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Abstract In this chapter, we consider a distributed production system modeled and
analyzed by means of the extended open-shop scheduling problem with transport
times and the makespan criterion. The stated problem is more general than these
considered by us so far as well those found in the literature. The stated problem has
been decomposed into two scheduling sub-problems: processing of jobs in each fac-
tory and transfer of jobs between factories. These schedules can be represented by two
job orders: “processing order” and “transfer order”. The overall aim of the optimiza-
tion task is stated to find the optimal/best job orders. We provide the mathematical
model to find the non-delay schedule for the given job orders. Next, we formulate
a graph model and introduce special properties, suitable to check the feasibility of
job orders as well as to calculate the makespan value. The properties have been used
in the neighborhood dedicated for local search methods. We have implemented the
tabu search algorithm and tested experimentally its performance.

1 Introduction

We consider so-called distributed production system,modeled and analyzed by using
tools from the scheduling area, namely the extended open-shop scheduling problem
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with transport times and the makespan criterion. The extension consists in using var-
ious sets of operations for jobs and operation-dependent transport times. Formulated
problem is more general than these considered up-to-now by us and more general
than those considered in the literature. The novelty in the problem formulation is
a mix of open-shop and job-shop with transport times. The novelty in the solution
methods is the graph as well as a labelling procedure, which performs Critical Path
Method (CPM) with detector of graph cycle. The stated problem have been decom-
posed into two sub-problems of scheduling: processing of jobs in each factory and
transfer of jobs between factories. We show that these schedules can be represented
by two job orders called respectively: “processing order” and “transfer order”. We
propose a labelling procedure which transforms orders into appropriate non-delay
schedules. The goal of optimization is to find the optimal/best job orders. We pro-
vide the mathematical model to find the non-delay schedule for the given job orders.
Next, we formulate a graph model and introduce several special properties, which
allows us to check the feasibility of job orders as well as to calculate the makespan
value. The properties have been used in the neighborhood dedicated for local search
methods. We have implemented the tabu search algorithm and tested experimentally
its performance.

In the distributed manufacturing system, the production process is carried out in
many locations mutually distant. The transport time between dispersed production
stages has significant influence on the schedule designed for these cases, [3]. Cur-
rently, many companies are moving away from the traditional production method in
an enterprise located in one place to distributed production implemented in many
locations. There aremany examples of industries in which such a process takes place,
ranging from companies producing food products in which some production stages
must be carried out at a safe distance from sanitary reasons and ending with the
automotive industry in which final products in the form of cars are produced from
many components produced in various locations. Another example of distributed
production systems is the construction of buildings, in which buildings are built
from prefabricated elements manufactured in many company branches located near
the raw materials for production [16] and/or construction sites. Appropriate location
of company branches increases the level of production efficiency while reducing
production expectations and reducing, among others, production costs.

Two basic models of distributed systems are considered in the literature, i.e. dis-
tributed flexible flow shop (DFFS) and distributed flexible job shop (DFJS) systems.
This is due to the fact that the vast number of production systems the technological
route for each product is precisely defined. The least often considered are the pro-
duction systems with open-shop policy in which the order of performing operations
within one task can be any.

The flow production systems are the most common research object of scien-
tists. They model the vast majority of manufacturing systems actually encountered.
In addressing distributed flowshop scheduling problem where are many algorithms
based on advanced local search methods (for example a tabu search algorithm Gao,
Chen and Deng [8], a scatter search algorithmNaderi and Ruiz [20], a hybrid genetic
algorithm Gao and Chen [7], iterated greedy algorithms Ruiz, Pan and Naderi [24]).
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Determining an efficient schedule for job shop production system problems is
definitely much more difficult. This is due to its NP-hardness and a huge number of
solutions from which a significant fraction is unfeasible. As in the case of flow shop
problems, for instances of problems with medium and large sizes, many heuristics
algorithms based on local search are proposed. One of the first optimisation algo-
rithms for distributed job shop problem is genetic algorithm proposed by Jia, Fuh,
Nee and Zhang [14]. A hybrid genetic algorithm Hao-Chin and Tung-Kuan [12] and
an agent-based fuzzy algorithm have recently been proposed Hsu, Kao, Ho and Lai
[13].

Theopen-shop schedulingproblem is a topic that has alreadybeen studiedbymany
authors. Due to the NP-hardness of the problem for regular criteria, mainly heuristic
algorithms based on various methods are proposed. One of the simplest algorithm of
this type for total completion timeminimisation is the polynomial algorithmproposed
by Kyparisis and Koulamas (1997) [15]. Gueret and Prins (1998) [11] developed an
original list scheduling heuristic algorithm enhanced by a local search improvement
procedure.

Nowadays, the best heuristic algorithms provide good solutions for benchmark
instances in short computation time. Liaw (2000) [17] introduces a hybrid genetic
algorithm incorporates a local improvement procedure based on tabu search, Sha and
Hsu (2008) [26] proposed a particle swarm optimization algorithm.

Other work focuses on criteria such as: late work Blazewicz et al. (2004) [2],
total tardiness Naderi et al. (2010) [19], total tardiness and makespan Noori-Darvish
and Tavakkoli-Moghaddam (2012) [25], makespan with release dates Bai and Tang
(2013) [1] and cycle time Pempera and Smutnicki (2018) [23].

The chapter is organized as follows. Section2 provides the mathematical descrip-
tion of the problem. Section3 presents graph model and some properties of the
problem. Optimisation algorithm is presented in Sect. 4, whereas the result of com-
putation experiments shown in Sect. 5.

2 Mathematical Model

We begin from a brief descriptive introduction to the problem. The distributed man-
ufacturing system working with open-shop policy (DMSO) one can consider as an
ensemble of cooperating factories engaged to provide various products. Factories are
located far away each other. A product corresponds to a production job composed of
operations, each of which is processed in the different factory. Operations included
in the job can be performed in any order, then the route of a job through factories is
variable. Each factory can perform only one operation at a time.

We introduce the followingmathematicalmodel, see Table1 for the list of symbols
and their meaning. We denote by

M = {1, . . . , m}
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Table 1 List of symbols

Denotation Meaning

Data

N Set of jobs N = {1, 2, . . . , n}
M Set of manufacturing plants M = {1, 2, . . . , m}
n j Number of operations in job j ∈ N

pi Processing time of operation i ∈ O

νi Manufacturing plant for operation i ∈ O

dkl Distance between plants k and l, k, l ∈ M

Definitions of objects

O j Set of operations of job j , O j = {l j−1 + 1, . . . , l j }
l j Number of operations of the first j jobs, l j = ∑ j

s=1 ns

O Set of all operations

Mk Operations in plant k ∈ M , Mk = {i ∈ O : vi = k}
o Total number of operations

Variables

Si Start time of operation i ∈ O

Ci Completion time of operation i ∈ O

τ Processing order of visiting plants, τ = (τ1, . . . , τn)

σ Processing order of operations in a plant, σ = (σ1, . . . , σm)

the collection of geographically distributed manufacturing plants (factories). The set
of tasks (jobs) which have to be performed usingM is denoted by

N = {1, 2, . . . , n}.

The job j is representedby the set ofn j independent operations indexed consecutively
as follows

O j = {l j−1 + 1, . . . , l j },

where

l j =
j∑

s=1

ns

is the number of operations of the first j jobs. Note that n j can be various for different
jobs. Set means that all operations from O j have to be processed, in an order, but
only one operation at the time. We define the set of all operations in the natural way

O =
⋃

j∈N

O j ,
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where the total number of operations is |O| = o = ln . Operation i ∈ O is processed
in factory νi ∈ M in the duration pi > 0. νi and pi are known. We know also the
distance (transfer time) defined by a matrix

D = [dkl]m×m,

where dkl is a distance between k-th and l-th plant, k, l ∈ M. Interruption of an
operation performed in the factory is not allowed. Each factory processes at most
one operation at a time. Buffers before and after factory have infinite capacity.

Overall schedule is defined by vector of start times

S = (S1, S2, . . . , So)

and completion times
C = (C1, C2, . . . , Co).

Actually, sinceCi = Si + pi , then either S orC is sufficient to represent the schedule.
The schedule S can be found having defined the following processing orders

• order of performing operations inside the job (order in which job visits factories),
• order of performing operations in each factory.

Both types of orders can be expressed by a permutation or/and their composition.
The processing order of visiting factories of the job j ∈ N can be represented by the
permutation

τ j = (τ j (1), τ j (2), ..., τ j (n j ))

on the set O j . We denote in the sequel

τ = (τ1, τ2, . . . , τn).

The processing order of operations in factory k ∈ M can be represented by the per-
mutation

σk = (σk(1), σk(2), . . . , σk(mk))

of mk operations from the set

Mk = { j ∈ O : ν j = k}.

We denote by analogy
σ = (σ1, σ2, . . . , σm).

The pair (σ, τ ) introduces constraints on time events in the following form

Sτ j (i) ≥ Cτ j (i−1) + dντ j (i−1),ντ j (i)
, i = 2, . . . , n j , j = 1, . . . , n, (1)
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Table 2 Data for the example

Job i pi νi i pi νi i pi νi i pi νi

1 1 90 1 2 50 3 3 64 2 4 65 4

2 5 47 4 6 92 3 7 73 1 8 26 2

3 9 27 4 10 94 2 11 48 1 12 93 3

4 13 43 3 14 76 1 15 87 2 16 65 4

Sσk (i) ≥ Cσk (i−1), i = 2, . . . , mk, k = 1, . . . , m, (2)

Si ≥ 0, i = 1, . . . , o, (3)

Inequality (1) expresses that the start time of operation τ j (i) has to be later then the
completion time of its precedence operation τ j (i − 1) plus the transport time from
factory ντ j (i−1) to factory ντ j (i). Inequality (2) describes relations between events of
start and completion of operations processed in the same factory and means that start
of the operation σk(i) is possible only after completion of its precedence operation
σk(i − 1). The constraint (3) is obvious. Equality (4) ensures that processing of
operation i ∈ O cannot be interrupted

Ci = Si + pi , i = 1, . . . , o. (4)

We call processing order (σ, τ ) feasible if exists schedule S and/or C so that (1)–(4)
hold. For the given (σ, τ ) we define the makespan as follows

Cmax(σ, τ ) = max
i∈O Ci . (5)

The overall aim of the distributed open shop scheduling problem is to find σ ∗ and
τ ∗ for which Cmax(σ, τ ) is the smallest among all feasible (σ, τ )

Cmax(σ
∗, τ ∗) = min

σ,τ
Cmax(σ, τ ). (6)

The problem can be perceived as the mixed open-shop/job-shop scheduling problem.
Indeed, assuming n j = m, j ∈ N and transport time zero we obtain the traditional
definition of the open-shop existed in the scheduling area. Assuming that transport
time is zero and τ j is fixed but can be various for various jobs, we obtain the well-
known definition of the job-shop problem. Since both special cases, namely the
open-shop and job-shop are NP-hard, the considered problem is also NP-hard. In
order to show the problem in detail, we provide the following example.

Example. Four jobs have to be scheduled in a distributed open-shop system con-
sisting of four factories. Each job is processed in each factory. The job indexes, oper-
ation indexes, processing times and factories assigned to the operations are given in
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Table 3 Distances between factories

Factor y 1 2 3 4

1 0 5 10 15

2 5 0 5 10

3 10 5 0 5

4 15 10 5 0

Table2 (the data derive from 5th Taillard’s benchmark of the open-shop [27]). The
distances between factories are given in Table3.

Three Gantt charts are displayed in Figs. 1A–C for various processing orders
(σ, τ ) and various transport times D. Chart A provides the optimal schedule with
the makespan Cmax(σ, τ ) = 295 for data given in Table2 and processing orders

σ = ((11, 7, 1, 14), (3, 15, 10, 8), (13, 12, 6, 2), (5, 4, 16, 9))

τ = ((3, 4, 1, 2), (5, 7, 6, 8), (11, 12, 10, 9), (13, 15, 16, 14)) (7)

assuming zero transport time (case di j = 0). Chart B shows the schedule with the
makespan Cmax(σ, τ ) = 320 built for the processing order (7) (the same as in case
A) and distances taken from Table3. Chart C shows the best found schedule with
Cmax(σ, τ ) = 306 for the job order

σ = ((11, 14, 1, 7), (3, 8, 10, 15), (13, 2, 6, 12), (5, 9, 16, 4))

τ = ((3, 2, 1, 4), (5, 8, 6, 7), (11, 9, 10, 12), (13, 14, 16, 15)) (8)

and distances from Table3.

3 Application of the Graph

In order to introduce some special properties of the problemwe convert mathematical
model (1)–(4) to certain graph. For a fixed (σ, τ ) we define a directed planar graph
in the Activity-on-Node (AoN) modelling style, namely

G(σ, τ ) = (O, E(σ ) ∪ F(τ )), (9)

with the set of nodes O and the set of arcs E(σ ) ∪ F(τ ). The node i ∈ O represents
an operation and has weight pi . The set of arcs E(σ ) ∪ F(τ ) ⊆ O × O represents
preceding constraints and consists of two subsets:

• following from the changeable order τ of visiting plants by a job,
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Fig. 1 Gantt charts for the Example 2: A optimal for order (7) and zero transport time (dkl = 0),
the makespan is 295. B certain for order (7) and transport time from Table3, the makespan is 320
C optimal for order (8) and transport time given in Table3, the makespan is 306
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F(τ ) =
n⋃

j=1

n j⋃

i=2

{(τ j (i − 1), τ j (i)}, (10)

which corresponds to constraints (1), each arc (τk(i − 1), τk(i)) ∈ F(τ )hasweight
dτk (i−1),τk (i),

• following from the changeable processing order σ of operations in factories

E(σ ) =
m⋃

k=1

mk⋃

i=2

{(σk(i − 1), σk(i)}, (11)

which corresponds to constraints (2); each arc ((σk(i − 1), σk(i)) ∈ E(σ ) has
weight zero.

Graph G(σ, τ ) is used for checking feasibility, finding the schedule S and the
makespan value for the given processing order (σ, τ ). Appropriate features follow
from properties shown in the sequel.

Property 1 For processing order (σ, τ ) exists feasible schedule S, C from (1)–(4)
if and only if the graph G(σ, τ ) does not contain a cycle.

Property 2 For processing order (σ, τ ), the starting time Si of an operation i ∈ O
equals the length of the longest path going to the node i ∈ O in the graph G(σ, τ ).

Checking “if the graph has a cycle” in Property 1 can be done in the time O(o).
Longest paths going to each node in Property 2 can be found by running Critical
Path Method (CPM); it requires also the time O(o). Nevertheless, we propose an
alternative labelling procedure, which combines features enumerated in Properties 1
and 2. Its running time is O(o). Its pseudo-code is shown in Fig. 2.

Notice, Step 1.2 implements constraint (1) and Step 1.3 implements constraint
(2). Then, before performing Step 1.4 in Si we have the earliest possible start time
of operation i ∈ O. Step 1.4 implements Eq. (4). Performing Steps 1.2, 1.3 and 1.4
is possible only for those operations for which completion times of all predecessors
are known. Operations with known completion time for all predecessors in a given
iteration are stored in the queue Q. Queue Q is initialized with operations having
no predecessors (see Step 0.2). For each operation we store in npi , i ∈ O the num-
ber of predecessors with unknown (not determined yet) completion time. Each time
when is determined completion time of some operation the npi value for job and
machine successors are updated and successors are stored in Q if npi reach zero
(Steps 1.5.1 and 1.6.1). If the completion time is not determined for all operations
then the processing orders are unfeasible. This fact is detected by counting the num-
ber of operations for which the moment of completion is determined (see variable
i tercount).

The problem (6) refers to huge number of processing orders, theoretically n!mm!n ,
although themajority of them are unfeasible. Taking into account the cost of checking
feasibility we are interested in the potential property allowing us to generate only
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Fig. 2 Pseudocode of schedule determining algorithm for given (σ, τ )

feasible processing orders. The next two facts following from graph model, describe
the conditions of generating the new feasible and better processing orders.

Let U be the arbitrary selected longest path in G(σ, τ ). The maximum sub-path
of U consisting of nodes representing operations performed in the same factory
will be called the operation block or, briefly the block. The maximum sub-path of
U consisting of nodes representing operations that belong to the same job will be
called the job-block.

Schedule(σ, τ )

indirect variables (variables following from σ and τ ):

• j pi - job predecessor i.e. operation preceding operation i in τ ,
• jsi - job successor i.e. operation succeeding operation i in τ ,
• f pi - factory predecessor i.e. operation preceding operation i in σ ,
• f si - factory successor i.e. operation succeeding operation i in σ ,

note that j pi = 0, jsi = 0, f pi = 0, f si = 0 if operation i has not appropriate pre-
decessors or/and successors.
current variables

• npi - number of predecessors of operation i ∈ O with unknown (not yet deter-
mined) completion time,

• Q - queue of operations with determined completion times all of predecessors,
• i tercount - number of operations with determined completion times all of prede-
cessors.
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Property 3 Let (σ, τ ) be a feasible solution. All processing orders created by swap-
ping the order of two adjacent operations in the blocks are feasible.

Property 3 allows us to generate from a feasible processing order a sequence
(subset) of feasible processing orders. It can be applied in an algorithm based on the
B&B scheme as well as in various metaheuristics.

Property 4 Let (σ ′, τ ′) be the feasible solution obtained from (σ, τ ) so that

Cmax(σ
′, τ ′) < Cmax(σ, τ ) (12)

then at least one condition occurs

• at least at one operation from at least at one block is performed before the first
operation of the block,

• at least at one operation from at least at one block is performed after the last
operation of the block,

• at least at one operation from at least at one job-block is performed before the
first operation of the job-block,

• at least at one operation from at least at one job-block is performed after the last
operation of the job-block,

• the operation from at least at one internal job-block is performed in other order.

Property 4 is a realization of so-called block approach. It defines sufficient condi-
tions necessary to generate the processing order with better makespan. Block proper-
ties were successfully used to construct efficient algorithms for flow-shop scheduling
problem [22], job-shop scheduling problem [10], flexible job-shop scheduling prob-
lem [5] and many others.

4 Optimization Algorithm

We refer to the metaheuristic algorithm called tabu search, see [9] for foundations
of the method. Briefly, it is a modification of the well-known fast descend search
approach. The search trajectory is generated by checking successive local neighbor-
hoods. The algorithm uses a short-term memory (called tabu list) to prevent won-
dering around in the solution space and to guide the search into promising regions
of this space. The best non-forbidden solution in the neighborhood is selected and it
becomes current solution for the next iteration.

Since determining the Cmax value for a given solution order consumes a consid-
erable amount of time, in the interest of computation time, one should search only
feasible and/or promising improvement of the objective function solutions.

The most important element of local search algorithms is the neighborhood defi-
nition of the current solution. One of the most effective ways to generate the solution
neighborhood for job-shop problem is the method proposed by Smutnicki and Now-
icki [21]. Watson, Howe and Whitley (2005) [28] experimentally proved its natural
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convergence to local minima regardless of the local search method used. Roughly
speaking, the neighbor solution is generated by swapping the first operation in the
block with the next or the last operation in the block with the second to last one.

Bearing in mind the similarity of the jobshop scheduling problem to the openshop
scheduling problem (jobshop is a special case of openshop ) and the fact that this
method of generating fulfill the conditions of Property 4 (for blocks and job-blocks)
and Property 3 (only for blocks) we have decided to implement this type of neighbor-
hood generation method. Precisely, let B = (B1, . . . , Bb) be the sequence of blocks
and job-blocks. The neighborhoodN(σ, τ ) of solution (σ, τ ) consists of two subsets:

N(σ, τ ) = N1(σ, τ ) ∪ N2(σ, τ ). (13)

The former setN1(σ, τ ) contains processing orders created from (σ, τ ) by swapping
the two first operations of the block or job-block i.e. operations Bs(1) and Bs(2),
s = 1, . . . , b. The latter set N2(σ, τ ) contains of processing orders created from
(σ, τ ) by swapping the two last operations operations of the block or job-block i.e.
operations Bs(bs − 1) and Bs(bs), s = 1, . . . , b, where bs is the number of operations
in block or job-block s.

The tabu list T L were constructed and used in the following ways:

• contains the pairs of operations,
• has limited length L and is serviced by FIFO rule,
• the pair (a, b) of T L prohibits swapping operations a and b.

The algorithm terminates after maxiter iterations. In addition, in order to diver-
sify the search process, after each nonimpiter iterations without improving the
best found solution, there is a random “jump” from this solution. The jump is also
performed if a search cycle is detected. In the jump, jumpiter iterations are per-
formed. In each iteration of the jump, the neighbor solution is randomly selected
and it becomes the current solution in the next iteration. The first solution in this
procedure is the best solution found so far by the TS algorithm.

5 Experimental Results

We set three research goals:

1. evaluate the quality of solutions generated by TS,
2. evaluate the impact of transport times on the value of the objective function,
3. measure the calculation time.

The benchmark set consist of 40 modified open-shop Taillard instances. For each
original Taillard’s instance we generate symmetric distance matrix. The benchmark
set contains 4 group of instances of size: n × m = 4 × 4, 5 × 5, 7 × 7, 10 × 10.
Eachgroup contains 10 instances. TSalgorithmwere implemented inC#underVisual
Studio 2010 environment. The machine used was a a PC with Intel I7 2.4GHz, under
Windows 8.1 operating system with 8GB RAM.
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In the TS, there are several control parameters. In the preliminary computer tests
of efficiency of algorithm we determine the following value of parameters:

• nonimpiter = 1, 000,
• L = 7, . . . , 13 - length of tabu cyclically increase by one each time jump is per-
formed,

• jumpiter = 5.

Algorithm TS was run on maxiter = 10, 000 iterations.
Relative percentage deviation is employed to evaluate the quality of solution

generated by proposed algorithm.

P RD = Cmax(σ
T S, τ T S) − L B

L B
× 100%, (14)

were (σ T S, τ T S) is solution generated by TS algorithm and L B is lower bound of
Cmax value for given instance.

We introduce a simple lower bound calculated as the maximum of factory work-
loads i.e.

L B = max
1≤k≤m

∑

i∈O: νi =k

pi . (15)

In the initial experiment we evaluated the quality of solution generated by our TS
using original Tailard’s instances of the open-shop scheduling problem. Note the the
“classical” open-shop is a special case of DOSP i.e. with distances between factories
equal zero. Optimal or near optimal values are known for the Taillard’s instances.
So, the PRD in this tests, can refer to optimal makespans.

The optimal or best found values of Cmax for Tailard’s instances are depicted in
column Ref in Table4. The columnsCmax reportsCmax values for solution generated
by TS and P RD columns percentage relative deviation. For small problem size
(group 4 × 4), the average PRD is equal 0.82 and slightly increases with increasing
size of problem, especially with increasing number of machines. The biggest average
P RD = 4.11 we observe for group 7 × 7. Quality of TS in pure open-shop we
evaluate vicariously and briefly, because is is not our main topic. Average PRD of
TS for all Tailard’s instances is 2.64 and it is similar to 2.54 obtained by the best
algorithm mentioned in [18]. Nevertheless, for the pure open-shop still exists more
advanced algorithms, with PRD close to zero, [6].

Each Tailard’s benchmark for the open-shop problem contains up to nines diverse
jobs, therefore is considered as hard formany heuristics.On the other hand, especially
in the mass production system we observe small, medium or large series of identical
products. This incline us to introduce another benchmark set.

In order to examine the impact of travel time between factories and series
size on the Cmax values, we generated 4 groups of instances with different dis-
tances. The distances are generated random in the range (1, f rac · L B), were
f rac ∈ {0%, 5%, 10%, 20%}. Note, that distances for f rac = 10%, 20% are pro-
portional to random generated distances for f rac = 5%. For each of group we
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Table 4 Relative percentage deviation for open-shop benchmark instances

Instance Ref Cmax P R D Instance Ref Cmax P R D

Group 4 × 4 Group 5 × 5

tail01 193 193 0.00 tail11 300 307 2.33

tail02 236 239 1.27 tail12 262 269 2.67

tail03 271 272 0.37 tail13 323 333 3.10

tail04 250 252 0.80 tail14 310 321 3.55

tail05 295 295 0.00 tail15 326 332 1.84

tail06 189 193 2.12 tail16 312 318 1.92

tail07 201 203 1.00 tail17 303 308 1.65

tail08 217 217 0.00 tail18 300 304 1.33

tail09 261 268 2.68 tail19 353 363 2.83

tail10 217 217 0.00 tail20 326 328 0.61

Average 0.82 Average 2.18

Group 7 × 7 Group 10 × 10

tail21 435 448 2.99 tail31 652 670 2.76

tail22 443 463 4.51 tail32 588 617 4.93

tail23 468 496 5.98 tail33 611 627 2.62

tail24 463 483 4.32 tail34 577 598 3.64

tail25 416 433 4.09 tail35 657 669 1.83

tail26 451 478 5.99 tail36 538 565 5.02

tail27 422 443 4.98 tail37 616 630 2.27

tail28 424 435 2.59 tail38 595 621 4.37

tail29 458 478 4.37 tail39 595 615 3.36

tail30 398 403 1.26 tail40 604 628 3.97

Average 4.11 Average 3.48

generate five subgroups (series) denoted {1, 2, . . . , 5}, respectively; in subgroup x
each job from original Taillard instances is duplicated x times. Finally, we receive
20 × 40 instances of DOSP.

Table5 presents the results obtained for different groups of instances. Results
for “Series 1” confirm the supposition that transport between factories enlarges the
makespan. The average P RD increases with increasing f rac value (with increasing
time of travel) and with increasing number of factories. For group 5% the P RD
value varies from 8.95% to 20.97%while for group 20% the P RD value varies from
25.08% to 58.23%. Taking into account the number of factories, it can easily be
seen that the increase in the value of P RD is near proportional to the increase in the
number of factories. For example for group 5% and 5 factories the P RD = 10.63%
and for 10 factories is near two times greater i.e. P RD = 20.97%. Surprising result
can be seen for “Series 2..5”. For the majority of these groups, the P RD value is 0.
This means that the makespan is limited only by certain bottleneck factory and time
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Table 5 Average percentage relative deviation and computation time for instance groups

n × m Group 0% Group 5% Group 10% Group 20%

P R D C PU P R D C PU P R D C PU P R D C PU

Series 1 4 × 4 0.82 0.3 8.94 0.3 13.65 0.3 25.08 0.1

5 × 5 2.18 0.6 10.63 0.5 17.55 0.5 31.80 0.2

7 × 7 4.11 1.3 13.27 1.2 24.15 1.3 39.68 0.3

10 × 10 3.48 3.0 20.97 3.1 32.81 1.0 58.23 0.3

Average 2.65 13.45 22.04 38.69

Series 2 8 × 4 0 0.3 0 0.3 0 0.3 0 0.5

10 × 5 0 0.3 0 0.3 0 0.3 0 0.3

14 × 7 0 0.4 0 0.4 0 0.5 0.02 0.5

20 × 10 0 0.7 0 0.8 0.46 1.1 13.96 1.6

Average 0 0 0.12 3.49

Series 3 12 × 4 0 0.3 0 0.3 0 0.3 0 0.3

15 × 5 0 0.4 0 0.4 0 0.4 0 0.4

21 × 7 0 0.5 0 0.4 0 0.6 0 0.5

30 × 10 0 0.8 0 1.1 0 1.3 3.13 3.0

Average 0 0 0 0.78

Series 4 16 × 4 0 0.4 0 0.3 0 0.4 0 0.4

20 × 5 0 0.4 0 0.4 0 0.4 0 0.4

28 × 7 0 0.6 0 0.5 0 0.5 0 0.6

40 × 10 0 1.5 0 1.3 0 2.0 2.59 2.9

Average 0 0 0 0.65

Series 5 20 × 4 0 0.4 0 0.4 0 0.4 0 0.4

25 × 5 0 0.4 0 0.5 0 0.4 0 0.4

35 × 7 0 0.6 0 0.7 0 0.7 0 0.6

50 × 10 0 1.7 0 1.9 0 2.2 1.89 3.5

Average 0 0 0 0.47

of other travels does not affect it. Nonzero P RD values are observed in groups of
10% and 20% for a large number of factories. P RD values quickly decreases if the
Series index increases.

At the beginning of discussion about the computation time, it should be noted
that the this time depends on the number of neighbors in the neighborhood in each
iteration. This number, in order, depends on the distribution of blocks and job-blocks
and is peculiar for each particular solution. In the “Series 1”, we observe that if the
distance between factories increases, the calculation time decreases. This is due to
the fact that the number of blocks and task blocks decreases as the impact of travel
times on the total completion of all jobs increases. In the remaining series, in each
group of examples of the same size, the calculation time is approximately the same.
This time is relatively short and follows from a small number of blocks due to the
dominance of the bottleneck factory. The computation time increases with increasing
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number of jobs. This relationship is approximately linear and shows that with the
increase in the number of jobs, the average number of blocks changes only slightly.

The largest observed computation time, for instances with largest sizes, does not
exceed 4s and it is accepted in practical applications.

6 Conclusions

A distributed manufacturing system has been studied, modelled and analysed as the
mixed open-shop/jobshop scheduling problemwith transport times and themakespan
criterion. We decomposed the problem of finding the best schedule into two sub-
problems: finding optimal schedule for given processing order and finding the best
processing order. To solve the former sub-problem we use the specific graph, which
allow us to formulate several special properties: feasibility of processing order, fast
computing of the makespan and elimination of non-perspective solution by so-called
block properties. The block property defines the necessary conditions for the pro-
cessing order to find better order than the current one without the direct calculation of
the makespan value. In this way, non-promising solutions easily can be eliminated.

To solve the latter sub-problem we propose the metaheuristic algorithm based on
tabu search (TS) method. Block properties have been used to construct the neigh-
borhood of TS. Computer experiments show that the proposed algorithm provides
solutions close to optimal in a short time already for test instances (taken from the lit-
erature) of the open-shop case. For the distributed manufacturing case the similarity
of jobs has an impact on the quality of generated solutions. For instances with series
of identical jobs, algorithm TS frequently generates an optimal schedule. Moreover,
we observe for job series that transport time has rather weak impact on the selection
of the best solution.

The used approach can be extended to cover more complex distributed manufac-
turing structures and other manufacturing policies. Further natural extension of the
research will be parallel variants of the proposed algorithm, [4].
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