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1 Introduction

Traditional drug discovery pipelines are complex and inefficient. Worldwide various
researchers are trying to shorten the drug discovery cycle to fight against many
stringent diseases. Traditionally researchers were only using statistical and clinical
methods for drug discovery [1]. Recently, researchers are using computational
approaches to reduce drug discovery time [2, 3]. Machine learning approaches
provide a powerful set of tools that can help in developing decision support systems.
Such systems help in early prognosis and diagnosis of diseases such as cancer,
diabetes, Parkinson’s, etc. Their applications include drug response prediction,
drug-target identification, biomarker identification, and drug synergy prediction.
Cancer is considered a very stringent and complex disease worldwide. Scien-
tists/researchers are trying their hard to find potential drugs or drug combinations
that could help to fight against diseases such as cancer which is the leading cause of
death worldwide [2, 3]. Figure 1 shows the central dogma of biology.

According to the study [4] the new drugs are produced at a constant rate during
the past 60 years. Moreover, the Tufts Centre for the Study of Drug Development
(CSDD) reported that the overall cost involved in developing a newly approved
drug is about $2,558 million and time is about one decade. Such study focuses
on the attention of researchers to develop computationally efficient drug discovery
pipelines. Machine learning and deep learning methods came up as a breakthrough
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Fig. 1 Central dogma of biology [82]

in drug discovery research [5, 6]. Deep learning applications involve various hidden
layers which provide data abstraction and help in data preprocessing and feature
extraction [4].

All the machine learning approaches are data-driven and hence help in
developing predictive modeling by utilizing the hidden correlations and patterns
in data. Figure 2 shows the genome data representation for machine learning
approaches. Machine learning approaches can be categorized as reinforcement,
supervised, unsupervised, and semi-supervised learning. The major difference in
these approaches is the quantity of information that is fed into the model which
lays the basis for model training. Chemical researchers have extensively utilized
machine learning capabilities especially supervised learning in anti-cancer research
[7]. Supervised machine learning algorithms use target labels for training the input
data and approximately predicting the output. Artificial neural networks (ANNs)
and kernel methods are popular supervised learning algorithms used to transform
the input space into a new feature space [8]. One of the most important features
of ANNs is feature transformation using various input layers. On the other, hand
kernel methods help in identifying non-linear relationships present within the data.
Kernel methods utilize kernel function to perform non-linear data transformations
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Fig. 2 Genome data representation for machine learning approaches

to use with linear algorithms. There are widespread applications of ANNs and
deep learning (DL) algorithms in biomedical and drug discovery. Gene expression
data and microarray data are used for developing anti-cancer drugs and biomarker
prediction machine learning models.

The influence of genes in different types of cancer promoted the genetic
data-driven research. Complex microenvironment results in difficult diagnosis and
treatment of various cancer types. Even patients with similar type of tumor show
varying responses toward the same type of drug treatment [9]. Although traditional
machine learning algorithms [10] are quite helpful in developing biomedical
computational models, recently we have seen a rise in deep learning algorithms. The
major reason for such a sudden drift is because of the large availability of biomedical
and pharmacogenomic datasets [11, 12] and high computing machines for parallel
processing such as GPUs.

2 Background

In this section, we discussed the machine learning-based cancer applications. The
essence of all the machine learning models is the high-quality data that we feed
for training. From the last two decades, many researchers and consortiums have
contributed to the field of drug discovery by providing high-quality chemical
and biological data. PubChem [13] is one of the largest open-source chemical
repositories. It provides the facility to search chemicals by name or structure. We
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Table 1 Selected startup
companies in the field of drug
discovery

S. no. Company name Website

1. Amplion https://bit.ly/2PjOY94

2. BioSymetrics https://bit.ly/2Xk14U5

3. Biorelate https://bit.ly/3fpvdY2

4. Causaly https://bit.ly/2Xle1gf

5. Data2Discovery https://bit.ly/31aEkGX

6. Data4Cure https://bit.ly/3fgJ5Uw

7. Elucidata Corporation https://bit.ly/3gpqzdS

8. Evid Science https://bit.ly/3i0gCnC

9. Genialis https://bit.ly/39SnqB8

10. HelixAI https://bit.ly/3glrz2V

11. Innoplexus https://bit.ly/3fjG8CM

12. Intellegens https://bit.ly/3k48rZq

13. InveniAI https://bit.ly/30pX9XP

14. Mozi https://bit.ly/3190p8Z

15. PatSnap https://bit.ly/33dLEV4

can get the physical, biological, chemical, and toxicity data of various chemical
compounds. ChEMBL [14] is a collection of bioactive drug-like small molecules.

It contains data corresponding to 2D structure and properties of bioactive drugs.
The database is majorly curated and abstracted from the literature of modern drug
discovery. The data for bioactivity of the drug molecule is provided in normalized
form. Further, web links for the research studies corresponding to drugs are included
in the database. The DrugBank [15] is the freely available database consisting of
data about a wide range of drugs and their corresponding targets. The DrugBank
combines data for two research domains: bioinformatics and chemoinformatics. It
is like an encyclopedia for getting information and detailed description regarding
various chemical compounds and their corresponding targets. It is a widely adopted
resource by various pharmacists, physicians, researchers, and the drug industry.
Table 1 contains selected startup companies in the field of drug discovery.

DrugCentral [16] is an online repository for information on various drugs. It
contains information such as mode of action for drugs and active ingredients
in chemical products. It also contains information regarding discontinued and
approved drugs outside the USA. SuperDRUG2 [17] is one of the largest databases
consisting of approved/marketed drugs and chemical ingredients. 2D and 3D
structures, physicochemical properties, and pharmacokinetic data of drugs are
also provided in the database. Along with this, it contains data for drug-drug
and drug-target interactions. The GDSC [18] database is developed to improve
cancer biomarker prediction and drug-target prediction. Informative data is provided
corresponding to genomic variations when different cell lines are perturbed with
drugs. The CCLE [12] database is a result of a collaborative effort by various
drug discovery research labs. It contains 1870 RNA sequencing, 654 whole exome
sequences, and 46 whole genome sequence files. Various researchers are trying their

https://bit.ly/2PjOY94
https://bit.ly/2Xk14U5
https://bit.ly/3fpvdY2
https://bit.ly/2Xle1gf
https://bit.ly/31aEkGX
https://bit.ly/3fgJ5Uw
https://bit.ly/3gpqzdS
https://bit.ly/3i0gCnC
https://bit.ly/39SnqB8
https://bit.ly/3glrz2V
https://bit.ly/3fjG8CM
https://bit.ly/3k48rZq
https://bit.ly/30pX9XP
https://bit.ly/3190p8Z
https://bit.ly/33dLEV4
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Table 2 Selected publicly
available online databases for
drug discovery

S. no. Database Online access

1. PubChem [13] https://bit.ly/39MxdZc

2. ChEMBL [14] https://bit.ly/3k6kvcs

3. DrugBank [15] https://bit.ly/3hRKPFw

4. DrugCentral [16] https://bit.ly/2PfMTL0

5. SuperDRUG2 [17] https://bit.ly/2EJHdXV

6. GDSC [18] https://bit.ly/31bxIbp

7. CCLE[12] https://bit.ly/3fkagOf

8. repoDB [19] https://bit.ly/33oSHdL

hard to extract meaningful insights from CCLE using microarray data analysis.
Table 2 contains selected publicly available online databases for drug discovery.

Drug Repurposing

The availability of freely downloadable healthcare datasets motivated the
researchers to apply machine learning algorithms for predicting drug responses,
biomarkers, signaling pathways, drug synergism, etc. Figure 3 describes the
Gaussian kernel and multi-task learning used for anti-cancer drug response
prediction. The Bayesian model has been used by Sean Ekins et al. [20] for
compound selection. In the proposed technique, they have used bioinformatics
as well as chemoinformatics data. Various researchers have also used machine
learning models for ligand-based virtual screening (LBVS) [21]. Naive Bayes
algorithm is also prominently used for predicting toxicity and biological pathways
for anti-cancer drug prediction [22]. Kuang Z et al. [23] have presented a
regularization-based technique for drug repurposing. Their statistical analysis
suggests various drugs that can be repurposed in varying biological situations.
Patrick MT et al. [24] have implemented an approach for summarizing drug
information from 20 million research articles. They trained their model on various
stringent diseases such as psoriasis, alopecia areata, and immune-mediated diseases
to obtain the drug repurposing opportunities. Zeng X et al. [25] have proposed a deep
learning approach for computational drug repurposing. Their proposed approach
exploits data from various networks such as drug-disease, drug-target, and drug-
drug networks. The proposed model was trained in Alzheimer’s and Parkinson’s
disease. Kim E et al. [26] have developed the machine learning-based approach
for predicting the hidden pharmacological benefits of herbal compounds. The
common assumption that all the researchers assume while developing computational
approaches for drug repurposing is that similar diseases can be treated with similar
drugs. However, similarity can be defined in terms of drug-drug, tissue-tissue,
and disease-disease similarity. Table 3 contains selected publicly available online
databases for drug repurposing.

https://bit.ly/39MxdZc
https://bit.ly/3k6kvcs
https://bit.ly/3hRKPFw
https://bit.ly/2PfMTL0
https://bit.ly/2EJHdXV
https://bit.ly/31bxIbp
https://bit.ly/3fkagOf
https://bit.ly/33oSHdL
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Fig. 3 Gaussian kernel and multi-task learning used for anti-cancer drug response prediction

Table 3 Selected publicly
available online databases for
drug repurposing

S. no. Database Online access

1. NCI-DREAM 7 https://bit.ly/2Pfj4Kz

2. NCI-60 [27] https://bit.ly/33lCxBE

3. TCGA [28] https://bit.ly/39QPapq

4. TCPA [29] https://bit.ly/33hI4cs

5. GDSC[18] https://bit.ly/33jtyAU

6. CCLE [12] https://bit.ly/2DrT1NI

Cancer Classification

Gene selection is a challenging process in microarray data analysis. Although a lot
of research has been done on identifying genomic biomarkers for different types of
cancer, still no generic pipeline has been designed for cancer classification. Various
algorithms/approaches have been proposed in the literature to identify relevant
and potential genomic biomarkers. These algorithms can be broadly classified as
wrapper, filter, and hybrid methods for gene selection [30, 31]. The filter method

https://bit.ly/2Pfj4Kz
https://bit.ly/33lCxBE
https://bit.ly/39QPapq
https://bit.ly/33hI4cs
https://bit.ly/33jtyAU
https://bit.ly/2DrT1NI
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is defined by statistical analysis and properties of the dataset for obtaining the
best optimal gene subset. Ranking of genes is performed using different types of
statistical methods [32, 33]. Genes that score relatively higher rank are considered
for further analysis. The methods included in this category are T-test [33], max-
min correntropy [34], and information gain [35]. For detailed information on such
methods, one can consider a survey on filter methods for gene selection [36].
The wrapper method relies on some kind of evolutionary technique to optimally
search the relevant feature subset. In wrapper methods, random initialization of the
population is done consisting of the subset of features. The fitness of each subset
is obtained using an appropriate fitness evaluator. Iteratively the whole process is
repeated several times to fetch the optimal solution. Such methods include the use
of a genetic algorithm [37], artificial bee colony algorithm [38], bat algorithm [39],
and swarm optimization [40] for gene selection. Table 4 contains selected publicly
available online datasets for cancer classification (Fig. 4).

Hybrid methods are also evolutionary-based methods, but they use filter methods
in the initial phase for the screening of the most promising genes from the

Table 4 Selected publicly available online datasets for cancer classification

S. no. Datasets Online access

1. SRBCT cancer Khan et al. [41]

2. Leukemia cancer Golub et al. [42]

3. Prostate cancer Singh et al. [43]

4. Breast cancer Hedenfalk et al. [44]

5. Breast cancer https://bit.ly/2XmvQLM

6. Central nervous system cancer https://bit.ly/33lCPse

7. GSE25136 https://bit.ly/2PjA2HL
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Prediction
Algorithm
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Results
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Cancerous
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Fig. 4 Example of cancer classification using machine learning application [82]

https://bit.ly/2XmvQLM
https://bit.ly/33lCPse
https://bit.ly/2PjA2HL
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microarray dataset. These methods use filter methods to reduce the running time
of an algorithm. Some of these approaches include the chi-square test with GA
[45], mRMR with GA [46], and similarity scheme with ABC [47]. Apart from
these methods, some approaches integrate the feature selection task along with
classification. It selects the feature subset, builds a classifier, and then checks
the classifier accuracy. If performance is not appropriate, then it removes the
poor genes and builds the classifier again iteratively. Such methods are known as
embedded methods [48]. Most of these methods are difficult to replicate and are
computationally expensive. Most of these methods are not able to optimally utilize
high-dimensional gene expression data and suffer from overfitting.

Drug Synergy Prediction

Targeted drug therapy is the most commonly used treatment given to cancer
patients. These drugs are specially designed based on their targets which help to
suppress cancer. These targets are known as anti-oncogene which is responsible for
tumor suppression by suppressing mitosis (cell division) [49]. Any alteration and
changes in these genes lead to uncontrollable cell growth. Unlike these genes, some
oncogenes promote tumor growth. Most of the targeted drug therapies are designed
considering oncogenes as anti-oncogenes are hard to target. Various studies revealed
the resistance of targeted drug therapies, which hence results in nonresponsive
drug behavior [50, 51]. This resistance may have occurred because of many
reasons such as cell death inhibition, change in drug targets, etc. Heterogeneous
tumor microenvironment can also result in drug resistance [42]. Combination drug
therapy is a good option to avoid drug resistance. It helps in overcoming the drug
resistance by delaying tumor growth. It includes the usage of multiple drugs in
fixed dose proportion and as a single-dose formulation. Combination drug therapy
is showing excellent results in tumor suppression by reducing the chances of
multiple mutations [52] and a single mutation [53] that can escape all the drugs.
Additionally, combination therapy helps in lowering drug dosage and side effects
[52]. A combination of two or more drugs is considered effective if the tumor
suppression rate of combination is higher than individual drugs. Such a combination
of drugs is known as synergistic drugs otherwise antagonistic. The proposition of
dose also matters in drug synergy; we cannot mix them in any random proportions.

Combination drug therapy is widely used in treatment of various diseases
such as HIV and cancer and many more diseases [54, 55]. Combination drug
therapy becomes more essential for complex diseases such as cancer because of
the involvement of multiple growth pathways in such diseases [54]. However,
there is risk of toxicity with combination therapies, which can be handled with
appropriate quantity of dosage. Many combination drugs are already approved by
FDA for treating stringent diseases. For example, aspirin and dipyridamole are used
in combination to reduce the risk of stroke [56], and sabarubicin and cisplatin
are used in lung cancer [57]. The Drug Combination Database (DCDB) provides
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information about 330 FDA-approved and 1033 investigational drug combinations
[58]. Drug combination works on the principle of synergy effect, which means that
the overall effect of combination drug therapy is more as compared to individual
drugs. Although it is observed that there is benefit of drug combination therapy,
quantification of drug synergy effect is still one of the challenging tasks. Many
researchers have proposed different methods such as Chou-Talalay method [59],
Loewe additivity [60], and Bliss independence [61] to calculate dose-response effect
of combination drugs. These techniques are based on comparison between expected
and observed combination drug responses [62, 63]. Till now, for most of the
diseases, drug combinations are identified based on clinical trials. But clinical trials
using “trial and error” is a labor- and cost-intensive and time-consuming task [64].
Another disadvantage of clinical trials is unwanted exposure of harmful chemicals
to patients [65]. Apart from clinical trials, high-throughput screening (HTS) is also
used in identifying potential drug combinations [66]. In such screenings, different
concentrations of drugs are used to identify potential drug combinations, but still
they are not accurate enough to capture the real microenvironment [67].

Although all these methods play a crucial role in quantifying drug synergy, still
there are many issues with these methods such as no method can quantify drug
synergism in different feasible situations [62] and different dose-response methods
can even produce different results [68]. Moreover, these methods are based on
screening of all the possible drug combinations, which is impractical and time-
consuming. In such a situation, identification of effective drug combinations is a
challenging task. Many researchers are using machine learning and computational
models to predict potential drug combinations for various diseases [69, 70].

3 Research Gaps in Computational Drug Discovery

The last two decades has seen a tremendous awareness and growth toward cancer
research. Many researchers, clinicians, and academicians are trying their hard to
fight against cancer. We have discussed the various already proposed computational
drug discovery approaches and applications in Sect. 2. But still, there are many
issues/research gaps left that need to be worked upon. Most of the techniques
are crudely based on statistics which limit the utility of the applications only to
statisticians. Hence, there is a need to develop user-friendly applications, which are
provided by machine learning algorithms. The following research gaps still exist:

1. High dimensionality of data is one of the major issues while developing
applications from genomic data. Moreover, there is an issue of imbalance class;
there is a majority of one class due to lack of samples of other class. Although
various techniques have been developed, still no approach has been developed
which covers a wide range of applications. Some techniques are good in one
situation and others in different situations. So it is more or like hit and trial
method.
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2. Existing approaches are developed using binary imbalanced datasets. There is
a need to test those applications on multi-class imbalanced datasets. With the
increase in the severity of the genetic disease, their subtypes also increase. Hence
multi-class classification is required to predict the correct subtype of the disease.

3. Heterogeneity in the genetic structure of cancer patients results in heterogeneity
in their drug responses. Earlier drugs were discovered based on the anatomical
region of the disease, but cancer is a genetic disease, so any anti-cancer drug
discovery needs to consider genetic influence while developing new drugs.
Moreover, if any computational method is proposed for drug discovery or anti-
cancer drug prediction, then it should strictly consider the genetic variations that
are responsible for cancer.

4. Feature selection is one of the primary tasks in cancer classification approaches.
But existing feature selection approaches are not scalable enough to handle
maximum genetic aberrations simultaneously.

5. Cancer is a complex disease; we cannot generalize the drug therapies for different
patients. There is a need to provide personalized therapies corresponding to an
individual patient’s drug sensitivity.

6. Machine learning capabilities for predicting drug synergism are unexplored.
Predicting drug synergy will boost the anti-cancer drug discovery process. There
is a need to extract better features for predicting drug synergy.

4 Future of Computational Drug Discovery

Deep Learning for Drug Discovery

“Artificial intelligence” as the name itself states that it is a kind of intelligence which
is incorporated artificially in a system. There are various definitions of artificial
intelligence, but broadly they are categorized as thinking humanly or rationally and
acting humanly or rationally. It is an interdisciplinary branch of science which can
be applied into molecular biology and genomics and in various other disciplines.
Researchers are actively using artificial intelligence in bioinformatics for analyzing
large amount of data and DNA sequencing [71]. From the last two decades, there
is an enormous increase in healthcare data from researchers, academicians, and
industry. This data holds enough potential to explore and fetch meaningful insights.
There is a huge possibility of exploring hidden patterns and knowledge from this
healthcare data using computational approaches. Although many researchers are
using statistical approaches and machine learning algorithms to get meaningful
insights from data, it is impossible to process healthcare datasets using conventional
machine learning algorithms because of their huge volume, velocity, and variety.
In such a scenario, deep learning algorithms play a very important role. Nowadays,
researchers are using deep learning algorithms such as CNN [72] and RNN [73] for
dealing with healthcare big datasets.
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Role of Deep Learning in Cancer Classification

Existing literature on cancer classification has used traditional machine learning
algorithms. However, very few approaches have been proposed using deep learning.
Wang et al. [74] developed a deep learning-based technique to identify metastatic
breast cancer using an image dataset. Ahmed et al. [75] have proposed a deep
belief network-based for breast cancer classification. Skin cancer is very common
nowadays, and it’s hard to diagnose and predict their targets. To classify and
identify the most promising biomarkers for skin cancer, Haofu et al. [76] proposed
a classification approach using deep learning. Fakoor et al. [77] have developed
an unsupervised feature selection technique for identifying and diagnosing cancer
types. Arunkumar and Ramakrishnan [78] have developed the hybrid approach for
feature selection. All these techniques have focused on reducing the dimensions of
input dataset using feature selection approaches.

Role of Deep Learning in MicroRNA Analysis in NGS

“Big Data” has been a buzz topic in recent years, and it has gained huge interest from
academics as well as industry. The rate at which data is being produced has increased
to many folds and so is the research in this field. Data related to bioinformatics has
also evolved over many years. An increase in computational capabilities and the
emergence of HTS technology have led to the sudden outburst of biomedical data.
This data serves a great potential in identifying disease biomarkers and discovering
new drugs, but unfortunately, it is not effectively utilized. NGS technologies have
created a serious need for new technologies and algorithms. Figure 5 shows
biogenesis of microRNA. In such a scenario, deep learning using neural networks
is considered an effective choice. Although ML approaches have been used for
many years, they have the limitation of processing raw data. Deep learning is a new
version of ML algorithms that incorporate artificial intelligence using multilayer
neural networks. In contrast to traditional ML approaches, deep learning can
extract features from data itself. In efforts to apply deep learning algorithms to
microRNA prediction, researchers have proposed various deep learning algorithms.
Seunghyun Park et al. [79] have proposed deepMiRGene, an algorithm used to
predict microRNA precursor. They used RNN, because there is no need to input
features manually, and the algorithm automatically identifies features from input
data. This approach leads to the discovery of various new features too which
can be used in future research. Similarly Cheng S. et al. developed MiRTDL
[80], an algorithm for microRNA target prediction using CNN. It automatically
extracts desired information from the data itself rather than relying on information
fed manually. These algorithms have shown efficient results and have improved
prediction results. The use of deep learning techniques in microRNA and their target
prediction can help in novel microRNA predictions, and one can investigate better
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knowledge about the underlying mechanism. Table 5 contains selected microRNAs
as potential cancer diagnostic biomarkers in blood.

5 Conclusion and Future Directions

We have seen in previous sections that various machine learning applications have
been developed in the literature for anti-cancer drug discovery. But still it is a
challenge to predict drugs using computational techniques which are also clinically
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Table 5 Selected microRNAs as potential cancer diagnostic biomarkers in blood

S. no. Tool/pipeline Features URL

1. BioVLAB-MMIA-
NGS

To find DE microRNAs and
their target genes (DEGs)

https://bit.ly/3gzgN9r

2. CAP-miRSeq Supports sequential and par-
allel processing of deep
sequencing microRNA data

https://mayocl.in/2DcM3fF

3. iMir Provides automated pipeline
for microRNA data analysis

https://bit.ly/30iOHJM

4. CPSS Standalone tool with single
data submission

https://bit.ly/30lOG7H

5. MAGI MicroRNA-Seq analysis
using GPU technology

https://bit.ly/39LByfm

6. miRSeqNovel R/bioconductor pipeline
package to predict novel
microRNA for plant and
animal microRNA

https://bit.ly/2DbmQ5s

7. mirTools 2.0 Performs comparative anal-
ysis of experimental sam-
ples and identifies the DE
microRNAs among experi-
mental group

https://bit.ly/3flotKV

8. MMIA Integrates microRNA and
mRNA expression data for
detailed analysis

https://bit.ly/39VcJh1

efficient. Cancer is a very stringent and complex disease which needs multi-focused
approach for treatment. We can’t treat a patient by focusing on a single aspect
of genetic behavior of individual. Multiple pathways need to be considered while
developing potential treatment drugs. Drug resistance can also be targeted while
designing drugs. In such cases, multiple drug combinations can be selected as a
treatment option. Enormous increase in oncological datasets is also a boom to
cancer research. But this data can’t be mined using traditional/conventional machine
learning algorithms. Deep learning algorithms should be extensively studied to
utilize such big healthcare datasets.
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