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Abstract Recommender systems increasingly use information sourced from social
networks to improve the quality of their recommendations. However, both recom-
mender systems and social networks exhibit phenomena under which information
for certain users or items is limited, such as the cold start and the grey sheep
phenomena in collaborative filtering systems and the isolated users in social
networks. In the context of a social network-aware collaborative filtering, where
the collaborating filtering- and social network–based neighbourhoods are of varying
density and utility for recommendation formulation, the ability to identify the most
reliable recommenders from each neighbourhood for each user and appropriately
combine the information associated with them in the recommendation computation
process can significantly improve the quality and accuracy of the recommendations
offered. In this chapter, we report on our extensions on earlier works in this
area which comprise of (1) the development of an algorithm for discovering the
most reliable recommenders of a social network recommender system and (2)
the development and evaluation of a new collaborative filtering algorithm that
synthesizes the opinions of a user’s identified recommenders to generate successful
recommendations for the particular user. The proposed algorithm introduces signif-
icant gains in rating prediction accuracy (4.9% on average, in terms of prediction
MAE reduction and 4.2% on average, in terms of prediction RMSE reduction)
and outperforms other algorithms. The proposed algorithm, by design, utilizes only
basic information from the collaborative filtering domain (user–item ratings) and
the social network domain (user relationships); therefore, it can be easily applied to
any social network recommender system dataset.
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1 Introduction

Nowadays, due to the blistering growth of the available information on the Internet,
the task of searching and finding products that may be of interest to users has become
an extremely difficult task. Recommender systems (RSs) aim to overcome the
information overload problem, by investigating the preferences of online users and
suggesting items they might like. Many commercial web services have implemented
these systems to recommend products to their clients in a more accurate manner, to
increase their profits.

The most widely used approach for making recommendations, stemming from
user actions and behaviour, is collaborative filtering (CF). CF synthesizes the
informed opinions of people in order to make accurate user rating predictions
and personalized recommendations. Since traditional CF relies only on opinions
expressed by humans on items, either implicitly (e.g. a user purchases an item
or clicks on an advertisement banner, which indicates a positive assessment) or
explicitly (e.g. a user submits a specific rating for a particular item), its biggest
advantage is that the items’ explicit content description is not required [23], since,
contrary to content-based RSs, the CF RSs do not recommend items similar to the
ones that the users have already experienced (and rated positively). CF works on
the assumption that if users had similar tastes on some items in the past (rating
assignment, buying, eating, watching, etc.), then they are likely to have similar
interests in the future, too [10].

Traditional CF-based RSs assume that users are independent from each other and
do not consider the social interactions among them, such as friendship and trust.
This approach fails to incorporate important aspects that denote interaction, influ-
ence and tie strength among them, which can substantially enhance recommendation
quality [4, 11].

Social network-aware RSs take into account both static data sourced from
the user profiles (e.g. gender, age and residence), as well as static data sourced
from the item profiles (e.g. item price, availability and colour). These features are
complemented with dynamic aspects and contextual information stemming from
social information, such as user mood and social influence, as well as the item
general acceptance and trends in order to supplement the traditional CF data (e.g.
the aforementioned static data, as well as user ratings). By taking this information
into account in the recommendation process, the social network (SN) RSs manage
to achieve more successful and targeted recommendations [16].

However, in some cases the SN- and CF-based information that a RS has at
its disposal may be limited: some users may not consent to the use of their SN
information for recommendations or may not have SN accounts at all, or the rating
data (characteristics and categories of products) may be unavailable for the RS
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service. And, conversely, in some cases, the CF-based near neighbours (NNs) of
a user U may either be limited in number, or have low similarity, or have little
utility, in the sense that they have rated very few items that U has not already
rated. Generalizing, we can assert the successful combination of SN- and CF-based
information effectively depends on identifying which rating prediction information
source (the SN relations or the CF NNs) is considered as the most reliable and
useful predictor for each individual user in a SN CF dataset. While evaluating
available prediction information sources, we should take into account both (a) the
characteristics of the information source (e.g. neighbourhood population, degrees
of similarity and levels of influence between the user and her neighbourhood) and
(b) the dynamics of the recommendation process, considering in particular the
fact that—for many users—their SN relationships play an important role in their
responses to recommendations, when compared to the CF NNs that traditional CF
RSs use [4].

In this chapter, we propose an algorithm that can be applied to any SN-aware RS,
which utilizes both the users’ social relations (SN-based information) and the users’
ratings on items (CF-based information) and combines them effectively to generate
more successful rating predictions. The proposed algorithm addresses the issues
of limited SN information or limited CF information for some users, by adapting
its behaviour, taking into account the density and utility of each user’s SN and
CF neighbourhoods. In this context, we present and validate seven alternatives for
evaluating the importance of each user’s SN and CF neighbourhoods and combining
the partial predictions produced by each user’s SN and CF neighbourhoods.

Through this adaptation, the proposed algorithm achieves considerable improve-
ment in rating prediction accuracy; this is verified by the results of our experiments,
in which the performance of the proposed algorithm is evaluated against five
contemporary SN CF datasets. In the same experiments, the performance of the
proposed algorithm is compared against the performance of the algorithm presented
by Margaris et al. [21], which also tackles the same problem; however assuming
that all dataset users share the same prediction significance between CF and SN
prediction information in RSs.

Notably, in our experiments we used:

1. Both dense and sparse SN datasets (a SN dataset density refers to the number of
relations when compared to the number of users in it—[4])

2. Both dense and sparse CF datasets (a CF dataset density refers to the number of
ratings when compared to the number of users and items in it—Herlocker et al.
2004)

3. Both undirected edge (friendships) and directed edge (trusts) SN datasets [11]

The experiment results show that the proposed algorithm introduces considerable
prediction accuracy gains in terms of rating prediction error under all conditions
(4.9% on average, in terms of prediction MAE reduction and 4.2% on average, in
terms of prediction RMSE reduction). Since the proposed algorithm requires only
basic SN information (user relationships), as well as basic CF information (user
ratings on items), it follows that it can be applied to any SN RS dataset. It is also



54 D. Margaris et al.

worth noting that the proposed algorithm can be combined with other algorithms
that have been proposed for improving prediction accuracy, rating recommendation
quality or prediction coverage in CF-based systems, focusing either in traditional
CF-based systems (e.g. concept drift and clustering techniques—[9]) or in SN CF-
based systems (influence, trust, etc.—[5]).

The rest of the chapter is structured as follows: Section 2 overviews related work,
while Sect. 3 presents the SN CF prediction formulation foundations. Section 4
presents the proposed algorithm, as well as the alternatives for combining the partial
predictions produced by each user’s SN and CF neighbourhoods. Section 5 evaluates
the proposed algorithm and, finally, Section 6 concludes the chapter and outlines
future work.

2 Related Work

RSs are increasingly utilizing SN data to improve the accuracy of the recommen-
dations offered to their users and augment recommendation variety [4, 11], as well
as alleviate the issues of cold start, where it is impossible to provide personalized
recommendations due to lack of information, and grey sheep, that is, users whose
opinions do not agree with any other user and hence a CF RS cannot produce a
recommendation [13].

In the aforementioned works, Gilbert and Karahalios [11] present a predictive
model that maps SN data to tie strength, differentiating between weak and strong
ties with relatively good accuracy, and illustrate how the utilization of tie strength
may enhance SN design elements, including friend introductions, message routing,
information prioritization and privacy controls. On the other hand, Bakshy et al.
[4] investigate the effect of social influence on the consumer responsiveness to
online advertisements. More specifically, Bakshy et al. [4] analyse how the presence
of cues from a user’s social neighbourhood affects the user’s responsiveness to
online advertisements, taking into account the tie strength between the user and the
social connections appearing in the cues. With this, they establish the sizable effect
from the inclusion of minimal social cues in advertising and quantify the positive
relationship between the consumer response rates and the connection strength
among users and affiliated peers appearing in social cues. He and Chu [13] mention
that even if a user has no past reviews, a RS still can make recommendations to him
based on the preferences of his friends, if it integrates with SNs. They designed a
framework that makes recommendations based on the user’s own preferences, the
general acceptance of a target item and his SN friends’ opinions.

Other works utilize SN data to improve the accuracy of the recommendations
offered to their users. Capdevila et al. [7] present GeoSRS, a hybrid RS for a
location-based SN that enables users to write short reviews about places of interest
that they visit. The presented RS uses text mining, as well as geographical location
information in order to recommend locations. Margaris et al. [20] propose a query
personalization algorithm that exploits the browsing and rating information of items
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by users as well as the influence information from SNs used for personalized query
adaptation. The queries were adapted by (re)writing the specification of the query
sorting procedure to allow for re-ordering of data based on the projected user
interest.

Yan et al. [30] propose an approach for managing the complexity of adding
social relation networks to RSs. The proposed method, initially, generates an
individual relationship network for each user and item, using a fitting algorithm
of relationship networks to control the relationship propagation and contracting.
Individual relationship networks are subsequently regularized by taking into account
the taste diversity between relationship members, in order to capture the time-
evolving nature of tastes and emphasize the aspect of homophily. Finally, the
regularized individual relationship networks are fused into a matrix factorization
algorithm to generate recommendations. Their method is generalized so it can also
be applied to the item–item relationship network via item–user role switching. Pham
et al. [25] introduce a social RS using memory-based CF models with user-oriented
methods as basic models. This is conducted through analysis on the correlations
between social relations and user interest similarities. Additionally, they employ
sentiment analysis techniques to identify the top-K favourite products for each
user, and this information is exploited by the social RS in the rating prediction
computation process. Chamoso et al. [8] propose a relationship RS for business
and employment-oriented SN. The proposed RS extracts the relevant information
from the SN and utilizes it for recommendation on new contracts and job offers to
users. The RS utilizes information scraped from user profiles, user activity and job
offer descriptions. Then, metrics are applied to discover new ties that are likely to
become relationships.

Seo et al. [26] introduce a method to calculate the friendship strength described
by the closeness between users in a social circle. Moreover, they propose a
personalized RS based on friendship strength to recommend topics or interests that
users might have in order to analyse big social data, using Twitter. The measure
that they propose can provide recommendations in multi-domain environments for
a variety of topics. Zhao et al. [33] propose a rating prediction method for user-
services by exploring the rating behaviour of users of social networks. They predict
user-service ratings by focusing on the user rating behaviour and, more specifically,
on additional rating information, such as the time the user rated the item, what kind
of item it was, the user interest that could be mined from the user rating history
and the manner that the user rating behaviour diffuses among the user SN relations.
Moreover, they introduce the interpersonal rating behaviour diffusion factor for deep
understanding of the users’ rating behaviour. For the user-service rating prediction
method, four factors are fused into a unified matrix-factorized framework: (a) user
personal interest (related to user and item topics), (b) interpersonal interest similarity
(related to user interest), (c) interpersonal rating behaviour similarity (related to user
rating behaviour habits) and (d) interpersonal rating behaviour diffusion (related to
user behaviour diffusions).

Yu et al. [31] present a social recommender that is based on the main idea that
likability is reflected by distance. This work employs a distance metric learning
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approach [29] to derive a distance metric representing the relationships between
users and between users and items; these distances are jointly determined by ratings
and social relations. This distance metric is combined with matrix factorization,
mapping items and users into a unified low-dimensional space and supporting
a spatial understanding of the latent factor space and how users and items are
positioned inside the space. This approach increases the placement accuracy of users
with few ratings, who are ‘pulled’ close to other users that are similar to them.
Finally, the learned metrics and positions are used to generate understandable and
reliable recommendations.

Mukamakuza et al. [24] examine the existence of observable relationships
between rating behaviour and SN connections in social recommenders. More
specifically, they investigate publicly available datasets that contain both traces of
rating behaviour along with a social graph. Utilizing SN analysis and statistics tech-
niques, they examine the correlation between high rating activity and multiple item
feedback. They check whether high correlation leads to SN centrality and vice versa.
Ma et al. [18] propose a CF algorithm based on SN relationship and geographic
information as complementary conditions for solving fundamental RS problems,
such as raw data sparsity and low accuracy/efficiency. Their proposed algorithm
introduces the social relation data into the matrix complementation process. This
results in reduced sparsity for the original user–item rating matrix and enhances
the authenticity of the data complement. Then, the user geographic information
is used for filtering the information that is used for the matrix complementation.
This approach lowers the data complementation error and improves the data
complementation accuracy. The improvement on the recommendation efficiency
and accuracy is achieved through conditional selection of the item complements.

Recently, Amato et al. [3] proposed a RS based on a ‘user-centred’ approach
for recommendations for big data applications. Their approach works by processing
interactions between the users and the multimedia content generated in one or more
social media networks. Alahmadi and Zeng [2] present an Implicit Social Trust and
Sentiment-based RS framework that mines user preferences from online SNs. Their
method utilizes the typically overlooked but widely available information from
SNs in RSs. Based on the fact that a user opinion is influenced considerably by
the opinions of their trusted SN relations, they present a framework to personalize
recommendations through the application of new data sources frommining the short
text posts of the users’ friends from microblogs. The resulting Implicit Social Trust
and Sentiment-based RS maps converted recommendations to numerical rating
scales through three distinct measures: (1) calculation of the implicit trust between
friends, based on intercommunication activities, (2) inference of the sentiment
reflected from the information from friends’ short posts, called micro-reviews, using
natural language for sentiment analysis, enhanced with techniques for handling
online social network language features such as emoticons and Internet jargon and
(3) quantification of the degree to which the level of trust between friends and
sentiment from micro-reviews from friend recommendations impacts each user’s
opinion, using machine learning regression algorithms, such as support-vector
machines, random forests and linear regression.
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All the aforementioned works necessitate the availability of additional infor-
mation, either regarding the user profile (e.g. location, age and gender), the item
description (e.g. price, taxonomical categorization and value for money) or the
relationships between users (e.g. tie strength and social influence). In this sense,
their applicability is limited when compared to the algorithm proposed in this
work that requires the availability of just basic SN-sourced information (i.e. trust
relationships or elementary friendship among users).

Notably, the work in Margaris et al. [21] presents an algorithm that also confines
its needs for SN-sourced data to trust relationships or elementary friendship among
users. It computes SN-aware CF-rating predictions by synthesizing a SN-based
prediction with a CF-based one. However, the algorithm presented in Margaris et al.
[21] uses the same weight coefficients for the SN- and CF-based predictions in the
synthesis step, an approach that does not take into account the particular properties
of each user’s SN-based as well as CF-based neighbourhoods.

This chapter advances the state-of-the-art, by introducing an algorithm that
is able to adapt its behaviour to the features of the users’ SN- and CF-based
neighbourhoods. More specifically, the proposed algorithm analyses the users’
already entered ratings and computes a personalized set of weight coefficients
associated with SN- and CF-based predictions for each user. Through this approach,
the proposed algorithm significantly leverages prediction accuracy. In this chapter,
we also present our experiments and findings that quantify the prediction accu-
racy improvement and establish that the proposed approach consistently achieves
improved accuracy under two correlation metrics and across five contemporary
datasets that contain both SN relations and CF ratings.

3 SN CF Prediction Formulation Foundations

In CF, predictions for a user U are computed based on a set of users that have rated
items similarly to U, namely U’s Near Neighbours (NNs). For the majority of the
CF systems, the similarity metric between two users U and V is typically based
on either the Pearson Correlation Coefficient (PCC) or the Cosine Similarity (CS)
metrics [14].

The PCC metric, denoted as sim _ pcc(U,V), is expressed as:

simpcc (U, V ) =
∑

k

(
rU,k − rU

) ∗ (
rV,k − rV

)

√
∑

k

(
rU,k − ru

)2 ∗ ∑
k

(
rV,k − rV

)2
(1)

where k ranges over items that have been rated by both U and V, while rU and rV
are the mean values or ratings entered by users U and V.

Similarly, the Cosine Similarity (CS) metric, denoted as sim _ cs(U,V), is
expressed as:
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simcs (U, V ) =
∑

k rU,k ∗ rV,k
√

∑
k

(
rU,k

)2 ∗
√

∑
k

(
rV,k

)2
(2)

Afterwards, for user U, his NN users, NNU , are selected out of the ones whom a
positive similarity has been computed with. Then, the rating prediction pU,i for the
rating of user U on item i is computed. The computation is expressed as:

pU,i = ru +
∑

V∈NNu
simCF (U,V) ∗ (

rV,i − rV
)

∑
V∈NNu

sim (U,V)
(3)

where the simCF(U,V) denotes the similarity metric that the particular CF system
implementation has selected.

The work in Margaris et al. [21] introduced the concept of SN NNs of a user U:
user V is considered to be U’s SN NN, if a social relation, such as friendship or
trust, has been established between them in the context of a SNS.

The set of SN NNs of user U will be denoted as SN_NNU and is formally
expressed as:

SNNNU = {V ∈ users(S) : r (U, V ) ∈ Sr} (4)

where users(S) is the set of users within social network S, r is a social relationship
within S and Sr is the extension of relationship r in the context of S. Similarly, we
denote the initial CF NNs of a user U as CF_NNU .

Moreover, the algorithm presented in Margaris et al. [21] follows a metasearch
score combination algorithm [19] in order to combine the two partial prediction
scores. One score is based on the SN-based near neighbourhood of the user
(SN_NNU), while the second is based on the traditional CF near neighbourhood of
the user (CF_NNU). The score from the SN-based near neighbourhood is denoted
as pSNU,i and computed as:

pSNU,i =
∑

V∈SNNNU,i
simSN (U, V ) ∗ (

rV,i − rV
)

∑
V∈SNNNU

simSN (U, V )
(5)

As far as the computation of the simSN(U,V) quantity is concerned, which
represents the SN-based user similarity, in this work we adopt the following
approach:

• If the SN dataset provides values representing the strength/weight of the relation-
ship between users U and V, simSN(U,V) is set to this value.

• If the SN dataset does not provide such values, then simSN(U,V) is fixed to 1.0,
for all user pairs (U, V) for which a relationship is established within the SN.

Similarly, the CF near neighbourhood-based score is denoted as pCFU,i , computed
as:
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pCFU,i =
∑

V∈CFNNU,i
simCF (U, V ) ∗ (

rV,i − rV
)

∑
V∈CFNNU

simCF (U, V )
(6)

SN_NNU,i and CF_NNU,i denote the SN- and CF-based NNs of user U, which have
rated item i, respectively.

In previous research, certain features of SN structure and/or interaction among
users have been shown to denote the strength of relationships between users. Such
features include the number of common/mutual relations, tie strength, intimacy
of message content and others [4, 20]. In our future work, we plan to investigate
methods for exploiting these features, in order to compute or refine the simSN(U,V)
metric.

The partial predictions pCFU,i and pSNU,i are combined and the result is adjusted by
the mean value of ratings entered by U, U (rU)U (rU), in order to formulate the
rating prediction pU,i, as shown in Eq. (7; [21]):

pU,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rU + pCFU,i , if SNNNU,i = ∅

rU + pSNU,i , if CFNNU,i = ∅

rU + wCF ∗ pCFU,i + wSN ∗ pSNU,i , if SNNNU,i �= ∅∧
CFNNU,i �= ∅

(7)

In Eq. (7), the wCF parameter corresponds to the weight assigned to the (partial)
prediction computed by considering only the CF_NNs. The wSN parameter, which
is complementary to the wCF parameter (wSN + wCF = 1.0), denotes the weight
assigned to the prediction computed by considering only the SN_NNs of U,
respectively. If no CF_NNs of U’s who have rated item i exist, then the prediction
is based exclusively on the ratings of the user’s SN_NNs and vice versa.

As shown in Eq. (7), the algorithm presented in Margaris et al. [21] uses the
same wSN and wCF values (weights) to combine the partial predictions (pCFU,i and

pSNU,i) for all users within each dataset. However, such strategy may be suboptimal,
since the properties of the CF- and SN-based neighbourhoods of each user U may
vary significantly, necessitating the use of personalized weight assignments. For
instance, a user U1 may have a SN-based neighbourhood of high cardinality and
a CF-based one of low cardinality, indicating that the wSN for this particular user
should be assigned a higher value than the respective value of wCF for the same user.

In the following section, an algorithm that tackles the aforementioned problem
is proposed. The proposed algorithm is able to adapt its behaviour by taking
into account the density and utility of each user’s SN and CF neighbourhoods.
Furthermore, seven alternatives for combining the CF and SN partial predictions,
calculated by Eqs. (5) and (6), are presented, which target to effectively replace the
combination formula (Eq. 7) that the algorithm presented in Margaris et al. [21, 22]
uses in order to produce the combined rating prediction value.
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4 The Proposed Algorithm and the Partial Prediction
Combination Alternatives

This section describes the proposed algorithm, as well as the seven alternatives for
combining the CF and SN partial predictions. Finally, the time and space complexity
of the proposed algorithm are assessed.

4.1 The Proposed Algorithm

The algorithm proposed in this chapter modifies Eq. (7) that was presented in the
previous section, by catering for the use of personalized weights for the two partial
predictions, pSNU,i and p

CF
U,i , for the combination step. More specifically, the third case

of Eq. (7), which corresponds to the condition (SNNNU, i �= ∅ ∧ CFNNU, i �= ∅),
is modified as shown in Eq. (8):

rU + wCF
U ∗ pCFU,i + wSN

U ∗ pSNU,i (8)

where wSN
U and wCF

U denote the personalized weights for the SN- and the CF-based
predictions, respectively.

Listings 1–3 present the aforementioned algorithm in detail; more specifically,
Listings 1 and 2 present the computation of the CF- and SN-based partial pre-

Listing 1 Computation of the CF-based partial rating prediction
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Listing 2 Computation of the SN-based partial rating prediction

Listing 3 Synthesizing the CF- and SN-based partial predictions into a comprehensive rating
prediction
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dictions, respectively, while Listing 3 presents the synthesis of the two partial
predictions into a comprehensive prediction.

In the following subsection, the alternatives for combining the CF and SN partial
predictions are presented and analysed, while Sect. 5 presents the experimentally
deduced optimal combination and the evaluation.

4.2 Alternatives for Combining the CF and SN Partial
Predictions

Regarding the computation of the personalized weights wSN
U and wCF

U , in this
chapter we test the seven following alternatives:

1. The prediction is based only on the part (CF or SN) where each user has the
largest number of NNs; In case of a tie, the weight is equally split between the
two neighbourhoods. According to the above, the weights wSN

U and wCF
U are

formulated as follows:

wCF
U =

⎧
⎨

⎩

1, if
∣
∣CFNNU,i

∣
∣ >

∣
∣SNNNU,i

∣
∣

0, if
∣
∣CFNNU,i

∣
∣ <

∣
∣SNNNU,i

∣
∣

0.5, if
∣
∣CFNNU,i

∣
∣ = ∣

∣SNNNU,i

∣
∣

wSN
U = 1 − wCF

U

(9)

and, effectively, the prediction for the rating that user U would assign to item i is
computed as shown in Eq. (10):

pU,i =

⎧
⎪⎨

⎪⎩

rU + pCFU,i , if
∣
∣CFNNU,i

∣
∣ >

∣
∣SNNNU,i

∣
∣

rU + pSNU,i , if
∣
∣CFNNU,i

∣
∣ <

∣
∣SNNNU,i

∣
∣

rU + 0.5 ∗ pCFU,i + 0.5 ∗ pSNU,i , if
∣
∣ CFNNU,i

∣
∣ = ∣

∣SNNNU,i

∣
∣

(10)

This alternative will be denoted as max_NNs.
2. The wCF

U weight is computed as the relative number of the CF_NNs to the
number of all the NNs taken into account for the prediction computation
(CF_NNs and SN_NNs):

wCF
U =

⎧
⎪⎨

⎪⎩

0, if
∣
∣CFNNU,i

∣
∣ = 0

1, if
∣
∣ SNNNU,i

∣
∣ = 0

CFNNU,i

CFNNU,i
+SNNNU,i

, if
∣
∣ CFNNU,i

∣
∣ > 0 ∧ ∣

∣SNNNU,i

∣
∣ > 0

wSN
U = 1 − wCF

U

(11)

This alternative will be denoted as w_NNs.
3. The prediction is based only on the part (CF or SN) for which the user has the

largest cumulative similarity weight produced by his NNs; in case of a tie, the
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weight is equally split between the two neighbourhoods. According to the above,
the weights wSN

U and wCF
U are formulated as follows:

wCF
U =

⎧
⎪⎨

⎪⎩

1, if
∑

V∈CFNNU,i
simCF (U, V ) >

∑
V∈SNNNU,i

simSN (U, V )

0, if
∑

V∈CFNNU,i
simCF (U, V ) <

∑
V∈SNNNU,i

simSN (U, V )

0.5, if
∑

V∈CFNNU,i
simCF (U, V ) = ∑

V∈SNNNU,i
simSN (U, V )

wSN
U = 1 − wCF

U

(12)

and, effectively, the prediction pU, i for the rating that user U would assign to
item i is computed as shown in Eq. (13):

pU,i =
⎧
⎨

⎩

rU + pCF
U,i

, if
∑

V∈CF NNU,i
simCF (U, V ) >

∑
V∈SNNNU,i

simSN (U, V )

rU + pSN
U,i

, if
∑

V∈CF NNU,i
simCF (U, V ) <

∑
V∈SNNNU,i

simSN (U, V )

rU + 0.5 ∗ pCF
U,i

+ 0.5 ∗ pSN
U,i

, if
∑

V∈CF NNU,i
simCF (U, V ) = ∑

V∈SNNNU,i
simSN (U, V )

(13)

This alternative will be denoted as max_sim.

4. The wCF
U weight is computed as the ratio of the sum of similarities of U

to her CF-neighbourhood to the sum of (a) the similarities of U to her CF-
neighbourhood and (b) the similarities of U to her SN-neighbourhood, that is:

wCF
U

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if

∣
∣
∣CFNNU,i

∣
∣
∣ = 0

1, if

∣
∣
∣SNNNU,i

∣
∣
∣ = 0

∑
V∈CF NNU,i

simCF (U,V )
∑

V∈CF NNU,i
simCF (U,V )+∑

V∈SNNNU,i
simSN (U,V )

, if

∣
∣
∣ CFNNU,i

∣
∣
∣ > 0 ∧

∣
∣
∣SNNNU,i

∣
∣
∣ > 0

wSN
U

= 1 − wCF
U

(14)

This alternative will be denoted as prop_sim.
5. The wCF

U weight is computed as the ratio of the average similarity of U to her
CF-neighbourhood to the sum of (a) the average similarity between U and the
members of her CF-neighbourhood and (b) the average similarity between U and
the members of her SN neighbourhood. According to the above, the weights wSN

U

and wCF
U are computed as follows:

wCF
U

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if

∣
∣
∣CFNNU,i

∣
∣
∣ = 0

1, if

∣
∣
∣SNNNU,i

∣
∣
∣ = 0

∑
V∈CF NNU,i

simCF (U,V )
∣
∣
∣CFNNU,i

∣
∣
∣

∑
V∈CF NNU,i

simCF (U,V )
∣
∣
∣CFNNU,i

∣
∣
∣

+
∑

V∈SNNNU,i
simSN (U,V )

∣
∣
∣SNNNU,i

∣
∣
∣

, if

∣
∣
∣ CFNNU,i

∣
∣
∣ > 0 ∧

∣
∣
∣SNNNU,i

∣
∣
∣ > 0

wSN
U

= 1 − wCF
U

(15)
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This alternative will be denoted as prop_avg sim.
6. The prediction is based only on the part (CF or SN) where each user has the

largest ratio of NNs considering the item i (the item for which the prediction
is computed) to the number of his overall NNs (this amount will be denoted as
relNNU,i

). In case of a tie, the weight is equally split between the two neigh-
bourhoods. According to the above, the weights wSN

U and wCF
U are formulated as

follows:

wCF
U =

⎧
⎨

⎩

1, if
∣
∣ CF relNNU,i

∣
∣ >

∣
∣ SNrelNNU,i

∣
∣

0, if
∣
∣ CF relNNU,i

∣
∣ <

∣
∣ SNrelNNU,i

∣
∣

0.5, if
∣
∣ CF relNNU,i

∣
∣ = ∣

∣ SNrelNNU,i

∣
∣

wSN
U = 1 − wCF

U

(16)

where CF relNNU,i
=

∣
∣
∣ CFNNU,i

∣
∣
∣

∣
∣ CFNNU

∣
∣ and SNrelNNU,i

=
∣
∣
∣ SNNNU,i

∣
∣
∣

∣
∣ SNNNU

∣
∣ .

This alternative will be denoted as max_rel_NNs. Notably, in this variant
the weights are tailored not only to the user for whom the recommendation is
formulated for but also to the specific item through the consideration of item-
specific neighbourhoods.

7. The wCF
U weight is computed as the ratio of CF relNNU,i

to the sum of
CF relNNU,i

and SNrelNNU,i
, that is:

wCF
U,i =

⎧
⎪⎨

⎪⎩

0, if CFNNU,i
= 0

1, if SNNNU,i
= 0

CF relNNU,i

CF relNNU,i
+SN relNNU,i

, if CFNNU,i
> 0 ∧ SNNNU,i

> 0
(17)

while the value of the wSN
U,i weight is supplementary to the above (1 - wCF

U,i ).

This alternative will be denoted as w_rel_NNs. This alternative, similarly to
the previous one, tailors the weights to both the user for whom the prediction is
generated for and the item for which the rating is predicted.

In the next section, we will assess the performance of the aforementioned
alternatives, in terms of prediction accuracy.

4.3 Complexity Analysis

In this subsection, we assess the complexity of the algorithms presented in the
previous paragraphs.

The procedure computing the CF-based partial rating prediction presented in
Listing 1 iterates over the user’s CF neighbourhood and therefore its complexity is
O(|CF_NNU|), where CF_NNU is the collaborative filtering-based near neighbour-
hood of the user for whom the rating is computed. Wang et al. [28] conclude that the
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consideration of the 8 members of the user’s CF neighbourhood having the highest
similarity with the user suffices to compute accurately this partial prediction, since
no notable effect on the rating prediction is observed when more than 8 members
are considered. Therefore, we can consider an upper bound for the complexity of
this step.

Similarly, the procedure computing the SN-based partial rating prediction pre-
sented in Listing 2 iterates over the user’s SN neighbourhood and therefore its
complexity is O(| SNU| ), where SNU is the social neighbourhood of the user
for whom the rating is computed. The work in Margaris et al. [19] asserts that
considering the 8–10 members of each user’s social neighbourhood with the
strongest influence on the user (as influence is quantified by tie strength [4]) suffices
to compute this metric accurately, since considering more members of the social
neighbourhood has a negligible effect on the recommendation formulation. Wang
et al. [28] concur this finding, further limiting the number of social neighbours that
need to be considered to 6. Therefore, we can consider an upper bound for the
complexity of this step.

Finally, the partial score synthesis presented in Listing 3 does not involve any
iterations, and hence its complexity is equal to O(1).

Taking into account all the above, we conclude that the complexity of the
proposed algorithm is

O (|CFNNU| + |SNU| + 1) (18)

With |CF_ NNU| and |SNU| being capped by values 8 and 10, respectively.
Regarding space complexity, the overhead introduced by the proposed algorithm

is negligible, compared to a plain CF-SN algorithm, since the additional information
required by the proposed algorithm is the social network-based similarity between
each user U and each member of U’s social neighbourhood. Since, according to
the discussion presented above, it suffices to maintain only up to 10 members of
the social neighbourhood, the space overhead introduced by the algorithm is also
capped to up to 10 real numbers per user.

5 Experimental Evaluation

In this section, we report on the experiments that were designed for the quantifi-
cation of the achieved rating prediction improvement, from the deployment of the
proposed algorithm. The results are compared against the results from:

1. The SN RS algorithm presented in Margaris et al. [21], denoted as same weights,
which utilizes the same wSN

U and wCF
U weights for all users in each dataset. The

same weights dataset has been shown to achieve improvements ranging from
1.35% to 3.25% for the dataset listed in Table 1, notably however the optimal
values for the wSN

U and wCF
U weights are dataset-specific (e.g. the optimal value
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for wSN
U is 0.3 for the Ciao dataset, while for the Epinion dataset the respective

value is 0.6), hence a training phase must be executed for each dataset.
2. The plain CF algorithm [14], which does not take into account the SN relations.

For all cases, the plain CF algorithm is used as a baseline. In order to quantify
the rating prediction accuracy of the contending algorithms, we have used two well-
established error metrics, namely the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) that amplifies the importance of large deviations.

To compute the MAE and the RMSE, we employed the standard ‘hide one’
technique [32], where each time one rating in the database was hidden. Then, based
on the ratings of other non-hidden items, its numeric value was tried to be predicted.
Furthermore, in our experiments both the PCC and the CS metrics were used.

For hosting the datasets and running the rating prediction algorithms, we used a
laptop equipped with a quad core Intel N5000 @ 1.1GHz CPU, 8GB of RAM and
one 256GB SSD with a transfer rate of 560 MBps.

In the experiments, we have used five datasets that exhibit the following
properties:

1. They contain both user-item ratings, as well as SN user relations.
2. They vary with respect to the type of dataset item domain (music, books, movies,

restaurants, etc.), CF-density and SN-density, and size.
3. They are widely used for benchmarking in SN CF research and they are up to

date; published the last 10 years.

Table 1 summarizes the basic properties of the considered datasets.
In our first experiment, random ratings from each user are hidden (5 rating

selections per user) and then their values are predicted. To further validate our
results, we conduct an additional experiment in every dataset containing the
timestamps of the ratings, where the last rating from each user in the database is
hidden and then its value is predicted. The results of these two experiments were in
close agreement (less than 2.5% difference in results) and, therefore, we report only
on the results of the first experiment, for conciseness.

In the remainder of this section, we present and discuss the results obtained from
applying the algorithm presented in the previous section to the five datasets, using
the two aforementioned errors metrics, as well as the two similarity metrics (PCC
and CS). From the presentation of the results, we have excluded the variant prop_avg
sim, since it was found to yield lower rating prediction accuracy in comparison to
the baseline algorithm.

5.1 Prediction Accuracy Experiments Using the PCC as
the Similarity Metric

Figure 1 illustrates the performance regarding the MAE reduction when the PCC
similarity metric is used to quantify the similarity between two users. We can
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Fig. 1 MAE reduction for all datasets, using the PCC as the similarity metric

observe that the proposed algorithm, using the first alternative (max_NNs), is the
one achieving the best results for all five datasets tested. It achieves an average
MAE reduction over all datasets equal to 5.2%, surpassing by approximately 2.3
times the corresponding improvement achieved by the same weights algorithm
(2.2%) presented in [21], which uses the same weights for the CF NNs and
SNNNs of all users. At the individual dataset level, the performance edge of the
proposed algorithm against the same weights algorithm ranges from over 75% for
the ‘Dianping SocialRec 2015’ dataset to 260% higher for the ‘FilmTrust’ dataset.

It has to be mentioned that the lowest MAE improvement for the proposed
algorithm is observed for the ‘Filmtrust’ and the ‘LibraryThing’ datasets, which
have relatively low #Social Relations / #Users ratio among the five datasets (1.2
and 1.6, respectively). In contrast, the highest MAE improvements for the proposed
algorithm are observed for the ‘Epinions’ and the ‘Dianping SocialRec 2015’
datasets, which have the highest #Social Relations / #Users ratio among the five
datasets (9.9 and 17, respectively). This fact clearly demonstrates the power of
the proposed algorithm to exploit the available SN information to improve the RS
prediction accuracy.

Considering the other alternatives for computing the weights for the CF and
SN neighbourhoods, we can observe that the prop_sim algorithm is the runner up,
achieving an average improvement of 4.8% against the baseline algorithm, lagging
this behind the max_NNs algorithm by 0.4%. Interestingly, the biggest gap between
the performance of max_NNs and prop_sim is observed for the ‘Filmtrust’ and the
‘LibraryThing’ datasets, which have relatively low #Social Relations / #Users ratios,
indicating that the prop_sim algorithm achieves good results in more dense social
neighbourhoods, but its performance in sparse social neighbourhoods declines.
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Fig. 2 RMSE reduction for all datasets, using the PCC as the similarity metric

Interestingly, the max_rel_NNs and w_rel_NNs alternatives, which are the two
methods that consider item-specific neighbourhoods, tailoring the weights both to
the user for whom the recommendation is formulated for and to the specific item for
which the prediction is formulated, are found to achieve the lowest improvements
among all variants discussed in this section. This indicates that for any individual
user U, the effect of U’s CF and SN neighbourhoods on the rating predictions
formulated for U is generally uniform across all items, and the consideration of
item-specific neighbourhoods merely adds noise to the rating prediction procedure.
This issue will be investigated further in our future work.

Figure 2 demonstrates the performance regarding the RMSE reduction when
similarity between users is measured using the PCC.

We can observe that the proposed algorithm, again using the first alternative
(max_NNs), achieves the best results for all five datasets tested, with an average
RMSE reduction over all datasets equal to 4.7%, surpassing the improvement
achieved by the same weights algorithm (1.8%), by approximately 2.6 times. At
the individual dataset level, the performance edge of the proposed algorithm against
the same weights algorithm ranges from 120% for the ‘FilmTrust’ dataset to 300%
higher for the ‘LibraryThing’ dataset.

Furthermore, we can again clearly see that the ‘Epinions’ and the ‘Dianping
SocialRec 2015’ datasets, having the highest #Social Relations / #Users ratio among
the five datasets tested, achieve the highest RMSE reduction, while the other three
datasets (‘Ciao’, ‘Filmtrust’ and ‘LibraryThing’), which have the lowest #Social
Relations / #Users ratio achieve the lowest MAE improvement. This fact, again,
clearly demonstrates the power of the proposed algorithm to exploit the available
SN information, in order to improve the RS prediction accuracy.
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Fig. 3 MAE reduction for all datasets, using the CS as the similarity metric

Regarding the other alternatives for computing the weights for the CF and
SN neighbourhoods, we can observe that the prop_sim algorithm is again ranked
second, albeit with a wider margin from the max_NNs alternative than the one
observed in the reduction of the MAE (0.8% against 0.4%). This indicates that
the max_NNs alternative corrects more large errors than the prop_sim variant (the
RMSE metric penalizes more severely large errors). Again, the two alternatives
that consider item-specific neighbourhoods achieve the lowest improvements to the
RMSE among all alternatives discussed in this section.

5.2 Prediction Accuracy Experiments Using the CS as
the Similarity Metric

Figure 3 illustrates the performance regarding the MAE reduction when the CS
metric is used to quantify the similarity between users. We can observe that the
proposed algorithm, using the first alternative (max_NNs), is again the one achieving
the best results for all five datasets tested, with an average MAE reduction over all
datasets equal to 4.5%, surpassing the improvement achieved by the same weights
algorithm (2%), by approximately 2.2 times. At the individual dataset level, the
performance edge of the proposed algorithm against the algorithm that sets the same
weights for all users in each dataset ranges from 110% for the ‘Dianping SocialRec
2015’ dataset to 150% higher for the ‘LibraryThing’ dataset.

Yet again, that accuracy improvement achieved by the proposed algorithm is
positively correlated to the density of available SN relations. Similarly to the case
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Fig. 4 RMSE reduction for all datasets, using the CS as the similarity metric

of using the PCC similarity metric, the prop_sim algorithm is the runner up: it
achieves a MAE improvement of 4.1% against the baseline, lagging behind the
performance of the max_NNs by 0.4%. Moreover, the two alternatives that consider
item-specific neighbourhoods achieve the lowest improvements to the RMSE among
all alternatives discussed in this section.

Finally, Fig. 4 illustrates the performance regarding the RMSE reduction when
similarity between users is measured using the CS metric.

We can observe that the proposed algorithm, using the first alternative
(max_NNs), is the one achieving the best results for all five datasets tested,
with an average RMSE reduction over all datasets equal to 3.8%, surpassing the
improvement achieved by the same weights algorithm (1.8%) by approximately
2.1 times. At the individual dataset level, the performance edge of the proposed
algorithm against the same weights algorithm ranges from 80% higher for the
‘Dianping SocialRec 2015’ dataset to 150% higher for the ‘LibraryThing’ dataset.

Furthermore, we can clearly see that the ‘Epinions’ and ‘Dianping SocialRec
2015’ datasets, having relatively high #Social Relations / #Users ratio among the
five datasets tested, achieve the highest RMSE reduction, while the other three
datasets (‘Ciao’, ‘Filmtrust’ and ‘LibraryThing’), which have the lowest #Social
Relations / #Users ratio, achieve the lowest MAE improvement. This clearly
demonstrates the power of the proposed algorithm to exploit the available SN
information, in order to improve the RS prediction accuracy.

Considering the other alternatives, we can observe that in this case the w_NNs
variant is ranked second, while the prop_sim algorithm is ranked third. Again,
the prop_sim algorithm appears to mostly remedy prediction errors of smaller
magnitude, while the max_NNs and w_NNs algorithms manage to correct larger
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errors, and hence the latter two algorithms surpass prop_sim in this case. Once more,
the two alternatives that consider item-specific neighbourhoods achieve the lowest
improvements to the RMSE among all alternatives discussed in this section.

6 Conclusions and Future Work

Nowadays, where the available information on the Internet is chaotic, the task of
recommending interesting products to the users is more difficult than ever. The
core task RSs is the investigation of the preferences of online users and suggestion
of items they might. CF, which is the most widely used RSs method, synthesizes
the people’s opinions to make accurate user rating predictions, which will lead to
personalized recommendations, under the assumption that if users liked (bought,
ate, listened, etc.) common items in the past, they are likely to do so in the future,
as well.

However, traditional CF-based RSs assume that users are independent from each
other and do not take into account the social interactions among them, such as trust
and friendship. As a result, they fail to incorporate important aspects that denote
influence and interaction among the users, which can enhance recommendation
quality.

The aforementioned drawback has been recently overcome by SN-aware RSs,
which take into account information derived from the user profiles and from the
item profiles, as well as dynamic aspects and contextual information stemming from
social information. With this information in hand, the SN-aware RSs achieve more
targeted and hence more successful recommendations.

However, the success of a SN-aware RS greatly depends on the combination
of the SN- and the CF-based information, in the sense of identifying which rating
prediction information source (the SN relations or the CF NNs) is considered as the
most reliable and useful predictor each time.

In this chapter, we proposed an algorithm that effectively combines SN informa-
tion, specifically user social relations, with CF information, that is user ratings for
items. The proposed algorithm formulates two partial prediction scores, from the
SN and the CF neighbourhood, and then combines the two partial predictions using
a weighted average metascore combination approach.

In contrast to the algorithm presented in Margaris et al. [21], which set the
same weights to the two partial predictions for all the users within each dataset,
the algorithm proposed in this chapter sets personalized weights for each individual
user, based on the density and utility of each individual user’s SN- and CF-based
neighbourhoods.

In this direction, we have tested seven weight calculation alternatives. The one
based only on the partial result, either SN or SF, where each user has the largest
number of NNs for the item whose rating is about to be predicted, proved to be the
optimal.
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The proposed algorithm was validated through a set of experiments, aiming to
quantify the improvement obtained in prediction accuracy, due to the consideration
of the SN NNs in the recommendation process. In these experiments, five datasets
containing both SN information (user–user relation) and CF information (user–item
rating) were used. Measurements were taken under the two similarity metrics most
widely used in RSs, namely the PCC and the CS. Additionally, two types of social
relations, friendship (undirected) and trust (directed), were considered, in order to
examine the behaviour of the proposed algorithm under several settings commonly
encountered in SN RSs. The algorithm was proven to be highly adaptive to the
characteristics of the datasets, yielding promising results in all cases.

The evaluation results have shown that the proposed algorithm may provide
substantial improvement on rating prediction quality, across all datasets. The MAE
decreases by 5.2% and the RMSE declines by 4.7%, on average, when the PCC
metric is used (the respective reductions of the algorithm proposed in Margaris et al.
[21] were 2.2% and 1.8%), and by 4.5% and 3.8%, respectively, when the CS metric
is used (the respective reductions of the algorithm proposed in Margaris et al. [21]
were 2% and 1.8%). In both cases, the performance of the plain CF algorithm is
taken as a baseline. Furthermore, the proposed algorithm outperforms the algorithm
proposed in Margaris et al. [21] for all cases, by an average of 2.3 times.

Since the proposed algorithm takes into account only each user’s CF NN
cardinality, as well as his SN NN cardinality, it does not introduce any extra
overhead to the prediction calculation procedure, compared to the same weights
algorithm; on the contrary, we can note that while the algorithm presented in
Margaris et al. [21] always calculates both the CF- and the SN-based partial
prediction, the algorithm proposed in this chapter can only calculate one partial
prediction being thus more efficient (except for the case that the SN and CF
neighbourhoods of the user have the same cardinality, where both partial scores
need to be computed, thus the prediction formulation cost is similar to that of the
algorithm presented in Margaris et al. [21]).

Moreover, the fact that the proposed algorithm achieves the highest error
improvement for the datasets that have the highest #Social Relations / #Users ratios
among the five datasets tested, under both metrics (PCC and CS), clearly proves the
capacity of proposed algorithm to successfully exploit the available SN information
to improve the RS prediction accuracy.

The proposed algorithm requires the availability of typical CF information
(i.e. a user-rating matrix) and elementary social relation information (bidirectional
friendships or unidirectional trusts). However, due to the fact that no additional
information, such as users’ demographic information (age, gender, nationality,
location, etc.), items’ characteristics (price, category, reliability, etc.) or SN’s
contextual information (tie strength, influence, etc.) is required, it can be applied
to any SN CF dataset, standalone or in combination with other algorithms that have
been proposed for improving rating prediction accuracy and/or coverage, such as
matrix factorization models [15] and concept drift techniques [9].

This study has two limitations. Additional SN information (such as users’
influence, tie strength, common–mutual relations, demographic data, contextual
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information, etc.) is not taken into account for tuning the sim(U,V)SN parameter.
Furthermore, the proposed algorithm does not take the age of each user rating into
account, in the sense that aged user ratings may not accurately reflect the current
state of users regarding their likings and tastes, which may produce inaccurate
predictions, due to the concept drift phenomenon [9].

Our future work will focus on investigating the computation-tuning of the
sim(U,V)SN parameter value, considering additional information derived from the
SNs domain. Furthermore, we are planning to evaluate the presented algorithm
under additional user similarity metrics, such as the Euclidean Distance, the Ham-
ming Distance, and the Spearman Coefficient [14], for the cases which those metrics
are proposed by the literature as more suitable for the additional information. The
above can also be utilized in broader applications of prediction methods that utilize
social media data, such as textual reviews [22] or user-contributed data for the
creation of detailed user profiles [1]. Finally, the combination of the proposed
method with concept drift techniques [9] will also be investigated.
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