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Abstract In this work, we introduce a general approach for slot selection and co-
allocation algorithms for parallel jobs in distributed computing with non-dedicated
and heterogeneous resources. Parallel job scheduling provides many opportunities
for the resources allocation and usage efficiency optimization. Firstly, there are many
options to select the appropriate set of resources based on primary target criteria in
a knapsack-like problem. The secondary optimization, or , is possible when select-
ing over a variety of suitable resources providing the same primary target criteria
values. Micro-scheduling step usually relies on the resources meta-features, sec-
ondary parameters and their actual utilization. Such two-level optimization may be
used to obtain heuristic solutions for many scheduling problems. In this paper we
present micro-scheduling applications for the dependable and coordinated resources
co-allocation, resources usage efficiency optimization, preference-based and fair
scheduling implementations.

Keywords Distributed computing · Grid · Dependability · Micro-scheduling ·
Coordinated scheduling · Resource management · Slot · Job · Allocation ·
Optimization · Preferences

1 Introduction

Modern high-performance distributed computing systems (HPCS), including Grid,
cloud and hybrid infrastructures provide access to large amounts of resources [1, 2].
These resources are typically required to execute parallel jobs submitted by HPCS
users and include computing nodes, data storages, network channels, software, etc.
These resources are usually partly utilized or reserved by high-priority jobs and jobs
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coming from the resource owners. Thus, the available resources are represented with
a set of time intervals (slots) during which the individual computational nodes are
capable to execute parts of independent users’ parallel jobs. These slots generally
have different start and finish times and vary in performance level. The presence of
a set of heterogeneous slots impedes the problem of resources allocation necessary
to execute the job flow from HPCS users. Resource fragmentation also results in a
decrease of the total computing environment utilization level [1, 2].

HPCS organization and support bring certain economical expenses: purchase and
installation of machinery equipment, power supplies, user support, maintenance
works, security, etc. Thus, HPCS users and service providers usually interact in
economic terms, and the resources are provided for a certain payment. In such con-
ditions, resource management and job scheduling based on the economic models is
considered as an efficient way to coordinate contradictory preferences of computing
system participants and stakeholders [2–5].

There are different approaches for a job-flow scheduling problem in distributed
computing environments. Application level scheduling [3] is based on the avail-
able resources utilization and, as a rule, does not imply any global resource sharing
or allocation policy. Job flow scheduling in VOs [6–9] suppose uniform rules of
resource sharing and consumption, in particular based on economic models [2–5].
This approach allows improving the job-flow level scheduling and resource distribu-
tion efficiency. VO policy may offer optimized scheduling to satisfy both users’ and
VO global preferences. The VO scheduling problems may be formulated as follows:
to optimize users’ criteria or utility function for selected jobs [2, 10], to keep resource
overall load balance [11, 12], to have job run in strict order or maintain job priorities
[13, 14], to optimize overall scheduling performance by some custom criteria [15,
16], etc.

Computing system services support interfaces between users and providers of
computing resources and data storages, for instance, in datacenters. Personal pref-
erences of VO stakeholders are usually contradictive. Users are interested in total
expenses minimization while obtaining the best service conditions: low response
times, high hardware specifications, 24/7/365 service, etc. Service providers and
administrators, on the contrary, are interested in profits maximization based on
resources load efficiency, energy consumption, and system management costs. The
challenges of system management can lead to inefficient resources usage in some
commercial and corporate cloud systems.

Thus, VO policies in general should respect all members to function properly
and the most important aspect of rules suggested by VO is their fairness. A number
of works understand fairness as it is defined in the theory of cooperative games
[10], such as fair job flow distribution [12], fair user jobs prioritization [14], fair
prices mechanisms [5]. In many studies VO stakeholders’ preferences are usually
ensured only partially: either owners are competing for jobs optimizing users’ criteria
[3], or the main purpose is the efficient resources utilization not considering users’
preferences [13]. Sometimes multi-agent economic models are established [3, 5].
Usually they do not allow optimizing the whole job flow processing.
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In order to implement any of the described job-flow scheduling schemes and
policies, first, one needs an algorithm for selecting sets of simultaneously available
slots required for each job execution. Further, we shall call such set of simultaneously
available slots with the same start and finish times as execution window.

In this paper, we present general algorithm for an optimal or near-optimal het-
erogeneous resources selection by a given criterion with the restriction to a total
cost. Further this algorithm serves as a basis for the two-level optimization (or a
micro-scheduling) approach and some practical implementations for a dependable
resources allocation problem.

The rest of the paper is organized as follows. Section 2 presents related works
for the resources usage optimization when scheduling single parallel jobs and whole
job-flows. Section3 introduces a general scheme for searching slot sets efficient by
the specified criterion. Then several implementations are proposed and considered.
Sections4–7 present heuristic micro-scheduling algorithms and applications for dif-
ferent HPSC scheduling problems. Section8 summarizes the paper and describes
further research topics.

2 Related Works

2.1 Resources Selection Algorithms and Approaches

The scheduling problem in Grid is NP-hard due to its combinatorial nature and
many heuristic-based solutions have been proposed. In [7] heuristic algorithms for
slot selection, based on user-defined utility functions, are introduced. NWIRE system
[7] performs a slot window allocation based on the user defined efficiency criterion
under themaximum total execution cost constraint. However, the optimization occurs
only on the stage of the best found offer selection. First fit slot selection algorithms
(backtrack [17] and NorduGrid [18] approaches) assign any job to the first set of slots
matching the resource request conditions, while other algorithms use an exhaustive
search [15, 19, 20] and some of them are based on a linear integer programming (IP)
[15] or mixed-integer programming (MIP) model [19]. Moab/maui scheduler [13]
implements backfilling algorithm and during the window search does not take into
account any additive constraints such as the minimum required storage volume or
the maximum allowed total allocation cost.

Modern distributed and cloud computing simulators GridSim and CloudSim [4,
5] provide tools for jobs execution and co-allocation of simultaneously available
computing resources. Base simulator distributions perform First Fit allocation algo-
rithms without any specific optimization. CloudAuction extension [5] of CloudSim
implements a double auction to distribute datacenters’ resources between a job flow
with a fair allocation policy. All these algorithms consider price constraints on indi-
vidual nodes and not on a total window allocation cost. However, as we showed in
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[21], algorithms with a total cost constraint are able to perform the search among a
wider set of resources and increase the overall scheduling efficiency.

GrAS [22] is a Grid job-flow management system built over Maui scheduler [13].
The resources co-allocation algorithm retrieves a set of simultaneously available slots
with the same start and finish times even in heterogeneous environments. However,
the algorithm stops after finding the first suitable window and, thus, doesn’t perform
any optimization except for window start time minimization.

Algorithm [23] performs job’s response and finish time minimization and doesn’t
take into account constraint on a total allocation budget. [24] performs window
search on a list of slots sorted by their start time, implements algorithms for window
shifting and finish timeminimization, doesn’t support other optimization criteria and
the overall job execution cost constraint.

AEP algorithm [16] performs window search with constraint on a total resources
allocation cost, implements optimization according to a number of criteria, but
doesn’t support a general case optimization. Besides AEP doesn’t guarantee same
finish time for the window slots in heterogeneous environments and, thus, has limited
practical applicability.

2.2 Job-Flow Scheduling and Backfilling

Backfilling [25–27] is a widely used procedure for a job queue scheduling in high-
performance computing. The base algorithm relies on jobs runtime estimates and
makes use of advanced reservations tools. This mechanism prevents starvation of
jobs requiring large number of computing nodes and reduces resources idle time.
The main idea behind these improvements is implemented by placing smaller jobs
from the back of the queue to the any currently idle slots even ahead of their priority
order.

There are two common variations to backfilling - conservative and aggressive
(EASY). Conservative backfilling enforces jobs’ priority fairness by making sure
that jobs submitted later can’t delay the start of jobs arrived earlier. EASY backfilling
aggressively backfills jobs as long as they do not delay the start of the single currently
reserved job. Conservative backfilling considers jobs in the order of their arrival and
either immediately starts a job or makes an appropriate reservation upon the arrival.

The jobs priority in the queue may be additionally modified in order to improve
system-wide job-flow execution efficiency metrics. Under default FCFS policy the
jobs are arranged by their arrival time. Other priority reordering-based policies like
Shortest job First or eXpansion Factor may be used to improve overall resources
utilization level [25–27]. The look-ahead optimizing scheduler [26] implements
dynamic programming scheme to examine all the jobs in the queue in order to
maximize the current system utilization. So, instead of scanning queue for single
jobs suitable for the backfilling, look-ahead scheduler attempts to find a combination
of jobs that together will maximize the resources utilization.
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Thus, the jobs priorities represent an important factor for the integral job-flow
scheduling efficiency. General priority compliance contributes to a fair scheduling
model and may support even more complex and high-level priority functions. On
the other hand, it is possible to adjust order of the jobs scheduling and execution to
achieve more efficient resources usage scenarios. We consider the problem of the
resources usage optimization without affecting the initial jobs scheduling order (or
in some cases with a controlled amount of changes [28]).

3 General Resource Co-allocation Algorithm

3.1 Problem Statement

We consider a set R of heterogeneous computing nodes with different performance
pi and price ci characteristics. Each node has a local utilization schedule known
in advance for a considered scheduling horizon time L . A node may be turned
off or on by the provider, transferred to a maintenance state, reserved to perform
computational jobs. Thus, it’s convenient to represent all available resources as a set
of slots. Each slot corresponds to one computing node on which it’s allocated and
may be characterized by its performance and price.

In order to execute a parallel job one needs to allocate the specified number of
simultaneously idle nodes ensuring user requirements from the resource request.
The resource request specifies number n of nodes required simultaneously, their
minimum applicable performance p, job’s computational volume V and a maximum
available resources allocation budgetC . The requiredwindow length is defined based
on a slot with the minimum performance. For example, if a window consists of slots
with performances p ∈ {pi , p j } and pi < p j , then we need to allocate all the slots
for a time T = V

pi
. In this way V really defines a computational volume for each

single job subtask. Common start and finish times ensure the possibility of inter-
node communications during the whole job execution. The total cost of a window
allocation is then calculated as CW = ∑n

i=1 T ∗ ci .
These parameters constitute a formal generalization for resource requests common

among distributed computing systems and simulators.
Additionally we introduce criterion f as a user preference for the particular job

execution during the scheduling horizon L . f can take a form of any additive function
and as an example, one may want to allocate suitable resources with the maximum
possible total data storage available before the specified deadline.

3.2 Window Search Procedure

For a general window search procedure for the problem statement presented in
Sect. 3.1, we combined core ideas and solutions from algorithm AEP [16] and sys-
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tems [23, 24]. Both related algorithms perform window search procedure based on
a list of slots retrieved from a heterogeneous computing environment.

Following is the general square window search algorithm. It allocates a set of
n simultaneously available slots with performance pi > p, for a time, required to
compute V instructions on each node, with a restriction C on a total allocation cost
and performs optimization according to criterion f . It takes a list of available slots
ordered by their non-decreasing start time as input.

1. Initializing variables for the best criterion value and corresponding best window:
fmax = 0, wmax = {}.

2. From the slots available we select different groups by node performance pi .
For example, group Pk contains resources allocated on nodes with performance
pi ≥ Pk . Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups Pi starting from the max performance
Pmax . All the sub-items represent a cycle body.

a. The resources reservation time required to compute V instructions on a node
with performance Pi is Ti = V

pi
.

b. Initializing variable for a window candidates list SW = {}.
c. Next is a cycle for all slots si in group Pi starting from the slotwith theminimum

start time. The slots of group Pi should be ordered by their non-decreasing
start time. All the sub-items represent a cycle body.
(1) If slot si doesn’t satisfy user requirements (hardware, software, etc.) then

continue to the next slot (3c).
(2) If slot length l (si ) < Ti then continue to the next slot (3c).
(3) Set the new window start time Wi .start = si .start .
(4) Add slot si to the current window slot list SW
(5) Next a cycle to check all slots s j inside SW

i If there are no slots in SW with performance P(s j )= Pi then continue
to the next slot (3c), as current slots combination in SW was already
considered for previous group Pi−1.

ii If Wi .start + Ti > s j .end then remove slot s j from SW as it can’t
consist in a window with the new start time Wi .start .

(6) If SW size is greater or equal to n, then allocate from SW a window Wi (a
subset of n slots with start time Wi .start and length Ti ) with a maximum
criterion value fi and a total cost Ci < C . If fi > fmax then reassign
fmax = fi and Wmax = Wi .

4. End of algorithm. At the output variableWmax contains the resulting windowwith
the maximum criterion value fmax .
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3.3 Optimal Slot Subset Allocation

Let us discuss in more details the procedure which allocates an optimal (according
to a criterion f ) subset of n slots out of SW list (algorithm step 3c(6)).

For some particular criterion functions f a straightforward subset allocation solu-
tion may be offered. For example for a window finish time minimization it is rea-
sonable to return at step 3c(6) the first n cheapest slots of SW provided that they
satisfy the restriction on the total cost. These n slots (as any other n slots from SW
at the current step) will provide Wi . f inish = Wi .start + Ti , so we need to set
fi = −(Wi .start + Ti ) to minimize the finish time at the end of the algorithm.
The same logic applies for a number of other important criteria, including window

start time, runtime and a total cost minimization.
However in a general case we should consider a subset allocation problem with

some additive criterion: Z = ∑n
i=1 cz(si ), where cz (si ) = zi is a target optimization

characteristic value provided by a single slot si of Wi .
In this way we can state the following problem of an optimal n - size window

subset allocation out of m slots stored in SW :

Z=x1z1+x2z2+ · · · +xmzm, (1)

with the following restrictions:

x1c1 + x2c2 + · · · + xmcm ≤ C,

x1 + x2 + · · · + xm = n,

xi ∈ {0, 1} , i = 1..m,

where zi is a target characteristic value provided by slot si , ci is total cost required
to allocate slot si for a time Ti , xi - is a decision variable determining whether to
allocate slot si (xi = 1) or not (xi = 0) for the current window.

This problem relates to the class of integer linear programming problems, which
imposes obvious limitations on the practical methods to solve it. However, we used
0-1 knapsack problem as a base for our implementation. Indeed, the classical 0-1
knapsack problem with a total weight C and items-slots with weights ci and values
zi have the same formal model (1) except for extra restriction on the number of
items required: x1 + x2 + · · · + xm = n. To take this into account we implemented
the following dynamic programming recurrent scheme:

fi
(
C j , nk

) = max{ fi−1(C j , nk), fi−1(C j − ci , nk−1)+zi }, (2)

i = 1, ..,m, C j = 1, ..,C, nk = 1, .., n,
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where fi
(
C j , nk

)
defines the maximum Z criterion value for nk-size window allo-

cated out of first i slots from SW for a budget C j . After the forward induction
procedure (2) is finished the maximum value Zmax = fm(C, n). xi values are then
obtained by a backward induction procedure.

For the actual implementation we initialized fi
(
C j , 0

) = 0, meaning Z= 0 when
we have no items in the knapsack. Then we perform forward propagation and cal-
culate f1

(
C j , nk

)
values for all C j and nk based on the first item and the initialized

values. Then f2
(
C j , nk

)
is calculated taking into account second itemand f1

(
C j , nk

)

and so on. So after the forward propagation procedure (2) is finished the maximum
value Zmax = fm (C, n). Corresponding values for variables xi are then obtained by
a backward propagation procedure.

An estimated computational complexity of the presented recurrent scheme is
O(m ∗ n ∗ C), which is n times harder compared to the original knapsack problem
(O(m ∗ C)).On the one hand, in practical job resources allocation cases this overhead
doesn’t look very large as we may assume that n << m and n << C . On the other
hand, this subset allocation procedure (2) may be called multiple times during the
general square window search algorithm (step 3c(6)).

4 Dependable Job Placement

4.1 Job Placement Problem

As a first practical implementation for a general optimization scheme SSA (Slots
Subset Allocation) we study a window placement problem. Figure1 shows Gantt
chart of 4 slots co-allocation (hollow rectangles) in a computing environment with
resources pre-utilized with local and high-priority tasks (filled rectangles).

Fig. 1 Dependable window co-allocation metrics
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As can be seen from Fig. 1, even using the same computing nodes (1, 3, 4, 5 on
Fig. 1) there are usually multiple window placement options with respect to the slots
start time. The window placement generally may affect such job execution properties
as cost, finish time, computing energy efficiency, etc. Besides, slots proximity to
neighboring tasks reserved on the same computing nodes may affect a probability
of the job execution delay or failure. For example, a slot reserved too close to the
previous task on the same node may be delayed or cancelled by an unexpected delay
of the latter. Thus, dependable resources allocation may require reserving resources
with some reasonable distance to the neighboring tasks.

As presented in Fig. 1, for each window slot we can estimate times to the previous
task finish time: Lle f t and to the next task start time: Lright . Using these values the
following criterion for the window allocation represents average time distance to the
nearest neighboring tasks: Lmin � = 1

n

∑n
i=1 min(Lle f t i , Lright i ), where n is a total

number of slots in the window. So when implementing a dependable job scheduling
policy we are interested in maximizing Lmin � value.

On the other hand such selfish and individual job-centric resources allocation
policy may result in an additional resources fragmentation and, hence, inefficient
resources usage. Indeed, when Lmin � is maximized the jobs will try to start at the
maximum distance from each other, eventually leaving truncated slots between them.
Thus, the subsequent jobs may be delayed in the queue due to insufficient remaining
resources.

For a coordinated job-flow scheduling and resources load balancing we propose
the following window allocation criterion representing average time distance to the
farthest neighboring tasks: Lmax � = 1

n

∑n
i=1 max(Lle f t i , Lright i ), where n is a

total number of slots in the window. By minimizing Lmax � our motivation is to
find a set of available resources best suited for the particular job configuration and
duration. This coordinated approach opposes selfish resources allocation and ismore
relevant for a virtual organization job-flow scheduling procedure.

4.2 Simulation Environment Setup

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 16, 28]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared
resources allocation policy simulates a local queuing system (like in GridSim or
CloudSim [4]) and, thus, each node can process only one task at any given simu-
lation time. The execution cost of each task depends on its execution time, which
is proportional to the dedicated node’s performance level. The execution of a single
job requires parallel execution of all its tasks.

During the experiment series we performed a window search operation for a
job requesting n = 7 nodes with performance level pi ≥ 1, computational volume
V = 800 and a maximum budget allowed is C = 644. During each experiment a
new instance for the computing environment was automatically generated with the
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Fig. 2 Initial resources utilization example

following properties. The resource pool includes 100 heterogeneous computational
nodes. Each node performance level is given as a uniformly distributed random value
in the interval [2, 10]. So the required window length may vary from 400 to 80 time
units. The scheduling interval length is 1200 time quanta which is enough to run
the job on nodes with the minimum performance. However, we introduce the initial
resource load with advanced reservations and local jobs to complicate conditions
for the search operation. This additional load is distributed hyper-geometrically and
results in up to 30% utilization for each node (Fig. 2). The simulation has been
performed in Java runtime environment on Intel Core i3 based workstation with
16Gb RAM and SSD storage.

4.3 Analysis of Dependable Resources Allocation

For the simulation study we introduce the following algorithms.

• FirstFit performs a square window allocation in accordance with a general scheme
described in Sect. 3.2. Returns first suitable and affordable window found. In fact,
performs window start time minimization and represents algorithm from [23, 24].

• MultipleBest algorithm searches formultiple non-intersecting alternativewindows
using FirstFit algorithm. When all possible window allocations are retrieved the
algorithm searches among them for alternatives with the maximum criteria value.
In this wayMultipleBest is similar to [7] approach.

• Dependable (DEP) andDEP Lite perform Lmin � maximization, i.e. maximize the
distance to the nearest running or reserved tasks.DEP implements a general square
window search procedure with an optimal slots subset allocation (2). DEP Lite
follows the general square window search procedure but doesn’t implement slots
subset allocation (2) procedure. Instead at step 3c(6) it returns the first n cheapest
slots of SW . Thus, DEP Lite has much less computational complexity compared
to DEP but doesn’t guarantee an accurate solution [16]
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• Coordinated (COORD) and COORD Lite minimize Lmax � : average distance to
the farthest neighboring tasks.COORD andCOORD Lite representDEP andDEP
Lite, but with a different target criterion of Lmax � → min.

So, by setting Lmin � and Lmax � as target optimization criteria we performed sim-
ulation of 2000 independent scheduling cycles. The results are compiled in Table1.

As expectedDEP providedmaximum average distances to the adjacent tasks: 369
and 480 time units, which is comparable to the job’s execution duration. An example
of such allocation from a single simulation experiment is presented on Fig. 3a. The
resulting DEP Lmin � distance value is 4.3 times longer compared to FirstFit and
almost 1.5 longer compared toMultipleBest.

Similarly, COORD provided minimum values for the considered criteria: 9 and
52 time units. Example allocation is presented on Fig. 3b where left edge represents
the scheduling interval start time. As can be seen from the figure the allocated slots
are highly coincident with the job’s configuration and duration. Here the resulting
average distance to the farthest task is three times smaller compared toMultipleBest
and 9 times smaller when compared with DEP solution.

However due to a higher computational complexity it took DEP and COORD
almost 1.7 s to find the 7-slots allocation over 100 available computing nodes, which
is 17 times longer compared toMultiple Best. At the same time simplified Lite imple-
mentations provided better scheduling results compared to Multiple Best for even
less operational time: 4.5ms.FirstFit doesn’t perform any target criteria optimization
and, thus, provides average Lmin � and Lmax � distances with the same operational
time as Lite algorithms.

MultipleBest in Table1 has average distance to the farthest task smaller than to
the nearest task because different alternatives were selected to match the criteria:
Lmin � maximization and Lmax � minimization. Totally almost 50 different resource
allocation alternatives were retrieved and considered by MultipleBest during each
experiment.

Table 1 Window placement simulation results

Algorithm Distance to the nearest
task Lmin �

Distance to the farthest
task Lmax �

Average operational
time, ms

Multiple Best 253 159 103

First Fit 85 342 4.2

DEP 369 480 1695

DEP Lite 275 440 4.5

COORD 9 52 1694

COORD Lite 31 148 4.5
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Fig. 3 Simulation examples for dependable (a) and coordinated (b) resources allocation for the
same job

5 Micro-Scheduling and Coordinated Resources Allocation

5.1 Micro-Scheduling in Resources Allocation

Another important aspect for the overall resources allocation efficiency is the
resources selection and micro-scheduling in regard to the anticipated resources uti-
lization schedule.

Figure4 shows the same Gantt chart from Fig. 1 of 4 slots co-allocation in a
computing environment with resources pre-utilized with local and high-priority jobs.
Slots 1–4 represent candidates for a job scheduling and execution. If the job requires
only three nodes there are four different options to allocate the resources providing
the same finish time. Job execution finish time corresponds to traditional queue
scheduling criteria in backfilling-like algorithms. Thus, the process of a secondary
optimization when selecting a particular subset of resources providing the same
primary criteria value we call micro-scheduling.

Lle f t or Lright criteria alone can’t improve the whole job-flow scheduling solution
according to the conventional makespan or average finish time criteria. So, as an
alternative a special set of breaking a tie rules is proposed in [27] to choose between
slots providing the same earliest job start or finish time.

These rules for Picking Earliest Slot for a Task (PEST) procedure may be sum-
marized as following.

1. Minimize number of idle slots left after the window allocation: slots adjacent
(succeeding or preceding) to already reserved slots have higher priority.

2. Maximize length of idle slots left after the window allocation; so the algorithm
tends to left longer slots for the subsequent jobs in the queue.
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Fig. 4 Coordinated window co-allocation and placement metrics

With similar intentions we proposed the following Coordinated Placement (CoP)
[29] heuristic rules.

1. Prioritize slots allocated on nodes with lower performance. The main idea is to
leave higher performance slot vacant for the subsequent jobs.

2. Prioritize slots with relatively small distances to the neighbor tasks: Lle f t i � T
or Lright i � T .

3. Penalize slots leaving significant, but insufficient to execute a full job distances
Lle f t i or Lright i .

4. On the other hand, equally prioritize slots leaving sufficient compared to the job’s
runtime distances Lle f t i or Lright i .

5.2 Coordinated Placement Algorithms

The main idea behind CoP is to minimize overall resources fragmentation by allo-
cating slots to jobs with fairly matching runtime demands. Based on these heuristic
rules we implemented the following scheduling algorithms and criteria for SSA-
based resources allocation.

1. Firstly we consider two conservative backfilling variations. BFs successively
implements start time minimization for each job during the resources selection
step. As SSA performs criterion maximization, BFs criterion for i-th slot has the
following form: zi = −si .startT ime. By analogy BFf implements a more solid
strategy of a finish time minimization which is different from BFs in computing
environments with heterogeneous resources. BFf criterion for SSA algorithm is
the following: zi = −si . f inishT ime.

2. PEST-like backfilling approach has a more complex criterion function which may
be described with the following set of rules:
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(a) zi = −si . f inishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si .nodePer f ormance; node performance amendment
(c) if (Lright i == 0) : zi = zi + δ1; PEST rule 1
(d) if (Lle f t i == 0) : zi = zi + δ1; PEST rule 1
(e) zi = zi − α2 ∗ Lright i ; PEST rule 2

3. CoP resources allocation algorithm for backfilling may be represented with the
following criterion calculation:

(a) zi = −si . f inishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si .nodePer f ormance; node performance amendment
(c) if (Lright i < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(d) if (Lle f t i < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(e) if (Lright i > ε2 ∗ T AND Lright i < ε3 ∗ T ): zi = zi − δ1; CoP rule 2
(f) if (Lle f t i > ε2 ∗ T AND Lle f t i < ε3 ∗ T ): zi = zi − δ1; CoP rule 2
(g) if (Lright i > T ): zi = zi + δ3; CoP rule 3
(h) if (Lle f t i > T ): zi = zi + δ3; CoP rule 3

4. Finally as an additional reference solution we simulate another abstract backfill-
ing variation BFshort which is able to reduce each job runtime for 1% during the
resources allocation step. In this way each job will benefit not only from its own
earlier completion time, but from earlier completion of all the preceding jobs.

The criteria for PEST and CoP contain multiple constant values defining rules
behavior, namely α1, α2, δ1, δ2, ε1, ε2, ε3. εi coefficients define threshold values for
a satisfactory jobfit inCoPapproach.αi and δi define each rule’s effect on the criterion
and are supposed to be much less compared to zi in order to break a tie between
otherwise suitable slots. However, their mutual relationship implicitly determines
rules’ priority which can greatly affect allocation results. Therefore there are a great
number of possible αi , δi and εi values combinations providing different PEST
and CoP implementations. Based on heuristic considerations and some preliminary
experiment results the values we used during the present experiment are presented
in Table2.

Because of heuristic nature of considered algorithms and their speculative
parametrization (see Table2) hereinafter by PEST [27] we will mean PEST-like
approach customly implemented as an alternative to CoP.

Table 2 PEST and CoP parameters values

Constant α1 α2 δ1 δ2 ε1 ε2 ε3

Value 0.1 0.0001 1 0.1 0.03 0.2 0.35
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5.3 Simulation Results

The results of 2000 independent simulation experiments are presented in Tables3
and 4. Each simulation experiment includes computing environment and job queue
generation, followed by a scheduling simulation independently performed using con-
sidered algorithms. The main scheduling results are then collected and contribute to
the average values over all experiments.

Table3 contains average finish time in simulation time units (t.u.) provided by
algorithms BFs, BFf, BFshort, PEST and CoP for different number of jobs pre-
accumulated in the queue.

As it can be seen, with a relatively small number NQ of jobs in the queue, both CoP
and PEST provide noticeable advantage by nearly 1% over a strong BFf variation,
while CoP even surpasses BFshort results. At the same time, the less successful

BFs approach provides almost 6% later average completion time, thus, high-
lighting difference between a good (BFf) and a regular (BFs) possible scheduling
solutions. So BFshort, CoP and PEST advantage should be evaluated against this 6%
interval. Similar conclusion follows from the average makespan (i.e. the latest finish
time of the queue jobs) values presented in Table4.

However with increasing the jobs number CoP advantage over BFf decreases
and tends to zero when NQ = 200. This trend for PEST and CoP heuristics may
be explained by increasing accuracy requirements for jobs placement caused with
increasing NQ number. Indeed, when considering for some intermediate job resource
selection the more jobs are waiting in the queue the higher the probability that some
future jobwill have a better fit for current resource during the backfilling procedure. In
a general case all the algorithms’ parameters αi , δi and εi (more details we provided

Table 3 Simulation results: average job finish time, t.u

Jobs number
NQ

BFs BF f BFshort P AST CoP

50 318.8 302.1 298.8 300.1 298

100 579.2 555 549.2 556.1 550.7

150 836.8 805.6 796.8 809 800.6

200 1112 1072.7 1060.3 1083.3 1072.2

Table 4 Simulation results: average job-flow makespan, t.u

Jobs number
NQ

BFs BF f BFshort P AST CoP

50 807.8 683 675 678 673.3

100 1407 1278 1264 1272 1264

150 2003 1863 1842 1857 1844

200 2622 2474 2449 2476 2455
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in Table2) should be refined to correspond to the actual computing environment
utilization level.

6 Advanced Simulation and Hindsight Job-Flow
Scheduling

6.1 Hindsight Scheduling

An important feature ofCoP and similar breaking a tie approaches [27, 29] is that they
do not affect the primary scheduling criterion and do not change a base scheduling
procedure.

Depending on the computing environment setup and job queue size the advantage
of CoP over the baseline backfilling procedure reaches 1–2% by average jobs finish
time and makespan criteria. Although these relative advantage values do not look
very impressive, an important result is that they were obtained almost for free: CoP
represent the same backfilling procedure, but with a more efficient resources usage.

Figure5 presents a distribution of a relative difference (%) between average jobs
finish times provided by CoP and BF:

100% ∗ (BF.avFinishT ime − CoP.avFinishT ime)/CoP.avFinishT ime.
(3)

The distribution was obtained from 250 simulations with N = 50 jobs in the queue.
Positive values represent scenarios when earlier job-flow finish time was provided
by CoP, while negative values – scenarios when a better solution is provided by BF.

As it can be observed, CoP generally provides better scheduling outcomes and
resources usage compared to the baseline backfilling. In a number of experiments
CoP advantage over BF reaches 10–15% with the maximum of 29% earlier finish
time. On the other hand, sometimes CoP provide much later job-flow finish times:
up to 12%behindBF (see Fig. 5). Thus, CoP average advantage of nearly 1% includes
many outcomes with serious finish time delays.

Considering that CoP and BF represent the same scheduling procedure it is pos-
sible to implement a joint approach by choosing the best outcome precalculated by
CoP, BF or a family of similar algorithms. In this case we will always use the most
successful scenario in terms of the resources efficiency. Such joint (or a hindsight)
approach may be used when it’s possible to consider job queue execution on some
scheduling interval or horizon.

For this purpose we consider a family of backfilling-based algorithms with dif-
ferent breaking a tie rules: Random, Greedy and CoP. After the scheduling step is
over the best solution obtained by these algorithms is chosen as a Hindsight result.
Except for CoP, this family is chosen almost arbitrary in order to evaluate how each
rule will contribute to the final solution.
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Fig. 5 Average CoP and BF job finish time difference distribution, N = 50

6.2 Simulation Setup and Analysis

Based onheuristic rules described inSect. 6.1we implemented the following schedul-
ing algorithms and strategies for SSA-based resources allocation.

1. Firstly, we consider conservative backfilling BFf procedure. For a finish time
minimization, BFf criterion for i-th considered slot has the following form:
zi = −si . f inishT ime. As there are no secondary criteria, BF generally selects
a random subset of slots providing the earliest finish time for a job execution.

2. Rand algorithm uses SSA algorithm for a fully random resources selection over
a conservative backfilling: zi = −si . f inishT ime + ri . Here ri is a small ran-
dom value uniformly distributed on interval [0; 01] representing the secondary
criterion.

3. Greedy backfilling-based algorithm performs resources selection based on the
following greedymetric of the resources profitability: pi

ci
. Thus, the resulting SSA

criterion function is: zi = −si . f inishT ime + α
pi
ci
. Here α defines the weight

of secondary criteria and is supposed to bemuch less compared to a primary finish
time criterion in order to break a tie between otherwise even slots. In the current
study we used α = 0.1 value.

4. CoP resources allocation algorithm for backfilling is implemented in accordance
with rules and priorities described in Sect. 5. More details were provided in [29].

The experiment setup included a job-flow of N = 50 jobs in a domain consisting
of 42 heterogeneous computing nodes. The jobs were accumulated at the start of
the simulation and no new jobs were submitted during the queue execution. Such
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Table 5 Breaking a tie heuristics scheduling results

Characteristic BF CoP Rand Greedy Hindsight

Number of
experiments

500 500 500 500 500

Average
makespan

677 670 683 680 662

Average finish
time

254 250 257 257 246

Earliest finish
number

114 238 62 86 500

Earliest finish
number, %

22.8 47.6 12.4 17.2 100%

Algorithm
working
time, s

0.01 52.6 54.4 53.2 160.2

problem statement allows us to statically evaluate algorithms’ efficiency and simulate
high resources load.

Table5 contains simulation results obtained from 500 scheduling experiments for
a family of breaking a tie heuristics contributing to the Hindsight solution.

We consider the following global job-flow execution criteria: a makespan (finish
time of the latest job) and an average jobs’ finish time.

Without taking into account the Hindsight solution, the best results were provided
byCoP: nearly 1%advantage overBF and 2%over bothRand andGreedy algorithms.

Hindsight approach reduces makespan and average finish time even more: 1%
advantage over CoP, 2% over BF and 3% over Rand and Greedy.

Although these relative advantagevalues donot lookvery impressive, an important
result is that they were obtained almost for free: CoP or Hindsight represent the same
baseline backfilling procedure, but with a more efficient resources usage.

CoP made the largest contribution to the Hindsight solution: in 238 experiments
(47.6%) CoP provided the earliest job-flow finish time. Baseline BF contributed to
Hindsight in 114 experiments (22.8%). Greedy provided the earliest finish time in
86 experiments (17.2%), Rand – in 62 experiments (12.4%).

In this way, CoP ruleset actually implements heuristics which allow better
resources allocation for parallel jobs compared to other considered approaches. At
the same time even algorithm with a random tie breaking procedure outperformed
BF, Greedy and CoP in 17.2% of experiments. Thus, by combining a larger number
of random algorithms in a single family may result in comparable or even better
Hindsight solution.

However, the major limiting factor for the Hindsight approach is SSA’s actual
working time. Baseline BF with a single criterion implements a simple procedure
with almost a linear computational complexity over a number of available resources
O(|R|). Consequently, its working time is relatively short: only 10 ms for a whole
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Fig. 6 Average job finish time difference between CoP, Hindsight and BF, %

50 jobs queue scheduling. SSA computational complexity is O(|R| ∗ n ∗ C) and it
required almost aminute to perform the same job-flowscheduling in each experiment.
Hindsight approach requires all completion of all the component algorithms. Thus,
in our experiment setup Hindsight algorithm was executed for almost 3min to obtain
the resulting scheduling solution.

Figure6 shows relative finish time difference for Hindsight, CoP and BF in the
same experiment set. CoP provides the same 1–2% earlier finish times than BF, while
Hindsight is able to provide a more solid 2–4% advantage.

7 Preference-Based Resources Coordination

7.1 Preference-Based Criteria Design

The same micro-scheduling heuristic may be used for a preference-based resources
allocation. Introducing fair scheduling in VO requires mechanisms to influence
scheduling results for VO stakeholders according to their private, group or common
integral preferences. Individual users may have special requirements for the allo-
cated resources, for example, total cost minimization or performance maximization.
From the other hand, VO policies usually assume optimization of a joint resources
usage according to accepted efficiency criteria. One straightforward example is a
maximization of the resources load.

The proposed Slots Subset Algorithm (SSA) performs window search optimiza-
tion by a general additive criterion Z = ∑n

i=1 cz(si ), where cz (si ) = zi is a target
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optimization characteristic value provided by a single slot si of window W . These
criterion values zi may represent different slot characteristics: time, cost, power,
hardware and software features, etc.

In order to support both private and integral job-flow scheduling criteria we con-
sider the following target criterion function in SSA for a single slot i :

z∗
i = z Ii + αzUi . (4)

Here z Ii and zUi represent criteria for integral and private jobs execution opti-
mization correspondingly. z Ii usually represents the same function for every job
in the queue, while zUi reflects user requirements for a particular job optimization.
α ∈ [0;+∞] coefficient determines relative importance between private and integral
optimization criteria.

By using SSA with z∗
i criterion and different α values it is possible to achieve a

balance between private and integral job-flow scheduling preferences and policies.
For the integral job-flow scheduling criterion we used jobs finish time minimiza-

tion (z Ii = −si . f inishT ime) as a conventional metric for the overall resources load
maximization.

7.2 Preference-Based Scheduling Algorithms and Analysis

For the SSA preference-based resources allocation efficiency study we implemented
the following scheduling algorithms.

1. Firstly, we consider two conservative backfilling variations. BFs successively
implements start time minimization for each job during the resources selection
step. So, BFs criterion for slot i has the following form: zi = −si .startT ime.
BFf implements finish time minimization: zi = −si . f inishT ime. Both BFs and
BFf algorithms represent extreme preference optimization scenario with α = 0.

2. Secondly, we implement a preference-based conservative backfilling (BP) with
SSA criterion of the following form: z∗

i = −si . f inishT ime + αzUi (4), where
zUi depends on a private user criterion uniformly distributed between resources
performance maximization (zUi = si .nodePer f ormance) and overall execution
cost minimization (zUi = −si .usageCost). So in average half of jobs in the queue
should be executed with performance maximization, while another half are inter-
ested in the total cost minimization.
Considered α values covered different importance configurations of private and
integral optimization criteria: α ∈ [0.01; 0.1; 1; 10; 100; 1000].

3. As a special extreme scheduling scenariowithα → ∞we implemented pure con-
servative backfilling with SSA criterion z∗

i = zUi , i.e. without any global param-
eters optimization.

The results of 1000 scheduling simulation scenarios are presented in Figs. 7, 8, 9
and 10. Each simulation experiment includes computing environment and job queue
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Fig. 7 Simulation results: average jobs finish time

generation, followed by a scheduling simulation independently performed using con-
sidered algorithms. The main scheduling results are then collected and contribute to
the average values over all experiments.

Figure7 shows average jobs finish time for BFs, BFf and BP depending on α

values on a logarithmic scale. BFs and BFf plots are represented by horizontal lines
as the algorithms are independent of α.

As expectedBFf provides 5%earlier jobs finish times compared toBFs.BFfwith a
job finish time minimization considers both job start time and runtime. In computing
environments with heterogeneous resources job runtime may vary and depends on
the selected resources performance. Thus, BFf implements more accurate strategy
for the resources load optimization and a job-flow scheduling efficiency.

Similar results may be observed on Fig. 8 presenting average job queue execution
makespan. This time the advantage of BFf by the makespan criterion exceeds 10%.

Interestingly, with α = 10 BP provides even earlier average jobs finish time com-
pared to BFf. In such configuration finish time minimization remains an important
factor, while private performance and cost optimization lead to a more efficient
resources sharing. At the same time BFf increases advantage by makespan criterion
(Fig. 8) as some jobs in BP require more specific resources combinations generally
available later in time.

Figures9 and 10 show scheduling results for considered private criteria: average
job execution cost and allocated resources performance. BPc and BPp in Figs. 9
and 10 represent BP scheduling results for jobs subsets with cost and performance
private optimization correspondingly. Dashed lines show limits for BP, BPc and BPp,
obtained in a pure private optimization scenario (α → ∞) without the integral finish
time minimization.

The figures show that even with relatively small α values BP implements consid-
erable resource share betweenBPc andBPp jobs according to the private preferences.
The difference reaches 7% in cost and 5% in performance for α = 0.01.
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Fig. 8 Simulation results: average jobs queue execution makespan

Fig. 9 Simulation results: average jobs execution cost

More noticeable separation up to 30–40% is observed with α > 1. With higher
importance of the private criteria, BP selectsmore specific resources and increasingly
diverges from the backfilling finish time procedure and corresponding jobs execution
order. The values obtained by BP with α = 100 are close to the practical limits
provided by the pure private criteria optimizations.

We may conclude from Figs. 7, 8, 9 and 10 that by changing a mutual importance
of private and integral scheduling criteria it is possible to find a trade-off solution.
Even the smallest α values are able to provide a considerable resources distribution
according to VO users private preferences. At the same time BP with α < 10 main-
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Fig. 10 Simulation results: average performance of the allocated resources

tains adequate resources utilization efficiency comparable with BFf and provides
even more efficient preference-based resource share.

8 Conclusion and Future Work

In this work, we address the problems of a dependable and efficient resources co-
allocation for parallel jobs execution in heterogeneous computing environments
using the micro-scheduling technique. For this purpose a general window allocation
algorithmwas proposed alongwith four practical micro-scheduling implementations
including dependable, coordinated and preference-based scheduling optimization.
Coordinated micro-scheduling approach performs secondary optimization based on
a baseline main scheduling procedure. A family of micro-scheduling algorithms
may be used for a joint hindsight solution to prepare different job-flow execution
strategies.

Sections4–7 discuss different scheduling problems and provide corresponding
simulation results and analysis. Dependable resources allocation may be used for an
efficient placement of the execution windows against unreliable and highly utilized
resources. Coordinated placement algorithm may improve backfilling scheduling
results by selecting resources with a special set of heuristic meta-rules. Hindsight
solution may be formed based on a family of different micro-scheduling algorithms
to precalculate their scheduling outcomes and to choose themost appropriate strategy
for the whole job-flow execution. Composite target optimization criteria are able to
followmultiple optimization preferences, thus providing fair resources share between
single HPCS users and administrators.
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The main drawback for the whole micro-scheduling approach is a relatively high
computational complexity of the core general resources allocation algorithms SSA.
In our further work, we will refine a general resource co-allocation scheme in order
to decrease its computational complexity.
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