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Preface

Recently, a number of researchers studying distributed service networks devoted
their efforts to modeling real-life systems of different natures and characters. The
generic approaches developed through this effort are based on AI methods
(parallel/cloud computing, declarative modeling, fuzzy methods) that have been
highly developed in recent years. These methods allow one to integrate both
emerging and existing concepts from different types of production flows through
synchronizations (e.g., milk-run distribution networks), the integration of logistics
services (e.g., supply chains and projects portfolios), to traffic flow congestion
management in ad hoc networks as well as to the design of high-performance cloud
data centers. The results presented in this book provide significant new contribu-
tions in both theory and applications and enable a broad understanding and mod-
eling of distributed service networks. These networks are found in numerous areas
related to, among others: parallel data processing and cloud computing, logistics
supply chains, public and multimodal transport, and computer networks.

The above mentioned topics should be of great interest to researchers in com-
puter science, operations management, production control, as well as practicing
managers and engineers. Featuring a balance between state-of-the-art research and
practical applications, this book provides an opportunity to collect contributions
that cover the main research challenges related to the modeling, development, and
validation of concurrently acting processes performed in distributed service net-
works. The book is divided into eight chapters.

Chapter “Parallel Computing for the Non-permutation Flow Shop Scheduling
Problem with Time Couplings Using Floyd-Warshall Algorithm” by Bożejko,
Rudy, and Idzikowski provides results of research carried out in the field of the
parallelization of the most costly element of the local search algorithms that solves
the permutation flow shop problem with makespan criterion. Despite these kinds of
well-known strongly NP-hard scheduling problems that have been intensively
studied for over 50 years, large size instances still constitute a serious computa-
tional challenge. In this chapter, computationally effective methods, based on
theorems proposed for the Parallel Random Access Machine model of parallel
computation, are presented. The obtained results enable the development of new,
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more effective methods and constitute a significant contribution to the development
of effective methods of solving this type of scheduling problem.

The research objective of chapter “Parallel Neighborhood Search for the
Permutation Flow Shop Scheduling Problem” by Bożejko, Rudy, and Wodecki is to
model the well-known flow shop problem (non-permutational, more general than
permutational one) with an additional constraint, called time couplings. This con-
straint limits the minimal and maximal idle time for each machine. In this contri-
bution, the authors deliver a continuation of their previous research for solving flow
shop problems through considering parallel computing usage (based on the Parallel
Random Access Machine model). Specifically, they adopt the Floyd–Warshall
algorithm to be executed in a multi-core computing environment. Under these
assumptions, several problem properties aiding in the efficient calculation of the
goal function have been formulated.

The results of the experiments show the efficiency of the proposed approach.
Chapter “Distributed Manufacturing as a Scheduling Problem” by Pempera,

Smutnicki, and Wójcik tackles the scheduling problem dedicated for enterprises in
which transfer operations for production jobs passing between plants, have to be
taken into account. The problem is decomposed into two parts: scheduling the jobs
within each enterprise and scheduling the transfer of jobs between enterprises. The
authors provide a graph model for a given processing order of jobs, and they
propose a set of properties allowing to construct an effective search method (e.g.,
employing the neighborhood concept for a local search algorithm). The proposed
method is demonstrated to find near-optimal solutions faster than the currently used
approaches.

Chapter “Rerouting and Rescheduling of In-Plant Milk Run Based Delivery
Subject to Supply Reconfigurability Constraints” by Bocewicz, Nielsen, and
Banaszak provides an approach to milk-run system design and operations, which
takes into account the relationships linking the disruptions and production order
changes imposing production flow replanning. The research in the chapter develops
a declarative model and a heuristic approach, which together can be used to define
and evaluate the reconfigurability level of a production system. Experimental
results demonstrate the advantages of simultaneous logistic trains rerouting and
rescheduling in real-size in-plant milk-run systems.

Chapter “Micro-Scheduling for Dependable Resources Allocation” by Toporkov
and Yemelyanov focuses on an approach for slot selection and co-allocation
algorithms for parallel jobs in distributed computing with non-dedicated and
heterogeneous resources. In particular, the authors show the algorithm for an
optimal or near-optimal heterogeneous resource selection by a given criterion with
restrictions to the total cost. The proposed micro-scheduling applications for the
dependable and coordinated resources co-allocation allows for effective optimiza-
tion and preference-based scheduling in heterogeneous computing environments.

Chapter “Cyclic Dynamic Evaluation of Logistics Services Stakeholders Based
on System with OFN Model”, by Chwastyk, Pisz, and Rudnik provides a study of
dynamic evaluation of logistic services stakeholders based on fuzzy systems with
an ordered fuzzy numbers model. The proposed method links two well-known tools
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to get valuable results for the evaluation of logistics service stakeholders. The
application of an Ordered Fuzzy Interference allows to obtain reliable and more
precise information compared with standard fuzzy-based approaches. The provided
study case proves the effectiveness of the proposed method.

In chapter “The Interleaved Memory Efficiency for Multithread Memory Calls
Processing”, by Brekhov, the focus is on the problem of evaluation of effectiveness
of interleaved memory taking into account conflicting memory calls from multiple
threads. In particular, the author provides precise mathematical analysis, which
enables to determine the mean number and standard deviation of occupied memory
banks (MBK) per cycle of memory access for many treads. The proposed approach
is verified in a series of real-live based experiments.

Chapter “On HPC and Cloud Environments Integration” by Antonenko,
Chupakhin, Kolosov, Smeliansky, and Stepanov, presents a solution to the sig-
nificant problem of shortening the time for performing computing tasks using
supercomputers and clusters for High-Performance Computing (HPC). The
approach proposed by the authors consists of the integration of HPC systems with
resources provided by cloud data centers (DC clouds) and Data Centers Networks
(DCN). The integration enables the automatic transfer of some computational tasks
from queues to supercomputers for implementation in less loaded cloud clusters and
virtual servers in data centers. The experimental results show that it is possible to
accelerate the performance of two MPI applications running simultaneously in
contrast to their sequential run.

Following the editors’ intention, this work has a monographic character focusing
on theory and implementation of widely understood distributed service networks,
wherein each chapter has an independent character and it is written by authors who
have a well-established position in the field. It collected in a systematized way
significantly broadened results on the subject of methods of modeling and solving
difficult issues of modeling, evaluation, optimization, and manufacturing which
appears in IT and control systems. We hope this book will help to familiarize the
reader with the contemporary methodology of modeling in application to the issues
of production and services engineering.

Koszalin, Poland Grzegorz Bocewicz
Wrocław, Poland

September 2020

Jarosław Pempera
Moscow, Russia Victor Toporkov
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Parallel Computing for the
Non-permutation Flow Shop Scheduling
Problem with Time Couplings Using
Floyd-Warshall Algorithm

Wojciech Bożejko , Jarosław Rudy , and Radosław Idzikowski

Abstract In this chapter a variant of the classic Non-permutation Flow Shop
Scheduling Problem is considered. Time couplings for operations are introduced,
determining the minimal and maximal allowed machine idle time between process-
ing of subsequent jobs. The mathematical model of the problem and a graph rep-
resentation of its solution are presented. Next, several properties of the problem,
including a method for computation of the goal function on a CREW PRAM model
of parallel computation, are formulated and proven. Finally, the proposed method is
discussed in terms of its theoretical effects on the time needed to calculate the goal
function and search one of the well-known neighborhoods for use in local search
solving methods.

Keywords Flow Shop · Time couplings · Parallel computing · Discrete
optimization · Scheduling

1 Introduction

The Flow Shop Scheduling Problem (FSSP), and its more specific permutation vari-
ant [21], is one of the most well-known scheduling problems in the field of discrete
optimization and operations research. It has many practical applications, being able
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2 W. Bożejko et al.

to model various real-life production processes, starting from classic assembly line
manufacturing [27] to construction projects management [6].

Due to its popularity, practical applications and difficulty (FSSP is considered
NP-hard optimization problem), the FSSP and many of its variants (e.g. cyclic [8],
multi-objective [18, 25], stochastic [11]), had been a topic of very active research
by various groups of scientists. Moreover, various modeling and solving methods
have been considered for this problem, ranging from integer programming [28] and
metaheuristic method [26] to parallel computation [5] and fuzzy sets theory [22].

However, sometimes existing variants of the FSSP are sometimes not sufficient
to model real-life situations and unusual constraints, such as machines with specific
working conditions ormachine/vehicle operating/renting cost. One example of this is
the concreting process. In this case one of the operations consists of pouring concrete
on a designated location. The concrete mixer truck needs to load and mix the next
portion of the mixture before the task can proceed to the next location. Moreover, the
concrete needs to be mixed for a certain amount of time. Too short or too longmixing
can result in incorrect concrete parameters or evendamage the concretemixer.Mixing
process is thus and additional task with minimal and maximal duration taking place
between other tasks. Such a restriction can be generally described as time coupling:
an additional relation between the completion time of an operation on a machine
and the starting time of the next operation on the same machine. In result, the final
schedule will contain gaps required for those additional tasks (like concrete mixing)
with their allowed duration given by a closed from-to interval.

The minimal idle time for a machine can be modeled as setup times [23], how-
ever this does not model the maximal idle time. Other types of time couplings often
encountered in the literature are the no-idle constraint [19] (machine has to start pro-
cessing the next job immediately after completion of the previous one) and no-wait
[12] (next operation of a job has to be processed immediately after completion of
the previous one). Other constraints considered for similar scheduling problems that
resemble time couplings or its specific cases include limited-wait [10, 24] (maximal
inter-operation time in a job) and inserted-idle [14] (deliberate various-sized inter-
machine idle periods). Naturally, it is also possible to use more than one such restric-
tion together, for example combining no-wait and limited-idle constraints together
[13]. Approaches exist that consider machine-fixed time couplings. And example
of that is paper by Bożejko et al., where Branch-and-bound and Tabu search solv-
ing methods were proposed for the Permutation Flow Shop Problem [7]. Further
results from the area of complex scheduling problems can be found in the works of
Bach et al. [1], Bocewicz [2], and Bocewicz et al. [3, 4] as well as Pempera and
Smutnicki [20].

In recent years the there have been a considerable development in parallel com-
puting . Example include such technologies as NVidia CUDA (GPU devices with up
to several thousand parallel cores), Xeon Phi vector processor (up to several dozens
parallel processors) ormassively parallel distributed systems, grids and cluster. Thus,
parallel computation has become a common way to improve running time and effec-
tiveness of many discrete optimization algorithms, including solving methods for
Flow Shop and similar scheduling problems.
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For example, Luo and Baz [15] have employed a two level parallel Genetic Algo-
rithm using a hybrid GPU-CPU system to solve large instances of Flexible Flow
Shop Scheduling Problem. Results indicated that the approach remains competitive
at reduced computation time. Similarly, Luo et al. [16] proposed genetic algorithm
for solving an dynamic version of the Flexible Flow Shop Problem with emphasis on
energy efficiency. The method, designed for consistency with NVidia CUDA greatly
reduces computation time while providing competitive results. Steinhöfel et al. [26]
proposed a parallel Simulated Annealing algorithm for the Job Shop Scheduling
Problem with makespan criterion. The authors employed a method for computing
the goal function by finding the longest path using n3 parallel processors. Moreover,
the authors showed that bound on the value of the goal function can be used to
further reduce computation time, by bounding the number of edges on the longest
path in the graph. Finally, Flow Shop Scheduling was also used as a benchmark for
testing general parallel computation methods. For example, Melab et al. have used
this problem to test the effectiveness of their Branch-n-Bound method [17]. Two
energy-consuming equivalent parallel systems were used: a MIC architecture with
Intel Xeon Phi 5110P coprocessor and GPU system with NVidia Tesla K40. Results
of experiments indicated that GPU approach outperforms the MIC coprocessor.

In this paper we aim to model Non-permutation Flow Shop Scheduling Problem
with minimal-maximal time coupling and makespan criterion. We will formulate
several problem properties aiding us in efficient calculation of the goal function.
Finally, we will propose a method of parallel computation of the goal function using
a modification of the Floyd-Warshall algorithm.

The remainder of the paper is structured as follows. In Sects. 2 and 3 we formalize
the problem, presenting its mathematical model and solution graph. In Sect. 4 we
formulate several problem properties with regards to solution feasibility, solution
graph and two methods of the goal function computation: sequential and parallel.
In Sect. 5 we discuss the possible application and speedup of the parallel method.
Finally, Sect. 6 contains the conclusions.

2 Problem Formulation

In this section we will formulate the mathematical model of the FSSP-TC problem,
including notation, problem constraints and the goal function. All values are positive
integers unless otherwise specified.

The problem can be described as follows. Let J = {1, 2, . . . , n} and M =
{1, 2, . . . ,m} be sets of n jobs and m machines respectively. For each job j by
O j we denote the set of m operations of that job:

O j = {l j + 1, l j + 2, . . . , l j + m}, (1)

where l j = m( j − 1) is the total number of operations in all jobs prior to j . Thus,
there are nm operations in total with O = {1, 2, . . . , nm} being the set of all opera-
tions. Sets O j are thus a partition of O .
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Table 1 Example instance for the FSSP-TC with n = 4 and m = 3

i pi,1 pi,2 pi,3 pi,4 r̂i d̂i

1 2 2 5 2 3 4

2 1 2 4 2 1 2

3 1 8 3 2 2 3

Each operation of job j has to be processed on a different, specific machine. The
order of visiting machines for each job is the same and given as:

1 → 2 → 3 → . . . → m − 1 → m. (2)

Thus, operations from the set O j are processed in the order given by sequence:

(l j + 1, l j + 2, . . . , l j + m). (3)

Job j on machine i (i.e. operation l j + i) has to be processed for time pi, j without
interruption. Several additional constraint exist. First, machine can process at most
one operation and at most one operation of a job can be processed at any given
time (operations do not overlap). Second, time at which an operation is processed
is tied to the time at which previous operation on that machine is processed. This
constraint is called a time coupling. In this specific case, let r̂i ≥ 0 and d̂i ≥ r̂i denote
the minimal and maximal time machine i has to wait before processing the next
operation. This means the wait time before processing next operation is in interval
[r̂i , d̂i ]. In particular if d̂i = 0 this constraint is reduced to classic no-idle constraint
known from the literature. Values of pi, j , r̂i and d̂i for an exemplary FSSP-TC
instance with n = 4, m = 3 are shown in Table 1.

The task is to determine the order of processing jobs for each machine. Let πi be
an n-element sequence (permutation) describing the order of processing of jobs on
machine i , such that πi ( j) is the job that will be processed as j-th on i . Then the
order of processing of jobs is given by an m-element tuple π = (π1, π1, . . . , πm).
Also, let Ii ( j) denote on what position j appears in πi :

πi ( j) = k ⇐⇒ Ii (k) = j. (4)

In other words, job j is processed on machine i as Ii ( j)-th job.
The processing order π is used to determine the processing schedule for all oper-

ation, which is given by a matrix of operation starting times S of size m × n:

S = [Si, j ]m×n, (5)

where element Si, j is the starting time of j-th operation to be processed on machine
i according to the processing order π . Similarly, we can define matrixC of operation
completion times:
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C = [Ci, j ]m×n, (6)

where Ci, j is the completion time of j-th operation to be processed on i in π .
The schedule given by S is feasible if it satisfied the following conditions:

Si, j ≥ Ci, j−1 + r̂i , (7)

Si, j ≤ Ci, j−1 + d̂i , (8)

Si, j ≥ Ci−1,Ii−1(πi ( j)), (9)

Ci, j = Si, j + ρi, j , (10)

with starting conditions Si,0 = S0, j = 0 and ρi, j being a shorthand notation for
pi,πi ( j). Inequalities (7)–(8) ensure that operations on a given machine do not over-
lap, are processed in the order given by πi and obey the time coupling constraints.
Inequality (9) guarantees that operations in a job do not overlap and are processed in
the order specified by formulas (2)–(3). Finally, Eq. (10) ensures that each operation
is processed by the required time without interruption. The precise method of deter-
mining schedule S from processing order π and the feasibility of schedules will be
discussed further in the paper.

For the instance shown in Table 1 and example processing order:

π =
(
(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 4, 1)

)
, (11)

the possible schedule S is as follows:

S =
⎡
⎣
0 5 10 18
8 12 15 20
10 20 25 29

⎤
⎦ . (12)

The resulting schedule is shown as a Gantt chart in Fig. 1.
Let Cmax(π) denote, for a given processing order π , the maximum of completion

times of all operations (the makespan):

Fig. 1 Gantt chart for the exemplary schedule and problem instance
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Cmax(π) = max
j∈J ,i∈M

Ci, j . (13)

Due to constraints (7)–(10), it can be shown that this formula simplifies to:

Cmax(π) = Cm,n. (14)

To solve the FSSP-TC problem, one needs to find the processing order π∗ which
minimizes the makespan Cmax(π):

Cmax(π
∗) = min

π∈Π
Cmax(π), (15)

where Π is the set of all feasible processing orders and π∗ is called the optimal
processing order. The makespan for the exemplary instance from Table 1, processing
order (11) and schedule (12) is equal to 30.

The FSSP-TC problem with the makespan criterion defined in this section will be
denoted as F |r̂i , d̂i |Cmax in the Graham notation for theoretical scheduling problems.

3 Graph Representation

In this section we will introduce and discuss the graph model used to represent
solutions and constraints for the FSSP-TC problem. The graph structure is based on
a similar graph model for the classic Flow Shop Scheduling Problem and will be
used to prove several problem properties later in the paper.

Let us consider an arbitrary processing order π , for which we will now construct
a weighted directed graph G(π) = (V, E), with V being the set of nm vertices and
E being the set of 3nm − 2m − n directed edges (arcs). The general exemplary
structure of this solution graph for some instance is shown in Fig. 2.

Let us start with the vertices, which can be thought of as if placed on a 2-
dimensional grid. In result the vertices can be denoted using a pair of coordinates
(i, j). Thus, vertex (i, j) is placed in the j-th “column” and i-th “row” of G(π) and
it represents the j-th job to be processed on machine i . It means that jobs in i-th
row are ordered according to πi . All vertices are weighted with the weight of vertex
(i, j) being equal to ρi, j .

The arcs of the graph G(π) represent the problem constraints and can be divided
into three disjoint subsets:

• horizontal “forward” arcs from vertices (i, j) to (i, j + 1) with weight r̂i for i =
1, 2, . . . ,m and j = 1, 2, . . . , n − 1. There are (n − 1)m such arcs.

• horizontal “reverse” arcs from vertices (i, j + 1) to (i, j) with weight D̂i, j :

D̂i, j = −ρi, j − ρi, j+1 − d̂i . (16)
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Fig. 2 Exemplary structure of the graph G(π)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n − 1. There are (n − 1)m such arcs.
• weightless arcs from vertices (i, Ii ( j)) to (i + 1, Ii+1( j)) for i = 1, 2, . . . ,m − 1
and j = 1, 2, . . . , n. There are n(m − 1) such arcs.

As with graph for similar scheduling problems, the length of the longest path
(defined as the sum of arc and vertex weights along the path, including the starting
and ending vertex) ending at vertex (i, j) is equal to Ci, j . If we do not include the
weight of the final vertex (i, j), then we get Si, j instead. Moreover, the length of the
longest (critical) path in G(π) is equal to value Cmax(π).

Weights ρi, j represent operation times. From constraints (9)–(10) we have:

Ci+1, j − Ci, j ≥ ρi, j+1. (17)

Due to that the “vertical” arcs haveweight 0 (since value ρi, j+1 is added oncewe have
entered vertex (i, j + 1)) and are thus effectively weightless. Next, from constraints
(7) and (10) it follows that:

Ci, j+1 − Ci, j ≥ r̂i + ρi, j+1, (18)

and thus forward arcs have weight r̂i . The most interesting is constraint (8). Due to
this constraint it follows that:

Ci, j − Ci, j+1 ≤ − ρi, j+1 − d̂i . (19)

Thus, it seems the weight of the “reverse” arc should be equal to −ρi, j+1 − d̂i .
However, the arc will end at vertex (i, j) and its weight ρi, j will be automatically
included in the length of the path and yield incorrect value. In order to mitigate it,
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we include additional term −ρi, j and the final arc weight is:

− ρi, j − ρi, j+1 − d̂i , (20)

which matches the value D̂i, j described before.
Let us notice that change of the processing order π can affect the order (permu-

tation) of vertices in every row. This will affect the weights of vertices and which
vertices weightless arcs connect to. It will also change weights D̂i, j of reverse arcs.
Forward arcs and their values are independent of π . Finally, let us notice that graph
G(π) contains cycles. Cycles with positive length (understood as the sum of weights
of vertices and arcs belonging to the cycle) are not allowed as the resulting graph
would not have a longest path at all. We will look into this issue in the next section.

4 Problem Properties

In this section we will formulate and proof several properties and theorems for the
FSSP-TC problem, including cycles in graph G(π), feasibility of schedules and
methods of sequential and parallel computation of the goal function.

We will start with the issue of existence of the longest path in graph G(π). Unlike
in the classic FlowShopSchedulingProblem,where there are no cycles in the solution
graph, there are clearly cycles in graph G(π) for the FSSP-TC problem. Such cycles
are allowed as long as there are no cycles with positive length. It is indeed true as
stated by the following property.

Property 1.1 Let π be a processing order for problem F |r̂i , d̂i |Cmax. Then the solu-
tion graph G(π) for that problem does not contain a cycle with positive length.

Proof G(π) does not contain arcs going upward, thus a cycle is always restricted
to a single row. Cycles must contain at least two vertices. Let us consider two cases:
(1) cycles with two vertices, and (2) cycles with three or more vertices.

A cycle with two vertices contains vertices (i, j) and (i, j + 1) (for j < n) as
well as two arcs between those vertices. The weights in that cycle are ρi, j , ρi, j+1, r̂i
and D̂i, j . It is easy to see that the length of such cycle is equal r̂ j − d̂i ≤ 0.

Let us now consider cycles with k > 2 subsequent vertices from (i, j) to (i, j +
k − 1). This cycle also contains k − 1 forward arcs of weight r̂ j and k − 1 reverse
arcs. Let us now calculate the length of sych cycle.

Without the loss of generalitywewill start the cycle fromvertex (i, j + k − 1). Let
us consider “inner” vertices of the cycle i.e. vertices (i, j + 1) through (i, j + k − 2).
Let (i, c) denote such inner vertex.Whenwalking the cycle we visit this vertex twice,
adding the weight 2ρi,c to the cycle. However, we also add weight −ρi,c twice: once
from the arc leading to (i, c) and once from the arc leaving (i, c). Thus, those values
negate each other. In result, it is equivalent to a situation where inner vertices have
weight 0 and the reverse arcs have only the d̂i term, except for the arc going from
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(i, j + k − 1) and the arc going into (i, j). Those two arcs retain the terms−ρi, j+k−1

and −ρi, j , respectively. However, those two weights will be negated by the weights
of the “border” vertices (i, j) and (i, j + k − 1) (we visit those vertices only once).

To summarize this, we can compute the length of the cycle as if all vertices
belonging to the cycle had weight 0 and the reverse arcs had only term d̂i . The length
of such a cycle is thus:

(k − 1)(r̂i − d̂i ) ≤ 0. (21)
�

Therefore, we know all cycles have non-positive length and thus the longest path
indeed exists in G(π). However, remaining cycles are still a potential issue when
computing the goal function. Fortunately, we can disregard all remaining cycles for
the purpose of the calculation of the goal function due to the following property.

Property 1.2 Let π be a processing order for problem F |r̂i , d̂i |Cmax and len(c) be
the length of path c (sum of vertex and arc weights on that path) in graph G(π). Then
if there exists path p in G(π) with length len(p) such that p contains a cycle, then
there exists path P inG(π) that does not contain a cyclewith length len(P) ≥ len(p).

Proof Let us first consider that p has a single cycle. Such a path can be decomposed
into three paths: p1 (before the cycle), pc (the cycle) and p2 (after the cycle), where
p1 or p2 can be empty. Then we can build P from joining paths p1 and p2, ignoring
the cycle. From the Property 1.1 we have len(pc) ≤ 0 and thus len(P) ≥ len(p).

The single-cycle case can be easily generalized for paths with multiple cycles by
applying that logic multiple times, removing a single cycle with each step. �

Thus, if a path ending at vertex (m, n) contains a cycle, then either it is not a critical
path (if at least one of its cycles has negative length) or we can find another path with
the same length, but with all cycles removed.

Next, we will present an algorithm for computing the value of the makespan
sequentially (using a single processor) and prove its computational complexity.

Theorem 1.1 Let π be a processing order for the F |r̂i , d̂i |Cmax problem. The sched-
ule S and makespan C(max)(π) for π can be determined in time O(nm).

Proof The algorithm is divided into m phases, one for each machine. After phase i
the starting and completion times for all machines up to i are determined, meaning
determining values Sl, j and Cl, j for j = 1, 2, . . . , n and l = 1, 2, . . . , i . Also, every
time agivenvalue Si, j is updated, the correspondingvalueCi, j is updated as according
to constraint (10) (that constraint is thus always satisfied).

The first phase is started by setting S1,1 = 0. Next, we iterate over remaining jobs
in the order specified by π1 and setting:

S1, j = C1, j−1 + r̂1, j = 2, 3, . . . , n. (22)
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After this constraint (7) for machine 1 is satisfied. Since it is the first machine and
d̂1 ≥ r̂1, then all other constraints are also met and the phase is complete. It is easy
to see this phase is done in time O(n).

Every subsequent phase i > 1 is divided into two subphases. We start the first
subphase by setting Si,1 = Ci−1,1. Next,we iterate over the remaining jobs (according
to the order specified in πi ) and setting:

Si, j = max{Ci, j−1 + r̂i ,Ci−1, j }, j = 2, 3, . . . , n. (23)

After this, the first subphase is complete in time O(n).
It is easy to see that after this is done, all constraint for machine i are satisfied,

except for constraint (8). If two jobs on machine i are separated by more than d̂i then
we have to move them closer to each other. However, we cannot move the later job
to be scheduled earlier, as doing so would violate one or both of the constraints (7)
and (9). Instead, we will move the earlier job to be processed later, so the separation
between them will be exactly d̂i . This is always possible as moving a job to be
processed later does not violate any constraints (d̂i ≥ r̂i ).

The second subphase is thus aimed at correcting any possible violation of con-
straint (8). However, moving a job to be processed later widens the gap separating it
from the previous job and make it violate its own constraint (8) (if it was not already
violated). This would make it possible to shift the same job up to n − 1 times in the
worst-case. Fortunately, this can be fixed by iterating over the jobs in the reverse
order compared to the first subphase. We thus set:

Ci, j−1 = max{Si, j − d̂i ,Ci, j−1}, j = n, n − 1, . . . , 2. (24)

After this the second subphase is finished in time O(n) with all constraints met.
In total, afterm phases are complete, all values Si, j and Si, j (including valueCmax

are determined. The algorithm completes in time O(nm).

The above theorem also leads to the following immediate conclusions.

Corollary 1.1 For any processing order π for the F |r̂i , d̂i |Cmax problem there exists
at least one feasible schedule S (and thus all processing orders are feasible).

Proof The algorithm from Theorem 1.1 is applicable for any processing order π as
the only thing that changes with the change of π are the actual values ρi, j (as we
remember, ρi, j is a shorthand for pi,πi ( j)) that are used to update Ci, j based on the
current value of Si, j . The algorithm thus produces a feasible schedule S for any π .

Corollary 1.2 Le π be a processing order for the F |r̂i , d̂i |Cmax problem. The sched-
ule S obtained for π through the algorithm from Theorem 1.1 is left-shifted.

Proof This follows because operation starting times are always set to the earliest
time that does not violate one or more problem properties. Thus, it is impossible to
schedule any operation to be started earlier without changing the processing order π

and S is thus left-shifted. �
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For our last result in this section, we will propose a parallel algorithm for com-
puting the goal function for the FSSP-TC problem which can be applied for the Con-
current Read, Exclusive Write Parallel Random Access Machine (CREW PRAM)
model of parallel computation. We start by reminding the commonly known fact
about the time complexity of computing the minimum of a sequence.

Fact 1.1 The minimum value of an n-element sequence can be determined on
a CREW PRAM machine in time O(log n) using O(n/ log n) processors.

Proof In phase one, we divide the sequence into O(n/ log n) blocks (subsequences)
of length O(log n). Each processor computes theminimumof each block in a sequen-
tial manner in time O(log n). Thus, we obtain O(n/ log n) values. In the second
phase, we have to compute the minimum of them. Since we have O(n/ log n) pro-
cessors, this can be done in time O(log n). Thus, both phases in total take time
O(log n) using O(n/ log n) processors.

With this and the graph G(π) we can formulate the following theorem for time
complexity of a parallel algorithm for determining ofCmax for the FSSP-TC problem.

Theorem 1.2 For a fixed processing order π = (π1, π2, . . . , πm) the value of
Cmax(π) for the F |r̂i , d̂i |Cmax problem can be determined in time O(log2(nm)) using

a CREW PRAM computation model with O
(

(nm)3

log(nm)

)
processors.

Proof In order to compute Cmax(π) we will compute the length of the longest path
in the graph G(π). The proposed parallel method of computing the longest path is
based on the sequential Floyd-Warshall algorithm for finding the shortest paths in
graphs [9]. The algorithm allows for negative edge weights and cycles as long as
there is no negative cycle (i.e. a cycle with negative sum of its edge weights).

Finding the longest path in G(π) = (V, E) is equivalent to finding the shortest
path in graph G ′(π) = (V, E ′). Graph G ′(π) is exactly like G(π), except its edge
weights are negated:

∀(i, j) ∈ E : (i, j) ∈ E ′ ∧ ψ ′(i, j) = −ψ(i, j), (25)

whereψ(u, v) andψ ′(u, v) are the weights of edge (u, v) in graphsG(π) andG ′(π)

respectively. From Property 1.1 we know that the graph G(π) for the F |r̂i , d̂i |Cmax

problem has no positive cycles, meaning that G ′(π) has no negative cycles. Thus,
the Floyd-Warshall algorithm is viable in this case.

To make the notation more clear, we will transform the graph G ′(π) into G∗(π)

by changing the vertex numbering. In result, vertices of G∗(π)will be indexed using
single number u instead of a pair (i, j) as forG ′(π). The numbering translation from
(i, j) to u is as follows:

u = (i − 1)n + j. (26)

Thus, vertices are numbered starting from the top left, numbering all vertices in a row
before proceeding to the next row. The reverse translation is as follows:
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i =
⌊
u − 1

n

⌋
+ 1, j = u −

⌊
u − 1

n

⌋
n. (27)

In result we obtain graph G∗(π) = (W, E∗), with W = {1, 2, . . . , nm} being the
set of nm vertices. The weight of vertex u ∈ W is denoted ρu and is equal to weight
of the corresponding vertex from G ′(π), i.e. ρu = −ρi, j . The set of edges E∗ can
be partitioned into sets E0, Er and Ed representing vertical (technological), forward
horizontal and reverse horizontal edges from graph G ′(π) respectively:

E0 =
nm−n⋃
u=1

{(u, u + n)}, (28)

Er =
m⋃

k=1

kn−1⋃
u=(k−1)n

{(u, u + 1)}, (29)

Ed =
m⋃

k=1

kn−1⋃
u=(k−1)n

{(u + 1, u)}. (30)

Weight ψ(u, v) of edge (u, v) in graph G∗(π) is given as follows:

ψ(u, v) =
⎧
⎨
⎩

0 if (u, v) ∈ E0,

−r̂i if (u, v) ∈ Er ,

−D̂i, j if (u, v) ∈ Ed .

(31)

where i and j can be translated from u using formula (27). The example of a simple
graph G(π) and corresponding graph G∗(π) are shown on Fig. 3a, b.

With graphG∗(π) defined, we will now introduce matrix A = [au,v] of size nm ×
nm, where au,v will represent the length of longest path between vertices u and v in
graph G∗(π). Values of A should be initialized as follows:

au,v =
⎧⎨
⎩

0 if u = v,

ψ(u, v) − ρu if u �= v ∧ (u, v) ∈ E∗,
∞ if u �= v ∧ (u, v) /∈ E∗.

(32)

The reason for including value ρu is that the Floyd-Warshall algorithm recognized
weighted edges, but not weighted vertices. Thus, the weight ρu is added to every edge
that starts at vertex u. The initial contents of matrix A for the graph from Fig. 3b is
shown in Fig. 3c.

Matrix Awill be used to compute the shortest path inG∗(π)which, after negating
it, will be the longest path in the original graphG(π). Each of the (nm)2 initial values
of A is calculated independently from the others. Thus, initialization of A can be done
in time O(1) on a CREW PRAM computation model using O((nm)2) processors,
each performing a single assignment.
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Fig. 3 Transformation of the original solution graph G(π) into derived graph G∗(π) and initial
values of matrix A for some instance with n = 3 and m = 2

Furthermore, we define a 3-dimension array T = [tu,w,v] of size nm × nm × nm,
which will be used to compute the transitive closure of the path lengths in G∗(π). In
other words, value tu,w,v will be used to store and update the length of the shortest
path from vertex u to vertex v that goes through vertex w.

The core part of the algorithm is based on repeating the following steps in a loop:

1. Update tu,w,v for all triples (u, w, v) as per the following formula:

tu,w,v = au,w + aw,v, (33)

2. Update au,v for all pairs (u, v) based on the following formula:

au,v = min{au,v, min
1≤w≤nm

tu,w,v}. (34)

Our task is to determine the value a1,nm (length of path from vertex 1 to vertex
nm). In order to do this, it is sufficient to run the above two steps �log(nm − 1)�
times. This is because in each step the algorithm finds out the shortest path between
vertices placed further from each other. After the first iteration the algorithm will
compute the shortest paths that consist of a single edge. After the second iteration,
the algorithm will compute the shortest paths composed of up to two edges. After
the third iteration it will compute shortest paths that are composed of up to 4 edges



14 W. Bożejko et al.

and so on. Therefore, after the k-th iteration of the loop the algorithm will compute
the shortest paths that are composed of up to 2k edges.

The longest possible path (in the sense of the number of edges it is composed
of) in graph G∗(π) will go from left to right through the entire first machine, then
go back from right to left through the entire second machine, then from left to right
on the third machine and so on. This path will thus move in a zigzag pattern, going
through all vertices. Such a path will have no more than nm − 1 edges. Thus, the
algorithm will compute the longest path after �log(nm − 1)� iterations.

Next, we will discuss how the two steps indicated by formulas (33) and (34)
can be done in parallel. The first step could be executed in time O(1) on CREW
PRAM if we assigned O((nm)3) processors to it, each doing a single assignment for
a single triple (u, w, v). However, since we have only �(nm)3/ log(nm)� processors,
each processor will have to process not a single (u, w, v) triple, but �log(nm)� such
triples. The time complexity of this step will thus be O(log(nm)).

The goal of step 2 is to calculate the minimum of nm + 1 values, which can
be done (according to Fact 1.1) on a CREW PRAM in time O(log(nm)) using
O(nm/ log(nm)) processors. Such minimum has to be computed for (nm)2 dif-
ferent (u, v) pairs and computation for each pair is independent from the others.
Thus this step can be done in time O(log(nm)) using (nm)2O(nm/ log(nm)) =
O((nm)3/ log(nm)) processors in total.

As already mentioned, the steps 1 and 2 of updating matrices A and T have to be
repeated �log(nm − 1)� times in a loop, thus the total time complexity of this loop
is:

�log(nm − 1)�O(log(nm)) = O(log2(nm)), (35)

using (nm)2O(nm/ log(nm)) = O((nm)3/ log(nm)) processors.
Finally, let us notice that weight ρu of vertex u is only used in formula (32), if u

has outgoing edges. This is true for all vertices except for nm, which has no outgoing
edges. Thus, value ρnm is not taken into account by the algorithm and the value a1,nm
is not true value of Cmax. However, we know that vertex nm is always included in
the critical path and since it has no outgoing edges then it is visited only once and
as the last edge. Thus, we can compute the final value of Cmax(π) in time O(1) as
follows:

Cmax(π) = −a1,nm + ρnm . (36)

Thus, the final time complexity of the entire algorithm (including initialization of
A, the loop and the final corrections) is O(log2(nm)) using O( (nm)3

log(nm)
) processors.

�

To summarize the results presented in this section,wehave shown that the presence
of cycles in solution graph G(π) is not a problem, showed a sequential and parallel
algorithms for computing Cmax(π) in time O(nm) and O(log2(nm)) respectively
and that schedules obtained are feasible and left-shifted.
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5 Discussion

In this section we will discuss the possible results of applying the proposed parallel
computation method in solving algorithms for the F |r̂i , d̂i |Cmax problem.

The first point of interest is the speedup S we can achieve by computing the single
value of Cmax in parallel. This speedup is defines as:

S = Ts
Tp

, (37)

where Ts is the time required to compute Cmax with a traditional (i.e. sequential)
method using a single processor and Tp is the time required to computeCmax with the

proposed parallelmethod using (nm)3

log(nm)
processors. The theoretical speedup values for

several problem sizes commonly considered in the literature are shown in Table 2.We
see that the proposed parallel computation method can provide considerable speedup
(up to 10 for the considered problem sizes).

The computation of a single Cmax value at a time is a part of nearly every solving
algorithm for the F |r̂i , d̂i |Cmax problem. However, there is a group of methods,
called local search methods, that is based on searching the entire neighborhood of
a given solution to find the best solution. For the F |r̂i , d̂i |Cmax problem one of such
neighborhood is the so-called Adjacent Pair Interchange (API) neighborhood. On
each machine there are n − 1 possible adjacent job pairs and there are m machines,
thus theAPI neighborhood contains (n − 1)m solutions. Thus, it is possible to further
shorten the computation by computing every solution from the neighborhood in
parallel. We can define speedup S′ for this similar to the previous one as follows:

S′ = T ′
s

T ′
p

, (38)

Table 2 Theoretical speedups for the proposed parallel method compared to sequential approach

n × m Ts Tp S T ′
s T ′

p S(p)′

10 × 5 50 36 1.39 2250 40 56.25

20 × 10 200 64 3.13 38000 69 550.72

30 × 15 450 81 5.56 195750 86 2276.16

40 × 20 800 100 8.00 624000 106 5886.79

50 × 20 1000 100 10.00 980000 106 9245.28

Table key:
n × m – problem size,
Ts – time of computing Cmax of a single solution using sequential algorithm,
Tp – time of computing Cmax of a single solution using parallel algorithm,
S – single solution speedup (Ts/Tp),
T ′
s – time of API neighborhood search using sequential algorithm,

T ′
p – time of API neighborhood search using parallel algorithm,

S′ – neighborhood search speedup (T ′
s /T

′
p)
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where T ′
s is time of searching all (n − 1)m solutions one after another using a single

processor and T ′
p is the time of searching the neighborhood fully in parallel using

(nm)3

log(nm)
processors for each neighborhood solution. The values of S′ are also shown

in Table 2 as well. We see that the theoretical obtainable speedup is very high (up to
several thousands for commonproblem sizes). This ismostly due to the neighborhood
size, but is further enhanced by the proposed parallel method.

While offering considerable to very high speedup, the proposed method requires
a very high number of processors. Even for the 10 × 5 the method requires 25 000
parallel processors to compute the value ofCmax and this number only increases with
the growth of the problem size. Thus, the proposed method is not yet viable to be
employed for real-life scheduling problems at the current state of parallel computing
technologies, which is why we focus on the theoretical approach in this paper.

However, while the proposed method remains mostly theoretical at the moment
it is still possible to apply it using massively parallel distributed systems. Similarly,
experimental research of the proposed method can be carried out using such systems.
Example of such parallel computation environments:

• GPU devices using Nvidia CUDA technology. For example Tesla K40c and RTX
2080Ti offer 2880 and 4352 CUDA parallel cores respectively. It should be noted
that it is possible to install several GPU devices on a single machine. This, should
allow to up to 20 000 parallel cores. However, GPU cores are usually much slower
than CPU cores.

• Multicore and Manycore CPUs. While many CPU are limited to around 20 cores,
there exist devices like Xeon Phi x200 coprocessor (64 cores) and ADM Ryzen
Threadripper 3990X processor (128 logical cores).

• Computer and supercomputer clusters. Such environments consist of hundreds
of multicore computer nodes. For example, Wrocław Center for Networking and
Supercomputing (referred to as WCSS) provides access to over 22 000 cores
through over 900 24/28-core computing nodes with total computation power of
860 TFLOPS with 76 TB of RAM (from 64 to 512 GB) per node. Fast inter-node
connection through InfiniBand.

It is also important to consider the software required. Most of the mentioned parallel
environments can be access with C/C++ programming language, with the help of
the CUDA, OpenMp/MPI libraries, depending on the parallel method used. Some of
the environments are also supported by newer programming languages like python,
but this is not guaranteed for all environments. Aside from that, cluster and super-
computer centers often need to accessed using specific interfaces, in which case the
software required is heavily also dependent on the particular cluster used.

To summarize, it is possible to apply the proposed method, though care must
be taken concerning inter-node communication, which could become a bottleneck.
Moreover, due to Brant’s law it is also possible to apply the method in system with
lower number of cores, but the method will run slower, as described by that law.

It should be also noted that the proposed method has several limitations. The ones
alreadymentioned that stems from real-life applications are the hardware necessary to
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run the method and inter-node bottlenecks. Moreover, the method has low efficiency
(measured as speedup divided by the number of processors employed). For example,
for n = 20 and m = 10 the efficiency is only 0.0006.

6 Conclusions

In this paper we have considered a variant of the well-known Non-permutation Flow
Shop Scheduling Problem with makespan criterion. The additional constraint, called
time couplings, limits the minimal and maximal idle time for each machine. We have
presented a mathematical model of the problem and a graph model of the problem
solution. Next, we proved several properties of the problem concerning feasibility
of solutions and time required to compute the value of the makespan. We have
also proved that solution graph, despite having cycles, does not contain cycles with
positive length, making it possible to compute the longest path in that graph.

The main results is a proposed method of computation of the makespan on
a CREW PRAM computation model using a modification of the Floyd-Warshall
algorithm for finding shortest paths in graphs. This method, coupled with large size
of solution neighborhood for the considered problem, allows for very high speedup
(in thousands) of the process of searching the solution neighborhood. However, the
method also faces several limitations due tomassive number of processors it requires,
low efficiency and inter-node communication bottleneck.

It should also be noted, that the proposed method could be generalized to be
applicable for other types of scheduling problems. Other variants of the Flow Shop
Scheduling Problem (Permutation and Non-permutation, setup and transport times
or more general time couplings) would be the easiest. While not as easy, the method
could also be generalized to problems like Job Shop Scheduling Problem and Open
Shop Scheduling Problem or even other related discrete permutation-oriented opti-
mization problem like Traveling Salesman Problem or Vehicle Routing Problem.

The next step of research on this topic could include: (1) physical implemen-
tation of the proposed method and experimental research, (2) implementation of
the full algorithm encompassing more than just goal function computation, and (3)
consideration of different neighborhoods than Adjacent Pair Interchange.
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5. Bożejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for the cyclic job
shop scheduling problem. Comput. Ind. Eng. 113, 512–524 (2017)
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Abstract In this chapter we consider the classic flow shop problem of task schedul-
ing, which is a representative problem for a larger group of problems in which
the solution is represented by permutation, such as Traveling Salesman Prob-
lem, Quadratic Assignment Problem, etc. We consider the most expensive (time-
consuming) part of the local search algorithms for this class, which is search of
the neighborhood of a given solution. We propose a number of methods to effec-
tively find the best element of the neighborhood using parallel computing for three
well-known neighborhoods: Adjacent Pair Interchange, Insert and Non-adjacent Pair
Interchange. The methods are formulated as theorems for the PRAM model of par-
allel computation. Some of the methods are cost-optimal.
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1 Introduction

The permutation flowshop problem with makespan criterion (here denoted as
F∗||Cmax) is one of the oldest and most well-known, classic scheduling problems.
Scientific papers related to this problem have been appearing for over 50years now.
Despite its simple formula and a finite set of solutions, the problem belongs to one
of the hardest combinatorial optimization problem classes: the strongly NP-hard
problems. Due to this, it is often used to test new ideas, properties and methods
of construction of solving algorithms. Many papers concerning this problem have
emerged in the literature, including research on fast, non-exact solving algorithms
based on iterative improvement of solutions. A considerable advancement in devel-
opment of such metaheuristic algorithms was possible thanks to the use of blocks
(see e.g. Nowicki and Smutnicki [13]). For more details on research and results for
this problem in recent years consider our previous works [8, 11]. Classification of
scheduling problems is proposed in the work of Graham et al. [9]. Recently, there is
a growing interest in bio-inspired, metaheuristic approaches, see [1, 7, 12, 14, 18].

For over a decade now, the increase of the number of cores in processors and pro-
cessors in a computer system has become a standard for development of computer
architectures. Such increase in computing power of parallel systems yields new pos-
sibilities, such as reduction of computation time, improved convergence capabilities
and obtaining of better solutions. One of the first parallel algorithms for the flowshop
problem was a Simulated Annealing method by Wodecki and Bożejko [16]. Parallel
algorithms are popular in solving scheduling problems and all also well-suited for
population-based metaheuristics (see e.g. [15]).

The key element of iterative improvement methods (including the best known
metaheuristics) in combinatorial optimizations problems is the procedure for gen-
eration and evaluation (search) of the neighborhood of a solution. This procedure
has crucial effect on computation time and quality of results. Thus, it is desirable
to apply parallel computation techniques to this procedure (see e.g. [10]). In this
chapter we consider several popular neighborhoods for the F∗||Cmax problem and
prove properties that can be used in parallel algorithms implemented on the PRAM (
Parallel RandomAccessMachine, see e.g. [6]) parallel computation model. It should
be noted that obtained results could be applied to similar permutation-based prob-
lems such as the Traveling Salesman Problem and Quadratic Assignment Problem.
Further results in this area can be found in the works of Bocewicz [2], Bocewicz et
al. [3, 4], and Wójcik and Pempera [17].

2 Permutation Flowshop Problem

Let J = {1, 2, . . . , n} and M = {1, 2, . . . ,m} be sets of n jobs and m machines
respectively. Each job j is a sequence ofm operations O1 j , O2 j , . . . , Omj . Operation
Oi j has to be processed on machine i for time pi j without interruption. Processing
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of job j on machine i > 1 can only start when that job had finished processing
on machine i − 1. A solution is a job processing schedule seen as matrices of job
starting times S = (S1, S2, . . . , Sn), where Sj = (S1 j , S2 j , . . . , Smj ) and completion
timesC = (C1,C2, . . . ,Cn), whereC j = (C1 j ,C2 j , . . . ,Cmj ). In practice, only one
matrix is needed to determine the schedule as Ci j = Si j + pi j .

For themakespan criterion the optimal schedule is always left-shifted. This allows
us to represent the schedule using job processing order, which is an n-element per-
mutation π = (π(1), π(2), . . . , π(n)) from the set Π of all possible permutations.
Each permutation π ∈ Π unequivocally determines the processing order of jobs on
all machines (the same for each machine). In order to determine Ci j using π , we use
the following recursive formula:

Ciπ( j) = max{Ci−1,π( j),Ci,π( j−1)} + pi,π( j),

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (1)

with initial conditions Ci,π(0) = 0, i = 1, 2, . . . ,m, C0,π( j) = 0, j = 1, 2, . . . , n, or
a non-recursive one:

Ci,π( j) = max
1= j0≤ j1≤...≤ ji= j

i∑

s=1

ji∑

j= ji−1

ps,π( j). (2)

Our goal is minimization of the makespan Cmax:

Cmax = max
j∈π,i∈M Ci,π( j) = max

j∈π
Cm,π( j), (3)

thus we need to obtain permutation π∗ ∈ Π such that:

Cmax(π
∗) = min

π∈Π
Cmax(π). (4)

The values Ciπ( j) can be also determined using the graph model. For a given
processing order π we construct a lattice graph G(π) = (M × N , F0 ∪ F∗), where
M = {1, 2, . . . ,m}, N = {1, 2, . . . , n} are vertices,

F0 =
m−1⋃

s=1

n⋃

t=1

{((s, t), (s + 1, t))} (5)

is a set of vertical arcs denoting technological order of processing of operations from
a given job and

F∗ =
m⋃

s=1

n−1⋃

t=1

{((s, t), (s, t + 1))} (6)
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Fig. 1 Structure of a lattice graph G(π)

is the set of horizontal arcs denoting the job processing order π . The structure of
graph G(π) is shown in Fig. 1.

Arcs in graph G(π) have no weights while the weight of vertex (s, t) is ps,π(t).
Completion timeCi,π( j) of job π( j), onmachine i is equal to the length of the longest
path starting at vertex (1,1) and ending at vertex (i, j) including the weights of those
vertices. For the F∗||Cmax problem the makespan Cmax(π) is equal to the critical
(longest) path in graph G(π).

3 Adjacent Pair Interchange Neighborhood

The API (Adjacent Pair Interchange, called also “swap”) neighborhood is one of
the simplest and most commonly used. The speedup for sequential algorithms for
the Cmax goal function is realized by the so-called (sequential) accelerator (see for
example [13]). Some of the theorems proven here are based on this accelerator, thus
we describe it in details below.

Let π be a permutation from which the API neighborhood is generated and v =
(a, a + 1) be a pair of adjacent positions. Swapping those positions in π generates
a neighboring solution π(v). For π we calculate:

rs,t = max{rs−1,t , rs,t−1 + ps,π(t)} (7)

for t = 1, 2, . . . , a − 1, s = 1, 2, . . . ,m, and

qs,t = max{qs+1,t , qs,t+1 + ps,π(t)} (8)
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for t=a − 1, a − 2, . . . , 1, s=m,m − 1, . . . , 1, where r0,t= 0 = q j,t , t = 1, 2, . . . , n,
rs,0= 0 = qs,m+1, s = 1, 2, . . . ,m. Value rs,t is the length of the longest path in the
lattice graph G(π) described in Sect. 2 that ends at vertex (s, t), including the weight
of that vertex, while qs,t is the length of the longest path starting at vertex (s, t),
including its weight. The weight of vertex (s,t) is ps,π(t). With this, each value
Cmax (π(v)) for an interchange of a single adjacent pair of jobs v = (a, a + 1) can be
found in time O(m) using the formula:

Cmax(π(v)) = max
1≤s≤m

(d ′
s + qs,a+2), (9)

where
d ′
s = max{d ′

s−1, ds} + ps,π(a), s = 1, 2, . . . ,m, (10)

is the length of the longest path ending at vertex (s,a+1) in G(π) and

ds = max{ds−1, rs,a−1} + psπ(a+1), s = 1, 2, . . . ,m (11)

is the length of the longest path ending at vertex (s,a) in graph G(π(v)). The starting
conditions are: d ′

0 = d0= 0, rs0 = 0 = qs,n+2, s = 1, 2, . . . ,m. The API neighbor-
hood contains n − 1 solutions.

The goal of searching theAPI neighborhood for a permutationπ is to find a permu-
tation in π(v), v = (a, a + 1), a = 1, 2, . . . , n − 1 such that the goal function value
is minimized. For the problem F∗||Cmax the complexity of that process is O(n2m),
but can be reduced to O(nm) using the accelerator described above.

In the proofs of theorems regarding computational complexity we will use the
following commonly known parallel algorithms facts (See Cormen et al. [6]):

Fact 1 Prefix sums of the input sequence can be determined on EREW (Exclusive
ReadExclusiveWrite) PRAM in the time O(log n)with using O(n/ log n) processors.

Fact 2 Minimal and maximal value of the input sequence can be determined on
EREW PRAM in the time O(log n) with using O(n/ log n) processors.

Fact 3 Values y = (y1, y2, . . . , yn) where yi = f (xi ), x = (x1,x2, . . . , xn) can be
determined on CREW (Concurrent Read Exclusive Write) PRAM in time O(log n)

on O(n/ log n) processors.

Theorem 1 The API neighborhood for the F∗||Cmax problem can be searched in
time O(n + m) on the CREW PRAM using O( n2m

n+m ) processors.

Proof Disregarding relations between solutions, we assign O( nm
n+m ) processors to

each solution in the neighborhood. This allows to compute the goal function for
a single solution in time O(n + m) (see Bożejko [5]). Next, we need to choose the
minimal value among the n − 1 computed ones. This can be done in time O(log n)

using O(n/ log n) processors. The overall time complexity is still O(n + m) and the
number of processors used is (n−1)O( nm

n+m ) = O( n2m
n+m ). �
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The described method for the F∗||Cmax problem is not cost-optimal as its effi-
ciency drops quickly as n grows. Let us note that the algorithm from Theorem 1,
for the F∗|| ∑Ci problem and the API neighborhood is cost-optimal with efficiency
O(1) as the accelerator is not applicable for this problem.

Next we will make use of the relations between solutions in the neighborhood
and the accelerator to obtain a considerably stronger result.

Theorem 2 The search of the API neighborhood for the F∗||Cmax problem can be
done in time O(n + m) on the CREW PRAM using O( nm

n+m ) processors.

Proof Let v = (a, a + 1) be a pair of parallel positions. We will now employ the
API accelerator in this parallel algorithm. The values rs,t , qs,t are generated once, at
the start of the API neighborhood search process in time O(n + m) on the PRAM
model using O( nm

n+m ) processors. That method is cost-optimal.
Now, the API neighborhood search process can be divided into groups, with⌈

n
p

⌉
position swaps in each group, where p = ⌈

nm
n+m

⌉
is the number of processors

used. The goal function calculations are independent in each group. Each processor
k = 1, 2, . . . , p will search part of the neighborhood that is obtained with moves v

in the form of:

v = ((k − 1)

⌈
n

p

⌉
+ a, (k − 1)

⌈
n

p

⌉
+ a + 1),

where a = 1, 2, . . . ,
⌈

n
p

⌉
for k = 1, 2, . . . , p − 1, and moves v in the form:

v = ((p − 1)

⌈
n

p

⌉
+ a, (p − 1)

⌈
n

p

⌉
+ a + 1),

where a = 1, 2, . . . , n − (p − 1)
⌈

n
p

⌉
− 1 for k = p. The last group might be

smaller than the others. Because the process of determining all values Cmax (π(v))

in a single group has complexity
⌈

n
p

⌉
O(m) = O( nmp ) = O( nm

nm
n+m

) = O(n + m), thus

the complexity of determining all valuesCmax (π(v)) for all moves v will be the same.
Each processor, sequentially calculating its portion of values Cmax (π(v)), can store
the best value. To that end, a number of comparisons equal to the group size minus

1 has to be made, meaning:
⌈

n
p

⌉
− 1 = O( n

p ) = O( n
nm
n+m

) = O( n+m
m ), which keeps

the complexity of the entire method at O(n + m). In order to determine the best
move from the entire neighborhood we need to find the minimal element among p
best goal function values stored for each group. This can be done in time O(log n)

using p = O( nm
n+m ) processors due to Fact 2. The complexity O(log p) of this stage,

through the following sequence of inequalities:

log p = log

⌈
nm

n + m

⌉
< log(

nm

n + m
+ 1) =
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= log(
nm + n + m

n + m
) = log(

(n + 1)(m + 1) − 1

n + m
) =

= (log((n + 1)(m + 1) − 1) − log(n + m) < log((n + 1)(m + 1)) =

= log(n + 1) + log(m + 1) < n + 1 + m + 1 (12)

does not increase the complexity O(n + m) of the entire method. �

The method is cost-optimal.
Below we present a different method of searching the API neighborhood for

the F∗||Cmax problem, running in shorter time, namely O(log(n + m) log(nm)).
However, this is at the cost of increased number of processors.

Theorem 3 The API neighborhood for F∗||Cmax can be searched on the CREW
PRAM in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof We employ the lattice graph G(π) from Sect. 2 and the API accelerator with
modified calculation scheme. The values rs,t , qs,t representing the lengths of the
longest paths respectively ending and starting at vertex (s, t) can be determined in
time O(log(n + m)(log(nm))) on the PRAM with O(n3m3 / log(nm)) processors
by employing the method of determining all longest paths between pairs of vertices.
From the properties of graph G(π) we know that the longest path ending at vertex
(s, t) starts at vertex (1,1), while the longest path starting at (s, t) ends at (n,m). Thus,
after determining the array of longest paths A, it can be used directly access values
rs,t , qs,t for each vertex (s, t), s = 1, 2, . . . ,m, t = 1, 2, . . . , n. Next, we assign
O(m2/logm) processors to each of the n − 1 solutions from the API neighborhood
and we calculate the goal function value for a single solution obtained by move
v = (a, a + 1) in time O(logm) using the formulas (9)–(11). This process can be
described as follows. We write down (11) as:

ds = max{rs,a−1 + ps,π(a+1), rs−1,a−1 + ps−1,π(a+1) + ps,π(a+1), . . .

. . . , r1,a−1 + p1,π(a+1) + p2π(a+1) + · · · + psπ(a+1)} =

max
1≤k≤s

(rk,a−1 +
s∑

t=k

pt,π(a+1)) = max
1≤k≤s

(rk,a−1 + Ps
k,π(a+1)), (13)

where Ps
k, j =

s∑
t=k

pt, j , k = 1, 2, . . . , s are prefix sums, which can be calculated for

a given s in time O(logm) using O(m/ logm) processors in accordance with Fact 1.
We need the values Ps

k, j for all s = 1, 2, . . . ,m and those can be determined in
parallel using O(m2/ logm) processors. After that we will have access to values Ps

k, j
for each s = 1, 2, . . . ,m i k = 1, 2, . . . , s for a given job j = π (a+1). There is no
more thanm sums rk,a−1 + Ps

k,π(a+1) in the formula (13), thus they can be calculated
in time O(logm) on O(m/ logm) processors (see Fact 3). To sum it up, for each
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s = 1, 2, . . . ,m the value ds can be calculated in time O(logm) on O(m/ logm)

processors. Thus, all such values are determined in parallel in time O(logm) using
O(m2/ logm) processors. The same technique can be applied to formula (10):

d ′
s = max{d ′

s−1, ds} + ps,π(a) =
max{ds + psπ(a), ds−1 + ps−1,π(a) + psπ(a), . . . , d1 + p1,π(a) + p2,π(a) + · · · + psπ(a)} =

max
1≤k≤s

(dk +
s∑

t=k

pt,π(a)) = max
1≤k≤s

(dk + Ps
k,π(a)). (14)

Because all the required prefix sums Ps
k,π(a) can be determined in time O(logm)

using O(m2/ logm) processors and values ds were determined earlier, the calcu-
lation of all values d ′

s , s = 1, 2, . . . ,m can be done in parallel in time O(logm)

using O(m2/ logm) processors employing the rules for determining ds . In result,
we can determine Cmax(π(v)) = max

1≤s≤m
(d ′

s + qs,a+2) (see the formula (10)) in time

O(logm) using O(m/ logm) processors. This operation consists on performing
m additions d ′

s + qs,a+2, s = 1, 2, . . . ,m, which can be done in time O(logm) on
O(m/ logm) processors (see Fact 3). Next, we determine the value of (10), that is
we calculate maximum from them-element set, which can be done in time O(logm)

using O(m/ logm) processors (see Fact 2). Finally, using (n − 1)O(m2/ logm) =
O(nm2/ logm) processors we can determine the value of the goal function for all
solution of the API neighborhood in time O(logm). Next, we determine the solution
with the minimal value of the goal function in time O(log n) using n − 1 processors.
The entire method requires

O(max{n − 1,
nm2

logm
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
) (15)

processors and has time complexity of

O(max{logm, log n, log(n + m)(log(nm))}) = O(log(n + m) log(nm)). (16)

Thus, we can search the API neighborhood in parallel with the same time com-
plexity as determining the value of the goal function for a single solution. Theorem 2
is an example of cost-optimal algorithm for this neighborhood.

4 Insert Neighborhood

Direct search of the INS (Insert) neighborhood implies time complexity of O(n3m).
For this neighborhood and Cmax goal function, an accelerator is known (see [13]),
which allows to search the neighborhood in time O(n2m) for the F∗||Cmax problem.
In this section we will show stronger results for parallel algorithms.
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Theorem 4 The INS neighborhood for the F∗||Cmax problem can be searched in
time O(n + m) on CREW PRAM using O( n2m

n+m ) processors.

Proof Let v = (a, b), a �= b be a move that generates a solution in the INS neigh-
borhood. The move consists in modifying permutation π by removing job π (a)

from it and inserting it back into π such so the job ends up on position p in the
resulting permutation π(v). Let rs,t , qs,t , s = 1, 2, . . . ,m, t = 1, 2, . . . , n − 1, be val-
ues calculated from formulas (7) and (8) for (n−1)-element permutation obtained
from π by removing job π (a). For each position a = 1, 2, . . . , n the values rs,t ,
qs,t can be determined in time O(n + m) on a PRAM with O( nm

n+m ) processors (see

Bożejko [5]). By using O( n2m
n+m ) processors, this process can be completed in time

O(n + m) for all (n−1)-element permutations obtained from π by removal of job
π (a), a = 1, 2, . . . , n. For any given a, the value Cmax(π(v)) obtained by inserting
job π (a) into position b = 1, 2, . . . , n, b �= a can be calculated using the for-
mula (9) in time O(m). We divide the process of determining the goal function for

the neighborhood elements into p =
⌈

n2m
n+m

⌉
groups assigned to a single processor

each. Employing the aforementioned property and the fact that the INS neighbor-
hood contains (n − 1)2 = O(n2) solutions, the time complexity of determining all

values Cmax(π(v)) is
⌈

(n−1)2

p

⌉
O(m) = O(n + m). Next, we need to find the neigh-

borhood element with minimal value of goal function, which can be done in time
O(log(n2)) = O(2 log n) = O(log n) using n processors. The entire method has
time complexity of O(n + m + log n) = O(n + m) and requires the use of O( n2m

n+m )

processors. �

The proposed method is cost-optimal.
Below we present a different method of searching the INS neighborhood in

the F∗||Cmax problem, which allows to reduce time complexity to O(log(n +
m)(log(nm))) at the cost of more processors.

Theorem 5 The INS neighborhood for F∗||Cmax can be searched in time O(m +
log(n + m)(log(nm))) on CREW PRAM using O(n3m3/ log(nm)) processors.

Proof Let G(π) be a graph defined in Sect. 2 for a solution π that generates the INS
neighborhood. Let rs,t , qs,t , s = 1, 2, . . . ,m, t = 1, 2, . . . , n − 1, be values deter-
mined according to formulas (7) and (8) for (n − 1)-element permutation obtained
from π by removing job π (a). Values rs,t , qs,t representing the lengths of longest
paths respectively ending and starting at vertex (s, t) can be determined in time
O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors by employing the
method of determining all longest paths between pairs of vertices. From the proper-
ties of the graph G(π) it follows that the longest path ending at vertex (s, t) starts at
(1,1) and longest path starting at (s, t) ends at (n,m). Thus, after calculating the array
of longest paths maxdist , the values rs,t , qs,t for any vertex (s, t), s = 1, 2, . . . ,m,
t = 1, 2, . . . , n can be directly accessed from it. Next, we assign to each one of
O(n2) elements of the INS neighborhood a single processor. Thus, the goal function
value:
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Cmax(π(v)) = max
1≤i≤m

(di + qi,b+1), (17)

where
di = max{ri,b, di−1} + piπ(a), i = 1, 2, . . . ,m, (18)

for a single neighborhood element corresponding to a move v = (a,b), a �= b can be
determined in time O(m). Using O(n2) processors, we determine the value of the
goal function for all neighborhood elements independently in time O(m). Finally,
we find the minimal of those goal function values in time O(log n2) = O(2 log n) =
O(log n) using O(n2) processors. The entire method thus requires:

O(max{n2, n3m3/ log(nm)}) = O(n3m3/ log(nm))

processors for the time complexity of

O(max{m, log(n + m)(log(nm))}) = O(m + log(n + m)(log (nm))). �

The next theorem shows how the time complexity fromTheorem 5 can be reduced
from O(m + log(n + m(log(nm))) to O(log(n + m)(log(nm))), while maintaining
the number of processors at O(n3m3/ log(nm)).

Theorem 6 The INS neighborhood for F∗||Cmax can be searched on CREW PRAM
in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof We proceed similarly to the previous theorem. With the help of formulas (17)
and (18) we determine the value of Cmax(π(v)) in parallel for each from n(n − 1)
neighborhood elements. Earlier, in time O(log(n + m)(log nm)) we determine values
rs,t , qs,t , s = 1, 2, . . . ,m, t = 1, 2, . . . , n − 1 which are calculated based on (10) for
a (n − 1)-element permutation obtained from π by removing job π (a). This is done
using O(n3m3 / log(nm)) processors. Next in order to compute each of the n(n − 1)
neighborhood elements we assign O(m2/ logm) processors and transform formula
(18) as follows:

di = max{ri,b, di−1} + pi,π(a) =

= max
1≤k≤i

(rk,b +
i∑

t=k

pt,π(a)) = max
1≤k≤i

(rk,b + Pi
k,π(a)), (19)

where Pi
k, j =

i∑
t=k

pt, j , k = 1, 2, . . . , i are prefix sums that can (Fact 1) be deter-

mined in time O(logm) with O(m/ logm) processors for a given i . Since we need
Pi
k, j for all i = 1, 2, . . . ,m, thus they can be calculated in parallel during prelim-

inary stage using O(m2/ logm) processors (number used before to check single
neighborhood element). There is at most m sums rk,b + Pi

k,π(a),k = 1, 2, . . . , i in
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formula (19), thus they can be determined in time O(logm) using O(m/ logm)

processors (Fact 3). Therefore, for each i = 1, 2, . . . ,m we can obtain value di in
time O(logm) on O(m/ logm) processors. All such values can be determined in
parallel in time O(logm) using O(m2/ logm) processors. Next, in order to calculate
Cmax(π(v)) = max

1≤i≤m
(di + qi,b+1) we perform m parallel additions di + qi,b+1, i =

1, 2, . . . ,m and we calculate the maximum from m-element set, using O(m/ logm)

processors and timeO(logm) (see Facts 3 and 2). Thus, usingn(n − 1)O(m2/ logm)

= O(n2m2/ logm) processors we can determine the value of goal function for all
neighborhood elements in time O(logm). Next, we find element with minimal foal
function value in time O(log n2) = O(2 log n) = O(log n) using n2 processors. The
entire method uses

O(max{n2, n
2m2

logm
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
)

processors with time complexity

O(max{logm, log n, log(n + m)(log(nm))}) = O(log(n + m) log(nm)). �

We conclude that the INS neighborhood can be searched in the same time com-
plexity as determining the goal function value for a single neighborhood element.
There also exists a cost-optimal algorithm (Theorem 4).

5 Non-adjacent Pair Interchange Neighborhood

We start with the description of a sequential accelerator for the NPI (Non-adjacent
Pair Interchange) neighborhood which we will use in this section. The accelerator
has time complexity O(n2m) compared to complexity O(n3m) of a direct approach
without the use of the accelerator .

Let v= (a,b), a �= b be a pair of jobs (π (a), π (b)) that we can swap to obtain
permutation π(v). Without the loss in generality we can assume a < b. Let rs,t ,
qs,t , s = 1, 2, . . . ,m, t = 1, 2, . . . , n be values calculated from (8) for n-element
permutation π . Let Dx,y

s,t denote the length of the longest path between vertices (s,t)
and (x ,y) in grid graph G(π). Then the calculation ofCmax(π(v)) can be expressed as
follows. First, we determine the length of the longest path ending at (s, a), including
job π (b) due to swap of job v on position a:

ds = max{ds−1, rs,a−1} + ps,π(b), s = 1, 2, . . . ,m, (20)

where d0 = 0. Next we calculate the length of the longest path ending at (s, b − 1),
including the fragment of the graph between jobs on positions from a + 1 to b − 1
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inclusive, which is invariant in regards to G(π):

d ′
s = max

1≤w≤s
(dw + Ds,b−1

w,a+1), s = 1, 2, . . . ,m. (21)

Next we calculate the length of the longest path ending at vertex (s, b), including
job π (a) swapped on position b:

d ′′
s = max{d ′′

s−1, d
′
s} + ps,π(a), s = 1, 2, . . . ,m, (22)

where d ′′
0 = 0. Finally, we obtain:

Cmax(π(v)) = max
1≤s≤m

(d ′′
s + qs,b+1). (23)

Calculation of Cmax(π(v)) is possible provided we have appropriate values Dx,y
s,t .

Those can be calculated recursively for a given t and y = t + 1, t + 2, . . . , n, using
the following formula:

Dx,y+1
s,t = max

s≤k≤x
(Dky

s,t +
x∑

i=k

piπ(y+1)), (24)

where Dxt
s,t = ∑x

i=s piπ(t). Alternatively, we can state this formula as:

Ds,t+1
s,t = Ds,t

s,t + ps,π(t+1), Dx,0
s,t = D0,y

s,t = 0, (25)

Dx,y+1
s,t = max{Dx,y

s,t , Dx−1,y
s,t } + px,π(y+1), (26)

x = 1, 2, . . . ,m, y = 1, 2, . . . , n, which allows, for a given (s,t), to determine
all Dx,y

s,t , x = 1, 2, . . . ,m, y = 1, 2, . . . , n in time O(nm). Finally, we sequen-
tially determine all O(n2) values Cmax(π(v)) and, before that, calculation of Dx,y

s,t ,
x, s = 1, 2, . . . ,m, y, t = 1, 2, . . . , n can be done sequentially in time O(n2m2) (see
[13]).

Theorem 7 The NPI neighborhood for the F∗||Cmax problem can be searched in
time O(nm) on a CREW PRAM using O(n2m) processors.

Proof We will now describe the counterpart to the sequential accelerator. Let us
assign O(m) processors to each of n(n−1)

2 neighborhood elements. For a given (s, t)
value Dx,y

s,t and all x = 1, 2, . . . ,m, y = 1, 2, . . . , n can be determined sequen-
tially in time O(nm). By using O(nm) processors we can determine Dx,y

s,t for all
x, s = 1, 2, . . . ,m, y, t = 1, 2, . . . , n in time O(nm) and do that only once, dur-
ing preliminary stage, for all neighborhood elements. Let us focus on determining
valueCmax(π(v)) for a given neighborhood element associated with somemove v.We
determine value ds in (20) sequentially in time O(m). Calculation of maximum ofm
values from (21) can be done in parallel for all s using O(m) processors in time O(m).



Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 33

As for (22), we compute it sequentially for each s in time O(m). The determining
of value Cmax(π(v)) in (23) is equivalent to independently performing m additions
and then computing the maximum of those m values. We can do that sequentially in
time O(m). To sum it up, parallel computation of all O(n2) values Cmax(π(v)) can
be done in time O(m) using O(n2m) processors. However, because the process of
generating Dx,y

s,t had time complexity O(nm), this becomes the complexity of the
entire method. �

The following theorems strengthens the above result, either obtaining better time
complexity or cost-optimality of the method.

Theorem 8 TheNPI neighborhood for the F∗||Cmax can be searched in time O(m +
log(n + m)(log(nm))) on CREW PRAM using O(n3m3/ log(nm)).

Proof The proof is similar to previous theorem, except values Dx,y
s,t , are determined

using O(n3m3/ log(nm)) processors in time O(log(n + m)(log nm)) (see [5]). With
Dx,y

s,t we can compute each Cmax(π(v)) in time O(m) using O(m) processors. Thus,
assigning in this stage O(n2m) processors, the time complexity of searching the NPI
neighborhood is:

O(max {m, log(n + m) log(nm)}) = O(m + log(n + m) log(nm)),

using O(max {n2m, n3m3/ log(nm)}) = O(n3m3/ log(nm)). processors. �

Theorem 9 The NPI neighborhood in the F∗||Cmax can be searched in time
O(n + m) on a CREW PRAM using O( n

2m2

n+m ) processors.

Proof By employing recursive definition (26) for Dx,y
s,t , we can obtain Dx,y

s,t for
a given pair (s, t) and all x = 1, 2, . . . ,m, y = 1, 2, . . . , n in time O(n + m) using
O( nm

n+m ) processors. By using nm timesmore processors,meaningO( n
2m2

n+m ), we can in
parallel compute Dx,y

s,t , x = 1, 2, . . . ,m, y = 1, 2, . . . , n for all s = 1, 2, . . . ,m, t =
1, 2, . . . , n while keeping the time complexity at O(n + m). Next we employ similar
process as in the previous theorem, except the parallel determining of Cmax(π(v)) for

the neighborhood elements is split on p =
⌈

n2m
n+m

⌉
groups, each consisting of O(m)

processors. Thus the total number of processors is O(pm) = O( n
2m2

n+m ). The process of
determining a singleCmax(π(v)) value for a given move v is performed like described
in Theorem 8 in time O(m) using O(m) processors. Thus, the time complexity of
determining all n2 values Cmax(π(v)), when computations are split on p independent
groups (threads) is

n2

p
O(m) = O

⎛

⎝ n2⌈
n2m
n+m

⌉m

⎞

⎠ = O(n + m) (27)

and such will be the time complexity of the entire method. Because each of p threads
had O(m) processors, then the total number of processors is O(pm) = O( n

2m2

n+m ). �
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The method is cost-optimal.

Theorem 10 The NPI neighborhood for F∗||Cmax can be searched on a CREW
PRAM in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof Let values Dx,y
s,t be defined as in (24). The lengths of the longs paths between

(s, t) and (x, y) in G(π) can be determined using O(n3m3 / log(nm)) processors
in time O(log(n + m)(log(nm))) (see [5]). Let us assign O(m2/logm) processors
to each of n2 neighborhood elements. Let us focus on determining Cmax(π(v)) for
a single neighborhood element, obtained by some move v. Calculation of ds in (20)
can be done in parallel in time O(logm) using O(m2/ logm) processors. Prior to
that we transform (20) into:

ds = max{rs,a−1 + psπ(b), rs−1,a−1 + ps−1,π(b) + psπ(b), . . .

. . . , r1,a−1 + p1,π(b) + p2π(b) + · · · + psπ(b)} =

= max
1≤k≤s

(rk,a−1 +
s∑

t=k

pt,π(b)) = max
1≤k≤s

(rk,a−1 + Ps
k,π(b)), (28)

where Ps
k, j =

s∑
t=k

pt, j , k = 1, 2, . . . , s are prefix sums, which (according to Fact 1)

can be calculated for a given s in time O(logm) using O(m/ logm) processors.
Because we need Ps

k, j for all s= 1, 2, . . . ,m, then we can determine them in parallel
using O(m2/ logm) processors. Afterwards, we will have access to values Ps

k, j for
all s = 1, 2, . . . ,m and k = 1, 2, . . . , s assuming a given job j = π (b). The is at
mostm sums rk,a−1 + Ps

k,π(b) from formula (28), thus they can be determined in time
O(logm) using O(m/ logm) processors (Fact 3). Finally, for each s = 1, 2, . . . ,m
the value ds can be determined in time O(logm) using O(m/ logm) processors,
thus all such values are determined in parallel in time O(logm) using O(m2/ logm)

processors. The the determining the maximum of the m values in (21) can be done
in parallel for all s using O(m2/ logm) processors in time O(logm). Prior to that
we compute m sums dw + Ds,b−1

w,a+1 in time O(logm) using O(m/ logm) processors
(Fact 3). We transform (22) into:

d ′′
s = max{d ′′

s−1, d
′
s} + ps,π(a) =

= max
1≤k≤s

(d ′
k +

s∑

t=k

pt,π(a)) = max
1≤k≤s

(d ′
k + Ps

k,π(a)).

Because we can determine all the necessary prefix sums Ps
k,π(a) in time O(logm)

using O(m2/ logm) processors and values d ′
s are all already determined, thus

determining of all values d ′′
s , s = 1, 2, . . . ,m can be done in parallel in time

O(logm) using O(m2/ logm) processors, as according to rules shown for com-
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puting d ′
s . Finally we determine Cmax(π(v)) = max

1≤s≤m
(d ′

s + qs,a+2) in time O(logm)

using O(m/ logm) processors. Such operation consists in performing m additions
d ′
s + qs,a+2, s = 1, 2, . . . ,m, which can be done in time O(logm) on O(m/ logm)

processors (Fact 3). Next, for determiningCmax(π(v)) = max
1≤s≤m

(d ′
s + qs,a+2)we com-

pute the maximum from an m-element set, in time O(logm) using O(m/ logm)

processors (Fact 2). Thus, in total using (n2)O(m2/ logm) = O(n2m2/ logm) pro-
cessors we can determine the goal function values for all neighborhood elements
in time O(logm). Next, we need to find the element with the minimal goal func-
tion values, which can be done in time O(log n2) = O(2 log n) = O(log n) using n2

processors. The entire method thus requires:

O(max{n2, n
2m2

logm
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
) (29)

processors and its time complexity is:

O(max{logm, log n, log(n + m)(log(nm))}) = O(log(n + m)(log(nm))). �

To sum it up, we can search the NPI neighborhood in parallel in the same asymp-
totic time as determining the goal function value for a single solution. Among
described parallel algorithms there is a cost-optimal one (Theorem 9).

6 Conclusions

In the paper, we presented the results of our research on the parallelization of themost
costly element of the local search algorithms that solves the permutation flow shop
problem with makespan criterion, which is the generation and search of neighbor-
hood. Three popular types of moves were considered: adjacent interchange (swap),
any position swap, and insert type move. For each of those moves we have proposed
effective (cost-optimal) methods as well as methods allowing to choose the best
neighbor in the same time as evaluating a single solution.
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Distributed Manufacturing as a
Scheduling Problem

Jarosław Pempera , Czesław Smutnicki , and Robert Wójcik

Abstract In this chapter, we consider a distributed production system modeled and
analyzed by means of the extended open-shop scheduling problem with transport
times and the makespan criterion. The stated problem is more general than these
considered by us so far as well those found in the literature. The stated problem has
been decomposed into two scheduling sub-problems: processing of jobs in each fac-
tory and transfer of jobs between factories. These schedules can be represented by two
job orders: “processing order” and “transfer order”. The overall aim of the optimiza-
tion task is stated to find the optimal/best job orders. We provide the mathematical
model to find the non-delay schedule for the given job orders. Next, we formulate
a graph model and introduce special properties, suitable to check the feasibility of
job orders as well as to calculate the makespan value. The properties have been used
in the neighborhood dedicated for local search methods. We have implemented the
tabu search algorithm and tested experimentally its performance.

1 Introduction

We consider so-called distributed production system,modeled and analyzed by using
tools from the scheduling area, namely the extended open-shop scheduling problem
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with transport times and the makespan criterion. The extension consists in using var-
ious sets of operations for jobs and operation-dependent transport times. Formulated
problem is more general than these considered up-to-now by us and more general
than those considered in the literature. The novelty in the problem formulation is
a mix of open-shop and job-shop with transport times. The novelty in the solution
methods is the graph as well as a labelling procedure, which performs Critical Path
Method (CPM) with detector of graph cycle. The stated problem have been decom-
posed into two sub-problems of scheduling: processing of jobs in each factory and
transfer of jobs between factories. We show that these schedules can be represented
by two job orders called respectively: “processing order” and “transfer order”. We
propose a labelling procedure which transforms orders into appropriate non-delay
schedules. The goal of optimization is to find the optimal/best job orders. We pro-
vide the mathematical model to find the non-delay schedule for the given job orders.
Next, we formulate a graph model and introduce several special properties, which
allows us to check the feasibility of job orders as well as to calculate the makespan
value. The properties have been used in the neighborhood dedicated for local search
methods. We have implemented the tabu search algorithm and tested experimentally
its performance.

In the distributed manufacturing system, the production process is carried out in
many locations mutually distant. The transport time between dispersed production
stages has significant influence on the schedule designed for these cases, [3]. Cur-
rently, many companies are moving away from the traditional production method in
an enterprise located in one place to distributed production implemented in many
locations. There aremany examples of industries in which such a process takes place,
ranging from companies producing food products in which some production stages
must be carried out at a safe distance from sanitary reasons and ending with the
automotive industry in which final products in the form of cars are produced from
many components produced in various locations. Another example of distributed
production systems is the construction of buildings, in which buildings are built
from prefabricated elements manufactured in many company branches located near
the raw materials for production [16] and/or construction sites. Appropriate location
of company branches increases the level of production efficiency while reducing
production expectations and reducing, among others, production costs.

Two basic models of distributed systems are considered in the literature, i.e. dis-
tributed flexible flow shop (DFFS) and distributed flexible job shop (DFJS) systems.
This is due to the fact that the vast number of production systems the technological
route for each product is precisely defined. The least often considered are the pro-
duction systems with open-shop policy in which the order of performing operations
within one task can be any.

The flow production systems are the most common research object of scien-
tists. They model the vast majority of manufacturing systems actually encountered.
In addressing distributed flowshop scheduling problem where are many algorithms
based on advanced local search methods (for example a tabu search algorithm Gao,
Chen and Deng [8], a scatter search algorithmNaderi and Ruiz [20], a hybrid genetic
algorithm Gao and Chen [7], iterated greedy algorithms Ruiz, Pan and Naderi [24]).
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Determining an efficient schedule for job shop production system problems is
definitely much more difficult. This is due to its NP-hardness and a huge number of
solutions from which a significant fraction is unfeasible. As in the case of flow shop
problems, for instances of problems with medium and large sizes, many heuristics
algorithms based on local search are proposed. One of the first optimisation algo-
rithms for distributed job shop problem is genetic algorithm proposed by Jia, Fuh,
Nee and Zhang [14]. A hybrid genetic algorithm Hao-Chin and Tung-Kuan [12] and
an agent-based fuzzy algorithm have recently been proposed Hsu, Kao, Ho and Lai
[13].

Theopen-shop schedulingproblem is a topic that has alreadybeen studiedbymany
authors. Due to the NP-hardness of the problem for regular criteria, mainly heuristic
algorithms based on various methods are proposed. One of the simplest algorithm of
this type for total completion timeminimisation is the polynomial algorithmproposed
by Kyparisis and Koulamas (1997) [15]. Gueret and Prins (1998) [11] developed an
original list scheduling heuristic algorithm enhanced by a local search improvement
procedure.

Nowadays, the best heuristic algorithms provide good solutions for benchmark
instances in short computation time. Liaw (2000) [17] introduces a hybrid genetic
algorithm incorporates a local improvement procedure based on tabu search, Sha and
Hsu (2008) [26] proposed a particle swarm optimization algorithm.

Other work focuses on criteria such as: late work Blazewicz et al. (2004) [2],
total tardiness Naderi et al. (2010) [19], total tardiness and makespan Noori-Darvish
and Tavakkoli-Moghaddam (2012) [25], makespan with release dates Bai and Tang
(2013) [1] and cycle time Pempera and Smutnicki (2018) [23].

The chapter is organized as follows. Section2 provides the mathematical descrip-
tion of the problem. Section3 presents graph model and some properties of the
problem. Optimisation algorithm is presented in Sect. 4, whereas the result of com-
putation experiments shown in Sect. 5.

2 Mathematical Model

We begin from a brief descriptive introduction to the problem. The distributed man-
ufacturing system working with open-shop policy (DMSO) one can consider as an
ensemble of cooperating factories engaged to provide various products. Factories are
located far away each other. A product corresponds to a production job composed of
operations, each of which is processed in the different factory. Operations included
in the job can be performed in any order, then the route of a job through factories is
variable. Each factory can perform only one operation at a time.

We introduce the followingmathematicalmodel, see Table1 for the list of symbols
and their meaning. We denote by

M = {1, . . . , m}
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Table 1 List of symbols

Denotation Meaning

Data

N Set of jobs N = {1, 2, . . . , n}
M Set of manufacturing plants M = {1, 2, . . . , m}
n j Number of operations in job j ∈ N

pi Processing time of operation i ∈ O

νi Manufacturing plant for operation i ∈ O

dkl Distance between plants k and l, k, l ∈ M

Definitions of objects

O j Set of operations of job j , O j = {l j−1 + 1, . . . , l j }
l j Number of operations of the first j jobs, l j = ∑ j

s=1 ns

O Set of all operations

Mk Operations in plant k ∈ M , Mk = {i ∈ O : vi = k}
o Total number of operations

Variables

Si Start time of operation i ∈ O

Ci Completion time of operation i ∈ O

τ Processing order of visiting plants, τ = (τ1, . . . , τn)

σ Processing order of operations in a plant, σ = (σ1, . . . , σm)

the collection of geographically distributed manufacturing plants (factories). The set
of tasks (jobs) which have to be performed usingM is denoted by

N = {1, 2, . . . , n}.

The job j is representedby the set ofn j independent operations indexed consecutively
as follows

O j = {l j−1 + 1, . . . , l j },

where

l j =
j∑

s=1

ns

is the number of operations of the first j jobs. Note that n j can be various for different
jobs. Set means that all operations from O j have to be processed, in an order, but
only one operation at the time. We define the set of all operations in the natural way

O =
⋃

j∈N

O j ,
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where the total number of operations is |O| = o = ln . Operation i ∈ O is processed
in factory νi ∈ M in the duration pi > 0. νi and pi are known. We know also the
distance (transfer time) defined by a matrix

D = [dkl]m×m,

where dkl is a distance between k-th and l-th plant, k, l ∈ M. Interruption of an
operation performed in the factory is not allowed. Each factory processes at most
one operation at a time. Buffers before and after factory have infinite capacity.

Overall schedule is defined by vector of start times

S = (S1, S2, . . . , So)

and completion times
C = (C1, C2, . . . , Co).

Actually, sinceCi = Si + pi , then either S orC is sufficient to represent the schedule.
The schedule S can be found having defined the following processing orders

• order of performing operations inside the job (order in which job visits factories),
• order of performing operations in each factory.

Both types of orders can be expressed by a permutation or/and their composition.
The processing order of visiting factories of the job j ∈ N can be represented by the
permutation

τ j = (τ j (1), τ j (2), ..., τ j (n j ))

on the set O j . We denote in the sequel

τ = (τ1, τ2, . . . , τn).

The processing order of operations in factory k ∈ M can be represented by the per-
mutation

σk = (σk(1), σk(2), . . . , σk(mk))

of mk operations from the set

Mk = { j ∈ O : ν j = k}.

We denote by analogy
σ = (σ1, σ2, . . . , σm).

The pair (σ, τ ) introduces constraints on time events in the following form

Sτ j (i) ≥ Cτ j (i−1) + dντ j (i−1),ντ j (i)
, i = 2, . . . , n j , j = 1, . . . , n, (1)
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Table 2 Data for the example

Job i pi νi i pi νi i pi νi i pi νi

1 1 90 1 2 50 3 3 64 2 4 65 4

2 5 47 4 6 92 3 7 73 1 8 26 2

3 9 27 4 10 94 2 11 48 1 12 93 3

4 13 43 3 14 76 1 15 87 2 16 65 4

Sσk (i) ≥ Cσk (i−1), i = 2, . . . , mk, k = 1, . . . , m, (2)

Si ≥ 0, i = 1, . . . , o, (3)

Inequality (1) expresses that the start time of operation τ j (i) has to be later then the
completion time of its precedence operation τ j (i − 1) plus the transport time from
factory ντ j (i−1) to factory ντ j (i). Inequality (2) describes relations between events of
start and completion of operations processed in the same factory and means that start
of the operation σk(i) is possible only after completion of its precedence operation
σk(i − 1). The constraint (3) is obvious. Equality (4) ensures that processing of
operation i ∈ O cannot be interrupted

Ci = Si + pi , i = 1, . . . , o. (4)

We call processing order (σ, τ ) feasible if exists schedule S and/or C so that (1)–(4)
hold. For the given (σ, τ ) we define the makespan as follows

Cmax(σ, τ ) = max
i∈O Ci . (5)

The overall aim of the distributed open shop scheduling problem is to find σ ∗ and
τ ∗ for which Cmax(σ, τ ) is the smallest among all feasible (σ, τ )

Cmax(σ
∗, τ ∗) = min

σ,τ
Cmax(σ, τ ). (6)

The problem can be perceived as the mixed open-shop/job-shop scheduling problem.
Indeed, assuming n j = m, j ∈ N and transport time zero we obtain the traditional
definition of the open-shop existed in the scheduling area. Assuming that transport
time is zero and τ j is fixed but can be various for various jobs, we obtain the well-
known definition of the job-shop problem. Since both special cases, namely the
open-shop and job-shop are NP-hard, the considered problem is also NP-hard. In
order to show the problem in detail, we provide the following example.

Example. Four jobs have to be scheduled in a distributed open-shop system con-
sisting of four factories. Each job is processed in each factory. The job indexes, oper-
ation indexes, processing times and factories assigned to the operations are given in
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Table 3 Distances between factories

Factor y 1 2 3 4

1 0 5 10 15

2 5 0 5 10

3 10 5 0 5

4 15 10 5 0

Table2 (the data derive from 5th Taillard’s benchmark of the open-shop [27]). The
distances between factories are given in Table3.

Three Gantt charts are displayed in Figs. 1A–C for various processing orders
(σ, τ ) and various transport times D. Chart A provides the optimal schedule with
the makespan Cmax(σ, τ ) = 295 for data given in Table2 and processing orders

σ = ((11, 7, 1, 14), (3, 15, 10, 8), (13, 12, 6, 2), (5, 4, 16, 9))

τ = ((3, 4, 1, 2), (5, 7, 6, 8), (11, 12, 10, 9), (13, 15, 16, 14)) (7)

assuming zero transport time (case di j = 0). Chart B shows the schedule with the
makespan Cmax(σ, τ ) = 320 built for the processing order (7) (the same as in case
A) and distances taken from Table3. Chart C shows the best found schedule with
Cmax(σ, τ ) = 306 for the job order

σ = ((11, 14, 1, 7), (3, 8, 10, 15), (13, 2, 6, 12), (5, 9, 16, 4))

τ = ((3, 2, 1, 4), (5, 8, 6, 7), (11, 9, 10, 12), (13, 14, 16, 15)) (8)

and distances from Table3.

3 Application of the Graph

In order to introduce some special properties of the problemwe convert mathematical
model (1)–(4) to certain graph. For a fixed (σ, τ ) we define a directed planar graph
in the Activity-on-Node (AoN) modelling style, namely

G(σ, τ ) = (O, E(σ ) ∪ F(τ )), (9)

with the set of nodes O and the set of arcs E(σ ) ∪ F(τ ). The node i ∈ O represents
an operation and has weight pi . The set of arcs E(σ ) ∪ F(τ ) ⊆ O × O represents
preceding constraints and consists of two subsets:

• following from the changeable order τ of visiting plants by a job,
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Fig. 1 Gantt charts for the Example 2: A optimal for order (7) and zero transport time (dkl = 0),
the makespan is 295. B certain for order (7) and transport time from Table3, the makespan is 320
C optimal for order (8) and transport time given in Table3, the makespan is 306
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F(τ ) =
n⋃

j=1

n j⋃

i=2

{(τ j (i − 1), τ j (i)}, (10)

which corresponds to constraints (1), each arc (τk(i − 1), τk(i)) ∈ F(τ )hasweight
dτk (i−1),τk (i),

• following from the changeable processing order σ of operations in factories

E(σ ) =
m⋃

k=1

mk⋃

i=2

{(σk(i − 1), σk(i)}, (11)

which corresponds to constraints (2); each arc ((σk(i − 1), σk(i)) ∈ E(σ ) has
weight zero.

Graph G(σ, τ ) is used for checking feasibility, finding the schedule S and the
makespan value for the given processing order (σ, τ ). Appropriate features follow
from properties shown in the sequel.

Property 1 For processing order (σ, τ ) exists feasible schedule S, C from (1)–(4)
if and only if the graph G(σ, τ ) does not contain a cycle.

Property 2 For processing order (σ, τ ), the starting time Si of an operation i ∈ O
equals the length of the longest path going to the node i ∈ O in the graph G(σ, τ ).

Checking “if the graph has a cycle” in Property 1 can be done in the time O(o).
Longest paths going to each node in Property 2 can be found by running Critical
Path Method (CPM); it requires also the time O(o). Nevertheless, we propose an
alternative labelling procedure, which combines features enumerated in Properties 1
and 2. Its running time is O(o). Its pseudo-code is shown in Fig. 2.

Notice, Step 1.2 implements constraint (1) and Step 1.3 implements constraint
(2). Then, before performing Step 1.4 in Si we have the earliest possible start time
of operation i ∈ O. Step 1.4 implements Eq. (4). Performing Steps 1.2, 1.3 and 1.4
is possible only for those operations for which completion times of all predecessors
are known. Operations with known completion time for all predecessors in a given
iteration are stored in the queue Q. Queue Q is initialized with operations having
no predecessors (see Step 0.2). For each operation we store in npi , i ∈ O the num-
ber of predecessors with unknown (not determined yet) completion time. Each time
when is determined completion time of some operation the npi value for job and
machine successors are updated and successors are stored in Q if npi reach zero
(Steps 1.5.1 and 1.6.1). If the completion time is not determined for all operations
then the processing orders are unfeasible. This fact is detected by counting the num-
ber of operations for which the moment of completion is determined (see variable
i tercount).

The problem (6) refers to huge number of processing orders, theoretically n!mm!n ,
although themajority of them are unfeasible. Taking into account the cost of checking
feasibility we are interested in the potential property allowing us to generate only
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Fig. 2 Pseudocode of schedule determining algorithm for given (σ, τ )

feasible processing orders. The next two facts following from graph model, describe
the conditions of generating the new feasible and better processing orders.

Let U be the arbitrary selected longest path in G(σ, τ ). The maximum sub-path
of U consisting of nodes representing operations performed in the same factory
will be called the operation block or, briefly the block. The maximum sub-path of
U consisting of nodes representing operations that belong to the same job will be
called the job-block.

Schedule(σ, τ )

indirect variables (variables following from σ and τ ):

• j pi - job predecessor i.e. operation preceding operation i in τ ,
• jsi - job successor i.e. operation succeeding operation i in τ ,
• f pi - factory predecessor i.e. operation preceding operation i in σ ,
• f si - factory successor i.e. operation succeeding operation i in σ ,

note that j pi = 0, jsi = 0, f pi = 0, f si = 0 if operation i has not appropriate pre-
decessors or/and successors.
current variables

• npi - number of predecessors of operation i ∈ O with unknown (not yet deter-
mined) completion time,

• Q - queue of operations with determined completion times all of predecessors,
• i tercount - number of operations with determined completion times all of prede-
cessors.
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Property 3 Let (σ, τ ) be a feasible solution. All processing orders created by swap-
ping the order of two adjacent operations in the blocks are feasible.

Property 3 allows us to generate from a feasible processing order a sequence
(subset) of feasible processing orders. It can be applied in an algorithm based on the
B&B scheme as well as in various metaheuristics.

Property 4 Let (σ ′, τ ′) be the feasible solution obtained from (σ, τ ) so that

Cmax(σ
′, τ ′) < Cmax(σ, τ ) (12)

then at least one condition occurs

• at least at one operation from at least at one block is performed before the first
operation of the block,

• at least at one operation from at least at one block is performed after the last
operation of the block,

• at least at one operation from at least at one job-block is performed before the
first operation of the job-block,

• at least at one operation from at least at one job-block is performed after the last
operation of the job-block,

• the operation from at least at one internal job-block is performed in other order.

Property 4 is a realization of so-called block approach. It defines sufficient condi-
tions necessary to generate the processing order with better makespan. Block proper-
ties were successfully used to construct efficient algorithms for flow-shop scheduling
problem [22], job-shop scheduling problem [10], flexible job-shop scheduling prob-
lem [5] and many others.

4 Optimization Algorithm

We refer to the metaheuristic algorithm called tabu search, see [9] for foundations
of the method. Briefly, it is a modification of the well-known fast descend search
approach. The search trajectory is generated by checking successive local neighbor-
hoods. The algorithm uses a short-term memory (called tabu list) to prevent won-
dering around in the solution space and to guide the search into promising regions
of this space. The best non-forbidden solution in the neighborhood is selected and it
becomes current solution for the next iteration.

Since determining the Cmax value for a given solution order consumes a consid-
erable amount of time, in the interest of computation time, one should search only
feasible and/or promising improvement of the objective function solutions.

The most important element of local search algorithms is the neighborhood defi-
nition of the current solution. One of the most effective ways to generate the solution
neighborhood for job-shop problem is the method proposed by Smutnicki and Now-
icki [21]. Watson, Howe and Whitley (2005) [28] experimentally proved its natural
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convergence to local minima regardless of the local search method used. Roughly
speaking, the neighbor solution is generated by swapping the first operation in the
block with the next or the last operation in the block with the second to last one.

Bearing in mind the similarity of the jobshop scheduling problem to the openshop
scheduling problem (jobshop is a special case of openshop ) and the fact that this
method of generating fulfill the conditions of Property 4 (for blocks and job-blocks)
and Property 3 (only for blocks) we have decided to implement this type of neighbor-
hood generation method. Precisely, let B = (B1, . . . , Bb) be the sequence of blocks
and job-blocks. The neighborhoodN(σ, τ ) of solution (σ, τ ) consists of two subsets:

N(σ, τ ) = N1(σ, τ ) ∪ N2(σ, τ ). (13)

The former setN1(σ, τ ) contains processing orders created from (σ, τ ) by swapping
the two first operations of the block or job-block i.e. operations Bs(1) and Bs(2),
s = 1, . . . , b. The latter set N2(σ, τ ) contains of processing orders created from
(σ, τ ) by swapping the two last operations operations of the block or job-block i.e.
operations Bs(bs − 1) and Bs(bs), s = 1, . . . , b, where bs is the number of operations
in block or job-block s.

The tabu list T L were constructed and used in the following ways:

• contains the pairs of operations,
• has limited length L and is serviced by FIFO rule,
• the pair (a, b) of T L prohibits swapping operations a and b.

The algorithm terminates after maxiter iterations. In addition, in order to diver-
sify the search process, after each nonimpiter iterations without improving the
best found solution, there is a random “jump” from this solution. The jump is also
performed if a search cycle is detected. In the jump, jumpiter iterations are per-
formed. In each iteration of the jump, the neighbor solution is randomly selected
and it becomes the current solution in the next iteration. The first solution in this
procedure is the best solution found so far by the TS algorithm.

5 Experimental Results

We set three research goals:

1. evaluate the quality of solutions generated by TS,
2. evaluate the impact of transport times on the value of the objective function,
3. measure the calculation time.

The benchmark set consist of 40 modified open-shop Taillard instances. For each
original Taillard’s instance we generate symmetric distance matrix. The benchmark
set contains 4 group of instances of size: n × m = 4 × 4, 5 × 5, 7 × 7, 10 × 10.
Eachgroup contains 10 instances. TSalgorithmwere implemented inC#underVisual
Studio 2010 environment. The machine used was a a PC with Intel I7 2.4GHz, under
Windows 8.1 operating system with 8GB RAM.
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In the TS, there are several control parameters. In the preliminary computer tests
of efficiency of algorithm we determine the following value of parameters:

• nonimpiter = 1, 000,
• L = 7, . . . , 13 - length of tabu cyclically increase by one each time jump is per-
formed,

• jumpiter = 5.

Algorithm TS was run on maxiter = 10, 000 iterations.
Relative percentage deviation is employed to evaluate the quality of solution

generated by proposed algorithm.

P RD = Cmax(σ
T S, τ T S) − L B

L B
× 100%, (14)

were (σ T S, τ T S) is solution generated by TS algorithm and L B is lower bound of
Cmax value for given instance.

We introduce a simple lower bound calculated as the maximum of factory work-
loads i.e.

L B = max
1≤k≤m

∑

i∈O: νi =k

pi . (15)

In the initial experiment we evaluated the quality of solution generated by our TS
using original Tailard’s instances of the open-shop scheduling problem. Note the the
“classical” open-shop is a special case of DOSP i.e. with distances between factories
equal zero. Optimal or near optimal values are known for the Taillard’s instances.
So, the PRD in this tests, can refer to optimal makespans.

The optimal or best found values of Cmax for Tailard’s instances are depicted in
column Ref in Table4. The columnsCmax reportsCmax values for solution generated
by TS and P RD columns percentage relative deviation. For small problem size
(group 4 × 4), the average PRD is equal 0.82 and slightly increases with increasing
size of problem, especially with increasing number of machines. The biggest average
P RD = 4.11 we observe for group 7 × 7. Quality of TS in pure open-shop we
evaluate vicariously and briefly, because is is not our main topic. Average PRD of
TS for all Tailard’s instances is 2.64 and it is similar to 2.54 obtained by the best
algorithm mentioned in [18]. Nevertheless, for the pure open-shop still exists more
advanced algorithms, with PRD close to zero, [6].

Each Tailard’s benchmark for the open-shop problem contains up to nines diverse
jobs, therefore is considered as hard formany heuristics.On the other hand, especially
in the mass production system we observe small, medium or large series of identical
products. This incline us to introduce another benchmark set.

In order to examine the impact of travel time between factories and series
size on the Cmax values, we generated 4 groups of instances with different dis-
tances. The distances are generated random in the range (1, f rac · L B), were
f rac ∈ {0%, 5%, 10%, 20%}. Note, that distances for f rac = 10%, 20% are pro-
portional to random generated distances for f rac = 5%. For each of group we
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Table 4 Relative percentage deviation for open-shop benchmark instances

Instance Ref Cmax P R D Instance Ref Cmax P R D

Group 4 × 4 Group 5 × 5

tail01 193 193 0.00 tail11 300 307 2.33

tail02 236 239 1.27 tail12 262 269 2.67

tail03 271 272 0.37 tail13 323 333 3.10

tail04 250 252 0.80 tail14 310 321 3.55

tail05 295 295 0.00 tail15 326 332 1.84

tail06 189 193 2.12 tail16 312 318 1.92

tail07 201 203 1.00 tail17 303 308 1.65

tail08 217 217 0.00 tail18 300 304 1.33

tail09 261 268 2.68 tail19 353 363 2.83

tail10 217 217 0.00 tail20 326 328 0.61

Average 0.82 Average 2.18

Group 7 × 7 Group 10 × 10

tail21 435 448 2.99 tail31 652 670 2.76

tail22 443 463 4.51 tail32 588 617 4.93

tail23 468 496 5.98 tail33 611 627 2.62

tail24 463 483 4.32 tail34 577 598 3.64

tail25 416 433 4.09 tail35 657 669 1.83

tail26 451 478 5.99 tail36 538 565 5.02

tail27 422 443 4.98 tail37 616 630 2.27

tail28 424 435 2.59 tail38 595 621 4.37

tail29 458 478 4.37 tail39 595 615 3.36

tail30 398 403 1.26 tail40 604 628 3.97

Average 4.11 Average 3.48

generate five subgroups (series) denoted {1, 2, . . . , 5}, respectively; in subgroup x
each job from original Taillard instances is duplicated x times. Finally, we receive
20 × 40 instances of DOSP.

Table5 presents the results obtained for different groups of instances. Results
for “Series 1” confirm the supposition that transport between factories enlarges the
makespan. The average P RD increases with increasing f rac value (with increasing
time of travel) and with increasing number of factories. For group 5% the P RD
value varies from 8.95% to 20.97%while for group 20% the P RD value varies from
25.08% to 58.23%. Taking into account the number of factories, it can easily be
seen that the increase in the value of P RD is near proportional to the increase in the
number of factories. For example for group 5% and 5 factories the P RD = 10.63%
and for 10 factories is near two times greater i.e. P RD = 20.97%. Surprising result
can be seen for “Series 2..5”. For the majority of these groups, the P RD value is 0.
This means that the makespan is limited only by certain bottleneck factory and time
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Table 5 Average percentage relative deviation and computation time for instance groups

n × m Group 0% Group 5% Group 10% Group 20%

P R D C PU P R D C PU P R D C PU P R D C PU

Series 1 4 × 4 0.82 0.3 8.94 0.3 13.65 0.3 25.08 0.1

5 × 5 2.18 0.6 10.63 0.5 17.55 0.5 31.80 0.2

7 × 7 4.11 1.3 13.27 1.2 24.15 1.3 39.68 0.3

10 × 10 3.48 3.0 20.97 3.1 32.81 1.0 58.23 0.3

Average 2.65 13.45 22.04 38.69

Series 2 8 × 4 0 0.3 0 0.3 0 0.3 0 0.5

10 × 5 0 0.3 0 0.3 0 0.3 0 0.3

14 × 7 0 0.4 0 0.4 0 0.5 0.02 0.5

20 × 10 0 0.7 0 0.8 0.46 1.1 13.96 1.6

Average 0 0 0.12 3.49

Series 3 12 × 4 0 0.3 0 0.3 0 0.3 0 0.3

15 × 5 0 0.4 0 0.4 0 0.4 0 0.4

21 × 7 0 0.5 0 0.4 0 0.6 0 0.5

30 × 10 0 0.8 0 1.1 0 1.3 3.13 3.0

Average 0 0 0 0.78

Series 4 16 × 4 0 0.4 0 0.3 0 0.4 0 0.4

20 × 5 0 0.4 0 0.4 0 0.4 0 0.4

28 × 7 0 0.6 0 0.5 0 0.5 0 0.6

40 × 10 0 1.5 0 1.3 0 2.0 2.59 2.9

Average 0 0 0 0.65

Series 5 20 × 4 0 0.4 0 0.4 0 0.4 0 0.4

25 × 5 0 0.4 0 0.5 0 0.4 0 0.4

35 × 7 0 0.6 0 0.7 0 0.7 0 0.6

50 × 10 0 1.7 0 1.9 0 2.2 1.89 3.5

Average 0 0 0 0.47

of other travels does not affect it. Nonzero P RD values are observed in groups of
10% and 20% for a large number of factories. P RD values quickly decreases if the
Series index increases.

At the beginning of discussion about the computation time, it should be noted
that the this time depends on the number of neighbors in the neighborhood in each
iteration. This number, in order, depends on the distribution of blocks and job-blocks
and is peculiar for each particular solution. In the “Series 1”, we observe that if the
distance between factories increases, the calculation time decreases. This is due to
the fact that the number of blocks and task blocks decreases as the impact of travel
times on the total completion of all jobs increases. In the remaining series, in each
group of examples of the same size, the calculation time is approximately the same.
This time is relatively short and follows from a small number of blocks due to the
dominance of the bottleneck factory. The computation time increases with increasing
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number of jobs. This relationship is approximately linear and shows that with the
increase in the number of jobs, the average number of blocks changes only slightly.

The largest observed computation time, for instances with largest sizes, does not
exceed 4s and it is accepted in practical applications.

6 Conclusions

A distributed manufacturing system has been studied, modelled and analysed as the
mixed open-shop/jobshop scheduling problemwith transport times and themakespan
criterion. We decomposed the problem of finding the best schedule into two sub-
problems: finding optimal schedule for given processing order and finding the best
processing order. To solve the former sub-problem we use the specific graph, which
allow us to formulate several special properties: feasibility of processing order, fast
computing of the makespan and elimination of non-perspective solution by so-called
block properties. The block property defines the necessary conditions for the pro-
cessing order to find better order than the current one without the direct calculation of
the makespan value. In this way, non-promising solutions easily can be eliminated.

To solve the latter sub-problem we propose the metaheuristic algorithm based on
tabu search (TS) method. Block properties have been used to construct the neigh-
borhood of TS. Computer experiments show that the proposed algorithm provides
solutions close to optimal in a short time already for test instances (taken from the lit-
erature) of the open-shop case. For the distributed manufacturing case the similarity
of jobs has an impact on the quality of generated solutions. For instances with series
of identical jobs, algorithm TS frequently generates an optimal schedule. Moreover,
we observe for job series that transport time has rather weak impact on the selection
of the best solution.

The used approach can be extended to cover more complex distributed manufac-
turing structures and other manufacturing policies. Further natural extension of the
research will be parallel variants of the proposed algorithm, [4].
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Rerouting and Rescheduling of In-Plant
Milk Run Based Delivery Subject to
Supply Reconfigurability Constraints

Grzegorz Bocewicz , Izabela Nielsen , and Zbigniew Banaszak

Abstract Today the concept ofmass customization is becoming increasingly impor-
tant for project-oriented companiesmanufacturing assembled products. Expectations
imposed by mass customization challenges force producers to increase flexibility of
exploited manufacturing systems. In turn, since systems flexibility assumes the pos-
sibility of its adaptation to the conditions and requirements set by implemented
production orders, a reconfigurability understood as its ability to adjust the function-
ality and capacity at the correct level begins to play a key role. In this context our
study considers a multi-item assembly system where in-plant transportation opera-
tions are organized in milk-run loops. Assuming that production flows both before
and after the disturbance retain a cyclical nature, the considered problem boils down
to whether there exist reroutings and reschedules enabling transition from one cycli-
cal production run to a new one determined after the disturbance occurrence or not.
In other words, assuming a given structure of a milk-run serviced multi-item pro-
duction system as well as specifications of production orders implemented in it, the
sufficient conditions guaranteeing transitions between different cyclic steady states
following order sets flow are sought. The purpose of this research is to develop
a declarative model and a heuristic approach which are used to define and evalu-
ate the reconfigurability level of the considered production system. The feasibility
of the proposed method of production flow re-planning is analyzed for its compu-
tational complexity and evaluated through many numerical experiments. Presented
results of conducted experiments demonstrate the system-wide performance benefits
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of simultaneous logistic trains rerouting and rescheduling, compared to commonly
used sequential trains fleet rerouting and rescheduling approaches. Outcomes from
this study provide an approach to avoid time consuming computer simulation-based
calculations of logistic trains routing and scheduling, aimed at updating the produc-
tion flow plan adapting it to changes forced by introducing new orders and/or damage
to the transport sectors.

Keywords Milk-run traffic · Vehicle routing problem · Rerouting ·
Rescheduling · Reconfigurability · Constraint logic programming

1 Introduction

Material handling is one of themost important issues that should be taken into account
in the design process of mass-customized project-oriented companies. In their con-
text, solutions based on the concept of a milk-run seem to be the most attractive.
Indeed, since they encompass both pull-based and repetitive manufacturing, a mate-
rial supply system consisting of periodically moving vehicles in certain cyclic routes
seems to be the most appropriate. As the mass-customized oriented manufacturers
face rapidly varying product demand and frequent introductions of new products
causing frequent changeovers, an appropriate level of flexibility of the machines and
systems they use is required. The term flexibility is usually defined as the ability of
a manufacturing system to change its design (structure) and operation (functioning)
in response to changing requirements with little penalty in terms of time, effort, cost
or performance [14, 21, 40, 41].

It is worth noting that in the literature there is no general agreement on the def-
inition of manufacturing flexibility [33]. Different interpretations of flexibility lead
to many different definitions, each with their own different connotations, such as
system reconfigurability, changeability, evolvability, adaptability, agility and trans-
formability [7, 8, 10, 15, 16, 19, 28, 29, 32, 36].

In practice, the level of flexibility of the production system is manifested by the
number and variety of production flows implemented in it, and in particular the
technology and transport routes implemented therein as well as related schedules.
Under such an understanding of system flexibility, the new reroutings and reschedul-
ing underlying an upset production flow plan (caused by disturbances following rush
orders,machine failures, processing time delays, quality problems, unavailablemate-
rial, etc.) can be designed. Consequently, assuming that rescheduling (re-routing)
means the process of updating an existing production schedule (production flow
route) that needs to be achieved in response to disruptions or other changes, the sys-
tem reconfigurability can be seen as the capability of the system to meet its needs in
terms of flexible response to observed changes, i.e., as a capability to meet flexibility
expectations. Indeed, manufacturing system reconfigurability promises customized
flexibility regarding demand thanks to designed and built-in a priori structural (i.e.,
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design) and behavioral (i.e., operational) redundancy, improving system resiliency
for the anticipated changes in customer expectations.

In future considerations, we focus on issues of material distribution within the
scope of Vehicle Routing Problems (VRPs). Milk-run problems aimed at planning
tours that are cyclically repeated according to a fixed schedule in a fixed sequence and
with fixed arrival times to make frequent deliveries, belong to this class of problems.
The search for an optimal periodic distribution policy, i.e., a plan of whom to serve,
how much to deliver and which regularly repeated routes to travel on using which
fleet of vehicles, can be viewed as belonging to the class of VRP [4, 9, 20, 25, 35],
which are NP-hard problems. Consequently, approximate solutions to the logistic
train routing and scheduling problems derived from the milk-run distribution policy,
while aimed at determining in which time windows parts can be collected from
suppliers and how many logistic trains and along which routes they should run, can
be obtained with the help of the heuristic method.

This work addresses the problem of logistic trains rerouting and rescheduling in
the presence of disturbances, characterized by the increase or decrease of demand
and capacity, in a multi-item assembly system where in-plant transportation opera-
tions are organized in milk-run loops [23, 42, 43]. Assuming that production flows
both before and after the disturbance retain a cyclical nature [30, 39], the consid-
ered problem boils down to whether there exist reroutings and reschedules enabling
transition from one cyclical production run to a new one determined after the dis-
turbance occurrence or not. In other words, assuming a given structure of milk-run
serviced multi-item production system as well as specifications of production orders
implemented in it, the sufficient conditions guaranteeing transitions between differ-
ent cyclic steady states following order sets execution are sought. The purpose of
this research is to develop a declarative model and a heuristic approach, which is uti-
lized to define and evaluate the reconfigurability level of the considered production
system.

The present study is a continuation of our previous work that explored methods of
fast prototyping of solutions to problems related to routing and scheduling of tasks
typically performed in batch flow production systems , as well as problems related to
the planning and control of production flow in departments of automotive companies
[3–6]. The main contributions of this chapter are summarized as follows:

1. Developing sufficient conditions guaranteeing congestion-free transitions between
different cyclic steady states of vehicles’ fleet flow allowing one to avoid time con-
suming computer simulation-based calculations of logistic trains re-routing and
rescheduling aimed at updating the production flow plan adapting it to changes
forced by introducing new orders and/or damage to the transport sectors.

2. A declarative-modeling-driven approach to assess alternative rerouting and
rescheduling variants for transition of a vehicles’ fleet flow from one cyclic steady
state to other one, forced by production order change, is described in detail.

3. The proposed approach enables one to replace the usually used time consuming
computer simulation-based calculations of logistic trains rescheduling and rerout-
ing while guaranteeing smooth transition between two successive cyclic steady
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states corresponding to the current and rescheduled vehicle fleet flows It is an
outperforming approach to solving in-plant milk-run-driven delivery problems.

We believe that implementation of the developed model in a decision support
system (DSS) software will support the working out of the correct responses to
requests for decisions from the manufacturing process, especially regarding milk-
run rerouting and rescheduling.

The remainder of chapter is organized as follows. Section 2 reviews the literature.
Section 3 contains a motivating example introducing simultaneous re-routing and
rescheduling-based concept of milk-run system reconfiguration. The declarative-
modeling-based methodology is described in Sect. 4. Computational results are then
reported and analyzed in Sect. 5, while conclusions and future directions of work are
considered in Sect. 6.

2 Related Work

Logistics is the art of managing the supply chain and the science of managing and
controlling the resource flows of different character and nature, including goods,
money, information, energy and people, between the point of origin and the end
point in order to meet required delivery terms of time, quantity, cost and so on. Many
authors distinguish both the inbound logistics referring to the transport, storage and
delivery of goods coming into a business, and the outbound logistics referring to the
same for goods leaving a business [2, 21, 22]. The supplementary delivery to stores,
seen as the process related to the movement and storage of products from the end of
the production line to the end user can serve as an illustration of outbound logistics.
It should be noted that the deliveries complementing the storehouses are carried out
using a milk-run mode. The same mode of delivery occurs in the inbound logistics
model. Indeed, most of the literature on internal milk run systems are about feeding
assembly lines [2]. When comparing the number of publications from the internal
and external milk-runs, it is easy to see the number of publications concerning the
first scope is predominant.

In this context, the milk-run driving the in- and outgoing material supply and dis-
tribution problems are usually recognized and formulated as VRP, whose objective is
to obtain aminimum-cost route plan serving a set of customers with known demands,
i.e., to assign the items to vehicles that transport them from one depot to another [11,
12, 17, 20, 25, 36]. Consequently, themilk-run driven problems of the distribution of
components or parts or commodities can be classified similarly to extensively studied
extensions of VRPs, which in turn are a generalization of the Traveling Salesman
Problem aimed at finding the optimal set of routes for a fleet of vehicles delivering
goods or services to various locations. This concerns both simple ones, e.g., Pick-up
and Delivery Problem VRPs, VRPs with time windows, and VRP with Backhauls,
and more complex ones, e.g., VRPs with multi-trip multi-traffic pick-up and delivery
problems with time windows and synchronization being a combination of variants
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of a VRP with multiple trips, a VRP with time window, and a VRP with pick-up
delivery. An exhaustive review of VRP taxonomy-inspired problems formulated in
the milk-run systems class presents the work [13].

Besides a very large volume of different technical problems (some of them have
already been mentioned above), there is a large volume of methods and problem-
solving techniques employed in the course of modeling and investigating VRPs. The
modeling frameworks consist of operation research methods (such as linear and non-
linear programming,MLP, Petri nets, Linear Temporal Logic, and so on) and artificial
intelligencemethods, such as evolutionary computation (includingmetaheuristic and
stochastic optimization algorithms) [1, 12, 23, 27, 37], declarative-modeling-driven
and fuzzy-set methods [3–5, 24, 33, 34, 36, 38].

In the context of the above-mentioned scope of problems and methods address-
ing milk-run system modeling, control and design, most of them are devoted to the
analysis of the methods of organizing transportation processes in ways that minimize
the size of the fleet, the distance travelled (energy consumed), or the space occupied
by a distribution system. In focusing on the search for optimal solutions, these stud-
ies implicitly assume that there exist admissible solutions, e.g., ones that ensure the
collision- and/or deadlock-free (congestion-free) flow of concurrent transport pro-
cesses. Indeed, only a limited number of papers are devoted to robust routing and
congestion-free scheduling of a fleet of vehicles subject to in-plant layout constraints.
In this respect, the most relevant are factors dependent on critical and often unpre-
dictable traffic congestions resulting in constraints imposed by the network structure
as well as by just-in-time constraints imposed by timewindows of customer services.

In the context of the above-mentioned lack of research on methods of proactive,
i.e., congestion free, scheduling there is a lack of papers addressingmilk-run systems’
flexibility and reconfigurability. The mentioned attributes determine the milk-run
system’s capabilities and therefore the production system that uses it, in particular in
the case of launching new production orders or responding to disturbances. It means
that recognition of the milk-run infrastructural properties including layout structure,
depots allocation and logistic trains’ fleet size plays a key role inmaintaining stability
and robustness, enabling the achievement of system resilience. Introduction of the
system viability concept provides a response to these types of challenges. Defining
viability as the system’s ability to meet the demands of surviving in a changing
environment allows one to consider an intertwined supply network seen as an entirety
of interconnected supply chains which, in their integrity, secure the provision of
society and markets with goods and services [18].

It is easy to note that the system viability concept is very close to the paradigm
of the manufacturing system reconfigurability that aims at achieving cost-effective
and rapid system changes. Since “the essence of reconfigurability is to enable manu-
facturing responsiveness to a change in market conditions – that is, the ability of the
production system to respond to disturbances that may be caused by social or tech-
nological changes” [32], reconfigurability can be seen as an answer to expectations
related to achieving the desired level of system flexibility.

Based on the literature review, among many others the following types of flexibil-
ities can be identified: material handling and routing flexibility [26, 31]. This means
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that, as in the case of the reconfiguration property, a similar concept regarding recon-
figuration ofmilk-run distribution systems should be expected aswell. Consequently,
appropriate measures that could help quantifying and balancing the available con-
figurability levels of milk-run distribution systems with its required flexibility level
should be proposed. At this point, the issues listed above concern an open problem. In
such a context, this contribution can be treated as our first approach to that problem.

3 Motivating Example

Let us consider amulti-item batch flowproduction system inwhich the in-plant trans-
portation operations of a set parts supply are organized in a milk-run loop passing
through seven work stations SN = {SN 1, . . . , SN 7} while servicing two assembly
lines, as shown in Fig. 1. Consequently, two types of products W1, W2, are manu-
factured in the system, where batches of each kind of product are moved between
the neighboring work stations by dedicated gantry robots. In subsequent steps, i.e.,
at different work stations (SNi ), particular products are assembled from the parts
which are delivered in set parts packed in containers to the work station buffers B1–
B9. Some buffers are shared by several stations, e.g., buffer B6 is shared by stations
SN 3 and SN 4. The parts packed in containers are delivered to the buffers by the
logistic trains LT 1 and LT 2 following the routes marked with a green and orange
lines (see Fig. 1).

Work stations and the buffers associated with them have to be supplied with
containers due to the scheduled intervals presented in Fig. 2. The grey intervals
specify the time windows in which the buffer stocks should be replenished, i.e., that
means they specify the size of time windows: τλ = 300 s and final deadlines dxλ.
These intervals make up set D of buffer feed times determined by the production
schedule adopted.

Exceeding the deadlines dxλ (see Fig. 2) may be the reason why the parts directed
to the buffers do not reach them in the expected quantity, which in turn may lead
to production suspension. It is assumed that there are no restrictions on the delivery
times of containers to the Supermarket (B1) and Warehouse (B2). The schedule
requests that deliveries should be made within cyclically repeated time windows
(with size: T = 1800 s). Consequently, the logistic trains traveling along the fixed
routes are used as in-plant means of transport to deliver the required quantity of parts
to buffers within the given time windows. Figure1 presents exemplary train routes
LT 1 and LT 2: π1 = (B1, B9, B8, B7, B2), π2 = (B1, B3, B6, B5, B4, B2), which are
guaranteed to be implemented in the course of timely delivery of the ordered part
sets due to the time windows schedule from Fig. 2. The cyclic schedule of delivery
operations (cyclic steady state) determined by these routes is shown in Fig. 3. It is
easy to see that all deliveries are delivered to the buffers at the required time intervals,
i.e., cycles 1 and 2).

In real conditions the production flow is disturbed due to many external and
internal factors, i.e., starting additional production orders, switching off machines
(failures, periodic inspections), excluding transport sectors (repairs of road sections),
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Fig. 1 The layout of the milk-run goods distribution network

Fig. 2 Deadlines of containers delivery time windows
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Fig. 3 Delivery schedule X following routings from Fig. 1

logistic train failures, absence of employees, etc. Examples of this type of interference
are presented in Fig. 3. In the third production cycle, two new delivery intervals were
introduced (buffers B4 and B8) resulting from the launch of an additional production
order. In turn, in the fourth cycle sector ➍-➑ was closed, preventing transport in the
sections: B3 − B6; B1 − B9 and B7 − B2. It is easy to notice that starting from cycle
3 previously established routes cease to be valid. Therefore, it becomes natural to ask
about the existence of new routes π∗

1 , π
∗
2 , the implementation of which guarantees

timely delivery despite the occurrence of interruptions. It should be emphasized that
their implementation is not required to stop production being carried out thus far.
In other words, it is required that replacing a delivery schedule X with schedule X∗
(determined by π∗

1 , π
∗
2 ) does not lead to delays in delivery.

An example of reconfiguration thus understood, in the event of additional
delivery intervals (see cycle 3), is illustrated in Fig. 4. During cycles 1 and 2,
deliveries are carried out in accordance with the previously adopted plan (routes
π1, π2), starting from cycle 3, there is a change of routes as such (see Fig. 5):
π∗
1 = (B1, B6, B9, B8, B7, B4, B2), π∗

2 = (B1, B3, B8, B5, B4, B2), which guaran-
tee timely deliveries to buffers B4 and B8 at new intervals. It is easy to notice that a
change in delivery plans (rerouting and rescheduling) occurs at the start of the 3rd
cycle (t = 3600s), in which train allocations in both schedules are the same: train
LT 1 is at buffer B1 and train LT 2 at buffer B3. The existence of joint allocations in
both schedules allows them to be changed immediately without additional transient
processes that could cause the suspension/delay of production flow. The presented
schedule concerns the situation in which the introduced changes are aimed at ensur-
ing timely deliveries only for the disruption consisting of the occurrence of two
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Fig. 4 Schedule X∗ replacing schedule X

Fig. 5 The routes π∗
1 , π

∗
2
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additional delivery intervals (for buffers B4 and B8). Similar behavioral changes can
also be sought for other types of disturbances, e.g., in the case of disturbances related
to the exclusion of the ➍-➑ sector.

In this approach, the problem under consideration can be formulated as follows.
Situations are considered in which, in a given goods distribution network G (with a
given structure of road routes and distribution of buffers and a Supermarket (B1) and
Warehouse (B2) buffers are supplemented by an assumed fleet of LT logistic trains
in a milk-run mode. Therefore, different production orders can be implemented,
forcing different D buffer feed times, in given T time windows. It is assumed that
a change in production orders may result in D∗ disturbances seen in the form of
additional delivery times, but does not change the time window T . It is also assumed
that deliveries made may be subject to G∗disturbances caused by damage (traffic
congestion) of road sections. The answer to the following question is sought:

Is it possible to obtain the given value of the reconfigurability level of the goods
distribution network G per selected set of disturbances Z (subset covering distur-
bances D∗ and/or G∗)?

The answer to this question requires the introduction of a functionϒGLDX : Z −→
[0, 1] determining the level of reconfigurability of the goods distribution network G
in which the LT fleet performs D deliveries in accordance with delivery schedule
X . It is assumed that this function has the form:

ϒGLDX (Z) = α(Z)

|Z | (1)

where:

Z – the subset of disturbances D∗ and/or G∗,

α(Z) – the number of disturbances in the Z set for which the goods distribution
network G is reconfigurable, i.e., for which it is possible to change the behavior
(delivery schedule X ) to one that guarantees timely delivery despite the disruption
of z ∈ Z .

The function defined in this way determines forwhich part of the Z set disturbance
it is possible to reconfigure the goods distribution network G in such a way that it
guarantees timely delivery. The solution to the formulated problem of assessing the
level of reconfiguration of the goods distribution networkG requires the development
of appropriate conditions sufficient to meet it, which guarantees its reconfigurability.
Themodel and the resulting sufficient conditionswill be presented in the next section.

4 Declarative Model

4.1 Assumptions

The problem under consideration can be defined as follows. Assuming that:
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• there is a knowngoods distribution network representing by the graphG = (B, E),
where B is a set of nodes (buffers) and E is a set of edges consisting of the sectors
linking the buffers E ⊆ B × B; the set B contains the subsets of nodes representing
work stations BR ⊆ B and warehouses/supermarkets BW ⊆ B: BR ∪ BW = B,
BW ∩ BR = ∅,

• each edge
(
Bβ, Bλ

) ∈ E is labelled by a value dβ,λ determining the travel time
between nodes Bβ and Bλ,

• each edge
(
Bβ, Bλ

) ∈ E consists of sectors described by a set of indexes Kβ,λ ⊆ N,
• a fleet of logistic trains LT is given, in which each of the trains LT v corresponds
to a route πv (πv ∈ Π described by a sequence of successively visited nodes,

• trains can only move between nodes connected by an edge,
• to each edge

(
Bvi , Bvi+1

) ∈ E of the route πv , a time period is assigned in which
the edge is occupied by the logistic train: I N vi ,vi+1 = [

xsvi , xvi+1

]
,

• if for any pair of edges:
(
Bvi , Bvi+1

)
and

(
Bw j , Bw j+1

)
belonging to πv , πw, the

following condition holds,
[(
Kvi ,vi+1Kw j ,w j+1 	= ∅) ∧ (

I N vi ,vi+1 I Nw j ,w j+1 	= ∅)]
,

then the trains traveling along routes πv, πw are congestion-free,
• each node Bλ ∈ BR occurs exactly on one route of the set Π ,
• each node Bλ ∈ BW occurs exactly on all routes of the set Π ,
• node Bλ located on routeπv is associated with the delivery operation oλ ∈ O ,
• the duration of the delivery operation is determined by the value tλ,
• the delivery deadlines dxλ and delivery margin τλ, make up set D of buffer feed
times,

• deliveries of goods take place cyclically in timewindows repeated with a period T ,
• beginning moments of node occupation xλ and node release xsλ constitute the
cyclic schedule X ,

• possible disturbances consist of additional delivery times D∗ and sector damages
in the goods distribution network G∗,

the following question can be considered: Is it possible to obtain the given value of
ϒGLDX (Z) for the goods distribution network G in which the LT fleet performsD
deliveries in accordance with the delivery schedule X per selected subset of distur-
bances Z (covering disturbances D∗ and/or G∗)?

4.2 Model

The following notation is used in designing the milk-run-like traffic model.

Symbols:

Bλ ∈ B: λ-th node.

LT v ∈ LT : v-th logistic train.

oλ ∈ O: operation of delivery of materials to node Bλ along the route πv .
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Parameters:

G: graph of a goods distribution network G = (B, E): B = {B1 . . . Bω} is a set
of nodes, E = {(

Bi , Bj
) |i, j ∈ B, i 	= j

}
is a set of edges, ω – the number

of nodes.

ln: the number of logistic trains.

Kβ,λ: a set of indexes assigned to sectors located along the edge
(
Bβ, Bλ

)
.

dβ,λ: time of a transport operation executed along the edge
(
Bβ, Bλ

)
.

tλ: time of operation oλ.

dxλ: deadline of delivery of containers to node Bλ (see example in Fig. 3).

τλ: delivery margin (see Fig. 2).

T : window width understood as a period, repeated at regular intervals, in which
deliveries must be made to all nodes (see Fig. 2).

Variables:

rbλ: an index of the operation that precedes the operation oλ; rbλ = 0 means that
operation oλ, is the first one on the route.

r f λ: an index of the operation that follows oλ.

xλ: moment of commencement of the delivery operation oλ on node Bλ.

yλ: moment of completion of the operation oλ on node Bλ.

xsλ: moment of release of node Bλ by operation oλ.

Sets and Sequences:

D: a set of buffer feed times: the delivery deadlines dxλ and margin τλ

BR: a subset of nodes representing work stations BR ⊆ B.

BW : a subset of nodes representing warehouses BC ⊆ B.

RB: a sequence of predecessor indexes of delivery operations, RB = (rb1, . . . ,
rbα, . . . , rb|BR|+ln×|BW |

)
, rbα ∈ {0, . . . , ω}.
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RF : a sequence of successor indexes of delivery operations, RF = (
r f 1, . . . ,

r fα, . . . , r f |BR|+ln×|BW |
)
, r fα ∈ {1, . . . , ω}, e.g. RB and RF that determine

routes π1 and π2 (see Fig. 3), and take the following form:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B ′
1 B ′

2
RB = ( 0, 7, 0, 5, 6, 3, 8, 9, 1, 2′, 4 )

RF = ( 9, 1, 6, 2′, 4, 5, 2, 7, 8, 3, 1′ )

The symbol ‘ refers to nodes associated with the warehouses visited by train
LT 2.

πv: route of the train LT v , πv = (
Bv1 , . . . , Bvi , Bvi+1 , . . . , Bvμ

)
, where: vi+1 =

r f vi
for i = 1, . . . , μ − 1 and v1 = r f vμ

.

Π : set of routes: Π = {π1, . . . , πv, . . . , πln}.

X
′
: a sequence of moments xλ: X

′ = (x1, . . . , xλ, . . . , xω).

Y ′: a sequence of moments yλ: Y
′ = (y1, . . . , yλ, . . . , yω).

Xs
′
: a sequence of moments xsλ: Xs ′ = (xs1, . . . , xsλ, . . . , xsω).

X : a sequence representing a cyclic delivery schedule (see example Figs. 3 and
4): X = (X

′
, Y ′, Xs ′).

Constraints:

1. constraints describing the orders of operations depending on the logistic train
routes:

yλ = xλ + tλ, oλ ∈ O, (2)

rbλ = 0,∀λ ∈ BS ⊆ BI = {1, . . . , ω} , |BS| = ln, (3)

rbλ 	= rbβ,∀λ, β ∈ BI\BS, λ 	= β, (4)

r fλ 	= r f β,∀λ, β ∈ BI, λ 	= β, (5)

(rbλ = β) ⇒ (
r f β = λ

)
,∀bλ 	= 0, (6)

xsλ ≥ yλ, oλ ∈ O, (7)

[(
r f λ = β

) ∧ (rbβ = 0)
] ⇒ (

xsλ = xβ + T − dλ,β

)
, oλ, oβ ∈ O, (8)

[
(r fλ = β) ∧ (rbβ 	= 0)

] ⇒ (
xsλ = xβ − dλ,β

)
, oλ, oβ ∈ O, (9)
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2. if edge
(
Bε, Bβ

)
has common sectors with the edge

(
Bλ, Bγ

)
, then:

(
Kε,βKλ,γ 	= ∅) ⇒ [(

xβ ≤ xsλ

) ∨ (
xγ ≤ xsε

)]
, oλ, oβ, oε, oγ ∈ O, (10)

3. the delivery operation oλ should be completed before the given delivery dead-
line dxλ (with a margin τλ) resulting from the production flows of an individual
product:

yλ + c × T ≤ dxλ, oλ ∈ O, (11)

yλ + c × T ≥ dxλ + τλ, oλ ∈ O; c ∈ N. (12)

It is assumed that the set of routes Π is feasible in the goods distribution network G
if there is such a delivery schedule X for which the constraints (2)–(12) are met.

4.3 Sufficient Conditions

The definition (1) of the reconfigurability levelϒGLDX (Z) assumes that in the goods
distribution network G, deliveries are carried out in accordance with the predeter-
mined schedule X (meeting the constraints (2)–(12)).

The α(Z) function (used in determining the ϒGLDX (Z)value) specifies the num-
ber of disturbances in the Z for which it is possible to change delivery schedule X
to another one X∗.

The change of delivery schedule X to the schedule X∗ in the system where the
fault z ∈ Z occurred is possible if:

1. delivery schedule X∗ is acceptable, i.e., constraints (2)–(12) aremet, in the system
with disturbance z (with additional delivery times D∗ and sector damages in the
goods distribution network G∗)

2. for both schedules X and X∗ there are moments tand t∗, at which logistic trains
of the LT fleet occupy the same buffers (see Fig. 4). In other words, the following
condition holds:
(
O

′⊆O
) (∣∣∣O

′
∣∣∣ =ln

)
∧ (

t, t∗ ∈ [0, T ]
) (
oλ ∈ O ′) (

0 ≤ (xλ − t) ≤ (xsλ − t∗)
)
.

(13)

The developed condition (13) can be used both in the event of disturbances caused
by additional delivery times D∗ or a change in the structure of the goods distribution
network G∗. On Figs. 6 and 7 an example of using the developed condition in both
the above cases is presented. Given the goods distribution networkG with six buffers
B1–B6. Deliveries are made by the fleet LT = {LT 1, LT 2} according to schedule
X . Logistic train routes have the form: π1 = (B1, B2, B6), π2 = (B4, B5, B3).

The system distorts in the form of additional delivery times for buffer B2 (Fig. 6a)
or sector damage on the path connecting buffers B6 and B1 (Fig. 7a).
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Fig. 6 Replacement of schedule X with schedule X∗ triggered by entering an additional delivery
times into buffer B2

Fig. 7 Replacement of schedule X with schedule X∗ triggered by a sector damage on path linking
buffers B6 and B1

In both cases there exists delivery schedule X∗ (Figs. 6b, 7b) guaranteeing delivery
despite the disruption occurrences, i.e., the schedule guaranteeing support for addi-
tional delivery times for B2 or delivery with the exception of path B6–B1. According
to condition (13), changing the schedule X to X∗ is possible when such moments
exist, i.e., t for schedule X and t∗ for schedule X∗, in which logistic trains perform
the operations O

′
and occupy the same buffers long enough to be able to end these

operations 0 ≤ (xλ − t) ≤ (xsλ − t∗). As can be easily seen in the examples pre-
sented (see Figs. 6 and 7), for the designated moments t and t∗ logistic trains of the
fleet LT perform operations related to unloading goods on buffers B5 and B6 (cor-
responding to operations O

′ = (o5, o6). Logistic trains occupy buffers long enough
to complete these operations, i.e., (x5 − t) ≤ (xs5 − t∗) and (x6 − t) ≤ (xs6 − t∗).
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Fig. 8 Replacement of schedule X with schedule X∗ triggered by entering additional delivery
times into buffer B2

Meeting these conditions allows one to change the schedule X (at the time t) to X∗
(from the time t∗) without having to stop or reallocate the logistic trains used. The
exchange of schedules is presented on Figs. 6c and 7c. It is worth noting that such a
schedule change does not interrupt production flow, i.e., it guarantees timely delivery
of goods to all buffers.

The developed condition assumes that the schedules may be changed only when
the logistic trains are allocated on buffers (i.e., during execution of deliveries oλ or
buffer waiting operations). In general, onemay also consider changing delivery plans
during goods transportation operations between buffers. In this case, the condition
of changing schedule X to X∗ takes the form:

(
t, t∗ ∈ [0, T ]

)
(LT v ∈ LT )

(
L (v, t,G, X) = L

(
v, t∗,G∗, X∗)) (14)

where: L (v, t,G, X) – the function returning the sector of the network G through
which at time t , the logistic train LT v passes deliveries in accordance with sched-
ule X .

Compliance with condition (14) means that in both schedules X and X∗ there are
moments t, t∗ in which all logistic trains carrying out transportation operations are
in the same sectors. An example of the use of this type of condition is illustrated in
Fig. 8. The figure shows the situation in which there is a disturbance in the form of
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additional delivery times for buffer B2 (same as in Fig. 6). In the considered case,
the schedules are changed when both trains carry out transport operations between
buffers B2 − B6 and B4 − B5. At the time of change (t for X and t∗ for X∗) the
logistic trains are in the same sectors, i.e., A (occupied by the logistic train LT 1)
and B (occupied by the logistic train LT 2). Therefore, as in the case of disturbance
caused by additional delivery, a change in schedules does not result in the need to
reallocate trains.

Further consideration in the assessment of themilk-rundistribution configurability
focused on logistic trains rerouting and rescheduling will be limited only by the
implementation of condition (13).

4.4 Constraint Satisfaction Approach

According to (1) assessment of the achievable value of ϒGLDX (Z) in the goods
distribution network G requires determining for each of the considered disturbances
z ∈ Z whether there is a schedule X∗ to which one canmove from the behavior of the
system given by schedule X . The number of disturbances for which this is possible
is indicated by α(Z). The value of ϒGLDX (Z) calculated as the ratio α (Z) / |Z | can
be determined using the following algorithm:

Algorithm 1:Method for determining the value of ϒGLDX (Z)

Input: goods distribution network G, fleet LT , set of delivery times D, deliver
schedule X , set of disturbances

Output: ϒGLDX

1. α = 0;
2. RZ = |Z |;
3. while Z 	= ∅
4 z ∈ Z;
5 X∗ ← solve (CS(z)) ;
6 if X∗ 	= ∅ then
7 α = α + 1;
8 Z = Z\{z};
9. ϒGLDX = α/RZ ;
10. return ϒGLDX

The use of the developed algorithm is conditioned by the possibility of assessing
the existence of an acceptable (i.e., following the constraints (2)–(12)) schedule X∗
meeting the additional condition (13), (see the algorithm’s fifth line). Determining
this type of schedule X∗ boils down to solving the so-called Constraint Satisfaction
(CS) Problem (15):

CS(z) = ((V (z) ,D (z)) ,C (z)) , (15)

where:
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V (z) = {X∗,Π∗} – a set of decision variables for the systemwhere the disturbance
occurred z ∈ Z , including: X∗ – a cyclic schedule guarantee-
ing timely delivery despite disruptions z, Π∗ – a set of routes
determined by sequences RB, FR,

D (z) – a finite set of decision variable domains: xλ, yλ, xsλ ∈ N;
rbλ ∈ {0, . . . ω}; r f λ ∈ {1, . . . ω},

C (z) – a set of constraints specifying the relationships between the
operations implemented in milk-run cycles (2)–(12) and suffi-
cient conditions (13).

According to the proposed algorithm problem CS(z) is solved for each of the
disturbances considered. To solve CS(z) (15), the values of the decision variables
from the adopted set of domains for which the given constraints are satisfied must
be determined. Implementation of CS(z) in a constraint programming environment
such as OzMozart allows us to use the proposed Algorithm 1 and find the assessment
of reconfigurability level ϒGLDX (Z).

5 Experiments

The example considered in Sect. 3 (illustrated in Fig. 4) shows the transition (fol-
lowing condition (13)) between delivery schedule X from Fig. 3 and schedule X∗
(determined by π∗

1 , π∗
2 designed in Fig. 5) which guarantees timely delivery despite

the occurrence of a disturbance caused by two new delivery intervals imposed on the
buffers B4 and B8. This disruption is one of three considered in the system:

Z = { z1 : (two new delivery intervals impossed on the buffers B4 and B8)

z2 : (closing the ➍ - ➑ sector of the route)

z3 : (new delivery intervals impossed on B4 and B8) ∧ (closing the
➍ - ➑ sector of the route)}

Disturbance z1 concerns newdelivery dates (set D∗), disturbance z2 is associatedwith
a change in structure (setG∗) while disturbance z3 covers both cases simultaneously.
For such a set Z the answer to the question about the possibility of reconfiguring the
system for each of the possible disturbances is sought.

Is it possible to obtain the reconfigurability level ϒGLDX (Z) = 1 for the goods
distribution network G fromFig.1 inwhich the LT fleet performsD (Fig. 2) deliveries
in accordance with the delivery schedule X (Fig. 3) per disturbances Z?

According to the proposed algorithm, the value ofϒGLDX (Z) = 1 can be obtained
when for each disturbance from the set Z there is an acceptable schedule X∗ satisfying
condition (13) (in other words stating that α (Z) = 3). An example of schedule X∗
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Fig. 9 Replacement of schedule X with schedule X∗ triggered by entering additional delivery
times into buffer B2 and damage to ➍-➑ sector

for disturbance z1 has already been presented in Sect. 3. Assessing the existence of
analogous schedules for z1 and z2 disturbances requires solving the relevant problems
(15): CS(z1) and CS(z2). The problems were formulated and then implemented in
the constraint programming environment OzMozart (Windows 10, Intel Core Duo2
3.00GHz, 4 GB RAM). The solution time of the considered scale of problems with
nine buffers does not exceed 10s. In both cases a positive response was received,
i.e., there are schedules which guarantee timely delivery despite the occurrence of
disturbances z2 and z3.

As an example, let us consider the system reconfiguration for disruption z3. The
resulting reconfiguration is illustrated in Fig. 4. During cycles 1 and 2, deliveries
are carried out in accordance with the routes π1, π2 (see Fig. 3), starting from cycle
3, there is a change of routes to such (see Fig. 9): π∗

1 = (B1, B9, B8, B7, B4, B2),
π∗
2 = (B1, B3, B6, B8, B5, B4, B2), which guarantee timely deliveries to buffers B4

and B8 at new intervals and avoids the use of the ➍-➑ sector (Fig. 10).
Similarly as before, the change in delivery schedule occurs at the start of the 3rd

cycle (t = 3600s), in which train allocations are the same: train LT 1 is at buffer B1

and train LT 2 at buffer B3 – condition (13) holds.
The existence of X∗ schedules enabling system reconfiguration for all three

disturbances of the Z results in the reconfigurability level being equal to one:
ϒGLDX (Z) = 1 set causes. Of course, this value depends on the type and the amount
of disruptions considered in the set Z .

Moreover, the reconfiguration of the milk-run distribution system is not possible
for all possible disturbance variants. For example, simultaneous damage of sectors



74 G. Bocewicz et al.

Fig. 10 Rerouted routes π∗
1 , π

∗
2 which imply schedule X∗ from Fig. 9

➍-➑ and ➐-➑ prevents delivery to the buffer B9. The occurrence of this type of
disturbances requires the use of emergency operations, i.e., buffer reallocations,
activation of additional means of transport, e.g., hoist overhead crane.

In addition to the discussed experiments, the effectiveness of the proposed
approach has been evaluated for various different cases of considered problems.
The application of the proposed Algorithm 1 requires multiple (for each distur-
bance) solutions of the CS(z) (15) problem. Its effectiveness is thus conditioned by
the effectiveness of solving the CS(z) problem. In order to assess the possibilities
of using the proposed model of CS(z) in constraint programming environments a
series of quantitative experiments have been undertaken. The results of the experi-
ments are presented in Table1. The experiments undertaken for goods distribution
networks containing 7–17 buffers in which deliveries are made by fleets consisting
of 1–4 logistic trains (the scale of the considered instances corresponds to the sizes
of networks encountered in practice).

The experiments focus on the solution of the CS (15) problem (designation of
routes that guarantee timely delivery of goods). The synthesis of routes and schedule
X∗ that guarantee timely delivery of goods under disturbance z has required consid-
erable time expenditure. This means that theCS problems can be solved online when
the number of buffers in the network does not exceed 15. In the case of large-scale
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Table 1 Results of experiments carried out for selected instances of CS(z) problem

Number of buffers Number of logistic trains Calculation time [s]

7 1 <1

7 2 <1

7 3 3

7 4 5

9 1 4

9* 2 9

9 3 14

9 4 36

11 1 24

11 2 41

11 3 70

11 4 151

13 1 48

13 2 95

13 3 168

13 4 202

15 1 72

15 2 145

15 3 405

15 4 >900

17 1 389

17 2 >900

17 3 >900

17 4 >900

* - the solution from Fig. 9

networks, the proposed method must face the so-called combinatorial explosion,
arising from the nature of the NP-hard problems considered.

6 Conclusions

The novelty of this study is that it proposes an integrated modeling approach to milk-
run system design and operation which takes into account the relationships linking
the disruptions and production order changes imposing production flow replanning,
with the system’s reconfigurability understood as the ability to adjust its function-
ality and capacity so as to provide the correct flexibility level. The chapter presents
the conditions, the fulfillment of which allows reconfiguration of milk-run systems
to the form in which achievable behaviors guarantee the delivery of the expected
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deliveries despite a specific disruption. The developed conditions allow one to iden-
tify the moments at which a change in the delivery plan (route) will not result in
the reallocation or stopping of logistic trains. This means that they can be used in
methods implemented in systems supporting the design of proactive logistic trains’
fleet schedules that are robust to vehicle damages and/or production order changes
as well as solving both rerouting and rescheduling problems.

The use of commercially available software tools, such as CPLEX, ECLiPSe,
Gurobi, etc., whichmake it possible to tackle practical-scale problems, can be viewed
as an attractive solution for problem-oriented DSS. This means that our study, being
in line with the concept of Industry 4.0 [26], which stresses the need to seek solutions
that allow information systems to create a virtual copy of the physical world, provides
a programming framework for context-aware information model design.

The use of the developed conditions, however, excludes from the search space
solutions that result in transition states smoothly linking different cyclic schedules.
In that context identification of the transition state between two permissible system
behaviors, e.g., seen as a transient period between two cyclic steady states, will be
the subject of our future work. In other words, our future work will focus on finding
other sufficient conditions that would allow planners to reschedule milk-run flows
while guaranteeing smooth transition between two successive cyclic steady states
corresponding to the current and rescheduled logistic train fleet flows.
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38. Wikarek, J., Sitek, P., Jagodziński, M.: A declarative approach to shop orders optimization.
Appl. Comput. Sci. 15(4), 5–15 (2019). https://doi.org/10.23743/acs-2019-25

39. Wójcik, R., Pempera, J.: Designing cyclic schedules for streaming repetitive job-shop manu-
facturing systems with blocking and no-wait constraints. IFAC-PapersOnLine 52(10), 73–78
(2019)

40. Urbani, A., Molinari-Tosatti, L., Pedrazzoli, P., Fassi, I., Boer, C.: Flexibility and reconfigura-
bility: an analytical approach and some examples. In: 1st - International Conference on Agile
and ReconfigurableManufacturing 1st - International Conference on Agile and Reconfigurable
Manufacturing, Ann Arbor - University Michigan - USA (2001)

41. Van DeGinste, L., Goos, J., Schamp,M., Claeys, A., Hoedt, S., Bauters, K., Biondi, A., Aghez-
zaf, E-H., Cottyn, J.: Defining flexibility of assembly workstations through the underlying
dimensions and impacting drivers. In: 25th International Conference on Production Research
Manufacturing Innovation: Cyber Physical Manufacturing. Procedia Manufacturing, vol. 39,
pp. 974–982 (2019). http://hdl.handle.net/1854/LU-8638487

42. Vieira, G.E., Herrmann, J.W., Lin, E.: Rescheduling manufacturing systems: a framework
of strategies, policies, and methods. J. Sched. 6, 39–62 (2003). https://doi.org/10.1023/A:
1022235519958

43. Yuanyuan, M., Yuxin, H., He, L., Yongjie, Y., Jianan, Y.: Aircraft rerouting and rescheduling in
multi-airport terminal area under disturbed conditions. MATECWeb Conf. 309, 03021 (2020).
https://doi.org/10.1051/matecconf/202030903021

https://doi.org/10.1007/978-981-13-2944-9_19
https://doi.org/10.1007/978-981-13-2944-9_19
https://doi.org/10.24425/mper.2019.131443
https://doi.org/10.24425/mper.2019.131443
https://doi.org/10.1007/978-3-319-64465-3_42
https://doi.org/10.1007/s10479-017-2722-x
https://doi.org/10.23743/acs-2019-25
http://hdl.handle.net/1854/LU-8638487
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1051/matecconf/202030903021


Micro-Scheduling for Dependable
Resources Allocation

Victor Toporkov and Dmitry Yemelyanov

Abstract In this work, we introduce a general approach for slot selection and co-
allocation algorithms for parallel jobs in distributed computing with non-dedicated
and heterogeneous resources. Parallel job scheduling provides many opportunities
for the resources allocation and usage efficiency optimization. Firstly, there are many
options to select the appropriate set of resources based on primary target criteria in
a knapsack-like problem. The secondary optimization, or , is possible when select-
ing over a variety of suitable resources providing the same primary target criteria
values. Micro-scheduling step usually relies on the resources meta-features, sec-
ondary parameters and their actual utilization. Such two-level optimization may be
used to obtain heuristic solutions for many scheduling problems. In this paper we
present micro-scheduling applications for the dependable and coordinated resources
co-allocation, resources usage efficiency optimization, preference-based and fair
scheduling implementations.

Keywords Distributed computing · Grid · Dependability · Micro-scheduling ·
Coordinated scheduling · Resource management · Slot · Job · Allocation ·
Optimization · Preferences

1 Introduction

Modern high-performance distributed computing systems (HPCS), including Grid,
cloud and hybrid infrastructures provide access to large amounts of resources [1, 2].
These resources are typically required to execute parallel jobs submitted by HPCS
users and include computing nodes, data storages, network channels, software, etc.
These resources are usually partly utilized or reserved by high-priority jobs and jobs
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coming from the resource owners. Thus, the available resources are represented with
a set of time intervals (slots) during which the individual computational nodes are
capable to execute parts of independent users’ parallel jobs. These slots generally
have different start and finish times and vary in performance level. The presence of
a set of heterogeneous slots impedes the problem of resources allocation necessary
to execute the job flow from HPCS users. Resource fragmentation also results in a
decrease of the total computing environment utilization level [1, 2].

HPCS organization and support bring certain economical expenses: purchase and
installation of machinery equipment, power supplies, user support, maintenance
works, security, etc. Thus, HPCS users and service providers usually interact in
economic terms, and the resources are provided for a certain payment. In such con-
ditions, resource management and job scheduling based on the economic models is
considered as an efficient way to coordinate contradictory preferences of computing
system participants and stakeholders [2–5].

There are different approaches for a job-flow scheduling problem in distributed
computing environments. Application level scheduling [3] is based on the avail-
able resources utilization and, as a rule, does not imply any global resource sharing
or allocation policy. Job flow scheduling in VOs [6–9] suppose uniform rules of
resource sharing and consumption, in particular based on economic models [2–5].
This approach allows improving the job-flow level scheduling and resource distribu-
tion efficiency. VO policy may offer optimized scheduling to satisfy both users’ and
VO global preferences. The VO scheduling problems may be formulated as follows:
to optimize users’ criteria or utility function for selected jobs [2, 10], to keep resource
overall load balance [11, 12], to have job run in strict order or maintain job priorities
[13, 14], to optimize overall scheduling performance by some custom criteria [15,
16], etc.

Computing system services support interfaces between users and providers of
computing resources and data storages, for instance, in datacenters. Personal pref-
erences of VO stakeholders are usually contradictive. Users are interested in total
expenses minimization while obtaining the best service conditions: low response
times, high hardware specifications, 24/7/365 service, etc. Service providers and
administrators, on the contrary, are interested in profits maximization based on
resources load efficiency, energy consumption, and system management costs. The
challenges of system management can lead to inefficient resources usage in some
commercial and corporate cloud systems.

Thus, VO policies in general should respect all members to function properly
and the most important aspect of rules suggested by VO is their fairness. A number
of works understand fairness as it is defined in the theory of cooperative games
[10], such as fair job flow distribution [12], fair user jobs prioritization [14], fair
prices mechanisms [5]. In many studies VO stakeholders’ preferences are usually
ensured only partially: either owners are competing for jobs optimizing users’ criteria
[3], or the main purpose is the efficient resources utilization not considering users’
preferences [13]. Sometimes multi-agent economic models are established [3, 5].
Usually they do not allow optimizing the whole job flow processing.
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In order to implement any of the described job-flow scheduling schemes and
policies, first, one needs an algorithm for selecting sets of simultaneously available
slots required for each job execution. Further, we shall call such set of simultaneously
available slots with the same start and finish times as execution window.

In this paper, we present general algorithm for an optimal or near-optimal het-
erogeneous resources selection by a given criterion with the restriction to a total
cost. Further this algorithm serves as a basis for the two-level optimization (or a
micro-scheduling) approach and some practical implementations for a dependable
resources allocation problem.

The rest of the paper is organized as follows. Section 2 presents related works
for the resources usage optimization when scheduling single parallel jobs and whole
job-flows. Section3 introduces a general scheme for searching slot sets efficient by
the specified criterion. Then several implementations are proposed and considered.
Sections4–7 present heuristic micro-scheduling algorithms and applications for dif-
ferent HPSC scheduling problems. Section8 summarizes the paper and describes
further research topics.

2 Related Works

2.1 Resources Selection Algorithms and Approaches

The scheduling problem in Grid is NP-hard due to its combinatorial nature and
many heuristic-based solutions have been proposed. In [7] heuristic algorithms for
slot selection, based on user-defined utility functions, are introduced. NWIRE system
[7] performs a slot window allocation based on the user defined efficiency criterion
under themaximum total execution cost constraint. However, the optimization occurs
only on the stage of the best found offer selection. First fit slot selection algorithms
(backtrack [17] and NorduGrid [18] approaches) assign any job to the first set of slots
matching the resource request conditions, while other algorithms use an exhaustive
search [15, 19, 20] and some of them are based on a linear integer programming (IP)
[15] or mixed-integer programming (MIP) model [19]. Moab/maui scheduler [13]
implements backfilling algorithm and during the window search does not take into
account any additive constraints such as the minimum required storage volume or
the maximum allowed total allocation cost.

Modern distributed and cloud computing simulators GridSim and CloudSim [4,
5] provide tools for jobs execution and co-allocation of simultaneously available
computing resources. Base simulator distributions perform First Fit allocation algo-
rithms without any specific optimization. CloudAuction extension [5] of CloudSim
implements a double auction to distribute datacenters’ resources between a job flow
with a fair allocation policy. All these algorithms consider price constraints on indi-
vidual nodes and not on a total window allocation cost. However, as we showed in
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[21], algorithms with a total cost constraint are able to perform the search among a
wider set of resources and increase the overall scheduling efficiency.

GrAS [22] is a Grid job-flow management system built over Maui scheduler [13].
The resources co-allocation algorithm retrieves a set of simultaneously available slots
with the same start and finish times even in heterogeneous environments. However,
the algorithm stops after finding the first suitable window and, thus, doesn’t perform
any optimization except for window start time minimization.

Algorithm [23] performs job’s response and finish time minimization and doesn’t
take into account constraint on a total allocation budget. [24] performs window
search on a list of slots sorted by their start time, implements algorithms for window
shifting and finish timeminimization, doesn’t support other optimization criteria and
the overall job execution cost constraint.

AEP algorithm [16] performs window search with constraint on a total resources
allocation cost, implements optimization according to a number of criteria, but
doesn’t support a general case optimization. Besides AEP doesn’t guarantee same
finish time for the window slots in heterogeneous environments and, thus, has limited
practical applicability.

2.2 Job-Flow Scheduling and Backfilling

Backfilling [25–27] is a widely used procedure for a job queue scheduling in high-
performance computing. The base algorithm relies on jobs runtime estimates and
makes use of advanced reservations tools. This mechanism prevents starvation of
jobs requiring large number of computing nodes and reduces resources idle time.
The main idea behind these improvements is implemented by placing smaller jobs
from the back of the queue to the any currently idle slots even ahead of their priority
order.

There are two common variations to backfilling - conservative and aggressive
(EASY). Conservative backfilling enforces jobs’ priority fairness by making sure
that jobs submitted later can’t delay the start of jobs arrived earlier. EASY backfilling
aggressively backfills jobs as long as they do not delay the start of the single currently
reserved job. Conservative backfilling considers jobs in the order of their arrival and
either immediately starts a job or makes an appropriate reservation upon the arrival.

The jobs priority in the queue may be additionally modified in order to improve
system-wide job-flow execution efficiency metrics. Under default FCFS policy the
jobs are arranged by their arrival time. Other priority reordering-based policies like
Shortest job First or eXpansion Factor may be used to improve overall resources
utilization level [25–27]. The look-ahead optimizing scheduler [26] implements
dynamic programming scheme to examine all the jobs in the queue in order to
maximize the current system utilization. So, instead of scanning queue for single
jobs suitable for the backfilling, look-ahead scheduler attempts to find a combination
of jobs that together will maximize the resources utilization.
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Thus, the jobs priorities represent an important factor for the integral job-flow
scheduling efficiency. General priority compliance contributes to a fair scheduling
model and may support even more complex and high-level priority functions. On
the other hand, it is possible to adjust order of the jobs scheduling and execution to
achieve more efficient resources usage scenarios. We consider the problem of the
resources usage optimization without affecting the initial jobs scheduling order (or
in some cases with a controlled amount of changes [28]).

3 General Resource Co-allocation Algorithm

3.1 Problem Statement

We consider a set R of heterogeneous computing nodes with different performance
pi and price ci characteristics. Each node has a local utilization schedule known
in advance for a considered scheduling horizon time L . A node may be turned
off or on by the provider, transferred to a maintenance state, reserved to perform
computational jobs. Thus, it’s convenient to represent all available resources as a set
of slots. Each slot corresponds to one computing node on which it’s allocated and
may be characterized by its performance and price.

In order to execute a parallel job one needs to allocate the specified number of
simultaneously idle nodes ensuring user requirements from the resource request.
The resource request specifies number n of nodes required simultaneously, their
minimum applicable performance p, job’s computational volume V and a maximum
available resources allocation budgetC . The requiredwindow length is defined based
on a slot with the minimum performance. For example, if a window consists of slots
with performances p ∈ {pi , p j } and pi < p j , then we need to allocate all the slots
for a time T = V

pi
. In this way V really defines a computational volume for each

single job subtask. Common start and finish times ensure the possibility of inter-
node communications during the whole job execution. The total cost of a window
allocation is then calculated as CW = ∑n

i=1 T ∗ ci .
These parameters constitute a formal generalization for resource requests common

among distributed computing systems and simulators.
Additionally we introduce criterion f as a user preference for the particular job

execution during the scheduling horizon L . f can take a form of any additive function
and as an example, one may want to allocate suitable resources with the maximum
possible total data storage available before the specified deadline.

3.2 Window Search Procedure

For a general window search procedure for the problem statement presented in
Sect. 3.1, we combined core ideas and solutions from algorithm AEP [16] and sys-
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tems [23, 24]. Both related algorithms perform window search procedure based on
a list of slots retrieved from a heterogeneous computing environment.

Following is the general square window search algorithm. It allocates a set of
n simultaneously available slots with performance pi > p, for a time, required to
compute V instructions on each node, with a restriction C on a total allocation cost
and performs optimization according to criterion f . It takes a list of available slots
ordered by their non-decreasing start time as input.

1. Initializing variables for the best criterion value and corresponding best window:
fmax = 0, wmax = {}.

2. From the slots available we select different groups by node performance pi .
For example, group Pk contains resources allocated on nodes with performance
pi ≥ Pk . Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups Pi starting from the max performance
Pmax . All the sub-items represent a cycle body.

a. The resources reservation time required to compute V instructions on a node
with performance Pi is Ti = V

pi
.

b. Initializing variable for a window candidates list SW = {}.
c. Next is a cycle for all slots si in group Pi starting from the slotwith theminimum

start time. The slots of group Pi should be ordered by their non-decreasing
start time. All the sub-items represent a cycle body.
(1) If slot si doesn’t satisfy user requirements (hardware, software, etc.) then

continue to the next slot (3c).
(2) If slot length l (si ) < Ti then continue to the next slot (3c).
(3) Set the new window start time Wi .start = si .start .
(4) Add slot si to the current window slot list SW
(5) Next a cycle to check all slots s j inside SW

i If there are no slots in SW with performance P(s j )= Pi then continue
to the next slot (3c), as current slots combination in SW was already
considered for previous group Pi−1.

ii If Wi .start + Ti > s j .end then remove slot s j from SW as it can’t
consist in a window with the new start time Wi .start .

(6) If SW size is greater or equal to n, then allocate from SW a window Wi (a
subset of n slots with start time Wi .start and length Ti ) with a maximum
criterion value fi and a total cost Ci < C . If fi > fmax then reassign
fmax = fi and Wmax = Wi .

4. End of algorithm. At the output variableWmax contains the resulting windowwith
the maximum criterion value fmax .
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3.3 Optimal Slot Subset Allocation

Let us discuss in more details the procedure which allocates an optimal (according
to a criterion f ) subset of n slots out of SW list (algorithm step 3c(6)).

For some particular criterion functions f a straightforward subset allocation solu-
tion may be offered. For example for a window finish time minimization it is rea-
sonable to return at step 3c(6) the first n cheapest slots of SW provided that they
satisfy the restriction on the total cost. These n slots (as any other n slots from SW
at the current step) will provide Wi . f inish = Wi .start + Ti , so we need to set
fi = −(Wi .start + Ti ) to minimize the finish time at the end of the algorithm.
The same logic applies for a number of other important criteria, including window

start time, runtime and a total cost minimization.
However in a general case we should consider a subset allocation problem with

some additive criterion: Z = ∑n
i=1 cz(si ), where cz (si ) = zi is a target optimization

characteristic value provided by a single slot si of Wi .
In this way we can state the following problem of an optimal n - size window

subset allocation out of m slots stored in SW :

Z=x1z1+x2z2+ · · · +xmzm, (1)

with the following restrictions:

x1c1 + x2c2 + · · · + xmcm ≤ C,

x1 + x2 + · · · + xm = n,

xi ∈ {0, 1} , i = 1..m,

where zi is a target characteristic value provided by slot si , ci is total cost required
to allocate slot si for a time Ti , xi - is a decision variable determining whether to
allocate slot si (xi = 1) or not (xi = 0) for the current window.

This problem relates to the class of integer linear programming problems, which
imposes obvious limitations on the practical methods to solve it. However, we used
0-1 knapsack problem as a base for our implementation. Indeed, the classical 0-1
knapsack problem with a total weight C and items-slots with weights ci and values
zi have the same formal model (1) except for extra restriction on the number of
items required: x1 + x2 + · · · + xm = n. To take this into account we implemented
the following dynamic programming recurrent scheme:

fi
(
C j , nk

) = max{ fi−1(C j , nk), fi−1(C j − ci , nk−1)+zi }, (2)

i = 1, ..,m, C j = 1, ..,C, nk = 1, .., n,
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where fi
(
C j , nk

)
defines the maximum Z criterion value for nk-size window allo-

cated out of first i slots from SW for a budget C j . After the forward induction
procedure (2) is finished the maximum value Zmax = fm(C, n). xi values are then
obtained by a backward induction procedure.

For the actual implementation we initialized fi
(
C j , 0

) = 0, meaning Z= 0 when
we have no items in the knapsack. Then we perform forward propagation and cal-
culate f1

(
C j , nk

)
values for all C j and nk based on the first item and the initialized

values. Then f2
(
C j , nk

)
is calculated taking into account second itemand f1

(
C j , nk

)

and so on. So after the forward propagation procedure (2) is finished the maximum
value Zmax = fm (C, n). Corresponding values for variables xi are then obtained by
a backward propagation procedure.

An estimated computational complexity of the presented recurrent scheme is
O(m ∗ n ∗ C), which is n times harder compared to the original knapsack problem
(O(m ∗ C)).On the one hand, in practical job resources allocation cases this overhead
doesn’t look very large as we may assume that n << m and n << C . On the other
hand, this subset allocation procedure (2) may be called multiple times during the
general square window search algorithm (step 3c(6)).

4 Dependable Job Placement

4.1 Job Placement Problem

As a first practical implementation for a general optimization scheme SSA (Slots
Subset Allocation) we study a window placement problem. Figure1 shows Gantt
chart of 4 slots co-allocation (hollow rectangles) in a computing environment with
resources pre-utilized with local and high-priority tasks (filled rectangles).

Fig. 1 Dependable window co-allocation metrics
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As can be seen from Fig. 1, even using the same computing nodes (1, 3, 4, 5 on
Fig. 1) there are usually multiple window placement options with respect to the slots
start time. The window placement generally may affect such job execution properties
as cost, finish time, computing energy efficiency, etc. Besides, slots proximity to
neighboring tasks reserved on the same computing nodes may affect a probability
of the job execution delay or failure. For example, a slot reserved too close to the
previous task on the same node may be delayed or cancelled by an unexpected delay
of the latter. Thus, dependable resources allocation may require reserving resources
with some reasonable distance to the neighboring tasks.

As presented in Fig. 1, for each window slot we can estimate times to the previous
task finish time: Lle f t and to the next task start time: Lright . Using these values the
following criterion for the window allocation represents average time distance to the
nearest neighboring tasks: Lmin � = 1

n

∑n
i=1 min(Lle f t i , Lright i ), where n is a total

number of slots in the window. So when implementing a dependable job scheduling
policy we are interested in maximizing Lmin � value.

On the other hand such selfish and individual job-centric resources allocation
policy may result in an additional resources fragmentation and, hence, inefficient
resources usage. Indeed, when Lmin � is maximized the jobs will try to start at the
maximum distance from each other, eventually leaving truncated slots between them.
Thus, the subsequent jobs may be delayed in the queue due to insufficient remaining
resources.

For a coordinated job-flow scheduling and resources load balancing we propose
the following window allocation criterion representing average time distance to the
farthest neighboring tasks: Lmax � = 1

n

∑n
i=1 max(Lle f t i , Lright i ), where n is a

total number of slots in the window. By minimizing Lmax � our motivation is to
find a set of available resources best suited for the particular job configuration and
duration. This coordinated approach opposes selfish resources allocation and ismore
relevant for a virtual organization job-flow scheduling procedure.

4.2 Simulation Environment Setup

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 16, 28]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared
resources allocation policy simulates a local queuing system (like in GridSim or
CloudSim [4]) and, thus, each node can process only one task at any given simu-
lation time. The execution cost of each task depends on its execution time, which
is proportional to the dedicated node’s performance level. The execution of a single
job requires parallel execution of all its tasks.

During the experiment series we performed a window search operation for a
job requesting n = 7 nodes with performance level pi ≥ 1, computational volume
V = 800 and a maximum budget allowed is C = 644. During each experiment a
new instance for the computing environment was automatically generated with the
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Fig. 2 Initial resources utilization example

following properties. The resource pool includes 100 heterogeneous computational
nodes. Each node performance level is given as a uniformly distributed random value
in the interval [2, 10]. So the required window length may vary from 400 to 80 time
units. The scheduling interval length is 1200 time quanta which is enough to run
the job on nodes with the minimum performance. However, we introduce the initial
resource load with advanced reservations and local jobs to complicate conditions
for the search operation. This additional load is distributed hyper-geometrically and
results in up to 30% utilization for each node (Fig. 2). The simulation has been
performed in Java runtime environment on Intel Core i3 based workstation with
16Gb RAM and SSD storage.

4.3 Analysis of Dependable Resources Allocation

For the simulation study we introduce the following algorithms.

• FirstFit performs a square window allocation in accordance with a general scheme
described in Sect. 3.2. Returns first suitable and affordable window found. In fact,
performs window start time minimization and represents algorithm from [23, 24].

• MultipleBest algorithm searches formultiple non-intersecting alternativewindows
using FirstFit algorithm. When all possible window allocations are retrieved the
algorithm searches among them for alternatives with the maximum criteria value.
In this wayMultipleBest is similar to [7] approach.

• Dependable (DEP) andDEP Lite perform Lmin � maximization, i.e. maximize the
distance to the nearest running or reserved tasks.DEP implements a general square
window search procedure with an optimal slots subset allocation (2). DEP Lite
follows the general square window search procedure but doesn’t implement slots
subset allocation (2) procedure. Instead at step 3c(6) it returns the first n cheapest
slots of SW . Thus, DEP Lite has much less computational complexity compared
to DEP but doesn’t guarantee an accurate solution [16]
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• Coordinated (COORD) and COORD Lite minimize Lmax � : average distance to
the farthest neighboring tasks.COORD andCOORD Lite representDEP andDEP
Lite, but with a different target criterion of Lmax � → min.

So, by setting Lmin � and Lmax � as target optimization criteria we performed sim-
ulation of 2000 independent scheduling cycles. The results are compiled in Table1.

As expectedDEP providedmaximum average distances to the adjacent tasks: 369
and 480 time units, which is comparable to the job’s execution duration. An example
of such allocation from a single simulation experiment is presented on Fig. 3a. The
resulting DEP Lmin � distance value is 4.3 times longer compared to FirstFit and
almost 1.5 longer compared toMultipleBest.

Similarly, COORD provided minimum values for the considered criteria: 9 and
52 time units. Example allocation is presented on Fig. 3b where left edge represents
the scheduling interval start time. As can be seen from the figure the allocated slots
are highly coincident with the job’s configuration and duration. Here the resulting
average distance to the farthest task is three times smaller compared toMultipleBest
and 9 times smaller when compared with DEP solution.

However due to a higher computational complexity it took DEP and COORD
almost 1.7 s to find the 7-slots allocation over 100 available computing nodes, which
is 17 times longer compared toMultiple Best. At the same time simplified Lite imple-
mentations provided better scheduling results compared to Multiple Best for even
less operational time: 4.5ms.FirstFit doesn’t perform any target criteria optimization
and, thus, provides average Lmin � and Lmax � distances with the same operational
time as Lite algorithms.

MultipleBest in Table1 has average distance to the farthest task smaller than to
the nearest task because different alternatives were selected to match the criteria:
Lmin � maximization and Lmax � minimization. Totally almost 50 different resource
allocation alternatives were retrieved and considered by MultipleBest during each
experiment.

Table 1 Window placement simulation results

Algorithm Distance to the nearest
task Lmin �

Distance to the farthest
task Lmax �

Average operational
time, ms

Multiple Best 253 159 103

First Fit 85 342 4.2

DEP 369 480 1695

DEP Lite 275 440 4.5

COORD 9 52 1694

COORD Lite 31 148 4.5
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Fig. 3 Simulation examples for dependable (a) and coordinated (b) resources allocation for the
same job

5 Micro-Scheduling and Coordinated Resources Allocation

5.1 Micro-Scheduling in Resources Allocation

Another important aspect for the overall resources allocation efficiency is the
resources selection and micro-scheduling in regard to the anticipated resources uti-
lization schedule.

Figure4 shows the same Gantt chart from Fig. 1 of 4 slots co-allocation in a
computing environment with resources pre-utilized with local and high-priority jobs.
Slots 1–4 represent candidates for a job scheduling and execution. If the job requires
only three nodes there are four different options to allocate the resources providing
the same finish time. Job execution finish time corresponds to traditional queue
scheduling criteria in backfilling-like algorithms. Thus, the process of a secondary
optimization when selecting a particular subset of resources providing the same
primary criteria value we call micro-scheduling.

Lle f t or Lright criteria alone can’t improve the whole job-flow scheduling solution
according to the conventional makespan or average finish time criteria. So, as an
alternative a special set of breaking a tie rules is proposed in [27] to choose between
slots providing the same earliest job start or finish time.

These rules for Picking Earliest Slot for a Task (PEST) procedure may be sum-
marized as following.

1. Minimize number of idle slots left after the window allocation: slots adjacent
(succeeding or preceding) to already reserved slots have higher priority.

2. Maximize length of idle slots left after the window allocation; so the algorithm
tends to left longer slots for the subsequent jobs in the queue.
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Fig. 4 Coordinated window co-allocation and placement metrics

With similar intentions we proposed the following Coordinated Placement (CoP)
[29] heuristic rules.

1. Prioritize slots allocated on nodes with lower performance. The main idea is to
leave higher performance slot vacant for the subsequent jobs.

2. Prioritize slots with relatively small distances to the neighbor tasks: Lle f t i � T
or Lright i � T .

3. Penalize slots leaving significant, but insufficient to execute a full job distances
Lle f t i or Lright i .

4. On the other hand, equally prioritize slots leaving sufficient compared to the job’s
runtime distances Lle f t i or Lright i .

5.2 Coordinated Placement Algorithms

The main idea behind CoP is to minimize overall resources fragmentation by allo-
cating slots to jobs with fairly matching runtime demands. Based on these heuristic
rules we implemented the following scheduling algorithms and criteria for SSA-
based resources allocation.

1. Firstly we consider two conservative backfilling variations. BFs successively
implements start time minimization for each job during the resources selection
step. As SSA performs criterion maximization, BFs criterion for i-th slot has the
following form: zi = −si .startT ime. By analogy BFf implements a more solid
strategy of a finish time minimization which is different from BFs in computing
environments with heterogeneous resources. BFf criterion for SSA algorithm is
the following: zi = −si . f inishT ime.

2. PEST-like backfilling approach has a more complex criterion function which may
be described with the following set of rules:
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(a) zi = −si . f inishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si .nodePer f ormance; node performance amendment
(c) if (Lright i == 0) : zi = zi + δ1; PEST rule 1
(d) if (Lle f t i == 0) : zi = zi + δ1; PEST rule 1
(e) zi = zi − α2 ∗ Lright i ; PEST rule 2

3. CoP resources allocation algorithm for backfilling may be represented with the
following criterion calculation:

(a) zi = −si . f inishT ime; finish time is the main criterion value
(b) zi = zi − α1 ∗ si .nodePer f ormance; node performance amendment
(c) if (Lright i < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(d) if (Lle f t i < ε1 ∗ T ) : zi = zi + δ1; CoP rule 1
(e) if (Lright i > ε2 ∗ T AND Lright i < ε3 ∗ T ): zi = zi − δ1; CoP rule 2
(f) if (Lle f t i > ε2 ∗ T AND Lle f t i < ε3 ∗ T ): zi = zi − δ1; CoP rule 2
(g) if (Lright i > T ): zi = zi + δ3; CoP rule 3
(h) if (Lle f t i > T ): zi = zi + δ3; CoP rule 3

4. Finally as an additional reference solution we simulate another abstract backfill-
ing variation BFshort which is able to reduce each job runtime for 1% during the
resources allocation step. In this way each job will benefit not only from its own
earlier completion time, but from earlier completion of all the preceding jobs.

The criteria for PEST and CoP contain multiple constant values defining rules
behavior, namely α1, α2, δ1, δ2, ε1, ε2, ε3. εi coefficients define threshold values for
a satisfactory jobfit inCoPapproach.αi and δi define each rule’s effect on the criterion
and are supposed to be much less compared to zi in order to break a tie between
otherwise suitable slots. However, their mutual relationship implicitly determines
rules’ priority which can greatly affect allocation results. Therefore there are a great
number of possible αi , δi and εi values combinations providing different PEST
and CoP implementations. Based on heuristic considerations and some preliminary
experiment results the values we used during the present experiment are presented
in Table2.

Because of heuristic nature of considered algorithms and their speculative
parametrization (see Table2) hereinafter by PEST [27] we will mean PEST-like
approach customly implemented as an alternative to CoP.

Table 2 PEST and CoP parameters values

Constant α1 α2 δ1 δ2 ε1 ε2 ε3

Value 0.1 0.0001 1 0.1 0.03 0.2 0.35
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5.3 Simulation Results

The results of 2000 independent simulation experiments are presented in Tables3
and 4. Each simulation experiment includes computing environment and job queue
generation, followed by a scheduling simulation independently performed using con-
sidered algorithms. The main scheduling results are then collected and contribute to
the average values over all experiments.

Table3 contains average finish time in simulation time units (t.u.) provided by
algorithms BFs, BFf, BFshort, PEST and CoP for different number of jobs pre-
accumulated in the queue.

As it can be seen, with a relatively small number NQ of jobs in the queue, both CoP
and PEST provide noticeable advantage by nearly 1% over a strong BFf variation,
while CoP even surpasses BFshort results. At the same time, the less successful

BFs approach provides almost 6% later average completion time, thus, high-
lighting difference between a good (BFf) and a regular (BFs) possible scheduling
solutions. So BFshort, CoP and PEST advantage should be evaluated against this 6%
interval. Similar conclusion follows from the average makespan (i.e. the latest finish
time of the queue jobs) values presented in Table4.

However with increasing the jobs number CoP advantage over BFf decreases
and tends to zero when NQ = 200. This trend for PEST and CoP heuristics may
be explained by increasing accuracy requirements for jobs placement caused with
increasing NQ number. Indeed, when considering for some intermediate job resource
selection the more jobs are waiting in the queue the higher the probability that some
future jobwill have a better fit for current resource during the backfilling procedure. In
a general case all the algorithms’ parameters αi , δi and εi (more details we provided

Table 3 Simulation results: average job finish time, t.u

Jobs number
NQ

BFs BF f BFshort P AST CoP

50 318.8 302.1 298.8 300.1 298

100 579.2 555 549.2 556.1 550.7

150 836.8 805.6 796.8 809 800.6

200 1112 1072.7 1060.3 1083.3 1072.2

Table 4 Simulation results: average job-flow makespan, t.u

Jobs number
NQ

BFs BF f BFshort P AST CoP

50 807.8 683 675 678 673.3

100 1407 1278 1264 1272 1264

150 2003 1863 1842 1857 1844

200 2622 2474 2449 2476 2455
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in Table2) should be refined to correspond to the actual computing environment
utilization level.

6 Advanced Simulation and Hindsight Job-Flow
Scheduling

6.1 Hindsight Scheduling

An important feature ofCoP and similar breaking a tie approaches [27, 29] is that they
do not affect the primary scheduling criterion and do not change a base scheduling
procedure.

Depending on the computing environment setup and job queue size the advantage
of CoP over the baseline backfilling procedure reaches 1–2% by average jobs finish
time and makespan criteria. Although these relative advantage values do not look
very impressive, an important result is that they were obtained almost for free: CoP
represent the same backfilling procedure, but with a more efficient resources usage.

Figure5 presents a distribution of a relative difference (%) between average jobs
finish times provided by CoP and BF:

100% ∗ (BF.avFinishT ime − CoP.avFinishT ime)/CoP.avFinishT ime.
(3)

The distribution was obtained from 250 simulations with N = 50 jobs in the queue.
Positive values represent scenarios when earlier job-flow finish time was provided
by CoP, while negative values – scenarios when a better solution is provided by BF.

As it can be observed, CoP generally provides better scheduling outcomes and
resources usage compared to the baseline backfilling. In a number of experiments
CoP advantage over BF reaches 10–15% with the maximum of 29% earlier finish
time. On the other hand, sometimes CoP provide much later job-flow finish times:
up to 12%behindBF (see Fig. 5). Thus, CoP average advantage of nearly 1% includes
many outcomes with serious finish time delays.

Considering that CoP and BF represent the same scheduling procedure it is pos-
sible to implement a joint approach by choosing the best outcome precalculated by
CoP, BF or a family of similar algorithms. In this case we will always use the most
successful scenario in terms of the resources efficiency. Such joint (or a hindsight)
approach may be used when it’s possible to consider job queue execution on some
scheduling interval or horizon.

For this purpose we consider a family of backfilling-based algorithms with dif-
ferent breaking a tie rules: Random, Greedy and CoP. After the scheduling step is
over the best solution obtained by these algorithms is chosen as a Hindsight result.
Except for CoP, this family is chosen almost arbitrary in order to evaluate how each
rule will contribute to the final solution.
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Fig. 5 Average CoP and BF job finish time difference distribution, N = 50

6.2 Simulation Setup and Analysis

Based onheuristic rules described inSect. 6.1we implemented the following schedul-
ing algorithms and strategies for SSA-based resources allocation.

1. Firstly, we consider conservative backfilling BFf procedure. For a finish time
minimization, BFf criterion for i-th considered slot has the following form:
zi = −si . f inishT ime. As there are no secondary criteria, BF generally selects
a random subset of slots providing the earliest finish time for a job execution.

2. Rand algorithm uses SSA algorithm for a fully random resources selection over
a conservative backfilling: zi = −si . f inishT ime + ri . Here ri is a small ran-
dom value uniformly distributed on interval [0; 01] representing the secondary
criterion.

3. Greedy backfilling-based algorithm performs resources selection based on the
following greedymetric of the resources profitability: pi

ci
. Thus, the resulting SSA

criterion function is: zi = −si . f inishT ime + α
pi
ci
. Here α defines the weight

of secondary criteria and is supposed to bemuch less compared to a primary finish
time criterion in order to break a tie between otherwise even slots. In the current
study we used α = 0.1 value.

4. CoP resources allocation algorithm for backfilling is implemented in accordance
with rules and priorities described in Sect. 5. More details were provided in [29].

The experiment setup included a job-flow of N = 50 jobs in a domain consisting
of 42 heterogeneous computing nodes. The jobs were accumulated at the start of
the simulation and no new jobs were submitted during the queue execution. Such
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Table 5 Breaking a tie heuristics scheduling results

Characteristic BF CoP Rand Greedy Hindsight

Number of
experiments

500 500 500 500 500

Average
makespan

677 670 683 680 662

Average finish
time

254 250 257 257 246

Earliest finish
number

114 238 62 86 500

Earliest finish
number, %

22.8 47.6 12.4 17.2 100%

Algorithm
working
time, s

0.01 52.6 54.4 53.2 160.2

problem statement allows us to statically evaluate algorithms’ efficiency and simulate
high resources load.

Table5 contains simulation results obtained from 500 scheduling experiments for
a family of breaking a tie heuristics contributing to the Hindsight solution.

We consider the following global job-flow execution criteria: a makespan (finish
time of the latest job) and an average jobs’ finish time.

Without taking into account the Hindsight solution, the best results were provided
byCoP: nearly 1%advantage overBF and 2%over bothRand andGreedy algorithms.

Hindsight approach reduces makespan and average finish time even more: 1%
advantage over CoP, 2% over BF and 3% over Rand and Greedy.

Although these relative advantagevalues donot lookvery impressive, an important
result is that they were obtained almost for free: CoP or Hindsight represent the same
baseline backfilling procedure, but with a more efficient resources usage.

CoP made the largest contribution to the Hindsight solution: in 238 experiments
(47.6%) CoP provided the earliest job-flow finish time. Baseline BF contributed to
Hindsight in 114 experiments (22.8%). Greedy provided the earliest finish time in
86 experiments (17.2%), Rand – in 62 experiments (12.4%).

In this way, CoP ruleset actually implements heuristics which allow better
resources allocation for parallel jobs compared to other considered approaches. At
the same time even algorithm with a random tie breaking procedure outperformed
BF, Greedy and CoP in 17.2% of experiments. Thus, by combining a larger number
of random algorithms in a single family may result in comparable or even better
Hindsight solution.

However, the major limiting factor for the Hindsight approach is SSA’s actual
working time. Baseline BF with a single criterion implements a simple procedure
with almost a linear computational complexity over a number of available resources
O(|R|). Consequently, its working time is relatively short: only 10 ms for a whole
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Fig. 6 Average job finish time difference between CoP, Hindsight and BF, %

50 jobs queue scheduling. SSA computational complexity is O(|R| ∗ n ∗ C) and it
required almost aminute to perform the same job-flowscheduling in each experiment.
Hindsight approach requires all completion of all the component algorithms. Thus,
in our experiment setup Hindsight algorithm was executed for almost 3min to obtain
the resulting scheduling solution.

Figure6 shows relative finish time difference for Hindsight, CoP and BF in the
same experiment set. CoP provides the same 1–2% earlier finish times than BF, while
Hindsight is able to provide a more solid 2–4% advantage.

7 Preference-Based Resources Coordination

7.1 Preference-Based Criteria Design

The same micro-scheduling heuristic may be used for a preference-based resources
allocation. Introducing fair scheduling in VO requires mechanisms to influence
scheduling results for VO stakeholders according to their private, group or common
integral preferences. Individual users may have special requirements for the allo-
cated resources, for example, total cost minimization or performance maximization.
From the other hand, VO policies usually assume optimization of a joint resources
usage according to accepted efficiency criteria. One straightforward example is a
maximization of the resources load.

The proposed Slots Subset Algorithm (SSA) performs window search optimiza-
tion by a general additive criterion Z = ∑n

i=1 cz(si ), where cz (si ) = zi is a target
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optimization characteristic value provided by a single slot si of window W . These
criterion values zi may represent different slot characteristics: time, cost, power,
hardware and software features, etc.

In order to support both private and integral job-flow scheduling criteria we con-
sider the following target criterion function in SSA for a single slot i :

z∗
i = z Ii + αzUi . (4)

Here z Ii and zUi represent criteria for integral and private jobs execution opti-
mization correspondingly. z Ii usually represents the same function for every job
in the queue, while zUi reflects user requirements for a particular job optimization.
α ∈ [0;+∞] coefficient determines relative importance between private and integral
optimization criteria.

By using SSA with z∗
i criterion and different α values it is possible to achieve a

balance between private and integral job-flow scheduling preferences and policies.
For the integral job-flow scheduling criterion we used jobs finish time minimiza-

tion (z Ii = −si . f inishT ime) as a conventional metric for the overall resources load
maximization.

7.2 Preference-Based Scheduling Algorithms and Analysis

For the SSA preference-based resources allocation efficiency study we implemented
the following scheduling algorithms.

1. Firstly, we consider two conservative backfilling variations. BFs successively
implements start time minimization for each job during the resources selection
step. So, BFs criterion for slot i has the following form: zi = −si .startT ime.
BFf implements finish time minimization: zi = −si . f inishT ime. Both BFs and
BFf algorithms represent extreme preference optimization scenario with α = 0.

2. Secondly, we implement a preference-based conservative backfilling (BP) with
SSA criterion of the following form: z∗

i = −si . f inishT ime + αzUi (4), where
zUi depends on a private user criterion uniformly distributed between resources
performance maximization (zUi = si .nodePer f ormance) and overall execution
cost minimization (zUi = −si .usageCost). So in average half of jobs in the queue
should be executed with performance maximization, while another half are inter-
ested in the total cost minimization.
Considered α values covered different importance configurations of private and
integral optimization criteria: α ∈ [0.01; 0.1; 1; 10; 100; 1000].

3. As a special extreme scheduling scenariowithα → ∞we implemented pure con-
servative backfilling with SSA criterion z∗

i = zUi , i.e. without any global param-
eters optimization.

The results of 1000 scheduling simulation scenarios are presented in Figs. 7, 8, 9
and 10. Each simulation experiment includes computing environment and job queue
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Fig. 7 Simulation results: average jobs finish time

generation, followed by a scheduling simulation independently performed using con-
sidered algorithms. The main scheduling results are then collected and contribute to
the average values over all experiments.

Figure7 shows average jobs finish time for BFs, BFf and BP depending on α

values on a logarithmic scale. BFs and BFf plots are represented by horizontal lines
as the algorithms are independent of α.

As expectedBFf provides 5%earlier jobs finish times compared toBFs.BFfwith a
job finish time minimization considers both job start time and runtime. In computing
environments with heterogeneous resources job runtime may vary and depends on
the selected resources performance. Thus, BFf implements more accurate strategy
for the resources load optimization and a job-flow scheduling efficiency.

Similar results may be observed on Fig. 8 presenting average job queue execution
makespan. This time the advantage of BFf by the makespan criterion exceeds 10%.

Interestingly, with α = 10 BP provides even earlier average jobs finish time com-
pared to BFf. In such configuration finish time minimization remains an important
factor, while private performance and cost optimization lead to a more efficient
resources sharing. At the same time BFf increases advantage by makespan criterion
(Fig. 8) as some jobs in BP require more specific resources combinations generally
available later in time.

Figures9 and 10 show scheduling results for considered private criteria: average
job execution cost and allocated resources performance. BPc and BPp in Figs. 9
and 10 represent BP scheduling results for jobs subsets with cost and performance
private optimization correspondingly. Dashed lines show limits for BP, BPc and BPp,
obtained in a pure private optimization scenario (α → ∞) without the integral finish
time minimization.

The figures show that even with relatively small α values BP implements consid-
erable resource share betweenBPc andBPp jobs according to the private preferences.
The difference reaches 7% in cost and 5% in performance for α = 0.01.
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Fig. 8 Simulation results: average jobs queue execution makespan

Fig. 9 Simulation results: average jobs execution cost

More noticeable separation up to 30–40% is observed with α > 1. With higher
importance of the private criteria, BP selectsmore specific resources and increasingly
diverges from the backfilling finish time procedure and corresponding jobs execution
order. The values obtained by BP with α = 100 are close to the practical limits
provided by the pure private criteria optimizations.

We may conclude from Figs. 7, 8, 9 and 10 that by changing a mutual importance
of private and integral scheduling criteria it is possible to find a trade-off solution.
Even the smallest α values are able to provide a considerable resources distribution
according to VO users private preferences. At the same time BP with α < 10 main-
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Fig. 10 Simulation results: average performance of the allocated resources

tains adequate resources utilization efficiency comparable with BFf and provides
even more efficient preference-based resource share.

8 Conclusion and Future Work

In this work, we address the problems of a dependable and efficient resources co-
allocation for parallel jobs execution in heterogeneous computing environments
using the micro-scheduling technique. For this purpose a general window allocation
algorithmwas proposed alongwith four practical micro-scheduling implementations
including dependable, coordinated and preference-based scheduling optimization.
Coordinated micro-scheduling approach performs secondary optimization based on
a baseline main scheduling procedure. A family of micro-scheduling algorithms
may be used for a joint hindsight solution to prepare different job-flow execution
strategies.

Sections4–7 discuss different scheduling problems and provide corresponding
simulation results and analysis. Dependable resources allocation may be used for an
efficient placement of the execution windows against unreliable and highly utilized
resources. Coordinated placement algorithm may improve backfilling scheduling
results by selecting resources with a special set of heuristic meta-rules. Hindsight
solution may be formed based on a family of different micro-scheduling algorithms
to precalculate their scheduling outcomes and to choose themost appropriate strategy
for the whole job-flow execution. Composite target optimization criteria are able to
followmultiple optimization preferences, thus providing fair resources share between
single HPCS users and administrators.
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The main drawback for the whole micro-scheduling approach is a relatively high
computational complexity of the core general resources allocation algorithms SSA.
In our further work, we will refine a general resource co-allocation scheme in order
to decrease its computational complexity.
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Cyclic Dynamic Evaluation of Logistics
Services Stakeholders Based on System
with OFN Model

Anna Chwastyk , Iwona Pisz , and Katarzyna Rudnik

Abstract The challenge for enterprises and supply chains is to deliver successful
logistics services in compliance with their aims. Logistics services are affected by
many stakeholders. Recognizing their impact on the undertaken services is impor-
tant for the planning and execution of a sufficiently rigorous stakeholdermanagement
process. The aim of the paper is to present a new approach to the analysis of stake-
holders - cyclic dynamic evaluation, which could be used in service management,
such as in logistics services. We present a novel fuzzy inference system based on
the mathematical apparatus of Ordered Fuzzy Numbers (OFNs). The evaluation of
stakeholders consists in assessing key factors as - fuzzy numbers with an additional
information indicating the direction of the dynamics of these factors values in the
past. The cyclic using of the system can be seen as a source of early warning signs
for logistics services.

Keywords Logistics services · Stakeholders · Supply chain · Project · Fuzzy
logic · Fuzzy set · Fuzzy system · Ordered fuzzy number · Inference

1 Introduction

Nowadays, companies are forced to offer various specific logistics services to their
customers. As we can see, diversity of logistics services is essential for business
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and economy [34]. The range of logistics services depends on various factors. The
changes in logistics and supply chains are stimulated by the incentive to cut costs
within companies and the associated tendency to focus on core competencies, and
core business activity [16]. In consequence, specific transportation and logistics func-
tions are outsourced to specialized logistics service providers. In practice, a company
unable to meet its customers’ demands, expects a wide range of services from such
providers. These services include packing, loading and unloading of goods, trans-
portation, customs clearance, crossing permits, parcel tracking, storage etc. Such
services, also known as logistics services, are very specific. In order to carry out
a logistics service, a logistics service provider must perform one or more logistics
functions for their employer, based on a specific contract, and in accordance with its
terms.

In practice we can observed solely transport, and complex service that includes
organisationof rawmaterials delivery,warehousing, deliveryoffinishedgoods to cus-
tomers and dealingwith documents like invoices, waybills and others. The increasing
popularity of logistics in services is noticeable. This is connectedwith global changes
in logistics and supply chains. This is a complex phenomenon that connects aspects
and features of services and logistics. The three most important areas for logistics
in services are: minimisation of waiting time, management of service potential and
service delivery [34].

A logistics service can be treated as a specific logistics project. Logistics ser-
vices can vary in complexity, and can be carried out in short or long supply chains.
Market observations indicate that logistics services become increasingly sophisti-
cated, by far exceeding their traditional perception [16, 18, 26, 41]. They begin to
resemble projects characterized by singularity, uniqueness, temporariness, limited
budget, and, occasionally, innovativeness. The majority of commissions received by
logistics service providers constitute separate and singular transportation-freight for-
warding logistics processes, which necessitate detailed analysis, planning, as well as
appropriate management methods. Therefore, they are often treated as a specific type
of projects, called logistics projects [33]. Such services are defined by limited life
cycles. Designing the life cycle of this kind of projects require the ability to identify
and describe all potential participants - stakeholders who might directly or indirectly
influence the project at any stage of a project cycle [45]. Logistics services can be
seen as a temporary organization that links project representatives with stakeholders.
It can be viewed as a temporary coalition of internal and external stakeholders [4].
Stakeholders are a part of a large network that includes people and organizations.
The influence of each stakeholder may bemeasured with reference tomany others. In
this context, sustainability and Corporate Social Responsibility (CSR) have a wider
social impact on logistics services undertaken by organisations.

A stakeholder can be defined as a person, group or organization that is affected
by, or has the power to affect a decision [20]. Stakeholders are people or groups who
are interested in the performance and/or success of the logistics services, or who
are constrained by the service. According to another definition, a stakeholder is any
individual, group or organization that can affect, be affected by, or perceives itself to
be affected by an initiative programme, project, activity, or risk [35]. From project
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management perspective stakeholders have an active stake in the project - in this
case logistics services, and can potentially impact its development, be it positively
or negatively. Stakeholders may be treated as a critical factor in achieving project
outcomes, in this case logistics services [1, 6, 8, 44].

Active stakeholder management - i.e. proactive cyclic logistics services’ stake-
holders management - provides several potential benefits to service outcomes. Lit-
tle attention has been paid to addressing stakeholder analysis under the conditions
of uncertainty. We present an alternative approach dealing with uncertainty in the
project stakeholder analysis, which constitutes a kind of a dynamic approach and can
be used in the area of stakeholder management. The main goal of our research is to
present an approach based on Ordered Fuzzy Numbers (OFNs) as a novel approach.
This approach is based on inference fuzzy system which use OFNs to estimating
the importance of a logistics services stakeholder in the presence of uncertainty.
The direction of OFN is interpreted as a direction of rating changes compared to
past observations. The framework enables coping with uncertainty and risk and it
can be seen as dynamic and is more appropriate than the classical approach to stake-
holder analysis. The cyclic using approach can support managers in logistics services
decisions making.

The remainder of the paper is organized into the following sections. Section2
details the idea of logistics services stakeholders. Section2 also outlines the notions of
OFNs. The proposedmethod of dynamic evaluation of logistics services stakeholders
is presented in Sect. 3. Section3 determines the propose statement, the dedicated
system with OFN model and the ordered fuzzy inference mechanism. Sections4–6
include some case studies of this method application, and Sect. 7 concludes the paper.

2 Background

2.1 Stakeholders of a Logistics Service

Stakeholder management has received considerable attention in both general man-
agement literature and project management literature. The process of stakeholder
management in the field of project management was introduced by Cleland in [14].
Other researchers followed and developed their own research on the role of stake-
holders in projects. Based on literature studies, we can state that stakeholder theory
is essential in project management and is an important soft skill for projects [15, 19].
Nowadays, the stakeholder approach to project management in various industrial
sectors is an internationally recognised discipline.

Literature provides numerous hypotheses for the identification and salience of
stakeholder theory [1, 3, 6, 8, 12, 21, 22, 39, 43, 44]. Stakeholder management
has become a vital part of the strategic management of organizations [20]. In the
management field, researchers point to the need to analyse the business environment
and its stakeholders as part of the strategic management of an enterprise. According
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Fig. 1 The potential stakeholders of logistics project

to Freeman’s definition, a stakeholder is any group or individual that can affect the
achievements of company’s objectives. There is a wide gamut of stakeholders. We
present a potential group of stakeholders of a logistics service in Fig. 1.

An important component of stakeholder management is stakeholder analysis [1,
2, 12, 20, 22, 27]. Stakeholder analysis can be defined as a process of defining those
aspects of a social phenomenon, during which parties influenced by the phenomenon
are identified and categorized [39]. Stakeholder analyses have become increasingly
popular with a wide range of organizations in many different fields, and are now used
by policy-makers, regulators, governmental and non-governmental organizations,
businesses, educational institutions and the media [21].

According to project management, stakeholder analyses are useful tools for
demonstrating certain seemingly irresolvable conflicts that can occur throughout
the planned creation and introduction of any project. Project stakeholder analyses
should be undertaken, since they can make a significant contribution to creating
project value through their impact on project activities. Project management that
employs a reasonable number of knowledgeably performed stakeholder analyses is
more likely to succeed. Stakeholder analyses might help project managers elucidate
who the key project stakeholders are, who has the biggest impact on the project, and
what would satisfy the stakeholders. Stakeholder analyses are critical to the success
of every project in every organization. These analyses are instructive for understand-
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ing the impact of major strategic decisions [30]. Stakeholder analyses are usually
undertaken at an early stage of planning and thus they are an important part of risk
assessment activities.

Much of the business management and project management literature provides
a relatively static approach to stakeholder analysis, and fails to consider that stake-
holders can change over time. Some literature advocates taking into account the
on-going and evolving involvement of stakeholders beyond the initial stakeholder
analysis, i.e. at every stage of the project life cycle. In this way, the dynamic nature
of stakeholders’ needs, priorities and interests can be captured throughout the dura-
tion of the project and beyond. In order to develop the dynamics of the model and
understand the importance of stakeholders in projects, including logistics projects,
we can leverage the concept of OFNs and the inference fuzzy system based onOFNs.
Therefore the cyclic analysis especially cyclic dynamic analysis of logistics services’
stakeholders is very important and the research in this area should be undertaken.
The cyclic using approach can support managers in cyclic scheduling of logistics
services and thus assists in dealing with uncertainty and market volatility for a given
business situation [28]. The presented approach, however, is only a support for the
cyclic flow planning considered, among others in [10, 11].

2.2 The Concept of Ordered Fuzzy Numbers

The introduction of the concepts of fuzzy sets and fuzzy numbers was propelled
by the need to mathematically describe imprecise and ambiguous phenomena. The
above concepts were described by Zadeh [46] as a generalization of classical set
theory. According to the definition proposed by Zadeh, a fuzzy set A in a non-empty
space X is a set of pairs A = {(x, μA(x)); x ∈ X}, where: μA(x) : X → [0, 1] is
the membership function of a fuzzy set. This function assigns to each element x ∈ X
its membership degree to fuzzy set A. A fuzzy number is a fuzzy set, which is defined
on the set of real numbers - convex, normal, described by a piecewise continuous
membership function - and has a bounded support (e.g. [13]). A fuzzy number, and
hence its membership function, has two basic interpretations. It can be understood as
a degree to which an element x possesses a certain feature, or as a probability with
which a certain and at this point not entirely known value will assume the value x .

The concept of OFNs, defined by Kosiński, Prokopowicz ad Ślȩżak [25], was
introduced in response to problems related to the application of fuzzy numbers. The
concept has been described in [17, 38].

An ordered fuzzy number is an ordered pair A = ( f, g) of continuous functions
f, g : [0, 1] → R.
There is a great variety of OFNs, and only a small subset of OFNs correspond

to standard fuzzy numbers. A set of pairs of continuous functions, where one func-
tion is increasing and the other is decreasing (and, simultaneously, the increasing
function always assumes values lower or equal than the decreasing function) is a
subset of the set of OFNs which represents a class of all convex fuzzy numbers
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Fig. 2 Standard representation of a proper OFN ( f, g), where f is an increasing function

with continuous membership functions. We term such OFNs proper OFNs. Thus,
the new interpretations offered by the OFN approach can be viewed as an extension
of classical proposals.

Let A = ( f, g) be a proper OFN. We can define a membership function called a
standard representation of a proper OFN (see Fig. 2) which corresponds to convex
fuzzy numbers. Graphically, the standard representations of ( f, g) and (g, f ) do
not differ. However, these pairs of functions determine different OFNs, differing in
direction (also known as orientation), which in the diagrams is denoted by an arrow.

The key aspect of ordered fuzzy numbers is related to the notion of direction. This
additional kind of information is not represented by standard fuzzy numbers. The
OFN model offers a new perspective for looking at imprecision. The use of OFNs
allows to describe trends of imprecise values in real-life processes [25, 37]. Direction
is a new piece of information and it is rendered with an arrow.

A linear OFN ( f, g) is a pair of linear functions and it is uniquely determined by
a 4-D vector [ f (0), f (1), g(1), g(0)], whose elements are real numbers. A proper
linear OFN ( f, g) is called a trapezoidal ordered fuzzy number. In addition, if we
assume that f (1) = g(1), we will obtain what is known as a triangular ordered fuzzy
number. Let A = [a, b, b, c], B = [d, e, e, f ] be triangular ordered fuzzy numbers
and α ∈ R. The operations of addition, subtraction andmultiplication by real number
are defined as follows:

A + B = [a + d, b + e, b + e, c + f ],
A − B = [a − d, b − e, b − e, c − f ],

αA = [αa, αb, αb, αc]. (1)
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Wedistinguish two types of triangularOFNs:with a positive direction (a < b < c)
and with a negative direction (a > b > c). For the positive direction, a standard
representation for A is themembership function of a classical triangular fuzzynumber
(a, b, c):

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ a
x−a
b−a for a < x ≤ b
c−x
c−b for b < x < c
0 for x ≥ c

. (2)

For the negative direction, a standard representation for A assumes the following
form:

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ c
x−c
b−c for c < x ≤ b
a−x
a−b for b < x < a
0 for x ≥ a

. (3)

In the last few years there has been a growing interest in an application of OFNs.
Ordered Fuzzy Numbers are particularly used in the problems of management and
production engineering, where we have to deal with the uncertainty of information
and high dynamic of values or environment changes. In [23], OFNs were used as
a tool for a decision-support system concerning financial project evaluation. Other
problem of management accounting are considered in [17]. The vehicle cyclic rout-
ing and scheduling problem were solved by computer simulation using the variables
described as OFNs [9]. OFNs were also used to assessment in relation to: deliv-
ers [40], contractors [42], profitability of investment projects [32] etc. The above
mentioned applications use OFN properties that distinguish them from convex fuzzy
sets, namely they describe imprecise values together with trends and they apply
mathematical methods based on OFNs arithmetic operations similar to real number
operations. Nevertheless, to the author’s knowledge, the OFNs have been scarcely
investigated from the point of view of the inference mechanism and the system. One
of the first approach of the inferencemechanism is presented by Prokopowicz in [37].
This approach was called the Directed Inference by the Multiplication with a Shift
(DIMS). Recently, authors [5] have proposed a fuzzy control based onOFN rules, but
the inference mechanism was defined only as simple inputs-outputs dependencies
(in a table).
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3 Proposed Method of Dynamic Evaluation of Logistics
Services Stakeholders

3.1 Problem Statement

We consider following problem: given is a company, which realise logistics services
or consider to undertake a new logistics service. The company is interested in having
knowledge about stakeholders engagement of the undertaken logistics service. We
are looking an answer for the following questions: how strong is the engagement of
stakeholders in the logistics service?, does the engagement of stakeholders change
in the given period? The knowledge is important on one hand to control engagement
of undertaken logistics service and on the other hand to decide whether the stake-
holders importance has been changed or not. It is assumed that the initial conditions
of the execution of the logistics service, including the costs, scope and schedule of
the logistics service are known.What is not known, however, is the potential engage-
ment of stakeholders related to the given logistics services in the considered time
horizon - it can be changed in the given horizon. These quantities are determined by
experts based on their knowledge and experience in similar services and stakeholders
observations. The analysed problem comes down to finding out the importance of
each stakeholders of the given logistics service and to fit the strategy dedicated for
stakeholders. These strategies should be implemented under the specified conditions,
taking into account the associated uncertainty and risk. We want to get numerical
estimation of the considered logistics service according to stakeholders evaluation
which allow the given company to say whether an importance of a stakeholders has
been changed and then applied strategy is appropriate or it should be changed.

In logistics services management, the growing realization that stakeholders could
affect the success of undertaken services led to the development of approaches to
stakeholder analysis. Managers should understand stakeholders’ interests and their
influence on the service. Additionally, they should realise that these stakeholders
could support or threaten the execution of the undertaken logistics service.

3.2 Dedicated System with OFN Model

The general advantage of fuzzy systems is the possibility to easily model the rules
using linguistic description. Operators of inference which describe algorithms for
transferring a given fuzzy input into a fuzzy answer form a base for the processing of
fuzzy rules. In general, these methods are based on implications. A Fuzzy Inference
System (FIS) is a method of mapping an input space to an output space using fuzzy
logic [29]. FIS formalizes the inference process of human language by means of
fuzzy logic through creating fuzzy IF-THEN rules. Such systems are very popular
tools for the assessment or measurement in many areas of decision problems.
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Fig. 3 Structure of the system with OFN model to logistics services stakeholders evaluation

In the paper, the method of dynamic evaluation of logistics services stakeholders
based on fuzzy system with OFN model is proposed. Figure3 presents a proposal
for the structure of the system with OFN knowledge base and the connection of the
system with the environment.

The proposed system consists of the following parts:

• a knowledge base that contains the necessary knowledge in a OFNmodel, relevant
to the evaluation of stakeholders problem,

• a fuzzification block that converts input data from the quantitative field into qualita-
tive quantities represented byOFNs based on their degrees ofmembership function
stored in the knowledge base,

• an inference block that uses a knowledge base and implemented inference and
aggregation methods to evaluation of stakeholders,

• a defuzzification block that calculates a quantitative (crisp) value as an assessment
of stakeholder.

The approach is based on inference mechanismwith using fuzzy IF-THENmodel
with OFNs. The implemented model allows for mapping the model input (X ) to the
output (Y ): X → Y through a set of K -fuzzy conditional rules in the form:

Rk : IF x1 is A1 and ...and xi is Ai THEN Y is B, (4)

where: k = 1, 2, . . . , K , x1, . . . , xi are the factors assessing the logistics services
stakeholders, Y is the output assessment of stakeholders and A1, . . . , Ai and B are
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Fig. 4 Cyclic evaluation of logistics service stakeholders

ordered fuzzy numbers modeling the k-th rule. The model (4) is a general assessment
model. In particular, the model may consider two main, the most important factors
of stakeholders assessment: power and interest of stakeholder. Then the OFN model
can be described in the following form of rules:

Rk : IF power is A1 and interest is A2 THEN importance is B, (5)

where: the importance is output assessment of stakeholder, described also by OFNs
(linguistic descriptions with the notes of change dynamics).

It is important to evaluate and understand behavior of stakeholder during the logis-
tics’ service front-end stage. Stakeholders’ attributes and their position in logistics
service do not remain steady-state during a cycle of the service. The stakeholders
engagement in logistics service has a dynamic nature. The developed approach ded-
icated to stakeholder analysis under uncertainty should be one of important activity
in management of logistics service. The cyclic evaluation of stakeholder behavior
with this approach can be used during logistics service phases (Fig. 4). The cyclic
applied of the approach can be helpful in obtain the right stakeholders management
and service success. The dynamics evaluation of stakeholder is based on observa-
tion of changes in stakeholders’ attributes and position on the logistics service. The
observed values are: stakeholders’ attributes, in this case: power and interest of each
stakeholder of the logistics service.

Mapping changes of the stakeholders importance is important information for
managers to right management of logistics service and to avoid threats of execution
of this kind of service. The cyclic using of the system can be seen as a source of early
warning signs for logistics services [31].
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3.3 Ordered Fuzzy Inference Mechanism

OFNs can be used in lieu of classical fuzzy numbers when processing imprecise
data; however, to process additional information contained in the new model, we
need methods sensitive to direction. One such method called the Directed Inference
by the Multiplication with a Shift (DIMS) was proposed by Prokopowicz [37]. An
inference mechanism is based on the generalized modus ponens, where the main role
is played by ordered fuzzy rules. Let’s assume a single rule in the following form:

IF X is A THEN Y is B, (6)

where: A, B are OFNs modeling the rule; x is the input variable (for example power
or interest), y is the output variable (importance), respectively. We consider a special
case of this mechanism, where A, B are triangular OFNs.

The process of fuzzy inference is comprised of three steps that process the system
inputs to the appropriate system outputs. Fuzzification is the first step in the fuzzy
inferencing process, where crisp inputs are transformed into fuzzy inputs. Crisp
inputs can be, for example, results of power of stakeholders measurement.

In classical fuzzy logic the effect of fuzzification is a degree to which a crisp value
is compatible to a membership function, (value from 0 to 1), also known as truth
value or fuzzy input. For OFNs the result of expression ‘x is A’, is composed of two
values: the truth value μA calculated using (2) or (3) and so called the proportional
direction determinant DA(x).

Let A = [a, b, b, c] be a triangular ordered fuzzy number and x ∈ (a, c) (for a
positive direction) or x ∈ (c, a) (for a negative direction). Proportional direction
determinant of x in relation to number A (denoted by DA) is calculated as follows:

DA(x) =
{ x−b

b−a for x ∈ (a, b] or x ∈ [b, a)
x−b
c−b for x ∈ (b, c) or x ∈ (c, b)

. (7)

The general idea of this notion is to measure a distance from an argument x to a core
of OFN.

The next step of fuzzy inference is a rule evaluation. Let A and B = [d, e, e, f ]
be triangular OFNs. The process for determining an output OFN Y as importance
- the result of the rule (6) is calculated by the following rule: if μA = 0 there is no
activation of the rule, so the answer is not calculated, in other case:

Y = B + |DA(x)| · K , (8)

where K =
{ [d, d, d, d] − B for DA(x) ≤ 0

[ f, f, f, f ] − B for DA(x) > 0
.

The last step is a defuzzification, which converts a fuzzy number into a crisp value
or number. Functionals φ (whichmap fuzzy numbers to real numbers play a vital role
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in the applications of OFNs. The model of constructing defuzzification functionals
presented in [24] allows to obtain a number of defuzzification functionals, whether
linear or non-linear. Unfortunately, functionals obtained in this way always are not
sensitive to the direction, i.e. φ( f, g) = φ(g, f ), which is an essential feature of
OFNs defined with continuous function f, g. Defuzzification functionals sensitive to
directionwere considered in [7]. In ourworkweapplied the defuzzification functional
sensitive to the direction, defined by the following formula for triangular OFN:

φ(A) = φ([a, b, b, c]) = a + b + 2c

4
. (9)

The approach is based on inference mechanism with using ordered fuzzy with
many input variables. Now, we consider rules of the type (4). To use OFNs in such
a rule we use the method called Arithmetic Mean Directed Inference Aggregation
(AMDIA) proposed by Piotr Prokopowicz in [37]. The result of aggregation of fuzzy
expression from premise part of the rule (4) is a pair: truth value T and Direction
Determinant D. The algorithm specifying this pair is presented as following steps:

1. Calculation of μAi (xi ) and DAi (xi ) for i-the elementary fuzzy expression i =
1, 2, . . . , n.

2. If μAi (xi ) = 0 for some i , then T = 0 and D is unspecified.
3. Otherwise,

T = 1

n

n∑

i=1

μAi (xi ), D = 1

n

n∑

i=1

DAi (xi ). (10)

The answer of the inference mechanics based on the rule (4) we calculate using the
formula (8) and then we defuzzificate the input using formula (9).

4 Dynamic Evaluation Based on OFN Inference
Mechanism with Simple Ordered Fuzzy Rule—A Case
Study

To develop a dynamic model and to understand stakeholder importance in a given
logistics service, stakeholders’ attributes are described by OFNs. This approach
allows to include additional information that is significant for performing the appro-
priate analysis.Our approach is described using the example of power and importance
of potential stakeholders. These parameters are important in recognizing stakeholder
position in the logistics service and their influence on its success or failure. The
analysis and assessment of logistics service’ stakeholders takes into account their
essential characteristics in a given service. Based on this information, the stakehold-
ers are subsequently prioritized. Such analyses can be seen as a valuable source of
information about the stakeholders and good practices, whichmay facilitate planning
the processes of new logistics services.
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In this section, we apply the proposed approach to stakeholder analysis to a case
study. The approach consists of few steps. In the first step we identify potential stake-
holder and its attributes - power and importance. The attributes are characterized by
uncertainty. All uncertainties should be properly addressed for each stakeholder. The
attributes are expressed by an expert who gives his opinion on individual stakeholder
of the given logistics service in the form of Ordered Fuzzy Numbers, i.e. pairs of
functions. We propose that experts describe the attributes in a simple and practicable
way, by means of triangular fuzzy numbers, which will be subsequently converted
into OFNs. If an expert generates a triangular fuzzy number as a result of assessing
the distribution of possible values of a certain unknown quantity, it means that the
expert deems the values below a and above c not to be possible; whereas the value
b is possible with a degree of 1, and the remaining values are possible to a varying
degree that decreases with their distance from b. Using OFNs, we may additionally
take into account an expert’s opinion on the dynamics of change associated with this
quantity.

Interpretations based on OFNs may be in agreement with the idea of classical
fuzzy numbers. By using OFNs one can provide supplementary information regard-
ing direction. By using OFNs we can describe any imprecise value in real-life pro-
cesses; in this case, the power and importance of potential logistics service stake-
holders. Additionally, direction encapsulates the expert’s opinion on the dynamics
of change in the analysed quantity - stakeholder’s power and their importance in the
service. Interpretations based on classical fuzzy numbers and ordered fuzzy num-
bers are illustrated in Fig. 5. We present the interpretation of an expert’s opinion of
a stakeholder’s power in the logistics service - in this case, it is ca. 8 on a scale
from 0 to 12 (Fig. 5a). As already mentioned, by using OFNs we may augment the
expert’s opinion with information concerning the dynamics of change in this quan-
tity, such as “ca. 8 and rising” (Fig. 5b). This could mean that the stakeholder’s power
has increased relative to the previous measurement. Another option could be: “ca.
8 and not rising” (Fig. 5c), which would mean that it has not registered an increase
relative to the previous measurement. This is a clear improvement over expressing
the expert’s opinion using standard fuzzy numbers. This property of OFNs lends
increased applicability of this solution to modelling reality under the conditions of
uncertainty, such as in stakeholder analysis.

Fig. 5 a) Classical fuzzy number - “power of logistics service stakeholder ca. 8”- (6,8,10); b)
Standard representation of triangular OFN [6, 8, 8, 10] - positive order; c) Standard representation
of triangular OFN [6, 8, 8, 10] - negative order



118 A. Chwastyk et al.

Fig. 6 Mamdani’s fuzzy inference method

Below, we demonstrate the structure of the proposed ordered fuzzy inference
mechanism, which is a part of the inference systemwith an ordered fuzzy knowledge
base. Ordered Fuzzy Inference System uses ordered fuzzy theory to determine its
properties (ordered fuzzynumbers, ordered fuzzy rules, ordered fuzzydefuzzification
method). This kind of system uses the mathematical properties of fuzzy theory.

To compare the standard approach based on fuzzy logic and the new approach
based on ordered fuzzy logic, we first consider an example of a simple fuzzy rule:

R: IF power of stakeholders IS high THEN importance of stakeholders IS high.

We assume that the linguistic term “high power” is represented by a standard
triangular fuzzy number (6, 8, 10) on a scale from 0 to 12 (Fig. 5a) and the term
“high importance” by a triangular fuzzy number (60, 70, 90)%. We apply one of the
most commonly used fuzzy inference methods, i.e. Mamdani’s direct method. If we
consider the two results of stakeholders’ power measurement as input values, i.e.
x1 = 7 and x2 = 9, we obtain the same output value Y (shown in Fig. 6). Using, for
instance, the centre of gravity (COG), as the defuzzification method, we obtain the
importance of stakeholders equals 73.9%. It is worth mentioning that stakeholder
importance grows with increasing power. Therefore, it should be greater when the
power is equal to 9 than when it is equal to 7.

To demonstrate how OFNs can be applied to inference mechanisms, we will con-
sider the following two examples of rule (4):

R1: IF power of stakeholders IS high and not greater than in the previous mea-
surement (A1) THEN importance of stakeholders IS high and it does not increase
(B1);

R2: IF power of stakeholders IS high and greater than in the previous measure-
ment (A2) THEN importance of stakeholders IS high and it increases (B2).

We assume now that the linguistic term “high and not greater than in the previous
measurement”means that the power of stakeholders is high but not greater than in the
previous measurement and it is represented by the triangular ordered fuzzy number
A1 = [10, 8, 8, 6] (see Fig. 5c). Similarly, “high and greater than in the previousmea-
surement” is represented by A2 = [6, 8, 8, 10] (see Fig. 5b). The linguistic values of
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“high importance of stakeholders and it does not increases” and “high importance
of stakeholders and it increase” are represented by ordered triangular fuzzy numbers
B1 = [90, 70, 70, 60] and B2 = [60, 70, 70, 90], respectively.

Let consider consider the following input values:
x1: power of stakeholders is 7 and is not greater compared to the previous measure-
ment,
x2: power of stakeholders is 7 and is greater compared to the previous measurement,
x3: power of stakeholders is 9 and is not greater compared to the previous measure-
ment,
x4: power of stakeholders is 9 and is greater compared to the previous measurement.

Inputs x1 and x3 activate the ordered fuzzy rule (R1), whereas inputs x2 and x4
activate the ordered fuzzy rule (R2).

In order to better understand the proposed inferencemechanismwe present exam-
ple applications of stakeholder analysis with the use of ordered fuzzy rules. In the
first example, we calculate stakeholder importance based on the data where the
power of stakeholders is 7 and it is not greater compared to the previous observa-
tion (x1). This input activates the ordered fuzzy rule (R1). First, we calculate the
truth value μA1(7) = 1

2 using formula (3) and the proportional direction determinant
DA1(7) = 7−8

6−8 = 1
2 via formula (7). Subsequently, we calculate the output of the rule

using formula (8):

K1 = [60, 60, 60, 60] − [90, 70, 70, 60] = [−30,−10,−10, 0],
Y1 = [90, 70, 70, 60] + 1

2 [−30,−10,−10, 0] = [75, 65, 65, 60].
Finally, we use the defuzzification formula (9), which maps a OFN onto a real

number: φ(Y1) = 75+65+2·60
4 = 65%.

The second example presents the steps of the calculation utilizing the ordered
fuzzy rule (R2). In this case, we obtain the stakeholder importance based on the data
where the power of the stakeholder is 7 and it is greater compared to the previous
observation (x2). We begin by calculating μA2(7) = 1

2 using formula (2). Then, we
proceed as in the previous example:

DA2(7) = 7−8
8−6 = − 1

2 , K2 = [60, 60, 60, 60] − [60, 70, 70, 90] = [0,−10,
−10,−30], Y2 = [60, 70, 70, 90] + 1

2 [0,−10,−10,−30] = [60, 65, 65, 75].
And finally φ(Y2) = 68.75%.

The results of the above ordered fuzzy inferences for the input values x3, and x4
are shown in Figs. 7, 8 and Table1.

The obtained crisp values of stakeholder importance are compatible with eco-
nomic intuition. In contrast to the standard fuzzy inference mechanism, stakeholder
importance grows with their increasing power. In addition, the ordered inference
mechanism allows to take into account the results of the previous measurement. If
the obtained result is better than in the previousmeasurement, the power of stakehold-
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Fig. 7 Application of DIMS for the rule R1

Fig. 8 Application of DIMS for the rule R2

Table 1 Ordered fuzzy rules and defuzzification

Input Rule Output Y -importance of
stakeholder (%) - OFNs

Importance of
stakeholder (%)

x1 R1 Y1 = [75, 65, 65, 60] 65.00%

x2 R2 Y2 = [60, 65, 65, 75] 68.75%

x3 R1 Y3 = [90, 80, 80, 75] 80.00%

x4 R2 Y4 = [75, 80, 80, 90] 83.75%

ers increases. Moreover, the arithmetic mean of the four crisp values of stakeholders’
importance equals 74.375%.

Thus, the ordered fuzzy inference mechanism is compatible with standard fuzzy
inference operators; this is important for maintaining comparable usefulness in prac-
tical situations.

5 Dynamic Evaluation Based on OFN Inference
Mechanism with Complex Ordered Fuzzy Rule—A Case
Study

In order to illustrate using ordered fuzzy numbers to inference mechanisms we use
the following two examples of the rules:

R1: IF power of stakeholder IS high and not bigger than the previous (A1) AND
interest of stakeholder IS high and not bigger than the previous (B1) THEN impor-
tance of stakeholder IS high and not increases (C1),
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R2: IF power of stakeholder IS high and bigger than the previous (A2) AND
interest of stakeholder IS high and bigger than the previous (B2) THEN importance
of stakeholder IS high and increases (C2).

We assume now that the linguistic term of stakeholder power as “high and not
bigger than the previous” means that a power of stakeholder is high but not bigger
than in the previous measurement and it is represented by a triangular ordered fuzzy
number A1 = [10, 8, 8, 6]. Analogically, “high and bigger than the previous” is rep-
resented by A2 = [6, 8, 8, 10]. The linguistic term of stakeholder interest defined as
“high and bigger than the previous” means that an interest of stakeholder is high but
lower than in the previous measurement and it is represented by a triangular ordered
fuzzy number B1 = [9, 7, 7, 6]. Analogically, “high and bigger than the previous” is
represented by B2 = [6, 7, 7, 9].

Linguistic values “high and not increasing importance of stakeholder” and “high
and increasing importance of stakeholder” are represented by ordered triangular
fuzzy numbers C1 = [90, 80, 80, 60]% and C2 = [60, 80, 80, 90]%, respectively.

In order to illustrate the proposed approach let consider the following input values:

x1: the power of customer is 9 and it is not bigger compared to the previous obser-
vation,
x2: the power of customer is 9 and it is bigger compared to the previous observation,
x3: the interest of customer is 8.5 and it is not bigger compared to the previous obser-
vation,
x4: the interest of customer is 8.5 and it is bigger compared to the previous observa-
tion.

The inputs x1, x3 activate the ordered fuzzy rule (R1),whereas inputs x2, x4 activate
the ordered fuzzy rule (R2). The results of the above ordered fuzzy inferences are
shown in Table2. Below we present examples of chosen stakeholder analysis with
use ordered fuzzy rules. In the first example we calculate importance of customer
based on data where the power of customer is 9 and it is lower compared to the
previous observation (x1) and the interest of customer is 8.5 and it is lower compared
to the previous observation (x3). We use here ordered fuzzy rule (A2). The second
example presents the step of calculation with use ordered fuzzy rule (B2). In this case
we obtain the importance of customer based on data where the power of customer
is 9 and it is not lower compared to the previous observation (x2) and the interest of
customer is 8.5 and it is not lower compared to the previous observation (x4).

As we can see the outputs of stakeholder analysis differs. In the first case where
the power and interest are lower than the previous observation the importance of
the analyzed stakeholder equals about 83% and it is lower in compared with the
second case where the power and interest are the same value but with non-increasing
tendency. In this case the importance of the chosen stakeholder equals about 86%.
In contrast to standard fuzzy inference mechanism, importance of stakeholder grows
with increasing power and interest (Table2).
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Table 2 Inputs and output of stakeholder analysis

Input Rule Output Y -importance of
stakeholder (%) - OFNs

Importance of
stakeholder (%)

x1, x3 R1 Y1 =
[90, 86.25, 86.25, 78.5]

83.3124%

x2, x4 R2 Y2 =
[78.5, 86.25, 86.25, 90]

86.1875%

Example of applying the rule R1:

μA1(9) = 10−9
10−8 = 1

2 , DA1(9) = 9−8
8−10 = − 1

2 ,

μB1(8.5) = 9−8.5
9−7 = 1

4 , DB1(8.5) = 8.5−7
7−9 = − 3

4 ,

T = 1
2 + 1

4
2 = 3

8 , D = − 1
2 − 3

4
2 = − 5

8 ,

K = [90, 90, 90, 90] − [90, 80, 80, 60] = [0, 10, 10, 30],

Y1 = [90, 80, 80, 60] + 5
8 [0, 10, 10, 30] = [90, 86.25, 86.25, 78.5],

φ(Y1) = 90+86.25+2·78.5
4 = 83.3124%.

Example of applying the rule R2:

μA2(9) = 10−9
10−8 = 1

2 , DA2(9) = 9−8
10−8 = 1

2 ,

μB2(8.5) = 9−8.5
9−7 = 1

4 , DB2(8.5) = 8.5−7
9−7 = 3

4 , T = 3
8 , D = 5

8 ,

K = [90, 90, 90, 90] − [60, 80, 80, 90] = [30, 10, 10, 0],

Y2 = [60, 80, 80, 90] + 5
8 [30, 10, 10, 0] = [78.5, 86.25, 86.25, 90],

φ(Y2) = 86.1875.%

6 Knowledge Base for Dynamic Evaluation of Logistics
Services Stakeholders—A Case Study

The proposed approach to cyclic evaluation of logistics service stakeholders will be
illustrated via a case study. As we know logistics plays an important role in inte-
grating the supply chain of industries it links manufacturers and logistics service
providers. Let assume an example of two companies in supply chain. On one hand
we have a company which is one of a logistics service provider and on the other hand
we have a manufacturing company. The given manufacturing company is a global
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company, and believes that logistics is seen as an important area where the company
can decrease costs and improve their customer service quality. The company out-
sources their logistics operations to Third Party Logistics Service Provider (LSP) to
introduce products and service innovations quickly to their markets. The manufac-
turing company outsource their logistics activities to meet their increasing need for
logistics services. This trend has increased importance for the given logistics service
provider. As a medium sized company performs logistics service on behalf of their
clients. While performing logistics services dedicated for the manufacturing com-
pany, logistics managers might be uncertain whether the importance of the client is
changed and the strategy of stakeholder engagement is appropriate. This evaluation
is very important process and is cyclic. The process should be done more than one in
the cycle of the logistics service. Monitoring of the importance of each stakeholders
is necessary due to success of a given order - logistics service treated as a logistics
project.

The manufacturing company is one of stakeholder of the given logistics service
provider. The company is interested in knowledge of the importance of this company.
The expert, in this case logistics servicemanager identified stakeholder factors (power
and interest) based on the subjective judgment, knowledge and experience. The input
and output variables were identified. The manager described the variables using
ordered fuzzy numbers.

To cyclic evaluate the dynamic importance of the service logistics stakeholders’,
we propose a knowledge database presented in Table3. The importance of every
stakeholder are evaluate based on the criteria: power and interest of the logistics
service. The inputs are presented as OFNs on values such: very low V L , low L ,
medium M , high H , very high V H . The difference between traditional fuzzy num-
bers and ordered fuzzy numbers is possibility to add additional information about
the observation. We put information about the changes of the criteria - increase or
decrease of power/interest. For example V L ↗ power means that power is very low
but is bigger than in previous observation. An attribute importance of stakeholder is
evaluated on complex rules. For example:

IF power of stakeholder is V L ↗AND interest of stakeholder isM ↗THEN impor-
tance is L ↗,
IF power of stakeholder is H ↘AND interest of stakeholder is V H ↘THEN impor-
tance is V H ↘,
IF power of stakeholder is V H ↗AND interest of stakeholder is H ↘THEN impor-
tance is V L ↗.

The arrow depicts positive or negative direction. The above mention OFNs are
triangular OFNs with membership function (2), (3) and are identified by linguistic
descriptions and the directions, which mean dynamics of changes in related with
previousmeasurements of factors. If the assessed factor is greater than in the previous
measurement, the OFN of this factor has a positive direction. If the assessed factor is
not greater than in the previous measurement, the OFN of this factor has a negative
direction.
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Table 3 Database dedicated to importance evaluation of stakeholder

Interest Power

V L ↗ L ↗ M ↗ H ↗ V H ↗ V L ↘ L ↘ M ↘ H ↘ V H ↘

V L ↗ V L ↗ V L ↗ L ↗ L ↗ M ↗ V L ↘ V L ↘ L ↘ L ↘ M ↘

L ↗ L ↗ L ↗ M ↗ M ↗ H ↗ L ↘ L ↘ M ↘ M ↘ H ↘
M ↗ L ↗ M ↗ M ↗ H ↗ H ↗ L ↘ M ↘ M ↘ H ↘ H ↘
H ↗ M ↗ M ↗ H ↗ H ↗ V H ↗ M ↘ M ↘ H ↘ H ↘ V H ↘

V H ↗ M ↗ H ↗ H ↗ V H ↗ V H ↗ M ↘ H ↘ H ↘ V H ↘ V H ↘

V L ↘ V L ↗ V L ↗ L ↗ L ↗ M ↗ V L ↘ V L ↘ L ↘ L ↘ M ↘

L ↘ L ↗ L ↗ M ↗ M ↗ H ↗ L ↘ L ↘ M ↘ M ↘ H ↘
M ↘ L ↗ M ↗ M ↗ H ↗ H ↗ L ↘ M ↘ M ↘ H ↘ H ↘
H ↘ M ↗ M ↗ H ↗ H ↗ V H ↗ M ↘ M ↘ H ↘ H ↘ V H ↘

V H ↘ M ↗ H ↗ H ↗ V H ↗ V H ↗ M ↘ H ↘ H ↘ V H ↘ V H ↘

Fig. 9 Membership functions for linguistic representation of stakeholder power and interest with
increasing value

As we can see the knowledge base for dynamic evaluation of logistics services
stakeholders consists of 100 rules. The rules based on OFNs are developed.

The evaluation of a fuzzy rule is based on computing the true value together with
proportional direction determinant of its antecedents and applying it to its consequent.
It is necessary to generate the membership functions representative of the five pos-
sible linguistic variables. OFNs enables an assessment between very low and very
high of logistics service stakeholders attribute, i.e.: power and interest. The Figs. 9
and 10 present representations of power and interest descriptions with OFNs, respec-
tively with increasing and decreasing value. The membership curves have been built
using ordered fuzzy numbers corresponding with the linguistic value scale provided
respectively in Tables4 and 5.

The Figs. 11 and 12 present representations of importance stakeholder withOFNs,
respectivelywith increasing and decreasing value. Themembership curves have been
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Fig. 10 Membership functions for linguistic representation of stakeholder power and interest with
decreasing value

Table 4 The linguistic attribute power and interest of logistics service stakeholder with increasing
value

Criteria power OFNs Criteria interest OFNs

Very Low V L ↗ [0, 1, 1, 3.5] Very Low V L ↗ [0, 1, 1, 3.5]
Low L ↗ [1, 3.5, 3.5, 5.5] Low L ↗ [1, 3.5, 3.5, 5.5]
Medium M ↗ [3.5, 5.5, 5.5, 7.5] Medium M ↗ [3.5, 5.5, 5.5, 7.5]
High H ↗ [5.5, 7.5, 7.5, 9.5] High H ↗ [5.5, 7.5, 7.5, 9.5]
Very High
V H ↗

[7.5, 9.5, 9.5, 11.5] Very High
V H ↗

[7.5, 9.5, 9.5, 11.5]

Table 5 The linguistic attribute power and interest of logistics service stakeholder with decreasing
value

Criteria power OFNs Criteria interest OFNs

Very Low V L ↘ [3.5, 1, 1, 0] Very Low V L ↘ [3.5, 1, 1, 0]
Low L ↘ [5.5, 3.5, 3.5, 1] Low L ↘ [5.5, 3.5, 3.5, 1]
Medium M ↘ [7.5, 5.5, 5.5, 3.5] Medium M ↘ [7.5, 5.5, 5.5, 3.5]
High H ↘ [9.5, 7.5, 7.5, 5.5] High H ↘ [9.5, 7.5, 7.5, 5.5]
Very High Vh ↘ [11.5, 9.5, 9.5, 7.5] Very High

V H ↘
[11.5, 9.5, 9.5, 7.5]

Fig. 11 Membership functions for linguistic representation of stakeholder importancewith increas-
ing value

built using ordered fuzzy numbers corresponding with the linguistic value scale
provided in Table 6.

We assume that the power of given stakeholder is equal 7 and is bigger than in the
previous observed phase of logistics service (Fig. 13). The interest of the stakeholder
is equal 6 and is bigger than in previous observation (Fig. 14).
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Fig. 12 Membership functions for linguistic representation of stakeholder importancewith decreas-
ing value

Table 6 The linguistic attribute importance of logistics service stakeholder

Criteria importance OFNs Criteria importance OFNs

Very Low V L ↗ [0, 10, 10, 25] Very Low V L ↘ [25, 10, 10, 0]
Low L ↗ [10, 25, 25, 45] Low L ↘ [45, 25, 25, 10]
Medium M ↗ [25, 45, 45, 65] Medium M ↘ [65, 45, 45, 25]
High H ↗ [45, 65, 65, 85] High H ↘ [85, 65, 65, 45]
Very High
V H ↗

[65, 85, 85, 100] Very High V H ↘ [100, 85, 85, 65]

Fig. 13 Membership functions for linguistic representation of stakeholder power and interest with
increasing value

Fig. 14 Membership functions for linguistic representation of stakeholder power and interest with
decreasing value

Based on proposed knowledge base, we activate the following rules:
R1: IF power of stakeholder is M ↗ AND interest of stakeholder is M ↗ THEN
importance is M ↗,
R2: IF power of stakeholder is H ↗ AND interest of stakeholder is H ↗ THEN
importance is H ↗,
R3: IF power of stakeholder is H ↗ AND interest of stakeholder is M ↗ THEN
importance is H ↗,
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Table 7 Inputs and output of logistics service stakeholder evaluation

Rule Power Interest Output Y - importance of stakeholder (%)

R1 M ↗ M ↗ [44.44, 54.72, 54.72, 65]
R2 H ↗ H ↗ [45, 55, 55, 65]
R3 H ↗ M ↗ [45, 65, 65, 85]
R4 M ↗ H ↗ [45, 65, 65, 85]

R4: IF power of stakeholder is M ↗ AND interest of stakeholder is H ↗ THEN
importance is H ↗.

After evaluating the result of each rule (Table7), these results should be combined
to obtain a final result. The results of individual rules can be combined in different
ways. We propose taking the maximum values, so we get [45, 65, 65, 85]%. This
result should be defuzzified to obtain a final crisp output. For this purpose we use the
defuzzification formula (9), so finally we obtain 70%. The logistics service manager
can now make decision based on the obtained stakeholder assessment. This deci-
sion maker have more precise information of the stakeholder behavior and can fit
appropriate strategy to a given stakeholder.

The case studywas driven on an practical example and compare with the approach
based on a standard triangular fuzzy number and with using standard fuzzy inference
system. Using ordered fuzzy numbers, we may additionally take into account an
expert opinion about the dynamics of change input values. The new approach is
based on inference mechanism with using ordered fuzzy withmany input variables.
It is the advantage of the approach. The inferencemechanismwas defined as complex
inputs-outputs dependencies. The proposed tool is a new one and can be applied in
stakeholder management by logisticians and project managers. It seems to be wright
tool beside standard power-interest matrix. This approach can help categorize project
stakeholders with increasing/decreasing power and interest in the logistics service
treated as a project. This tool helps to focus on the key stakeholders who can make
or break the service. In turn, this helps in stakeholder prioritization.

7 Conclusions

Attention to logistics services’ stakeholders is significant, and stakeholder analyses
become important due to the increasingly interconnected nature of such projects.
We proposed the dynamic approach to stakeholder analysis based on the inference
systemwith OFNs. The direction of OFNs can be related to an expert’s opinion about
the dynamic changes of the analysed problem - in this case, stakeholder power and
importance in the logistics service. In so doing we extend the existing interpretation
of fuzzy numbers. Moreover, by using an important feature of OFNs, viz. direction,
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we are able to provide more complex information regarding the evaluation of the
analysed problem.Based on the illustrative case studywe can formulate the following
conclusions. The application of Ordered Fuzzy Inference allows to obtain more
reliable information compared with standard fuzzy inference. The outputs of the
Directed Inference by the Multiplication with a Shift are more precise. The greatest
advantage of this kind of system is that they deal with uncertainty in a better manner
and allow to take into account the results of not only current but also previous
measurements.

The cyclic using of the proposed evaluation of stakeholder can be useful tool for
decision makers and can be seen as a source of early warning signs in the area of
stakeholder management.

The chapter emphasizes the practical application of this new approach based on
OFN model, with possible aspects in stakeholders analysis. The dynamic nature of
stakeholders’ needs, priorities and interests can be captured throughout the duration
of the project and beyond. In order to develop the dynamics of the model and under-
stand the importance of stakeholders in projects, including logistics projects, we can
leverage the concept of ordered fuzzy numbers. The approach to cyclic dynamic
evaluation presented in the chapter can be adopted in different logistics projects. It
could be applied in logistics enterprises especially in logistics services, as well in
manufacture enterprises, especially in make to order enterprises.The goal of chapter
is to give logisticians and project managers a comprehensive overview of how the
computational method in a certain logistics service area can be used. The chapter
provides valuable resources to a wide audience in logistics, industry and anyone else
who are looking to expand their knowledge of computational methods of stakeholder
evaluation. The proposed approach can support logisticians and project managers in
stakeholder management decisions. The logisticians and project managers can adopt
the approach in their work during stakeholders management in the phase of stake-
holder analysis. The dynamic approach is valuable and has the advantage on the static
approaches to stakeholder analysis. Using the proposed approach by the logisticians
and project managers can increase the likelihood of logistics services and projects
success by influencing project stakeholders [36]. The system deals with uncertainty
in a better manner and allow to take into account the results of not only current but
also previous measurements. The knowledge of changing stakeholders behavior is
important on one hand to control engagement of undertaken logistics service and on
the other hand to decide whether or not to undertake a potential logistics service or
other projects. The proposed approach allow the enterprise to verify a given strat-
egy of stakeholder engagement and fit the best based on the estimation by using the
proposed approach.

In future work we plan to elaborate on the above approach by developing an
Ordered Fuzzy Inference System using more complex ordered fuzzy rules and other
applications.
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Proceedings of AI-Meth’2009 Conference, November 2009, pp. 161–178, AI-METH Series,
Gliwice (2009)
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and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosiński, Studies
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The Interleaved Memory Efficiency for
Multithread Memory Calls Processing

Oleg Brekhov

Abstract The advantages of memory interleaving attracted many researchers to
study the effectiveness of interleaved memory using analytical and simulation mod-
eling. Database query processing is connected with data arrays processing, as there
are always many threads with memory calls to banks of interleaved memory, and
it is possible that different threads will access the same banks, which reduces the
efficiency of the interleaved memory. Here, we use analytical modeling to study the
effectiveness of interleaved memory taking into account conflicting memory calls
from multiple threads.

Keywords Memory interleaving · Multiple thread · Analytical modeling ·
Conflicting memory calls · Effectiveness

1 Introduction

Memory efficiency is an important research area for many authors. The papers
[1, 2] introduce parallel versions of twohierarchicalmemorymodels andgive optimal
algorithms in thesemodels for sorting. Thework [3] present three novel techniques to
perform memory, metadata, and communication management in hierarchical buffer-
ing systems. The paper [4] tries to optimize on-chipmemory access traffic via runtime
thread migration. Author [5] address the verification problem of numeric properties
in many-threaded concurrent programs under weakly consistent memory models.
In [6] present an efficient method for modeling multi-threaded concurrent systems
with shared variables and locks in Bounded Model Checking (BMC), and use it to
improve the detection of safety properties such as data races. A general algorithm
is presented [7] for implementing dataflow computations with multiple threads that
communicate using only reads and writes of shared memory. The paper [8] review
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the relevant trends inmulti-threadedmicroprocessor design and look at one approach
in detail, showing how wide instruction issue can be achieved and how it can provide
excellent performance, latency tolerance and above all scalability with issue width.

An alternative approach for author [9] is to build a throughput-oriented, mul-
tithreaded CMP from a much larger number of simpler processor cores. Author
propose [10] an affinity- and architecture-aware thread mapping technique which
maximizes data reuse and minimizes remote communications and cache coherency
costs of multi-threaded applications.

Memory interleaving is a well-known technique for increasing memory perfor-
mance. This mechanism was firstly used for high-performance computing systems
(CS) for data arrays processing [11] and implied locating memory cells with con-
secutive array elements in consecutive memory banks (MBK). Later this technique
was found ef-fective for other computing systems classes [12, 13].

The advantages of memory interleaving attracted many researchers to study the
effectiveness of interleaved memory using analytical and simulation modeling [14].

Database query processing is connected with data arrays processing [15], as there
are always many threads with memory calls to banks of interleaved memory, and
it is possible that different threads will access the same banks, which reduces the
efficiency of the interleaved memory.

In this chapter, we use analyticalmodeling to study the effectiveness of interleaved
memory taking into account conflicting memory calls from multiple threads.

2 Problem Statement

Let n be the number of banks of interleaved memory, k - be the number of memory
calls from each thread per single memory access cycle, and p = n

k - be the number
of threads. Therefore, the total number of all memory calls per single memory access
cycle is n.

Our task is to determine the mean number and standard deviation of the number
of occupied MBK per single memory access cycle.

3 Mean Number of Occupied MBK per Memory Access
Cycle

It is easy to understand that the probability ofmemory call for freeMBK from a single

thread is ((p−1)·k)
p·k . Then the probability of memory call for p threads is

(
p−1
p

)p
.

Therefore, the relative mean number of occupied MBK per memory access cycle
is:



The Interleaved Memory Efficiency for Multithread Memory Calls Processing 135

Table 1 Relative mean number of MBK occupied per memory access cycle

Number of threads (p) 1 2 3 4 10 32 ∞
Relative mean (mrel ) 1 0.75 0.703 0.6836 0.672 0.638 1 − e−1 = 0.632

mrel = (1 − (1 − 1

p
)p) = 1 − (

p − 1

p
)p, (1)

and the absolute mean number of MBK occupied per memory access cycle is:

mabs = (1 − (1 − 1

p
)p)n. (2)

Limit values for p → ∞ are equal, respectively (see Table1):

lim
p→∞ (mrel) = lim

p→∞

(
(1 − (1 − 1

p
)p)n

)
= 1 − e−1, (3)

lim
p→∞ (mrel) = (1 − e−l)n. (4)

The Table1 shows that increasing the number of MBK by 1.6 times due to redun-
dant MBK can provide an average of 100%memory calls processing for any number
of threads. Now let us determine the standard deviation of the number of occupied
MBK.

4 The Standard Deviation of the Number of Occupied
MBK per Memory Access Cycle

To calculate the standard deviation σ of random variable X (number of occupied
MBK), we use the well-known formula:

σ = √
D(X), (5)

where the variance D (X) is determined by the expression:

D (X) = M
[
X2

] − (M[X ])2, (6)

where
M [X ] = mabs,

σabs = √
D(X),
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σrel = σabs

k · p . (7)

To calculate M
[
X2

]
, it is necessary to determine the probability of the number of

occupied MBK for specific values of p (number of threads).

4.1 The Number of Threads Is 2

Let n = p · k = 2 · k be the number ofMBK of the interleavedmemory. Let symbols
“a” and “b” be the indicators for thememory calls from thefirst and the second threads
respectively. The number of possible distributions of memory calls for each of the
two threads is equal to Ck

2k .
Tables2 and 3 show the distribution of memory calls across MBK for each thread

when k = 2.

Table 2 The distribution of memory calls from thread “b” when fixing memory calls destination
of thread “a” to only 1-st and 2-nd MBK

MBK number Number of serviced MBK

1 2 3 4

Thread
1

a a

Distribution of thread 2 1 b b 2

2 b b 3

3 b b 3

4 b b 3

5 b b 3

6 b b 4

Table 3 The distribution of memory calls from thread “b” when fixing memory calls destination
from thread “a” to 3-rd and 4-th MBK

MBK number Number of serviced MBK

1 2 3 4

Thread
1

a a

Distribution of thread 2 1 b b 4

2 b b 3

3 b b 3

4 b b 3

5 b b 3

6 b b 2
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For each of the given distributions of memory calls from the thread “a”, the mean
number of serviced calls is equal to:

6(1 · 2 + 4 · 3 + 1 · 4)
6 · 6 = 18

6
= 3.

Obviously, themean number of serviced calls for any distribution of thread “a” across
memory banks is the same: 18

6 = 3.
Therefore, in general case, we can restrict ourselves to use only one of Ck

2k distri-
butions of memory calls from the thread “a” when calculating the mean number and
standard deviation of memory calls for this thread.

For arbitrary values of n and k for two threads (p = 2), the number of serviced
memory calls (the number of occupied MBK) is equal to k + i , where i = 0, k.

In this case, the number of distributions of memory calls from the thread “b” (for
a fixed distribution of the thread “a”) for k + i occupied MBK is determined by the
relation:

Ck−i
k · Ci

k = (Ci
k)

2
, (8)

where the first multiplier Ck−i
k corresponds to (k − i) memory calls from the thread

“b” related to “k” memory banks, for which there were already “k” memory calls
from the thread “a”.

The second multiplier Ci
k corresponds to i memory calls from the thread “b” to k

free memory banks.
Bearing in mind the Eq.8, we find the probability of (k + i) serviced memory

calls (occupied MBK), where i = 0, k:

pk+i = (Ci
k)

2

Ck
2k

, i = 0, k (9)

In accordance with the relation 9, the absolute mean number of occupied MBK is
equal to:

mabs =
k · (

C0
k

)2 + (k + 1)
(
C1
k

)2 + (k + 2)
(
C2
k

)2 + · · · + (2k − 1)
(
Ck−1
k

)2 + 2k
(
Ck
k

)2

Ck
2k

=

=
k+2k
2

((
C0
k

)2 + (
C1
k

)2 + · · · + (
Ck
k

)2)

Ck
2k

.

Considering the ratio

(
C0
k

)2 + (
C1
k

)2 + ... + (
Ck
k

)2 = Ck
2k
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we find that

mabs =
k+2k
2 (Ck

2k)

Ck
2k

= 1.5k = 3

4
n.

Note that the resulting relation is a special case of relation 2 for p = 2.
In accordance with the relation 6, we also find:

M
[
X2

] = (
∑k

i=0 ((k + i)2 · (Ci
k)

2
))

Ck
2k

. (10)

In particular, for k = 4, p = 2 (n = k p = 8) we find:

M
[
X2

] = 42 · 1 + 52 · 42 + 62 · 62 + 72 · 42 + 82 · 1(
8
4

) = 2560

70
= 36.57,

D (X) = M
[
X2] − (M [X ])2 = 36.57 − 62 = 0.57,

σabs = √
D (X) = 0.7559,

σrel = σabs

k · p = 0.0945.

Table4 for p = 2 shows the values for: the number of occupiedMBK, the probability
of the number of occupied MBK, relative mrel and absolute mabs values of the mean
number of MBK occupied, and the values of relative σrel and absolute σabs standard
deviations of the number of MBK occupied per memory access cycle, depending on
the number of memory calls in the thread (k).

Table4 shows that:

1. The absolute standard deviation of the number of occupied MBK per memory
access cycle decreases with an increase of the number of memory calls in the
thread at a constant value of the absolute mean number of occupied MBK.

2. The ratio of the absolute standard deviation to the absolute mean number of MBK
occupied per memory access cycle decreases with an increase in the number of
memory calls in the thread.

4.2 Number of Threads Is 3

In this case, the number of memory banks of the interleaved memory is n = p · k =
3k.

Let symbols “a” and “b” and “c” be the indicators for the memory calls from the
first, second and third threads respectively.
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Table 4 The mean number of MBK (relative mrel and absolute mabs ) and standard deviation
(relative σrel and absolute σabs ) for p = 2

Number of
memory
calls in the
thread-k

Number of
occupied
MBK

(Number of occupied
MBK probability)·Ck

2k

Relative
mean
mrel

Relative
devia-
tion
σrel

Absolute
mean
maσc

Absolute
devia-
tion
σabs

2 2 1 0.75 0.1443 3 0.57735

3 22

4 1

3 3 1 0.75 0.118 4.5 0.67082

4 32

5 32

6 1

4 4 1 0.75 0.0945 6 0.7559

5 42

6 62

7 42

8 1

5 5 1 0.75 0.08(3) 7.5 0.8(3)

6 52

7 102

8 102

9 52

10 1

6 6 1 0.75 0.0754 9 0.9045

7 62

8 152

9 202

10 152

11 62

12 1

10 10 1 0.75 0.0573 15 1.147

11 102

12 452

13 1202

14 2102

15 2522

16 2102

17 1202

18 452

19 102

20 1

(continued)
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Table 4 (continued)

Number of
memory
calls in the
thread-k

Number of
occupied
MBK

(Number of occupied
MBK probability)·Ck

2k

Relative
mean
mrel

Relative
devia-
tion
σrel

Absolute
mean
maσc

Absolute
devia-
tion
σabs

16 16 1 0.75 0.0449 24 1.4368

17 162

18 1202

19 5602

20 18202

21 43682

22 80082

23 114402

24 128702

25 114402

26 80082

27 43682

28 18202

29 5602

30 1202

31 162

32 1

We fix the memory calls from the thread “a”. Let the memory calls from thread
“b” will be the same as memory calls from the thread “a”. For thread “c”, there are
Ck
3k possible memory calls to k memory banks. The number of occupied MBK and

the number of such variants for three threads of memory calls is in the range from k
to 2k is given in Table5, which corresponds to the known ratio:

Ck
kC

0
2k + Ck−1

k + C1
2k + · · · + C0

k C
k
2k = Ck

3k

Let the memory calls from the thread “a” still be fixed. Let the memory calls from
the thread “b” differ in the number of memory calls to memory banks, occupied by
the thread “a”.

Number of memory calls variants from thread � b � for i (i = 0, k) to memory
banks, already occupied by memory calls from thread “a” is Ck−i

k Ci
2k .

Note that due to the known relation

C0
pC

m
n−p + C1

pC
m−1
n−p + · · · + Cm

p C
0
n−p = Cm

n

If p = k + i , n = 3k and m = k we have

C0
k+iC

k
3k−(k+i) + C1

k+iC
k−1
2k−i + ... + Ck

k+iC
k
2k−i = Ck

3k .
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Table 5 The number of occupiedMBKand the number of variantswhenmemory calls from threads
“a” and “b” match

Number of occupied MBK Number of variants

k Ck
k C0

2k

k + 1 Ck−1
k C1

2k

k + 2 Ck−2
k C2

2k

k + 3 Ck−3
k C3

2k

….. ………

k + j Ck− j
k C j

2k

….. ………

2k − 1 C1
k Ck−1

2k

2k C0
k Ck

2k

Table 6 The number of occupied MBK and the number of variants in case of mismatch between
memory calls from threads “a” and “b”

Number of occupied MBK Number of variants

k + i Ck
k+i C

0
2k−i

k + i + 1 Ck−1
k+i C1

2k−i

k + i + 2 Ck−2
k+i C2

2k−i

…. …..

2k + i − d Cd
k Ck−d

2k−i

…. ….

2k + i − 1 C1
k Ck−1

2k−i

In each variant, for the thread “c” it is possible to have Ck
3k different memory calls

to k memory banks.
Table6 shows the number of occupied MBK and the number of memory call

variants.
Let pk+i be the probability of situation when k + i ( i = 0, 2k)memory calls will

be served (k + i, i = 0, 2k MBK occupied)
Then from the previous explanations we get:

pk = Ck
k

C0
2k

(Ck
3k)

2 ,

pk+1 = (Ck−1
k Ck

2k + Ck−1
k Ck

2kC
k
k+1C

0
2k−1)

(Ck
3k)

2 ,

pk+2 = (Ck−2
k C2

2k + Ck−1
k C1

2kC
k−1
k+1C

1
2k−1 + Ck−2

k C2
2kC

k
k+2C

0
2k−2)

(Ck
3k)

2 ,
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pk+3 = (Ck−3
k C3

2k + Ck−1
k C1

2kC
k−2
k+1C

1
2k−1 + Ck−2

k C2
2kC

k−1
k+2C

1
2k−2) + Ck−3

k C3
2kC

k
k+3C

0
2k−3)

(Ck
3k)

2 ,

. . .

p3k−3 = (C3
k C

k−3
2k C0

2k−3C
k
k+3 + C2

k C
k−2
2k C1

2k−2C
k−1
k+2 + C1

k C
k−1
2k C2

2k−1C
k−2
k+1 + C0

k C
k
2kC

3
2kC

k−3
k )

(Ck
3k)

2 ,

p3k−2 = (C2
k C

k−2
2k C0

2k−2C
k
k+2 + C1

k C
k−1
2k C1

2k−1C
k−1
k+1 + C0

k C
k
2kC

2
2kC

k−2
k )

(Ck
3k)

2 ,

p3k−1 = (C1
k C

k−1
2k C0

2k−1C
k
k+1 + C0

k C
k
2kC

1
2kC

k−1
k )

(Ck
3k)

2 ,

p3k = (C0
k C

k
2kC

0
2kC

k
k ). (11)

Using relation (11) for the probabilities pk+i , i = 0, 2k, we determine the absolute
mean number of occupiedMBKwith a total number of MBK − 3k for three threads
(p = 3):

mabs = 1

(Ck
3k)

2 · [k(Ck
k C

0
2k ) + (k + 1)(Ck−1

k Ck
2k + Ck−1

k Ck
2kC

k
k+1C

0
2k−1) +

+ (k + 2)(Ck−2
k C2

2k + Ck−1
k C1

2kC
k−1
k+1C

1
2k−1 + Ck−2

k C2
2kC

k
k+2C

0
2k−2) +

+ (k + 3)(Ck−3
k C3

2k + Ck−1
k C1

2kC
k−2
k+1C

1
2k−1 + Ck−2

k C2
2kC

k−1
k+2C

1
2k−2) + Ck−3

k C3
2kC

k
k+3C

0
2k−3) +

+ . . . +
+ (3k − 3)(C3

k C
k−3
2k C0

2k−3C
k
k+3 + C2

k C
k−2
2k C1

2k−2C
k−1
k+2 + C1

k C
k−1
2k C2

2k−1C
k−2
k+1 + C0

k C
k
2kC

3
2kC

k−3
k ) +

+ (3k − 2)(C2
k C

k−2
2k C0

2k−2C
k
k+2 + C1

k C
k−1
2k C1

2k−1C
k−1
k+1 + C0

k C
k
2kC

2
2kC

k−2
k ) +

+ (3k − 1)(C1
k C

k−1
2k C0

2k−1C
k
k+1 + C0

k C
k
2kC

1
2kC

k−1
k ) +

+ 3k(C0
k C

k
2kC

0
2kC

k
k )].

Keeping in mind that the number of occupied memory banks is in the range from k to
3k, we rewrite the last ratio, highlighting the summand with the number of memory
banks equal to exactly 2k:

mabs = 1

(Ck
3k )

2 · [2k(Ck
3k )

2 −

− (kCk
k + (k − 1)Ck−1

k C1
2k + (k − 2)Ck−2

k C2
2k + . . . + 2C2

k C
k−2
2k +

+ 1C1
k C

k−1
2k ) − Ck−1

k C
1
2k ((k − 1)Ck

k+1 + (k − 2)Ck−1
k+1C

1
2k−1 +

+ (k − 3)Ck−2
k+1C

2
2k−1 + . . . +

+ 2C3
k+1C

k−3
2k−1 + 1C2

k+1C
k−2
2k−1 − C0

k+1C
k
2k−1) −

− Ck−2
k C2

2k ((k − 2)Ck
k+2 + (k − 3)Ck−1

k+2C
1
2k−2 + (k − 4)Ck−2

k+2C
2
2k−2 + . . . +

+ 2C4
k+2C

k−4
2k−2 + 1C3

k+2C
k−3
2k−2 − 1C1

k+2C
k−1
2k−2 − 2C0

k+2C
k
2k−2) − . . . +

+ C2
k C

k−2
2k ((k − 2)Ck

k+2 + (k − 3)C1
2k−2C

k−1
k+2 + (k − 4)C2

2k−2C
k−2
k+2
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+ . . . + 2Ck−4
2k−2C

4
k+2 + Ck−3

2k−2C
3
k+2 − 1Ck−1

2k−2C
1
k+2 − 2Ck

2k−2C
0
k+2) +

+ C1
k C

k−1
2k ((k − 1)Ck

k+1 + (k−)C1
2k−1C

k−1
k+1 + (k − 3)C2

2k−1C
k−2
k+1 + . . . +

+ 2Ck−3
2k−1C

3
k+1 + 1Ck−2

2k−1C
2
k+1 − Ck

2k−y1C
0
k+1) +

+ C0
k C

k
2k (kC

0
2kC

k
k + (k − 1)C1

2kC
k−1
k + (k − 2)C2

2kC
k−2
k + . . . + 2Ck−2

2k C2
k + +1Ck−1

2k C1
k ).

Grouping the first and the last summands, second and penultimate summands, etc.,
we get:

mabs = 1

(Ck
3k)

2 · [k(Ck
3k)2 −

+ (C0
k C

k
2k − 1)(kCk

k + (k − 1)Ck−1
k C1

2k + (k − 2)Ck−2
k C2

2k + . . . +
+ 2C2

k C
k−2
2k + C1

k C
k−1
2k ) +

+ C1
k (C

k−1
2k − C1

2k)((k − 1)Ck
k+1 + (k − 2)Ck−1

k+1C
1
2k−1 + (k − 3)Ck−2

k+1C
2
2k +

+ . . . + 2C3
k+1C

k−3
2k−1 + 1C2

k+1C
k−2
2k−1 − 1C0

k+1C
k
2k−1) +

+ C2
k (C

k−2
2k − C2

2k)((k − 2)C2
k+2 + (k − 3)Ck−1

k+2C
1
2k−2 +

+ (k − 4)Ck−2
k+2C

2
2k−2 + . . . + 2C4

k+2C
k−4
2k−2 + C3

k+2C
k−3
2k−2 − C1

k+2C
k−1
2k−2 − 2Ck

2k−2 + . . .

We can verify the validity of the relations:

kCk
k + (k − 1)Ck−1

k C1
2k + . . . + 2C2

k C
k−2
2k + C1

k C
k−1
2k = k

3
Ck
3k ,

(k − 1)Ck
k+1 + (k − 2)Ck−1

k+1C
1
2k−1 + . . . + 2C3

k+1C
k−3
2k−1 + C2

k+1C
k−2
2k−1 − Ck

2k−1 = = k − 2

3
Ck
3k ,

(k − 2)Ck
k+2 + (k − 3)Ck−1

k+2C
1
2k−2 + . . . + 2C4

k+2C
k−4
2k−2 + C3

k+2C
k−3
2k−2 − C1

k+2C
k−1
2k−2

−2Ck
2k−2 = k − 4

3
C3
3k

and so on

(k − i)Ck
k+i + (k − (i + 1))Ck−1

k+i C
1
2k−i + (k − (i + 2))Ck−2

k+i C
2
2k−i + 2Ci+2

k+i C
k−(i+2)
2k−i

+4Ci+1
k+i C

k−(i+1)
2k−i − 1Ci−1

k+i C
k−(i−1)
2k−i − 2Ck(i−2)

2k−i Ci−2
k+i − iCk

2k−iC
0
k+i = k − 2i

3
C3
3k .

Therefore

mabs = 1

(Ck
3k)

2 ∗ [2k(Ck
3k)2 + C3

3k

3
(k(C0

k C
k
2k − 1) +

+ (k − 2)C1
k (C

k−1
2k − C1

2k) + (k − 4)C2
k (C

k−2
2k − C2

2k) + . . .].
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The second summand in square brackets can be written as

C3
3k

3
(k(C0

k C
1
2k − 1) + (k − 2)C1

k (C
k−1
2k − C1

2k) − (k − 4)C2
k (C

k−2
2k − C2

2k) = k(
Ck
3k

3
)

2

.

As a result, we obtain the expressions, respectively:
for the absolute mean number of occupied memory banks:

mabs = 1

(Ck
3k)

2 ∗ [2k(Ck
3k)2 + k(

Ck
3k

3
)

2

] = k
19

9
= 33 − 22

32
k (12)

for the relative mean number of occupied memory banks:

mrel = mabs

3k
= 19

27
= 33 − 22

33
(13)

Note that the relations obtained here are a special case of relation 12 for p = 3.
To calculate the standard deviation σ of a random variable X (the number of

occupied memory banks) we use formulas 11, 12 and 13, which use 11 to find the
probabilities pk+i .

As a result, we have:
if k = 2 (n = k p = 6):

mabs = M[X ] = (2 · 1 + 3 · 32 + 4 · 114 + 5 · 72 + 6 · 6)
(C2

6 )
2 = 950

225
= 4.2,

M
[
X2

] = (22 · 1 + 32 · 32 + 42 · 114 + 52 · 72 + 62 · 6))(
C2
6

)2 = 4132

225
= 18.36,

D (X) = M
[
X2

] − (M [X ])2 = 18.36 − 17.82716 = 0.53728,

σabs = √
D (X) = 0.733

σrel = σabs

k · p = 0.12217

if k = 3 (n = k p = 9):

mabs = M [X ] = (3 · 1 + 4 · 90 + 5 · 1035 + 6 · 2940 + 7 · 2430 + 8 · 540 + 9 · 20)(
C3
9

)2 = 40.1,
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Table 7 Values of the mean number of memory banks (relative mrel and absolute mabs) and
standard deviation (relative σ rel and absolute σabs) for p = 3

The number
of memory
calls in the
thread (k)

Number of
occupied
memory
banks

(Probability
of the
number of
occupied
memory
banks)
×Ck

2k

Relative
deviation
mrel

Relative
mean σOT H

Absolute
deviation
mabs

Absolute
σabs σabs

2 1

3 32

2 4 114 0.703(703) 0.12217 4.2(2) 0.733

5 72

6 6

3 1

4 90

5 1035

3 6 2940 0.703(703) 0.097(1) 6.3(3) 0.874

7 2430

8 540

9 20 0.703(703) 0.097(1) 6.3(3) 0.874

M
[
X2

]
= (32 · 1 + 42 · 90 + 52 · 1035 + 62 · 2940 + 72 · 2430 + 82 · 540 + 92 · 20))(

C3
9

)2 = 40.875,

D (X) = M
[
X2

] − (M [X ])2 = 40.875 − 40.1 = 0.764,

σabs = √
D (X) = 0.874

σrel = σabs

k · p = 0.0971

Table7 shows the values for: the number of occupied memory banks, the probability
of the number of occupied memory banks, the values of relative mrel and absolute
mabs mean number of occupiedmemory banks, the values of relativeσrel and absolute
σabs standard deviation of the number of memory occupied banks per memory access
cycle, depending on the number of memory calls in the thread - k.

Similarly, it is possible to determine the standard deviation for the number of
occupied memory banks per memory access cycle, for the number of threads p and
for the number of memory calls per thread k. In this case, the ratio of the standard
deviation to themean number of occupiedmemory banks in onememory access cycle
decreases with an increase in the number of memory calls per thread, which makes
it possible to consider the mean number of occupied memory banks in one memory
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access cycle as an essential parameter characterizing the efficiency of interleaved
memory.

4.3 Number of Threads Is 4

Consider the case when the number of threads p is 4, in addition, let k = 2, i.e.,
n = p ∗ k = 4 ∗ 2 = 8. Here, various options for memory calls to the memory banks
are possible where from two up to eight memory banks can be occupied with each
access.

Let us determine the number of memory banks occupied when the memory calls
from three threads of type a, b and c are made to two fixedmemory banks of memory,
and the memory calls from the fourth thread of type d are executed to any memory
banks of memory, see Table8.

Obviously there are C2
8 = 28(Ck

4k) of different options for memory calls from
the fourth thread of type d to memory banks, with the number of memory banks
occupied: 2 - one case, 3 - 12 cases, 4 - 15 cases. Let’s define the option of memory
calls for three threads of type a, b, and c to two fixed memory banks of memory⎛
⎝ aa

bb
cc

⎞
⎠ as “2+”, meaning that the number of occupied memory banks here is 2 or

more.
Let, as before, the memory calls from two threads of type a and b are made to two

fixed memory banks of memory, the memory calls from the third thread of type c are
made to one of the fixed memory banks of memory and one of any other memory
banks of memory (their number is C2

8 − 1 = 27), and ,memory calls from the fourth
thread of type d are executed to any memory banks of memory.

One of the options for such accesses is given in Table9.
The number of occupied memory banks here: 3 - in 3 cases, 4 - in 15 cases and 5

- in 10 cases.
Let’s define this distribution of memory calls given in Table9 as “3+” with the

number of occupied memory banks is 3 or more.
It is clear that for all similar cases of distribution of memory calls:

a a
b b
c c

. . .. . .. . .. . .. . .
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Table 8 Memory calls from three threads of type a, b and c to two fixed memory banks of memory,
and memory calls from the fourth thread of type d are made to any memory bank

a a Number of occupied
memory banks

b b

c c

d d 2

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 3

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 3 4

d d 4

d d 4

d d 4

d d 4

d d 4
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Table 9 Memory calls from two threads of type a and b and c to two fixed memory banks of
memory, memory calls from a third thread of type c to one of the fixed memory banks of memory
and one of any other memory banks of memory, and memory calls from the fourth thread of type d
to any memory banks of memory

a a Number of occupied
memory banks

b b

c c

d d 3

d d 3

d d 4

d d 4

d d 4

d d 4

d d 4

d d 3

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 4

d d 5

d d 5

d d 5

d d 5

d d 5

d d 5

d d 5

d d 5

d d 5

d d 5
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a a
b b
c c

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

we get the same number of occupied memory banks (3 or more), i.e. the distribu-
tion option “3+”.

For the 15 distribution options for memory calls presented below:

a a
b b

c C

. . .. . .. . .. . .. . .

a a
b b

c c

we have the following numbers of occupied memory banks: 4 - in 6 cases, 5 - in
16 cases and 6 - in 6 cases, i.e. the distribution option “4+”.

Similarly, we need to consider 28 variants of distributions over 8 memory banks
of memory calls from threads of types a, b and c.

Then, in particular, for the variant

a a
b b

we have a “4+” distribution in 6 cases:

a a
b b

c c
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a a
b b

c c

a a
b b

c c

a a
b b

c c

a a
b b

c c

a a
b b
c c

The distribution of “6+”, where the number of occupied memory banks 6 is for
15 cases, 7 for 12 cases and 8 for 1 case we have in 6 cases:

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

The distribution “5+”, where the number of employees in the memory bank is 5
for 10 cases, 6 for 15 cases and 7 for 3 cases, we have for the remaining 16 out of
28 cases:

a a
b b

c c

. . .. . .. . .. . .. . .
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a a
b b

c c

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

a a
b b
c c

. . .. . .. . .. . .. . .

a a
b b
c c

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

Along with the above options of the distribution of memory call of threads of type
a and b:

a a
b b

there are distribution options for memory calls from a thread of type b similar in
number of cases 4+, 5+, 6+ (total C2

6 = 15, including the above option):
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a a
b b

. . .. . .. . .. . .. . .

a a
b b

For the next option

a a
b b

we have the following 3+ distributions in 3 cases:

a a
b b
c c

a a
b b
c c

a a
b b

c c

we have the following 4+ distributions in 15 cases:

a a
b b
c c

. . .. . .. . .. . .. . .

a a
b b
c c

a a
b b

c c

. . .. . .. . .. . .. . .
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a a
b b

c c

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

we have the following 5+ distributions in 10 (C2
5 ) cases:

a a
b b

c c

. . .. . .. . .. . .. . .

a a
b b

c c

Including mentioned option, according to the number of cases 3+, 4+, 5+ there
are 12 similar options in total:

a a
b b

. . .. . .. . .. . .. . .

a a
b b

a a
b b

. . .. . .. . .. . .. . .
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a a
b b

Thus, all C2
8 = 28 cases of distribution of the memory calls in 8 memory banks

can be divided into 3 groups according to the memory bank load type, see Table10.
The total number of each case is given in Table11 based on data from Table 10.
Table12 provides a summary of the number of occupied memory banks and their

number for each case.
Table13 shows the total number of occupied memory banks (from 2 to 8) based

on data from based on Tables11 and 12.
Based on Table13 we find the absolute mean number of occupied memory banks

by:

mabs = 1 · 2 + 156 · 3 + 2445 · 4 + 8640 · 5 + 8460 · 6 + 2160 · 7 + 90 · 8
283

= 120050

283
= 5.468

(14)
The relative mean number of occupied memory banks in relation to the total number
of memory banks n = 8 is

Table 10 All 28 cases of distribution of the memory calls in 8 memory banks can be divided into
3 groups according to the memory bank load type

Memory bank load type

1 2 3

Distribution set Number
of distri-
bution
options

Distribution set Number
of distri-
bution
options

Distribution set Number
of distri-
bution
options

Cases Number Cases Number Cases Number

2+ 1 1 3+ 3 12 4+ 6 15

3+ 12 4+ 15 5+ 16

4+ 15 5+ 10 6+ 6

Table 11 The total number of each case based on data from Table 10

Case Number

2+ 1

3+ 12 + 3 · 12 = 48

4+ 15 + 15 · 12 + 6 · 15 = 285

5+ 10 · 12 + 16 · 15 = 360

6+ 6 · 15 = 90
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Table 12 The summary of the number of occupied memory banks and their number for each case

Case Number of occupied memory
banks

Number

2 1

2+ 3 12

4 15

3 3

3+ 4 15

5 10

4 6

4+ 5 16

6 6

5 10

5+ 6 15

7 3

6 15

6+ 7 12

8 1

Table 13 The total number of occupied memory banks (from 2 to 8) based on data from based on
Tables11 and 12

Number of occupied memory banks Number

2+ 1

3+ 12 + 3 · 48 = 156

4+ 15 + 15 · 48 + 6 · 285 = 2445

5+ 10 · 48 + 16 · 285 + 10 · 360 = 8640

6+ 6 · 285 + 15 · 360 + 15 · 90 = 8460

7+ 3 · 360 + 12 · 90 = 2160

mrel = mabs

n
= 5.46875

8
= 0.68359375 (15)

note that the last value can be represented in another form:

0.68359375 = 44 − 43

44

M
[
X2] = 22 · 1 + 32 · 156 + 42 · 2445 + 52 · 8640 + 62 · 8460 + 72 · 2160 + 82 · 90

283
= 30.643586

D (X) = M
[
X2

] − (M [X ])2 = 30.643586 − 29.899024 = 0.744562
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σrel = σabs

k · p = 0.865

8
= 0.108125

Similarly, it is possible to determine the standard deviation of the number of memory
banks occupied in one memory access cycle and for other values of the number p of
memory call threads and the number of memory calls in one thread k. In this case,
the ratio of the standard deviation to the mean number of occupied memory banks
in one memory access cycle decreases with an increase in the number of memory
calls in the thread, which makes it possible to consider the mean number of occupied
memory banks in one memory access cycle as an essential parameter characterizing
the efficiency of layered memory.

5 Conclusions

1. The absolute and relative mean and standard deviation of the number of occupied
memory banks in one memory access cycle are determined depending on the
number of memory banks of the interleaved memory, the number of threads of
memory calls, and the number of memory calls in one thread.

2. Increasing the number of MBK by 1.6 times due to redundant MBK can provide
an average of 100% memory calls processing for any number of threads.

3. The relative mean number of memory banks occupied in one clock cycle of
memory access depends on the number of threads of memory calls, but does not
depend on the number of memory calls in one thread.

4. With an increase in the number of threads of memory calls, the relative mean
number of occupied memory banks in one memory access cycle tends to the
constant 1 − e−1 = 0.632.

5. The absolute standard deviation of the number of occupied memory banks in
one clock cycle of memory access decreases with an increase in the number of
memory calls in the thread at a constant value of the absolute mean number of
memory banks occupied.

6. The ratio of the absolute standard deviation to the absolute mean number of
memory banks occupied per memory access cycle decreases with an increase in
the number of memory calls in the thread.

7. The mean number of memory banks occupied per memory access cycle is an
essential parameter characterizing the efficiency of interleaved memory.
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On HPC and Cloud Environments
Integration

Vitaly Antonenko , Andrey Chupakhin , Alexey Kolosov ,
Ruslan Smeliansky , and Evgeniy Stepanov

Abstract Recently in many scientific disciplines, e.g. physics, chemistry, biology
and multidisciplinary research have shifted to computational modelling. The main
instrument for such numerical experiments has been supercomputing. However, the
number of supercomputers and their performance grows significantly slower than
the growth of user’s demands. As a result, users of supercomputers may wait for
weeks until their job will be done. At the same time the computational power of
cloud computing recently grows up considerably represented by heterogeneous DC
network with plenty of available resources for numerical experiments. In these cir-
cumstances, it may turn out that the time spent by the task in the system, i.e. the time
spent in the queue + computing time, in the cloud environment may be shorter than
in HPC installation. There are several problems related to cloud and supercomputer
environments integration. First, is how to make a decision where to send a com-
putational task: to a supercomputer or to cloud. Secondly, these environments may
have significantly different APIs, so moving a computational task from one environ-
ment to another may require a lot of code modification. Another significant problem
is an automatic provisioning of virtual environment to execute the task properly.
The third one is how to organize effectively migration data, computational tasks,
applications and services in DC network, between DC and HPC installation? Saying
effectively, we mean that network can allocate shortly, on demand, the necessary
capacity in order to transfer the necessary amount of data for the right time. It is
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called ‘Capacity on Demand’ service. In this chapter an environment for academic
multidisciplinary research – Meta Cloud Computing Environment (MC2E) is pre-
sented. This environment demonstrates the possible solutions and approaches to the
problems listed above.

Keywords High performance computing · Supercomputer · Cloud · Data center ·
Message passing interface · Execution time prediction · Capacity on demand ·
Multipath protocols · Quality of service

1 Introduction

Today’s researches in various fields such as physics, chemistry and biology have
shown large demands in computational resources due to the complexity of tasks per-
formed. Such resources are often provided as supercomputers and clusters for High
Performance Computing (HPC). The general trend today is the use of supercomput-
ers or HPC installations. However, a trend analysis at TOP500.org [1] suggests that
the number of applications is growing faster than the number of supercomputers and
HPC installations. At the same time, we can see the rapid growth in the popularity
of cloud computing, the usage of data centers (DCs) networks (DCN) to increase the
power of cloud computing platforms. A good example is the EGI Association [2].
These two kind computational platforms have a different computational capability
but they also have big differences in their load. Most applications will run faster on
a supercomputer than on a server cluster in a DC. However, it may turn out that the
total delay of the application in the queue plus the execution time may turn out to be
more than a longer execution on the server cluster, but with a shorter waiting time in
the queue.

These considerations lead us to the idea of the integration of these two pretty
different environments – HPC supercomputers and DC Clouds. These environments
vary in many ways: differences in the level of resource management in the computa-
tional environment in use, by the virtualization technique, by the composition of the
parameters and the specification form of the request to execute the application (task),
by scheduling and resource allocation policy.On-demand clouds could help solve this
problem by offering virtualized resources customized for specific purposes. Cloud
platforms offer more flexibility and convenience for researchers. But in any case,
the HPC and Cloud platforms heterogeneity makes it hard to switch automatically
between them if some platform becomes highly loaded or inaccessible. Therefore,
in order to change the target platform, researchers need to spend time and resources
adjusting their software for the new API.

Another problem on the way to the integration of the HPC-Supercomputer (HPC-
S) and the HPC cloud server cluster (HPC-C) is the automation of the recognition
in the queue of tasks to HPC-S of those that can be solved in HPC-C in the current
resource amount/configuration and, therefore, transferred to the HPC-C queue as a
request for services.
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For the problem above we need to justify the basis of the hypothesis that the virtu-
alization technique, which is actively used in the HPC-C environment and involves
the sharing of physical resources by several tenants in HPC-C environment, will
provide the expected effect for HPC tasks.

One more problem is the ability of HPC-C environment aggregates the resources
of DCN. At this point the key problem is feasibility the Capacity-on-Demand (CoD)
service problem. This service should develop/allocate, under request, the channels
between two or more DC with the appropriate QoS parameters and total throughput
for transmitting specified amount of data at particular interval of time throughTCP/IP
transport network. It should be emphasized that such a service does not imply a ded-
icated channel between the interacting parties. Moreover, it should be dynamically
created through the aggregation of existing network resources.

Recently, there has been a trend in the growth of backbone traffic between DCs.
According to TeleGeography [3], by the end of 2017, the share of such traffic on the
most popular route across the Atlantic Ocean had reached 75%, and in 2023 it should
exceed 93%. This can be explained by the development of the global cloud services
market, which is currently concentrated in North America and Europe. Therefore,
the growth of traffic between DCs is provided mainly by the DCs of cloud providers
and corporate DCs that use hybrid clouds.

However, clouds DCs impose special requirements on channel bandwidth alloca-
tion and charging policies. The most promising approach to meet these requirements
for high quality of network resource scheduling and utilization is to provide channel
bandwidth according to the “Pay as you go” model - only when there is a need for
it, i.e. CoD service.

In this chapter we present the MC2E project intended to find the solutions for the
problems listed above and develop the environment for multidisciplinary academic
research that aggregates heterogeneous resources such as private/public clouds, HPC
clusters and supercomputers under a unified easy-to-use interface. Comparing with
“traditional” resource orchestration in DC, that use open source tools like Open-
Stack [4] or commercial one from VMware [5], MC2E offers a number of new
features/opportunities and advantages:

• an aggregated resource control (resources of the multiple platforms instead of a
single one in a local DC or HPC cluster);

• flexible capabilities to define virtual environments, more types of resources and
services;

• high quality of resource scheduling and utilization;
• relieves users from tedious system administration tasks;
• a unified way to describe and support virtualized services (NFV) life cycle in DC
(or HPC cluster), to apply existing user’s software to performing experiments on
MC2E infrastructure.

MC2E enlarges the concepts of PaaS and IaaS to scientific applications area. We
believe that it could be of great help to research teams that work jointly and need
a shared virtual collaboration environment with resources from different geograph-
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ically distributed platforms. MC2E project is the international one and is under
development by joint effort of the following parties:

• Lomonosov Moscow State University (Russia);
• Tsinghua University (China);
• Huazhong University of Science and Technology (China);
• Peking University (China).

The structure of the chapter is the following. Section 2 presents multidisciplinary
research problems description. Section3 describes proposed solution. Sections4, 5
and 6 contain a detailed description of the MC2E components: federates, channels
between federates and MC2E heterogeneous platform. Section4 contain a detailed
description of the MC2E federates: we analyze how network communication over-
head affects the CPU utilization in HPC-clouds and also analyze execution specifics
in HPC-C and in HPC-S environment. In Sect. 5 we present a mathematical model
determine whether flow fair distribution exists or not and whether such distribution
is unique or not. Then, the mathematical formulation for the case of multiple flows
is considered, and options for solving it are proposed. Section5.3 presents the CoD
service problem in the form of the linear programming problem. Section6 contain
description of MC2E orchestrator and MC2E full architecture. Section7 depicts the
expected results of the MC2E project and future works.

2 Problem Description

Modern interdisciplinary research is often performed using unique scientific instru-
ments by multiple research teams in collaboration. Such collaboration requires an
informational, computational and communication infrastructure specifically tuned
for each project. Efforts to create such infrastructure in a traditional way (a local
DC or an HPC-C with domain-specific communication software) cause a number of
problems.

It requires significant financial andmaterial investments, because each new exper-
iment needs specific software adjusted by highly qualified IT-specialists. The prob-
lem becomes more complicated if such experiments are performed by independent
research teams, since such teams often have different internal business processes,
specialize in different subject areas, have their own hardware and software prefer-
ences and could be placed far from each other.

At the initial stage of a project the requirements to the project infrastructure are
known only approximately and often overestimated. Infrastructure developers often
consider the worst cases when estimate resources for the project. This could lead to
resource under-utilization and thus waste the efficiency of investments.

A lot of difficulties also arise when scientific data is distributed and used by
different teams simultaneously. Data that is needed for one team could be acquired
by another. And without a specialized system that manages infrastructure such cases
are hard to solve.
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Finally, the groups of researchers from different projects may already have tools,
software for processing, collecting and storing data. Creating or mastering new ones
for a project is usually unacceptable. Therefore, it is necessary to provide the pos-
sibility to bring into the environment already existing developments, using for this
technology, for example, network function virtualization (NFV).

3 Proposed Solution

To solve the problems described above we propose Meta-Cloud Computing Envi-
ronment (MC2E). This environment is based on the following principles:

1. The infrastructure is a federation of locations called federates with local compu-
tational, storing and networking resources. Such federation controls all resources
(CPU, memory, network, software) provided by federates;

2. All physical resources are virtualized;
3. Resources of a single federate can be shared between different projects simulta-

neously;
4. Resources have ahigh level of abstraction.Using such resources should not require

high level qualification from system administrator;
5. Experiments results could be saved. Saved results could be used by other research

teams to reproduce or continue the experiment;
6. The federation provides data processing as a virtual service.

An example of the federate could be an HPC cluster, DC, supercomputer, scientific
instrument or a tenant in a cloud. And each federate has its own policy which regulate
federate resource allocation to the users. Infrastructures that are built as federations of
heterogeneous computational resources are already used in many existing projects.
Several such projects are designed to perform experiments in computer network-
ing. For example, the GENI project (Global Environment for Network Innovations)
[6] that was initiated by the US National Scientific Foundation (NSF) is a virtual
laboratory aimed to provide an environment for networking experiments on an inter-
national scale. Today more than 200 US universities contribute to the GENI project.
Another project which supported by NSF is FABRIC [7]. FABRIC is an adaptive
programmable research infrastructure for computer science and science applica-
tions. Similar but less known projects are Ophelia [8] (supported by the UN) and
Fed4Fire [9] (supported by 17 companies from 8 countries). Other projects provide
environments for performing different computational experiments regardless of their
domain. Such projects are Open Science Data Cloud [10], ORCA [11] and GEANT
[12]. However, these projects have several significant limitations:

1. The lack of protocols for interaction between heterogeneous federates (for exam-
ple, HPC-S and HPC-C);

2. The lack of a specialized language for describing services required to perform
experiments and bring already existed tools into the new environment;
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3. Resource planning doesn’t take into account possible services scaling;
4. The lack of the billing system that allows decentralized resource accounting and

mutual settlements between project participants.

In this project we propose to develop a virtual infrastructure for multidisciplinary
research. The proposed infrastructurewill be based on Software-DefinedNetworking
(SDN) [13] andNetwork FunctionVirtualization (NFV) [14] technics. This approach
will increase the resource abstraction, enable coordinated resource optimization and
automatize infrastructure management.

Weplan to implement the proposed environment based on extension the concept of
network and HPC service virtualization. Instead of providing individual resources,
users receive complete virtual infrastructures (computing power, communication
channels and storage systems) with guaranteed performance a QoS based on the
service level agreement (SLA). The proposed federation-based environment will
have the following advantages:

1. Easy scaling to setup application scaling for multiple resources across multiple
services in minutes;

2. Merging infrastructures from different research teams and adjust access policies;
3. Automated resource planning for fulfilling user requests based on access policies

and SLA;
4. Extensive application description environment, that allows to abstract away low-

level system details;
5. A decentralized resource accounting system for settlements between project par-

ticipants;
6. Wider possibilities for experiments’ tracing andmonitoring compared to a general

DC;
7. Increased efficiency of network virtualization with SDN, that allows to adjust

virtualized network channels for each particular experiment;
8. Common specification language that is necessary for transferring research soft-

ware into MC2E;
9. The environment could also be used for education purposes, since it will allow

students to study new methods and technologies used for scientific experiments.

4 MC2E Architecture: Federates

During the past decade public clouds have attracted a tremendous amount of interest
from academic and industrial audiences as an effective and relatively cheap way to
get powerful computing infrastructure for solving a lot of problems in different areas.
One such area is High Performance Computing.

Even though clouds are less powerful than server clusters or supercomputers
[15], they are becoming more popular as a platform for HPC due to the low cost
and easy to access. Several papers [16, 17] have shown that one of the main per-
formance bottlenecks in HPC-clouds issues from communication delays within the
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DC network. While supercomputers use fast interconnections like InfiniBand or GE
(Gigabit Ethernet) [18, 19], HPC-clouds mostly rely on slow Ethernet networks.
This performance bottleneck could also lead to CPU underutilization with network-
intensive applications, since such applications may spend a lot of time waiting for
their messages to pass through the network.

We present and check the following hypothesis applied to HPC-clouds: network-
intensive HPC-applications could share CPU cores among each other with negligible
performance degradation. Such behaviour could be used to improve CPU utilization
and to increase the effectiveness of HPC-application execution. The hypothesis was
checked in a cloud environment using popular HPC benchmark – NAS Parallel
Benchmarks (NPB) [20].

4.1 Related Works

Authors in [16] used CloudSim [21] to analyze the possibility of running HPC-
applications in the cloud. They improved performance of HPC-clouds by adjusting
cloud virtualization mechanisms and HPC-application’s settings. The authors have
also shown that some HPC-applications underutilize CPU for almost half the time in
HPC-clouds. The paper [17] shows that cloud networks create a significant bottleneck
due to HPC-applications due to low communications speeds and large delays. The
authors show that cloud can be used for a subset of HPC-applications, specifically
lowcommunication-intensive applicationswith highCPUcount and communication-
intensive applications with lowCPU count. According to the article [22] about half of
the MPI jobs in supercomputers use less than 120 cores. It’s very important because
it’s not a very large value for modern clouds and such applications can be easily
executed in the cloud.

4.2 Problem Description

The current situation with supercomputers is as follows:

1. Low user experience whenworking with supercomputers due to the fact that users
often wait for a long time until their jobs start to execute;

2. Scheduler in supercomputer allocates entire computing node with multiple CPUs
and cores, rather than individual cores. At the same time on each core can be
executed only one MPI process at one time;

3. Due to the allocation of entire compute nodes, as well as badly written MPI
programs, there is resource fragmentation that leads to resource underutilization.

Our main goal is to reduce (wait time + execution time) for jobs in supercom-
puter queue. One possible solution to fix the problem of a large wait time is to use
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Fig. 1 Supercomputer and cloud perform MPI jobs in different ways

additional resources. We suggest using additional cloud resources. Using additional
cloud resources allows you to send some jobs for execution to the supercomputer
and some to the cloud. But the programs sent to the cloud must have a certain type.
We assume that these are programs that have good ability of sharing resources with
other programs. We investigated this problem in the Sect. 4.3.

By our work we try to check the following hypothesis: “MPI programs that don’t
require a lot of computing resources can effectively share the same set of resources”.

In the Fig. 1 our hypothesis is demonstrated. In the supercomputer jobs are often
executed sequentially and because of this they have a large wait time. It is impor-
tant to understand that the execution time of MPI programs in supercomputers is
less than in the cloud. Additional cloud resources could help reduce wait time for
MPI jobs in supercomputer’s queue. Also sharing the same cloud resources between
MPI programs could help reduce wait time even more and at the same time-sharing
resources could allow to keep execution time in the cloud not very big compared to
execution time in the supercomputer. Thus, a couple of jobs in the cloud can have
(wait time + execution time) less than in the supercomputer, see Fig. 1.

We conducted some experiments to check our hypothesis.We checked our hypoth-
esis on MPI programs from NPB because they are very similar to the real MPI
programs. NPB consists of programs with different nature and different resource
usages [20]. We use the following tasks: CG – Conjugate Gradient; EP – Embar-
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rassingly Parallel; FT – discrete 3D fast Fourier Transform; IS – Integer Sort; LU –
Lower-Upper Gauss-Seidel solver.

4.3 Experiments

This section presents an experimental evaluation of DC network influence on CPU
utilization in the clouds and evaluation of resources sharing ability forMPI programs.
All experiments were performed on a single rack consisted of 7 heterogeneous phys-
ical servers all connected to a single switch (star topology) with optical fibers. The
specification of servers: head server – Intel Xeon CPU E5-2650 v4@ 2.20GHz with
48 cores with 64 GB RAM and 6 workers – Intel Xeon CPU E5-2667 v4@ 3.20GHz
with 16 cores with 32 GB RAM. Each physical link had the maximum bandwidth
equal to 10 Gbits/sec.

During the experimentswemeasured characteristics ofMPI programs:CPUusage
by perf Linux utility [23] and network usage by netstat Linux utility [24]. Also, we
configured bandwidth and delay on the interfaces in each VM using traffic control
utility [25]. When we launched MPI programs each MPI process was running on a
separate VM. NPB programs has different sizes, we use size B.

In this experiment we have checked how network bandwidth influences the CPU
utilization. We launched sequentially 5 NPB MPI programs with 2, 4, 8, 16, 32, 64
MPI processes, each process on separate VM. In this experiment we considered three
bandwidth speed: 100Mbits/sec, 1000Mbits/sec, 10000Mbits/sec. In Fig. 2 you can
see that for MPI programs from NPB when the number of MPI processes increases,
CPU usage drops, because different MPI processes run on different virtual machines
and data is transferred over the network between the different physical servers and so
the delay increases. Also, CPU usage drops when MPI program run in one physical
servers (2, 4 and 8 CPU number). This CPU usage decrease allows share the same
CPU between different MPI programs.

In this experiment we investigated the ability to share CPU cores between dif-
ferent HPC-applications, see Fig. 3. The experiment was performed as follows. We
launched sequentially 5 pair of NPB MPI programs (each pair contained two iden-
tical programs) on N VMs (2, 4, 8, 16, 32, 64) (N MPI processes from one MPI
program and NMPI processes from another MPI program). To understand how well
MPI programs can be shared, we calculated the queue metric, see Fig. 3, where pure
time is execution time without resources sharing, sharing time is execution time
when two MPI programs use the same CPUs and cores. If value of queue metrics is
more than 1 therefore two programs run simultaneously take less time to complete
than in sequential order. According to the Fig. 3 in the cloud with slow network (100
Mbits/sec) we can get up to 20% execution time acceleration. Also, you can see that
not all MPI programs can effectively share resources with other MPI programs.
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Fig. 2 CPU utilization for NPB

4.4 Execution Specifics in HPC-C and in HPC-S
Environment

It is worth recalling that MC2E is a heterogeneous system that consists of several
federates of different nature. Bright representatives are: the cloud and the supercom-
puter. Both have pros and cons. The cloud has the advantage that all resources are
virtualized, they can be used by several tasks at the same time, it is also possible to
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Fig. 3 Queue metric

scale when resources are added during the operation of a certain service, the minus is
that the network in the clouds is not as fast as in supercomputers. The supercomputer
has advantages in a fast network infrastructure, disadvantages in the lack of the abil-
ity to share resources between several tasks, this in particular can lead to unwanted
fragmentation.

In addition to the described features of computing environment, there are also
MPI programs that are not always easy to transfer from one computing environment
to another; this also needs to be taken into account when placing a task in MC2E.
MPI tasks that are “small” (less resource-intensive and take less time to complete)
can be executed in the cloudwithout significant performance loss. “Large”MPI tasks
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(which are more resource-intensive) should only be executed on a supercomputer,
since their execution time in the cloud can be much bigger than on a supercomputer.

Recall that one of our main goals is to reduce the total time of the MPI task
(everywhere further simply as task) in the system, i.e. MC2E environment. In other
words, it is necessary either reduce the waiting time for a task in the queue, or
the execution time of the task, or both in MC2E. As is well known from JobShop
Scheduling theory [42], rearranging queue tasks can change the time a task spends
in a system. Therefore, we come to the problem of finding a permutation of tasks
in the queue, which minimizes the time spent by the tasks in the system. In turn,
this problem causes another one - the need to be able to evaluate the time it takes
to execute a specific task on different computing installations of MC2E federations.
Due to the limited volume of this publication, we cannot elaborate on the solution
of all these problems. The main approaches to their solution will be discussed in
Sect. 7.

5 MC2E Architecture: CoD Service

Here we will consider Capacity-on-Demand (CoD) service problem. This service
should develop/allocate, under request, the channels between two or more DC with
the required QoS parameters and total throughput for transmitting specified amount
of data at particular interval of time through TCP/IP transport network. Such request
will be possible under the agreement between the user and network carrier which
further called a contract in this section. It should be emphasized that this service does
not imply a dedicated channel between the interacting parties. Moreover, it should
be dynamically setup through the aggregation of existing network resources. The
implementation of CoD services can be divided into two components: route aggre-
gation and fair distribution of client traffic flows among these routes. Aggregation
must be carried out, since the free resources of each individual route may not be
enough to meet the needs of user flows. Further two kind of user flows will be under
consideration. The background flows – the user flows that duration is significantly
greater than the duration of flows resulting from CoD service request and occupy all
period of observation. And the flow that arise under CoD service request.

5.1 Route Aggregation

The term “route aggregation” means a service that allows to transmit a user flow
between the same pair of DCs, using several different routes at the same time. A
route is a sequence of physical links in a transport network that does not contain
cycles and connects the DC to each other. The task of route aggregation does not
address the issue of ensuring the necessary quality of service, how CoD does. To
implement route aggregation, several problems have to be solved.
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First it has to determine what and howmany routes should be aggregated to fulfill
the CoD service. One of the main requirement to the routes for aggregation is the
minimum intersection. This constraint comes from the specifics of the operation of
congestion control algorithms. If the flow routes have an intersection in a bottleneck,
then at the moment of congestion a synchronization effect may occur, that will lead
to a simultaneous substantial decrease in the flow rate. The number of disjoint routes
between two points can be determined using the Menger theorem [26], which states
that the largest number of edge-disjoint routes from vertex u to vertex v is equal to
the smallest number of edges in the < u, v > cut.

The absence of the route intersection is not always a critical requirement. For
example, if the physical links on the intersection have a sufficient available band-
width, than there is no bottleneck. However, it is possible that there are no alternative
disjoint routes between source and destination points in the network topology. In this
case, the problem can be reduced to the previous one by transforming the graph of
the network topology in such a way that the edge corresponding to the physical link
with a high bandwidth is replaced by several edges between the same vertices with a
lower bandwidth. An alternative solution could also be to search for routes with the
least number of intersections, as MCMF [27] does.

By choosing k – the number of disjoint routes, the network topology graph can be
processed by the special algorithm to identify k routes between source and destina-
tion vertices. However, not any algorithm is suitable for this purpose. For example,
the greedy algorithm [28] cannot guarantee that it will find k disjoint routes. The
reason is this algorithm looking for only the shortest paths. Obviously, k disjoint
shortest paths cannot exist in the topology of an arbitrary network. Therefore, it is
not reasonable to use the greedy approach to identify k disjoint routes. The example
of an alternative approach can be MCMF [27], which reduces original problem to
finding the maximum flow in the network.

As a result, the set of routes with sufficient available resources to provide the
CoD service will be generated. The next problem is how to use simultaneously the
resources of these routes to transmit user flow, i.e. to carry out the route aggrega-
tion. There are a large number of protocols and technologies that can help with this
problem. The following parameters can be used as selection criteria:

• scalability – the provided service should be able to adapt to a different number of
routes between source and destination points. The number of routes used cannot
be fixed.

• adaptability – dynamically change the number of used routes. It is well known,
that the capacity/throughput of any route is not a constant. Therefore, it would
be useful to be able to change the number of routes used, depending on the total
throughput of all routes used.

• resource allocation delay – how much time it takes to pre-configure network
devices until the client can start to transmit the data;

• fault tolerance – in case of some route failure, it should be possible to switch to a
backup route. To provide fault tolerance, failure detection mechanisms, automatic
switching and maintaining some reserve are important;
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• guarantee – there could be a bandwidth reservation among allocated routes for
each contract (e.g. RSVP [29]) or there is no reservation, however in the latter case
there is no guarantee that QoS requirements will be satisfied.

All protocols for route aggregation can be divided based on the TCP/IPmodel layers.
We consider the protocols of the TCP/IP model from top to bottom and start with the
transport layer, since the data transport is not considered at the application level. The
most suitable protocols at the transport level are multipath protocols, which allow
you to divide a single application flow of ordered packets on the several transport
subflows with packets balancing. At this point it is worth that in a traditional TCP/IP
network for multipath protocols, the term transport subflow is used instead of the
term route. This is due to the fact that the traditional TCP/IP does not guarantee that
transport subflows will use different routes.

There are two approaches to multipath routing: static and dynamic. The MPTCP
is a static approach [30] involving a priori allocation of a certain number of transport
subflows among which data stream segments are distributed. The dynamic approach
e.g. FDMP [31] involves the dynamic allocation of a subflow at the request of a
transport agent, depending on the correspondence of the total allocated subflows
throughput to the application demand.

At the network level, transport flow balancing techniques such as ECMP [32],
MPLS-TE [33] together with the RSVP resource reservation protocol [29] can be
applied. However, ECMP has one constraint: the routes should have the same cost
(e.g. have the same length in case of hop count metric), that is not true in general
case for k disjoint routes discussed above. Therefore, to balance flows, it is more
profitable to look towards unequal-cost multipath (UCMP), where route cost can be
varied.

In the case of the link layer, the main constraint for all link layer aggregation
protocols is to use only those routes that pass through the same network devices, i.e.
the adjacent devices have several physical links, connecting each other.Most network
equipment for working with Ethernet networks supports both static configuration of
link aggregation and dynamic control using the LACP, PAgP protocols [34]. Just as
in balancing at the network level, the question about flows’ distribution arises.

Similar to LACP channel aggregation techniques can be found for other types
of networks, although they can have a completely different physical basis. So, LTE-
Unlicensed wireless networks can simultaneously transmit using severalWi-Fi chan-
nels [35]. Channel Bonding technology is also described in the 802.11 standard [35].
In the case ofOTNnetworks, theVCAT inverse demultiplexing technique can be used
in conjunctionwith themethodof dynamically changing the link capacityLCAS [36],
which will allow you to distribute the required throughput across multiple routes.

Thus, the choice of protocols for route aggregation depends on the physical envi-
ronment of data transmission, the capabilities of network equipment, and the priori-
ties of the CoD service provider. Simultaneous use of protocols from different levels
is a good solution, since none of them individually will be able to engage all available
routes for data transfer.
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5.2 Flow Distribution

After the route aggregation the problem of client flow load distribution among indi-
vidual routes should be considered. The first subproblem is whether there are enough
free resources to meet the needs of a customer of CoD services. If there are enough
resources, then how should they be distributed?

To solve this problem, amathematicalmodel of the simultaneous data transmission
across several routes for the case of a single contract is presented in this section. The
input data of the mathematical model are the following:

1. G = (V, E) – directed graph without cycles;
2.

{
ρi j

}
– set of available bandwidth for each arc ei j ∈ E . The available throughput

for the arc can be estimated based on the load statistics of the corresponding
physical link, and in addition prediction methods can be used to estimate the
available throughput in the near future;

3. R – required throughput for the flow. The term flow in this model means all the
traffic of one contract from the source point to the destination point of transport
network;

4. P = {Pk} – set of disjoint routes between source point and destination point that
do not contain cycles.

Based on input data we can define the following quantities:

• c j = minekm∈Pj ρi j – available bandwidth on the route Pj ;
• c = ∑

j c j – available bandwidth on all routes.

The knowledge of c allows you to answer the question: is there enough available net-
work resources to provide the required bandwidth R. A prerequisite for the existence
of a solution that it is possible to distribute the load a flow among available network
resources is presented in inequality (1):

c ≥ R. (1)

In the case c = R there is only one way to distribute the load, in which all the free
bandwidth of the routes will be occupied. If c > R, then for real values of the subflow
load (by the subflow we mean the part of the initial flow that follows its own route)
there will be infinitely many options for the flow load distribution among the given
routes. One of the distributions can be generated with the help of progressive filling
algorithm, which is used to generate a max-min fair distribution [37]. Then the flow
load will be evenly distributed among the routes specified in the first step.

With the provided model for a single contract the case of the multiple contracts
can be solved using the greedy strategy. However, if there are not enough available
resources to satisfy next contract but it is known that the flows of all clients can be
accommodated, then it is possible to reallocate the resources in such a way that the
all contracts will be satisfied. Therefore, it is important to consider CoD problem
for the case of multiple contracts. For this case, the input data of the model should
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take into account all contracts, therefore input data also includes a set of flows { fi }
(source and destination points), their bandwidth requirements {Ri } and routes {Pik}.
Based on the given input data, the constraint (2) can be determined under which there
is definitely no solution to the load distribution problem:

∃ fi : c f i < Ri . (2)

A complete answer to the question of a solution existence can be obtained, for
example, by reducing this problem to a linear programming problem, described in
the following section.

5.3 The CoD Service Problem in Linear Programming Form

In this section the CoD service problem is presented in the linear programming form.
Let the input data of the problem to be as follows:

1. Transport network N = (G, ρ) in metric space, where

a. G = (V, E) is a connected directed network graph with vertices set V and
arcs set E . From a physical point of view, all vertices are switches/routers, and
arcs are communication channels;

b. ρ - a measure on E (∀(v j , v j+1) ∈ E : ρ(v j , v j+1) ∈ R), where R – the set of
rational numbers. From a physical point of view, ρ is the channel bandwidth
measured in bits/second;

2. Time interval t ∈ [t0, T ];
3. The set of background flows F = {F1(t), . . . , FR(t)} with intensity fi (t)

bits/sec and route Li (t) , i = 1, R. Then the total background flow through the
arc (v j , v j+1) is presented in (3)–(5):

θ
((

v j , v j+1
)
, i

) = 0 , i f
(
v j , v j+1

)
/∈Li (3)

θ((v j , v j+1),i) = fi (t), i f (v j , v j+1)∈Li (4)

q j, j+1
F (t) =

∑

Fi∈F
θ((v j , v j+1),i) (5)

4. The set of contracts K = {K1, . . . , KN }, where each contract represents the
application ability to transmit Δi bits of information over a route from ai to bi in
a time not exceeding τi , i = 1, N . So, under the contract an application can initiate
the stream of the requests for CoD service. We assume that the residual network
bandwidth is higher than the speed necessary to transfer data of all contracts for
the maximum time τi ;
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5. The stream of requests μi (t) ∈ {0, 1} for the contract Ki . Moreover, if μi (t) = 1,
then μi (t) = 0, t ∈ (t, t + τi ).

Denote by q j, j+1
Ki (t) the average data rate of the contract Ki over the τi through the

arc (v j , v j+1) ∈ E . Let ε : ∀i ∈ [1, N ] ε � τi . The time in the CoD service model
(or just for simplicity – CoD model) will be considered in the discrete form (6):

t =t0+ε∗k, where k∈[0,T ′], T ′ =
⌈
T

ε

⌉
(6)

Suppose that ∀i ∈ [1, N ] : μi (t0) = 1, then CoD service problem is equivalent to
the following system (7):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i=1 q

Ki
j, j+1(t) ≤ ρ j, j+1−qF

j, j+1(t) (v j , v j+1) ∈ E, t ∈ [t0, T ′]
∑t0+

⌈
τi
ε

⌉
∗ε

t=t0

∑
j :(ai ,v j )∈E qKi

ai , j
∗ ε=�i i=1,N

∑t0+
⌈

τi
ε

⌉
∗ε

t=t0

∑
j :(v j , bi )∈E qKi

j,bi
∗ ε=�i i=1,N

∑t0+
⌈

τi
ε

⌉
∗ε

t=t0

∑
j :(v j ,ai )∈E qKi

j,ai
∗ ε=0 i=1,N

∑t0+
⌈

τi
ε

⌉
∗ε

t=t0

∑
j :(bi ,v j )∈E qKi

bi , j
∗ ε=0 i=1,N

∑
j :(v j ,vr )∈E qKi

j,r (t)−∑
j :(vr ,v j )∈E qKi

r, j (t)= 0, vr∈V \{ai , bi }, i=1,N , t∈ [
t0, T ′]

qKi
j, j+1 (t) ≥ 0

(
v j , v j+1

) ∈E, t∈
[
t0, T

′]

(7)

6 MC2E Architecture: Heterogeneous Platform

In this section the mainMC2E architecture components or subsystems are presented:

1. Meta-Cloud (the most important) – orchestrate user applications, allocate and
schedule them between federates;

2. Interface – provides a unified API for users to submit their applications and for
federate administrator to manage and control the resources of the federate;

3. Networking – regulates network resource usage and provides Capacity-on-
Demand service [38];

4. Monitor – performs resource monitoring and clearance for all federates inMC2E;
5. Quality of Service, Administration Control and Management – enforces resource

usage policy, provides QoS based on user requirements and guarantees resource
reliability.

Themain purpose of theMC2Eenvironment is to distribute user applications between
HPC-C and HPC-S resources of the federation. This distribution is intended to even
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the load on different federates and tominimize queuewaiting time for users. Applica-
tions are distributed based on their performance on different platforms, their network
usage and data size. General MC2E workflow looks as follows:

1. By unified MC2E interface a user send his application and data to the front-end
server;

2. The front-end server invokes Meta-Cloud scheduler and monitor to choose a
federate for application execution;

3. Meta-Cloud analyse the queue and predicts application execution time and data
transmission time for all available federates;

4. Based on the prediction Meta-Cloud chooses the federate that will minimize the
total of application in system (data transmission time + queue waiting time +
execution time);

5. Meta-Cloud call the Networking for channel development to the destination fed-
erate and sends application and its data;

6. Federate executes the application and returns results to the user;
7. In the case of a federate failure, Meta-Cloud QoS migrates the application to

another federate.

6.1 Meta-Cloud

Meta-Cloud consists of three components which are described below.
ThisManagement and Orchestration System is intended to support systematically

complete life-cycle of a service in MC2E accordingly with ETSI standard recom-
mendations [39]. This system also is responsible for service instance scaling and
service instant healing support. This component is intended to provide flexible way
to integrate new services into MC2E infrastructure.

The next component is Service Level Agreement (SLA). It consists of the spe-
cial optimization techniques and algorithms support scheduling in heterogeneous
environment (HPC or DCs), providing consistent scheduling of different types of
resources (network, storage and compute). These algorithms are designed to regu-
late and comply with a variety of resource usage restrictions and the set of deploying
policies like VM-VM, VM-PM affinity/anti-affinity. These algorithms should take
into consideration the management policy of the specific service. For example, com-
pute node horizontal scaling policy inMPI task of HPC cluster, or scaling and healing
policies in network DC services (e.g. Firewall, NAT, Load Balancing).

The last component is the enhanced Orchestrator which make decision which
MC2E service should run on DC infrastructure and which on HPC one. The decision
is made based on task requirements and the current state of MC2E infrastructure.
The goal is to prevent an application to be run on high-price HPC unit whether it can
be easily computed in DC environment. For example, MPI or Spark task is better to
deploy in HPC infrastructure and network function NAT in DC.
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6.2 Interface

This subsystem should support the unified specification of virtual environments in
DC (NATs, LBs,Web-servers etc.) and in HPC (likeMPI, Spark/Hadoop etc.) infras-
tructure. The descriptions will also include data that will help to manage (scale, heal
and configure) the virtual resource. These specifications should be available in all
forms listed below: GUI, CLI and REST APIs.

There are a number of other cloud initiatives in the world; our proposal is to
provide a gateway to interconnect with them, for example, NSF Cloud Initiative,
AmazonWeb Services, and Rackspace among others. Our intent is to investigate API
compatibility and propose a gateway to translate signalling and provisioning among
public and scientific cloud services and MC2E. In such a way that computation or
storage resources can be moved to other clouds smoothly.

Users need a convenient tool to help build their customised virtual cloud. MC2E
Virtual Cloud Workspace is a WEB-based system that users can use to manage
resources and run tasks. A workspace is the portal of a user’s own virtual cloud
supported by the resources allocated to the user. With a browser supporting HTML5,
users can do jobs like online coding, debugging, testing, running program and
analysing results in their workspaces. A virtual cluster manager will manage the
supported resources (from DCs and HPC units) as a virtual cluster. This virtual
cluster should be elastic, fault tolerant and provided as a service to users.

To run some application in some HPC unit through MC2E, we need to develop
the corresponding HPC gateway. This gateway should provide HPC resources as
services to MC2E resource manager, and acts as a proxy of the HPC unit to run
HPC jobs for MC2E users. This gateway may also provide services like logging,
accounting, billing, etc.

6.3 Networking

In practice, some services are not intended to be implemented as a virtual machine
in the cloud and to be placed on MC2E switch or some other network equipment.
In order to be able to find the proper way to place the Network service, we need to
produce the classification of the Network services based on the service infrastructure
requirements and service life-cycle limitations. Some of them could be implemented
on MC2E SDN controller, or as a virtual appliance in a DC.

As long as an MC2E federation typically combines resources from different loca-
tions, there is a demand in a framework that can provide appropriate communication
paths to interconnect them. In order to resolve this issue, we propose to integrate into
MC2E a subsystem for inter-domain traffic engineering (TE) (similar to RouteFlow
used by Google B4) based on either MPLS or MP-BGP connected to several IXPs.

In MC2E end-to-end connections would typically run through DC, HPC and
WAN networks, which have different link quality (i.e. bandwidth, delay, loss, and
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jitter), different equipment facilities (i.e. packet scheduling and AQM disciplines)
and different balancing techniques (i.e. ECMP and multipath routing). We suggest
splitting these connections into a set of shorter connectionswith the help of enhancing
proxies allocated at the borders of these networks. This approach makes it possible
to select the most appropriate congestion control algorithm within each network
segment, and, thereby, increase overall speed of end-to-end TCP connections.

In order to improve the resource and energy efficiency of MC2E, the cognitive
SDN architecture is proposed. Based on the advanced technologies of cognitive
engine with learning and decision capabilities as well as the interaction with SDN
controller, the intelligence offered by cognitive SDN is used to achieveMC2Eorches-
tration. ForMC2Emanagement, cognitive SDN located inHPC unit linkswithmulti-
ple DCs, enabling resource-efficient content delivery and large-scale virtual machine
migrations.

Inside a DC within MC2E, there could be elements that are very specialized for
High Performance Computing, like machines connected to InfiniBand switches for
example, while other elements are just regular commodity hardware consolidating
virtualmachines. Thus, there is a need to normalize the communication interfaces and
protocols of these components. Thus, our idea is to investigate virtualized version of
HPC interfaces thatwill appear directly in the virtualmachines, and further accelerate
transport (based on DPDK) of HPC specific protocols from Ethernet to HPC, and
further transformation of this communication from HPC to DC, back and forth.

6.4 Monitoring

To produce human-readable information about every physical and virtual entity in
MC2E infrastructure the flexible monitoring system should be developed. This sys-
tem shouldwork in real-time environment and haveAPIs to connect withwell-known
infrastructure monitoring systems such as Zabbix [40], or NAGIOS [41].

For the purpose of the Federation resource usage, we need to be able to count of
the amount of each resource type each federate has used, providing clearing, billing,
and monitor information.

6.5 Quality of Service, Administration Control and
Management

The resources (compute, storage and network) of each federate should be divided
into two pools. First are local resources of the federate. Second are the resources that
the federate delegates to the Federation. To organize the collaboration of federates
in the Federation there should be a policy – a specific set of rules that clarify and
describe the resource announce/sharing/unsharing processes.
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A MC2E carries various kinds of requests with different importance or priority
levels from many individual users. The QoS provisioning should be differentiated
among different users. Even for the same user, the QoS requirements can change
dynamically over time. From the multi-client QoS support point of view, the tradi-
tional cloud system is insensitive to various QoS requirements for a large number
of clients coming from different countries, especially for scientific computing tasks
with inherent features ofworkload variations, process control, resource requirements,
environment configurations, life-cycle management, reliability maintenance, etc.

In case of a cloud failure, MC2E should guarantee uninterrupted communications
to offer almost uninterrupted services. Thus, it is very crucial to design finely tuned
redundancy to achieve the desired reliability and stability with the lowest resource
waste.

7 Future Works

In this research we presented the experiments which show that MPI programs can
utilize not all provided CPU resources in the cloud with slow network and thus
underutilized resources could be used to implement other MPI programs. Experi-
ments show that we can get up to 20% execution time acceleration when we run
in the cloud two MPI programs simultaneously in contrast of sequential run. Such
behavior could be used to improve CPU utilization and to increase the effectiveness
of HPC-application execution.

As it was mentioned at the end of the Sect. 4.4 to minimize the total time of a
task in MC2E it is needed to find the permutation tasks in the MC2E queue, which
minimizes the time spent by the tasks in the system. In turn, this problem causes
another one - the need to be able to evaluate the time it takes to perform a specific
task on different computing installations ofMC2E federations. The solutions of these
tasks are on the way to develop the scheduler for MC2E.

In this section we only introduce the basic concepts, the problem statements and
outline the main approaches to the solutions.

7.1 Basic Notions

First of all, it should be clarified the term ‘time’ means here a point the time axis.
Because of that the interval of time spent by theMPI task in theMC2E environment is
the time of completion of MPI task execution minus the time of MPI task appending
to the queue. Therefor the total interval of time an MPI task spend in the system
consists of the waiting time in the queue (task waiting time) and the execution time
on the computer (task executing time). Let’s introduce the concept of the state of
HPC-installation called HPC state. HPC state is a set of the task in the HPC queue
and the set of the task under execution on this HPC installation. Now introduce the



180 V. Antonenko et al.

notion of total time of the HPC state (HPC STT) that is the interval of time between
earliest time when a task from HPC queue came to the queue and the latest time
when the execution of a HPC queue task was completed. The tasks from the HPC
state under execution are not taken into account.

Now let’s introduce the notion of theMC2E state as the union of the HPC states of
the MC2E federates. Therefore, there is only one queue to the MC2E environment.
It is worth to mention that the tasks in HPC states numbered accordingly to their
number in MC2E state. The total time of the MC2E state (MTT) called the interval
of time between earliest time when a task from MC2E queue came to the queue and
the latest time when the task from MC2E state was executed.

7.2 Task Execution Time Estimating

Deals with this problem it is necessary to predict the execution time of a given task on
a given computer, provided that this task has previously been run on this computer,
possiblywith other arguments. The input parameters of the prediction function,which
should be specific for each task, are the initial arguments for the task; the output of
the prediction function is the execution time of the task. So, we need to build a
prediction function from the sets of initial parameters of the task and its execution
time from previous runs so that by setting the current initial parameters of the task,
we can obtain the execution time of the task with new arguments with acceptable
accuracy. We believe to get this solution based on machine learning approach. As a
training sample for this function we can use the information from execution history
of the task on a given HPC installation.

7.3 Permutation Problem

Permutation problem for HPC-installation. To reduce MTT, it is important to
reduce not the time spent by one task in the environment, but the time spent by a
set of tasks in the environment. To do this, it is needed to find the way to minimize
STT. So, for a given HPC state, it is needed to find the permutation of tasks in the
HPC queue with minimum STT. At this point we propose that the predictions of task
execution times in the HPC state are known.

As we already mentioned in the Sect. 4.4 it is well known [42] that rearranging
tasks in the queue can reduce the STT. The search of the permutation with the
shortest STT will be called permutation problem and such permutation will be called
the optimal one. In order to calculate the STT of a permutation it is necessary to
evaluate execution time for each task in the HPC state.
Permutation problem forMC2E environment. So, we need forMC2E state to find
the tasks distribution between HPC queues to get the minimal MTT. It is believed
that the forecast of the execution times for each of the tasks in the MC2E state at
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each of the HPC installations are known. It is also believed that the original line in
all HPC state empty. It is necessary to allocate tasks from the MC2E state to HPC
queues so that tasks rearranging in the HPC queues will minimize STT of each HPC
installation, as a result the minimal MTT will be reached.

The MTT value is determined by the maximum of STT, evaluated after the queue
distribution; therefore, it is necessary to minimize the maximum STT. To do this,
you need to “balance” the distribution of tasks among HPC queues.

The maximum STT problem can be solved using the “greedy” method [42]: the
largest task is selected, i.e. a task whose execution time is the maximum among all
possible execution times of all tasks on all HPC installations. This task queues to
HPC installation where accordingly to the forecast function, it will have the shortest
execution time. Then the dense packing problem [43] is solved for all other calcu-
lators: it is necessary to find in the general queue sets of tasks whose each set total
execution time is as close as possible from the bottom to the time of the “large” task.
This is the first step in queuing. Then, from the general queue, all selected tasks are
removed and the largest one is again searched. This procedure is repeated until no
tasks remain in the general queue. The resulting distributions are sent to calculators,
where the permutation problem is then solved.

To solve MTT minimization problem, it is necessary to forecast the execution
times of tasks on all HPC installations inMC2E, even if programs have not previously
been run there. For this, it is necessary to reassess the forecast for oneHPC installation
to get forecast for another one, where it was not previously been run. We call this
problem reassessing task execution time.

7.4 Reassessing Task Execution Time

So, for a program for which there is an assessment of the execution time on some
HPC installation, it is necessary to forecast its execution time on another HPC where
this program never runs. However, it is proposed that the results of launches of other
programs on these HPC are known.

Call the domain of program execution the set of results for program execution on
HPC installation. Each execution is a set of values known in advance, for example, the
number of executed instructions, the number of transferred bytes, allocated resources
etc. Thus, a result of execution is a vector of numbers that determines the position
of a point in the program execution domain.

To build a program execution domain, a large selection of data is needed like
800,000 runs of more than 15,000 programs. Each run has more than 100 character-
istics. Thus, this training sample, which can be obtained from the HPC installation
log, defines the program execution domain.

For a given domain, it is necessary to determine the generating basis function
(GBF). This GBF function has three arguments: the GB matrix (GBM), known in
advance (about it a little later), the set of the task name (recall that all tasks in the
queue for MC2E are named) and its arguments, the name of the HPC installation
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for which we want to evaluate the execution time of this task. The GBF result is an
assessment of the time taken to complete the task on the specified HPC installation.

It is proposed to consider the approach to the construction of the GBF function
based onGBMmatrix factorization technics. Rows of GBMmatrix correspond to the
tasks. GBM columns correspond to the HPC installations of MC2E. In each GBM
entry it is defined the execution time of the corresponding task on the corresponding
HPC installation. Some GBM entries are empty. The generating function is just
intended to determine the value for empty GBM entry. It is important to keep in
mind that the value of the GBM entry is a vector which represents the data of the
execution of the corresponding task on the corresponding HPC installation. To do
this we are going to apply the technics based on EM algorithm [44].

8 Conclusion

MC2E – an environment for academic multidisciplinary research was presented.
MC2E aggregates heterogeneous resources such as private/public clouds, HPC clus-
ters and supercomputers under a unified easy-to-use interface. MC2E is built as a
federation of local computing units called federates. Each federate can be represented
as an HPC cluster, a DC, a supercomputer, a scientific instrument or a tenant in the
cloud. The advantages of MC2E include:

• High level of resource control and flexible capabilities to define virtual environ-
ments;

• High quality of resource scheduling and utilization;
• It relieves a user from tedious system administration tasks and it also specifies a
unified way to describe a DC (or an HPC cluster) service life cycle.

MC2E can be applied in different areas, such as educational activities of research
institutes and universities, interdisciplinary research, international research collabo-
ration, increasing resource utilization in DCs, popularizing supercomputer usage in
different research areas, shared data usage by multiple organizations.

In this research we present the experiments which show that MPI programs can
utilize not all provided CPU resources in the cloud with slow network and thus
underutilized resources could be used to implement other MPI programs. Experi-
ments show that we can get up to 20% execution time acceleration when we run
in the cloud two MPI programs simultaneously in contrast of sequential run. Such
behaviour could be used to improve CPU utilization and to increase the effectiveness
of HPC-application execution.

The approach to the CoD service development was proposed. This approach was
divided into the route aggregation problem and the flow load distribution problem.
Various implementation options for the route aggregation problem were analyzed
according to the network parameters, the desires of the service provider and the
capabilities of the network equipment. In the case of flow load distribution problem,
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we presented mathematical model that allows us to determine the existence of a
solution to this problem.

The possible future work is the study of methods for solving the problem of
multiflow load distribution. There is also the question of maintaining a free resources
reserve to meet the needs of new customers and maintaining the necessary quality
of service for current customers in the event of a change in flows load.
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