-approximations
(UU, OU) are applied per CHC with head proc(n)3, whereas rules that update
over-approximations (OO, UO) are applied to the disjunction of all such CHCs’
bodies. They return true upon successful application (and update Goal), or false
otherwise.

If we have neither found any counterexamples through the bounded environ-
ment (i.e., all UU attempts failed), nor eliminated the bounded verification sub-
task (i.e., the OO attempt failed), then we try to derive new facts by adding new
available nodes for the callees of proc(n). Procedure AddNodes adds these nodes
while avoiding adding redundant nodes to D (more details in Appendix D [52]).
If any summary updates were made for proc(n), then the procedure Processed
(line 8) will add the bounded parents of n to A, so that new information can be
propagated to the parents’ summaries. It then removes n from A.

6.4 Proof Rules for Induction

For programs with unbounded recursion, the OO and UO rules (Fig. 4) are insuf-
ficient for proving safety; we therefore extend the rules with induction where the
goal is to show that the paths in the approximated bounded environment are
spurious. For ease of exposition, we first discuss an extension of OO that does
not use EC lemmas and then discuss one that does. (Corresponding extensions
for rule UO are similar and can be found in Appendix B [52].)

Without EC lemmas. The rule OVER-OVER-IND (OOI) in Fig. 5 is a replace-
ment for OO that uses induction to find new over-approximate facts. The first
five premises are the same as in rule OO. As before, we aim to learn a refinement
I for the over-approximate summary of p, where I ⇒ ¬b̂O.

The base case is that I over-approximates p for all CHCs that do not have
any applications of p in their body, i.e. for all body ⇒ p(�y) ∈ C where p does not
occur in body , body ⇒ I. For the inductive step, we consider such CHCs where
body contains calls to P . The inductive hypothesis, which is captured by formula
hyp, is that I over-approximates all recursive calls to p inside these bodies. We
check both the base case and the inductive step at once with the implication
b̂odyO ∧ hyp ⇒ I. If the induction succeeds, then we strengthen O[p] with I.

With EC lemmas. The OVER-OVER-IND-LEMMAS (OOIL) proves weaker
properties than OOIL by doing induction under certain assumptions. These
properties are EC lemmas.

OOIL makes assumptions for current node n and performs induction using
these assumptions and known EC lemmas. In particular, assumps(n,D) is a
3 In the implementation, multiple checks can be done together.
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Fig. 5. Proof rules for induction.

set of assumptions {ai | 1 ≤ i ≤ j} for some j ≥ 0. When j = 0, the set of
assumptions is empty, and OOIL has the same effect as applying OOI. Each
assumption ai is of the following form:

qi(inqi , outqi) ⇒ ∀vars(bi) \ inqi ∪ outqi .¬bi ,

where qi is the predicate for an ancestor of n and qi is called by target p in some
CHC. The ancestor node’s bounded environment is bi. Intuitively, each assump-
tion is that the ancestor’s bounded verification subtask has been discharged.

The Inst function takes a set of formulas, conjoins them, and replaces each
application of an uninterpreted predicate with its interpretation in O. When
applied to a set of assumptions S, it has an additional step that precedes the
others: it first adds a conjunct ai[inqi �→ x, outqi �→ y] for each predicate appli-
cation qi(x, y) in body to each element ai ∈ S. This corresponds to applying the
assumption in the induction hypothesis. If induction succeeds, we learn the EC
lemma that I over-approximates p(in, out) under the assumptions S.

Example 4. In §2, when we chose procedure e and proved an EC lemma, we used
j = 1 to make an assumption about its caller o.

Appendix B [52] contains additional rules that allow lemmas to be simplified.
There may be multiple attempts at applying the OOIL proof rule with different
j values. For scalability, we require that j not exceed the bound k used for
bounded contexts, limiting the number of these attempts.

6.5 Correctness and Progress

The correctness and progress claims for Algorithm 1 are stated below.

Theorem 1 (Correctness). Algorithm 1 returns safe (resp. unsafe) only if
the program with entry point main never violates the assertion (resp. a path in
main violates the assertion).
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Proof. (Sketc.h) The CHC encoding is such that there is solution to the system
of CHCs C iff the program does not violate the assertion. As a result, if the
over-approximate summaries O constitute a solution and proof rule SAFE can
be applied, the program does not violate the assertion. The under-approximate
summaries U in every proof subgoal are guaranteed to be such that for any p ∈ C,
U [p] implies any over-approximation O[p]. If UNSAFE can be applied, then the
under-approximate summaries U imply that there is no possible solution O. The
summaries in U can be used to reconstruct a counterexample path through the
original program in this case.

Theorem 2 (Progress). Processing a node in the derivation tree leads to at
least one new (non-redundant) query.

Proof. (Sketch) Initially, no nodes in A have been processed, and after a node is
processed, it is removed from the derivation tree. The only way that a node can
be processed and not have a new query made about it is if an already-processed
node is re-added to A and this node does not have a new query that can be made
about it. The AddNodes and MakeUnavailable procedures are the only ones
that add nodes to A. The AddNodes procedure, by definition, will only add a
node to A if there is a new query that can be made about it. MakeUnavailable
only adds bounded parents of nodes whose summaries were updated. For any
such bounded parent, at least one approximation of its procedure’s body must
be different than it was the last time the bounded parent was processed, since
one of its callee’s summaries was updated.

Limitations. If the underlying solver is unable to find appropriate interpolants,
the algorithm may generate new queries indefinitely. (The underlying problem
is undecidable, so this is not unusual for modular verifiers.) Note, however, that
because environments are bounded, each query’s size is restricted.

7 Evaluation and Results

We implemented our algorithm in a tool called Clover on top of CHC solver
FreqHorn [25] and SMT solver Z3 [50]. We evaluated Clover and compared
it with existing CHC-based tools on three sets of benchmarks (described later)
that comprise standard collections and some new examples that include mutual
recursion.

We aimed to answer the following questions in our evaluation:

– Is Clover able to solve standard benchmarks?
– Is Clover more effective than other tools at handling mutual recursion?
– To what extent do EC lemmas help Clover solve benchmarks?
– How does the bound k for environments affect Clover’s performance?

We compared Clover against tools entered in the annual CHC-solver com-
petition (CHC-Comp) in 2019: Spacer [42], based on PDR [12]; Eldarica [39],
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based on CEGAR [17]; HoIce [13], based on ICE [29]; PCSat [56]; and Ulti-
mate Unihorn [22], based on trace abstraction [35].

For all experiments, we used a timeout of 10 min (as used in CHC-Comp).
We ran Clover on a MacBook Pro, with a 2.7 GHz Intel Core i5 processor and
8 GB RAM, but the other tools were run using StarExec [59]. Clover was not
run on StarExec due to difficulties with setting up the tool with StarExec4.

7.1 Description of Benchmarks

To evaluate Clover, we gathered three sets of varied benchmarks. The first
set’s benchmarks range from 10–7200 lines, and the latter two sets have smaller
but nontrivial code ( 100 lines). The latter two sets were manually encoded into
CHCs, and we plan to contribute them to CHC-Comp. Additional details follow.

CHC-Comp. We selected 101 benchmarks from CHC-Comp [14] that were con-
tributed by HoIce and PCSat, since their encodings preserve procedure calls
and feature nonlinear CHCs (which can represent procedures with multiple
callees per control-flow path)5.

Real-World. Two families of benchmarks are based on real-world code whose cor-
rectness has security implications. The Montgomery benchmarks involve prop-
erties about the sum of Montgomery representations [41] of concrete numbers.
The s2n benchmarks are based on Amazon Web Services’ s2n library [3] and
involve arrays of unbounded length (not handled by the tool PCSat).

Mutual Recursion. This set of benchmarks containing mutual recursion was
created because few CHC-Comp benchmarks exhibit mutual recursion, likely due
to lack of tool support. Even-Odd benchmarks involve various properties of e
and o (defined as in Sect. 2) and extensions that handle negative inputs. Another
benchmark family is based on the Hofstadter Figure-Figure sequence [38]. Mod
n benchmarks consider mutually-recursive encodings of λx.x mod n = 0 for n =
3, 4, 5. These serve as proxies for recursive descent parsers, which may have deep
instances of mutual recursion. We could not directly conduct experiments on
such parsers, since existing front-ends [21,33] cannot handle them. Combination
benchmarks result from combining Montgomery and Even-Odd benchmarks.

7.2 Results and Discussion

Table 2 gives a summary of results. It reports the number of benchmarks solved
for each benchmark set by Clover with bound parameter k being 2, 9, and
10 (the best-performing bounds for the three benchmark sets) and by the other
tools. It also reports results for Clover with k = 10 but without EC lemmas.
Figure 6 show the timing results for other tools against Clover for Real-World
and Mutual Recursion benchmarks.

4 We expect that our platform is less performant than the StarExec platform.
5 We did not compare against FreqHorn since it cannot handle nonlinear CHCs.
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Table 2. Number of benchmarks solved by Clover and competing tools.

Clover Spacer Elda-rica HoIce PCSat Ulti-mate

Auto-mizer

k = 2 k = 9 k = 10 k = 10,

no EC lemmas

CHC-comp (101) 80 77 77 72 93 94 92 81 76

Montgomery (12) 0 11 12 12 5 12 12 3 11

s2n (4) 3 4 4 4 3 0 2 N/A 4

Even-odd (24) 24 24 24 0 12 0 9 0 0

Hofstadter (5) 4 5 4 5 1 4 5 5 0

Mod n (15) 0 15 15 0 0 0 0 0 0

Combination (2) 0 2 2 0 0 0 0 0 0

Total solved (163) 145 171 171 127 133 110 120 89 91

Fig. 6. Timing results for the Real World (left) and Mutual Recursion (right) bench-
marks. Points below the diagonal line are those for which Clover outperforms the
corresponding tool. Points on the right edge indicate timeouts of the other tool.

Efficacy on Standard Benchmarks. As can be seen in Table 2, Clover
performs comparably with other tools on the CHC-Comp benchmarks, and sig-
nificantly outperforms them on the other two sets of benchmarks. We expect
that we can further improve the performance of Clover with additional opti-
mizations and heuristics, such as those that improve the quality of interpolants.

Efficacy on Mutual Recursion Benchmarks. Table 2 and Fig. 6 demon-
strate that Clover is more effective and often more efficient at solving Mutual
Recursion benchmarks than the other tools. Few tools are able to handle the
Even-Odd benchmarks, which Clover (with EC lemmas) can solve at any
bound value greater than 2. Other tools are unable to solve even half of the
Mutual Recursion benchmarks, reinforcing that Clover is a useful addition to
existing tools that enables handling of mutual recursion as a first class concern.

Usefulness of EC lemmas. Running Clover with and without EC lemmas
using bound k = 10 revealed their usefulness for many of the benchmarks. In
particular, the columns for bound 10 with and without EC lemmas in Table 2
show that EC lemmas are needed to allow Clover to solve several CHC-Comp
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benchmarks and all the Mutual Recursion benchmarks except the Hofstadter
ones. These results indicate that Clover’s ability to outperform other tools on
the these benchmarks relies on EC lemmas.

Fig. 7. Left: Percentage of benchmarks Clover solves with different bounds on differ-
ent benchmark categories; Center, Right: Timing results on a representative bench-
mark from CHC-Comp and Mutual Recursion, respectively.

Comparison of Different Bounds. Figure 7 (left) shows the number of bench-
marks successfully solved by Clover in each set as the bound value is varied.
Running Clover with too small a bound impedes its ability to prove the prop-
erty or find a counterexample, since the environment is unable to capture suffi-
cient information. On the other hand, running Clover with too large a bound
affects the runtime negatively. This effect can be observed in Fig. 7 center and
right, which show how the runtime varies with the bound for a representative
benchmark from the CHC-Comp and Mutual Recursion sets, respectively. Note
that at a bound k < 2, Clover does not solve the given CHC-Comp benchmark,
and at k < 5, Clover does not solve the given Mutual Recursion benchmark.
These results confirm the expected trade-off between scalability and environ-
ment relevance. The appropriate trade-off – i.e., the best bound parameter to
use – depends on the type of program and property. As seen in Fig. 7 (left), the
bound values that lead to the most benchmarks being solved differ per bench-
mark set. Rather than having a fixed bound, or no bound at all, the ability to
choose the bound parameter in Clover allows the best trade-off for a particular
set of programs. If the best bound is not known a priori, bound parameters of
increasing size can be determined empirically on representative programs.

We also report data on how the number and solving time for each type
of SMT query varies with the bound k, averaged over benchmarks in each set.
Figure 8 shows the statistics on the average number of queries of each type (top),
on the average time taken to solve the query (bottom). These data are from all
runs for which Clover is successful and gives an answer of safe or unsafe.

We can use these data along with the data in Fig. 7 to (roughly) compare
an approach restricted to k = 1 with an approach that allows k > 1 in bounded
environments. Note that Clover differs significantly in other respects from tools
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Fig. 8. Average statistics (top four plots: number, bottom four: solve times) of SMT
queries made by Clover as the bound changes (for successful runs).

like Spacer and Smash that enforce k = 1 in environments6, making it difficult
to perform controlled experiments to compare this aspect alone.

Note from Fig. 8 that for the CHC-Comp and Mutual Recursion sets of bench-
marks, the number of SMT queries of all types is lower at k > 1 in comparison
to k = 1. This result indicates that benchmarks that can be solved with k > 1
require on average fewer updates to procedure summaries than are needed on
average for benchmarks that can be solved with k = 1, confirming the benefit
of improved relevance when going beyond a restricted environment with k = 1.
The data for the Real-World does not follow this trend because a higher bound
(k = 10) is needed to solve the examples (as can be seen in Fig. 7).

From Fig. 8, it is clear that the OU and UU queries are cheaper than OO and
UO queries, which is expected since the latter require over-approximating the
target’s body. Unsurprisingly, OO queries are the most expensive. Average times
of non-OO queries for k > 1 are lower than (or about the same as) average times
for k = 1 for the CHC-Comp and Mutual Recursion sets but continue to increase
with k in the Real-World set because solving the Montgomery benchmarks relies
on propagating under-approximations from increasingly large call graph depths.

8 Related Work

There is a large body of existing work that is related in terms of CHC solving,
program analysis, and specification inference.

6 Unlike Spacer it does not use PDR to derive invariants, and unlike Smash it is not
limited to predicate abstractions.
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8.1 CHC-solving for Program Verification

Program verification problems, including modular verification, can be encoded
into systems of CHCs [21,32,33,49]. There are many existing CHC-solver based
tools [13,15,26,32,39,42,48,60,62] that can solve such systems. Clover has
many algorithmic differences from these efforts.

Most existing tools do not place any bounds on the environments (if they are
used at all). This includes approaches that unfold a relation at each step [48,60]
and CEGAR-based approaches [32,39] where counterexamples can be viewed as
environments. These tools face scalability issues as environments grow; Dual-
ity makes larger interpolation queries as more relations are unfolded [49], and
Eldarica makes larger tree/disjunctive interpolation queries for counterexam-
ples that involve more procedures [39].

Spacer [42], which is based on PDR [12,23], considers bounded environments
but only allows a bound of one (k = 1). The difference between Duality and a
PDR-like approach has been referred to as the variable elimination trade-off [48],
where eliminating too many variables can lead to over-specialization of learned
facts (PDR) and eliminating no variables can lead to larger subgoals (Duality).
Our parameterizable bounded environments enable a trade-off between the two.
Another significant difference between Spacer and Clover is that the former
uses PDR-style bounded assertion maps to perform induction, whereas we use
induction explicitly and derive EC lemmas. Duality may also implicitly use
assumptions, and some other tools [13,60] learn lemmas with implications, but
none of them learn lemmas in the form of EC lemmas.

HoIce [13], FreqHorn [26], and LinearArbitrary [62] are based on
guessing summaries and do not have any notion of environments similar to ours.
All of these approaches have trade-offs between scalability of the search space
and expressivity of guessed summaries.

8.2 Program Analysis and Verification

Techniques such as abstract interpretation [18,19,24] and interprocedural
dataflow analysis [55,57] can infer procedure summaries and perform modular
verification.

These approaches often use fixed abstractions and path-insensitive reasoning,
which may result in over-approximations that are too coarse for verification.

The software model checker Bebop [6] in SLAM [7] extended interprocedural
dataflow analysis with path sensitivity. Related model checkers include a direct
precursor to Duality [47] and other adaptations of PDR to software [16,37]. Of
these, GPDR [37] is similar to Spacer, but lacks modular reasoning and under-
approximations. Specification inference (including Houdini-style learning [28])
has also been used to enable modular verification of relational programs [43,53].

Another tool Smash [31] is closely related to our work. It uses over- and
under-approximate procedure summaries, and alternation between them. How-
ever, it does not have any notion of a parameterizable bounded environment.
The environment for a procedure call is expressed as a pair of a precondition
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and a postcondition, where the former is an under-approximation of the pro-
gram execution preceding the call, and the latter is an over-approximation of
the program execution following the call. These environments are thus bounded
environments with a fixed bound of 1. More importantly, procedure summaries
in Smash are comprised of predicate abstractions. In contrast, our summaries
are richer formulas in first-order logic theories. We do not rely on predicate
abstraction unlike Smash and other related tools [30,31,34].

8.3 Specification Inference

Existing work on specification inference is also relevant. Many past efforts
[2,4,9,54,58,61] focused on learning coarse interface specifications or rules spec-
ifying the correct usage of library API calls, rather than learning logical approx-
imations of procedures. Other specification inference techniques learn procedure
summaries for library API procedures by using abstract interpretation [19,36]
or learn information-flow properties about the procedures [45,53]. Other related
work [1] infers maximal specifications for procedures with unavailable bodies,
and other techniques assume an angelic environment setting [11,20] – specifica-
tions inferred by these techniques may not be valid over-approximations. Another
technique [5] also uses interpolation to infer over-approximate summaries but is
not applicable to recursive programs.

9 Conclusions

We have presented a modular algorithm for generating procedure summaries and
safety verification of interprocedural programs that addresses the challenges of
handling mutual recursion and scalability of SMT queries. The novel features of
our algorithm are use of bounded environments to limit the size of SMT queries,
and a mechanism for performing induction under assumptions that uses these
bounded environments to learn EC lemmas that capture relationships between
summaries of procedures on call paths in the program.

We have implemented our algorithm in a CHC-based tool called Clover.
An evaluation demonstrates that Clover is competitive with state-of-the-art
tools on benchmarks from CHC-Comp and based on real-world examples, and
is especially effective at solving benchmarks containing mutual recursion. Our
algorithm can also be combined with existing invariant-generation techniques to
successfully solve benchmarks with unbounded arrays.

Acknowledgements. This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under Grant No. DGE-
1656466. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation. This work was supported in part by the National Science
Foundation award FMitF 1837030.
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A Renaming and Unfolding

Here, a formula f ranging over variables v is denoted f(v). For example, a
procedure body is encoded by some formula bodyp(inp , outp , localp) and a path
within it is encoded by some formula πp(inp , outp , localp).

Definition 14 (Renaming). Given a set of program paths Π(v, y, x) that con-
tain the statement 	 : y := p(x), the renaming of a formula Πp(in, out , locs) that
represents a subset of all paths in procedure p is defined as follows:

rename
(
Πp(in, out , locs),Π(v, x, y), 	

) def=
{

Πp

(
x, y, fresh(v, x, y)

)
, if 	 : y := p(x) in Π(v, x, y)

Πp(x, y, locs), otherwise

where fresh(v, x, y) is a vector of fresh variables not present already in v, x, or
y.

Definition 15 (Unfolding). Let 	 be a location at which procedure p is called.
Given set of program paths Π that all go through location 	, an unfolding of p is
a one-level inlining at location 	 of one of the control-flow paths πp in the body
of p:

π(v, x, y)[p(x, y) �→ rename({πp},Π(v, x, y), 	)]

B Full Set of Derivation Rules

AVAIL n ∈ A PROC p = proc(n) ∈ P
BENV b = bctx (n).env LOC 	 = bctx (n).loc
NODE n ∈ D.N PATH path π in body
BODY body = rename(bodyp , bctx (n))
CALL procedure call to proc(n′) ∈ P at location 	′ in π
NCTX ctx (n′) = (b[p(in, out) �→ rename({π}, bodyn, 	)], 	′)
PROP hyp = ∀in, out ∈ vars(body).p(in, out) ⇒ indProp
IND indProp = ∀vars(ψ) \ (inp ∪ outp).I

SAFE
m = bodymain m̂O ⇒⊥

D,A,O,U, L, P �⊥

UNSAFE
m = bodymain m̂U �⇒⊥

D,A,O,U, L, P � �

OVER-OVER (OO)

AV AIL PROC BENV BODY

b̂odyO ⇒ I I ⇒ ¬b̂O

O′ = O[p �→ O[p] ∧ I] D,A, O′, U, L, P � Res
D,A, O,U, L, P � Res
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UNDER-OVER (UO)

AV AIL PROC BENV LOC BODY

b̂odyO ⇒ I I ⇒ ¬b̂U,�

O′ = O[p �→ O[p] ∧ I] D,A, O′, U, L, P � Res
D,A, O,U, L, P � Res

UNDER-UNDER (UU)

AV AIL PROC BENV LOC BODY PATH

π̂U ∧ b̂U,� ⊥⇒� U ′ = U [p �→ U [p] ∨ ∃localsp.π]
D,A, O,U ′, L, P � Res
D,A, O,U, L, P � Res

OVER-UNDER (OU)

AV AIL PROC BENV BODY PATH

π̂U ∧ b̂O ⊥⇒� U ′ = U [p �→ U [p] ∨ ∃localsp.π]
D,A, O,U ′, L, P � Res
D,A, O,U, L, P � Res

ADD-NODE (AN)

AV AIL PROC PATH CALL NCTX
D′.E = D.E ∪ {n → n′} ∀n′′ ∈ D.N.bctx (n′) �= bctx (n′′)

A′ = A ∪ {n′} D′, A′, O, U, L, P � Res
D,A, O,U, L, P � Res

MAKE-AVAILABLE (MA)

NODE PROC PATH CALL NCTX
n′′ ∈ D.N bctx = bctx (n′′)

A′ = A ∪ {n′′} D,A′, O, U, L, P � Res
D,A, O,U, L, P � Res

MAKE-UNAVAILABLE (MU)

AV AIL D, (A \ {n}), O, U, L, P � Res
D,A, O,U, L, P � Res

OVER-OVER-IND-LEMMAS (OOIL)

AV AIL PROC BENV BODY IND PROP

S = assumps(n,D) b̂odyO ∧ Inst(L) ∧ Inst(S) ∧ hyp ⇒ I

I ⇒ ¬b̂O L′ = L ∪ {∀vars(S ), in, out .
∧

S ⇒ (p(in, out) ⇒ I)}
D,A, O, U, L′, P � Res
D,A, O,U, L, P � Res
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UNDER-OVER-IND-LEMMAS (UOIL)

AV AIL PROC BENV BODY IND PROP

S = underAssumps(n,D) b̂odyO ∧ Inst(L) ∧ Inst(S) ∧ hyp ⇒ I

I ⇒ ¬b̂U,� L′ = L ∪ {∀vars(S ), in, out .
∧

S ⇒ (p(in, out) ⇒ I)}
D,A, O,U, L′, P � Res
D,A, O,U, L, P � Res

REDUCE-LEMMAS (RL)

ec = ∀vars(S ), in, out .
∧

S ⇒ p(in, out) ⇒ ψ
) ∈ L

a ∈ S p′ ∈ P (p′(in, out) ⇒ O[p′]) ⇒ a S ′ = S \ {a}
L′ = (L \ {ec}) ∪ {∀vars(S ′), in, out .

∧
S′ ⇒ p(in, out) ⇒ ψ

)}

D,A, O, U, L′, P � Res
D,A, O,U, L, P � Res

ELIM-LEMMAS (EL)

ec = ∀in, out .� ⇒ (p(in, out) ⇒ prop) ∈ L
O′ = O[p �→ O[p] ∧ prop]

D,A, O′, U, L \ {ec}, P � Res
D,A, O,U, L, P � Res

C Heuristics

C.1 Prioritizing Choice of Node

The Verify procedure from Fig. 1 employs a heuristic to choose which node
in the set A to call ProcessNode on next. The factors that contribute toward
an node’s priority are as follows, with ties in one factor being broken by the
next factor, where depth(n) denotes the depth of node n in D and previous(n)
denotes the number of times that the node n has been chosen previously:

– A lower α ∗ depth(n) + β ∗ previous(n) score gives higher priority, where α
and β are weights

– A lower call graph depth of proc(n) gives higher priority
– A later call location ctx (n).loc gives higher priority

We prioritize nodes n with lower depth(n) values because they are more likely
to help propagate learned summaries up to the main procedure’s callees. This
priority is moderated by the previous(n) score which should prevent the starva-
tion of nodes with larger depth(n) values. Our current heuristic search is more
BFS-like, but for some examples, a DFS-like search is better. We plan to improve
our heuristics in future work.
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C.2 Avoiding Redundant Queries

If we have previously considered a node n that we are now processing, we can
avoid making the same queries that we have previously made. E.g., if none of
the over-approximate summaries for any of the procedures in bctx (n).env nor
any of over-approximate summaries for any of the procedures called by proc(n)
have been updated since the last time n was processed, we do not need to redo
the over-over check.

C.3 Learning Over-approximate Bodies

Although there are many existing methods to interpolate, in many cases they
are useless (recall our motivating example where an interpolant is just �). To
improve our chances of learning a refinement for an over-approximate summary,
whenever we apply one of the proof rules that involves over-approximating
the procedure body (e.g., OO, UO, OOIL, UOIL), we ensure that we at
least learn the result of over-approximating the procedure body as an over-
approximate fact about that procedure. For example, if we consider doing
this for OO, we would simply replace premise O′ = O[p �→ O[p] ∧ I] with
O′ = O[p �→ O[p] ∧ I ∧ ∃localsp.b̂odyO]. Note that the result of applying quan-
tifier elimination to I ∧ ∃localsp.b̂odyO is also an interpolant. Similarly, if we
consider doing this for OOIL, we replace the goal D,O,U,L′, P � Res with
D,O[p �→ ∃localsp.b̂odyO], U, L′, P � Res.

C.4 Preventing Summaries from Growing too Large

Although we want to increase our chances of learning useful refinements of over-
approximations as we have just discussed, we still wish to prevent summaries
from becoming too complicated. We can achieve this in a few ways.

Quantifier Elimination. One way that we can achieve this is to use quantifier
elimination or an approximation thereof on each conjunct (resp. disjunct) that
we add to an over- (resp. under-) approximate summary. For example, we can
replace U ′ = U [p �→ U [p] ∨ ∃localsp.π] with U ′ = U [p �→ U [p] ∨ QE(∃localsp.π)]
in the UU rule. We illustrate how to do this using two examples:

– Instead of using premise O′ = O[p �→ O[p] ∧ I ∧ ∃localsp.b̂odyO] for the OO
rule as just discussed, we use the following premise: O′ = O[p �→ O[p] ∧ I ∧
QE(∃localsp.b̂odyO)]

– We can also apply this to properties we learn by induction. Instead of using
the premise L′ = L ∪ {∀vars(A).

∧
A ⇒ (p(in, out) ⇒ indProp) for rule

OOIL, use the following premise: L′ = L ∪ {∀vars(A).
∧

A ⇒ (p(in, out) ⇒
QE (indProp))

– Replace premise U ′ = U [p �→ U [p] ∨ ∃localsp.π] with U ′ = U [p �→ U [p] ∨
QE(∃localsp.π)] in the UU rule.
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Algorithm 3. Procedure for adding nodes in derivation tree
procedure AddNodes(n, Goal)

for control-flow path π through bodyproc(n) do
for procedure call to p at location � in π do

if ¬TryAddNode(n, π, p, �, Goal) then
MakeAvailableIfNew(n, π, p, �, Goal)

This use of QE leads to quantifier-free summaries.
When we update over- (resp. under-) approximate summaries, we can use

over- (resp. under-) approximate QE. By comparison, under- (resp. over-)
approximate QE would lead to unsoundness. Approximating QE is not only
cheaper but can also further simplify the resulting summary.

Selective Updates. We can also prevent summaries from growing too quickly
syntactically by only performing semantic updates. For example, consider O
from the goal of the OO rule and O′ from its subgoal. If O[p] ⇒ O′[p], then
although O′[p] contains more conjuncts than O[p], it does not provide any new
information. In this case, we avoid the update and simply use O in the subgoal
instead of O′. Similarly, if we consider U from the goal of UU and U ′ from its
subgoal, then we only want to update the under-approximation if we have that
U ′[p] �⇒ U [p]. Over-approximate summaries become monotonically more con-
strained, so if O[p] ⇒ O′[p], then O[p] ⇔ O′[p] must hold. Under-approximations
become monotonically less constrained.

D Addition of Nodes in Derivation Tree

The AddNodes procedure is shown in Algorithm 3. For every path π through
bodyproc(n), it calls procedure
TryAddNode(n, π, p, 	,Goal), which tries to apply AN to Goal with premises
n ∈ A (AVAIL), path π in body (PATH), and procedure call to p = proc(n′) ∈ P
at location 	 in π (CALL). If TryAddNode succeeds in applying AN, then it
updates Goal to be the subgoal of the application and returns true. If it fails,
then it performs no updates and returns false. If TryAddNode fails, then there
is already a node n′′ in D with the same bounded environment that the new node
n′ would have. In this case, AddNodes calls MakeAvailableIfNew, which
applies MA if either of the following hold:

– n′′ has never been processed before
– n′′ has previously been processed with summaries Oprev and Uprev and the

body body of proc(n) or the bounded environment benv for n′′ has a different
over- or under-approximation than before, i.e., b̂odyMprev

�= b̂odyM or else

b̂envMprev
�= b̂envM for M ∈ {O,U}

Similarly to TryAddNode, the procedure
MakeAvailableIfNew(n, π, p, 	,Goal) applies MA with premises n ∈ D.N
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(NODE), path π in body (PATH), and procedure call to proc(n′) ∈ P at location
	 in π (CALL). Both TryAddNode and MakeAvailableIfNew have the side-
effect of updating Goal to be the subgoal of the applied rule (if any).

E Correctness and Progress Proof Sketches

Theorem 3 (Correctness). Algorithm 1 returns safe (resp. unsafe) only if
main’s semantics are such that it never violates the assertion (resp. a path in
main violates the assertion).

Proof. The over-approximate summaries O in every proof subgoal are guaranteed
to be such that for any procedure p ∈ P , the semantics of p, given by interpreted
predicate Rp(in, out), imply O[p] (see Definition 3), so approximation m̂O con-
tains at least all of the behaviors of the main procedure. The proof rule SAFE
can only be applied when m̂O ⇒ ⊥, i.e., when the over-approximate summary
of main’s body does not violate the assertion along any path, indicating that the
actual semantics of main also cannot violate the assertion. Similarly, the under-
approximate summaries U in every proof subgoal are guaranteed to be such that
for any p ∈ P , U [p] imply Rp(in, out), so the approximation m̂U only contains
behaviors that are behaviors of the main procedure. The proof rule UNSAFE
can only be applied when m̂U ⇒ �, i.e., when the under-approximation of main
violates the assertion along some path, which thus indicates that the actual
semantics of main also includes assertion-violating behaviors.

Theorem 4 (Progress). Processing a node in the derivation tree leads to at
least one new (non-redundant) query.

Proof. Initially, no nodes in A have been processed, and after a node is processed,
it is removed from the derivation tree. The only way that a node can be processed
and not have a new query made about it is if an already-processed node is re-
added A and this node does not have a new query that can be made about
it. The AddNodes and MakeUnavailable procedures are the only ones that
add nodes to A. The AddNodes procedure, by definition, will only add a node
to A if there is a new query that can be made about it. MakeUnavailable
only adds bounded parents of nodes whose summaries were updated. For any
such bounded parent, at least one approximation of its procedure’s body must
be different than it was the last time the bounded parent was processed, since
one of its callee’s summaries was updated.

F Additional Experimental Results

Figures 9 and 10 compare timing results for other tools against Clover for
Real-World and Mutual Recursion benchmarks.
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Fig. 9. Timing results for the Real-World benchmarks. Points below the diagonal line
are those for which Clover outperforms the corresponding tool. Points on the right
edge indicate timeouts of the corresponding tool.
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Fig. 10. Timing results for the Mutual Recursion benchmarks. Points below the diago-
nal line are those for which Clover outperforms the corresponding tool. Points on the
right edge indicate timeouts of the corresponding tool. Points on the top edge indicate
a timeout for Clover.

References

1. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. ACM
SIGPLAN Notices 51(1), 789–801 (2016)
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Abstract. In this work we propose to use Syntax-Guided Synthesis
(SyGuS) for lemma generation in a word-level IC3/PDR framework for
bit-vector problems. Hardware model checking is moving from bit-level to
word-level problems, and it is expected that model checkers can benefit
when such high-level information is available. However, for bit-vectors, it
is challenging to find a good word-level interpolation strategy for lemma
generation, which hinders the use of word-level IC3/PDR algorithms.

Our SyGuS-based procedure, SyGuS-APDR, is tightly integrated with
an existing word-level IC3/PDR framework APDR. It includes a pre-
defined grammar template and term production rules for generating
candidate lemmas, and does not rely on any extra human inputs. Our
experiments on benchmarks from the hardware model checking com-
petition show that SyGuS-APDR can outperform state-of-the-art Con-
strained Horn Clause (CHC) solvers, including those that implement
bit-level IC3/PDR. We also show that SyGuS-APDR and these CHC
solvers can solve many instances faster than other leading word-level
hardware model checkers that are not CHC-based. As a by-product of
our work, we provide a translator Btor2CHC that enables the use of CHC
solvers for general hardware model checking problems, and contribute
representative bit-vector benchmarks to the CHC-solver community.

Keywords: Hardware model checking · Syntax-guided synthesis
(SyGuS) · Bit-vector theory · Lemma generation · CHC solver

1 Introduction

Hardware bugs are circuit design errors that can cause malfunction or security
breaches, which could further lead to system failures or economic losses. Com-
pared to software bugs, hardware bugs tend to be more costly to fix due to the
need for a physical replacement and high non-recurring expenses for respins.
Therefore, it is very important to ensure the correctness of hardware designs
before manufacturing. Model checking [18], which formally checks whether cer-
tain correctness properties hold in a state transition system, has been successfully
applied in finding hardware bugs or proving there are no property violations.

In hardware model checking, descriptions of the circuit and properties to
be checked are given as inputs to an automated tool. The design description,
c© Springer Nature Switzerland AG 2021
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until recently, was typically provided using a bit-level format called AIGER [7],
which uses the and-inverter graph (AIG) representation. The AIGER format is
compact and close to a post-logic-synthesis hardware implementation. However,
it lacks word-level information which could be helpful in improving scalabil-
ity of hardware model checking. Recently, in 2019, the hardware model check-
ing competition (HWMCC) started to advocate use of a word-level description
called Btor2 [49]. It follows similar principles as the bit-level AIGER format,
but instead uses SMT-LIB2 [6] logics for bit-vectors and arrays. This format
preserves the word-level information in the circuit description. For example, a
32-bit adder in Btor2 can be represented succinctly using a single “add” oper-
ator (namely the modular addition function bvadd in SMT-LIB2), whereas in
AIGER format, it is bit-blasted into single-bit half and full adders represented
using 378 AIG nodes. The Btor2 format allows model checkers to potentially
take advantage of the high-level circuit structure.

Along with the Btor2 word-level format, there has been interest in using Con-
strained Horn Clauses (CHCs) to describe digital circuits and properties at the
word-level, and CHC solvers have been used or developed to synthesize environ-
ment invariants [59]. Although CHC solvers have largely been used in software
verification [13,24,30,35,39,48], the associated techniques to find invariants may
also be helpful in hardware verification. Many CHC solvers can successfully find
invariants in linear integer/real arithmetic (LIA/LRA) and array theories. For
example, Spacer [39] extends the IC3/PDR algorithm [11,21] to APDR [8,32]
(and also other variants) for LIA/LRA, where Craig interpolants are used to
generate lemmas that are conjoined to construct an invariant.

However, when it comes to supporting bit-vectors, the lack of a native word-
level interpolation strategy hinders the use of APDR and similar techniques.
Indeed, our experiments on bit-vector problems show that directly using word-
level interpolants from an SMT solver for lemma generation in APDR can actu-
ally incur a performance loss.

In this paper, we propose our solution to address this problem. We propose to
use Syntax-Guided Synthesis (SyGuS) [2] for generating lemmas for invariants,
in a new method called SyGuS-APDR. It is tightly integrated with an IC3/PDR
framework, where models from deductive reasoning in IC3/PDR are used to
guide the generation of lemmas. In particular, it uses a general grammar tem-
plate with predicate and term production rules without any need of extra human
input, and where the search space of predicates and terms is pruned based on the
deduced models. It also tightens previous frames in IC3/PDR to allow a larger
set of lemma candidates to be considered. In addition to this tight integration,
our method includes other known techniques [21,37] specialized here to sup-
port word-level reasoning for bit-vectors—generalization of lemma candidates
by extracting minimal UNSAT subset (MUS), and partial model generation in
predecessor generalization. These features are summarized in Fig. 1.

We have implemented our proposed SyGuS-APDR algorithm using SMT-
Switch [44], which provides an interface to various SMT (Satisfiability Modulo
Theory) solvers in the backend. We describe an extensive evaluation of SyGuS-
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Fig. 1. Integration of IC3/PDR with SyGuS-based lemma generation

APDR against state-of-the-art CHC solvers and hardware model checkers on
benchmarks from the bit-vector track of HWMCC’19. Our experiments show
that SyGuS-APDR outperforms state-of-the-art CHC solvers with more solved
instances. Furthermore, we show that CHC solvers can deliver better perfor-
mance on a notable portion of the benchmarks, in comparison to other hardware
model checkers that are not CHC-based. Finally, as part of this evaluation, we
have developed a translator that can convert Btor2 to the standard CHC for-
mat. This enables other CHC solvers to be used on word-level hardware model
checking problems.

Summary of Contributions:

– We present a novel algorithm SyGuS-APDR that uses SyGuS-based lemma
generation for word-level bit-vector reasoning in an IC3/PDR framework. It
is distinctive in using a tight integration between the two, where: (1) the
space of lemma candidates is guided both by a general grammar template
and models provided by IC3/PDR, (2) existing functionality in IC3/PDR is
used to tighten previous frames, which allows a larger set of lemma candidates
to be considered.

– We have implemented SyGuS-APDR and provide an extensive empirical eval-
uation against other tools on the HWMCC’19 benchmarks.

– We enable application of CHC solvers on hardware model checking problems
via a translation tool Btor2CHC developed as part of this work. We have made
the translated HWMCC’19 benchmarks publicly available [58].

The paper is organized as follows. We start with some background in the
next section, and describe a motivating example (Sect. 3). In Sect. 4, we present
the SyGuS-APDR algorithm. Section 5 describes the experimental evaluation and
results, followed by related work and conclusions.

2 Background and Notation

2.1 Constrained Horn Clauses (CHCs)

A Constrained Horn Clause is a first order logic (FOL) formula over some back-
ground theory A in the following form:

∀v1, v2, ..., vn, φ (V ) ∧
(∧

k

pk (Vk)

)
→ h (Vh) (1)
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Here v1, v2, v3, ..., vn form the set of variables V from theory A. φ is an
interpreted constraint over the functions and variables in A, and pk and h are
uninterpreted predicate symbols over sets of variables Vk and Vh, respectively.
Vk and Vh are subsets of V , and can be empty. A CHC is satisfiable if there
exists an interpretation I for the predicate symbols pk and h that makes the
formula valid. A set of CHCs is satisfiable if there exists an interpretation I for
all the predicate symbols that make all CHC formulas valid.

2.2 Hardware Model Checking Using CHCs

Here we focus on safety properties in hardware model checking. A digital circuit
can be viewed as a state transition system: 〈V , Init ,T 〉, where V is a set of state
variables (along with the primed version of variables V ′ that denote next states),
Init is a predicate representing initial states, and T is a transition relation. Note
that for hardware model checking, the transition relation T is functional, i.e.,
T (V ,V ′) := V ′ = Next(V ). For a given safety property P , we would like to
check if the transition system will ever reach a state (the bad state) where P
does not hold. If all bad states are unreachable, we would like to get a proof
showing P is valid. One such proof is an inductive invariant (Inv):

Init(V ) → Inv(V ) (2)
Inv(V ) ∧ T (V ,V ′) → Inv(V ′) (3)

Inv(V ) → P(V ) (4)

In other words, Inv should hold in the initial states (2), it should be inductive
(3), and it should imply safety (4). These three constraints are in the form of
CHCs (with an implicit universal quantification over all variables), where Inv is
an uninterpreted predicate. If these CHCs are satisfiable, then the interpretation
of Inv is the inductive invariant that forms the proof of safety.

2.3 IC3/PDR and APDR

The IC3/PDR algorithm [11,21] constructs inductive invariants to check safety.
It maintains a sequence of forward reachable sets of states (FRS): Fi, which are
over-approximations of all reachable states in i steps. They satisfy the following
properties.

F0(V ) = Init(V ) (5)
Fi(V ) ∧ T (V ,V ′) → Fi+1(V ′) (6)

Fi(V ) → Fi+1(V ) (7)
Fi(V ) → P(V ) (8)

The algorithm converges if at any point Fi+1(V ) → Fi(V ). As Fi is in the form
of a conjunction of clauses (for bit-level PDR) or lemmas (for word-level PDR),
when it is clear from the context, we interchangeably use Fi to refer to either
the conjunction or the set of clauses/lemmas.



Syntax-Guided Synthesis for Lemma Generation 329

The procedure for constructing FRS can be viewed as iteratively blocking
bad states or their predecessors (states that can reach bad states following the
transitions) by applying the following rules in an indefinite order. (We refer the
readers to [32] for details.)

– Unreachable. If ∃i, Fi+1 → Fi, the system is safe (P holds) and the algorithm
converges.

– Unfold. For the last FRS: FN in the series, if FN ∧ T → P ′, then extend the
series with FN+1 ← P and N ← N + 1 .

– Candidate. For the last FRS: FN in the series, if ∃m,m |= FN ∧T ∧¬P ′, then
we need to add 〈m,N〉 as a proof obligation (meaning that we would like to
try blocking m at step N as it can lead to the failure of P ).

– Predecessor. For a proof obligation 〈m, i + 1〉, according to the transition
relation T , if there is a predecessor mi of it at step i, then we will also add
〈mi, i〉 to the proof obligation.

– NewLemma. For a proof obligation 〈m, i+1〉, if we found no predecessor of it at
step i, then try to find a lemma l showing m is infeasible at i+1, and update
all Fj , j ≤ i + 1 with l to remember this (explained in details in Sect. 4.1).

– Push. For a lemma l in Fi, see if it also holds at step i + 1.
– ReQueue. For a proof obligation 〈m, i〉, if we found it has no predecessor at

i − 1, then also add m to the proof obligation at step i + 1.
– Reachable. If we get a proof obligation at step 0, then the system is unsafe.

The algorithm stops.

For CHCs in different theories, the theory-dependent techniques used in the
above procedures may vary. In particular, APDR [8] (in Spacer [39]) imple-
ments the two procedures—Predecessor and NewLemma—using model-based pro-
jection [39] and Craig interpolation [46], respectively, to adapt IC3/PDR for
LIA/LRA theories.

2.4 CHC Solving Techniques for Bit-Vectors

As the hardware model checking problems require bit-vectors, here we focus our
discussion on solving CHCs in bit-vector theory.

Bit-Blasting. The original IC3/PDR algorithm [11,21] is applicable if the
BV problems are bit-blasted, i.e., transformed into propositional logic with one
Boolean variable for each bit in each bit-vector variable. This is the general app-
roach implemented in Spacer [39] for bit-vectors. For the special case where
a problem contains only arithmetic operators in the BV theory, Spacer can
attempt the translation method described below.

Translation and Abstraction. Another approach for solving bit-vector prob-
lems is to translate them into another theory (e.g., LIA or LRA), derive a safe
inductive invariant, and then port it back soundly to the bit-vector theory. This
approach is discussed in related work [33] and implemented in the PDR engine
in Spacer.
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Table 1. A simple transition system: 〈V , Init ,T 〉

V {a, b, c, e, i}, a, b, c, i: ( BitVec 16), e : Bool

Init a = 0 ∧ b = 0 ∧ c = 0

T a′ = ite (e, i, a + 1) ∧ b′ = ite (e, i, b) ∧ c′ = ite (e, 0, c + 1)

Another CHC solver, Eldarica [35], handles bit-vector theory through
abstraction, as well as translation. It applies lazy Cartesian predicate abstrac-
tion [5,29], in combination with a variant of counterexample-guided abstraction
refinement (CEGAR) [4,17]. Bit-vectors are lazily mapped to quantifier-free
Presburger constraints, and then solved and interpolated by an SMT solver.
Using the abstractions, it constructs an abstract reachability graph (ARG).
To eliminate spurious counterexamples in the abstract reachability relation, it
obtains additional predicates from Craig interpolation.

Learning-Based Methods. There have also been other efforts that use
learning-based or guess-and-check approaches for CHC solving, e.g., Synth-
Horn [61], FreqHorn [23–25], HoICE [13], Code2Inv [54]. However, to the best of
our knowledge, these tools currently do not offer support for bit-vector theory.

3 A Motivating Example

We use an example to illustrate why word-level reasoning is beneficial and also
how word-level interpolants for bit-vectors can fail to converge. Table 1 shows a
simple transition system. This is a case simplified from a verification problem of
a domain-specific accelerator design we encountered in our previous hardware
verification work [59].

For simplicity of presentation, we use “+” to represent bit-vector addition:
bvadd, which will wrap-around in the case of overflow and we use ite as the
short form for “if-then-else”. Variables a, b, and c correspond to three registers
in the circuit, and e and i are primary inputs. All variables except e are 16-bit
wide. a and c will count up if e = ⊥ (false), while a and b will be loaded with
input i and c will be cleared if e = � (true). A simple property to check can be,
for example, if state (a, b, c) = (6, 4, 1) is reachable. For a human looking at this
transition system, it is not hard to find that a = b + c is an inductive invariant.
Initially a, b, c are all 0. Subsequently, if e = �, then a = b and c = 0, and the
relation holds; if e = ⊥, then a and c both increase by 1 (and may cause both
sides of the equality to wrap-around) so the equality relation still holds. This
relation is easy to find for a human analyzer, however, it turns out to be hard
for a bit-level model checker because the bit-blasting breaks the word addition
into bit-level operations and the invariant becomes much more complex.

On the other hand, when we directly use a word-level bit-vector interpola-
tor [31] out-of-the-box, to generate lemmas for blocking (a, b, c) = (6, 4, 1) or
other models that lead to it, we actually get these lemmas: l1 : a = b ∨ b = 4,
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l2 : a = b + 2 ∨ a = b + 1 ∨ a = b ∨ b = 4, l3 : (b, c) = (4, 65535). There are
several issues with these lemmas: (1) They only hold for the frames explored so
far. This is true for all three lemmas shown here. (2) Although some may look
similar to an inductive invariant, they are not general enough (e.g., l2). (3) Some
are overly generalized, like l3, which drops a and will become invalid after 65536
steps. In general, interpolation in BV theory is hard, because unlike LIA/LRA,
there is no counterpart to the Farkas’s lemma [22] in BV theory that can directly
provide a word-level interpolant.

In this work, we address these issues by using SyGuS in a tight integration
with an IC3/PDR framework, as described in detail in the next section.

4 Integrating SyGuS with IC3/PDR

A SyGuS-based guess-and-check approach is flexible, but it can be quite expen-
sive when the search space of candidate lemmas is large, and enumerating
through the candidates is expensive. We address these issues by using SyGuS in
a tight integration with an IC3/PDR framework where the distinctive features
are: (1) We use the models from IC3/PDR to guide and prune the search space
of predicates in lemma candidates. (2) We provide a general grammar template
and production rules to generate new terms in lemma candidates. These rules
use hardware-specific insights as heuristics to prioritize the search and term gen-
eration. (3) We use procedures in IC3/PDR to tighten previous frames to allow
using lemmas that are otherwise not considered. In addition, we use UNSAT
core minimization to create a more general lemma from a set of predicates, and
use partial model generation for predecessor generalization to support bit-vector
theory in IC3/PDR on the word-level.

4.1 Lemma Formulation

In IC3/PDR, a lemma is needed when some previously generated bad state(s)
m in Fi+1 should be blocked because it has no predecessor in Fi, i.e., when the
following implication is valid:

(Fi(V ) ∧ T (V ,V ′)) ∨ Init(V ′) → Q(V ′) (9)

Here, Fi is a set of lemmas learned at step i, and Q(V ′) := ¬∧
k(V

′
k = ck),

where ck is the assignment to variable Vk in the bad state m. This is illustrated
in Fig. 2(a). To learn this fact for future use, we would like to add it (i.e., conjoin
it) with Fi+1. Although formula Q can itself be conjoined with Fi+1 (as well as
all Fj , j ≤ i, thanks to the monotonicity of the series of F ), typical IC3/PDR
procedures will try to find a stronger lemma l such that l → Q, and conjoin
l with Fi+1 instead. It is hoped that l can potentially block more unreachable
states.

For LIA/LRA, the APDR algorithm uses Craig interpolants to derive lemma
l. For bit-vectors, although there are existing word-level interpolation meth-
ods [3,31] using techniques like equality and uninterpreted function (EUF) lay-
ering, equality substitution, linear integer encoding and lazy bit-blasting etc.,
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Fig. 2. (a) A bad state(s) m can be blocked when it has no predecessor in Fi. (b)
Using constraint (10) for lemma generation and (c) using constraint (12) for lemma
generation

our experiments in Sect. 5 show that using these interpolants actually incurs a
performance loss and makes the word-level IC3/PDR slower than bit-blasting.

When viewing interpolation as constraint-based synthesis, the interpolator
can be seen as trying to find a candidate l that satisfies the following two con-
straints (there is an implicit universal quantification over all variables):

(Fi(V ) ∧ T (V ,V ′)) ∨ Init(V ′) → l(V ′) (10)
l(V ′) → Q(V ′) (11)

These requirements are sufficient but not necessary conditions for a lemma l.
In fact, (10) can be relaxed to the following form (similar to what is used for
inductive generalization in IC3 [11]):

(l(V ) ∧ Fi(V ) ∧ T (V ,V ′)) ∨ Init(V ′) → l(V ′) (12)

The difference between (10) and (12) is that the latter applies l on the previous
frame also. Any candidate l that satisfies (10) will also satisfy (12), but the
reverse is not true. In fact, using constraint (12) allows finding a lemma l that
can also tighten Fi at the same time, whereas (10) finds lemmas that contain all
states in Fi and also all states that are one-step reachable from Fi. Therefore,
using (12) is helpful if the previously generated lemmas in Fi are too weak.
The difference between using (10) or (12) for lemma generation is illustrated in
Fig. 2(b) and (c).

As an example, if the over-approximation introduced by Fi is already too
coarse, even if we can somehow “magically” guess a safe inductive invariant Inv
correctly, Inv may not even hold for (10). On the other hand, choosing (12)
instead of (10) will shift the cost to lemma generation. Note that while (12)
is similar to prior work [11,12], we target lemmas with bit-vectors rather than
Boolean clauses. Our solution to this problem is to have a tightening procedure
that will also generate lemmas in Fi while still using (10) as the constraint. This
will be explained in Sect. 4.5. As we choose (10), our method can be viewed as
SyGuS-based interpolation, combined with an additional tightening procedure
(usually available) in the IC3/PDR framework.
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〈Cand〉 ::=¬〈Conj〉
〈Conj〉 ::= 〈Pred〉 | 〈Pred〉 ∧ 〈Conj〉
〈Pred〉 ::= 〈Term〉 ComparatorBV 〈Term〉
〈Term〉 ::= 〈Constant〉 | 〈Variable〉 | 〈Term〉 OperatorBV 〈Term〉

Fig. 3. The grammar template for lemmas, where operators and terms are dynamically
generated.

4.2 SyGuS-Based Interpolation

The grammar template that we use for learning an interpolant, i.e., the lemma
l, is shown in Fig. 3. The top-level lemma candidate (〈Cand〉) is a negated con-
junction of predicates over BV theory. The predicates and terms used in the
predicates are dynamically generated and pruned due to a tight integration of
SyGuS with IC3/PDR. We would like to first give an overview of our SyGuS-
based approach, and leave the discussion of operators and terms to Sect. 4.4.

At a high-level, our SyGus-based lemma generation procedure is shown in
Algorithm 1). For given bad state(s) m, our method first checks if we have
encountered m before (due to the ReQueue rule in APDR, it may have been
blocked at some previous frame j, j ≤ i). If so, the previously generated predicate
set is reused (Line 2) to save the work of predicate generation. Otherwise, it will
invoke the predicate generation procedure to get an initial set of predicates based
on m (Line 4). For a set of predicates L, it will check if L is sufficient to generate
a lemma (Line 5). If the current set is insufficient, it will try to tighten the
previous frame first (Line 7). If after tightening, the current predicate set is still
insufficient, it will then incrementally construct more predicates, while factoring

Algorithm 1: NewLemma(Init , Fi,T ,m): Generating lemma when m has
no predecessor in Fi

Input: Init : initial states, Fi: set of lemmas at step i, T : transition relation,
m: the bad state to block at step i + 1

Output: the lemma that blocks m
1 if m has been blockable on/before step i then
2 L ← GetPreviouslyGeneratedPredSet (m) ;
3 else
4 L ← GenInitialPredSet (m) ;
5 while ¬ PredSufficient (Fi,T , L) do
6 (n, n′) ← Model ( ((Fi ∧ T ) ∨ Init ′) ∧ ¬lL ) ;
7 if ¬ RecBlock (n, i,MAY ) then
8 L ← L ∪ MorePred (m,n, n′) ;

9 base ← (Fi ∧ T ) ∨ Init ′ ;
10 L ←MUS (L ∪ {base}) ;
11 return ¬ ∧

p∈L p ;
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in both m and the model (n, n′) demonstrating L is insufficient (Line 8). After
L finally becomes sufficient, it will invoke the MUS procedure (Line 10) to get
a minimal set of predicates using UNSAT cores.

In Algorithm 1, GetPreviouslyGeneratedPredSet is simply to retrieve
the cached predicates for the same model. GenInitialPredSet and PredSuf-
ficient will be described in Sect. 4.3. Our approach to generate new terms to
make new predicates in MorePred is presented in Sect. 4.4. MUS is briefly dis-
cussed in Sect. 4.6, and RecBlock is the recursive blocking function provided
by an IC3/PDR framework.

Note that our SyGuS-based method is tightly integrated with the IC3/PDR
framework and uses the results from deductive solving to guide the generation of
predicates (Line 4 and 8), and uses procedures in IC3/PDR to tighten previous
frames to allow using lemmas that are otherwise not considered (Line 7). It
checks the sufficiency of a set of predicates using a single SMT query to expedite
candidate validation (Line 5) and uses UNSAT core minimization (Line 10) to
construct a more general lemma.

Theorem 1. For bit-vector problems, IC3/PDR converges when using
Algorithm 1 for lemma generation.

This is because the lemmas generated by Algorithm 1 will block the given bad
states, and the rest follows from correctness of the original IC3/PDR algorithm.

4.3 Lemma Generation and Validation

Pruning Based on Bad State. The lemma generation procedure is invoked if
formula (9) is found to be valid, and we need to find a candidate l that satisfies
(10) and (11). Our SyGuS method starts with handling constraint (11) first. Note
that l is in the form of ¬ (p1 ∧ p2 ∧ ... ∧ pn) according to the grammar in Fig. 3
and the equivalent contrapositive of (11) is ¬Q → ¬l. Therefore, ¬Q should
imply every predicate p1, p2, ... pn in l. For a given Q, our SyGuS approach will
only construct predicates from the grammar that can be implied from ¬Q, i.e.,
model m. This is shown as pruning on the initial predicate set based on model
m (Line 4, GetInitialPredSet in Algorithm 1).

Candidate Validation. After generating predicates that satisfy (11), we con-
sider the constraint (10). Our method starts with a candidate set of simple
syntactic structures and incrementally adds more complex predicates if the cur-
rent set is not sufficient. To test if a set of predicates L is sufficient, we conjoin
all predicates in L to form lL = ¬(

∧
p∈L p), and check if lL makes (10) valid.

This is the PredSufficient procedure in Algorithm 1. In other words, if the
following is UNSAT, it is adequate to construct a lemma:

((Fi(V ) ∧ T (V ,V ′)) ∨ Init(V ′)) ∧ ¬lL(V ′) (13)

Pruning Due to Inadequate Batch. If the batch is inadequate (i.e., formula
(13) is satisfiable), we construct a formula c :=

∧
i V

′
i = ai, where ai is the
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assignment to V ′
i in the model of (13). Since c is constructed from the model,

∀p ∈ L, c → p. If there is a good set of predicates L′ ⊃ L, then within L′, there
must be a predicate pc such that c → ¬pc. Therefore, we can use the extracted
formula c to guide the generation of new predicates. This constitutes additional
pruning of the search space (Line 8 in Algorithm 1).

4.4 Generating Terms in the Grammar

As shown in Algorithm 1, our SyGuS method starts from an initial set of predi-
cates (constructed from the initial set of terms) and incrementally generates new
terms to create more predicates.

The Initial Set of Terms and Comparators. We extract the terms and
predicates in the original problem from the syntax tree of the initial state pred-
icate Init , the transition relation T , and the given property P), and select a
subset to form the set of initial predicates. For a given Q (recall that Q encodes
the model to block), all predicates containing only the variables in Q are added
to the initial predicate set. While for the terms, only those that (a) contain
only the variables in Q and (b) whose bit-width is less than a threshold Hp

are added to the initial term set. We also expand the term set with additional
constants when bit-widths are less than a threshold Hc. The rationale behind
this strategy is that we want to find lemmas in the “control space” first, which
is often beneficial as shown in previous work [42,59]. Instead of relying on user
input (as in [59]), we differentiate between the terms that are likely control- or
data-related. Specifically, we use a heuristic that terms with a larger bit-width
are more likely to be data-related, and a specific constant for data-related terms
would not be useful in the inductive invariants. In our experiments, we empiri-
cally set thresholds Hc = 4 and Hp = 8, to balance between the expressiveness
and the cost of extra predicates. For the bit-vector comparators in the predicates,
initially we begin with only Equal and NotEqual.

Adding More Existing Terms and Comparators. If the predicates con-
structed from the initial terms and operators are not able to generate a lemma,
in the next call to MorePred, we will add back all the existing terms that
contain no variables outside Q. Comparators like bvult (“unsigned less than”)
and bvule (“unsigned less than or equal”) will be added also if they exist in the
original problem.

Generating New Terms. The above procedure adds terms and comparators
that are already present in the original problem formulation. However, this set
of terms is often insufficient. Therefore, we use a procedure for generating new
terms based on the following three rules – Construct, Replace, and Bit-Blast.

Construct Rule. Assume that we already have a set of terms {t} and operators
{op}. For each operator op and vector of terms 〈t0, t1, ...〉, we will construct a
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new term (op t0 t1 ...) if it is well-formed. In the examples we have seen in
the HWMCC benchmarks, the set of operators is usually not very large, which
are mainly logic operators like and, arithmetic operators like add, some bit-field
manipulations, and ite. As a heuristic, we prioritize using bit-field extraction
and arithmetic operators for wide terms, and will use only logical operators on
the narrow ones (separated also by the bit-width threshold Hp). Furthermore, we
avoid having multiple terms that can be simplified to the same form, by using the
rewriting capability of the underlying SMT solver implicitly. Some solvers, e.g.,
Boolector [49], simplify and rewrite the terms upon their creation. We create the
terms in the solver, then retrieve the simplified form and compute a syntactic
hash to detect duplicate terms. The construction process of this rule can be
applied iteratively, where we use the newly generated terms to create more new
terms. However, in our implementation, we restrict it to a single iteration per
invocation, to avoid overwhelming the algorithm with too many predicates.

Replace Rule. This rule replaces a sub-term with another. Suppose there is
an existing term t with the following form: (op t0 t1 ...). For each of the sub-
terms (e.g., t0), we will try to see if there is another term with the same sort
that can replace it in t and result in a new term. Instead of trying all potential
replacements, we look for replacement pairs using information from the transition
relation as follows.

As stated in Algorithm 1, we invoke the MorePred procedure for new
term production at times when the check (13) had returned SAT and we need
more terms to form more predicates. At this point, we can evaluate the existing
terms using the model of (13) and check which pairs of them have the same
value. This is similar to running simulation to identify potential correlations of
signals in a circuit. Terms are evaluated twice, once on the assignment to current
state variables and once on the primed ones. In addition to finding correlation
in the primed evaluation (where predicates become insufficient), we also detect
correlation between the current state and the next state. For example, suppose
that a term t1(V ) evaluates to c1 under M and another term t2(V ′) evaluates
to c2 under M . If c1 = c2, we will also identify t1 and t2 as a replacement pair.
Here, the term t1 being replaced is evaluated based on current state variables
V and the term t2 is evaluated as if it is on the next state variables V ′. This
difference on the current and next state variable set allows us to find temporal
correlations that are potential causes and effects.

Bit-Blast Rule. For hardware model checking problems, it is also possible that
no good word-level invariant exists or the desired word-level invariant cannot be
generated from existing terms and operators. Therefore we keep this rule as a
fallback option. When applied, it creates terms using the extract operator to
extract every single bit of a state variable. We prioritize using it first on the state
variables which have been used in other terms with an extract operator. The
rationale for this heuristic is that if the original problem contains bit-fields that
are extracted from signals derived from such a state variable, the state variable
is likely to be more “bit-level” rather than “word-level.” If we continuously apply
this rule, eventually all bits from all state variables will be added to the term set.
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At this point, the set is guaranteed to be sufficient, and the algorithm degenerates
to finding bit-level invariants in the worst case.

In our implementation, we apply these rules in the following order. First,
we continuously apply Replace until it generates no more new terms or the
predicate set becomes sufficient. Then we try Construct, where we prioritize
different operators for wide and narrow terms and terminate if the prioritized
terms are already sufficient. This is followed by another round of Replace, and
finally Bit-Blast with the prioritization on variables that are more “bit-level.”
For any rule, if the prioritized terms are already sufficient, the procedure returns.
Similar to the sharing of predicates among lemmas blocking the same model, the
term set is also shared when two models in the proof-obligation have the same
set of variables.

Example. Consider an illustration for creation of new terms according to these
three rules. For the example transition system in Sect. 3, suppose at some point,
there is a proof obligation: block model (a, b, c) = (6, 4, 1) at F2. The initial term
set is listed in Fig. 4. For F1 there are already lemmas added using the these
terms on variables a, b, c, however, they cannot generate sufficient predicates to
block the model (predicates after initial pruning are shown in the figure). A
model for (13) can be extracted: (a, b, c, e, a′, b′, c′) = (3, 3, 0,⊥, 4, 3, 1). Readers
can check the assignments to the primed variables in the model make all initial
predicates evaluate to true. When applying the Replace rule, existing terms
will be evaluated on variable sets (a, b, c) = (3, 3, 0) and (a′, b′, c′) = (4, 3, 1) to
identify potential correlations between pairs. In this example, we find 7 possible
replacement pairs, which result in 4 new terms, shown in the bottom-left table
in Fig. 4, where replacement is based on the correlated value in the first column
and the replacement pair 〈t1, t2〉 means t1 is replaced by t2. If these were not
sufficient, we could further apply the Construct rule, and more new terms
would be generated using operator bvadd on the existing terms. Finally if these
were still not sufficient, we would fall back to Bit-Blast.

For the specific proof obligation here, the above term generation process will
actually stop after the Replace rule, where the predicates with term b + c will
be sufficient, and the invariant a = b + c will be discovered. (For this proof
obligation, the term b + 1 also works, which can produce predicate a = b + 1,
but it is not as general, and will be dropped by the MUS procedure.) Note that
the discovery of a = b + c in this example is not simply by chance. The two
replacements needed – a to b, and 1 to c – are found by our method that looks
for correlation between terms, which leads to finding this invariant. Interestingly,
these correspond to the two cases in the induction step in our human reasoning
process in Sect. 3.

4.5 Tightening Previous Frames in IC3/PDR

As we discussed in Sect. 4.1, using constraint (12) instead of (10) allows a larger
space of lemmas. But on the other hand, having l on both sides of the implication
breaks the monotonicity of predicate minimization. For (10), after a predicate
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Fig. 4. An illustration of the three term generation rules.

is removed, (10) could stay UNSAT or become SAT. But once it becomes SAT,
removing more predicates will not make (10) UNSAT. The same does not hold for
(12), as removing predicates also shrinks the pre-image. This makes minimizing
the set of predicates in (12) much harder. As a trade-off between allowing a
larger space of lemmas and ease of minimizing the set of sufficient predicates,
we choose the latter and decide to stick with constraint (10). To mitigate the
associated problem—potentially missing a good lemma due to coarse frames, we
add a procedure to tighten the previous frames, as described below.

We design a lazy approach to tighten previous frames (Line 7 in Algorithm 1).
When the check (13) indicates that L is insufficient (i.e., we get a SAT result for
(13)), instead of immediately generating more terms to construct more candidate
predicates, we first check whether the current state variable assignment from the
satisfiable model in (13) is blockable. This blocking operation will introduce new
lemmas in the previous frame Fi and could potentially turn (10) into (12) by
introducing the same lemma. This may then allow the predicates in L to be
used. On the other hand, if the model cannot be blocked, it means no lemmas
can be generated from the current predicate set, even using (12) instead of (10).
So we will indeed need to construct more terms to enrich the set of predicates.

Instead of requiring any big change, the blocking operation suggested above
can use an existing recursive blocking function utility available in an IC3/PDR
framework (denoted as RecBlock in Algorithm 1). However, this blocking is
different from blocking of models generated from (9), which must be blocked, oth-
erwise P will fail. Thus, we need to distinguish between a “may-proof-obligation”
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Algorithm 2: MUS(U): Minimizing the set U of UNSAT constraints
Input: U : {base} ∪ L, a set of constraints
Output: U ′: a minimal UNSAT subset of U

1 while true do
2 U ′ ← UnsatCore(U) ;
3 if |U ′| = |U | then
4 break;
5 U ← U ′ ;

6 Sort(U ′ − {base}) , by syntax complexity ;
7 for u ∈ (U ′ − {base}) do
8 if U ′ − {u} is UNSAT then
9 U ′ ← UnsatCore( U ′ − {u}) ;

10 return U ′;

and a “must-proof-obligation” for blocking a model. Note also that this distinc-
tion is not a special requirement of SyGuS-APDR. For example, in the existing
IC3/PDR framework Quip [36], a “may-proof-obligation” arises due to failures
of lemma pushing. Here, we simply reuse this facility to design our lazy frame
tightening procedure.

4.6 Generalizing the Lemma by Using UNSAT Cores

When constructing lemmas from a set of predicates, we would like to get a more
general lemma using fewer predicates. This is done through minimal unsatisfiable
subset (MUS) extraction from the unsatisfiable formula (13), where we treat each
predicate pi ∈ L as an individual constraint, and the rest of the formula (base)
as one constraint.

Our MUS procedure (shown in Algorithm 2) follows standard approaches, as
it first computes a small UNSAT core by iteratively using UNSAT core extraction
of the SMT solver until reaching a fixed-point of the core size [60] (Line 1–5).
Then it further reduces the core size by trying to drop constraints. Here, we
use a new heuristic based on the syntax-complexity, defined as the number of
nodes in the syntax tree plus the occurrence of constants as an extra penalty.
Our contraint-dropping is done iteratively in descending order of the syntax-
complexity of constraints (Line 6–9). This allows us to get an MUS where the
predicates have simpler syntactic structure and also fewer constants, which may
generalize better in the overall algorithm.

4.7 Partial Model Generation for Word-Level Reasoning
in Bit-Vectors

We also propose to use partial model generation in the Predecessor procedure
for word-level bit-vector reasoning in IC3/PDR. Our method can handle hard-
ware model checking problems where the transition relation is functional. (We
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leave the general case of adapting it in model-based projection for bit-vectors to
future work).

Our implementation of partial model generation mimics the ternary simula-
tion method used in the original PDR implementation [21], but at the word-level.
For some bit-vector operators like bvand and ite, there is a masking effect. For
example, consider a satisfiable SMT formula that contains a fragment (bvand a

b), if we know that variable a is assigned to all 0s in the model extracted from the
query, then the assignment to b does not affect the evaluation of the fragment.
If b does not appear elsewhere in the formula, we can remove the assignment
to b and get a partial model while the formula still evaluates to true under
the reduced set of assignments. Using partial model generation, we can derive
a reduced set of variable assignments representing multiple bad states. This
benefits the SyGuS-based interpolation because when we later generate lemma
candidates to block it, we can limit the search space to candidates containing
only those variables in the partial model.

5 Experimental Evaluations

We implemented the SyGuS-APDR methods on top of an APDR framework that
we developed according to the algorithm presented in previous work [32]. We used
the solver-agnostic interfacing library SMT-Switch [44], and used Boolector [49]
for SMT queries and UNSAT core extraction.

5.1 Experiment Setup

Environment of the Experiments. The experiments were conducted on a
cluster of machines with Xeon Gold 6142 CPUs running Springdale Linux 7.8,
and each tool is allocated 8 cores and 64 GB of memory. Similar to the HWMCC
setting, we set the time-out limit to be one hour wall-clock time.

Benchmark Examples. We use the benchmarks from the bit-vector track of
2019’s HWMCC. It has 317 test cases in the Btor2 format. We use our conversion
tool Btor2CHC to convert them into CHCs.

Tools for Comparison. We test our SyGuS-APDR tool against state-of-the-art
CHC solvers on the HWMCC’19 benchmarks. For comparison, we also report
the performance of word-level hardware model checkers that participated in
HWMCC’19 (and were run with the same configuration). The tools we com-
pared with are listed as follows.

– SyGuS-APDR is our tool that uses the syntax-guided lemma generation pro-
cedure described in Sect. 4.

– BvItp is a tool we constructed that uses the word-level interpolants [31] from
MathSAT [16] out-of-the-box to generate lemmas in APDR.

– Spacer [32,40] is a state-of-the-art CHC solver and part of Z3 [19]. We test
the newest release version 4.8.9, but it actually solves fewer instances (83 vs.
90) compared to an older version 4.8.7.
We did not further investigate the reason of the performance degradation,
but will report the results from 4.8.7.
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Table 2. Number of solved instances

Solver # Solved Safe Unsafe

Our work SyGuS-APDR 126 112 14

CHC solvers BvItp 22 22 0

Z3/Spacer 90 87 3

Eldarica 4 4 0

HW model checkers AVR 157 111 46

CoSA2 (Pono) 137 96 41

BtorMC 108 67 41

CoNPS-btormc-THP 40 0 40

– Eldarica is a CHC solver that makes use of counter-example-guided abstrac-
tion refinement (CEGAR) method. As Eldarica can use different interpo-
lation abstraction templates, we start 4 parallel running engines each with a
different template configuration and report the best result, using the latest
release version 2.0.4.

– AVR (abstractly verifying reachability) is a collection of 11 parallel running
engines including 3 variants of BMC and 8 variants of IC3 integrated with
multiple abstraction techniques [27]. We use the binary release available from
the Github tagged with hwmcc19 for the experiment.

– CoSA2 (successor of CoSA [45], now named Pono) is a model checker based
on the solver-agnostic framework SMT-Switch [44]. It runs four parallel
engines: BMC, BMC simple-path, k-induction and the interpolation-based
method [47]. We were unable to compile using the source code tagged with
hwmcc19. Instead we use a development version with a commit hash 6d72613.
Our experiment results show it actually solves more instances than reported
in HWMCC’19.

– BtorMC (version 3.2.0) is a tool based on the SMT solver Boolector [49],
equipped with two engines: BMC and k-induction. In our experiment, we run
two instances in parallel and record the shorter time.

– CoNPS-btormc-THP is from Norbert Manthey. It is a specially configured
BtorMC using huge pages for mapping memory and is linked against a mod-
ified GlibC library. We obtained the tool from the author.

5.2 The Overall Result

We plot the wall-clock time vs. the number of solved instances in Fig. 5. A table
summarizing the number of solved instances is shown in Table 2. Our results
on the hardware model checkers are mostly consistent with the results from
the HWMCC’19 report [52], with minor difference which is probably due to
difference in the machine configurations or the version of tools that we use.

Among the tools, AVR solves the most instances. Our SyGuS-APDR solves
about the same number of safe instances as AVR, but fewer unsafe instances.
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Fig. 5. Wall clock time vs. number of solved instances.

This is because in the unsafe case, even though a bad model leading to the
violation of the property will become reachable at some point, in the first several
frames, it is still blockable, and SyGuS-APDR will still try to construct lemmas
to block it. We can make up for this disadvantage by having a BMC engine run
in parallel with it, similar to what typical model checkers do. However, our focus
is on lemma generation for proofs, so we leave this for future work.

5.3 Effectiveness of SyGuS-APDR in Improving Lemmas

We plot the comparison between SyGuS-APDR and BvItp in Fig. 6(a)—SyGuS-
APDR shows a clear improvement over BvItp. In our experiments, we found that
the word-level bit-vector interpolants from MathSAT often contain conjunctions

(a) (b)

Fig. 6. Comparison of wall-clock time between SyGuS-APDR and (a) BvItp or (b) the
faster time from Z3/Spacer or Eldarica.
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(a) (b)

Fig. 7. Comparison of wall-clock time between word-level hardware model checkers
and CHC solvers (a) without, or (b) with SyGuS-APDR.

of a large number of equality relations in the form of v = c, where v is a state
variable and c is a constant. This makes the interpolants very specific to the
models, and they often trap the algorithm in the first few frames with hundreds
or even thousands of lemmas. This explains why BvItp performs badly. And
on the unsafe systems, it must reach a minimum bound to discover the shortest
counterexample, therefore it is not able to find any unsafe instances. Removing
some equalities in such an interpolant in BvItp, as we have attempted, often
makes it no longer an interpolant. SyGuS-APDR, on the other hand, uses syntax-
based guidance to steer the interpolants and can select simpler, and hopefully
more general, predicates to mitigate such issues.

Figure 6(b) shows the comparison of SyGuS-APDR and the faster of either
Z3/Spacer or Eldarica. Eldarica solves only 4 instances, two of which con-
tain complex arithmetic operations in the transition relation and are solved by
neither Z3/Spacer nor SyGuS-APDR. SyGuS-APDR solves 56 instances that are
not solved by Z3/Spacer or Eldarica, and within the 70 instances that both
categories solve, SyGuS-APDR runs faster on 36.

5.4 CHC Solvers Vs. Hardware Model Checkers

We also compare the results from the two existing CHC solvers (referred to as
the CHC group in the following text) with the collection of word-level model
checkers that participated in HWMCC’19 (referred to as the HMC group). A
comparison of solving time is shown in Fig. 7. Although the CHC group solves
fewer instances (92 vs. 196), there are 22 instances solved exclusively by CHC
group. Among the 70 instances solved by both groups, the CHC group is faster
on 16. This indicates that the CHC group has some complementary strengths
that are worth further investigation.

For example, there is one test case analog estimation convergence where
Spacer derives a safe inductive invariant in less than one second, whereas AVR
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does not converge within one hour. We took a closer look at the invariant pro-
duced by Z3/Spacer. It contains fragments with similar structure as a linear
relation in LIA theory. This is likely an outcome of the translation technique, and
it makes Z3/Spacer the fastest solver on this instance. When we also include
SyGuS-APDR in the CHC group, the group now solves 148 (significant improve-
ment from 92), where 27 are not solved by the HMC group. Among the 121
instances solved by both groups, CHC group is faster in 33 test cases.

Around the time of preparing the final version of the paper, two new tools
become available: GSpacerbv [28] and a new version of AVR for HWMCC’20
competition (referred to as AVR-20). We conducted further experiments after
paper submission, and for completeness, include a summary here. Detailed
results can be found in [57]. GSpacerbv shows an improvement from Spacer
thanks to its global guidance rules in lemma generation [41] and the model-
based projection procedure for bit-vectors, yet it solves fewer instances than
SyGuS-APDR (101 vs. 126). AVR-20 shows a great performance gain compared
to its previous generation (249 vs. 157) as it doubles the portfolio size with more
techniques integrated. Though, AVR-20 solves more safe instances than SyGuS-
APDR (205 vs. 112), SyGuS-APDR runs faster on almost half of the instances it
solves (50) and is there supplementary to the portfolio used in AVR-20.

6 Related Work

Enhancing the Interpolants. There are many existing works that aim to
enhance the interpolants used in model checking. For example, Albarghouthi
and McMillan [1] propose to reduce the number of disjuncts of linear inequality
constraints to get simpler interpolants. Blicha et al. [10] propose to decompose
the interpolants to mitigate the divergence problem. GSpacer [41] incorporates
global guidance in the lemma. These works are mostly for interpolation in the
infinite domain (e.g., LIA/LRA) theories.

In the bit-vector theory, there is no native word-level bit-vector interpolation
strategy in the first place. Existing methods rely on EUF layering, translation to
(non)-linear integer arithmetic, application of certain forms of quantifier elimina-
tion etc. [3,31]. Additionally, compared to LIA/LRA, the bit-vector theory has
a more diverse set of operators allowing bit-field manipulation as well as logical
and arithmetic operations. This often introduces non-linear relations that are
hard to translate to other theories.

In the LIA/LRA domain, the closest approach to ours is [43], which also uses
templates to guide the generation of interpolants. It introduces interpolation
abstractions in the SMT query but leaves the construction of interpolants com-
pletely to the solver, whereas SyGuS-APDR constructs the interpolants outside
the solver, and therefore has more direct control on the generated lemma. Pre-
vious works [9,14,20] also construct interpolant outside the SAT/SMT solver,
while SyGuS-APDR incorporates syntax guidance and further integrates it with
IC3/PDR framework to make use of models and procedures from deductive rea-
soning in IC3/PDR.
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Word-Level IC3/PDR Algorithms for Bit-Vectors. Previous efforts on
the word-level BV can be mainly categorized as: (1) adding an abstraction layer
so that the core algorithm remains at the bit-level, (e.g., word-level abstrac-
tion [34], word-level predicate abstraction [38], IC3ia [15], data-path abstrac-
tion [42] and syntax-guided abstraction [26]) (2) using specific types of atomic
reasoning units (ARUs) [55,56], or (3) translating the BV problem to another
theory [33]. SyGuS-APDR differs from the existing works in that: (1) it does not
need an explicit abstraction-refinement loop—the models in the proof obliga-
tions and the transition relation are all kept concrete and the interpretation of
the predicates are always revealed to the solver; (2) the grammar allows lemmas
that are in general more flexible compared to the ARUs; and (3) while transla-
tion is feasible for arithmetic and some related operations, it does not work for
all the operators available in BV theory, especially bit manipulation operators.
In comparison, SyGuS-APDR is native on the BV theory and supports all BV
operators.

Syntax-Guided Inductive Invariant Synthesis. Syntax-guided synthesis
has been applied on the inductive invariant synthesis problem before, e.g., Loop-
InvGen [50,51], cvc4sy [53], FreqHorn [23–25] and Grain [59]. A key feature
of SyGuS-APDR is its tight integration with IC3/PDR framework, which allows
use of both deductive reasoning as well as grammars to guide candidate lemma
generation and prune the search space.

7 Conclusions and Future Work

In this work, we present our technique of using syntax-guided synthesis for lemma
generation for unbounded hardware model checking. This is also an attempt
to attack the challenges of BV interpolation with the help of a tighter inte-
gration with the IC3/PDR framework. Although our motivation for reasoning
about problems in BV theory comes from hardware verification applications, the
techniques we present may also benefit software verification, especially low-level
software (e.g., device driver or firmware) where bit manipulation is essential.

To achieve better performance, our SyGuS-based lemma generation algo-
rithm can be further integrated with other techniques, e.g., an abstraction refine-
ment framework, or with other parallel running engines.
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Abstract. Bit-vector-based program synthesis is an important building
block of state-of-the-art techniques in computer programming. Some of
these techniques do not only rely on a synthesizer’s ability to return an
appropriate program if it exists but also require a synthesizer to detect
if there is no such program at all in the entire search space (i.e., the
problem is infeasible), which is a computationally demanding task.

In this paper, we propose an approach to quickly identify some syn-
thesis problems as infeasible. We observe that a specification function
encodes dependencies between input and output bits that a correct pro-
gram must satisfy. To exploit this fact, we present approximate analyses
of essential bits and use them in two novel algorithms to check if a
synthesis problem is infeasible. Our experiments show that adding our
technique to applications of bit vector synthesis can save up to 33% of
their time.

1 Introduction

Program synthesis is the construction of a program that satisfies a declarative
specification. Its ability to create a program that implements a specification
function and consists of some given bit vector operations has recently propelled
research in computer programming. For example, program synthesizers craft
instruction selection rules in compilers [4], superoptimize code [18], generate code
for unusual architectures [17], optimize machine learning kernels [5], or enumer-
ate rewrite rules for SMT solvers [16]. As it is often not a priori known which
and how many operations to use for a synthesized program, some applications
formulate multiple synthesis problems that differ in the used operations [4] or in
the length of the program [18]. Other works search over a collection of synthesis
tasks [2] or generate synthesis problems based on a symbolic execution of a pro-
gram [14]. All these approaches have a common trait: for some of the synthesis
problems, there may not be a program that implements the specification and
consists of the available operations. These problems are called infeasible. Infea-
sible problems tend to be harder than feasible ones of comparable size because
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synthesizers have to show that there is no such program in the entire solution
space. If infeasible problems occur frequently, the performance of an application
“critically depends on the performance of unsatisfiable queries” [14] (i.e., infea-
sible problems). Thus, applications get faster by quickly identifying infeasible
problems as such without invoking the costly synthesizer.

We present such an infeasibility checker for bit vector synthesis problems
(f,Ops) with a specification function f plus a collection of available operations
Ops that bounds the number of times an operation may occur in the constructed
program. To illustrate our approach, our running example is the problem of com-
puting the average of two integers x and y by rounding up fractional solutions.
The program (x∨y)−((x⊕y) � 1) satisfies this specification [21]. When human
programmers want to find such a program, they intuitively know that they need
to divide by 2 or right shift by 1 to compute the average (suppose for now that
the constant belongs to the operation). Alas, program synthesizers lack this intu-
ition. We can, however, find out that the synthesized program indeed needs such
an operation by inspecting the dependencies between input and output bits of
the specification: The i+1-th input bits of both x and y influence the i-th output
bit. To see this, consider x = 2, y = 0, and the result 1. If we turn off the second
bit of x, the result is 0. Hence, the second bit of x influences the first output bit.
Since this bit dependency must also exist in the synthesized program, we need
an operation that can provide it. Thus, we analyze the dependencies between
input and output bits of both the specification function and each of the available
operations. Since this analysis is NP-complete, Sect. 3 proposes approximations.
Once we know the bit dependencies of both the specification and the operations,
we can check if the operations cannot be combined to satisfy the bit dependen-
cies of the specification. In this case, the synthesis problem is infeasible and we
do not need to invoke the synthesizer. We derive a checking algorithm in Sect. 4
that uses an abstraction of the concrete bit dependencies called shapes.

The collective bit dependencies of an output bit come in two flavors. These
correspond to the value the output bit takes if all of the input bits it depends
on are set to 0. All output bits of our running example come in the same flavor,
but if we modify the specification to compute the average of ¬x and y instead,
the highest (most significant) output bit will take the value 1 for x = 0 and
y = 0. Hence, the highest output bit comes in a different flavor than the other
output bits. We give a second algorithm in Sect. 4 that detects if some output bit
cannot get the right flavor using the given operations. Although both algorithms
may miss infeasible problems, they never flag a feasible problem as infeasible.
We evaluate our contributions in Sect. 5 and discuss related work in Sect. 6.

2 Fundamentals

A (fixed-width) bit vector is a vector of Boolean variables (the bits) of constant
length (the width). Let Bk be the set of all bit vectors of width k. A bit vector
function is then a function Bk1 × · · · × Bkn

→ Bko
. If all k1, ... , kn, ko = 1, the

function is a Boolean function.



Approximate Bit Dependency Analysis 355

Well-known bit vector functions include bitwise operations like conjunction
(∧), inclusive (∨) and exclusive (⊕) disjunction, arithmetic operations (+, −, ×,
÷, rem), and bit shifts (�, �). The specification function, the operations, and
the resulting program are also bit vector functions. Without loss of generality,
we assume the same bit width for all of them.

A bit vector function with arguments of width k1, ... , kn may be transformed
into a bit vector function with

∑n
i=1 ki arguments of width 1; and also into ko

functions of output width 1. Then, every function represents the calculation of
one output bit. Thus, every bit vector function f corresponds to a collection of
Boolean functions f1, ... , fko

.
f|xi=c(x1, ..., xn) = f(x1, ..., xi−1, c, xi+1, ..., xn) is the restriction of f to xi =

c. An input variable xi is essential in f if there exist constants c1, ..., cn such
that f|xi=0(c1, ..., cn) �= f|xi=1(c1, ..., cn). Intuitively, the essential variables are
exactly those variables that influence the result of f .

A Boolean function f can be uniquely represented by the Zhegalkin polyno-
mial [6] with coefficients aK ∈ {0, 1}:

f(x1, ..., xn) =
⊕

K⊆{1,...,n}
aK ∧

∧

i∈K

xi.

For example, ¬(x1 ∧ x2) = 1 ⊕ (x1 ∧ x2) with a{1} = a{2} = 0 and a∅ =
a{1,2} = 1. The Reed–Muller decomposition f(X) = f|xi=0(X)⊕(

xi∧
(
f|xi=0(X)⊕

f|xi=1(X)
))

for X = x1, ..., xn factors out xi from this polynomial [21].
In this work, (undirected) graphs must not have multiple edges between the

same vertices (parallel edges), whereas this is permitted for directed graphs.
N(X) denotes the neighbors of all vertices in X. A bipartite graph G (with
partition {A,B}) contains a matching of all vertices of A if and only if |N(X)| ≥
|X| for all X ⊆ A (Hall’s Marriage Theorem [8]).

3 Approximation of Essential Bits

We use the dependencies between input and output bits to identify synthesis
problems as infeasible. If every program using the given operations violates the
bit dependencies of the specification function, the synthesis problem is infeasible.
We view the operations and the specification function as collections of Boolean
functions f . The essential bits of f provide its bit dependencies. As computing
all essential bits of an arbitrary f is NP-complete [6], we approximate them. To
do this, we present two underapproximations and one overapproximation.

In this section, we view f as a circuit of ⊕ and ∧ gates and the constant 1.
Since the well-known bit vector functions have circuits of polynomial size [22],
their analysis is still tractable. As both the specification function and custom
operations are usually defined with these functions, we can obtain their circuits
by combining the circuits of the well-known bit vector functions. A circuit that
computes the 2nd bit of our running example is x3 ⊕ y3 ⊕ (x1 ∧ (x2 ⊕ y2)∧ (y1 ⊕
1)) ⊕ (x2 ∧ (y1 ⊕ y2)) provided that x and y have at least 3 bits. To define our
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approximations, it hence suffices to supply rules for the constant 1, a bit xi as
well as the operations ⊕ and ∧. The cornerstone of our approximations is:

Lemma 1. The bit xi is essential in a Boolean function f if and only if the
Zhegalkin polynomial of f has at least one coefficient aK = 1 with i ∈ K.

Proof. If xi is essential, the Zhegalkin polynomial must contain xi. Conversely, if
xi is not essential, then f|xi=0 ⊕ f|xi=1 = 0. By the Reed–Muller decomposition,
f = f|xi=0 ⊕ (

xi ∧ (f|xi=0 ⊕ f|xi=1)
)
= f|xi=0. Since the Zhegalkin polynomial of

f|xi=0 does not contain xi, the same holds for f . �
As the number of aK is exponential in the number of input bits, we do

not enumerate all non-zero aK but only check if some aK are non-zero. Our
underapproximation UA1 of the essential bits of f only considers the coefficients
aK with |K| ≤ 1. UA1 is a set over the xi and 1. If xi ∈ UA1, a{i} = 1 and xi

is essential according to Lemma 1. The rules to compute UA1 for 1 and a bit xi

are UA1(1) = {1} and UA1(xi) = {xi}.
The rule for f = g⊕h is UA1(g⊕h) = UA1(g)�UA1(h) with the symmetric

set difference X�Y = (X \ Y ) ∪ (Y \ X) because the Zhegalkin polynomial of
g⊕h has a non-zero coefficient for {i} if either g or h has such a coefficient (since
xi ⊕ xi = 0). Thus, xi ∈ UA1(f) iff xi ∈ UA1(g) “xor” xi ∈ UA1(h).

To derive a rule for f = g ∧ h, we look at the single monomials gi of g =
g1 ⊕ ··· ⊕ gm and hj of h = h1 ⊕ ··· ⊕ hn. Then f = g ∧ h = (g1 ⊕ ··· ⊕ gm)∧
(h1 ⊕ ··· ⊕ hn) = (g1 ∧ h1) ⊕ ··· ⊕ (g1 ∧ hn) ⊕ ··· ⊕ (gm ∧ h1) ⊕ ··· ⊕ (gm ∧ hn).
For two monomials gi and hj , gi ∧ hj forms again a monomial and hence has
a single non-zero coefficient. Let aG and aH be the non-zero coefficients of gi

and hj respectively. Since the conjunction is idempotent (i.e., xi ∧ xi = xi), the
non-zero coefficient of gi ∧ hj is aG∪H .

Using the known rules, we obtain UA1(g∧h) = UA1(g1 ∧h1)�··· �UA1(g1∧
hn)�··· �UA1(gm ∧ h1)�··· �UA1(gm ∧ hn). Since UA1 only considers coeffi-
cients aK with |K| ≤ 1, we can ignore all those gi ∧ hj that do not have such a
coefficient. For |G ∪ H| ≤ 1, either G = H and |G| = |H| ≤ 1 or |G| = 1 and
H = ∅ (or vice versa). We thus group the UA1(gi ∧ hj) into three sets.

By definition of UA1, all those monomials that fulfill the first condition are
included in UA1(g) ∩ UA1(h). The set of monomials satisfying the second con-
dition depends on the presence of the NeuTral element 1:

NT(k1, k2) =

{
UA1(k1) \ {1} if 1 ∈ UA1(k2)
∅ otherwise.

As either G or H may be empty according to the second condition, UA1(f)
depends on NT(g, h) and NT(h, g). Since these sets and UA1(g) ∩ UA1(g) are
not necessarily disjoint, the above expansion of g ∧ h requires that we take their
symmetric difference: UA1(g ∧ h) = (UA1(g)∩UA1(h))� NT(g, h)� NT(h, g).
For the 2nd bit of our running example, UA1 holds {x3, y3}.

In general, a combination of UA1(g) and UA1(h) does not yield an under-
approximation of f = g ◦ h. For example, let g(x1, x2) = x2 ⊕ (x1 ∧ x2) and
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h(x1, x2) = x1 ⊕ x2 ⊕ (x1 ∧ x2). Then, x2 ∈ UA1(g) but x2 /∈ UA1(g ◦ h) since
g(h(x1, x2), x2) = x2⊕(x1∧x2)⊕x2⊕(x1∧x2) = 0. Thus, to compute UA1(g◦h),
the circuit for g ◦ h must be constructed explicitly.

Next, we show how to use UA1 to compute the set UA2 of the coefficients aK

with |K| ≤ 2. For some bit xi, the Reed–Muller decomposition splits a function
f into a part f|xi=0 that does not depend on xi and a part xi ∧(f|xi=0⊕f|xi=1) in
which every monomial contains xi. Hence, UA1(f|xi=0⊕f|xi=1) contains all those
xj such that a{i,j} = 1 in the Zhegalkin polynomial of f . If this set is non-empty,
xi and all xj ∈ UA1(f|xi=0 ⊕ f|xi=1) are essential bits of f . By taking the union
of these essential bits for all bits xi of f (and additionally UA1(f)), we obtain
UA2(f). For the 2nd bit of our running example, UA2 is {x1, x2, x3, y1, y2, y3}
and thus contains all essential bits.

In contrast, our overapproximation OA holds those xi that possibly occur
in some set K with aK = 1 as well as 1 if a∅ = 1. As these xi may occur in
arbitrary monomials, we have to adjust our rules. (The rule whether 1 ∈ OA(f)
is a special case. It is the same as for UA1 since this rule is exact in this case.)
Again, the first two are OA(1) = {1} and OA(xi) = {xi}.

f = g ⊕ h has exactly those non-zero coefficients that occur in either g or
h. The number of non-zero aK may be exponential. But since every non-zero
coefficient of f is included in the set union of the non-zero coefficients of g and
h, the set union overapproximates them: OA(g ⊕ h) = OA(g) ∪ OA(h).

If xi is neither essential in g nor h, it is also not essential in f = g ∧ h. We
can thus also resort to a set union but with one caveat. If g or h is the constant 0
function, the result should also be the constant 0 function, which has no essential
bits. Note that OA(g) = ∅ implies g = 0 (similar for h):

OA(g ∧ h) =

{
∅ if OA(g) = ∅ or OA(h) = ∅
OA(g) ∪ OA(h) otherwise.

For the 2nd bit of the running example, OA is the same as UA2 and hence also
yields an exact result. In contrast to UA (both UA1 and UA2), replacing a bit in
OA(g) by OA(h) (i.e., removing xi and adding OA(h) instead) overapproximates
the essential bits of g ◦ h. As the UA and OA of bit vector functions is the
collection of the UAs and OAs of their corresponding Boolean functions, we can
derive the OA of a program from the OA of its operations.

4 Flagging Synthesis Problems as Infeasible

The specification function f and its implementing program P represent equiv-
alent bit vector functions and have the same essential bits for each output
bit. In terms of approximations, the following two tests UA(f) ⊆ OA(P ) and
UA(P ) ⊆ OA(f) must hold. Hence, to check whether a synthesis problem is
infeasible, it suffices to either show that the allowed operations do not admit a
program PU (the upper bound) with UA(f) ⊆ OA(PU ) or a program PL (the
lower bound) with UA(PL) ⊆ OA(f). Our definition does not require that upper



358 M. Kamp and M. Philippsen

and lower bounds perform the same computation as P . Proving that these do
not exist for a function f is as costly as identifying infeasibility with a stan-
dard synthesizer. As our approximations require to build the full circuit for
PL before evaluating UA(PL), we do not attempt to prove the non-existence
of lower bounds. Instead, we show that there is no upper bound by tackling
the complementary problem: If we cannot find an upper bound for f using the
approximations of essential bits, the synthesis problem must be infeasible. But
it is not necessary to examine all possible programs during this search: With
relaxed upper bounds (Sect. 4.1) we only need to consider programs that are
trees (Sect. 4.2) and are constructed by expanding a program consisting of at
most two operations (Sect. 4.4); and we can use bipartite matchings (Sect. 4.3)
to speed up the search. We give an algorithm relying on essential bits (Sect. 4.4)
and another one that determines the “flavor” of the bit dependencies by tracking
the 1 in the Zhegalkin polynomial (Sect. 4.5).

Note that loop-free programs correspond to directed acyclic graphs (DAG)
with a single source node (the result). Its nodes are input variables and opera-
tions, its edges point to the operands of operation nodes. We call an outgoing
edge of an operation o an argument edge (short: arg-edge) of o.

4.1 Bit Dependency Shapes

We discovered that the essential bits of an input variable often follow one of four
regular patterns that we call bit shapes. When the essential bits follow a simple
shape (symbol: ), the i-th output bit is solely based on the i-th input bit, e.g.,
in operations like ∧. In an ascending shape ( ), input bits j ≤ i influence the
i-th output bit, e.g., in +. In a descending shape ( ), the i-th output bit depends
on input bits j ≥ i, e.g., the bits of x in x � y. In a block shape ( ), arbitrary
input bits influence an output bit, e.g., the bits of y in x ÷ y.

Fig. 1. Lattice.

These shapes are partially ordered and form a lat-
tice [7]: a larger shape subsumes all input-output depen-
dencies of a smaller shape. Figure 1 shows this ordering.

and are incomparable, denoted by ‖ . The small-
est/largest element is / .

The shape of an input variable of a specification func-
tion resp. the shape of an operand of an operation is the smallest shape that fits
to the approximated essential bits of the input variable or operand. We discard
both the operands with no influence on the output (no shape) and the operations
without operands (e.g., constants). For example, the program that computes the
average from Sect. 1 uses the operations ∧, ⊕, � 1, and −. For two input vari-
ables x and y, the i-th output bit of x ∧ y depends only on the i-th input bit of
both x and y. Since this pattern corresponds to a shape, we say that ∧ is an
operation with two inputs in shape . Hence, the list [ , ] is an abstraction of
∧. Similarly, [ , ], [ , ], and [ ] are the shape abstractions of ⊕, −, and � 1
respectively.

We derive the shapes of the input variables of a program P via its DAG
representation and the computed shape abstractions of its operations. Since a
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shape abstraction contains one shape per operand, each arg-edge of the DAG is
associated with a shape. According to Sect. 3, for an operation o1 that uses the
result of its operand o2 we can obtain an overapproximation of o1◦o2 by replacing
an essential bit xi in OA(o1) by all elements of OA of the i-th Boolean function
of o2. To transfer this property to shapes, consider for example x − (y � 1)
with the operations − and � 1. The 2nd bit of y influences the 1st output bit
of � 1, which in turn influences the 1st and 3rd output bits of −, among others.
Hence, the shape abstraction for x − (y � 1) is [ , ]. This suggests that the
composition of shape abstractions is related to the join  of the shape lattice
since [ , ] is the shape abstraction of −, [ ] is the shape abstraction of � 1,
and  = is the smallest element greater than or equal to both and .

Fig. 2. Shapes
of the running
example.

To show this, assume that o2 is connected to an arg-edge
a1 of shape s1 of o1. Now examine an arg-edge a2 of o2 that
is in shape s2. If s1 = , then the i-th input bit of a1 affects
at most the i-th output bit of o1. Thus, if we replace these
bits by those from the corresponding entry of OA(o2), a2 is
at most in the shape s2 in OA(o1 ◦ o2). Similarly, if s1 =
and s2 = , then a2 is at most in the shape in OA(o1 ◦ o2)
because the i-th input bit of o2 influences only the i-th output
bit and o1 spreads the i-th input bit only to the output bits j ≥ i. An exhaustive
analysis of all cases reveals that the shape of a2 in o1◦o2 is at most s1s2. Thus,
for a path a1, ... , an in P from the source to an input variable over arg-edges ai

of shape si, the total Path Shape PSP (a1, ... , an) =
⊔

1≤i≤n si. The shape of an
input variable v of P is the join of the path shapes of all paths that reach v.
For example, the two paths that reach x in Fig. 2 have shapes  = and

  = , hence the shape of variable x is  = . If there is only one
unique path, we use a simplified notation PSP (an) = PSP (a1, ... , an).

If P has an input variable v with a shape in P (computed via OA) that is not
greater or equal to the shape in f (computed via UA), there must be an output
bit that is essential in some input bit in f but not in P . Hence, UA(f) � OA(P ).
If there is no P such that all input variables have greater or equal shape in P
than in f , there is no upper bound and thus the synthesis problem is infeasible.

4.2 Tree Upper Bounds

Fig. 3. Tree pro-
gram.

The program (x∨ y)− ((x⊕ y) � 1) is not the only upper
bound for our example synthesis task. Figure 3 shows
another upper bound with some special properties. First,
some operations do not refer to an operand (denoted by
“?”). Arbitrary values may be inserted here. As our infea-
sibility checker only uses the leaf shapes of a program and
does not run it, we may keep these “loose ends” in our
programs. Second, the result of every operation and every input variable is only
used once. Hence, this program is formed like a tree. Does existence of an upper
bound imply existence of such a tree upper bound? Luckily, we show below that
whenever there is an upper bound program for a specification function f , there
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is also an upper bound whose underlying undirected graph (that results from
replacing all directed edges a → b by a single undirected edge) is a tree. Hence,
parallel arg-edges collapse to a single edge in the underlying undirected graph.
Instead of a (hopefully failing) exhaustive search for an upper bound among
arbitrary programs, it hence suffices to check the much smaller search space of
tree programs that use each input variable only once. Such tree programs are not
“real” programs in the sense that they can be executed since some operands are
unconnected (as in Fig. 3). Their only purpose is to provide a simple skeleton
that abstracts several real programs. In the following proof, we transform an
arbitrary upper bound into a tree program. If the underlying undirected graph
of a program is not a tree, it must contain a cycle. We reduce these cycles until
they can be eliminated from the program. These transformations ensure that
the shape of the input variables of the resulting program are at least as large as
in the original program.

Lemma 2. Suppose P is an upper bound of f . Then there is an upper bound P ′

that uses the same operations but whose underlying undirected graph is a tree.

Proof. We construct a sequence of upper bounds P0, ... , Pn such that P0 = P
and Pn =: P ′.

If for an arbitrary i ≥ 0 the underlying undirected graph Gi of Pi is a tree,
then n := i. Otherwise, Gi has a cycle C of minimal length with an operation o
that has a minimal distance from the source among the operations in C. Then
C contains exactly two non-parallel arg-edges a1, a2 of o with shapes s1, s2. Let
p1, p2 be the (unique and distinct) paths in Pi from o to a common end o′ that
include a1 resp. a2 such that their union forms an orientation of C.

Cycle reduction: Assume that |p1| > 1 and |p2| > 1. Let q1 (resp. q2) be the
operation that directly precedes o′ on p1 (resp. p2). Since Pi is a DAG, Pi cannot
contain both a path from q1 to q2 and from q2 to q1. Assume that Pi does not
contain a path from q2 to q1 (the other case is similar). Then Pi+1 results from the
transformation shown in Fig. 4a. To show that Pi+1 is also an upper bound, let
p be an arbitrary path from the source to an arbitrary variable x in Pi. If p does
not contain the edge (q1, o′), p is also a path in Pi+1. Otherwise, we can obtain
a corresponding path p′ in Pi+1 by replacing (q1, o′) by the two edges (q1, q2)

Fig. 4. Tree construction. : paths that may include arg-edges a1 or a2.
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and (q2, o′). The edge (q1, o′) in Pi and (q1, q2) in Pi+1 correspond to the same
operand of q1 and hence have the same shape. Let s be the shape of the operand
corresponding to the edge (q2, o′). Then PSPi+1(p

′) = PSPi
(p) s ≥ PSPi

(p). As
this holds for all paths p and variables x, Pi+1 is also an upper bound. Gi+1 has
a smaller cycle than the minimal C of Gi.

Cycle elimination, |p1| = 1 (|p2| = 1 is similar): Case 1, s1 ≤ PSPi
(p2): Define

Pi+1 by removing the arg-edge a1 in Pi (Fig. 4b). Then Pi+1 is also an upper
bound: For each path p over a1 in Pi we get a path p′ in both Pi and Pi+1 by
replacing a1 with p2 such that PSPi

(p) ≤ PSPi
(p′). Hence, PSPi

(p)PSPi
(p′) =

PSPi+1(p
′). Pi+1 is an upper bound as the join of the shapes of all paths reaching

a variable x is the same in Pi and Pi+1. Gi+1 has fewer cycles than Gi. Case 2,
s1 > PSPi

(p2): Similar to case 1 but remove the last arg-edge of p2 instead of
a1. Case 3, s1 ‖ PSPi

(p2): Define Pi+1 by reconnecting a1 to the operation o′′

that a2 refers to (Fig. 4c). To show that Pi+1 is an upper bound, let p be an
arbitrary path from the source to an arbitrary variable x in Pi. If p does not
contain a1, p is also a path in Pi+1. Otherwise, there is a path p′ to x in Pi+1

that contains the reconnected a1 and all edges except a2 from p2 since a1 and p2
have a common end in Pi. Similar to above, PSPi+1(p

′) ≥ PSPi
(p) and hence the

join of the shapes of all paths from the source to x is at least as large in Pi+1 as
in Pi. Since p and x are arbitrary, all variables are in at least the same shape in
Pi+1 as in Pi and Pi+1 is also an upper bound. Gi+1 has fewer cycles than Gi.

As these transformations keep the upper bound property and eventually
remove all cycles, Gn is a tree. �

Note that our infeasibility checker never constructs a tree program from a
general program. It only explores the search space of tree programs. It even
suffices to explore tree programs without parallel edges as such edges can be
transformed away without affecting the upper bound property: For parallel edges
with shapes s1 ≤ s2 it suffices to keep the edge for s2. We omit the case of
incomparable shapes as there are no such arg-edges in the synthesis problems of
our evaluation in Sect. 5 and hence it is unlikely that they occur in practice.

4.3 Bipartite Matching of Variables to Usage Locations

A (hopefully failing) exhaustive search for upper bounds among the tree pro-
grams examines many tree programs that differ only in the usages of the input
variables. In the tree program in Fig. 3, we can, for example, swap x with y or
one of the “?”. In total, there are

(
4
2

)
= 12 ways to connect the given variables

to this arrangement of operations. An exhaustive search would examine these 12
possibilities for each possible arrangement of the operations. To tune the search
and avoid many redundant configurations, we simply omit the variables during
the search. Hence, the search space shrinks to the space of leaves programs that
use placeholder nodes (leaves) instead of variables (see Fig. 5). Then we view
the problem of replacing the leaves by variables as a bipartite matching problem.
Recall that in an upper bound each input variable must have a shape that is
greater or equal to its respective shape in the specification function. To tailor
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our search towards upper bounds, a variable can only be matched to a leaf if this
puts the variable in a shape required by an upper bound. In Fig. 5, for example,
x may only be matched to one of the two rightmost leaves.

Fig. 5. Leaves pro-
gram.

Consequently, we search for an upper bound using the
operations alone and then obtain a bipartite matching
from the variables to leaves that gives them at least the
variable shapes of the input variables of the specification
function f . The multiset V holds all variable shapes of
f . The path shape of the unique path from the root to a
placeholder is its leaf shape. The multiset L(P ) contains
all leaf shapes of a leaves programs P . A leaves program is an upper bound if
there is a matching of each variable v to a leaf � whose shape is at least as large
as the shape of v. If no leaves program admits such a matching, the synthe-
sis problem is infeasible. It thus suffices to compute the size ν of a maximum
matching, which can be done efficiently with the formula we give in Lemma 3.

As we did in the proof of Lemma 2, we shall later transform upper bounds,
making use of the condition in Lemma 4 that guarantees that a second leaves
program T can match at least as many variables as P . Hence, if P is an upper
bound, so is T (needed in the search space reduction in Sect. 4.4). Finding
a program with a maximum number of matched variables is an optimization
problem yielding an optimum program. If this optimum program does not admit
a matching of all variables, the synthesis problem is infeasible.

In the course of the search, we expand leaves programs by adding an opera-
tion. If an incomplete leaves program cannot be expanded to an optimum pro-
gram, it may be ignored during the search. Lemma 5 extends Lemma 4 to also
consider further expansions.

Some more notations: Restrictions of variable/leaf shapes to some set of
shapes X: V(X) = {x ∈ V | x ∈ X} and L(P,X) = {x ∈ L(P ) | x ∈ X};
universe of shapes U ; downward closure ↓X = {y ∈ U | ∃x ∈ X.x ≥ y} of a set
of shapes X. Analogously, ↑X = {y ∈ U | ∃x ∈ X.x ≤ y}. Leaf shape difference
w.r.t. a set of shapes X: δ(P, T,X) = {y ∈ L(P ) \L(T ) | y ∈ X}. Missing proofs
for the lemmas can be found in the artifact for the paper [13].

Lemma 3. The maximum number of matched variables of a leaves program P
is ν(P ) = |L(P )| − maxX(|L(P, ↓X)| − |V(↓X)|).

To compute ν, we only need to consider those sets X with distinct ↓X, which
are { }, { }, { }, { , }, { }. A single iteration that counts the leaf shapes for
each of these sets then yields all |L(P, ↓X)|. This is a lot easier than trying each
possibility of assigning the variables to the leaves. Besides, the check whether a
leaves program P is an upper bound reduces to ν(P ) = |V |.

Next, we relate the size of maximum matchings for two leaves programs.
Intuitively, if a leaves program T has larger leaf shapes than P , it should match
at least as many variables as P . The next lemma formalizes this insight.
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Lemma 4. Suppose P and T are leaves programs with |L(P )| = |L(T )|. If for
all sets of shapes X, |δ(P, T, ↑X)| ≤ |δ(T, P, ↑X)|, then ν(T ) ≥ ν(P ).

If as many leaves of P as possible match to leaves of T with the same shape
and if the remaining leaves of P match to larger leaves of T , Hall’s Marriage
Theorem provides the necessary condition for Lemma 4. This is handy if T is the
result of some transformation on P because we can prove that the transformation
preserves optimality if we can obtain such a matching by examining its steps.

Fig. 6. Expansion of a leaves program (placeholder: ).

A leaves program R is a root of a leaves program P if R and P have the
same root operation and R is an induced subtree of P . (R and P have the same
structure except that the successor of an operation may be another operation
in P but a leaf in R.) An exhaustive search can then expand R to get closer to
P by replacing a leaf arg-edge a with a subtree S formed of several operations,
see Fig. 6, notation: R + (a, S). Suppose we can expand a leaves program R
by either γ1 or γ2. If we choose the better expansion according to Lemma 4,
is it possible that this choice must lead to a worse program after subsequent
expansions? Lemma 5 shows that this is impossible:

Lemma 5. If a leaves program P is rooted in R+γ1 and there is another expan-
sion γ2 of R such that γ2 comprises the same operations as γ1 and for all sets
of shapes X, |δ(R + γ1, R + γ2, ↑X)| ≤ |δ(R + γ2, R + γ1, ↑X)|, then there is a
P ′ rooted in R + γ2 with ν(P ′) ≥ ν(P ).

4.4 Infeasibility Checks with Upper Bounds

Although a (hopefully failing) exhaustive search constructs leaves programs only
to get their leaf shapes, the order in which the search considers operations mat-
ters. For example, Fig. 7 shows an optimal leaves program if we pick the opera-
tions with operand shapes first and the operation with operand shape last.
This leaves program is, however, not an optimum program and hence no upper
bound because it admits a matching of only one variable in contrast to Fig. 5.
The reason is the position of the operations that provide and shapes. As
these two operations together supply a  = shape, it intuitively makes
sense to pick these operations first and the other operations that cannot further
enlarge this shape later. We show below that there are always at most two oper-
ations that should be picked first (although we do not always know which). The
remaining operations can then be considered in an arbitrary order.
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But let us first introduce three transformations T1 to T3 for leaves programs
and conditions under which they do not reduce ν. We shall use T1 to T3 in the
proofs below. Readers may wish to skip these on a cursory read.

As Fig. 8 shows, T1(P, a) removes a subtree S1 connected to a and connects
the remaining tree to an arbitrary leaf � of S1.

Fig. 7. No upper
bound.

Fig. 8. Effect of
T1(P, a).

Fig. 9. Effect of
T2(P, a1, aj).

Fig. 10. Effect of T3(P, a1, a2, a3).

Lemma 6. Suppose a1, ... , an is a path in a leaves program P . If for 1 ≤ i <
j ≤ n, PSP (aj−1) = < PSP (aj), then ν(T1(P, ai)) ≥ ν(P ).

T2(P, a1, aj) swaps the subtree S1 connected to the arg-edge aj with the
subtree S2 connected to a1, see Fig. 9.

Lemma 7. Suppose a1, ... , an is a path in a leaves program P . If for 1 ≤ j ≤ n,
PSP (a1) = PSP (aj), then ν(T2(P, a1, aj)) ≥ ν(P ).

T3(P, a1, a2, a3) removes the subtrees S1, S2, S3 connected to arg-edges a1,
a2, a3 respectively. Then it connects S2 to a3, S3 to a1, and S1 to a2, see Fig. 10.

Lemma 8. Suppose P is a program with arg-edges a1, a2, a3 such that (a)
PSP (a2) ≤ PSP (a3), (b) there is no path that contains both a2 and a3, (c) an
operation o is connected to a2, a1 is an arg-edge of o, and PSP (a2) = PSP (a1).
Then ν(T3(P, a1, a2, a3)) ≥ ν(P ).
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Lemma 5 already revealed that expanding only one leaf arg-edge for every
leaf shape suffices because expanding a second arg-edge of the same shape with
the same operations cannot yield a better program. Now we show that it even
suffices to consider (almost) only a single arbitrary permutation of operations
during the search for upper bounds: We first show that there is a leaves program
consisting of at most two operations (a so-called seed) that can be expanded to
an optimum solution. Second, we show that there is a seed that can be expanded
to an optimum program with the remaining operations in an arbitrary order.

Lemma 9. There is an optimum program O rooted in a seed D of at most two
operations with max(L(D)) = max(L(O)).

Proof. Let Q be an arbitrary optimum leaves program with root operation r.
If max(L(Q)) is a subset of the set of arg-edge shapes of r, r alone satisfies
the Lemma. Otherwise, there is a shape in max(L(Q)) that is not provided
by r. If r has only arg-edges of shape , there is a path a1, ... , ai in Q with
PSQ(ai−1) = < PSQ(ai). By Lemma 6, T1(Q, ai−1) is also optimum and is
rooted in an operation with an arg-edge of non- shape. Hence, assume that
r has a non- arg-edge ar of shape sr. This implies that there is exactly one
shape sm in max(L(Q)) that is not an arg-edge shape of r. There are three cases.
(a) If Q has a path a′

1, ... , a
′
n with PSQ(a′

1) = PSQ(a′
n−1) and PSQ(a′

n) = sm,
then T2(Q, a′

1, a
′
n−1) is also optimum by Lemma 7 and r plus the operand of

a′
1 form its seed. For the remaining cases, the missing shape sm is and Q

has a path a′
1, ... , a

′
n and a 1 < i < n with PSQ(a′

1) = , PSQ(a′
n) = . (b) If

PSQ(a′
i) = sr, then the disjoint subtrees connected to a′

i and a′
r may be swapped

without altering any leaf shape. For the resulting program, case (a) applies. (c)
If PSQ(a′

i) ‖ sr, then T1(P, a′
i−1) is also optimum by Lemma 6. Moreover, the

prefix of arg-edges is removed from the path so that case (a) applies. �

Ra1 am R
o2

o1

a1 am

a′
1

R
o1 o2

a1 am

Fig. 11. Constellations in the proof of Lemma 10.

If a seed D cannot be expanded to an optimum program by picking the
operations in an arbitrary order, the next Lemma shows that there is a “stronger”
seed (that we can systematically search for). In its proof, we try to swap the order
of two operations in an optimum program. In almost all cases, we can connect
the swapped operations so that the resulting leaves program is still optimum.
Otherwise, the two swapped operations provide the “stronger” seed.

Lemma 10. Suppose that O is an optimum program rooted in a seed D with
max(L(D)) = max(L(O)) and that no optimum program O′ has a leaf shape
s ∈ max(L(O′)) that is larger than some shape in max(L(O)).
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Let R be a program, a1 an arg-edge of R, and a2 an arg-edge of R + (a1, o1)
such that R is rooted in D and O is rooted in R + (a1, o1) + (a2, o2). If no arg-
edges a′

2 of R and a′
1 of R+(a′

2, o2) exist such that R+(a′
2, o2)+(a′

1, o1) is a root
of an optimum program, then there is a seed D′ that is the root of an optimum
program with max(L(D′)) = max(L(O)) and there is an sD ∈ L(D) such that,
for all leaf shapes sD′ ∈ L(D′), sD < sD′ .

Proof. Since max(L(O)) = max(L(D)), max(L(R)) = max(L(O)). Let s1 =
PSO(a1) and s2 = PSO(a2). If there are arg-edges a′

2 of R and a′
1 of R+(a′

2, o2)
such that PSR(a′

2) = s2 and PSR+(a′
2,o2)(a

′
1) = s1, then L(R + (a′

2, o2) +
(a′

1, o1)) = L(R + (a1, o1) + (a2, o2)). Hence, R + (a′
2, o2) + (a′

1, o1) can also
be expanded to an optimum program by Lemma 5. Otherwise, there are two
cases:

(1) s2 /∈ L(R). Since max(L(R)) = max(L(O)), R must have some arg-edge
am of shape sm > s2 > s1 (see Fig. 11, left). There are three sub-cases:

(1a) All arg-edges of o2 have a larger shape than s2. Then o2 may also be
connected to arg-edges of smaller shape than s2. If o2 is connected to a1 of R and
o1 is connected to an arg-edge a′

1 of o2 (see Fig. 11, center), the leaves provided
by o2 in R + (a1, o1) + (a2, o2) are still present in the resulting program (since
a2 is an arg-edge of o1, the shape of a′

1 is still present). For every leaf shape
contributed by o1 in R + (a1, o1) + (a2, o2), o1 contributes a leaf that is at least
as large in R + (a1, o2) + (a′

1, o1) because the shape of a′
1 is larger than s1. By

Lemma 5, this is also a root of an optimum program.
(1b) There is some arg-edge of o2 with shape t ≤ s2. If o2 is connected to

am and o1 is connected to a1 (see Fig. 11, right; since sm > s2 > s1, these
are distinct arg-edges), the leaves provided by o1 in R + (a1, o1) + (a2, o2) (plus
s2 ≥ t) are still present in the resulting program. For every leaf shape contributed
by o2 in R + (a1, o1) + (a2, o2), o2 contributes a leaf that is at least as large in
R+(am, o2)+(a1, o1). Viewed as a matching, the leaf of am in R+(a1, o1)+(a2, o2)
and the leaf of a2 in R+(am, o2)+ (a1, o1) are unmatched. But for the arg-edge
at of shape t, we have PSR+(a1,o1)+(a2,o2)(at) = s2 and PSR+(am,o2)+(a1,o1)(at) =
sm. Thus, the premise of Lemma 5 holds and R + (am, o2) + (a1, o1) is also the
root of an optimum program.

(1c) The smallest arg-edge shape of o2 is incomparable to s2. Then sm =
and max(L(O)) = { }. Also, since sm > s2 > s1, s1 = . If o1 has an arg-edge
a of shape , T3(O, a , a1, am) is also optimum by Lemma 8. Since o1 and o2
occur in shape sm in T3(O, a , a1, am), there exists an expansion by o2 followed
by o1 (as seen before).

Now, assume that no expansion by o2 and then o1 is a root of an optimum
program. Hence, o1 cannot have an arg-edge of shape . Since the program
o1 + (a2, o2) can provide the shape = sm, the program has no leaf of shape ,
and s1 = , we know by Lemma 6 that this program is the root of the optimum
program T1(O, a1). Hence, o1 + (a2, o2) is the required seed as it has no leaf of
shape = s1 and consists of two operations.

(2) There is an arg-edge a′
2 of R with PSR(a′

2) = s2 but s1 /∈ L(R+(a′
2, o2)).

As s1 ∈ L(R) by assumption, o2 must be connected to the only arg-edge a′
2 with
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PSR(a′
2) = s2 = s1. If we connect o1 to any arg-edge of o2, each leaf of o1 in

this program is larger than or equal to its counterpart in R+ (a1, o1) + (a2, o2).
Thus, by Lemma 5, this can also be expanded to an optimum program. �

We can simply try to expand all possible seeds and pick the best program
because Lemmas 9 and 10 guarantee that this will be an optimum program. In
our running example, we then eventually pick a seed consisting of the operations
with shape abstractions [ , ] and [ ] and grow the optimum program shown in
Fig. 5 from this seed. This is the idea behind Algorithm 1.

Now we show that Algorithm 1 only flags synthesis problems as infeasible
that are truly infeasible. Since we deal with leaves programs, we need to show
that the algorithm only returns “infeasible” if there is no leaves program with
a matching of all variables to some leaf. To compute the size of a maximum
matching, Algorithm 1 uses the matching function ν that is defined in Lemma 3.

Theorem 1. Algorithm 1 returns “infeasible” if and only if there is no leaves
program P with ν(P ) = |V|.
Proof. By Lemmas 9 and 10, there is a seed D of at most two operations that
can be expanded to an optimum program by all permutations of operations. The
main loop (lines 2–10) considers all these seeds and hence considers D.

input : Operations Ops, Variable shapes V
output: Feasibility flag

1 B ← ∅;
2 foreach seed D of at most two operations do
3 S0 ← {D};ROps ← Ops \ {o | D contains operation o};
4 for i ← 1 to |ROps| do // ops-loop
5 Si ← ∅;
6 foreach T ∈ Si−1 do
7 foreach s ∈ L(T ) do
8 a ←Leaf arg-edge with PST (a) = s;
9 Si ← Si ∪ (T + (a,ROps[i]));

10 B ← B ∪ {argmaxT∈S|ROps|(ν(T ))};

11 if ν(argmaxT∈B(ν(T ))) = |V| then
12 return unknown
13 return infeasible

Algorithm 1. Checking the existence of an upper bound.

Suppose that a permutation π of operations can expand D and that in iter-
ation i of the ops-loop (lines 4–9) some program T in Si−1 can be expanded to
an optimum program. Then there is some arg-edge a of T such that T + (a, oπi

)
can be expanded to an optimum program. For all a′ with PST (a′) = PST (a),
T + (a′, oπi

) can also be expanded to an optimum program by Lemma 5. As
the inner loop considers PST (a), it also expands an arg-edge of shape PST (a)
and includes the expansion in Si. As every iteration of the ops-loop produces a
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program that can be expanded to an optimum program, S|ROps| contains an opti-
mum program O that line 10 adds to B. Hence, Algorithm 1 returns “infeasible”
if and only if ν(O) < |V|. �

4.5 Infeasibility Check with the 1 in the Zhegalkin Polynomial

As Sect. 1 shows, bit dependencies come in two flavors. For example, the highest
output bit of an average of ¬x and y behaves differently than the other bits.
The reason is that only the Zhegalkin polynomial of the highest bit contains a
non-zero coefficient a∅ (i.e., the Zhegalkin polynomial contains a 1). Hence, the
presence of a 1 determines the flavor of an output bit.

Recall that our definition of an upper bound implies that its Zhegalkin poly-
nomial for an output bit must contain a 1 if the same holds for the specification.
If such a program does not exist, the synthesis problem is infeasible. If it exists,
such a program may use two ways to realize a 1 in some output bit: First, cer-
tain operations (e.g., constants) provide some 1s. Second, some operations can
propagate a 1 from an input bit to another output bit. Consider, for example,
the program 2+ 2. As the Zhegalkin polynomial of the 2nd bit of 2 but only the
3rd bit of the result is 1, the operation + can at least propagate the 2nd to the
3rd bit. An infeasibility checker may thus compute all possible propagations and
then check if these suffice to let the sources of 1 reach the required output bits.

Although OA contains all possible propagations, it is too imprecise for this
infeasibility checker. Consider an operation o(x, y) with the Zhegalkin polyno-
mial x1 ∧ y2 for the 1st output bit. Then OA(o1) = {x1, y2} but a 1 in y2 can
never reach the 1st output bit if x1 does not also contain 1. Thus, o does not help
to propagate 1 from the 2nd to the 1st bit. Luckily, we may use the following trick
to overapproximate the propagations from other input bits: For each output bit
i we compute OA(oi) with the i-th input bits of all its operands forced to 0.
Then this OA(oi) contains the overapproximated input bits that can reach the
i-th output bit independently of the i-th input bit of each operand.

Next, we combine the propagations of all operations. Let the goal set G be
the set of i such that 1 ∈ UA(fi) for a specification function f . To check if 1 can
never reach all output bits in G, Algorithm 2 computes a set J of propagations.
It then flags a synthesis problem as infeasible if it is impossible to propagate a
1 from its possible sources to the output bits in G.

Theorem 2. If Algorithm 2 returns “infeasible”, there is an i ∈ G such that no
program comprising the operations Ops has a 1 in the Zhegalkin polynomial of
its i-th output bit.

Proof. Suppose that Algorithm 2 returns “infeasible”. Then there is an output
bit i ∈ G but J does not contain a propagation from a bit in Srcs to i (lines 8–9).

We show by induction on |Ops| that J holds at least all propagations of all
programs using a subset of the operations Ops. Initially, J holds the propagations
of the empty program. Suppose an operation o /∈ Ops propagates bit j to i. Let P
be an arbitrary program using operations Ops∪{o}. Then there are disjoint sets
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input : Bit width w, Operations Ops, Goal G
output: Feasibility flag

1 Srcs ← ∅; J ← {(i, i) | 1 ≤ i ≤ w};
2 foreach Operation o ∈ Ops do
3 NJ ← J ;
4 foreach Propagation of o from bit j to i do
5 NJ ← NJ ∪ {(k, �) | (k, j) ∈ J, (i, �) ∈ J};
6 Srcs ← Srcs ∪ {i | 1 ≤ i ≤ w, i-th output bit of o contains 1};
7 J ← NJ ;
8 if ∃i ∈ G. ∀j ∈ Srcs. (j, i) /∈ J then
9 return infeasible

10 return unknown

Algorithm 2. Checking the propagations of 1.

A,B ⊆ Ops such that o depends on the operations in A and the operations in B
depend on o in P . By the induction hypothesis, J holds all possible propagations
for A and B. Thus, if A propagates bit k to j and B propagates bit i to �, then
line 5 adds (k, �) to J . Hence, J holds at least all possible propagations.

Also, Srcs contains the bit positions of all sources of 1. Thus, if J lacks a
propagation from a bit in Srcs to i, then no program comprising the operations
Ops has a 1 in the Zhegalkin polynomial of its i-th output bit. �

5 Evaluation

This section addresses three questions: (RQ1) How fast and accurate are our
approximations compared with an exact computation? (RQ2) How much do
Algorithms 1 and 2 impact the solution time for synthesis problems? (RQ3) Do
Algorithms 1 and 2 detect hard infeasible problems?

As we are not aware of a benchmark of infeasible synthesis problems, we use
specifications from four sources: The bit vector rewrite rules of Nötzli et al. [16],
the code optimizations of Buchwald [3], the test cases in the public repository
of Sasnauskas et al. [18] without undefined behavior, and the Syntax Guided
Synthesis competition benchmark [1]. As we are restricted to bit vector speci-
fications with a single equality constraint and without precondition, this yields
26+56+23+19 = 124 specifications. To turn them into synthesis problems that
may be infeasible, we use them as input to an existing application in Sects. 5.2
and 5.3 that adds collections of available operations.

For comparative purposes, we implemented the synthesis method of Gulwani
et al. [10] on top of the mature state-of-the-art SMT solver Yices 2.6.2 [9]. We
implemented this synthesis method, our approximations, plus Algorithms 1 and 2
straightforwardly in Java, without a lot of manual fine-tuning. All measurements
ran on a computer equipped with an Intel i7-6920HQ processor and 32 GB of
RAM running a Linux 5.7.11 kernel and Java 11.0.8 + 10.
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5.1 Quality of the Approximations (RQ1)

The approximations UA1, UA2, and OA are one of the contributions of this
paper. We examine how well they are suited for an analysis of the 124 specifica-
tions and how large the advantage of UA2 is over UA1.

To obtain the exact set of essential bits for each output bit, according to
Sect. 2 we formulate for each synthesis problem multiple Yices queries “Does
output bit i depend on input bit j?”, one for each i and j.

Fig. 12. Speedup of approximations over exact computation.

Figure 12 shows that computing UA1 and OA is almost always at least three
orders of magnitude faster than the exact computation. UA2 is still 50 times
faster in about half the cases. Figure 13 shows that UA1 and OA deliver per-
fect results for more than 50% of the specifications. UA2 almost reaches 75%
and can avoid the low agreement of UA1 in some cases. UA2 takes at most
120ms for analyzing a single specification, whereas Yices requires up to 3min,
a disproportionate amount of time.

Fig. 13. Agreement with exact computation.

5.2 Impact of Algorithms 1 and 2 (RQ2)

Synthesizers for bit vector programs of bounded length usually detect infeasible
synthesis problems. They benefit from our work if the runtime saving from avoid-
ing the costly infeasibility proof exceeds the added runtime of our infeasibility
check for all considered synthesis problems. This is what we evaluate here.
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As a generator for synthesis problems and an example synthesizer we use
Synapse [2], a technique that synthesizes optimal programs w.r.t. a user-specified
cost model that assigns a cost to each operation. Such a problem lies at the heart
of many applications [5,17–19]. Later, we supply the generated synthesis prob-
lems to a second synthesizer. We feed Synapse the 124 specifications. Synapse
uses a specification-specific set of operations (see below) and enumerates syn-
thesis problems in order of increasing total cost of its collection of available
operations. If a synthesis problem is infeasible or cannot be solved within the
time limit, Synapse continues searching. If Synapse finds a program for a (feasi-
ble) synthesis problem, it stops and returns this program. Hence, all but the last
synthesis problem are infeasible or time out. To reduce the risk that Synapse
hits its time limit (which we set to 10min), we use the enumeration scheme by
Buchwald, Fried, and Hack [4]. We stop the enumeration for a single specifica-
tion if Synapse cannot find a solution within 4 h. For simplicity, our cost model
assigns a cost of 1 to all operations.

We set the specification-specific set of operations according to its benchmark
source. For each source, this set comprises the union of operations used by pro-
grams implementing the specification functions from that source.1 Since one of
these sets of operations contains 9 custom operations, we also evaluate how well
our checkers can handle operations beyond the well-known bit vector operations.

Table 1. Performance without and with Algorithms 1 and 2 (runtimes are total times).

Default With pre-checking for infeasibility

Synthesizer Total Timeouts UA2, OA Alg. 1 Alg. 2 Total Timeouts Speedup

Synapse 13.1 h 5 11.1min 3.9 s 207.3 s 8.8 h 5 32.93%

GJTV 490.1 h 1, 818 455.6 h 1, 730 7.04%

Table 2. Number of synthesis problems flagged as infeasible by Algorithms 1 and 2
versus number of all synthesis problems for varying level of hardness.

Synthesizer [0ms; 100ms] (100ms; 1 s] (1 s; 10 s] (10 s; 60 s] (60 s;∞)

Synapse 1,606/2,582 4,198/16,417 774/3,767 446/987 16/34
GJTV 2,884/5,900 1,663/6,328 1,646/4,227 497/2,875 350/4,457

In total, Synapse generates 23, 787 synthesis problems. For 2 specifications,
Synapse hits the enumeration time limit of 4 h. Thus, 122 of the 23, 787 synthesis
problems are known to be feasible whereas 23, 660 are infeasible and 5 are too
difficult for Synapse to solve within the 10min time limit. To avoid that our
1 The benchmark sources provide a means to obtain the correct program. For exam-

ple, some sources specify rewrite rules. Here, the left hand side corresponds to the
specification function and the right hand side is an implementing program.
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results are specific to Synapse, we also feed the 23, 787 synthesis problems to
our implementation of the synthesis algorithm by Gulwani et al. [10] (GJTV).2

To evaluate the impact of our work, we apply Algorithms 1 and 2 on all of
these problems (including the feasible ones) and omit the costly synthesizer on
the ones that our algorithms flag as infeasible, see Table 1. Algorithms 1 and 2
flag 5, 261 resp. 3, 013 (total: 7, 040) synthesis problems as infeasible.

With our checkers, Synapse and GJTV take 33% resp. 7% less time. Although
the improvement for GJTV is less strong (since the number of long-running prob-
lems is higher, see next section), our checkers can clearly speed up applications
of bit vector synthesis. The total runtime of our checkers is 14.6min, which
is negligible compared with the runtimes of the synthesizers. Computing the
approximations takes up to 170 times longer than running the algorithms. This
shows the effectiveness of our search space reduction.

5.3 Hardness of Flagged Synthesis Problems (RQ3)

To the best of our knowledge, there is no objective measure of the hardness of
a synthesis problem. But we may define the hardness of a problem for a specific
synthesizer as its runtime on that problem. To do this, we use the runtimes of
Synapse and GJTV for the 23, 787 synthesis problems from Sect. 5.2. For easier
presentation, we put the runtimes into five distinct bins, easy to hard, with
boundaries at 100ms, 1 s, 10 s, and 60 s. Then we investigate the proportion of
synthesis problems that are flagged infeasible to all synthesis problems in a bin.

As Table 2 shows, the problems that our infeasibility checker flags as infea-
sible are spread over all bins. For Synapse, our checker flags almost half of the
problems in the two hardest bins as infeasible. The percentage of flagged prob-
lems in these bins is lower for GJTV, but our checker can flag problems as
infeasible on which GJTV hits the timeout. Thus, our work can also deal with
hard synthesis problems.

5.4 Threats to Validity

Our results might be affected by implementation errors. We wrote more than
5, 500 test cases and performed billions of random tests to minimize this threat.
Also, the selected specifications might not be representative. To mitigate this
threat, we used four different sources for specifications. Last, the results might
be specific to a synthesis algorithm or underlying solver. To make our results rep-
resentative, we used two different synthesis algorithms that each uses a different
solver (Z3 [15] and Yices). We make our implementation publicly available [13].

2 We observed that synthesizers for the class of Syntax Guided Synthesis problems
perform poorly due to the necessary restrictions, as others noted before us [4].
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6 Related Work

Usually, infeasible problems are only addressed using domain-specific knowl-
edge [4,19] or by restricting the space of considered programs (e.g., to trees
instead of DAGs [14]), so that infeasibility is detected faster at the cost of miss-
ing some feasible solutions.

To the best of our knowledge, Warren’s right-to-left computability test [20,21]
is the only application of bit dependencies to the program feasibility problem.
In our terminology, it states that, given a specification function, there is an
implementing program composed of an arbitrary number of +, −, ∧, ∨, and ¬
operations if and only if all variables are at most in shape . Our work generalizes
his test by supporting different kinds of shapes and arbitrary operations. Also,
we present an algorithm to obtain the variable shapes.

Hu et al. [11] present an infeasibility check for unbounded synthesis problems
that are constrained by a grammar. They reduce the infeasibility check to a pro-
gram reachability problem that they tackle with a verification tool. For bounded
bit vector synthesis problems as considered in this work, such a tool would be an
SMT solver that the synthesis algorithms that we considered in Sect. 5 already
rely on. Thus, the work of Hu et al. [11] and ours tackle disjoint problems.

Another infeasibility checker by Hu et al. [12] relies on a set of example input-
output pairs to compute an abstraction of the set of terms that the grammar can
generate via an extension of a dataflow analysis to grammars. Its performance
depends on a good selection of examples. The checker only deals with unbounded
synthesis problems in the theory of linear integer arithmetic. The choice of a good
abstraction for bit vector synthesis tasks is an open problem.

7 Conclusion

The presented algorithms use bit dependencies to quickly flag some bit vector
synthesis problems as infeasible. We also proposed approximations to compute
the essential bits. As our techniques speed up synthesizers on infeasible problems
by up to 33%, it is an interesting open problem to find further properties of bit
vector functions to improve program synthesis.
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Abstract. We propose a novel method to automatically repairing buggy
heap-manipulating programs using constraint solving and deductive syn-
thesis. Given an input program C and its formal specification in the form
of a Hoare triple: {P} C {Q}, we use a separation-logic-based verifier
to verify if program C is correct w.r.t. its specifications. If program C is
found buggy, we then repair it in the following steps. First, we rely on the
verification results to collect a list of suspicious statements of the buggy
program. For each suspicious statement, we temporarily replace it with a
template patch representing the desired statements. The template patch
is also formally specified using a pair of unknown pre- and postcondition.
Next, we use the verifier to analyze the temporarily patched program
to collect constraints related to the pre- and postcondition of the tem-
plate patch. Then, these constraints are solved by our constraint solving
technique to discover the suitable specifications of the template patch.
Subsequently, these specifications can be used to synthesize program
statements of the template patch, consequently creating a candidate
program. Finally, if the candidate program is validated, it is returned
as the repaired program. We demonstrate the effectiveness of our app-
roach by evaluating our implementation and a state-of-the-art approach
on a benchmark of 231 buggy programs. The experimental results show
that our tool successfully repairs 223 buggy programs and considerably
outperforms the compared tool.

1 Introduction

The goal of automated program repair (APR) is to identify fragments of a pro-
gram that contains bugs and then to discover a patch that can be applied to
fix the issue. This intuitive definition of APR and its evident practical utilities
have aroused a lot of interest and researchers have proposed various approaches
to automatically fixing buggy programs, using ideas from mutation testing
[21,29,41,52,53], mining of semantic constraints [35–37], symbolic analysis of
the reference implementations [34,46], and deep learning [15,33].

However, one of the current limitations in APR is that few studies focus on
repairing heap-manipulating programs. One of them is a mutation-based app-
roach [28] that combines formal verification and genetic programming to repair
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 376–400, 2021.
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buggy programs. Concretely, this approach uses genetic programming operators,
such as mutate, insert, delete, to generate mutated programs, and then use a ver-
ifier to validate these programs. However, these tactics are insufficient to repair
non-trivial bugs in heap-manipulating programs. In another study, Verma and
Roy [50] enable users to express their expected program’s graphical states at dif-
ferent program points in a debug-and-repair process. Their synergistic method
is effective in fixing various bug patterns of heap-manipulating programs, but
not fully automated. In contrast, we aim to build a fully automated method that
requires only program specifications in the form of pre- and postconditions. Simi-
lar to our approach in using formal specifications, the previous approaches [17,49]
leverage the static verifier Infer [2,3] to repair buggy programs. Although they
target large-scale projects, these tools can fix only memory-related bugs, such
as null dereferences, memory leaks, and resource leaks. In contrast, our work
aims to repair more complicated bugs related to the functional correctness of
heap-manipulating programs.

In this work, we introduce a fully automated approach to repairing heap-
manipulating programs using constraint solving and deductive synthesis. It is
inspired by recent advances in program synthesis using formal specification [40,
42]. However, our usage of program synthesis only applies to buggy statements
to leave the repaired program with the least changes. The inputs of our approach
are a program C, its precondition P, its postcondition Q. The input program C
is first verified w.r.t. its specifications P and Q, using a separation-logic-based
verifier. If the input program does not satisfy its specifications, it is considered
buggy, and we start the repair process as follows.

Firstly, our approach localizes a list of suspicious statements using invalid
verification conditions in the verification step. Each suspicious statement is sub-
sequently replaced by a template patch TP, consequently making a template
program. The key idea is to find program statements of TP to make the template
program satisfy w.r.t. the specifications P and Q. Next, the verifier is used to
analyze the template program w.r.t. the specifications P and Q to generate con-
straints related to the specifications of the template patch TP. These constraints
are then solved using our constraint solving technique to discover the definition
of the pre- and postcondition of the template patch. In the next step, these
specifications are used to synthesize program statements of the template patch
TP. Then, synthesized program statements replace TP in the template program
to produce a candidate program. The candidate program is validated using the
verifier to finally return a repaired program.

Contributions. This paper makes the following contributions.

– We propose a novel approach to repairing buggy heap-manipulating pro-
grams. To fix a buggy program, we first use constraint solving to infer the
specifications of a patch. Then, from these inferred specifications, we use
deductive synthesis to synthesize program statements of the patch.

– We introduce a list of inference rules and an algorithm to formally infer the
specifications of a patch. We also present synthesis rules and an algorithm to
synthesize program statements of the patch using the inferred specifications.
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– We implement the proposed approach in a prototype and evaluate it in a
benchmark of buggy heap-manipulating programs. Our tool can repair 223
out of 231 buggy programs and outperforms a state-of-the-art repair tool.

2 Motivation

Fig. 1. A buggy dll-append program.

We illustrate our repair approach
using the program dll-append in
Fig. 1 which implements a buggy
version of a function that should
append two disjoint doubly-linked
lists (DLLs). The function append
takes as parameters two pointers of
the structure node. Each node is
an element of a doubly-linked list
and stores pointers to the previous
and next elements of the list. Fol-
lowing the definition of the struc-
ture node (lines 1–3) is a separa-
tion logic (SL) inductive predicate
dll, which recursively describes the
shape of a symbolic-heap fragment
that stores a DLL of length n. That
is, a DLL is either a NULL-pointer
with the empty heap predicate emp
and zero-length (line 5), or a non-
NULL pointer p to the head of the
structure node (denoted via p �→{q, r}) such that the pointer q points to the
“tail” of the DLL, with the recursively repeating dll-structure, and a length
decremented by one (line 6).

The SL specifications for the function append are given by a precondition and
a postcondition that follow the syntax of requires and ensures, respectively.
The precondition specifies that x and y both are the heads of two disjoint DLLs
(the disjointness is enforced by the separating conjunction ∗), and the first DLL’s
length is positive (line 9). The postcondition expects that the result of append
is a DLL, starting at x, with a length equal to the sum of the lengths of the
initial lists (line 10). Here, the predicate definitions and program specifications
are written after the notation //.

An astute reader could have noticed the bug we have planted on line 15 of
Fig. 1: upon reaching the end of the x-headed DLL, the implementation does
incorrectly set the pointer y->next to point to x. Let us now present how this
mistake can be automatically discovered and fixed using our approach.

Firstly, the starting program state is the precondition dll(a, x, n)∗dll(y, b,m)∧
n>0. Then, we use separation logic rules to update a program state. When
the condition x->next == NULL at line 12 is true, the predicate dll(x, a, n) is
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unfolded as ∃u. x�→{a, u} ∧ n=1 ∧ u=null. Consequently, the program state
is ∃u. x �→{a, u} ∗ dll(y, b,m) ∧ n=1 ∧ u=null. Next, at line 13, we have the
following Hoare triple {∃u. x �→{a, u}} x->next = y; {∃u. x �→{a, y}}, leading
to the program state of ∃u. x �→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ u=null. This pro-
gram state could be simplified as x�→{a, y} ∗ dll(y, b,m) ∧ n=1. Then, when
the condition y != NULL at line 14 is true, the predicate dll(y, b,m) is unfolded
as ∃v. y �→{b, v} ∗ dll(v, y,m−1). As a result, the program state upon reaching
line 15 is ∃v. x�→{a, y} ∗ y �→{b, v} ∗ dll(v, y,m−1) ∧ n=1. After executing the
statement at line 15, the state is ∃v. x�→{a, y} ∗ y �→{b, x} ∗ dll(v, y,m−1)∧n=1.
Then, this state has to entail the postcondition, but the following entailment is
invalid: ∃v. x�→{a, y} ∗ y �→{b, x} ∗ dll(v, y,m−1) ∧ n=1 � dll(x, a, n+m). Hence,
the function append is buggy.

Our approach repairs this buggy function by replacing a buggy statement
with a template patch. The idea is to infer the specifications of the template
patch. Then, these specifications are used to synthesize program statements of
the template patch. We will elaborate on the details of our approach in the next
sections, and use the motivating example to illustrate each step of our approach.

Note that the mutation-based approach [28] is not able to repair this motivat-
ing example. That approach relies on mutation operators, such as mutate, delete,
insert. However, there is no expression y->prev or statement y->prev = x avail-
able in the program dll-append to replace the buggy expression or statement at
line 15. Besides, as discussed in the Introduction (Sect. 1), the semi-automated
approach [50] requires a user to specify program states at various points to repair
this motivating example while our automated approach only requires a pair of
pre- and postcondition of the input program.

3 Overview of Program Repair Using Deductive
Synthesis

Fig. 2. Our automated program repair workflow.
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Figure 2 presents an overview of our program repair approach. An input pro-
gram is first verified w.r.t. its specifications using a separation-logic-based veri-
fier (Sect. 3.1). Concretely, the HIP/SLEEK verifier [7] is used. If the input pro-
gram does not satisfy its specifications, it is considered buggy, and we start
our repair process. Firstly, our approach collects a list of suspicious statements
and rank them by their likelihood to trigger the bug (Sect. 3.2), based on the
invalid verification conditions (VCs) and program traces generated during the
verification step. Secondly, each suspicious statement stmt, starting from the
highest-ranked one, is replaced by a template patch TPstmt, consequently creat-
ing a template program (Sect. 3.3). This template patch TPstmt is accompanied
by an initially unknown precondition Ptp and a postcondition Qtp. Thirdly,
the approach invokes the verifier to analyze the template program to generate
VCs related to unknown predicates Ptp and Qtp. These VCs are subsequently
solved by our constraint solving technique to discover the definition of Ptp and
Qtp (Sect. 4). Then, these specifications Ptp and Qtp is used to synthesize pro-
gram statements of the template patch TPstmt (Sect. 5). If the synthesis step
succeeds, a candidate program is created by replacing the template TPstmt with
the synthesized statements. Finally, the candidate program is validated using
the verifier to return a repaired program. Note that HIP/SLEEK is able to prove
program termination [25,26]. Hence, the repaired program always terminates.

We will elaborate on the details of our framework in the rest of Sect. 3 and
Sects. 4 and 5. We also formalize our repair algorithm in Sect. 6.

3.1 Program Verification Using Separation Logic

Figure 3 presents the syntax of the formula of our specification language. They
are formulae that follow the pre- and postcondition syntax (requires and
ensures) as introduced in the motivating example (Fig. 1). Our separation logic
fragment is called SLR and contains inductive heap predicates and linear arith-
metic. In this fragment, x, k, null denote a variable, an integer constant, and a
null pointer, respectively. A term t can be an arithmetic expression e or a mem-
ory address expression a. Moreover, emp is the predicate describing the empty
memory, and x

ι�→{t1, ..., tn} is a singleton predicate representing a single data
structure of the type ι 1, pointed to by x, having n fields t1, ..., tn. Besides,
P(t1, ..., tn) is an inductive predicate modeling a recursive data structure (Def-
inition 1). These predicates compose a spatial formula Σ via the separating
conjunction operator ∗. Moreover, Π denotes a pure formula in the first-order
theory of equality and linear arithmetic. Finally, F is a symbolic-heap formula.

1 For brevity, we omit ι when presenting examples.
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t ::= e | a e ::= k | x | − e | e1+e2 | e1−e2 | k·e a ::= null | x
Π ::= true | false | a1=a2 | a1 �=a2 | e1=e2 | e1 �=e2 | e1>e2 | e1≥e2 | e1<e2 | e1≤e2 |

¬Π | Π1∧Π2 | Π1∨Π2 | Π1→Π2 | ∀x.Π | ∃x.Π

Σ ::= emp | x ι {→
 t1, ..., tn} |P(t1, ..., tn) | Σ1 ∗ Σ2 F ::= Σ | Π | Σ ∧ Π | ∃x.F

Fig. 3. syntax of formulae in SLR.

Definition 1 (Inductive heap predicate). A system of k inductive heap
predicates Pi, with i= 1, ..., k, is defined as follows, where each F i

j is called a
definition case of Pi, and is denoted as F i

j
def⇒ Pi:

{
Pi(xi

1, ..., x
i
ni

) def= F i
1(x

i
1, ..., x

i
ni

) ∨ . . . ∨ F i
mi

(xi
1, ..., x

i
ni

)
}k

i=1

Example 1 (Doubly linked-list). The doubly-linked list in Sect. 2 is an example
of an inductive heap predicate, which has one base case and one inductive case.

dll(p, q, n) def= (emp ∧ p=null ∧ n=0) ∨ ∃r. (p �→{q, r} ∗ dll(r, p, n−1))

Figure 4 presents the semantics of formulae in our separation logic SLR. Given
a set Var of variables, Sort of sorts, Val of values, Loc of memory addresses
(Loc ⊂ Val), a model of a formula consists of: a stack model s, which is a function
s: Var → Val, and a heap model h, which is a partial function h: (Loc×Sort) ⇀
Val+. In this model, �Π�s denotes the value of a pure formula Π under the
stack model s. Likewise, dom(h) is the domain of h; h # h′ shows that h and h′

have disjoint domains, i.e., dom(h) ∩ dom(h′) = ∅; and h ◦ h′ is the union of two
disjoint heap models h and h′. In addition, [f |x:y] is a function like f except
that it returns y for the input x. Regarding the semantics of an inductive heap
predicate, we follow the standard least fixed point semantics [1] by interpreting
an inductive predicate symbol P as the least fixed point �P� of a monotone
operator constructed from its inductive definition.

Fig. 4. Semantics of formulae in SLR.
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We follow the literature to use separation logic [5,19,44] to verify the func-
tional correctness of a program w.r.t. its specification. Separation logic follows
Hoare logic in using a triple {P} C {Q} to describe how the program state
is updated during the execution of the program C. Here, P and Q represents
the precondition and postcondition of the program C, respectively. The triple
{P} C {Q} expresses that given a starting program state of a program C satis-
fying P, if the program C executes and terminates, then the resulting program
state would satisfy Q. Hence, a program C is verified w.r.t. its specifications
P and Q if the triple {P} C {Q} holds. For instance, in Sect. 2, we have used
separation logic rules to update program states and found that the motivating
example in Fig. 1 is buggy because there exists an invalid entailment that con-
sequently makes the Hoare triple of the function append not valid. Technically,
we use the HIP/SLEEK verifier [7] to update program states. In this section, we
do not present separation logic rules due to the page limit. Interested readers
could refer to [5,19,44].

3.2 Bug Localization

We localize suspicious statements and rank them according to their likelihood
to cause a bug by utilizing invalid VCs and program traces collected during
the verification step (Sect. 3.1). Firstly, we collect a list of statements belonging
to buggy traces. Then, we rank these statements by (i) how many times they
appear in the buggy and correct traces and (ii) the distance from it to invalid VCs
using program positions. Concretely, a statement is ranked higher if it appears
more times in buggy traces and fewer times in the correct traces. Then, if two
statements are the same in the first measure, the second measure is used.

For example, the only buggy trace in the motivating example (Fig. 1) is from
taking the if branches of the two conditional statements. Hence, we collect two
statements x->next = y at line 13 and y->next = x at line 15. Moreover, the
statement x->next = y also appears in the correct trace when the conditional
expression y != NULL at line 14 is false. Therefore, the second statement is
more likely to cause the bug than the first one, consequently being ranked
higher. In summary, we localize two suspicious statements with their correspond-
ing ranking that are subsequently used as inputs of the next phase.

3.3 Template Patch Creation and Constraint Generation

In this phase, each suspicious statement is substituted by a template patch. This
replacement will generate a program that our approach regards as a template
program. Intuitively, the specifications, the pre- and postcondition, of the tem-
plate patch will be inferred and later used to synthesize program statements of
the template patch.
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Fig. 5. A template program.

For example, Fig. 5 shows a
template program created by replac-
ing the highest-ranked suspicious
statement y->next = x with the
template patch TP(x, y) at line 11.
The special statement TP(x, y) is
currently encoded as a function
call with parameters of all pro-
gram variables available at that
program location. We also encode
the pre- and postcondition of
this function call using unknown
predicates P(x, y, a, b, n,m) and
Q(x, y, a, b, n,m), respectively (lines
2, 3). The parameters of these pred-
icates are parameters x, y of the
template patch TP(x, y) and other variables a, b, n, m in the precondition of
append.

To generate constraints related to the specifications of a template patch, the
separation-logic-based verifier is called to verify the template program. All the
entailments related to the specifications (unknown predicates) of the template
patch are collected. The aim is to infer the definition of unknown predicates to
make all VCs correct, and then use inferred specifications to synthesize state-
ments of the template patch TP(x, y). For example, we collect all VCs contain-
ing predicates P(x, y, a, b, n,m) and Q(x, y, a, b, n,m) in Fig. 5. These VCs are
later used in Sect. 4 to infer the definition of predicates P(x, y, a, b, n,m) and
Q(x, y, a, b, n,m). Finally, these specifications are subsequently used in Sect. 5 to
synthesize program statements of the template patch TP(x, y).

Example 2 (VCs of the template patch). The entailments related to unknown
predicates P(x, y, a, b, n,m) and Q(x, y, a, b, n,m) of the template patch in Fig. 5
are as follows.

x�→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ y �=null  P(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)
Q(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)  dll(x, a,m+n)

where the predicate K(x, y, a, b, n,m) is the frame formula [4] which is obtained
after analyzing the function call TP(x, y) with the precondition P(x, y, a, b, n,m).

4 Specification Inference

In Sect. 3.3, we explain how to create a template program and collect entail-
ments related to the specifications of the template patch. In this section, we will
describe how our approach solves these entailments to discover the definition of
the specifications of the template patch.
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4.1 Inference Rules

Figure 6 presents our inference rules to discover the definition of unknown pred-
icates. Each inference rule has zero or more premises, a conclusion, and possibly
a side condition. A premise or a conclusion is of the form S; Δ, where Δ is a
set of entailments, and S is the current discovered solution (a set of definitions
of unknown predicates). Furthermore, we write Δ, {F1  F2} to denote a new
entailment set obtained by extending Δ with the entailment F1  F2. When F is
a symbolic-heap formula of the form ∃�x.(Σ∧Π), we define F∗Σ′ � ∃�x.(Σ∗Σ′∧Π)
and F ∧ Π ′ � ∃�x.(Σ ∧ Π ∧ Π ′), given that fv(Σ′)∩ �x = ∅ and fv(Π ′)∩ �x = ∅.
Here, fv(F ) denotes the set of free variables in the formula F . We also write �u=�v
to denote (u1=v1) ∧ . . . ∧ (un=vn), given that �u � u1, . . . , un and �v � v1, . . . , vn

are two variable lists of the same size. Finally, �u # �v indicates that the two lists
�u and �v are disjoint, i.e., �w.(w ∈ �u ∧ w ∈�v).

� Δ = ∅

S; Δ

S; Δπ Π1→Π2
S; Δ, {Π1  Π2}

S; Δ⊥π Π1→false
S; Δ, {Σ1 ∧ Π1  F2}

S; Δ⊥σ
S; Δ, {Σ1 ∗ u

ι1 {→
 �t} ∗ u
ι2 {→
 �r} ∧ Π1  F2}

S; Δ, {F1 ∗ FP
1 (�t)  F2}, ..., {F1 ∗ FP

n (�t)  F2}
PL P(�t) def= F P

1 (�t)∨...∨F P
n (�t)

S; Δ, {F1 ∗ P(�t)  F2}
S; Δ, {F1  ∃�x(F2 ∗ FP

i (�t))}PR F P
i (�t)

def⇒ P(�t)
S; Δ, {F1  ∃�x.(F2 ∗ P(�t))}

S; Δ, {F1[t/u]  F2[t/u]}
=L

S; Δ, {F1 ∧ u=t  F2}
S; Δ, {F1  ∃�x.(F2 ∧ u=v ∧ �t=�r)}→
∗ fv(v, �r) # �x

S; Δ, {F1 ∗ u
ι {→
 �t}  ∃�x.(F2 ∗ v

ι {→
 �r})}
S; Δ, {F1[u/v]  F2}∃L u �∈ fv(F1, F2)
S; Δ, {∃v.F1  F2}

S; Δ, {F1  ∃�x.(F2 ∧ �t=�r)}∗P fv(�r) # �x
S; Δ, {F1 ∗ P(�t)  ∃�x.(F2 ∗ P(�r))}

S; Δ, {F1  ∃�x.F2[t/u]}∃R
S; Δ, {F1  ∃�x, u.(F2 ∧ u=t)}

S∪ {U(�t) def= F}; Δ[F/U(�t)], {F1  F2}
UL U �∈ F1, F2

S; Δ, {F1 ∗ U(�t)  F2 ∗ F}
S; Δ, {F1  F2}

EL
S; Δ, {F1 ∗ emp  F2}

S∪{U(�t) def= F}; Δ[F/U(�t)], {F1  F2}
UR U �∈ F1, F2

S; Δ, {F1 ∗ F  F2 ∗ U(�t)}
S; Δ, {F1  ∃�x.F2}

ER
S; Δ, {F1  ∃�x.(F2 ∗ emp)}

Fig. 6. Specification inference rules.

Most of our proposed rules are inspired by the standard entailment checking
rules in separation logic literature [47,48]. However, there are two main dif-
ferences. Firstly, they need to handle multiple entailments generated from the
verification of a temporarily patched program. Secondly, they also have to deal
with unknown heap predicates. We will explain the details of our rules as follows.

– Axiom rule �. This rule will return the current set of discovered specification
S if no entailment needs to be handled (Δ = ∅).
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– Elimination rules ⊥π, ⊥σ, π. These rules eliminate a valid entailment from
the entailment set Δ in their conclusions. Here, we utilize three simple checks
for the validity of the candidate entailment when (i) it has a contradiction
in the antecedent (⊥π), (ii) or it contains overlaid singleton heaps (⊥σ), (iii)
or it is a pure entailment (π). In the last case, an off-the-shelf prover like
Z3 [10] will be invoked to prove the pure entailment.

– Normalization rules ∃L, ∃R, =L, EL, ER. These rules simplify an entailment in
Δ by either eliminating existentially quantified variables (∃L, ∃R), or removing
equalities (=L) or empty heap predicates (EL, ER) from the entailment.

– Unfolding rules PL, PR. These rules derive new entailments from a goal entail-
ment in Δ by unfolding a heap predicate in its antecedent or its consequent.
Note that there is a slight difference between these two rules. When a heap
predicate in the antecedent is unfolded (PL), all derived entailments will be
added to the set Δ. In contrast, only one derived entailment will be added to
the set Δ when a heap predicate in the consequent is unfolded (PR).

– Matching rules ∗�→, ∗P. These rules remove identical instances of singleton
heap predicates (∗�→) or inductive heap predicates (∗P) from two sides of
a goal entailment in Δ. Here, we ensure that these instances of predicates
are identical by adding equality constraints about their parameters into the
consequent of the derived entailment.

– Solving rules UL, UR. These rules discover the definition of an unknown heap
predicate U(�t) in a goal entailment of Δ and update it to the solution set
S. More specifically, if U(�t) appears in the entailment’s antecedent, then the
rule UL chooses the sub-formula of the consequent as the definition of U(�t).
Similarly, when U(�t) appears in the consequent, then the rule UR assigns U(�t)
to a sub-formula of the antecedent. In practice, these rules are often used
when the entailment contains U(�t) as its only heap predicate the antecedent
(or the consequent). Then, the rule UL (or UR) can simply choose the entire
consequent (or the entire antecedent) as the definition of U(�t).

4.2 Inference Algorithm

Figure 7 presents our proof search procedure InferUnknPreds, which is imple-
mented recursively to infer specifications from the unknown entailment set. Its
inputs include a set Δ of unknown entailments and a set S of the currently dis-
covered unknown heap predicates. This input pair correlates to a conclusion or
a premise of an inference rule. Its output is a set that contains the definitions of
the unknown heap predicates. When InferUnknPreds is invoked for the first time
the input S is set to an empty list (∅).

Given the predicate set S and the unknown entailment set Δ, the algo-
rithm InferUnknPreds considers two cases. The first case is when there exists
an entailment F  G that has more than one unknown predicate in G and no
unknown predicate in F . Then, the definitions of unknown predicates in G are
discovered by defining their spatial and pure formulae (line 2). Firstly, their
spatial formulae of unknown predicates are defined by dividing the spatial for-
mula of the antecedent F using the procedure DivideHeapFormula. For instance,
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Fig. 7. Proof search algorithm for unknown entailments.

the first entailment in Example 2 has two unknown predicate P(x, y, a, b, n,m)
and K(x, y, a, b, n,m) in its consequent, and has no unknown predicate in its
antecedent. Hence, the pair (PS, KS) that contains the corresponding spatial for-
mulae of P(x, y, a, b, n,m) and K(x, y, a, b, n,m) could be either (emp, x�→{a, y}∗
dll(y, b,m)), or (x�→{a, y}, dll(y, b,m)), or pairs in the reverse order. Then,
the pure part of an unknown predicate is defined by using constraints in the
antecedent F such that the constraints are related to variables in the spatial for-
mula and the parameters of the predicate. For example, if we have PS

def=x�→{a, y},
then we have the following definition: P(x, y, a, b, n,m)def= x�→{a, y}∧n=1∧y �=null.
Each way of dividing the spatial formula of the antecedent F results in a pair
(Ssub, Δsub) where the definitions of unknown predicates are added to the set S
to generate Ssub. Next, Δsub is obtained by substituting unknown predicates by
their corresponding definitions in Δ. Then, the algorithm with new arguments
(Ssub, Δsub) continues recursively (lines 4,5).

In the second case, when there is no such entailment F  G, the algorithm
first finds from all inference rules presented in Fig. 6 a set of rules R whose con-
clusion can be unified with the entailment set Δ (line 7). Then InferUnknPreds
subsequently applies each of the selected rules in R to solve the unknown entail-
ment set Δ. In particular, if the selected rule R is an axiom rule �, the proce-
dure InferUnknPreds immediately returns the current solution set S, which does
not derive any new entailment set (line 9). Otherwise, it continues to solve the
new set of unknown entailments obtained from the premise of the rule R (lines
11,12) to discover the definitions of the unknown predicates (line 13). Finally,
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InferUnknPreds returns an empty set (∅) if all selected rules fail to solve the
unknown entailment set Δ (line 14).

In practice, to make the proof search more efficient, we also rank the discov-
ered inference rules in R by their likelihood to solve the unknown entailments.
These heuristics are as follows:

– The axiom rule (�) is the most important since it immediately returns the
solution set.

– The elimination rules (⊥σ,⊥π,π) are the second most important since they
can remove valid entailments from the entailment set Δ.

– The normalization rules (∃L,∃R,EL,ER,=L) are the third most important since
they can simplify and make all the entailments more concise.

– Other rules (PL,PR, ∗�→, ∗P,PL,PR) generally have the same priority. How-
ever, in several special cases, the priority of these rules change as follows:

• The rules ∗�→, ∗P, PL, PR have high priority if the following conditions are
satisfied. (i) The rule ∗�→ matches and removes singleton heap predicates of
the same root. (ii) The rule ∗P matches and removes identical instances of
inductive heap predicates. (iii) In the rule PL, F1 is a pure formula and F2 is
emp. (iv) In the rule PR, F1 is emp and F2 is a pure formula.

• The rules ∗�→, ∗P have high priority when they match and remove heap
predicates that have some identical arguments.

• Finally, the rules PL, PR are more important if after unfolding, they can
introduce heap predicates that have some identical arguments, which can be
removed later by the two rules ∗�→, ∗P.

Fig. 8. A proof tree of applying specification inference rules.

Example 3 (Specification inference). We illustrate how to apply specification
inference rules to solve the below unknown entailments, given in Example 2.

x�→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ y �=null  P(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)
Q(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)  dll(x, a,m+n)

The first entailment has two unknown predicates, namely P(x, y, a, b, n,m) and
K(x, y, a, b, n,m), in its consequent, and no unknown predicate in its antecedent.
Hence, the definitions of P(x, y, a, b, n,m) and K(x, y, a, b, n,m) are discovered
using DivideHeapFormula to partition the spatial part of the antecedent. One pos-
sible solution is that the spatial part of P(x, y, a, b, n,m) is x�→{a, y}∗dll(y, b,m)
while the spatial part of K(x, y, a, b, n,m) is emp, as follows:
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P(x, y, a, b, n,m) def= x�→{a, y} ∗ dll(y, b,m) ∧ y �=null

K(x, y, a, b, n,m) def= emp ∧ n=1 ∧ y �=null

Now, we can replace K(x, y, a, b, n,m) in the second entailment with its actual
definition to obtain the following entailment.

Q(x, y, a, b, n,m) ∧ n=1 ∧ y �=null  dll(x, a,m+n)
The above entailment can be solved by our inference rules, as presented in the
proof tree in Fig. 8 where S contains the definition of predicates P(x, y, a, b, n,m)
and K(x, y, a, b, n,m).

5 Deductive Program Synthesis

In this section, we show how program statements of a template patch are syn-
thesized from the specifications inferred in Sect. 4. We first define the notion of
synthesis goal, then explain all synthesis rules, and finally introduce an algorithm
that synthesizes program statements using synthesis rules.

Fig. 9. Deductive synthesis rules.
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A synthesis goal is written as Γ ;V ; {F1}� {F2} | C, where Γ is a list of
declared functions that supports to synthesize function call statements, V con-
sists of all available variables that could be used during the synthesis algorithm,
F1 is a precondition, F2 is a postcondition, and C is a list of program statements
that will be synthesized. Hence, solving a synthesis goal is equivalent to finding
program statements C such that the Hoare triple {F1} C {F2} holds.

5.1 Synthesis Rules

Figure 9 presents our synthesis rules to synthesize program statements. A synthe-
sis rule contains zero or more premises, a conclusion, and possible side conditions.
A premise or a conclusion of a synthesis rule is a synthesis goal. Here, typ, fld,
and fname indicate a variable type, a field of a data structure, and a function
name, respectively. Besides, res is a keyword in our specification language to indi-
cate the returned result of a function. Other notations are introduced previously
in Sect. 4.1 and Sect. 3.1. All synthesis rules are described as follows.

– Simplification rules ExistsL and ExistsR. These rules simplify a synthesis goal
by removing an existential variable in its precondition (ExistsL) or its post-
condition (ExistsR).

– Frame rules Frame �→ and FrameP. These rules remove an identical singleton
heap predicate (Frame �→) or inductive heap predicate (FrameP) from the pre-
and postcondition of a synthesis goal.

– Unfolding rules UnfoldL and UnfoldR. These rules produce a new synthesis
goal by unfolding an inductive heap predicate in the precondition (UnfoldL) or
postcondition (UnfoldR) of a synthesis goal. When an inductive heap predicate
is unfolded in the precondition (UnfoldL), the side conditions ensure that
only one definition case F i

P (�t) of P(�t) is satisfiable. In contrast, unfolding an
inductive heap predicate P(�t) in the postcondition (UnfoldR) creates multiple
subgoals, but solving the current synthesis goal requires only one subgoal to
succeed.

– Rule Call. This rule invokes a function call fname(�u) which has the speci-
fication of {G1}fname(�u){G2} when all chosen input arguments �uθ satisfy
the specification of its corresponding parameters. Here, θ is a substitution of
arguments to the parameters �u of the function, i.e., replacing the function’s
formal parameters with the corresponding actual arguments. Then, updating
the precondition of the synthesis goal is similar to update a program state in
formal verification when a function call fname(�uθ) is encountered.

– Rule Assign. The rule Assign assigns a value e to a variable u that is in the
list V (u ∈ V ) when a constraint u=e appears in the postcondition but
the variable u is not assigned any value in the precondition (u �∈ fv(F1)).
Consequently, an assignment statement u = e; is generated.

– Rules Skip and Ret. The rule Skip is applicable when there exists a valid
entailment F1  F2. It also marks that a synthesis goal is solved by producing
a skip statement. Meanwhile, the rule Ret generates a statement return e;.
It is similar to combining the rule Assign (with u is res) and the rule Skip.
These rules have no premises, meaning that they are terminating rules.
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– Rules Read and Write. The rule Read assigns the value of a field of a heap
variable to a new variable. For instance, if a statement append(x->next, y)
needs to be synthesized when repairing a buggy dll-append program, Read is
executed to create the statement node* z = x->next;. Then, Call is used to
synthesize the statement append(z, y);. Meanwhile, the rule Write assigns
a new value to a field of a heap variable is if the values of the field of the
variable in the pre- and postcondition differ (see Example 4).

– Rules Alloc and Free. The rule Alloc allocates a new variable u of the data
structure ι if all arguments �t are in the list V . This rule is called when a new
heap variable u appears in the spatial formula of the postcondition but not
the precondition (u �∈ fv(Σ1)). On the other hand, the rule Free deallocates a
heap variable u if it is in the spatial formula of the precondition but not in
the spatial formula of the postcondition.

5.2 Synthesis Algorithm

Figure 10 shows our synthesis algorithm SynthesizeStmts. Given a list of declared
functions Γ , a list of available variables V , a precondition F1, and a postcondition
F2, the algorithm SynthesizeStmts aims to produce program statements C that
solve the synthesis goal Γ ;V ; {F1}� {F2} | C.

Fig. 10. The SynthesizeStmts algorithm.

The algorithm SynthesizeStmts first finds from all synthesis rules presented
in Sect. 5.1 a list of rules R that is applicable to the current tuple (Γ, V, F1, F2)
(line 1). If there exists a terminating rule (Skip or Ret), then SynthesizeStmts
returns a skip statement (Skip) or a return statement (Ret) (line 3). If a nor-
malization rule is selected, then SynthesizeStmts will immediately apply it to
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derive a new goal and continue the synthesis process (lines 4–6). For other syn-
thesis rules, SynthesizeStmts subsequently executes each of them to derive both a
new goal (Γ ′, V ′, F ′

1, F
′
2) and a program statement stmt (line 8). Our algorithm

also checks if the rule Call is executed on a smaller sub-heap of the precondition
F1 that consequently ensures termination of a patched program. The algorithm
will continue the synthesis process on the new goal (line 9) and will append
the previously synthesized statement stmt on the new result res to return all
synthesized statements (line 10). Besides, it also returns Fail if all selected rules
fail to synthesize program statements from the current inputs (line 11).

In practice, the algorithm SynthesizeStmts also ranks synthesis rules collected
by FindSynRules to make it more effective. Firstly, two terminating rules Skip and
Ret are the most important since they immediately return a list of synthesized
statements. Then, the rules ExistsL, ExistsR, UnfoldL are the second most impor-
tant rules because they simplify the current synthesis goal and generate a more
concise synthesis goal. Finally, other synthesis rules are ranked equally.

Fig. 11. Synthesis rules are applied to specifications inferred in Example 3.

Example 4 (The patch to repair the motivating example). Figure 11 explains how
our synthesis algorithm applies synthesis rules to synthesize a program statement
from the specifications inferred in Example 3. Here, Γ contains a declaration of
function append while the list V is {x, y}. The algorithm SynthesizeStmts first
uses the rule UnfoldL to remove the constraint y �=null from the precondition.
Next, the rule ExistsL is used to remove the existential variable t from the pre-
condition. Then, the postcondition is unfolded twice using the rule UnfoldR to
have a predicate dll of length m−1 like in the precondition. Next, the predicate
dll of length m−1 is removed from both the pre- and postcondition using the
rule FrameP. Finally, the field prev of the variable y is updated according to the
rule Write to terminate the synthesis algorithm with the rule Skip. Therefore,
a program statement y->prev = x is synthesized. This statement will replace
the template patch TP(x,y) at line 11 in Fig. 5 to produce a candidate pro-
gram. Finally, the candidate program is validated w.r.t. the specifications of the
function append and then returned as the repaired program of the motivating
example.
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6 Repair Algorithm

We formally introduce the algorithm Repair in Fig. 12. The inputs of the algo-
rithm include a program C, its precondition P, its postcondition Q, and an
environment variable Γ containing all declared functions.

The algorithm first verifies if program C is correct against its specifications
(line 1). If the verification fails, then C is considered buggy. In this case, all the
invalid VCs generated during the verification step are collected (line 2). Next,
the algorithm Repair utilizes these VCs to localize a list of suspicious statements
S (line 3). It also ranks these suspicious statements according to their likelihood
to cause the bug. Then, it attempts to repair each suspicious statement in S,
starting from the highest-ranked one (lines 4–14).

Fig. 12. The algorithm Repair.

Specifically, the algorithm creates a template program Cstmt for each suspi-
cious statement stmt (line 5): it replaces that statement with a template patch
TPstmt, which is specified by a pair of unknown pre- and postcondition Ptp, Qtp.
Then, Repair verifies the template patched program to collect all VCs related
to Ptp, Qtp (line 6). These VCs will be solved by the algorithm InferUnknPreds
(described in Sect. 4.2) to infer the actual definition of Ptp, Qtp (line 7). If this
specification inference succeeds (lines 8, 9), the inferred pre- and postcondition
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Ptp, Qtp will be used to synthesize program statements of the template patch
(line 13), using the algorithm SynthesizeStmts as explained in Sect. 5.2. When
SynthesizeStmts can synthesize a list of program statements, our algorithm Repair
will replace the template patch TPstmt with synthesized statements to create a
candidate program C (line 13). If C can be validated by the procedure Verify,
it will be returned as the repaired program (line 14). Otherwise, the algorithm
Repair returns Fail if it is unable to fix the input buggy program (line 15). It also
returns None if the input program C is correct w.r.t. its specifications (line 16).

We claim that our program repair algorithm in Fig. 12 is sound. We formally
state that soundness in the following Theorem 1.

Theorem 1 (Soundness). Given a program C, a precondition P, and a post-
condition Q, if the Hoare triple {P} C {Q} does not hold, and the algorithm
Repair returns a program C, then the Hoare triple {P} C {Q} holds.

Proof. In our repair algorithm Repair (Fig. 12), an input program C is buggy
when Verify(P, C,Q) = Fail or the Hoare triple {P} C {Q} does not hold. Then, if
a candidate program C is produced (line 13), the algorithm Repair always verifies
program C w.r.t. the precondition P and the postcondition Q before returning
C (line 14). Hence, if {P} C {Q} does not hold and the algorithm Repair returns
a program C, the Hoare triple {P} C {Q} holds. ��

7 Evaluation

We implemented our prototype tool, called NEM, on top of the HIP/SLEEK
verification framework [6,7,38]. The specification inference in Sect. 4 was imple-
mented on top of the Songbird prover [47,48]. Because our approach currently
does not synthesize conditional statements, we apply mutation operators, e.g.,
changing from x->next != NULL to x->prev != NULL, to repair buggy condi-
tional expressions of the conditional statements. We conducted experiments on a
computer with CPU Intel® CoreTM i7-6700 (3.4 GHz), 8 GB RAM, and Ubuntu
16.04 LTS. The details of our tool NEM and experiments are available online at
https://nem-repair-tool.github.io/.

To evaluate our repair approach, we first selected a list of heap-manipulating
programs written in a C-like language that was formally defined in [7]. These
programs include algorithms of various data structures, such as singly-linked list
(sll), doubly-linked list (dll), sorted linked list (srtll), binary tree (tree), binary
search tree (bst), and AVL tree (avl). They include popular algorithms like insert,
append, delete, copy for linked-lists. Some of these programs are taken from the
benchmark used in [50] that are annotated accordingly. Note that our programs
are tail-recursive while these in [50] use while loops.

https://nem-repair-tool.github.io/
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Table 1. Evaluation of NEM and a mutation-based tool [28] on repairing buggy heap-
manipulating programs. Programs denoted with * are from [50].

Program #LoC #Buggy NEM Mutation-based tool [28]
#Repaired Avg.time (s) #Repaired Avg.time (s)

sll-length 12 11 11 3.31 0 –
sll-copy 13 9 9 5.4 0 –
sll-append 11 18 18 5.84 1 2.13
sll-insert∗ 11 11 11 4.86 1 2.1
sll-delete∗ 13 17 17 5.32 0 –
dll-length 12 12 12 3.7 0 –
dll-append 16 20 16 10.12 1 5.36
dll-insert 12 11 11 4.58 1 2.11
dll-delete 20 20 20 15.72 0 –
srtll-insert∗ 19 20 20 18.35 2 6.13
tree-size 13 16 16 9.46 0 –
tree-height 16 20 20 13.67 0 –
avl-size 17 16 16 32.63 0 –
bst-size 13 16 16 11.46 0 –
bst-height 16 14 10 40.54 0 –
Summary 231 223 12.59 6 3.99

To demonstrate the effectiveness of our method, we compared our tool with
a state-of-the-art repair tool [28]. This tool uses genetic programming operators,
e.g., mutate, delete, insert, to generate candidate programs, and then verifies
these programs using a verifier. Both program repair tools verify and repair
programs according to their provided specifications. Moreover, these two tools
also use the HIP/SLEEK verifier to verify input programs and validate candidate
programs. Each tool is configured to repair a buggy program within a timeout
of 300 s. Regarding our tool NEM, we set both the timeouts of specification
inference (Sect. 4) and deductive synthesis (Sect. 5) to 20 s. Besides, we did not
include the semi-automated program repair tool Wolverine [50] since we could
not obtain the implementation.

We followed a previous approach [50] in building a bug injection tool. This
tool modifies program statements of a verified program to introduce errors at
various program locations. Our tool modifies directly on the input program and
generates readable buggy versions that are close to the input program. In con-
trast, the bug injection tool in Wolverine creates bugs in the intermediate repre-
sentation code, consequently not enabling users to compare the buggy versions
with the original correct program. Our bug injection tool currently modifies one
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statement or two statements in different branches of conditional statements. We
also limit the maximum buggy versions of each program to 20.

Table 1 shows the results of running our prototype NEM and the mutation-
based tool on the chosen benchmark. For each program, #LoC is the number
of lines of code while #Buggy is the number of buggy versions created by the
bug injection tool. Regarding the last 4 columns, we compared two evaluated
tools in the number of buggy versions repaired, and the average time one tool
needs to fix a buggy version. The results show that our tool outperforms the
mutation-based one in the number of buggy programs repaired. Concretely, NEM
was able to repair 223 buggy versions out of a total of 231 cases while the
mutation-based tool only generated 6 correct patches. It is also noteworthy that
NEM could handle buggy cases in all 15 programs. On the other hand, the
mutation-based tool only gave correct patches for 5/15 programs. This is because
our approach synthesizes patch candidates based on constraints collected from
program semantics. Meanwhile, the mutation-based approach only uses a list of
genetic programming operators, such as mutate, delete, insert, which limits the
pattern of candidate patches.

Regarding the running time, our tool NEM needed 12.59 s on average to
generate one correct patch while the mutation-based approach requires 3.99 s
on average. This is because our approach of using specification inference and
deductive synthesis is more expensive than mutation operators. However, it is
much more effective when it can repair substantially more buggy programs.

There are 8 buggy versions of the 2 programs dll-append and bst-height that
NEM could not repair. This is because the constraints collected when repairing
these programs are highly complicated that they could not be solved by the
current proof search heuristics of our constraint solver. This is a limitation of
our work and we aim to resolve it in the future.

8 Related Work

Similar to our approach, a mutation-based approach [28] also aims to enhance
APR with deductive verification. Technically, this method requires an iteration
of (i) generating a patch by employing code mutation operators via GenProg [53]
and (ii) verifying the patched program via HIP/SLEEK [7]. In contrast, we use
specification inference and deductive synthesis to generate program statements
of a patch. Hence, our approach is more effective than the mutation-based app-
roach [28] in repairing buggy heap-manipulating programs as shown in Sect. 7.

The initial approaches that repair buggy heap-manipulating programs [11,12]
rely on first-order logic formulae for specifications. However, these approaches
are limited to detecting and fixing violations of user-provided data structure
invariants. Meanwhile, our approach handles a broader class of errors, manifested
as violations of specifications for arbitrary programs. The work [13] uses an input
program and its specifications to generate constraints, which are then solved
using the Alloy solver [20]. The obtained solutions are then translated into a
repaired program. However, the repair procedure in [13] is restricted to a specific
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number of templates. In contrast, our approach uses a fully-fledged deductive
synthesis framework, thus, allowing for fixing a larger class of bugs.

Recently, the tool FootPatch [49] relies on the Infer analysis tool [2,3] to
detect errors and emit fixes for them. While also grounded in separation logic,
this approach is less general than ours, as it only considers a fixed number of
classes of bugs. However, it is more scalable thanks to the ability of Infer to
detect unsafe memory accesses in large codebases without any user input. Like-
wise, Logozzo and Ball [31] use abstract interpretation [9] as a way to detect
and fix mistakes in programs, but only for a limited number of issues that are
captured by the employed analyzer. Similar to our approach, Maple [39] uses pro-
gram specifications to detect bugs and validate candidate patches in numerical
programs.

Our idea of generating correct-by-construction patches is similar to synthesiz-
ing programs from Hoare-style specifications [8,40,42]. However, it is applied in
the context of program repair where the minimum number of statements is syn-
thesized, leading to patches that are close to the original programs. Similar to our
approach, deductive program repair [22] fixes buggy functional programs using
the specifications from both symbolically executed tests and pre/postconditions
and verifying the resulting program using the Leon tool [23].

Traditional APR approaches rely on test suites in checking the correctness
of programs. Two main approaches of test-based APR are heuristic repair and
constraint-based repair [30]. The heuristic repair identifies the bugs and the
patches in the programs employing the insights that similar code patterns might
be observed in sufficiently large codebases [16,43] while the constraint-based
repair uses the provided test suite to infer symbolic constraints, and then solves
those constraints to generate a patch [32,35–37,54]. Test-based APR approaches
have been previously applied for fixing bugs in programs with pointers. For
instance, a recent approach [50] involves a programmer in the debug-repair pro-
cess to define correct program states at run-time. In contrast, our approach
repairs buggy programs without the involvement of programmers.

9 Limitation and Future Work

We now discuss the limitations of our current approach and our plans to address
them. Firstly, our approach mainly focuses on fixing program statements. Con-
sequently, it may remove correct expressions, e.g., the left-hand side of an assign-
ment or a parameter of a function call. This is because it aims to ease the bug
localization step in limiting the number of suspicious statements as the number
of suspicious expressions would be considerably larger than that of suspicious
statements. In the future, we plan to add expression-level program repair by
expressing correct expressions as holes in program sketc.hes as in ImpSynt [42].
This method could also enhance our approach in repairing multiple locations as
our approach currently only repairs one buggy statement or two buggy state-
ments in different branches of a conditional statement.

Secondly, our approach does not handle omission errors. The debug-and-
repair approach [50] can repair these cases by adding program states at various
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program points. Likewise, we can improve the capabilities of our repair method
by inserting template patches at various program locations, and then synthesiz-
ing program statements of these patches. Thirdly, our approach could not repair
buggy programs using the structure list segment in their specifications, e.g., the
program schedule3 in the benchmark of [28]. Our early inspections indicate that
these cases need lemmas in synthesizing program statements. Therefore, we aim
to incorporate lemma synthesis, e.g., [48], to our repair framework. Fourthly, the
buggy programs in our benchmark (Sect. 7) are produced using a bug injection
tool. Therefore, we plan to evaluate our approach on student submissions in
programming courses, similar to previous approaches [14,18,45,51].

Furthermore, we aim to ease the requirement of providing program specifi-
cations from users. To do that, we could either leverage static analyzers that do
not require program specifications, e.g., Infer [2,3], or incorporate specification
inference techniques, such as [24,27], to automatically infer program specifica-
tions. Finally, as discussed in Sect. 7, we plan to improve our constraint-solving
technique to handle buggy programs that our approach currently fails to repair.

10 Conclusion

We have proposed a novel approach to fix buggy heap-manipulating programs. If
a program is found buggy, we first encode program statements to fix this program
in a template patch. Then, the specifications of the template patch are inferred
using a constraint solving technique. Finally, from the inferred specifications, we
use deductive synthesis to synthesize program statements of the template patch.
The experimental results showed that our approach substantially outperformed
a mutation-based approach in repairing buggy heap-manipulating programs.
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14. Gulwani, S., Radiček, I., Zuleger, F.: Automated clustering and program repair for
introductory programming assignments. In Conference on Programming Language
Design and Implementation (PLDI), pp. 465–480 (2018)

15. Gupta, R., Pal, S., Kanade, A., Shevade, S.: Deepfix: fixing common C language
errors by deep learning. In: AAAI Conference on Artificial Intelligence (AAAI),
pp. 1345–1351 (2017)

16. Harman, M.: Automated patching techniques: the fix is in: technical perspective.
Tech. Perspect. Commun. ACM 53(5), 108 (2010)

17. Hong, S., Lee, J., Lee, J., Oh, H.: Saver: scalable, precise, and safe memory-error
repair. In: International Conference on Software Engineering (ICSE) (2020)

18. Hu, Y., Ahmed, U.Z., Mechtaev, S., Leong, B., Roychoudhury, A.: Re-factoring
based program repair applied to programming assignments. In: International Con-
ference on Automated Software Engineering (ASE), pp. 388–398 (2019)

19. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Symposium on Principles of Programming Languages (POPL), pp. 14–26
(2001)

20. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis (ISSTA), pp. 14–25 (2000)

21. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: International Conference on Software Engineering
(ICSE), pp. 802–811 (2013)



Automated Repair of Heap-Manipulating Programs 399

22. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
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Abstract. This paper presents a tool for repairing errors in GPU ker-
nels written in CUDA or OpenCL due to data races and barrier diver-
gence. Our novel extension to prior work can also remove barriers that
are deemed unnecessary for correctness. We implement these ideas in our
tool called GPURepair, which uses GPUVerify as the verification oracle for
GPU kernels. We also extend GPUVerify to support CUDA Cooperative
Groups, allowing GPURepair to perform inter-block synchronization for
CUDA kernels. To the best of our knowledge, GPURepair is the only tool
that can propose a fix for intra-block data races and barrier divergence
errors for both CUDA and OpenCL kernels and the only tool that fixes
inter-block data races for CUDA kernels. We perform extensive experi-
ments on about 750 kernels and provide a comparison with prior work.
We demonstrate the superiority of GPURepair through its capability to
fix more kernels and its unique ability to remove redundant barriers and
handle inter-block data races.

Keywords: GPU · Verification · Automated repair · CUDA · OpenCL

1 Introduction

The part of the program that runs on the GPU (Graphics Processing Unit) is
referred to as a kernel. Given that multiple cores of the GPU may execute the
kernel in parallel, data races and barrier divergence are frequently the cause of
several errors that occur in practice. Identifying and repairing these errors early
in the development cycle can have a tremendous positive financial impact [14].

In CUDA, a grid consists of blocks, and a block consists of threads. Consider
the CUDA kernel in Listing 1.1 without the highlighted line. There is a data
race on accesses of the shared array A. The race can be avoided by introducing
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a barrier ( syncthreads()) in the kernel at line 3 in Listing 1.1. This block-
level barrier enforces that all threads in a block reach it before any of them can
proceed further. A grid-level barrier behaves similarly for the entire grid.

In Listing 1.2, only the threads with an even thread id will reach the
barrier. As the threads within a block execute in a lock-step manner, this
will result in a deadlock as threads with odd ids will never be able to
reach the barrier at Line 4. This problem is known as barrier divergence.

1 __global__ void race (int* A) {
2 int temp = A[threadIdx.x+1];

3 __syncthreads ();

4 A[threadIdx.x] = temp;
5 }

Listing 1.1. Kernel with Data Race

1 __global__ void race (int* A) {
2 if (threadIdx.x % 2 == 0) {
3 int temp = A[threadIdx.x+1];
4 __syncthreads ();
5 A[threadIdx.x] = temp;
6 }
7 }

Listing 1.2. Kernel with Barrier Divergence

This tool paper makes the following contributions:

– We extend the underlying technique behind AutoSync [9] to provide barrier
placements that avoid barrier divergence in addition to data races. Our novel
extension may also suggest removing barriers inserted by the programmer if
deemed unnecessary, which might help enhance the performance of the input
GPU kernel.

– We implement our technique in our tool GPURepair, which is built on top of
the GPUVerify [11] framework and uses GPUVerify as an oracle. To the best of
our knowledge, ours is the only technique and tool that can propose a fix for
both CUDA and OpenCL GPU kernels. Another unique feature of GPURepair
is its ability to fix kernels that have inter-block data races.

– Bugle is the component of the GPUVerify toolchain that translates LLVM
bitcode to Boogie. We have enhanced it with the ability to translate barrier
synchronization statements from the CUDA Cooperative Groups API to Boo-
gie. We have also extended GPUVerify with the semantics to support grid-level
barriers. Using these enhancements, GPURepair proposes fixes for inter-block
data races.

– We perform an extensive experimental evaluation on 748 GPU kernels written
in CUDA and OpenCL. We compare GPURepair against AutoSync, which is
the only other tool known that attempts to repair CUDA kernels containing
data races.

2 GPURepair

2.1 GPURepair Architecture and Workflow

The implementation of GPURepair builds on top of GPUVerify, as depicted in
Fig. 1. In addition to the instrumentation done by GPUVerify to enable verifica-
tion of GPU kernels, GPURepair adds the instrumentation necessary to impose
constraints on the program behavior. On each iteration, GPURepair calls GPU-
Verify with a proposed solution to check if the program is repaired. If the program
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Fig. 1. GPURepair workflow

is not repaired, it calls the Solver with the constraints generated from the errors
seen so far to obtain a candidate solution suggesting which barriers need to be
enabled/disabled in the program. If the program can be repaired, GPURepair
generates the Boogie representation of the fixed program and a summary file.
The summary file contains the changes that have to be made to fix the program
along with the source location details of the original CUDA/OpenCL input ker-
nel. The technique behind GPURepair can, in principle, use any verifier for GPU
programs as an oracle.

2.2 Instrumentation

GPUVerify uses a pair of distinct non-deterministically chosen threads for analysis
instead of modeling all the threads in the kernel. This two-thread abstraction
is used to prove that a kernel is race-free and divergence-free. Details of this
abstraction are available in [11] and beyond the scope of this paper. GPUVerify
models barriers by resetting read/write flags of shared arrays for the two threads
used by the two-thread abstraction if they belong to the same block. We extend
this to support grid-level barriers for the repair of inter-block data races. A grid-
level barrier is modeled by performing a reset even when the two threads do not
belong to the same block.

Since GPURepair attempts to fix errors caused only due to data races or
barrier divergence, it proposes a solution that only involves removing existing
barriers or adding new ones. Therefore, the instrumentation stage of GPURepair
introduces barriers guarded with Boolean variables, referred to as barrier vari-
ables. The value of a barrier variable acts as a switch to enable or disable the
barrier. A barrier guarded by a barrier variable is referred to as an instrumented
barrier. Consider the kernel in Listing 1.3 without the highlighted lines. This
kernel has a data race. The instrumentation process adds an instrumented bar-
rier before a shared variable is either read or written. Function calls involving
a shared variable are also taken into consideration, and an instrumented bar-
rier is added before the invocation. Pre-existing barriers in the programs are
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also guarded with barrier variables to explore if they can be removed without
introducing data races.

In addition, the control flow graph (CFG) is analyzed for branch state-
ments and loops to handle scenarios where barriers, if inserted right before
the read/write to a shared variable, may introduce barrier divergence. For
example, in Listing 1.3, the instrumentation process mentioned above would
insert the instrumented barriers right before Line 11 and Line 18. How-
ever, the solution to this program would be a barrier before the if block
at Line 15. The instrumentation process takes these scenarios under con-
sideration by inserting instrumented barriers at the scope boundaries such
as entry points of branch statements, loop-heads, and function calls. After
instrumentation, the highlighted lines at Lines 9, 13, and 16 in Listing 1.3
are added. For CUDA kernels, if instrumentation of grid-level barriers is
enabled, the highlighted lines at Lines 10, 14, and 17 are also added.

Algorithm 1. The Repair Algorithm
1: Input: Instrumented Program P
2: Output: Repaired Program Pϕ

3: ϕ := true
4: loop
5: 〈res, sol〉 := Solve(ϕ)
6: if res = UNSAT then
7: print Error: Program cannot be repaired

8: return errorcode
9: end if
10: 〈result, π〉 := V erify(Psol)
11: if result = SAFE then
12: break
13: end if
14: if result �= RACE && result �=

DIV ERGENCE then
15: print Error: Program cannot be

repaired
16: return errorcode
17: end if
18: c := GenerateClause(π)
19: ϕ := ϕ ∪ {c}
20: end loop
21: return Psol

1 bool b1, b2, b3, b4, b5, b6;
2 __device__ void write(int* A, int

idx) {
3 A[idx] = 50;
4 }
5
6 __global__ void race(int* A) {
7 auto g = this_grid ();
8

9 if(b1) { __syncthreads (); }

10 if(b4) { g.sync(); }

11 int temp = A[threadIdx.x+1];
12

13 if(b2) { __syncthreads (); }

14 if(b5) { g.sync(); }

15 if (temp < 50) {

16 if(b3) { __syncthreads (); }

17 if(b6) { g.sync(); }

18 write(A, threadIdx.x);
19 }
20 }

Listing 1.3. Example CUDA Kernel

In this example, variables b1,...,b6 are initially unconstrained. Their values
are constrained by GPURepair iteratively to avoid data races or barrier divergence
during the repair process. The repair process also assigns weights to these barrier
variables such that introducing barriers at the block-level is preferred over the
grid-level. This is done because grid-level barriers have a higher performance
penalty [32]. For the same reason, barriers nested within loops are less preferred.
Although the examples in this section are in CUDA, it should be noted that the
actual working of this stage happens on the Boogie program generated by Bugle
to make GPURepair agnostic to the front-end language (i.e., CUDA or OpenCL).
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2.3 Preliminaries

Let P be the given input GPU kernel after instrumentation, as described in
Sect. 2.2. Let {b1, . . . , bm} be the barrier variables introduced as a part of the
instrumentation process. Given a formula ϕ over bi’s, let Pϕ denote the instru-
mented kernel P with values of bi’s constrained to obey ϕ.

A clause c is called a positive (resp. negative) monotone clause if it has lit-
erals with only positive (resp. negative) polarity (e.g., b1 ∨ b5 ∨ b11). From now
on, we may also denote a clause as a set of literals with disjunctions among the
set elements being implicit. A formula or a constraint ϕ is a set of clauses with
conjunction being implicit among the set elements. Note that a formula ϕ con-
sisting of only positive monotone clauses or only negative monotone clauses is
always satisfiable. Let ϕ+ (resp. ϕ−) denote the set of positive (resp. negative)
monotone clauses belonging to ϕ.

Let C be a set consisting of non-empty sets S1, . . . , Sn. The set H is called a
hitting-set (HS) of C if:

∀Si∈CH ∩ Si �= ∅
H is called a minimal-hitting-set (mhs) if any proper subset of H is not a

hitting-set. H is called a Minimum-Hitting-Set (MHS) of C if no smaller hitting
set exists for C. Note that a collection C may have multiple mhs and multiple
MHS.

Since we also consider a formula ϕ as a set of clauses, we shall abuse the
notation and use mhs(ϕ+) to denote the set of literals that constitutes the
minimal-hitting-set of ϕ+.

Maximum satisfiability (MaxSAT ) is an optimization version of the SAT
problem where the goal is to find an assignment that maximizes the number of
clauses that are satisfied in a formula. In partial MaxSAT (PMS), given a set of
hard clauses (ϕh) and a set of soft clauses (ϕs), the goal is to find an assignment
that satisfies all the clauses of ϕh while maximizing the number of soft clauses
being satisfied. The weighted partial MaxSAT (WPMS) problem asks to satisfy
all the hard clauses while maximizing the sum of the weights of the satisfied soft
clauses. In WPMS, positive weights are associated with each soft clause.

2.4 The Repair Algorithm

Algorithm 1 depicts the repair technique behind GPURepair at a high level. It is
very similar to the algorithm presented in AutoSync [9].

Initially, all the barrier variables are unconstrained (Line 3), giving the ver-
ifier the freedom to set them to any value that leads to an error. Then, Algo-
rithm 1 iteratively calls the verifier (Line 4–20) until it either finds a solution
or determines that it cannot repair the program. A call to the verifier (Line 10)
returns an error trace π along with the type of the error being captured in result.
If the verifier could not find an error (Line 11) with the proposed solution sol,
then the algorithm exits the loop, and the instrumented Boogie program con-
strained with sol is returned (Line 21). If the verifier returned with an error
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that is neither a data race nor a barrier divergence (Line 14), then Algorithm 1
terminates with an error stating that it cannot repair the program. Here, we
are operating under the assumption that inserting an extraneous barrier may
only introduce a barrier divergence error, and removing a programmer-inserted
barrier may only cause a data race error.

If the verifier returns with a data race error, then the error trace π would tell
us which set of barriers were disabled (i.e., the corresponding barrier variables
were set to false by the verifier). Let the set of barrier variables that were set
to false in π be bi1 , . . . , bid

. To avoid the same error trace π we need to add
a constraint represented as a clause c, (bi1∨, . . . ,∨bid

), which is generated by
GenerateClause(π) (Line 18). Note that such a clause generated from a data
race (respectively barrier divergence) error always has only positive (resp. nega-
tive) literals. This newly generated clause is added to the constraint ϕ (Line 19),
which consists of one clause per error trace. We need to check if ϕ is satisfiable
(Line 5). If it is not satisfiable (Line 6), it indicates that there is no assignment
to barrier variables that avoids all previously seen traces. Algorithm 1 quits
with an error (Line 7) in this case. If ϕ is satisfiable, then the Solve method
proposes a solution sol (Line 5), which is essentially an assignment to some of
the barrier variables. We use two different ways to compute sol from ϕ. The first
method (the MaxSAT strategy) uses a MaxSAT solver to minimize the num-
ber of barrier variables being set to true in sol at each iteration. This is done by
solving a partial MaxSAT problem with ϕ as hard clauses and {¬b1, . . . ,¬bm}
as soft clauses. The second method (the mhs strategy) is to compute a minimal-
hitting-set (mhs) over ϕ+ using a polynomial-time greedy algorithm [21] at each
iteration to attempt to minimize the number of bi’s being set to true. In this
strategy, a single query to a MaxSAT solver is needed to ensure that the number
of bi’s being set to true is the minimum.

A similar approach has been used previously in other works [7,22,23]. It
should be noted that the clauses generated in these works are all positive mono-
tone clauses (clauses with only positive literals). In contrast, the clauses gener-
ated by Algorithm 1 could be a mix of positive monotone clauses and negative
monotone clauses. Because of this added complication, the approach of using
the mhs is not complete. There could be a scenario where the mhs could come
up with a solution that causes the negative monotone clauses to be unsatisfi-
able. Consider an example with the following clauses: { b1 ∨ b3, b1 ∨ b4, b2 ∨ b5,
b2 ∨ b6, ¬b1 ∨ ¬b2 }. The mhs(ϕ+) would give us b1 and b2, which would cause
the clause ¬b1 ∨ ¬b2 to be unsatisfiable. To overcome this, GPURepair falls back
to the MaxSAT solver whenever the mhs approach results in unsatisfiability.

A barrier inside a loop can pose a heavier performance penalty as opposed to
a barrier that is not nested inside a loop. Similarly, inter-block synchronization
is more expensive compared to intra-block synchronization [32]. In principle,
different barrier variables can be given different weights based on loop nesting
or profiling information. Then, instead of minimizing the number of barriers, one
may want to have barrier placements that minimize the sum of the weights of
the enabled barriers. This can easily be achieved by posing this as a weighted
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mhs or a weighted partial MaxSAT (WPMS) problem. The weight of a barrier
is computed as ((gw ∗gb)+ lwld) where gw is the penalty for a grid-level barrier,
gb is 0 for block-level barriers and 1 for grid-level barriers, lw is the penalty for
a barrier that is inside a loop, and ld is the loop-nesting depth of the barrier.

3 Related Work

The verification of GPU programs has been an active area of research for quite a
while. GPUVerify [10,11] defines an operational semantics for GPU kernels called
synchronous, delayed visibility (SDV) semantics, which mimics the execution
of a kernel by multiple groups of threads and uses this to identify data races
and barrier divergence. ESBMC-GPU [28] extends the ESBMC model checker by
generating an abstract representation of the CUDA libraries and verifies kernels
by checking specific desired properties. VerCors [8,13] builds on permission-based
separation logic and extends it to verify GPU programs. PUG [25] is a symbolic
verifier that uses SMT solvers to identify bugs in CUDA kernels. Contrary to
most of the other verifiers which use static analysis for verification, GKLEE [26]
uses concolic verification to identify concrete witnesses for reported bugs.

Automatic program repair is another active area of research that ties-in
quite closely with our work. There have been several research efforts in the
past for repairing sequential programs [16,18,20,27] as well as concurrent pro-
grams [15,17,19,22,23,30,31]. The work done in [17,22,23,31] is very similar to
the approach that we take in this paper, where the source code is instrumented,
and the repair technique uses the error traces obtained from a verifier to fix the
program.

To the best of our knowledge, apart from GPURepair, AutoSync [9] is the
only tool that tries to repair a GPU program. AutoSync takes a CUDA program
without any barriers and introduces barriers at appropriate locations to remove
data race errors.

3.1 Comparison with AutoSync

Repair on Source Code vs. Repair on Boogie Code: AutoSync and GPURe-
pair use different types of inputs. AutoSync uses a CUDA program as its input
for the repair process, whereas GPURepair uses the Boogie program generated
from Bugle. GPURepair is agnostic to the front-end language, allowing it to han-
dle both CUDA and OpenCL. AutoSync, on the other hand, directly takes and
manipulates the source code, which makes it fragile to syntactic changes and
limits its capabilities to CUDA only.

Consider the kernel in Listing 1.3. When function inlining is enabled, GPU-
Verify can accurately identify that Line 3 and Line 11 cause a read-write race
through the function call at Line 18. It reports the line information by spec-
ifying that the lines inside the functions cause the read-write race and also
explicitly specifies the lines from where these functions are invoked. AutoSync,
however, does not process this information correctly and ends up with a code
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error. GPURepair takes these cases into account and has the ability to place the
barrier precisely between the function invocations.

Barrier Placement vs. Instrumentation: AutoSync uses GPUVerify to iden-
tify the lines of code that cause the data race and tries to insert a barrier between
these lines of code. In contrast, GPURepair inserts instrumented barriers at var-
ious locations in the intermediate Boogie code based on the usage of global
variables and uses the trace information provided in errors to enable/disable bar-
riers. This instrumentation gives GPURepair the ability to remove programmer-
inserted barriers that are deemed unnecessary as well as repair errors caused by
barrier divergence or data races that require a grid-level barrier. This feature is
exclusive to GPURepair.

Consider the statement A[idx] = A[idx + 1], that has a read-write race
occurring in a single line of code. Because AutoSync uses the line information of
the statements to identify a read/write on shared variables to insert barriers in
the middle, it is unable to do so here since the line numbers will be the same.
AutoSync ends up in an infinite loop in these scenarios. In contrast, GPURepair
can identify such scenarios since this statement from the source file will be split
into two statements, a read followed by a write, in the Boogie representation of
the kernel.

Error Parsing vs. SMT Variable Analysis: AutoSync uses regular expres-
sions for parsing the error messages generated by GPUVerify to identify the
locations responsible for causing the data race. This technique makes AutoSync
extremely fragile to any changes in the output of GPUVerify. For example,
AutoSync reports that the program has no errors if, in the output, it does not find
texts related to data race or barrier divergence errors. This causes it to misclas-
sify programs with assertion violation errors as error-free programs. GPURepair
relies on the SMT model provided by GPUVerify to determine which barriers
contributed to the error. This approach makes GPURepair robust and indifferent
to the textual output format of GPUVerify.

Inter-block Races: GPURepair can propose a fix for inter-block races using
CUDA Cooperative Groups for CUDA kernels. No other tool is known to repair
inter-block races.

4 Experiments

In this section, we present our comparison of GPURepair and AutoSync on several
CUDA benchmarks. In addition, we present our findings for runs of GPURepair
on OpenCL benchmarks as AutoSync cannot tackle OpenCL kernels. The source
code of GPURepair is available at [2]. The artifacts and the virtual machine used
to reproduce the results of this paper are available at [3] and [6], respectively.

4.1 Experimental Setup

Since GPURepair depends on GPUVerify as an oracle, the implementation of
GPURepair uses the same technology stack as GPUVerify. The instrumentation
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and repair stages are built using the .NET Framework with C# as the pro-
gramming language. As mentioned in Sect. 2.1, there are several tools involved
in the pipeline of GPURepair. Specified below are the version numbers of the
tools used in the experimentation. We use the Z3 solver [12,29] for determining
the barrier assignments. The tools used in GPURepair with their versions are:
LLVM 6.0.1, Clang 6.0.1, libclc (Revision 353912), Bugle (Revision 15df0ed),
GPUVerify (Revision d5a90ec), and Z3 4.6.0.

The experiments were performed on Standard F2s v2 Azure R© virtual machine,
which has 2 vCPUs and 4 GiB of memory. More details on the virtual machine
can be found at [5]. For the experiments, a total of 748 kernels (266 CUDA and
482 OpenCL) were considered. This benchmark set is a union of four independent
test suites and publicly available [1] sample programs. Table 1 summarizes the
various sources of the kernels. The average number of lines of code for this
benchmark set is 17.51, and the median is 11. 14 kernels have more than 100
lines of code, and 47 have more than 50 lines of code.

Table 1. Benchmark Summary

Source Kernels

GPUVerify Test Suite (Inc. 482 OpenCL Kernels) [4] 658

NVIDIA GPU Computing SDK v5.0 [1] 56

AutoSync Micro Benchmarks [9] 8

GPURepair Test Suite (Inc. 16 examples for CUDA Cooperative Groups) 26

All the experiments were performed with a timeout of 300 seconds for each
benchmark for each tool. By default, the weight of a grid-level barrier (gw) is
taken as 12, and the weight of a barrier inside a loop (lw) is 10. For nested loops,
the loop-depth is computed, and the loop weight (lw) is raised to the power of
the loop-depth.

4.2 Results

Table 2 summarizes the results obtained from running the benchmark suite with
GPURepair and AutoSync. AutoSync does not support OpenCL; therefore, results
for OpenCL are only applicable for GPURepair. Numbers in bold indicate better
results.

The table categorizes the results into three categories based on the output
of GPUVerify. The first category includes all the kernels for which GPUVerify
concluded that there were no errors. For all 152 CUDA kernels that fall in this
category, AutoSync crashed in 6 of these benchmarks, and even though GPUVerify
did not give any errors, GPURepair suggested removal of unnecessary barriers for
13 CUDA kernels and 25 OpenCL kernels. Removal of unnecessary barriers is a
feature exclusive to GPURepair. AutoSync attempts only to insert barriers so as
to avoid data race errors.

http://llvm.org/svn/llvm-project/llvm/branches/release_60/
http://llvm.org/svn/llvm-project/cfe/branches/release_60/
http://llvm.org/svn/llvm-project/libclc/trunk/
https://github.com/mc-imperial/bugle
https://github.com/mc-imperial/gpuverify
https://github.com/Z3Prover/z3/tree/z3-4.6.0
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Table 2. Count of kernels grouped by category

Category AutoSync GPURepair

Total Benchmarks CUDA
266

CUDA
266

OpenCL
482

Verified by GPUVerify 152 152 331

No changes made by the tool 146 138 293

Changes recommended by the tool 0 13 25

Errors 6 0 10

Timeouts (300 seconds) 0 1 3

Data Race/Barrier Divergence Errors
identified by GPUVerify

89 89 69

Repaired by the tool 31 43 33

Repaired using grid-level barriers 0 15 0

Could not be repaired by the tool 10 20 34

Errors 14 0 0

Timeouts (300 seconds) 34 11 2

Unrepairable errors identified by
GPUVerify

25 25 82

Handled gracefully by the tool 0 25 82

False Positives 24 0 0

Errors 1 0 0

The second category includes the kernels for which GPUVerify had identified
data races or barrier divergence errors. For 10 benchmarks, AutoSync stated that
the error could not be repaired. Out of these 10, GPURepair was able to repair 6,
it timed out for 2, and it could not repair 2 of these. The final category involves
the kernels that had either assertion errors or errors thrown by Clang or Bugle
or had invalid invariants. Repairing these kernels is beyond the scope of either
AutoSync or GPURepair. AutoSync claimed that a solution was found for 24 out of
the 25 CUDA kernels in this category, but those were found to be false positives.
AutoSync checks the textual error messages for any information related to data
races and barrier divergence, and if it does not find anything, AutoSync treats it
as a success. In contrast, GPURepair returned the same error code as GPUVerify
for all the benchmarks in this category. This category highlights the fragile nature
of AutoSync, as it syntactically depends on the output of GPUVerify.

It is evident that GPURepair provides much more coverage as it can handle
OpenCL kernels. Even for CUDA kernels, GPURepair provides better coverage as
it can repair more programs, support inter-block synchronization using CUDA
Cooperative Groups, and exits gracefully for a larger number of kernels.

As described in Table 2, there were 25 benchmarks in the third category where
GPUVerify itself throws an irreparable error (e.g., either an assertion violation or
errors thrown by other stages). We provide a time comparison in the form of a
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scatter plot shown in Fig. 2 for the remaining 241 CUDA benchmarks, which are
either certified as error-free by GPUVerify or contain data race and/or barrier
divergence errors. Each benchmark has been executed 3 times for each of the
tools, and the average time for these 3 runs is taken into consideration. We used
the average since there was a negligible difference between the median and the
average.

Out of the 241 benchmarks, AutoSync was faster in 178 cases, whereas
GPURepair was faster for 63 benchmarks. GPUVerify did not show any error
for 152 out of these 241 benchmarks. For these benchmarks, AutoSync did not
have to put any further efforts. In contrast, GPURepair attempts to determine
if there are any programmer-inserted barriers that are unnecessary and could
be removed. This explains GPURepair being slower for some of the benchmarks.
Figure 3 shows a run time comparison for 89 benchmarks for which GPUVer-
ify found data race/barrier divergence errors. GPURepair performs significantly
better than AutoSync when a kernel requires repair. This is evident from Fig. 3
as AutoSync was faster on 32 benchmarks, whereas GPURepair was faster on 57
benchmarks out of these 89 benchmarks. Note that if any of the tools crash on
a benchmark, we consider that run to have timed out; that is, as a benchmark
run that took 300 seconds.

The default configuration of GPURepair uses the mhs strategy to solve the
clauses, enables exploring grid-level barriers to find a solution, and inspects
pre-existing barriers for removal if deemed unnecessary. The solver type can be
changed to MaxSAT , and the usage of grid-level barriers and inspection of pre-
existing barriers can be disabled through command-line options. In addition,
the weight of grid-level barriers and the weight of barriers nested within loops
can also be overridden using command-line options. Detailed documentation on
how to run GPURepair can be found at [2]. Table 3 compares the time taken by
AutoSync and GPURepair on different configurations. The total time taken by
AutoSync is higher, primarily because 300 seconds were counted every time any
of the tools crashed. This analysis demonstrates that GPURepair is more robust
than AutoSync while performing quite close to AutoSync with respect to runtime.
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Table 3. Comparison of AutoSync and the various configurations of GPURepair

All Kernels Repaired + Unchanged

(241) (28 + 133 = 161)

Tool Total Median Total Median Verifier

(Configuration) Time Time Time Time Calls

(in seconds)

AutoSync 17076 1.43 384 1.24 216

GPURepair 5810 1.76 823 1.57 271

GPURepair --maxsat 5940 1.75 887 1.54 306

GPURepair

--disable-grid

4450 1.72 660 1.56 254

GPURepair

--disable-inspect

5430 1.81 754 1.56 250

GPURepair

--disable-grid

--disable-inspect

4225 1.79 621 1.51 235

Additional experiments and analysis are provided in the extended manuscript
[24].

5 Conclusion

This tool paper introduces GPURepair, which can fix barrier divergence errors
and remove unnecessary barriers in addition to AutoSync’s ability to fix data
races. GPURepair has the additional capability to handle both CUDA and
OpenCL kernels. Most importantly, GPURepair has a unique feature for sug-
gesting a fix for inter-block races using Cooperative Groups in CUDA.

With extensive experimental evaluation on the benchmark suites (consisting
of 700+ CUDA/OpenCL kernels), we have affirmed the superiority of our work.
Our experimental results clearly show that GPURepair provides far more coverage
than AutoSync. For 65% of the total benchmarks, AutoSync was not applicable
as 482 out of the 748 benchmarks were OpenCL kernels. Even for CUDA kernels,
GPURepair is able to provide more coverage and is able to repair more kernels.
GPURepair is also faster than AutoSync when a kernel indeed requires repair.
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Abstract. Esterel is an imperative synchronous language that has found
success in many safety-critical applications. Its precise semantics makes
it natural for programming and reasoning. Existing techniques tackle
either one of its main challenges: correctness checking or temporal veri-
fication. To resolve the issues simultaneously, we propose a new solution
via a Hoare-style forward verifier and a term rewriting system (TRS)
on Synced Effects. The first contribution is, by deploying a novel effects
logic, the verifier computes the deterministic program behaviour via con-
struction rules at the source level, defining program evaluation syntacti-
cally. As a second contribution, by avoiding the complex translation from
LTL formulas to Esterel programs, our purely algebraic TRS efficiently
checks temporal properties described by expressive Synced Effects. To
demonstrate our method’s feasibility, we prototype this logic; prove its
correctness; provide experimental results, and a number of case studies.

1 Introduction

Esterel [6] is a synchronous programming language for the development of com-
plex reactive systems. Its high-level imperative style allows the simple expression
of parallelism and preemption, making it natural for programmers to specify
and reason about control-dominated model designs. Esterel has found success in
many safety-critical applications such as nuclear power plant control software.

The success with real-time and embedded systems in domains that need
strong guarantees can be partially attributed to its precise semantics and com-
putational model. There exist two main semantics for Esterel [4]: (i) the opera-
tional semantics: is a small-step semantics, a procedure for running a whole pro-
gram defined by an interpretation scheme. It analyses control flow and signals
propagation in the reaction; and (ii) the circuit semantics: translates Esterel
programs into constructive boolean digital circuits, i.e., systems of equations
among boolean variables. Existing semantics are particularly useful for code com-
pilation/optimization or tracking the execution, but not ideal for compositional
reasoning in terms of the source program.
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Esterel treats computation as a series of deterministic reactions to external
signals. All parts of a reaction complete in a single, discrete-time step called
an instant. Besides, instants exhibit deterministic concurrency; each reaction
may contain concurrent threads without execution order affecting the result
of the computation. Primitives constructs execute in zero time except for the
pause statement. Hence, time flows as a sequence of logical instants separated by
explicit pauses. In each instant, several elementary instantaneous computations
take place simultaneously.

To maintain determinism and synchrony, evaluation in one thread of execu-
tion may affect code arbitrarily far away in the program. In another words, there
is a strong relationship between signal status and control propagation: a signal
status determines which branch of a present test is executed, which in turn
determines which emit statements are executed (See Sect. 3.1 for the language
syntax). In this paper, we tackle Esterel’s Logical Correctness issue, caused by
these non-local executions, which is simply the requirement that there exists pre-
cisely one status for each signal that respects the coherence law. For example:

1 signal S1 in

2 present S1 then nothing else emit S1 end present end signal

Consider the program above. If the local signal S1 were present, the program
would take the first branch of the condition, and the program would terminate
without having emitted S1 (nothing leaves S1 with its default value, absent).
If S1 were absent, the program would choose the second branch and emit the
signal. Both executions lead to a contradiction. Therefore there are no valid
assignments of signals in this program. This program is logically incorrect.

1 signal S1 in

2 present S1 then emit S1 else nothing end present end signal

Consider the revised program above. If the local signal S1 were present, the
conditional would take the first branch, and S1 would be emitted, justifying the
choice of signal value. If the S1 were absent, the signal would not be emitted, and
the choice of absence is also justified. Thus there are two possible assignments
to the signals in this program, which is also logically incorrect.

1 present S1 then emit S1 else nothing end present

However, if S1 is an unbounded external input signal, then this program
becomes logically correct, as given a certain status of the input signal, there is
precisely one reaction, which satisfies the coherence law. Although logical correct-
ness is decidable, there is a deep lack in the state-of-the-art semantics for Esterel
[12], which is the ability to reason about unbounded input signals. We show that
our Effects logic resolves the above issues more systematically, by taking the sig-
nal statuses (both present and absent) explicitly as arithmetic path constraints
and looking ahead of analyzing the whole program.
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In this paper, we represent the program behaviours using Synced Effects. By
deploying a novel fixpoint logic, the Hoare-style forward verifier computes all the
possible execution traces. Logically incorrect programs, having none/multiple
assignments for local/output signals w.r.t the same input set, will be rejected.
Meantime, we present a term rewriting system (TRS) upon synced effects to
support temporal verification, which is another research challenge of Esterel.

Safety properties are typically used to describe the desired properties of reac-
tive systems. One of the widely used languages for specifying temporal behaviour
and safety properties is linear-time temporal logic (LTL). Existing approaches
to Esterel’s temporal verification have neither achieved compositionality nor
automation. One prior work [15], recursively translates LTL formula into an
Esterel program whose traces correspond to the computations that violate the
safety property. The program derived from the formula is then parallel com-
posed with the given Esterel program to be verified. The composed program is
compiled using Esterel tools. Lastly, an analysis of the compiler’s output then
indicates whether or not the property is satisfied by the original program.

In this work, we propose an alternative approach based on our effects logic,
which enables a modular local temporal verification without any complex transla-
tion. More specifically, given a logical correct program P, we compute its synced
effects Φ, and express the temporal properties in Φ′; Our TRS efficiently checks
the language inclusions Φ � Φ′. To the best of the authors’ knowledge, this work
proposes the first algebraic TRS for Esterel and resolves the correctness checking
and temporal verification at the same time. In addition, while existing works for
Esterel’s temporal verification have designed for a fixed set of temporal prim-
itives such as finally, next, until, we show that our expressive synced effects
provide us with more flexibility than existing temporal logics (Sect. 5.2).

We summarize our main contributions as follows:

1. The Synced Effects: We define the syntax and semantics of the Synced
Effects, to be the specification language, which are sufficient to capture the
Esterel program behaviours and non-trivial temporal properties (Sect. 3.2).

2. Automated Verification System: Targeting a pure Esterel language (Sect.
3.1), we develop a Hoare-style forward verifier (Sect. 4), to compositionally
compute the program effects, and check the logical correctness with the pres-
ence of input signals. We present an effects inclusion checker (the TRS), to
soundly prove temporal properties represented by synced effects (Sect. 5).

3. Implementation and Evaluation: We prototype the novel effects logic,
prove the correctness, provide experimental results and case studies to show
the feasibility of our method (Sect. 6).

Organization. Section 2 gives motivation examples to highlight the key
methodologies and contributions. Section 3 formally presents a pure Esterel lan-
guage, the syntax and semantics of our synced effects. Section 4 presents the
forward verification rules and the logical correctness checking process. Section
5 explains the TRS for effects inclusion checking, and displays the essential
auxiliary functions. Section 6 demonstrates the implementation and evaluation.
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We discuss related works in Sect. 7 and conclude in Sect. 8. Proofs can be found
in the technical report [21].

2 Overview

We now give a summary of our techniques, using Esterel programs shown in Fig.
1 and Fig. 2 Our synced effects can be illustrated with the modules close and
manager, which simulate the operations to constantly open and close a file.

1 module close:

2 output CLOSE;

3 /*@ requires {OPEN}

4 ensures {}.{ CLOSE} @*/

5 pause; emit CLOSE

6 end module

Fig. 1. The close module

1 module manager:

2 input BTN;

3 output CLOSE;

4 /*@

5 requires {}

6 ensures ({BTN}.{ CLOSE }\/{})*

7 @*/

8 signal OPEN in

9 loop

10 emit OPEN;

11 present BTN

12 then run close

13 else nothing

14 end present;

15 pause

16 end loop

17 end signal

18 end module

Fig. 2. The manager module

Here, CLOSE and BTN
are declared to be input/out-
put signals. The module
manager enters into a loop
after declaring a local sig-
nal OPEN. Inside of the loop,
it emits the signal OPEN,
indicating the file is now
opened; then tests on the
status of signal BTN. Signals
are absent by default, until
they are explicitly emitted.
If BTN is present, a function
call to module close will
be triggered, otherwise, it
does nothing1.

The input signal BTN
denotes a button which
can be pressed by the
users, and its presence indi-
cates the intention to close
the file. Then before exit-
ing from the loop, the
manager pauses for one
time instant.

The module close is
obligated to simply emit
the signal CLOSE after a
pause, indicating the file is now closed.

2.1 Synced Effects

We define Hoare-triple style specifications (marked in green) for each program,
which leads to a compositional verification strategy, where temporal reasoning
can be done locally.

1 nothing is the Esterel equivalent of unit, void or skip in other languages.
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Synced Effects is a Novel Abstract Semantics Model for Esterel. The process
control in such synchronous languages are event driven. Events, represented by
signals, are emitted within the environment for instance by sensors or the users.
The system generates signals in response which are either internal or exter-
nal. Following this model, synced effects describe the program behaviours using
sequences of sets of signals occurring in the macro level.

More specifically, the set of signals to be present in one logical time instance
are represented within one {}. For example, the postcondition of module close,
{} · {CLOSE}, says that the execution leads to two time instances, and only in
the second time instance, the signal CLOSE is guaranteed to be present.

Putting the temporal effects in the precondition is new, to represent the required
temporal execution history. For example, the precondition of module close,
{OPEN} requires that before entering into this module, the signal OPEN should
be emitted in the current time instance. Besides, to enhance the expressiveness,
synced effects allow trace disjunctions via ∨ and trace repetitions via � and ω.
For example, the postcondition in module manager ensures a repeating pattern,
in which it can be either {BTN} · {CLOSE} or just {}. See Sect. 3.2 for the syntax
and semantics of synced effects2.

1) loop

〈{}〉
2) emit OPEN;

〈{OPEN}〉 [FV-Emit]

3) present BTN then

〈{OPEN, BTN}〉 [FV-Present]

4) run close

{OPEN, BTN} � {OPEN} (-TRS: check precondition, succeed-)
〈{OPEN, BTN} · {CLOSE}〉 [FV-Call]

5) else nothing

〈{OPEN}〉 [FV-Present]

6) end present;
〈{OPEN, BTN} · {CLOSE} ∨ {OPEN}〉 [FV-Present]

7) pause

〈({OPEN, BTN} · {CLOSE} ∨ {OPEN}) · {}〉 [FV-Pause]

8) end loop

〈({OPEN, BTN} · {CLOSE} ∨ {OPEN})�〉 [FV-Loop]

9) ({OPEN, BTN} · {CLOSE} ∨ {OPEN})� � ({BTN} · {CLOSE} ∨ {})� (-TRS: check postcon-
dition, succeed-)

Fig. 3. The forward verification example for the loop in module manager.

2 The signals shown in one time instance represent the minimal set of signals which
are required/guaranteed to be there. An empty set {} refers to any set of signals.
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2.2 Forward Verification

As shown in Fig. 3, we demonstrate the forward verification process of the loop
in module manager. The current effects state of a program is captured in the
form of 〈Φ〉. To facilitate the illustration, we label the verification steps by 1),
..., 9). We mark the deployed verification rules in gray. The verifier invokes the
TRS to check language inclusions along the way.

The effects state 1) is the initial effects when entering into the loop. The
effects state 2) is obtained by [FV-Emit], which simply adds the emitted signal
to the current time instance. The effects states 3), 5) and 6) are obtained by
[FV-Present], which adds the constraints upon the tested signal into the cur-
rent state, and unions the effects accumulated from two branches at the end.
The effects state 4) is obtained by [FV-Call]. Before each method call, it checks
whether the current effects state satisfies the precondition of the callee method.
If the precondition is not satisfied, then the verification fails, otherwise it con-
catenates the postcondition of the callee to the current effects. The effects state
7) is obtained by [FV-Pause]. It concatenates an empty time instance to the
current effects, to be the new current state. The effects state 8) is obtained by
[FV-Loop], which computes a deterministic fixpoint of effects, to be the invari-
ant of executing the loop. After these states transformations, step 9) checks the
satisfiability of the declared postcondition by invoking the TRS.

Table 1. The inclusion proving example from the postcondition checking in Fig. 3.

Φ � Φpost(†) [REOCCUR]

E · Φ � (E ∨ ⊥) · Φpost
[UNFOLD]{CLOSE} · Φ � ({CLOSE} ∨ E) · Φpost
[UNFOLD]{OPEN, BTN} · {CLOSE} · Φ � Φpost

Φ � Φpost(†) [REOCCUR]

[UNFOLD]E · Φ � (⊥ ∨ E) · Φpost
[UNFOLD]{OPEN} · Φ � Φpost

Φ � Φpost(†)

where Φ = ({OPEN, BTN} · {CLOSE} ∨ {OPEN})�; and Φpost=({BTN} · {CLOSE} ∨ {})�

2.3 The TRS

Our TRS is obligated to check the inclusion among synced effects, an exten-
sion of Antimirov and Mosses’s algorithm. Antimirov and Mosses [3] present
a term rewriting system for deciding the inequalities of regular expressions,
based on a complete axiomatic algorithm of the algebra of regular sets. Basi-
cally, the rewriting system decides inequalities through an iterated process of
checking the inequalities of their partial derivatives [2]. There are two important
rules: [DISPROVE], which infers false from trivially inconsistent inequalities; and
[UNFOLD], which applies Theorem 1 to generate new inequalities. Da(r) is the
partial derivative of r w.r.t the instance a. (Σ is the whole set of the alphabet.)
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Theorem 1 (Regular Expressions Inequality (Antimirov)). For regular
expressions r and s, r � s ⇔ (∀a ∈ Σ). Da(r) � Da(s).

Extending to the inclusions among synced effects, we present the rewriting
process by our TRS in Table 1, for the postcondition checking shown in Fig.
3 We mark the rules of the inference steps in gray. Note that time instance
{OPEN, BTN} entails {BTN} because the former contains more constraints. We
formally define the subsumption for time instances in Definition 3. Intuitively,
we use [DISPROVE] wherever the left-hand side (LHS) is nullable3 while the right-
hand side (RHS) is not. [DISPROVE] is the heuristic refutation step to disprove
the inclusion early, which leads to a great efficiency improvement.

Termination is guaranteed because the set of derivatives to be considered is
finite, and possible cycles are detected using memorization. The rule [REOCCUR]
finds the syntactic identity, as a companion, of the current open goal, as a bud,
from the internal proof tree [9]. (We use (†) in Fig. 3 to indicate such pairings.)

3 Language and Specifications

In this section, we first introduce a pure Esterel language and then depict our
Synced Effects as the specification language.

3.1 The Target Language: Pure Esterel

In this work, we consider the Esterel v5 dialect [4,5] endorsed by current aca-
demic compilers, shown in Fig. 4 Pure Esterel is the subset of the full Esterel
language where data variables and data-handling primitives are abstracted away.
We shall concentrate on the pure Esterel language, as in this work, we are mainly
interested in signal status and control propagation, which are not related to data.

(Program) P ::= meth∗ (Basic Types) τ ::= IN | OUT | INOUT
(Module Def .) module ::= x (τ S)∗ 〈requires Φpre ensures Φpost〉 p
(Statement) p q ::= nothing | pause | emit S | present S p q

| p ; q | loop p | p || q | trap T p | exit Td

| signal S p | run x (S)∗ | assert Φ

S ∈ signal variables x, T ∈ var (Finite List) ∗ (Depth)d ∈ Z

Fig. 4. Pure esterel syntax.

Here, we regard S, x and T as meta-variables. Basic signal types include
IN (input signals), OUT (output signals), INOUT (the signals used to be both
3 If the event sequence is possibly empty, i.e. contains E , we call it nullable, formally

defined in Definition 1.
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input and output). var represents the countably infinite set of arbitrary distinct
identifiers. We assume that programs we use are well-typed conforming to basic
types τ . A program P comprises a list of method declarations meth∗.

Each module meth has a name x, a list of well-typed arguments (τ S)∗, a
statement-oriented body p, also is associated with a precondition Φpre and a
postcondition Φpost. (The syntax of effects specification Φ is given in Fig. 6)

Following the language constructs formally defined in Fig. 4, we describe how
signals are emitted and how control is transmitted between statements [4]:

– The statement nothing terminates instantaneously.
– The statement pause pauses exactly one logical instant and terminates in the

next instant.
– The statement emit S broadcasts the signal S to be set to present and ter-

minates instantaneously. The emission of S is valid for the current instant
only.

– The statement present S p q immediately starts p if S is present in the
current instant; otherwise it starts q when S is absent.

– The sequence statement p ; q immediately starts p and behaves as p as long
as p remains active. When p terminates, control is passed instantaneously to
q, which determines the behaviour of the sequence from then on. If p exits a
trap, so does the whole sequence, q being discarded in this case. q is never
started if p always pauses. (Notice that ‘emit S1 ; emit S2’ emits S1 and
S2 simultaneously and terminates instantaneously.)

– The statement loop p immediately starts its body p. When p terminates, it
is immediately restarted. If p exits a trap, so does the whole loop. The body
of a loop is not allowed to terminate instantaneously when started, i.e., it
must execute either a pause or an exit statement. For example, ‘loop emit S’
is not a correct program. A loop statement never terminates, but it is possible
to escape from the loop by enclosing it within a trap and executing an exit
statement.

– The parallel statement p || q starts p and q in parallel. The parallel statement
remains active as long as one of its branches remains active unless some
branch exits a trap. The parallel statement terminates when both p and q
are terminated. The branches can terminate in different instants, the parallel
waiting for the last one to terminate. Parallel branches may simultaneously
exit traps. If, in some instant, one branch exits a trap T or both branches exit
the same trap T, then the parallel exits T. If both statements exit distinct
traps T and U in the same instant, then the parallel only exits the higher
prioritized one.

– The statement trap T p defines a lexically scoped exit point T for p. When
the trap statement starts, it immediately starts its body p and behaves as
p until termination or exit. If p terminates, so does the trap statement. If
p exits T, then the trap statement terminates instantaneously. If p exits an
inner trap U, this exit is propagated by the trap statement.
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1 trap T in

2 trap U in

3 [ exit T1

4 || exit U0

5 || exit V3]

6 end trap;

7 exit T0

8 end trap

Fig. 5. Nested traps

– The statement exit Td instantaneously exits
the trap T with a depth d. The corresponding
trap statement is terminated unless an outer-
most trap is concurrently exited, as an outer
trap has a higher priority when being exited
concurrently. For example, as shown in Fig.
5, such an encoding of exceptions for Esterel
was first advocated for by Gonthier [13]. As
usual, we make depths value d explicit. Here,
T1 has depth 1 because of the declaration
of trap U in the middle; U0 and T0 have
depth 0 because they are directly enclosed by the trap U and T respectively;
V3 has depth 3 corresponding to an outer trap, defined outside of this code
segment. Therefore Fig. 5 ends up with exiting outermost trap V3.

– The statement signal S p starts its body p with a fresh signal S, overriding
any that might already exist.

– The statement run x(S∗) is a call to module x providing the list of IO signals.
– The statement assert Φ is used to guarantee the temporal property Φ

asserted at a certain point of the programs.

3.2 The Specification Language: Synced Effects

We present the syntax of our Synced Effects in Fig. 6 Effects Φ can be recursively
constructed by nil (⊥); an empty trace E ; one time instant represented by I;
effects concatenation Φ · Φ; effects disjunction Φ ∨ Φ; Kleene star �, a multiple
times repetition of the effects Φ (possibly E); Omega ω, an infinite repetition of
the effects Φ. One time instant is constructed by a list of mappings from signals
to status, recording the current status of all the signals, and will be overwritten
if there is a new status of a signal had been determined. The status of a signal
can be either present or absent.

Semantic Model of Effects. To define the model, we use ϕ (a trace of sets
of signals) to represent the computation execution, indicating the sequential
constraint of the temporal behaviour. Let ϕ |= Φ denote the model relation, i.e.,
the linear temporal sequence ϕ satisfies the synced effects Φ.

(Synced Effects) Φ ::= ⊥ | E | I | Φ · Φ | Φ ∨ Φ | Φ� | Φω

(Time Instant) I ::= (S 	→ θ)∗

(Status) θ ::= present | absent

(Omega) ω (Kleene Star) � (Finite List) ∗

Fig. 6. Synced effects.
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As shown in Fig. 7, we define the semantics of our synced effects. We use []
to represent the empty sequence; ++ to represent the append operation of two
traces; [I] to represent the sequence only contains one time instant.

I is a list of mappings from signals to status. For example, the time instance
{S} indicates the fact that signal S is present regardless of the status of other
non-mentioned signals, i.e., the set of time instances which at least contain S to
be present. Any time instance contains contradictions, such as {S,S}, will lead
to false, as a signal S can not be both present and absent. We use the overline
on top of the signal to denote the constraint of being absent.

ϕ |= E iff ϕ=[]

ϕ |= I iff ϕ=[I]

ϕ |= Φ1 · Φ2 iff there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ1 and ϕ2 |= Φ2

ϕ |= Φ1 ∨ Φ2 iff ϕ |= Φ1 or ϕ |= Φ2

ϕ |= Φ� iff ϕ |= E or

there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ and ϕ2 |= Φ�

ϕ |= Φω iff there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ and ϕ2 |= Φω

ϕ |= ⊥ iff false

Fig. 7. Semantics of effects.

4 Automated Forward Verification

An overview of our automated verification system is given in Fig. 8. It consists
of a Hoare-style forward verifier and a TRS. The inputs of the forward verifier
are Esterel programs annotated with temporal specifications written in Synced
Effects (cf. Fig. 2). The input of the TRS is a pair of effects LHS and RHS,
referring to the inclusion LHS � RHS to be checked (LHS refers to left-hand
side effects, and RHS refers to right-hand side effects.). Besides, the verifier calls
the TRS to prove produced inclusions, i.e., between the current effects states and
pre/post conditions or assertions (cf. Fig. 3).

Fig. 8. System overview.

The TRS will be explained
in Sect. 5. In this section, we
mainly present the forward ver-
ifier by introducing the for-
ward verification rules. These
rules transfer program states
and systematically accumulate
the effects based on the syntax
of each statement. We present
the intermediate representation of program states in Fig. 9.
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(Program States) Δ ::= 〈Φ, π ∧ φ, k〉
(Intermediate Synced Effects) Φ ::= ⊥ | E | π ∧ φ | Φ · Φ | Φ ∨ Φ | Φ� | Φω

(Current Time Instant) π ∧ φ ::= (S = θ)∗ ∧ (S 	→ θ)∗

Fig. 9. Intermediate representation for then program states.

Program states Δ are represented by a tuple, where the first element (Φ) repre-
sents the trace of history ; the second element represents the current time instant
containing the path constraints (π) and signal assignments (φ)4; the third ele-
ment (k) represents the completion code, keeping track of the exits from nested
traps [23]. Let 	 be the environment containing all the local and output signals.

4.1 Forward Rules

As nothing is the Esterel equivalent of unit, void or skip in other languages,
the rule [FV-Nothing] simply obtains the next program state by inheriting the
current program state.

	 � 〈Φ, π ∧ φ, k〉 nothing 〈Φ, π ∧ φ, k〉 [FV-Nothing]

The rule [FV-Emit] updates the current assignment of signal S to present;
keeps the history trace and completion code unchanged.

φ′ = φ[S → present]
	 � 〈Φ, π ∧ φ, k〉 emit S 〈Φ, π ∧ φ′, k〉 [FV-Emit]

The rule [FV-Pause] archives the current time instance to the history trace;
then initializes a new time instant where π′ is an empty set, and all the signals
from 	 are set to default absent. The completion code k remains unchanged.

π′ = {} φ′ = {S → absent | ∀S ∈ 	}
	 � 〈Φ, π ∧ φ, k〉 pause 〈(Φ · (π ∧ φ)), π′ ∧ φ′, k〉 [FV-Pause]

The rule [FV-Decl] obtains a new environment 	′ by adding the local signal S
into 	; sets the status of S to absent in the current time instance, then behaves
as its body p w.r.t 	′ and φ′ accordingly [6].

	′=	,S φ′=φ[S →absent] 	′ � 〈Φ, π∧φ′, k〉 p 〈Φ1, π1∧φ1, k1〉
	 � 〈Φ, π ∧ φ, k〉 signal S p 〈Φ1, π1 ∧ φ1, k1〉 [FV-Decl]

4 The difference between S = θ and S �→ θ is: the former one denotes the constraints
along the execution path, which creates false if there are two different status assign-
ments to the same signal; while the latter one records the current status of one
signal, and will be overwritten when the presence of a signal had been determined.
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1 signal SL in

2 present SL

3 then emit S1

4 else emit S2

5 end present

6 end signal

Fig. 10. Cannot

The rule [FV-Present] firstly gets π′

and π′′ by adding the path constraints
(S=present) and (S=absent) to the current
time instance; then derives 〈Φ1, π1∧φ1, k1〉
and 〈Φ2, π2∧φ2, k2〉 from the then and else
branches. We introduce can [12] function
which intuitively determines whether the
tested signal S can be emitted or not. If S
cannot be emitted (can(S)=false), the final
states will only come from the else branch q; otherwise we say S can be emitted
(can(S)=true), the final states will be the union of both branches’ execution.
For example, as it shown in Fig. 10, to unblock a present expression, one must
determine if the tested signal can be emitted or not. One way for that is to detect
the none-occurrences of emit SL. Here, since can(SL)=false, the program will
leave SL absent and emit S2.

π′ = π ∧ (S=present) 	 � 〈Φ, π′ ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
π′′ = π ∧ (S=absent) 	 � 〈Φ, π′′ ∧ φ, k〉 q 〈Φ2, π2 ∧ φ2, k2〉
〈Δ〉 = 〈Φ2, π2 ∧ φ2, k2〉 when can(S)=false
〈Δ〉 = 〈Φ1, π1 ∧ φ1, k1〉 ∨ 〈Φ2, π2 ∧ φ2, k2〉 when can(S)=true

	 � 〈Φ, π ∧ φ, k〉 present S p q 〈Δ〉 [FV-Present]

1 emit A; pause; emit B; emit C

2 ||

3 emit E; pause; emit F; pause; emit G

Fig. 11. Parallel composition

The rule [FV-Par] gets
〈Φ1, π1∧φ1, k1〉 and
〈Φ2, π2∧φ2, k2〉 by exe-
cuting p and q. The zip
function synchronises the
effects from these two
branches. For example, as it shown in Fig. 11, the first branch generates effects
{A} · {B,C} while the second branch generates effect {E} · {F} · {G}; then the
final states should be {A,E} · {B,C,F} · {G}. The max function returns the
larger value of k1 and k2. When both of the branches have exits, the final kf
follows the larger one, as the larger completion code indicates a higher exiting
priority.

	 � 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1∧φ1, k1〉 	 � 〈Φ, π ∧ φ, k〉 q 〈Φ2, π2∧φ2, k2〉
〈Φf, πf ∧ φf〉 = zip (Φ1, π1 ∧ φ1) (Φ2, π2 ∧ φ2) kf = max(k1, k2)

	 � 〈Φ, π ∧ φ, k〉 p || q 〈Φf, πf ∧ φf, kf〉 [FV-Par]

The rule [FV-Seq] firstly gets 〈Φ1, π1∧φ1, k1〉 by executing p. If there is an
exceptional exit in p, (k1 �=0), it abandons the execution of q completely. Other-
wise, there is no exits in p, (k1=0), it further gets 〈Φ2, π2∧φ2, k2〉 by continuously
executing q, to be the final program state.
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	 � 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1∧φ1, k1〉 	 � 〈Φ1, π1∧φ1, k1〉 q 〈Φ2, π2∧φ2, k2〉
〈Δ〉 = 〈Φ1, π1∧φ1, k1〉 when k1 �=0
〈Δ〉 = 〈Φ2, π2∧φ2, k2〉 when k1=0

	 � 〈Φ, π ∧ φ, k〉 p ; q 〈Δ〉 [FV-Seq]

The rule [FV-Loop] firstly computes a fixpoint 〈Φ1, π1 ∧ φ1, k1〉 by initializing
a temporary program state 〈E , π ∧ φ, k〉 before executing p. If there is an exit in
p, (k1 �=0), the final state will contain a finite trace of history effects, Φ followed
by Φ1, and a new current time instance (π1 ∧ φ1). Otherwise, there is no exits in
p, the final states will contain a infinite trace of effects, constructed by ω. Then
anything following an infinite trace will be abandoned. (cf. Table 2)

	 � 〈E , π ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
〈Δ〉 = 〈Φ · Φ1, π1 ∧ φ1, k1〉〉 when k1 �=0
〈Δ〉 = 〈Φ · (Φ1 · (π1 ∧ φ1))ω, none, k1〉 when k1=0

	 � 〈Φ, π ∧ φ, k〉 loop p 〈Δ〉 [FV-Loop]

The rule [FV-Trap] gets 〈Φ1, π1 ∧ φ1, k1〉 by executing the trap body p. When
there is no exit from the trap body (k=0), or there is an exit which can be exactly
catched by the current trap (k=1), we leave the final completion code to be 0.
When there is an exit with a higher priority, (k>1), indicating to exit from a
outer trap, we get the final kf by decreasing the completion code by one.

	 � 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
kf = 0 when k1≤1
kf = k1-1 when k1>1

	 � 〈Φ, π ∧ φ, k〉 trap T p 〈Φ1, π1 ∧ φ1, kf〉 [FV-Trap]

As exit Td will abort execution up to the (d+1) th enclosing of the trap T.
The rule [FV-Exit] sets the value of k using d+1.

	 � 〈Φ, π ∧ φ, k〉 exit Td 〈Φ, π ∧ φ, d+1〉 [FV-Exit]

The rule [FV-Call] checks if the precondition of callee, Φpre, is satisfied by
the current effects state; then it obtains the next program state by concatenating
the postcondition to the current effects state. (cf. Table 2)

x (τ S)∗ 〈requires Φpre ensures Φpost〉 p ∈ P
TRS � Φ · (π ∧ φ) � Φpre 〈Δ〉 = Φ · (π ∧ φ) · Φpost

	 � 〈Φ, π ∧ φ, k〉 run x (S)∗ p 〈Δ〉 [FV-Call]

The rule [FV-Assert] simply checks if the asserted property Φ′ is satisfied by
the current effects state. If not, a compilation error will be raised.

TRS � Φ · (π ∧ φ) � Φ′

	 � 〈Φ, π ∧ φ, k〉 assert Φ′ 〈Φ, π ∧ φ, k〉 [FV-Assert]
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4.2 Correctness Checking

Esterel assumes that the systems are deterministic. Informally, a non-
deterministic system does not have a unique response to a given input event;
instead, it chooses its response to the input event from a set of possible responses,
and an external observer has no way to consistently predict the response that
will be chosen by the system. Non-determinism corresponds to unlimited par-
allelism and not to any stochastic behaviour [17]. All Esterel statements and
constructs are guaranteed to be deterministic, in other words, there is no way
to introduce non-deterministic behaviour in an Esterel program.

1) present S1 〈{}〉
2) then nothing 〈{S1 ∧ S1}〉
3) else emit S1 〈{S1 ∧ S1}〉
4) end present 〈{false} ∨ {false}〉

false → logical incorrect

Fig. 12. Logical incorrect.

To effectively check logical correct-
ness, in this work, given an Esterel pro-
gram, after been applied to the forward
rules, we compute the possible execu-
tion traces in a disjunctive form; then
prune the traces contain contradictions,
following these principles: (cf. Fig. 12) (i)
explicit present and absent; (ii) each local
signal should have only one status; (iii)
lookahead should work for both present
and absent; (iv) signal emissions are idempotent; (v) signal status should not be
contradictory.

Finally, upon each assignment of inputs, programs have none or multiple
output traces that will be rejected, corresponding to no-valid or multiple-valid
assignments. We regard these programs, which have precisely one safe trace
reacting to each input assignments, as logical correct.

Lemma 1 (Safe Time Instants). Given a time instant π ∧ φ, we define it is
safe if and only if, for any signal S, the binding from the path constraints [[π]]S
justifies the status from the time instant mappings [[φ]]S; otherwise, we say it is
a contradicted instant. Formally,

π ∧ φ is safe iff � ∃S. [[π]]S �= [[φ]]S

Note that, the proof obligations are discharged by the Z3 solver while deciding
whether a time instant I is safe or not, represented by SAT(π ∧ φ).

Corollary 1 (Safe Traces). A temporal trace Φ is safe iff all the time instants
contained in the trace are safe.

5 Temporal Verification via a TRS

The TRS is a decision procedure (proven to be terminating and sound) to check
language inclusions among Synced Effects (cf. Table 1). It is triggered i) prior
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to temporal property assertions; ii) prior to module calls for the precondition
checking; and iii) at the end of verifying a module for the post condition checking.
Given two effects Φ1, Φ2, the TRS is to decide if the inclusion Φ1 � Φ2 is valid.

During the effects rewriting process, the inclusions are in the form of
Γ � Φ1 �Φ Φ2, a shorthand for: Γ � Φ · Φ1 � Φ · Φ2. To prove such inclusions
is to check whether all the possible event traces in the antecedent Φ1 are legiti-
mately allowed in the possible event traces from the consequent Φ2. Γ is the proof
context, i.e., a set of effects inclusion hypothesis, Φ is the history of effects from
the antecedent that have been used to match the effects from the consequent.
Note that Γ, Φ are derived during the inclusion proof. The inclusion checking
procedure is initially invoked with Γ={} and Φ=E . Formally,

Theorem 2 (Synced Effects Inclusion).
For synced effects Φ1 and Φ2, Φ1 � Φ2 ⇔ (∀I). DI(Φ1) � DI(Φ2).

Next we provide the definitions and implementations of auxiliary functions
Nullable (δ), First (fst) and Derivative (D) respectively. Intuitively, the Nul-
lable function δ(Φ) returns a boolean value indicating whether Φ contains the
empty trace E ; the First function fst(Φ) computes a set of possible initial time
instants of Φ; and the Derivative function DI(Φ) computes a next-state effects
after eliminating one time instant I from the current effects Φ.

Definition 1 (Nullable). Given any effects Φ, we recursively define δ(Φ) as:

δ(Φ) : bool=

{
true if E ∈ Φ
false if E /∈ Φ

, where

δ(⊥)=false δ(E)=true δ(I)=false δ(Φ1 · Φ2)=δ(Φ1) ∧ δ(Φ2)
δ(Φ1 ∨ Φ2)=δ(Φ1) ∨ δ(Φ2) δ(Φ�)=true δ(Φω)=false

Definition 2 (First). Let fst(Φ):={I | (I · Φ′) ∈ [[Φ]]} be the set of initial
time instants derivable from effects Φ. ([[Φ]] represents all the traces contained
in Φ.)

fst(⊥)={} fst(E)={} fst(I)={I} fst(Φ�)=fst(Φ)
fst(Φω)=fst(Φ) fst(Φ1 ∨ Φ2)=fst(Φ1) ∪ fst(Φ2)

fst(Φ1 · Φ2)=

{
fst(Φ1) ∪ fst(Φ2) if δ(Φ1)=true

fst(Φ1) if δ(Φ1)=false
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Definition 3 (Instants Subsumption). Given two time instants I and J,
we define the subset relation I⊆J as: the set of present signals in J is a subset
of the set of present signals in I, and the set of absent signals in J is a subset
of the set of absent signals in I.5 Formally,

I⊆J ⇔ {S | (S → present) ∈ J} ⊆ {S | (S → present) ∈ I} and

{S | (S → absent) ∈ J} ⊆ {S | (S → absent) ∈ I}

Definition 4 (Partial Derivative). The partial derivative DI(Φ) of effects Φ
w.r.t. a time instant I computes the effects for the left quotient I-1[[Φ]].

DI(⊥)=⊥ DI(E)=⊥ DI(J)=E (if I⊆J) DI(J)=⊥ (if I�⊆J)
DI(Φ�)=DI(Φ) · (Φ�) DI(Φω)=DI(Φ) · (Φω) DI(Φ1 ∨ Φ2)=DI(Φ1) ∨ DI(Φ2)

DI(Φ1 · Φ2)=

{
DI(Φ1) · Φ2 ∨ DI(Φ2) if δ(Φ1)=true

DI(Φ1) · Φ2 if δ(Φ1)=false

5.1 Inference Rules

We now discuss the key steps and related inference rules that we may use in
such an effects inclusion proof.

I. Axiom Rules. Analogous to the standard propositional logic, ⊥ (referring
to false) entails any effects, while no non-false effects entails ⊥.

Γ � ⊥ � Φ
[Bot-LHS]

Φ �= ⊥
Γ � Φ �� ⊥ [Bot-RHS]

II. Disprove (Heuristic Refutation). This rule is used to disprove the inclu-
sions when the antecedent is nullable, while the consequent is not nullable.
Intuitively, the antecedent contains at least one more trace (the empty trace)
than the consequent. Therefore, the inclusion is invalid.

δ(Φ1) ∧ ¬δ(Φ2)
Γ � Φ1 �� Φ2

[DISPROVE]

III. Prove. We use the rule [REOCCUR] to prove an inclusion when there exist
inclusion hypotheses in the proof context Γ, which are able to soundly prove
the current goal. One of the special cases of this rule is when the identical
inclusion is shown in the proof context, we then terminate the procedure
and prove it as a valid inclusion.

(Φ1 � Φ3) ∈ Γ (Φ3 � Φ4) ∈ Γ (Φ4 � Φ2) ∈ Γ

Γ � Φ1 � Φ2

[REOCCUR]

5 As in having more constraints refers to a smaller set of satisfying instances.
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IV. Unfolding (Induction). Here comes the inductive step of unfolding the
inclusions. Firstly, we make use of the auxiliary function fst to get a
set of instants F, which are all the possible initial time instants from the
antecedent. Secondly, we obtain a new proof context Γ′ by adding the cur-
rent inclusion, as an inductive hypothesis, into the current proof context
Γ. Thirdly, we iterate each element I ∈ F, and compute the partial deriva-
tives (the next-state effects) of both the antecedent and consequent w.r.t
I. The proof of the original inclusion Φ1 � Φ2 succeeds if all the derivative
inclusions succeeds.

F = fst(Φ1) Γ′ = Γ, (Φ1 � Φ2) ∀I ∈ F. (Γ′ � DI(Φ1) � DI(Φ2))
Γ � Φ1 � Φ2

[UNFOLD]

V. Normalization. We present a set of normalization rules to soundly transfer
the synced effects into a normal form, particular after getting their deriva-
tives. Before getting into the above inference rules, we assume that the
effects formulae are tailored accordingly using the lemmas shown in Table
2 We built the lemmas on top of a complete axiom system suggested by
Antimirov and Mosses [3], which was designed for finite regular languages
and did not include the corresponding lemmas for effects constructed by ω.

Table 2. Some Normalization Lemmas for synced effects.

Φ ∨ Φ → Φ ⊥ · Φ → ⊥ (E ∨ Φ)� → Φ�

⊥ ∨ Φ → Φ Φ · ⊥ → ⊥ (Φ1 ∨ Φ2) ∨ Φ3 → Φ1 ∨ (Φ2 ∨ Φ3)

Φ ∨ ⊥ → Φ ⊥ω → ⊥ (Φ1 · Φ2) · Φ3 → Φ1 · (Φ2 · Φ3)

E · Φ → Φ ⊥� → E Φ · (Φ1 ∨ Φ2) → Φ · Φ1 ∨ Φ · Φ2

Φ · E → Φ Φω · Φ1 → Φω (Φ1 ∨ Φ2) · Φ → Φ1 · Φ ∨ Φ2 · Φ

Theorem 3 (Termination). The rewriting system TRS is terminating.

Theorem 4 (Soundness). Given an inclusion I, if the TRS returns TRUE
when proving I, then I is valid.

Proof. Both see in the technical report [21].

5.2 Expressiveness of Synced Effects

Classical LTL extended propositional logic with the temporal operators G (“glob-
ally”) and F (“in the future”), which we also write � and ♦, respectively; and
introduced the concept of fairness, which ensures an infinite-paths semantics.
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Table 3. Examples for converting LTL formulae into Effects. ({A}, {B} represent
different time instants which contain signal A and B to be present.)

�A ≡ {A}ω ♦A ≡ {}� · {A} A U B ≡ {A}� · {B}
XA ≡ {} · {A} �♦A ≡ ({}� · {A})ω ♦�A ≡ {}� · {A}ω

LTL was subsequently extended to include the U (“until”) operator and the X
(“next time”) operator. As shown in Table 3, we are able to recursively encode
these basic operators into our synced effects, making it possibly more intuitive
and readable, mainly when nested operators occur6.

Besides the high compatibility with standard first-order logic, synced effects
makes the temporal verification for Esterel more scalable. It avoids the must-
provided translation schemas for each LTL temporal operator, as to how it has
been done in the prior work [15].

6 Implementation and Evaluation

To show the feasibility of our approach, we have prototyped our automated
verification system using OCaml (Source code and test suite are available from
[19]). The proof obligations generated by the verifier are discharged using con-
straint solver Z3. We prove termination and soundness of the TRS, our beck-
end solver. We validate the front-end forward verifier for conformance, against
two Esterel implementations: the Columbia Esterel Compiler (CEC) [11] and
Hiphop.js [7,24]:

– CEC: It is an open-source compiler designed for research in both hardware
and software generation from the Esterel synchronous language to C, Verilog
or BLIF circuit description. It currently supports a subset of Esterel V5 [5],
and provides pure Esterel programs for testing.

– Hiphop.js: It is a DSL for JavaScript, to facilitate the design of complex
web applications by smoothly integrating Esterel and JavaScript. To enrich
our test suite, we take a subset of Hiphop.js programs (as our verifier does
not accept JavaScript code), and translate them into our target language.

Based on these two benchmarks, we validate the verifier using 96 pure Esterel
programs, varying from 10 lines to 300 lines. We manually annotate temporal
specifications in synced effects for each of them, including both succeeded and
failed instances. The remainder of this section presents some case studies.

6 Our implementation provides a LTL-to-Effects translator.
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6.1 Loops
1 module loopTest1:

2 output A,B,C;

3 /*@

4 require {}

5 ensure {A,B}.({B,C})w

6 @*/

7 emit A;

8 loop

9 emit B; pause; emit C

10 end loop end module

Fig. 13. Loop (1)

1 module loopTest2:

2 output A,B,C;

3 /*@

4 require {}

5 ensure {A}.({B}.{C})w

6 @*/

7 emit A;

8 loop

9 pause; emit B;

10 pause; emit C

11 end loop end module

Fig. 14. Loop (2)

1 module trapTest:

2 output A,B;

3 /*@

4 require {}

5 ensure {A}

6 @*/

7 trap T1 in

8 trap T2 in

9 emit A;

10 (exit T1)||( exit T2)

11 end trap;

12 emit B

13 end trap

14 end module

Fig. 15. Exception priority

As shown in Fig. 13, the program firstly
emits signal A, then enters into a loop
which emits signal B followed by a
pause followed by emitting signal C at
the end. The synced effects of it is
Φ={A, B} · ({B, C})ω, which says that in
the first time instant, signals A and B
will be present, because there is no explicit
pause between the emit A and the emit
B; then for the following instants (in an
infinite trace), signals B and C will be
present all the time, because after exe-
cuting emit C, it immediately executes
from the beginning of the loop, which is
emit B. As we can see, Esterel’s instanta-
neous nature requires a special distinction
when it comes to loop statements, which
increases the difficulty of the invariants
inference, enabled by our forward verifier.

To further demonstrate the execution
of loop statements, we revise the exam-
ple in Fig. 13 by adding a pause at
the beginning of the loop, as shown in
Fig. 14 We get an different final effects
Φ′ = {A} · ({B} · {C})ω, where only signal
A is present in the first time instant; Then
for the following instances (in an infinite
trace), B and C are not necessarily to
be present in the same instances, instead,
they will take turns to be present.

6.2 Exception Priority

As shown in Fig. 15, the final effects for
this nested trap test contains one time
instance with only signal A is present.
In the nested exception declaration, the
outer traps have higher priorities over the
inner traps, in other words, the exception
of greater depth has always priority. In
this example, when exit T1 and exit T2 are executed concurrently, as exit T1
has a higher priority, the control will be transferred directly to the end of
trap T1, ignoring the emit B in line 12. Therefore signal A is emitted while
signal B is not emitted.
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6.3 A Gain on Constructiveness

1 module a_bug:

2 output S;

3 /*@

4 require {}

5 ensure {S}

6 @*/

7 signal S in

8 present S then emit S

9 else emit S

10 end present end signal

11 end module

Fig. 16. A bug found

We discovered a bug from the Esterel
v5 Constructive semantics [4]. As
shown in Fig. 16, this program is
detected as “non-constructive” and
rejected by CEC. Because the status
of S must be guessed prior to its emis-
sion; however, in present statements, it
is required that the status of the tested
signal must be determined before exe-
cuting the sub-expressions.

Well, this program actually can
be constructed, as the only possible
assignment to signal S is to be present.
Our verification system accepts this program, and compute the effects effectively.
We take this as an advantage of using our approach to compute the fixpoint of
the program effects, which essentially explores all the possible assignments to
signals in a more efficient manner.

7 Related Work

7.1 Semantics of Esterel

For the Pure Esterel, an early work [6] (1992) gave two operational semantics, a
macrostep logical semantics called the behavioural semantics, and a small-step
logical semantics called the execution semantics. A subsequent work [4] (1999)
gave an update to the logical behavioural macrostep semantics to make it more
constructive. The logical behavioural semantics requires existence and unique-
ness of a behaviour, while the constructive behavioural semantics introduces Can
function to determine execution paths in an effective but restricted way.

Our synced effects of Esterel closely follows the work of states-based seman-
tics [4]. In particular, we borrow the idea of internalizing state into effects using
history and current that bind a partial store embedded at any level in a program.
However, as the existing semantics are not ideal for compositional reasoning in
terms of the source program, our forward verifier can help meet this requirement
for better modularity.

A more recent work [12] (2019) proposes a calculus for Esterel, which is
different from a reduction system - although there is an equational theory. The
deep lack in the calculus is the ability to reason about input signals. However,
as explained in Sect. 4.2, our effects logic is able to reason about the correctness
with unbounded input signals. Beyond the correctness checking, the computed
temporal effects are particularly convenient for the safety checking at the source
code level before the runtime. With that, next, we introduce some related works
of temporal verification on Esterel programs.
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7.2 Temporal Verification of Esterel

In prior work [15], given a LTL formula, they first recursively translate it into
an Esterel program whose traces correspond to the computations that violate
the safety formula. The program derived from the formula is then composed in
parallel with the given Esterel program to be verified. The program resulting
from this composition is compiled using available Esterel tools; a trivial analysis
of the compiler’s output then indicates whether or not the property is satisfied
by the original program. By exhaustively generating all the composed program’s
reachable states, the Esterel compiler, in fact, performs model checking.

However, the overhead introduced by the complex translation makes it par-
ticularly inefficient when disproving some of the properties. Besides, it is limited
by the expressive power of LTL, as whenever a new temporal logic has to be
introduced, we need to design a new translation schema for it accordingly.

Informally, we are concerned with the problem: Given a temporal property
Φ′, how to check that a given behaviour Φ satisfies it. The standard approaches
to this language inclusion problem are based on the translation of Φ and Φ′

into equivalent finite state automata: MA and MB; and then check emptiness
of MA ∩ ¬MB. However, the worst-case complexity of any efficient algorithm
[10] based on such translation also goes exponential in the number of states.

In this work, we provide an alternative approach, inspired by Antimirov
and Mosses’ work, which presented a TRS [3] for deciding the inequalities of
basic regular expressions. A TRS is a refutation method that normalizes regular
expressions in such a way that checking their inequality corresponds to an iter-
ated process of checking the inequalities of their partial derivatives [2]. Works
based on such a TRS [3,14,16] suggest that this method is a better average-case
algorithm than those based on the translation into automata. Invigorated by
that, in this paper, we present a new solution of extensive temporal verification,
which deploys a TRS but solves the language inclusions between Synced Effects.

Similarly, extending from Antimirov’s notions of partial derivatives, prior
work [8] (Broda et al., 2015) presented a decision procedure for equivalence
checking between Synchronous Kleene Algebra (SKA) terms. Next, we discuss
the similarities and differences between our work and [8].

7.3 Synchronous Kleene Algebra (SKA)

Kleene algebra (KA) is a decades-old sound and complete equational theory of
regular expressions. Our Synced Effects theory draws similarities to SKA [18],
which is KA extended with a synchrony combinator for actions. Formally, given
a KA is (A,+, ·, �, 0, 1), a SKA over a finite set AB is (A,+, ·,×, �, 0, 1, AB), AB⊆A.
Our ⊥ (false) corresponds to the 0; our E (empty trace) corresponds to the 1; our
time instance containing simultaneous signals can be expressed via ×; and the
instants subsumption (Definition 3) is reflected by SKA’s demanding relation.

Presently, SKA allows the synchrony combinator × to be expressed over any
two SKA terms to support concurrency. We achieve a similar outcome in Synced
Effects by supporting normalization operations during trace synchronization, via
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a zip function in the forward rule of [FV-Par]. This leads to one major difference
in the inclusion/equivalence checking procedure, whereby a TRS for SKA would
have to rely on nullable, first, and partial derivatives for terms constructed by the
added combinator ×, but carefully avoided by our TRS construction. While the
original equivalence checking algorithm for SKA terms in [18] has relied on well-
studied decision procedures based on classical Thompson ε-NFA construction,
[8] shows that the use of Antimirov’s partial derivatives could result in better
average-case algorithms for automata construction. Our present work avoided the
consideration for the more general × operation from SKA and customized the
TRS for inclusion (instead of equivalence) checking. These decisions led to some
opportunities for improvements. Moreover, between TRS and the construction
of efficient automata, we have recently shown in [20] that the former has a minor
performance advantage (over a benchmark suite) when it is compared with state-
of-the-art PAT [22] model checker. Improvement came from the avoidance of the
more expensive automata construction process.

Apart from the synchrony combinator, we also introduced the ω construc-
tor to explicitly distinguish infinite traces from the coarse-grained repetitive
operator kleene star �. The inclusion of ω constructor allows us to support non-
terminating reactive systems, that are often supported by temporal specifica-
tion and verification to ensure systems dependability. As a consequence, our
backend TRS solver is designed to be able to soundly reason about both finite
traces (inductive definition) and infinite traces (conductive definition), using
cyclic proof techniques of [9].

Another extension from the ready-made KA theory is Kleene algebra with
tests (KAT), which provides solid mathematical semantic foundations for many
domain-specific languages (DSL), such as NetKAT [1], designed for network
programming. In KAT, actions are extended with boolean predicates and the
negation operator is added accordingly. Our Synced Effects also support the
boolean algebra in a similar way, since each of our signals can be explicitly
specified to be either present or absent. Contradictions of such signals are also
explicitly captured by ⊥ (false), whenever signal unification fails.

8 Conclusion

We define the syntax and semantics of the novel Synced Effects, capable of
capturing Esterel program behaviours and temporal properties. We develop a
Hoare-style forward verifier to compute the program effects constructively. The
verifier further enables a more systematic logical correctness checking, with the
presence of unbounded input signals, which was a profound lack in prior works.
We present an effects inclusion checker (the TRS) to verify the annotated tempo-
ral properties efficiently. We implement the effects logic and show its feasibility.
To the best of our knowledge, our work is the first solution that automates
modular verification for Esterel using an expressive effects logic.
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Abstract. In this paper, we implement a GPU-based quantitative model checker
and compare its performance with a CPU-based one. Linear Temporal Logic for
Control (LTLC) is a quantitative variation of LTL to describe properties of a lin-
ear system and LTLC-Checker [1] is an implementation of its model checking
algorithm. In practice, its long and unpredictable execution time has been a con-
cern in applying the technique to real-time applications such as automatic con-
trol systems. In this paper, we design an LTLC model checker using a GPGPU
programming technique. The resulting model checker is not only faster than the
CPU-based one especially when the problem is not simple, but it has less varia-
tion in the execution time as well. Furthermore, multiple counterexamples can be
found together when the CPU-based checker can find only one.

Keywords: Quantitative model checking · GPU programming · LTLC

1 Introduction

Temporal logics are a branch of logic that can specify behaviors of a system evolving
over time [12]. Linear Temporal Logic (LTL) is a temporal logic that describes linear
behaviors of a system without considering branching [18,27]. Linear Temporal Logic
for Control (LTLC) is a quantitative variation of LTL that can describe properties about
state trajectories of a linear system or a hybrid system [23,24]. Using the LTLC model
checking technique, (i) one can validate whether all state trajectories of a system satisfy
an LTLC specification and (ii) one can compute an input to a physical system such
that a goal described in LTLC can be achieved. Particularly, we are interested in the
second usage in this paper. To compute a control input, a control objective is described
in LTLC and then its negation is model checked. A control input can be obtained from
a counterexample such that the input obtained this way can drive the system to satisfy
the original goal.

Automatic controllers are systems that interface a computer system and a physi-
cal system. Typically, an automatic controller takes a reference input from a computer
system and makes the output of a physical system conform to the reference value
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while satisfying certain constraints on the state trajectories. In this paper, we adopt
the approaches of a Model Predictive Control (MPC), where a sequence of control
inputs up to an input horizon is computed to make the system reach a steady state by
an output horizon [10,11]. However, unlike MPC, where a single conjunctive set of
constraints is considered, LTLC can consider numerous sets of conjunctive constraints
together. That is, a wide range of control objectives can be easily expressed in LTLC.
There are quantitative model checking or reachability checking techniques that have
been applied to control systems [14,15,22,28]. The state space of a physical system
is continuous. There are model checking techniques that can handle such infinite state
systems [4,8,16,17,25].

The trend of boosting the performance of a processor by increasing the clock speed
has been obstructed by hardware limitations such as the transistor leakage current. As an
alternative strategy, a multi-core architecture, with many cores running at reduced clock
speed, is introduced and has been successfully adopted [32,33]. Graphics card indus-
tries adopted the trend and they put thousands of cores in a GPU. To utilize this parallel
architecture for general programming practices such as scientific computing, a tech-
nique called General-Purpose computing on Graphics Processing Units (GPGPU) has
been invented. To further enhance the flexibility of GPU programming, Nvidia intro-
duced the Compute Unified Device Architecture (CUDA) API along with a set of tools
including C/C++ compiler extensions [3,30]. Using the GPGPU technique many suc-
cessful performance improvement cases have been reported [2,3,21].

When control objectives are simple, the CPU-based LTLC checker can find a coun-
terexample relatively quickly. However, as the complexity of the goal and the control
horizon increases, the execution time grows exponentially. This is an inherent charac-
teristic of LTL model checking [12,27]. Not only is the duration of the execution time
increased, but its variation is increased as well because of the search space growth. The
long duration and its unpredictability have been a major obstacle in adopting the tech-
niques to real-time applications. In this paper, we design a GPU-based LTLC model
checker that runs faster and has a more predictable execution time [1] than those of a
CPU-based checker. Although these improvements cannot tackle the inherent exponen-
tial complexity issue of LTLC model checking, many goals with a practical complexity
can be handled within a reasonable amount of time.

In this paper, the LTLC model checker is redesigned to utilize the parallel archi-
tecture of GPU devices. Because the LTLC model checking algorithm is converted to
a sequence of feasibility checking problems, we modified the algorithm to solve many
linear programming problems on thousands of cores on a GPU in parallel. For complex
model checking problems, the execution of the new GPU-based checker is significantly
faster than the CPU-based checker on average. Furthermore, the variance of the execu-
tion time of the GPU-based checker is much smaller than that of the CPU-based one.
This predictable execution time makes the model checker a more suitable candidate for
a real-time application such as a feedback controller.

The time complexity of LTL model checking is PSPACE-complete. To speed up the
model checking process, a parallel BFS algorithm that runs on many cores of a CPU has
been developed [19]. This BFS algorithm has been re-engineered to take advantage of
the massive parallel architecture of GPU devices [6,7]. In [34], a piggyback algorithm
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is used on Rabin automata to check the liveness property on a GPU device. In this
paper, we developed a mixed DFS-BFS algorithm. In LTLC model checking, instead of
building an intersection automaton, the feasibility of the constraints on state trajectories
along each accepting run of a Büchi automaton is checked by Linear Programming.
Pruning infeasible search paths as early as an infeasibility is found in their prefixes can
expedite the LTLC model checking process. The mixed DFS-BFS algorithm finds these
infeasible prefixes and prevents examinations on unnecessary search paths.

In [5], the massive parallel processing capability of a GPU device has been exploited
to approximate invariants of a program using Octagon Abstract Domains (OADs).
OADs are conjunctions of constrains of the form ±x ± y ≤ c, which can be represented
by a Difference Bound Matrix (DBM) [31]. OADs can efficiently approximate pro-
gram invariants by several operations: testing the emptiness using Bellman-Ford algo-
rithm, finding the strong closure to reveal the tightest implicit constraints using Floyd-
Warshall shortest-path algorithm, widening the domain to approximate fixpoints, han-
dling of guard and assignment operations, etc. In [5], a GPU device is utilized to speed
up the OAD operations. In particular, a GPU performs the OAD operations on DBMs,
mapped to a 2D texture, whenever a CPU reaches certain program points. While this
approach handles many operations efficiently on relatively simple octagon constraints,
the proposed technique mainly checks the emptiness of polyhedrons, a more general
constraint. The DBM corresponds to the Tableau in LTLC: the former represents the
constraints among program variables and the latter represents an LP problem. While a
single DBM is handled on a GPU device at a time in [5], in LTLC model checking, mul-
tiple Tableaus are processed simultaneously each by a warp of threads. This approach
can further increase the degree of parallelism.

2 Linear Temporal Logic for Control

Linear Temporal Logic for Control (LTLC) is a quantitative temporal logic to describe
properties of a linear system [23] or a hybrid system [24]. In this paper, we focus on
linear systems, the simpler of the two, so that the performance comparisons are more
straightforward. In this section, we summarize the syntax, semantics and a model check-
ing algorithm of LTLC before explaining its extension to a GPU-based parallel design.

2.1 Discrete Linear Time Invariant System Model

LTLC describes properties of discrete-time Linear Time Invariant (LTI) systems. LTI
systems can be represented by a seven-tuple M = 〈U,Y, X, A, B,C,D〉, where U =
{u1, ..., unu} is a set of inputs, Y = {y1, ..., yny} is a set of outputs, X = {x1, ..., xnx} is a set
of states, and A ∈ �nx×nx, B ∈ �nx×nu, C ∈ �ny×nx, and D ∈ �ny×nu are system matrices,
describing the dynamics of the system in the state space form [13].

The relation among the state trajectory x : �→ �nx, the output trajectory y : �→
�ny, and the input u : �→ �nu can be expressed in the following recurrence equations.

x(t + 1) = A · x(t) + B · u(t), y(t) = C · x(t) + D · u(t), (1)

where x(t)i = xi at time t, y(t)i = yi at time t, and u(t)i = ui at time t.
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Solving the recurrence equation, the state trajectory x and the output trajectory y
can be expressed in terms of the input u and the initial state x(0) as follows:

x(t) = At · x(0) +∑t−1
i=0 A

t−i−1 · B · u(i), y(t) = C · x(t) + D · u(t). (2)

A computational path π is a function π : � → �nu × �ny × �nx that comprises the
input, output, and state trajectories such that π(t) = (u(t), y(t), x(t)).

2.2 Syntax and Semantics of LTLC

The syntax of an LTLC formula φ is as follows:

φ ::= T | F | ap | ¬φ | φ ∧ ϕ | φ ∨ ϕ | φ→ ϕ | φ↔ ϕ |
X φ | φ U ϕ | φ R ϕ | � φ | � φ,

ap(t) ::= c1 · v1(texp1) + ... + cn · vn(texpn) � d,

where ap is an atomic proposition, texpi is a polynomial of variable t such that texpi ≥ t,
c1, ..., cn, and d are real numbers, v1, ..., vn ∈ U∪Y∪X are input, output, or state variables
and � is one of <, ≤, >, ≥, =, and �.

An implicit meaning of LTLC is as follows. The logical connectives, ¬, ∧, ∨, →,
and ↔ have their usual meanings, i.e., not, and, or, imply and equivalent respectively.
The temporal connectives X , U , R , � , and � mean: X φ is true at time t iff φ is true
at time t + 1, φ U ϕ is true at time t iff ϕ eventually becomes true at some time t′ ≥ t
and φ is true during t ≤ τ < t′, and φ R ϕ is true at time t iff ϕ holds up to the first time
(inclusively) φ becomes true, but if φ does not become true, ϕ is true forever. � φ is true
at time t iff φ is always true for τ ≥ t, and � φ is true at time t iff φ eventually becomes
true at some time τ ≥ t.

Formally, the meaning of LTLC formulas can be expressed in the ternary satisfac-
tion relation |= ⊆ Π ×� ×Φ and the binary satisfaction relation |= ⊆ M ×Φ, where Π
is the set of all computational paths, Φ is the set of all LTLC formulas, andM is the set
of all LTI system models. For simplicity we write π, t |= φ for (π, t, φ) ∈ |= and M |= φ
for (M, φ) ∈ |=. The ternary satisfaction relation |= is as follows

π, t |= T ,
π, t �|= F ,
π, t |= c1 · v1(texp1) + · · · + cn · vn(texpn) � d ⇔ ∑n

i=1 ci · θ(vi(texpi)) � d,
π, t |= ¬ φ ⇔ π, t �|= φ,
π, t |= φ ∧ ϕ⇔ π, t |= φ and π, t |= ϕ,
π, t |= φ ∨ ϕ⇔ π, t |= φ or π, t |= ϕ,
π, t |= X φ ⇔ π, t + 1 |= φ,
π, t |= φ U ϕ ⇔ π, i |= ϕ for some i ≥ t and π, j |= φ for all t ≤ j < i,
π, t |= φ R ϕ ⇔ π, t |= ϕ and for i > t, π, i |= ϕ if π, j �|= φ for all t ≤ j < i,

where θ(vi(texpi)) is the value of vi at time texpi.
Using the ternary satisfaction relation, the binary satisfaction relation can be defined

as follows.

M |= φ⇔ π, 0 |= φ for all computational paths π of M.
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While the ternary satisfaction relation is about a single computational path, i.e., whether
a given path π satisfies a formula φ at time t, the binary satisfaction relation is about all
paths, i.e., whether all the computational paths of an LTI system M satisfy a formula φ
at time 0.

2.3 Horizon Constraints

One of the utilities of LTLC model checking technique is to control an LTI system.
Specifically, we are interested in finding a sequence of control input that can drive the
system to satisfy a goal described in LTLC. As a part of the goal, LTLC adopted the
horizon constraints of Model Predictive Control (MPC) [10]. The constraints are: the
input and the output of the system do not change after the input horizon Hu and after
the output horizon Hy respectively.

With the horizon constraints, we do not need to check the computational paths to
their infinite length, but up to the output horizonHy. As a result, the LTLCmodel check-
ing process is reduced to a finite one. Although, the LTLC model checking may look
similar to the bounded model checking technique, the horizon constraints are weaker
than those enforced by bounded model checking. For example, � φ is not satisfiable in
bounded model checking, but it is satisfiable in LTLC if the system can reach a steady
state where φ is true by Hy.

The horizon constraints are as follows

H :
nx∧

i=1

(xi(Hy + 1) = xi(Hy)) ∧
nu∧

i=1

� (ui(Hu + t) = ui(Hu)). (3)

From Eq. (1), if two consecutive states are the same and the input does not change
henceforth, then the state will not change. If the horizon constraints are satisfied, then
for t ≥ Hy,

π, t |= X φ ⇔ π, t |= φ, π, t |= φ U ϕ ⇔ π, t |= ϕ, π, t |= φ R ϕ ⇔ π, t |= ϕ.
Because � φ ≡ F R φ and � φ ≡ T U φ, the equivalences above effectively remove
all temporal operators for t ≥ Hy and the satisfiability of a computational path π can be
decided instantly at time Hy.

2.4 LTLC Model Checking as Feasibility Checking

The Horizon constraints make the LTLC model checking process a finite one, but the
infinite number of computational paths needs to be addressed. To satisfy the binary
satisfaction relation M |= φ, every computational path π of M should satisfy φ at time
0, but there are infinitely many of them: from Eq. (2), any changes in the input u(t) at
a time t or in the initial state x(0) can make a different computational path π′. Because
u(t) ∈ �nu for 0 ≤ t ≤ Hu and x(0) ∈ �nx, there are uncountably many computational
paths and enumerating them one by one is not possible.

As a first step to tackle this problem, we convert the formula φ to a Disjunctive
Normal Form (DNF) and check the feasibility of each conjunctive term. Observe that



446 Y. Kwon and E. Kim

without any temporal operators, an LTLC formula φ can be converted to a predicate
formula and it can further be transformed to a DNF. If there exists a computational path
π that can satisfy all the constraints in any of the conjunctive terms of the DNF, φ can be
satisfied by the computational path π. Particularly, we check the negation of the original
formula, ¬φ. Any feasible path π serves as a counterexample witnessing the violation of
the original formula φ. On the other hand, the non-existence of a feasible path π attests
that all computational paths π of M satisfy the original formula φ.

Checking the feasibility of conjunctive terms can be done by solving a Linear Pro-
gramming (LP) problem [29]. To speed up the feasibility checking process, we rewrite
the atomic propositions at future time steps in terms of an initial state x(0) and a
sequence of input u(t) for 0 ≤ t ≤ Hu using Eq. (2). Let a vector of variables v be
defined as

v = [x1(0), . . . , xnx(0),u1(0), . . . ,unu(0), . . . ,u1(Hu), . . . ,unu(Hu)]T .

With v, an atomic proposition c1 · v1(texp1) + · · · + cn · vn(texpn) � d can be rewritten
as a1 · v + · · · + an · v � d. Furthermore, the problem of finding a computational path
π that satisfies all atomic propositions in a conjunctive term is converted to finding a
feasible vector v from the conjunctions of the transformed atomic propositions. LP can
be employed to find a feasible vector v.

To bring insights into the LTLC model checking algorithm, let us consider a simple
LTLC model checking example.

Example 1 (LTLC Model Checking). A linear system M is M = 〈U,Y, X, A, B,C,D〉,
where U = {u}, Y = {y}, X = {x1, x2}, A =

[
1 1
2 0

]

, B = [2 1]T , C = [1 1], and

D = 0. An LTLC specification φ is φ = H → ¬(X a ∧ X X a), where the atomic
proposition a(t) is y(t) < 3, and the input and the output horizons for H are Hu = 2
and Hy = 2 respectively. In the model checking process, we look for a counterexample,
a computational path π that satisfies the negation of the specification. That is, find a π
such that π, 0 |= ¬φ. In particular, we look for the five variables x1(0), x2(0), u(0), u(1),
and u(2) that can satisfy ¬φ ≡ H ∧ X a ∧ X X a at time 0. Applying Eq. (2), x(1), x(2),
and x(3) are

x(1) =
[
1 1
2 0

]

· x(0) +
[
2
1

]

· u(0),

x(2) =
[
1 1
2 0

]2

· x(0) +
[
1 1
2 0

]

·
[
2
1

]

· u(0) +
[
2
1

]

· u(1),

x(3) =
[
1 1
2 0

]3

· x(0) +
[
1 1
2 0

]2

·
[
2
1

]

· u(0) +
[
1 1
2 0

]

·
[
2
1

]

· u(1) +
[
2
1

]

· u(2),
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and y(t) = [1, 1] · x(t) for t = 1 and t = 2.

π, 0 |= H ∧ X a ∧ X X a

⇔
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u(t + 2) = u(2) for t ≥ 0 ∧ (input horizon constraint)
x1(2) = x1(3) ∧ x2(2) = x2(3) ∧ (output horizon constraint)
y(1) < 3 ∧ y(2) < 3 (X a ∧ X X a)

⇔ [2, 2, 4, 1, 2] · v = 0 ∧ [4, 0, 2, 3, 1] · v = 0 ∧
[3, 1, 3, 0, 0] · v < 3 ∧ [5, 3, 7, 3, 0] · v < 3,

where a vector variable v ∈ �5 is [x1(0), x2(0),u(0),u(1),u(2)]T .
The input horizon constraint can be satisfied because the input to the system can be

freely decided. Thus,

M �|= φ⇔
{

v :
[2, 2, 4, 1, 2] · v = 0 ∧ [4, 0, 2, 3, 1] · v = 0 ∧
[3, 1, 3, 0, 0] · v < 3 ∧ [5, 3, 7, 3, 0] · v < 3,

}

� ∅.

The existence of v can be checked by Linear Programming. Any feasible solution v is
a counterexample that we are looking for. ��

A practical concern is that depending on the formula and the horizons, there can
be numerous conjunctive terms in a transformed DNF. To make the model checking
process practical, we build a Büchi automaton [9] Bφ for an LTLC formula φ using
the Expand algorithm [18] and generate the conjunctive terms from Bφ. In fact, each
accepting run of Bφ can be regarded as a conjunctive term of a DNF: if all constraints
along the run are feasible then the formula φ is satisfiable by the feasible solution. If
we search Bφ for such accepting runs in the Depth First Search (DFS) manner, then the
runs in a subtree rooted at a node share the common prefix from the root to the node. If
an infeasibility is found in the common prefix, all conjunctive terms sharing the prefix
are infeasible and they can be skipped. This pruning technique is very effective and
makes the LTLC model checking practical.

3 Parallel Model Checker Design

To exploit the parallel architecture of GPUs, we restructured the LTLC model checking
algorithm. In this section we briefly explain preliminaries of CUDA programming and
then the design overview of our GPU-based LTLC model checking algorithm.

3.1 Preliminary: CUDA

An Nvidia GPU has tens of Streaming Multiprocessors (SM) and each SM is equipped
with hundreds of cores. A kernel code runs on a core, abstracted in a thread. A group
of threads, called a thread block, runs concurrently in an SM while sharing memory
and synchronization barriers. In addition, the hardware employs an architecture called
Single Instruction Multiple Threads (SIMT), where a unit of 32 threads, called a warp,
executes a common instruction at a time until they diverge by branches.
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A typical CUDA program runs in the following four steps: (1) allocate memory in
the host (the CPU and its main memory) and in the device (the GPU and its memory);
(2) copy data from the host to the device; (3) execute kernel codes on the device; (4)
copy the result back from the device to the host. In addition, to reduce the overhead of
the memory copy, a pipelining scheme, called streaming, is supported. That is, while
a kernel code is being executed, data transfer between the host and the device can be
performed simultaneously.

3.2 GPU-Based LTLC Model Checking Algorithm

In the CPU-based LTLC model checking algorithm, a counterexample is sought using
a Büchi automaton. Specifically, given an LTLC formula φ, a Büchi automaton B¬φ
for the negated formula ¬φ is constructed and a counterexample is searched on B¬φ in
the Depth First Search (DFS) manner. The time complexity of the DFS is exponential
with respect to (w.r.t.) the output horizon Hy. To accelerate the LTLC model checking
process, a feasibility check is performed on each step of the DFS against the constraints
collected along the path up to the current node: if the constraints are infeasible, all
search paths in the subtree rooted at the current node can be pruned as they share the
infeasible constraints. In practice, this strategy is very effective as can be observed in
Fig. 6. For an output horizon Hy as large as 40, the GPU-based LTLC model checking
for the formula, artificially made to be complex, can be finished in less than one min in
most of the cases.

In this paper, we further improve performance of the LTLC model checking process
by increasing the degree of parallelism. One obvious way to achieve a high degree of
parallelism is to check a batch of DFS search paths together on a GPU device in parallel.
That is, for each search path of depth Hy obtained by unrolling the graph structure of
B¬φ, check its feasibility in one of the parallel threads running on a GPU core. However,
simply increasing the degree of parallelism by checking multiple DFS paths together
does not accelerate the model checking process much: a few thousand parallel threads
of a GPU are no match for the exponential growth in the number of search paths as Hy
extends. To be effective, we need to utilize the pruning strategy.

As a solution, we designed a mixed DFS and Breadth First Search (BFS) strategy.
In this scheme, we replaced the single steps of the BFS with path fragments in a DFS
subtree of height 	. Specifically, (1) after removing a path ρ from the BFS queue;1 (2)
check the feasibility of the paths obtained by suffixing ρ with the path fragments in the
DFS subtree rooted at the last node of ρ; and (3) enqueue only the feasible ones to the
BFS queue. Because the number of path fragments is exponentially proportional to the
height 	 of the DFS subtree, there are sufficiently many feasibility checking problems
that can exploit the parallel architecture of a GPU. Furthermore, because only the fea-
sible paths are enqueued, the model checking process can take advantage of the path
pruning strategy.

Figure 1 illustrates this mixed search scheme. Overall, the mixed search is a BFS
except that each step of the BFS is not a single node, but a DFS path fragment of
length 	. In the first diagram of the figure, the DFS prefixes iPPR, iPQP, iPQQ, etc. are

1 To distinguish with other queues, we call the queue for the BFS a BFS queue or a BFS-Q.
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Fig. 1. Task generation and processing steps are illustrated for a Büchi automaton Bφ for φ =
(p ∨ q) U r. Prefixes of the runs of Bφ up to a predefined length, 	, are added to a task queue and
then converted to devTasks which are the basic unit of computation in CUDA

queued and checked in the BFS manner when 	 = 3. The feasibility of these prefixes
is checked on a GPU device in parallel and only the feasible ones participate in the
next round of search. Suppose that iPQP is the only feasible prefix, then iPQPPPP,
iPQPPPQ, iPQPPQP, etc. are queued for the next round. This mixed search ensures
that many prefixes of the runs of a Büchi automaton can be checked together. Increasing
the degree of parallelism by extending 	 to its maximum alone does not accelerate the
model checking process. By choosing a proper 	, we can eliminate subtrees sharing
infeasible prefixes while taking advantage of the parallel architecture of GPU devices.

For the mixed search, composite data types of Task and DevTask are introduced.2

Among the fields of Task are a node of a Büchi automaton called the current node,
a reference to the parent task, and the time step t. The current node and the parent
task reference form a subtree representing the active portions of the search tree at the
moment. The time step t is equal to the depth of the node in the tree.

While tasks are added to the BFS queue during the mixed search, devTasks are
added to a host-side buffer and transferred between the host-side buffer and a device-
side buffer. Each devTask has references to the corresponding task and to a tableau. The
task reference is to continue the mixed search when the feasibility check is done. That is,
depending on the feasibility checking result, either the exploration on that search path
is aborted or more DFS paths suffixed with the path fragments rooted at the current
node of the task are added to the BFS queue. Whenever a task becomes infeasible,
its parent task is informed. If all of the parent’s children become infeasible, the parent
itself becomes infeasible and is removed after notifying its parent recursively. A tableau
represents a set of constraints that need to be satisfied together. In addition, the state of
the optimization process is recorded in the tableau while solving an LP problem [29].
Particularly, if the Simplex method for LP is paused by a loop-limit, the current state of
the process is preserved in the tableau and when the Simplex method is resumed in the
next round, it continues from where it was stopped.

Algorithm 1 describes how the tasks are added to the BFS queue. After the feasi-
bility of devTasks is checked on a GPU device (1) the function DFS is called only for
feasible tasks; (2) unfinished devTasks are added back to the host-side buffer so that

2 The terms beginning with capital letters like Task and DevTask represent types and those
beginning with small letters like task and devTask represent their instances.
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Algorithm 1. DFS for task generation
function DFS(task, depth)
if depth = 0 then

add task to BFS-Q
else

n = task.node, t = task.t + 1 {task forms a search path from the node to the root}
if t < Hy then

for all m ∈ n.outgoing-nodes do
DFS(new Task(task, m, t), depth-1) {Task(parent, current node, step)}

end for
else

for all ineq ∈ n.final-(in)equalities do
task’ = new Task(task, ∅, t)
add ineq to task’ {ineq: constraints to reach and cycle an accepting loop}
add task’ to BFS-Q

end for
end if

end if
end function

they can continue from where they were stopped; and (3) the tasks for infeasible dev-
Tasks are removed immediately so that the search trees rooted at their current nodes are
pruned. Function DFS adds tasks to the BFS queue while traversing the search tree in
the DFS manner up to the depth 	. On reaching Hy, the function DFS creates a new task
for each of the constraint set in final-(in)equalities and adds them to the BFS queue. The
final-(in)equalities are the conditions, in DNF, for a run to reach and cycle an accepting
loop of a Büchi automaton from the node. The horizon constraint H of Eq. (3) is to
bring the system to a steady state and it will be further added to each conjunction in
Algorithm 2.

Algorithm 2 describes how the tasks in the BFS queue are added to a page-locked
host-side buffer hostBuf. A tableau is generated from a task in BFS-Q and is added to a
devTask along with a reference to the task. The tableau for a task is built to include all
constraints from the task’s current node to the root by following the parent task links.
When the task’s time step reaches Hy, the horizon constraint of Eq. (3) is added to the
tableau in addition to the constraints in a search path. If the hostBuf is full or the BFS
queue is empty, the devTasks in the buffer are scheduled to run on a GPU device.

When creating a devTask, its tableau is placed within the host-side buffer together.
Once the host-side buffer is ready, it is asynchronously copied to its device-side counter-
part, devBuf. Therefore, a kernel code can execute its task using the tableau in the device
memory. However, after the copy, all the memory references need to be remapped
because the host-side buffer address and the device-side buffer address are different.
The reference remapping can be done straightforwardly using an offset from an anchor
point. In particular, we update all memory references such that their offsets from the
beginning of both buffers are the same. Once the kernel tasks are finished, the device-
side buffer is copied back to the host-side buffer asynchronously and the memory refer-
ences are remapped once again.
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Algorithm 2. BFS for devTask generation
{Code fragment for adding devTasks to hostBuf from tasks in BFS-Q}
while (BFS-Q � ∅ or hostBuf � ∅) and counterexample is not found do

if BFS-Q � ∅ then
remove a task τ from BFS-Q
if τ.t < Hy then

Build a tableau T for τ {add normalized constraints along τ to T}
devTask = new DevTask(T, task)
add devTask to hostBuf

else
Build a tableau T for τ and horizon constraints {normalized constraints ∪ H}
devTask = new DevTask(T, task)
add devTask to hostBuf

end if
end if
if hostBuf is full or BFS-Q = ∅ then

schedule devTasks in hostBuf to run on GPU
end if

end while

In CUDA, data transfer between the host and the device is a potential performance
bottleneck. To mitigate the latency, CUDA supports a pipeline scheme called stream-
ing. In particular, the device has three queues, one is for the kernel computation and the
other two are for the data transfer from host to device and from device to host respec-
tively. The operations in different queues can be performed simultaneously. To utilize
the streaming capability, we added multiple streams each equipped with its own host-
side and device-side buffers. The buffers for each stream are allocated once when the
model checker is initialized because memory allocation in the device or page-locked
memory allocation in the host will synchronize all other asynchronous operations.

The number of required Simplex iterations would be different from a devTask to a
devTask. This is also true for the devTasks in the same stream. As a result, all threads
in a stream are synchronized to the slowest one. As a remedy to this issue, we increased
the number of streams and reduced the number of devTasks within a stream. That way,
the expected execution time of all threads within a stream is reduced. Furthermore,
we enforce a loop-limit on the Simplex iterations such that any devTasks that are not
finished within the loop-limit are moved to the next round. Hence, quickly finished
devTasks do not need to wait long for the slowest one to finish.

Algorithm 3 describes the devTask scheduling procedure. CUDA streams are
employed to relieve the latency due to the memory copy. We added a composite data
type Stream to facilitate the stream processing. Stream has fields hostBuf for its page-
locked host-side buffer, devBuf for its device-side buffer, and s for its CUDA stream
id. Each devTask is processed by a block of 32 threads. The number of threads in a
block is equal to the warp size. In addition, the number of thread blocks is equal to the
number of devTasks to process, devTaski.size, in streami. The argument to the kernel
function is devBu fi, containing an array of devTasks and their tableaus. After all of the
kernel functions are executed, those devTasks paused by the loop-limit are added back
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Algorithm 3. GPU task scheduling
{Code fragment for scheduling devTasks to run on a GPU device}
for all streami ∈ streams do

if streami is ready to run on a GPU then
cudaMemcpyAsync() {copy hostBufi to devBufi}
lpSolve≪ devTaski.size, 32, 0, streami.s≫ (devBufi)
cudaMemcpyAsync() {copy devBufi to hostBufi}

end if
end for
wait until any stream j is finished
for all devTasks τ in hostBuf j do

if the feasibility of τ is not decided then
add τ back to hostBuf j

else if τ is feasible then
call DFS to add the next round of tasks to BFS-Q

end if {ignore τ if it is infeasible}
end for

Algorithm 4. GPU kernel - LP problem solver
global function lpSolve (parameters) {kernel function}
remap the pointers in the devTask at devBufblockIdx.x
update the cost row in Tableau
for loop = 0 to maxLoop-1 do

break if cost cannot be reduced further
syncwarp() {memory barrier}

find a pivot
syncwarp() {memory barrier}

update the pivot’s row and other rows
end for
set time-out flag of devTask if loop = maxLoop
syncthreads()

end function

to hostBu fi; infeasible ones are discarded; and only for the feasible devTasks, DFS is
called to generate the next round of tasks.

Algorithm 4 describes the kernel code to solve an LP problem. The first step is the
remapping of the references from the host memory address space to the device memory
address space. Once the kernel computation is done, the reverse mapping is performed
on the host. There is a limit, called maxLoop, on the number of row operations for each
round. It prevents all devTasks from waiting for the slowest one to finish. The inter-
rupted devTasks by the loop-limit are added back to hostBufi so that they can continue
solving their LP problems in the next round.

To utilize the SIMT architecture, a block of 32 threads is assigned for each dev-
Task. The 32 threads run in the same warp. However, because the number of tableau
columns may not be a multiple of 32, some threads may cover more columns than other
threads. Furthermore, if the number of columns is less than 32, some threads do not
even participate in the Simplex method. Hence, we added the barriers, syncwarp, to
make the participating threads start certain phases of the Simplex method in synchrony.
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For example, the row operations of each thread should be started only after a pivot is
selected and the pivot selection can be started only after all row operations are finished.

4 Experiments

In this section, we compare the performances of the CPU-based LTLC-Checker and
those of the GPU-based one. For this comparison, we modified the helicopter velocity
control example of [23]. Specifically, we adopted the same helicopter dynamics model,
but used a more complicated specification to compare their performances.

Fig. 2. A helicopter diagram and its system matrices.

Figure 2 describes the parameters of the helicopter model and its system matrices.
The helicopter is controlled by changing the rotor angle, denoted by r. The model has
three state variables represented by a column vector x ∈ �3: pitch rate q′ = d

dt p = x1,
pitch angle p′ = x2, and velocity v′ = x3. The state variables are regarded as output
variables without any transformations. The formal model of the helicopter dynamics is

M = 〈U,Y, X, A, B,C,D〉, where U = {r}, Y = {q, p, v}, X = {q′, p′, v′},
and the system matrices are on the right side of Fig. 2.

To compare the performances of the two model checkers, we made a rather artificial
goal and measured their execution times while changing some of its parameters. With
the helicopter model M, let us describe the LTLC specification for this experiment in
terms of the initial condition, the constraints, and the goal.

– Initially, the pitch rate, the pitch angle, and the velocity are 0 ◦/sec, 0 ◦, and 1 m/sec
respectively, i.e., q(0) = 0, p(0) = 0, and v(0) = 1.

– We enforced the constraints that the rotor angle is always within ± 20◦ (±θr20 radian)
and its rate of change is always within ±10 ◦/sec(±θr10 radian/sec).

– The goal is to accelerate the helicopter to reach a velocity vf m/sec at some time and
then decelerate it to the permanent stop within the output horizon Hy. To make the
problem more complex, we allow a range of pitch angle of ±15◦ (±θp15 radian) until
the stop condition can be achieved by restricting the pitch rate to a range of ±2 ◦/sec
(±θq2 radian/sec).
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To obtain a control input from a counterexample, we check M |= ¬φ. Particularly, if
the result is false, the checker reports a counterexample including r(t) for t = 0, . . . ,Hu
such that the original goal φ can be achieved. On the other hand, if the result is true, no
control input can satisfy the original goal φ. We measured the execution times with two
different pairs of horizons: Hy = 40,Hu = 39 and Hy = 30,Hu = 29.

The initial condition can be expressed without any temporal operators as

φi = ( x1(t) = 0 ∧ x2(t) = 0 ∧ v(t) = 1 ).

The first part of the goal that the helicopter should reach the speed of vf m/sec at
some time can be described using the eventually operator � as

φg1 = � v(t) ≥ vf .

The second part of the goal that restricts the rotor angle and its rate can be expressed
using the always operator � as

φg2 = � ( −θr10 ≤ r(t + 1) − r(t) ∧ r(t + 1) − r(t) ≤ θr10 ).
The last part of the goal is to stop the helicopter while allowing the wide pitch angle

range until the goal can be achieved only by the small pitch rate range. We will use a
nested until formula to describe this goal. As a first step, let us describe the condition
that limits the pitch to the smaller range and brings the helicopter to stop. � v(t) = 0
means that the helicopter is permanently stopped. Hence, this step can be described as

φ′g3 = ( −θq2 ≤ q(t) ∧ q(t) ≤ θq2) U (� v(t) = 0 ).

φ′g3 can be read as until the helicopter is permanently stopped q is maintained within ±
2 ◦/sec range. Finally, the condition that a wide pitch angle range is allowed until φ′g3 is
possible can be expressed using another until formula as

φg3 = ( −θp15 ≤ p(t) ∧ p(t) ≤ θp15 ) U φ′g3.
Combining them together, the whole condition can be expressed as

φ = φi → (φg1 ∧ φg2 ∧ φg3).
Figure 3 shows an LTLC-Checker description of the model checking problem. The

description has two main sections: model description and goal description. These sec-
tions begin with tags system: and specification: respectively. Scalar or matrix
constants are defined in the left side of the figure. The system dynamics equations are
described in terms of the input, output, and state variables. The specification block
begins with the input and output horizon constraints. Optional definitions of atomic
propositions follow the horizon constraints. In the example, the physical limits of the
rotor angle and the rotor rate limits are described in ru, rl, rru and rrl. Following these
atomic propositions, constraints about the initial state, the velocity vf to reach, the stop
condition, and the pitch constraints are described. LTLC-checker checks the last LTLC
formula that is the negation of the entire goal described above.
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Fig. 3. LTLC-Checker description of the discrete dynamics of the model (left) and the specifica-
tion of the goal (right).
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Fig. 4. (Top) velocity, (middle) pitch angle and pitch rate, (bottom) rotor angle and rotor angle
change of the helicopter model when the control input found in a counterexample is applied.
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As a first step, we checked whether a counterexample satisfies the original goal.
Figure 4 shows the input, output, and state trajectories of the helicopter when the control
input found in a counterexample is applied. The first graph of Fig. 4 shows how the
velocity of the helicopter is changed: the speed of the vehicle reached the speed vf (3.0
m/sec) at step 21 then the vehicle stopped before the output horizon 40. The second
graph depicts the pitch angle (solid line) and the pitch rate (dot-dashed line) trajectories
over time. The pitch angle line is swinging within the wide range limit of ±15 ◦ and as
the vehicle nears the stop condition, the range of the pitch rate is reduced to the narrower
limit of ±2 ◦/sec. In the third graph, the rotor angle (solid line) is maintained within the
constraint range of ±20 ◦ and the rotor angle change (dot-dashed line) remains with the
allowed range of ±10 ◦. Hence, the counterexample satisfies the original goal.

To compare the performances of the two checkers, we measured their execution
times while varying the target velocity vf. Because we want to accelerate the helicopter
to vf and then decelerate it to stop within a finite horizon, the larger the vf the smaller
the solution space will be. In other words, as we increase vf the problem becomes more
difficult and the checkers will run longer to find a counterexample. The system used
for this experiment is: the host computer is equipped with Intel R© Xeon R© CPU ES-2360
with hyper-threaded 6 cores running at 2.30GHz and 32 GB of memory; the graphics
card is Nvidia R© Titan RTXR© with 72 SMs, 4608 CUDA cores and 24 GB of memory.

)b()a(

Fig. 5.Run times of the GPU-based LTLCmodel checker (red) and the CPU-based model checker
(blue). (a) Comparison result when the output horizon and input horizon are Hy = 40 and Hu =
39 respectively. Model checking result is false when vf = 1, . . . , 3.4 and true when vf = 3.7.
(b) Comparison result when the output horizon and input horizon are Hy = 30 and Hu = 29
respectively. Model checking result is false when vf = 1, . . . , 1.9 and true in other cases. (Color
figure online)

Figure 5 shows the results of our performance comparison. While changing vf
from 1.0 to 3.7 m/sec in ten equally distributed steps, we measured the execution time
of the GPU-based model checker (left-red) and the CPU-based checker (right-blue).
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Figure 5(a) and Fig. 5(b) are the results when Hy = 40 and when Hy = 30 respectively.
In both graphs, when vf is small, the CPU-based checker runs faster, but as vf increases
the GPU-based checker outperforms the CPU-based one significantly. Furthermore, the
execution time of the GPU-based checker does not change much with the changes of
vf . On the other hand, the execution time of the CPU-based checker fluctuates widely
as vf changes. The jumps when the results become true are because the checker has to
search the entire search space. In Fig. 5(b), the time decreases after the jump because
infeasible search paths are pruned early.

Figure 6 shows a more detailed performance comparison result. When Hy = 40 the
GPU-based checker ran 3.27 times faster than the CPU-based checker (26.27 sec vs
85.92 sec) on average, and the former ran 3.57 times faster than the latter (16.65 sec
vs 59.58 sec) when Hy = 30. However, when the problem is easy (small vf ), the CPU-
based checker finished earlier than the GPU-based one. The main reason the GPU-based
checker under-performed the CPU-based one is the overhead of finding multiple coun-
terexamples together. For example, when vf = 1 and Hy = 40, although the CPU-based
checker ran 15.61 times faster than the GPU-based checker, the GPU-based checker
found 1,293 counterexamples simultaneously, while the CPU-based checker found only
one.

Fig. 6. Detailed execution times of the GPU-based checker and the CPU-based checker.

This parallel search capability substantially reduces the variance in the execution
time of the model checking process. In Fig. 6, the standard deviation of the CPU-based
checker is 30.05 times larger than that of the GPU-based one when Hy = 40 (156.73 sec
vs 5.22 sec) and 13.01 times larger when Hy = 30 (44.46 sec vs 3.42 sec). It is because
the variations in solving LP problems will be wider when checking a path by solving
them sequentially along the path. The overall variation can be reduced by the parallel
search: while the GPU cores serving slow tasks will keep working on them, the GPU
cores allocated for quickly finished tasks will take new tasks. Moreover, the loop-limit
prevents quickly finished tasks from waiting for slower ones to finish. More detailed
analyses are in the next section. This reduced variance makes the performance of the
model checker more predictable and makes it more attractive for real-time applications.
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5 Analysis

In this section, we performed an analysis on the performances of the LTLC model
checking algorithm. To simplify the analysis, we assumed that the search depth 	 of
DFS is Hy. We compared the three cases: (1) an algorithm running sequentially on a
CPU; (2) an algorithm that picks N DFS paths, checks them in parallel on N GPU cores,
and waits for the last to finish before starting the next round; (3) identical to the second
case, except that a loop-limit is enforced and paused tasks are moved to the next round.
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Fig. 7. The CDF and PDF of D: execution time of solving an LP problem; D̂: execution time
of solving N LP problems in parallel without a loop-limit; C: execution time of solving an LP
problem with loop-limit; and Ĉ: execution time of solving N LP problems in parallel with a
loop-limit.
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First, let us consider the execution time to check a single DFS path. This operation
involves checking the feasibility of a set of linear constraints by an LP. An LP prob-
lem can be efficiently solved by the Simplex method in polynomial time on average,
although the worst case complexity is exponential. To account for this variation, we
assumed that the execution time to solve an LP problem follows the Gaussian distribu-
tion with the mean μ and the variance σ2. Let D be a Random Variable (RV) represent-
ing the execution time to solve an LP problem. Then, D ∼ N(μ, σ2). The top-left side
graph in Fig. 7 shows the Probability Distribution Function (PDF) and the Cumulative
Distribution Function (CDF) of D when μ = 8 and σ = 2.

Suppose that a feasible solution is found at the kth DFS search path. Then, the exe-
cution time for the first case is the sum of k Independent and Identically Distributed
(IID) RVs of D. Let A be a RV representing the execution time of the model checking
process. Then, A = D1 + D2 + · · · + Dk and

P [A ≤ x] = G
(
x−k·μ
k·σ
)
,

whereG(x) is the CDF of the Normal distribution:G = 1√
2π

∫ x

−∞ e−x2/2. The top-left side
graph in Fig. 8 shows the PDF of A.

For the second case, let D̂ be a RV representing the execution time of the batch of
N parallel computations without a loop-limit. That is, D̂ is the max of the N IID RVs of
D, i.e., D̂ = max(D1, . . . ,DN). Then, because P

[
D̂ ≤ x

]
= P [D1 ≤ x ∧ · · · ∧ DN ≤ x],

P
[
D̂ ≤ x

]
= P [D ≤ x]N .

The top-right side graph in Fig. 7 shows the PDF and CDF of D̂ when N = 1000.
Because N tasks are waiting for the last one to finish, each round of D̂ takes more time
than each step of D and the variation is reduced (μD̂ = 14.49, σD̂ = 0.70). However,
during each round of D̂, 1000 times more tasks are executed. Assuming that a GPU core
is 100 times slower than a CPU, then the GPU based algorithm will execute 5.52 times
more tasks than a CPU based one during the same time period.

Assuming that k � N, the sum of random variables still follows the Gaussian distri-
bution by theCentral Limit Theorem (CLT), i.e. D̂1+D̂2+· · ·+D̂k′ ∼ N (k′ · μD̂, k′ · σD̂

)
,

where k′ = k/N, μD̂ and σD̂ are the mean and the standard deviation of the random vari-
able D̂ respectively. In the right side graph of Fig. 8, the solid line and the dotted line
are the PDFs of the sum of D̂ when N = 500 and when N = 1000 respectively. As
the graph shows, increasing the degree of parallelism, N, speeds up the model checking
process and reduces the variance as well.

Now, let us consider the third case, where long lasting threads beyond the loop-limit
are moved to the next round. Let C be a RV representing the execution time of each
thread. The PDF of C is a Gaussian distribution clipped on the right at the time-limit.
Let Ĉ be the RV representing the execution time of the N parallel threads. Then,

P [C ≤ x] =

⎧
⎪⎪⎨
⎪⎪⎩

G
(
x−μ
σ

)
if x < θ

1 otherwise
, P

[
Ĉ ≤ x

]
= P [C ≤ x]N

where θ is the cut off time enforced by the loop-limit. The bottom-left side graph of
Fig. 7 shows the PDF and CDF of C when θ = μ + 3 · σ. The small jump in the PDF
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is where the loop-limit is applied. Because of the clipping operation, the mean μC and
the variance σ2C of C are both reduced from those of D. The bottom-right side graph
of Fig. 7 shows the PDF and CDF of Ĉ when N = 1000. Observe that as the number
of threads in a batch grows, the likelihood of any of the threads hitting the loop-limit
increases exponentially. Hence, there are sharp edges in the PDF and CDF at θ. The
mean and the standard deviation of Ĉ are μĈ = 13.92 and σĈ = 0.18. Compared to D̂,
the standard deviation is reduced by 4 times by the clipping operation.

Let a(t) be the accumulated number of devTasks finished by time t when a new
devTask is scheduled right after a devTask is done. Then, the average number of rounds
before checking the kth search path, k′′, is the minimum t such that N · a(t) ≥ k. Let y(t)
be the expected number of devTasks finished during the interval (δ · (t − 1), δ · t], then
a(t) =

∑t
i=1 y(i), where δ is the time duration corresponding to the loop-limit (2 · σ or

3 · σ in this paper). y(t) satisfies the following recurrence equations

y(t + 1) = y(t) · P
[
D−μ
δ
≤ 1
]
+
∑t

i=1 y(t − i) · P
[
i < D−μ

δ
≤ i + 1

]
,

where y(0) = 1 to ensure that a devTask is started at time 0. This equation is similar
to the convolution sum: when i = t, the corresponding term y(0) · P

[
t < D−μ

δ
≤ t + 1

]
is

the expectation that a devTask started at step 0 is finished in the interval (μ + δ · t, μ +
δ · (t + 1)]; when i = t − 1, the term y(1) · P

[
t − 1 < D−μ

δ
≤ t
]
is the expectation that a

devTask is started at step 1 and is finished in the interval (μ + δ · (t − 1), μ + δ · t] (y(1)
is the expected number of new devTasks started at step 1 substituting the finished initial
devTasks); when i = t − 2, the term y(2) · P

[
t − 2 < D−μ

δ
≤ t − 1

]
is the expectation that

a devTask is started at step 2 and is finished in the interval (μ + δ · (t−2), μ + δ · (t−1)]
(y(2) is the expected number of new devTasks started at step 2 substituting the initial
devTasks finished during their second round and those started at step 1 and are done
during their first round); and so on. The first term y(t) · P

[
D−μ
δ
≤ 1
]
is the expectation

that a devTask is started at step t and is finished after δ.
Applying the CLT again, the execution time for the model checking algorithm is

Ĉ1 + Ĉ2 + · · · + Ĉk′′ ∼ N (k′′ · μĈ , k′′ · σĈ
)
. In the right side graph of Fig. 8, the dashed

line and the dot-dashed line are the PDFs of Ĉ when N = 500 and when N = 1000
respectively. Like D̂, increasing the degree of parallelism speeds up the model checking
process and reduces the variance. In addition, compared to Ĉ, enforcing the loop-limit
makes the model checking process faster and more predictable. The bottom-left side
graph of Fig. 8 compares D̂ when the loop-limits are θ = μ + 2 · σ and θ = μ + 3 · σ.
As expected, reducing the loop-limit decreases the waiting time for the last devTasks to
finish and improves the performance. However, this simplified analysis does not include
the overhead of preparing and running tasks on GPUs. As shown in Sect. 4, reducing
the loop-limit too much actually harms the performance.

Comparing the performances of the GPU-based checker and those of the CPU-
based checker is analogous to comparing the queuing systems with multiple servers
and with a performant single server. For example, comparing an M/M/1 queue with a
twice more performant server and an M/M/2 queue, there will be more waits in the
queue in the M/M/1 system, but the wait time in the whole system in the queue will
be smaller [26]. GPU-based checker can be regarded as an M/M/N queuing system
where N is the number of parallel threads, whereas-CPU based checker is an M/M/1
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system with a performant server. The result in Fig. 6 is because the GPU cores are more
performant than 1/N of the CPU. Moreover the loop-limit reduces the variance in the
service time and the reduced variance decreases the wait time as well.

6 Conclusions

In this paper we designed an LTLC model checking technique to utilize the parallel
architecture of GPU devices. We showed that the design speeds up the model checking
process and reduces the variation as well. These characteristics make the GPU-based
model checker suitable for real-time applications.

As a future research direction, we will further improve the performance of the GPU-
based checker. We observed that a few LP tasks took significantly more time to finish
than others. To use the GPU cores more efficiently, we can reduce their priority and let
faster tasks run more. Another direction we are considering is to improve the LP kernel
task itself by adopting faster algorithms like the interior point methods [20].

With the GPGPU techniques and the evolving computational power of GPUs, model
checking techniques can be employed as an on-line computation module for an appli-
cation rather than an off-line validation tool. We wish the proposed research can be a
stepping stone towards that direction.
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Abstract. Network-Based Biocomputation Circuits (NBCs) offer a new
paradigm for solving complex computational problems by utilizing bio-
logical agents that operate in parallel to explore manufactured planar
devices. The approach can also have future applications in diagnostics
and medicine by combining NBCs computational power with the ability
to interface with biological material. To realize this potential, devices
should be designed in a way that ensures their correctness and robust
operation. For this purpose, formal methods and tools can offer signifi-
cant advantages by allowing investigation of design limitations and detec-
tion of errors before manufacturing and experimentation. Here we define
a computational model for NBCs by providing formal semantics to NBC
circuits. We present a formal verification-based approach and prototype
tool that can assist in the design of NBCs by enabling verification of a
given design’s correctness. Our tool allows verification of the correctness
of NBC designs for several NP-Complete problems, including the Subset
Sum, Exact Cover and Satisfiability problems and can be extended to
other NBC implementations. Our approach is based on defining transi-
tion systems for NBCs and using temporal logic for specifying and prov-
ing properties of the design using model checking. Our formal model can
also serve as a starting point for computational complexity studies of the
power and limitations of NBC systems.

Keywords: Biological computation · Network-based biocomputation ·
Model checking · Subset sum problem · Exact cover · Satisfiability

1 Introduction

Engineering biological devices to perform computation is of major interest due
to the potential of utilizing inherent parallelism in biological components to
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speed up computation, construct low energy consuming devices and interface
with biological material, opening up potential diagnostic and medical appli-
cations. Network-Based Biocomputation Circuits (NBCs) [4,20] offer a new
paradigm for solving complex computational problems by utilizing biological
agents that operate in parallel to explore manufactured planar devices. Devices
should be designed to ensure correctness and robust operation, for which for-
mal reasoning tools can offer significant advantages by assisting in identification
of limitations and errors in the design before device manufacturing. Here we
define a computational model for NBCs [20] by providing formal semantics, and
present a formal verification-based approach and tool that can prove correctness
of the design. The tool can be used to verify that a given design contains no
logical errors, and allows evaluation of different designs prior to manufacturing.
Similar verification tools are now commonplace in the hardware industry, where
early identification of design flaws can lead to significant savings in cost (money,
development time and reputation).

NBC is an alternative parallel-computation method that was proposed in
[20] and solves a given combinatorial problem by encoding it into a graphical,
molecular network that is embedded in a nanofabricated planar device. The app-
roach can be applied for solving NP-Complete problems [14] and other types of
combinatorial problems. In addition, since biological agents are utilized in NBC,
the technology can be used in the future to carry cells through the devices and
perform complex computational processing with medical and diagnostic applica-
tions. In the NBC approach a device runs biological agents through the network
in order to explore it in parallel and thus solve a given combinatorial problem.
The combinatorial problem considered in [20] is the Subset Sum Problem (SSP),
which is a known NP-complete problem. The SSP problem is given a target goal
k, and asks if it can be reached as a sum of some combination of elements in a
given set S =

{
s1 s2 . . . sN

}
.

An example NBC circuit for the SSP of S =
{
2 5 9

}
is shown in Fig. 1a.

Molecular agents (actin filaments or microtubules, which are propelled by molec-
ular motors) enter from the top-left corner of the network. At split junctions, the
agents have an approximately equal chance of moving down or moving diagonally,
while agents continue in the current direction of movement at pass junctions, as
seen in Fig. 1b. When a computational agent takes the diagonal path at a split
junction, the element for that junction is “added”. Agents exiting the network
in the bottom row thus have an x coordinate (denoted exit# in Fig. 1a) that
represents a possible subset sum, and by utilizing many agents to explore the
network in parallel all the possible subset sums can be determined.

More recently, the NBC approach has been extended to encode and solve
additional NP-Complete problems [16,32] and work has been done towards
improving the scalability of the approach and the design process of the cir-
cuits. New encodings include the Exact Cover (ExCov) and the Satisfiability
(SAT) problems. An additional feature that could extend the capabilities of
NBC is tagging—the ability to mark a protein or filament with a distinguishing
attribute. Fluorescence tagging, for example, is common in biological research
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Fig. 1. Network design for SSP (reproduced from [20]). (a) Overall network structure
of the SSP for the set S =

{
2 5 9

}
. Split junctions are denoted as filled black circles and

pass junctions as unfilled circles. Agents enter from the top left point of the network.
The yellow path corresponds to the sum 11 being computed utilizing 2 and 9. (b)
Physical design of pass and split junctions. Pass junctions are designed to maintain
the agent’s direction of movement, while split junctions are designed to allow agents
an approximately equal chance to maintain or change their direction of movement.

and is used to track biomolecules and cells. As an additional component of com-
putation, tagging can be used to track the paths used by computational agents
[20,27]. Once the agents reach the end of the network, their tags could be exam-
ined and then used to validate the path taken and determine the output result.

Here we provide formal semantics to NBC by defining transition relations
that capture the dynamics of an agent in the network. This forms the basis of a
translation into the SMV format supported by the NuSMV [9] and nuXMV [7]
model checkers and its application to verify design correctness or identify logical
errors. We also extend the NBC semantics to a real time stochastic model by
mapping NBCs to chemical reaction networks (CRNs) opening up possibilities
to utilize stochastic simulation and probabilistic model checking. Finally our
formal model can serve as a starting point for computational complexity studies
of the power and limitations of NBC systems.

2 Related Work

Engineering biological devices to perform specified computation has the poten-
tial of utilizing the inherent parallelism in biological components to speed com-
putation, construct low energy consuming devices and interface with biological
material. Seminal work by Adelman [3] has demonstrated a method to use DNA
for solving the Hamiltonian path problem, which is known to be NP-Complete.
The instance of the Hamiltonian path considered in [3] is a small graph (7 nodes
and 14 edges), thus a major challenge since then in the field is overcoming phys-
ical and experimental constraints towards scaling up the computation to tackle
large systems.
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There have been several different paradigms suggested to realize the vision
proposed in [3], including DNA Strand Displacement Systems (DSD) [23,25]
that utilize the complementarity of DNA base sequences to bind together and
perform designed reactions, and DNA self assembly applying a reprogrammable
set of DNA tiles, capable of implementing a wide variety of self assembly algo-
rithms [24,28]. DNA walkers are molecular machines that can move along tracks
[26,30] and can be used for performing computation or moving cargo for nan-
otechnology applications. Computational methods and tools have proven to be
useful in improving and validating the designs of engineered biological systems
[5,15,22] and have served as motivating applications for defining semantics and
computational methods for NBC. Formal verification methods assuming discrete
semantics have been used to verify the correctness of DNA Strand Displacement
Systems and DNA walkers [17,31], and probabilistic model checking has also
been applied to these systems [6,11,17]. More broadly, viewing biological systems
as reactive systems leads naturally to specifying their behavior using temporal
logic and applying model checking (see e.g. [8,13] and references within).

Network-Based Biocomputation (NBC) [20] uses biological agents that oper-
ate in parallel to explore manufactured planar devices. To enable the explo-
ration of the solution space effectively, NBC encodes the operations of solving
NP-complete problems into graphs, which are then used as templates for the
design and fabrication of networks, for instance microfluidic networks. To pro-
cess the computation in a massively parallel fashion, NBC uses a large number
of motile agents to explore the many possible paths towards actual solutions.
The actual circuits we have verified here are physically manufactured to be pop-
ulated with actin filaments or microtubules [4], although similar devices have
been experimentally implemented for bacteria [27]. In [29], the SSP problem
has been solved by the NBC approach using a laser photonic system rather than
molecular motors as in [20]. Our computational methods and tools are applicable
to all the variety of experimental implementation strategies currently developed
for NBC and can also be extended to support future NBC technology.

3 Formal Semantics

We first describe our general approach for providing semantics to NBC circuits,
the definitions are then used and refined to encode specific designs to solve the
subset sum (SSP), exact cover (ExCov) and satisfiability (SAT) problems. A
network is composed of a set of junctions that are positioned on a 2-dimensional
plane, allowing agents to move along the network to nearby junctions according
to the type of junction visited. The encoding assumes a single agent travers-
ing the network, and can naturally be used to construct a system consisting
of several agents traversing the network in parallel. We define a discrete state
semantics that includes nondeterministic choice, and then suggest a translation
to chemical reaction networks (CRNs) [10] that provides a stochastic continuous
time semantics.
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3.1 Discrete Nondeterministic Semantics

Our transition system is defined as:

T = 〈V, θ, ρ, C)

Where V are the system variables, θ is the initial condition, ρ is the transition
relation and C is a set of compassion requirements. The variables encode the
position of the agent in the network and its direction of movement:

V = {x, y, dir}

The variables x and y encode the position of the agent in the network, where
x ∈ {0 · · · max} and y ∈ {0 · · · max} and max is the sum of all elements in the
set in the case of the subset sum problem, determining the size of the device in
the general case. The variable dir is a Boolean variable encoding the direction
of movement of the agent. In most circuits we assume the initial condition θ is
x = 0∧ y = 0 capturing an agent entering the circuit from the upper left corner,
see Fig. 1a. We assume here the initial position is a split junction and do not
constrain the value of the dir variable, thus it can be chosen nondeterministically
to be either 0 or 1. The variable dir maintains the current movement direction
of the filament, where dir = 0 means travelling down while dir = 1 means
travelling diagonally.

The transition relation specifies how the variables get updated depending on
the current state:

y′ = y + 1

(x′ = x ∧ dir = 0) ∨ (x′ = x + 1 ∧ dir = 1)

Agents move from the top row to the bottom row, thus the y variable always
gets incremented by 1 specifying this movement. The movement can either be
directly down, in which case x is not changed, this happens when the variable
dir is 0, or diagonally, in which case x is incremented by 1, when the variable
dir is 1. In addition we update the transition relation such that after reaching
the bottom row the agent returns back to the top left corner of the network, to
the state x = 0 ∧ y = 0.

The variable dir determines the direction of movement as explained above. It
remains unchanged if the agent is in a pass junction, or makes a nondeterministic
choice between 0 (down) or 1 (diagonal) if the agent is in a split junction:

dir′ = (dir ∧ (x′, y′) ∈ pass) ∨ ({0, 1} ∧ (x′, y′) ∈ split)

We define the compassion requirement:

C = {〈(x = m ∧ y = n ∧ (m,n) ∈ split, x = m ∧ y = n + 1)〉,
〈(x = m ∧ y = n ∧ (m,n) ∈ split, x = m + 1 ∧ y = n + 1)〉}
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A compassion requirement is composed of a set of pairs, each pair is of the
form 〈p, q〉 and requires that if p appears infinitely often then q appears infinitely
often. In this case for every split junction if it is visited infinitely often it will take
the direction down infinitely often and the direction diagonal infinitely often.
This ensures that for every split junction both directions, down and diagonal
will eventually be explored. Formally, if the state x = m ∧ y = n that is a split
junction is visited infinitely often, then both of the states x = m∧y = n+1 and
x = m + 1 ∧ y = n + 1 will be visited infinitely often.

3.2 Stochastic Semantics

Following from the semantics described above we propose a stochastic semantics
extension by providing a mapping to chemical reaction networks (CRNs). CRNs
consist of a set of species C and a set of reactions R that allow the species to
interact. We introduce species for each of the locations in the network, with a
separate species for down or diagonal movement if the position is a pass junction.

For split and pass junctions the species are, respectively:

Cs = {xiyj |i, j ∈ {0 · · · max} ∧ (i, j) ∈ split}
Cp = {xiyjdk|k ∈ {0, 1}, i, j ∈ {0 · · · max} ∧ (i, j) ∈ pass}

The species will count how many agents are positioned at each location
described by state x = i∧y = j, allowing to represent multiple agents simultane-
ously exploring the network. The reactions will correspond to an agent moving
to the next location. For each split junction, assuming the next junction is a
pass junction, we will define the following two reactions:

xiyj → xiyj+1d0

xiyj → xi+1yj+1d1

If an agent is in a split junction at position (i, j) there are two reactions
as shown above that can be taken, the first will move the agent to position
(i, j+1) representing a down movement, whereas the second will move the agent
to position (i + 1, j + 1) representing a diagonal movement. If the first equation
is fired then the number of copies of species xiyj will be decremented by 1 and
the number of copies of species xiyj+1d0 will be incremented by 1, whereas if the
second equation is fired, the number of copies of species xiyj will be decremented
by 1, and the number of copies of species xi+1yj+1d1 will be incremented by 1.

For pass junctions, assuming the next junction is also a pass junction, we
define the following reactions, in which according to the first reaction the move-
ment is down and according to the second reaction the movement is diagonally:

xiyjd0 → xiyj+1d0

xiyjd1 → xi+1yj+1d1
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If the next position is a split junction we define the following reactions:

xiyjd0 → xiyj+1

xiyjd1 → xi+1yj+1

The CRN defined above can also have a rate associated with each reaction
which is a number that determines the probability of firing the reaction effecting
how fast these reactions will fire. These definitions provide a stochastic continu-
ous time semantics for NBCs using the underlying CRN model [10]. An example
of a stochastic simulation using these semantics for the SSP network from Fig. 1a
is shown in Fig. 2.

Fig. 2. Stochastic simulation of an SSP network for S =
{
2 5 9

}
with 1000 agents.

Time is shown in the X axis while the number of individual agents of each species is
shown in the Y axis. Each color plot represents a different species at a specific network
position. This simulation starts with 1000 individuals at position (x, y) = (0, 0) (plot
not shown) that traverse the network assuming no interaction between the agents.
The graph is a result of running a CRN model using Gillespie stochastic simulation
implemented in the DSD tool [18]. The plots that rise beyond the background values
at around 10 time units are the number of agents at each of the 8 possible subset sum
exits.

We next explain our encodings of the SSP, ExCov and SAT problems and
the temporal logic properties used to specify the correctness of the circuits. Our
motivation here is to capture the networks used in the experimental work with
the actual biological agents and not to find efficient ways to solve these NP-
Complete problems on standard computers. The verification approach can then
be generalized and utilized to NBC applications in which the main aim is to
interact with living cells for diagnostic and medical applications rather than
solve combinatorial problems.

4 Subset Sum Problem (SSP)

The Subset Sum Problem (SSP) is an established NP-Complete problem that
returns true if a subset exists in a given set S, that sums to some given value k,
and returns false otherwise.
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The SSP network is constructed using variables for rows, columns, junction
types, movement direction of computational agents, and a flag. The flag is used
to indicate that the computational agent has reached the network output (the
last row).

An additional tag variable was added to the network description in order to
track at which split junctions the computational agents took a diagonal path,
thus “adding” the element for that row. The tag is built by indexing split junc-
tions starting from the top left corner of the network (index 0) and then running
through each row and assigning indices to the junctions sequentially. This index-
ing includes junctions that are considered unreachable in a properly functioning
network. Networks using tagging are able to identify the exact path taken to
reach a given sum. This allows further investigation into the number of different
paths to a given output. In experimentally manufactured NBC devices these tags
may also allow for identification of agents that followed erroneous paths.

Agent positioning in the network is indicated by row and column variables
that run from zero to the maximum sum of elements in the given set. Only half of
these (row, column) points are used due to the network’s triangular structure.
In order to define the transition relations for the general SSP problem, S ={
s1 s2 . . . sN

}
, we first define the maximum sum of set S (Eq. 1), array of split

junction rows (Eq. 2) and, if tagging is used, an array of tags (Eq. 3).

max =
N∑

i=1

si (1)

srow =

[

0
index∑

i=1

si

]

where index = 1, . . . , N − 1 (2)

tag =
[
t0,0 tΣindex

i=1 si,0 . . . tΣindex
i=1 si,Σindex

i=1 si

]
where index = 1, . . . , N − 1 (3)

The row increases with each transition until reaching the end of the network.
This captures the assumption that agents cannot move backwards in the network.
Junction type, which depends on the row, is decided according to a sequential
sum of elements in the set. The direction of movement is either nondeterministic
(when “choosing” at a split junction) or keeps the last selection (when at a pass
junction). The full transition relation, without the additional tag variable, can
be seen in Eq. 4. The tag’s transitions are separately defined in Eq. 5.
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[r, c, d, j, f ]|0 ≤ r, c ≤ max, d ∈ {down, diag}, j ∈ {split, pass}, f ∈ boolean
[r, c, d, split, f ] � [r + 1, c, down, pass, f ] if r + 1 /∈ srow

� [r + 1, c + 1, diag, pass, f ] if r + 1 /∈ srow
� [r + 1, c, down, split, f ] if r + 1 ∈ srow
� [r + 1, c + 1, diag, split, f ] if r + 1 ∈ srow

[r, c, d, pass, f ] � [r + 1, c, d, pass, f ] if d = down ∧ r + 1 /∈ srow
� [r + 1, c + 1, d, pass, f ] if d = diag ∧ r + 1 /∈ srow
� [r + 1, c, d, split, f ] if d = down ∧ r + 1 ∈ srow
� [r + 1, c + 1, d, split, f ] if d = diag ∧ r + 1 ∈ srow

[max − 1, c, d, j, f ] � [max, c, d, j, true] if d = down
� [max, c + 1, d, j, true] if d = diag

(4)

trow,col ∈ boolean initially false for every trow,col ∈ tag
trow,col � true if row = r − 1 ∧ col = c − 1 ∧ d = diag

� trow,col otherwise
(5)

A duplicate network was built with the addition of two variables, sum and
xsum, for verification of overall output correctness, rather than specific output
correctness. These variables select a value from the set of valid sums and the set
of invalid sums respectively, and are used for comparison with the column value
when reaching the network output.

Table 1. Network specifications for individual outputs. LTL specification (ltl k) checks
that the output of interest is never reachable. CTL specification (ctl k) checks if there
is any path to the output of interest.

LTLSPEC NAME ltl k := G!((flag = TRUE)&(column = k));

CTLSPEC NAME ctl k := EF ((flag = TRUE)&(column = k));

column is the current sum, k is the output of interest and flag is the
output row indicator

Two specification types were used to verify network correctness. The first
type (Table 1) uses both Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) to check the validity of a specific sum k by comparing it with the
column value at the output. The LTL formula checks the lack of a run where
column = k, while the CTL formula checks for the existence of at least one
run where column = k. For the SSP, the value k can range anywhere from zero
to the maximum sum value of set S. We use both CTL and LTL although the
outcomes of NBC verification will be equivalent, for evaluating and optimizing
the performance of model-checking, as discussed in Sect. 7.
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The second type of specification (Table 2) uses CTL to check that all valid
sums are reachable and all invalid sums are unreachable. When used on networks
containing identifiable errors (errors that can be detected by measuring agents
at the exit of the network in the bottom row), a counter-example is provided
indicating an unreachable valid sum and/or a reachable invalid sum. This spec-
ification does not need to get a target sum k but rather checks correctness for
any target sum.

Table 2. Network specifications for overall output in CTL. csum checks that the
network can exit on all valid sums. nsum checks that the network cannot exit on any
invalid sum.

CTLSPEC NAME csum
:=!(EX(AG((flag = FALSE)|(!(column = sum)))));

CTLSPEC NAME nsum
:=!(EF ((flag = TRUE)&(column = xsum)));

column is the current sum (column in the network), sum is
one of the set of valid outputs, xsum is one of the set of
invalid outputs and flag is the output row indicator

5 Exact Cover (ExCov)

The Exact Cover problem (ExCov) is another important problem, which is
known to be NP-Complete. This problem returns true if there exists an exact
cover (a union of disjoint sets) of the defined universe U when given a collection
of sets SS that contain elements from the universe, and returns false otherwise.

We use a reduction to SSP to construct NBCs that solve the ExCov problem
[16]. In the reduction, the ExCov is encoded into binary format. This encoding
is then used to create the elements of an SSP network. The elements of the
universe are treated as an array, where each position can be either 0 or 1, and
where each element is given a specific index in the array. The sets to be examined
are then each assigned an array of the same length as the universe, where only
elements contained in the set are assigned a “one” value. All other elements are
assigned a “zero” value. These arrays are then treated as binary numbers and
are converted to their respective decimal values, as shown in Table 3.

As the ExCov does not allow the union of non-disjoint sets (the exact cover
cannot contain sets that share an element), a “force-down” junction is included
in the network to replace such split junctions. This prevents the agents from
taking a diagonal path where an element in the current set is already contained
in a previously included set on the path.

This construction can be seen in Fig. 3, which depicts the network for the
sets given in Table 3. There exist multiple exact covers for this set of subsets,
so there are multiple paths in this network that lead to output 15, the binary
encoding of the universe. The pink path exhibits the function of the force-down
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Table 3. Conversion from set to decimal using binary representation.

Set Binaryrepresentation

U =
{

1 2 3 4
}

U =
[
1 1 1 1

]
= 15

S1 =
{

2
}

S1 =
[
0 0 1 0

]
= 2

S2 =
{

3
}

S2 =
[
0 1 0 0

]
= 4

S3 =
{

1 4
}

S3 =
[
1 0 0 1

]
= 9

S4 =
{

2 3
}

S4 =
[
0 1 1 0

]
= 6

Fig. 3. ExCov network for U =
{
1 2 3 4

}
and SS =

{{
2
}
,
{
3
}
,
{
1 4

}
,
{
2 3

}}
. Split

and pass junctions are as defined in Fig. 1a. Force-down junctions are denoted as filled
orange circles. The blue path combines sets S3 and S4, constituting an exact cover.
(Color figure online)

junctions, where the computational agent is forced into the downward direction
instead of having the chance to move diagonally, as in a split junction. In this
case, this is due to set S4 sharing elements with sets S1 and S2, which have
already been included. In terms of the decision problem encoded in the network,
the existence of one path leading to the required output implies that the result
should be computed as true.

This network is, in essence, an implementation of the SSP network with the
addition of a new junction type. Thus, the state of the model is defined by
the same combination of variables as that of the SSP. The junction type now
depends on both row and column values as the previously defined split junction
rows may now contain force-down junctions. The tag variable was added here
as well, to track the path taken by the biocomputation agents. The maximum
sum of the network, split junction rows, and tags are defined as they were in
SSP, where the set elements are now the decimal values of the subsets’ binary
representation. The transition relation, without the additional tag variable, can
be seen in Eq. 6, while the tag’s transitions are defined in the same manner as
the tags for the SSP (Eq. 5).
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[r, c, d, j, f ]|0 ≤ r, c ≤ max, d ∈ {down, diag}, j ∈ {split, pass, fdown},
f ∈ boolean

[r, c, d, split, f ] � [r + 1, c(c + 1), down(diag), pass, f ]
if r + 1 /∈ srow

� [r + 1, c, down, split, f ]
if r + 1 ∈ srow

� [r + 1, c + 1, diag, split, f ]
if r + 1 ∈ srow ∧ (r + 1, c + 1) /∈ fdown

� [r + 1, c + 1, diag, fdown, f ]
if (r + 1, c + 1) ∈ fdown ∧ d = diag

[r, c, d, pass, f ] � [r + 1, c, d, pass, f ]
if d = down ∧ r + 1 /∈ srow

� [r + 1, c + 1, d, pass, f ]
if d = diag ∧ r + 1 /∈ srow

� [r + 1, c, d, split, f ]
if d = down ∧ r + 1 ∈ srow

� [r + 1, c + 1, d, split, f ]
if d = diag ∧ r + 1 ∈ srow

� [r + 1, c, d, fdown, f ]
if (r + 1, c) ∈ fdown ∧ d = down

� [r + 1, c + 1, d, fdown, f ]
if (r + 1, c + 1) ∈ fdown ∧ d = diag

[r, c, d, fdown, f ] � [r + 1, c, down, pass, f ]
[max − 1, c, d, j, f ] � [max, c, d, j, true]

if d = down
� [max, c + 1, d, j, true]

if d = diag

(6)

Both LTL and CTL specifications were used to verify the output of interest
k, similar to the specifications in Table 1. The difference here is that k is assigned
the decimal value of the binary representation of the universe.

6 Satisfiability (SAT)

The Boolean Satisfiability problem (SAT) is considered the classic NP-complete
problem. SAT is the problem of determining if there exists an assignment of
true and false values to the variables of a Boolean formula, such that the for-
mula evaluates to true. The formula is considered satisfiable if any such assign-
ment exists, and is considered unsatisfiable when no such assignment exists (the
formula always evaluates to false). One standard format for SAT problems is
Conjunctive Normal Form (CNF), where the Boolean formula ϕ, consists of a
conjunction of a set of clauses

{
Ci

}n

i=1
, and each clause consists of a disjunction

of a set of literals
{
xj

}m

j=1
.
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The initial model designed for SAT used a similar structure to that of the
SSP network, as seen in Fig. 4a. Each row represents a literal xj , and each junc-
tion is a split junction. As computational agents progress through this network,
they are tagged after each split junction for the clauses their truth assignment
satisfies. The two example paths demonstrate cases where all tags are marked
(the Boolean formula was satisfied), as well as where there was a tag missing
(the Boolean formula was not satisfied). As there exists an output where all tags
are marked, the problem is satisfiable.

Fig. 4. SAT network models for three literals and three clauses.

The next network model used, seen in Fig. 4b, is structured with individual
junctions for literals and clauses, rather than having multiple junctions for each
literal as in Fig. 4a. Each literal junction has paths both to the left (true) and
right (false), reflecting their relevant truth assignment. These paths connect to
a sequence of clause junctions. Computational agents are tagged at clause junc-
tions with an identifier for the relevant clause satisfied by the truth assignment
of the path.

Unlike the SSP and ExCov networks where the output location indicates the
result, in the SAT network, the use of tagging is critical as it indicates the clauses
satisfied. The final computation result depends on the total collection of tags on
the computational agents at output. The problem is considered satisfiable if
there exists an agent that collected tags for each clause as measured at output.

Using the clause model, two network descriptions were constructed. One net-
work description has separate variables for clause junctions and tags, while the
other unifies them into a single tag variable that merges their behavior in order
to minimize the number of variables and possible states created by the NuSMV
model checker. The tag variables for these networks are treated as counters that
indicate the number of times each clause has been satisfied. As all problems
investigated are of the 3-SAT format, the tag for each clause can only be an
integer from zero to three, where zero indicates the clause was never satisfied.
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The state of the model is defined by a combination of variables for junction
type, direction of movement, current literal and it’s assigned value, exit flag, and
a tag array for the clauses satisfied. The junction type is now divided into clause
and literal junctions.

Table 4. SAT clause network LTL and CTL specifications. For satisfiable networks
LTL returns false and CTL returns true. For unsatisfiable networks LTL returns true
and CTL returns false.

LTL LTLSPEC NAME ltl sat := G!((flag = TRUE)&(
∧

i≥0

tag[i] > 0))

There is no path that satisfies all clauses

CTL CTLSPEC NAME ctl sat := EF ((flag = TRUE)&(
∧

i≥0

tag[i] > 0))

There exists a path that satisfies all clauses

Each tag[i] corresponds to a specific clause

Both models use the same LTL and CTL specifications to check if all tags
have a positive, non-zero value when reaching the output state. That is, tag[i] > 0
for every clause i when flag = TRUE. The number of tags directly corresponds
with the number of clauses.

7 Experimental Results

We developed a prototype tool [1,2] that automates both the generation of the
SMV encodings for each problem (SSP, ExCov and SAT), and the verification
of these encodings using the NuSMV model checker [9]. The user selects which
problem they would like to solve and then the tool runs as described in the
following sections. For the SSP and ExCov problems our tool also automates the
translation to chemical reaction networks allowing to run a Gillespie stochastic
simulation using the GEC and DSD tools [18,21]. We systematically evaluate
the verification capabilities of our tool, by proving correctness of the designs
and by identifying errors in designs that were explicitly modified to represent
faulty junctions or errors in the NBC encoding. Overall the verification results
demonstrate that the approach can handle large NBC circuits and is applicable
to the real-world systems currently designed in [4,20,27].

7.1 SSP

Using input sets from the user, the tool builds SMV network descriptions both
with and without tags. Once the models have been generated, the tool runs
NuSMV on each of the defined specifications. Verifications are first run on the
specifications defined in Table 1 using two methods. The first runs all outputs in
bulk, and the second runs output by output. This is done for both LTL and CTL
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specifications separately. Then, verifications are run on the specifications defined
in Table 2 for both valid and invalid sums. Each specification’s verification result
and runtime is parsed and saved for further analysis.

Table 5. SSP all output verification runtimes in minutes

SSP

ID Set size Set Tag runtimes No tag runtimes

LTL CTL LTL CTL

0 3 [2, 3, 5] 0.0041 0.0016 0.0035 0.0014

1 4 [2, 3, 5, 7] 0.0114 0.0027 0.0073 0.0022

2 5 [2, 3, 5, 7, 11] 0.0478 0.0065 0.0198 0.0038

3 6 [2, 3, 5, 7, 11, 13] 0.2256 0.0218 0.0466 0.0070

4 7 [2, 3, 5, 7, 11, 13, 17] 1.3204 0.0956 0.1028 0.0138

5 8 [2, 3, 5, 7, 11, 13, 17, 19] 18.0535 0.4476 0.2144 0.0278

6 9 [2, 3, 5, 7, 11, 13, 17, 19, 23] 106.7040 2.0753 0.4226 0.0553

While the difference between LTL and CTL verification runtimes in small
networks is negligible, the difference in large networks is considerable. As seen
in Table 5, LTL runtimes grow at a much faster rate than those of CTL. There
is also a drastic increase in runtime when verifying networks utilizing tagging,
as additional variables are necessary to define tags for all split junctions. For
the first specification type, it is not usually necessary to look at all outputs or
both logics. Thus, runtime can be decreased by examining specific outputs of
interest using a single specification instead. The increase in verification runtime
as a result of larger network size is not as drastic for running individual outputs
(Table 6) due to the compounded nature of the runtime when running in bulk.

Verification runtime for the second specification type grows at about the same
rate as that of the bulk run on the first specification’s CTL format (Table 7 and
Table 8). The two are comparable as they both check validity of all network
outputs. By using these different specification types, we are able to efficiently
verify NBC designs for increasingly large networks.

The second specification type can further be used to identify unreachable
valid sums and reachable invalid sums in networks with observable errors. We
model here errors that my occur as part of the manufacturing of the NBC devices,
and consider a scenario where a certain junction appears to contain an error and
we want to check its effect on the correctness of the overall circuit. There are
three general types of errors that may be found in SSP networks:

1. Pass junction behaves as a split junction
2. Pass junction forces one direction

(a) when both paths are valid (block one valid path)
(b) when one path is valid, and the invalid path is forced

3. Split junction forces one direction
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Table 6. SSP output 9 and 10 verification runtimes in minutes.

SSP

ID Set size Set Output Path exists Tag runtimes No tag runtimes

LTL CTL LTL CTL

0 3 [2, 3, 5] 9 NO 0.0012 0.0010 0.0011 0.0010

0 3 [2, 3, 5] 10 YES 0.0015 0.0010 0.0013 0.0009

1 4 [2, 3, 5, 7] 9 YES 0.0020 0.0010 0.0015 0.0009

1 4 [2, 3, 5, 7] 10 YES 0.0020 0.0010 0.0015 0.0009

2 5 [2, 3, 5, 7, 11] 9 YES 0.0033 0.0012 0.0019 0.0010

2 5 [2, 3, 5, 7, 11] 10 YES 0.0033 0.0012 0.0019 0.0010

3 6 [2, 3, 5, 7, 11, 13] 9 YES 0.0082 0.0019 0.0023 0.0011

3 6 [2, 3, 5, 7, 11, 13] 10 YES 0.0083 0.0018 0.0023 0.0011

4 7 [2, 3, 5, 7, 11, 13, 17] 9 YES 0.0278 0.0032 0.0030 0.0012

4 7 [2, 3, 5, 7, 11, 13, 17] 10 YES 0.0281 0.0033 0.0030 0.0012

5 8 [2, 3, 5, 7, 11, 13, 17, 19] 9 YES 0.2507 0.0079 0.0041 0.0013

5 8 [2, 3, 5, 7, 11, 13, 17, 19] 10 YES 0.2510 0.0079 0.0041 0.0014

6 9 [2, 3, 5, 7, 11, 13, 17, 19, 23] 9 YES 1.1600 0.0306 0.0057 0.0015

6 9 [2, 3, 5, 7, 11, 13, 17, 19, 23] 10 YES 1.1433 0.0245 0.0057 0.0015

Table 7. SSP general sum verification runtimes in minutes.

SSP

Set size Set Runtime

csum nsum

Tag No Tag Tag No Tag

3 [2, 3, 5] 0.0011 0.0011 0.0009 0.0009

4 [2, 3, 5, 7] 0.0013 0.0012 0.0009 0.0009

5 [2, 3, 5, 7, 11] 0.0018 0.0013 0.0009 0.0009

6 [2, 3, 5, 7, 11, 13] 0.0037 0.0018 0.0009 0.0009

7 [2, 3, 5, 7, 11, 13, 17] 0.0092 0.0025 0.0009 0.0009

8 [2, 3, 5, 7, 11, 13, 17, 19] 0.0260 0.0042 0.0009 0.0009

9 [2, 3, 5, 7, 11, 13, 17, 19, 23] 0.0821 0.0074 0.0010 0.0009

Examples of these errors are shown in Fig. 5. These errors are not always
identifiable by observing the possible exits from the network, as affected junc-
tions may not be reachable, forced paths may converge with valid paths, or
blocked paths may not be the only path leading to the affected output. In order
to simulate manufacturing errors that would cause unexpected outputs, delib-
erate errors were added to the network descriptions. A comparison between the
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Table 8. SSP general sum verification runtimes in minutes on network with no tag
variable. Sets include the first k prime numbers.

SSP

Set size Set Runtime

csum nsum Total

5 [2, 3, 5, 7, 11] 0.0055 0.0013 0.0068

10 [2, 3, 5, ... 19, 23, 29] 0.1140 0.0025 0.1165

15 [2, 3, 5, ... 41, 43, 47] 1.5203 0.0024 1.5227

20 [2, 3, 5, ... 61, 67, 71] 7.8919 0.0036 7.8955

25 [2, 3, 5, ... 83, 89, 97] 32.3312 0.0059 32.3371

30 [2, 3, 5, ... 107, 109, 113] 122.3742 0.0112 122.3854

expected verification result of the network and that of the network with added
errors is shown in Table 9. The correctness of NBC network design can be checked
by examining these errors and their verification results.

Fig. 5. SSP network for S =
{
2 3 5

}
with example errors and their resulting outputs.

Each error type is assigned a color. Resulting reachable paths are marked with dashed
lines. Blocked paths are marked with an X at the initial and end points.

7.2 ExCov

Using an input file containing a collection of universes and sets of subsets, the
tool encodes the given problems into binary format. Then, tagged and not tagged
networks are generated using specifications for the output of interest as defined
in Table 1. In this case, the output of interest (decimal value of universe’s binary
encoding) is assigned to variable k. Then, NuSMV is run on both specifications
(LTL and CTL) to check for the existence of an exact cover. The tool then parses
and saves verification results and runtimes for further analysis.
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Table 9. SSP general sum verification results for valid networks and observably invalid
networks. Error is denoted as the (row, column) junction location along with the error
type as in the error type definitions.

SSP

Set size Set Original network Faulty network

csum nsum Error csum nsum

3 [2, 3, 5] VALID VALID (3,1) - 2b INVALID INVALID

4 [2, 3, 5, 7] VALID VALID (12,2) - 2a INVALID VALID

5 [2, 3, 5, 7, 11] VALID VALID (14,4) - 1 VALID INVALID

6 [2, 3, 5, 7, 11, 13] VALID VALID (17,17) - 3 INVALID VALID

7 [2, 3, 5, 7, 11, 13, 17] VALID VALID (29,15) - 2a VALID VALID

Verification runtimes show similar behavior to those seen with SSP networks.
The same difference in growth in runtime of LTL and CTL, as well as the same
drastic difference in runtime of tagged as compared to not tagged networks is
observed (Table 10).

Table 10. ExCov verification runtimes in minutes.

ExCov

ID Universe # of Subsets Set of subsets ExCov exists Tag runtimes No tag runtimes

LTL CTL LTL CTL

0 [1, 2, 3, 4] 4 [[1, 2], [1], [1, 3],

[4]]

NO 0.0015 0.0013 0.0012 0.0011

1 [1, 2, 3, 4] 4 [[1, 2], [1, 3], [1, 3,

4], [1, 2, 3]]

NO 0.0016 0.0015 0.0014 0.0011

2 [1, 2, 3, 4] 4 [[2], [3], [1, 4], [2,

3]]

YES 0.0020 0.0009 0.0017 0.0010

3 [1, 2, 3, 4, 5, 6, 7, 8] 8 [[1, 4, 7], [1, 4], [4,

5, 7], [3, 5, 6], [2,

3, 6, 7], [2, 7], [8],

[3, 4, 5]]

YES 666.1414 3.7020 0.0586 0.0079

4 [1, 2, 3, 4, 5, 6, 7, 8] 8 [[1, 4, 7], [1, 4], [4,

5, 7], [3, 5, 6], [2,

3, 6, 7], [2, 7], [4,

8], [3, 4, 5]]

NO 5.1313 6.1802 0.0113 0.0056

As the ExCov NBC design is based off of that of the SSP, the types of errors
observed in the SSP may occur here as well. As the translation is more complex
due to the addition of “force-down” junctions, it is critical to make sure these
junctions are added at all relevant locations. By not including these junctions
in the network description properly, incorrect results may be observed when
verifying the existence of an exact cover. As the network grows larger, it becomes
more difficult to identify such errors. In order to capture such mistakes in network
translation, an additional variable was used to switch junction behavior to that
of split junctions, in essence switching the network with the SSP equivalent. This
type of error does not affect networks where an exact cover exists as the original
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path to the universe output is not blocked. A comparison of network behavior
in both cases is seen in Table 11. This illustrates the utility of the verification
method to verify new NBC designs that are complex or include various network
optimizations, and may have subtle design errors.

Table 11. ExCov existence verification on networks with properly functioning force-
down junctions (Valid) and networks with force-down junctions that behave as split
junctions (Invalid).

ExCov

Universe Set of subsets ExCov exists ExCov found

Valid Invalid

[1, 2, 3, 4] [[1, 2], [1], [1, 3], [4]] NO NO NO

[1, 2, 3, 4] [[1, 2], [1, 3], [1, 3, 4], [1, 2, 3]] NO NO YES

[1, 2, 3, 4] [[2], [3], [1, 4], [2, 3]] YES YES YES

[1, 2, 3, 4, 5, 6, 7, 8] [[1, 4, 7], [1, 4], [4, 5, 7], [3, 5, 6], NO NO YES

[2, 3, 6, 7], [2, 7], [4, 8], [3, 4, 5]]

7.3 SAT

Our tool generates 3-CNF SAT problems of random sizes in DIMACS format
using CNFGen [19]. These are then run through the MiniSat SAT Solver to
get their satisfiability results [12] for later comparison with NuSMV verification
results. The tool then generates two network descriptions for each problem, one
with separate clause and tag variables (Clause) and one with merged clause and
tag variables (No-Clause). NuSMV is then run on each network description, once
with and once without variable re-ordering (VRO). The re-ordering organizes
the tag variables by first appearance of the relevant clause in the network. For
example, all clauses containing the first literal come before clauses containing
the second literal. Verification results and runtimes, for each of the specifications
defined in Table 4, are parsed and saved for further analysis. NBC verification
results were compared with the MiniSat results, which directly check satisfiability
or unsatisfiability of the formula, and were all consistent.

Runtimes are examined using three comparisons; LTL vs. CTL, No VRO vs.
VRO and No-Clause vs. Clause (Table 12). The same differences in verification
runtime of LTL as compared with CTL specifications seen in SSP and ExCov
were observed. While variable re-ordering may improve verification runtime, the
re-ordering used here did not generally show improvement for all networks, and
no tendency towards either improvement or deterioration was observed. Overall,
the No-Clause network description tends to have faster runtimes than the Clause
network description, as unification of the tag and clause variable decreases the
size of the network description.
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Table 12. SAT verification runtimes in minutes.

3-SAT

# Clauses # Variables No-clause runtimes Clause runtimes

No VRO VRO No VRO VRO

LTL CTL LTL CTL LTL CTL LTL CTL

18 31 6.8871 0.1432 100.0822 0.8676 59.2266 0.2711 86.9653 0.5320

19 38 25.7469 0.4413 103.6992 0.3943 369.7850 1.1077 76.2565 0.2613

14 26 5.8769 0.1064 56.8184 0.3577 20.1059 0.1606 13.9620 0.0781

9 23 0.0201 0.0017 0.0959 0.0039 0.0299 0.0022 0.0670 0.0032

15 37 0.4292 0.0138 12.7095 0.0370 11.8577 0.0233 10.9242 0.0284

13 32 0.0334 0.0033 1.7767 0.0104 0.5014 0.0051 1.8381 0.0094

19 27 37.3025 1.0872 194.4493 2.7105 348.9075 3.5467 123.0635 1.2737

10 27 0.0320 0.0025 0.0820 0.0045 0.0548 0.0029 0.0624 0.0032

19 19 1.6001 0.0982 0.1200 0.0106 12.7730 0.2503 1.8869 0.0288

3 9 0.0085 0.0013 0.0090 0.0014 0.0048 0.0012 0.0054 0.0012

8 Summary

We presented a prototype verification tool that takes as input an NBC design
and performs formal verification to check the logical correctness of the circuit.
The tool verifies the correctness of NBC designs for SSP, ExCov and SAT. For
handling SAT problems, we have also implemented tagging in the verification
tool, where the agent sets all the labels it gathers while traversing the network
to true, and temporal logic queries can also relate to the tagging of the filament
when exiting the network. We have used our tool to analyze the efficiency of
different methods of verifying encodings and to generate random examples of
varying sizes and difficulties using an automatic SAT formula generator. The
verification results demonstrate that the approach can handle large NBC circuits
and is applicable to the real-world systems currently designed in [4,20,27]. Our
work is currently used as an integral part of the design phases of new circuits in
the Bio4Comp project.

Future work includes further scaling of the methods by evaluating and opti-
mizing additional model checking algorithms and tools. Our translation to chem-
ical reactions can form a basis for applying probabilistic model checking, which
can remove some of the restricting assumptions made here. For example, we
assume that pass junctions that do not have a manufacturing fault, never allow
computational agents to change direction, while it was observed [4,20] that most
but not all of the of the agents traverse through pass junctions correctly. The
effects of these errors could be quantified and analyzed using simulation and
probabilistic model checking of CRNs to quantitatively estimate the effects of
these errors in NBCs.
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Abstract. We study the problem of using probabilistic network models
to formally analyze their quantitative properties, such as the effect of
different load-balancing strategies on the long-term traffic on a server
farm. Compared to prior work, we explore a different design space in
terms of tradeoffs between model expressiveness and analysis scalability,
which we realize in a language we call Netter. Netter code is compiled
to probabilistic automata, undergoing optimization passes to reduce the
state space of the generated models, thus helping verification scale. We
evaluate Netter on several case studies, including a probabilistic load
balancer, a routing scheme reminiscent of MPLS, and a network defense
mechanism against link-flooding attacks. Our results show that Netter
can analyze quantitative properties of interesting routing schemes that
prior work hadn’t addressed, for networks of small size (4–9 nodes and
a few different types of flows). Moreover, when specialized to simpler,
stateless networks, Netter can parallel the performance of previous state-
of-the-art tools, scaling up to millions of nodes.

Keywords: Stateful networks · Probabilistic model checking ·
Discrete-time Markov chains

1 Introduction

Recent years have seen a surge of interest in automated tools for verifying net-
works [6,27,36], in particular for analyzing their quantitative properties—“What
is average latency for this type of traffic?”; “What percentage of packets are
dropped on this link?”. Such formal verification tools complement other analysis
approaches, such as simulations, which are often guaranteed to yield accurate
results, but might require a large number of samples to do so.

In contrast to qualitative properties, such as reachability or the absence of
routing loops, quantitative properties are often probabilistic, and thus more
challenging, due to the complexity of computing over probabilistic models in
the presence of the explosion in the number of possible executions. Consider
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Bayonet [6] for instance, a state-of-the-art language in this domain. Bayonet
can express complex models that account for router state, queue lengths, ran-
domness, and even different packet orderings. Though useful, this expressiveness
limits the scalability of the analysis: currently, Bayonet can handle networks
of about 30 nodes and small traffic volumes, on the order of 20 packets [6].
Other proposals achieve better scalability by sacrificing expressiveness to vary-
ing degrees. McNetKAT [5,27], for instance, does not model network state or
packet interaction, but in return scales to networks with thousands of nodes [27].

The goal of this paper is to seek a different middle ground between expressive-
ness and scalability. In particular, we aim to analyze the performance of stateful
networks in the long run, without a priori bounds on the volume of traffic that
traverses them. Moreover, we would like to do so while modeling some interac-
tion between different sources of traffic. Potential applications include the anal-
ysis of load balancers, traffic engineering schemes, and other components that
use states to improve performance. Given the challenges faced by prior work,
it is natural to expect that some compromises will have to be made to handle
interesting applications. Our hypothesis is that the behavior of many networks
should not be too sensitive to the exact ordering of packet arrivals, but rather
to how the traffic is distributed among different classes of flows over sizable time
intervals—or, put differently, the main interactions between different types of
traffic in these networks happen at a large scale. For example, certain traffic
engineering schemes (cf. Sect. 4.2) avoid congestion by periodically reallocating
flows on alternative paths based on the volume of data transmitted since the last
checkpoint, with typical sampling intervals staying on the order of a few min-
utes. Based on this insight, we have designed Netter, a probabilistic language for
modeling and verifying stateful networks. Unlike previous proposals [6,27], Net-
ter can express interactions between different kinds of traffic while avoiding the
combinatorial explosion of having to reason explicitly about all possible packet
orderings. Netter programs are compiled to finite-state Markov chains, which
can be analyzed by various model checkers, such as PRISM [16] or Storm [8].

We evaluate Netter on a series of case studies: (1) computing failure probabil-
ities on a simple stateless network; (2) a traffic engineering scheme reminiscent of
MPLS-TE; (3) a stateful, probabilistic load balancer; and (4) a mitigation strat-
egy for link-flooding attacks from prior work [18]. Our experiments show that
Netter can scale to networks of 4–9 nodes, while providing insight into challeng-
ing routing questions that prior work had left unaddressed, such as examining
the cost of deploying a cheap balancing strategy compared to the optimal one.
While these sizes are modest compared to practical networks, we note that Net-
ter can scale to similar orders of magnitude as state-of-the-art tools [27] on the
more constrained stateless setting.1 We expect that Netter’s flexibility will allow
users to tune between complexity and performance as suits their application.

1 Due to dependency issues, we only managed to run part of the experiment of Smolka
et al. [27], so our comparison is mostly based on the numbers reported by the authors.
While this prevents us from making a precise comparison, their setup was similar to
ours, and we do not expect the performance of their code to change substantially.
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To summarize, our paper makes the following technical contributions:

– Netter, a domain-specific probabilistic language for modeling and verifying
network programs (Sects. 2 and 3). By focusing on flow-level modeling and
abstracting away from event orderings, Netter can verify asymptotic proper-
ties of stateful networks that were previously out of reach [6,27].

– Optimizations for reducing the size of the automata generated by Netter
(Sect. 3). To be confident in their correctness, these optimizations were veri-
fied in the Coq proof assistant [30].

– A series of case studies evaluating the expressiveness and scalability of Netter
(Sect. 4), including a comparative benchmark, a traffic engineering scheme,
a stateful load balancer, and a defense against link-flooding attacks. Our
results show that Netter scales similarly to state-of-the-art tools on stateless
networks, while enabling the automated quantitative analysis of some stateful
routing schemes that prior work could not handle.

– Netter is open-source, and available at https://github.com/arthuraa/netter.
Our artifacts including case study code and Coq formalization are public
available [39] and can be used with the VMCAI virtual machine [7].

The rest of the paper is organized as follows. In Sect. 2, we give a brief
overview of the Netter workflow with a simple, but detailed, model of a state-
ful network, showing how we can reason about its performance characteristics
automatically. In Sect. 3, we delve into the Netter language, covering its main
functionality and how it departs from prior work. We describe its Haskell imple-
mentation and the optimization passes used to improve model checking time. In
Sect. 4, we present our case studies. Finally, we discuss related work in Sect. 5
and conclude in Sect. 6.

2 Overview

The workflow of using Netter for analyzing probabilistic quantitative network
properties is depicted in Fig. 1. Users provide a Haskell file with a model written
in an embedded probabilistic imperative language. The model contains the code
of the network, as well as declarations of key performance metrics that the users
want to analyze, such as the drop rate of the network. The Netter compiler
transforms this model into a probabilistic automaton that encodes a finite-state,
discrete-time Markov chain. This automaton is encoded in the language of the
PRISM model checker [16], but back-ends to similar tools could be added easily.
This Markov chain is then fed to Storm [8], a high-performance probabilistic
model checker, along with a set of properties to analyze, such as the expected
value of a performance metric in the stationary distribution of the chain.

To illustrate this workflow, consider the network depicted in Fig. 2. Two
servers, S1 and S2, sit behind a load balancer LB. When a new flow of traffic
arrives, the load balancer simply picks one of the servers at random and routes
the traffic through the corresponding link. Any traffic that exceeds the link’s

https://github.com/arthuraa/netter
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Fig. 1. Netter workflow. Rounded corners denote user-provided inputs, rectangles
denote outputs, and circles denote components.

Fig. 2. Example network with two servers, S1 and S2, and a load balancer LB. LB
has randomly forward incoming flows to either server. If the new flow traffic size is
10 Mbps, it will experience losses if forwarded to S2.

capacity is dropped, and we are interested in computing the long-term average
drop rate of this load-balancing scheme under certain traffic assumptions.

Figure 3 shows a model of this network in Netter. Unlike other network mod-
eling languages [6], Netter does not represent different network nodes as separate
entities. Rather, the model presents a global view of the network, where all the
state is manipulated by a single program. In our example, this state comprises
just the two allocated variables dest and newFlow (lines 10–11), which represent
the state of the load balancer and the state of the current flow. Later examples
will show models where other nodes also use state (Sect. 4).

Since Netter programs are compiled to finite-state automata, variables must
be bounded, and their bounds are specified in the parameters of the var func-
tion. The dest variable represents the router chosen by the load balancer, while
newFlow tracks whether a new flow of traffic has just arrived. For now, we assume
that there can be only one flow at a time in this network, which transmits data at
a rate of 10 Mbps. The rewards call (lines 13–15) specifies that we are interested
in analyzing the average drop rate of the network. Note that to avoid confusion
with standard Haskell functions, many Netter operators are primed (e.g. when’)
or prefixed with a dot (e.g. ./). The .? ... .: form is the Netter equivalent of
the ternary operator in C-like languages.

Figure 3 shows the code representing the execution of one step of the Markov
chain. On the first time step, the state variables are set to their lower bound.
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Then, the program enters a loop, executing its code once per step. More precisely,
the behavior of the network is defined in lines 17–19. Line 17 says that on
every step there is a 10% probability that a flow ends and a new one starts.
The .<-$ operator samples from a probability distribution specified as a list of
probability/value pairs. By changing this distribution, or by adding more state
variables, we can model richer traffic patterns (Sect. 4.3). Lines 18–19 say that,
whenever a new flow appears, the load balancer chooses its server uniformly at
random. The selected server remains stored in dest for the next few time steps,
until newFlow becomes 1 again.

Fig. 3. Netter implementation of model in Fig. 2.

Figure 4 shows the probabilistic automaton produced by Netter for this net-
work. Though the execution of the original program happens conceptually in one
step, representing this directly as a probabilistic automaton is challenging. It is
easier to decompose the code into a series of more elementary steps, where we
use the auxiliary program counter variable pc_0 to choose which command of the
program needs to be executed next. The point pc_0 = 0 marks the beginning of
the execution at the source level. (Using a small number of PC values is crucial
for keeping the generated model small, an issue that prior work on Probabilistic
NetKAT also faced [27]; cf. Sect. 3.) We set the dropRate reward to zero at other
PCs to ensure that it is counted only once per source-level step.

To calculate the long-term average drop rate for the incoming flow, we feed
Storm the PCTL query R{"dropRate"}=? [LRA] / LRA=? [pc 0=0], to which
it replies 0.1. (The adjusting factor LRA=? [pc 0=0] is included to compensate
for intermediate steps in the automaton that have no source-level counterpart.)
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Fig. 4. Compiled DTMC model from Netter implementation in Fig. 3.

3 The Netter Language

Operations. Figure 5 enumerates some of the main operations in Netter. The
Expr type represents integer and boolean values in the network program. The
type Prog is used for commands and program declarations. It carries the struc-
ture of a monad [22], allowing us to easily compose subprograms. Commands
have a return type of (), the unit type, which means that they yield no values,

Fig. 5. Select Netter primitives.
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Fig. 6. Netter programs can use Haskell abstractions such as functions and data types.

and are run solely for building the program. Other declarations, however, may
produce useful results, such as the variable declaration command var, which
returns an Expr (cf. Fig. 3).

The API highlights important distinctions with respect to prior work. First,
unlike Probabilistic NetKAT [5] or Bayonet [6], there are no specialized com-
mands for manipulating packets (though this functionality can be encoded with
regular state variables, as we do in Sect. 4.1). Indeed, since Netter is tailored to
analyze flow-level behavior, we focus on commands that manipulate the high-
level routing decisions (e.g. the dest variable in Fig. 3), and assume that these
can be implemented in terms of lower-level packet-manipulating primitives. Sec-
ond, unlike Probabilistic NetKAT, Netter programs can use arbitrary expressions
in assignments and in the guards of if statements, making it easy to encode
typical imperative programs—indeed, most of the case studies in Sect. 4 use this
functionality.2 On the other hand, Probabilistic NetKAT allows programs to per-
form unbounded iteration, while Netter does not have an analogous construct.
This simplifies the semantics of Netter programs, which can be easily described
as a stochastic matrix on the finite space of all program states. An entry Mij

of this matrix describes the probability of transitioning from state i to state j
after running the code. The semantics is similar to that of McNetKAT [27], but
includes a semantics for arithmetic expressions, and omits a clause for iteration.
(In practice, we have not found the absence of loops to be a limitation, since we
could partly emulate iteration by wrapping Netter commands in Haskell loops).

Netter has a phase distinction between model code, which is analyzed by the
model checker, and compiler code, which is responsible for generating the former.
The Expr type produces expressions that are consumed by the model checker,
and thus does not have a well-defined “value” when the model is being generated.
This prevents us from operating on expressions as if they were regular values
in Haskell; for instance, we cannot test if two model variables hold the same
value by writing x == y, since the equality operator returns a fixed boolean
rather than a symbolic expression. This is why many basic Haskell operators

2 In principle, since variables are bounded, it would be possible to do away with
expressions by evaluating them at every possible state. However, this would result
in much larger compiled models, making the analysis more costly.
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have counterparts for Netter expressions, as we have seen with the ./ and .==
operators of Fig. 3. Despite this phase distinction, the compiler code is free to
use other Haskell types and operations to generate a model, which makes up
for the minimalist set of basic constructs available in Netter. For instance, we
can represent a stateful router with a record that contains Netter variables (cf.
Fig. 6), a functionality that is useful when defining complex network models, as
we will see in Sect. 4.

Implementation. The compilation process that takes a network algorithm
implemented in Netter and generates an optimized PRISM model was imple-
mented in about 2k lines of Haskell. First, user-level commands are processed
to build an internal representation of a model in a simple imperative language
called Imp. As depicted in Fig. 7, the program then undergoes a series of com-
pilation passes to produce a Markov-chain model. An important part of this
process is the translation of the program to a control-flow graph (CFG), which
can be more directly represented as an automaton. The size of the resulting
automaton is linear in the size of the CFG, which must be kept to a minimum
to avoid blowing up the state space. This is the job of two optimization passes
of the pipeline: one that inlines as many assignments as possible, and one that
removes stores and variables that are not used to compute the rewards declared
by the user. The inlining pass is particularly challenging. Indeed, in an earlier
version of the compiler, we tried to symbolically execute the Netter program to
remove the need for any intermediate assignments, probabilistic and determin-
istic alike. However, composing multiple symbolic probabilistic assignments can
quickly lead to bloated models: if an assignment with n probabilistic branches
is expanded in another probabilistic assignment with m branches the result is
generally a probabilistic assignment with n · m branches.

To avoid this issue, we adopted a more conservative strategy where we only
inline deterministic assignments. This requires some care: if a variable x receives
the result of a random sample, we need to stop propagating any inlined expres-
sions that mention x, since they refer to its old value. To increase our confidence
in this step, we have formalized our main optimization passes using the Coq proof
assistant [30], and manually translated the algorithms to Haskell. To define the
semantics of the language, we formalized a core of finite probability theory in
Coq, including infrastructure for reasoning about coupling arguments [10]. Prob-
abilistic NetKAT relies on a similar optimization to compile to PRISM [27],
though its logic is considerably simpler, since only constants can be assigned in
the language (and thus almost no dependencies need to be considered).

Fig. 7. Netter compilation pipeline.
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4 Applications

Now that we have acquainted ourselves with the Netter basics, we discuss four
case studies that used the language to model and analyze stateful networks.
For all of the following cases, we evaluate Netter on a 12-core VM with 64 GB
memory. Unless specified otherwise, we use the Storm [8] model checker with
their Sparse backend engine. We set the max memory limit to be 40 GB for
Storm, reserving headroom for graceful shutdown in case of memory exhaustion.

4.1 Warming up

As a first case study, we evaluate the performance of Netter on a simple stateless
benchmark. This benchmark exercises features that could already be handled in
prior work [6,27], and is a sanity check to ensure that Netter’s expressiveness does
not incur large performance penalties when it is not needed. Figure 8 presents
a network that connects two hosts, H1 and H2, via a chain of 4k intermediate
switches. Each switch Si,1 forwards traffic to either Si,2 or Si,3 with equal prob-
ability. Both Si,2 and Si,3 forward to Si,4, but the link Si,3 → Si,4 can fail with
probability p = 10−3. Finally, Si,4 forwards to Si+1,1. We are interested in the
probability that a packet is successfully delivered from H1 to H2.

Fig. 8. Chain topology with failures.

We compare the time taken to check the Netter model in Storm against the time
taken by PRISM and Storm to check a handwritten model of this network. The
handwritten model was taken from an analogous experiment in the McNetKAT
paper [27]. We set a timeout of 5 min. Figure 9 presents the results. We observe
that Storm takes about the same time to check the Netter and the handwritten
models, with the latter being slightly cheaper to process. We checked networks
of at most 4M switches. PRISM timed out at 32k switches. For comparison, the
authors of McNetKAT [27] reported that their custom solver could analyze 65k
switches in 2.5 min running on a cluster with 24 machines, while Bayonet could
analyze 32 switches in 25 min. Moreover, their performance figures for checking
the handwritten model with PRISM are similar to ours. We did not manage to
run the McNetKAT code in our setting, due to dependency issues.
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The gap between Bayonet and the other tools is to be expected, as it is based
on a much more general solver and accounts for traffic details that the others
don’t, such as asynchronous event scheduling. (Note that these features should
not fundamentally change the analysis, since this experiment considers only one
packet.) As for McNetKAT, we believe that the difference in performance can be
mostly explained by the use of the Storm back-end; nevertheless, since Storm is
compatible with the PRISM language, which can also be targeted by McNetKAT,
McNetKAT could readily benefit from advances in other model checkers as well.

Fig. 9. Checking performance of chain example.

The case for using Netter on an example like this is not so strong, as the
handwritten automaton for PRISM is about the same size as our model, and
can be checked slightly faster. With the next case studies, we will see examples
with non-trivial control flow that would be difficult to encode directly in PRISM.

4.2 Traffic Engineering with MPLS

Traditional IP routing can be too inflexible for traffic-engineering purposes, as
every packet is sent through the shortest path between its source and destina-
tion. If a link on this path becomes congested, the performance of the network
degrades. In modern networks, a popular solution is to manage sections of a path
using Multiprotocol Label Switching (MPLS) instead of pure IP.

Originally, MPLS was introduced to speed up the handling of addresses in
switches. When packets from other protocols enter an MPLS network, they are
encapsulated with a label determined by their header and routed through a path
in the network until they reach an exit node, when the labels are removed. (In
reality, the labels change as packets traverse the network, but this detail is not
relevant for our purposes.) Labels are processed in a way that resembles IP
addresses, in that the next hop of a packet along a path is determined by its
labels. However, labels are much shorter than IP addresses, and thus faster to
process in hardware.
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As MPLS was extended over the years, it gained the ability to manage labels
with more flexibility than IP, making it attractive for traffic engineering. To avoid
congestion, for example, MPLS can reserve some bandwidth for each label, and
assign them to paths so that the total reserved bandwidth on each link does not
exceed its capacity. Moreover, this reserved bandwidth can change dynamically
based on traffic demands, causing labels to be reallocated on different paths.

Prior work [24] observed that bad MPLS configurations can allocate labels
on sub-optimal paths, leading to latency inflation. In the network analyzed by
the authors, the weighted latency was 10%–22% higher than the optimal, and
some labels could remain on sub-optimal paths for as long as 10 days!

To investigate the causes of latency inflation, we devised an experiment that
models the bandwidth adjustment logic used by the main network vendors—the
so-called “auto-bandwidth” feature. In this experiment, each flow corresponds
to the traffic assigned to one MPLS label; thus, each flow is routed through
a particular path in the network, and has a certain bandwidth reserved for
it along this path. Our adjustment logic is governed by two parameters: the
sample interval and the adjustment interval. Every sample interval, the network
samples the volume of traffic on each flow. When the adjustment interval is
completed, the largest sample since the beginning of the interval is compared
against the current reserved bandwidth for each flow. If the sample is larger than
the reserved bandwidth, the network reallocates the flow on a new path with
enough bandwidth, potentially evicting lower-priority flows allocated there. We
set the sample interval to 3 time steps, and the adjustment interval to 9 time
steps. (Real MPLS deployments expose other configuration options as well, such
as the adjustment threshold. For simplicity, we omit those.)

Fig. 10. MPLS network topology.

Figure 10 shows the topology used in our experiment. The link between 2 and
3 is a local link with high bandwidth, whereas the other four are long links with
higher latency. There are two flows in this network: f2,3, a high-volume flow of
9 Mbps between 2 and 3, and f1,3 between 1 and 3. The volume of traffic in f1,3
varies between 2 and 4 Mbps according to a random walk, moving up or down
if possible with a probability of 25%.
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We use Storm to compare the long-term weighted latency of two configura-
tions for this network: one where f2,3 has a higher priority than f1,3, and the
other one where the priorities are reversed. We switch to the Hybrid engine
to avoid memory exhaustion for this model. Storm reports that the weighted
latency is 101 ms for the first configuration 81 ms for the second one, which
corresponds to an increase of about 24%. Intuitively, in the first configuration,
when f1,3 triggers an adjustment, it ends up evicting f2,3 to a much longer
path, because it has higher priority. Since f2,3 carries more traffic, the weighted
latency goes up. In the second configuration, instead, f1,3 is reassigned to the
path 1 → 2 → 4 → 3, and the problem does not arise. These observations
corroborate the aforementioned empirical results.

As a side note, this case study was one of the original motivations for imple-
menting Netter. We attempted to encode an earlier version of this model directly
in the PRISM language, but felt that correctly expressing the control-flow of the
autobandwidth logic as an automaton was error prone, especially when trying
to express more complex topologies and flow configurations, since there is no
convenient way of abstracting the network topology in PRISM. By contrast, our
Netter model takes in a high-level description of the network topology as an
adjacency matrix, and automatically computes the lists of possible routes for
a flow ranked by latency, while ensuring that the available bandwidth on each
route is correctly updated.

4.3 Stateful Load Balancers

Load balancers are commonly used to improve web application performance by
sharing and distributing a pool of resources. They act as virtual servers to receive
incoming client requests and forward requests across different backend servers to
manage desirable loads between servers. Many load balancing algorithms require
storing internal state information. For example, a Round Robin algorithm needs
to remember which server it assigns the previous flows before allocating the next
one. Many other algorithms need to compare the current server loads before
finding a suitable candidate to allocate the new flow. Although previous works
have modeled randomized load balancers [5,6], they do not support the case
for stateful load balancers or other complex algorithms. In our experiment, we
implement and analyze three different load balancing algorithms.

Max Free Capacity. The Max Free Capacity algorithm requires the load balancer
to forward new flows to the server with the largest available capacity, measured
as the difference between the server’s maximum capacity and the its current load.
Intuitively, this strategy should have a very low probability of flow loss because it
can find the best server to process all incoming flows. However, the disadvantage
is that the load balancer needs to collect information from all servers before
making any decisions. This method can be costly, generating too much internal
traffic and incurring high latency.
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Round Robin. The Round Robin algorithm uses an internal counter to assign
new flows to servers. When a new flow arrives, the load balancer forwards it
to the server given by the current counter and updates the counter to the next
server in line. The advantage of this strategy is that the load balancer doesn’t
need to check the server load at all. The disadvantage is that it may cause
significant server imbalances and packet drops when a server receives too much
load while another one is mostly free.

Best of Random 2. In the Best of Random 2 algorithm, the load balancer ran-
domly picks two servers, compares their current load, and sends the new flow to
server with the largest available capacity. This simple but powerful algorithm is
proven to have a small maximum server load with high probability [21], making
it a popular option for many applications [29]. Compared to the previous two
algorithms, the Best of Random 2 algorithm is a compromise for avoiding flow
losses while reducing internal traffic queries, since it only needs to query two
servers instead of all of them.

We implement these three algorithms in Netter in a simple load balancing
use case—we put one load balancer in front of a group of servers, and the load
balancer forwards incoming flows to any one of the servers. We explore various
settings in terms of the number of servers, number of flows, and server capacity,
and compare these algorithms’ performance. We pick two metrics—average flow
loss rate and server load imbalance—to measure these algorithms’ performance.
Finally, we show the complexity of running Netter in these cases.

During our evaluation, we represent flow traffic with a Markov model. At
every timestamp, each inactive flow can be independently activated with a prob-
ability of 0.6. Upon activation, the flow randomly selects a volume between 1
and 3 Mbps. Active flows also have a 0.6 probability of deactivating and return
to the inactive state at every timestamp. In the following graph, the flow number
represents the maximum possible number of flows that could arrive at the load
balancer at the same timestamp.

Flow Loss Rates. Figure 11a shows the long-run flow loss percentage for different
algorithms in a group of 3 servers with different capacity. The percentage of
flow loss is calculated by the number of packet drops over total incoming loads.
From the figure, we can see that the Max Free Capacity algorithm always has
a strictly lower flow loss compared to the other two algorithms. The Round
Robin algorithm causes more flow losses than the Best of Random 2 algorithm.
This is because the Best of Random 2 will overload a server beyond its capacity
only if neither of the two randomly chosen servers has enough free capacity.
In comparison, the Round Robin algorithm is agnostic to the server’s current
load, and it assigns flows periodically in the long run. We can also see that the
difference in flow loss for these three strategies is getting smaller when the flow
load increases. This is because none of the strategies deal with the case where
the incoming flow load is larger than the total server capacity.

This result confirms our intuition that the Max Free Capacity is the best
solution among the three algorithms in reliable flow allocation if we ignore its
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(a) Different capacity, number of servers=3.
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(b) Equal capacity, number of servers=3.

Fig. 11. Model checking results on flow loss rates for the load balancer using different
algorithms to allocate flows to 3 servers.

costly nature of querying every server for their load during runtime. Moreover,
we can see that the Round Robin algorithm has a larger flow loss rate than the
other two algorithms when the servers have different capacity.

Figure 11b shows the long-run flow loss percentage for every algorithm with
servers of the same capacity. Comparing to the previous figure, we can see the dif-
ference in the flow loss rate across all three algorithms. Each algorithm observes
less flow loss comparing to the previous case. Similarly, the Max Free Capacity
algorithm has the lowest flow loss rate. An interesting observation for this case is
that the Round Robin algorithm causes less flow loss than the Best of Random 2
algorithm. This is because, given the parameters set for the Markov flow model,
the server is less likely to have an active flow when selected by the Round Robin
algorithm (i.e., previous flows must remain active for many rounds) than with
the Best of Random 2 algorithm (i.e., server can be picked at any time).

Server Load Imbalances. Figure 12a shows an imbalance among servers by plot-
ting the absolute value of servers’ capacity and load. In this case, all servers with
the same 3 Mbps capacity are represented as white bars, and the grey bars show
the long-run load on the servers. We can see that the Round Robin algorithm
and the Best of Random algorithm have the same load allocation among the
servers. Yet, the Max Free Capacity algorithm’s imbalance is caused by a priority
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Fig. 12. Model checking results on server load imbalance from the three load balancing
algorithms to allocate 5 flows to 4 servers. For each algorithm, the four bars represents
the four individual servers. White bar indicates server capacity, light grey for average
loads, and dark grey for overloads.

among servers when breaking a tie. By default, this algorithm allocates the flow
to the server with a smaller index when servers have the same free capacity.

Figure 12b shows the imbalances between servers with unequal capacity. We
assign each server with 1 Mbps, 5 Mbps, 3 Mbps, and 3 Mbps maximum capac-
ity, respectively. The dark grey bars in the figure represent overloading servers
beyond their maximum capacity. For example, the Round Robin algorithm allo-
cates 1.78 Mbps traffic to server 1, where over 40% will be dropped due to server
overload. The root cause of the massive server overload is that the Round Robin
algorithm is agnostic to individual server loads when allocating new flows. For
simplicity, the load balancer only keeps one next counter to decide where to send
the next flow. As a result, the load balancer forwards the incoming flow to the
chosen destination, even if the server is busy while others have ample free capac-
ity. In comparison, the Best of Random 2 significantly reduces server utilization
imbalance. Instead of deterministically assigning one server for new flows, the
load balancer randomly picks two candidates and checks their utilization. Server
overload can still happen—when the load balancer picks two busy servers by
chance, and neither one can fulfill the new flow without loss. However, the prob-
ability of server overload (and imbalance flow allocation) is much smaller than
the Round Robin algorithm. On the other hand, the Max Free Capacity algo-
rithm is the optimal strategy in avoiding server overload. This is because the
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load balancer has a global view of server loads before allocating new flows. It
can always pick the capable server to process the new flow if such one exists.
Therefore, we observe that no server experiences high or near-max loads.
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Fig. 13. Model checking complexity in Markov chain state number and runtime for
load balancer using each of the three algorithm to allocate flows among 4 servers with
same capacity. The runtime is marked as red point scaled on the right side. (Color
figure online)

Analysis Runtime. Figure 13 shows the complexity and runtime of using Net-
ter to analyze different algorithms. In the figure, we show that the runtime of
model checking is proportional to the number of states the Markov chain needs
to calculate. Since different algorithms have different numbers of variables in
the model, they vary significantly in model complexity. The Best of Random 2
algorithm uses random choice in picking the servers, which leads to more states
for the model checker to explore, especially when comparing against the Max
Free Capacity algorithm. The Round Robin algorithm requires a global variable
in the model to keep track of the next server to allocate new flow. In addition to
the complexity in the algorithm, we must keep auxiliary variables such as flow
assignment and flow volume to calculate flow loss rate and server loads at every
timestamp. These variables increase the state space exponentially, and thus pose
a scalability challenge for exhaustive model checking.

We empirically evaluate different model-checking engines of Storm. We com-
pared their Sparse and Hybrid engines and found out the Sparse engine is uni-
versally faster in solving the load balancer models. The Hybrid engine, on the
other hand, sacrifices runtime speed for smaller memory usages. Therefore, for
problems with larger state space that Sparse engine runs out of memory, we use
the hybrid engine. One example is the case study of MPLS in Sect. 4.2.

4.4 Defending Against Link-Flooding Attacks

Link-flooding attacks have become a serious threat to Internet security [34]. As a
distributed denial-of-service attack, link-flooding aims to disrupt the availability
of specific links between routers (e.g., data centers, Internet exchange points,
Autonomous Systems). All services and connections sharing the same victim
links in their paths will be affected, regardless of their sources and destinations.
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To defend against link-flooding attacks, several prior methods propose
routing-based mechanisms to divert the victim’s network traffic during
attacks [18,25]. They propose different rate-limiting and routing algorithms to
be applied at intermediate routers to coordinate defenses. When hosts detect
links in their routing path are under attack, they proactively switch to other
alternative routing paths to avoid such links. Although such approaches are intu-
itive, many practical challenges affect the feasibility of re-routing to alternative
paths [31]. For example, before switching, the victim host needs to analyze what
latency and bandwidth availability the secondary path can provide. Therefore, it
is important to verify the effectiveness and applicability of re-routing techniques
based on the specific routing algorithms and global topology.

Fig. 14. Topology for DDoS case study in Sect. 4.4. S3 uses R7 as its primary link, but
maintains an alternative path through R8 as a backup.

To illustrate, we present a network topology vulnerable to such attacks (cf.
Fig. 14). This topology is adapted from the evaluation in the CoDef paper [18],
where they implement a simulation network to measure the effectiveness of CoDef
rate-limiting and routing algorithm. Node S1–S6 are clients sending traffic to
D10 as the final destination, R7–R9 are intermediate routers. S1 and S2 are
malicious attackers sending a massive amount of traffic. Both of them send a
median of 300 Mbps of traffic following a Pareto distribution. S3 is the victim
of the example. It shares the same link as attackers S1 and S2. However, it
can switch to its backup link to avoid attackers. S3 and S4 are file transfer
applications, greedily expecting to utilize as much bandwidth as possible. S5
and S6 consume 10 Mbps consistently, representing fixed bandwidth flows such as
streaming. Meanwhile, S3 maintains a secondary backup link with router R8, but
it does not utilize that link under normal circumstances. Using multiple routers
from different providers, as S3 does, is commonly known as multihoming [1].

We implement three routing algorithms in Netter using the same topology
and check the average bandwidth allocated for each flow as properties. To switch
between different algorithms, we only need to change the code in the routing
module, keeping the rest of the model the same.
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CoDef Collaborative Routing. CoDef proposes a collaborative routing algorithm
for routers R7–R9 to coordinate and defend against link-flooding attackers S1
and S2. All routers collaboratively label each destination-source pair as a unique
path and ensure fair bandwidth utilization on a per-path basis. The algorithm
allocates the bandwidth in two passes: first, the router assigns a fair share to
each flow, and then allocate additional free bandwidth in a second pass.

Uniformly Random. This algorithm allocates egress bandwidth uniform-
randomly based on the proportion of incoming bandwidth. It is a statisti-
cally simple allocation algorithm and requires minimal metadata communication
between routers. For example, suppose S1 and S2 send a large amount of traffic
to router R7 and S3 uses its primary link. The router will allocate a higher share
of the available 500 Mbps outgoing bandwidth to these two flows, reducing flow
3’s portion.

Type-Aware Priority. The type-aware routing algorithm considers the type of
flows. Motivated by the real-world example of classifying traffic into several
classes and provide different quality-of-service guarantees [3,24], routers can
assign priorities and available bandwidth accordingly to a different type of traffic.
In our example, we enable the routers to prioritize consistent flow transmission;
specifically, the fixed bitrate flows 5 and 6. As for the remaining flows, the router
follows the same uniform strategy to allocate the available bandwidth.
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Fig. 15. Model checking results for each flow’s portion at the destination (Node 10).
S1 and S2 are attacker flows. Each bar indicates a corresponding router algorithm and
which router link flow 3 connects to.

Figure 15 compares the model checking results for different algorithms. CoDef
algorithm enforces fair allocations regardless of S3’s egress link. However, other
algorithms present pathological cases when S3 is under direct link-flooding
attacks from attackers S1 and S2. The Uniform algorithm equally splits band-
width between two incoming routers (7 → 9, 8 → 9). In the Primary case, flows
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1–3 and 4–6 use an equal amount, while in Secondary flows 1–2 and 3–6 are the
same. The Type-aware algorithm reserves a high priority to flow 5 and 6, and
uniformly shares the rest bandwidth among flows 1–4.

We successfully used Netter to analyze a large topology of 10 nodes without
the need to scale all numbers by a common factor manually. Switching between
the router’s rate-limiting algorithms is also relatively easy. We can implement a
new rate-limiting algorithm and specify which router to use it. One limitation
of Netter model checking is that we cannot use continuous distributions for
traffic volumes. Because Netter compiles programs to finite-state models, we
use a discrete approximation of the Pareto distribution to represent attacker S1
and S2’s traffic model. We calculate the numerical value for every 5th percentile
along with their cumulative density function and use these numbers and their
percentiles to approximate the probabilistic distribution of flows 1 and 2.

5 Related Work

There is a rich body of work for testing and verifying forwarding behaviors such
as reachability and loop freedom, in stateless networks [9,13–15,19,20,32,33,35,
37,38] and stateful networks [4,23,28,36]. The aforementioned projects do not
concern quantitative properties of the network such as latency and throughput,
which our work focuses on. Moreover, we support probabilistic network models,
which differentiates our work from quantitative network analysis based on fixed
quantity and SAT solvers [11,12,17].

Next, we discuss related work that is closer to ours, on probabilistic
languages to model and analyze quantitative properties of networks [6,27].
NetKAT [2,5,26,27] is a family of network-modeling languages based on Kleene
algebra with tests. In the original NetKAT [2], a program denotes a set of packet
histories, which are traces of the states of a packet while it traverses the net-
work. Probabilistic NetKAT [5,26,27] adds in probabilistic choice, and has been
used to analyze interesting case studies, such as fault tolerance of a data center
design [27]. The semantics of Probabilistic NetKAT is similar to Netter’s, though
the more sophisticated features of the language go beyond finite-state Markov
chains, and require continuous distributions. Language-wise, Netter and Proba-
bilistic NetKAT are built on similar primitives, with two main differences: (1)
NetKAT programs can only assign constants to variables, whereas Netter pro-
grams can assign arbitrary arithmetic and logical expressions, and (2) NetKAT
has unbounded iteration, which Netter does not (though Netter programs can
simulate iteration by metaprogramming; that is, by writing a Haskell loop that
repeatedly calls a code snippet). The restricted assignments are not too lim-
iting for NetKAT, since it is used to model stateless networks, and the assign-
ments encode a network node’s actions after matching on the headers of a packet
(“if the destination IP is 10.0.0.1, forward the packet to port 10”). Netter, on
the other hand, was primarily designed to model stateful networks, which per-
form more assignments and would be awkward to encode without expressions.
Because of its richer assignments, Netter’s optimizations are more challenging
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than NetKAT’s [27], since they involve inlining expressions, tracking state depen-
dencies and eliminating dead stores. The McNetKAT dialect of Probabilistic
NetKAT can also be compiled to PRISM [27], though it also features a custom
solver that outperforms PRISM on large networks.

Bayonet [6] is another recent language for analyzing stateful networks. It
is more general than Netter, as even the ordering of network events is taken
into account. Moreover, Bayonet programs can condition distribution parame-
ters based on the observations they make, and then run Bayesian inference to
determine those parameters. Unfortunately, the complexity of features modeled
by the language poses great challenges for scalability. Bayonet requires users to
bound the number of packets transmitted in the network and the number of net-
work events that can occur. In the case studies analyzed by the authors, these
numbers go to at most 20 packets and to a thousand network events (though in
most case studies only a few tens of events are allowed). By contrast, by aggre-
gating traffic at the level of flows, Netter analysis can scale to much larger time
frames, since we can compute performance metrics for a network’s long-term
distribution. On the simple network of Sect. 4.1, we have seen that Netter can
scale up to thousands of nodes, while prior work [6,27] showed that Bayonet’s
analysis scales up to about 30 nodes (though, admittedly, on a somewhat differ-
ent setup). On the other hand, Netter scalability degrades substantially when
handling more complex networks, such as those of Sect. 4.3, which where limited
to four servers. This issue seems challenging to address with Netter’s current
back-end: if each node in the network comprises 10 possible states, a modest
size, the number of states of the system will be proportional to 10#nodes in the
worst case.

6 Conclusion and Future Work

We have presented a framework for formally analyzing the probabilistic quan-
titative properties of networks. We showed the design and implementation of
Netter, a language for verifying quantitative properties of stateful networks.
Netter compiles its programs down to PRISM automata, and applies several
optimizations to simplify their control flow, thus speeding up the analysis of the
generated models. We evaluated Netter on a series of case studies. We observed
that the tool scales up to sizable networks when reasoning about simple prop-
erties and routing schemes. We demonstrated how to use Netter to model more
complex networks as well. Though the scalability of the analysis quickly degrades
in these cases, we could still reason about important performance characteristics
and use them to compare different routing strategies. In future work, we would
like to address these scalability issues, potentially integrating symbolic analysis
techniques that do not require explicitly enumerating the network state space.
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Abstract. Simple clause learning over theories SCL(T) is a decision
procedure for the Bernays-Schoenfinkel fragment over bounded differ-
ence constraints BS(BD). The BS(BD) fragment consists of clauses built
from first-order literals without function symbols together with simple
bounds or difference constraints, where for the latter it is required that
the variables of the difference constraint are bounded from below and
above. The SCL(T) calculus builds model assumptions over a fixed finite
set of fresh constants. The model assumptions consist of ground fore-
ground first-order and ground background theory literals. The model
assumptions guide inferences on the original clauses with variables. We
prove that all clauses generated this way are non-redundant. As a con-
sequence, expensive testing for tautologies and forward subsumption is
completely obsolete and termination with respect to a fixed finite set of
constants is a consequence. We prove SCL(T) to be sound and refuta-
tionally complete for the combination of the Bernays Schoenfinkel frag-
ment with any compact theory. Refutational completeness is obtained
by enlarging the set of considered constants. For the case of BS(BD) we
prove an abstract finite model property such that the size of a sufficiently
large set of constants can be fixed a priori.

1 Introduction

Our work is motivated by the modeling, execution and verification of a “super-
visor” [10], a component in a technical system that controls system functional-
ity. Examples for a supervisor are the electronic control unit of a combustion
engine or a control unit for the lane change assistant in a car. In this con-
text we have been looking for a decsision procedure of a logical fragment that
has sufficient expressivity to model supervisor functionality and properties; at
the same time the fragment should run efficiently, i.e., generating consequences
out of ground facts (inputs), and, finally, it should be push button verifiable
c© Springer Nature Switzerland AG 2021
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(decidable). The Bernays Schoenfinkel fragment of first-order logic over linear
arithmetic BS(LRA) is a candidate for such a fragment. The first-order part can
be used to specify the rules and properties of a supervisor and the linear arith-
metic part to deal with technicalities of the application. For example, computing
the (real world) injection time of a charged combustion engine contains rules like
the one below:

P (x) ∧ 150 ≤ x ≤ 200 ∧ R(y) ∧ 6500 ≤ y ≤ 7000 ∧ T (x, y, z) → I(z + 10)

where x is the air pressure in the inlet manifold, y the speed of the engine, T
a table lookup for the injection time z and finally 10 is added for engine heat
protection. In the real world, the added heat protection part 10 is the result
of an additional computation taking temperature of the engine, exhaust gas,
inlet air and lambda value into account. In the supervisor context, a decision
procedure should also deliver explanations, i.e., explicit (counter) models and
proofs. In addition to efficiency, this is another reason why we designed SCL(T)
to compute explicit models and proofs.

The combination of linear rational arithmetic (LRA) with the Bernays
Schoenfinkel fragment of first-order logic (BS(LRA)) is already undecidable for a
single monadic predicate [9,13]. This can be shown by encoding the halting prob-
lem of a 2-counter machine [17]. For a number of universally quantified fragments
there exist complete methods and some fragments are even decidable [12,16,24].
If the first-order part of BS(LRA) consists only of variables and predicates, then
there exist refutationally complete calculi [1].

In this paper we introduce a new calculus SCL(T) (Simple Clause Learning
over Theories) for the combination of a background theory with a foreground
first-order logic without equality. As usual in a hierarchic setting, we assume the
background theory to be term-generated and compact. In this paper we only con-
sider pure clause sets where the only symbols occurring in the clause set from the
foreground logic are predicates and variables. Reasoning in the SCL(T) calculus
is driven by a partial, finite model assumption similar to conflict driven clause
learning (CDCL) [14,18,23] and our previous work [11]. In contrast to SMT, the
model assumption is not build on an a priori abstraction of ground literals to
propositional logic, but from ground background and ground foreground theory
literals generated by SCL(T) through instantiation and respecting their seman-
tics. So any SCL(T) trail is always satisfiable in the combined theory. Inferences
are performed on the original clauses with variables, similar to hierarchic super-
position, where the ordering restrictions of hierarchic superposition are replaced
by guidance through the partial ground model assumption. The main advantage
of this approach is that learned clauses are never redundant, Lemma 22, and
that the partial model assumption can be explored to derive an overall explicit
model. SCL(T) is sound, Lemma 9 and Lemma 12, and refutationally complete,
Theorem 25. As a running example, we present the combination of linear ratio-
nal arithmetic (LRA) with the Bernays Schoenfinkel fragment of first-order logic
(BS(LRA)).
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In order to demonstrate the potential of SCL(T) we prove it can decide
the class BS(BD), the Bernays-Schoenfinkel fragment over simple bounds and
bounded difference constraints, Sect. 3. This class was known to be decidable
before [24], but not on the basis of a sound and complete calculus such as SCL(T).

Related Work: In contrast to variants of hierarchic superposition [1,4,16] SCL(T)
selects clauses via a partial model assumption and not via an ordering. This has
the advantage that SCL(T) does not generate redundant clauses. Where hier-
archic superposition builds implicit models via saturated clause sets, SCL(T)
builds explicit, finite model candidates that need to be extended to overall mod-
els of a clause set, see Example 13 and Sect. 4. One way to deal with universally
quantified variables in an SMT setting is via instantiation [12,21]. This has shown
to be practically useful in many applications. It typically comes without com-
pleteness guarantees and it does not learn any new clauses with variables. While
mcSAT [8] extends the SMT framework with the possibility to create new liter-
als, its learning capabilities are also limited to the ground case. An alternative
is to combine SMT techniques with superposition [7] where the ground literals
from an SMT model assumption are resolved by superposition with first-order
clauses. SCL(T) does not resolve with respect to its ground model assumption
but on the original clauses with variables. Program verification through Horn
clause reasoning [5] is another research direction related to SMT and SCL(T).
Here constrained Horn clauses are considered and various reasoning methods
have been developped. Our logic is not restricted to Horn clauses and our rea-
soning methods are different. In the same way SMT solving can be used to
keep track of consistent SCL(T) trails, Horn clause reasoning could be used to
explore the propagation space of an SCL(T) run. Background theories can also
be built into first-order superposition in a kind of lazy way. This direction has
been followed by SPASS+T [19] and Vampire [15]. The idea is to axiomatize
part of the background theory in first-order logic and to direct ground literals
of the background theory to SMT solver. Also this approach has shown to be
practically useful but comes without any completeness guarantees and gener-
ated clauses may be redundant. Model evolution [2] has also been extended with
linear integer arithmetic [3] where universally quantified integer variables are
finitely bound from the beginning. A combination of first-order logic with linear
integer arithmetic has also been built into a sequent calculus [22] that operates
in the style of a free-variable tableau calculus with incremental closure. No new
clauses are learned.

Organization of the Paper: After a section fixing notation, notions and some
preliminary work, Sect. 2, the following Sect. 3 introduces the SCL(T) calculus
and proves its properties. Missing proofs can be found in an arXiv publica-
tion [6]. Section 4 presents decidability of BS(BD) by SCL(T). The final Sect. 5
discusses extensions to model building, further improvements and summarizes
the obtained results.
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2 Preliminaries

Many-Sorted First-Order Logic Without Equality: A many-sorted signature Σ =
(S, Ω,Π) is a triple consisting of a finite, non-empty set S of sort symbols, a non-
empty set Ω of operator symbols (also called function symbols) over S and a finite
set Π of predicate symbols over S. For every sort from S there is at least one
constant symbol in Ω of this sort. First-order terms, atoms, literals, clauses,
formulas and substitutions are defined in the usual many-sorted way where an
additional infinite set X of variables is assumed, such that for each sort from
S there are infinitely many variables of this sort in X . For each sort S ∈ S,
TS(Σ,X ) denotes the set of all terms of sort S and TS(Σ) the set of all ground
terms of sort S.

For notation, a, b, c are constants from Ω, w, x, y, z variables from X , and if
we want to emphasize the sort of a variable, we write xS for a variable of sort
S; t, s denote terms, P,Q,R predicates from Π, A,B atoms, L,K,H denote
literals, C,D denote clauses, and N denotes a clause set. For substitutions we
write σ, δ, ρ. Substitutions are well-sorted: if xsσ = t then t ∈ TS(Σ,X ), they
have a finite domain dom(σ) = {x | xσ �= x} and their codomain is denoted by
codom(σ) = {xσ | x ∈ dom(σ)}. The application of substitutions is homomor-
phically extended to non-variable terms, atoms, literals, clauses, and formulas.
The complement of a literal is denoted by the function comp. For a literal L,
|L| denotes its respective atom. The function atoms computes the set of atoms
from a clause or clause set. The function vars maps terms, literals, clauses to
their respective set of contained variables. The function con maps terms, liter-
als, clauses to their respective set of constants. A term, atom, clause, or a set
of these objects is ground if it does not contain any variable, i.e., the function
vars returns the empty set. A substitution σ is ground if codom(σ) is ground.
A substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. The function gnd computes the set of all ground instances
of a literal, clause, or clause set. Given a set of constants B, the function gndB

computes the set of all ground instances of a literal, clause, or clause set where
the grounding is restricted to use constants from B. The function mgu denotes
the most general unifier of two terms, atoms, literals. As usual, we assume that
any mgu of two terms or literals does not introduce any fresh variables and is
idempotent.

The semantics of many-sorted first-order logic is given by the notion of an
algebra: let Σ = (S, Ω,Π) be a many-sorted signature. A Σ-algebra A, also
called Σ-interpretation, is a mapping that assigns (i) a non-empty carrier set
SA to every sort S ∈ S, so that (S1)A ∩ (S2)A = ∅ for any distinct sorts
S1, S2 ∈ S, (ii) a total function fA : (S1)A × . . . × (Sn)A → (S)A to every
operator f ∈ Ω, arity(f) = n where f : S1 × . . . × Sn → S, (iii) a relation
PA ⊆ ((S1)A×. . .×(Sm)A) to every predicate symbol P ∈ Π with arity(P ) = m.
The semantic entailment relation |= is defined in the usual way. We call a Σ-
algebra A term-generated if A fulfills the following condition: whenever A entails
all groundings Cσ of a clause C (i.e., A |= Cσ for all grounding substitutions σ
of a clause C), then A must also entail C itself (i.e., A |= C).
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Hierarchic Reasoning: The starting point of a hierarchic reasoning [1,4] is a
background theory T B over a many-sorted signature ΣB = (SB, ΩB,ΠB) and a
non-empty set of term-generated ΣB-algebras CB: T B = (ΣB, CB). A constant
c ∈ ΩB is called a domain constant if cA �= dA for all A ∈ CB and for all
d ∈ ΩB with d �= c. The background theory is then extended via a foreground
signature ΣF = (SF , ΩF ,ΠF ) where SB ⊆ SF , ΩB ∩ ΩF = ∅, and ΠB ∩ ΠF =
∅. Hierarchic reasoning is based on a background theory T B and a respective
foreground signature ΣF : H = (T B, ΣF ). It has its associated signature ΣH =
(SF , ΩB ∪ΩF ,ΠB ∪ΠF ) generating hierarchic ΣH-algebras. A ΣH-algebra A is
called hierarchic with respect to its background theory T B, if AH|ΣB ∈ CB. As
usual, AH|ΣB is obtained from a AH-algebra by removing all carrier sets SA for
all S ∈ (SF\SB), all functions from ΩF and all predicates from ΠF . We write
|=H for the entailment relation with respect to hierarchic algebras and formulas
from ΣH and |=B for the entailment relation with respect to the CB algebras
and formulas from ΣB.

Terms, atoms, literals build over ΣB are called pure background terms, pure
background atoms, and pure background literals, respectively. All terms, atoms,
with a top-symbol from ΩB or ΠB, respectively, are called background terms,
background atoms, respectively. A background atom or its negation is a back-
ground literal. All terms, atoms, with a top-symbol from ΩF or ΠF , respectively,
are called foreground terms, foreground atoms, respectively. A foreground atom
or its negation is a foreground literal. Given a set (sequence) of H literals, the
function bgd returns the set (sequence) of background literals and the function
fgd the respective set (sequence) of foreground literals. A substitution σ is called
simple if xSσ ∈ TS(ΣB,X ) for all xS ∈ dom(σ) and S ∈ SB.

As usual, clauses are disjunctions of literals with implicitly universally quan-
tified variables. We often write a ΣH clause as a constrained clause, denoted
Λ ‖ C where Λ is a conjunction of background literals and C is a disjunction
of foreground literals semantically denoting the clause ¬Λ ∨ C. A constrained
closure is denoted as Λ ‖ C · σ where σ is grounding for Λ and C. A constrained
closure Λ ‖ C · σ denotes the ground constrained clause Λσ ‖ Cσ.

In addition, we assume a well-founded, total, strict ordering ≺ on ground
literals, called an H-order, such that background literals are smaller than fore-
ground literals. This ordering is then lifted to constrained clauses and sets thereof
by its respective multiset extension. We overload ≺ for literals, constrained
clauses, and sets of constrained clause if the meaning is clear from the context.
We define � as the reflexive closure of ≺ and N�Λ‖C := {D | D ∈ N and D �
Λ ‖ C}. An instance of an LPO with according precedence can serve as ≺.

Definition 1 (Clause Redundancy). A ground constrained clause Λ ‖ C is
redundant with respect to a set N of ground constrained clauses and an order ≺
if N�Λ‖C |=H Λ ‖ C. A clause Λ ‖ C is redundant with respect to a clause set
N , an H-order ≺, and a set of constants B if for all Λ′ ‖ C ′ ∈ gndB(Λ ‖ C) the
clause Λ′ ‖ C ′ is redundant with respect to ∪D∈N gndB(D).

Example 2 (BS(LRA)). The running example in this paper is the Bernays-
Schoenfinkel clause fragment over linear arithmetic: BS(LRA). The background
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theory is linear rational arithmetic over the many-sorted signature ΣLRA =
(SLRA, ΩLRA,ΠLRA) with SLRA = {LRA}, ΩLRA = {0, 1,+,−} ∪ Q, ΠLRA =
{≤, <, �=,=, >,≥}) where LRA is the linear arithmetic sort, the function sym-
bols consist of 0, 1,+,− plus the rational numbers and predicate symbols
≤, <,=, �=, >,≥. The linear arithmetic theory T LRA = (ΣLRA, {ALRA}) con-
sists of the linear arithmetic signature together with the standard model ALRA

of linear arithmetic. This theory is then extended by the free (foreground) first-
order signature ΣBS = ({LRA}, ΩBS,ΠBS) where ΩBS is a set of constants of
sort LRA different from ΩLRA constants, and ΠBS is a set of first-order predi-
cates over the sort LRA. We are interested in hierarchic algebras ABS(LRA) over
the signature ΣBS(LRA) = ({LRA}, ΩBS∪ΩLRA,ΠBS∪ΠLRA) that are ΣBS(LRA)

algebras such that ABS(LRA)|ΣLRA = ALRA.

Note that our definition of the BS(LRA) fragment restricted to the linear
arithmetic sort does not restrict expressiveness compared to a definition adding
further free sorts to ΣBS. Free sorts containing only constants can be simulated
by the linear arithmetic sort in a many-sorted setting.

We call a clause set N abstracted if the arguments of any predicate from ΠF

are only variables. Abstraction can always be obtained by adding background
constraints, e.g., the BS(LRA) clause x > 1 ‖ R(x, 5) can be abstracted to
x > 1, y = 5 ‖ R(x, y), preserving satisfiability. Recall that even in the fore-
ground signature we only consider background sorts and that the only operators
in the foreground signature are constants.

A set N of H clauses is called pure if it does not contain symbols from
ΩF ranging into a sort of SB. In this case N is sufficiently complete according
to [1], hence hierarchic superposition is complete for N [1,4]. As a consequence,
a pure clause set N is unsatisfiable iff gndB(N) can be refuted by hierarchic
superposition for a sufficiently large set B of constants. We will make use of this
result in the completeness proof for our calculus, Theorem 24.

Satisfiability of pure clause sets is undecidable. We already mentioned in the
introduction that this can be shown through a reduction to the halting problem
for two-counter machines [13,17]. Clause redundancy for pure clause sets cannot
be decided as well, still SCL(T) learns only non-redundant clauses.

Lemma 3 (Non-Redundancy for Pure Clause Sets is Undecidable). For
a pure clause set N it is undecidable whether some clause C is non-redundant
with respect to N .

3 SCL(T)

Assumptions: For this section we consider only pure, abstracted clause sets N .
We assume that the background theory T B is term-generated, compact, contains
an equality =, and that all constants of the background signature are domain
constants. We further assume that the set ΩF contains infinitely many constants
for each background sort.
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Example 4 (Pure Clauses). With respect to BS(LRA) the unit clause x ≥ 5, 3x+
4y = z ‖ Q(x, y, z) is abstracted and pure while the clause x ≥ 5, 3x+4y = a, z =
a ‖ Q(x, y, z) is abstracted but not pure because of the foreground constant a of
the LRA sort, and the clause x ≥ 5, 3x + 4y = 7 ‖ Q(x, y, 7) is not abstracted.

Note that for pure, abstracted clause sets, any unifier between two foreground
literals is simple and its codomain consists of variables only.

In order for the SCL(T) calculus to be effective, decidability in T B is needed
as well. For the calculus we implicitly use the following equivalence: A ΣB sen-
tence ∃x1, . . . , xnφ where φ is quantifier free is true, i.e., |=B ∃x1, . . . , xnφ iff
the ground formula φ{x1 �→ a1, . . . , xn �→ an} where the ai are ΩF constants
of the respective background sorts is H satisfiable. Together with decidability in
T B this guarantees decidability of the satisfiability of ground constraints from
constrained clauses.

If not stated otherwise, satisfiability means satisfiability with respect to H.
The function adiff(B) for some finite sequence of background sort constants
denotes a constraint that implies different interpretations for the constants in
B. In case the background theory enables a strict ordering < as LRA does, then
the ordering can be used for this purpose. For example, adiff([a, b, c]) is then the
constraint a < b < c. In case the background theory does not enable a strict
ordering, then inequations can express disjointness of the constants. For example,
adiff([a, b, c]) is then the constraint a �= b∧a �= c∧ b �= c. An ordering constraint
has the advantage over an inequality constraint that it also breaks symmetries.
Assuming all constants to be different will eventually enable a satisfiability test
for foreground literals based on purely syntactic complementarity.

The inference rules of SCL(T) are represented by an abstract rewrite system.
They operate on a problem state, a six-tuple Γ = (M ;N ;U ;B; k;D) where M
is a sequence of annotated ground literals, the trail ; N and U are the sets of
initial and learned constrained clauses; B is a finite sequence of constants of
background sorts for instantiation; k counts the number of decisions in M ; and
D is a constrained closure that is either �, Λ ‖ ⊥ · σ, or Λ ‖ C · σ. Foreground
literals in M are either annotated with a number, a level; i.e. , they have the form
Lk meaning that L is the k-th guessed decision literal, or they are annotated
with a constrained closure that propagated the literal to become true, i.e. , they
have the form (Lσ)(Λ‖C∨L)·σ. An annotated literal is called a decision literal if
it is of the form Lk and a propagation literal or a propagated literal if it of in
the form L · σ(Λ‖C∨L)·σ. A ground foreground literal L is of level i with respect
to a problem state (M ;N ;U ;B; k;D) if L or comp(L) occurs in M and the first
decision literal left from L (comp(L)) in M , including L, is annotated with i.
If there is no such decision literal then its level is zero. A ground constrained
clause (Λ ‖ C)σ is of level i with respect to a problem state (M ;N ;U ;B; k;D) if
i is the maximal level of a foreground literal in Cσ; the level of an empty clause
Λ ‖ ⊥ · σ is 0. A ground literal L is undefined in M if neither L nor comp(L)
occur in M . The initial state for a first-order, pure, abstracted H clause set
N is (ε;N ; ∅;B; 0;�), where B is a finite sequence of foreground constants of
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background sorts. These constants cannot occur in N , because N is pure. The
final state (ε;N ;U ;B; 0;Λ ‖ ⊥) denotes unsatisfiability of N . Given a trail M
and its foreground literals fgd(M) = {L1, . . . , Ln} an H ordering ≺ induced by
M is any H ordering where Li ≺ Lj if Li occurs left from Lj in M , or, Li is
defined in M and Lj is not.

The transition rules for SCL(T) are

Propagate. (M ;N ;U ;B; k;�) ⇒SCL(T) (M, Lσ(Λ‖C0∨L)δ·σ, Λ′σ; N ; U ; B; k; �)

provided Λ ‖ C ∈ (N ∪ U), σ is grounding for Λ ‖ C, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, C = C0 ∨ C1 ∨ L, C1σ = Lσ ∨ . . . ∨ Lσ, C0σ does not contain Lσ,
δ is the mgu of the literals in C1 and L, Λ′σ are the background literals from
Λσ that are not yet on the trail, fgd(M) |= ¬(C0σ), codom(σ) ⊆ B, and Lσ is
undefined in M

The rule Propagate applies exhaustive factoring to the propagated literal with
respect to the grounding substitution σ and annotates the factored clause to the
propagation. By writing M,Lσ(Λ‖C0∨L)δ·σ, Λ′σ we denote that all background
literals from Λ′σ are added to the trail.

Decide. (M ;N ;U ;B; k;�) ⇒SCL(T) (M,Lσk+1, Λσ;N ;U ;B; k + 1;�)
provided Lσ is undefined in M , |Kσ| ∈ atoms(gndB(N ∪ U)) for all Kσ ∈ Λσ,
|Lσ| ∈ atoms(gndB(N ∪ U)), σ is grounding for Λ, all background literals in Λσ
are undefined in M , adiff(B) ∧ bgd(M) ∧ Λσ is satisfiable, and codom(σ) ⊆ B

The number of potential trails of a run is finite because the rules Propagate
and Decide make sure that no duplicates of background literals occur on the
trail and that only undefined literals over a fixed finite sequence B of constants
are added to the trail. Requiring the constants from B to be different by the
adiff(B) constraint enables a purely syntactic consistency check for foreground
literals.

Conflict. (M ;N ;U ;B; k;�) ⇒SCL(T) (M ;N ;U ;B; k;Λ ‖ D · σ)
provided Λ ‖ D ∈ (N ∪ U), σ is grounding for Λ ‖ D, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, fgd(M) |= ¬(Dσ), and codom(σ) ⊆ B

Resolve. (M,LρΛ‖C∨L·ρ;N ;U ;B; k; (Λ′ ‖ D ∨ L′) · σ) ⇒SCL(T)

(M,LρΛ‖C∨L·ρ;N ;U ;B; k; (Λ ∧ Λ′ ‖ D ∨ C)η · σρ)
provided Lρ = comp(L′σ), and η = mgu(L, comp(L′))

Note that Resolve does not remove the literal Lρ from the trail. This is
needed if the clause Dσ contains further literals complementary of Lρ that have
not been factorized.

Factorize. (M ;N ;U ;B; k; (Λ ‖ D ∨ L ∨ L′) · σ) ⇒SCL(T)

(M ;N ;U ;B; k; (Λ ‖ D ∨ L)η · σ)
provided Lσ = L′σ, and η = mgu(L,L′)



Deciding BS(BD) by SCL(T) 519

Note that Factorize is not limited with respect to the trail. It may apply to
any two literals that become identical by application of the grounding substitu-
tion σ.

Skip. (M,L;N ;U ;B; k;Λ′ ‖ D · σ) ⇒SCL(T) (M ;N ;U ;B; l;Λ′ ‖ D · σ)
provided L is a foreground literal and comp(L) does not occur in Dσ, or L is a
background literal; if L is a foreground decision literal then l = k − 1, otherwise
l = k

Note that Skip can also skip decision literals. This is needed because we
won’t eventually require exhaustive propagation. While exhaustive propagation
in CDCL is limited to the number of propositional variables, in the context of
our logic, for example BS(LRA), it is exponential in the arity of foreground
predicate symbols and can lead to an unfair exploration of the space of possible
inferences, harming completeness, see Example 7.

Backtrack. (M,Ki+1,M ′;N ;U ;B; k; (Λ ‖ D ∨ L) · σ) ⇒SCL(T)

(M,Lσ(Λ‖D∨L)·σ, Λ′σ;N ;U ∪ {Λ ‖ D ∨ L};B; i;�)
provided Lσ is of level k, and Dσ is of level i, Λ′σ are the background literals
from Λσ that are not yet on the trail

The definition of Backtrack requires that Lσ is the only literal of level k in
(D ∨ L)σ. Additional occurrences of Lσ in D have to be factorized first before
Backtrack can be applied.

Grow. (M ;N ;U ;B; k;�) ⇒SCL(T) (ε;N ;U ;B ∪ B′; 0;�)
provided B′ is a non-empty sequence of foreground constants of background sorts
distinct from the constants in B

In case the adiff constraint is implemented by a strict ordering predicate on
the basis of the sequence B, it can be useful to inject the new constants B′ into
B ∪ B′ such that the ordering of the constants from B is not changed. This can
help caching background theory results for testing trail satisfiability.

Definition 5. The rules Propagate, Decide, Grow, and Conflict are called con-
flict search rules and the rules Resolve, Skip, Factorize, and Backtrack are called
conflict resolution rules.

Recall that the goal of our calculus is to replace the ordering restrictions of
the hierarchic superposition calculus with a guiding model assumption. All our
inferences are hierarchic superposition inferences where the ordering restrictions
are neglected.

The next two examples show that the adiff constraint is needed to produce
satisfiable trails and that exhaustive propagation cannot be afforded, respec-
tively.

Example 6 (Inconsistent Trail). Consider a clause set N = {R(x, y), x ≤ y ‖
¬R(x, y) ∨ P (x), x ≥ y ‖ ¬R(x, y) ∨ ¬P (y)}; if we were to remove the adiff(B)
constraint from the side conditions of rule Propagate we would be able to obtain
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inconsistent trails. Starting with just B = {a, b} as constants it is possible to
propagate three times and obtain the trail M = [R(a, b), P (a), a ≤ b,¬P (b),
a ≥ b], M is clearly inconsistent as M |= P (a), M |= ¬P (b) yet a = b.

Example 7 (Exhaustive Propagation). Consider a BS(LRA) clause set N = {x =
0 ‖ Nat(x), y = x + 1 ‖ ¬Nat(x) ∨ Nat(y)} ∪ N ′ where N ′ is unsatisfiable and
nothing can be propagated from N ′. Let us further assume that N ′ is satisfiable
with respect to any instantiation of variables with natural numbers. If propa-
gation is not restricted, then the first two clauses will consume all constants
in B. For example, if B = [a, b, c] then the trail [Nat(a), a = 0,Nat(b), b =
a + 1,Nat(c), c = b + 1] will be derived. Now all constants are fixed to natural
numbers. So there cannot be a refutation of N ′ anymore. An application of Grow
will not solve the issue, because again the first two rules will fix all constants to
natural numbers via exhaustive propagation.

Definition 8 (Well-formed States). A state (M ;N ;U ;B; k;D) is well-
formed if the following conditions hold:

1. all constants appearing in (M ;N ;U ;B; k;D) are from B or occur in N .
2. M ∧ adiff(B) is satisfiable
3. N |=H U ,
4. Propagating clauses remain propagating and conflict clauses remain false:

(a) if D = Λ ‖ C · σ then Cσ is false in fgd(M) and bgd(M) ∧ adiff(B) ∧ Λσ
is satisfiable,

(b) if M = M1, Lσ(Λ‖C∨L)·σ,M2 then Cσ is false in fgd(M1), Lσ is undefined
in M1, and bgd(M1) ∧ adiff(B) ∧ Λσ is satisfiable.

5. All clauses in N ∪U are pure. In particular, they don’t contain any constants
from B.

Lemma 9 (Rules preserve Well-Formed States). The rules of SCL(T)
preserve well-formed states.

Definition 10 (Stuck State). A state (M ;N ;U ;B; k;D) is called stuck if
D �= Λ ‖ ⊥ · σ and none of the rules Propagate, Decide, Conflict, Resolve,
Factorize, Skip, or Backtrack is applicable.

Proposition 11 (Form of Stuck States). If a run (without rule Grow) where
Conflict was applied eagerly ends in a stuck state (M ;N ;U ;B; k;D), then D = �
and all ground foreground literals that can be build from the foreground literals
in N by instantiation with constants from B are defined in M .

Lemma 12 (Stuck States Produce Ground Models). Every stuck state
(M ;N ;U ;B; k;�) produces a ground model, i.e., M ∧adiff(B) |= gndB(N ∪U).

The next example shows that in some cases the finite partial model of a stuck
state can be turned into an overall model. For some fragments of BS(LRA) this
can be done systematically, see Section 4.
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Example 13 (SCL(T) Model Extraction). In some cases it is possible to extract
an overall model from the ground trail of a stuck state of an SCL(T) derivation.
Consider B = [a, b, c] and a satisfiable BS(LRA) constrained clause set N =
{x ≥ 1 ‖ P (x), x < 0 ‖ P (x), 0 ≤ x ∧ x < 1 ‖ ¬P (x), 2x ≥ 1 ‖ P (x) ∨ Q(x)}.
Starting from state (ε;N ; ∅;B; 0;�) and applying Propagate fairly a regular run
can derive the following trail

M = P (a)x≥1‖P (x)·{x	→a}, a ≥ 1, P (b)x<0‖P (x)·{x	→b}, b < 0,

¬P (c)0≤x∧x<1‖¬P (x)·{x	→c}, 0 ≤ c, c < 1, Q(c)2x≥1‖P∨Q(x)·{x	→c}, 2c ≥ 1

The state (M ;N ; ∅;B; 0;�) is stuck and M |=H gndB(N). Moreover from M
we can generate an interpretation ABS(LRA) of N by generalizing the foreground
constants used for instantiation and interpreting the predicates P and Q as
formulas over ΣB, PA = {q ∈ Q | q < 0 ∨ q ≥ 1} and QA = {q ∈ Q | 2q ≥
1 ∧ q < 1}.

Lemma 14 (Soundness). If a derivation reaches the state (M ;N ;U ;B; k;Λ ‖
⊥ · σ), then N is unsatisfiable.

Definition 15 (Reasonable Run). A sequence of SCL(T) rule applications
is called a reasonable run if an application of rule Decide does not enable an
application of rule Conflict.

Proposition 16 (Avoiding Conflicts after Decide). Let N be a set of con-
strained clauses and (M ;N ;U ;B; k;�) be a state derived from (ε;N ; ∅;B; 0;�).
If an application of rule Decide to (M ;N ;U ;B; k;�) enables an application of
rule Conflict, then Propagate would have been applicable to (M ;N ;U ;B; k;�).

Definition 17 (Regular Run). A sequence of SCL(T) rule applications is
called a regular run if it is a reasonable run, the rule Conflict has precedence
over all other rules, and Resolve resolves away at least the rightmost foreground
literal from the trail.

Proposition 18 (Stuck States at Regular Runs). Lemma 12 also holds
for regular runs.

Example 19 (SCL(T) Refutation). Given a set of foreground constants B =
[a, b, c] and a BS(LRA) constrained clause set N = {C1 : x = 0 ‖ P (x), C2 : y =
x + 1 ‖ ¬P (x) ∨ P (y), C3 : z = 2 ‖ ¬P (z)} the following is a regular derivation
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(ε;N ; ∅;B; 0;�)
⇒Propagate

SCL(T) (P (a)C1·{x	→a}, a = 0;N ; ∅;B; 0;�)
⇒Propagate

SCL(T) (. . . , P (b)C2·{x	→a,y 	→b}, b = a + 1;N ; ∅;B; 0;�)
⇒Propagate

SCL(T) (. . . , P (c)C2·{x	→b,y 	→c}, c = b + 1;N ; ∅;B; 0;�)
⇒Conflict

SCL(T) (. . . , P (c)C2·{x	→b,y 	→c}, c = b + 1;N ; ∅;B; 0; z = 2 ‖ ¬P (z) · {z �→ c})
⇒Resolve

SCL(T) (. . . , P (c)C2·{x	→b,y 	→c}, c = b + 1;N ; ∅;B; 0;
z = x + 1 ∧ z = 2 ‖ ¬P (x) · {z �→ c, x �→ b})

⇒Skip
SCL(T) (. . . , P (b)C2·{x	→a,y 	→b}, b = a + 1;N ; ∅;B; 0;

z = x + 1 ∧ z = 2 ‖ ¬P (x) · {z �→ c, x �→ b})
⇒Resolve

SCL(T) (. . . , P (b)C2·{x	→a,y 	→b}, b = a + 1;N ; ∅;B; 0;
z = x + 1 ∧ z = 2 ∧ x = y + 1 ‖ ¬P (y) · {z �→ c, x �→ b, y �→ a})

⇒Skip
SCL(T) (P (a)C1·{x	→a}, a = 0;N ; ∅;B; 0;

z = x + 1 ∧ z = 2 ∧ x = y + 1 ‖ ¬P (y) · {z �→ c, x �→ b, y �→ a})
⇒Resolve

SCL(T) (P (a)C1·{x	→a}, a = 0;N ; ∅;B; 0;
z = x + 1 ∧ z = 2 ∧ x = y + 1 ∧ y = 0 ‖ ⊥ · {z �→ c, x �→ b, y �→ a})

N is proven unsatisfiable as we reach a state in the form (M ;N ;U ;B; k;Λ ‖
⊥ · σ).

Example 20 (SCL(T) Clause learning). Given an initial constant set B = [a]
and a BS(LRA) constrained clause set N = {C1 : x ≥ y ‖ ¬P (x, y) ∨ Q(z),
C2 : z = u + v ‖ ¬P (u, v) ∨ ¬Q(z)} the following is an example of a regular run

(ε;N ; ∅;B; 0;�)
⇒Decide

SCL(T) (P (a, b)1;N ; ∅;B; 1;�)
⇒Propagate

SCL(T) (P (a, a)1, Q(a)C1·{x	→a,y 	→a,z 	→a}, a ≥ a;N ; ∅;B; 1;�)
⇒Conflict

SCL(T) (P (a, a)1, Q(a)C1·{u	→a,v 	→a,z 	→a}, a ≥ a;N ; ∅;B; 1;

C2 · {x �→ a, y �→ a, z �→ a})
⇒Resolve

SCL(T) (P (a, a)1, Q(a)C1·{x	→a,y 	→a,z 	→a}, a ≥ a;N ; ∅;B; 1;
x ≥ y ∧ z = u + v ‖
¬P (x, y) ∨ ¬P (u, v) · {x �→ a, y �→ a, z �→ a, u �→ a, v �→ a})

⇒Skip∗
SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = u + v ‖

¬P (x, y) ∨ ¬P (u, v) · {x �→ a, y �→ a, z �→ a, u �→ a, v �→ a})
⇒Factorize

SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = x + y ‖
¬P (x, y) · {x �→ a, y �→ a, z �→ a})

⇒Backtrack
SCL(T) (¬P (a, a)(x≥y∧z=x+y‖¬P (x,y))·{x	→a,y 	→a}, a ≥ a, a = a + a;N ;

{x ≥ y ∧ z = x + y ‖ ¬P (x, y)};B; 1;�)

The learned clause x ≥ y ∧ z = x + y ‖ ¬P (x, y) contains two distinct variables
even if we had to use a single constant for instantiations in conflict search.



Deciding BS(BD) by SCL(T) 523

Corollary 21 (Regular Conflict Resolution). Let N be a set of constrained
clauses. Then any conflict in an SCL(T) regular run admits a regular conflict
resolution if the run starts from state (ε;N ; ∅;B; 0;�).

Lemma 22 (Non-Redundant Clause Learning). Let N be a set of con-
strained clauses, and let Λn ‖ D∨L be a clause learned in an SCL(T) regular run
such that (ε;N ; ∅;B; 0;�) ⇒∗

SCL(T)⇒Backtrack
SCL(T) (M,Lσ(Λn‖D∨L)·σ, Λ′

nσ;N ;U ∪
{Λn ‖ D ∨ L};B; i;�). Then Λn ‖ D ∨ L is not redundant with respect to any H
ordering ≺ induced by the trail M .

Of course, in a regular run the ordering of foreground literals on the trail
will change, i.e., the ordering underlying Lemma 22 will change as well. Thus
the non-redundancy property of Lemma 22 reflects the situation at the time of
creation of the learned clause. A non-redundancy property holding for an overall
run must be invariant against changes on the ordering. However, the ordering
underlying Lemma 22 also entails a fixed subset ordering that is invariant against
changes on the overall ordering. This means that our dynamic ordering entails
non-redundancy criteria based on subset relations including forward redundancy.
From an implementation perspective, this means that learned clauses need not
to be tested for forward redundancy. Current resolution, or superposition based
provers spent a reasonable portion of their time in testing forward redundancy
of newly generated clauses. In addition, also tests for backward reduction can
be restricted knowing that learned clauses are not redundant.

Lemma 23 (Termination of SCL(T)). Let N be a set of constrained clauses
and B be a finite set of background constants. Then any regular run with start
state (ε;N ; ∅;B; 0;�) that uses Grow only finitely often terminates.

Theorem 24 (Hierarchic Herbrand Theorem). Let N be a finite set of
clauses. N is unsatisfiable iff there exists a finite set N ′ = {Λ1 ‖ C1, . . . , Λn ‖
Cn} of variable renamed copies of clauses from N and a finite set B of fresh
constants and a substitution σ, grounding for N ′ where codom(σ) = B such that∧

i Λiσ is T B satisfiable and
∧

i Ciσ is first-order unsatisfiable over ΣF .

Finally, we show that an unsatisfiable clause set can be refuted by SCL(T)
with any regular run if we start with a sufficiently large sequence of constants
B and apply Decide in a fair way. In addition, we need a Restart rule to recover
from a stuck state. Of course, an unrestricted use of rule Restart immediately
leads to non-termination.

Restart. (M ;N ;U ;B; k;�) ⇒SCL(T) (ε;N ;U ;B; 0;�)

Theorem 25 (Refutational Completeness of SCL(T)). Let N be an
unsatisfiable clause set. Then any regular SCL(T) run will derive the empty
clause provided (i) Rule Grow and Decide are operated in a fair way, such that
all possible trail prefixes of all considered sets B during the run are eventually
explored, and (ii) Restart is only applied to stuck states.
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Condition (i) of the above theorem is quite abstract. It can, e.g., be made
effective by applying rule Grow only after all possible trail prefixes with respect
to the current set B have been explored and to make sure that Decide does not
produce the same stuck state twice.

4 SCL(T) Decides BS(BD)

As mentioned in Lemma 12, all stuck states produce ground models for gndB(N).
This does not mean that all stuck states produce a full hierarchic algebra A that
satisfies N , i.e., a model over the full and potentially infinite carrier sets of our
theory (e.g., R) instead of a model over a finite set of sample elements (i.e., our
constants B). In this section, we explain on the example of the Bernays-Schoen-
finkel clause fragment with bounded difference constraints (BS(BD)) how to
formalize an extraction criterion, i.e., a condition that guarantees that a satisfy-
ing algebra A can be extracted from a stuck state that fulfills the condition. We
also explain how A can be constructed explicitly from such a stuck state and
which conditions on N guarantee that SCL(T) finds a stuck state that fulfills
the extraction criterion.

Definition 26 (BS(BD)). The Bernays-Schoenfinkel fragment with bounded
difference constraints is a subset of BS(LRA) that only allows theory atoms of
the form x  c, x  y, or x − y  c where c may be any integer number, x, y ∈ X ,
and  ∈ {≤, <, �=,=, >,≥}. Moreover, we require for all considered clauses Λ‖C
that the theory part Λ may only contain an atom of the form x − yc if Λ also
bounds x and y, i.e., Λ also contains atoms cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy,
where cx, dx, cy, dy are integers.

For the rest of this section we fix a finite set of BS(BD) clauses N , where κ is
the maximal absolute value of any integer occurring in N and η is the maximal
number of distinct variables in any single clause in N . Moreover, we define the
function fr(b) = b−�b� that returns the fractional/decimal part of a real number.

The first step of defining an extraction criterion is the definition of an equiv-
alence relation that ranges over all possible argument tuples/grounding substi-
tutions for literals and clauses in N . This equivalence relation must fulfill two
conditions: (i) it has only finitely many equivalence classes and (ii) for every
theory atom A in N it holds that A is satisfied by all elements in an equivalence
class or by none. Unbounded region equivalence �̂η

κ is such an equivalence class
for BS(BD):

Definition 27 (Unbounded Region Equivalence �̂η
κ [24,25]). We define

the equivalence relation �̂η
κ on R =

⋃η
k=0 Q

k in such a way that r̄ �̂η
κ s̄ for

r̄, s̄ ∈ R if and only if

1. r̄ and s̄ have the same dimension, i.e., r̄ = 〈r1, . . . , rm〉 and s̄ = 〈s1, . . . , sm〉;
2. for every i

(a) ri > κ if and only if si > κ,
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(b) ri < −κ if and only if si < −κ,
(c) if −κ < ri, si < κ, then �ri� = �si�, and
(d) if −κ < ri, si < κ, then fr(ri) = 0 if and only if fr(si) = 0;

3. for all i, j
(a) if ri, rj > κ or ri, rj < −κ, then ri ≤ rj if and only if si ≤ sj,
(b) if −κ < ri, rj < κ, then fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

Corollary 28. Let A be a BD atom and let σr = {x1 �→ r1, . . . , xm �→ rm} and
σs = {x1 �→ s1, . . . , xm �→ sm} be two grounding assignments for A such that
r̄ �̂η

κ s̄. Then A · σr is satisfied if and only if A · σs is satisfied.

The first condition for our equivalence class is necessary so we can express all
argument tuples over our theories potentially infinite carrier sets with argument
tuples over just a finite set of sample elements (i.e., our constants B). The second
condition is necessary because the algebras we are looking for are supposed to
be uniform in a given equivalence class, i.e., for every atom A in N it holds that
A is satisfied by all elements in an equivalence class or by none.

Definition 29 (�̂η
κ-Uniform Algebras [24,25]). Consider an algebra A for

N . We call A �̂η
κ-uniform over N if it interprets all �̂η

κ-equivalence classes
uniformly, i.e., for all predicates P in N and all r̄ �̂η

κ s̄ with m = arity(P ) and
r̄, s̄ ∈ Qm it holds that r̄ ∈ PA if and only if s̄ ∈ PA.

Based on these definitions, an extraction criterion guarantees the following
properties for a stuck state (M ′;N ;U ;B; k;�): (i) our trail can be extended to
M = M ′,Mp in such a way that there exists an argument tuple in Bm for every
equivalence class and (ii) the literals in fgd(M ′) describe a uniform model, i.e.,
for every literal |L| ∈ atoms(N) it holds that L ·σ ∈ M ′ if and only if L ·τ ∈ M ′,
where σ and τ are two grounding substitutions over B that belong to the same
equivalence class.

Definition 30 (�̂η
κ-Extraction-Criterion). A stuck state (M ′;N ;U ;B; k;�)

fulfills the �̂η
κ-extraction-criterion if:

1. B = {b1, ..., b|B|} is large enough, i.e., |B| ≥ 2κ · (η + 1) + 2η + 1
2. M ′ has a �̂η

κ-uniform trail extension M,Mp such that M ′ ∧ Mp ∧ adiff(B) is
satisfiable and Mp is a sequence of theory atoms constructed as follows:1
(a) Let π : N → {−κ − 1,−κ, . . . , κ − 1, κ} be the function with π(i) =

−κ − 1 + �i/(η + 1)� for 1 ≤ i ≤ 2κ · (η + 1) + η, and π(i) = κ for
2κ · (η + 1) + η < i ≤ |B|.

(b) Let ρ : N → N be the function with ρ(i) = i%(η + 1) for 1 ≤ i ≤
2κ·(η+1)+η, and ρ(i) = i−2κ·(η+1)+η+1 for 2κ·(η+1)+η < i ≤ |B|.

(c) Intuitively, we use π(i) and ρ(i) to partition the constants in B over
the intervals (−∞,−κ), [−κ,−κ + 1), . . . , [κ − 1,−κ)[κ,∞) such that the
interval (−∞,−κ) contains η constants, each interval [i, i+1) with −κ ≤
i < κ contains η + 1 constants, and the interval [κ,∞) contains at least
η + 1 constants.

1 The added theory atoms correspond exactly to the different cases in the unbounded
region equivalence relation.
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(d) Mp contains bi < bi+1 for 1 ≤ i < |B|.
(e) Mp contains bi = k for −κ ≤ π(i) = k ≤ κ and ρ(i) = 0.
(f) Mp contains bi < k + 1 for −κ − 1 ≤ π(i) = k < κ and ρ(i) > 0.
(g) Mp contains bi > k for −κ ≤ π(i) = k ≤ κ and ρ(i) > 0.
(h) Mp contains bi − bj1 for −κ ≤ π(j) = π(i) − 1 < κ − 1, ρ(i)ρ(j), and

 ∈ {<,=, >}.
3. fgd(M ′,Mp) is �̂η

κ-uniform, i.e., if P (r̄) ∈ fgd(M ′,Mp) and r̄ �̂η
κ s̄ for m =

arity(P ) and r̄, s̄ ∈ Bm, then P (s̄) ∈ fgd(M ′,Mp).2

As a result of these properties, any assignment β for the constants B defines
an algebra uniform to our equivalence relation.

Lemma 31 (�̂η
κ-Uniform Model Extraction). Let (M ′;N ;U ;B; k;�) be a

stuck SCL(T) state that fulfills the �̂η
κ-extraction-criterion and let β : B → Q be

a satisfying assignment for the �̂η
κ-uniform trail extension M = M ′,Mp. Then

there exists a �̂η
κ-uniform algebra A satisfying N such that

PA = {s̄ ∈ Rm | ∃t̄ ∈ Bm, s̄ �̂η
κ 〈β(t1), . . . , β(tm)〉 and P (t̄) ∈ M}

for all predicates P of arity m in N .

Proof. We have to prove that A satisfies all clauses C ∈ N for all substitutions
σ : vars(C) → R. We do so by selecting one arbitrary substitution σ and by
defining Q = {qj ∈ (0, 1) | ∃q′ ∈ codom(σ) ∩ [−κ, κ], fr(q′) = qj �= 0}, i.e., the
set of fractional parts that occur in σ’s codomain. Moreover, we assume that
q1 < . . . < qn is the order of the elements in Q = {q1, . . . , qn}. Since we chose
B large enough, we can now create a substitution τ : codom(σ) → B such that
τ(q′) = bi if:

1. −κ ≤ �q′� < κ, π(i) = �q′�, fr(q′) = qj ∈ Q, and ρ(i) = j,
2. −κ ≤ �q′� ≤ κ, π(i) = �q′�, fr(q′) = 0, and ρ(i) = 0,
3. if q′ is the j-th smallest element in codom(σ) that is smaller than −κ and

π(i) = −κ − 1, or
4. if q′ is the j-th smallest element in codom(σ) that is larger than κ and π(i) = κ.

If we concatenate σ and τ , we get M |= C · σ · τ because (M ′;N ;U ;B; k;�)
is a stuck state (i.e., M |= M ′ |= gndB(N), Lemma 12). If we concatenate σ,
τ , and β together, we get a �̂η

κ-equivalent substitution σ · τ · β for all literals L
in C, i.e., if vars(x̄) = vars(L), x̄ · σ = s̄ and x̄ · σ · τ · β = r̄, then s̄ �̂η

κ r̄. The
way we constructed A entails that A |= P (x̄) · σ if and only if P (x̄) · σ · τ ∈ M
because x̄ · σ �̂η

κ x̄ · σ · τ · β. Similarly, Corollary 28 entails that a theory atom
A · σ is satisfied if and only if A · σ · τ · β is satisfied. Hence, A |= C · σ because
M |= C · σ · τ . ��

If the rules of SCL(T) are applied in a way that all trail prefixes are explored,
then SCL(T) is also guaranteed to visit a stuck state that fulfills the extraction
criterion whenever there exists an algebra A that is uniform to our equivalence
relation and satisfies N .
2 r̄ �̂η

κ s̄ can be checked by comparing the atoms in Mp or by fixing a satisfying
assignment for M ′ ∧ Mp ∧ adiff(B).
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Lemma 32 (�̂η
κ-Uniform Model Guarantee). Let A be a �̂η

κ-uniform alge-
bra that satisfies N and let B be a sequence of constants that is large enough,
i.e., |B| ≥ 2κ · (η + 1) + 2η + 1. Then any regular SCL(T) run starting in state
(ε;N ;U ;B; 0;�) (with N |=H U) will encounter a stuck state that satisfies the
�̂η

κ-extraction-criterion if SCL(T) explores all possible trail prefixes for B.

Proof. We can construct a trail prefix M ′ for B that corresponds to a stuck
state that satisfies the �̂η

κ-extraction-criterion and from which we can extract
A. The trail prefix M ′ is constructed as follows: First construct a set of numbers
Q = {q0, . . . , qη} ⊆ [0, 1) such that q0 = 0 and q0 < . . . < qη. Next we construct
a set of numbers

Q̂ =
{
q̂k
j | qj ∈ Q, k ∈ {−κ − 1, . . . , κ}, and q̂k

j = qj + k
}

∪{
q̂κ
j | i ∈ N, 2κ · (η + 1) + η < i ≤ |B|, j = i − 2κ · (η + 1) + η + 1, q̂κ

j = j + κ
}

.

Each element in q̂k
j ∈ Q̂ corresponds to one constant bi. We denote this by an

assignment β : B → Q̂ such that β(bi) = q̂k
j if π(i) = k and ρ(i) = j. Now given

these sets our trail prefix M ′ contains P (s̄)/comp(P (s̄)) as a decision literal if
and only if (i) P is a predicate in N , m = arity(P ), s̄ ∈ Bm, r̄ ∈ Q̂m, (ii) if
st = bi, then rt = β(bi), and (iii) r̄ ∈ PA/r̄ �∈ PA. Moreover, we add to M ′

the following theory atoms as part of the first decision: we add L · σ to M ′ if
there exists a grounding substitution σ for |L| ∈ bgd(atoms(gndB(N))) such
that L · σ · β is satisfied.

The state (M ′;N ;U ;B; k;�) (with k = | fgd(M ′)|) is a reachable stuck state
because (i) all atoms |L| ∈ atoms(gndB(N)) are defined in M ′, (ii) M ′ ∧adiff(B)
is satisfiable, e.g., by β, and (iii) M ′ ∧ adiff(B) |= gndB(N) because for all
C ∈ N , (iii.i) A |= C · σ · β and (iii.ii) L · σ ∈ C · σ is in M ′ if and only if
A |= L · σ · β.

The state (M ′;N ;U ;B; k;�) also has a �̂η
κ-uniform trail extension M ′ ∧Mp

because β by definition also satisfies the atoms in Mp and fgd(M ′,Mp) is �̂η
κ-

uniform because the literals fgd(M ′,Mp) · β are �̂η
κ-uniform. ��

The above lemma explains how we can construct conditions for clause sets
N that guarantee that SCL(T) finds a satisfying algebra A for N (under certain
fairness conditions). The condition just has to imply that N is satisfied by an
algebra A that is uniform to our equivalence relation. In the case of BS(BD),
we can prove this for all satisfiable clause sets N . This means SCL(T) can be
turned into a decision procedure for BS(BD).

Lemma 33 (BS(BD) Uniform Satisfiability [24,25]). If N is satisfiable, then
it is satisfied by an �̂η

κ-uniform algebra A.

Corollary 34 (SCL(T) Decides BS(BD)). SCL(T) is a decision procedure for
BS(BD) if (i) Restart is only applied to stuck states, (ii) Grow is only applied
after a stuck state has been encountered for the current sequence of constants
B, (iii) rules Grow, Restart, and Decide are operated in a fair way, such that
no stuck state is visited more than once, and (iv) it explores all possible trail
prefixes for some B with |B| ≥ 2κ · (η + 1) + 2η + 1.
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Example 35 (B too Small for Model Extraction). If our set of constants B is too
small, then a stuck state might not imply an interpretation for all relevant �̂η

κ-
equivalence-classes. The same is true, if our constants are distributed unfairly
over Q, e.g., there exist no or not enough constants to represent an interval
[i, i+1) for −κ ≤ i, < κ. Consider B = [a, b] and a satisfiable BS(BD) clause set

N = { 0 ≤ x ∧ x < 1 ∧ −1 ≤ y ∧ y < 0 ∧ x − y = 1‖P (x, y),
0 ≤ x ∧ x < 1 ∧ −1 ≤ y ∧ y < 0 ∧ x − y �= 1‖¬P (x, y)}.

Starting from state (ε;N ; ∅;B; 0;�), a regular run can derive the following trail

M = [P (b, a)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{y 	→a,x	→b}, 0 ≤ b, b < 1,
−1 ≤ a, a < 0, b − a = 1, P (a, a)1, P (b, b)2, P (a, b)3]

The state (M ;N ; ∅;B; 0;�) is stuck and M |=H gndB(N). However, M does
not satisfy the �̂η

κ-extraction-criterion because B is too small. This makes sense
because M does not define P for all �̂η

κ-equivalence-classes, e.g., in all algebras
P (x, y) should be false for −1 ≤ y < 0, 0 ≤ x < 1, x − y �= 1. We need at least
one additional constant for each of the intervals [−1, 0) and [0, 1), and two for
the intervals (−∞,−1) and [1,∞).

Example 36 (Successful BS(BD) model extraction). Consider B = [a, b, c, d, e, f,
g, h, i, j, k] and a satisfiable BS(BD) clause set N = {0 ≤ x∧x < 1∧−1 ≤ y∧y <
0∧x−y = 1‖P (x, y), 0 ≤ x∧x < 1∧−1 ≤ y∧y < 0∧x−y �= 1‖¬P (x, y)}. Start-
ing from state (ε;N ; ∅;B; 0;�), a regular run can derive the trail M = M ′,M ′′,
where M ′′ contains decisions ¬P (x, y)·σ for all groundings of P (x, y) not defined
in M ′ and

M ′ = [P (f, c)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x	→f,y 	→c},
0 ≤ f, f < 1,−1 ≤ c, c < 0, f − c = 1,
P (g, d)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x	→g,y 	→d},
0 ≤ g, g < 1,−1 ≤ d, d < 0, g − d = 1,
P (h, e)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x	→h,y 	→e},
0 ≤ h, h < 1,−1 ≤ e, e < 0, h − e = 1,
¬P (f, d)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→f,y 	→d}, f − d �= 1,
¬P (f, e)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→f,y 	→e}, f − e �= 1,
¬P (g, c)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→g,y 	→c}, g − c �= 1,
¬P (g, e)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→g,y 	→e}, g − e �= 1,
¬P (h, c)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→h,y 	→c}, h − c �= 1,
¬P (h, d)0≤x∧x<1∧−1≤y∧y<0∧x−y �=1‖¬P (x,y)·{x	→h,y 	→d}, h − d �= 1]

The state (M ;N ; ∅;B; 0;�) is stuck and M |=H gndB(N). Moreover, M satis-
fies the �̂η

κ-extraction-criterion with the �̂η
κ-uniform extension Mp such that:

Mp = [a < b, b < c, c < d, d < e, e < f, f < g, g < h, h < i, i < j, j < k,
a < −1, b < −1, c = −1,−1 < d, d < 0,−1 < e, e < 0, f = 0,
0 < g, g < 1, 0 < h, h < 1, i = 1, 1 < j, 1 < k,
h − e = 1, h − d > 1, g − d = 1, g − e < 1]
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One satisfying assignment for M,Mp is β = {a �→ −1.7, b �→ −1.3, c �→ −1, d �→
−0.7, e �→ −0.3, f �→ 0, g �→ 0.3, h �→ 0.7, i �→ 1, j �→ 2, k �→ 3} The extracted
algebra A looks as follows:

PA = {(x, y) ∈ R2 | (x, y) �̂η
κ (0.7,−0.3)} ∪ {(x, y) ∈ R2 | (x, y) �̂η

κ (0.3,−0.7)}
∪{(x, y) ∈ R2 | (x, y) �̂η

κ (0,−1)}
= {(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}

∪{(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}
∪{(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}

= {(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, x − y = 1}

Example 37 (Stuck State is not �̂η
κ-Uniform). Consider almost the same run

as in the previous example. The only difference is that M ′′ contains the deci-
sion P (a, c). Then the state (M ;N ; ∅;B; 0;�) is reachable by a reasonable
run, still stuck, M |=H gndB(N), and β = {a �→ −1.7, b �→ −1.3, c �→
−1, d �→ −0.7, e �→ −0.3, f �→ 0, g �→ 0.3, h �→ 0.7, i �→ 1, j �→ 2, k �→ 3} is
still a satisfying assignment for M,Mp. However, M does not satisfy the �̂η

κ-
extraction-criterion because the predicates in M are not uniformly defined. To
be more precise, we have two different definitions for P and the equivalence class
{(x, y) ∈ Q2 | x < −κ = −1, y = −κ = −1}, viz., P (a, c),¬P (b, c) ∈ M and
(a, c) �̂η

κ (b, c).

It might seem like a reasonable idea to improve SCL(T) for BS(BD) by
adding the �̂η

κ-uniform trail extension Mp directly at the beginning to the trail.
Intuitively, this will only remove stuck states that cannot fulfill the extraction
criterion and we will still find a stuck state that satisfies the extraction criterion
if there exists one. However, it is not always possible to get a resolution proof
for unsatisfiability if we add the �̂η

κ-uniform trail extension Mp greedily.

Example 38 (No resolution within extraction criterion). Consider the unsatisfi-
able BS(BD) clause set N = {0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1 ∧ x − y < 0‖P (y),
0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1 ∧ x − y < 0‖¬P (x)}. The partition of constants
defined in the �̂η

κ-uniform trail extension Mp assigns only two constants a, b to
the interval (0, 1) because no clause contains more than two variables. It is how-
ever impossible to get a refutation proof for the unsatisfiability of the above two
clauses if we only have two constants a < b in the interval (0, 1). If we add the
�̂η

κ-uniform trail extension Mp directly at the beginning of our regular SCL(T)
run, then we must end up in a stuck state that contains the literals P (b) and
¬P (a) on the trail. This means that SCL(T) neither derives a clause Λ‖⊥, nor
does it encounter a stuck state that has a uniform model.

5 SCL(T) Extensions and Discussion

We have presented the new calculus SCL(T) for pure clause sets of first-order
logic modulo a background theory. The calculus is sound and refutationally
complete. It does not generate redundant clauses. Moreover, it constitutes a
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decision procedure for certain decidable fragments of pure clause sets, such as
BS(BD), and can even return an explicit satisfying algebra A in the case that
the clause set is satisfiable.

There are further extensions to pure clause sets that still enable a refutation-
ally complete calculus. In particular, first-order function symbols that do not
range into a background theory sort and equality. The properties of the SCL(T)
calculus rely on finite trails with respect to a fixed, finite set B of constants. By
adding non-constant first-order function symbols trails will typically be infinite
without further restrictions. Finite trails can, e.g., still be obtained by limiting
nestings of function symbols in terms. Thus it seems to us that an extension
to first-order function symbols that do not range into a background theory sort
should be possible while keeping the properties of SCL(T). From an abstract
point of view, also the addition of equality on the first-order side should be
possible, because there exist complete procedures such as hierarchic superposi-
tion [1,4]. Then also foreground function symbols may range into a background
theory sort, but the respective terms have to satisfy further conditions in order
to preserve completeness. However, even in the pure first-order case there has
not been a convincing solution so far of how to combine equational reasoning
with explicit model building. One challenge is how to learn a clause from a con-
flict out of a partial model assumption that enjoys ordering restrictions on terms
occurring in equations. If this can be sufficiently solved, the respective calculus
should also be extendable to a hierarchic set up.

An efficient implementation of SCL(T) requires efficient algorithmic solutions
to a number of concepts out of the theory. For fast model building an efficient
implementation of Propagate is needed. This was our motivation for adding the
all-different constraints on the constants, because they enable syntactic testing
for complementary or defined literals. In addition, satisfiability of constraints
needs to be tested. The trail behaves like a stack and it is ground. This fits
perfectly the strengths of SMT-style satisfiability testing. Dealing with the non-
domain constants out of the set B needs some care. They behave completely
symmetric with respect to the instantiation of clauses in (N ∪ U). An easy
way to break symmetry here is the addition of linear ordering constraints on
these constants. If more is known about the specific fragment some clause set
N belongs to, additional constraints with respect to the constraints or domain
constants out of (N ∪ U) may be added as well. This is for example the case for
the BS(BD) fragment. We could simply add the atoms of the �̂η

κ-uniform trail
extension Mp at the beginning to the trail. This would exclude many stuck states
that cannot possible fulfill the extraction criterion and would therefore reduce
the search space for SCL(T). Completeness would also be preserved because we
either find a stuck state that satisfies the extraction criterion or the problem is
unsatisfiable. Note, however, that we would not always get a refutation proof as
a certificate of unsatisfiability.

If we add the �̂η
κ-uniform trail extension Mp at the beginning to the trail,

then all groundings of theory atoms can be automatically simplified to true or
false. This means we could implement propagation for SCL(T) over BS(BD) by
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feeding a SAT solver with all groundings of clauses and using its propagation
module. We might even reduce the search space of the SAT solver by replacing
all ground literals |L| = P (s̄) to |L′| = P (r̄) such that r̄ is the minimal element
in the s̄ equivalence class. This would guarantee that only �̂η

κ-uniform literals
are propagated. Conflict analysis would still need to be handled outside of the
SAT solver so we can learn the much stronger non-ground clauses.

Checking whether a trail is �̂η
κ-uniform (as required by Definition 30) can

be done efficiently (in run-time O(|M | log(|M |))). We just have to sort the fore-
ground literals |L| = P (s̄) first by predicate P and then by the smallest vector
r̄ (according to a lexicographic order over B) such that s̄ �̂η

κ r̄. The trail is �̂η
κ-

uniform if and only if no two neighbors P (r̄), ¬P (s̄) in the sorted list have s̄�̂η
κ r̄.

We could also add a new rule to the calculus that adds all �̂η
κ-uniform instances

of the same literal as soon as one has been derived.
Exploring all trail prefixes, as required by Theorem 25 and Corollary 34,

requires book-keeping on visited stuck states and an efficient implementation of
the rule Restart. The former can be done by actually learning new clauses that
represent stuck states. Such clauses are not logical consequences out of N , so
they have to be treated specially. In case of an application of Grow all these
clauses and all the consequences thereof have to be updated. An easy solution
would be to forget the clauses generated by stuck states. This can be efficiently
implemented. Concerning the rule Restart, from the SAT world it is known that
restarts do not have to be total [20], i.e., if a certain prefix of a trail will be
reproduced after a restart, it can be left on the trail. It seems possible to extend
this concept towards SCL(T).

As future work, we plan to implement SCL(T) and define extraction criteria
for other (arithmetic) theories.
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Abstract. We present a new method to find conflicting instances of
quantified formulas in the context of SMT solving. Our method splits
the search for such instances in two parts. In the first part, E-matching
is used to find candidate instances of the quantified formulas. In principle,
any existing incremental E-matching technique can be used. The incre-
mentality avoids duplicating work for each small change of the E-graph.
Together with the candidate instance, E-matching also provides an exist-
ing node in the E-graph corresponding to each term in this instance. In
the second part, these nodes are used to evaluate the candidate instance,
i.e., without creating new terms. The evaluation can be done in con-
stant time per instance. Our method detects conflicting instances and
unit-propagating instances (clauses that propagate new literals). This
makes our method suitable for a tight integration with the DPLL(T )
framework, very much in the style of an additional theory solver.

1 Introduction

Satisfiability Modulo Theories (SMT) solving is the problem of finding solutions
for first-order formulas or proving unsatisfiability and has many applications,
e. g., in software verification, scheduling, program synthesis. Many SMT solvers
are based on the DPLL(T ) framework, where a DPLL engine assigns truth values
to ground literals, thereby creating a partial model. Specialized solver modules
for each theory check the feasibility of the model or report conflicting literal
assignments or new facts (ground literals) that are implied by the theory. Usually,
these theory solvers handle only the quantifier-free fragment of the corresponding
theory. A common approach to deal with quantified formulas is to add instances
of the quantified formulas to the ground part of the problem in order to prove
unsatisfiability. A challenge is to select those instances that are useful for the
solving process, as adding too many formulas overloads the solver. Finding the
most promising instances is an active topic of research [1,4,5,8,13–15].

In the context of the DPLL(T ) framework, a conflicting instance that refutes
the partial model provided by the DPLL engine is most useful [15]. Other useful
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instances are unit-propagating instances that show that a literal is implied by
the partial model and allow the solver to assign the literal correctly. We present
a new method for finding such conflicting or unit-propagating instances on the
fly as the DPLL engine builds the partial model. This enables a tight integration
of quantifier reasoning with the DPLL(T ) framework.

The basic idea in DPLL(T ) based solvers is to separate Boolean reasoning
from theory reasoning. A DPLL engine searches for a solution of the Boolean
core of the formula by guessing literals that should be true and propagating con-
sequences from these guesses. The theory solvers guide the search by constantly
checking if there is a model in the corresponding theory for the partial Boolean
solution. If a theory solver finds a conflict, i.e., a subset of literals that together
are unsatisfiable in the theory, then this is immediately reported to the DPLL
engine in form of a lemma that states that one of the literals must be false.
The DPLL engine backtracks decisions that lead to the conflict, and continues
the search for a solution of the Boolean core augmented with the new lemma.
This allows the DPLL engine to skip huge parts of the search space. Moreover,
theory solvers can provide unit clauses that show that a literal must be true in
the current context. This also reduces the search space considered by the DPLL
engine, and has been shown to be effective for several quantifier-free logics [11].

We think that this approach is applicable for quantifier reasoning for the same
reasons. Instead of adding many instances at a time, we consider a quantifier
solver as one of the theory solvers in the DPLL(T ) framework. That is, the
quantifier solver actively participates in the search for a satisfying solution of a
given problem by providing useful instances that guide the search in the right
direction. A useful instance can be a conflicting instance that shows that the
search took a wrong branch, or a unit-propagating instance that propagates a
new fact. The core of our method is an incremental search for such conflicting and
unit instances, that uses an incremental E-matching module. The incrementality
is essential for the quantifier solver to find new instances without repeating the
full search after each step in the solving process.

E-matching is the problem of finding ground terms that match a so-called
pattern, i.e., a term that may contain variables. A term matches a pattern if
it is equal, up to congruence, to the pattern instantiated with a suitable vari-
able substitution. E-matching is used in many existing solvers as a heuristic
to find potentially useful instances. The idea is to choose a set of patterns (a
multi-pattern) for a quantified formula such that all variables are contained. An
instance of a quantified formula is considered to be relevant if all patterns match
for a common variable substitution. The success of E-matching based instan-
tiation is strongly influenced by the choice of patterns. If the patterns are too
restrictive, a relevant instance may not be found; if the patterns are too general,
many irrelevant instances may be produced.
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To illustrate E-matching based instantiation and its shortcoming, we consider
the following example formula.

f(a, b) = a ∧ f(b, b) = b ∧ f(b, c) = c ∧ a = c ∧ b �= c

∧ ( ∀x, y, z. f(x, y) �= c ∨ f(y, z) �= c ∨ f(x, z) = c )

A multi-pattern suitable for E-matching in the universally quantified subfor-
mula is f(x, y), f(y, z). The E-matching engine matches each pattern with
the terms in the ground part of the formula, to find values for x, y, and z,
such that both instantiated patterns have an existing congruent term. One
potential match yields the ground terms f(b, c), f(a, b) and the substitution
{x �→ b, y �→ c, z �→ b}. This is a valid match: the instantiated second pattern
f(c, b) is congruent to f(a, b) since a = c is part of the ground formula. The
instantiated clause f(b, c) �= c ∨ f(c, b) �= c ∨ f(b, b) = c leads to a contradiction
with the ground part and shows that the formula is unsatisfiable.

However, E-matching also finds a lot of instances that are not useful to
show unsatisfiability. In the above example, also {x �→ a, y �→ b, z �→ b} is
matching the pattern. The corresponding instance is already satisfied as the
last literal of the clause, f(a, b) = c, is already true. In total, E-matching finds
five instances in this small example, of which three are already true, one is a
conflict, and one derives some fact about the non-existing ground term f(a, a).
The main problem with producing irrelevant instances is that they can trigger
new matches. This may even lead to so-called matching loops, e.g., if a new term
from an instantiated formula matches the pattern again leading to increasingly
larger variable substitutions.

E-matching is not only useful to find candidates for conflicting instances, it
also provides congruent terms that can be used to evaluate the instances without
any extra work. In the example above, f(c, b) �= c can be evaluated using the
congruent term f(a, b) for f(c, b). This insight is the core of our method to find
conflicting instances fast enough to be used as a DPLL(T ) theory solver.

Our incremental search for conflicting and unit-propagating clauses is subdi-
vided into two parts. First we search for candidate substitutions for quantified
clauses by using E-matching for the quantified terms in the clause. We use the
congruent terms provided by E-matching in the second part to evaluate the
clause instance without actually building the instantiated terms. Only if the
instance is found to be conflicting or unit-propagating, it is created. The app-
roach of splitting this search into two parts has the advantage that the search
for candidate substitutions using E-matching can be done incrementally [3] and
does only little work each time a new ground literal is set or removed. The
clause evaluation can be done literal by literal, which allows to not only detect
conflicting instances, but also instances that propagate new literals.

We introduce the notation and basic definitions in Sect. 2. In Sect. 3, we
give a brief overview of the DPLL(T ) framework. We describe the congruence
closure algorithm which is a decision procedure for the theory of equality, and
outline E-matching based instantiation. In Sect. 4, we present our approach to
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find conflicting and unit-propagating instances of quantified formulas, and give
theoretical results on correctness and completeness of the approach. Experimen-
tal evidence of the usefulness of our approach is given in Sect. 5. Finally, we
mention related work in Sect. 6, and discuss future work in Sect. 7.

2 Notation and Basic Definitions

We assume standard sorted first-order logic with equality. A first-order theory is
defined by its signature consisting of constant, function and predicate symbols,
and a set of axioms for its interpreted symbols. We consider in the following
mainly the theory of equality and uninterpreted functions TE . The axioms of TE

establish reflexivity, symmetry and transitivity for the equality symbol =, and
congruence for each uninterpreted function symbol.

A term is a variable, a constant, or the application of an n-ary function to n
terms. An atom is the application of an n-ary predicate to n terms. A literal is
an atom or its negation. A clause is a disjunction of literals. A term, literal or
clause is ground if it does not contain variables.

In the following, we assume w.l.o.g. that every formula is in conjunctive nor-
mal form (CNF), i.e., it is a conjunction of clauses. We also assume that every
variable occurring in the formula is universally quantified. The latter can be
established by introducing Skolem variables or functions for existentially quanti-
fied variables [12]. Thus, the formula is a conjunction of clauses and each clause
implicitly universally quantifies over its free variables.

We use the letters a, b, c to denote constant symbols, the letters f, g, h to
denote uninterpreted function symbols, and the letters x, y, z to denote univer-
sally quantified variables. We use the letter t to denote ground terms and the
letter p to denote terms that may contain free variables (patterns). We use the
letter � for literals, F and ϕ for formulas, and C for clauses. We use the symbol ⊥
to denote the formula that is always false. We write p[x1, . . . , xn], �[x1, . . . , xn],
ϕ[x1, . . . , xn], and C[x1, . . . , xn] for terms, literals, formulas, and clauses, respec-
tively, containing at most the variables x1, . . . , xn. For a formula F , we write TF

to denote the set of all terms occurring in F .
A substitution is a mapping from variables to terms, and it is a ground substi-

tution if it maps all variables to ground terms. We write σ = {x1 �→ t1, . . . , xn �→
tn} for the substitution that maps variable xi to term ti for i ∈ {1, . . . , n}. We
also use the notation p[x �→ t] to denote the term that results from replacing the
variable x in p with the term t.

3 Preliminaries

In this section, we outline standard methods in SMT solvers that are the basis for
our approach, namely the DPLL(T ) framework that separates Boolean reasoning
from theory reasoning in SMT solvers, the congruence closure algorithm which
is an efficient decision procedure for the quantifier-free fragment of the theory of
equality TE , and finally the technique of E-matching based instantiation which
is a common approach to find useful instances of quantified formulas.
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3.1 DPLL(T )

Many SMT solvers are based on the DPLL(T ) framework. The basic idea is to
separate Boolean reasoning from theory reasoning. The DPLL engine takes care
of the propositional core of the CNF formula by assigning truth values to literals.
In particular, it tries to satisfy each clause in the formula by assigning at least
one literal to true. A clause where all literals are assigned to false is called a
conflict clause. A clause where all but one literals are assigned to false, and
this literal has not yet been assigned, is called a unit clause, and can be used
to propagate this literal. If no unit clauses exist, the DPLL engine must make
decisions on literals which may have to be backtracked if they lead to a conflict.

During the solving process, the currently assigned literals are passed to theory
solvers that use specialized decision procedures. If a theory solver finds that
the conjunction of literals is in conflict with the theory axioms, it returns a
corresponding conflict clause (a subset of literals that are unsatisfiable) to the
DPLL engine. The theory solver can also propagate literals that must be true
in the theory under the current partial literal assignment by providing a unit
clause. Conflict clauses may only contain existing literals, but theory solvers can
create new literals that may be propagated by a unit clause to the DPLL engine
or to other theories. In order to determine that a satisfying assignment has been
found, a theory solver must also be able to provide a complete model.

The interaction between the DPLL engine and the theory solvers can happen
in several stages. While it is enough to report any conflicts once all literals have
been assigned, finding conflicts early and propagating literals implied by the
theory during the search for a Boolean model can often help the DPLL engine
to significantly reduce the search space [11]. However, theory reasoning comes
with a certain cost, which is why it does not always make sense to compute all
theory conflicts and propagations in each step of the solving process. Finding
the right compromise between efficiency and completeness of theory propagation
is the key in building an efficient solver.

3.2 Congruence Closure

The quantifier-free conjunctive fragment of the theory of equality TE can be
decided by computing the congruence closure for the equality relation on a graph
representing the involved terms [10].

An E-graph is a graph with nodes (vertices) and two kind of edges. Figure 1
shows an example. Each node in the graph represents a term and for every term
there is at most one node. If the term is a function application, it is labelled by
the function symbol and solid edges point from the node to the arguments of
the function application. Dashed edges, the so-called equality edges, represent
equalities between these terms that were decided by the DPLL engine or that
are propagated congruences. Let ∼ denote the transitive closure of all equality
edges, i.e., t1 ∼ t2 is true if and only if t1 and t2 are connected by a sequence
of equalities. The connected components [t]= = {t′ | t ∼ t′} are called the
congruence classes. There is an efficient algorithm based on union-find data
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Fig. 1. E-graph for the formula f(a, b) = a ∧ f(b, b) = b ∧ f(b, c) = c ∧ a = c. Nodes
represent terms, solid arrows between nodes symbolize function-argument relations,
and dashed lines symbolize equality.

structures that builds the E-graph in O(n log n). The lookup whether t1 ∼ t2
holds for two nodes t1 and t2 in the graph is in O(1).

The congruence closure algorithm works incrementally in a DPLL setting.
It starts with the empty E-graph that does not have any equality edge. When
the DPLL engine decides or propagates an equality, the corresponding nodes are
connected with an equality edge. If a disequality is decided, it is remembered
for the corresponding pair of congruence classes (this information is updated
whenever congruence classes are merged by a new equality edge).

Whenever congruence classes are merged, the congruence closure algorithm
also propagates all implied congruences. For each pair of function application
terms f(t1, . . . , tn) and f(t′1, . . . , t

′
n) on the same function symbol, the algorithm

checks whether ti ∼ t′i holds for 1 ≤ i ≤ n. If this is the case, the congruent
function applications are connected by an equality edge. There are efficient data
structures to quickly find the candidate application terms that may be affected
by a previous merge of two congruence classes.

When a disequality is set between two terms with t1 ∼ t2 or if two con-
gruence classes are merged that already have a disequality between them, the
congruence closure algorithm reports a conflict. This conflict can be explained
by the disequality t1 �= t2 and the path of equality edges between t1 and t2.

For terms t1, t2 existing as nodes in the E-graph, it can be determined in con-
stant time (each node remembers its representative) whether the literals decided
by the DPLL engine imply an equality t1 = t2. For literals t1 �= t2, the algo-
rithm can check if there a disequality set between the corresponding congruence
classes. In that case the literals decided by the DPLL engine imply the disequal-
ity. However, not all implied disequalities can be found this way. For example,
the literal f(a, b) �= f(b, a) implies a �= b but the congruence closure algorithm
would not find this disequality.

3.3 E-Matching Based Instantiation

A common approach in SMT solvers to handle problems containing quantified
formulas is to add instances of the quantified formulas to the ground part of
the problem, and solve the resulting ground formula. A heuristic method to
find instances that help the solving process is based on E-matching. It was first
implemented in the Simplify theorem prover [5]. An incremental version has been
presented for instance in [3].
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E-matching is the problem of finding terms in the E-graph that match a
given pattern (a term with free variables) up to congruence. The idea of E-
matching based instantiation is that an instance ϕσ of a universally quantified
formula ∀x1, . . . , xn. ϕ[x1, . . . , xn] is useful to solve the problem if it contains
enough terms that are congruent to terms in the current E-graph, as such an
instance allows for deriving new information about existing terms. In order to
find such instances, non-ground terms p1, . . . , pn, a so-called multi-pattern (or
trigger), from the formula ϕ are selected. They should contain all free variables
of ϕ in order to extract a substitution from a match. The E-matching algorithm
then searches for terms t1, . . . , tn in the E-graph, and a substitution σ, such
that t1 ∼ p1σ, . . . , tn ∼ pnσ holds, where ∼ denotes the congruence closure of
the equality edges of the E-graph.1 We say that each ti matches the pattern pi.
Here, ti and piσ need not be the same term, but congruent terms. In particular,
ti occurs explicitly in the E-graph, while piσ does not necessarily occur there.
For pi = f(p′

1, . . . , p
′
m), this means that the congruence class of ti contains a

term f(t′1, . . . , t
′
m) such that t′j ∼ p′

jσ holds.

Example 1. Let F : f(a) = b ∧ g(b) = c ∧ ∀x. g(f(x)) = d. A useful pattern for
E-matching is p : g(f(x)). Figure 2 shows the E-graph for the ground part, and
how the pattern p is matched. The result of applying E-matching is σ = {x �→ a}
and the term t with t ∼ pσ is g(b). Note that pσ = g(f(a)) does not exist in the
E-graph.

Fig. 2. E-matching for F : f(a) = b∧ g(b) = c∧∀x. g(f(x)) = d. The left part displays
the E-graph for the ground part of F , the right part displays the pattern g(f(x)) for
the quantified part. Solid arrows symbolize function-argument relations, dashed lines
symbolize equality, and the dotted arrows display which terms in the E-graph match
with which subterm of the pattern.

E-matching is usually used as a basis for a heuristic instantiation procedure.
For a quantified formula ϕ and a corresponding multi-pattern p1, . . . , pn, when-
ever matching terms t1, . . . tn and a substitution σ with ti ∼ piσ are found, the
instance ϕσ is added to the ground problem. One problem with E-matching is to

1 From now on ∼ denotes the congruence closure of the equality edges in the E-graph
and not the transitive closure as in the previous section. Note that this is also defined
for pσ, if it does not exist in the E-graph.
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choose the right multi-pattern. If the pattern is too strict, important instances
may be missed. If the pattern is too loose, it creates too many irrelevant instances
which may cause new matches. In general, E-matching cannot be used to show
satisfiability for a quantified formula; although there are quantified formulas with
patterns for which E-matching is complete.

4 Finding Conflict and Unit Instances

In this section we describe our algorithm to find conflict and unit instances
for quantified clauses. We assume that the input formula was preprocessed into
conjunctive normal form and that existential quantifiers were skolemized by
introducing fresh constants or function symbols [12]. All variables occurring in
clauses are universally quantified. Thus, a quantified clause always is of the form

∀x1, . . . , xn. �1[x1, . . . , xn] ∨ . . . ∨ �m[x1, . . . , xn]

where �1, . . . , �m are literals containing at most the variables x1, . . . , xn. We
omit the universal quantifier and implicitly see all free variables in a clause as
universally quantified.

The quantified clauses are handled by a separate quantifier theory. Given a
quantified clause C[x1, . . . , xn], the theory searches for a ground substitution σ
for x1, . . . , xn such that the resulting instance Cσ is in conflict with the current
partial model, or leads to a propagation. We define such instances as follows.

Definition 1. Let M be a (partial) literal assignment and let C := �1 ∨ . . .∨ �m

be the body of a quantified clause containing the free variables x1, . . . , xn.

1. A ground instance Cσ for a substitution σ over x1 . . . xn is conflicting if
M ∪ {Cσ} |=T ⊥, or, equivalently, M |=T ¬�iσ for all i ∈ {1, . . . , m}. (This
definition follows [15].)

2. A ground instance Cσ is unit-propagating if there is an i such that M |=T
¬�jσ for all j �= i.

Note that this definition does not require a clause instance resulting from a
conflicting or unit-propagating instance to be in conflict with the Boolean model,
i.e., it is not a conflict or unit clause for the DPLL engine. Theory reasoning may
be necessary to derive that the clause instance is unsatisfiable for the current
partial assignment M . In particular, the literal instances do not always exist,
and the definition of unit-propagating instances also allows new terms in �iσ.

In the next section, we explain how to find conflicting and unit-propagating
instances in the theory of equality TE . In Sect. 4.2, we then describe how the
approach can be extended to the combination with linear arithmetic.

4.1 Finding Substitutions in the Theory of Equality

In the following we describe how to find conflicting and unit-propagating
instances for quantified clauses in the theory of equality TE . As mentioned in
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the beginning of Sect. 4, the input formulas are preprocessed into conjunctive
normal form. An uninterpreted predicate is treated as a function returning a
Boolean and converted to an equality with the constant true. The preprocessor
also applies destructive equality resolution (DER): clauses of the form x �= p∨C
where p does not contain x are replaced by the equivalent clause C[x �→ p]
where all occurrences of x are replaced by p. Also trivially false literals x �= x
are removed from the clause. These formula simplifications are important for
completeness as explained in Theorem 1 on page 14. From now on, let F be the
preprocessed formula, and C := C[x1, . . . , xn] be a quantified clause in F with
free variables x1, . . . , xn.

Our approach to find conflicting and unit-propagating instances consists of
three steps.

1. For each non-ground literal p = p′ or p �= p′ in C, solve the E-matching
problem for the multi-pattern p, p′. This finds ground substitutions σ for the
variables in p, p′ and congruent ground terms t ∼ pσ, t′ ∼ p′σ.

2. Evaluate the equivalent literal t = t′ or t �= t′ using information from the
congruence closure theory solver.

3. Extract the common substitutions σ for all variables in C that are conflicting
or unit-propagating.

We illustrate our approach with the help of the following example.

Example 2. We assume that the DPLL engine has already set the following
literals to true.

M : f(a, b) = a, f(b, b) = b, f(b, c) = c, a = c

This literal assignment results in the E-graph displayed in Fig. 1. In the follow-
ing we will show how to find conflicting and unit-propagating instances for the
quantified clause

C : f(x, y) �= c ∨ f(y, z) �= c ∨ f(x, z) = c

with free variables x, y, z.

Step 1: Find Substitutions and Congruent Terms. The first step to find conflict-
ing and unit-propagating instances for a quantified clause is to detect substitu-
tions for which the value of the resulting instance in the current partial model
can be determined without building the instance. This is the case if there exists
a ground term t ∈ TF for each quantified term p[x1, . . . , xn] ∈ TC such that t
and p[x1, . . . , xn] are congruent under the substitution σ, i.e., t ∼ p[x1, . . . , xn]σ.

We search for such substitutions for each literal separately. In particular, for
an equality or disequality literal in TE , i.e., a literal � with underlying atom
p[x1, . . . , xn] = p′[x1, . . . , xn], we search for a substitution σ such that there
exist terms t ∈ TF and t′ ∈ TF with t ∼ p[x1, . . . , xn]σ and t′ ∼ p′[x1, . . . , xn]σ.
These substitutions can be found by applying E-matching on the multi-pattern
p[x1, . . . , xn], p′[x1, . . . , xn]. If one of the two patterns p, p′ is ground, then we
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use only the other as a pattern. The substitutions found by E-matching are
then stored in a table, which we will refer to as substitution table, where each
row stands for a substitution σ and also stores the terms t, t′ ∈ TF with t ∼
p[x1, . . . , xn]σ and t′ ∼ p′[x1, . . . , xn]σ. If a variable appearing in the clause C
does not appear in the literal �, the substitution for this variable is irrelevant for
the literal, and the column corresponding to the variable is filled with asterisks.

E-matching can be implemented to work incrementally, and therefore, the
substitution tables can be built up incrementally as well.

Example 3. Consider again the literal assignment M and the quantified clause
C from Example 2. After E-matching with the patterns f(x, y), f(y, z), and
f(x, z), respectively, the substitution tables for the literals look as follows.

f(x, y) �= c
x y z congruent
a b ∗ f(a, b), c
b b ∗ f(b, b), c
b c ∗ f(b, c), c

f(y, z) �= c
x y z congruent
∗ a b f(a, b), c
∗ b b f(b, b), c
∗ b c f(b, c), c

f(x, z) = c
x y z congruent
a ∗ b f(a, b), c
b ∗ b f(b, b), c
b ∗ c f(b, c), c

Step 2: Evaluate Literal Instances. For each literal, we can now determine which
value the literal instance resulting from a substitution would have in the current
partial assignment. The value of a literal under a given substitution can be
determined by checking equality or disequality for the congruent terms t, t′ ∈ TF

with t ∼ pσ and t′ ∼ p′σ. As mentioned in Sect. 3.2, the partial assignment for
the theory of equality is represented by the E-graph, together with a set of
disequality literals that are currently set to true by the DPLL engine.

If the literal is implied by the current partial assignment, the corresponding
instance is irrelevant for the current state as the clause is already satisfied. If the
negation of the literal is implied, it can lead to a conflicting or unit-propagating
instance. If neither the literal nor its negation is implied, it is a possible candidate
for unit-propagation. For an equality literal � : p[x1, . . . , xn] = p′[x1, . . . , xn], the
value valσ(�) under a substitution σ with congruent terms t ∼ p[x1, . . . , xn]σ
and t′ ∼ p′[x1, . . . , xn]σ is defined as follows.

valσ(�) =

⎧
⎪⎪⎨

⎪⎪⎩

irrel if the congruence classes [t]= and [t′]= are equal
false if a disequality t1 �= t2 between terms t1 ∈ [t]=

and t2 ∈ [t′]= is set
unit otherwise

For a disequality literal � : p �= p′, the value valσ(�) is defined analogously with
first and second case swapped.

We evaluate each row of the substitution table and get a literal value table
where each row represents a substitution and the corresponding literal value. As
in the substitution tables, a column full of asterisk indicates a variable that does
not appear in the literal. We add a row full of asterisks in the end of the table that
represents all substitutions where E-matching has not found congruent terms.
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If all other literals evaluate to false under such a substitution, this substitution
leads to a unit-propagating instance that propagates a literal on new terms.
While it may sometimes be helpful to propagate these literals, it often leads to
many unnecessary propagations and can even lead to matching loops. Therefore,
we have an option to either mark this row as unit or as irrelevant depending on
whether equalities on unknown terms should be propagated.

Example 4. The tables T1, T2, and T3 below are the literal value tables corre-
sponding to the substitution tables of f(x, y) �= c, f(y, z) �= c, and f(x, z) = c,
respectively, from Example 3.

T1

x y z value
a b ∗ false
b b ∗ unit
b c ∗ false
∗ ∗ ∗ unit/irrel

T2

x y z value
∗ a b false
∗ b b unit
∗ b c false
∗ ∗ ∗ unit/irrel

T3

x y z value
a ∗ b irrel
b ∗ b unit
b ∗ c irrel
∗ ∗ ∗ unit/irrel

Step 3: Evaluate Clause Instances and Extract Substitutions. Once a table for
each literal has been built, these tables are combined in order to determine the
value of the clause instances under the substitutions found for the literals. As
we are only interested in conflicting and unit-propagating instances, we consider
substitutions where a literal instance has value irrel, or where two or more
literals have value unit, to be irrelevant. Thus, we distinguish three values for
the clause tables: false if all literals evaluate to false under a substitution, unit
if all but one literal evaluate to false under a substitution and the remaining
literal evaluates to unit, and irrel for all other cases.

The clause value tables are computed as follows. A new clause table starts
with a row full of asterisks mapping to the value false, i.e., it looks as follows.

x1 . . . xn value
∗ . . . ∗ false

Then for each row in the clause table and the next literal table, we check if
they are compatible and combine them. Compatible means, for each variable
the terms are currently congruent, or for one table the variable does not occur
in the substitution, i.e., there is an asterisk in the corresponding column. If the
rows are compatible, the substituted terms are combined by keeping the terms
from the first table, except for the positions marked with an asterisk, where
we use the terms from the second row. The values of the tables are combined
according to the mapping

(x, false) �→ x

(false, x) �→ x

else �→ irrel
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A row becoming irrelevant can be dropped. The clause table is combined with
the literal table for each literal in the clause.

The result is a table that contains a row for each conflicting or unit-
propagating instance with values false or unit, respectively, and a row full
of asterisks with value irrel.

Example 5. We now combine the literal value tables from Example 4 step by
step, i.e., in the first step we combine the default clause table T0 with the table
T1 for f(x, y) �= c, then we combine the result with the table T2 for f(y, z) �= c
and finally with T3 for f(x, z) = c.

T0 + T1

x y z value
a b ∗ false
b b ∗ unit
b c ∗ false
∗ ∗ ∗ unit/irrel

T0 + T1 + T2

x y z value
a b b unit
a b c false
a b ∗ unit/irrel
b b c unit
b c b false
b c ∗ unit/irrel
∗ a b unit/irrel
∗ b c unit/irrel
∗ ∗ ∗ irrel

T0 + T1 + T2 + T3

x y z value
a b c unit/irrel
b c b unit
∗ ∗ ∗ irrel

Note that the row for the substitution {x �→ b, y �→ c, z �→ b} in T0 +T1 +T2 and
T0 + T1 + T2 + T3 results from combining {x �→ b, y �→ c, z �→ ∗} from T0 + T1

with {x �→ ∗, y �→ a, z �→ b} from T2, which are compatible because a ∼ c holds.
The substitution σ = {x �→ b, y �→ c, z �→ b} produces a unit-propagating

instance for C containing the term f(c, b) which is a new term, but congruent
to the term f(a, b) found for the literal f(y, z) �= c. The substitution σ = {x �→
a, y �→ b, z �→ c} also produces a unit-propagating instance for C, but this
instance contains the new term f(a, c) that is not congruent to any known term
so far.

If we consider M ′ : M,a �= b, the table T ′
3 for the literal f(x, z) = c changes

and so does the final clause table.

T ′
3

x y z value
a ∗ b irrel
b ∗ b false
b ∗ c irrel
∗ ∗ ∗ unit/irrel

T0 + T1 + T2 + T ′
3

x y z value
a b c unit/irrel
b c b false
∗ ∗ ∗ irrel

The instance Cσ with σ = {x �→ b, y �→ c, z �→ b} is conflicting for M ′.

Instantiation. After computing the clause value tables, the conflicting instances
are built. These instances often create new terms and literals, because with
E-matching the term pσ may not exist in the E-graph. However, in this case
the solver for congruence closure can propagate these new literals to false.
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The quantifier theory waits until all literals are propagated by the theory of
equality and only then returns the instance as conflict clause.

If no conflicting instances are found, the unit-propagating instances are built.
Again these may contain new terms and literals that the solver for congruence
closure will propagate to false. Only when the instances become unit clauses,
they will be returned by the quantifier theory solver.

Theoretical Results. The presented method is incomplete in the sense that it can-
not detect all conflicting or unit-propagating instances for the theory of equality
TE . There are two reasons for the incompleteness:

1. The congruence closure algorithm does not propagate all implied disequalities.
For example if f(a) �= f(b) is set, the disequality a �= b cannot be detected
in the E-graph. Thus, when evaluating the literal a = b it may incorrectly be
classified as unit instead of false.

2. Some congruences cannot be found by E-matching because no congruent
terms exist in the E-graph. In particular, the equality (f(p1, . . . , pn) =
f(p′

1, . . . , p
′
n))σ holds if piσ and p′

iσ are congruent for 1 ≤ i ≤ n, but
there need not be congruent terms in the E-graph for f(p1, . . . , pn)σ and
f(p′

1, . . . , p
′
n)σ.

The first reason can be avoided. Instead of just asking for the existence of
a disequality edge between two terms, one could check if adding an equality
between the terms and propagating all congruences leads to a conflict. However,
this contradicts our main goal, which is to make the solver fast enough that it
can find conflicting instances eagerly.

To understand the second reason, we investigate the cases in which an
instance of a literal is conflicting, i.e., where M |=TE

¬�σ holds. We distin-
guish four cases. In the first case, E-matching is sufficient to find the conflicting
instance. The second to fourth cases can be avoided by preprocessing as explained
later.

Lemma 1. Let M be a consistent (partial) literal assignment, and let � be a
literal. Assume that all ground terms occurring in the literals in M and in the
literal � are present in the E-graph.

If M |=TE
¬�σ holds for a substitution σ, then

1. the literal � is an equality p = p′ or a disequality p �= p′, there are terms t, t′

in the E-graph with t ∼ pσ and t′ ∼ p′σ, and the corresponding disequality or
equality between t and t′ is implied by M , or

2. the literal � is a disequality x �= p, where p does not contain x, or
3. the literal � is a disequality x �= x, or
4. the literal � is a disequality f(p1, . . . , pn) �= f(p′

1, . . . , p
′
n) and for all corre-

sponding subterms, M |=TE
(pi = p′

i)σ holds.

Proof. M |=TE
¬�σ holds, iff M ∪{�σ} |=TE

⊥. It is well-known that the congru-
ence closure algorithm can find all ground conflicts. First, consider the case that
� : p = p′ is an equality literal. The congruence closure algorithm would create
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new terms pσ, p′σ and add an equality edge between them. Assume that case 1
does not apply. This means, pσ or p′σ are not congruent to an existing term;
we assume w.l.o.g. that this holds for pσ. So before the equality literal pσ = p′σ
is considered, the node pσ would not be equivalent to any other term in the E-
graph and there would not be any function application on pσ. Hence, the step in
the congruence algorithm that merges pσ and p′σ would not introduce any more
congruences and it would only merge the fresh node pσ. Thus, any conflict found
by the congruence closure algorithm for M ∪ {�σ} would already be present in
M . We assumed that M is consistent, so this is a contradiction.

Let now � : p �= p′ be a disequality literal. We assume that M is consistent,
but M ∪ {�σ} is not. Hence, adding pσ and p′σ to the E-graph would derive
an equality between these terms. If there is an equality between the new terms
and some already existing terms, then we are in case 1. Otherwise, the equality
can only follow by congruence, or pσ and pσ′ are identical. If they are identical
constants, the literal � must be of form x �= y or x �= x, as we assume that all
ground terms are present in the E-graph. Hence, we are in case 2 or 3. Otherwise,
both pσ and p′σ are function applications and their arguments are equal. Assume
that we are not in case 4. Then either p or p′ must be a variable, w.l.o.g. assume
p = x. If we are not in case 2 or 3, then p′ is a function application on a term
that contains x. But then σ(x) = p′(σ(x)) must follow from M . This can only
be the case if M contains an equality for a term congruent to σ(x) or one of its
parents. But then σ(x) must have a congruent term t in the E-graph, so we were
in case 1 all along. ��

This lemma shows that the following preprocessing is sufficient to find all
conflicting instances. Let C be a set of quantified clauses. We create a new set of
preprocessed clauses preprocess(C) by exhaustively applying the following rules
on C:

1. If there is a clause C ∈ C of the form C : x �= x ∨ C ′, remove it and add the
clause C ′ instead.

2. If there is a clause C ∈ C of the form C : x �= p∨C ′ where p does not contain
x, remove it and add C ′[x �→ p] instead (DER).

3. If there is a clause C ∈ C of the form C : f(p1, . . . , pn) �= f(p′
1, . . . , p

′
n) ∨ C ′,

copy it and add the clause p1 �= p′
1 ∨ · · · ∨ pn �= p′

n ∨ C ′.

Note that the third rule is sound because f(p1, . . . , pn) �= f(p′
1, . . . , p

′
n) implies

the disjunction
∨

pi �= p′
i. The preprocessor must still keep the original clause,

in case the literal is false due to an explicit disequality that can be found by
E-matching.

After preprocessing, every conflict on a single clause instance can be found
with E-matching:

Theorem 1. Let M be a consistent (partial) literal assignment and C a set
of quantified clauses. Let there be a clause C ∈ C and a substitution σ with
M |=TE

¬Cσ. Then there is a clause C ′ ∈ preprocess(C), such that for each literal
in C ′ of the form p = p′ (resp. p �= p′) there are E-matching equivalent terms
t, t′ with t ∼ pσ and t′ ∼ p′σ and M |=TE

¬(t = t′) (resp. M |=TE
¬(t �= t′)).
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4.2 Extension to Linear Arithmetic

The approach described in the previous section can be extended to formulas
in other theories. In this section we consider the extension of our approach to
linear arithmetic. Finding congruent terms in general is difficult and costly, in
particular for literals containing terms that mix arithmetic and functions like,
e. g., f(g(x)+h(y)). In the following, we describe some extensions that we think
are useful and can still be treated with reasonable cost.

The first extension is to treat literals that contain arithmetic only at top level,
i.e., literals of the form c0+

∑
cipi[x1, . . . , xn] = 0 or c0+

∑
cipi[x1, . . . , xn] ≤ 0,

where the pi are terms of TE . In Step 1, we take the multi-pattern p1, p2, . . .
to find congruent terms with E-matching. In Step 2, the value of the literal
under a substitution σ with congruent terms ti ∼ pi[x1, . . . , xn] can then be
determined as follows. For � : c0 +

∑
cipi[x1, . . . , xn] ≤ 0, we check if there exist

any bounds on the term c0 +
∑

citi. If the term has an upper bound u ≤ 0,
then valσ(�) = true, if it has a lower bound l > 0, then valσ(�) = false, and
valσ(�) = unit otherwise. For � : c0 +

∑
cipi[x1, . . . , xn] = 0, if c0 +

∑
citi has

an upper bound u and a lower bound l, and u = l = 0, then valσ(�) = true. If
it has a lower bound l > 0 or an upper bound u < 0, then valσ(�) = false, and
valσ(�) = unit otherwise. Our solver is based on the Simplex algorithm described
in [7]. It uses the bound refinement method described there to propagate bounds
that are implied by the current state of the tableau. While this is inherently
incomplete, it is fast and the bounds are refined incrementally.

Another important extension is to treat arithmetical literals such as x < t.
These literals occur frequently when reasoning about arrays, and fall into the
decidable array property fragment [2]. In principle, any substitution for x can
be evaluated using upper and lower bounds as above, but we restrict the sub-
stitutions to consider as follows. For a clause C containing arithmetical literals
and other literals of the types above, we first build the partial clause value table
by evaluating the other literals as described before. Then for each variable x in
C, we collect a set Rx of relevant terms as follows:

1. Rx := Rx ∪ {t | σ(x) = t for σ with partial clause value false or unit}.
2. If the clause contains a literal x < t or t < x, then Rx := Rx ∪ {t}.
3. If the clause contains a literal x = t, then Rx := Rx ∪ {t + 1, t − 1}.
4. If the clause contains x < y or y < x, then Rx := Rx ∪ Ry.

This is inspired by [8]. Given those sets, the substitutions we consider for an
arithmetical literal � of form x < t, t < x or x = t are {σ� = {x �→ t} | t ∈ Rx},
and for � : x < y they are {σ� = {x �→ t, y �→ t′} | t ∈ Rx, t′ ∈ Ry}.

5 Implementation and Experiments

We implemented the presented method in the SMT solver SMTInterpol.2

SMTInterpol is a DPLL(T )/CDCL based solver that supports the ground
2 https://ultimate.informatik.uni-freiburg.de/smtinterpol/

https://ultimate.informatik.uni-freiburg.de/smtinterpol/
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fragments of the theory of equality, the theory of linear integer arithmetic, linear
rational arithmetic, mixed linear integer-rational arithmetic, the theory of arrays
with extensionality and constant arrays, and their combinations.

We implemented the quantifier support as a theory solver in the DPLL(T )
framework. The DPLL engine informs all theory solvers about the literals that
are currently set to true. Before each decision, all theory solvers search for con-
flicts and unit clauses in a checkpoint. If a theory solvers returns a new unit
clause, it can be used to propagate new literals and thus avoid wrong decisions.
Similarly, a conflict clause allows to backtrack immediately without doing fur-
ther decisions. When the DPLL engine has assigned a truth value to all literals,
a final check is performed where the theory solvers should check their model.

The solver for quantified formulas keeps a list of all quantified clauses and
creates instances of them on the fly. The quantifier solver has two different
settings to determine when to create new clauses. In the eager setting, it creates
new clauses in the checkpoint before each decision of the DPLL engine, in the
lazy setting, it only creates new clauses in the final check when all existing ground
literals were decided by the DPLL engine. When our method finds a conflicting
or unit-propagating instance, this instance is built. If the instance is a conflict in
the sense that all literals are already set to false, it is returned immediately. If the
instantiation creates new terms and literals, it will cause other theory solvers,
in particular the congruence closure solver, to propagate congruences and truth
values for the new literals. As soon as all but one literal in the instance are
propagated to false, our quantifier solver can give the instantiated clause to the
DPLL engine as a unit clause.

If our E-matching based procedure does not find any conflict or unit clauses
in the final check, our new quantifier solver has to do more extensive checks
to determine if the formula is satisfied. It checks the instances created from
the substitution set described in [8] for formulas in the almost uninterpreted
fragment. To ensure completeness it tries substitutions on “older” terms first in
order to enumerate the terms in a systematic way, similarly to [13]. In particular
this means that substitution with terms that occur in the input formula are
preferred over terms that are created by the quantifier solver itself during the
solving process. For terms with the same age, the final check prefers instances
that are unit-propagating (and that were not found earlier, because they create
new terms that are not equivalent to existing terms). If no such instances are
found, any instance that is not yet satisfied is created, preferring substitutions
that do not create new terms. This allows the solver to return “satisfiable” for
formulas within the almost uninterpreted fragment when it has checked that
all instances resulting from these substitution are satisfied. In case a problem
contains literals outside the almost uninterpreted fragment, the solver will never
return “satisfiable”, but “unknown” if it cannot derive a conflict.

We implemented E-matching to find substitutions as described in Step 1 in
Sect. 4 to work in an incremental way, similar to [3]. For each quantified clause,
we choose as multi-pattern the set of all sub-terms occurring in the clause, i.e.,
the instantiation only creates a new term if there is an equivalent existing term.
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It uses triggers within the solver for the theory of equality, that report new
terms for sub-patterns as they are merged into the relevant congruence class, and
cause the matching process to continue only then. As soon as the multi-pattern
is matched, the substitution is saved. Any substitution found by E-matching
is kept until a conflict is detected and the DPLL engine backtracks to a point
where the pattern no longer matches.

To efficiently implement the substitution tables, the literal value tables and
the clause value tables, we use directed acyclic word graphs (DAWGs). These
are useful to quickly combine a clause value table with the next literal value
table, especially in the presence of columns with asterisks.

In order to evaluate the usefulness of our algorithm, we compare our imple-
mentation against E-matching based instantiation. We tested four different set-
tings: The settings “conflict/unit-eager” and “conflict/unit-lazy” use the pre-
sented algorithm to search for conflicting and unit-propagating instances. Both
settings do not create new terms (up to congruence) and always prefer conflict-
ing instances over unit-propagating instances. As the names suggest, the setting
“conflict/unit-eager” runs our algorithm as described above in the checkpoint.
The setting “conflict/unit-lazy” runs our algorithm in the final check, i.e., after
a complete ground model has been built. The settings “E-matching-eager” and
“E-matching-lazy” use our implementation of the E-matching algorithm in a
more traditional way. They use the same multi-pattern as our presented algo-
rithm, and build all instances where the multi-pattern was matched. This means
that no new terms (up to congruence) are built in these settings. As above,
the setting “E-matching-eager” searches for instances in the checkpoint while
“E-matching-lazy” searches for instances in the final check.

We did two experiments to evaluate these algorithms [9]. First, we ran them
on all SMT-LIB benchmarks in the logic UF on an AMD Ryzen Threadripper
3970X 32-Core CPU with 3.7 GHz, using 8 cores in total, and 15 GB RAM
given to the solver. We set the timeout to 24 s. Second, we ran the UF division
with the settings used for the SMT-COMP 20203 on the StarExec cluster4 [16],
including the same benchmark selection and the same scrambler with the same
seed. The only difference was that we reduced the timeout to 10 min (instead of
20 min). The SMT-COMP benchmarks omit all benchmarks that were solved by
all solvers in less than one second in the previous years and randomly selected
40 % of the remaining benchmarks. We also ran the solvers cvc4 version 1.8
and z3 version 4.8.8 on the SMT-COMP benchmarks with the default settings.
The results are summarized in Tables 1 and 2.

Table 1 shows that the settings that produce only conflict/unit instances solve
more benchmarks than the settings that produce all E-matching instances. The
difference is even more pronounced on the SMT-COMP benchmark set where
easy benchmarks were removed. The difference between eager and lazy settings is
only small, but in our experiments eager was slightly better. This shows that the
additional overhead from doing conflict search before each decision is more than

3 https://smt-comp.github.io/2020/
4 https://www.starexec.org

https://smt-comp.github.io/2020/
https://www.starexec.org
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compensated by the reduced search space. The evaluation also shows that our
solver is not yet competitive with cvc4 and z3. The simple E-matching strategy
that requires all subterms to exists and the simple enumeration of terms by age
as fallback strategy is no match to the more fine-tuned and diverse strategies in
cvc4 and z3.

Table 1. Number of benchmarks solved for each solver setting, with 24 s timeout (on all
UF benchmarks) and with 10 min timeout (on the SMT-COMP 2020 UF selection). The
settings “c/u” use our presented method to produce only conflict and unit-propagating
instances. The setting “eager” produces all E-matching instances before every decision,
“lazy” only when all literals were decided.

Solver Setting UF(all)
24 s timeout

UF(SMT-COMP)
10 min timeout

SMTInterpol c/u-eager 2120/7668 211/2291

SMTInterpol c/u-lazy 2105/7668 207/2291

SMTInterpol eager 2011/7668 165/2291

SMTInterpol lazy 1998/7668 161/2291

cvc4 – 514/2291

z3 – 408/2291

In Table 2 we compare the number of instances produced by SMTInter-
pol in the different settings and by cvc4 and z3. The numbers were obtained
by dumping the statistics after the run. To make the numbers comparable, we
only consider those benchmarks from the SMT-COMP benchmark set where all
solvers in all settings could prove unsatisfiability. For SMTInterpol we also
count the number of instances that were used in the final proof of unsatisfiability.
The first apparent result is that only a fraction of the instances were needed.
This shows the importance of choosing the right instances. The settings that pro-
duce only conflict/unit-propagating instances save a lot of instances that were
not needed in the proof of unsatisfiability. Interestingly, cvc4 creates even fewer
instances. Note that cvc4 also uses conflict based instantiation techniques. One
reason that it needs even fewer instances than our approach might be that our
enumeration strategy in the final check needs longer to find the right instances.
Another reason is that cvc4 does not split large quantified formulas into several
clauses (and thus needs only one instance where we may need one instance for
each produced clause). The solver z3, which does not use conflict based instan-
tiation techniques, produces many more instances. The average is exaggerated
due to one benchmark where it produces more than 5.7 million instances, but
the median is also higher than in our conflict/unit-propagating settings.

For SMTInterpol we distinguish instances created by E-matching or by
conflict/unit-propagation from instances created by the final enumeration step.
This is depicted in the table as 588(230+358) denoting that 230 instances were



552 J. Hoenicke and T. Schindler

Table 2. Average and median number of instances created by the solvers on SMT-
COMP 2020 benchmarks. For SMTInterpol also the average number of instances
used in the proof of unsatisfiability is given. This statistic was generated for the 86
benchmarks that every solver could solve.

Solver Setting Avg. created
instances

Median created
instances

Avg. used
instances

SMTInterpol c/u-eager 588(230 + 358) 56 8(3 + 5)

SMTInterpol c/u-lazy 545(195 + 351) 56 8(3 + 5)

SMTInterpol eager 1455(1121 + 333) 195 8(3 + 5)

SMTInterpol lazy 1450(1123 + 327) 217 8(3 + 5)

cvc4 – 216 14 ?

z3 – 83186 129 ?

created by conflict/unit-propagation and 358 by the final enumeration. The
results show that several necessary instances can only be found by enumera-
tion, because they need to create new terms that are not equivalent to existing
terms.

6 Related Work

Closest related to the presented approach is the work of Reynolds et al. [15].
The authors present a method to find conflicting substitutions for the theory of
equality and show the effectiveness of their approach. For a quantified formula,
they construct a set of equalities and disequalities such that a solution for the
constraints in this set yields a conflicting substitution. While our method works
only on clauses, their method works on general quantified formulas. The clas-
sification is done implicitly while constructing those constraint sets, but avoids
introducing auxiliary functions. Some of the constructed equality constraints
represent the problem of matching subterms of more complicated non-ground
terms, but the algorithm does not use E-matching. The types of literals that
pose a problem to our approach (i.e., congruences without congruent existing
terms) cannot be detected by their method either. The authors also describe
how the method can be used to find so-called constraint-inducing substitutions
that produce instances that are not conflicting, but that can derive new infor-
mation about existing terms. This is similar to our search for unit-propagating
instances, but does not allow to find propagations on new terms. The main dif-
ference is that our approach is incremental and can therefore detect conflicting
and unit-propagating instances early in the solving process.

Congruence closure with free variable (CCFV) [1] is a calculus for solving the
so-called E-ground (dis)unification problem. Given a ground model, it tries to
build a substitution for a quantified formula such that the ground model satisfies
the corresponding instance, by decomposing the goal into smaller constraints. It
can also be used to search for a conflicting substitution and can find all conflicting
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substitutions for the theory of equality, if the congruence closure propagates all
disequalities. The method is not incremental, i.e., it needs to rerun completely
if an equality or disequality literal is added.

A completely different approach to derive new facts from quantified clauses
is the DPLL(Γ) calculus [4]. This approach combines the superposition calcu-
lus tightly with the DPLL(T ) framework. Literals decided by the DPLL engine
are used in the superposition solver to derive new quantified clauses. When the
superposition solver finds a conflict, it can build by collecting all ground equali-
ties used to derive the conflict. DPLL(Γ) can also propagate new ground literals
using quantified clauses. While the approach is much more powerful and can
even detect conflicts involving several clauses, this comes at the price of mem-
ory overhead. The superposition solver can propagate an arbitrary number of
derived clauses when searching for conflicts. This is in contrast to the DPLL(T )
framework where only a detected conflict triggers learning a new clause.

7 Conclusion and Future Work

We presented a new approach to find conflicting and unit-propagating instances
of quantified formulas. The basic idea is to split this search in a part that searches
for ground terms that are congruent to the quantified terms in a clause, and then
evaluate the instances with the use of these terms before creating them. For the
first part, we use E-matching, which can be implemented in an incremental
way and avoids duplicating work when the E-graph changes. The evaluation
can be done per literal such that the method can also detect instances that
propagate literals on both known and new terms. The presented method has
been implemented in the SMT solver SMTInterpol. We showed that by only
producing conflicting and unit-propagating instances we can solve more bench-
marks than by producing all instances found by E-matching. We also showed
that the overhead to find these conflicting instances is small enough to run it in
an eager setting before every decision. Therefore, we can tightly integrate quan-
tifier reasoning in the DPLL(T ) framework. We believe that the method can
easily be implemented into other solvers using E-matching based instantiation,
since E-matching can already report the equivalent terms needed for evaluating
instances.

We also presented some extensions to the theory of linear arithmetic, and
plan to extend the method further. For instance, with a solver for the theory of
equality that supports offset equalities [6], literals such as f(x) = g(x + 1) can
easily be evaluated as described in Sect. 4.

The method is incomplete and must be complemented with a method that
checks the model once all literals are assigned a truth value by the DPLL
engine. This complementary method can have a strong influence on our presented
method, in particular, if it creates many new terms. We plan to implement a
version of model-based quantifier instantiation [8] in the future.

We also plan to implement a version of our method that does not create new
literals for conflicting instances at all. Instead of creating the conflicting instance,
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it creates the clause with the existing equivalent literals enriched by the equality
literals from the E-graph that were needed to prove the equivalence. Currently
the quantifier solver has to wait for the congruence closure to prove that the
conflicting instance is a conflict clause. We also expect that this approach keeps
the E-graph small by not creating many congruent terms.
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Abstract. Modern competitive solvers employ various preprocessing
techniques to efficiently tackle complex problems. This work intro-
duces two preprocessing techniques to improve solving weighted par-
tial MaxSAT problems: Generalized Boolean Multilevel Optimization
(GBMO) and Trimming MaxSAT (TrimMaxSAT).

GBMO refines and extends Boolean Multilevel Optimization (BMO),
thereby splitting instances due to their distribution of weights into mul-
tiple less complex subproblems, which are solved one after the other to
obtain the overall solution.

The second technique, TrimMaxSAT, finds unsatisfiable soft clauses
and removes them from the instance. This reduces the complexity of
the MaxSAT instance and works especially well in combination with
GBMO. The proposed algorithm works incrementally in a binary search
fashion, testing the satisfiability of every soft clause. Furthermore, as a
by-product, typically an initial weight close to the maximum is found,
which is in turn advantageous w.r.t. the size of e.g. the Dynamic Poly-
nomial Watchdog (DPW) encoding.

Both techniques can be used by all MaxSAT solvers, though our focus
lies on Pseudo Boolean constraint based MaxSAT solvers. Experimental
results show the effectiveness of both techniques on a large set of bench-
marks from a hardware security application and from the 2019 MaxSAT
Evaluation. In particular for the hardest of the application benchmarks,
the solver Pacose with GBMO and TrimMaxSAT performs best com-
pared to the MaxSAT Evaluation solvers of 2019. For the benchmarks
of the 2019 MaxSAT Evaluation, we show that with the proposed tech-
niques the top solver combination solves significantly more instances.

1 Introduction

Preprocessing techniques play an increasingly important role in recent competi-
tions for SAT, (D)QBF and MaxSAT [17,21,34]. Typically, time-intensive pre-
processing techniques pay off with increasing problem complexity.

Almost all solvers of the MaxSAT Evaluation of 2019 use preprocessing tech-
niques [10], e.g. stratification, at-most-one relations between soft clauses as well

This work is supported by DFG project “Algebraic Fault Attacks” (BE 1176/20-2).

c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 556–577, 2021.
https://doi.org/10.1007/978-3-030-67067-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67067-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-67067-2_25


On Preprocessing for Weighted MaxSAT 557

as approaches based on Boolean Multilevel Optimization and many additional
SAT based preprocessing techniques. There is even a stand-alone MaxSAT pre-
processor, MaxPre [21].

Multi-Objective Combinatorial Optimization (MOCO) [15,16,32] problems
are addressing multiple optimization problems with possibly conflicting pur-
poses. Boolean Multilevel Optimization (BMO) [7,23] is the mapping of MOCO
to MaxSAT solving.

This paper introduces Generalized Boolean Multilevel Optimization (GBMO),
which provides extended capabilities to split MaxSAT instances into subprob-
lems with less soft clauses. These smaller instances are processed subsequently
starting with the largest weights. We thereby reduce the complexity of the overall
solving by solving multiple smaller subproblems.

The second technique, TrimMaxSAT uses similar techniques as backbone
computing cf. [19,24,29], which is typically introduced as a search for all vari-
ables with an identical truth assignment in all solutions. In contrast to back-
bone computing we are looking only for the unsatisfiable core of soft clauses
and instead of variables we are looking for always unsatisfiable soft clauses.
Additionally, TrimMaxSAT finds a lower bound of the solution to the MaxSAT
problem. The encoding size of Pseudo Boolean (PB) constraint based encodings
like the Dynamic Polynomial Watchdog (DPW) [26] encoding can be signifi-
cantly reduced if less soft clauses are used or the lower bound is closer to the
MaxSAT solution.

The general workflow of the preprocessing techniques is illustrated in Fig. 1.
At first, the list of weights is split into n sublists, with decreasing weight sizes,
with sublist n containing the highest weights and sublist 1 the lowest. Then, the
subproblems are processed subsequently starting with the highest weights. First,
the soft clause set is reduced and the MaxSAT solver is called. After a solution
to the subproblem is found, the solution is encoded with a PB-constraint and
added to the hard clauses of the next MaxSAT problem, given by the instance
with the next highest weights. At the end the result is printed.

In general, MaxSAT solvers follow different approaches with benefits on
different kind of benchmarks. Approaches to solve MaxSAT, together with
representative solvers are: PB-constraint based encoding (e.g. Pacose [27],
QMaxSAT [22]), Branch-and-Bound (e.g. ahmaxsat [2]); UNSAT Core (RC2 [18],
Maxino [3] and UWrMaxSAT [28]); Hitting Set (MaxHS [9]). This work focuses
on PB-constraint based solvers, as we also use a PB-constraint encoding for the
splitting technique (cf. Sect. 3). Nonetheless, the introduced splitting technique
can also be used for non-PB-constraint based MaxSAT solvers. Furthermore, the
proposed trimming technique (cf. Sect. 4) is especially useful for PB-constraint
based solvers, reducing the size of the added encoding.

GBMO and TrimMaxSAT, the two preprocessing techniques introduced in
this paper, reduce the size of the added encoding per solver call, especially for
PB-constraint based solvers, and thus increase the feasibility.

This work evaluates solvers and benchmarks of the MaxSAT Evaluation 2019
and additional benchmarks from a hardware security application [30,31], where a
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collection of weighted partial MaxSAT instances was generated. These instances
were chosen for the 2020 MaxSAT Evaluation [1]. In particular, this set contained
several large instances with more than 1.2 million soft clauses, which are among
the largest in comparison to instances from the MaxSAT Evaluations. These
large instances are not feasibly solvable for most of the MaxSAT solvers of the
Evaluation 2019, including our own MaxSAT solver Pacose [27]. In particular,
our solver Pacose performs worst without the proposed techniques GBMO and
TrimMaxSAT and best with them. For the Evaluation benchmark set, we show
that all PB-constraint based solvers profit from GBMO and TrimMaxSAT.

We additionally investigate the top solver combination, where n solvers are
run subsequently with a reduced timeout of 3600/n seconds each. In the last
years (2017–2020), the top solver combination was always achieved for n = 3 and
clearly outperformed the top solver. The top solver combination always included
a PB-constraint based solver, which highlights the importance of investigating
PB-constraint based solvers.

In this paper we tested our techniques on the benchmarks of the MaxSAT
Evaluation 2019, where we were able to improve the top solver combination
significantly, decreasing the distance to the Virtual Best Solver by 39%.

The remainder of the paper is structured as follows. In the next section
preliminaries like SAT, weighted partial MaxSAT and Boolean Multilevel Opti-
mization are introduced. In Sect. 3 the splitting algorithm GBMO is presented,
and in Sect. 4 we describe TrimMaxSAT, our preprocessing technique to trim
the MaxSAT instance. In Sect. 5 experimental results are provided. The paper
concludes with Sect. 6.

Fig. 1. General workflow of the combined preprocessing techniques.
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2 Preliminaries

In this section we introduce the basic terminologies which will be used within
this paper. We start with the foundations of SAT, MaxSAT and Pseudo
Boolean (PB) Constraint based solvers, then we explain Boolean Multilevel Opti-
mization (BMO) as introduced in [5,7,23].

2.1 SAT and MaxSAT

Boolean logic formulas are defined over a finite set of Boolean variables x1, · · · xn

which can be assigned either false or true. A literal is either a Boolean variable
xi or its negation xi. Boolean formulas as used in this paper are given in Con-
junctive Normal Form (CNF). A CNF consists of conjunctions of clauses, which
are disjunctions of literals. A unit clause contains only one literal. We use the
notation that a CNF is a set of clauses. The satisfiability problem is solved by
a SAT solver, which decides whether a Boolean formula ϕ given as CNF is sat-
isfiable, i.e. whether there exists an assignment to the variables such that each
clause of ϕ evaluates to true. If this is the case, a satisfying assignment, called
model of ϕ is returned. Incremental SAT solving is an important technique used
in modern SAT solvers, for growing formulas between iterative SAT solver calls.
Thereby information collected about the formulas from previous solver calls is
maintained and used in the subsequent solver calls.

MaxSAT is an optimization problem closely related to SAT, seeking for a
maximized number of satisfied clauses. If we deal with partial MaxSAT, then
the formula consists of two types of clauses: soft clauses S = {s1, . . . sm} and
hard clauses H. For an optimal solution the number of satisfied soft clauses in S

needs to be maximized, whereas all hard clauses in H have to be satisfied.
In the following we use multisets; in contrast to sets, multisets may contain

multiple instances of the same element. We denote multisets with index M . For
example if there are two soft clauses of weight 2, we write:

– {2, 2}M for the respective multiset (used for GBMO) and
– {2} for the regular set (used for classical BMO).

Weighted partial MaxSAT is another extension adding a multiset of positive
integer weights W = {w1, . . . , wm}M to the soft clauses, with wi corresponding
to si. The optimization goal is then to maximize the sum of weights for the
satisfied soft clauses.

For brevity, in this paper MaxSAT is used as abbreviation for weighted partial
MaxSAT, if not stated differently. For the sum of a multiset of weights W and
any property p : W → {true, false} the following notations are used.

∑
W :=

∑

w∈W

w and
∑

p(w)

W :=
∑

w∈W and p(w)=true

w (1)

When the set of hard clauses H is clear from context, for brevity we use the
expression MaxSAT(WA) to describe a MaxSAT solver call for the set of hard
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clauses H together with the soft clauses SA ⊆ S, in which the soft clauses corre-
spond to the weights of the multiset WA.

As already mentioned in the introduction, for the purpose of this paper PB-
constraint based solvers, which use an iterative SAT based approach [36] as
e.g. QMaxSAT and Pacose, are of special importance. In each incremental SAT
solving call they force a higher weight to be satisfied as minimum. To do so, a
Pseudo-Boolean (PB) constraint C of the form Σjwj · rj ≥ M , with Boolean
variables rj and positive integers wj and M , is directly encoded into CNF. The
soft clauses are directly connected to the PB-constraint network: rj is true iff the
soft clause sj ∈ S is true. Naturally, wj is the weight belonging to rj and sj . The
MaxSAT problem can then be reduced to find a maximum value for M , such
that C is still satisfied. More information on PB-constraints is e.g. found in [14].
For more information on the so-called relaxation literals rj we refer to [27].

There are various methods and schemes for the encoding of PB-constraints.
State-of-the-art iterative MaxSAT solvers use various and customized CNF
encodings. For instance, the 2017 version of QMaxSAT [22] employs three
different encodings: totalizer network [11], modulo totalizer network [25] and
Warners adder network [33]. The 2018/2019 version only uses the mixed radix
weighted totalizer [35]. Pacose uses the encodings Warners adder network [33]
and Dynamic Polynomial Watchdog (DPW) [26].

PB-constraint based MaxSAT solvers have shown to be competitive in recent
MaxSAT competitions1. As described in the introduction, the last years’ (2017–
2020) top solver combination always included a PB-constraint based solver. Still,
large instances can be especially challenging for PB-constraint based solvers,
therefore this work comprises a two-folded contribution to handle this issue.

2.2 Boolean Multilevel Optimization (BMO)

Boolean Multilevel Optimization problems address multiple objective functions
with possibly conflicting goals. There are many works on solving multi-objective
combinatorial optimization (MOCO) problems [15,16,32], of which the Boolean
based formulation is BMO [5,7,23]. It is studied e.g. extensively in [23], which
also introduces two extensions: BMO with upper bounds and partial BMO. BMO
is introduced as an instance of Weighted MaxSAT with the following conditions:
The instance consists of sets of clauses C1, C2, . . . , Cm, where each set Ci contains
exactly the clauses of one weight wi. The sets are built and sorted in decreasing
order due to their weight. For a BMO instance the following condition has to
hold:

Definition 1 (Complete BMO). An instance of Weighted MaxSAT is an
instance of (complete) BMO iff:

wi >
∑

1≤j<i

wj · |Cj | for i = 2, . . . , m

1 QMaxSAT 2nd solver 2017 and Pacose 3rd solver 2018, same number of solved
instances as 2nd MaxHS.
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If a MaxSAT instance was found to be a BMO instance, this information can
be used to (amongst others) speed up the solving process. BMO techniques can
be used with multiple different MaxSAT approaches, for example with UNSAT
core based solvers, avoiding additional refinement steps and with PB-constraint
based MaxSAT solvers, adding an encoding which guarantees the lower weight,
as will be described later in further detail.

In our paper we describe in Sect. 3 a generalization of complete BMO and
show on MaxSAT Benchmarks that this addition is useful.

Stratification [4,6] is another related possibility of splitting the weight set. It
restricts the set of clauses, sent to the SAT solver, at first to higher weights. As
a result, unsatisfiability core based solvers tend to increase the resulting weight
faster. However, this is not suited for PB-constraint based MaxSAT solvers and
has other splitting rules. Therefore stratification is not discussed in further detail.

3 Generalized Boolean Multilevel Optimization (GBMO)

In this section we first (Sect. 3.1) define GBMO and prove that it can be used
to split a given MaxSAT problem into smaller MaxSAT subproblems, which can
be solved subsequently, also in cases where BMO is not applicable.

As an example, assuming each weight corresponds to one soft clause, with the
original problem definition the weight combination {1, 1, 2, 2, 4, 14}M could not
be split into subproblems as BMO only splits into subproblems with soft clauses
of the same weight. With GBMO the multiset can be split into the subsets
{1, 1}M {2, 2, 4}M {14}M and solved subsequently.

The proposed algorithm for performing the splitting is presented in Sect. 3.3
and uses a sufficient criterion, which is presented in Sect. 3.2.

3.1 GBMO – Definition and Correctness

Consider a MaxSAT problem, with an increasingly sorted multiset of weights of
soft clauses. Then a separation point splits the multiset into a left multiset and
a right multiset, if the sum of weights of the left multiset is non-strictly lower
than any positive difference between the sums of any two subsets of the right
multiset. This difference can equal the lowest weight of the right multiset (cf.
Remark 1a).

We claim that with these generalized conditions an optimal solution to the
original problem can be found by separately solving at first the right multiset
and then solving a combination of the left multiset and an encoding ensuring
the maximum found with the previous solving (of the right multiset).

Definition 2 (Generalized complete BMO (GBMO)). Given a MaxSAT
problem with weights W , with two partitions WL,WR ⊆ W . We say that W is
separable and can be split into WL and WR, iff:

– ∀WR1 ,WR2 ⊆ WR with
∑

WR1 >
∑

WR2 :
∑

WL ≤
∑

WR1 −
∑

WR2 (2)
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We then say, that there is a splitting point between WL and WR.

Proposition 1. Definition 2 generalizes complete BMO – formally: For every
complete BMO instance as in Definition 1 with clause sets C1, . . . , Cm, corre-
sponding weights w1, . . . , wm and the multiset W is defined to contain exactly
one weight for each soft clause:

For every i with 1 ≤ i < m, there is a splitting point between the multisets
WL = {w ∈ W | w ≤ wi}M and WR = {w ∈ W | w > wi}M .

Proof. Given a BMO instance as in Definition 1 and define WL and WR as above.
To prove that Definition 2 holds, multisets WR1 ,WR2 ⊆ WR with

∑
WR1 >∑

WR2 are arbitrarily chosen.
Let k be chosen maximal (i.e. the highest weight wk), such that

{w ∈ WR1 | w = wk}M �= {w ∈ WR2 | w = wk}M
Then ∣∣∣∣∣

∑

w>wk

WR1 −
∑

w>wk

WR2

∣∣∣∣∣ = 0

from which follows that

∣∣∣
∑

WR1−
∑

WR2

∣∣∣ =

∣∣∣∣∣
∑

w=wk

WR1−
∑

w=wk

WR2+
∑

w<wk

WR1−
∑

w<wk

WR2

∣∣∣∣∣

From the reverse triangle inequality (∀a, b ∈ R : |a + b| ≥ | |a| − |b| |), it follows:

∣∣∣
∑

WR1−
∑

WR2

∣∣∣ ≥
∣∣∣∣∣

∑

w=wk

WR1−
∑

w=wk

WR2

∣∣∣∣∣ −
∣∣∣∣∣

∑

w<wk

WR1−
∑

w<wk

WR2

∣∣∣∣∣
(3)

By choice of k:
∣∣∣∣∣

∑

w=wk

WR1 −
∑

w=wk

WR2

∣∣∣∣∣ ≥ wk (4)

Using WR1 ,WR2 ⊆ WR, the difference for weights < wk can be estimated:
∣∣∣∣∣

∑

w<wk

WR1 −
∑

w<wk

WR2

∣∣∣∣∣ ≤
∑

w<wk

WR =
∑

i<j<k

wj · |Cj |. (5)

Inserting Eqs. 4 and 5 into Eq. 3 leads (with
∑

WR1 >
∑

WR2) to:

∑
WR1 −

∑
WR2 ≥ wk −

∑

i<j<k

wj · |Cj | (6)
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By the Definition of a BMO instance, it also holds that

wk >
∑

1≤j<k

wj · |Cj | (7)

After substituting wk according to Eq. 7 in Eq. 6:
∑

WR1 −
∑

WR2 >
∑

1≤j<k

wj · |Cj | −
∑

i<j<k

wj · |Cj | =
∑

1≤j≤i

wj · |Cj | =
∑

WL

proving that the criterion from Definition 2 holds. 	

Remark 1. a. If

∑
WL ≤ min(WR) holds, we say that there is a potential split-

ting point between WL and WR.
∑

WL ≤ min(WR) follows from Eq. 2 for
WR1 = {min(WR)} and WR2 = ∅.

b. In Definition 2 it is sufficient to test Eq. 2 for disjoint WR1 and WR2 , since
for every two non-disjoint subsets W ′

R1
and W ′

R2
, there exist the two disjoint

subsets W ′
R1

\ (W ′
R1

∩W ′
R2

) and W ′
R2

\ (W ′
R1

∩W ′
R2

) with the same difference
of their sums of weights.

c. While Definition 2 presents a general criterion for separability, the generality
can lead in practice to trivial splitting points, in total hindering efficiency. To
avoid splitting at such trivial splitting points, in the experiments we do not
investigate splitting points where WL = {1} and WR = {1, . . . }.

d. If for at least one pair WR1 and WR2 , it holds that
∑

WL =
∑

WR1 −∑
WR2 ,

then it is only guaranteed that there is an optimal solution; not every optimal
solution can be found, as some solutions might be blocked by adding an
encoding for the optimal solution of WR.

E.g. a MaxSAT problem with W = {1, 1, 2}M is separated into WL = {1, 1}M
and WR = {2}M , where the soft clauses associated with WL are the unit
clauses x1 and the soft clause associated with WR is the unit clause ¬x1.
If at first WR is solved, the optimal solution assignment x1 = 0 is found, but
the other optimal solution assignment x1 = 1 cannot be found.

Given a GBMO MaxSAT problem with a separable multiset of weights W
as in Definition 2, we show in the following, that the optimal solution of the
MaxSAT problem can be found by solving at first MaxSAT(WR), then fixing
the found maximal weight and solving MaxSAT(WL).

Theorem 1. Given a MaxSAT problem with a multiset of weights W , where
W can be split into WL and WR as in Definition 2. Let W ∗

R be a solution to
MaxSAT(WR).

Then W ∗
R can be used to find an optimal solution W ∗ to the initial MaxSAT

problem, where also on the sub-multiset WR, soft clauses with the same sum of
weights are satisfied by both W ∗

R and W ∗, formally:

∃W ∗ :
∑

W ∗
R =

∑
WR ∩ W ∗
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Remark 2. It is important to note, that the condition for a potential split-
ting point (

∑
WL ≤ min(WR)) is not sufficient for separately solving the sub-

multiset problems: As an example assume a weight multiset {50, 101, 102}M with
a maximum weight of 50 + 101 = 151 for the optimal solution. Even though for
WL = {50} and WR = {101, 102} the condition

∑
WL ≤ min(WR) holds, solv-

ing MaxSAT(WR) could lead to the solution 102. Since the soft clause of weight
102 cannot be satisfied together with the soft clause of weight 50, the solution
would be falsely calculated to be of weight 102.

Proof (Proof of Theorem 1).

1. ∀W ∗ :
∑

W ∗
R ≥ ∑

(WR ∩ W ∗): Follows from the optimality of W ∗
R.

2. ∃W ∗ :
∑

W ∗
R ≤ ∑

(WR ∩ W ∗) by Contradiction:
Assume ∀W ∗ :

∑
W ∗

R >
∑

(WR ∩ W ∗), then W ∗
R is not an optimal solution

(i.e. a candidate for W ∗). Thus, for any optimal solution W ∗:
∑

W ∗ >
∑

W ∗
R.

Also, because of Definition 2, Formula 2, the following holds:
∑

WL ≤
∑

W ∗
R −

∑
WR ∩ W ∗ (8)

Additionally because W \ WR = WL it holds that:
∑

W ∗ ≤
∑

WR ∩ W ∗ +
∑

WL

All inequalities concatenated lead to a contradiction:

∑
W ∗ ≤

∑
WR ∩ W ∗ +

∑
WL

Eq. 8

≤
∑

W ∗
R <

∑
W ∗

	

This shows that it is valid to solve the sub-multisets subsequently. The

algorithm for the application of GBMO extracts at first all potential splitting
points. Then, the main argument

∑
WL ≤ ∑

WR1 − ∑
WR2 has to be shown.

Since any multiset WR contains 2|WR| sub-multisets, the runtime to calculate∑
WL ≤ ∑

WR1 −∑
WR2 for all combinations of sub-multisets lies in O(2|WR|)

and tends to be infeasible for non-trivial WR. Therefore we propose in Sect. 3.2
an efficiently computable necessary criterion, with which all of the potential
non-trivial (cf. Remark 1.c) splitting points were found in the experiments.

3.2 Greatest Common Divisor

Many instances from the MaxSAT Evaluation and our hardware security appli-
cation show certain patterns. Often, when iterating through a sorted multiset of
weights W of a MaxSAT instance, the first weight of the next sub-multiset is the
greatest common divisor (gcd) of all higher weights. It is noted, that the gcd of
n integers can be calculated in only linear time [13]. The next theorem shows a
sufficient condition for splitting the weight multiset W using the gcd. This easy-
to-calculate sufficient condition will later be used for a test on a set of potential
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splitting points. Thus, we efficiently find several actual splitting points, so that
the elaborate check of Definition 2 will only be performed on fewer potential
splitting points.

Theorem 2. Given a MaxSAT problem with weights W with two partitions
WL,WR ⊆ W . Let g be the greatest common divisor of all weights in WR and∑

WL ≤ g. Then W can be split into WL and WR.

Proof. Given sub-multisets WR1 ,WR2 ⊆ WR with
∑

WR1 >
∑

WR2 , it is to
show, that the following equation holds (cf. Theorem 1):

∑
WL ≤

∑
WR1 −

∑
WR2 .

For WR1 and WR2 there exist k1, k2 ∈ N, so that
∑

WR1 = k1 · g and
∑

WR2 =
k2 · g. Thus:

∑
WR1 −

∑
WR2 = k1 · g − k2 · g = (k1 − k2) · g

Since
∑

WR1 >
∑

WR2 , it holds that (k1 − k2) > 0. Therefore:

(k1 − k2) · g ≥ g ≥
∑

WL

	

Remark 3. For a MaxSAT problem as in Theorem 2, W ∗

R can be calculated by
dividing all weights of WR through g and solving the problem with these smaller
weights, leading potentially to a reduced encoding size.

3.3 Algorithm

The full algorithm works as follows:

1. Iterate over the sorted weights {w1, . . . , wm}M , from lowest weight w1 to
highest weight wm. For each weight wi the sum wsum

i =
∑i

j=1 wj is calculated,
building the multiset W sum = {wsum

1 , . . . , wsum
m }M .

2. Declare a potential splitting point if the sum of weights until that point is
smaller than the next weight.

3. Iterate through all potential splitting points and check if it is an actual split-
ting point according to Theorem 2. If so, it is removed from the multiset of
potential splitting points. If not, we have to check with the elaborate criterion
in the next step.

4. Iterate again through the sub-multisets and check if the remaining potential
splitting points fulfill the criteria from Definition 2. Due to the high cost, this
only checks 10 million sub-multisets before aborting. If successful, an actual
splitting point is found.

5. Start the solver call MaxSAT(WX) with WX being the multiset with the
highest weights, among all weight sub-multisets that have not been solved
yet.
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6. If there is another sub-multiset which has not been solved yet, take the soft
clauses and the maximal weight solution from the previous MaxSAT call,
generate a PB-constraint encoding out of these parameters and add these
clauses to the set of hard clauses H, then continue with Step 5. If all sub-
multisets are processed continue with Step 7.

7. Iterate over all soft clauses W , check if they are satisfied in the model of
the last MaxSAT solver call, accumulate the weights wj of all satisfied soft
clauses sj and print the solution together with the model of the last MaxSAT
solver call.

The splitting together with the approximation algorithm of Sect. 4 is visual-
ized in Fig. 1 (p. 3). In the following, an example execution of the above described
algorithm is explained in further depth.

Example 1. Given a multiset with 9 soft clauses, and sorted weights W =
{w1, . . . , w9}M = {1, 1, 2, 5, 9, 14, 35, 35, 70}M . Then the algorithm builds
W sum = {1, 2, 4, 9, 18, 32, 67, 102, 172}M . Potential splitting points (Step 2) after
w3 and w6 can be found, as wsum

3 ≤ w4 and wsum
6 ≤ w7. Criterion (Step 3): For

the sub-multiset {w4 − w9}M the gcd is 1 < wsum
3 and thus not valid. For the

third sub-multiset {w7 − w9}M the gcd is 35 > 32 = wsum
6 and thus a splitting

point. Then for (Step 4) the algorithm builds the sum of each weight combina-
tions of multiset {w4 − w6}M , resulting in Sums = {0, 5, 9, 14, 19, 23, 28}M . The
minimal distance of two weight sums is 9 − 5 = 4, thus we have a valid splitting
point. Note that with weight 16 instead of 14 in the initial multiset W , this
would not be an actual splitting point.

The three sub-multisets are then solved subsequently, starting with the high-
est weights. The solver call is MaxSAT(w7, w8, w9), followed by adding a PB
encoding, which guarantees the just calculated maximum, to the hard clauses
(Step 6). The next solver call (Step 5) is then MaxSAT(w4, w5, w6), followed by
adding again an additional encoding (Step 6), ensuring the maximum. The last
solver call MaxSAT(w1, w2, w3) is then performed and the solution is printed
(Step 7).

As seen in the example, with the splitting technique many less complex
MaxSAT solver calls are performed, instead of one potentially complex one.
Especially for PB-constraint based solvers this turns out to be more efficient as
demonstrated by the experimental results in Sect. 5.

4 Trimming the MaxSAT Instance (TrimMaxSAT)

In this chapter we describe TrimMaxSAT, a preprocessing trimming algorithm,
which aims at reducing the size of a given MaxSAT instance, by incrementally
testing the satisfiability of each soft clause (with respect to the hard clauses). If
soft clauses are not satisfiable at all, they can be detected and removed. Trim-
MaxSAT uses similar techniques as backbone computing cf. [19,24,29], in con-
trast to backbone computing we are looking only for the unsatisfiable core of soft
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Fig. 2. TrimMaxSAT

clauses instead of variables and we are not checking the satisfiable core. This is
especially beneficial if the MaxSAT instance is split as described in Sect. 3, since
thereby the added encoding often forces a subset of the remaining soft clauses
to be unsatisfiable. As a by-product, the algorithm generates partial solutions,
which can be utilized to approximate the solution to the MaxSAT instance. More
information on approximative MaxSAT solving, which is not the focus of this
paper, is found e.g. in [12,20].

4.1 Algorithm Overview

An overview of TrimMaxSAT is outlined in Fig. 2. The proposed algorithm main-
tains a set of clauses, which have never been satisfied (yet), called neverSAT.
First, this set is initialized as the set of all soft clauses.

The algorithm starts a loop, where in each round at least m soft clauses of
neverSAT are tested for satisfiability. The initialization of m is described later
on in more detail.

At the beginning of each round, the set neverSAT is randomly partitioned
into m sets of (nearly) equal size. Then, the algorithm performs an (incremental)
SAT solver call to test, whether the hard clauses and at least one clause of each
partition element can be satisfied together. If this is the case, all satisfied soft
clauses are known to be satisfiable and can be removed from neverSAT. As a by-
product a partial solution to the MaxSAT instance is found, which is stored, if
it is higher than every previously calculated partial solution. After the trimming
algorithm, the highest found solution can be handed to the MaxSAT solver,
using this weight as a lower bound in the MaxSAT solving process.

If after a satisfiable SAT-solver call, the set neverSAT is empty, all soft
clauses can be satisfied and the algorithm terminates without trimming the
MaxSAT instance (but with a partial solution). If on the other hand neverSAT
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is not empty, i.e. there are still soft clauses which have not been satisfied yet, m
is adjusted to satisfy other (potentially more) clauses with the next solver call.

If at one point the SAT solver call was unsatisfiable and m > 1, the test to
satisfy m soft clauses at once was potentially too strong and m is decreased, so
that the algorithm will test satisfying less soft clauses together.

Lastly, if the SAT solver call was unsatisfiable and m = 1, i.e. the set never-
SAT was not really partitioned. Thus, no more clauses from neverSAT can be
satisfied and thus all clauses in neverSAT can be removed from the MaxSAT
instance without any impact on the solution.

In the following the algorithm is presented in more detail.

4.2 SAT-Encoding of the Soft Clause Partitioning

As described above, the algorithm utilizes a SAT solver to test, whether at
least one clause per partition element for a given partition of neverSAT can be
satisfied. To do so, a relaxation literal rj (cf. Sect. 2.1, p. 5) is added to each
soft clause and for every element in the partition one hard clause is added to
the MaxSAT instance. This hard clause contains all negated relaxation literals
of soft clauses in the corresponding partition element. Additionally every such
hard clause contains the same new relaxation literal r′. By adding ¬r′ to the
assumptions for the next solver call, we guarantee that this clause is satisfied if
and only if at least one clause of the partition element is satisfied.

For the upcoming solver calls r′ is added as a unit clause to the CNF, to
remove all previously added soft clauses.

4.3 Candidate List for Partitioning

Table 1.

List for n = 25

i m el size
1 25 1
2 12 2.08
3 8 3.13
4 6 4.17
5 5 5
6 4 6.25
7 3 8.33
8 2 12.5
9 1 25

As described above, the algorithm divides in each round
the set of all not (yet) satisfied soft clauses into partitions
of varying size. To efficiently decide on the number of parti-
tion elements, the algorithm generates in every round a list
containing only reasonable numbers of partition sizes m.

Not all positive numbers smaller than n := |neverSAT |
should be considered a reasonable candidate for m. Espe-
cially for big n, values close to n would result in highly
similar partition elements (most partition elements contain
only one clause). Therefore a list is created which contains
only �2 · √

n� − 1 elements, where the value m for the ith
list-element is calculated with the following equation:

m =

{
�n/i�, if i <

√
n

�2 · √
n� − i, otherwise

The element size of a given partition element specifies
the number of soft clauses out of which at least one has
to be satisfied. Clearly this number has to be a natural
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number. The elements of one partition should differ in size as little as possible,
therefore only partition elements containing either �n/m� or �n/m� soft clauses
are chosen. Exactly in the middle of the list the size m of the partition, i.e.
the number of partition elements, and the element size, i.e. the number of soft
clauses in a given partition subset, should be (almost) equal (m ≈ n/m ≈ √

n).
The calculation of the candidate list is motivated by the argument that the

minimal distance of at least 1 should hold for m and for the element size between
any row of the list (cf. Table 1).

Example 2. In Table 1 a candidate list for n = 25 is presented. Choosing i = 2
would result in partition of size 12, i.e. 12 subsets of almost equal size: one with
3 elements soft clauses and 11 with 2 elements soft clauses.

4.4 Choosing a Candidate for Partition Size m

Choosing a candidate works similarly to a binary search on the candidate list
described in Subsect. 4.3. A search variable z ∈ (lb, 1) is introduced, where ini-
tially the lower bound lb of z equals 0. This search variable describes the current
position in the candidate list of size l with i = �z · l�.

The search starts at z = 1/2 (i.e. at the middle of the list), at which point
the partition size m (nearly) equals the element size, m = elementsize =

√
n.

If it is possible to satisfy one soft clause of each partition element, the corre-
sponding solver call returns satisfiable. In case of a satisfiable solver call
we halve the difference of z to the lower bound lb. This means for the next cal-
culation of i, z = z − (z − lb)/2. With the satisfiable solver call, the value of z is
getting closer to 0, corresponding to position i = 1, in which each partition ele-
ment contains one soft clause. If a satisfiable solver call satisfies all remaining
soft clauses, which were not yet satisfied, then all soft clauses of the MaxSAT
instance are determined to be satisfiable. Thus, the algorithm terminates in that
case.

With an unsatisfiable solver call, the current value of z is set as a new
lower bound (lb = z) and the difference of z to the lower bound is halved and z is
increased by that value: z = z +(1−z)/2. With an unsatisfiable solver call we’re
getting closer to the upper bound 1 for z, corresponding to the last element of
the candidate list, which means forcing only one soft clause out of neverSAT.
If that entails an unsatisfiable solver call, we can determine that no more soft
clauses are satisfiable. In that case all remaining soft clauses from neverSAT can
be removed from the MaxSAT instance and the algorithm terminates.

Lemma 1 (Termination). The trimming algorithm is guaranteed to success-
fully terminate after a finite number of SAT solver calls.

Proof. After every satisfiable solver call the (finite) set neverSAT shrinks
and the algorithm terminates as soon as neverSAT is empty. Since neverSAT
never grows, the number of satisfiable solver calls is finite.

With an unsatisfiable solver call, z is increased by (1−z)/2. Thus, after a
finite number of successive unsatisfiable solver calls, z reaches a value greater
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than (l−1)/l, where l is the size of the candidate list. Since i = �z ·l�, in this case
i = l, thus the last element of the candidate list is chosen (m = 1). As described
above, if this call also returns unsatisfiable, the algorithm terminates. 	


5 Experimental Results

The presented methods have been evaluated on two benchmark sets: In Sect. 5.1
results on the new benchmark set, which is used by the hardware security applica-
tion, are presented. Section 5.2 provides results on benchmarks from the MaxSAT
Evaluation 2019. Note that these benchmarks contain two families of benchmarks
(spot5 and max-realizability) which are only separable with the new GBMO cri-
terion.

The top six solvers from the Evaluation 2019 [10] and additionally QMaxSAT
with the version of the MaxSAT 2017 Evaluation, are compared. QMaxSAT in
the 2017 version uses different PB encodings and is therefore of special interest.
The proposed techniques are implemented in C++. The solver Pacose20 was
used with Glucose 4 [8] as back-end SAT solver. To show the vital impact of
the proposed techniques on PB-constraint based solvers, we used our Pacose20
framework to simulate the solvers QMaxSAT18, QMaxSAT17 and the 2019 ver-
sion Pacose19. The simulated solvers are denoted with a ∗.

Each experiment ran on one node (Intel Xeon E5-2650v2 core at 2.60 GHz,
constrained to 8 GB of main memory, Ubuntu 18.04.3 in 64 bit mode) of our
cluster. For TrimMaxSAT we used timeouts for each solver call and for the
whole procedure, depending on the number of soft clauses for our experiments.

In the following we use cactus plots (Figs. 3a, b, 4 and 5a). The x-axes of the
plots represent the number of solved instances and the y-axes the time needed to
solve them. The first instances are always solved in only a few seconds, therefore
we zoomed in on the part, where differences can be clearly seen.

5.1 Hardware Security Benchmarks

The benchmark set2 was generated for a hardware security application. More
details on the application are found in [30,31]. The instances vary in complexity,
ranging from small benchmarks with only 47 soft clauses to very large bench-
marks with more than 1.2 million soft clauses and nearly 30 million hard clauses.
In our experiments, we used a timeout of 20 min, as with more time almost no
additional instances are solved.

Figure 3a shows four variants of the Pacose20* solver only using DPW encod-
ing: without any preprocessing technique (P20*) the solver is able to solve 664
instances; with the trimming (P20*+T) technique (cf. Sect. 4) 715 instances;
with the GBMO (P20*+G) technique (cf. Sect. 3) 770 instances; and with both
techniques combined (P20*+T+G) all 778 instances are solved, each in less than
183.5 s. The new trimming technique hereby removes 19.45 soft clauses with 9.5

2 Available at the MaxSAT Evaluation 2020 [1].
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solver calls, and if combined with GBMO it removes 20.8 soft clauses in 11.9
solver calls on average. The encoding is also getting remarkably smaller, as the
following numbers of on average added clauses for commonly solved instances
(solved by all internal techniques) show (numbers are given in millions (mil)):
P20* 9.3mil, P20*+GBMO 3.9mil, P20*+T 2.3mil and P20*+T+G 0.7mil.

Figure 3b compares the 6 solvers of the MaxSAT Evaluation 2019 [1], together
with the QMaxSAT version of 2017 and the proposed tpstrikepre-/ inprocessing
preprocessing techniques (P20*+T+G). Even if the “18” in the solver names
might suggest otherwise, the solvers all participated in the MaxSAT Evalua-
tion 2019. In this plot it can be seen that only two Evaluation solvers, namely
UWrMaxSAT and MaxHS are able to solve all instances, and the PB-constraint
based MaxSAT solvers (Pacose19 and QMaxSAT17/18), are the three solvers
with the fewest solved instances. In contrast, if Pacose20* employs both prepro-
cessing techniques (P20*+T+G), the solver dominates the other solvers on the
hardware security benchmark set. It is especially noteworthy, that Pacose20*,
the solving technique with the least amount of solvable instances (663, Fig. 3a)
for this benchmark set, could be improved by using the proposed preprocessing
techniques, so that in the end it could solve all instances (778) with the best
solving times.

Fig. 3. Cacti plots on the hardware security benchmark set. Pacose (P) with Trim-
MaxSAT (T) and GBMO (G) are abbreviated.

5.2 MaxSAT Evaluation Benchmarks

Many benchmarks from a wide range of applications are collected for the yearly
MaxSAT Evaluations since 2006 when it first took place. For a thorough eval-
uation, we performed experiments on all benchmarks of all MaxSAT Evalua-
tions (2006–2019). In total, 1 334 out of 15 168 unique instances could be sepa-
rated, which equates around 8.79% of all instances. For comparison, here are the
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Fig. 4. Evaluation 2019 solvers, QMaxSAT (Q) and Pacose (P) with TrimMaxSAT (T)
and GBMO (G) on our cluster. The rightmost curves are the top solver combinations.

numbers on how many instances were separable with the (BMO/GBMO) cri-
teria in recent years, 2019 (16.55%/23.38%), 2018 (34.17%/43.50%) and 2017
(20.99%/25.16%) were separable. It is seen, that there are more separable
instances in recent years. All weights of the benchmarks were maximally sep-
arable into 9 multisets. For completeness, variants of Pacose20* are compared
on all 1 334 separable instances: P20* solves 1 161, P20*+GBMO solves 1 213
and P20*+T+G solves 1 215 instances if the timeout for TrimMaxSAT is set
at 600 s. In the remainder of this section we focus on the benchmarks from the
MaxSAT Evaluation 2019.

The proposed GBMO technique (cf. Sect. 3) is able to separate the instances
from two benchmark families, which are not separable with the BMO criterion:
spot5 contains different weights inside each separated group of weights and max-
realizability contains instances which are separable due to allowing

∑
WL =∑

WR1 −∑
WR2 and it also contains different weights inside some of the groups

of weights. The other instances which are separable due to the new GBMO
criterion are widespread in many additional families.

In this section we compare the same 7 solvers from the MaxSAT Evaluation as
in Sect. 5.1. Additionally we ran the PB-constraint based solvers QMaxSAT17*,
QMaxSAT18* and Pacose19* with Glucose 4 (instead of Glucose 3) SAT solver
and with assumptions, which is necessary to use GBMO and TrimMaxSAT. At
the MaxSAT Evaluation 2019 there was an error3 in the benchmarks of the
planning family and therefore neither QMaxSAT nor Pacose were able to handle
these 21 instances. In the * version all these instances can be handled and solved.

Last years’ MaxSAT competitions have shown, that different benchmark fam-
ilies are better suited for different solver types. Therefore it is generally better
to run solver combinations, i.e. to run n solvers subsequently for in total 3600 s
(timeout of 3600/n seconds each), than to run only one solver alone for 3600 s.
The best such combination is the top solver combination. Table 2 shows the top

3 These instances had weights bigger than the top weight.
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Fig. 5. Evaluation 2019 comparison of solver. QMaxSAT (Q) and Pacose (P) with
TrimMaxSAT (T) and GBMO (G) are abbreviated.

Table 2. Results of the MaxSAT Evaluations 2017–2020 (marked with E) and of
experiments performed on our own cluster (marked with C). The respective number
of solved instances of the virtual best solver (VBS), top solver (topS) and top solver
combination (topC) are listed, followed by the names of the (always three) top solvers
of the combination. Pacose (P), TrimMaxSAT (T) and GBMO (G) are shortened.

Year VBS topS topC Solver1 Solver2 Solver3

E 2020 479 436 461 MaxHS UWRMaxSAT Pacose20

E 2019 459 380 429 MaxHS UWRMaxSAT QMaxSAT18

C 2019 456 378 423 MaxHS UWRMaxSAT QMaxSAT18

C 2019 456 378 436 MaxHS UWRMaxSAT P19/20*+T+G

E 2018 499 421 474 MaxHS RC2-A Pacose18

E 2017 650 538 607 MaxHS Open-WBO-OLL Open-WBO-LSU

solver combinations for the years 2017–2020 with at least one PB solver in each
of them (always Solver3). As we focused on 2019 we included two rows (marked
with C) with the results of the solvers on our cluster.

The virtual best solver (VBS), which contains the best overall results of all
solvers (with full 3600 s timeout each), solves 456 instances on our cluster.

All top combinations (topC) are closer to the virtual best solver (VBS)
than to the single top solver (topS). Without the techniques introduced in
this paper, the old top combination has solved 423 instances on our clus-
ter. Using the proposed techniques, the new top solver combination then
includes Pacose*+TrimMaxSAT+GBMO (2019 or 2020) and solves 13 additional
instances. In total, the distance (regarding the solved instances) to the VBS
was decreased by 39% and the distance to the top solver was further increased
by 29%.



574 T. Paxian et al.

Figure 4 shows results on the MaxSAT Evaluation 2019 benchmark set, which
ran on our own cluster. Depicted are the 6 top solvers, the improved versions of
Pacose20* and QMaxSAT18* (with TrimMaxSAT and GBMO) and results for
the top solver combination before the techniques of this paper were used (old
top combination) and the improved top solver combination with the techniques
proposed in this paper (new top combination). It is seen, that the top solver
combination is significantly improved.

Figure 5a and Table 3 show the pure impact of the proposed techniques.
Especially noteworthy is the improvement of the PB-constraint based solvers.
For clarity, in Fig. 5a QMaxSAT18* is omitted from the graphic, as the improve-
ments of the solver were mostly in timing and also two instances because of Trim-
MaxSAT. The graph would overlap with P19* and Q17*+T+G and therefore
would hinder the figure’s readability. For the other three solvers the improvement
is clearly visible. Table 3 shows the significant improvement for all instances
which are separable with GBMO. Three of the families in which almost all
instances are separable are listed. Spot5 is of special interest because it contains
different weights in each of the sub-multisets.

Figure 5b shows a scatter plot of the 4 PB-constraint based solvers with and
without GBMO and all 586 instances from the weighted MaxSAT Evaluation
2019. Each dot represents one instance with both solving times of each solver
with and without the GBMO technique. If it is solved faster with GBMO, the

Table 3. Results for the solvers of the MaxSAT Evaluation 19 on our cluster for all
instances, which were separable, and for the families spot-5, haplotyping-pedigrees and
shiftdesign for which GBMO had especially good results. We compared the combina-
tions with GBMO (+G) and TrimMaxSAT (+T). The results are presented as in the
MaxSAT Evaluation, at first the average solving times in seconds and in brackets the
number of solved instances. QMaxSAT (Q) and Pacose (P) are shortened.

total GBMO spot5 hap-ped shiftd

586 137 17 21 11

RC2-18 272.19 (378) 177.45 (115) 165.10 (6) 28.23 (21) 387.44 (10)

UWRMaxSAT 187.03 (371) 135.82 (118) 1125.38 (9) 26.74 (21) 442.50 (11)

MaxHS 269.01 (359) 243.63 (97) 1616.78 (4) 195.00 (19) 392.07 (4)

Maxino 214.31 (322) 161.37 (93) 3.29 (5) 8.54 (21) 780.78 (11)

Q18 327.73 (321) 175.03 (106) 384.56 (17) 78.60 (21) 346.05 (11)

P19 346.37 (319) 357.06 (97) 645.50 (13) 534.29 (18) 807.71 (8)

P19* 345.90 (345) 346.84 (100) 686.18 (13) 534.18 (18) 906.56 (9)

P19*+G 271.23 (354) 120.57 (110) 148.53 (17) 11.22 (21) 134.20 (11)

P19*+T+G 260.16 (353) 118.28 (110) 149.80 (17) 10.99 (21) 131.83 (11)

P20* 310.12 (348) 210.50 (97) 247.65 (17) 164.04 (11) 899.87 (9)

P20*+G 265.57 (360) 107.67 (110) 142.18 (17) 15.34 (21) 160.56 (11)

P20*+T+G 280.23 (362) 109.28 (110) 143.57 (17) 15.31 (21) 159.57 (11)

Q17* 345.46 (334) 348.48 (100) 807.23 (13) 546.48 (18) 900.69 (9)

Q17*+G 272.81 (345) 97.39 (110) 138.06 (17) 10.99 (21) 134.57 (11)

Q17*+T+G 274.18 (345) 97.80 (110) 140.29 (17) 10.77 (21) 131.81 (11)

Q18* 349.01 (347) 210.70 (109) 347.07 (17) 86.57 (21) 260.73 (10)

Q18*+G 304.55 (347) 106.40 (110) 139.57 (17) 9.42 (21) 168.43 (11)

Q18*+T+G 325.05 (349) 106.29 (110) 138.80 (17) 9.49 (21) 165.90 (11)
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dot is in the lower right triangle, otherwise in the upper left triangle. Most
dots are along the diagonal because these instances are not separable, or can be
solved in only a few seconds with both variants. Some of the instances are solved
slower due to the fact that using “≤” instead of “<” in Eq. 2 (Page 6) can cross
out possible solutions and therefore makes the instance in some cases harder to
solve (cf. Remark 1d, Page 8). It is especially noteworthy that there are many
instances solved in less than 500 s which were not solvable before.

In summary, all tested PB-constraint based solvers and the top solver com-
bination can be significantly improved with the proposed techniques.

6 Conclusion and Outlook

Over the last years preprocessing techniques have played an increasing role in
the development of solver technologies. This work investigated weighted partial
MaxSAT problems and proposed

– a proven generalization of Boolean Multilevel Optimization (GBMO)
– different criteria to efficiently test whether splitting into subproblems is pos-

sible and
– a second preprocessing technique (TrimMaxSAT), which finds unsatisfiable

soft clauses with incremental solver calls, to reduce the search space, especially
for PB-constraint based MaxSAT solvers.

The impact of the proposed techniques is demonstrated on benchmarks from the
MaxSAT Evaluation 2019, where the three PB-constraint based solvers improved
performance and on a benchmark set from a hardware security application,
where the proposed combination of preprocessing techniques outperforms all
other state-of-the-art solvers. Additionally, we were able to significantly improve
the top solver combination for the 2019 MaxSAT Evaluation.

In the future we plan to implement a greedy binary search for local optima
based on the proposed trimming technique, to find better lower bounds for the
solution. The additional information on how often soft clauses are solved will
then be used to implement a more efficient encoding in terms of size.
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Abstract. We introduce a novel decision procedure to the satisfiabil-
ity problem in array separation logic combined with general inductively
defined predicates and arithmetic. Our proposal differentiates itself from
existing works by solving satisfiability through compositional reasoning.
First, following Fermat’s method of infinite descent, it infers for every
inductive definition a “base” that precisely characterises the satisfiabil-
ity. It then utilises the base to derive such a base for any formula where
these inductive predicates reside in. Especially, we identify an expres-
sive decidable fragment for the compositionality. We have implemented
the proposal in a tool and evaluated it over challenging problems. The
experimental results show that the compositional satisfiability solving
is efficient and our tool is effective and efficient when compared with
existing solvers.

Keywords: Separation logic · Satisfiability · Regular proofs

1 Introduction

Satisfiability solvers are essential to symbolic analysis in checking code correct-
ness. Such an analysis executes programs symbolically and constructs path con-
ditions, those constraints on values stored in program variables and expressed
in terms of input parameters, that reach a program point. A satisfiability solver
is then utilized for discharging the path conditions to either detect and prune
infeasible paths or to generate inputs that exercise a buggy path. So far, while
techniques to satisfiability solving for heap-independent domains e.g., satisfia-
bility modulo theories (SMT) [1], have been well developed, there have been a
few works targeting heap-oriented logics. Heap-manipulating programs are often
building-blocks of real-world applications (e.g., data structures like arrays and
trees). Especially, heap-related bugs are the sources of the security vulnerabil-
ities; for instance, memory leak, double free and use-after-free caused the vul-
nerabilities CVE-2020-12768, CVE-2019-3896 and CVE-2020-8649, respectively,
found in the Linux kernel recently. Therefore, satisfiability solver that supports
the symbolic execution over heap-manipulating programs is important.

Separation logic [16,36] formalism has been increasingly applied for reasoning
about heap-based programs. Combining with general inductive definitions and
c© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 578–602, 2021.
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arithmetic, it can concisely and precisely represent constraints over unbounded
and complex data structures (e.g., nested lists, AVL trees) [5,10,19,23,29–32].
The strength of the logic is the support for compositional reasoning through
the separating conjunction operator, which allows reasoning about disjoint por-
tions of heaps locally and independently. The compositional reasoning has been
applied through the frame rule and automated using the bi-abduction technique
[9,19]. Implemented in Facebook’s Infer [8], the compositional reasoning helps
the verification scale up to millions of lines of code.

Our research question is whether the compositional reasoning introduced in
[9] could be applied to a satisfiability solver or not. The satisfiability problem
in separation logic was studied in [5] for inductive definitions with heap-only
constraints and in [23] for those combining both heap and arithmetic (heap-
independent) constraints. Given a formula, these works essentially compute a
base that characterises its satisfiability precisely. In these works, a base generated
for every formula is used to check the satisfiability of the formula itself. Yet
another challenge is to develop a satisfiability solver that can derive a base for
formula in a modular way: The base of a formula is defined by terms of the bases
of its parts and a means of combining them.

In this paper, we present a satisfiability solver with the capability of the
compositionality in array separation logic combined with general definitions of
inductive predicates and arithmetic properties. We study a decidable fragment
with small heap model property: The base of the formula is satisfied by those
models, the interpretations of variables, where heaps are minimal and finite.
Especially, the base is a separation logic formula without any inductive predi-
cates. A base of a symbolic heap, a conjunctive formula, is inductively computed
from the bases of its conjuncts. In this endeavour, the difficulty we face is to find a
base for each inductive predicate defined with recursive definitions. To overcome
this challenge, we develop an algorithm as an application of Fermat’s method
of infinite descent. The method of infinite descent is a standard approach to
Diophantine equations. This method is typically applied in two ways:

1. To show that an equation P has no solution. Let n be a positive integer,
suppose that whenever P (n) holds, there exists a positive integer m such
that m < n and P (m) holds. Then, P (x) is false for all positive integers x.

2. To show that an equation P has a set of solutions. First, we need to hypoth-
esize a simpler equation Q which satisfies the following two conditions:

– Q(a) and P (a) hold for some natural number constant a,
– and whenever Q(n) and P (n) hold, there exists a positive integer m such

that m < n and both Q(m) and P (m) hold.
Then, P has the same set of solutions with Q.

The work in [21,23] used the first application to show the unsatisfiability of
a formula. Here, we apply the second approach to derive the base (like Q in
the method of infinite descent) through a so-called regular unfolding tree that
represents a set of all equisatisfiable solutions of a formula. The bases of inductive
predicates are computed once and are independent of the contexts where they
are used. Through compositionality, we hope that our proposal could help to
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improve the performance of those symbolic analyses (e.g., test case generation
[29,31]) through the reuse of the bases to discharge hundreds of satisfiability
problems over the same set of predicate definitions.

Contributions. Our primary contributions are summarised as follows.

– We propose a novel decision algorithm that can compositionally compute a
base for checking the satisfiability of a separation logic formula.

– We show that our solver is more expressive than all existing works (without
the separating implication). Alongside this, we describe a novel decision pro-
cedure for Presburger arithmetic that includes nested inductive definitions.

– We have implemented the proposal in a prototype solver, called S2S. Our
experimental results on those benchmarks taken from SL-COMP 2019, a
competition of separation logic solvers [37], and generated during the pro-
gram verification show that S2S with compositional reasoning is effective and
efficient.

Organization. The remainder of the paper is organized as follows. Section 2
illustrates our ideas and presents motivating examples. Section 3 describes the
fragment of separation logic. Section 4 introduces regular unfolding trees, the
intermediate structure constructed to represent all solutions of a formula. In
Sect. 5, we present our solver and identify semantic conditions for decidabil-
ity. We refer to the fragment satisfies these conditions as SLIDLIAsem. The exist-
ing fragments presented in [3,5,14,18,21,23,39,41] are subsumed by SLIDLIAsem

straightforwardly. Section 6 shows SLIDLIA, a novel syntactic decidable fragment
of SLIDLIAsem. Section 7 presents the implementation and evaluation. Section 8
discusses related work. Finally, Sect. 9 concludes.

2 Basic Concepts and Motivating Examples

In this section, we first informally explain how to apply Fermat’s method of
infinite descent to compute the bases for inductive predicates. Next, we elaborate
on our ideas through two examples that are beyond the capability of existing
works.

Fig. 1. A regular unfolding tree

Generating Bases via Regular Unfolding Trees.
We show how to find a base, the “another
simpler related equation” in the second appli-
cation of the method of infinite descent, for
an inductive predicate. We infer those bases
through regular unfolding trees. Such a tree is
a (possibly infinite) tree of formulas: the leaves
are either base formulas - those without any
inductive predicates - or nodes (called buds)
which are linked back to inner nodes (called
companions), the root of the tree is the formula being unfolded, and nodes are
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connected to one or more children through predicate unfolding i.e., replacing an
inductive predicate in the parents by its definition. Equivalently, an unfolding
tree is a regular tree that is generated by a finite directed (cyclic) graph. Figure 1
shows an example of the regular unfolding tree, a tree with cycles through back-
links. In the back-link between B and C, B is a bud, C is a companion and σ is
a substitution between variables. B is linked back to C only when:

– There exist P(x̄) P C and P(ȳ) P B s.t. P(ȳ) is in a formula unfolded from
P(x̄);

– And there exists B′ such that B′ is equisatisfiable with B, B ⇒ B′ and
B′σ ≡ C.

The base of an inductive predicate is generated as the disjunction of the leaf
bases of its regular unfolding tree. The most challenging task we have to solve is
to compute bases for subtrees involving cycles. For such a subtree, we need to find
a base formula that exactly characterises the set of solutions of the companion.
In the following, we illustrate how to compute such a base for the subtree rooted
by C in Fig. 1.

1. If the base leaf D is unsatisfiable, then we infer the base as false .
2. Otherwise, following the second application of infinite descent, we generate

the base as a base formula that exactly characterises the satisfiability of (D _
B′).

After that, the whole subtree rooted by the companion is replaced by the inferred
base. The process which computes bases for subtrees involving cycles is applied
repeatedly in a bottom-up manner until the tree does not contain any cycles.
Then, the base of the root is the disjunctive set of satisfiable leaves of the final
tree.

Comparing to the Base in [23]. Using regular unfolding trees, the work in [23]
generates bases to check satisfiability without compositionality. The main dif-
ference between this work and ours is in inferring the bases for subtrees involv-
ing cycles in the second case above. To make a back-link with a bud B and
a companion C, the algorithm in [23] finds a substitution σ and a formula B′

for B ⇒ B′ and B′σ ≡ C. As it might over-approximate B, it might gener-
ate over-approximated bases. Since D is satisfiable, these bases are still com-
plete when utilized to check the satisfiability of companion C and its ances-
tors. If, however, they are combined with some formula, the combined one
might be over-approximated (as the frame rule says: P (x̄) ⇒ base implies
P (x̄) ∗ some formula ⇒ base ∗ some formula). Hence, the solver in [23] may
produce false positives if it is for compositional solving. In contrast, ours ensures
B′ is equisatisfiable with B and the base generated exactly characterises the
satisfiability of the predicate provided. Our solver is thus sound and complete
for compositionality.

First Example. Let us consider the following satisfiability problem Δ0:

Δ0 = odd(x,y,m) ∗ odd(y,null,n) ^ (Dk. m + n = 2k + 1)
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where odd(x,y,m) is an inductive predicate representing singly-linked list seg-
ments with head pointer x, ending pointer y, and odd length m. Δ0 is a symbolic
heap. It is a conjunction of a spatial formula, odd(x,y,m) ∗ odd(y,null,n), and a
pure (heap-independent) formula, Dk. m + n = 2k + 1. The spatial one specifies
two connected list segments headed by x and y. The two lists are conjoined by
the separating conjunction ∗ that tells us they lie on disjoint heap regions. The
pure formula specifies that the sum of the lengths of the two lists, m and n, is
an odd number.

The inductive predicate odd is mutually defined as follows.

odd(x, y, n) ≡ Dx1. x�→{x1} ∗ even(x1, y, n−1);
even(x, y, n) ≡ emp ^ x = y ^ n = 0 _ Dx1.x�→{x1} ∗ odd(x1, y, n−1);

Here, each inductive definition is a disjunction of symbolic heaps. A sym-
bolic heap may be existentially quantified. A heap formula is a conjunction of
atomic predicates: emp to specify empty heap, points-to predicates (e.g., x�→{x1}
above) to assert a singleton heap, and occurrences of inductive predicates (e.g.,
even(x1, y, n−1) above).

Δ0 is unsatisfiable. This problem is challenging for the existing solvers. It
includes the arithmetic constraints which are beyond the fragments presented
in Smallfoot [3], SLSAT [5], SPEN [13], Asterix [27] and Harrsh [17]. Due to the
mutual recursion, it is beyond the capability of the algorithms presented in
[14,18,39,41].

Δ0 is in our decidable fragment. The proposed solver, S2S, proves its unsatis-
fiability through the following two phases. First, it computes for predicate odd a
base that precisely characterises its satisfiability. Here, a base is a (possibly dis-
junctive) separation logic formula without any inductive predicate occurrences.
Secondly, it derives a base Δ′

0 for Δ0 by replacing every occurrence of odd by the
base inferred in the first phase. As Δ′

0 does not contain any inductive predicates,
satisfiability is decidable [21,28].

In this example, S2S infers the base for predicate odd(x, y, n) as:

{ x�→{ } ^ (Di. n = 2i + 1 ^ iě0) } where denotes existential variables.

After that, it replaces each occurrence of odd in Δ0 with that base to obtain:

Δ′
0 ≡ x�→{ }∗y �→{ }^(Dk.m+n=2k+1)^(Di.m=2i+1^iě0)^(Di.n=2i+1^iě0)

As Δ′
0 is unsatisfiable (the unsatisfiable cores are underlined), so is Δ0.

We now show how S2S infers the base for predicate odd(x, y, n). It first gen-
erates the regular unfolding tree for odd(x, y, n) in Fig. 2. In this tree, uppercase
variables are existentially quantified, and the back-link is constructed based on
the spatial (heap-dependent) projection of the formulas. Next, in a bottom-
up manner, it finds a base for each subtree rooted by a companion and then
replaces the whole subtree with that base. That base is a combination of its
spatial part and its numeric part that are derived separately. For the subtree
rooted by Δ1 in Fig. 2, the spatial projection of the base is x�→{ }, the spatial
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Fig. 2. Regular unfolding tree of odd(x,y,n)

formula of Δ2. We, especially, show that the (infinite) set of all spatial formulas
derived from this subtree is equisatisfiable with this base. The numeric projection
of the base is equivalent to evenN (N1)^n=N1+1 where evenN (N1) is defined
from the ones of Δ2 and Δ4 as: evenN (N1) ≡ N1=0 _ evenN (N3)^N1=N3+2.
Then, it derives for evenN (N1) an equivalent closed form, a Presburger for-
mula, as : evenN (N1) ≡ Di. N1=2i^iě0. Finally, the base of odd(x,y,n) is
the base of Δ1, the conjunction of its spatial and numeric projections, as
x�→{ }^(Di. n=2i+1^iě0).

Second Example. Let us consider the satisfiability problem in a fragment includ-
ing the following nested lists whose data values are increasingly sorted.

sllss(x,y,mi,ma,n,n0) ≡ emp^x=y^mi=ma^n=n0

_ Du, mi1, n1.x�→{mi,u}∗sllss(u,y,mi1,ma,n1,n0)^x�=y^mi<mi1^n=n1+1
nllss(x,y,b,mi,ma,n,n0) ≡ emp^x=y^mi=ma^n=n0

_ D u,Z,m1,m2,n1,n2.x�→{mi,u,Z}∗sllss(Z,b,m1,m2,n1,0)∗
nllss(u,y,b,m2,ma,n2,n0)^x�=y^x�=b^mi<m1^n=n1+n2+1

Here, n and n0 are parameters to capture the size (i.e., the number of heap cells)
of the lists. nllss predicate contains nested length constraints that are beyond all
existing decidable fragments. We show that nllss is in the decidable fragment,
and can support compositional satisfiability solving. We compute the length
constraints in arithmetic with addition and divisibility prior to transforming it
into Presburger arithmetic. We show how to derive the bases for these predicates
throughout the rest of the paper.

3 Array Separation Logic with Inductive Definitions

In this section, we first present the syntax and semantics of formulas in our work.
After that, we show how to obtain spatial and numeric projections of formulas.
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Definition 1 (Symbolic heap). Terms t, (Presburger) pure formulas π, spa-
tial formulas κ, symbolic heaps Δ and disjunctions Φ are given by the following
grammar.

Φ ::= Δ | Φ _ Φ Δ ::= κ^π | Dv. Δ
κ ::= emp | v �→{t1, .., tN} | P(v̄) | array(t, t) | κ∗κ
π ::= true | α | ¬π | π^π | π_π

α ::= t=t | t=null | tďt
t ::=c | v | t+t | −t

where v ranges over an infinite set Var of variables, t̄ over sequences of terms
(either variables or null) (t̄i for its ith element), c over Z, P over a finite set
P.

The array predicate only records the bound of contiguous memory blocks, not
their contents. Note that t1 �=t2 is the short form for ¬(t1=t2). FV(Φ) returns the
free variables of Φ. We write Φ(v̄) to denote that v̄ = FV(Φ). Δ[t1/v2] denotes
the formula obtained by substituting each term t1 in Δ for the variable v2.
Dw̄, v. Δ ^ v=x is normalised into Dw̄. Δ[x/v] and π ^ π is normalised into π.

Given a formula Dw̄. P(v̄) ∗ v �→{t̄} ∗ array(v1, v2) ∗κ ^ x�y ^ π (where �P{=
, �=}), inductive predicate P(v̄) (resp. array(v1, v2)) is called (heap) observable
if there exists at least one variable in v̄ (resp. {v1, v2}) that is quantifier-free
(i.e., x�y ^ π implies that v̄ \ w̄ �= H); v �→{t̄} is called (heap) observable if v
is quantifier-free (i.e., x�y ^ π implies that v �P w̄). Finally, x�y is observable
if both x and y are quantifier-free (i.e., x�y ^ π implies that {x; y} ∩ w̄ = H).
If a predicate is not observable, it is unobservable. Δ is a formula obtained by
replacing every v �→{t̄}PΔ by v �→{ }.

Φ is a base formula if it does not contain any occurrence of inductive predi-
cates. Otherwise, it is an inductive formula. We use B to denote a conjunctive
base formula.

A definition of an inductive predicate is a disjunction as P(v̄) ≡ Φ. In each
disjunct of Φ (called a definition rule), all variables which are not formal param-
eters are existentially quantified. We use baseP(P(v̄)) to denote the base of P(v̄).

Semantics. Concrete heap models assume a set Loc of locations (heap
addresses), such that Loc ⊆ Z and null �P Z. The semantics is given by a sat-
isfaction relation: s,h |= Φ is valid if the stack s P Stacks and heap h P Heaps
satisfies the formula Φ. Stack and heap abstractions are defined (assume that
every points-to predicate has at most N fields):

Heaps def= Loc⇀fin Z
N Stacks def= Var → Z

Suppose that dom(f) is the domain of function f , h1#h2 denotes disjoint heaps h1

and h2, and h1·h2 denotes the union of two disjoint heaps. If s is a stack, v P Var
and α PZ, we write s[v �→α] = s if v P dom(s) and s[v �→α] = sY{(v, α)} if v �Pdom(s).
The interpretation of an inductive predicate P(v̄), denoted by [[P(v̄)]], is based on
the least fixed point semantics (cf. [23]). Then, the semantics is shown below.
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s, h |= emp iff dom(h)=H s, h |= true iff always
s, h |= v �→{v1, .., vN} iff dom(h)={s(v)} and h(s(v))=(s(v1), .., s(vN ))
s, h |= array(t1, t2) iff s(t1)ďs(t2) and dom(h)={s(t1), ..., s(t2)}
s, h |= P(v̄) iff (h, s(v̄1), .., s(v̄k)) P [[P(v̄)]]
s, h |= κ1 ∗ κ2 iff Dh1, h2. h1#h2, h=h1. h2 s.t. s, h1 |= κ1 and s, h2 |= κ2

s, h |= κ^π iff s, h |= κ and s |= π
s, h |= Dv. Δ iff Dα. s[v �→α], h |= Δ
s, h |= Φ1 _ Φ2 iff s, h |= Φ1 or s, h |= Φ2

Semantics of pure formulas is omitted, for simplicity.

Projections [23,39]. For every variable vPVar, if it appears in a spatial formula
then it is a spatial variable. Otherwise, it is a numeric variable. x̄S (resp. x̄N ) is
a sequence of variables similar to x̄ excluding numeric (resp. spatial) variables.
|x̄S | is a sequence of variables obtained by replacing every spatial variable in x̄
with a fresh existential one.

For each inductive predicate P(t̄) ≡ Φ, we assume the inductive symbol PS and
predicate PS(t̄S) for its spatial projection that satisfy PS(t̄S) ≡ ΦS . Similarly, we
presume the inductive symbol PN and predicate PN(t̄N ) for its numeric projection
that satisfy PN(t̄N ) ≡ ΦN . Given pure conjunction π, we can rewrite it as π ≡
α^β^γ where FV(α) ⊆ FV(π)S and there does not exist another α′Pπ such
that αPα′, FV(β) ⊆ FV(π)N and there does not exist another β′Pπ such that
β P β′, and γ is the conjunction of the remaining constraints. In the following,
we define the two projections.

Definition 2. The spatial projection (Φ)S is defined inductively as follows.

(Δ1 _ Δ2)S ≡ (Δ1)S _ (Δ2)S

(Dv̄.Δ)S ≡ Dv̄S .(Δ)S

(κ^α^β^γ)S ≡ (κ)S^α
(κ1∗κ2)S ≡ (κ1)S∗(κ2)S

(P(v̄))S ≡ PS(v̄S)
(x�→{v̄})S ≡ x�→{|v̄S |}
(array(v1, v2))S ≡ array(v1, v2)
(emp)S ≡ emp

Similarly, the numeric projection (Φ)N is defined inductively as follows.

(Δ1_Δ2)N ≡ (Δ1)N_(Δ2)N

(Dv̄ · Δ)N ≡ Dv̄N · (Δ)N

(κ^α^β^γ)N ≡ (κ)N^β

(κ1∗κ2)N ≡ (κ1)N^(κ2)N

(P(v̄))N ≡ PN(v̄N )
(x�→{v̄})N≡(array(v1, v2))N≡(emp)N≡true

Definition 3 (Closed form). Any numeric project PN(v̄N ) of an definition is
called Presburger-definable if there exists a Presburger formula π such that for
any stack s, we have: s |= PN(v̄N ) iff s |= π. We call π is the closed formula of
the projection.

We use function Pres to map every Presburger-definable projection into its
closed form.
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Example 1. The numeric projection of predicate sllss in Sect. 2 is:

sllssN(mi,ma,n,n0) ≡ mi=ma^n=n0

_ Dmi1, n1.sllssN(mi1,ma,n1,n0)^mi< mi1^n = n1+1

This numeric predicate is in the decidable fragment DPI [39] and its closed form
is Pres(sllssN(mi,ma,n,n0)) ≡ mi ď ma^n ě n0. �

4 Regular Unfolding Trees

Given an inductive predicate with spatial and pure constraints, its regular unfold-
ing tree is generated based on the spatial projection and the base is collected
for the spatial and arithmetic projections, separately. In this section, we first
introduce regular unfolding trees (Subsect. 4.1). After that, we present an algo-
rithm to construct the trees where back-links are generated based on the spatial
projection of formulas (Subsect. 4.2). We also discuss the properties of the trees
that are foundations for correctness.

4.1 Data Structure

A regular unfolding tree T is a tuple (V,E, C) where

– V is a finite set of nodes each of which is a symbolic heap Δ.
– E is a set of labeled and directed edges (Δ,L,Δ′) P E where Δ′ is derived

from unfolding an inductive predicate in Δ and L is a label to record which
disjunct rule of the definition has been used. Given P(v̄)≡

∨n
i=1 Dw̄i.Δi and

a node e ≡ Δ ∗ P(t̄) where P(t̄) is chosen for unfolding, then new n nodes
ei ≡ Δ∗ (Dw̄i.Δi)[t̄/v̄] and new n edges (e, (P(t̄), Dw̄i.Δi)[t̄/v̄], ei) are created.

– C is a back-link (partial) function. In a back-link C(Δc→Δb, σ), the leaf node
Δb is linked back to an ancestor Δc when the following two conditions hold.
First, there exist P(x̄) P Δc and P(ȳ) P Δb such that P(ȳ) is in a subformula
unfolded from P(x̄). Secondly, there exists Δ′

b s.t. ΔS
b ⇒ Δ

′S
b , Δ

′S
b is equisat-

isfiable with ΔS
b , and Δ

′S
b σ ≡ ΔS

c . In such a back-link, Δb is a bud, and Δc

is a companion.

A leaf node is marked as open or closed. It is marked as closed when it is either
a base formula, unsatisfiable or a bud in a back-link. Otherwise, it is marked as
open and may be chosen to reduce into multiple open nodes through predicate
unfolding. baseP(Δ) denotes the set of satisfiable base formulas of the subtree
rooted by node Δ.

4.2 Generating Regular Unfolding Trees

Regular unfolding trees are generated via procedure ω-SAT, described in
Algorithm 1. Given a formula Δ0, ω-SAT creates an initial tree with one open
node Δ0. Then, it iteratively applies the following procedures until all leaf nodes
are marked as closed.
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Algorithm 1: Procedure ω-SAT
input : Δ0

output: T
1 T ←{Δ0} ; /* initialize */

2 while true do
3 T ←base eval(T ) ; /* eval bases */

4 T ←link back(T ) ; /* generate back-link */

5 (is exists, Δi)←choose bfs(T ) ; /* open leaf for unfolding */

6 if not is exists then
7 return T ;
8 else
9 T ←unfold(Δi);

10

11 end

1. Leaf Node Evaluation via procedure base eval (line 3). It checks satisfiability
for every base leaf node and marks them closed accordingly.

2. Back-link Construction via procedure link back (line 4). It attempts to link
an open leaf node with an ancestor via some equisatisfiability and substitu-
tion principles.

3. Reduction. It chooses an occurrence of inductive predicates in an open leaf
node (line 5) to unfold (a.k.a. instantiate - line 9) in a breadth-first manner.

base eval makes use of the following procedure eXPure to discharge a base
formula. eXPure transforms a separation logic formula to a formula in first-order
logic. Given a base formula B ≡ Dw̄. ∗ni=1 array(vi, ti) ∗ ∗mi=1xi �→{ȳi} ^ π,
eXPure works as follows. If π ⇒

∨
1ďiďn vi=null _ ti=null _ ∨

1ďiďm xi=null,

then πB = eXPure(B) def= false . Otherwise,

πB = eXPure(B) def= D w̄.
∧

1ďiďn viďti ^ ∧
1ďi<jďn(ti<vj) _ (tj<vi)^∧

1ďiďn,1ďjďm(xj<vj) _ (ti<xj) ^ ∧
{xi �=xj | i, jP{1...m} and i�=j} ^ π

Lemma 1. For any stack s and base formula B, s |= eXPure(B) iff Dh. s, h |=
B.

The procedure link back was designed based on the spatial part of the formu-
las. As we show that satisfiability in (dis)equalities relies only on quantifier-free
variables, existentially quantified heaps could be discarded. Particularly, a leaf
node Δb, say Δb ≡ Dw̄. Δb1 ∗Δb2 ∗κd, is linked back to an internal node Δc only
when:

1. every heap predicates in (Dw̄. Δb2)
S are unobservable; and

2. κd contains duplicate inductive predicate occurrences. Given Δb1 ≡ κb1 ^
πb1 , for every inductive predicate P(v̄) in κd, there exists a substitution σ
over a subset of existentially quantified variables of v̄ such that (P(v̄))Sσ is
in (κb1)

S ; and
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3. there exists a substitution σc ≡ [t1/v1, .., tn/vn] where vi, ti (i P {1...n}) are
existentially quantified such that (Δc)S ≡ (Dw̄. (Δb1)S)σc.

Properties of ω-SAT over Spatial Projection. We now show some properties
of ω-SAT over fragment SHID, a fragment of array separation logic with spatial-
only definitions of inductive predicates. These properties are fundamental for
compositionality.

Definition 4. (Fragment SHID). Every inductive symbol Pi P P in SHID

is defined as: Pi(v̄i) ≡
∨m

j=1(Dw̄ij . κij ^ πij ) where πij (1ďjďm) are
(dis)equalities.

For every back-link with a companion Δc and a bud Δb, if Δb is satisfiable
then every formula derived from unfolding Δb is of the form B∗Br and there
exists a substitution σ such that Bσ is a leaf node of the subtree rooted by Δc

and Br is unobservable.

Proposition 1 (Completeness). For any s, h and a back-link with a com-
panion Δc and a bud Δb, if s, h |= Δb, then DB P baseP(Δc) and Ds′ ⊆ s, h′ ⊆ h
s.t. s′, h′ |= B.

We show the small model property of the bases generated.

Lemma 2 (Small Model). For any s, h and base satisfiable formula B∗Br

where Br is unobservable, if s, h |= B, then Ds′ Ě s, h′ Ě h. s′, h′ |= B ∗ Br.

ω-SAT with link back always terminates over SHID as the numbers of both
definitions in the system and quantifier-free variables in a formula are finite.

Proposition 2 (Termination). ω-SAT terminates in SHID.

An unfolding tree is a cyclic proof only when every leaf nodes are either
unsatisfiable or linked back. A cyclic proof is generated as a witness for unsat-
isfiability.

Proposition 3 (Soundness). If Δ has a cyclic proof, Δ is unsatisfiable.

Example 2. We illustrate ω-SAT over shape-only singly-linked list sll and nested
lists nll, the spatial projections of the ones in Sect. 2, without arithmetic prop-
erties.

sll(x,y) ≡ emp^x=y _ Du.x�→{ ,u}∗sll(u,y)^x�=y
nll(x,y,b) ≡ emp^x=y _ D u,Z.x �→{ ,u,Z} ∗ sll(Z,b) ∗ nll(u,y,b)^x�=y^x�=b

Figure 3a shows unfolding tree for sll. This tree is constructed as follows.
Starting from Δs0 ≡ sll(x,y), ω-SAT unfolds the inductive symbol to obtain Bs1

and Δs2 .

Bs1 ≡ emp ^ x=y Δs2 ≡ Du1.x�→{ ,u1}∗sll(u1,y)^x�=y
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Fig. 3. Regular unfolding trees

with two new edges whose the labels are as follows.

l1 ≡ (sll(x,y), emp ^ x=y) l2 ≡ (sll(x,y), Du1.x�→{ ,u1}∗sll(u1,y)^x�=y)

ω-SAT evaluates Bs1 as satisfiability and marks it as closed. For Δs2 , ω-SAT
unfolds the inductive predicate to obtain Bs3 ≡ x�→{ ,y}^x�=y and the following
Δs4 .

Δs4 ≡ Du1,u2.x�→{ ,u1}∗u1 �→{ ,u2}∗sll(u2,y)^x�=y^u1 �=y

The two new edges have the following labels.

l3 ≡ (sll(u1,y), emp ^ x=y) l4 ≡ (sll(u1,y), Du2.u1 �→{ ,u2}∗sll(u2,y)^u1 �=y)

Δs4 is linked back to Δs2 and marked as closed since Δs4 could be rear-
ranged as: Δs4 ≡ Du1,u2.Δb1 ∗ Δb2 where Δb1 ≡ x�→{ ,u1}∗sll(u2,y)^x�=y
and Δb2 ≡ u1 �→{ ,u2}^u1 �=y s.t. (i) Du1,u2.Δb2 is unobservable and (ii) Δs2 ≡
(Du1,u2.Δb1)σc where σc ≡ [u1/u2]. That means, if Δs4 had been kept unfolding,
its sub-tree would have included an infinite set of base formulas each of which has
the same observable heap with Bs3 i.e., of the form x�→{ , }^x�=y∗Br where Br

is unobservable. Obviously, models satisfying Bs3 are the smallest and have finite
heap domains. Since all leave nodes are marked as closed, ω-SAT terminates.

Similarly, Fig. 3b shows the unfolding tree for nll whose details are as follows.
Δn0 ≡ nll(x,y,b), Bn1 ≡ emp ^ x=y, Bn5 ≡ x�→{ ,y,b}^x�=y^x�=b

Δn2≡D u1,Z1.x�→{ ,u1,Z1} ∗ sll(Z1,b) ∗ nll(u1,y,b)^x�=y^x�=b

Δn3 ≡ D u1.x�→{ ,u1,b} ∗ nll(u1,y,b)^x�=y^x�=b
Δn4 ≡ D u1,Z1,Z2.x�→{ ,u1,Z1} ∗ Z1�→{ ,Z2} ∗ sll(Z2,b) ∗ nll(u1,y,b)

^x�=y^x�=b^Z1 �=b
Δn6 ≡ D u1, u2,Z2.x�→{ ,u1,b} ∗ u1 �→{ ,u2,Z2} ∗ sll(Z2,b)∗nll(u2,y,b)

^x�=y^x�=b^u1 �=y^u1 �=b

5 Compositional Satisfiability Solver

S2S compositionally discharges a formula as follows. First, it computes for every
inductive predicate P(t̄) a base, denoted as baseP(P(t̄)) - a set of satisfiable base
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Algorithm 2: Deriving Bases.
input : P
output: baseP

1 foreach Pi(t̄i) P P do
2 (V, E, C)← ω-SAT(Pi(t̄i)) ; /* reduction tree */

3 repeat
4 C(Δc→Δb, σ) ← out-most cycle of (V, E, C) ;

5 ΨS ← H ;

6 α ←
∨

{ΔN
bi

} ; /* arithmetic of sat buds */

7 foreach ΔS
sat P C(Δc→Δb, σ) do

8 ΨS ← ΨS Y {ΔS
sat} ; /* spatial of sat leaf bases */

9 α ← α_ΔN
sat ; /* arithmetic of sat leaf bases */

10 end

11 if ΨS = H then
12 Δc ← false ; /* unsat - cyclic proofs */

13 if ΔN
c contains one inductive predicate then

14 β ← Pres(ΔN
c ) ; /* ΔN

c ≡ α */

15 else
16 β ← Pres(α) ;

17 Δc ←
∨

{B ^ β | B P ΨS} ;

18 until no more cycles;

19 baseP((Pi(t̄i))) ← {Δnoncyc
sat | Δnoncyc

sat is sat} ; /* sat leaf nodes */

20 end

21 return baseP ;

formulae, that precisely charaterises its satisfiability. If this set is empty, then
P(t̄) ≡ false . After that, to discharge formula Δ it replaces every occurrence
of inductive predicates with the corresponding base to obtain a disjunctive base
formula, denoted by baseP(Δ), before using procedure eXPure to transform this
base formula into πB in first-order logic. Finally, πB could be discharged effi-
ciently by using an SMT solver.

In the rest of this section, we first present the algorithm to collect the bases
(Subsect. 5.1). After that, we identify five semantic conditions for decidability
and compositionality (Subsect. 5.2). Finally, we show a syntactic decidable frag-
ment, an extension of SHID, where the satisfiability solving can be compositional
(Subsect. 5.3).

5.1 Computing Bases

Algorithm 2 describes how to infer bases for inductive predicates. In intuition,
for each inductive predicate, it first computes a regular unfolding tree where
cycles are generated based on the spatial projection of buds and companions.
After that, for every cycle, it infers bases for the spatial projection and closed
form for the numeric projection separately. Finally, it conjoins the two bases.
In particular, it first generates an unfolding tree at line 2. (We assume that all



Compositional Satisfiability Solving in Separation Logic 591

subtrees whose leaf nodes are either unsatisfiable or linked back are eliminated
afterward.) At line 4, out−most cycle in each path is the one which has the
farthest companion from the root. At line 6, it collects numeric parts of all buds
(each cycle has one companion and one or more buds). Next, for each cycle,
it collects the spatial projection and numeric projection of all satisfiable leaf
nodes (lines 7–9). If spatial projection of all base leaf nodes is unsatisfiable,
it returns unsatisfiable (line 12). Every base formula generated by the cycle is
equisatisfiable with one of those in the set of all spatial bases collected. For
the numeric, it computes the closed form of satisfiable instances (lines 13–16).
(Recall that Pres is the function that maps numeric projection of each inductive
definition in the decidable fragment to a Presburger formula.) Note that if the
numeric companion ΔN

c is an occurrence of an inductive predicate, it computes
the closed form using a more precise on-the-fly definition (ΔN

c ≡ α at line 14).
Finally, at line 17, it replaces the companion with the combined base. This
process of computing bases for cycles is repeated in such a bottom-up manner
until the tree does not contain any cycles. Finally, it collects all the satisfiable
leaf nodes of the tree.

Example 3. For the inductive predicates in Example 3, the base computed for
the cycle of sll is (Bs3)

S = DY. x�→{ ,Y }^x�=y and the base of generated for
sll is a disjunctive set of the two satisfiable base leaf nodes: baseP(sll(x,y)) ≡
{Bs1 ; (Bs3)

S}. Similarly, the base computed for nll is: baseP(nll(x,y,b)) ≡
{Bn1 ; (Bn5)

S}. �

5.2 Decidability and Compositionality

We state the five conditions for a fragment of inductive predicates such that
Algorithm 2 is terminating, and the generated bases are both sound and com-
plete. First, the following condition ensures the separation of the spatial and
numeric projections such that there is no over-approximation of the two pro-
jections. Suppose that the pure formula π of a definition rule in SLIDLIAsem is
π ≡ α^β^γ where α is the spatial constraint, β is the arithmetic constraint and
γ is the mixing constraint between the two domains.

C1. γ is true . We note that if all inductive definitions of P(t̄) in a fragment
satisfy C1, then such γ of any formula derived from unfolding P(v̄) is also true .

For the termination of ω-SAT at line 2, we need the following condition.

C2. α in every definition rule in SLIDLIAsem is a conjunction of (dis)equalities.
The completeness further requires the three following conditions.

– Every back-link generated for the spatial projection is (sound and) complete
when combined with pure bases. Recall that a bud is of the form Δb ≡
Dv̄.(κb1^αb1^βb1) ∗ (κb2^αb2^βb2) ∗ κd where κb2^αb2^βb2 is unobservable
and κd is the duplicate conjunction. As ω-SAT always returns the observable
part, unlike in SHID, discarding (κb2^αb2^βb2 ∗κd)S may make the combined
bases incomplete; that is (Δb)S is unsatisfiable while (Δb)N is satisfiable.
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The completeness is retained only when: For any s, we have if s |= (Δb)N ,
then D s′, h′. s′,h′ |= (Δb)S . As ω-SAT always returns the observable part,

the following condition is equivalent.
C3. For any s, h, we have: if s, h |= (Δb1)

S , then D s′, h′. s′,h′ |= (Δb)S .
– C4. If the system of inductive definitions contains arithmetic constraints, each

cycle in the regular unfolding tree derived for an inductive definition contains
at most one satisfiable spatial projection leaf node (line 8). This condition
forbids the over-approximation of the combination at line 17.

– C5. Numeric projection of every inductive predicate (at line 16) or on-the-
fly numeric predicate (at line 14) is Presburger-definable i.e., the numeric
predicate is in a decidable fragment like DPI [39]. This ensures that the
numeric base computed is equivalent to the numeric constraints of the whole
subtree.

Suppose Algorithm 2 infers a base BS^π for subtree involving a cycle and
B∗Br is a base leaf of the subtree. By Lemma 2, for every v where s(v) P dom(h′\
h), v is existentially quantified. Hence, the heaps in h′ \ h could not be accessed
by the outer scope of Br. As so, for any formula Δ, B ∗ Br ∗ Δ is equisatisfiable
with (BS ^ π) ∗ Δ. Therefore, satisfiability could be performed modularly via
the inferred base BS ^ π.

Theorem 1 (Composition). For any stack s, heap h and Δ, we have:

– (if) if s, h |= baseP(Δ), then Ds′, h′. s′, h′ |= Δ.
– (only if) if s, h |= Δ, then Ds′, h′. s′, h′ |= baseP(Δ).

Motivating Example Revisited. We show how to compute the bases of pred-
icate sllss(x,y,mi,ma,n,n0) in the second motivating example. In the definition
of this predicate, x, y are spatial variables and mi, ma, n and n0 are numeric
variables. C1 and C2 hold straightforwardly for this definition.

At line 2, ω-SAT constructs a reduction tree whose shape is similar to the tree
in Fig. 3a. Its respective nodes are as follows. Δss0 ≡ sllss(x,y,mi,ma,n,n0)

Bss1 ≡ emp^x=y^mi=ma^n=n0

Δss2 ≡ Du1,m1,n1.x�→{mi,u1}∗sllss(u1,y,m1,ma,n1,n0)^x�=y^mi<m1^n=n1+1
Bss3 ≡ x�→{mi,y}^x�=y^mi<ma^n=n0+1
Δss4 ≡ Du1,u2,m1,m2,n1,n2.x�→{mi,u1}∗u1 �→{m1,u2}∗sllss(u2,y,m2,ma,n2,n0)

^x�=y^u1 �=y^mi<m1^m1<m2^n=n1+1^n1=n2+1

In Δss4 , ΔS
b1

≡ x�→{mi, u1}∗sllssS(u2,y), κd ≡ emp and the spatial projection
of the unobservable is ΔS

b2
≡ u1 �→{m1, u2}^u1 �=y. As ΔS

b2
is separate from ΔS

b1
,

C3 holds. And as the cycle in the reduction tree has only one base Bss3 , C4
holds. As shown in the preceding subsection, its numeric projection is in DPI
and is thus Presburger-definable: Pres(sllssN(mi,ma,n,n0)) ≡ miďma^něn0.
Thus, C5 holds. Moreover, the base for the cycle of the tree is computed as
B22 ≡ (Bss3)

S^Pres((Δss3)
N _ (Δss4)

N ),
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B22 ≡ (Bss3)
S^Pres((Δss2)

N )
≡ DY.x�→{mi,Y }^x�=y^Pres(Dm1, n1.sllss

N(m1,ma,n1,n0)^mi<m1^n=n1+1)
≡ DY, m1, n1.x�→{mi,Y }^x�=y^(m1ďma^n1ěn0^mi<m1^n=n1+1)

Finally, the base computed for sllss is: baseP(sllss(x,y,mi,ma,n,n0)) ≡
{Bss1 ;B22}.

The remaining question is syntactic decidable fragments where the satisfi-
ability is compositional. SHID satisfies the five conditions for compositionality
straightforwardly. As definitions of inductive predicates in [3,14,18,21,23,39,41]
satisfy these five conditions, satisfiability is compositional in these fragments.
The next subsection shows a new decidable fragment.

5.3 Compositionality with Small-Model Arithmetic Properties

We study fragment SHIDe that is an extension of SHID with small-model arith-
metic pure properties (e.g., sortedness) where every inductive predicate also has
small models w.r.t. satisfiability. Given a predicate Pi(v̄i), if two parameters
v, t P v̄i define a small-model pure property then in every instantiation unfolded
from Pi(v̄i), the constraints over v, t is: Dw1, ..., wn.v � w1 ^ w1 � w2 ^ ... ^ wn � t
(where � P {=, ě, ď}).

Definition 5. (SHIDe). Given every definition Pi(v̄i)≡
∨m

j=1(Dw̄ij . κij ^πij ) in
SHID, πij (1ďjďm) may contain � operators over parameters of inductive pred-
icate Pi such that for any s, h if s, h |= Pi(v̄i), ∀l1Pdom(h).Dl2Pdom(h) s.t.
h(l1)=(..,l2,..,lj1 , ..), h(l2)=(..,lj2 ,..) and lj1 � lj2 holds where lj1 and lj2 are the
jth components.

Example 4. We define linked lists being sorted as follows.

sllso(x,y,mi,ma) ≡ emp^x=y^ma=mi
_ Du,mi1.x�→{mi,u} ∗ sllso(u,y,mi1,ma) ^ x�=y ^ mi< mi1

For any formula B unfolded from sllso(x,y,mi,ma), in case B has an empty
heap, mi=ma. Otherwise, mi<ma. Hence, the base that includes one with
the empty heap and another with one singleton heap is sufficient to charac-
terise the satisfiability of sllso(x,y,mi,ma). Particularly, to compute base for
sllso(x,y,mi,ma), ω-SAT constructs for it a cyclic reduction tree that has the
same structure as the tree of sll(x,y) (in Example 3). �

Obviously, ω-SAT terminates to compute bases for a definition in SHIDe that
is a combination of a definition in SHID with the small-model pure properties.

6 Decidable Fragment SLIDLIA

We define a syntactic fragment, called SLIDLIA (Subsect. 6.1). The decidability
and compositionality of SLIDLIA rely on the decidability of its numeric inductive
predicates. In Subsect. 6.2, we show that AID - Arithmetic with Inductive Defi-
nitions, the fragment including these numeric projections, is indeed decidable.
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6.1 Predicate Definition

A predicate in SLIDLIA with one pair of numeric parameters is defined as:

P(r,F ,B̄,vs,vt) ≡ emp^r =F^vs = vt
_ DXtl, Z̄,v′

s,Z̄s.r �→{p̄} ∗ κ′ ∗ P(Xtl,F ,B̄,v′
s,vt)^α^β

where r is called the root parameter, F the target parameter, B̄ the border
parameters, vs, vt is a pair of parameters to capture a pure property, r �→{p̄} ∗ κ′

the matrix of the heaps. r, F and B̄ are spatial variables and vs, vt are numeric
variables. Moreover, this definition is constrained by the following five conditions.
Y1. {Xtl}YZ̄ ⊆ p̄ ⊆ {Xtl}YZ̄YB̄.
Y2. κ′:=Q(R,U,Ȳ ,S,T ) | κ′∗κ′ | emp where Q �≡ P, R P Z̄ and for any
Q1(R1,...) P κ′ and Q2(R2,...) P κ′ then R1 �≡ R2, U P Z̄ Y B̄ Y {r,Xtl, null},
Ȳ ⊆ B̄Y{r,Xtl, null}, and S P Z̄s and T P Z̄s Y {v′

s}.
Y3. α is a conjunction of (dis)equalities and FV(α) ⊆ {r, F, null} Y B̄.
Y4. β is of the one of the following forms:

– β ≡ β′ ^ vs=v′
s+c1z+c2 where c1, c2 P Z, FV(β′) ⊆ Z̄s, and z P Z̄s.

– β ≡ β′^vs�v′
s+c1 where c1 P Z, � P {=, ě, ď}, FV(β′) ⊆ Z̄s.

Y5. There is no mutual recursion.
The extension to multiple pairs of numeric parameters is straightforward.

SLIDLIA is subsumes the decidable fragments presented in [3,13,14,18,21,23].
SLIDLIA Ă SLIDLIAsem because Y3 and Y4 imply C1; Y3 ensures C2; Y2 implies
C3; Y1 and Y2 imply C4. We show C5 in the next subsection. SLIDLIA includes
sllss, nllss (shown in Sect. 2), skip-lists, nested lists.

6.2 Decidability of Fragment AID

We show a procedure to compute the closed form of the numeric projections of
definitions in SLIDLIA. Recap that the numeric projection of a definition is of the
form:

PN(vs,vt) ≡ vs=vt _ Dv′
s,z̄.

∧n
i=0 P

N
i(Si,Ti) ^ PN(v′

s,vt)^β′ ^ β0

where β0 ≡ vs�v′
s+c or β0 ≡ vs=v′

s+c1m+c2, � P {ě, ď},
∧n

i=0 P
N
i(Si,Ti) ≡ true

when n=0, Si, Ti P z̄, and FV(β′) ⊆ z̄.
As definitions in SLIDLIA do not allow mutual recursion (condition Y5), the

computation of the closed form of these numeric definitions can be performed in
a bottom-up manner: the closed forms of all pred PNi(Si,Ti) are computed before
the computation of the closed formula of pred PN(vs,vt). The computation of
the closed formula is based on the two forms of β0 above. First, we show the
computation for the first form.

Lemma 3. Given any numeric projection in the following form

PN(vs,vt) ≡ vs=vt _ Dv′
s,z̄.PN(v′

s,vt)^β′(z̄) ^ vs�v′
s + c

where � P {=, ě, ď}, and c P Z. Then, we have:

PN(vs,vt) ≡ vs−vt _ Dz̄, k.β′(z̄) ^ vs−vt�ck ^ kě1
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The computation for the second form of β0 is based on the arithmetic of
addition and divisibility [2,4,24]. Authors in [2,24] show that the formulas of
the form Dv̄.

∧K
i=1 fi(v̄) | gi(v̄) are decidable, where fi, gi are linear functions

over v̄ ≡ {v1, .., vn} and the symbol | means that each fi is an integer divisor
of gi when both are interpreted over N

n. Recently, authors in [4] presented a
decision procedure for an extension with universally quantified formulas. They
proposed to eliminate the quantifiers and transform the formulas in the language
〈+, |, 0, 1〉 into Presburger arithmetic.

Proposition 4. ([4]). The following formula is Presburger-definable:

QzQ1x1...Qnxn.
N∨

i=1

(
Mi∧

j=1

hij(z) | fij(x̄, z) ^
Mi∧

j=1

h′
ij(z) �| gij(x̄, z) ^ π(x̄, z))

where Q, Q1,..,Qn P {D,∀}, π is quantifier-free, f , f ′, h, g are linear functions.

Secondly, we show that the closed form for the second form of β0 is in the
arithmetic of addition and divisibility.

Lemma 4 (Nested Quantitative Property). Given a numeric projection
of the form:

PN(vs,vt) ≡vs=vt _ Dv′
s,z̄.PN(v′

s,vt)^β′ ^ vs=v′
s+c1z+c0

where FV(β)⊆z̄ and zPz̄, c0, c1PZ. Then, PN(vs,vt) ≡ Dz̄.β′(z̄) ^ c1z+c0 | vs−vt.

By Proposition 4, Dz̄.β(z̄) ^ c1z+c0 | vs−vt is Presburger-definable. Hence,
Lemma 3, Lemma 4 and Theorem 4 imply that PN(vs,vt) is Presburger-definable.

Theorem 2. Numeric projections of definitions in SLIDLIA is Presburger-
definable.

7 Implementation and Evaluation

We have implemented a prototype tool, called S2S, using OCaml for the satis-
fiability problems. We made use of Z3 [11] as a back-end SMT solver for the
arithmetic.

S2S gives a precise answer to those problems in a fragment that satisfies the
five conditions in Sect. 5.2. For those that are beyond these conditions, S2S infers
over-approximated bases to check their unsatisfiability. In particular, if C1. or
C2. is violated, i.e., formulas with pointer arithmetic constraints, S2S discards
these constraints. For efficiency, checking the satisfiability of buds to comply with
C3. can be ignored. If C4. or C5. is violated, i.e., an arithmetically inductive
definition is beyond the decidable fragment AID, S2S computes for it an over-
approximated closed form using the technique described in [21]. In intuition, for
each definition, it first generates a set of Horn clauses to capture the least fixed
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point set of its values. After that, it uses the fixed point analysis in [34,40] to
solve these clauses.

To demonstrate the efficiency, we have evaluated S2S on two sets of satisfiabil-
ity benchmarks. The first one includes those generated by the program verifier S2
[19,22] (Subsect. 7.1), and the second one consists of those taken from the recent
competition for separation logic solvers SL-COMP 2019 [37,38] (Subsect. 7.2).
All experiments were performed on a machine with Intel Core i7-6700 3.4 GHz
and 8 GB RAM. If a solver runs longer than 600 s, we terminate it and mark the
result as unknown.

Table 1. Satisfiability solving with/without compositional reasoning

Data Structure (pure properties) #query #unsat #sat without with

#Z3 Time #Z3 Time

Singly llist (size) 666 75 591 3,173 1.01 762 0.40

Sorted llist (size, sorted ) 217 21 196 796 0.55 336 0.36

Doubly llist (size ) 452 50 402 1,803 0.79 552 0.46

Heap trees (size, maxelem) 386 38 348 3,732 6.03 865 2.61

AVL (height, size) 881 64 817 9,051 23.06 2,026 10.85

RBT (size, blackheight, color) 1,741 217 1,524 3,491,730 74,158 1,767 2.81

rose-tree (size) 25 8 17 300 0.34 153 0.25

4,368 473 3,895 3,510,585 74,189.78 6,461 17.74

7.1 Efficiency of Compositional Solving

In this section, we present experiments over satisfiability problems with and
without compositional reasoning. These problems come from the symbolic exe-
cution of the heap-based verification tool [19]. Each test suit consists of a high
number of test problems over the same set of inductive predicates. Then we
run S2S over the suite in two settings. For the first one, S2S generates bases for
each input without reusing the bases inferred for inductive definitions. For the
second one, S2S generates bases for each test by reusing the bases of inductive
definitions.

The experimental results are shown in Table 1. The first column shows the
names of inductive predicates and pure properties that includes cyclic linked-list,
sorted singly-linked list, doubly-linked list, AVL trees, red-black tree, and rose
trees. Pure properties in each data structure include size properties (number of
allocated objects), sortedness, the maximal element of heaps, the height of trees,
and color (red or black). The next column captures the number of satisfiability
problems sent to the solver for the verification of each program. The next two
columns describe the number of unsat and sat queries, respectively. The remain-
ing four columns are divided into two groups corresponding to the runs without
and with composition. For each group, we report the number of Z3 invocations
in the first column and the time taken in seconds in the second column. In the
last row, we sum the values of all the measurements of all data structures.
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The results show that S2S with the compositional reasoning is much more
efficient. In all experiments, the compositional solving helps to discharge the
queries quickly with small numbers of Z3 invocations. To sum up, S2S with the
compositional reasoning took as 0.024% (17.74 s/74,189.78 s) in time and 0.184%
(6,461/3,510,585) in the numbers of Z3 invocations as without the compositional
reasoning. The experimental results of red-black trees, AVL with height and size
properties, especially, confirm the great advantage of the compositional reason-
ing. On average, S2S with the compositional reasoning took 0.0028 s to discharge
one satisfiability problem.

7.2 Experiments on SL-COMP 2019 Benchmarks

We have compared S2S against the state-of-the-art solvers like Asterix [28], SLSAT
[5], SPEN [13], S2SATSL [23], and Harrsh [17]. We have conducted the comparisons
over all three satisfiability divisions of the competition: qf shls sat, qf shid sat,
and qf shidlia sat. All test problems are in our decidable fragments. For each divi-
sion, we report the number of correct outputs and time (in minutes and seconds)
taken by each tool. We note that as Asterix supported hardwired singly-linked
lists only, it is unable to handle the problems in qf shid sat, and qf shidlia sat.
Similarly, as SPEN, SLSAT and Harrsh have not supported arithmetic, qf shidlia sat
is beyond their interests.

We report the results in Table 2. In this table, the first column presents the
name of the tools. The remaining columns show the results of three divisions
each of which includes three columns: the number of correct satisfiability results
(sat), the number of correct unsatisfiability results (unsat), and the time (m
is for minutes and s for seconds) taken, respectively, by each tool. - means the
solver has not supported these benchmarks in the corresponding division yet. In
the third row, the number between “(..)” reports the total number of tests in a
column.

Table 2. Experimental Results on SL-COMP benchmarks

Tool qf shls sat qf shid sat qf shidlia sat

sat unsat Time sat unsat Time sat unsat Time

(55) (55) (110) (81) (18) (99) (15) (18) (33)

Asterix [28] 55 55 0.56s - - - - - -

SPEN [13] 55 55 16.60s - - - - - -

S2SATSL [23] 55 55 36.61s 50 12 382m 13 8 120m6s

Harrsh [17] 55 55 11m7.41s 55 18 274m56s - - -

SLSAT [5] 54 54 36m22s 57 18 218m51s - - -

S2S 55 55 1.18s 56 18 237m55s 15 18 10.07s

The first group shows the results of division qf shls sat. Each test problem,
generated randomly by Asterix’s authors [27], contains 10–20 pointer-typed vari-
ables pointing to singly-linked lists. In this division, all tools performed pretty
well. In particular, Asterix performed the best, S2S was the second, and SPEN was
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the third. Asterix and S2S decided all tests correctly in a short time. SLSAT was
timeout in 3 test problems. We note that as the definition of the singly-linked
list was hardwired syntactically in Asterix, in contrast to S2S, Asterix would
save the parsing time for this definition in these 110 tests.

The second group reports the results for division qf shid sat targeting general
inductive definitions. It includes 40 challenging tests (succ-circuit[01..20] and
succ-rec[01..20]), generated by SLSAT’s authors [5], each of which requires a brute-
force search of 2n values. SLSAT, S2S, and Harrsh performed pretty well in this
division. SLSAT performed the best; it was either timeout or stack overflow at only
24 problems: succ-circuit[07..20] and succ-rec[11..20]. Note that, in SL-COMP
2019 [37], S2S was implemented together with an under-approximate technique
and outperformed other tools; it discharged all problems in this division correctly
in a super short time.

The third group, whose tests were contributed by the authors of [14,23,
41], describes the results of division qf shidlia sat targeting the combination of
linearly compositional inductive predicates and pure properties. While S2SATSL

could handle 21/33 tests in 120 min, S2S reported correctly for all tests within
10.07 s.

S2SATSL also base on cyclic proofs. It did not support compositionality. Instead
of reusing the bases, it constructed cyclic proofs for every input. Its termina-
tion thus relies on not only those definitions of inductive predicates but also
the arithmetical constraints in the input. For instance, S2SATSL could not han-
dle Δ01 ≡ els(x,n)^n = 320001 and Δ02 ≡ els(x,n)^n = 320000 in which els

predicate represents lists with an even number of elements and n captures the
length. If we increased the timeout to a large enough number, S2SATSL would
manage the second test successfully but would not terminate for the first one.
In contrast, S2S first inferred for els(x,n) the base as baseP(els(x,n)) ≡
{emp^x=null^n=0, Dk. x�→{ }^n=2k^k>0}. After that, to decide Δ01, it
replaced this base into Δ01 and found that both disjuncts are unsatisfiable.
It thus decided Δ01 as unsatisfiable. For Δ02, after replacing the base into Δ02,
it found that the second disjunct was satisfiable. Hence, it concluded Δ02 is
satisfiable.

8 Related Work

The “base” was first introduced for shape-only predicates by Brotherston et al.
[5] and then extended for the combination of shape and arithmetic properties by
Le et al. [23]. While the former computes the base based on a fixed point algo-
rithm, the latter makes use of cyclic proofs. However, these works did not discuss
compositionality. Unlike [5] and [23], this work presents a compositional reason-
ing as well as the most expressive syntactic decidable fragments. Our proposal is
a generation of the work presented in [23]: It returns all equisatisfiable solutions
of a formula. The proposed decidable fragment, SHIDe, is slightly extended from
the one on general inductive definitions introduced in [5] and [23]. A crucial
contribution of our work is to show that we can apply compositional reasoning
into this fragment for efficiency.
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The authors in [21] propose a cyclic proof system for the combination of
heap structures and universally pure constraints. In another direction, work in
[39] presents a decision procedure for a fragment where every predicate has two
spatial base pairs, and their pure projections are Presburger-definable. Recently,
authors in [23] extended the cyclic proof system in [21] for decidable fragments
that subsume the ones presented in both [21] and [39]. They also identify seman-
tic conditions for decidable fragments with arithmetic constraints. Our focus
complements [23] as we target compositional satisfiability solving. The authors
in [6,7] studied satisfiability for array separation logic. However, these works
did not consider inductive predicates like ours. Nevertheless, developing a cyclic
proof system to reason about the contents of array predicates might be future
work; for example, by reducing array theory into string constraints [20].

The idea of small models of heap structures and data has been discussed in
the literature: in separation logic [3,15,18] and other logics [25,26]. However,
unlike ours, the works in separation logic mainly focused on the entailment
problem. Berdine et al. present pioneering results for lists and binary trees [3].
They show that a singly-linked list has the small model property; every singly-
linked list predicate can be precisely characterised by those heap models of size
zero or two. Recently, this fragment was extended with some small-model pure
properties in [18]. Our proposal infers small models for compositionality in a
fragment, far beyond the lists and trees, including array separation logic with
general inductive predicates and small-model pure properties.

Other related works include those satisfiability solvers presented in [14,17,32,
33,41]. The authors in [17] present a decision procedure based on heap automata.
[14,41] present a graph-based technique with predicates that are beyond the
singly-linked lists. These works support compositional predicates and one-hole
trees with sortedness, size, and balancedness. However, they have supported nei-
ther mutually recursive definitions nor nested lists like ours. Our work closely
relates to the satisfiability solver for STRAND logic [25]. In [25], the authors
discussed satisfiability-preserving embedding that helps to enumerate a finite
number of minimal models. Similar to this work, given a formula, our procedure
derives for it a base with the minimal model property that precisely charac-
terises its satisfiability. Unlike this work, while our solver works compositionally,
STRAND did not support the compositionality.

Those works in [12,35] complement our work. While these works supported
the separating implication, they did not consider inductive definitions like ours.
Finally, the work in [39] discusses a solver for arithmetic with inductive defi-
nitions. This work proposes to infer for each numerically inductive predicate a
closed-form, an equivalent formula in Presburger arithmetic. We here extend the
decidable fragment in [39] with nested list predicates.

9 Conclusion

We have presented a novel satisfiability solver in a fragment of array separation
logic combined with inductive definitions and arithmetic properties. Our pro-
posal differentiates itself from existing works on the compositional reasoning via
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the base inference. Furthermore, we have shown that satisfiability solving can
be compositional in the current fragments. We have implemented the proposal
into S2S and evaluated it over the two sets of non-trivial benchmarks: taken from
the SL-COMP 2019 and generated from the verification of complex-pointer pro-
grams. The experimental results show that S2S is effective and efficient. and is
promising for being used in a verification system.
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